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Introduction

Massive spin-2 = Massive gravitone

The free massive spin-2 field theory was formulated by Fierz and Pauli.

(They tfried to construct field theories with arbitrary spin)

1 1 1
L=— 56;@,,6*}#*} + 0,y 20 B — 8, W O, b+ §8>\h6"h— §m2(hwh’w — h?)

v No ghost (Consistent theory as QFT)
v Realization of 5 d.o.f in 4 dimensions
(Massive spin-2 particle)
thanks to the Fierz-Pauli mass term.

¢
Massive spin-2 particle &=  Massive graviton



Introduction

The 15" problem : vDVZ discontinuity

— — Linearized GR

Does this mean the massive spin-2 particle can not be graviton?

Massive spin-2 in
the massless limit

Vainshtein's argument » Non-linearity screens the discontinuity!



Introduction

Einstein-Hilbert + Fierz-Pauli mass term

1 4 1 2 Uo UV
S = ﬁ d .CU|:(\/ —gR) — Zm 77'u 7 b (huvhaﬁ o hl*’fahl"ﬁ):|
Static and :
spherical solution ‘ Schwarzschild
Solution
of EH + FP
m-0
Fully the non-linear Fully the non-linear
massive spin-2 massless spin-2

No discrepancy!



Introduction

Full nonlinearity + Fierz-Pauli mass term
(Gravity) (Ghost-free)

S —

Massive spin-2 = Massive graviton ¢

However...

Boulware and Deser suggested the nonlinearity and the ghost-
free property are not compatible with each other.



Introduction

The 2"d problem : Boulware-Deser ghost

Monlnearty)  EEEp  Cghost

e.qd.) Einstein-Hilbert + Fierz-Pauli mass term
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22
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d4$ |:( /_gR) . _mznﬂanl’ﬁ (h,uyhcxﬁ — h'uahyﬁ):|

S
4

ADM variables (Lapse N, shift Ny, 3-meftric y;; ) (hi; = gi — 6;)

P (hpuyhas — huahus) =66 (hijhi — highj) + 20% by
— 2N?6Y h;j + 2N; (v = 67) N;

Homil’ronxcons’rroin’r Momen’ruxons’rroin’rs



Introduction

Progress in 2000s

1. DGP model Pphys.Lett. B485 (2000) 208-214

Higher derivative scalar field theory without any ghost.

2. Effective field theoretical approach  Annals Phys. 305 (2003) 9¢-118

Stuckelberg trick

Encoding the scalar mode into the lagrangian explicitly.
(Using the scalar field)

¥

The origin of the Boulware-Deser ghost is the higher derivative
of the scalar field.



Introduction

Progress in 2000s

Field theoretical approach DGP model
(Stuckelberg method) (Ghost-free massive gravity)

o

The origin of BD ghost : Higher

derivatives of the scalar field. Higher derivative scalar
field theory without ghost.

N e

U

dRGT massive gravity



Introduction

dRGT massive gravity
de Rham, Gabadadze, Tolley Phys.Rev.Lett. 106 (2011) 231101

R—I——Zanen

ea(X) = ([X]* - [X%)), es(X) = ([X]” - 3[X][X?] +2[X7]),

S = dir\/—g
2&:

ea(X) = ([X]* = 6[X]*[X7] + 3[X"]* + 8[X][X"] - 6[X"))

X =Xt X=Xt KR =0t — g

1 74 1 74

Nonlinearity and the ghost-free property are compatible now!



Introduction

Full nonlinearity

_e_ Potential terms
(Gravity) (Ghost-free)

Massive spin-2 = Massive graviton
(dRGT massive gravity)

Massive spin-2 particles can be identified with massive gravitons.

Should we identify the massive spin-2 with the massive graviton?



Question 1

Is Massive spin-2 = Massive graviton necessarye

Massive spin-2 theory necessarily leads to modification of gravity?

$

There exist massive spin-2 particles in the hadron spectrum.

As a fact,



Question 2

[Which assumpfions can we remove? ]

In the history of the massive spin-2 field....
vDVZ discontinuity « Vainshten mechanism

Full non-linearity (EH term is introduced)

This is natural in some sense because....

® To avoid the vDVZ discontinuity.

® The spin-2 field hy,, is naturally replaced by the metric g,



Question 2

Which assumptions can we removes

¥

Einstein-Hilbert tferm

The massive spin-2 particle is not the graviton in this point of view.

Full nonlinearity is not necessary.

» Construct the massive spin-2 theory.



Fierz-Pauli theory.

| Massless spin-2 field theory |

1 1
L= _58;\}2,#1,8)‘}1”“ + Oy 0" hHY — 0, O, h + §8Aha)‘h

The phase space is spanned by h;; and . (12 dimensions)

p—

4 first class constraints

8 second class constraints = oD

4 gauge fixing functions

(12 dimensional phase space) — (8 constraints) = 4 independent comp.

Massless spin-2 particle has 2 degrees of freedom.



Fierz-Pauli theory

| Massive spin-2 field theory|

Possible quadrafic ferms hy b 2

Candidates for mass terms Lmass ~ by h* — (1 — a)h2
When a # 0, an extra d.o.f propagates with a negative kinetic energy.

Fierz-Pauli lagrangian

1 1 1
L=— §8Ahw8"h”” + 0, hy 20" BF — 8, W O, b+ §ahha*h —~ §m2(hwh’” —h?)

Fierz-Pauli tuning



Fierz-Pauli theory

Hamiltfonian analysis

0L

Conjugate momenta  Tij :W = hz‘j - i"fkkfsij — 20(;hjyo + 20k hordij
g

Lagrangian density L = m;jhij — H + hoo (ﬁzhii — 0;0jhi; — mthi)

1, 1 1
=37~ 3 p T

1 1 1

1
+ 50khijOkhij — Oihju0jhir

LV



Fierz-Pauli theory

hij — H + hoo (6 hii — 0;0;hij — mzhiz')

1 1 1 1
H :§7T‘-2- 5P = 2?&2%- + §akhij8khz‘j — Oihjr0jhiy,

1 1 1

m




Fierz-Pauli theory

\ 4

In fotal, we have two second class constraints.

(12 dimensional phase space) — (2 constraints) = 10 independent comp.

(5 polarizations of the massive spin-2 particle)
h3, does not appear thanks to the Fierz-Pauli tuning.

No ghost if hyy remains linear in general.



Ghost-free interaction

Ghost-free interactions for Fierz-Pauli theory

Folkerts et al. arXiv:1107.3157 [hep-th]
Ghost-free term Hinterbichler, JHEP 10 (2013) 102

Lo~ e 0 B+ O O Bl

Pd+1Vat+1 =" hlid,/2+an/2+n

(d/2<n<D-—d/?)

oVo * Vqg—1 dVd

d : The number of derivatives, n : The number of the fields, D : Spacetime dim

H1V1 22 H1t1 M2 V2 H1V2 2l

— 1 n 3
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H1V1f2V23V3
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-7 n n +1n n n -1 n U

M1Vl H2V2

n

« The kinetic term and the mass term are included.

 We use this term to construct the massive spin-2 model.



Ghost-free interaction

® Linear with respect to hyy in the Hamiltonian.

ntt Y2 b Ry vs ~hoo (Rt + hoz + has)

+ terms not including hgg

® The terms which include both of hyy and hy; never appear.

Variation of hy,

' a constraint for h;; and their conjugate momenta m;;
+ secondary constraint

(12 dimensional phase space) — (2 constraints) = 10 independent comp.

m=) No ghost




Ghost-free interaction

The Fierz-Pauli lagrangian

The klheTIC Tel’m . £2,2 ~ ,r’ﬂflVlliﬂ V2Hsbs (ap,l aVl hp,g Vg) hy,ng

The massterm : Lo o ~ nf"HE2"2 R 0 B,

1 1 1
L= —§8Ahw8"h“” + ONhA Oy R — DDy, 0V B+ §a>\ha"h, - §m2(hwh”” — h?)
1 2
— _?7#1 Vip2V23V3 (6;L1 8V1 h#sz) h‘ugyg + m_nﬂl Vip2V2 h,u1 ” h#2y2

2 2



Ghost-free interaction

In 4 dimensions, the allowed interaction is following:

£0,3 Nnul Va2 L3Vs hﬂl ” hliz ” h[.bgllg
Non-derivative int.

[1V1 2 V2 U3V3[LaVy
£’0,4 ~1) h/ﬂ V1 h#sz hﬂsVshulezL

DeriVOﬁve inT. *62,3 Nnul Vit listapaba a[.l,l al/l hp,g 17 h[.Lng h[.L4V4

Other possibilities are excluded due to the antisymmetric properties.



New model of massive spin-2

New model of massive spin-2

2

1 v v v m 4 v
L= _5?7”1 HHEPRISTS (O, Oy hisgwy) Tpgus + 7?7”1 Y2 v P v

F o pivipavapsys S H1V1 2V [L3V3 4 Vs
_ 5?7 hu1V1 hquz hung _ 5?7 am 8V1h

A

H2v2 hﬂzB V3 hﬂ:zl V4

H1V1I2V2 43V3 [hal/g hlﬂ ” huz Vo hug Vs hu4 ”

u, ¢, 1. constants



New model of massive spin-2

Possible application (Additional motivation)

® Supersymmetry breaking mechanisme

7
L = K'FP _ §WH1V1H2V2#3V3h”1V1 hpgl/zhﬂgl’/g
A

— En#

1V1d2V243V3 Ha V4h h h h
pavipova psvs vy

- Can this model be used to realize SUSY breaking?

® BH physics and cosmology?

The new spin-2 model on curved spacetime.



FP. theory in curved space

The simplest model (Minimal coupling)

1
] d*z\/— { 5V VI h = oVl VR = NV VY R4V by VR

2
1))

We don’t regard the massive spin-2 as the perturbation of metric.

Unfortunately, this model does not have 5 degrees of freedom.

\ 4

To see thisreason, let us see the FP theory in flat spacetime.



FP. theory in curved space

Taking the variation gives e.0.m

By = Ohyy — 030,17y, — 03007, + 00385 b
+ 9,0, h — 1,0k — m?(hy — b)) =0

Two constrains obtained from E,,,

OB, =m*(0,h — 0"h,,) =0

m2

3

—> (O-m*)hy =0, Mhy =0, h=0



FP. theory in curved space

Key point

OME,,, =m*(0,h — 0"hy,) =0

2
3

Existence of the second equation “ Commutativity of 9,

On the other hand......

Covariant derivatives 7, do not commute with each other.

‘ RVVh type terms appear and the constraint is lost.



FP. theory in curved space

FP theory in curved spacetime was considered by Buchbinder ef al.

L. Buchbinder, D. M. Gitman, V. A. Krykhtin and V. D. Pershin, Nucl. Phys. B 584 (2000) 615 [hep-th/9910188]

l.
l. L. Buchbinder, V. A. Krykhtin and V. D. Pershin, Phys. Lett. B 466 (1999) 216 [hep-th/99208028].

They constructed the theory having 5 d.o.f in curved spacetime.

Problem : RVVh type terms appear and the constraint is lost.

1)

Prepare non-minimal coupling terms like Rhh

(quadratic in derivatives)



FP. theory in curved space

Prepare non-minimal coupling terms like Rhh
(quadratic in derivatives)

(1 1 1 o1 )
ai af3 a2 2 as pov3 Qyq af o as af3
+ S RHasH + ZRH? + R Hy Hog + S RO Hag Hy” + 2 R HogH

m2

m2
- —H, H"™ + —H?
4 H + 4 }

¥

They determined a; and found that the theory can be ghost-free
on Einstein manifold.



FP. theory in curved space

Ghost-free FP theory on curved space

1 1
S = / d*z\/—g {ﬁvﬂhv“h = 5Vl VIR = N Dy VYR

3
1

1—2 2
Y, VPR 4 SR L2 R g e h?)}

8 2

¢ . Real parameter

1

® The background is restricted to Einstein manifold R, = Zg,_wR



New model of massive spin-2

in a curved spacetime

Interaction on the Einstein manifold

[L1V1 h2V2 43V3
£’0,3 ~T] huq V1 hquz husVs

Int.in a flat spacetime = Lo ~pfr7rHzrzisvsiaban o hpsvs Rpgvs Ry,

H1V1ioa Vo k3 V3 al/g
_ £2,3 ~ am 8V1 h#z 12 husVs hu4V4

(V1 2 V2 L3 V3
[':033 ~g h#l V1 hllfzb'z hM3V3

Int. on Einstein manifold =3 £ 4 ~gtti#eveksvsiavan o B Rygvs P,

H1V1 oV L33 a1/
_ [':233 ~9 vlhvvl h#ﬂ/z hugyghu4y4



New model of massive spin-2

in a curved spacetime

New model of massive spin-2 on the Einstein manifold

S = f d*z\/—g { %vphv“h — %v#h,,pv#h"ﬁ — V*h,, V'R
+V hy ) VPRF + thwhW + %R}ﬂ — m;(hwh*“’ — h?)
_ %gm V1p2V2[43V3 hmw hﬂzyz h,us vy — %gmw H2V2 L3 V3 a1y Vm vv1 huzb’z h,ugug hmw
— % qu V1 H2V2 43 V3 [ha Ve hmm h,quz h,u,gyg hﬁu » }

s this model ghost-free on Einstein manifolde

\ 4

Counting the degrees of freedom using Lagrangian analysis.



New model of massive spin-2

in a curved spacetime

Lagrangian analysis

1. The system containing some set of fields ¢p4(x), A=1,2,---N
2. The second time derivatives are defined only for r < N fields in e.o.m.

3. N-r primary constraints are constructed from e.0.m.

4. Requirement of conservation in time of the primary constraints
defines the second fime derivatives for remaining fields or new
secondary constraints.

5. This procedure continues until the second time derivatives are
defined for all fields ¢4



New model of massive spin-2

in a curved spacetime

Example : FP theory in a flat spacetime

m2

1 v v v
[ — _§nu1 1H2V2 (1313 (alﬂ 8V1hﬂ2y2) hﬂgyg + 9

11 ol
n hm V1 huz Vo

1. The system containing some set of fields ¢4(x), A=1,2,--N

m) h,,: 10 components

Equations of motion

0= E#V = _n(lﬂ/)lh V1ip2V2 LA + m2 nlﬂ/#l V1 hH

E;; = (hi; part) + (terms without h)

Ey,, = (terms without h)



New model of massive spin-2

in a curved spacetime

2. The second time derivatives are defined only for r < N fields in e.o.m.

E;; = (hi; part) + (terms without h)

» h;j: 6 components

3. N-r primary constraints are constructed from e.o.m.

qﬁ(l)ﬂ := Eo, = (terms without h)
» 4 constraints (@ some time t)

hou: Undetermined (4 components)



New model of massive spin-2

in a curved spacetime

4-1. Requirement of conservation in time of the primary constraints .
V= 9y E* = 0

This equations do not contain 7'.&0” and hZj are eliminated using e.o.m.

Secondary constraint-1 ¢ = (Dt = 9, EO = 0
» dpDH =0, d)(2)u —0
(all time) (some time)

Continue the same procedure.



New model of massive spin-2

in a curved spacetime

4-2. Reqguirement of conservation in time of the primary constraints .
»2) =0
This equations do contain hy; and determine the dynamics of hg;
On the other hand,
(20 = (
This equations do not contain any time derivative of h.
Secondary constraint-2 B3 =20 =

» G’-’)(l m=0, ¢@r =0 ¢B =0 D=0
(all fime) (some Time), -
Y hoi

Constraints




New model of massive spin-2

in a curved spacetime

4-3. Requirement of conservation in time of the primary constraints .
»3) =0

This equations do not contain hgg (h)

Secondary constraint-3 oM =63 =0

oW =0, ¢®r=0, ¢ =0, oW =0 =0

(all time) (some fime)

\ J
|

Constraints




New model of massive spin-2

in a curved spacetime

4-4. Requirement of conservation in time of the primary constraints .
»* =0
This equations do contain hgg

The dynamics of all components of h,, is determined.

(D _ (2 _ ¢ 3) — 0 40 +2i_0g +®_p
¢ , O , @ , 0 , ,
‘ (all time) ]

| hoi , hoo
Constraints

¢

dWH =0, ¢ ~0, 6P x0, oW 0

Constraints for initial values



New model of massive spin-2

in a curved spacetime

The space spanned by h,, and hw has 20 degrees of freedom.

10 second-order differential equations

Eij =0, ¢®'=0, ¢* =0

hij hop

10 Constraints for initial values

oW 0 oDy 43 0, 6@ a0

As a result, we have 5 degrees of freedom



New model of massive spin-2

in a curved spacetime

Apply the Lagrangian analysis o the model in a curved spacetime.

1
f d*z\/—g { 5VuhVHh = oV by, VR = VD, VD

17 5 ]‘ T 25 m2 1 24 2
TV VIR 4 S Rhy W == Rh2 — 5 (b — 1)

— £ H1V1 2 V2313 [Lal/g
h VPHVV h

g avs = g v
3¥3 4' 1 282

319 h

h,.h

H1V1 Y e Vo H3V3 "y

A

MV Vo 3 V3 by
- Al g hph 141 h,uz Vo h#ng h;u4 Vg }

The model consists of two types of interaction.

® Non-derivative interaction

® Derivative interaction




New model of massive spin-2

in a curved spacetime

® Non-derivative interaction

For simplicity, consider the cubic interaction only ({ =0, 4 = 0).

Equations of motion

Euw =~ gV Vo, by, + (terms without VVh)
= — gi(,ugy)jgijoo'””zV2 VoVohu,v, + (terms without VoVh)

[Agoin, the equations of motion contain ﬁij, but not }'.Lop ]

Primary constraints

In this case, not E,. Instead,

» o) .= EO, = _gwg<00>mwmvmvm hjpus + (terms without VVh)

4 constraints (@ some fime)



New model of massive spin-2

in a curved spacetime

1.Requirement of conservation in tfime of the primary constraints .
qby(/l) — 8OEVOV =0

Now we have .
qb&l) — O, QbLl) — 0

It is unclear whether éW* =0 are secondary constraints or not.
By using the e.o.m E,,, and ¢M# =0, we find

o) = VHE,, =0

(Up to constraints and e.o.m)



New model of massive spin-2

in a curved spacetime

The explicit form of V*E,, =0 is given by

]_ _
V'UE#V = (TgR + mQ) gyylgpﬂquvzv#l h’#zVQ
_ pgyylg(Mm)#zm#sVs (vm hquz) h’p,gl’/g =0
h never appears.

oM =0 are (secondary) constraints-1.

At this stage, we have 8 constraints.

MW =0, ¢?P:=¢=vrE, =0

(all time) (some fime)



New model of massive spin-2

in a curved spacetime

Continue the procedure but before that...

d)(z)o _ googbg?) 4 QOiqng) —0

pP =0 )

(Linear combination)

(2) — ¢

1

2-(a).Requirement of conservation in time of the primary constraints .
52 =0

This equations do contain hoi and determine the dynamics of hoi



New model of massive spin-2

in a curved spacetime

2-(b).Requirement of conservation in fime of the primary constraints .
g'b(Q)O —0

Using ¢ = 0, ¢ = 0 and e.o.m. , we have

2
1(2)0 v m v v 1_5 v
20 = VHVVE,,, + 0" By = ph" By + ——=Rg" Epy

2 4
Squ M1Vl U2lV2 H1V1aVaL3vs
o 2 9 h#l V1 h#z vo — Mg (vul h[Jz 1'/2) vyl hﬂgl}g
2
M 7—9¢
+ ?gﬂ’l V1ﬂ2V2M3V‘3»hu1 V1 h,my2 h#ng — 19 H)Rglh Vip2v2 hul v h#sz

— pCH* PRy hag



New model of massive spin-2

in a curved spacetime

1(2)0 _ 3m* 5—6§m2 (182 -3¢ 2)
¢ —h( 5 T R+ 3 R

3,um2 H1V1p2V2 H1V1 (22 43V3
- 9 g h,m 1241 h,u2 vo — MY (v,tu h,uz Vz) VV1 h,usl/s

IJ’2 M1Vl 223V 7 - 95 H1V1 22
—|_ ?g h,ulul h’p,zllz h}igl’/g _ 12 ”LRg h’,Ufl ] h;UI2V2

— pCHPh g
There are no h and ¢@° can be identified with a constraint.
Secondary constraint-2 ¢ := $(2)0 = ¢

pWr =0, ¢@r =0, ¢ =0, =0

\ (all fime) (some Time)’ }'10%.

|

Constraints




New model of massive spin-2

in a curved spacetime

3.Requirement of conservation in time of the primary constraints .
qb(3) =0
The equation does not contain hyy. » Constraint.
(2)
)

i

(ho; are eliminated with ¢

Secondary constraint-3  ¢®:=¢® =0

The structure of ¢

¢(3) = pgFt IRV (7 ) Vi B

[g"”““uz Y2H3Y3 s antisymmetric wr.t p ]

mm)  No fyg.




New model of massive spin-2

in a curved spacetime

4. Requirement of conservation in time of the primary constraints .
@ =0

As b = $B) includes hy,. this requirement defines hyg,.

oW =0, o@D =0 ¢B® =0 $* =0, qg)z@) —0, % =0

‘ (all time) ]

|

Constraints

¢

dWH =0, ¢ ~0, 6P x0, oW 0

}.7/0?', , .}.TIOO

Constraints for initial values



New model of massive spin-2

in a curved spacetime

We can extend this analysis in the case 4 # 0 case and obtain

1
/ d'z/=g { 5 Vil Vi h = SNyl VIR = Ny, VR

2 2
+V hy, , VPR 4 iRhwhW + Tth2 — %(hwh“" — h?)
317 419

Here the back ground metric satisfy the relation R, = %gwR

\ This system has 5 degrees of freedom.

\

M HiViMaVa i3zl A M1V oo a3 lalVy
Y h,uq V1 h#z 12) h#svs T h#1 V1 h#Q 175) h,usVs h,uv4V4

/

What about the derivative interactione (¢ # 0)



New model of massive spin-2

in a curved spacetime

Derivative interactions (u =14=0, { # 0]

P1V1 oV 3 V3 Lyl g ]
Cg vm vm huz Vo hus Vs hu4 V4

The same analysis is also applied to this case.

1
qb(2);u; =V, EM o ghrrivipizvziisvs <—§VV2hM20’ + Vghmyz — Vﬂz ho’y2) R)Uquyl h,ugus

R
l Ruau,@ - Cuau,@ + Egpvaﬂ
LIV v T {_C;JLQ:O)GQOO 4 008040 C"OOO‘g’BO}ha)@VOhoo

ATt this stage, the constraint contains any time derivative of hy,.

Otherwise, we can not have 10 constfraints.



New model of massive spin-2

in a curved spacetime

¢(2);1, — V,E" S {_C/_LaﬂﬁgOO 4 0B 0 CpOOagﬁO}haﬁvohoo
To eliminate time derivative of hyy, NON-Minimal terms are required.

General form

c1CHVPh L hagh + caCFYPhy,h Mg

Contribution from this ferm to the constraint

2" =V, E" S {(2c1 + ¢2)CH%P g% + (21 + ¢2) CO*% g0} ho3Vohoo
+ (terms not including Vhgo)

» Thus, the time derivative of hyy, can not be eliminated
unless the background is conformally flat.



New model of massive spin-2

in a curved spacetime

New non-derivative interactions

c1CPYPh hogh 4 c2CP"P R, b Mg
The conftribution to the constraint

VB D {(2e1 4+ e2) P g% 4 (2¢1 + ¢2) C*%Pg"} hasVohoo
+ (terms not including Vohgo)

Thus, we have the new interactions by tuning the coefficients.
v 1e%% A
CH"P Ry hagh — 20 hy hoah’y

Similar terms can be constructed.



New model of massive spin-2

in a curved spacetime

New non-minimal coupling ferm

H1ph2V1V2
¢ hm V1 hl-tz V2

U1 M2 M3 SV1 V2 V3 pP1pP20102 . P303
0 P1 P2 935 o1 02 030 g hﬂlVthZVZh.USVS

GHYT K2 p3 pa gV V2 V3 Vi (OP1P20102 aP3O3PA04

P1 P2 pP3 P4 01 02 03 04 NlVlh’li2V2h#3V3hli4V4

® Derivative interaction induce an extra degree of freedom and

can not be eliminated.

® Instead, the non-minimal coupling terms with Weyl tensor are
found.



® We have proposed the new model of massive spin-2 particle in
the Minkowski space-time and a curved spacetime.

® Couple the model with gravity by adding nhon-minimal
coupling term and prove the system is ghost-free on the
Einstein manifold.

® The derivative interaction can be added without a ghost in
the Minkowski space-time. On the other hand, such @

interaction induces a ghost on the Einstein manifold unless
CHVPo =()

® New non-minimal coupling terms are obtained thanks to the
lagrangian analysis.



Partially massless gauge theory

Fierz-Pauli action in D dimensions

1
/ d*z\/— { 5 Vih V! h = SV by, VIR = Ny, D
R 1 2
+v#hupvphwi + 5 (h}wh’w T §h2) T m?(hﬂvhuy T h2)}

1
® The background is restricted to Einstein manifold . = EQWR

® The model does not have the symmetry under  6h,, = 2V (.
and recover the sym. In the massless limit.

The model does have the symmetry under

Shyy = V VA +

R .
D(D—l))\g’“’ provided that R = 5 m



Partially massless gauge theory

Toward Partially massless gauge theory with non-linear terms

1 1
S = ] dP 2/ =g {§vﬂhv”h = 5Vl y VIR = Ny, VA Y by, VR

2
m v v R Qa R 2
+5 9" Ry Pyag, + 5 lash - s }

2

] m Y
:/dev_g [59”1 HEPRESEN L Py Vi Npgus + 79”1 R Ry Pys vy

D —2 V1 oV 1 av
o ZD(D . 1) Rg'u’l 1 Qh,u‘lylhpQVQ —|_ 50” j@h,ul/haﬁ}

The Weyl tensor appears through the non-commutativity of
the covariant derivatives.

These two expressions are equivalent.



Partially massless gauge theory

Toward Partially massless gauge theory with non-linear terms

2

m
S = f dPx/=g { g By Vo By + g By B,

D—2
°D(D — 1)

1
Rgﬂl e h#l V1 h#z V2 + 50#0:1:,8 h#VhOfﬁ}

This is equivalent to the FP action in a curved space-time.

» Invariant under

R
Oy = ViV A+ 3w provided that R = m



Partially massless gauge theory

D(D 1)
D—2

/ dPz\/~g { ghrviavbatsy B N By, s

Substituting R = m* gives

1

: ~CHrPh,, R, ﬁ}

Thus, assuming C#VP9=0, the partially gauge invariance can be
translated info

H1V1 2 V23 V3 —
g Vi0husw, =0

Generalization

H1V1 2 V2 fnVn —
) g V1 0hys0y =0

This fact suggests the possibility of constructing partially massless theory.



Partially massless gauge theory

Gauss-Bonnet tyoe €9V 1y Py Vi Bagus Vi Vi yus v

: - : o A N
This term is invariant under ~ dhu, =V, V +D(D—1) Iu

(gﬂ1V1ﬂ2V2-.-[inan#1 5h,1,2]’/2 — 0)

However, the cubic inferaction does not have the linearized diffeo.
(Some extra terms appear in the trans.)

We expect that some non-minimal coupling terms recover the
linearized diffeomorphism and realize partially massless gauge sym.




Back up



IMassive spin-2 fields |

Why is the negative kinetic term undesirable?

« We can not define the vacuum.

In the healthy QFT, “particle” is defined as the fluctuation
from the vacuum.

« |If we quantize the theory neglecting the fact, we are
faced with the negative norm (Ghost).

If the ghost sate is not in the physical subspace, the theory remains
consistent.




Back up

Calculation of secondary constraint

O By = gy O W

4

_E’&.V.J’&. _|_ mzn(uv)plvl 8”}2”11}1 == _EOV = _q.bl(j]‘)

l e.omE;=0and ¢ =0

o) =B, =0

(Up to constraints and e.0.m)



Back up

Using the constraint obtained before (¢” =0, ¢* = 0).

g,'bgz) = VoVFE,; = B@-jvovohoj + C;*'VoVohiy + (terms without VoVoh) = 0

eliminated by e.o.m.

Here, B and C are defined as follows.

. 1 1 — . .
B, = N2 [(TgR—I—mz) 9;7 — pejimnhmn}
C,k = _% [deil —u {eklijh(]j _ Nkelmnp NmeinklhmnH

e;j - 3-metric,  N; :Shift, N : Lapse



Back up

Derivative int.

P1V1 2 V2 (L3 V3 iy )
Cg vm vm h,uz Vo h;LsVs hu4V4

Contribution to the equations of motion E})“’

v
E% - QCQ(MV)MlmquZ#SVBV;uVV1 huzvz . hﬂgyg

(pv)pivipovapuavs .
+ (g v}u h}izvz vV1 hIJBVS

# E}Ydo not include hyo and hy,



What is the equivalence theorem@e

Equivalence theorem states that the relation between massive spin
particles and Stuckelberg fields (Nambu-Goldstone bosons).

Equivalence theorem

[(Ampli’rude of Longitudinal mode)~ (Amplitude of NG boson) +0(m/E)]

E : Energy scale m : particle mass



® The scattering amplitude involving massive gauge bosons.

After the discovery of Higgs particle, the detail behavior of Electroweak
sector @ high energy scale is now investigated in the context of BSM.

Transparent description o
the model

f] « Power counting

« Massless limit in the internal line

® Construction of massive gauge theories
e.g.) dRGT massive spin-2

N. Arkani-Hamed, H. Georgi, and M. D. Schwartz, Annals Phys. 305 (2003) 926-118 hep-th/0210184 HUTP-02-A051

de Rham, Gabadadze, Tolley Phys.Rev.Lett. 106 (2011) 231101



Boulware-Deser ghost problem bD. G. Boulware and S. Deser," Annals Phys.89 (1975) 193.

Non-linear terms for massive spin-2 particles lead to a ghost in general.

1

S = 5.3 d*z\/—g [R——V(g, )]

Vg, h) = Va(g,h) + Va(g,h) +---
Vo = (1%) — ()’
Vs = e1(h®) + o) (h) + es ()’

Vi = di(h") + do(h>)(h) + d3(h®)? + da(h?)(h)? + ds(h)*



Cut-of scale and the origin of BD ghost

Stuckelberg trick : Restoration of the gauge inv.

Hyy = hyy + 8y + 8y Ay + 20,8, — Oy A0y Ag — B A8, B — 0,07 $, A — 9,08, Dad.

Equivalence theorem : Amp of Longitudinal mode~ Amp of NG boson +O(m/E)

® Higher derivative terms give us the cut-off scale of the theory and
suggest the existence of a ghost.

® Thanks to Stuckelberg field and ET theorem, it becomes easier to treat
the problematic helicity 0 mode.



Review of massive spin-2

[ NG boson description of massive grovi’ry]

B 1
 2k2

1

de |:( /_gR) . _m2,rllia,r’V)6 (h,“/ha)@ — huahyﬁ):|

S
4

h,w — huy -+ QMAV + 61/14# + 2(9Mayqb—|— (Quadratic terms in 4 ,¢)

This replacement leads to higher derivative terms in terms of NG boson.

Interaction terms :  ~ Ay TIATI N g (A) A (92g) e Ay = (MpmMTHYA 1 <5

In this theory, the lowest scale is As accompanied with (32¢)3

At E ~ As , tree level amplitude of the scalar NG boson amplitude ~ 1

| This theory breaks down at E ~ As |




Review of massive spin-2

Strategy [Adding non-derivative interactions of h and funing coefficients ]

Terms suppressed with factors below A; are all eliminated !
mm) [Effective theory with Az (A; theory), dRGT model

4
S = M? / d*zy/=g |R+2m* ) anen(K)
n=2
ap =1, s, ay: free parameters This means gHt”1 ... ghava

/ anti-symmetrized over v.

en(X) = girierzriain X Xgvs -+ - Xpu, v, antisymmetrized in v

KH, = 00", — g—lfﬂy, Kuv ~ h,, around flat spacetime

171 22

S (z) =0,Y° (x)auY’f (z)nep  corresponding to NG bosons
- (Y® = x* : Unitary gauge)




Back up

Uy floVsg [h3V ViHaV2 i3V R
gﬂl 1H2V2 i3 3v’u15h’u2y2 = gﬂl 1H2V2 43 SV,“{VMV:&/\JF D(D—_l))\gmm}

R
— M1V oo izl a U)\ M1V e (33 )\
DD~ 1)° T/ e LA
R(D —2) R(D — 2)
— )\ le,usl/svg)\ )\ Mlvlﬂsvsv )\
DD -1 TP g

=0



