Observations of Cosmic Dust Evolution Using GRB Afterglows:
The 2175 Å Carrier at z~3 and Supernova Dust at z~5

Daniel Perley (UC Berkeley)

Deciphering the Ancient Universe with Gamma-Ray Bursts

京都，日本
Introduction

- How does high-z dust differ from local dust?
 - How much dust at $z>3,4,5$? (When did most of it form?)
 - Does it have the same composition, size distribution, and observational signatures as dust today?
 - What can it tell us about conditions in early galaxies?

- **GRBs**: excellent tools for probing high-z dust
 - Extremely luminous: visible to extreme redshifts
 - Occur in “typical” star-forming galaxies
 - Intrinsically simple spectrum ($F = \lambda^\beta$)
\[A_\lambda = 1.09 \, \tau(\lambda) \]

- Normalized to 5500Å (\(A_V \))
- Considerable local variation, esp. in UV

"2175 Å bump": can be dominant or totally absent

Varying slopes (reddening per dimming)
GRB 080607

An Ultra-Energetic Burst Piercing a Milky Way-like Molecular Cloud 2 Billion Years after the Big Bang

• ApJL 691:27 (arXiv/0901.0556)
• Add'l work in prep.

contributions from:
Jason X. Prochaska
Yaron Sheffer
Josh Bloom
Adam Miller
Adam Morgan
Mo Ganeshalingam
Weidong Li
Adria Updike
(+ others)
A Phenomenal Burst

- 15-150 keV fluence: $S = 2.32 \times 10^{-5}$ erg/cm2 (7th highest of Swift mission)
- $z = 3.038$
- $E_{iso} = 1.87 \times 10^{54}$ erg (highest of Swift mission?)

BAT light curve (from Swift burst analyzer)
Afterglow

GRB 080607

Observations of Cosmic Dust Evolution using GRBs

2009年04月22日

Daniel Perley
Afterglow GRB 080607

Peak observed magnitude:

R~16, K~11.5

Observations of Cosmic Dust Evolution using GRBs

2009年04月22日 Daniel Perley Observations of Cosmic Dust Evolution using GRBs
Occurred during our Keck/LRIS night (classical, GRB host galaxies)

$t = 20$-120 min

low resolution, 3800-9200 Å

GRB 080607
GRB 080607

Ionic Lines

z = 3.036

- Carbon
- Chlorine
- Copper
- Nickel
- Potassium
- Silicon
- Sulfur
- Hydrogen (Ly α)
- Magnesium
- Aluminum
- Gallium
- Lead
- Iron
- Germanium
- Phosphorous
- Chromium
- Nickel
- Zinc
- Titanium
- Manganese
- Cobalt
- ???
Ionic Lines

GRB 080607

$z = 3.036$

$Z >$ solar

Hydrogen (Ly α)

Sulfur

Silicon

Potassium

Nickel

Copper

Chlorine

Carbon

Manganese

Titanium

Zinc

Nickel

Silicon

Hydrogen

Gallium

Lead

Iron

Germanium

Aluminum

Magnesium

Phosphorous

Chromium

Cobalt

$Z \geq$ solar

Daniel Perley

Observations of Cosmic Dust Evolution using GRBs
Molecular Lines

z = 3.036

Molecular hydrogen (H₂)

GRB 080607
Vibrationally Excited H_2

GRB 080607

$d = 230–940$ pc
GRB 080607

Curvature

- **z = 3.036**
- **Molecular hydrogen (H₂)**
- **Hydrogen (Ly α)**
- **Silicon**
- **Sulfur**
- **Carbon**
- **Potassium**
- **Nickel**
- **Chlorine**
- **Copper**
- **Gallium**
- **Lead**
- **Iron**
- **Germanium**
- **Aluminum**
- **Titanium**
- **Zinc**
- **Nickel**
- **Monoxide**
- **Phosphorous**
- **Manganese**
- **Cobalt**
- **Magnesium**
- **Carbon Monoxide**
- **Molecular hydrogen (H₂)**
- **Potassium**
- **Nickel**
- **Copper**
- **Gallium**
- **Lead**
- **Iron**
- **Germanium**
- **Aluminum**
- **Titanium**
- **Zinc**
- **Nickel**
- **Monoxide**
- **Phosphorous**
- **Manganese**
- **Cobalt**
- **Magnesium**

Observations of Cosmic Dust Evolution using GRBs

Daniel Perley

2009年04月22日
Observations of Cosmic Dust Evolution using GRBs

Spectral Energy Distribution

GRB 080607

2009年04月22日

Daniel Perley

Observations of Cosmic Dust Evolution using GRBs
Extinction Modeling

SMC

Calzetti (starburst)

GRB 080607

Observations of Cosmic Dust Evolution using GRBs
Extinction Modeling

- SMC
- Calzetti
- Milky Way
- LMC

GRB 080607

Observations of Cosmic Dust Evolution using GRBs
Extinction Modeling

Solve for extinction law using general Fitzpatrick parameters:

- $A_v = 3.2 \pm 0.5$
- $R_v = 4.0 \pm 0.2$
- $c_3 = 1.3 \pm 0.3$
- $c_4 = 0.3 \pm 0.1$
Extinction Law

- GRB 080607
- Av = 3.2 ± 0.5
- $R_V = 4.0 ± 0.2$
- $c_3 = 1.3 ± 0.3$
- $c_4 = 0.3 ± 0.1$

Starburst galaxies

- SMC
- LMC
- MW (diffuse ISM)
Observations of Cosmic Dust Evolution using GRBs

Av = 3.2 ± 0.5
Rv = 4.0 ± 0.2
\[c3 = 1.3 ± 0.3 \]
\[c4 = 0.3 ± 0.1 \]

- Very large extinction column
Observations of Cosmic Dust Evolution using GRBs

Daniel Perley
2009

Extinction Law

Av = 3.2 ± 0.5
Rv = 4.0 ± 0.2
c3 = 1.3 ± 0.3
c4 = 0.3 ± 0.1

- Very large extinction column
- Relatively UV-grey (many large particles)
GRB 080607

Extinction Law

Av = 3.2 ± 0.5

Rv = 4.0 ± 0.2

c3 = 1.3 ± 0.3

c4 = 0.3 ± 0.1

- Very large extinction column
- Relatively UV-grey (many large particles)
- 2175 Å bump weak but present

Observations of Cosmic Dust Evolution using GRBs
Extinction Law

- **Av** = 3.2 ± 0.5
- **Rv** = 4.0 ± 0.2
- **c3** = 1.3 ± 0.3
- **c4** = 0.3 ± 0.1

Similar to Galactic molecular cloud sightlines.

- 2175 Å bump weak but present
GRB 080607:

- Large dust column in star-forming galaxy at $z>3$
- Probing sightline through molecular cloud
- Solar metallicity, dust resembles MW, LMC but not SMC, suggesting similar conditions to now: mature, dusty star-forming galaxy?
- Highest-redshift detection of $2175\,\text{Å}$ feature: carrier was formed (in part) by $t = 2\,\text{Gyr.}$
GRB 071025

Supporting Evidence for a Transition in Dust Properties in the first \(~1\) Gyr

MNRAS in press (arXiv/0912.2999)

contributions from:

Christopher Klein
Josh Bloom
Stefano Covino
Takeo Minezaki
P. Wozniak
Thomas Vestrand
Grant Williams
Thomas Kruhler
Adria Updike
(+ others)

PAIRITEL
REM
MAGNUM
RAPTOR
Kuiper
GROND

GRB 080607

Observations of Cosmic Dust Evolution using GRBs

2009年04月22日

Daniel Perley
Observations of Cosmic Dust Evolution using GRBs

Daniel Perley

2009年04月22日

GRB 071025

Light Curve

GRB 071025

XRT

K, H, J, I clear, Y, R

AB magnitude vs. time (t) in seconds (s)

10^2 10^3 10^4 10^5

10^1 10^2 10^3 10^4 10^5 10^6

F_v (Jy, J)

Light Curve
R-band faintness cannot be reproduced by any dust model:
photometric redshift $z = 4.8 \pm 0.4$
GRB 071025

Spectral Energy Distribution

R-band faintness cannot be reproduced by any dust model:

photometric redshift

$z = 4.8 \pm 0.4$
Observations of Cosmic Dust Evolution using GRBs

Daniel Perley
2009年04月22日

GRB 071025

Spectral Energy Distribution

$\lambda_{\text{eff, rest}}$ (Å)

magnitude (AB)

F_V (μJy)

λ_{eff} (Å)

20000

10000

200

100

50

4000

18.0

18.5

19.0

19.5

20.0

GRB 071025

Observations of Cosmic Dust Evolution using GRBs
SED is inflected: flattens around $\lambda_{\text{rest}} \sim 2000$ Å

I-band faintness is not due to DLA (HIRES spectrum)
Extinction Modeling

GRB 071025

Milky Way

LMC

Observations of Cosmic Dust Evolution using GRBs

2009年04月22日

Daniel Perley
Extinction Modeling

Maiolino

Empirical law from a SDSS z=6.2 quasar: well fit by models of dust from Type II SNe

Av = 0.55 ± 0.1
Extinction law

- SMC
- LMC
- MW (diffuse ISM)
- Starburst galaxies
- Maiolino
The significance of this critically depends on accurate calibration and understanding of systematic uncertainties!

e.g., GRB 050904:
- Stratta et al.: Maiolino dust
- Kann et al.: no dust
- Gou et al.: no dust
- Liang and Li: 2175 Å bump?
- Zafar: no dust
The significance of this critically depends on accurate calibration and understanding of systematic uncertainties!

SED features do not change with time and are seen with multiple instruments in geographically different locations.

e.g., GRB 050904:
- Stratta et al.: Maiolino dust
- Kann et al.: no dust
- Gou et al.: no dust
- Liang and Li: 2175 Å bump?
- Zafar: no dust
The significance of this critically depends on accurate calibration and understanding of systematic uncertainties!

- SED features do not change with time and are seen with multiple instruments in geographically different locations.

Is it real?

- **GRB 050904**: Stratta et al.: Maiolino dust
 - Kann et al.: no dust
 - Gou et al.: no dust
 - Liang and Li: 2175 A bump?
Is it real?

The significance of this critically depends on accurate calibration and understanding of systematic uncertainties!

e.g., GRB 050904:
- Stratta et al.: Maiolino dust
- Kann et al.: no dust
- Gou et al.: no dust
- Liang and Li: 2175 A bump?
- Zafar: no dust

Examined:
- zeropoint uncertainty
- 2MASS survey systematic uncertainty
- instrumental color terms
- variable atmospheric absorption
- non-power law intrinsic spectrum
- strong DLA at z=5.2

none of these are significant enough to generate the observed effect.
Dust Transition at High z?

Conclusions

Extinction Law Class
- Maiolino plateau
- Featureless, steep
- Featureless, shallow
- Gray
- Shallow w/ 2175
- Steep w/ 2175

Redshift
- $z = 0$
- $z = 2$
- $z = 4$
- $z = 6$

Dust Observations
- GRB 051111
 - Butler et al. 2007
- SDSS quasars
 - Hopkins et al. 2004
- AGN?
 - Schady et al. 2010, Kann et al. 2007
- Nearby starbursts
 - Calzetti et al. 1994
- Nearby spirals
 - Keel & White 2001, Bianchi et al. 1996
- Milky Way (mean)
 - LMC
- Milky Way (clouds)
 - SMC
- GRB 061126
 - Perley et al. 2008
- GRB 070802
 - Eliasdottir et al. 2009
- GRB 071025
 - Perley et al. 2010
- GRB 080607
 - Prochaska et al. 2009
- SN hosts
 - Poznanski et al. 2009, Elias-Rosa et al. 2006
- Lensing galaxies
 - Falco et al. 2009

References
- Butler et al. 2007
- Calzetti et al. 1994
- Poznanski et al. 2009
- Elias-Rosa et al. 2006
- Prochaska et al. 2009

Observations of Cosmic Dust Evolution using GRBs

Daniel Perley

2009 年 04 月 22 日
Observations of Cosmic Dust Evolution using GRBs

Dust Transition at High z?

Conclusions

Extinction Law Class

- Maiolino plateau
- Featureless, steep
- Featureless, shallow
- Gray
- Shallow w/ 2175
- Steep w/ 2175

Redshift

- t > 1 Gyr: z < 5
- Dust forms in AGB stars
- z = 0
- z = 2
- z = 4
- z = 6
- Dust forms in SNe?
- GRB 051111
- GRB 071025
- GRB 080607
- GRB 070802

Other References:
- Poznanski et al. 2009,
- Elias-Rosa et al. 2006
- Calzetti et al. 1994
- Butler et al. 2007
- Perley et al. 2010
- Maiolino et al. 2004
- Perley et al. 2008
- Hopkins et al. 2004
- Gaskell et al. 2007
- Prochaska et al. 2009
- Eliasdottir et al. 2009
- Falco et al. 2009
- Keel & White 2001,
- Bianchi et al. 1996

2009 年 04 月 22 日 Daniel Perley Observations of Cosmic Dust Evolution using GRBs
Observations of Cosmic Dust Evolution using GRBs
Daniel Perley
2009年04月22日

Conclusions

Dust Transition at High z?

<table>
<thead>
<tr>
<th>Redshift</th>
<th>Extinction Law Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>$z < 5$</td>
<td>Dust forms in AGB stars</td>
</tr>
<tr>
<td>$z > 5$</td>
<td>Dust forms in SNe?</td>
</tr>
</tbody>
</table>

$t > 1$ Gyr: Dust forms in AGB stars
$t < 1$ Gyr: Too early to be sure, but trend is intriguing!
Conclusions

- Diffuse MW / LMC / SMC is not the whole story
- 080607: Galactic-like molecular cloud at z=3 with weaker 2175 Å carrier
- 071025: Plenty of dust at z=5, extinction law resembles z>5 quasars and modeled dust from Type II Sne
- SN → AGB production transition at z~5?
Observations of Cosmic Dust Evolution using GRBs

Daniel Perley

2009年04月22日

Extinction Law

Av = 3.2 ± 0.5
Rv = 4.0 ± 0.2
c3 = 1.3 ± 0.3
c4 = 0.3 ± 0.1

080607

ONC

LMC

SMC

GRB 080607

c2 (UV steepness)
c3 (2175 bump strength)

Inverse wavelength (1/μm)
Observations of Cosmic Dust Evolution using GRBs
Daniel Perley
2009年04月22日

Extinction Law

GRB 080607

- Av = 3.2 ± 0.5
- Rv = 4.0 ± 0.2
- c3 = 1.3 ± 0.3
- c4 = 0.3 ± 0.1

Typical MW-like values, except:

- Large Rv: dense ISM (like a molecular cloud!)
- Low but nonzero c3: presence of 2175 Å carrier (graphite grains?)