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• Killing vector fields: 

𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎 

𝜉𝜇  

Spacetime symmetry 



Killing symmetries 

Killing Conformal Killing 

symmetric 

anti-symmetric 

Killing-Stackel 

Killing-Yano Conformal Killing-Yano 

Conformal Killing-Stackel  

Tachibana 1969, Kashiwada 1968 Yano 1952 

Stackel 1895 

vector fields 



𝛁(𝝁𝝃𝝂𝟏)𝝂𝟐…𝝂𝒏
= 𝟎 

𝑲(𝝁𝟏𝝁𝟐…𝝁𝒏) = 𝑲𝝁𝟏𝝁𝟐…𝝁𝒏
 

• Killing-Yano tensors 

Hidden symmetry of spacetime 

• Killing-Stackel tensors 

𝛁(𝝁𝑲𝝂𝟏𝝂𝟐…𝝂𝒏) = 𝟎 

𝝃[𝝁𝟏𝝁𝟐…𝝁𝒏]
= 𝝃𝝁𝟏𝝁𝟐…𝝁𝒏

 



Why Killing symmetry? 

• Separability 

Hamilton-Jacobi equations for geodesics, Klein-Gordon and 
Dirac equations 

• Exact solutions 
Stationary, axially symmetric black holes with spherical 
horizon topology 

• Conserved quantities along geodesics 



The purpose of this talk 

To show a simple method for finding 
Killing symmetries for a given metric. 
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Review I: 
Integrability conditions for 
systems of first order PDEs 



𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 

Does solution exist? 

Question: 

How many constants does the solution depend on? 

Explicit expressions? 

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

A system of first order PDEs 

𝑥; variables 

𝑢; unknown functions 

𝑥 = (𝑥1, 𝑥2, ⋯ , 𝑥𝑛) 

𝑢 = (𝑢1, 𝑢2, ⋯ , 𝑢𝑁) 𝑢𝛼 = 𝑢𝛼(𝑥) 



𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 

𝜕

𝜕𝑥𝑗

𝜕𝑢𝛼

𝜕𝑥𝑖
=

𝜕𝜓𝑖
𝛼

𝜕𝑥𝑗
+  

𝜕𝜓𝑖
𝛼

𝜕𝑢𝛽

𝜕𝑢𝛽

𝜕𝑥𝑗
𝛽

=
𝜕𝜓𝑖

𝛼

𝜕𝑥𝑗
+  

𝜕𝜓𝑖
𝛼

𝜕𝑢𝛽
𝜓𝑗

𝛽

𝛽

 

𝜕

𝜕𝑥𝑖

𝜕𝑢𝛼

𝜕𝑥𝑗
=

𝜕𝜓𝑗
𝛼

𝜕𝑥𝑖
+  

𝜕𝜓𝑗
𝛼

𝜕𝑢𝛽

𝜕𝑢𝛽

𝜕𝑥𝑖
𝛽

=
𝜕𝜓𝑗

𝛼

𝜕𝑥𝑖
+  

𝜕𝜓𝑗
𝛼

𝜕𝑢𝛽
𝜓𝑖

𝛽

𝛽

 

𝜕𝜓𝑖
𝛼

𝜕𝑥𝑗
−

𝜕𝜓𝑗
𝛼

𝜕𝑥𝑖
+  

𝜕𝜓𝑖
𝛼

𝜕𝑢𝛽
𝜓𝑗

𝛽
−

𝜕𝜓𝑗
𝛼

𝜕𝑢𝛽
𝜓𝑖

𝛽

𝛽

= 0 

Integrability condition 
(also called curvature condition, consistency condition) 



Frobenius theorem 
The necessary and sufficient conditions for the unique solution 𝑢𝛼 = 𝑢𝛼(𝑥) 
to the system 

𝜕𝜓𝑖
𝛼

𝜕𝑥𝑗
−

𝜕𝜓𝑗
𝛼

𝜕𝑥𝑖
+  

𝜕𝜓𝑖
𝛼

𝜕𝑢𝛽
𝜓𝑗

𝛽
−

𝜕𝜓𝑗
𝛼

𝜕𝑢𝛽
𝜓𝑖

𝛽

𝛽

= 0 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 

such that 𝑢 𝑥0 = 𝑢0 to exist for any initial data (𝑥0, 𝑢0) is that the relation  

hold. 

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 



• If not, they give a set of algebraic equations 

𝐹1(𝑥, 𝑢) = 0 

• If the Frobenius integrability conditions hold, the general solution 
depends on 𝑁 arbitrary constants. 

• Differentiating these equations and eliminating the derivatives of 𝑢 using 
the original equation leads to a new set of equations 

𝐹2(𝑥, 𝑢) = 0 

Discussion 

• Proceeding in this way we get a sequence of sets of equations 

𝐹1(𝑥, 𝑢) = 0, 𝐹2(𝑥, 𝑢) = 0, 𝐹3(𝑥, 𝑢) = 0, ⋯ 



The system 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

admits solution if and only if there exists a positive integer 𝐾 ≤ 𝑁 such that 
the set of algebraic equations 

𝐹1 = 𝐹2 = 𝐹3 = ⋯ = 𝐹𝐾 = 0 

is compatible and that the set 𝐹𝐾+1 = 0 is satisfied identically. 

Theorem 

If p is the number of independent equations in the first K sets, then the 
general solution depends on N − p arbitrary constants. 



𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

Particular case 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 

In particular, if 𝜓𝑖
𝛼 are homogeneous linear functions of 𝑢𝛽 , the system is 

written as  

This system and its integrability condition can be expressed in terms of 
geometry. 



𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

Parallel equation 
𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 

𝜕𝑢𝛼

𝜕𝑥𝑖
− 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 = 0 

𝐷𝑖𝑢
𝛼 = 0 𝐷𝑖𝑢

𝛼: =
𝜕𝑢𝛼

𝜕𝑥𝑖
− 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 

The system can be expressed as parallel equation for a section 𝑢𝛼 of a 
vector bundle of rank 𝑁. 



Curvature condition 

𝐷𝑖𝑢
𝛼 = 0 

𝐷𝑖𝑢
𝛼: =

𝜕𝑢𝛼

𝜕𝑥𝑖
− 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 

the curvature of 𝐷𝑖  is defined by (𝐷𝑖𝐷𝑗 − 𝐷𝑗𝐷𝑖)𝑢
𝛼 = −𝐹𝑖𝑗𝛽

      𝛼𝑢𝛽 . 

(also called integrability condition, consistency condition) 

𝐹𝑖𝑗𝛽
      𝛼𝑢𝛽 = 0 

This is equivalent to the Frobenius integrability 
condition 

For a connection 𝐷𝑖  



Frobenius theorem 
The necessary and sufficient conditions for the unique solution 𝑢𝛼 = 𝑢𝛼(𝑥) 
to the system 

such that 𝑢 𝑥0 = 𝑢0 to exist for any initial data (𝑥0, 𝑢0) is that the relation  

hold. 

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

𝐹𝑖𝑗𝛽
      𝛼𝑢𝛽 = 0 

𝐷𝑖𝑢
𝛼 = 0 

where 
𝐷𝑖𝑢

𝛼: =
𝜕𝑢𝛼

𝜕𝑥𝑖
− 𝜓𝑖𝛽

𝛼 𝑥 𝑢𝛽 



• If not, they give a set of algebraic equations 

• If the curvature conditions hold, the general solution depends on 𝑁 
arbitrary constants. 

• Differentiating these equations and eliminating the derivatives of 𝑢 using 
the original equation leads to a new set of equations 

Discussion 

• Proceeding in this way we get a sequence of sets of equations 

𝐹𝑖𝑗𝛽
      𝛼𝑢𝛽 = 0, (𝐷𝑘𝐹𝑖𝑗𝛽

      𝛼)𝑢𝛽 = 0, (𝐷ℓ𝐷𝑘𝐹𝑖𝑗𝛽
      𝛼)𝑢𝛽 = 0, ⋯ 

𝐹𝑖𝑗𝛽
      𝛼𝑢𝛽 = 0 

(𝐷𝑘𝐹𝑖𝑗𝛽
      𝛼)𝑢𝛽 = 0 𝐷𝑘𝐹𝑖𝑗𝛽

      𝛼 ≔ 𝜕𝑘𝐹𝑖𝑗𝛽
      𝛼 − 𝜓𝑘𝛾

𝛼 𝐹𝑖𝑗𝛽
      𝛾

+ 𝐹𝑖𝑗𝛾
      𝛼𝜓𝑘𝛽

𝛾
 



The system 

𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

admits solution if and only if there exists a positive integer 𝐾 ≤ 𝑁 such that 
the set of algebraic equations 

is compatible and that the set 𝐷 𝐾+1 𝐹 𝑢 = 0 is satisfied identically. 

Theorem 

If p is the number of independent equations in the first K sets, then the 
general solution depends on N − p arbitrary constants. 

𝐹𝑖𝑗𝛽
      𝛼𝑢𝛽 = 0, (𝐷𝑘𝐹𝑖𝑗𝛽

      𝛼)𝑢𝛽 = 0, (𝐷ℓ𝐷𝑘𝐹𝑖𝑗𝛽
      𝛼)𝑢𝛽 = 0, ⋯ 

𝐷𝑖𝑢
𝛼 = 0 



Review II: 
Prolongation of PDEs and 
jet space 



Prolongation 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

𝐹 𝑥𝑖 , 𝑓𝑎 , 𝜕𝑖𝑓
𝑎 , 𝜕𝑗𝜕𝑖𝑓

𝑎 , ⋯ = 0 

Introduce new functions 

𝑢𝛼 ≔ 𝜕⋯𝜕𝑓𝑎 



Example 

𝑢𝑥 = 𝑎𝑢 + 𝑏𝑣 

𝑢𝑦 + 𝑣𝑥 = 𝑐𝑢 + 𝑑𝑣 

𝑣𝑦 = 𝑒𝑢 + 𝑓𝑣 

Introduce 𝑤 = 𝑢𝑦 − 𝑣𝑥 

𝑢𝑥 = 𝑎𝑢 + 𝑏𝑣 

𝑢𝑦 =
1

2
(𝑐𝑢 + 𝑑𝑣 + 𝑤) 

𝑣𝑦 = 𝑒𝑢 + 𝑓𝑣 

𝑣𝑥 =
1

2
(𝑐𝑢 + 𝑑𝑣 − 𝑤) 

𝑤𝑥 = 𝑤𝑥(𝑢, 𝑣, 𝑤) 

𝑤𝑦 = 𝑤𝑦(𝑢, 𝑣, 𝑤) 



Prolongation 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

𝐹 𝑥, 𝑓, 𝜕𝑓, 𝜕𝜕𝑓,⋯ = 0 

Not always possible 

Introduce new functions 

𝑢𝛼 ≔ 𝜕⋯𝜕𝑓𝑎 



Example 

𝑢𝑥 = 𝑣𝑦 

𝑢𝑦 = −𝑣𝑥 

Cauchy-Riemann equation 

Impossible to make a prolongation! 

In fact, solution of this system depends on one holomorphic function. 



Prolongation 

𝜕𝑢𝛼

𝜕𝑥𝑖
= 𝜓𝑖

𝛼(𝑥, 𝑢) 𝑖 = 1,⋯ , 𝑛 𝛼 = 1,⋯ ,𝑁 

𝐹 𝑥, 𝑓, 𝜕𝑓, 𝜕𝜕𝑓,⋯ = 0 

When can we make a prolongation successfully? 

Not always possible 

Introduce new functions 

𝑢𝛼 ≔ 𝜕⋯𝜕𝑓𝑎 



Prolongation of Killing equation 



Killing symmetries 

Killing Conformal Killing 

symmetric 

anti-symmetric 

Killing-Stackel 

Killing-Yano Conformal Killing-Yano 

Conformal Killing-Stackel  

Tachibana 1969, Kashiwada 1968 Yano 1952 

Stackel 1895 

vector fields 



𝛁𝝁𝝃𝝂 + 𝛁𝝂𝝃𝝁 = 𝟎 

• 𝛁𝝁𝝃𝝂 = 𝑳𝝁𝝂 ,     𝑳𝝁𝝂 = 𝜵[𝝁𝝃𝝂] 

• 𝛁𝝁𝑳𝝂𝝆 = −𝑹𝝂𝝆𝝁
         𝝈𝝃𝝈 

Killing equation 



• 𝛁𝝁𝝃𝝂 = 𝑳𝝁𝝂 ,     𝑳𝝁𝝂 = 𝜵[𝝁𝝃𝝂] 

• 𝛁𝝁𝑳𝝂𝝆 = −𝑹𝝂𝝆𝝁
         𝝈𝝃𝝈 

𝑫𝝁𝝃 𝑨 ≡ 𝜵𝝁

𝝃𝝂

𝑳𝝂𝝆
−

𝟎 𝟏
−𝑹𝝂𝝆𝝁

        𝝈 𝟎
𝝃𝝈

𝑳𝝁𝝂
 

• 𝑫𝝁 : a connection on 𝑬𝟏 

• 𝝃 𝑨 = (𝝃𝝁, 𝑳𝝁𝝂) : a section of 𝑬𝟏 ≡ 𝜦𝟏 𝑴 ⊕ 𝜦𝟐 𝑴  

𝑫𝝁𝝃 𝑨 = 𝟎 

• Killing connection 



Killing vector fields ⟺  Parallel sections of 𝑬𝟏 

The key 

• The number of parallel sections of 𝑬𝟏 is bound by the rank of 𝑬𝟏, 
which is given by 

𝑵 =
𝒏
𝟏

+
𝒏
𝟐

= 𝒏(𝒏 + 𝟏)/𝟐 . 

Hence, the maximum number of Killing vector fields is given by 
𝒏(𝒏 + 𝟏)/𝟐. 



Curvature condition 

𝑫𝝁𝝃 𝑨 = 𝟎 

𝑹𝝁𝝂𝑨
         𝑩 𝝃 𝑩 ≡ (𝑫𝝁𝑫𝝂 − 𝑫𝝂𝑫𝝁)𝝃 𝑨 = 𝟎 

• The number of the solutions provides an upper bound on the 
number of Killing vector fields. 

• The solutions themselves can be used as an ansatz for solving 
Killing equation. 



Prolongation of 
Killing-Yano equation 



Killing symmetries 

Killing Conformal Killing 

symmetric 

anti-symmetric 

Killing-Stackel 

Killing-Yano Conformal Killing-Yano 

Conformal Killing-Stackel  

Tachibana 1969, Kashiwada 1968 Yano 1952 

Stackel 1895 

vector fields 



𝛻(𝜇𝜉𝜈1)𝜈2…𝜈𝑛
= 0 

𝜉[𝜇1𝜇2…𝜇𝑛]
= 𝜉𝜇1𝜇2…𝜇𝑛

 

Killing-Yano equation 

𝛻𝑋𝜉 =
1

𝑝 + 1
𝑖 𝑋 𝑑𝜉 

𝛻𝑋(𝑑𝜉) =
𝑝 + 1

𝑝
𝑅+ 𝑋 𝜉 𝑅+ 𝑋 := 𝑒𝑎 ∧ 𝑅(𝑋, 𝑋𝑎) 

𝒟𝑋𝜓 ∶= 𝛻𝑋

𝜓𝑝

𝜓𝑝+1
+  

0 −
1

𝑝 + 1
𝑖(𝑋)

−
𝑝 + 1

𝑝
𝑅+ 𝑋 0

𝜓𝑝

𝜓𝑝+1
 

Prolongation of Killing-Yano equation 

𝜓 = (𝜓𝑝, 𝜓𝑝+1) ∈ Γ 𝐸𝑝  𝐸𝑝 = Λ𝑝 𝑀 ⊕ Λ𝑝+1(𝑀)  

𝒟𝑋𝜓 = 0 



Rank-p KY tensors  ⟺  Parallel sections of 𝑬𝒑 = 𝜦𝒑 𝑴 ⊕ 𝜦𝒑+𝟏 𝑴  

𝑵 =
𝒏
𝒑 +

𝒏
𝒑 + 𝟏 =

𝒏 + 𝟏
𝒑 + 𝟏

 

Killing-Yano tensors of rank p 

• The maximal number 

• Curvature conditions 

𝑫𝝁𝝃 𝑨 = 𝟎 

• Killing connection 

𝑹𝝁𝝂𝑨
         𝑩 𝝃 𝑩 ≡ (𝑫𝝁𝑫𝝂 − 𝑫𝝂𝑫𝝁)𝝃 𝑨 = 𝟎 

𝝃 𝑨 = (𝝃𝝁𝟏…𝝁𝒑
, 𝑳𝝁𝟏…𝝁𝒑+𝟏

)  

[Semmelmann 2002] 

[TH-Yasui 2014] 



Curvature condition 

𝓡 𝑿,𝒀 =
𝑵𝟏𝟏 𝑿, 𝒀 𝟎

𝑵𝟐𝟏 𝑿, 𝒀 𝑵𝟐𝟐 𝑿, 𝒀
 

𝑁11 𝑋, 𝑌 = 𝑅 𝑋, 𝑌 +
1

𝑝
(𝑖(𝑋) ∧ 𝑅+ 𝑌 − 𝑖(𝑌) ∧ 𝑅+ 𝑋 ) 

𝑁21 𝑋, 𝑌 = −
𝑝 + 1

𝑝
((𝛻𝑋𝑅)+ 𝑌 − 𝛻𝑌𝑅

+ 𝑋 )  

𝑁22 𝑋, 𝑌 = 𝑅 𝑋, 𝑌 +
1

𝑝
(𝑅+ 𝑋 𝑖(𝑌) − 𝑅+ 𝑌 𝑖(𝑋) )  

• 𝑁11 𝑋, 𝑌 : Λp M  →   Λ𝑝(𝑀) 

• 𝑁21 𝑋, 𝑌 : Λp M  →   Λ𝑝+1(𝑀) 

• 𝑁22 𝑋, 𝑌 : Λp+1 M  →   Λ𝑝+1(𝑀) 

 ℛ 𝑋, 𝑌 :  𝛤 𝐸𝑝 → 𝛤(𝐸𝑝) , 𝐸𝑝 = 𝛬𝑝 𝑀 ⊕ 𝛬𝑝+1 𝑀   
[TH-Yasui 2014] 



The number of KY tensors 
in maximally symmetric space 

P=1 P=2 P=3 P=4 

3D 6 4 

4D 10 10 5 

5D 15 20 15 6 

𝑵 =
𝒏 + 𝟏
𝒑 + 𝟏

 

U Semmelmann 2002 



Symmetry of Kerr spacetime 

Kerr metric admits exactly two Killing vector fields, one rank-2 and no 
rank-3 KY tensors. 

𝒅𝒔𝟐 = −
𝜟

𝜮
𝒅𝒕 − 𝒂𝒔𝒊𝒏𝟐 𝜽𝒅𝝓

𝟐
+

𝒔𝒊𝒏𝟐 𝜽

𝜮
𝒂 𝒅𝒕 − 𝒓𝟐 + 𝒂𝟐 𝒅𝝓

𝟐
+

𝜮

𝜟
𝒅𝒓𝟐 + 𝜮 𝒅𝜽𝟐 

Kerr metric 

Our result: 

𝚫 = 𝐫𝟐 − 𝟐𝐌𝐫 + 𝐚𝟐 ,     𝚺 = 𝐫𝟐 + 𝐚𝟐 𝐜𝐨𝐬𝟐 𝛉 

• Two Killing vector fields: 𝝏/𝝏𝒕 and 𝝏/𝝏𝝓 

• One rank-2 Killing-Yano tensor: 

𝒇 = 𝒂 𝒄𝒐𝒔 𝜽 𝒅𝒓 ∧ 𝒅𝒕 − 𝒂𝒔𝒊𝒏𝟐 𝜽𝒅𝝓 + 𝒓𝒔𝒊𝒏𝜽 𝒅𝜽 ∧ (𝒂 𝒅𝒕 − 𝒓𝟐 + 𝒂𝟐 𝒅𝝓) 



Maximally symmetric 

Plebanski-Demianski 

Kerr 

Schwazschild 

𝒑 = 𝟏 𝒑 = 𝟐 𝒑 = 𝟑 

The number of rank-p KY tensors 

4D metrics 

10 10 5 

2 0 0 

2 1 0 

4 1 0 

Eguchi-Hanson 4 3 0 

Self-dual Taub-NUT 4 4 0 

FLRW 6 4 1 



Maximally symmetric 

Myers-Perry 

Emparan-Reall 

Kerr string 

𝒑 = 𝟏 𝒑 = 𝟐 𝒑 = 𝟑 

The number of rank-p KY tensors 

5D metrics 

15 20 15 

3 0 1 

3 0 0 

3 1 0 

𝒑 = 𝟒 

6 

0 

0 

1 



Prolongation of 
Killing-Stackel equation 



Killing symmetries 

Killing Conformal Killing 

symmetric 

anti-symmetric 

Killing-Stackel 

Killing-Yano Conformal Killing-Yano 

Conformal Killing-Stackel  

Tachibana 1969, Kashiwada 1968 Yano 1952 

Stackel 1895 

vector fields 



The number of KS tensors 
in maximally symmetric space 

P=1 P=2 P=3 P=4 

3D 6 20 50 105 

4D 10 50 175 490 

5D 15 105 490 1764 

𝑵 =
𝟏

𝒏

𝒏 + 𝒑
𝒑 + 𝟏

𝒏 + 𝒑 − 𝟏
𝒑

 

C Barbance 1973 

⋯ 

⋯ 

⋯ 



Work in progress 



Summary 

We have shown a prolongation of Killing, Killing-Yano equations. 

Once one make a prolongation successfully, one can discuss 
properties of solution to the system.  

*Prolongation of Killing-Stackel equation is in progress. 


