New insights on GRB host galaxies from XSHOOTER observations

Susanna D. Vergani (GEPI-APC-IAP, France)

On behalf of the French-Italian X-shooter collaboration for the study of GRB host galaxies

Special guests: S. Savaglio, P. Petitjean and J. Fynbo
Deciphering the Ancient Universe with Gamma-Ray Bursts

XSHOOTER: 2nd Generation instrument @ VLT

- 3 echelle spectrographs
- Full range 3000 – 24000 Å in a single shot
- Resolution 5000 – 10000
- Slit length 11”
- Integral field unit 1.8” x 4”
- \(m(AB) \sim 21 \) (1h, SNR=10; \(K(AB) \sim 19 \))

P.I. Board: Sandro D'Odorico (Chair), Francois Hammer, Lex Kaper, Per Kjaergaard Rasmussen, Sofia Randich

Project Manager: Hans Dekker

Instrument Scientists: Joël Venet (Garching), Elena Mason (Paranal)

- Copenhagen University Observatory, Niels Bohr Institute (DK)
- Institute for Physics and Astronomy in Aarhus (DK)
- Astronomical Institute 'Anton Pannekoek' from the University of Amsterdam (NL)
- Department of Astrophysics from the University of Nijmegen (NL)
- Netherlands Foundation of Research in Astronomy (ASTRON, NL)
- Osservatorio Astronomico di Brera (INAF, IT)
- Osservatorio Astronomico di Trieste (INAF, IT)
- Osservatorio Astronomico di Palermo (INAF, IT)
- Osservatorio Astrofisico di Catania (INAF, IT)
- GEPI, Paris Observatory (FR)
- AstroParticule et Cosmologie institute (Universite Paris 7, CNRS and CEA, FR)
- European Southern Observatory (ESO)

April 19-23, 2010, Kyoto, Japan
Open to the community from October 2009
Consortium GTO time: partly dedicated to GRB science

French-Italian GTO to study GRB host galaxies: about 160 hours over 3 years
PIs: Silvia Piranomonte (INAF-Rome) / Hector Flores (GEPI-Paris)

- Slit spectroscopy: \(z \geq 1 \) host galaxies
- IFU observations: \(z<1 \) host galaxies
 - Velocity field and a velocity dispersion map for each detected emission line.
 - Electron density, metallicity, extinction and star formation measures.
Open to the community from October 2009
Consortium GTO time: partly dedicated to GRB science

French-Italian GTO to study GRB host galaxies: about 160 hours over 3 years
PIs: Silvia Piranomonte (INAF-Rome) / Hector Flores (GEPI-Paris)

Slit spectroscopy: \(z \geq 1 \) host galaxies

- Extend emission lines spectroscopic host galaxy studies to high redshift: SFR, extinction, metallicity... (e.g. Savaglio et al. for \(z<1 \))
- Comparison with GRB-DLAs
- Comparison with surveys of galaxies
Deciphering the Ancient Universe with Gamma-Ray Bursts

New instrument: first selection based on galaxies with one or more emission lines already detected in the optical

GRB 021004 $z \approx 2.3$
GRB 000210 $z \approx 0.8$
GRB 000911 $z \approx 1.1$

-November 2009-

GRB 990506 $z \approx 1.3$
GRB 011211 $z \approx 2.1$

-March 2010-

GRB 000418 $z \approx 1.1$
GRB 060801 $z \approx 1.3$
GRB 030328 $z \approx 1.5$
GRB 080520 $z \approx 1.5$

-Now-

GRB 000210: [OII], [OIII], H-gamma, H-beta, H-alpha
Piranomonte et al. in preparation
GRB 021004

One of the best studied GRB

Afterglow light curve sampled from X to radio
VLT/UVES afterglow spectrum (and many other)
Lyman-alpha emission in the afterglow spectrum

HST host galaxy observations UVB to NIR (Fynbo et al. 2005):
m_r = 24.4
Blue starburst galaxy

Tentative [OIII] and H-alpha VLT/ISAAC detections
(Castro-Tirado et al. 2010)

SCUBA observations (Tanvir et al. 2004):
no detection
Deciphering the Ancient Universe with Gamma-Ray Bursts

Absorbers at $z=2.3289$

Emission of Lyman-alpha $z=2.33167$
$\Delta v = 250 \text{km/s}$

Absorption up to 3000km/s:

- WR wind? (Fiore et al. 2005; ...)
- Close-by galaxy? (Chen et al. 2007; ...)

UVES afterglow spectrum
2 strong MgII intervening systems (Vergani et al. 2009;...)

MgII doublet

GRB 021004 \(z = 1.3800 \)

GRB 021004 \(z = 1.6026 \)

\[\text{[OIII]} \text{ emitter at 16'' } \sim 100 \text{ kpc} \]

Vreeswijk et al. 2003

April 19-23, 2010, Kyoto, Japan
X-shooter observations (nodding)

Slit position 1
Slit UVB 1.0'' R=5100 t_exp=4800
 VIS 0.9'' R=8800 t_exp=4800
 NIR 0.9'' R=5100 t_exp=5200

Slit position 2
Slit UVB 1.0'' R=5100 t_exp=3600
 VIS 0.9'' R=8800 t_exp=3600
 NIR 0.9'' R=5100 t_exp=5200

Slit position 3
Slit UVB 1.6'' R=3300 t_exp=4800
 VIS 1.5'' R=5400 t_exp=4800
 NIR 1.5'' R=3300 t_exp=5200
Preliminary results (Vergani et al. in preparation)

Detection of $\text{[OIII]}5700\text{Å}$ doublet, H-alpha, Ly-alpha, H-beta on a sky line

Tentative NII Limit for [OII]; $\text{[OIII]}/\text{[OII]} > 4$

Integrated continuum only detection

2D NIR spectrum (slit position 1) [OIII]; $z = 2.33102$
Deciphering the Ancient Universe with Gamma-Ray Bursts

2D UVB spectrum

$z = 2.33177$

Spatially more extended than [OIII]

Asymmetric profile typical of LAE

Shift of about 70 km/s
Lyman-alpha absorption difference of 1/10 only (a few 10^{17} ergs/s/cm2)
Properties and distribution of the neutral gas

Verhamme et al. 2006

NHI, Vexp, b
Extended Lyman-alpha emission

Jakobsson et al. 2005

ACS image / Narrow-band contours

Ly alpha excess (position 1)

Ly alpha excess (position 2)

about 1/7 of the total flux

April 19-23, 2010, Kyoto, Japan
Deciphering the Ancient Universe with Gamma-Ray Bursts

Interactions between the host and ‘A’?

High velocity absorbers: outflowing gas?

IFU observations

No detections of intervening absorbers counterparts
Deciphering the Ancient Universe with Gamma-Ray Bursts

GRB100418A UVB XSHOOTER

FeII, FeII*, CrII, ZnII, MgII and MgI absorption lines

$z=0.6235$ GCN 10620

April 19-23, 2010, Kyoto, Japan
Deciphering the Ancient Universe with Gamma-Ray Bursts

![Graph showing spectral lines](Image)

- [OII] 4959
- H-δ
- H-γ
- H-β
- [OIII] 4959
- [OIII] 5007

April 19-23, 2010, Kyoto, Japan
Deciphering the Ancient Universe with Gamma-Ray Bursts

GRB100418A NIR XSHOOTER

H-α

Arbitrary Units

10400 10500 10600 10700 10800 10900 11000

Angstrom

April 19-23, 2010, Kyoto, Japan