金属欠乏星のrプロセス元素組成 r-process abundance of metal-poor stars

本田 敏志

Satoshi Honda Center for Astronomy, Univ. of Hyogo Nishi-Harima Astronomical Observatory

初代星·初代銀河研究会2017@呉 2018.2.10-12

Stellar abundances and evolution

Stellar abundances are invaluable indicators of birth environments.

- Main sequence (e.g., Sun)
 - Keep initial elemental abundance in the atmosphere.
- Evolved stars (e.g., AGB)
 - Synthesized elements (e.g., C) inside the stars are carried to the surface by convection (e.g., Dredge up).
- Binary system
 - Affected by pollution from the binary companion (mass transfer).

Chemical evolution of the Universe

Solar (Cosmic) abundance

- Stellar abundance is compared with the Sun.
 - Cosmic abundance ≒ Solar abundance
 - The solar abundances show some evidences for nucleosynthesis processes.
- Neutron-capture process
 - s-process : AGB (Ba, Pb)
 - r-process : NSM and/or SNe ? (Eu, Pt, Th)

NSM : Neutron-Star Merger

Abundances of metal-poor stars

- The chemical compositions are fossil records of the nucleosynthesis of single (or a few) process.
- They hold the situation of early epochs of galaxy formation.

Observations of metal-poor stars

- n-cap. elements show large scatter in [Fe/H] < -2
 - ~ 2 dex (0.5 dex in alpha and iron peak elements)
- This scatter is due to the spatial inhomogeneity of the chemical composition of interstellar matter in the early Galaxy.
 - the r-process is a rare event.
- Some objects show extremely large abundance.
 - Comparison with chemical evolution models based on statistics of metal-poor stars.

abundance patterns of n-capture rich stars

Abundance pattern of r-process

 Abundance patterns of r-II stars are very similar with the solar r-pattern.

Universality (56 ≤ Z ≤ 72 ?)

 Observed differences in the patterns of actinides (Th, U) in some r-II stars.

1/3 of r-II are actinide boost stars ?

But having a low Pb in CS31082-001.

• weak r-process in r-ll star ?

actinide boost star

HD 122563 has a significantly different abundance pattern from that of the solar system rprocess abundance pattern.

LEPP (lighter element primary process) ? e.g., Travaglio et al. 2004

weak r-process ? e.g., Wanajo & Ishimaru 2006

Faild r-process? Wanajo et al. 2007

r-process models compared with the abundance pattern of the r-process of solar system and metal-poor stars.

Nishimura et al. 2016

Models of galactic chemical evolution

Vangioni et al. 2017

NSM could not reproduce large dispersion of Eu in very low metal stars. Very short merger time of NSM are needed.

Chemical evolution models of r-process by NSM

Komiya & Shigeyama 2016

Chemical composition of the star in the dwarf galaxies

• Chemical abundance trend of "luminous" ("metal-rich") dwarf spheroidal galaxies is different from MW halo.

Neutron-capture elements in EMP stars in faint dwarf galaxies

No r-process enhanced EMP star was found in dwarf galaxies and ultra-faint dwarf galaxies.

5% ~ r-II star in MW Barklem et al. 2005

This trend supports the NSM. c.f. Tsujimoto & Shigeyama 2014

Ji et al. 2016, Roederer et al. 2016

Survey of ultra metal-poor stars ([Fe/H] < -4)

- Survey projects
 - HK survey and Hamburg/ESO Survey
 - SDSS/SEGUE, APOGEE, RAVE
 - Photometric survey with SkyMapper
 - GAIA/ESO
 - LAMOST
 - etc.
- Follow-up with high-resolution spectroscopy
 - 8-10m class telescopes
 - Next generation large telescopes
 - 2025~
 - TMT, GMT, E-ELT

Skymapper

SDSS

refining the target by 2-4m telescope

Subaru, Keck, GMT etc.

TMT

Subaru/HDS follow-up spectroscopy for a large sample of candidate EMP stars found with LAMOST

 More than 500 metal-poor candidates have been selected from LAMOST

medium resolution spectra

high-resolution spectroscopy

 Follow-up for ~200 stars with three Subaru/HDS runs.

Target selection random selection for a given magnitude/temperature range.

Insufficient sample size for statistical discussion

Frebel & Norris 2015

Neutron-capture elements

- Sr and Ba are the most detectable elements.
- no stars with high Ba in [Fe/H] < ~-4
- Sr was detected in HE 1327-2326 ([Fe/H] = - 5.7)
- weak r-process is primary process ?
- Support NSM scenario.

 $\log \epsilon(\mathbf{U}) = \text{none}$

0.70

.....

c.f., Sakari et al. 2018

Actinide boost stars are common ?

Dispersion is not so large

Summary

- The origin of r-process is likely to be neutron star mergers.
- CCSNe may also be the origin of r-process.
- Eu (r-process element) detections in EMP ([Fe/H] < -3.5) stars are important.
- The origin of actinide boost stars is still unknown.
- The origin of r-process will be clarified by survey of metal-poor stars and follow-up high-dispersion spectroscopy.