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1. はじめに

Mathieu (1994)
Binary formation is the primary branch of  the 
star-formation process

主系列星

c.f., Bate 2012



連星の形成シナリオ

¢ Capture 
¢ Prompt Fragmentation 
¢ Delayed Breakup (core fission)

in Tohline (2002)

in Kratter (2011)¢ Disk driven formation 
¢ Turbulent fragmentation

¢ Filament Fragmentation



Formation of binary 
protostar seeds

Gravitational Collapse of Molecular Cloud Core

Molecular Cloud core

collapse collapse

2. 連星形成：収縮期



流体の重力不安定性(一様)

静止一様媒質の場合

(Hayashi 1984)



•　重力不安定、分裂が起こる条件 

–大まかには M > M_Jでよいが、... 
–圧力は、熱的進化に依存。冷却、熱輸送機構
や化学組成による影響を受ける 

–自己重力は、雲の幾何学的形状や密度の非一
様性に依存する 
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現実の天体形成現象に即した知見が重要



様々な重元素量の収縮中の熱進化

Omukai (2000) for a thorough discussion of this issue. The initial
ionization degree and H2 concentration are assumed to be the
values for uniform matter in the postrecombination universe:
y (e) ¼ 10"4, y (H2) ¼ 10"6. Initially, carbon is fully ionized
and helium and oxygen are neutral.

3. RESULTS

In this section, we first present the thermal and chemical evo-
lution for different initial values of the gas metallicity (x 3.1);
then, a reduced chemical model for low-metallicity clouds is
presented (x 3.2). Using the derived effective equation of state, we
discuss the fragmentation properties of prestellar clouds and es-
timate the typical mass scales of fragmentation in the Appendix.

3.1. Thermal and Chemical Evolution

3.1.1. Results for the Fiducial Cases

The temperature evolution for prestellar clouds for different
metallicities is shown in Figure 1. The cases with metallicities
½Z/H$ ¼ "1 (i.e., Z ¼ 0 metal-free case), "5, "3, and "1
(½Z/H$ ¼ "6, "4, "2, and 0) are indicated by solid (dashed)
lines. As an external radiation field, only the present-day (2.73K)
CMB is included, although its effect can be neglected except for
in the lowermost temperature regime in the ½Z/H$ ¼ 0 case. We
refer to this set of models as the fiducial cases hereafter. The
dotted lines indicate those of a constant Jeans mass. The dashed
line labeled ‘‘!J ¼ 1’’ shows the locationwhere the central part of
a cloud becomes optically thick to continuum radiation (eq. [20];
see discussion below). Before this condition ismet, i.e., to the left
of the line, clouds are still optically thin to the continuum.

The evolution of clouds with metallicity ½Z/H$ ¼ "(4 3) at
nH % 104"8 cm"3 is mostly affected by the improvements of the
model, namely, by the inclusion of HD cooling and the modifi-
cation of the collapse timescale. Conversely, both at lower and
higher metallicity values, the thermal evolution is hardly altered.

In Figure 2 we illustrate separately the contribution by each
processes to cooling/heating rates in the fiducial cases. For the
same cases, we also show the evolution of H2 and HD fractions
in Figures 3 and 4, respectively. In terms of major coolants, the
thermal evolution can be classified into the following three
metallicity ranges: (1) quasi-primordial clouds (½Z/H$P"6),
(2) metal-deficient clouds ("5P ½Z/H$P"3), and (3) metal-
enriched clouds ("2P ½Z/H$). For each of these ranges, we now
describe the evolution presented in Figures 1–4.
1. Quasi-primordial clouds (½Z/H$P"6).—The presence of

metals at metallicity levels as low as [Z/H$P"6 does not sig-
nificantly alter the thermal evolution in any density range. The
evolution of both temperature and chemical species follows closely
those of the metal-free case. Molecular hydrogen is always an
important cooling agent. HD hardly affects the overall evolution
despite contributing as much to the cooling as H2 at %105 cm"3

(see also Bromm et al. 2002).
To clarify the reasons for this trend, we first describe the

HD formation process. The abundance of HD is determined by
the equilibrium between the formation reaction (reaction D4 in
Table 1) and its inverse dissociation reaction (D6),

D4; D6: Dþ þ H2 $ Hþ þ HD: ð12Þ

The deuterium ionization degree is set by the equilibrium be-
tween reactions D1 and D2,

D1; D2: Dþ Hþ $ Dþ þ H: ð13Þ

The HD to H2 ratio is then

n(HD)

n(H2)
¼ kD4n(D

þ)

kD6n(H
þ)

¼ kD4kD1n(D)

kD6kD2n(H)
¼ 2 exp

421 K

T

! "
n(D)

n(H)
;

ð14Þ

Fig. 1.—Temperature evolution of prestellar clouds with different metallicities. Those with metallicities ½Z/H$ ¼ "1(Z ¼ 0),"5,"3, and"1 ("6,"4,"2, and 0)
are shown by solid (dashed) lines. Only the present-day CMB is considered as an external radiation field. The lines for constant Jeans mass are indicated by thin dotted
lines. The positions at which the central part of the clouds becomes optically thick to continuum self-absorption is indicated by the thin solid line (eq. [20]). The
intersection of the thin solid line with each evolutionary trajectory corresponds to the epoch when the cloud becomes optically thick to the continuum. To the right of this
line, the clouds are optically thick and there is little radiative cooling. [See the electronic edition of the Journal for a color version of this figure.]

OMUKAI ET AL.630 Vol. 626

Omukai,TT+(2005)
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平衡平板状雲の重力不安定性

平板状ガス雲の場合

平板状の雲は、自発的に有限波長の小物体に分裂する。

形成過程：衝撃波による雲の圧縮 (e.g., Iwasaki & TT 2008) 

　　　　　球状雲の回転収縮 (Miyama,Narita,Hayashi 1984~ 多数)

Goldreich&Lynden-Bell 1965 
Miyama,Narita,Hayashi 1986
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Fig. 3.—Criteria for collapse and fragmentation of the rotating isothermal
clouds. Results for the initial ring-mode and bar-mode perturbation for various
initial amplitudes are plotted. Crosses, circles, and triangles represent the os-
cillation, collapse without fragmentation, and fragmentation, respectively, in
the three-dimensional numerical calculations. The gray scale for triangles cor-
responds to the initial amplitude. Black, dark gray, and light gray represent

, 0.15, and 0.5, respectively. Some of the results depend on the am-d ∼ 0.05r

plitude of initial perturbations (e.g., in the case of and ,a = 0.4 b = 0.1
the cloud fragments for and collapses without fragmentation ford ∼ 0.15r

). The solid line represents the condition that the central flatness isd ∼ 0.05r

4p at the epoch of the centrifugal bounce, below which fragmentation is
expected. The dashed line represents the condition that the rarefaction wave
in the cylindrical radial direction reaches the center at the centrifugal bounce
epoch, above which the cloud is expected to approaches to the runaway col-
lapsing self-similar solution. These criteria are derived semianalytically by
Tsuribe & Inutsuka (1999a). The dash-dotted line is the criterion for collapse
derived by Kiguchi et al. (1987).

ness is a good indicator to predict whether the collapsing cloud
fragments or not. The critical value 4p that TI99a adopted is
the ratio of a wavelength of the most unstable mode to the
scale height of the disk. It is found that this value is useful not
only for the steady state but also for the dynamically collapsing
clouds with moderate initial perturbations.
In Figure 3, we show the summary of the numerical cal-

culations. The solid line represents the criterion for fragmen-
tation, and the dashed line represents the criterion for efficient
self-regulation by pressure, both derived by the semianalytic
investigation (see Fig. 8 in TI99a). It is clearly seen that the
results of the three-dimensional numerical calculations are con-
sistent with the prediction in TI99a for moderate initial per-
turbations ( ). Even for larger amplitudes (d ∼ 0.05 d ∼ 0.15r r

and 0.5), results show that the cases above the dashed line are
hard to fragment. These facts indicate that the dependence of
the criterion on the initial perturbation is small. We checked
that the dependence on the numerical resolution is also small
by calculations with particles for several cases.5N = 3.2# 10

5. SUMMARY

In this Letter, we presented the results of three-dimensional
calculations for the collapse of rotating isothermal clouds. The
semianalytic prediction by TI99a is confirmed by direct nu-
merical calculations. The flatness in the central region is a good
indicator for the fate of the cloud. The collapsing clouds with
moderate initial thermal energy ( ) are not expected toa 1 0.50
fragment before adiabatic core formation. This critical value
for a0 is only slightly dependent on the rotation parameter b0
and initial perturbations.
The initial conditions adopted here are too idealized, and it

is not appropriate to compare the results with the observational
data at present. However, even in these simplest initial con-
ditions, the collapse and fragmentation had not yet been clar-
ified in the literature. This work would provide a useful basis
to understand the property of the fragmentation process in star
and galaxy formation in more realistic contexts.

The authors thank Shinji Narita, Chushiro Hayashi, and
Shoken M. Miyama for discussions and comments. T. T. is
grateful to H. Sato and M. Umemura for continuous encour-

agement and useful discussions. This work was partly sup-
ported by JSPS Research Fellowships for Young Scientists
(T. T.). Numerical calculations are carried out at the Astronom-
ical Data Analysis Center of the National Astronomical Ob-
servatory, Japan, at the Data Processing Center of Kyoto Uni-
versity, and at the Center for Computational Physics, University
of Tsukuba. Part of the computation has been carried out on
the VPP700 at the Subaru Telescope, NAOJ, Hilo, Hawaii.
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Fig. 1.—Density distribution in the central region at the final epoch of the calculation. (a) , , random initial perturbation,(a , b , d ) = (0.6, 0.1, 0.05) t = 1.2620 0 r

(b) , , bar-mode initial perturbation, and (c) , , ring-mode initial perturbation. Density is(a , b , d ) = (0.2, 0.2, 0.05) t = 1.310 (a , b , d ) = (0.2, 0.2, 0.05) t = 1.3580 0 r 0 0 r

normalized by the initial value, position is normalized by the initial radius, and time is normalized by the initial free-fall time. Only the particles of r 1 r /72max
are plotted. The number of particles calculated is .5N = 10

particle with mass mp. This, in turn, means that we need to
resolve a Jeans-mass cloud by more than , 100,M /m ∼ 300J p

or 30 particles. This condition corresponds to J = Dx/l !J
, 0.167, or 0.25 in Truelove et al. (1997), where Dx is a0.125

spatial resolution. Typically we use the condition .C 1 3.0J
Thus, our condition is sufficient for all the resolution constraints
in the literature (Truelove et al. 1997; Bate & Burkert 1997;
Whitworth 1998; Boss 1998). We checked that the gravitational
force is calculated correctly within the error of the pressure
gradient forces by comparing with the exact solutions under
the condition adopted here.
To check the accuracy of the code, we solved a spherical

collapse ( ) with a fixed outer boundary and compareda = 1.00
the result with that of the one-dimensional grid code. It is found
that both the rarefaction front and subsequent collapse ap-
proaching to the runaway collapsing self-similar solution are
solved correctly. We also checked that no penetration problem
occurs in the pancake shock problem. Results for various test
problems will be reported in Tsuribe & Inutsuka (1999b).

3. CALCULATIONS AND RESULTS

3.1. Initial and Boundary Conditions

A uniform density distribution is prepared by the relaxation
technique. We impose the rigid rotation to the spherical cloud
at the beginning of the evolution. The outer boundary lies at
a fixed radius, outside of which the density is maintained at
its initial value. The initial radial velocity and the density cen-
tral concentration are not included. This unperturbed state is
characterized by the nondimensional parameters defined in
§ 1: , and , where cs, R0, M,2 2 3a = 5c R /2GM b = Q R /3GM0 s 0 0 0 0
and Q0 are the sound velocity, the initial radius, the total mass,
and the initial angular velocity, respectively. We calculated
cases for and .0.1 ! a ! 1.0 0.05 ! b ! 0.30 0

The initial location of particles are perturbed to realize
the following initial perturbations: (1) random perturbation,
(2) bar-mode perturbation, , where f isd = dr/r ∝ cos(2f)r

the azimuthal angle, and (3) ring-mode perturbation, d ∝r

, where J0 is the Bessel function of the2 2 1/2J [7.02(x ! y ) /R ]0 0
first kind. Initial amplitude of perturbations calculated are
basically 5% ( ). For comparison, 15% and 50%dr/r ∼ 0.05
amplitudes are also calculated.

3.2. Results
3.2.1. Stable Case

The cases with large a0 and large b0 oscillate around the
equilibrium state. The criterion that divides the collapse and
noncollapse has a good accordance with the steady state anal-
ysis by Kiguchi et al. (1987) except for the case (a , b ) =0 0

in which the different outer boundary condition af-(0.9, 0.1)
fects the result. Kiguchi et al. (1987) adopted the constant
pressure outer boundary, while we used the rigid boundary.

3.2.2. Case for the Runaway Self-similar Collapse

The cases that have a moderate collapsed anda (! 0.5)0
approached to the runaway collapsing self-similar solution
without fragmentation. From Figure 1a, it is clearly seen that
the central region is quasispherical with the axial ratio 2–5 in
the case . Random and ring-mode pertur-(a , b ) = (0.6, 0.1)0 0
bation does not change the results. The initial bar-mode per-
turbation induces a bar that grows rapidly during the quasi-
homologous collapse stage. However, the growth rate of the
bar-mode perturbation becomes very small before it becomes
nonlinear. Thus, fragmentation is not expected in these cases
against moderate initial perturbations. Note that our calcula-
tions are terminated at the density about 6 orders of magnitude
larger than the initial state. In reality, the approximation of the
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ABSTRACT
The isothermal collapse of an initially uniform-density, uniform-rotating, molecular cloud core with

pressure and self-gravity is investigated using a spheroid model to determine the conditions under which
a cloud is unstable to fragmentation. A semianalytic model for the collapse of rotating spheroids is
developed with the method of characteristics for inwardly propagating rarefaction waves. It is shown
that the criterion for fragmentation is modiÐed from that in the literature if the property of nonhomolo-
gous collapse is taken into account. The fate of the collapsing clouds can be divided into three classes :
(1) runaway collapsing clouds that approach self-similar solutions with moderate ellipsoid axial ratio
(2È5) and are expected to form single adiabatic cores in the center, (2) clouds that collapse and rotation-
ally bounce without fragmentation and are expected to develop bars and Ðlaments, and (3) clouds that
collapse into pancakes and fragment during the isothermal stage. We derive the criterion for fragmenta-
tion considering the evolution of the Ñatness of the central core after relaxation in the z-direction. In the
small rotation limit, the evolution is determined by only one parameter, (initial ratio of the thermala0energy to the gravitational energy), that has the critical value, a0 \ 5/n2.
Subject headings : gravitation È hydrodynamics È ISM: clouds È stars : formation

1. INTRODUCTION

Since HoyleÏs (1953) speculation, the fragmentation
process in contracting clouds has been studied by many
researchers in connection with the structure formation
in the universe. Although the realistic evolution of the
collapsing cloud is governed by the complex equations of
dynamics and thermal processes, it is important to extract
the essential physics in dynamics using a simple equa-
tion of state. The isothermal equation of state is useful
because it is simple and it is often a good approxi-
mation of realistic interstellar clouds. For example, the
Ðrst stage of the core collapse of the molecular cloud is
approximated by an isothermal gas of T \ 10 K for 10~18 g
cm~3 \ o \ 10~13 g cm~3 (Hayashi & Nakano 1965).
Galactic interstellar clouds have a stable isothermal state
with T around 104 K. In the primordial star formation, the
temperature of the collapsing gas stays around 103 K in the
range 103 \ n \ 1014 cm~3 (Matsuda, Sato, & Takeda
1969 ; Palla, Salpeter, & Stahler 1983 ; Omukai & Nishi
1998).

The spherically symmetric Ñow has been investigated in
detail analytically and numerically because of its simplicity.
In particular, the simplest model that has initial uniform
density and no initial velocity is useful to explore the funda-
mental aspects. The evolution of such a spherical isothermal
cloud is characterized by one parameter :

a0 \ 5c
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, (1)

where is the ratio of the thermal energy to the gravita-a0tional energy at the initial state (the subscript 0 always
refers to the initial stage), and and M are the soundc
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If the cloud has sufficiently large it oscillates arounda0 Z 1,
the equilibrium conÐguration. On the other hand, the cloud
with very small behaves like a dust sphere that collapsesa0homologously. In the intermediate case, the spherical iso-
thermal collapse has self-similarity (Bodenheimer & Swei-
gart 1968 ; Larson 1969 ; Penston 1969). Numerical
experiments show that the evolution tends to approach the
runaway collapsing self-similar solution. The exact condi-
tion that divides the dust collapse and the runaway self-
similar collapse is given in this paper.

The addition of the initial rotation makes the problem
highly difficult. For simplicity, a rigid rotation is adopted
for the initial state. In this case, the initial state is character-
ized by another parameter,

b0 \ )02 R03
3GM

, (2)

where is the ratio of the initial rotation energy to theb0initial gravitational energy, and is the initial angular)0velocity. Owing to the centrifugal force, the rotating cloud
becomes Ñatter. If the cloud becomes Ñat enough, it will not
remain axisymmetric but will instead evolve dynamically to
a nonaxisymmetric conÐguration or perhaps fragment into
a multiple system. Since Larson (1972, 1978), a large
number of two- and three-dimensional calculations of the
collapse and fragmentation of isothermal clouds were per-
formed using hydrodynamical codes (e.g., Bodenheimer,
Tohline, & Black 1980 ; Wood 1982 ; Miyama, Hayashi, &
Narita 1984 ; see references in Bodenheimer 1995 ; Truelove
et al. 1997, 1998). An alternative approach to this problem
was the stability analysis of the steady state solution for
rotating clouds (Hayashi, Narita, & Miyama 1982 ; Kiguchi
et al. 1987 ; Narita et al. 1990). One of the important conclu-
sions is that the criterion for fragmentation is characterized
by the quantity that corresponds to the Ñatness of thea0 b0cloud (Tohline 1981 ; Miyama et al. 1984). Miyama et al.
(1984) concluded that the collapsed cloud is unstable for
fragmentation if This criterion indicates thata0 b0 \ 0.12.
any cloud with the initial small rotation fragments even if it
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pressure and self-gravity is investigated using a spheroid model to determine the conditions under which
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with T around 104 K. In the primordial star formation, the
temperature of the collapsing gas stays around 103 K in the
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experiments show that the evolution tends to approach the
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highly difficult. For simplicity, a rigid rotation is adopted
for the initial state. In this case, the initial state is character-
ized by another parameter,
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where is the ratio of the initial rotation energy to theb0initial gravitational energy, and is the initial angular)0velocity. Owing to the centrifugal force, the rotating cloud
becomes Ñatter. If the cloud becomes Ñat enough, it will not
remain axisymmetric but will instead evolve dynamically to
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Ðrst stage of the core collapse of the molecular cloud is
approximated by an isothermal gas of T \ 10 K for 10~18 g
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range 103 \ n \ 1014 cm~3 (Matsuda, Sato, & Takeda
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density and no initial velocity is useful to explore the funda-
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experiments show that the evolution tends to approach the
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ized by another parameter,
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where is the ratio of the initial rotation energy to theb0initial gravitational energy, and is the initial angular)0velocity. Owing to the centrifugal force, the rotating cloud
becomes Ñatter. If the cloud becomes Ñat enough, it will not
remain axisymmetric but will instead evolve dynamically to
a nonaxisymmetric conÐguration or perhaps fragment into
a multiple system. Since Larson (1972, 1978), a large
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Fig. 2.—Density distributions in the z ¼ 0 plane at the last stages for models for whichC ¼ 0. Color denotes the density distribution on a logarithmic scale.
The right color scale is for oscillationmodels, and the left color scale is for models of disk, satellite, ring-bar, and disk-bar types. Black contour curves denote
the critical density ncr. Panels are arranged in the order !0tff ¼ 0:03, 0.05, 0.1, 0.2, and 0.3 from left to right, and !2tff ¼ 0:0, 0.01, 0.03, 0.05, 0.1, 0.2, and 0.3
from bottom to top.

回転収縮雲の分裂条件
field is neglected for simplicity. The gas temperature is
assumed to be 10 K below that of the critical density
!cr ¼ 2" 10#13 g cm#3 (ncr ¼ 5:24" 1010 cm#3) and to
increase adiabatically in proportion to !2=5 above it. In
other words, a barotropic equation of state is assumed, as
expressed by

P ¼
c2s! for ! < !cr ;

c2s!crð!=!crÞ7=5 for ! & !cr :

(

ð6Þ

This change in temperature reproduces the formation of the
adiabatic core, which corresponds to the first core of Larson
(1969). The value of the critical density !cr is taken from the
numerical results of Masunaga, Miyama, & Inutsuka
(1998), who studied the spherical collapse of molecular
cloud cores with radiative hydrodynamics.

3. NUMERICAL METHODS

In the simulations, the hydrodynamical equation and
Poisson equation are solved by a finite difference method
with second-order accuracy in time and space. A nested grid
is employed to solve the central region with higher spatial
resolution. The hydrodynamic code for the nested grid was
developed by extending the simulation code of Matsumoto
& Hanawa (1999). The nested grid consists of concentric
hierarchical rectangular grids (Yorke, Bodenheimer, &
Laughlin 1993), and the cell width of each grid decreases
successively by a factor of 2. In the following, the coarsest
grid is labeled level l ¼ 1. The lth level grid has 2l#1 times
higher spatial resolution than the coarsest grid. All the
fluxes are conserved at the interface between the coarse and
fine grids as in the standard adaptive mesh refinement
(AMR; Chiang, van Leer, & Powell 1992). Thus, the total
mass is conserved in our computations. The numerical
fluxes are obtained by the method of Roe (1981) with modi-
fication to solve for the isothermal and polytrope gas. A
MUSCL approach and predictor-corrector method are
adopted for time integration (e.g., Hirsch 1990). The
Poisson equation is solved by a multigrid iteration on a
nested gird (Matsumoto & Hanawa 2003). This code solves
for self-gravity consistently over all grids with different lev-

els such that ‘‘ the gravitational field line ’’ is continuous at
interfaces between coarse and fine grids. This consistency
ensures that the obtained gravitational potential is accurate
at least up to the quadrupole moment of a binary. Thus, the
gravitational torque induced by a binary is accurately taken
into account in our simulation.

Mirror symmetry with respect to the z ¼ 0 plane is
employed to reduce computation cost. A fixed boundary
condition is set for the surface r ¼ Rc, representing a
constant external pressure that confines the cloud during
evolution. Gas is considered only in r ' Rc when solving the
Poisson equation.

In this paper, each grid has 256" 256" 32 cubic cells in
high-resolution models and 128" 128" 16 cubic cells in
low-resolution models in ðx; y; zÞ. The model parameters of
the high-resolution models are shown in Table 1. The other
models shown in this paper are the low-resolution models.
The nested grid consists of grids of five levels at the initial
stage. A new finer grid is introduced to maintain the Jeans
condition of "J=4 > h with ample margin (Truelove et al.
1997), where "J and h are the Jeans length and cell width,
respectively. Whenever an eighth of the minimum Jeans
length ("J;min) became smaller than the cell width in the fin-
est grid, a new finer grid was added to the nested grid. This
means that a finer grid was added with ample margin of fac-
tor 2. Typical models have 14 grid levels at the last stage.
The Jeans condition was violated in these simulations only
when a high-density fragment escaped from the region cov-
ered by the finest grid, and the computation was terminated
in the stage that this occurred. In the model shown in x 4.1.1,
evolution was successfully computed up to the stage in
which the mass of an adiabatic core (total mass in the region
of ! & !cr) reached 0.07M(.

4. RESULTS

4.1. Rigidly Rotating Cloud

In this subsection, a total of 27 models of a rigidly rotat-
ing cloud (C ¼ 0) in the region 0:03 ' !0tff ' 0:3 and
0 ' !2tff ' 0:3 are presented to study the dependence on!0

and!2.
Figure 2 summarizes the last stages of the 27 models.

Each panel denotes the density distribution in the z ¼ 0
plane. The panels are arranged such that !0 increases from
left to right and!2 increases from bottom to top. The evolu-
tions of the clouds are classified into five types in the param-
eter space of the initial rotation (!0tff ) and the initial
amplitude of bar mode (!2tff ). When !0tff ' 0:03 (left
column), the cloud collapses to form a single disk (disk type

Fig. 1.—Coefficient #C as a function ofC

TABLE 1

High-Resolution Models

!0tff !2tff C

0.03 ...................... 0.03 0.0
0.05 ...................... 0.0 0.0
0.1........................ 0.0 0.0
0.1........................ 0.03 0.0
0.1........................ 0.1 0.0
0.1........................ 0.05 0.0
0.2........................ 0.2 0.15
0.2........................ 0.2 0.5
0.2........................ 0.2 1.0
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ABSTRACT

The fragmentation of molecular cloud cores a factor of 1.1 denser than the critical Bonnor-Ebert sphere is
examined though three-dimensional numerical simulations. A nested grid is employed to resolve fine
structure down to 1 AU while following the entire structure of the molecular cloud core of radius 0.14 pc. A
barotropic equation of state is assumed to take account of the change in temperature during collapse, allow-
ing simulation of the formation of the first core. A total of 225 models are shown to survey the effects of initial
rotation speed, rotation law, and amplitude of bar mode perturbation. The simulations show that the cloud
fragments whenever the cloud rotates sufficiently slowly to allow collapse but fast enough to form a disk
before first-core formation. The latter condition is equivalent to !0tffe0:05, where !0 and tff denote the
initial central angular velocity and the freefall time measured from the central density, respectively.
Fragmentation is classified into six types: disk-bar, ring-bar, satellite, bar, ring, and dumbbell types according
to the morphology of collapse and fragmentation. When the outward decrease in initial angular velocity is
more steep, the cloud deforms from spherical at an early stage. The cloud deforms into a ring only when the
bar mode (m ¼ 2) perturbation is very minor. The ring fragments into two or three fragments via ring-bar
type fragmentation and into at least three fragments via ring type fragmentation. When the bar mode is
significant, the cloud fragments into two fragments via either bar or dumbbell type fragmentation. These
fragments eventually merge because of their low angular momenta, after which several new fragments form
around the merged fragment via satellite type fragmentation. This satellite type fragmentation may be
responsible for the observed wide range of binary separation.
Subject headings: binaries: general — hydrodynamics — ISM: clouds — methods: numerical —

stars: formation

1. INTRODUCTION

It is widely accepted that binary and multiple stars form
as a result of fragmentation in collapsing molecular cloud
cores (e.g., Bodenheimer et al. 2000). In the last two deca-
des, fragmentation of the molecular cloud core has been
investigated through numerical simulations by many
authors. Criteria for the fragmentation of isothermally col-
lapsing clouds has been investigated by Miyama, Hayashi,
& Narita (1984), Boss (1993), Boss & Myhill (1995), and
Tsuribe & Inutsuka (1999). Their criteria have converged as
far as the isothermal phase is concerned; a cloud with
!d0:2–0.5 collapses into fragments depending little on ",
even when the initial density and velocity distributions dif-
fer. Here, ! and " denote the ratio of thermal energy to
gravitational energy and that of rotation energy to gravita-
tional energy, respectively. Tsuribe & Inutsuka (1999)
pointed out that the criteria for fragmentation corresponds
to the formation of a flat disk with flatness greater than 4#.
On the other hand, a cloud with !e0:2–0.5 collapses self-
similarly and shows no sign of fragmentation. Hanawa &
Matsumoto (1999) andMatsumoto&Hanawa (1999) inves-
tigated deformation of the self-similarly collapsing cloud in

search of the possibility that deformation of the central
cloud to a bar might trigger fragmentation. The growth of
the bar mode is slow compared with the timescale of the
collapse, i.e., D / $0:177max , where D and $max denote the ampli-
tude of the bar mode and the maximum density of the cloud,
respectively. The bar may indeed fragment, but only at a
later stage.

As the collapse proceeds, the cloud core becomes opti-
cally thick and the efficiency of radiative cooling decreases.
The temperature starts increasing when the central density
exceeds the critical density of "10#13 g cm#3. This increase
in temperature results in the formation of a quasi-static
core, i.e., the first core of Larson (1969). The first core grows
by accreting gas, and this accretion phase persists long
enough for the core to fragment. Thus, the dynamics of the
cloud changes qualitatively at the critical density. Stability
against fragmentation is also likely to change at this critical
density. In fact, the first core has been shown by recent sim-
ulations to be very unstable by taking account of the change
in temperature (Burkert, Bate, & Bodenheimer 1997;
Nelson 1998; Sigalotti 1998; Klapp & Sigalotti 1998; Boss
et al. 2000).

Their simulations, however, assume rather small !. When
! is small, the cloud is Jeans-unstable and fragments easily
(Tsuribe & Inutsuka 1999). The fragmentation of the first
core may be due to the small ! assumed. It is still unknown
whether the first core fragments when the initial cloud has a
moderately large !. Thus, we investigate the fragmentation
of the cloud with focus on the cloud with large !, 0.765. The
initial cloud is only 1.1 times more massive than the critical
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Fig. 1.—Density and velocity distributions in the x-y plane on the midplane (bottom panels) and x-z plane of (top panels) for a low b model withy p 0
at six different stages. The color scale and contour curves denote the density in the logarithmic scale. Arrows show the velocity distributions. Theb p 0.1

maximum density and time, ( [cm ], t [yr]), is (a) ( , 0.0), (b) ( , ), (c) ( , ), (d) ( ,!3 12 17 2 19 2 19n 1.05# 10 8.82# 10 2.1537# 10 1.82# 10 2.1545# 10 6.80# 10max
), (e) ( , ), and ( f ) ( , ) at each stage.2 19 2 21 22.1549# 10 2.35# 10 2.1557# 10 1.32# 10 2.1574# 10

size of computational domain. For instance, the numerical results
can be translated into a massive case with andM p 423 M,

, if we renormalize the simulation byL p 1.04 pc n p 1#c0
.5 !310 cm

The rotation of the initial cloud is specifiedby amodel parameter
b, which is defined by the ratio of the centrifugal force to the
pressure gradient force, i.e., . For a given2v /r p !b(1/r)(!P/!r)f

b, the specific angular momentum at the outer boundary, R, is
given by , where l is the mass per unit2 1/2j p [2GlR b/(1" b)]
length. We construct four models with different rotation of b p
, 0.1, 0.3, and 1.0.0.0
The hydrodynamic evolution of the cloud is solved by a

three-dimensional nested grid code, which is developed byMat-
sumoto & Hanawa (2003b). At the initial epoch, the cylinder
is represented in grid points,(n , n , n ) p (128, 128, 32)x y z

assuming a mirror symmetry with respect to the equatorial
plane. We introduce a new finer grid so that the resolution
satisfies the condition that the half-width of the half-maximum
density should be resolved with more than 8 grid points. Here
16 levels for nested grids are allowed, and therefore the final
spatial resolution . Here15 6Dx p L/(128# 2 ) ! L/(4.2# 10 )
we set AU, and therefore AU.!4L p 1477 Dx p 3.5# 10
The self-gravity is calculated self-consistently by solving the
Poisson equation with a multigrid iteration method (Matsumoto
& Hanawa 2003a).

3. RESULTS

The numerical results can be divided into two cases of low
and high b cases. Here we show the typical results of these
models.

3.1. Low b Case

Figure 1 shows the density distribution and velocity fields
for a case of . At the initial stage (Fig. 1a), the ratiob p 0.1
of rotation energy to gravitational energy is as smallE FWFrot
as . The filamentary cloud fragments as aE /FWF p 0.0187rot
result of the gravitational instability, and each fragment un-
dergoes the runaway collapse. In early stages of runaway col-
lapse, the dense cloud shrinks, keeping an approximately spher-
ical shape. At the stage of cm , of14 !3n p 1.04# 10 E /FWFc rot
spherical core reaches 0.245 because of the spin-up of the
central cloud during the collapse. After that, the spherical col-
lapsing core forms a runaway collapsing disk in the central
region (Fig. 2b). When the cloud collapses near to the cen-
trifugal barrier, a rotationally supported disk, the radius of
which is !0.035 AU, is formed (Fig. 1c) at the stage of

cm . The formation of a rotationally sup-19 !3n p 1.82# 10c

ported disk is an important consequence for the binary for-
mation. If the equation of state is perfectly isothermal (g p
), the runaway collapse of a rotating cloud continues to form1
the central singularity without forming a rotationally supported
disk (Saigo & Hanawa 1998; Saigo et al. 2000). However, the
present simulation shows that the runaway collapse stops before
producing the central singularity in the case of . Thisg p 1.1
is an essential difference between isothermal and evo-g p 1.1
lution. After a rotationally supported disk forms, the envelope
accretes onto the disk (Fig. 1d). In this disk, the Toomre

is slightly less than unity. However, the diskQ(p kc /pGj)s

radius is smaller than the critical wavelength of ring instability.
The disk is therefore stable at this stage. The disk radius and
mass grow via accretion from the infalling envelope.

Saigo,Matsumoto,Umemura 2004
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hydrostatic cores (the first core and the protostar) appear in a nested
manner, i.e. the protostar forms inside the first core. Correspond-
ingly, two shocks are seen for Z ≥ 10−5 Z⊙ in Figs 2 and 3. This
existence of two adiabatic phases, one at nc ∼ 1011 cm−3 and the
other 1020 cm−3, during the collapse has an important consequence
in fragmentation nature of metal-enriched clouds.

In the model with Z = 10−4 Z⊙, three shocks (i.e. three velocity
peaks) appear with an extra weak shock at nc ≃ 109 cm−3 by the
rapid H2-formation heating at nc ≃ 108 cm−3 (see Fig. 1). How-
ever, because of the very short duration, no clear adiabatic core is
observed at this epoch.

4 D E P E N D E N C E O N I N I T I A L C L O U D
PA R A M E T E R S

In this section, we see the evolution of clouds with different values
of rotation energy β0 and non-axisymmetric perturbation Aφ (i.e.
cloud shape) at the initial states. For a given metallicity, the number
of combination (β0, Aφ) we calculated amounts to 80. With eight
different metallicities Z = 0 − Z⊙, 480 models are calculated
in total. The density distributions on the equatorial plane at the
end of calculation are presented for different combinations of (β0,
Aφ), which are indicated by the ordinate and abscissa, in Figs 4–
7 for a given metallicity, in which only models with four different
metallicities of Z = Z⊙ (Fig. 4), 10−2 Z⊙ (Fig. 5), 10−4 Z⊙ (Fig. 6)
and 0 (Fig. 7) are shown. The density perturbation is imposed at
the scale of the critical radius of the BE sphere Rc for models
shown in the first-seventh columns, while at 0.1 Rc for those in the
eighth-tenth columns (indicated by ‘L’; see Section 2). The latter
corresponds to models of larger non-axisymmetric perturbation (i.e.
more distorted).

4.1 Classification of the fate of Clouds

The white-and-black-dotted lines in Figs 4–7 mark the border be-
tween models in which the clouds fragment or not. Each class
of models can be classified into two subclasses, which are indi-

cated by the background colours: the fragmentation models include
‘fragmentation’ (red) and ‘merger’ (violet) models, while non-
fragmentation ones include ‘non-fragmentation’ (blue) and ‘stable-
core’ (grey) models.

Fragments survive without merger in ‘fragmentation’ models,
while they merge to form a single core before the end of calculation
in ‘merger’ models. The protostars form without fragmentation in
the ‘non-fragmentation’ models, while, in the ‘stable-core’ models,
the first core remains stable for ≫10 t ff , where tff is the local free-fall
time-scale at the centre. Due to our CPU-time limitation, we failed
to follow further cloud evolution for most ‘stable-core’ models.
We expect that the first core collapses eventually to form a proto-
star after angular momentum transfer in a long-term calculation. In
fact, for some ‘stable-core’ models, however, we succeeded in fol-
lowing the second collapse and protostar formation and confirmed
no fragmentation. Thus, in this paper, we regard the ‘stable-core’
models among the cases of non-fragmentation when we discuss the
fragmentation condition.

4.2 Fragmentation frequency for different metallicities

Investigation of Figs 4–7 indicates:

(i) The first parameter to determine whether a rotating spherical
cloud fragments or not is the initial rotation parameter β0. Although
the behaviour of the boundary between the two cases is very com-
plicated, the threshold value of β0 for fragmentation increases with
metallicity, being β0 = 10−5 for Z = 0 while β0 = 10−3 for Z =
Z⊙. As a result, fragmentation is observed in more models for lower
metallicity; 23/60 models for Z = Z⊙, while 47/60 models for
Z = 0.

(ii) Clouds with large non-axisymmetric perturbations develop
spiral patterns, which transfer angular momenta by gravitational
torque and effectively reduce the rotation parameters β0. For exam-
ple, upward shift of the fragmentation boundary towards larger Aφ

is seen in the Z = 10−3 − 1 Z⊙ cases. Similarly, the spirals remove
angular momenta from the rotation-supported first cores, which

Figure 4. Final outcomes of cloud collapse for metallicity Z = Z⊙ for different combinations of the initial amplitude of non-axisymmetric perturbation Aφ

and rotation parameter β0. The density distribution (colour-scale) around the centre of the cloud on the equatorial plane is plotted in each panel. The grid level
l and grid scale are shown at the upper-left and lower right corners, respectively, of each panel. The colours of the panel frame indicate the classifications:
red: fragmentation, violet: merger, blue: non-fragmentation and grey: stable-core models. The white-and-black dotted line indicates the border between
fragmentation (fragmentation and merger models) or not (non-fragmentation and stable-core models).
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Table 1. Fragmentation conditions for each metallicity.

Metallicity (nadi/104 cm−3) β0,crit (nini/104 cm−3)1/3

Z⊙ 3 × 107 3.2 × 10−4

10−1 Z⊙ 108 2.2 × 10−4

10−2 Z⊙ 7 × 108 1.1 × 10−4

10−3 Z⊙ 109 10−4

10−4 Z⊙ 1010 4.6 × 10−5

10−5 Z⊙ 1011 2.1 × 10−5

≤10−6 Z⊙ 1013 4.6 × 10−6

some more contraction. For Z ≤ 10−6 Z⊙, the critical value must
be attained somewhat before the protostar formation (∼1017 cm−3),
as found by Machida et al. (2008b), while for Z ≥ 10−5 Z⊙ this
must be before the first core formation (indicated by the vertical
lines in Fig. 8). Since the first cores form at lower density than the
protostars, the clouds have a shorter density range to amplify ω in
the cases of Z ≥ 10−5 Z⊙ than the primordial case. In addition,
first core appears earlier for higher metallicity. Therefore, an initial
higher rotation is required to cause fragmentation for clouds with
higher metallicity.

Using the relation ωc ∝ n1/6
c for spherical collapse, the condition

for the normalized angular momentum is amplified from the initial
value ω0 at density nini to the critical value ωfrag before the density
nadi where the gas becomes adiabatic is

ω0 > ωfrag

(
nadi

nini

)−1/6

. (4)

This can be translated to the condition on initial rotation parameter
β0:

β0 > βfrag

(
nadi

nini

)−1/3

, (5)

where β frag = ω2
frag = 0.04–0.09.

The adiabatic density nadi and critical rotation parameter β0,crit

given by the right-hand side of equation (5) are listed in Table 1
for different values of Z. Here, we used a conservative value of
β frag = 0.1 is adopted. For Z ≥ 10−5 Z⊙, nadi is the density where
the clouds become optically thick to dust grains and the first cores
form. For Z ≤ 10−6 Z⊙, where no first adiabatic phase is present,
after reaching β frag, the clouds need some more density interval
before the protostar for fragmentation and thus nadi = 1017 cm−3

is adopted as the critical density (see Machida et al. 2008). These
values for β0,crit are in concordance with the results presented in
Figs 4–7.

4.4 Fragmentation epochs and separations

Fig. 9 shows the separations at the fragmentation epoch for all
fragmentation models. In each panel, the solid line indicates the
Jeans length, while the dashed vertical line indicates the beginning
of the first adiabatic phase. Note that the separations are about 10–
100 times the Jeans length since the radial size of the cloud is 10–100
times the Jeans scale at fragmentation owing to rotation. With the
vertical scale comparable to the Jeans length, the height-to-radius
ratio is about 1/10 at this epoch.

For Z = Z⊙, fragmentation events cluster near the upper left
corner nc = 1011–1014 cm−3, i.e. just after first core formation. For
lower metallicity, this distribution extends towards the lower right
because the first core forms later and thus fragmentation occurs
at a higher density with narrower separation for lower metallicity.

Figure 9. The number density and separation of fragments at the fragmen-
tation epoch. All fragmentation models are plotted for each metallicity. The
separation corresponds to the furthermost distance between fragments. The
number of fragmentation models is given at the lower left in each panel,
while the number of merger models is indicated by the figure in parenthe-
ses. The Jeans length is also illustrated by solid lines. The vertical broken
line indicates the epoch when the gas first becomes adiabatic.

For Z = 10−1 Z⊙ as well as 10−2 Z⊙, one fragmentation event is
observed at very high density nc ∼ 1020 cm−3 while the rest locate
in 1010 cm−3 < nc < 1014 cm−3, which are due to the first core
formation. In some models of 10−4 Z⊙, fragmentation is observed
also before the first core formation. The abrupt temperature rise at
nc ≃ 108 cm−3 in the 10−4 Z⊙ clouds (Figs 2 and 3) temporarily
slows the collapse, enabling fragmentation at such an early phase.
Without the first core formation, no clear fragmentation epoch exists
for Z ≤ 10−6 Z⊙. Fragmentation takes place whenever a disc-like
configuration appears due to rotation and distributes in a wide range
of 1010 cm−3 < nc < 1021 cm−3 (Machida et al. 2008) although some
events at nc > 1020 cm−3 might be caused by the protostar formation,
as in the models with Z ≥ 10−5 Z⊙ at first core formation.

Fig. 10 shows the frequency distribution of furthermost separa-
tions between fragments at fragmentation. This shows that binaries
with higher metallicity have a wider separation. Those with Z = Z⊙
have separations 10 < r sep < 1000 au, while at Z = 0, the range
is r sep < 10 au. The separations are distributed in a wide range of
0.1 au < r sep < 1000 au for models with Z = 10−2–10−5 Z⊙.

4.5 Non-axisymmetric perturbation and fragmentation mode

In a few cases in Figs 4–7, the clouds fail to fragment even if the
condition (equation 4) is fulfilled. With moderate non-axisymmetry,
the cloud can avoid fragmentation even if condition (equation 4)
is fulfilled owing to angular momentum is effectively transferred

C⃝ 2009 The Authors. Journal compilation C⃝ 2009 RAS, MNRAS 399, 1255–1263
Downloaded from https://academic.oup.com/mnras/article-abstract/399/3/1255/1074176
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平衡円柱状雲の重力不安定性

円柱状の雲は自発的に有限波長に 
分裂する。

形成過程：平板状雲の分裂 (Miyama,Narita,Hayashi 1987) 
　　　　　球状雲の変形 (Hanawa&Matsumoto 2000) 



n 自己相似重力収縮解
の非球対称変形 

n 歪み＝軸比ー１ 
n 線形進化では、密度の

べき乗に比例

自己相似収縮雲の変形

線形成長(減衰)率

変形
Lai (2000) 
Hanawa&Matsumoto (1999,2000);  

不安定

L.P.(isothermal)

O.N.(gamma=1.1)

安定
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Fragmentation by elongation
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観測の解釈の例
Chen+2013

The Astrophysical Journal, 768:110 (31pp), 2013 May 10 Chen et al.

Figure 23. Top: temperature and density evolution at the center of a gravitationally collapsing cloud core obtained by Masunaga & Inutsuka (2000) in their radiation
hydrodynamical calculation of spherically symmetric protostellar collapse. Each of these phases in the temperature evolution is characterized by a distinct value of
the effective ratio of specific heats, γeff . The image is adopted from André et al. (2009). Bottom: a suggested picture of the sequential fragmentation for binary stars.
From left to right: the IRAM 30 m 1.3 mm dust continuum image of Bok globule CB 246 (data from Launhardt et al. 2010), the SMA 1.3 mm dust continuum image
of R CrA SMM 1A (data from Chen & Arce 2010), and the eSMA 850 µm image of IRAS 16293 A (this work), while the right blank panel shows a possible view
with an angular resolution of 0.′′04 attained at the ALMA.
(A color version of this figure is available in the online journal.)

fragmentation and have later fragmented into VLA 1623 West
and East (through prompt fragmentation); VLA1623 East
seems to have subsequently gone through adiabatic fragmen-
tation to form VLA 1623 East A and B. As we discussed in
Appendix A.17, source VLA 1623 B could also be a binary
system, which needs to be verified by further higher angular
resolution observations.

We believe that routine observations at angular resolution
better than 0.′′1 will reveal more multiple protobinary sys-
tems with smaller separations, which will then allow us to
study in detail a statistically significant number of protostellar
binary/multiple systems with a wide range of separations (from
1 AU to 104 AU). The Atacama Large Millimeter/submillimeter
Array (ALMA), capable of attaining an angular resolution down
to 10 mas (when fully completed), will provide a breakthrough
in our knowledge of binary star formation. It will certainly
help us find closer protobinary systems with separations in
the scale of 1–10 AU, and will even allow us to test the sec-
ondary fragmentation scenario (see, e.g., Machida et al. 2008),
by which stellar systems with separations of 0.01–0.1 AU can be
formed.

5. SUMMARY

We present SMA 1.3 mm and 850 µm dust continuum data
toward a sample of 33 Class 0 protostars in nearby clouds
(distance < 500 pc), which thus far represents the largest
survey toward protostellar binary/multiple systems. The median
angular resolution in the survey is 2.′′5, while the median linear
resolution is approximately 600 AU. The main results of this
work are summarized below.

1. Compact millimeter and/or submillimeter dust continuum
emission, which likely originates from the inner envelope
and/or circumstellar disk, is detected from all sources in the
sample. The measured 1.3 mm fluxes in the sample range
from 1.1 mJy to 3.0 Jy, with a median value of 100 mJy,
while the 850 µm fluxes range from 20 mJy to 3.2 Jy, with
a median value of 430 mJy. Assuming that the 1.3 mm and
850 µm dust continuum emission is optically thin and a
dust temperature of 30 K for all sources, the estimates of
the total gas masses are in the ranges of 0.001–2.4 M⊙ at
λ1.3 mm and of 0.005–1.7 M⊙ at λ850 µm.
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Prompt fragmentation
Tohline (2002) 
TT & Inutsuka (1999)

Disk driven fragmentation 
(adiabatic, 2nd core)

Machida+ (2008)

... However, both theory is limited at the moment 
just after fragmentation.



Binary protostar
+ envelope

Mass accretion stage : 
Hereafter, mass in an envelope 
accretes onto the binary protostars.

accretion

3. 連星形成：降着期

Binary stars
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Angular momentum distribution 

No. ] Growth of binary protostar 7

to be so simple if the effects of binary growth is taken into
account. The effect by growth becomes important after when
accreted mass becomes larger than the original mass of binary
seeds in two aspects.

One aspect is that due to the mass growth, gravitational po-
tential of binary protostar becomes deeper. As a result, gas with
larger angular momentum can fall onto the inner radius. This
effect decreases rcb. Circumstellar disk also becomes compact
size. In the Bondi-type flow with small initial mass ratio, pri-
mary star grows and secondary star will be attracted from the
circum primary disk even with conserving angular momentum.
As a result, secondary star will enabled to accrete gas and mass
ratio will begin to increases.

Another aspect is that due to accretion of gas with large an-
gular momentum, angular momentum of binary increases. As
a result, binary separation becomes large if angular momentum
of infalling gas contributes to increase orbital angular momen-
tum of binary protostars. This will be effective in the case with
mass ratio close to unity since both of primary and secondary
is distant from the center of mass. (In this case, spin of each
circumstellar disk has little contribution to modify the orbital
angular momentum around the mass center.)

Above two effects suggests one possibility that the radius of
centrifugal barrier of infalling gas relative to the binary separa-
tion is not necessary to be an increasing function of time even
if outer envelope has larger angular momentum. Competition
between above two effects and the angular momentum distri-
bution will determine the long-term evolution of the growth of
binary protostar.

Here, we discuss one possibility in which the long term evo-
lution can be predicted by connecting the result of short-time
evolution. The binary mass and angular momentum at the end
of short time evolution is given by

Mb(t) = Mb + Md(t), (25)
Jb(t) = Jb + Jd(t), (26)

where Md(t) and Jd(t) denote mass and angular momentum
of the circum stellar disks.

Here, following the equation (5), we define the new refer-
ence orbital angular momentum Jcirc(t) as

Jcirc(t) =
√

GM3
b(t)a(t)

=
(1 + q(t))2

q(t)
Jb(t). (27)

Then the new reference specific angular momentum jcirc(t) is
given by

jcirc(t) =
Jb(t)

Mb(t)
. (28)

By introducing time-dependent growth factor J̃ , M̃ as

J̃(t) = Jb(t)/Jb(0) , M̃(t) = Mb(t)/Mb(0) (29)

and using equation (26) with t = 0, we have

jcirc(t) =
q(0)(1 + q(t))2

q(t)(1 + q(0))2

(

J̃(t)

M̃(t)

)

jcirc(0). (30)

On the other hand, time evolution of specific angular mo-
mentum of the infalling envelope at R0, jout(t) is given by

jout(t) = j(M̃(t)R0) = M̃(t)j(R0) = M̃(t)j0, (31)

where M̃(t)R0 is the initial radius for the gas crossing R0 at t.
We used j ∝ m in the second equality and jout(0) = j0. From
equation (29) and (30), we have

jout(t)

jcirc(t)
=

q(t)(1 + q0)2

q0(1 + q(t))2

(

M̃(t)2

J̃(t)

)

(

jout(0)

jcirc(0)

)

. (32)

Using equation (6), we have

jout(t) =

(

M̃2(t)

J̃(t)

)

2q(t)

(1 + q(t))2
jcirc(t). (33)

This equation represents specific angular momentum at the in-
ner edge (r = R0) of envelope relative to the reference specific
angular momentum at t. Note that this equation is identical
exept for with equation (6) except for q if the relation

M̃2(t)

J̃(t)
= 1 (34)

holds during short-time evolution. Furthermore, if q(t) is is
constant with time, this equation holds during time evolution,
indicating self-similar evolution. This is especially expected
for q = 1. In this case, circumbinary disk will merginally not
form. Equation (33) give a critical angular momentum distri-
bution. For the cases with q ̸=1 equation will be approximately
holds with slowly changing q. These points should be studied
more in detail further.

In this case, results of short-time evolution can be recycled
to predict long-term evolution just by updating value of q0 to
q(t) successively. This condition will holds for the angular mo-
mentum distribution j ∝m with negligible angular momentum
transfer and if all of the angular momentum of the circumstellar
disks convert to the orbital angular momentum of the binary.
This will be good approximation unless the cases with small
initial mass ratio in which the spin of circumprimary disk is
large.

Saigo & Hanawa (1995) modelled self-similar inside-out
evolution in accretion stage with axi-symmetric model. That
solution is expected to be gravitationally unstable and fragmen-
tation is expected. The solution indicated here with accretion
flow onto the binary seed may be the solution for self-similar
evolution in accretion stage.

4.3. Binary separation and orbital period

Here, we describe the evolution of the separation and orbital
period of the binary. Orbital angular momentum of the binary
Jb(t) is shown as from equation (26)

Jb(t) =
√

GM3
b(t)a(t)

q(t)

((1 + q(t))2
. (35)

By using J̃ and M̃ , scale factor of the separation is written by

a(t)

a
=

(

J̃(t)

M̃(t)

)(

M̃(t)2

J̃(t)

)−1
(

q(t)

q0

)−2 (

1 + q(t)

1 + q0

)4

.(36)

c.f., Hayashi et al. 1982
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Analytic Solutions for Equilibrium of Rotating Clouds 1953 

Fig. 1. Equi-density contours in the x-z plane in the 
equilibrium configuration with 1'=3. 

0.5 w/o 1.0 

Fig. 2. Shapes of equi-density 
contours in the w -z plane for 
different values of y. The dotted 
curve with 1'=0.9 denotes a 
fictitious case where a negative 
mass exists on the z-axis. 

flatness parameter hereafter. We have two limiting cases, r = 1 and r = CD. The 
former is a non-rotating spherical configuration with the density distribution, 
p = c 2

/ 27rCr2
, which is very similar to that found by Larson7

) and many others in 
numerical computations of the collapsing spherical isothermal clouds_ The 
latter is the Mestel solution mentioned at the end of § 1. Properties of the 
equilibrium solutions, other than the density distribution, will be described in the 
next section_ 

§ 3. Properties of equilibrium solutions 

The equilibrium solutions found in § 2 have a very simple expression for the 
density, i.e., 

(3· 1) 

but this is not always the case for the other quantities such as the distributions of 
gravity, mass and angular momentum. Then, it will be worth while to summa-
rize the results of our calculations in this section. 

(1 ) Distributions of gravity, surface density and mass 
With Eq. (2 ·12) we find for the components of gravity 

Downloaded from https://academic.oup.com/ptp/article-abstract/68/6/1949/1878884
by guest
on 10 February 2018
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FIG. 4.ÈSimilarity solution in the period The ordinate denotest [ t
0
.

the nondimensional surface density p on the logarithmic scale, and the
abscissa gives the nondimensional coordinates x. Each curve denotes a
solution for given u, the value of which is indicated in the Ðgure.

In the middle region, the rotation velocity isx
d

\ x [ 5,
approximated by f P x~1. This rotation law means the spe-
ciÐc angular momentum, j, is constant. In fact, the speciÐc
angular momentum is higher only by a factor of 1.2 at

than at for u\ 0.3.x \ 2x
d

x \ x
d

3.3. Disk Evolution in Ordinary Coordinates
Substituting km s~1 in the similarity solution ofc

s

\ 0.2
u\ 0.3, we describe the dynamical collapse of a disk in the
dimensional form. denotes the surface density evo-Figure 7
lution. The o†set of the time is set as and the units oft

0
\ 0

time are years. The abscissa denotes the radius in astrono-
mical units on the logarithmic scale. The left ordinate
denotes the surface density in units of molecules cm~2,
while the right ordinate denotes the equatorial density in
units of molecules cm~3. We assumed the mean molecular

FIG. 5.ÈSame as but for the nondimensional infall velocity mFig. 4,

FIG. 6.ÈSame as but for the nondimensional rotation velocity fFig. 4,

weight to be to derive the surface and equatorialm6 \ 2.3m
Hdensities, where denotes the mass of a hydrogen atom.m

HThe equatorial density is evaluated as

o
e
\

nG&2

2c
s

2
, (39)

from the hydrostatic balance in the vertical direction. Each
solid curve denotes both the surface and equatorial den-
sities at a given epoch. Upper and lower dashed lines denote
the stable and unstable equilibrium respec-(p \A

B
/x),

tively.
The disk evolution is the transition from the initially

uniform disk of a low surface density to the stable equi-
librium of At t \ 0 yr, the surface density has ap \ A

`

/x.
power-law distribution. In this sense, our solution is similar
to the Larson-Penston solution and di†erent from the solu-
tions of The latter denote the transition from aShu (1977).
singular static gas sphere. Among them, ShuÏs expansion
wave solution denotes the transition from the unstable sin-
gular equilibrium.

FIG. 7.ÈSurface density evolution for u\ 0.3 and km s~1c
s

\ 0.2
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§ 3. Two-dimensional simulations 

We computed the collapse for the range of the initial parameters, 0.05:::;;a:::;;0.75 and 
0.08:::;;13:::;;0.32. The results show that clouds eventually undergo runaway collapse in both 
cases (A) and (B). 

In case (A), a sphere collapses primarily in the z-direction to form a flattened disk. 
Shock waves are generated parallel to the equatorial plane after about one free-fall time 
and propagate outward in the z-direction. However, the collapse in the ?l1-direction still 
continues, and the column densities in the inner region continue to increase. As a result, 
the masses behind the shock fronts begin to collapse again in the z-direction and generate 
the second shock waves. In this way, successive collapses eventually give rise to 
multishock layers. The collapse of the core never stops regardless of the amount of 
angular momentum contained, and the central density increases infinitely. 

In case (B) where the initial disk is nearly in hydrostatic equilibrium in the z-
direction, it contracts at first in the ?l1-direction and becomes a less flattened disk, but soon 
it begins to contract in the z-direction owing to the intensified gravity. The subsequent 
evolution is essentially the same as in case (A) and multishock layers result. 

It is found in both cases (A) and (B) that the envelopes of collapsing clouds show 
similar distributions, Pe cx ?l1-

2 and (j)CX?l1-
1
.*) An example is seen in Fig. 1, which shows . 

the structure at a stage t=1.16tff of a collapsing cloud in case (A) with a=0.5 and 13 
=0.08. The shock waves generate some fluctuation on the density distribution. Density 
contours and velocity fields in a meridional plane of the cloud are shown in Fig. 2. This 
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Fig. 1. Density and angular velocity profiles in the equatorial plane of a collapsing. cloud at 
t= 1.16 tff' The initial state is a rigidly rotating, uniform sphere with a=0.5 and ,8=0.08. 
The dashed and the dotted lines are the upper and the lower critical lines, respectively, as described 
in §4. 

*) Strictly speaking, the envelope consists of "the inner envelope" where this similarity law holds and "the 
outer envelope" where the law does not hold (Fig. 4). The outer envelope has a structure dependent on· the initial 
condition and also on the outer boundary condition. 

Downloaded from https://academic.oup.com/ptp/article-abstract/72/6/1118/1932408
by guest
on 10 February 2018

Saigo&Hanawa1998

Narita+1984

Hayashi+1982

runaway

runaway

accretion

降着流の長期進化（軸対称）

平衡解析解



20

348 SAIGO & HANAWA Vol. 493

FIG. 8.ÈSame as but for the radial velocityFig. 7,

In the early phase, t \ 0 yr, the central disk becomes
denser and smaller. In the late phase, t [ 0 yr, the inner disk
expands at a speed of The mass of the inner diskc

s

x
d

.
increases in proportion to the time, M

d

\ (c
s

3/G)k
d

t.
Figures and denote the evolution of radial and rota-8 9

tion velocities, respectively. The notation is the same as that
of but for the ordinate. The ordinate denotes theFigure 7,
infall velocity in the linear scale in and the rotationFigure 8
velocity in the logarithmic scale in In the outerFigure 9.
dynamical Ñow the radial velocity dominates over the rota-
tion velocity, while the latter dominates in the inner disk.

4. DISCUSSIONS

4.1. Comparison with Other Similarity Solutions
As shown in the previous section, our similarity solution

for is similar to that of et al. the surfacet \ t
0

Narita (1984) ;
density distributions di†er only by 14%. Although the func-
tional form of p was an assumption in et al. itNarita (1984),
has proved to be a good approximation to the smooth
transonic solution. The sonic point selects a discrete solu-
tion in the sense that no regular solution is found in the

FIG. 9.ÈSame as but for the rotation velocityFig. 7,

close vicinity of it. Note that the regular transonic solutions
exist continuously in the phase space for a collapsing sphere

& Summers although the stable solu-(Whitworth 1985),
tions are discrete & Piran(Ori 1988).

Our similarity solution for is similar to the solu-t [ t
0tions of et al. andShu (1977), Hunter (1977), Terebey (1984),

Galli & Shu All of them describe the inside-(1993a, 1993b).
out collapse phase in which the central star or disk grows in
mass and size. Both the solutions of and those ofShu (1977)

are spherically symmetric although theirHunter (1977)
initial conditions are di†erent. starts from aShu (1977)
static gas sphere, while the solution of isHunter (1977)
continued from a dynamical collapse. Since our solution is
continued from the dynamical collapse of a disk, it is closer
to the Hunter (1977) solution.

The accretion rate is constant in the inside-out collapse
phase in the similarity solutions of Shu (1977), Hunter

and the present authors. The values are(1977), 0.975c
s

3/G
for Shu, for Larson-Penston (obtained by46.9c

s

3/G Hunter
and 8.51 for ours (u\ 0.3). When the inside-out1977), c

s

3/G
collapse starts from an unstable equilibrium, the accretion
rate is for u\ 0.3. (Be careful not to take the0.518c

s

3/G
accretion rate seriously, since the thin-disk approximation
is not valid for unstable equilibrium.) It is smaller for a
central star formed quasi-statically than for one formed
dynamically. It is smaller for a dynamically collapsing disk
than for a dynamically collapsing sphere.

The solutions of et al. and Galli & ShuTerebey (1984)
denote disk formation during the inside-out(1993a, 1993b)

collapse phase. et al. describes formation byTerebey (1984)
rotation, while Galli & Shu do it by mag-(1993a, 1993b)
netic Ðelds. Both start from a spherical gas distribution with
no radial velocity at the onset of the inside-out collapse.
Their solutions are constructed to reproduce the inside-out
collapse of the core formed quasi-statically. Our solution is
di†erent from theirs, in that ours is continued from a
dynamical collapse and the cloud already has a disk shape
at the onset of inside-out collapse.

4.2. Comparison with Numerical Simulations
It has been well established in numerical simulations that

the central density and angular velocity increase at an accel-
erated pace, and during theo

c

P (t
0
[ t)~2 )

c

P (t
0
[ t)~1,

isothermal collapse of a rotating cloud (cf. et al.Norman
et al. 1984). similarity solution explains1980 ; Narita Our

these increases in ando
c

)
c

.
For more detailed comparison we choose etMatsumoto

al. as an example of numerical simulations. They(1997)
followed the collapse of a rotating cloud starting from frag-
mentation of a rotating Ðlamentary cloud through forma-
tion of a disk. Although the disk collapse is roughly
reproduced by a similarity solution, they found an appre-
ciably large oscillation around the exact similarity. As the
density increases owing to the collapse, the similarity solu-
tion becomes a better approximation. The similarity solu-
tion reproduces only the surface density well at Ðrst and
also the radial velocity well later. Thus, we compared their
average properties in a later phase with our similarity solu-
tion. Their simulation gives u ^ 0.3, p

0
\ [3.9, lim

x?=(xp) \ 6, and Our similarity solution gives am
=

\[1.6.
systematically smaller surface density.

& Hanawa have shown that the simi-Nakamura (1997)
larity solution of u\ 0 can be applied to the collapse of a
magnetized disk if the sound speed and gravitational con-
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FIG. 3.ÈSelf-similar solutions with critical points are shown for a \ 0.1. (a) Azimuthal velocities, (b) radial velocities, (c) surface densities, and (d) mass
accretion rates are shown. The position of the critical point, is attached to each line. Solid lines represent stable solutions in which thex

c
, (x

c
\ 0.7)

gravitational force dominates. Short-dashed lines represent solutions that are expected to be unstable (Q \ 1). Long-dashed lines represent stable(x
c
\ 0.3)

solutions in which the pressure gradient force dominates the gravitational force in the outer radius. A dotted line in (b) represents critical points (u
c
\ 1 [ x

c
).

azimuthal velocity are smaller and radial velocity is larger
than in the solutions with larger The behavior of thex

c
.

solutions in the outer radius is insensitive to the parameter
a for small This is because, in the outer radius, rotationx

c
.

has a small e†ect on the accreting Ñow, and the solution is
characterized mainly by the radial inÑow velocity and by
the pressure gradient force. In the inner disk, however, a
variety of outer Ñows seem to converge within a narrow
range that is mainly determined by a, regardless of the
initial properties. It is found that the mass accretion rate in
the center is written by a simple expression as

m5 D
3a
Q

, i.e., M0 D
3ac

s
3

QG
. (30)

We checked that this relation holds for all the solutions we
solved. Other variables for the inner asymptotic solution
are also available in the form of equation (23) and (25)
except for Q.

In Figure 3d, the di†erence in the mass accretion rate
between the inner radius and the outer radius is seen. Since
the mass accretion rate is larger outside, the mass accumu-
lation onto the inner disk is induced. This phenomenon is
seen also in the cold and slow accretion solution (° 3.2.3) but
disappears in the steady accretion solution (° 4.1). There-
fore, the di†erent value of the accretion rate is due to the

unsteady e†ect. The value of the di†erence would be modi-
Ðed if we treated the self-gravity more accurately.

In Figure 4, the distribution of the stability parameter Q
is shown for a \ 0.1. It is seen that the solutions for x

c
Z

0.92 have a Q \ 1 region in which the disk is expected to be
unstable especially in the outer radius, while solutions for

have a Q \ 1 region at the radius in which the gasx
c
[ 0.1

accretes onto the inner disk. In the solutions with 0.1 [
the Q parameter is always greater than unity atx

c
[ 0.92,

all the radii, and these solutions are expected to be stable
against fragmentation.

Furthermore, among the stable solutions, we Ðnd that
two di†erent types of solutions exist. In the solutions with
large the gravitational force dominates in the outerx

c
,

radius. We call these solutions the gravity-dominated solu-
tions. However, in the solutions with small the pressurex

c
,

gradient force dominates in the outer radius. We call these
solutions the pressure-dominated solutions. In the astro-
physical interest, the gravity-dominated stable solutions
would be important. We summarize the properties of the
solutions in Figure 5. In Figure 5a, we plot all the solutions
we calculate in the plane. In Figure 5b, we show thex

c
-a

relation between and a for the self-similar solutions. It isq0seen that the stable gravity-dominated solutions have a
narrow allowed range for around It is seen thatq0 q0 D 0.4.
the upper limit of is near 0.5 for small a, consistent withq0the result of invicid disks ° 4.1.1). For larger a, the(q0 \ 0.5 ;
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Equation (21) does not include a because we neglect the
pressure gradient and the equations of motion are non-
dimensionalized by instead of The e†ect of a isac

s
2 c

s
.

included through equation (20).
3.2.1. Asymptotic Behavior

We derive asymptotic solutions under the condition that
all variables satisfy power laws in x ] 0 and x ] O. We
Ðnd that the asymptotic azimuthal velocity and surface
density for the outer radius is the same as in the equilibrium
solution with a Ñat rotation (equation [32]) ; thus we have

u \ 2aq0 , p \ 1
q02 x

, v \ 1
q0

, m5 \ 2a
q0

,

m \ x
q02

, Q \ 2J2q0 for x ] O , (22)

while the asymptotic solution in the inner radius is found to
be

u \A3aQx
4
B1@2

, p \ 2
A 3a

Q3x3
B1@2

, v \A3a
Qx
B1@2

,

m5 \ 3a
Q

, m \ 3a
Q

, Q \ 3q0
2A

for x ] 0 , (23)

where A is the ratio of the constant mass accretion rate in
the center to that in the outer radius and is the asymp-q0totic value of q in the outer radius. This inner asymptotic
solution represents a disk with Keplerian rotation and a
point mass in the center. Note that the e†ect of the viscosity
is essential to obtain the point mass in the center (cf. ° 4.1.1).
As shown in ° 3.3.2, this inner asymptotic solution is also
valid even if we do not use the cold and slow accretion
approximation except for Q.

3.2.2. T ime-dependent Property
The time-dependent property of the asymptotic self-

similar solutions above can be written by r and t as follows :

V
r
\ [2c

s
aq0 , & \ c

s
2

2nGq02 r
, VÕ \ c

s
q0

,

M0 \ 2
c
s
3 a

q0 G
, M \ c

s
2 r

q02 G
for

r
t

] O ; (24)

and

V
r
\ [A3aQc

s
r

4t
B1@2

, & \ 1
nG

A3ac
s
5 t

Q3r3
B1@2

,

VÕ \A3ac
s
3 t

Qr
B1@2

,

M0 \ 3ac
s
3

QG
, M \ 3ac

s
3 t

QG
for

r
t

] 0. (25)

At a certain radius in the inner disk, the surface density,
azimuthal velocity, and total mass increase with time, while
the mass accretion rate has a constant value, and the radial
velocity decreases with time. In the outer disk, however, no
variable contains time dependence.

3.2.3. Global Self-similar Solution
To solve equation (21) numerically, we use an asymptotic

solution as a boundary condition for both u and du/dx. We
integrate from inner asymptotic solutions outward and Ðnd

that solutions connect to the outer asymptotic solutions
smoothly. After u \ u(x) is obtained, we derive p \ p(x) by
inserting u and du/dx into equation (20). Then azimuthal
velocity v \ v(x) is derived from equation (19). Since equa-
tion (21) does not depend on a, the ratio A does not depend
on a. By numerical integration, it is found that A \

independent ofm5 in/m5 out ^ 0.45 q0.
The outer radius of the inner Keplerian disk can be char-

acterized by the transition radius between inner and outer
asymptotes, which moves outward linearlyrKD \ 2aq0 c

s
t,

with time in the viscous timescale. We deÐne this radius to
be a crossing point of two asymptotes of u(x) in log-log
coordinates. It is found that this radius represents the tran-
sition radius in the integrated global solution well. The
mass of the inner disk is expected to be comparable to the
core mass.

The solution found in this subsection is a viscous exten-
sion to the Mestel disk (Mestel 1963). The cold and slow
accretion approximation is valid only for otherwiseq0 \ 1 ;
the pressure gradient force becomes larger than the gravita-
tional force or the centrifugal force. For small q0 ([0.3),
these cold solutions are expected to be gravitationally
unstable The e†ects of the pressure gradient force(Q [ 1).
and the acceleration terms are taken into account in the
next subsection.

3.3. Warm Solutions
3.3.1. Critical Condition

All the solutions for equations (14) and (15) that connect
the center (x ] 0) and inÐnity (x ] O) must pass a critical
point at which the denominator in the right-hand side of the
equation becomes zero. To pass the critical point smoothly,
the solution must satisfy the critical condition,

u
c
\ 1 [ x

c
, p

c
\ j

c
2

x
c
2 ] 1 , (26)

at (the subscript c refers to the critical points). Byx \ x
clinearizing equations (14) and (15) at we obtain thex \ x

c
,

characteristic equation in which the root represents the gra-
dient of the radial velocity,

u
c
@2 ] u

c
@ ] 1

2x
c

C
p

c
[ 2

Aj
c
@ j

c
x
c
2 [ j

c
2

x
c
3
B[ p

c
x
c

D\ 0 , (27)

where u@ 4 du/dx. The critical point is not a center or a
spiral if equation (27) has real roots, i.e.,

y
c
º

1
2
C

1 ] x
c
[ x

c
2

j
c
2
Ax

c
2

2
[ x

c
] 1

BD
. (28)

The critical point is a saddle if the two real roots have
di†erent signs, i.e.,

y
c
[ 1

2
C

1 ] x
c
] x

c
2

j
c
2 (x

c
[ 1)

D
. (29)

In Figure 1, we show examples of the properties of the
critical points.

3.3.2. Solutions without Accretion Shocks
We Ðrst integrate equations (14)È(17) inward numerically

from a critical point with a given value of andx \ x
c

(j
c
, y

c
)

u@ [ 0. Numerical integration was carried out by the
implicit method near the critical point and by the explicit
fourth-order Runge-Kutta method elsewhere. We integrate
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solution with a Ñat rotation (equation [32]) ; thus we have

u \ 2aq0 , p \ 1
q02 x

, v \ 1
q0

, m5 \ 2a
q0

,

m \ x
q02

, Q \ 2J2q0 for x ] O , (22)

while the asymptotic solution in the inner radius is found to
be

u \A3aQx
4
B1@2

, p \ 2
A 3a

Q3x3
B1@2

, v \A3a
Qx
B1@2

,

m5 \ 3a
Q

, m \ 3a
Q

, Q \ 3q0
2A

for x ] 0 , (23)

where A is the ratio of the constant mass accretion rate in
the center to that in the outer radius and is the asymp-q0totic value of q in the outer radius. This inner asymptotic
solution represents a disk with Keplerian rotation and a
point mass in the center. Note that the e†ect of the viscosity
is essential to obtain the point mass in the center (cf. ° 4.1.1).
As shown in ° 3.3.2, this inner asymptotic solution is also
valid even if we do not use the cold and slow accretion
approximation except for Q.

3.2.2. T ime-dependent Property
The time-dependent property of the asymptotic self-

similar solutions above can be written by r and t as follows :

V
r
\ [2c

s
aq0 , & \ c

s
2

2nGq02 r
, VÕ \ c

s
q0

,

M0 \ 2
c
s
3 a

q0 G
, M \ c

s
2 r

q02 G
for

r
t

] O ; (24)

and

V
r
\ [A3aQc

s
r

4t
B1@2

, & \ 1
nG

A3ac
s
5 t

Q3r3
B1@2

,

VÕ \A3ac
s
3 t

Qr
B1@2

,

M0 \ 3ac
s
3

QG
, M \ 3ac

s
3 t

QG
for

r
t

] 0. (25)

At a certain radius in the inner disk, the surface density,
azimuthal velocity, and total mass increase with time, while
the mass accretion rate has a constant value, and the radial
velocity decreases with time. In the outer disk, however, no
variable contains time dependence.

3.2.3. Global Self-similar Solution
To solve equation (21) numerically, we use an asymptotic

solution as a boundary condition for both u and du/dx. We
integrate from inner asymptotic solutions outward and Ðnd

that solutions connect to the outer asymptotic solutions
smoothly. After u \ u(x) is obtained, we derive p \ p(x) by
inserting u and du/dx into equation (20). Then azimuthal
velocity v \ v(x) is derived from equation (19). Since equa-
tion (21) does not depend on a, the ratio A does not depend
on a. By numerical integration, it is found that A \

independent ofm5 in/m5 out ^ 0.45 q0.
The outer radius of the inner Keplerian disk can be char-

acterized by the transition radius between inner and outer
asymptotes, which moves outward linearlyrKD \ 2aq0 c

s
t,

with time in the viscous timescale. We deÐne this radius to
be a crossing point of two asymptotes of u(x) in log-log
coordinates. It is found that this radius represents the tran-
sition radius in the integrated global solution well. The
mass of the inner disk is expected to be comparable to the
core mass.

The solution found in this subsection is a viscous exten-
sion to the Mestel disk (Mestel 1963). The cold and slow
accretion approximation is valid only for otherwiseq0 \ 1 ;
the pressure gradient force becomes larger than the gravita-
tional force or the centrifugal force. For small q0 ([0.3),
these cold solutions are expected to be gravitationally
unstable The e†ects of the pressure gradient force(Q [ 1).
and the acceleration terms are taken into account in the
next subsection.

3.3. Warm Solutions
3.3.1. Critical Condition

All the solutions for equations (14) and (15) that connect
the center (x ] 0) and inÐnity (x ] O) must pass a critical
point at which the denominator in the right-hand side of the
equation becomes zero. To pass the critical point smoothly,
the solution must satisfy the critical condition,

u
c
\ 1 [ x

c
, p

c
\ j

c
2

x
c
2 ] 1 , (26)

at (the subscript c refers to the critical points). Byx \ x
clinearizing equations (14) and (15) at we obtain thex \ x

c
,

characteristic equation in which the root represents the gra-
dient of the radial velocity,

u
c
@2 ] u

c
@ ] 1

2x
c

C
p

c
[ 2

Aj
c
@ j

c
x
c
2 [ j

c
2

x
c
3
B[ p

c
x
c

D\ 0 , (27)

where u@ 4 du/dx. The critical point is not a center or a
spiral if equation (27) has real roots, i.e.,

y
c
º

1
2
C

1 ] x
c
[ x

c
2

j
c
2
Ax

c
2

2
[ x

c
] 1

BD
. (28)

The critical point is a saddle if the two real roots have
di†erent signs, i.e.,

y
c
[ 1

2
C

1 ] x
c
] x

c
2

j
c
2 (x

c
[ 1)

D
. (29)

In Figure 1, we show examples of the properties of the
critical points.

3.3.2. Solutions without Accretion Shocks
We Ðrst integrate equations (14)È(17) inward numerically

from a critical point with a given value of andx \ x
c

(j
c
, y

c
)

u@ [ 0. Numerical integration was carried out by the
implicit method near the critical point and by the explicit
fourth-order Runge-Kutta method elsewhere. We integrate
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4. まとめ
• 収縮期: 熱進化と形状変化が分裂片のスケールを決める 
• 収縮期の重力不安定による分裂は個々の観測解釈で有用 
• 質量降着期：連星軌道固定では、降着流の角運動量の大
きさで主星、伴星のどちらが成長しやすいかが決まる。 
• 角運動量小->Bondi的に主星へ.   角運動量大->伴星へ 
• 質量降着期：非定常孤立系では、時間変化する連星間距
離で規格化した角運動量で決まる。角運動量分布が重要 
• 臨界値q_c = 0.25　q_0>q_c ならqは増加(等質量へ) 


