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1. Introduction



Transition 1n star Tormation mode

.Pop III: typically massive, 10-1000 Mg~ ||~ il Hiranoetal 2013
-Pop |, 1I: g2
(< M) stars are broadly %)
observed in the solar neighborhood, o1
Galactic halo, and globular cluster etc. H
| | | 077772 3
*Naively, cooling by metal lines and log Mstar (Msun)
may play a role.
Broom&ILoeb 2003

*k Especially, IS Indispensable for Schneider et al.

low mass star formation. Omukai et al.

> Above results are obtained for clouds collapsing
by (self-)gravity from very low densities ~ 1 cm=3.



Star formation in shock-compressed clouds

* One zone calculation of shocked clouds

In early galaxy formation.
Safranek-Shrader et al. 2010

- Initial density & temperature:
np1 = 4% 103 ecm™ Ty = 1.1 x 10* K

Af Z/Zo ~ 10722, ~ solar mass fragments
are formed by metal line cooling alone.

Safranek-Shrader et al. 2014

- BUT,
- HO, dust cooling and H; formation heating were missed.

- Evolution after fragmentation was not studied.

- Shock-compression may be frequent
stellar wind, SN, and galaxy merger, etc--:



Our study

* Thermal evolution of shock-compressed clouds Is studied
- by treating detailled chemical processes.

- by calculating the clump evolution after fragmentation.

- under various conditions.

- Initial density: 4 cm™ < ng 1 < 4 X 10 cm™
. Initial temperature: Ty = 1.2 x 10* K (vs =20 km s 1).
. Metallicity: 0 < Z/Zo < 1072

. External UV radiation: 0 < J,; < 10%
(Jo1 ~ 20, in solar neighborhood)

Condition for low-mass star formation is examined.



2. Methods

Basic equations
Fragmentation conditions



Safranek-Shrader et al. 2010

EVOIUtIOn In ShOCked Iayers Nakauchi et al. 2014
gas inflow
._|® L - - > % Shocked layers are assumed to
shock front P1 1 be plane parallel and steady.
: 2 . 9)
efficient cooling -EOM: prvi + Py = pvT + P,
fcool < Iff . Continuity: p1v1 = pv,
.Energy: % _ _p4 (l) A
dt dt Jo,
Y = A+ Achen + Agta
Aline: line cooling by Omukai 2012 etc.

H, H,, HD, H,0, CII, OI, etc.
Achem: Hp formation heating by

3-body & grain surface reactions,

shock front etc.

oo



. - . Elmegreen&Elmegreen 1978
Fragmentation condition Nakauchi et al. 2014
gas inflow
<O

e —— DN > 1 foogl = ¢/Anc
shock front £1 17 0001_ tt 1. e/ Anet
£ density perturbations grow

efficient cooling in the layer.
tCOOl N tﬁ: @ tSOUIld > tﬁ I'sound = Hp/Cs
’ \ Hy = p/(dp/dr). density scale height

B> fragment contracts by self-gravity.
IsufﬂClently COOIeOII Both D & @ should be satisfied for the

t >t
= Tcool i formation of self-gravitating clumps.

* Fragment mass:
My (Pfraga Tfrag) ~ Pfrag /l? (pfraga Tfrag)

shock front Ay = (ﬂkBT/G,ume)l/zi Jeans length
| GERRARRS

oo




. - . Elmegreen&Elmegreen 1978
Fragmentation condition Nakauchi et al. 2014
gas inflow
<O

shock front P1 Tj

efficient cooling
lcool < Iff

VAR

I,o perturb. grows l

shock front
| R

oo

@ tCOOl > tﬂ: fcool = €/Anet

E) density perturbations grow
In the layer.

@ Tsound > Iff  ‘sound = Hp/cs
H, = p/(dp/dr); density scale height
B> fragment contracts by self-gravity.

Both O & @ should be satisfied for the
formation of self-gravitating clumps.

* Fragment mass:
M;j (Pfraga Tfrag) ~ Pfrag /l? (Pfraga Tfrag)
Ay = (mkgT/Gumyp)l/?: Jeans length



. - . Elmegreen&Elmegreen 1978
Fragmentation condition Nakauchi et al. 2014
gas inflow
<O

@ tCOOl > tﬂ: fcool = €/Anet

shock front P1 T
1 E) density perturbations grow

efficient cooling in the layer.
tCOOl < tﬁ: @ ts()und > tﬁ Lsound = Hp/cs
’ \ H, = p/(dp/dr); density scale height
B> fragment contracts by self-gravity.
* * * Both O & @ should be satisfied for the
fragment Pfrag Tfrag -~ |[formation of self-gravitating clumps.

* Fragment mass: Mfrag shock
My (Pfraga Tfrag) ~ Pfrag /l? (pfraga Tfrag)
shock front Ay = (mkgT/Gumyp)l/?: Jeans length

oo




Omukai 2000, 2012

Contraction by self-gravity  omukaietal. 2003, 2010

gas inflow
M Y Evolution in the cloud center
shock front P1 Tj is followed.

- Dynamics: p _ P
dr  tg
de d (1

- Enerqgy: T __pl 2]

gy dt Pdl_ (p) Anet,

* * & Apet = Aline T A(:hem T Agrain

fragment Pfrag Tt
J =™ Below, we present the results

for shocked clouds with

-3
ny 1 = 4 cm supernova remnant (SN)

4%10° cm™
shock front galaxy formation (GF)

oo




3. Results

Thermal evolution without/with dust
with UV radiation
Fragment mass



Thermal e.VO,.'UtiOU Wi,thQUt dust
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Gravitational contraction

T 2/

| In GF, Hp suffers from
1 collisional dissociation.

e CMB E)» Gas can not cool below

A e ~ 8000 K without metals.
O 2 4 o6 8 10 12 14 Mirag shock > 10° Mg
log density (cm) ~
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Thermal e,VO'UtiOU Wi,thQUt dust

Isobaric contraction

T \ TCMB:3OK
<

Fragmentation

~ 100 Mg in SN
~ 10 Mg in GF
for 1072 Zg

M frag, shock

<

Gravitational contraction

T 2/

In GF, Hy suffers from
collisional dissociation.

=)» Gas can not cool below

log density (cm-3)

0 2 4 6 8101212

~ 8000 K without metals.
Mfrag,shock z 105 M@



Thermal evolution With dust
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-~ | Before fragmentation,
<1 dust has little effect.

| After fragmentation, thermal
{ track Is altered dramatically.

v Dust cooling leads to rapid
| T drop & re-fragmentation.

) Sub-solar mass
fragments are formed.

(Mfrag,dust ~ 0.01-1 M@)

1 *This is not true for 1072 Zg

In galaxy formation.



Thermal evolution With dust
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— \\ | Before fragmentation,
. \ dust cool

dust has little effect.

| After fragmentation, thermal

track Is altered dramatically.

Dust cooling leads to rapid

1| T drop & re-fragmentation.
) Sub-solar mass

fragments are formed.
(Mfrag,dust ~ 0.01-1 M@)

1 *This is not true for 1072 Zg

In galaxy formation.



Thermal evolution With UV radiation

log temperature (K)
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“ 1 UV effect is explicit in SN.

/ , By H> photodissociation, gas
| can not cool below 8000K.

| For 10~% Zg, re-fragmentation
'sun | occurs multiple times by
;] metal/dust cooling.

“1 In galaxy formation,
1 little effect is seen.

1 Photoelectrons emitted from
| grains heat gas at 10°-10% cm™



Fragment mass: with no UV
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Iog Mfrag (Msun)
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N GF, Mfrag shock > 10° Mg N ~ 10 Mg at 1074-1073 Z,..

N SN, Mfrag shock ~ 100 M for all metallicities.

* Sub-solar mass fragments are formed by dust cooling
even in a very metal-poor cloud > 107> Z -

> UV hardly changes these trends.




Condltlon for Iow mass star formation
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Dust Is indispensable for low-mass star

formation in shock-compressed clouds.
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Summary

* Thermal evolution of a shock-compressed cloud is studied.

*k|sobaric contract =P fragmentation=9 gravitational contract.
-IN G:, Mfrag,shock > 05 M@ \ ~ 10 M@ at 10_4—10_3 Z@.
-In SN, Mfrag shock ~ 100 Mg for all metallicities.

* Dust cooling drives rapid T drop & re-fragmentation.
> Sub-solar mass fragment is formed for > 10 Zg.

*x UV hardly changes these trends.

*Dust Is Indispensable for low-mass star formation
IN shock-compressed clouds.



