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Spacetime symmetry

* Killing vector fields:

V,éy + V6, =0



Killing symmetries

vector fields Killing Conformal Killing

symmetric Killing-Stackel Conformal Killing-Stackel
Stackel 1895

anti-symmetric Killing-Yano Conformal Killing-Yano

Yano 1952 Tachibana 1969, Kashiwada 1968




Hidden symmetry of spacetime

* Killing-Stackel tensors

V(MKV1Vz---vn) =0 K (H1p2-Hn) — Kmuz---un

* Killing-Yano tensors

V(M‘fvl)Vz---vn =0 E[ﬂlﬂz---ﬂn] = Eﬂlﬂz---ﬂn



Why Killing symmetry?
* Conserved quantities along geodesics

e Separability

Hamilton-Jacobi equations for geodesics, Klein-Gordon and
Dirac equations

e Exact solutions

Stationary, axially symmetric black holes with spherical
horizon topology



The purpose of this talk

To show a simple method for finding
Killing symmetries for a given metric.
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Review I
Integrability conditions for
systems of first order PDESs



A system of first order PDEs

a
— (04 .
Py =Y; (x,u) i=1-n a=1,N
x; variables x = (x1,x2%,---,x™)
u; unknown functions u = (ut,u?, -, ul) u® = u®(x)

Question:

Does solution exist?
How many constants does the solution depend on?

Explicit expressions?



Integrability condition

(also called curvature condition, consistency condition)

ou? o
0 ou* oYy . oY ouf awl oY g
OxJ dxt  OxJ - ouB dxJj Bxf - oub g
0 du* OYf oPj ouf 61/), oy’ l/)ﬁ

oxt oxJ  0xt T - ouB dxt ax‘ - oub

01/)? 01/)] al/)l B 01/)] g\ _
dxJ  Oxi +Z(0uﬁlp ouP up ¥ | =0



Frobenius theorem

The necessary and sufficient conditions for the unique solution u¢ = u%(x)
to the system

ou®

axi:llii (x,u) i=1,n a=1-,N

such that u(xy) = u, to exist for any initial data (x,, ug) is that the relation

0Py 61/;] 0Y; B 61/)1
ﬁxf_ax‘-l_Z(auﬁl/) ﬁlp)

hold.



Discussion

* |f the Frobenius integrability conditions hold, the general solution
depends on N arbitrary constants.

* |f not, they give a set of algebraic equations
Fi(x,u) =0

e Differentiating these equations and eliminating the derivatives of u using
the original equation leads to a new set of equations

Fy(x,u) =0
* Proceeding in this way we get a sequence of sets of equations

Fi(x,u) =0, F,(x,u)=0, F;(x,u)=0,



Theorem
The system

a

cr=Yfew  i=1-m  a=1,,N

admits solution if and only if there exists a positive integer K < N such that
the set of algebraic equations

Fi=F,=F, = =F¢ =0

is compatible and that the set Fy,; = 0 is satisfied identically.

If p is the number of independent equations in the first K sets, then the
general solution depends on N — p arbitrary constants.



Particular case

du” N |
axi :l/)i (.X',U,) l:1,-..,n a:l’...’N

In particular, if " are homogeneous linear functions of uP, the system is
written as

ou”
dxt

= YU’

This system and its integrability condition can be expressed in terms of
geometry.



Parallel equation

du? _
axi = l/)laﬂ(x)uﬁ | = 1,-..,n a = 1,...’N
Ju“
\ g Oy —Pp)uf =0
ou?
“ Diu“ =0 Diu“:z axi _l/)iaﬁ(x)uﬁ

The system can be expressed as parallel equation for a section u% of a
vector bundle of rank N.



Curvature condition

(also called integrability condition, consistency condition)

For a connection D;

ou®
D;u%: = Py 1/){'2;(x)u3

the curvature of D; is defined by (D;D; — D;D;)u® = — ijﬁ“uﬁ.

Diua =0 » Fljﬁauﬁ =0

This is equivalent to the Frobenius integrability
condition



Frobenius theorem

The necessary and sufficient conditions for the unique solution u¢ = u%(x)
to the system

D;u® =0 i=1,-,n a=1-,N
where u’
D;u%: = P —lp{';;(x)uﬁ

such that u(xy) = u, to exist for any initial data (xy, uy) is that the relation
hold.



Discussion

* If the curvature conditions hold, the general solution depends on N
arbitrary constants.

* If not, they give a set of algebraic equations
F.

l

a —
jpiuf =0

e Differentiating these equations and eliminating the derivatives of u using
the original equation leads to a new set of equations

(D Fijp“)u? =0 DicFijp® = 0cFijp" — WieyFijg" + Fijy "W
* Proceeding in this way we get a sequence of sets of equations

Fijﬁauﬁ — O, (DkFUﬁa)uﬁ — O, (D{)DRFU'B“)U'B — O,



Theorem
The system

D;u%* = 0 i=1-n a=1-,N

admits solution if and only if there exists a positive integer K < N such that

the set of algebraic equations

is compatible and that the set (D(K“)F)u = ( is satisfied identically.

If p is the number of independent equations in the first K sets, then the
general solution depends on N — p arbitrary constants.



Review |l
Prolongation of PDEs and
Jet space




Prolongation

F(x' f%0;f% 0;0;f% ) =0

Introduce new functions
u:=a9---0f“

a

T =Yfow)  i=1-n  a=

1,



Example

u, = au + bv

Uy + Uy =cu+dv

vy, =eu+ fv

Introduce w = u,, — v,

u, = au + bv

1
uy=5(6u+dv+w)

1
vx=§(cu+dv—w)
vy, =eu+ fv

w, = w,(u,v,w)

Wy, = W, (u, v,w)



Prolongation

F(x, f,df,00f, ) =0

Introduce new functions
u:=49---0f“

Not always possible

a

oxt

=i (x, ) t=1,-n a=

1,



Example

Cauchy-Riemann equation

Uy = Dy

Impossible to make a prolongation!

In fact, solution of this system depends on one holomorphic function.



Prolongation

F(x, f,df,00f, ) =0

Introduce new functions
u:=49---0f“

Not always possible

a

oxt

When can we make a prolongation successfully?

=yfxu)  i=1,-,n a=1,-



Prolongation of Killing equation



Killing symmetries

vector fields Killing Conformal Killing

symmetric Killing-Stackel Conformal Killing-Stackel
Stackel 1895

anti-symmetric Killing-Yano Conformal Killing-Yano

Yano 1952 Tachibana 1969, Kashiwada 1968




Killing equation

Viéy + V¢, =0

* VuSy =Ly, Ly =Vsy

* Vuva — _Rvpuafa



* VuSy =Ly, Ly =Vydy
* Vulyp = —Rypu%$s

* Killing connection

Du$a =V (li:/p) B (_Rgpua (1)) (f:v)

§4 = (§w Lyy) - a section of E' = At'(M) @ A% (M)
* D, : aconnection on E1l



The key

Killing vector fields < Parallel sections of E!

« The number of parallel sections of E! is bound by the rank of ET,
which is given by

N=(7)+(5)=nm+1)/2.

Hence, the maximum number of Killing vector fields is given by
nn+1)/2.



Curvature condition

RuvAB EB = (DuDv — DvDu)EA =0

* The number of the solutions provides an upper bound on the
number of Killing vector fields.

* The solutions themselves can be used as an ansatz for solving
Killing equation.



Prolongation of
Killing-Yano equation



Killing symmetries

vector fields Killing Conformal Killing

symmetric Killing-Stackel Conformal Killing-Stackel
Stackel 1895

anti-symmetric Killing-Yano Conformal Killing-Yano

Yano 1952 Tachibana 1969, Kashiwada 1968




Killing-Yano equation Viu€viyywy =0

5[#1#2--#71] = Suypiptin

Vx$ = + 11'(X)d€
p+1
Vx (d&) =TR+(X)5 R*(X): = e® AR(X, X,)

Prolongation of Killing-Yano equation

1
0 ——i(X)
~ ~ Y p+1 Y
=0 . p
DXl/) Dxyp :=Vx <1/)p+1> + p+ 1 . . <'~/)p+1>
p

) = (Pp, ¥pr1) ET(EP)  EP = AP(M) @ APHL(M)



Killing-Yano tensors of rank p

* Killing connection [Semmelmann 2002]
Rank-p KY tensors < Parallel sections of EP = AP(M) @ AP*1(M)
D” 1= 0 $a = (Eﬂl...ﬂp’l‘ﬂl...ﬂp.Fl)

e The maximal number
n n n+1
N:(p)+(p+1):(p+1)
e Curvature conditions [TH-Yasui 2014]
RuvAB $p = (DuDv — DvDu)fA =0



Curvature condition

[TH-Yasui 2014]
> R(X,Y): [(EP) - I'(EP),  EP = AP(M) @ APT1(M)

N1 (X,)Y) 0 )

RX,Y) = (NZI(X' Y) Nyu(X,Y)

« Ni1(X,Y): AP(M) - AP(M)

Ny, (X,Y) = R(X,Y) +%(i(X) AR*(Y) — i(Y) A R* (X))
* N,;(X,Y): AP(M) - Ap+1(M)

Noa (1) = =22 (@R () = (7R (0)

© Npp(X,Y): APHI(M) - APFL(M)
Nz (X,Y) = R(XY) += (R* (X)) = R (V) (X))



The number of KY tensors v (n+ 1)
in maximally symmetric space - \p+1

U Semmelmann 2002

4 \\
4D 10 10 \

5D 15 20 15 6



Symmetry of Kerr spacetime

Kerr metric
A sin® @ z
ds? = - (dt — asin? 0d¢)” + v (adt— (r? + a?)de)” + Zdr2 + X dg?

A=1r%2—-2Mr+a%, X=r?+a’cos?0

* Two Killing vector fields: d/dt and d/d¢
* One rank-2 Killing-Yano tensor:

f=acos0drA(dt—asin?0dp)+rsin0do A (adt— (r?+ a?)de)

Our result:

Kerr metric admits exactly two Killing vector fields, one rank-2 and no
rank-3 KY tensors.



The number of rank-p KY tensors

4D metrics p=1 p=2 p=3
Maximally symmetric 10 10 5
Plebanski-Demianski 2 0 0
Kerr 2 1 0
Schwazschild 4 1 0
FLRW 6 1 1
Self-dual Taub-NUT 4 4 0
Eguchi-Hanson 4 3 0




The number of rank-p KY tensors

5D metrics P = 1 P = 2
Maximally symmetric 15 20
Myers-Perry 3 0
Emparan-Reall 3 0

Kerr string 3 1



Prolongation of
Killing-Stackel equation



Killing symmetries

vector fields Killing Conformal Killing

symmetric Killing-Stackel Conformal Killing-Stackel
Stackel 1895

anti-symmetric Killing-Yano Conformal Killing-Yano

Yano 1952 Tachibana 1969, Kashiwada 1968




The number of KS tensors Lintp)mip-1y

. . : N =—
in maximally symmetric space n\p+1/4 P
C Barbance 1973

I N N N T
3D 6 20 50 105 a

4D 10 50 175 490

5D 15 105 490 1764



Work in progress



summary

We have shown a prolongation of Killing, Killing-Yano equations.

*Prolongation of Killing-Stackel equation is in progress.

Once one make a prolongation successfully, one can discuss
properties of solution to the system.



