Observational Searches for High-z Galaxies Hosting PopIII Stars

Tohru Nagao (Ehime Univ, Japan)
Deciphering the Ancient Universe with Gamma-Ray Bursts

Kyoto, Japan April 19-23, 2010

Yonetoku+04

GRBs decipher star-formation activities in the cosmic dark age

...and PopIII stars!?
Deciphering the Ancient Universe with Gamma-Ray Bursts

Kawai+05

z = 6.3

...but PopIII at z < 10 ?

Tanvir+09

z = 8.2

9-23, 2010
Some cosmological simulations predict PopIII formation even at $5 < z < 10$!!

... but how discriminate??
How discriminating PopIII stars?

- Very high T_{eff} due to low opacity even below $M=100M_{\odot}$
- Very hard SED especially at FUV

...could be diagnostics for PopIII stars!?
SED of PopIII stellar clusters (= PopIII galaxies)

Huge number of H & He ionizing photons !!

Color info are NOT useful

Tumlinson+00
Expected Spectrum of PopIII Galaxies

- Strong H I and He II discriminating from PopI
- Especially He II 1640 accessible even at high-z; no resonance effects
- No metal lines discriminating from AGN

Schaerer 02
Expected Strength of Emission Lines

Schaerer 03

Possible strategy for PopIII searches:
1) search for strong “Lyα emitters”
2) identifying He II line among them
Our Search for "Lya–HeII Dual Emitters"

- Spectroscopy? ...not a bad idea, but too expensive
 ~ faint HeII emission at NIR (or red part in Opt)
 ~ low number density of targets → longslit obs.

A deep NIR spectroscopy for a Lyα emitter at $z=6.3$ with Subaru/OHS

Nagao+04

Upper limit on SFR(PopIII):
- $13.2 \, M_{\odot}/yr$ if IMF $1<M/\, M_{\odot}<500$
- $1.8 \, M_{\odot}/yr$ if IMF $50<M/\, M_{\odot}<1000$

Nagao+05

42 ksec exposure for only ONE target → no He II detection...
“Stacked” Spectra

Stacked 811 LBGs at $z=3$ (Shapley+03)

...He II emission !?

Evidence of PopIII !? (Jimenez+06)

Just a stellar feature ? (Shapley+03)
36 LAEs at $z=3.1$
31 LAEs at $z=3.7$
(Ouchi+08)

No He II emission...

11 LAEs at $z=4.5$
(Dawson+04)

No He II emission...
Our Search for “Lyα-Hell Dual Emitters”

- Spectroscopy? ...not a bad idea, but too expensive
 ~ faint Hell emission at NIR (or red part in Opt)
 ~ low number density of targets --> longslit obs.

- Narrow-Band Imaging?
 ~ requiring “well-matched” combination of filters
 ~ requiring huge FOV to search “rare” objects

For both
Lyα @\(\lambda_{\text{rest}} = 1216\text{A}\) &
Hell @\(\lambda_{\text{rest}} = 1640\text{A}\)

Subaru/Suprime-Cam + custom filter set

very wide FOV
(27’x34’’)

National Astronomical Observatory of Japan
Observation

- $z=4.0$
 - HeII@8200A: “NB816”
 - Lyα @6080A: “IA598”

- $z=4.6$
 - HeII@9180A: “NB921”
 - Lyα @6810A: “IA679”

- NB816 & NB921
 ~ originally for Lyα emitters at $z = 5.7, 6.5$

- IA598 & IA679
 ~ wide bandwidth ($\Delta\lambda \sim 300\text{A}$): sensitive only to large-EW
 ... no problem for us, because our targets are PopIII!!
Selection of “IA598-NB816 Dual Emitters” \((z=4.0)\)

- Cont. – IA598 > 0.3 mag \(\Leftrightarrow\) \(EW_{obs} > 114\)A
- (133 objects)
Selection of “IA598-NB816 Dual Emitters”\((z=4.6) \)

- Cont. – IA679 > 0.3 mag

\(\iff \)

\(EW_{obs} > 145 \text{A} \)

(234 objects)
Results: Discovery of “Dual Emitters” !?

4 IA598-NB816 dual emitters
6 IA679-NB921 dual emitters

... candidates of PopIII !?

Galaxies at $z > 4$ should show “red” $B-V$ colors ($B-V > 1.5$)

All IA-NB dual emitters show “blue” $B-V$ colors ($B-V < 1.0$)

IA-NB dual emitters:
consistent to

$[OII]$ & $[OIII]$ at $z=0.6/z=0.8$
$H\beta$ & $H\alpha+[NII]$ at $z=0.2/z=0.4$

\Rightarrow No “Lyα-HeII dual emitters” found...
Upper Limit on the PopIII SFR Density (SFRD)

- **Our survey sensitivity on \(SFR_{\text{PopIII}} \)**

 \[L(\text{HeII}) = f_{1640} \times SFR_{\text{PopIII}} \]

 \(\sim f_{1640} \): depends on model parameters, e.g., IMF

 \(\sim \) adopting \(f_{1640} \) reported by Schaerer (2003)

 [assuming Salpeter IMF with \(50 < M_{\text{PopIII}}/M_{\odot} < 500 \)]

 \[[SFR_{\text{PopIII}}]_{\text{lim}} \sim 2 \, M_{\odot}/\text{yr} \]

- **Upper limit on the PopIII SFR density (\(SFRD_{\text{PopIII}} \))**

 \(V_{\text{survey}} = 4.03 \times 10^5 \, \text{Mpc}^3 \) (3.93<z<4.01 & 4.57<z<4.65)

 \(\sim \) no galaxies with \(SFR_{\text{PopIII}} > 2 \, M_{\odot}/\text{yr} \) were found

 \(\sim \) assuming no PopIII formation with low \(SFR_{\text{PopIII}} \)

 \(\sim [SFRD_{\text{PopIII}}]_{\text{lim}} = [SFR_{\text{PopIII}}]_{\text{lim}} / V_{\text{survey}} \)

 \(SFRD_{\text{PopIII}} < 5 \times 10^{-6} \, M_{\odot}/\text{yr}/\text{Mpc}^3 \)
SFRD(PopIII): Comparison with Theoretical Work

SFRD model: Tornatore+07

Observational limit: Nagao+08

![Graph showing SFRD (M_{sun} yr^{-1} Mpc^{-3}) vs Redshift]
What’s Next? ...“Hyper Suprime-Cam’’ !!

New Optical Imager on Subaru
Tremendous FOV and Red-Sensitive Detectors

PopIII survey with HSC
~ much deeper and x10 wider survey
~ multiple narrow-band \rightarrow Ly$\alpha +$ He II

First Light in 2012 (quite soooon!!)

figures: courtesy by Miyazaki-san (HSC PI)
Summary

Diagnostics for high-z PopIII galaxies

- Focusing on hard SED of massive PopIII stars
- Hard SED → Very strong Lyα and detectable He II
- Rest-UV He II λ1640 is especially useful

Observational strategies to search for PopIII

- NIR spectroscopy constrains SFR_{PopIII} for EACH galaxy
- Multi-narrowband search constrains $SFRD_{\text{PopIII}}$ at $z=4-5$
- Current limit on $SFRD_{\text{PopIII}}$ seems close to predictions

High-z PopIII surveys in (very-near) future

- Subaru’s HSC will start its observations in 2012
- HSC surveys: much deeper and wider than SCam surveys
- Multiple narrowband HSC survey → discovery of PopIII (!?)
Main Collaborators (only a part of the whole collaboration)

Roberto Maiolino (Roma Obs.)
Alessandro Marconi (Florence Univ.)
Matthew Malkan (UCLA)
Kentaro Motohara (Univ. of Tokyo)
Nobunari Kashikawa (NAOJ)
Takashi Murayama (Tohoku Univ.)
Daniel Schaerer (Geneve Obs.)
Yoshiaki Taniguchi (Ehime Univ.)
Chun Ly (UCLA)

The Subaru Deep Field collaboration
The HSC Survey collaboration