

細川 隆史 (天体核 5号館536)

hosokawa@tap.scphys.kyoto-u.ac.jp

8. 星形成: Overview

[ISM overviewのところで挙げたものに加えて]

- + L.Hartmann "Accretion Processes in Star Formation" (1998)
- + F.Palla & S.Stahler "The formation of Stars" (2005)
- + M.Krumholz "Star Formation" (2015), arXiv:1511.03457

The Taurus (牡牛座) Region

¹³CO(J=1-0) 分布

¹³CO(J=1-0)ピーク速度差

~10⁴M_☉の分子ガスが~10pcにわたって細長く分布。 空間分布、速度構造によっていくつかの分子雲の集合体と分かる

分子雲コア

分子雲内の高密度部分 = 星形成の最小単位

さらに細長いフィラメント状構造に沿って分子雲コアが分布 一般に、分子雲コアはこうしたフィラメント状構造に埋もれている

The Larson's Law

(速度分散:o)∝(サイズ:R)^{0.5}の関係が長さスケール3桁 に渡って成立 [経験則]

これとvirial定理: $\frac{GM}{R} \sim \sigma^2$ を組み合わせてみると…

自己重力の効果

 $\sigma \propto R^{0.5}$ + $\frac{GM}{R} \sim \sigma^2 \rightarrow$ 平均数密度: $n \propto \frac{M}{R^3} \propto \left(\frac{\sigma}{R}\right)^2 \propto \frac{1}{R}$

小さい構造ほど密度が高い (or 柱密度がサイズによらず一定)

実際そうなっており、分子雲は自己重力で束縛された構造とわかる

Young Stellar Objects (YSOs)

生まれて間もないと思われる星がこの領域には広く分布している

約100個のYSOがある

YSOの代表例: T-Tauri星

Hαなどの強い輝線 (主系列星は吸収線のみ) ← 星周囲の希薄ガス スペクトル: 主系列星と比べて大きな赤外線 excess

 $\log \lambda$ (cm)

後に同じ特徴を持つ星たくさん発見 それらを総称してT-Tauri星と呼ぶ

さらに若い星たち

赤外でのみ明るい (可視では見えない) 星 も多数見つかった

YSOs:進化段階の違い

IR source: ガス密度の特に高い部分に集中 T-Tauri星: 分子雲全体にわたって広く分布

Much Smaller Scale...

Jets from Young Stars

PRC95-24a · ST Scl OPO · June 6, 1995 C. Burrows (ST Scl), J. Hester (AZ State U.), J. Morse (ST Scl), NASA

Jet Proper Motion

P. Hartigan et al (2005 Astronomical Journal) RICE UNIVERSITY

Atacama Large Millimeter Array (ALMA)

mm波/sub-mm波における超高空間分解能の観測 おうし座分子雲で~1AU

低温ダスト放射の観測で複数のringを持つ円盤を発見!← 惑星形成? (ALMA partnership, 2015, ApJ)

Andrews+ (2018)

DSHARP project w/ ALMA

林, Larson, Shuら により80年代に確立

①分子雲コア(~太陽質量) ②原始星の形成との重力崩壊 原始星への質量降着

③星からのフィードバック による降着の終了

④降着円盤の残骸で惑星系形成へ

観測された各段階をつなぐ進化シナリオ
 ①:前期段階、②~:後期段階(力学平衡にある星ができる以前と以後)

YSOスペクトル分類と進化

Lada (1987), Andre (1994), Palla (1996)など

それらの消失とともに単純な星成分だけのBlack-Bodyに近づいていく

太陽系形成標準理論(林モデル)

原始惑星系円盤

微惑星の形成

and find the second second

微惑星の合体成長

地球型惑星形成

mentilities man

木星型惑星形成

Newton

前期段階 (重力収縮期)

どのような条件下でガス雲の重力収縮が起こるか?

ジーンズ質量:
$$M_{J} = K \frac{c_{s}^{3}}{G^{3/2} \rho^{1/2}}$$
(球対称)

状態方程式: $P\propto
ho^{\gamma}$ とすると、 $T\propto
ho^{\gamma-1}$

$$M_{\rm J} \propto
ho^{(3\gamma-4)/2}$$

γ<4/3 : ρ个⇒ Mյ↓ ; 不安定→collapse γ>4/3 : ρ个⇒ Mյ个 ; 安定 <mark>γ=4/3がcritical</mark>

分子雲内のγ: ダスト放射による冷却によってγ~=1

"Run-away" collapse

密度ほぼ一定の中心部分 + そのまわりのエンベロープ部分(p∝r^{-1/2})

の構造を維持しつつ中心部の密度上昇

ー様中心部の質量~ジーンズ質量 $M_{\mathsf{J}} \propto
ho^{(3\gamma-4)/2}$ _{γ=~1}

ρ个とともに中心部の質量減

崩壊する中心部から見ると、周囲を 置き去りにして崩壊が進むように見える

 $t_{ff} \sim 1/\sqrt{G
ho}$ で時間進化はスケール

等温進化からの逸脱

① 等温収縮 ("first collapse")

- ② 冷却効率下がり断熱。一時的に力学平衡 ("first core")
- ③ ほぼ等温に戻り再収縮 ("second collapse")
- ④ 再び断熱に戻る。原始星("second core")の誕生

後期段階(質量降着期)

密度が0.01g/ccまで上がるとダスト冷却が効かなくなって崩壊が止まる → 星の赤ちゃん:原始星の誕生 このとき、原始星質量~0.01M_☉、周囲のエンベロープ質量~1M_☉

原始星への降着率: $\dot{M} \sim \frac{M_{\rm J}}{t_{ff}} = \frac{c_s^3}{G} \sim 2 \times 10^{-6} M_{\odot} / {\rm yr} \left(\frac{T}{10K}\right)^{3/2}$ ~Myrかけて星質量は~1M_☉まで増加

Isothermalから外れた構造が成長する につれて、回転+磁場の効果が発現

→じょじょにDisk+Jetが形成

降着原始星の進化

ガス降着によって質量を増していく原始星の半径や光度は?

←降着の効果を取り入れた星の進化計算

Basic eq.: 4 stellar structure eqs.

外部の定常降着流とshock条件で接続 ある降着率のもとで星質量を増加させる

降着原始星の進化:計算例

(降着加熱) > (放射冷却) ⇒ (降着加熱) < (放射冷却)

DiscとJetの形成: 数値"実験"

観測された分子雲コアの構造

国立天文台のスーパーコンピューター: ATERUI II

物理学(重力、流体力学、量子力学)

計算機の進歩により、シナリオに沿ってどのように進化が進むか、 数値シミュレーションによって直接"実験"ができる。

結果を"模擬観測"してみて、実際の観測との比較もできる

磁場によるジェットの駆動

(e.g., Uchida & Shibata 85; Tomisaka 02)

+ 磁場凍結が続くと原始星の磁場が強くなりすぎる。 磁場を適切に散逸させながらうまくジェットを駆動している ※+分高密度(n >~ 10¹⁰/cc)では双極性拡散, ジュール散逸がはたらく

Massive stars ($>10M_{\odot}$)

数は少ないが、その影響は大きい 紫外光、超新星爆発などのフィードバックにより、 ガスの進化・循環を支配している

30doradus@LMC

Feedback: HII/光電離 領域

blue: ionized gas, red: dust shell

Electron

(光子のエネルギー) ー (結合エネルギー) の余りがガス運動エネルギーとなり加熱

分子雲の内部にT~10000Kの 高温領域が発生

HII領域サイズ

定常状態
(電離領域内部の全再結合率)
H⁺ + e → H +
$$\gamma$$

||
(星の出すUV photon数flux)
H + $\gamma \rightarrow$ H⁺ + e
$$\frac{4\pi}{3}R_{st}^3n^2\beta_0T^{-3/4} = S_{UV}$$

Sι ~ 0 再結合率 β(T)

Strömgren radius

$$R_{st} = 0.645 \text{pc} \left(\frac{S_{\text{UV}}}{10^{49} \text{s}^{-1}} \right)^{1/3} \left(\frac{T_{\text{HII}}}{10^4 \text{K}} \right)^{1/4} \left(\frac{n}{1000/cc} \right)^{-2/3}$$
これが典型的なHII領域のサイズ

The Orion Region

オリオン座分子雲: size~120pc, mass~10⁵M_☉ 巨大分子雲 (GMC; Giant Molecular Cloud)

生まれて間もない大質量星 がつくる光電離(HII)領域

観測者

背後にある巨大分子雲が手前の星団 からのUV光にさらされている

Feedback:分子雲破壊

大質量星の形成問題

大質量形成:②の段階で降着によって星質量が~100M_☉まで増加 low-massのときの降着率: $\dot{M} \sim \frac{M_{\rm J}}{t_{ff}} = \frac{c_s^3}{G} \sim 2 \times 10^{-6} M_{\odot} / {\rm yr} \left(\frac{T}{10K}\right)^{3/2}$ 大質量星の寿命~Myrに間に合わない

エディントン光度

天体周囲で重力と輻射力がぎりぎり釣り合いのとき

$$L_{\rm Edd} = \frac{4\pi c G m_{\rm p} M}{\sigma_{\rm T}} \simeq 3.2 \times 10^4 L_{\odot} \left(\frac{M}{M_{\odot}}\right)$$

輻射圧問題

(※ただし、球対称を仮定した場合)

Outflow/星周円盤

大質量原始星からのoutflow

降着円盤?

Outflowと垂直方向の速度勾配 ⇒降着円盤

outflow+円盤の構造は大質量星形成でも ありふれている

非球対称(円盤)降着

輻射の大半を極方向に逃すことにより超臨界降着を実現

(大質量の星が単独で生まれる場合)

群れる大質量星

+単独で生まれることは極めて稀

+ 数~+pc内に数+~百個の大質量星が 集中して生まれることがある

+より大量の低質量星とともに誕生 (IMF)

低質量・大質量星形成の一体化⇒星団形成

HD97950

BH-BH連星からの重力波

最初の事例:GW150914

36M_☉ BH + 29M_☉ BH ⇒ 62M_☉ + 重力波放射 2019年以降は、~週1ペースで検出 what are their origins?

Very Close Binary GW coalescence time $t_{GW} \cong \frac{5}{256} \frac{a}{c} \frac{c^2 a}{Gm_1} \frac{c^2 a}{Gm_2} \frac{c^2 a}{GM} (1 - e^2)^{7/2}$ Anhelior $\approx 10^{10} \,\mathrm{yr} \left(\frac{a}{3 \times 10^{12} \,\mathrm{cm}}\right)^4 \left(\frac{m_1}{30M_{\odot}}\right)^{-5} \left(\frac{2/q}{1+q}\right) \left(1-e^2\right)^{7/2}$ closer than Mercury for t_{GW}<t_H! Jupiter Uranus Earth Mercurv Venus Mars Saturn Neptune 井岡さん(基研)スライドより

まとめ

観測(特に電波+赤外)と理論研究の進展 ⇒低質量(~1M_☉) 星形成の標準シナリオ

大質量 (>10M_☉) 星形成、連星・星団形成の研究に拡大 重力波の時代到来。波源天体形成の舞台