THE 13TH RESCEU INTERNATIONAL SYMPOSIUM

JGRG31

October 24 - 28, 2022
The 31st Workshop on General Relativity and Gravitation
Koshiba Hall, The University of Tokyo
(Online-hybrid style)

Volume I1I1: Contributed Talks 2




Contributed talks
C41 - C86



C41

N
N
E—— N,

FollOw-up a_paﬁféés of theBNSS|gna|s
GW170817 and GW190425 by\using

\S:epted for publication in PRD
. JGW-G221 403§/ KA

THE 13TH RESCEU INTERNATIONAL SYMPOSIUM

JGRG31

October 24 {Mon) - 28 (Fri), 2022

The 315t Works1p 01 Geneal Relativity and Gravitalion ir Japan o /RR‘ by Tatsuya Narikawa

Koshiba Hall, The University of Tokyo, Tncyo (Hybrid style) g //

Post-Newtonian (PN) theory

PN approximation: solve the Einstein eqs. by a series in v/c.
PN theory is theoretically rigid and can efficiently describe the GW emission
in the inspiral regime. (valid for slow motion v<<1 and weak field M/R<<1)

The energy balance The GW phase
, ~ d¥spa(f)
Eyna=—Fgy =~ mee———p —S;; —27t(f) =0

PN tidal theory

PN tidal phase has been derived up to 2.5PN (relative 5+2.5PN) order
[Flanagan&Hinderer08; Damour, Nagar, Villain2012]. (PNTidal)

Recently, the complete and correct tidal phase up to 2.5PN has been derived
[Henry, Faye, Blanchet 2020; Narikawa, Uchikata, Tanaka 2021].

However, the correct PNTidal model has not been used in BNS analyses yet.
In this work, we first use it in BNS analyses.

Sophisticated models (EOB, IMRPhenom and NR calibrated models) are
constructed by extension of the PN theory.
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eI el \[SAWarel gl -1gWelgb-E{sl] modeling has advanced in recent years.
X eff: SPIN

TaylorF2_PNTidal
Difficult to measure well

n: symmetric mass ratio
Difficult to measure well

Yens(f) = Yepu(f) + Yriga(f)
~ MR [1 + apn(MX” + @y spn(71, o)X
/’
N :chirp mass
Measurable very well 2 4 [\ 10
+aypnM, X5 KX+ o+ asp(A)x T + . ]

;

N\: tidal deformability
NS EOSs

K: spin-induced QM
NS EOSs

v: orbital velocity
x = (aMf)*3 = v?

PN formalism review [Blanchet2014; Poisson&Will2014; Isoyama, Nakano, Sturani 2020]
TF2 (3.5PN) [Dhurandhar+1994; Buonanno+2009] Spin summarized in [Khan+2016]

PNTidal [Flanagan&Hinderer08; Damour, Nagar, Villain 2012; Henry+2020; Narikawa+2021]
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Tidal deformability A

When binary orbital separations are small,
each star is tidally distorted by its

companion. )

A= S sasnte

>SS [Dietrich+2020]

A [HindererQ8; DamOL;r&NagarZOO9;

Qy: tidally induced quadrupole moment
Ei: companion's tidal field

The tidal deformability of NS matter affects the GW signals
and characterizes NS EOS models.

Binary tidal deformability A = % [(1 + 11X2)XfA1 +(1 < 2)]

Postnikov+2010]

Ay = A1p/my, :individual ones X, , = my ,/(m; + m,) : Mass ratio

PNTidal [Flanagan&Hinderer08; Damour, Nagar, Villain 2012;
Henry, Faye, Blanchet 2020; Narikawa, Uchikata, Tanaka 2021]
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Tidal effects on waveform [Chatziioannou, 2006.03168]

Evolution depends on NS EOS.

A

t(ms)

Less Compact NS -> fast evolution (large A) o o
More Compact NS -> slow evolution (small A) o o
BBH -> slowest evolution (A=0) . .
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GW inference on GW170817 [LVC 2017, 2018]

ma [Mg]

=== PhenomPNRT === PhenomDNRT === SEOBNRT == TaylorF'2 Prior
1.4
) _ 0.00351 E = = = -
13 Spin priors £ L@ = T
' B (x| <005 0.00307
1.2 B (x| <0.89 0.0025
1.1 e, 0.0020
A E
10 0.00151
0.00101
0.9
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| .
06 : : A: measured, less compact EOS
1.25 150 1.75 200 225 250 2.75 models are disfavored.
M . ] ] -
m1 [Me) NRTidal might bias A smaller.
A measured well. [De+2018; Dai+2018; LVC2019;

Narikawa+2018,2019; Chatziioannou2020]

g: not measured well.
NRTidal [Dietrich+2017]

g- X eff coOrrelation



parameter estimation

- Post-Newtonian (PN) inspiral waveform model:
BBH (PP+Spin) + Tidal

- Phase Y(f) = Ygpu + Piqa

- Point-particle: TaylorF2+ (up to 6PN)

Adding higher-order PN terms

prevent A biasing

- Aligned-spin, Spin-Orbit: 1.5-3.5 PN, Spin-Spin: 2-3 PN,

- Tidal effects: 5-5+2.5PN.

We have implemented the correct PNTidal model.

Spin terms at other PN orders help to break

degeneracies, €.8., g — yu¢

- Amplitude up to 3PN for BBH (PP+spin), up to 5+1PN for Tidal

- Priors: low=-spin prior: | x 12,2z|]<0.05; uniform in [0, 3000] on A
astrophysically motivated

- fhigh=1000 Hz to restrict to the inspiral regime

- Bayesian inference library: Nested sampling in LALSUITE (LALInferenceNest)

Tidal phasing
different PN orders, from 5PN through 5+2.5PN, in PNTidal

1.45

1.40
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—— 5+1PN

---- 5+1.5PN e

—— 5+2PN (old) //r/

5+2PN (corrected) P
—— 5+2.5PN (old) ‘/’
5+2.5PN (corrected) T
/’///, " 7
o - —
///’ //
/:// ///
* ,’/ ~ —
‘//// // ———————_
’ —
. //// - -
P -
‘//// - - -

/ .
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Vo
4

200 400 600 800 1000 1200 1400

f (Hz)

s.opn 4 larger shift

5+T1PN

5+1.5PN

demonstrated for un-equal mass
binary, 1.68+1.13 Me

PNTidal (old): [Agathos+, 2015].
PNTidal (corrected): [Henry+, 2020;
Narikawa+, 2020].

|An increase of PN order does not lead to a monotonic change in the phase shift.|

The terms at 5+ 1PN and 5+2PN give larger phase shift. This is related to the
half-PN orders at 5+1.5PN and

being repulsive.
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Tidal phasing
different PN orders in PNTidal and NR calibrated models

1.8
——- 5+1PN
171 === 5+15PN
— 5*2PN (old) NRTidalv2 NR calibrated models
5+2PN (corrected) PR .
161 5+2.5PN (old) Lot Kyotoﬂdgl 4
] 5+2.5PN (corrected) ot [Kawaguchi+]
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> . o* o
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i demonstrated for un-equal mass

200 400 600 800 1000 1200 1400 binary, 1.68+1.13 Me and A =292
f (Hz)

NR calibrated models: KyotoTidal, NRTidalv2, and give larger phase

shift (more attractive) than PNTidal.

The terms at 5+1PN and 5+2PN give closer to NR calibrated models than the
half-PN orders at 5+1.5PN and due to being repulsive.

@ Comparison among the estimates of tidal deformability A

with different PN orders in PNTidal

Gwi70817 BBH baseline: TF2+,

0.00161 —--- 5PN low-spin prior, fhigh=1000 Hz
/"\‘ — - 5+1PN
. \ — = 5+1.5PN
0.00141 / ‘ 49PN
~A s+25pN | Anincrease of PN order does
0.0012] [ £ “\\ not lead to a monotonic
i/ A change in the estimates of A.
0.0010 , ,l o *\ \\\
L A LR The terms up to 5+1PN and
2 0.0008- _/, : 1 \\ *s 5+2PN give smaller estimates
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0.0006/ i'/ / W\ . PN orders at 5+1.5PN and
v,’ K ANy being repulsive.
0.0004 "71 . '\ \\ S
AR4 * . - .
’,” '\ \ Y., Estimates of A are consistent

0.0002//+ ‘O .. | with the phase shift.
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@ Comparison between estimates of A for PNTidal and NR

calibrated models

0.00200 GW170817 BBH baseline: TF2+,
=+ 5PN low-spin prior, fhigh=1000 Hz
a —— 6PN
0.00175 N 251 - = 6.5PN
D . 7PN
0.00150 R L‘y‘i?ﬂdal NR calibrated models give
. ./ W .... NRTdav2 ¢ smaller estimates of A than
0.00125 . ! I,-?';\‘\ NRTidal PNTidal.
" B EAERY \‘\' The terms up to 5+ 1PN and
0 0.00100 Iy ,.‘."’\ v 5+2PN give closer estimates of
e’ s ‘\‘\ s, A with NR calibrated models,
0.00075) .. 'l/ I~' Sy \\ A% which is related to the half-PN
..',/, - \,) R orders at 5+1.5PN and
J I . ‘0 H H
0.00050 - // 4 \) \\ . being repulsive.
\l/o‘, . \ \\ \. A - )
0.00025 5, ¢ R N R Estimates of A are consistent
’ YA o ~.| with the phase shift.
0.00000 T i
0 200 400 600 800, 1000 1200 1400 1600
N
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© Waveform model comparison among PNTidal and
NR calibrated models

BBH baseline: TF2+,

The log Bayes factor low-spin prior, frigh=1000 Hz

lOg BFPNTidal/NR calibrated models

Waveform GW170817
KyotoTidal 0255014
NRTidalv2 0.2310:14
NRTidal 0.461014
BBH (nontidal) 0.79* 913

The log Bayes factors are less than 1, but positive values.
No preference among NR calibrated models over PNTidal.
However, PNTidal is mildly preferred compared to NR
calibrated models.
This is consistent with [Gamba+, 2021].
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Post-Newtonian (PN) approximation is theoretically rigid and can
efficiently describe the inspiral regime.

Follow-up analyses of GW170817 and GW190425 with PNTidal focusing on
the inspiral regime (fhigh=1000 Hz).

Waveform systematics & Waveform model comparison:
@ Different PN orders in PNTidal: An increase of PN order does not lead

to a monotonic change in the estimates of A.

@ PNTidal vs NR calibrated models: NR calibrated models give smaller A
than PNTidal. No preference among NR calibrated models over
PNTidal. However, PNTidal is mildly preferred compared to NR
calibrated models.

Since KAGRA has recently joined the international GW network [O3GK 2020] and
the Adv. LIGO and Adv. Virgo detectors are improving their sensitivities now, they
will detect BNS signals with high SNR and provide more information on the
sources in coming observation runs.
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Induced stochastic gravitational waves
associated with primordial black holes as
dark matter in the exponential-tailed case

2022 /10/25 Ryoto Inui C42

Collaboration with Abe(Nagoya U.), Tada(lAR, KEK, Nagoya U.), and Yokoyama(KMI, Nagoya U.)

AAAAAAAAAAAAAAAA

) NAGOYA arXiv: 2209.13891v]1

1

Primordial black hole (PBH)

Induced GWs

,~/~j At the radiation dominated Universe

Primordial density perturbation
~ O(1)

itational collapse

Candidate of DM

Primordial black hole
(PBH) ~Hubble scale
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feeu = Qpr/Oom

Observational quantity of PBH

Mppy [Mo)]

M
0% 108 10 10 PB%?%] NI = S I e el e N i Bl U
100:— T Fl_l_l__l_l_ T T T T T T T T T T T T T T T ,_ % T T T T T T T T T ;
- ; I'The induced GWs
1071F : ) :
This work; 3
: : Microlensing é
102 |} ; ]
1018_18' l-](-)I—-lf’-l - -1(-)|:12I I 10I‘9I I 10I_ﬁl I 10I‘3I I l(l)(J — l(l)3 107 '1025 - '10‘44 — ‘16—3 ‘ 1‘022 ERgn 10|—1_
Mpgn [Mo) f [H2]
-15 —11
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N.Bartolo et al. '19
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Exponential tail perturbation
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The GWs induced by the exponential tail perturbation

The induced GWs can be detected by LISA?

PBH abundance (p = 3) Induced GWs (B = 3)
20 - | , . . . - . —_———— . —
10 R 108 Gaussian A
1010 g R R AN
K,\z\/ | 10-10T . \‘J \\
‘5% 1 7 N% e Down amphtudeé \“
o t o ~12 T~ X \
10710 Y * LSA~_ 5o
1020 / 7/1/5 _ optl = fu=} i) **\‘47~ —.g-/ /
‘ 7 Gouse DECIGO -
10—30 ‘ Lo 3 ‘ ‘ A 10-16 . L . R T
0.001 0.010 0.100 1x10* 5.x107  0.001 0.005
STHZ]
A 272A
ltD(])BtH =1, Mpgy = 10_11Mo P (k) = P E5(Ink — Inks)

A, =1.32x 1073 Kitajima et al.2021

Scalar induced GWs

I Equation of motion for tensor perturbation
Lhy(z.k) = 4S)(v.k) = The solution : hy(r,k) « (&

A=+,X) Source

> The power spectrum of tensor perturbation
Q27)°Py(7, 6Dk + K) = (I, Ky(s, K) ) o (L(g)Sk — 1) (g,)¢(k — q5))

ex) : { =¢, (Gaussian case)

(GG, - a)C @5k - g ) ~ 042

27[2Ag
Py(k) = Tﬁ(ln k—1Ink.)

i '
N.Bartolo et al. 2019
R.Saito et al. 2011



Scalar induced GWs

I In the case of non-Gaussian perturbation

Perturbative expansion Adshead et al 2105.01659 Yuan and Hung 2007.10686
= Cg + fNLng + gNch / . ool A contributions N : aw, contributions

parametrize the non-Gaussianity
ll)f‘*\~%10Z
f/Hz

with A and gy
. . 1 3 27 81
Exponential tail : {=— 3 In(1-3¢,) =¢, + E(;; + 3@3 + ng + ?gg +

Qow,o(f

-1
111111

However, they are remaining another terms with same order
up to 0(4;)
Crossing term  « [ 8niAg furhniAg

Other non-considered terms 0(4)), g5, A, - - -
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The tool for the calculation

&> Diagrammatic approach:---Corresponding a diagram and formula

Representation of (h,(z,k)h,(z,k))
Building blocks

4 [ 9 t+4q9 h
o' » /7. S —— 91 8
4 | A S N S A f T ] =f
a-k/, N 4 cou NL
/;C | | C \\ h/l 8 g \ C
b g 1 . L =1 Jt 9 ¢ ]
ANANNL K @)k — g)l@)Ck — g)) M/’V\a = -
k * 1 ] 0"/ K, [ q: q9,+49,+q g
N .
;1\\‘ : : '0 9 i q <_ll32 )
« e s ¥ 7 jfmmmam g = NL
C | S — ’ : — Pg(‘h) ~ O(Ag) g 'qz\ Cg ]
\ i FA W n?

Adshead et al 2105.01659



The leading contribution

(LS e — 06 @k - 4 ) ~ O(AD)

O(Agz) | ‘R.‘S‘élto e’F al. ‘20‘] ‘] -
q—k
l11 _ k , - . ql _ k 107
" “ \
y A Y
v . hy o 10
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-— . . 10
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— 10" 0.005
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. _ 272A
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_ -3
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Higher order contributions

0(A)) Adshead et al 2105.01659

<>

1-convolution

C 1 loop
Abe, Inui, Tada, Yokoyama



Higher order contributions

O(A7)

ffffffffffffffffffff New -,
Yuan and Huang, 2007.10686 } chfngNL Abe, Inui, Tada, Yokoyama
2-conv T-conv. C 1 1-conv. Z 1
Adshead et al 2105.01659 3
MV NN AN 3
3 X 8131L CZ
X : Box |
3 A% NN N VaVal
AN/ N 3
<> 3 1-conv. C 2 T-conv. Z 2
(1,1)-conv T

Higher order contributions

OAH Abe, Inui, Tada, Yokoyama
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Result

GWs spectrum is well converged
GWs can be detected by LISA

Detect the footprint of the non-G : difficult in LISA

1078 - :

The total of the exponential tail

10—10

acteristics of non-G

SA/_ 4
7 _ _ 10-11
| pin = 1, Mpgy = 107" M,

Qowh’®
_|
>
D
(@]
>
Q
—~l

10—12

10—14
— A, =132x107
2m%A,
1 0—16 Pg(k) = 3 (S(ln k—In k*)
1.x10™ k

k. =1.56 x 10'> Mpc™!

Conclusion

Can GWs investigate the scenario where PBH = 100% DM?
We calculated the GWs induced by the exponential tail

We computed up to O(A;‘) contributions perturbatively
~= EXponential tail-type in LISA

GWs would be detectable
Detect the footprint of the non-G is difficult

The total of the exponential tail

The characteristics of non-G
10-10, N

10714 F

L L i L
1.x10™ 5.x10 0.001 0.005
JHz)



Appendix

USR (Ultra slow-roll models)

PBH can be realized in USR

Primordial density perturbation

Large amplitude at k.

Produced

Collapse @

High peak spectrum

H? M
P. (k) x _ pl
gg( ) M§1€k3 € = T <

V A

Scalar field

Pass through

\./Flaté region v, =0

>

¢



PBH abundance

Primordial perturbation : ¢ :%ln(l — pL,)

Spacial dis

NS
[ g

PBH abundance

Peak theory

Peak number density

npk()u ° ]})dﬂ dl}

KA M|
)
“ }A” L

Determination of PBH formation

Around peak : spherical symmetric

Ty
7
W

L) =L w). k) = p

sin k*r
k*l"

u :height, & :width
2point function
dk sinkr

w(r) = JT 7
P (k) = Arcd(In k — In k)

Yoo,Harada, Garriga, and Kohri ’ 18



Compaction function

Overdensity Spacial mean value Conserved at super horizon

)

My, — M, 1 (R ) :
=M e J 54nR%dR =Z[1=(1+rY] >y
4zM2R V(R) J, 3
R=H-!1
— Type | : R = monotonic
R = ae‘r Type Il : R # monotonic

Shibata & Sasaki '99
Harada, Yoo, Nakama, Koga '15
Kopp, Hofmann, Weller '11

19

Mean compaction function

Threshold value of the compaction function

1

<Cy < 3 Changed by the peak profile

5

Mean compaction function

Almost universal

m

R
C=—J C(R) X 4nR*dR C. >|C, gé

Atal, Cid, Escriva, Garriga '19
Escriv'a, Germani, Sheth’'19
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Diagrammatic approach
Diagrammatic rules

1.

k_q/ ."
1 B

VAV L(lk—ql,q.k)0k,q)
— N

YoM, g F@e-D
: ( n.FNL

Py(q)

4. Integrate over each undetermined momentum

£
(2n)3

5. Divide by the symmetric factor

arXiv: 2209.13891v1
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Diagrammatic approach

Loop structures

|

’

Fn lines

|\

Symmetric factor n!

Symmetric factor 2"m!

arXiv: 2209.13891v1
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Diagrammatic approach

Renormalized propagator

—,—eeoeoe o = + <> = + -

Renormalized vertex

arXiv: 2209.13891v1
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Diagrammatic approach
Prohibited structure

kS d?
a -k / J (2;)13 0,k ) I(1k - q1,4,7) P(q)
p l a7k
2VaAVaY) n cos2¢p (A=+)_ _
— _L {Sin2¢ 0= x) X Tq.0.)

.
k s
.
.
.
.

q, ‘\\ = 0

24



Diagrammatic approach
Vanilla term

q,—k
—

QLA ~ oL They give the same contribution
kKoo Tk

\ / Qg\)V(k) =2 X— (_) Z P)ﬁamlla(f - 00,k)

q q,

48 \ aH

A=+, X

Twisted

25
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Thermal ringdown and
the excitation of Kerr overtones

Naritaka Oshita

RIKEN, iTHEMS

N.O. arXiv: 2208.02923
RIKEN Interdisciplinary
Theoretical and Mathematical .

Sciences Program RI I,IE N

Ringdown for an extreme-mass-ratio merger

Do overtones dominate the signal?
Destructive Interference of Overtones

20 50 60 70 %0 90
t(2M)

Beginning of Ringdown Exponential Damping
(Destructive Interference) (Fundamental Mode)
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Black Hole Ringing

B. P. Abbott et al. (2016)

relaxation process of a BH
=ringdown phase
= superposition of quasi-normal modes

<
frequency

umerical relativity - E damplng rate

econstructed (template)

02 04 06
Re[w]

hringdown ~ Z Ane_t/f.ﬁ COS[fn (t —7r* — tO) + 57@]
n V

determined only by mass and angular momentum (no-hair theorem)

Quasi-Normal Modes (QNMs)

S
[ fundamental
mode

— T T T T T

overtones

wq = Relwg| + ilm|w,]
(frequency) (damping rate)




Why is a BH ringing important?
Inspiral \\\‘ .

Ringdown
(black hole ringing)

1 \H ——

Time

2]
g
S ©
2
L=
5 &
= 0
a5
<E(.4:
>
©
S
()]

W_- _AOXW--FA‘])(%——‘ +A2X e +....

ringdown fundamental mode 1st overtone 2nd overtone
(n=0) (n=1) (n=2)

— Measurement of the remnant mass and spin

—Test of GR in strong gravity regime
(Test of the BH no-hair theorem)

Binary Black Hole with the comparable mass ratio

Black hole ringdown: the importance of overtones

Matthew Giesler,m * Maximiliano Isi,> 3 T Mark A. Scheel,! and Saul A. Teukolsky®*
2, Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125, USA
2LIGO Laboratory, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA 0
3LIGO Laboratory, California Institute of Technology, Pasadena, California 91125, USA 10

Jornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, New York 14853, N=0
(Dated: January 13, 2020) < 107! N=1
] N=2
It is possible to infer the mass and spin of the remnant black hole from binary black hole mergers 92
by comparing the ringdown gravitational wave signal to results from studies of perturbed Kerr & 10 N=3
spacetimes. Typically these studies are based on the fundamental quasinormal mode of the dominant 2 3 N=4
¢ = m = 2 harmonic. By modeling the ringdown of accurate numerical relativity simulations, we E 10 N=5
find, in agreement with previous findings, that the fundamental mode alone is insufficient to recover § N=6
the true underlying mass and spin, unless the analysis is started very late in the ringdown. Including 104 N=7
higher overtones associated with this £ = m = 2 harmonic resolves this issue, and provides an
unbiased estimate of the true remnant parameters. Further, including overtones allows for the 10~°
modeling of the ringdown signal for all times beyond the peak strain amplitude, indicating that
the linear quasinormal regime starts much sooner than previously expected. This implies that the 10-6

spacetime is well described as a linearly perturbed black hole with a fixed mass and spin as early as
the peak. A model for the ringdown beginning at the peak strain amplitude can exploit the higher

B strain peak \\*:\‘r/_;
Do multiple overtones highly excited at the early stage of ringdown (or merger phase)?
To answer this question is one of the current chaIIenges in graV|tat|onaI phy3|cs

Giesler, Isi, Scheel, Teukolsky (2019)

N|Ao [A1 |As |As |Ay |As |As|A7|tas — tpeak
0.4 : : : : 0(0.971|- |- |- |- |- |- |- 47.00
0o hay" 1(0974/389- |- |- |- |- |- | 1848
= h3y " 200.973|4.14/8.1 |- |- |- |- |- | 1185
i | 310.972|4.19(9.9 [11.4|- |- |- |- 8.05
—0.2 410.972|4.20|10.6|16.6|11.6|- |- |- 5.04
—0.4 strain peak 5(0.972|4.21|11.0(19.8|21.4|10.1|- |- 3.01
6(0.971|4.22|11.2(21.8/28 |21 [6.6]|- 1.50
710.971|4.22|11.3|23.0(33 |29 |14 2.9 0.00




Are BH overtones well excited
for an extreme-mass-ratio merger?

Binary black hole mergers: large mass ratio

30 q=1.221

dominant modes N1 q=1.000

large mass ratio

amplitude

(3 3) (2 1)
S~—— —
Group 2

FIG. 4. The relative importance A,,, defined in Eq. (16) as the strain component in spin-weighted spherical mode (I, m) squared and integrated
from fpeai tO fpeax + 100M. Groups 1-4 of the (/, m) modes are defined according to their relative importance in the QNM expansion, and are
added to the fitting models in order. See details in Sec. IIT A.

Xian Li et al. (2022)
TABLE II. SXS BBH waveforms used in Sec. III.

(/\_}ref,Z):b Xeff
0305/Lev6 ) 1. . -0.4399 -0.0166
1154/Lev3 . . 0.0000 0.0000 .
1143/Lev3 | 1. 0001 0.0000 ~0.0001 La rger Mass Ratio
0593/Lev3 | 1. X 0.0001  0.0001
1354/Lev3 | 1. . 0.0001 —0.0001 H H H H
epainud o] Iyvvcliua v — Excitation of Higher Harmonics
2265/Lev3 | 3. X 0.0000  0.0000
1906/Lev3 || 4. X —-0.0001 0.0000
0187/Lev3 | 5. . 0.0000  0.0000
0181/Lev4 | 6. . 0.0000 0.0000

Data analysis of numerical relativity waveforms
(SXS collaboration)




Fitting analysis in frequency domain

Solving the Sasaki-Nakamura equation

Fourier
transform

20 30 40 50 60 70 80 90
(1,m) = (2,2) Y(2M)

hQNl\le'm(t) = Z Ch S_zwl""'”'tg(t — ZL*) honM,im (w) = % Z

W — Wimg
" Ilmn

- .
Y, lWimnt
C, =Cpe

c.f. Finch, et al. (2021)

Mourier et al. (2020) QNM fitting in frequency domain

Ma, et al. (2021)

QNM fitting in time-domain waveform

Fitting in Frequency vs Time Domain

N. O. arXiv:2208.02923

Frequency Domain Frequency Domain Frequency Domain
0.1 n ] 0.1 ﬂ
Al |
1
hy 0.0 IA.VL,\\{ V Wnuﬂvﬂvl\vnvnv.'.v A 0.0 P ._‘V/\V ununvﬂul\vl\vnvn,'
-0.17 1 -0.17
Nmax = 10 Nmax = 15
-0.2 -0.2
20 30 40 50 60 70 80 90 20 30 40 50 60 70 80 90
t t
0.2 ‘ ‘ ‘ ‘ ‘ ‘ ‘ 0.2 ‘ ‘ ‘ ‘ ‘
Time Domain Time Domain
0.1 1 0.1F ﬂ 1 0.1 ﬂ
It Ly 0.0 i 14+ 0.0 I"“v"‘ ~ U unun“nvhvnvnv"v“v / 14+ 0.0 IA“ LARdme V UAUAVAVAVAVAVAV"'
-0.1 -0.1F 1 -0.1¢
E Nmax = 10 Nmax = 19
-02 _ . LN I I I I . _ . I I I I I I .
0'220 30 40 50 60 70 80 90 O'220 30 40 50 60 70 80 90

Each overtone has an exponentially large amplitude in the early ringdown
— Difficult to control such modes in time domain




Start time of ringdown

h[m

== hqQNM,im

-1

-2

-
-
-
-
-
-
-

~0.4L 0 0 VS R DU P
20 30 40 50 60 70 80 90
(I,m) = (2,2) t/(2M)

(h|hq) h : original

- ‘1 =R (holhd)

hQ : QNM model

start time (best fit)

0.4F

0.2}

0.0

-0.2}

S 0| S U s S S S S Bho ol
20 30 40 50 60 70 80 90 30 40 50 60 70 80 90
t/(2M)

02L. .Y SN LU BT I
20 30 40 50 60 70 80 90 30 40 50 60 70 80 90
t/(2M) t/(2M)

Ringdown starts before the strain peak.
—Overtones are excited.




How are they excited?
Ringdown for a near-extremal BH
— Fermi gas??

(Thermal Excitation of Overtones)

Fermi-Dirac statistics and Kerr Ringdown

FIG. 8: The absolute square of the spectral amplitude of the GW signals for j = 0.8, j = 0.9, and j = 0.99 with | = m = 2.
The Boltzmann distribution (fitted with the red dashed line) appears at higher frequencies than w = po (red solid line). The
blue dot-dashed line indicates w = pxu.

N. O. arXiv:2208.02923
elw—p)/T 1 1

Fermi-Dirac distribution

chemical potential

HH = mQH superradiant frequencyutemperature (frequency)” ' Z ’

Ho = Re(wlmo) fundamental QN frequency —obtained by fitting analysis




Fitting the Boltzmann factor to GW data

1

= e le=w)/T
elw—p)/T 4 1

at higher frequencies

j=0.8 (Tu ~ 0.0597)[j = 0.9 (Ta ~ 0.0483) [j = 0.99 (Tw ~ 0.0197)
(l, m) T Ao AH T Ao AH T Ao \ AH
(2,2) 10.0462(2) 4% 23% |0.0397(2) 3% 18% |0.0198(2) 6% Y0.6%)
(3,3) 0.0493(2) 0.6% 17% |0.0375(1) 10% 22% |0.0196(3) 5% 0.4%
(4,4) 0.0565(1) 14% 5% |0.0454(2) 8% 6% [0.0200(3) 6% 2%
(5,5) [0.0552(2) 10% 8% |0.0483(1) 14% 0.03%|0.0196(4) 4% 0.4%

N. O. arXiv:2208.02923
Relative Error

AO — |T—TQ|/TO, AH — |T— TH|/TH

To = |Im(wymo)|/m - V1 — 42
1=

temperature defined by the fundamental QN damping 47.‘.,,,.+

Hawking “frequency”

Fermi degeneracy of Kerr ringdown

\/1*.72 e

j=0.99 (low Hawking temperature) T =

Ringdown of a near-extremal BH
._) — Thermal Fermi system??

Fermi surface




Green’s function of BH perturbations has infinite poles (i.e. QN modes).

Fermi-Dirac distribution also has infinite poles (i.e. Matsubara modes).

Kerr QN frequencies Matsubara
for j~1 1 frequencies A

) —p W= HH <+—

j =0.99 @® QN modes
Matsubara modes

1
elw—pu)/Tu 4 1

(10, To)
A Matsubara modes
. (pw, Tw)
isolated mode

N

Can ringdown be thermal?

The suggestive frequency cutoff
for an extreme-mass-ratio merger is NOT surprising
once we admit the excitation of multiple overtones.

[ o e e e el ol 3 3 R

A
1)

Summary

Ringdown of an extreme-mass-ratio merger 20 30 40 50 60 70 80 90
t/(2M)

Destructive Interference of overtones

Close values of real parts of QN frequencies may lead to the destructive and constructive interference.

Beginning of Ringdown Strain Peak Exponential Damping
(Destructive Interference) (Constructive Interference) (Fundamental Mode)

Exponential Cutoff in the Ringdown Spectrum — Fermi-Dirac Distribution?

Another supporting evidence
of the excitation of multiple overtones

near-extremal BH -> Fermi surface at

QN modes ~ Matsubara modes
in the near-extremal limit
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Conversion of squeezed gravitons into photons during inflation
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Background Y

Inflation theory

succeeded to explain some problems of big bang theory, and simultaneously, it explain the origin of the CMB
fluctuation and LSS in the context of the quantum field theory in curved spacetime.

It argues that the quantum fluctuation at the early inflationary epoch is stretched to the cosmological scale and
form the cosmological structure.

quantum fluctuation Initial condition of the density fluctuation
= Quantum fluctuation

}/\

Cosmic expansion

v

The quantum fluctuation of the spacetime would
MNNWIWW relic graviton produce primordial GW (relic graviton).

+ time evolution Afterglow Light

¥

atf
375,000 yrs.

CMB fluctuation Large scale structure

1st Stars
about 400 million yrs.

Big Ba
13.77

e Planck Collaboration ©2dF Galaxy Redshift Survey Team /(CCO) (©NASA Science team
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Background Y

It is important to explore quantum nature of the primordial gravitational wave.

The state of the relic graviton is written as some squeezed state during inflation.

However, decoherence of the gravitons during cosmic history may change the degree of squeezing.

T quantum fluctuation Initial condition of the density fluctuation
m > = Quantum fluctuation
The quantum fluctuation of the spacetime would
MNVNWNW relic graviton produce primordial GW (relic graviton).

Cosmic expansion

Dark Ener
Accelerated Expansion
Afterglow Light N

+ time evolution Paitern  DarkAges  Development of

¥

375,000 yrs. Galaxies, Planets, etc.

CMB fluctuation Large scale structure

Fluctuations &

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

©ESA and the Planck Collaboration ©2dF Galaxy Redshift Survey Team /(CCO) e y—

Graviton photon conversion

As the first step of the analysis of decoherence of the quantum state of the relic graviton, we consider the
influence of the background magnetic field during inflation, since the existence of the tiny background
magnetic field is not excluded by the observation. And the existence of the background magnetic field induces
the graviton to photon conversion and vice versa.

In the presence of the magnetic field, graviton is converted to the photon and verse versa.

L. Maiani, R. Petronzio, and E. Zavattini, Phys. Lett. B 175, 359 (1986).
G. Raffelt and L. Stodolsky, Phys. Rev. D 37, 1237 (1988).

E. Masaki, J. Soda, PRD98, 023540 (2018)

1

=
oo

Background magnetic field

i Graviton l l l l l

Intensity
g

=
-

Graviton Photon

e
o

o

10° 10t 10* 10° 10 O
Redshift

Besides the expansion of the universe, the existence of the cosmic magnetic field seems to have a
big influence.



Introduction and motivation

Whether the squeezing of the gravitons survives or not during inflation ?
Under the presence of the background magnetic field.

Procedure of analysis /5 |

1. Make a setup and derive the field equation of photon and graviton
2. Solve perturbatively with Green’s function
3. Bogoliubov transformation

4. Define vacuum state and derive squeezing parameter
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1. Make a setup and derive the field equation of photon and graviton

Setup

Part of the Action
MSI 4 1 4 v
Sg—I—SA:T dx\/—gR—Z d*z/—g F'"'F,,
TT-gauge h,; J=h =0 Radiation-gauge A, = (0,A), V-A=0

de-Sitter background
ds® = a®(n) [—dn® + (8;5 + hsj) da*dz? ]

1

Scale factor a(7) = T Conformal time —00 < 1) < ()
n
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1. Make a setup and derive the field equation of photon and graviton

Setup

We can decompose the action with the degree of freedom of the graviton and photons and their mixing,

Graviton part Photon part
M2 ’ ’ 1
68y = Tpl d*za® W7 hi; — WP hisp] 054 =5 / d*z [A]? — A ]

Interaction part

651 = / d*z [gi0mBmh" (0jA¢ — 00 A;)]

1 Constant sizable background magnetic field that we
Bm = Emj¢ 8j Ag assumed the presence at the beginning of inflation.



Decomposition of the solutions /5 |

1. Make a setup and derive the field equation of photon and graviton

We defined the polarization tensor representing the vector component of the electromagnetic wave

Electromagnetic wave mode function

At =2 s | PR AL e (k) e

Polarization vector

We defined the polarization tensor representing the tensor component of the gravitational wave
Gravitational wave

| 9 1 mode function '
hij (777 xz) - M. ) Z (271')3/2 /d?’k hﬁ(n) 65 (k) eZk'w
Plp Polarization tensor
Analysis ¥y

~an NNl ‘ ‘
1. Make a setup and derive the field equation of photon and graviton

Field Egs of graviton and photons

/
heE () + Q%h;f(n) + k*hE (n) = _C%Af(n) Confo&mal time derivative
[ R
A" (n) + K2 AR (n) = —Ahy () dn
C li tant
After the conformal Yr(n) = a(n)hr(n) OUPIng i;)ﬁns 'an
transformation, k) = M—e“m et k¢ By,
we obtain the simplified field ol

equation 5
Yy + <1<:2 — ?) Y = NHnAy

A+ k? Ap, = XHn g,
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Procedure of analysis A

2. Solve perturbatively with Green’s function

~(0 0 ~ 0)* A
3" + (k - 2) i =0 g () = uy () &+ uy" (1) &
n
th I 7(0) ) NG 1 (0% 5
0 A" 4 kA0 — 0 Ay (n) = v, (m)d + vy, (n)d?
77 ~
iy (o 2 oy 300 = — [ aiGasto i WAL o)
s k b Up = AHnA, i
1st A A | = ug)(n) d+ ug)*(n) d’
AV 4 2AD = AHpg® ,
1 ~(0
AP () = - / dn'Gu(n, 1 )AHn'9 (')
ni
y,(f)” <k2 n—) @) — )\HnAS) = v,(cl)(n) é—i—v,(cl)*(n) et
Zn

A"+ R AY = XHny)

At initial time, only 0t order of the solution appear.

The constant operator can be written by the creation and annihilation
operator at the initial time of the inflation.

10/15

Procedure of analysis AN

3. Bogoliubov transformation

Time development of the operators are described by the Bogoliubov transformation

Qy (77) Qy (771) Ay (77@)
aj,(n) Vv aj (n:) _J (A O i 0 B n Ay 0 af (n;)
af (n) aa(m:) 0 Dy Ci 0 0 D af(m)
aA(n) aA(nZ) Oth 1St an aA(nl)
Operators at arbitrary time at inflation Operators at initial time
Instant vacuum state Bunch Davies vacuum state

ay (7, K)]0) = @ (n, K)]0) = 0 dy (17:, K)|BD) = (s, k)|BD) = 0

Qy By YA 5A
By oy 04 i
Yy Oy aa Ba
5 v B o

The inverse matrix of the time evolution M ' =
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Procedure of analysis

ANANN/ ‘ ‘ ‘
4. Define vacuum state and derive squeezing parameter
Definition of Bunch Davies vacuum for graviton Definition of Bunch Davies vacuum for photon
4y (7, K)IBD) =0 A+ By +7aE=0  a4(n;,k)BD) =0 @aZ+yA+3, =0
oy= + 40+ 04 =0 OzAQ-I-ﬂA—i—’}/yE:O

Since the photon and graviton behaves independently, their operator commutes,
[%(77, k) 7dA(77= k)] = —0a0a + Bava — ’Vyﬁy + O‘y(sy =0
Solving above simultaneous equations, we obtain each squeezing operators as
A= Y40y — Byaa = _ By vy — arydy 0= Vy0a — Bacy
Oyx g — YyVA QyllA — Yy YA QylgA — Yy VA

We assume the Bunch Davies vacuum as

D) = T] e [ alon maln, )+ Saln iahen, ) +

k=—o0

+ 5 d ki k)| 10
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Numerical result AN

BD) = H exp [ a3 k)3l —4) § Zal W)l . —k) + 5 a0 k)| 10

|
i ! / l 13 2
bl ; A=5x 10713 GeV
| A2H?%p? 1o-1f Tty
| | A=14+0 L ' g — 102
10724 1 : + ( El : : k =10° GeV
: | ' H=10"GeV
O 32! | = —2GeV!
S -4 S10-2¢ 2 i
<10 = E Loa(m) = (2 x 10171
- =/l
4 I S B 1
107+ ; =0 10~ i Z 41\421‘12 km
E — A=5x10"3CeV? 10-14 i 10713 B?Ja} < M3 H?
-8 LL L L | | L 1/k2 <L

10
10713 10712 107° 10-6 1073 10°

a
The squeezing operator for graviton reduces 1 after the horizon exit.

The amplitude of the oscillation before the horizon exit is weakened by the conversion.
i.e. some part of the graviton is converted to the photon.



Numerical result

BD) = []

0.001

10—6 ,

(@)l

=
—

1070}

10—12 ,

10—15 , |

| Horizon Exit

[— A=5x10"BGev?]

10—15‘

10712 107°

1076 0.001

The mixing state go down after the horizon exit.

Numerical result

IBD) =

l\DI:>

II exp{

k=—oc0

1

13/15
AAAA““

(1.~#)| o)

>
=

A=5x10"13 GeV?
k= 10%GeV

H =10 GeV

7 =—2GeV !

a(m;) = (2 x 1014) 71
B2 1

B?/a} < M} H?

1/k<n;

14/15
AA‘A““

o k)af k) + Zal o )l (. )+ 5 a0 k)|

0.001

1076:

1)(a)

10—9:

10—12:

10—15: |

—

| Horizon Exit

2k, 5A2H%n3
32k3

[— A=5x10"13GeV?]

10715

10712 107°

107° 0.001

a

1

A=5x10"13 GeV?

k =10% GeV

H =10"GeV

n = —2 GeV !

a(n;) = (2x 10")7*
LB 1
- a?MngQ k?]z

B?/a} < M} H?

1/k < n;

The photon originated by the graviton is generated at early time of the inflation.

It is consistent with other results.



Summary °* Future work

Will the squeezing of the gravitons survives or not during inflation ?
Under the presence of the background magnetic field.

V Derived the field equation of the graviton field and that of photon field under the
influence of the background magnetic field.
V Obtain solutions by using perturbative approach and Green’s function.
V Performed the Bogoliubov transformation to follow the time evolution of squeezing parameter.
V Plotted the squeezing parameter of GG, GP, and PP state during inflation.

A. The gravitons are robust against the decoherence by the cosmological magnetic fields.

Future work
[] How to include the small anisotropy of the spacetime background ?
[] Are there some model which the squeezing of the graviton broken at the inflation end ?
[ ] How about
* other spacetime background, background magnetic field, or systems to consider.
* after the inflation era, (radiation, matter, cosmological constant dominant era)

END

Thank you for your listening!



Analysis T

We adopted the perturbative approach to solve field equation of graviton and photon

i 2
O 4 <k2 _ _2> 39 = 0
oth T

A9 1240 — o

2 ~
1st |

AP 2D < g

" + <k2 ) y® = AHpAY
2nd "
Ag)// 4F k:QAg) = \Hn y;cl)

Solve iteratively with Green’s function

Minkowski

1.
Gwm(n,n') = — 4 sin k(n—n')

de Sitter
Ne (1 Y (12 ek

1 i i\ /
(1 ) [1 = ) etk
2ik< kn’)( +kn>e

Analysis YT

Perturbative solutions of the graviton field

9O (1) = w2 () &+ ud* () &t

Constant operator of the integration of graviton

~(1) _ nd 7el "\H /A(O) /
Uy (n) = n'Gas(n,n' )AHn A’ (')
= u"(n) d+uP*(n) dt
n
97 () = dn/ Gas(n, " )NHn' AV (1)

b
uP(n) &+ ulP*(n) &

Perturbative solutions of the photon field
4 (0) (0) (0)* (N7
A () = vy (n)d + 0, ()
Constant operator of the integration of photon

. n
AD () = - / dn Goa(m,  )ME 50 (o

%

= v,i” (n) ¢+ v (n) ¢



Analysis ol

Since only the 0" order solution contributes solutions at initial time, we can derive the
explicit form of the annihilation operator at the initial time.

A L k)=(1- —ikn; 4 ikn; At
iy (i k) ( ka) e et e e

aa(mi, k) = e *"d

We can easily solve inversely to obtain

c— (1 ikn; k) — kN AT (0. —k
¢ ( + anz> € ay(nu ) ,’7‘6 ay(nl) )

d = e™* G4 (n;, k)

After plugging these operators into equations in previous slide, we obtain the time
evolution of the annihilation opeartors.

Bogoliubov transformation AN

Time development of the operators are described by the Bogoliubov transformation

don | (o) g o, (0 By, (4 oy [edim
caon | = (e | =10 m)+ (e 9)+ (5 2)} e
ah(n) aly () o iy EAONCD)

The inverse matrix of the time evolution

o By ya 0a ay (i, k) = oy y (1, k) + By 6 (n, —k) + ya da(n, k) + 04 a1y (n, —k)
M71 — ﬂy ay 5A rYA
Yy 5y oA /81*4 dA(n“k) =Yy dy(na k) +5y &L(TI?_’C) + o dA(%k) +BA &2(7)7 _k)

oy vy Ba o

The Bunch Davies vacuum is defined by the ground state at the initial time,

ay (11i; k)| BD) = aa(n;, k)[BD) =0



Bunch Davies vacuum state AT

Commutation relations of operators
[ay (1, ), al,(n, —k)] = 6(k + k') [aa(n, k),

[dy(n, k): &A(Th 7k/)] =0

aly(n, —K)] = o(k + k')

Since the quantum state of the current system is consisted by the photon and graviton,

Hye QHy . OHa @Ha —k

We assume the Bunch Davies vacuum as

IBD) = H exp [ k)&;

k=—o0

—k) +Za

(777 _k) +

aly (n, k)aly (n,—k) | 0)

w|[:>

> APEIQ"
=11 D). 5P+ Dur® D)y -k @M ak®lg+7)a

p+rpl gl ]
k p.,g,r= 02 prar

Instant vacuum state
ay(n,k)|0) = aa(n, k)|0) =0

Polarization tensor AN

Polarization tensor
e (k)i (k) = 67
e’ (k)ef? (k) = 679

P’Q:—i_’x

1 X
= S5 {er (B)e (k) —ex (ke (k) )
e3s) = = {ei (e (k) + e (ke ()}

Configuration of the momentum, polarization vectors, background magnetic field, and direction of

propagation is illustrated as
k/|k|

Direction
0 of
propagation

Direction

of

propagation

4

kz/gk|




Analysis YT

Solutions are written as
Ur(n) = (u}j’) I uff)) c+ ufcl) d+h.c. flk(n) = (v,(co) + v,(f)> d+ v,(cl) ¢+ h.c.

After the derivation of solutions, we define the conjugate momentum of each modes,

Conjugate momentum of the graviton
0L, , 1

() = 57— = yk(n) + —yk(n)
8y’_k k n

= (ug)) "+ ugf) /) ¢+ ug) "d+ %{ (ug)) + ug)) ¢+ ug) d} + h.c.

Conjugate momentum of the photon

OL 5 ,
() = 50— = Ak(n)

0A" ,,

_ (v,(co)’ + 0@ ’) d+v” é+he

Instant vacuum state is defined by the annihilation operator for each time

a(n, k)|0) =0

Analysis o

Annihilation operator is defined by the solution and its momentum,
P N I Y
ay(n, k) 5 U (1) mpk(n) aa(n k) =/ 5 Ak(n) mm(n)

After simplify the coefficient function of the operators, we obtain

ay(n, k) = (w;°> + w,?))e 1 (¢§g>* i wgg)*)éf + g0d + =t

aa(m,k) = (60 + 6@ )d+ (607 + 627 )t +¢Vé + gD el

where we defined coefficient functions as
G) _ R @G) v (G L3G) ) — P G) ()
ij - \/;uk: (77) + \/ﬁ (uk (77) + nuk: (77)) ¢p - \/g'vk (77) + \/ﬁvk (T])
LGy

SR o 1 . .
v = 5“;3)(77) - \/%(Ug) () + Eug)(n)) oY) = \/gv,?)(n) - \/_2_kvk (n)

Thus, the time evolution of the annihilation operators of graviton and
photon is expressed with the constant operators of the integration.



Analysis ol

The time evolution of each annihilation operator for graviton

au1.0) = | (99 + 92 ) (1 =)o (907 + 02 ) e o )

v * * i —1 '_ ~
+ (1/1120) +¢z()2))< Sk, ) R (1/1(0) + 35 )(1 - m)e F alf (i, —k)

D e 4 (1, k) + YD e~ 6, (n;, —k)

The time evolution of each annihilation operator for photon

aa(n k) = <¢§3) (1+ %)e’“”z + 0 e ’“’%)am,kz)

+(—¢§l)mezkm+¢%) <1—m)€ zkm) al,(ni, —k)

(90 + 6@ e an(m, k) + (9 + ¢ e~ *al, (1, k)

Bunch Davies vacuum state AN

Commutation relations of operators
[y (n, k), & (n, —k")] = 6(k + &) [aa(n,k),ali(n,—K)] = (k + &)
[&y(ﬂ» k)v dA(nv _k/)] =0

Since the quantum state of the current system is consisted by the photon and graviton,

Hyk @Hy 1 @Hak @Ha,—k

We assume the Bunch Davies vacuum as

- A . . ) Q
BD) = [ exp [5 af (n. k)al(n, —k) +Zaf (. k)al (0, —k) + 5 aly (n, k)il (n. k) | |0)
k=—o00
>\ APEZIQT
_ H Z 2p_|_rp| q| '|p + Q>y,k: & |p>y,—k: ® |T>A,k oY |q + T>A,—k
k p,q,r=0

Instant vacuum state

ay(n, k)|0) = aa(n, k)[0) =0
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guaranteed by Robertson inequality in quantum field theory
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Introduction
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The unification of gravity and quantum mechanics is one
of the most important problems in modern physics

However, we do not know even whether gravitational
interaction obeys the framework of quantum mechanics
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Introduction

What happens, if massive particle is in a superposition state

Dose superposition state of Newtonian potential realize?

Superposition state of a particle A

Introduction

What happens, if massive particle is in a superposition state

Dose superposition state of Newtonian potential realize?

Superposition state of a particle A

/

Quantum superposition state of
Newtonian potential due to a particle A?



Introduction

Does a massive quantum particle generate the quantum
superposition of Newtonian potential?

How is the quantum superposition of Newtonian potential
consistent with the QFT of gravity and graviton?

Gedanken experiment i 2000

Considering two systems (Alice and Bob) interact through Newtonian potential

: Success

i Interference — ﬂﬂéﬂﬂ (A) Alice’s S.ySte.m. N
R A ~ ?u\re Alice’s particle is in a superposition of
two states and starts to recombine at
e Trapped
: t=0.
Ta ¢
Released \\: Tg
. ! (measurement) \\: . . .
0. At t=T,, an interference experiment is
= H e S T P ——— L
N D " performed and judges whether it is
i success or not.

Alice Bob



Gedanken experiment Mari et al. (2016)

Belenchia et al.(2018)

Considering two systems (Alice and Bob) interact through Newtonian potential

Succe

Interference —

A

or

SS

~, Failure

Trapped

Gedanken experimen

. Released :1 [TB
*~_(‘measurement) :

»
>

Bob

(B) Bob’s system

Bob chooses whether he releases his
particle or not at r = 0.

(Alice’s particle and Bob’s particle
interact with each other through
Newtonian potential.)

When he releases his particle, he
measures the position of his particle.

We can judge which-path Alice’s
particle took by using Bob’s particle

Mari et al. (2016)

Belenchia et al.(2018)

In this system, we consider causality and complementarity

Success

Interference —

Released :§ ITB
ent) \\

»

Trapped
Ta :
) *~_(‘measurem
tr=0 ' ------

Bob

If causality holds, Alice’s interference

experiments succeed no matter what
Bob measures

(Causality: properties of GR)

Here, complementarity means Alice's

interference experiments fail due to
Bob's measurement

(Complementarity: properties of QM)



= Mari l. (2016
Gedanken experiment i 2000
In this system, we consider causality and complementarity

t

Interference
~ T

, Trapped
Ta . |
. Releasedt) | Ts
f=0 .t Y ) | Here, complementarity means Alice's
.‘ D " interference experiments fail due to
e Bob's measurement
Alice Béb (Complementarity: properties of QM)

Gedanken experiment =i & o

In this system, we consider causality and complementarity

Success ?
L Interference — Aﬂéﬂﬂ P> T andb>Ty
T K~ Failre 7 If causality holds, Alice’s interference
i A experiments succeed no matter what
- : . TP Bob measures
eleased T (Causality: properties of GR)
! R Here, complementarity means Alice's
. > D ‘ ’5 interference experiments fail due to
<L Bob's measurement
Alice Bob (Complementarity: properties of QM)

Newtonian potential only,
Causality and Complementarity contradict ! ?



Resolution for paradox sz ca @)

Paradox is solved by order estimation

: Success

L torference — Agm (A i) vacuum fluctuation
R 5 — ?u\re Bob’s measurement of Alice’s
‘ ) T Trapped which-path information is limited
T . S - (Through superposition
Rebase(\ lTB of Newtonian potential)
=0 ] (A i)
| *- - D Alice’s experiments are failure
L . due to decoherence
Alice Bob
Thanks to the quantum gravitational Quantized gravitational
field, the paradox does not appear field is necessary !

Our motivation

We want to understand causality and complementarity are
consistent based on QFT

Use a model of QED: gauge field
interacting with two charged particles

YS, Matsumura, Yamamoto, PRD 106, 045009 (2022)

, arXiv: 2206.02506

EM Gravity
Charge ¢—» Mass
EM wave €&=—» GWs



Setup

t

- Particle A combines during time T, L.

particle A particle B

- Particle B performs interference experiment
during time T, and measures which path A took

Ta
. initial state
1
| P(0)) = 5( |RY A+ L)s) (IR s +1L)g) 0),y, o P+ —
OT) = 7 0T o= [ox(f+ )i La g

[¥(T)) = e~ U7 9 (0))
1 1
N — |R>A|(I)BR> +— |L>A|(I)BL>

V2 V2

Causality

If causality holds, Bob should not affect Alice’s experiments...

- Alice’s density matrix Apriy®) = Jd4yG;V(x, o)
pa = Trg ) L1 F(D)F(T)|]
1 1 le_rA‘H(DA(e_i J d4x(JKR_JKL)ABRu + e_if d4x(JXR_JKL)ABLﬂ>
- — 2
2 " 1



Causality

If causality holds, Bob should not affect Alice’s experiments...

- Alice’s density matrix Apriy®) = [ VG (5 D s )
pa = Trg )L P(T)H)F(T)|] D>T,&D>T,
1 1 % e—FA+i<I>A< =i I TiD Ay ¢ =i jd4x(J/{“R—JKL%ﬂ>\
2 %
L Gux,y)=0

particle A "W particle B

A — N —

Ta |L>A [R)a ¥ /

Causality

If causality holds, Bob should not affect Alice’s experiments...

t

L.

- Alice’s density matrix particle A wB
Pa = T”B,ph[ |P())P(T)|] Ta ILYa/ \|Rya )
1 1 o Tati®,) /,’mB Wik
=5<6—FA—®_ 1 ) REREEE.
I, > 0 : decoherence induced by vacuum fluctuation <L_A>
=)

CDA cause phase shift in Alice’s experiments

Bob does not affect Alice’s denSIty matrlx '

Hidaka, Iso, Shimada (2022)



Complementarity 25 (5

1 H article A Fail
Complementarity is evaluated by ebandsti ju\re

Vi+D} <1

Visibility v, : coherence of particle A

particle B

Distinguishability D, : how Bob’s state can
distinguish the trajectory of A

*9) tp,=1, V,=0

We can judge which-path A took
But the coherence of particle A is lost

Complementarity 2o (5

i i particle A S
Complementarity is evaluated by  foonee R

Vi+D;<1

Visibility v, : coherence of particle A

particle B

Distinguishability D, : how Bob’s state can
distinguish the trajectory of A

*9) tp,=0, V, <1

We cannot judge which-path A took
The experiment of particle A can be success

vV, and D, are complementary



Complementarity e o2 1999
- Visibility

V=21, (Lel pa| Rp)a
interference term of Alice’s density matrix

particle A

particle B

- Distinguishability

1 1
DB:ETrBlpBR_pBL| :52 | 41
i

pep = Trpnl | Ppp)(Pppl ]

. Result

@
Vi+ Dj = e acos? <%> + e s sin? (%) <1

Dyp = Jd4x(J/'fR = Ji)Asry = Apry) -= Jd4x(J§R = Jp)Aary = Aary)

Complementarity 2o (5

- Visibility i
parf;g!e A _particle B
V=21, ({Lel pa| Rp) 4| \ EAN IR
interference term of Alice’s density matrix‘\,\ ,|L’>’KA

- Distinguishability
1 1
Dy =—Tr - =— A;
B3 | PpR — Pp1)| 2Z| il

Pep = Trpn[ | @pp){(Pppl]
. Result When A and B are space-like,

@
V24 D} = e 1 cos? <7é£> + e s gin? <¥) <1

Dyp = Jd4x(J£R — i) Bifku — Hory) -: Jd4x(J§R ~ Jp)Aary = Aary)




Complementarity 25 (5
- Visibility

Va=12], <Lf| Pa |Rf>A | \
interference term of Alice’s density matrix\\,\ |

particle A

particle B

- Distinguishability

1 1
DB:ETrBlpBR_pBﬂ :52 | 41
i

ppp = Trpnl | Ppp){Pppl ]
. Result When A and B are space-like,

VX + Dé = e a4 e~ Hsgin? <¥) <1

@yp = Jd4x(J:R - J:L)(%‘ _}{Lﬂ) -= Jd4x(JgR ~ ) Aary = Aary)

Complementarity 2o (5
- Visibility

Va=21,{Llpal R)al \
interference term of Alice’s density matrix ., |L)

parti;:le A

_particle B

- Distinguishability
1 1
Dy =—Tr - =— A;
B3 | PpR — Pp1)| 2Z| il

Pep = Trpn[ | @pp){(Pppl]
. Result When A and B are space-like,

Vj‘ + Dé = e a4 e Hsgin? <¥) <1

This inequality violates if r, _ =0




Robertson inequality

- Robertson inequality Formulas
-7 1 722
For arbitrary observables 4, B, (0] €| 0) = e~70009i10) = ¢T3
(MAY(8BY > —|([A.B])) bi= Jd XA () = JAODA, ()
AA, AB are fluctuation (phase shift due to vacuum fluctuation of 4,(x))
- Result

Dy # 0 — G, y) ~ [A,(0,A,(N]IO" - y0) # 0

M2
IﬁAFB 2 16 (DBA (hnon-commutative property of Aﬂ(x))

I, and I'y; cannot be 0 at the same time, if ®,, #0 !
- Relation to complementarity
1 ) o
r,rp> ECDIZQA = ¢ M4 4 ¢ Tssin? <TBA> <1 (sufficient condition)

Complementarity is guaranteed by Robertson inequality !

Conclusion

- We investigated the paradox based on QED
Bob’s operations do not affect Alice’s interference experiments due to causality
We derived an inequality representing complementarity

Complementarity is guaranteed by Robertson inequality
Causality and complementarity are consistent !

.- Similar result is expected for the gravitational field:
1 ’ . . Of
rars > 1_6((1)%*‘)2 = e 2l 4 eI gin? (%) <1
For the paradox not to appear, not only Newtonian potential, but also
the non-commutative property of the

gravitational field is expected to be necessary




Thank you for listening!

I'd like to say the message from Yamamoto-san.

Congratulations on your 60’s birthday,
Prof. Jun’ichi Yokoyama!!

Backup



Backup : Larmor radiation formula

Energy radiation W using Larmor formula

2
L
W ~ &2 <—>
T2
The number of emitted photon N during time T

2
WT L n
N=—~ez<?) ~ (014210)

0)

Energy of one photon

Backup : Formulas

1 ~ A
T, = n Jd4xd4y(J/§‘R(x) = J10) (JL0) = 4 ) ({ALx), AL })

1
@, = Jd“x(J:R(x) I DA ~ Jd“xd“y(JgR(m — I OV + T4, (0))G(x, )

|¥(T)) = exp| — iHT] |'¥(0) H=H,+V
T
= e Al Texp| —i| diV,(1)]|W(0) . . . .
ol=if avlivor Jd%(Jg(x) + 7400 ) A

ol N
X e_'HOTE Z | PYA1 Q)gUpg | )
P.O=R.L

1 L A , A
= EPQz_;eLle>A|Qf>B€ IH/;/:TUPQ|a>ph UPQ = Texp [—iJO dtjd3x (J:P+J§Q>AL(X)]

(0]
Vi=eTa cos(%)
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Accelerating Expan Yoshiyuki WATABIKI

Qﬁ th e U\ |\V/e rg@ watabiki@th.phys.titech.ac.jp
| . . (in collaboration with
by Porcupinefish Jan Ambjern)

Spa cetime Talk @ JGRG31
held at Univ. of Tokyo
on 26/10/2022
Conclusion

® The topology of universe is 3D torus.
== The spacetime is flat.

® Accelerating expansion of universe is
caused by Porcupinefish spacetime.

IO
R
NTEL

=P The late time observables are
explained from the early time ones (CMB).

1-b
D. From the birth of universes to the Big Bang

® Hamiltonian for the evolution of Universe

Hy, = — g Z Tr: ara;a,:
k+l+m=-2
[¢mr 711-]=6m,n © n-3 ot —_
t -9 Z z Pre Pr—ie—21Pn Knitting
an = ()bn = =
n=d k=1 . B Mechanism
A_p =Ny +
Lo, m9), ) kb |
g n=4 k=max(3-n,1) — Expansion
T2 ™ o of Universes
=1 2 B andn + K Z b-nn — 29 Z O

: o
+ (U1 — 29¢, — gp11) - @‘1’4—5% of 4g

a Creation of Universes
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1-b
e Knitting mechanism (Dimension Enhancement)

< o C o o
N - O

A A

L

=

( A wormhole with Length L is shown by purple line.)

=
p

High—dimensional space is formed after the birth of space.

Contributions by tiny wormholes are dominant. G(L,L;T) ~
ytny ( ) VArLT

[T ~0]
>

(x y]
(The set of tiny wormholes gives a topology.)

2-a
2. Modified Friedmann Equation

d. The derivation of Modified Friedmann equation

® The classical Hamiltonian from

) $heanda 1) i indn—29 ) $lno,

2—g> L,m=1

Ho=—-L|*—pu+
I1
W is replaced by Matter Energy

at the end of inflation.

then, we obtain

N B 1+ 3F(x) Kp
L/L) =4 . 4 —
(L/1) T L F0)? =3
(F(x)3—(Fx)?*+x=0 x & B B —8g
° (L/L)



2-b
b. The origin of accelerating expansion of Universe

® The geometrical meaning of —2ga, . c/);[_znqbn
This term comes from the leading term of disk amplitude F(L)
F(LY=6W)+ -

Negative g gives accelerating

expansion of Universe.
A ’ Creation of baby universe
T W @[ F(L) =6(V)

o — R
i

Porcupinefish diagram

3. Cosmic Tensions caused by >
Accelerating Expansion of Universe
® Boundary Condition (CDM is assumed)
Data from Planck satellite
t{MB) = 13.8 x 10° [year]
HéCMB) =67.3 + 0.6 [km/sec/Mpc]
z'MB) = 1089.95
| steoniem ety

£ CMB) and ACMB) are determined.

e -



® Boundary Condition (CDM is assumed)

Data from Standard candles
H(gSC) =73.01+1.0 [km/SeC/IVIpC] 4= 57 from Planck Satellite

(ArXiv:2112.04510)
No difference between

CMB CMB
We also use t( ) and Z( ) 4= ACDM model and our
LS (CMB)
model before tis

(s
(scz(ngBz) 1+ Z]EgMB) H 5o ( (sc)) _ Hésc)
L so(t
(B)
) e () n
LS

(SC) NGO t(B) B are determined.

a =133 =13.9

. H(Z) 3' b
1+z Blue is our model using Standard Candle data.
is ACDM model using Standard Candle data.
24 is ACDM model by Planck satellite data only.

1+z

80+

H, tension 75:
(50 difference)

~ 70-

05+

55}

(B)2 _ (SC)2 _ 2
Xreq = 1.3% =19



Dy(z)

(BAO)
s
rB) o B9 L MB) 2 147,05 + 0.30 [Mpd]

Data from Planck satellite

75 is the sound horizon at z = Zgy,g

Dy(z)/rs Dy (2)/rs
' (Dy (2)/r5)CM®)

1.05

1.00

0.95/

0.0 |
0.90

(B)2 — 102 X(SC)Z —

Xred

¢ fm(z) GS(Z)

aéB) (zg) ~ aésc) (zg) ~ aéCMB) (z,) =0.8120 + 0.0073

£(2) 06(2) Data from Planck satellite

0.7

0.6,

0.5
—
\\
0.4
r4

0.5 1.0 15

X(SC)Z — 0512 X(CMB)Z — 0.542

red red

(B)2 _
Xroq = 0.70%

° Sg & S5(0), Sglz) & 05(2)\/Qm(2)/0.3

B SC CMB
B2 =752 40592 Zg752 (VB2 _ 3352

@ og problem




4. Conclusions

d. Emergence of space

® High-dimensional space is formed
by the direct product of several 1D loop spaces S1.
® The topology of our universe is 3D torus.

Therefore, the spacetime is flat. @

b. Identity of Dark energy

® Accelerating expansion of Universe is explained

by Porcupinefish spacetime. S
® No tensions appear in (Hy, BAO, fag, Sg). %

® Dark energy does not exist.
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Non-singular bouncing universe

under the null energy condition

Presenter : Yuki Hashimoto (Fukushima University)

Collaboration with : Kazuharu Bamba (Fukushima University)

What is the Bounce Universe Model?

’
’

NEE
Y = 4
1.5 N
\i 4 — bounce
=== Scale Factor ‘i'
1-0 L T T T T : T T T T T
3.5 4.0 4.5 5.0 : 5.5 6.0 6.5 7.0 7.5
841 : ~— Hubble Parameter
0.2 1 ;

= 0.0

—-0.2

—0.4

—

The universe transitions from contraction to expansion.

55 6.0 65 7.0 7.5

Ho*t

3.5 4.0 4.5 5.0
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Bounce and Null Energy Condition

* Requirements for bouncing:.

1

.H=__2
2M3

k
(p+p)+§>0,whenH=0.

* Null Energy Condition (NEC):.

 Condition on energy positivity
M. Novello and S. E. Perez Bergliaffa. Bouncing Cosmologies. Phys. Rept., 463

*NECS p+p=0

The bounce universe requires a violation of null

energy condition.

Previous Studies

Conventional Study (k = 0):

* Bounce has achieved by violation of the null energy condition.
Yi-Fu Cai, Damien A. Easson, and Robert Brandenberger. JCAP, 08:020, 2012.
* The violation of null energy condition means that ’ghosts” exist.

} Cosmological solutions without singularity are unstable for

linear perturbations. Tsutomu Kobayashi, Phys.Rev.D, 94 (2016) 4

Latest Study (k > 0):

* A classical model that does not require violation of the null

energy condition has proposed.
} Stable bounce without instability due to violation of the

condition can be realized.
Ozeng Giingér and Glenn D. Starkman JCAP 04 (2021) 003.

4



Contents of this work

For the non-singular bouncing universe under the null
energy condition, we solve the next equations

numerically:
* Equation of motion for a scalar field
* Friedmann equations

Also, we analyze the evolution of the universe before

and after the bounce.

Bounce Universe Model under the NEC

To build a model that satisfies the null energy condition...

We consider a scalar field (Jordan frame action) with a

canonical kinetic energy term coupled with a scalar curvature R .

h 4

The coupling of the scalar field and the scalar curvature
facilitates the bounce that occurs when dominating the kinematics
of the scale factor and plays an important role in the evolution of

the universe. Ozeng Giingor and Glenn D. Starkman JCAP 04 (2021) 003



Bounce Universe Model under the NEC

e Jordan frame action :

An action that couples general relativity with real scalar field.

a

1 1 .
S = j\/—_gd4x (E MR == "V pVy g — (2 Rop* + V(<p)>>

Mp  : Plank mass

a . Parameter

R : Scalar curvature
V(@) : Scalar field potential

Ozeng Giingdr and Glenn D. Starkman JCAP 04 (2021) 003

Bounce Universe Model under the NEC

10 x10-3
0.8

i 0.6 1

=

'§ 0.4 1
0.2 1
0.0 T T T T T T

-05 0.0 0.5 1.0 15 20

o[M;] x10-8

= 2
Scalar field potential : V(@) =V, + mT p? + §<p3 + %(p‘*

Scalar potential : V(@) = V(@) + %R(p2 (Vo, @, B, A : constant, m = 1078Mp)

Ozeng Giingér and Glenn D. Starkman JCAP 04 (2021) 003 g



Bounce Universe Model under the NEC

-2 &S

T = =g 597

1
=(1- 2a)V”<va<p 5 (1- 4a)guvgaﬁvafpvﬁ<p

— 9,V (@) + aRy@* — 2apV, V@ + 2g,,ap@
1 i
= _— 02+ V(p) —3a=p?
p=59"+V(p)—3a_g¢

1 _ d k .
p =§(1 —4a)p? — V(p) +a(a+2H2 +2;)(p2 —2a9¢

. k
R=6<H+2H2+—2)
a

Ozeng Giingdr and Glenn D. Starkman JCAP 04 (2021) 003

9

Numerical Simulation

- Equation of motion for a scalar field : ¢ + 3H¢ + a';f;’)) =0

1

. : : k
Friedmann equations : H = — o (p+p)+ —

Q| Q:

1
= — o P 1 3p)

* Initial conditions :

_ -4 4 _ —B+yJB?-4m22 . —4 _ V(o)
Vo =1.0x107*"m* @g = —————, ¢ =1.0x107% H, = 3(ME-ag3)’

ap = 10, dy = agHy, Mp =1, m = 10"8Mp, a = % B=21m, A=1, k=1.0m?
10



Result and discussion

x1072 x10-7
F1.0
4 {1 = Numerical Scalar field ¢
2 0.5
Q ° "R
=21 - 0.5
—4 1 -~- Numerical Scalar curvature R 1.0
x10-4
0 B
_2 E
H .
=61 — Numerical H(t)

- cosmic time @
Numerical plots of a scalar field ¢, scalar curvature R,

and Hubble parameter H.
11

Result and discussion

x10-%
10

|
| — R=0
x10-2 x10~7 |
1.0 | 08
4 {1 —— Numenical Scalar field ¢ \ |
[} Lie | § %
21 s | 3
] 1 I > o4
LR 1
(p ) itk ite.e R |
I | 02
-2 1 . | I I
,l -0.5 | 00— . - e
! -05 00 05 10 15 20
-4 1 --- Numerical Scalar curvature R / 1.0 : P[Ms] x107%
|
i . 4
01 |
I -2
| 1o 210
-2 1 | R=1{-am?+Z)
H | -
" |
i I _ 0.6 ()
| € ,
6 - [ .
~° | = Numerical H(t) | \ 9,
| \
T T T T T T v T 02 \ P
-1.60 -0.75 -0.50 -0.25 9.00 9.25 0.50 0.75 | \\ __—
cosmic time x10* ERT s
| 05 00 05 10 15 20
| 9IM] 10

 Scalar curvature R eventually diverged.

* The behavior of H was also affected and did not bounce. 12



Result and discussion

x10~7

-l.06 -0.75 -0.50 —0.25 0.00 0.25 0.50 0.75

cosmic time e
Numerical plots of p — p.

This implies that as the universe contracts, the BKL instability also grows.
13

Conclusion

* We have solved the equation of motion and Friedmann equations for

a scalar field numerically in non-singular bouncing universe model

under the null energy condition, and analyzed their evolution.

* Numerical results showed that the scalar curvature diverged just

before the bounce.
} It is difficult to achieve stable bounce with a classical model
that does not violate the null energy condition.

* For a detailed analysis, an evaluation of the stability of the model for

linear perturbation is required.



DeWitt boundary condition is consistent

in Hotava-Lifshitz quantum gravity

Hiroki Matsui (YITP, Kyoto U.)

with Shinji Mukohyama, Atsushi Naruke, Paul Martens

Based on: Phys.Lett.B 833 (2022) 137340,
arXiv:2205.11746 (JACP)

Overview

® In this talk, | will discuss the DeWitt boundary condition, a
hypothesis of quantum cosmology.

® In the first half, | will show that the DeWitt boundary condition is
inconsistent when tensor perturbations are considered in general
relativity. In the second half, | will discuss how the perturbative
instability can be solved in Horava-Lifshitz gravity.

Talk plans
@ What is DeWitt boundary condition
o Perturbative Instability of DeWitt Wave-function (GR)
@ Introduction to Horava-Lifshitz Gravity
e DeWitt boundary condition and Horava-Lifshitz Cosmology
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Quantum Cosmology

Quantum cosmology tries to describe how the universe was created and
evolve within the framework of quantum gravity.

* Wheeler-DeWitt equation (canonical quantization)

0’ V9
Y =1-16 i —R+2A) |V =0

® Path integral of quantum gravity (path integral quantization)

(Guv,d) .
1l/(gm/» d)) = J Dguv Dd) els[guwdﬂ/h

Y(g,v, ®) is the wave function of the universe

Einstein Gravity in ADM formalism

®  Arnowitt-Deser-Misner (ADM) formalism
ds? = —N2dt? + g;;(dx! + N'dt)(dx) + N dt)
Lapse function : N = N(t,%), Shift vector : N' = N*(t,X), 3D metric : gi; = gy (t,X)

2 Einstein-Hilbert action in ADM formalism

M2 . :
Scr = TpljdtcﬁxN\/g (KYKi; — K>+ R—2A)

1

ﬁ[algii — gjk ViN* — g V;N¥) |

Extrinsic curvature : Ki; =

8 A homogenous and isotropic universe with tensor perturbations (closed universe K = +1)

]\Ji = 0, gij = (lz(t) [Qi)' (X) —f—}lij(t,X)] y hi]'(t,X) = Z hs (t) snlm

nlm ij )
snlm




Wheeler-DeWitt equation in Einstein Gravity
B. S. DeWitt, Phys. Rev. 160, 1113-1148 (1967)

® Expand Einstein-Hilbert action to the second-order perturbation

3N a . \2 > Aa?
SGR—VJdt{(?) [_ <Na> L a?— : ]
. ¢ 18 : 1 2 5} 3 2
D (Comorieal % e 8 (Nh”[m> -8 [(n*—3)+6] (hiim) = Har
Quantization  snlm

0 2 ,
naH*la, nhH*lﬁ, = Tz = - a ”hsz,

8  Wheeler-DeWitt equation

1/ 02 P2 4 (“3g1a® + goat) 1 22 .
— — a /a e ——————————— —
2\ 32 91 Jo 2V2a2 3p2
h
":ﬁ’ Y=6V%, g1 =v, go=YA, f1 =v*[(

DeWitt Boundary Condition

What is the DeWitt boundary condition?

DeWitt Boundary Condition

Y(a=0,h)=0

B. S. DeWitt, Phys. Rev. 160, 1113-1148 (1967) 55 years ago




DeWitt Boundary Condition

DeWitt boundary condition: ¥(0) =0, [% (

0.8l l
0.6} ]
= | ] — an=Lg=1
=
041 — g1=1,90=0.5
0.2f 1 — g=01,g=1
00 i 1 1 1 1 I7
0.0 05 1.0 15 2.0 25 3.0 35

7/18

DeWitt Boundary Condition

Tensor perturbations around Big Bang singularity

©  Wheeler-DeWitt equation (background+tensor perturbations)
1 az P 0 P 4 1 Ol []l 2\
2 a2a) T\ 39 - + = (f1a?) } ¥(a,h) =0,
{2 (aaz + aaa> a4 ( 3g1a” + goa ) V22 362 5 (T]Ll )} (a,h) :

2 DeWitt wave function satisfying W(a = 0, h) = 0 around Big Bang singularity takes

o0

Y(a,h) = aCZFi[h) a' ~ a®Fo(h) + O(at),
i=0
hEI:EOOFiHI]:O) (1:())]))

8  Around the singularity, the wave equation for the tensor fields and the solutions are

2Fo—V2[(c+p—1)clFo =0,

Fo(h) S hy/V2Z[(c+p—1)c] —l—sz‘h V2 [(c+p—1)c] 3 00 (h—) :|:OO)




DeWitt Boundary Condition

NO-GO ?

DeWitt Boundary Condition

Y(a=0,h)=0
= limy, . ¥Y(a,h) — oo

H. Matsui, S. Mukohyama and A. Naruko, Phys. Lett. B 833 (2022) 137340

HoFava-Lifshitz Quantum Cosmology

Horava-Lifshitz Gravity

P. Hotav, JHEP 03 (2009) 020, Phys.Rev.D 79 (2009) 084008

A candidate of quantum gravity theories, higher-order derivative gravity theory satisfying
renormalizability and unitarity (proposed by P. Hofav in 2009)

* Anisotropic scaling between space and time:

t— bt . . .
{ 2 by — Lorentz-invariance is broken at UV (for z # 1)

Power-counting renormalizability at UV (z = 3)

1 : B
zjdtdsx [hz—h(—A)Zh] — h— b Th, (z=3)

Projectable-version, Non-projectable-version, U(1) extension, etc.

Cosmological consequences like gravitational dark matter, scale-invariant
perturbations through anisotropic scaling (z = 3)
(see e.g. S. Mukohyama, Class.Quant.Grav. 27 (2010) 223101)




Ho¥ava-Lifshitz Quantum Cosmology

Horava-Lifshitz Gravity in 3 + 1 Dimensions

P. Hofav, JHEP 03 (2009) 020, Phys.Rev.D 79 (2009) 084008

Hofava-Lifshitz gravitational action

SHL = MZHL Jdtd”’N\/_ (K9Ki5 —AK? + cZR—2A+ 0.-1),
C): -1

2
+ c4RRIRE + c5R?) + (c6RIRE + c7R?)

= (c1ViRj V'R + ¢, ViRV'R + c3RIRFRE

UV action with z=3

@ Kinetic terms (2nd-time derivative)
J dtd>¥ Ny/g (KIKy; — AK?)
@ Potential terms (6th spatial derivative)

Jdtd3>2N\/§ (c1 ViR VIRI® + ¢ ViRV'R + c3RIRFRL + c4RRIR! + c5R?)

HoFava-Lifshitz Quantum Cosmology

Wheeler-DeWitt equation in Horava-Lifshitz gravity

Wheeler-DeWitt equation for scale factor a and tensor perturbations h

1/ pad g3 ) 4
{z(m*aa—) (ca— s —30:—3g10% + goa)

L hz i itt 3 ) \wian =0
2V2a26f)2 1 2 =5

h= 2\/— C=vC, g3 =24y(c3 +3cs +9¢s5), g2 =4v(ce +3¢7), g1 =Y, go =YA,
f1 =v? [(n? —3)+ 6], f2 =—8y*[18(2cs — c7) +6(2c6 + 3¢7)(n? —3) + cs(n® —3)7] ,

£y — —8y2 [18(12c3 +11cq — 9cs) + 18(2¢q + 4cs + 5ea + 9¢5)(n? — 3)

+6(c3 + ca)(m? = 3)* — 1 (n? = 3)%]




Ho¥ava-Lifshitz Quantum Cosmology

Hofava-Lifshitz DeWitt wave function (z = 3)

Anisotropic scaling z =3 (a — 0)

Wheeler-DeWitt equation

1 aZ P 0 g3 1 aZ bZ f; .
23 Taaa) T @) et 7 2 ) Ve =0
{2 <6a2+ Al az) NV2a2 ar)2+ 7 (a2>} (a,b)

DeWitt wave function

Adty, w), >0
W(a,h)_{ 5 WN1/4,1/4(W) (h>0)

_%WN+1/4,1/4(W)> (h<0)

W:V\/f_3b2) C2+(P_1)C+ {@(4]\]"’_])_293] :O) (N:O)1)))

W,.~(w) is Whittaker function

HoFava-Lifshitz Quantum Cosmology

Scale-invariant tensor perturbations

DeWitt wave function

)

Aa®
Y(a,h) = @XCVNHMJ/MW) ., (h>0
—SEWnsaa14W), (5 <0)

w=VVfh, A+ (p—1)c+ $(4N+1)—293 =0, (N=0,1,---),

DeWitt wave function for ground state (N = 0)

0]
\’\/ih“

Y(a,b) :A(V\/figjl""4a“e 2

Correlation Functions 5
2
<h2> = M x M

[dh ¥(a,b)P




Ho¥ava-Lifshitz Quantum Cosmology

Horava-Lifshitz DeWitt wave function

DeWitt wave function is written in power series,

Y(a,h) = a°Fo(h) + a**'Fi(h) + a“H?Fy(h) + - - -

- ) N f N
w=Vf3h%, A+ (p—Tc+ [\</73(4N+1)—2g3] =0, (N=0,1,---),

A
) ; ) ) =W 11/4a(W), (h>0)
02F0 — V2 [f302 + (c +p— e —293| o =0, Tolb) = _W*LN\;/‘W“ il () °

75 WNt1/4,174w)5 (B <

82F1 — V2 [f367 + (c +p)(c+ 1) — 293 1 =0, Fi(h) =0,

32F2 — V2 [f3b2 + (c+p +1)(c +2) — 293 F2 = V2(f2b2 — 6g2)Fo

Ao exp (—%w) ,
Fo(h) = (1 —2w)A; exp (—lw) 1) Fa(h) = NZH ol ~WNAN exp —1w
C ) / 2 ) 2\Y) y N,N 2 )
(1 — 4w + %V\?Z) Aj exp ( ) N=E

HoFava-Lifshitz Quantum Cosmology

Numerical simulation: p=1,¢9;:=2, =1, go=gi=f; =, =0

U(a,0)

1 05

1 -1 |
| L I N IR | . . A R | | |
-1 -05 0 05 1 0 2 4 6 8 10 -1 -05 0 05 1 -1 -05 0 05 1 0 2 4 6 8 10 -1 -05 0 05 1

h @ h b a b
[a=Aa a=1 —-a=4 -—a=7 —a=10] [a=Aa a=1 -a=4 -—a=7 —a=10
(a) f2=0,=0,g0=0 (b) f2=1,C=0,g0=0

16/18



Ho¥ava-Lifshitz Quantum Cosmology

Numerical simulation: p =1,

g3=2,f3=1, g =g =1 =1

0477
102}
= 0
0 - :

| s o2l

04F, T

0.2H

0

—0.2 |-

7 04F
102

0

02t

I | I I R N I | I

-1 -05 0 05 1 0o 2 4 6 8 10 -1 -05 0 05 1
b ¢ h

‘ a=Aa a=4 ---a=7 —a:lﬂ‘

a=1 ---

(c) f2=1,=10,g0=0

HoFava-Lifshitz Quantum Cosmology

Summary and Future issues

0.1+

—0.1+

—0.2 ¢
0.2

0.1}

—0.1}|

(a,h)
¥(a,h) U(a,0) \u(:o)
T T T
0.2
0
*/‘k"’i‘“—s-——-—-‘ s
S N o
T T T
1 [
i oz
e G 0
T 0
—0.2 -l
0.4
10
7 0.2
0 p s 0
L L L 7027 L L L L ] 717 L L L )
-1 -05 0 05 1 0 2 4 6 8 10 -1 -05 0 05 1
h ¢ h
‘ a=Aa a=1 -a=4 --a=7 —a=10

(d) f2=1,C=10, go =10
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DeWitt boundary condition is a hypothesis of quantum cosmology to solve

the initial singularity problem

In many theories of gravity, including general relativity DeWitt wave function
predicts instability of tensor perturbations (NO-GO!)

DeWitt boundary condition is consistent in Horava-Lifshitz gravity

Horava-Lifshitz DeWitt wave function predicts the quantum creation with
perturbatively stable from the initial singularity, scale-invariant fluctuations
through anisotropic scaling, and then a universe dominated by gravitational

dark matter

@ Renormalization in Wheeler-DeWitt equation, Inner-product, Path integral
formulation of the DeWitt wave function, etc.
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The magneto-hydrodynamic evolution
of the cosmological magnetic fields

JGRG31,2022.10.26
Fumio UCHIDA (RESCEU, U-Tokyo)

Cosmological magnetic fields as a probe into the early universe

Everywhere in the present universe

The intergalactic magnetic field in voids

as the origin

Interplay with the physics in the early universe

2/13
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Cosmological evolution

Cosmic expansion

(energy density) « (scale factor)™, (length) « (scale factor)
Magneto-hydrodynamics
]Cosmological: homogeneous and isotropic

lAstrophysicaI: absent at large scales in voids
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Cosmological evolution

Cosmic expansion

(energy density) « (scale factor)™, (length) « (scale factor)
Magneto-hydrodynamics
[Cosmological: homogeneous and isotropic

lAstrophysicaI: absent at large scales in voids
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Outline

Description of the magnetic field decay

Reconnection-driven turbulence

Discussion

4/13

Parametrization of homogeneous and isotropic magnetic field

Assumption:

——————

. . . . I' b 1 ‘\
Homogeneity and isotropy in a stochastic sense K / A

[Typical strength B :=4/(B*x)), RGN
1 . 27 0B
Coherence length & .= — | dk——. £
B2 k ok o



Description of the decay law

[ Conserved quantity Initial conditions of the plot:

non-helical magnetic field

lTime scale of the decay kinetically-driven turbulence,

; ; assuming magnetogenesis during the
- decay IaW, B(T) and f(T), is determined. first-order electroweak phase transition.

comoving strength comoving coherence length

o

910(B/
Logso(§/Mpc)

2 g
3 -10
-15; —

-15

MeV. MeV.
Logao(T/GeV) Logso(T/GeV)
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Description of the decay law

{ Conserved quantity Initial conditions of the plot:
non-helical magnetic field
lTime scale of the decay kinetically-driven turbulence,

) . assuming magnetogenesis during the
- decay Iaw, B(T) and f(T), is determined. first-order electroweak phase transition.

comoving strength comoving coherence length

o Subsequent regimes:

. ~ - viscous due to neutrino viscosity,
g-w —\ y .

d,]5 - ’—/

Logso(§/Mpc)

-15
Logio(T/GeV)
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Description of the decay law

[Conserved quantity

lTime scale of the decay

— decay law, B(T) and &(T), is determined.

comoving strength comoving coherence length

o

-5 —_—

. _ -5
8 -10 -
) ]
& g —
g b 10 /
15 -
Mev @ - Gev Mev
Loguo(T/GeV) Logao(T/GeV)
Outli

Initial conditions of the plot:

non-helical magnetic field
kinetically-driven turbulence,

assuming magnetogenesis during the
first-order electroweak phase transition.
Subsequent regimes:

viscous due to neutrino viscosity,

ooy

reconnection-driven turbulence

Reconnection-driven turbulence

Discussion
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Conserved quantity: Saffman helicity invariant

Variance of magnetic helicity distribution
o Gmen
I:= Id3r<h(x)h(x +1) ~ EN1?) ~ BYE, PN S
:' ‘A B>0) ‘~-:' '
h(x) = A(x) - B(x) : magnetic helicity density 4 ‘“M ‘
is approximately conserved. et
¢
Hy'!
8/13
Fast magnetic reconnection timescale
&
~——3
Magnetic field lines reconnect, /fr\

and the released energy accelerates the plasma. 3
When magnetic energy is decaying through magnetic I

reconnection, > <<
T
Trﬁconne«illun =~ 102 1 + G”I # = (HUbble time) ;
B/\/[p+p .

-y 3 £
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Logo(B/Gauss)

Reconnection-driven turbulence

comoving strength

m

|
=
o

|
=
S

10

BxT?o
N————

\-
GeV Me'

V
Log10(T/GeV)

Outline

Log1o(§/Mpc)

comoving coherence length

0
-5
Ex T
A
-10 /
-15 GeV MeV eV
Log10(T/GeV)

Discussion



Comparison with the previous analysis

comoving strength comoving coherence length
o

_5_ ——

kinetically-driven turbulence

viscous  frozen

|
=
o

reconnection-driven turbulence

Logo(B/Gauss)
Log10(§/Mpc)

=15 -
Y, GeV

|
=
S

Gev Me ev

v MeV
Logi10(T/GeV) Log10(T/GeV)

12/13

Summary

The evolution of the cosmological magnetic field is determined by
conserved quantities and time scales for the decay,

which are different according to the regimes.

The comprehensive description becomes possible, by employing the

Saffman helicity invariant and reconnection time scale.

13/13
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Hemispherical asymmetry of primordial power spectra

K. Sravan Kumar

Department of Physics, Tokyo Institute of Technology, Tokyo, Japan
Based on arXiv:2209.03928 [gr-qc] in collaboration with Jodo Marto

October 26, 2022

JGRG31, University of Tokyo October 26, 2022 1/16

I ———
Hemispherical power asymmetry (HPA)

Figure: HPA breaks the isotropy of primordial fluctuations and CMB appears to
be asymmetric with slightly higher temperatures in the north and slightly lower
temperatures in the south.

JGRG31, University of Tokyo October 26, 2022 2/16
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@ HPA is observed to be significant at low multipoles £ ~ 2 — 64 or
large angular scales or k < 0.0045Mpc1L.

@ HPA can be parameterized as
Pr (k, 1) ~ Pr iso(k) (L + 2A(k)p - n) ,

which implies

PR (k7 ﬁ) - PR(ka _ﬁ)
4PR iso .

p is the direction of maximal symmetry and h = ~~ is the line of sight
Is

Alk) =

from earth and xis = 14, 000Mpc 1 is the co-moving distance to the
surface of last scattering.

@ The constraint on HPA is |A| = 0.066 + 0.021 (3.30) for ¢ < 64 and
the Planck data reports the existence of asymmetry even up to
¢ ~ 600 (Planck 2013, 2015 and 2019 and Y. Akrami et al (2014)).

@ From the latest Planck data 2019 HPA suspected to be present even
in the 3-point correlations.

JGRG31, University of Tokyo October 26, 2022 3/16

L
Attempts to explain HPA

@ HPA is most often seen as a signature of Non-Gaussianity at large
scales.

@ Most explanations for HPA invoked existence of an additional scalar field
whose amplitude is modulated on super-horizon scales at the onset of
inflation. See A. L. Erickcek et al 2008

@ Another explanation for HPA came from introducing asymmetric
space-dependent initial conditions for the quantum fluctuations A.
Ashoorioon and T. Koivisto (2015)

JGRG31, University of Tokyo October 26, 2022 4/16



@ A best theoretical explanation is which introduces less new
parameters and explain more data points.

Can we explain HPA within the context of standard single-field
slow-roll inflation? Can the answer lies somewhere in the our
understanding of inflationary "quantum fluctuations"?

JGRG31, University of Tokyo October 26, 2022 5/16

Standard formulation of inflationary quantum fluctuations

e Finding background solutions corresponding to quasi-de Sitter.

@ We perturb metric and matter degrees of freedom around the given
background

8uv :g,ul/‘i‘i:’,uw Qb: &(t)—i_gb

@ We quantize the effective gravitational degrees of freedom
6Guy =0T,

@ Through inflationary quantum fluctuations we witness the linearized
"quantum gravity" J. Martin (2004).

JGRG31, University of Tokyo October 26, 2022 6/16



Open questions

Understanding inflationary quantum fluctuations require a robust
formulation of QFT in curved space-time.

e Standard QFT: Particles that propagate forward and backward in
time (anti- particle). What happens to particles and anti-particle
states in a curved spacetime? What is time reversal operation in
curved spacetime?

@ What happens to (C)PT in curved spacetime?

@ In GR time is a coordinate and in quantum theory time is a
parameter. What is the consistent way to quantize gravitational
degrees of freedom?

@ (Quantum) gravity is special and surprising: Wheeler-De Witt
equation is timeless: HW = 0. The problem of time in quantum
cosmology (C. Keifer, 2nd ed. 2007, Carlo Rovelli 2004.)

JGRG31, University of Tokyo October 26, 2022 7/16

Formulating new set of rules for quantization (in the
context of inflation)

@ Separate completely classical and quantum mechanical notion of time

@ Expansion of Universe: Shrinking Horizon ry = |$| when
|H| ~ const (classical arrow of time).

@ Quantum theory requires understanding of discrete symmetries.
Notion of observers, regions of spacetime, Penrose diagrams are
classical concepts J. F. Donogue, G. Menezes 2021. and they must be
important only we after we quantize fields respecting discrete
symmetries.

@ In a quantum theory an arrow of time only emerges only after we
specify initial and final states otherwise quantum theory is time
symmetric (J. Hartle 2013).

JGRG31, University of Tokyo October 26, 2022 8/16



Doubling the number of quantum states: P7T
transformations in gravitational context

@ Respecting discrete symmetries PT we propose quantum fields are
always created as P7T pairs.

We represent the total vacuum as direct sum of two different vacua related
by P7T transformations.

0) = %(IOM 5 |o>H) |

In the vacuum |0); we create quantum fields at the position x that evolve
forward in time and in the vacuum |0);1 we create quantum fields at —x
which evolve backward in time.

JGRG31, University of Tokyo October 26, 2022 9/16

Quantization in de Sitter spacetime

ds” = —di® + a(t)’dx® = 55 (—dr’ +dx%) .

where dT = %,

1da\?
a(t) =e™, R=12H?= (Sd_i> = const .

The metric is PT symmetric.

t:—o0—00, H>0 — 7<0, t:c0o——-00,H<0 = 7>0.

Expanding Universe means 7 : +00 — 0.

JGRG31, University of Tokyo October 26, 2022 10/16



Quantization in de Sitter space-time

@ For a state evolving forward in time 7 < 0 and for a state that is

evolving backward in time 7 > 0.

@ Let us take a massless field in de Sitter space. We split the field
operator into two parts

1

1, .
qb(T, X) - %901 (7_7 X) D E‘pﬂ (_7_7 —X) )

corresponding to two vacua
a|0)1 =0, b0 =0, [&1(7,x),Pu(—7, —x)]=0.

Quantum mechanically @1 (7, x) |0)1 is the postive energy state that
propagate forward in time at x while @11 (—7, —x) |0)11 is the postive
energy state that propagate backward in time at -x.

11/16

JGRG31, University of Tokyo October 26, 2022

PT symmetry in dS spacetime

Since dS spacetime is perfectly P77 symmetric we have that the quantum
fields &1 (7, x)|0)1 and @11 (—7, —x) |0)11 behave identically, which can be
seen from the fact that their equal time correlations are the same

1(0|¢1 (7, x) ¢1 (7, ') [0)1 =
H2

 4m2K3

1
32
1 . o /
?II<O|SOII (=7, =x) @11 (—7, —x') [0)11

For more details about QFT in dS spacetime KSK, Joao Marto (arXiv:
2211.XXXX)

12/16
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Quantization in quasi-de Sitter space-time: Single field
inflation case

@ Inflationary space-time is not P77 symmetric like dS. Expectation is
PT symmetry must be spontaneously broken at the quantum level.

v(r, x)= %\71(7', X) & %\711(—7', —X) .

corresponding to |0)qas = |0)qds; D [0)qds;;-

@ Urr (—7, —x) is the fluctuation that goes backward in time. Logically,
if the fluctuation propagates forward in time in a slow-roll
background, the fluctuation that goes backward in time experience
space-time as a "slow-climb". Therefore "quantum mechanically" we
solve for viy  (7) following the time reversal operation

t——t = H—=>—-H, €= —¢ n——-n.

JGRG31, University of Tokyo October 26, 2022 13/16

Hemispherical asymmetry of scalar power spectra

_Pa—Pe

Alk) 4P

0.10,.
0.08
0.06

AW 004"

0.02-

0.00 -

Figure: Here k, = a,H, = 0.05Mpc_1 and we are within |A| = 0.066 4+ 0.021 for
k < 10k,

JGRG31, University of Tokyo October 26, 2022 14 /16



Hemispherical asymmetry for tensor power spectra

Similarly, double vacuum scheme of quantization predicts the power asymmetry of
the tensor-power spectrum

T(k) — Ph1 — Ph2
(k) = AP
h

0.0004

0.0003
T® 0.0002

0.0001

0.0000 |

0 1 2 3 4

Figure: This plot is obtained for the case of Starobinsky and Higgs inflation.

JGRG31, University of Tokyo October 26, 2022 15/16
Conclusions

@ Based on several open theoretical questions about QFT in curved
space-time and the surprising anomalies we proposed a new vacua
structure for inflationary quantum fluctuations.

@ Our scheme of quantization naturally produces HPA for both scalar
and tensor power spectra. If detected we greatly learn about nature of
QFT in curved space-time

Thank you very much for your attention.

JGRG31, University of Tokyo October 26, 2022 16 /16
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Weak lensing of gravitational waves in wave optics:
Beyond the Born approximation

Morifumi Mizuno
Tokyo Institute of Technology

Collaborator: Teruaki Suyama

Physical Review D in review [arXiv:2210.02062]
Tokyo Tech

Gravitational lensing (GL) of gravitational waves (GWs)

Dark matter inhomogeneity—lensed waveform

BBH BBH

S

Unlensed GWs Lensed GWs
We can probe the dark matter distribution by GL of GWs!
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Gravitational lensing (GL) of gravitational waves (GWs)

GL of EM waves and GWs

GL of GWs has... Unlensed —— *
Lensed —

* Information about phase

* Frequency dependency

—

Low frequency High frequency

Wave equation

Frequency

\ T.Nakamura, S.Deguchi (1999)
\ ~ ~
(V2 + w?)p(w, 1) = 40’ PP (w,T)

/ \

Amplitude Potential

(’ﬁ (O)) <— Lensed

$o(w)

Amplification factor: F (a)) —

Unlensed

Lensing effect is encoded in the amplification factor



Weak lensing

® Lensing effect is small

® Dark matter distribution 1s random % W
O W& %
B
o § ®

We need to take the average (--- ) over
many GW events

Born approximation in wave optics
First order approximation R. Takahashi, [astro-ph/0511517

maghnification Kgyp, ~ 0(P) phase modulation Sgy, ~ O(P)

d(w) \ /

F(w) == ~ 1+ Kgorn + iSporn ~ (1 + KBorn)eiSBorrl
$o(w)
Xs X=X (SBorn> = (KBorn) =0
SBorn = —2® dx[COS[ > VZ] —1]d> 3HZQ,,\® (% [ d2k s — 21
: Jy x| ™ () =207 (5] [ | (1 eos | ) opoti

Xs
_ (s T X 2 3H,
Kgorn = wao dy sin [—wa ng] O] (KB%orn> — 4w2<

o

2| 1
k1 Fpﬁ(kJ_v)(l)
1

2 Y2 ) o™ | 2ne

S.

Qm>zfxs 1 dsz_ .2 (XS_X)X
0

|
Matter power spectrum

We can determine matter power spectrum by (Séom), (Kéom>




Why beyond Born approximation?

Accuracy of the Born approximation?

Missing phenomena?

Beyond the Born approximation

Post-Born approximation (Our work!)

¢ (w) = plw](®) = pK(w),yiS(w)

q_'~>0(a))

new variable J:

(V% + w?) ¢ = 4w?DdP becomes. ..

Xs

J(Xs, 0, w) = dy exp [i
0

Xs — X
2wxsx

v2] (—zcb(x 6) - — (v 1)2)
0 ’ 2)(2 2

Higher order terms...

S = SB + 5(2) + 5(3) + .- SBorns KBorn ~ O(®)
w/=SS—-iK ‘ o S@ K@ ~ 9(d?)
K =|Kgorn| 4 K@ + K®| ... k0o
|

‘ The Born approximation ‘ ‘ The post-Born approximation




Post-Born approximation

— 1st order in @

Xs —
Xs— X Z] ]
S = —wa dy |cos Vol — 1|
Born A X[ [Zw)(s)( 6
Xs _
| Xs =X o
K; =2w dy sin Vg | @
Born o X [Zw)(s)( 9]
[~ 2nd order in ®
Xsdy (X X wv)@ 1
S(Z)=—2wf X—ff d)(lf dx, [cos W) ]—1 Vo1 @y - Vgr @,
0 0 0

The Born approximation
R. Takahashi, [astro-ph/0511517]

Xsdy (X x wv)@
K® = wa —)Z(f d)(lf dy, sin [—( ) ]V91<D1 Vg @,
o X°Jo 0 20

3rd order in ® WWV)® =W xs)V512 + W, )DVe1 + W2 X)V5,

The post-Born approximation

New results!

A

(WV)(3)

Xsd Xdy' (X' xr
K® = 4-wj Xj )(3f ud J dy; | dxysin
o

Xsdy Xdy' X' xt wwn®
s® = —400_[ f X3f f d)(1j dx, [COS[ 20 ]— 1] Vo12(Vg1®P1 - Vg2 ®2) - Vg3 P3

] Vo12(Vo1P1 - Vg2 2) - Vg3P3

1
Xs

wv® = W(X:)(s)ve123 + W(Xa')()vé3 + W()("X)Vén + W(Xl,)(')V51 + W()(z:)(’)vgz

Average and Variance

Variance (the Born approximation)

{SBorn) = (Kgorn) =0
o [k Os = 20x 1
) f 2 )é( S[ 240 kJZ.D k4 Ps(ky, x1)

3HZQ,,
(SBorn) = 4w? (
m) fxsd 1 d’k,
Sin
, Yo ) ene?

3HZO

(ar) = 407 (5 2|~

2xsw

XX

kL]_Pd(kJ. X1

— Nonzero Average (the post-Born approximation)

The Born approximation

R. Takahashi, [astro-ph/0511517

3HZQ Xsd d’k

=20 ( 0 )f Xf Mlazom <2n>§( [0{ T Dkzp“’(k““)
3HZQ,\" (*dx 1 d?ky [ =x)x

<K>=—zw< ° ) f f T (Z,T;sm[ o 1kl] Po (kL)

1
W) =2~

New results!
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Average

Nonzero Average (K),(S) # 0, (Kgorn), (Sgorn) = 0

Magnification (K') and (Kgorn>1/2
10° ' ' 2 \1/2
= <KBorn>
10
N
g
.9 2 5 6%
§ 10
E 3
=
an 10 " f
) —(K
E (K)
-4 | L L
D™ 0" 10t 0T o
JTHz]

3

Phase modulation (z, = 3)

Phase modulation (S) and (SZ,.

)1/2

10-2 F <S]_g>0rn> 1/2'
107
_6 ;
10t X
+(S)
10°
-10 | | ]
1018 10”7 10 10" 10°
f[Hz]

We can use (K), (S) as a new probe for the matter power spectrum

Validity of the Born approximation

Source redshift: zg = 1(3), f: frequency of GWs

101 < f <103 Hz

f <1072 Hz 1072 < f < 10' Hz

\

)12 4 < 2.4(6)% \

<K> /(KBZOI‘I'I

(S) /(SZorm) " <13)%

< 0.035(0.25)%

[
|
I
I <1.54)%
]
. I
Post Born variance K | |
|
I

< 0.02(0.2)%

|
I
I
I
I
I
|
I
Post Born variance S ]
/

\ < 0.05(0.4)%
AN

Detectable!
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Summary

Weak lensing of gravitational waves
\)
probing dark matter distribution

We derived...
S and K up to 3rd order in ®

We found that...

Born approximation is good!

(S) and (K) can be used as an additional probe!



Gravutatlonally Lensed Cosmlc Burefrlngencej
~ for the premse prediction ~

RESearch Center for Early Universe,
The University of Tokyo, J.Yokoyama lab. M2

Fumihiro Nabkawa

T. Namikawa (IPMU), E.-Komatsu (Max Planck Institute for Astrophysics)
K. Kamada , J. Yokoyama (the University of Tokyo)

Motivation - CMB = Cosmic Microwave Background 1/12 (\ s

@ Cosmic Birefringence (F&EE)

4 Anew signal from CMB ' Minami & Komatsu (2020) : @0 @ bhoton
- Violating Parity Symmetry beyond Standard Model Bt . :

- Origin": Axion ? ' go - s e .
3 : . aX|on
Carroll et al. (1990), Harari & Sikivie (1992) Carroll (1998)

.‘

€. Next generatlon CMB experlments — It'requires preC|se theoretical predlctlons

A

.y (Weak) Gravutatlonal Lensmg (Ejj l/‘/_z“)

¢ Crucial factor for precise CMB observations
¢ Especially important for ground-based observation
> ex-)' Simons Observatory ,(Under development)
(As for CEE in high [')

measurement error < ~Shift by Lensmg more. than 10.%

2022/10/26 JGRG
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Today’s Contents

W Intro_duction.to CcmB

@ Cosmic Birefringence @ Gravitational Lensing

.

'@ Gravitationally Lensed Cosmic Birefringence ({— My wc}rk)

2022/10/26 JGRG

CMB (Cosmic Microwave Background) 4/12 ()?-Sél%%&.@ﬁ-fﬁlm
4 Data Observables Power Spectra N

Temperature © Co® COF
» Polarization » CEE (BB @
E mode B mode

N

ersmologicaI Model Power Spectra

% » Cl®® Cl®E l » C .
1§ crE o g omparison

= )

/

2022/10/26 JGRG



What is Cosmic Birefringence ?

6 ] 2 (,\ SCHOOL OF SCIENCE
:‘ . THE UNIVERSITY OF TOKYO.

<

/\ -
SN

Last Scattering Surface

% photon

2022/10/26 JGRG

6/] 2 () SCHOOL OF SCIENCE
(& THE UNIVERSITY OF TOKYO

0.37 million Satellite
>
e
e
o~
13.8 billion
Cosmic Age [yr]
What is Cosmic Birefringence ?
\
/\//
O
/ Last Scattering Surface
O
0.37 million / Satellite

13.8 billion

Cosmic Age [yr]
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What is Cosmic Birefringence ?
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~
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Last Scattering Surface

Satellite

0.37 million
-
~
> -~
13.8 billion D:
Cosmic Age [yr] photon
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What is Cosmic Birefringence ? ()%-5;{%%&;.55-55;%3‘&5
T
/ \ Last Scattering Surface
- Satellite

0.37 million

\/
—\ =

13.8 billion
Cosmic Age [yr]
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L THE UNIVERSITY OF TOKYO

What is Cosmic Birefringence ?

| Cosmic Birefringence

\ Lue et al. (1999)
/o

. N
/ Last Scattering Surface

v/ 0.34 £0.09 deg

Eskilt & Komatsu (2022)

¢/ Parity Violation

v CPPCP o

0.37 million

13.8 billion
Cosmic Age [yr]

2022/10/26 JGRG

Gravitational Lensing 9/12 (B Qseorianss

Last Scattering Surface

0.37 million Satellite

13.8 billion

‘ : dark matter

2022/10/26 JGRG

Cosmic Age [yr]




Gravitational Lensing

9/ ] 2 () SCHOOL OF SCIENCE
“ = THE UNIVERSITY OF TOKYO

st Scattering Surface

-
AN

CMB photons are deflected

Gravitational Lensing

Challinor & Lewis (2005)

0.37 million Satellite
el
Q’\df
-
13.8 billion . .
Gl LB : dark matter
2022/10/26 JGRG
Gravitational Lensing 9/12 Quacrigns:
\ Last Scattering Surface
Satellite

0.37 million

13.8 billion

>
e

’\f

&

Cosmic Age [yr]
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Gravitational Lensing 9/12

0.37 million Satellite

-~

e

o>
13.8 billion
Cosmic Age [yr]
2022/10/26 JGRG
Gravitationally Lensed Cosmic Birefringence : Method 10/12 Osaomeramns:
Axion

(public code for CMB) including cosmic birefringence)

’ Nakatsuka et al. (2022) ' e

CLASS Lesgourgues (2011) mOd'fy CLASS + g
-

ct ¢t cfF PP CIT CTE CEE BB
Lt Lensing Lensing
CZTT CZTE C ZEE CZBB CZTT CZTE C [EE C lB B CITB CZEB

This work




Summary & Prospects

W Summary -

® Cosmic Birefringence can be a clue to new physics. g

® Now, precise theoretical predlctlons are needed.

® I've developed a lensing’ correction tool, |

which will becomes lmportant in the near future
AN

L Prospects (about lensing correctlon)

¢ Doing forecasts for future observations using. my developing code.

¥ Seeking unique behaviors of lensed C]EB or CZTB.

2022/10/26 JGRG
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Hubble tension and local environment
of SNe la host galaxies

Shao-Jiang Wang

2022-10-26 16:25-16:40 (JST)
JGRG31@ Tokyo University
Based on arXiv:2209.14732

“First detection of the Hubble variation correlation and its scale dependence”

Wang-Wei Yu LiLi Shao-Jiang Wang
1/11

Hubble tension

> 50 4o 30 20 -10  mean lo 20 3o 410 50
3 05 : . Riess etial. 2112.04510
S P;%ngk : : : : : : : : : :
d8) : : : : ; i : : : : :
= i B : : s : B : . . :
0.0 ——t—t———
101k 67.4 : : ©72.03 [ 74.06
. : : 71.04 75.10
2 . . '
d 70.07 . : : . 76.16
? 1071 : : : : : :
2 69.10 ;7725
21073 ‘ : : : : : : : : '
R%) 68.14 : : . : ! - : : 78.36
o . . . . . . . .
8 ;
1075
: 097 : 097 : 097 : 0.99 : 1.01 T o ETH T TR o
i : ke : . i ; e : ALk
66 68 70 72 74 76 78
Ho (km/s/Mpc)
67 73 _ 67 73
~§» New physics? %
Modified early/&late Universe Unknown local systematics
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Analysis Variants

Hubble variation

%10 [—

I o:
[ Only Optical Ceph. Data °

1

1
e
! :
AP s e KOS
1 H

]

. I Riess et al. 2112.04510

= Absolute scale

= Cepheid color, zps

== P-L Mean, anchor

== Cepheid metallicity, anchor-to-hosts
P-L Slope

= P-L Mean, SN hosts

Mean of SN Calibrators

SN m-z relation

«== WFPC2 CTE, long-short
Systematics

- - Total

1. External photometric calibration

e.g. Parallax, Cepheid

b
2. Intrinsic scatter in SN brightness
o e.g. Host mass correction
3. Cosmic and sample variance
. ~e.g. local void
1% (—
0 :_Baseliule I-l o i. |+1 o _: o HST KP SHOES SHOES Il SHOES Il SHOES IV SHOES V SHOES VI
11l I T | T T T L1l 2001 2009 2011 2016 2018 2019 2022
71 72 73 74 3/11

H,

Hubble variation

=COS
Local €z,
HO
Measurement

Hubble variation H;* = cz,/D;

= (cg;— ) = HYD; + Av; - D.

1

A

Hloc _ Hbac AV,' ) Di Hbac
= My =Hym T 7 Hy

1

4/11

HY*® — HS™® v, (r;— 1)
oy(rg; {r;}) = bac =— 2
H;§ HE|r; — 1|
Continuous sample
_ 1 v(r) - (r —rp)
51(ro: Bi(xg) = — sz’r Wi(r — 1)
Hge |r —1p]

4
Window function Wiy(D=r-rj) =O(R — D)/ <§7[R3>




Hubble variation

Local ball

) D
S(rg; Ba(ry) = f(Q) Jd3D 5,(ry + D)Wr(D)In =
Local position 0<D <R — 0:6,(ry+D) — §,(ry)

R4zrD2dD1 D f(Q,)

S Bt = 30 | 25 BRI
0 ?ﬂ'R3 R 3
z
Turner, Cen, Ostriker (TCO 1992)
.01 .02 . A
0 0 0 0 ; 0 95 0 , ° Xiang-Dong Shi et al 1996 Shi & Turner 9707101
1805.09900 Yun Wang, Spergel, Turner 9708014

TSI Implications

local void 5,,(r;) < 0 = 5y(ry; Ba_ (o) > 0

{ Sample selection R > 70 Mpc/h < z > 0.023

30 60 150 430
R[Mpc/h] 511

Observational tests

Hubble variation at rO from a local ball at rO leads to a local slope

Sy(ry; Ba(ry)) _q0) [&°D 6,,(ry + D)Wi(D)In D/R
BBy T [d3D (g + D)Wi(D)

the probability p(5,,, R) for the density contrast field J,,(r, + D) to take a given value 5, within R

local —

5
Py R = e ¥ 2 szdk [3jl(kR>r
2

—P(k
2rn0} 272 0 kR

One can define a statistical local slope

[d&°D [d6,, 5,,p(S8ys RYWr(D)In D/R

1
Kioea) = f(Q — _ZfQ
Hiocu) =1E2m) [d&D [d6y, 8, (51, RYWR(D) 3/

There is only one point (5% (r,), 5,,(r,; Bi(r,))) for a given R, not enough to fit this local slope

\\—"3 averaging over (58 (r,), 5,(r;; Bi(r))))
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Observational test

1.0 T T
)
i
= 0.5F .
V
s
- 0.0 -
o
o
2
| —0.5| :
g
=,
8010 linear fit i
5 « all halos (no weighting) +
4 matching 3D SN coord., 3240 rot.
— | | |
1'—50.2 -0.1 0.0 0.1 0.2

5DM (Z <0. 04)

AHP® [km s Mpc ] (z<0.15)

10

—— linear fit

—2 ----non-linear correction *
[ our simulations
_4 | | | | | |
-1.0 -08 -06 -04 -0.2 0.0 0.2

5DM (Z <0. 04)

ast & for zmax = 0?

Figure 4. Correlation between AH(I)"C for zmax = 0.15 (corresponding to the SN sample) and dark matter density ¢
Dark Sky simulations.

(corresponding to the distance scale for local density measurements); both are measured from 512 sub-volumes of t
Left: AHA"C measurements from matching the 3D coordinates of SNe and haloes in sub-volumes (green points with
to inference from all haloes in sub-volumes (blue points). The error bars on the green points reflect the variances from rotations of the
SN coordinate system within each sub-volume. The solid line shows the linear fit to the green points. Right: zoomed-out version of the
left-hand panel. We additionally mark the location of several ¢ values from observations, as well as the 1-o range favoured by the R16
analysis. We note that none of the observations of § can account for the 6 km s™'Mpc~! difference between H(l)"C and HgMB.

7711 Hao-Yi Wu & Dragan Huterer 1706.09723

Hubble variation from distant discrete sample

_— _ 1 & v(r) - r; 1 & |- ) Jy) Slin R’
oy(0; {r;|r;>R}) = N ; W ob g} 0(0; Sg(r)) + —3 Om (ri)r_iz
- 1 u f(Q ) SR f( slin 2
T2 5()— : 6()—1
— f 5R Slin R2
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Hubble variation correlation

Hubble variation from an arbitrary discrete sample of distant SNe la (firstly derived)

2
51(0; {r;|r;> R}) ~ — g [Sf;(ri) - S}Iiln(ri)] s

2
i

Selecting distant SNe la with the same ambient density contrast at a scale R

fQ,) /R f
3

5:(0; {r;| 58 (r) = 68)) ~ —
3 r?

K _ou0s(r;| SRy =58 f [ R?
non—local = 5{51 = 3 r_l2

i

There are enough data points to fit this non-local slope by selecting different discrete
samples of distant SNe la with different ambient density contrasts at the same scale R

9/11

Observational tests

Pantheon, Q, = 0.315, Mg = —19.253, Rsmooth = 70 Mpc/h Qn=0.315, Mg = —19.253
0.4
] 3 [} (] 74
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]=

Ambient density contrast from I-th ensemble
Ensemble averaged HO from k-th group

- I &
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Conclusions and discussions

1. We have derived for the first time a theoretical estimation for our local
Hubble variation from an arbitrary discrete sample of distant SNe la

2. We have found a residual linear correlation between our local Hubble
constants fitted from different groups of SNe and their corresponding
ambient density contrast of SN-host galaxies at a given scale

3. This residual linear trend becomes more and more positively correlated

with the ambient density contrasts of SN-host galaxies estimated at larger

and larger scales, on the contrary to but still marginally consistent with the
theoretical expectation from the LCDM model

4. This might indicate some unknown corrections to the peculiar velocity of
the SN-host galaxy from the density contrasts at larger scales or the
smoking gun for the new physics

K/Z@m

11/11
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Large scal'es:- .t
: 1/k 2> MNeee = 1;
 (CORRELATION)

Small scales:.
k< Nrec — i
(UNCORREYLATION)

' 280

10710 (Neutrino
: deqoupie_d)

B

l OFirst-order anisoga;ﬁMey]

pr =y
To Do List
v

———

+*q > k - GEOMETRIC OPTICS.

 Boltzmann equation.” ;

- Solution in perturbation theory.
Zerorder solution .

l Ohomoge'neous ani LMP@C

avitons diluted by the 2%

; Sbnf Universe. #®
mp¥iitesf -
b bmﬂg%?ctlon (model : o

+ « Bythe prbpagation through *
the perturbed Universe
(model independent).

[Alba, Malddcena, 2015]
"[Contaldy, 2016]
[Bartolo et al:, 2019]e




CGWB Angular Power Spectrum

« The angular power spectrum is the sum of three contributions:

+0o0

2
d Mo
0

;i

i

2
+0o o
CEGVB () = J 7P<k){ J dnj Tk — )1 [To7, K307 — 1) [+ T, &) + T, K] }
0 :

+00

dk o1 [ +2)! ,
@ T =J —P(k) J dn— Jolk(ny — m\ Ty (n, k)
ar Tk w AN @-9r g

IMPRINT OF BEYOND STANDARD MODEL PARTICLES

SW+ISW

faec(ni) =0
+ At large angular scales, the angular power dec()

spectrum is sensitive to the number of relativistic
and decoupled particle species

-2
4
@GN (ke ; .
7 (/)(771 ) < 15 f(‘iec(’/[l)

L+ 1)Cp s/2m

« Observations of the CGWB anisotropies at
different frequencies (i.e. at different initial times
of propagation) could allow to reconstruct the 6x10-10
timeline of the particle content of the Universe.

[LVDA et al., 2021]




1018

1016 4

1014

[iie Big Bang Observel

;‘ 1012
]
=
= 1010
£
=
8
10° 9
10° S
CONSORTIUM
104
I T T T T T T
10°° 1077 1073 1073 1071 10! 103
f [Hz]
1le—9
-\ RESONANCE BETWEEN THE SW
1.5 CoWSW <°—> OF THE CMB AND THE ISW OF
Mo = 1 THE CGWB
1.0 1
5 LARGE CORRELATION!
=
Q
— 0.5
+
S
=
0.0+
N\
—0.54 — cmBxcGws — N+ )CVEISWRT (4 1)CSW X ISW 2
— L+ 1)CPW XSV 2 — L+ 1)CIWXSWP2p

10!

102

103

[Ricciardone,

LVDA et al.,
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CONSTRAINED REALIZATIONS

CMB AT/T Constrained 6cgws - Noiseless case

I I
-0.000385371 0.000331378 -0.00220126 0.00205258

The CGWB map at large angular scales is univocally determined by the CMB one.

The constrained realizations can be used to test foreground or systematic contamination in the data.
[Ricciardone, LVDA et al., 2021]




A BACKGROUND FROM UNRESOLVED SOURCES

« The energy density of the AGWB is obtained by summing all the contributions from GW unresolved sources

along the past GW-cone,

f J z
pcritc2 (1 ar Z)H(Z)

Qrwa(f) = Jdep(e) w(0, 2) R(z)——— df =

e f=(1+2)f

- The capability of the detector to resolve the sources has been taken into account in the window function w,

Pow @, z, SNR < SNRy,)
3 do
w(b,z) =

dNGW

(t9 2)
where the signal-to-noise ratio has been computed by using

|h(f)|?

SNR = 4de =7

Population of BBH

(Zform(z’ td)> pP (td) 'é

UNIVERSE MACHINE

—dN(iW (0, Z, td) L—RGW(“’JZ = )R

dt. dédz R,(z=0)

LVK DETECTIONS

[Behroozi et al., 2018] - &
[Bellomo et al., 2021] | g _ (Ml M2 )(l )(2 l )
% ' L e o

POWER LAW GAUSSIAN,
[LVK 2020, 2022] R*(Zform) = [dM/z (Mlz’ Zd)<SFRSF(M/1’ mem) > PLUS u=0  UNIFORM
h PEAK 6=0.1




Contributions to the anisotropies

There are three contributions to the AGWB anisotropies: the intrinsic, the kinetic and the shot
noise fluctuations.

The intrinsic anisotropies are due to clustering, to the relative velocity of the sources and to the
metric perturbations.

The kinematic dipole is induced by the observer motion w.r.t. the rest frame of the sources.

The AGWB is generated by discrete sources, which are distributed according to a Poisson PDF,
therefore shot noise fluctuations in the sky are expected.

[Jenkins, Romano, Sakellariadou, 2019]
[Cusin, Tasinato, 2022] [Jenkins, Sakellariadou, 2019]
[LVDA et al., 2022] [Alonso et al., 2020]
Chumng e 21, ., 2022] [Bellomo et al. 2021]

[Cugim ee al, , 201E)]
[Bertacca et al., 2019]

Kinetic Dipole

Many estimates of our peculiar velocity Tensions between the estimates from
from many independent probes different surveys (plus CMB anomalies)

A / VLss # Vems !
‘ S wide fa§t deep_ l

Add the AGWB as another, independent, observable, with:
Sky coverage almost equal to one;
. BN Many frequencies accessible, thus we can measure the
7
ﬁg(" Wi S_ E signals produced by different kind of sources;
P Better component separation from shot noise and the
intrinsic anisotropies.

o

[[Rlianclks 20131
[Gibelyou, Huterer, 2012]
[Rubart, Schwartz, 2013]
[Secrest, 2020]




The dipole at different freauencies

1072
10 —— CE+ET 10! —
Frequency independent kernels!
1079 QGwa() =f2/3[dz...
14 N 100
S INSPIRAL =
5D <N
_%G INSPIRAL+MERGER+RINGDOWN I 107! Intrinsic
107 Q(f):szF(ﬁz) —— Kinematic
Frequency dependent kernels! SN
10-BG . . , 1072 0 -1 —
10° 200 400 10 600 1800 10 10 10
HEHZ] f[Hz]

» The SN dominates the angular power spectrum of orders of magnitude.
« At small frequencies, the contributions to the anisotropies do not depend on the frequencies, but

at larger frequencies (accessible by ET or CE) they exhibit different frequency shapes.
[LVDA et al., 2021]

Component Separation (without instrumental noise)

Kinematic Dipole (Input)

Kinematic Dipole+Intrinsic+SN

“Hidden Contribution”

>

Component Separation
with ILC

] ]
-0.005 0.005 -0.005 0.005

d, (30 Hz) dy (30 Hz)

The reconstruction of the KD
agrees with the input one
(SNR ~ 10)

Kinematic Dipole (Estimate)

]
-0.005 0.005 7
dxp(30H2) [LVDA et al., 2021]



Component Separation (with instrumental noise)

+ We define an estimator by multiplying the signals by some weights and by adding it a bias

akbh ff
I piv,9 — Z df-AES,ABdJ“'-B — by
AB.ff

« We find E, b by imposing that the estimator is unbiased and by minimizing the covariance which comes not only from
instrumental noise, but also from the contaminations of the other contributions to the signal (SN + intrinsic noise).

« The covariance we have found for our estimator of the dipole is

.
o 1 A 2 3}

cov; = Cov(V,;, v, ;) = ObeAQ e OV
AGWB(fplv) 3H

Tr (57 'BEPSBIP ) Te (Sf 'BEDSTIBER) chein

cov 200y +0 _
1919( - 99’ 2 %ZIL(D%IIC(,D '

-1 KD 1 RKD Y
Z Tr < B S Bﬁlg ) A9 |:zf Tr (Sf 1 KDS

[LVDA et al., 2021]

Imbprovemente wrt the standard abbroach

10! = SN+Ncg +eT
101 4
________________________________________ -
100 4 = e s
4
S @
o 1
1071 - <
=
g}
SN SN+Nce +eT SN+Nce +eT
Multi-f Multi-f Single-f o
1072 4 100
T T T T
10710 107° 10-10 10~°
Qacws(f=25 Hz) Qacws(f= 25 Hz)

« Plot of the SNR of the kinematic dipole with the old (auto+cross) and the new technique (auto).
« With a multi-frequency analysis, we are able to increase, in the limit of low instrumental noise, the

precision of the detection by an order of magnitude.



Summary

The angular power spectrum of the cosmological background can constrain the fraction of
relativistic and decoupled particle species at a different epochs (before BBN).

The cross correlation between the CMB and the CGWB at large angular scales is almost one;
this fact could be exploited in a future analysis of the anisotropies.

By exploiting the frequency dependence of the anisotropies of the AGWB, we are able to
separate the components that contribute to the total signal. An example is the cleaning of
the kinematic dipole map w.r.t. the shot noise contamination.

By using this new multi-frequency analysis, we are able to constrain the observer’s motion

with SNR =~ 3 with the detector network ET+CE for a BBH signal consistent with the upper
bounds of LVK.




Angular Correlations of the
Inflationary Stochastic
Gravitational-wave Background

Oct 27th, 2022
The 31st Workshop on General Relativity and Gravitation in Japan @The Univ. of Tokyo

Zhen-Yuan Wu, Ryo Saito, Nobuyuki Sakai (Yamaguchi University) arXiv:2207.04669

Motivation
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Primordial Gravitational-waves (PGWSs)

—
Credit: ESA & the Planck Collaboration

Cosmic Microwave Background Stochastic Gravitational-wave Background
(CMB) (SGWB)

Rich information about the early universe
&
Directly verify inflation

o General prediction of inflation C>
o Observed as one kind of SGWB

Difficulties in directly measuring the inflationary SGWB

Earth's Normal Modes, ...}

easily covered
by an
astrophysical
background
(e.g. Binary
Black-holes and

Binary Neutron
Stars)

[Abbott, B. P. et al. Physical Review Letter (2017)]

predicted energy density
is weak




Many studies on distinguishing SGWB

o Spectral separation

Ungarelli & Vecchio, 04, Adams <& Cornish, 14; Parida+, 16,
Boileau+, 21; Poletli, 21, ... These
o Spectral subtraction

methods cannot
Regimbau+, 17, Pan & Yang, 20, Martinovic+, 21; Sachdev+, 20; ...
o Anisotropies guarantee that the

Adshead+, 21; Bartolo+, 22; Malhotra+, 21; ... remaln.mg C{)mpo.nent LS
o PGW polarizations from inflation without
Seto, 06; Seto, 09; Smith & Caldwell, 17; Domcke+t, 19;... assumjng an exact
o and more... inﬂation model.

This work asks:

Is there any unique feature of the inflationary SGWB
without an a priori assumption on the exact model?

Results

Good news Bad news

o AAC is not measurable in direct GW

observations under the standard

o Yes, there is an unique angular correlation,
the antipodal angular correlation

(AAC) in the inflationary SGWB assumptions (statistically isotropic or

: : Gaussian).
resulting from the standing-wave nature )

. o Strain correlation

after horizon re-entry.

© AAC is not expected in the
astrophysical SGWB because the GWs

are in the sub-horizon region all the

o Intensity correlation
o Time-domain analysis

but intensity AAC is an indicator of

time. statistical anisotropic inflation.




Antipodal Angular Correlation
VAVA\®)

Characterizing the SGWB

o Plane wave expansion

hit.x) = ) ro dfj

P=+4,—"~0 S

random variables J

d*h hp(f; ) ef (i) e~ 27/ =)
2

strain polarization
tensors

o Correlation Functions

(hi(f,ny) hpdf', 1)) . :
= ? for the inflationary SGWB

higher orders...




Evolution of PGWs in the expanding universe

Horlzon re- entry
Conformal time
e
Comoving
horizon
n<0 n~ n~1 7=
1/(aH) 1 1 1~ MrD T = Mo

Primordial power spectrum h(k) = const

sin(k cos(k etkn — g=ikn
8 GH hn, 1) 4, SR ), SO bty =
~ WG, k) =0 kn kn Vi

(W (115, K) B, K)) =

/

5 Standing-waves after

P ‘ / )
By x) =Y, J T BE(K) iy, K) el (@) e | oK) + 2%11'(;1, k) + k2h(p, K) = 0 horizon re-entry!
P

Evolution equation

AAC of the inflationary SGWB

é The age of the universe

e ikn _ e —ikn

_ 1
P k) = — _|_;7—>t:;7:;70+a—(t—t0)
0
_|_
=) de d*f hp(f, ) e (i) e =127/ (=00
= S2

J—0co

Plane-wave expansion

hp(f,R) = — h_p(—f, — f) e =470

The Antipodal Angular Correlation (AAC)




AAC of the inflationary SGWB

2-point (p,(f, i) I f', iy))

Correlation

Function , Don A 1 , P .1
= 6(f = 1) 6pp 6°(0, 0y) ESh(f) +6(f+ 1) Op_py 0°(1}, — 1y) EAh(f)

The antipodal contribution
53 only results from PGWs

hp(f, ) = = h_p(~f, — ) e~
AAC

N

2 A~ [S(D]
o Af~ 1/ny~1/T,g, ~107'¥Hz

A = = S e 1=

The measurability of AAC




Strain Correlation

o Cross Correlation for detecting an SGWB [
=772 =172

() = [m dt (5,1 5x(0)) = J

172

Allen & Romano 99]
=172

dt (h*(t) + h(t) s,(£) + h(t) s,(t) + 5,(0) 5,()) = J dt (h*(1))
172

o The observable quantity for the strain

= S , Frequency resolution is
4 e 1) WT(f_f)% limited! |f —f| ~ /T,

obs

hp(f, ) ¥ hp(fi) = [

[Allen+ 00; Bartolo+ 19]

o The AAC in the strain correlation ‘ T e e -

o 1 -
(a0, =) = | 07 55, IWilf = e

Intensity Correlation (This work)

Undesired phase factor e =+ C> phase-incoherent methods

& e.g., intensity map
[Mitra+, 08, Renzini & Contaldi, 18]

v

Phase-decoherence effect during
propagation [Margalit+, 20]

o  Antipodal correlation in intensity

= IR P 2> (LR = L) |




o)

Intensity Correlation

Observable intensity

the phase factor remains in
I, o> Ip. 7 (f,1) = | hp.,(f, D) 1? observable quantity

0 &Y hprl h prig o F~:/
= J_oo dflj_w df// ({6n3 Zf;‘]: n) _277,'l(f_f )7/ T(f_f/) W}k(f_f”)

primordial modes hp(f, 1) are Gaussian:

)ﬁ

Variance of antipodal A AN N
contribution [ AIT(n’ 0= (@R 5IT( )

where 81p.7(f; ) = Ip.;(f, ) — (Ip.(f; 1))

Ensemble average?

[ I pr = (Ip(fi 1)) }

prl(f/ ﬁ) h pri(f//’ ﬁ) s
L. (f,0))= d dar' =L —27i(f=f "o
por(fo 1) Lo fJ ST

Wi (f =) WE(f =)

" in()
E> (Ip(fi 1)) = _J af’ Z(f,)z | Wi (f =) * =  pr(f)
The ensemble average can eliminate the undesired phase factor, however,

it will erase the directional-dependent information under the statistical
isotropy.




Indicator of anisotropic inflation

Statistical anisotropy
 6(f" = )Py jn(2rfih)

RS DB S D) i e o W g
2@ ff A=),

Iy, )= J df/[ ar’

: AR
=> <IP;T<f,n>>=§J_wdf S W=D = Tl

Antipodal correlation as an
JAN ,T(ﬁ, —n)/A ]T(ﬁ, n =1 E;‘> indicator of anisotropic
inflation

Variance of antipodal
contribution

A ,]_(ﬁ, n) = (61,(n) 61;‘(ﬁ))
5Ip;T(f, ﬁ) = IP;T(fv ﬁ) - <IP;T(f’ ﬁ)>

Summary

o Antipodal angular correlation (AAC) as a distinguishable feature b/t inflationary
and astrophysical SGWB.

o It is unfortunately unmeasurable in the direct GW observations
under some standard assumptions (Gaussian or statistical isotropy) on PGWs.
o The intensity AAC as an indicator of statistical anisotropic inflation.
Future works
o Classification of the (un)measurable angular correlations in SGWB
o Perturbed background induced

o Fossil field induced (Scalar-tensor-tensor primordial non-Gaussianity)

[Malhotra+, 21; Adshead+, 21 ...]
o LY

o The replacement/explanation of the ensemble average in practice.




Thank you for your attention!

Material supply




Time-domain analysis

o (Correlation function

C(to, T, ﬁl’ ﬁz) — <hP(t0 — T/2,ﬁl) hP'(IO + T/2,ﬁ2)>

1. The normal contribution

| i
Ci(r) = C(ty, 7,0, N) = EJ df S,(f) o 27ife

2.  The AAC contribution E§ Cyx Cy,

00 _ S, (F) o f3 ~ A(10-10
Caty) = Cltp, 7,10, — 1) = %J dfA,(f) e~ W(f) et (Cy/Cy = O(107))

1 (® .
= — E J deh(f) e_4mf(’70+70)




C56

October 27th, 2022

Multi-messenger constraints on the Abelian-Higgs
cosmic string model

The 31st JGRG workshop @ University of Tokyo

. [C56] Jun'ya Kume (Univ. of Tokyo, RESCEU)

wixz In collaboration with

& 119 Mark Hindmarsh (Univ. of Helsinki, Univ. of Sussex)
UNIVERSITY arXiv:2210.06178

vesncavuonsto OF SUSSEX

particle emission + GWB 1 October 27th, 2022

J

Multi-messenger constraints on the Abelian-Higgs
cosmic string model

The 31st JGRG workshop @ University of Tokyo

. [C56] Jun'ya Kume (Univ. of Tokyo, RESCEU)

kT In collaboration with

% I.B Mark Hindmarsh (Univ. of Helsinki, Univ. of Sussex)
UNIVERSITY arXiv:2210.06178

I — ]



C56


Contents

»>Multi-messenger from Abelian-Higgs strings
> Particle emission from string network
> Gravitational wave background from loops

»Summary & Discussion

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Multi-messenger from Abelian-Higgs strings

(from Ringeval 2010)
<O >=pelf | =0

 Abelian-Higgs model (nieisen & olesen 1967)

1 , 1
L=~ FuF" + |D,®* -V (®) V(P)= & (12 =n?)

—topologically stable “string” defect
— tension: Gu ~ 107%(n/10%6GeV )?

field space / real space

v'simplest realization of cosmic strings
— large-scale lattice simulations of the field theory

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)



Multi-messenger from Abelian-Higgs strings

(from Ringeval 2010)
<P >= r]veig @ =0

 Abelian-Higgs model (nieisen & Olesen 1967)
1 1
L= —ZFWFW + D@ -V (®) V(®) = Z)\ (|2|* — n?)

—topologically stable “string” defect
- tenSion: G[l ~ 10_6(7]/1016Gev)2 field space / real space

v'simplest realization of cosmic strings

— large-scale lattice simulations of the field theory

— loops rapidly evaporates by classical field radiation
— No observable GWB...!?

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Multi-messenger from Abelian-Higgs strings

* Recent simulation of individual loops (Matsunami+ 2019, Hindmarsh+ 2021)
For loops created with a special initial condition, L

classical radiation can be suppressed until I \f\'
—large loops radiate gravitational waves! Q
(= Nambu-Goto dynamics) A\[J/\ |

[ Multi-messenger investigation of AH strings!? ]

L

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)




Multi-messenger from Abelian-Higgs strings

* Recent simulation of individual loops (Matsunami+ 2019, Hindmarsh+ 2021)
For loops created with a special initial condition, L

classical radiation can be suppressed until I . \f\’
—large loops radiate gravitational waves! Q
(= Nambu-Goto dynamics) J |

[ Multi-messenger investigation of AH strings!? ]

%

— Production rate of such loops is quite uncertain... N v
. o
GWB from AH loops needs to be quantified. /Q

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Multi-messenger from Abelian-Higgs strings

particle emission
-» SM...? from the network

hﬁf\' GWSs from a certain

®f\' fraction of large loops

T
—

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)



Multi-messenger from Abelian-Higgs strings

(Mota & Hindmarsh 2014)

2
Bsm

particle emission
-y SM...? from the network

AH string network -
—energy injection

into visible sector

©NASA
Fermi-LAT BBN

GWs from a certain
fraction of large loops

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Multi-messenger from Abelian-Higgs strings

(Mota & Hindmarsh 2014) partiC|e emission
Bim -v SM..? from the network

AH string network

— energy injection
into visible sector

' ©NASA

Fermi-LAT BBN

GWs from a certain
fraction of large loops

— GWB observation

x O
recent PTA...?
(Hindmarsh+ 2021)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)
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Particle emission from string network

« Characterizing particle emission (Mota & Hindmarsh 2014)

Introducing g2, as a fraction of energy transfer -
Qn = —5§M [ps + 3H (1 + ws)ps] : total power/unit volume - |H£h>
Injected energy density until t —

Apn(t) = Qut = 363 (w — ws)ps/o”

wg: eq. of state parameter of strings
ps: energy density of string network

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)




Particle emission from string network

 Characterizing particle emission (Mota & Hindmarsh 2014)

Introducing &, as a fraction of energy transfer -y

Qn = — B3\ [ps + 3H(1 4 ws)ps) : total power/unit volume - |H£h>
Injected energy density until ¢

Apn(t) = Qut = 383 (w = w,)p, /o

Ws: €Q. of state parameter of strings} inferred from numerical simulations
ps: energy density of string network

- B J28B3 (RD era)
App(t) = Yn s ;e { 0.582, (MD era)

~—-)

(Bevis+ 2007, Hindmarsh+ 2008, ...)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Particle emission from string network

* Possible decay channel of strings (Mota & Hindmarsh 2014)
Portal coupling to SM Higgs can be introduced:

8= S()[‘I), H,.. ] + K/d4$((I)T<I) — M2)HTH (Vachaspati 2009)
string — (string field ®) — SM Higgs H

(e.g. condensate of H — cusp annihilation)

Shower of energetic SM Higgs might alter...
—Big Bang Nucleosynthesis (primordial constraint)

— Diffuse y -ray background (late-time constraint)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)




Particle emission from string network

 Constraint from the cascade energy density

Injection that ends up in the EM cascade:
Wemn(t) = femApn(t) = 0.5 femﬁthﬁQ

Primally ch.: Higgs — bb —---

many photons via pion decay —fe, = 1 (Bhattacharjee+ 2000)

From the DGRB measurement by Fermi-LAT (M. Hindmarsh, JK 2022)
Wem < 8.3 x 107%eV /em® S [ Gu < 4 x 10712 g5 }
(Berezinsky+ 2016) t~tp

BBN constraint becomes the same order.
—Upper bound on Ap,/s at tgpy to avoid dissociation

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)
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Gravitational wave background from loops

« GW emission from Nambu-Goto-like loops
fraction of loops obeying NG dynamics: fyc (S 0.1) (Hindmarsh+ 2022)
—SGWB from fyg - n(l, t) loops

loop dist. not quantified in AH simulation...

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Gravitational wave background from loops

« GW emission from Nambu-Goto-like loops
fraction of loops obeying NG dynamics: fy;(S 0.1) (Hindmarsh+ 2022)
—SGWB from fyg - n(L, t) loops

loop dist. not quantified in AH simulation...

5.x107 T T
— EPTA(2015)

~—— NANOGrav(2018)
— PPTA(2015)

Gu =
For n(l,t), we adopt BOS model g S AS— |

1.x107°F

based on NG-simulation.(®ianco-Pillado+ 2017), |
QL) = FOE(S)

¥Instead, LRS model (Lorentz+ 2010) Gu=10""fyg =1 s et

can also be adopted as a reference. X1ty T i
1.x10 5.x107"%1.x10 5.x107° 1.x10 5.x10° 1.x10

flHz)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)



Gravitational wave background from loops

» Recent PTA results and string GWB
“common stochastic process” was observed! AlLack of HD correlation(= may not GWB)
— power-law search of GWB

—13.5

5—
(pOW)(f) 3H2 A2.fyr (L) ! ~14.0

fyr —145 -

—15.0

log;o Acp

Ycp

(The NANOGrav collaboration 2020)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Gravitational wave background from loops

* Recent PTA results and string GWB
“common stochastic process” was observed! ALack of HD correlation(= may not GWB)

— power-law search of GWB5 T2 aring G
== - varying fng

Qe 272 2w (S 14

(f) 3f{2 fyr <fyr> -14.6}

Modeling likelihood to map:(Gu, fng) — (4, ¥) < w4l

oy (AR I \/ [Sn(5) + S& (1] [Suls) + SWD ()] -159]
P(SE>Y|S eS ‘
) o it 500+ SED O] + [5u0) + 580|152

-154

—project contours by using mapped points I I R T
(Gowling+ 2022)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)



Gravitational wave background from loops

« Combining PTA result with DGRB constraint (. Hindmarsh, JK 2022)

PTA constraints in (Gu, fyg) plane: %%~ \\

¥Gu 1077 by CMB (Planck 2013) & fiyg S 0.1 —g50 - . _
GufEs > 3.2 x 10713 (95%) I N i S

To account for NANOGrav result,

, 5t ~;;,__4:;~.‘;‘ L —
fNG 2 10 Excluded Tvend

— motivates further loop simulations Béw = 6.0x107

2 -3 -25} 2 _oswqg-z e - Guf{g =3.2x107" |
Bsm < 10 P
----- - Guf2g =1.6x10"2

2105 -100 -95 -90 -85 -80 -75 70
log1,Gu

Excluded
—

— implication to model building -3.0¢

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)
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Summary

v'AH string network may radiate both particles & GWB
—multi-messenger constraints by characterizing two signals

v'Assuming that strings dominantly decay into SM Higgs,
Gu S 4x10712p52 from DGRB & BBN constraint.

v'NANOGrav result requires Gufiz? = 3.2x10713 at 95%.
— fng = 1072 & B4, < 1073 are favored to avoid other constraints.

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)

Discussion

« Not conclusive constraints but offering multi-messenger study
—too early to claim GWB detection by PTA.
—creation of NG-like loops in AH model is quite uncertain...

e Implications to the model building
— Dark Matter (Radiation) can also be produced: 2y + 3y + Bir = 1
— B2y can be tightly constrained but B2y is not. (see e.g Hindmarsh +2013)

 Extension to other models, e.g. U(1)g_;, breaking...?

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)




Nambu-Goto loop distibution

(Blanco-Pillado+ 2013, Lorentz+ 2010)

« Two different results
Gravitational backreaction are differently treated:

BOS model
1075} . . i 10

Well agree with analytical i

w7 approach (VOS model) P o
v
LA

VY 100

Model B Gy = 1075, Ny, = 100
----- 03 PI Curve (20)

cusp

L / Model A Gu = 107%, Ny, = 100 | 11|
cusp  ==e=- 03 PI Curve (20)
]— (0] S| m p | |f| ed s 7 kink ====Design PI Curve ] 1013} kink ==== Design PI Curve ]
—— kink-kink ------ A+ PI Curve
10°

...... A+ PI Curve
1
(LVK 2021)

Qg
Q

kink-kink
.
10

10'—10

10° ’ 10
fHz]

1

10710 107

’ 10
flHz]
Jun’ya Kume (UTokyo, RESCEU)

“Multi-messenger constraints on the Abelian-Higgs cosmic string model”

GWB in the BOS model

« GWB spectrum from NG simulation (Blanco-pillado+ 2017) - scaling
—contribution from oscillating loop distribution: n(l,t) = t~*n(l/t)
(NG) 2,2 X
1dln 81fG
(NG) _ L Pgw ~ _ I
Qg (f)—pc dln SHZ ;Cn(f)];n ‘
power spectrum

2n [ dz 2n
=% [ mmara (rapt@) rme

uin )

Continuously generated with 1/t ~ 0.1 Froof

through out the history of universe.
(For a different loop distribution (LRS model), see Lorentz+ 2010)

Jun’ya Kume (UTokyo, RESCEU)
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Gravitational wave background from loops

- Effect of particle emission to the loop creation (ruciair+ 2019)
Loops in AH model dominantly emit GWs until I — high freq. cutoff

dominated by kinks dominated by cusps
T 1 T
10-6 " 1 J(:(l: 10-6 ,' 1 IG('I:
1
SKA LISA|| lex SKA LsA| g ok
10°8 + ‘i - T l’ L 108 "l : T ,’ - :
R HRH] N
& Lv 7! | 5 v e
N ~10 /r\‘L - L 1 S 10 r\~\-_,,_ !
= 107701 ~ T N = 107! Wi _4\;_ 1
L
! / e /i /TN
10712 \ i / t 1 = 1012 N ¥ /‘;7\-1,.!\ \
17— AIANN
1071 10-14 \
10710 102 10° 10° 1010 10-10 10-° 10° 10° 1010
I [He] f [Hz]

Jun’ya Kume (UTokyo, RESCEU)
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BBN constraint on decaying massive particle

« Light element abundance

baryon density parameter Qh? _

var B 10-¢ o string — & — H — bb
éo.zﬁf E| 10—7 10_7 '
»§0. 5 - - . .
i "1 10-® 10-¢ Effectively, a specie X
H I 10-° 10-°
= 0.23F 4 —~ .
15407 E 10-10 \ 1o-te MXYX ~
z i 2 10-t My 10-1t

M

ol X S 102 1060TeV 10-12 App(t) N 22B2 Gu (@) 1/2
= \= :" 10-18 k \ ‘-‘ 4 10-13 S(t) - SM t
E 1075 _ S =

ol 1071 0.1TeV 1071

10~ 95%C.L. 10-1s t~1Ty

= 10-16 7=(6.11+0.04)x10-10 10-16
= 10—17 1 | 1 Il 1 1 | 1 1 1 1 | 1 10—17 < —12 —2

o . " Gu < 3.6 x 10712852

2075 e —— 107 Log,,(7y/sec) (M. B. Hindmarsh, JK 2022)
Particle Data Group (Kawasaki+ 2017)
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Abelian-Higgs model

« Nambu-Goto VS large-scale lattice simulation
typically, treated as infinitely thin 1d-object: NG action

So =—np / dPov=.  Yab = 0 X" 0 X" gy
relativistically oscillating loops — SGWB
+ re-connection rules — scaling behavior

However, in the lattice simulation,
loops rapidly evaporate by the particle emission!

> Bevis+ 2007

“Multi-messenger constraints on the Abelian-Higgs cosmic string model” Jun’ya Kume (UTokyo, RESCEU)
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Extreme Mass Ratio Inspiral (EMRI)

B EMRI:

o System: Super Massive Compact object :
the primary,
Stellar- Mass compact Object: the

secondary
e g~ 107*—107"

@ The system emit gravitational waves in
millihertz frequencies.

B Goal: Whether we identify the nature of secondary with LISA observation?

Mostafizur Rahman (IIT, Gandhinagar) EMRI

Modeling the EMRI system and MPD equations

B Model:

@ The primary: Super massive Kerr BH

@ The secondary: Spinning extended object subject to
quadrupolar deformation

The SET of secondary object allows for a multipolar expansion.

October 27, 2022 3/15

[Image

Source: google]

78 _ /dT[{5(4)p(avﬁ)} _ {v,y (Swav/a)(;u)) }

3

1
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Secondary || Co

B Spin Induced Quadrupolar Tensor (SIQT)

|
Black hole || 1 |
3
JaBre _ 3 fa Bl ) |
m2’ o Bosonstar || 10— 150 |

White Dwarf || 10° — 10’

|
Brown Dwarf || ~ 10° |

0 0% = CQSE‘SB"/m : Mass quadrupole

|
|
| Neutron star || 3—-20
|
|
tensor |

[Phys. Rev. D 104, 084056 (2021)]

B An order of magnitude analysis:

Force
due to
SIQT
|
D*z" o 3
=y =qfnt+ qu(z) +...
. M
E ~m, 5~(qh(1))2, T,-:%~5>>1

Over the inspiral period f(o‘z) produces a shift
 ~EfoTE ~ ¢
We can not neglect the effect of second order force terms

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 5/15

Dynamics of EMRI sytem and adiabatic approximation

@ Dynamics of the secondary governed by Mathisson-Papapetrou-Dixon (MPD) equation

@ Assumptions: The secondary moves on the equatorial plane of the primary and their spin
is aligned

@ From MPD equation, we get #* = V|, from which we get the energy and angular
momentum of stable circular obrits and the position of ISCO

B Adiabatic Approximation: inspiraling

orbit

@ Inspiral time scale T, (~ M/g) > Orbital
time scale 7, (~ M)

(d_E.>0rbit B _<d_E>
dr dt / oy,

@ Inspiral = Flow through a sequence of
circular orbit.

sequence of
circular
orbits
@ The flow determined by the rate of change

of energy E. [Image Credit: Adam Pound]

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 6/15




Teukolsky Equation

o GW flux at specific radius ry (dE/dt) oc {(h+)* + (hx)?)

dE oo, mw
(E)GW Z Z 27TemQ

where,
Afee = Const. [Ag — 410, + 48] — A30] + Asd} | RO
1o ,7T/2

o Total flux, F = (E)™ + (E)"
e Adiabatic evolution of orbital radius r(¢) and phase ®(¢)

dr dEN\ ! do

= — — = Q(r(z

G0 (%) 2 —auw)
@ GW phase | ®ow = 2¢
Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 7/15

GW phase

@ Throughout the inspiral, the phase can be written as

Sow(t) = V(1) + x2 (1) + gx*00P (1) + O(0)

502 (1) = Q) (1) + Co®5) (1)

1
10 10!
107! S 107!
e »eli —a=0.3
1073 1073 ?20.6
— a=0.9
— a=0.99
5 10
10 0 100 200 300 200 500 500 0 100 200 300 400 500 600
t (days) t (days)
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10!
10°
107!

]
o3
1072

10737

1074 1074

0 50 100 150 200 0 100 200 300 400 0 100 200 300 400 500 600

t (days) t (days) t (days)

@ Total accumulated GW phase

q)GW(tend) — q)o(tend) + X(I)(l)(tend) + CZXZ (@;2) (tend) + CQ(I)(QZ) (tend)>

@ Deviation in the orbital phase caused by quadrupolar deformation

A®(tend) = CogX* P (tena), P (tena) = O(1 — 25)

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022

Possible values of Spin

a D5 (fena)
0 1.63344
0.3 3.17133
0.6 6.65017
0.9 14.8259
0.99 24.5308

9/15

Secondary || Xmax
Black hole || 1
Neutron star || 0.7

| |
| |
| |
| Boson star || >1° |
| |
| |

Gravastar || ~1.2°

Superspinar || >11

[[1]Astrophys. J. 424 (Apr., 1994) 823]

0.2 0.4 0.6 0.8 1.0 1.2
ms (Mo)

[Phys. Rev. D 67 (2003) 024005]

[[2]arXiv:2203.07442 [gr-qc].]
[[3]Phys. Rev. D 78 (Oct, 2008) 084011. ]
[[4] Phys. Lett. B 672 (2009) 299-302 ]

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022
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Prospect of Detection

The systematic errors due to the inaccuracy in modeling should be less than the statistical errors
due to detector noise

@ The phase shift is resolvable if

AD(feng) = Cog*® P (tena) > VD — 1/p = 0.1 rad
[PRL 123,101103 (2019)]

0.1 0.4 0.7 1.0 15 0.1 0.4 0.7 1.0 15 0.1 0.4 0.7 1.0 15

T I —

0 ( I
0 50 100 150 0 50 100 150 0 50 100 150
| Col |Col |Col
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Case Study

Case-I Neutron Star:

2)
. 1) (Co) (Y (Lamle
A0™ = 0.0216 (L (20> 0.7/ \ 245308

(Qref, CrQef, Xref) = (10_4, 20, 0.7)

Case-II Boson Star:

(2)
C X 2 (@ nd(a>
0 10—4 50 2 24.5308

(Qref, CrQef’ Xref) =(10_4, 50, 2)

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 12/15



Case Study:

Case III: White dwarf

(2
w 7y (Ce) (xy Poenal4)
AD _0.882<10_6) (104) 2) | 243308

(qref, CrQefa Xref) = (10_67 1047 2),

Case IV: Brown dwarf

(2)
AG — 45 (106110) <2 fglos) (8%)2 <¢Q3,e'nld7(a)>

(gret, CSF, xrer) = (107192 % 10°, 80,0.3),

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 13/15

Conclusion and Future Directions

B Take away massage:

@ The effect of quadrupolar deformation can be quite significant of some ECOs like boson
star, white dwarfs, brown dwarfs and superspinors etc.

@ LISA can detect (if they exist!) these objects

@ The parameter space for detection increaases with primary’s spin

Future Directions:

Relaxing equatorial, circular orbit assumption
Consider of the effect of tidal field

Considering the effect of self-force

Whether we can do the same for equal mass binary system

Mostafizur Rahman (IIT, Gandhinagar) EMRI October 27, 2022 14/15
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Time evolution and quasinormal modes of odd parity perturbations

of stealth black holes in DHOST theory

Keisuke Nakashi (Kochi KOSEN - Rikkyo U.)

with M. Kimura (Daiichi Tech.)
H. Motohashi (Kogakuin U.)
K. Takahashi (YITP, Kyoto U.)

n progress

JGRG31 @ Koshiba Hall 2022/10/24 - 28

| KeisgleNakaehi | JGRG3] | 2022/ 10127

Introduction

* (Schwarzschild) Black hole perturbation in GR

m Master equation : 2-dimensional wave equation
I
> = @) JPEx) =0

ox2 ot

m Characteristic modes : quasinormal modes (QNMs)
P(t,x) = e "y (x)
d2

@+a)2—veﬁ~ w=0

ingoing outgoing

X = — 00
horizon

X = 00
infinity

X

K CISUKe Nakash RG31 2022/ 10/ 27
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Introduction

* Why are the QNMs important in GR ?

m QNMs dominate the late time behavior of perturbations.
[Vishveshwara (1970)], [Leaver (1986)]

0.100 + /

awm e l1Ime
m Ringdown phase can be fitted by the superposition of QNMs.

[Giesler, Isi, Scheel, & Teukolsky (2019)]
[Sago, Isoyama, & Nakano (2021)], etc.

| Keicuke Nakachi RG3] 2022/ 10/ 27

Introduction

- How about in modified gravity ?

m Do QNMs always dominate the late time behavior ?
For some solutions in a scalar-tensor theory, the monopole

perturbations do not exhibit a damping oscillation.
[KN, Kimura, Motohashi, & Takahashi (2022)]

]

Time

It 1s important examine not only QNM frequencies
but also time evolution

Ceisue Nakagl JGRG3]



Gravity theory

* Degenerate Higher-Order Scalar Tensor (DHOST) theory

[Langlois&Noui, (2015), Crisostomi+, (2016), Ben Achour+, (2016)]
5

L =Fy$.X) + Fip,X) 0o+ F(, R + ). A, X)L, X = "

I=1

Ly = ¢, ¢, Ly=O#), Ly = ¢'$,¢"0O¢, Ly= ¢ ¢, . Ls = (@ ¢,0")
+ degeneracy conditions

) DHOST
m 2 tensor DOFs. + 1 scalar DOF. [Homdes’kl QGR]

m No Ostrogradsky ghost instability

Ceicule Nok 2022/ 10/ 27

Gravity theory

* Degenerate Higher-Order Scalar Tensor (DHOST) theory

[Langlois&Noui, (2015), Crlsostom1+ (2016), Ben Achour+, (2016)]

L = F i X) + Flzd® + F,Q X)R + ZA KX L, X = §,¢"

= ", L= 09, Ly = ¢ ¢, 0, Ly= ¢"¢W¢”¢g Ls = (¢"¢,,0")
+ degeneracy conditions

. DHOST
m 2 tensor DOFs. + 1 scalar DOF. [HomdeSkl .GR]

m No Ostrogradsky ghost instability

K CISUKe Nakash RG31 2022/ 10/ 27



Gravity theory

* subclass of DHOST theory

[Langlois&Noui, (2015), Crisostomi+, (2016), Ben Achour+, (2016)]

5
L = FyX) + F,XOR + Y A LP, X = "
I=1

Ly = ¢, 0", L= O, Ly=¢'d¢" O, L= ¢'d.0"'¢,, Ls= ($",.0")
+ degeneracy conditions

) DHOST
m 2 tensor DOFs. + 1 scalar DOF. [Homdes’kl QGR]

m No Ostrogradsky ghost instability

m Symmetries : ¢p — ¢ +const. & ¢ > — ¢

| KeisgleNakaehi | JGRG3] | 2022/ 10/ 27

Background

+ Stealth Schwarzschild black hole [Motohashi & Minamitsuji (2019)]
[Charmousis+, (2019)]

[Takahashi & Motohashi (2020)], etc.

m Metric : Schwarzschild metric

rS
g, dxtdx’ = — AN A2 + A(D~ drr + rdQ%, A =1-=
r

m Scalar field : nontrivial configuration with X = — ¢?

Vi-yr

d=qlt+2/r7+rn ———

Vr 4/
m Existence conditions of stealth solutions
Fo(—q?) =0, dyFo(—¢?) =0

% Perturbations of a stealth solution are strong coupled in general.
In the odd parity sector, we ignore the effect of such terms for simplicity.

Ceicule Nakach 2022/ 10/ 27



Odd parity perturbation

* Quadratic Lagrangian [Takahashi, Motohashi, & Minamitsuji (2019)]

PO~ b(0,0)% = b0, 1)+0,70, y~[£(£ + Dby + Vu(P)]i?

m Introduce new time coordinate

\/:+2\/7(r NG é”zln% n £+5—‘

ry = (1 + ) : Killing horizon for graviton
2

m Diagonalized quadratic Lagrangian

LD~ by(0;: )% — by(0,)* = [£(€ + Dby + Vog(r)]i?

K CISUKE NJKg RG31 2022/ 10/ 27

EOM & QNM frequency

* Introduce generalized tortoise coordinate x & new variable ¥

o R, 24N
ox2 0f2

£ +1) 3r
x=r+rgln L—l Vs <1——> @+ ) °
Iy r r2 r3

— Regge-Wheeler equation replaced r, by 7,

- V(¥ =0

-1
2
v A
+ QNM frequency : @PHOST = 2OR = <1 + 1 1> w SR

K CISUKe Nakash RG31 2022/ 10/ 27



Initial surface (7, < r, case)

* Time evolution of ¥

e A 2\ L .
_ —Vus¥=0 -+ initial condition

ox?  0r?

m Initial surface : 7 = const. surface

nitial Gaussian
wave packet

* QNM dominates the late time behavior.
rS

QNM frequency is @PHO5T = 2 »OR as expected.
Te
||
R
n 0 GR
4 DHOST _ “n=0

1.5

/ (1)” =0

f

Ceisue Nakagl JGRG3]



- We investigate the time evolution of odd parity perturbations
in a subclass of DHOST theory.
m EOM becomes Regge-Wheeler equation replaced r; by 7,.

r
pHOST _ s GR
e

m QNM frequency is @

m QNMs dominate the late time behavior of the perturbations.

| KeisgleNakaehi | JGRG3] | 2022/ 10/ 27
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The Effective Field Theory of
Vector-Tensor Theories

Katsuki Aoki (YITP, Kyoto University)

KA, M. A. Gorji, S, Mukohyama, K. Takahashi, JCAP01(2022)059 [2111.08119]
KA, A. De Felice, M. A. Gorji, T. Hiramatsu, S, Mukohyama, M. C. Pookkillath, K. Takahashi, in progress.

JGRG31@RESCEU, The University of Tokyo, 27th Oct.

Introduction

O Dark energy?
There are a lot of models...

e.g. A, canonical scalar, Brans—Dicke, Galileon, and more...

O How do we distinguish various dark energy models?

v Concrete models: definite predictions, but model dependent.

v' EFT approach: try to extract model-independent predictions
Creminelli+ 2006, Cheung+ 2008, Gubitosi+ 2013, Bloomfield+ 2013, ...

M*Zf(t)R — A(t) — c(t)g™ — %Mf’(t)(SgOO(SK + .

2
/' N\ ~ Y, N
Non-minimal coupling  Canonical scalar Galileon (KGB)

EFT coefficients universally characterize the models.

S:/d4x\/—_g[

JGRG31@RESCEU, The University of Tokyo, 27th Oct.
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EFT of dark energy

O Scalar dark energy or vector dark energy?
(=~ Horndeski) (=~ Generalized Proca)

*The formulation itself is applicable to any ST/VT theories for cosmology.

O How do we distinguish these dark energy models?
Or, how do we distinguish the spin of dark energy?

O “The EFT of dark energy” is not “EFT of ALL dark energy”!
2
= [[atoy=g |2 fOR - A() - c(t)g” — LA0500K + -
/' N\ -~ Y, .
Non-minimal coupling  Canonical scalar Galileon (KGB)
= scalar-tensor theories!

Extensions are required!

JGRG31@RESCEU, The University of Tokyo, 27th Oct.

Cosmology = SSB of spacetime sym.

Universe is filled with unknown (inflation/dark energy)
= part(s) of spacetime symmetries are spontaneously broken.

w

Preferred slices Preferred coordinates Preferred direction
= scalar condensate = fluid/solid = vector condensate
(EFT of scalar-tensor) (EFT of continuum) (EFT of vector-tensor)

Creminelli+ 2006, Cheung+ 2008, Dubovsky+ 2006, Endlich+ 2013, KA+ 2111.08119
Gubitosi+ 2013, Bloomfield+ 2013, ... KA+ 2204.06672.

JGRG31@RESCEU, The University of Tokyo, 27th Oct.



Cosmology = SSB of spacetime sym.

O In this talk, we focus on scalar-tensor theories and vector-tensor theories.
ST: Preferred spacelike slices  VT: Preferred timelike direction

(i(t,z)) =t (v) = B,u(t) o 3,
A clock field

O The difference is clarified by the use of internal symmetry.

v' General scalar-tensor theory: no symmetry associated with ¢

v Shift-symmetric theory: invariant under #(t,x) — £(t,x) — xo

v Localized shift symmetry: invariant under t(t,z) — t(t,xz) — garx(t, )

Covariant derivative of the clock field: v, = 9,t + ga A4, < Gauge field

= Gauge coupling
*The vector may be massive because of SSB.

Web of EFTs

EFT of inflation/dark energy |«cxtension to FLRW Ghost condensation
[2, 3, 6-15]  |-mremsecescesesceseoa . 4, 5]

Minkowski or de Sitter

soft-breaking
shift symmetry

imposing
shift symmetry

——————>

A
1
1
1
1
|
L 1

- - weak 1 .

Shift-symmetric ‘fd ' | gauging
: oupling .
scalar-tensor theories [22] ‘ )ull). - 1 | shift symmetry
1mitc
A

weak DI :
owline + | [Z20818 !
COUPHNS v 1 |shift symmetry '

limit :

EFT of vector-tensor theories | cXtension to FLRW Gauged ghost

[present work]  [------- T >| condensation [20, 21]

Therefore, STEFT and VTEFT are distinguished by
1. the existence of shift symmetry and
2. global shift symmetry (g, = 0) or local shift symmetry (gy # 0).



Scalar and tensor perturbations

O Symmetry, field contents, and expansion parameters are known
— We can systematically construct the EFT Lagrangian.

O Let's make the Lagrangian user-friendly.
Easy to understand existence/absence of shift sym. and gauge coupling.

O We finally find the following form in the absence of vorticity.

dtd’k _ 4 M? = no vector perturbations in cosmology
(525 :/ 3N(l 7

ON

SN
X |(14ag )—51(3)R—|—4Ha3—61K+51 Y0 KP o — (1 +aSV) (0, K)?

N 2 ~GC
4 apH? (%) + (14 ar)é <<3>R\/_§) O}}Wg (5:®R)? +O‘%51K51<3)R +628m + -,
a

The action is formally the same as the standard EFTofDE.

All information are embedded in the EFT coefficients with tilde.

JGRG31@RESCEU, The University of Tokyo, 27th Oct.

Scalar and tensor perturbations

O « without tilde and a with tilde are

ap(t.k) = [L - G(t, k)ap(t),
arc(t k) = [1 - G(t,b)ax(t),
ag(t,k)=[1—-G(t, k)|ag(t)+ Gt k)ar(t),

2
GGV (1. k) = 0GPV () + 4G (1, k) SEU)

(e} — 2
5 (0.8 = aff(0) - 6.0

(t k’) _ aB ( ) . 2Q(t, k?) OéB(t) [QH(t> — CYT(t)] )

(0AV407 ¢
where G(t, k) = v+ 2 (2

av(t) o< gir is the effective gauge coupling

O STEFT corresponds to ay = 0 in which @x(t, k) = ax(t).

JGRG31@RESCEU, The University of Tokyo, 27th Oct.



Universal predictions

o+ P+ 2M2 KO
EFT of inflation/dark energy P T Pm K T
2, 3, 6-15] H
) ; M2f+6M2HW7£O
soft-breaking i imposing 4 K
shift symmetry ! | shift symmetry (T = A e e ir) mav=0
. : : N
Shift-symmetric
scalar-tensor theories [22] ax 4 602
_ _ 2 7 GK B ~/
wonk 3 — Pm + Pm + 2M Hia ~0,
‘ 1 N : gauging >_ K
('Oull)hllllli? i shift symmetry M2f + GMQHM ~0
1 - H C\CK
EFT of vector-tensor theories *Slightly modified in the case of Shift-symmetric ST. > vy, > ()
[present work]
~
Consistency relations Gauge coupling

JGRG31@RESCEU, The University of Tokyo, 27th Oct.

Scalar and tensor perturbations

O Using the so—caIIed a-basis, the EFT action becomes

3
505 — /dtdk-

SN SN
x | (14 &H)W(Sl(‘g)R +4Hap—= 01K + O K501 KP, — (14 a8SEPV) (6, K)?

2 aGC
+ axH? (%) +(1+aT)62<<3>Rg> + AL A L (6:P)R)* + fl 51 K6 PR | +658m + - --

No tilde in a; = the operator relevant for tensor modes (GWs).
GWs cannot distinguish ST&VT (or GWs give universal constraints).

Scalar perturbations can discriminate ST&VT by the gauge coupling ay.

JGRG31@RESCEU, The University of Tokyo, 27th Oct.



Modification of Poisson equation

O Effective gravitational coupling in quasi-static approximation:
kQ
— VU = —u(t)drGpmA 87G = 1/M*(to)
a Gravitational const. of GWs@t = t,

O Horndeski/Generalized Proca Class (ay = 0)

M?(to) 2 2 2
(t) = m 1+ T —20&T04V + VS(QM + .A — 2AQT&V)

Vs = 4oy A* + (terms independent of o)
Stability conditions: M? >0, 1+a7 >0, ay >0, Vg >0
The gauge coupling (ay > 0) generically prevents the enhancement of u.

“5th force in ST > 5th force in VT”

CMB constraints

O We are currently developing Boltzmann solvers.
oA = oy = 0

ST limit
}Vector DE

=0+ 1)Cy/(2)

TT
0

Computed by T. Hiramatsu.



Summary

O The Effective Field Theory of Vector-Tensor Theories
= Unified formulation of not only VT but also ST.

O In practice, all you need is replacement of EFT coefficients

aB(t) — CNVB (ta k) — [1 - g(ta k)]aB (t)a G(t, k) = v oK (_T_Vkil/((a2H2)

O ST&VT are distinguished by consistency relations and gauge coupling

6 2
Do + P 4+ 2M2HYE OB o g

i K ay =0 or >0
M2fyepeloslon—ar) L, o0
H (6757¢
Existence/absence of “potential” Scalar field or Vector field

O Boltzmann solver is under development.
We can understand how the shift sym. and the spin affect observables!

JGRG31@RESCEU, The University of Tokyo, 27th Oct.



Gravitational field of scalar lumps
in higher-derivative gravity
based on Phys. Rev. D 103, 124068 [arXiv:2103.14313/gr-qc]

Yuichi Miyashita
(Tokyo Tech)
Collaboration with Luca Buoninfante (NORDITA)

JGRG31 October 2022

OUTLINE

1. Introduction and setup
* Actions for higher-derivative gravity with scalar field
* Linearized field equation with gravitational potential

. Analysis for gravitational potentials
i.  Free massive scalar case
ii. Polynomial scalar field case
iii. Tachyon potential case

3. Summary & Future Directions

c=h=1&n =diag(—,+,+,+)
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Introduction

Einstein’s GR: the most successful theory of gravity
* Several experiments verifying predictions
Gravitational Wave (LIGO/Virgo, 2016), ...

* Fundamental theory for gravity in modern physics

Open problems: incompleteness in UV-regime
* The predictivity breaks down in UV regime, high-energy & short distance
Classical : BH & cosmological singularity

Quantum: non-renormalizability

We want to modify GR in UV-regime...

3

Extension of GR

1. Four-derivative gravity
* Introducing four-derivative term (->quadratic curvature)

S = dx V=9|R + aR* + BR;
_J16nG SR R ()
* Higher derivative terms expected from EFT perspective

Infinite derivative!

2. Nonlocal gravity Fi(-0) = iﬁn(_m)n
* Introducing infinitely higher derivative term =

2 1
S=— f d*x =g [R = (RF,(—D)R + RWFZ(—D)RW)]

* Nonlocality from infinite derivatives




Setup

ConsidertheactionS =S8, + Sy  w-32:6 R@-= _Fzgﬂ) _1 —g(u)

2 1
9 =2 f d*x =g [R +5 (RF(=0g)R + Rsz(—“g)R“”)]

Sp = j.d‘*x\/—_g [%qﬁ(ug —m2)¢p — V(d))] Field equation

s o, dV(®)
(@* -m%)¢ = " dp
Form factor characterizing the gravity sector:

1. f = 1:General Relativity

20— = %EI: fourth-derivative gravity  g>0: constant

— 2 3
3. f =e "/ nonlocal gravity u : Nonlocal Scale

Linearized field equations

Field equations for metric perturbation hy, and scalar field ¢

Harmonic gauge

1 K
— 1
f(D)D (h/,w — En,uvh> - _ET‘LLV oH (hPW _E'hwh) =0
Assumption: static and spherically symmetric configuration
» The isotropic coordinate ds? = —(1 + 2®(r))dt? + (1 — 2¥(r))dr?

fVAOVED(r) = 4nG{T[p](r) + 2Too[] (1)}
FVHVEW (1) = 416G Tyo[P](7) T[¢] = T [¢]

Tool®](r) and T[¢p](r) are determined from the solution ¢ of field equation

6




Gravitational potential generated by scalar field
Consider scalar lump generating gravitational potential

» Lump: localized scalar field configuration

Three cases for scalar field ¢
1. Free massive scalar

/ V(g)=0
2. Polynomial potential withA >0, g >0
_ A9 s
Vip)=—-7¢"+3¢
3. Tachyon potential
>
Vig) = —m§¢210g( 2 )

mge

1. Free massive scalar field

The action for scalar field: S = [ dx ¢ (O — m?)¢

c _
Equation (Vz = mz)q,’) =0 LUmP (,b — ;e mr (C: constant)

Localized source radiusR ~ 1/m

fVAOVED(r) = 4nG{T[$1(r) + 2To0[P](r)}
Substituting f(vz)vij(r) = 4nG TOO [d)] (T)

Solutions of equations given in integral representation
» Asymptotically flat solution (boundary condition)




1. Free massive scalar field

—— nonlocal gravity
4-derivative gravity 1
---- general relativity

—— nonlocal gravity

4-derivative gravity 1

---- general relativity

* Singularity at the origin r = 0 in all theories
(This singularity is not regularized by nonlocality)

* No repulsive behavior of the potential W(r) in higher derivative gravity

2. Polynomial scalar field potential

The potential: V(¢p) = %91)3 — %¢4

Equation (az + far) ¢ =gp* — A¢3

Mass energy M of lump config:

21

M = fd3r TOO(r) = W

Corresponding Schwarzschild radius:

=2GM = ——

Radius of system R = é Z

(regular)

Lump ¢ =§

r24R2

Validity for weak field approx.

R = Ry




2. Polynomial scalar field potential

— nonloc.:al gravity . 1 —— nonlocal gravity
4—der|vat|ve'g.raVIty 4 4-derivative gravity ]
--=-= general relativity ---- general relativity

Nonsingular potentials from nonsingular scalar field
No repulsive behavior of the potential ¥(r) in nonlocal gravity
Only true for sufficiently small scale u (for large 1, monotonicity is lost )

3. Tachyon potential

2
Tachyon potential: V(¢p) = mZ¢? log (%)

2
Equation (E)rz + %c')r) ¢ = —2mi¢plog (%) Lump ¢ = e3/2m e ™s"

Mass energy M of lump config: Validity for weak field approx.

e3m3/2my R Z Rg

242

Corresponding Schwarzschild radius:

M = fd3r INGE

ms~

<e3n.3/2
2 |

V2




3. Tachyon potential

—— nonlocal gravity

e ) —— nonlocal gravity
4-derivative gravity

e / 4-derivative gravity
=== general relativity \ /, ---- general relativity
11 4

* Nonsingular potentials from nonsingular scalar field in all theories
* No repulsive behavior of the potential W (r) in nonlocal gravity
Range of monotonicity: u < 2mg (from analytic solution)

Compactness

Conditions for weak field regime: 2|®|, 2|¥| < 1
* For case 2 & 3, conditions are satisfied fromr = 0tor = oo
In this sense these solution can describe horizonless compact objects

Compactness C = GM /R with effective radius R for localized mass M

* Blackhole:C = GM /2GM = 1/2
* Compact object: € < 1/2

From the results of analysis:

» Compactness is proportional to potential at the origin: C « ®(0)
* Nonlocality give less compact configuration as compared to other theories
* Higher derivative plays crucial role even for regular configuration




Summary & Future Directions

€@ Summary:

* Linearized metric sourced by scalar lump in different theories of gravity
* Nonlocality avoids repulsive contribution for sufficiently small scale u

* Less compactness configuration in nonlocal gravity

@ Future Directions:

* Study for some phenomenology of horizonless compact object

* Horizonless compact objects as remnant of binary merger
...introducing higher multipole & non-zero velocity, making stability analysis, ...
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g, (10 comp.) as well as the coefficients I'?,,,, (64
comp.) of an affine connection.
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables

are a metric g, (10 comp.) as well as the coefficients fPW (64
comp.) of an affine connection.

@ The most general connection can be written as
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables

are a metric g, (10 comp.) as well as the coefficients IN“PW (64
comp.) of an affine connection.
@ The most general connection can be written as

Connection decomposition

Levi-Civita
—~ =
fw)\ o F)\ + NA . F)\
ny — nv ny — uv
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g, (10 comp.) as well as the coefficients fPW (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Levi-Civita
—~ =
fwA . F)\ 4+ NA . FA
ny — J14 ny — J91%
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g, (10 comp.) as well as the coefficients IN“PW (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Torsion part

Levi-Civita

7 N

1-1)\ _FA —I—NA _ 1-1)\ —I—ETA _qp A
uy — uv uy — uv 9 uv (p v)
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Fundamental variables and characteristic tensors

@ In the most general metric-affine setting, the fundamental variables
are a metric g, (10 comp.) as well as the coefficients fPW (64
comp.) of an affine connection.

@ The most general connection can be written as

Connection decomposition

Levi-Civita Tor5|811 part NonmetELCIty part
7 Y 7 N\

A A UNA A —|—1T>‘ A +1Q’\ _ Q.
wr = 1% w = 1% 9 J17% (v v) 9 j% (n v)

Curvature decomposition, torsion and nonmetricity

HA A A A o
B pu = R ppy + 2V N7 ) + 2N 6 N7 1) 5
Tuup — Fupu - F'ul/pa

QMVP = @ugv/o = Ougvp — favugap — I pugvo -

Tildes=General, nothing=Riemannian — V,(Levi-Civita), @M(General)
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:

1 1
A A A A A
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
A L 7o A L 5 p L A
T W:§(5 T, — 6 MT,,)—I—Es 'SP+

o vector part T, = T,
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:

1 1
A A A A A

o vector part T, = T ,»,
o axial vector part S, = €,,,,,617°",
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
A L 7o A L 5 p L A
T W:§(5 T, — 6 HTV)JFEs o SP

o vector part T, = T ,»,
o axial vector part S, = €,,,,61"°",
o tensor part t* ,, =T, — 5 (6 T, — 0* , 1)) — g€ punS?.
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:

1 1
o vector part T, = T ,»,
o axial vector part S, = €,,,,617°",
o tensor part t* ,, = T, — 1 (0* T}, — 6 ,T,) — 2e* 5"

@ Irreducible decomposition of the nonmetricity tensor:

Qv = Weyl part + Traceless part = g, W + & ...,

1 1

1
Q‘)\,uy — 5 (g)\,uAV + g)\I/A/L) - Zg,uVAA + gEApa(qu) Pe + A\pv -
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
1

o vector part T}, = T .,
o axial vector part S, = EWPUTWP
o tensor part t*,, = T* ., — (5)\ — 0 T, v) é5>‘ S’

@ Irreducible decomposition of the nonmetr|C|ty tensor:

Q)\F“/ =] Weyl paI't -+ Traceless part = g/,u/W)\ + Q)\,Lu/ ’

1 1 1
D = (gAuA + Dowhy) — ZQWAA s §€Apa(,ﬁy) P7 + Oy -

o Weyl vector w, 4QW ,
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
1
T, = ((V — &, T, )+ = S+

o vector part T, = T? 5,
o axial vector part S, = s,W,,UTV"P
o tensor part t* ,, = T* ,, — 3 (6 T, — 0* . T,) — g™ punSP.

@ Irreducible decomposition of the nonmetr|C|ty tensor:

Q= Weyl part + Traceless part = g, W) + ,Q‘/\W,
1 1 1
Q‘)\,uu — (g)\,uAV + gAz/A ) Zg,uVAA + gEAPU(MQV) PT + A\pv -

o Weyl vector W, =1Qu",
e Second vector part Ay =35(Q" w — W),
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
1
T = = <5A — 5T, >+6s ourSP N

o vector part T, = T,
o axial vector part S, = %VPUTW,)
o tensor part t* ,, = T .y — (5)\ — &, T, 1/) é5>‘ puvSP.

@ Irreducible decomposition of the nonmetr|C|ty tensor:

Qv = Weyl part + Traceless part = g, W + & ., ,
1 1 1
D = (gAuA + Dowhy) — ZQWAA s §€Apa(,ﬁy) P7 + Oy -

o Weyl vector W, =1Qu",
e Second vector partA 3 (QV = W),
o First (pseudo)tensor part 2, * = — [s“’“P"QpM +emP 5 (2A, - W,)],
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Decomposition into irreducible parts

@ Irreducible decomposition of the torsion tensor:
1
T, = ((V — &, T, )+ = S+

o vector part T, = T .,
o axial vector part S, = s,wpaT”"P
o tensor part t* ,, = T* ,, — 3 (6 T, — 0* . T,) — g™ punSP.

@ Irreducible decomposition of the nonmetr|C|ty tensor:

Qv = Weyl part + Traceless part = g, W + & ...,
1 1 1
Q‘)\,uu — (g)\,uAV + g)\l/A ) ZgMVAA + gEApU(MQV) P7 + Ay -
o Weyl vector W, =1Qu",
o Second vector part A, = 5 (Q” . — W),
o First (pseudo)tensor part Q0 # = — [eMP7Q o\ + P 5 (2A, — W,)],
o Second tensor part ¢au = Q) — 9w Wa) — 59y
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 -
_ 4. /— -
S = /d x\/—g [Em 167T£g(73, T,9)| .
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:
1 -
S = /d4:c«/_—g Lo — —Ly(R,T,9)| .
167
@ Correspondence between geometry and matter:
0Sg

= 1670,"7,
e, T
oS,
I = 16mAY.
5waby

Here 6, " is the energy-momentum tensor (canonical) and A, % is
the hypermomentum density tensor.
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 -
_ 4. /— -
S = /d x\/—g [ﬁm 167r£g(R’T’ Q)| .

@ Correspondence between geometry and matter:

6S
56(19” = 1676,",
%%  _ 16mA, % .
dw bv

Here 6, is the energy-momentum tensor (canonical) and A, % is

the hypermomentum density tensor.
@ Three independent contractions of the curvature tensor and only one
independent scalar curvature:

~ A

R,uu = RA LAV R/u/ = R/L A VA RA Apy — 4V[VW/,L] )
R_RY .
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Dynamics of metric-affine geometry

@ Gravitational action with dynamical torsion and nonmetricity:

1 5
_ 4 — -
S = /d x\/—g [Em 167T£9(R, T,9)| .

@ Correspondence between geometry and matter:

0.5
= 1 0& Y )
Sea o
05 _ 16TA, % .
dw bv

Here 4, is the energy-momentum tensor (canonical) and A, % is

the hypermomentum density tensor.
@ Three independent contractions of the curvature tensor and only one
independent scalar curvature:

R,uu = RA LAV R;u/ = éu A VA R)\ Apy = 4V[VW/J,] )
R,

@ GL(4, R) group allows the definition of a large number of scalars.
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MAG theory with shears

@ Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

S = dz/—=g [ R+ 2f1 Rx ) ROPHY

167r
2/, (Row) _ R(w)) <R(w) _ R(W)ﬂ :
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MAG theory with shears

@ Let us first consider a simple model where torsion is not propagating
and the traceless part of nonmetricity is dynamical:

4 A v
S = 167T d*oy/=g|~ R+ 2fi R sy RO

+ 25 (g(w) _R(W)) (R(m _ R(/ﬂ/))} ’

@ As can be seen, the propagation of the nonmetricity field described in
the action is carried out by the symmetric part of the curvature tensor
and its symmetric contraction:

~ ~ 1
R(Ap) uy = V[I/Q/,l,] AP + 5 T ;,LVQO' AP )

D, > v A — A A A
Riwy = Bwy = V@ vx = VaQuu)™ = Q7 AQ(uw)p + @rp(uQr) ™
A
+ T)\p(,uQ py) )

which in turn constitute deviations from the third Bianchi of GR.
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Spherical symmetry in metric-affine geometry

@ Metric, torsion and nonmetricity tensors in symmetric space-times:

Leguy = LT 4y = LeQP ) =0 = LeRY = 0.
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Spherical symmetry in metric-affine geometry

@ Metric, torsion and nonmetricity tensors in symmetric space-times:
Leguy = LT 4y = LeQP ) =0 = LeRY ), = 0.
@ Killing vectors in static and spherically symmetric space-times:

o = 8t7
§1 =sinpdy + cot¥cos ¢y, ,
§2 = — cosp Oy + cotVsinpd, ,

£3=—0,.
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Spherical symmetry in metric-affine geometry

@ Metric, torsion and nonmetricity tensors in symmetric space-times:
Leguy = LT 4y = LeQP ) =0 = LeRY = 0.
@ Killing vectors in static and spherically symmetric space-times:

no = O,

§1 =sinp 0y + cotdcosp Jy, ,
£y = — cosp Oy + cot¥singd, ,
§3=—0yp.

@ Metric:

dr?
Wa(r)

#10 dof — #2 dof{ds2 = Wy (r)dt? — — 7% (d¥? + sin¥?dy?) .
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Spherical symmetry in metric-affine geometry

@ Torsion contains #38 dof:

Tttr:tl(r), T’"tT:tQ(r), Tﬂtg =T¢t¢=t3(’r‘), T19m9 =T% Tcp:t4(7"),
T? 1o =T? gy sin? 9 = t5(r)sin®, TV .o =T? g, sin% 0 = te(r)sind,

T! 9o =t7(r)sing, T" g, =ts(r)sind.
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Spherical symmetry in metric-affine geometry

@ Torsion contains #38 dof:

T! tr — t1(1”), T ¢ = t2(7'), Tﬂ t9 — e tp = t3(r)7 Tﬁ rd — ik T = t4(7')a
i to = T% 9¢ sin? 9 = ts(r)sind, i ro =T% 9 sin? 9 = te(r)sind,

T! 9o =t7(r)sind, T"y, =ts(r)sind.
@ Nonmetricity contains #12 dof:

Quet = q1(r), Qtrr =q2(r), Qttr = q3(r),

Qio9 = Qiopcsc® ¥ =qa(r), Qreit =qs5(r), Qrrr =gs(r),
Qrir = q7(1), Qros = Qroyp csc? 9 = qs(r) ,

Quty = Qutpcsc® ¥ =qo(r), Quory = Qerecsc® ¥ = qio(r),
Qote = — Quty = qu1(r)sin?, Qury = — Qury = q12(7)sin¥.
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Spherical symmetry in metric-affine geometry

@ Torsion contains #38 dof:

Tttr:tl(r)a Trtr:tQ(r), Tﬁtﬂ =T¢t¢=t3(’r‘), Tﬁrﬂ =T r«p:t4(r),
T? 1o =T? gy sin? 9 = t5(r)sin®, TV .o =T? g, sin% 0 = te(r)sind,

T yp = t7(r)sing, T" g, = ts(r)sind.
@ Nonmetricity contains #12 dof:

Qttt = q1(r), Qtrr =q2(r), Qttr = q3(r),

Quoo = Qrppcsc® 9 =qa(r), Qret =qs5(r), Qrrr = gs(r),
Qrir = q7(1), Qrog = Qrep csc® ¥ = gs(r),

Quto = Qutpcsc® I = qo(r), Qury = Qurpcsc® ¥ = qio(r),
Qotp = — Quty = q11(r)sin?, Qurp = — Qury = q12(r)sind.

@ This means that not only the field equations are very difficult to treat
but we need to find a solution of a system with
#2(metric) + #38(torsion) + #12(nonmetricity) = 22 dof!
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q... (containing
shears), so that:
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q.. (containing
shears), so that:
@ We eliminate the Weyl part of nonmetricity W,, = i Q¥ = 0 by setting

Wy (r)

qi(r) = ;,2 (r2qa(r)Wa(r) + 2qa(r))
i) = S0 (24 0ar) + 205(r))
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q... (containing
shears), so that:

Q@ We eliminate the Weyl part of nonmetricity W, = 1 Q.. ¥ = 0 by setting

qa(r) = ‘I’;gr) (r?qa(r)Wa(r) + 2qa(r)) ,
qs(r) = \Ijigr) (r2q6(7")\112(r) + 2q8(7“)) .

@ We imposed Ny, = 0 which is equivalent to T ., = Quu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q.. (containing
shears), so that:

@ We eliminate the Weyl part of nonmetricity W, = i Q¥ = 0 by setting

Wy (r)

qi(r) = ;2 (r2qa(r)Wa(r) + 2qa(r))
qs(r) = qj;ﬂgr) (r?qe(r)¥a(r) + 2gs(r)) .

@ We imposed Ny, = 0 which is equivalent to T, = Qpuu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

@ We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.
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How to find a solution with all of these dof?

@ We are only interested in the traceless part of Q... (containing
shears), so that:

Q@ We eliminate the Weyl part of nonmetricity W, = 1 Q.. ¥ = 0 by setting

qa(r) = ‘I’;gr) (r?qa(r)Wa(r) + 2qa(r)) ,
qs(r) = \Ijigr) (r2q6(7")\112(r) + 2q8(7“)) .

@ We imposed Ny, = 0 which is equivalent to T ., = Quu)x:
— Shear transformations in the general linear group involves the part of
the anholonomic connection describing a shear current or charge to
take values in the symmetric traceless part of the Lie algebra.

@ We demand the corresponding torsion and nonmetricity scalars of the
solution to be regular.

@ After following these three steps we end up with 2 dof (metric)+ 5 dof
(torsion/nonmetricity) which is only 7 dof.
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New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-
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New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fo=— %fl-

@ The metric behaves as
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New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fo=— ifl-

@ The metric behaves as

Solution - metric part

dr? :
ds® = Uy (r)dt® — Tl 7 (d@% + sin® Gldﬁg) :
om  2f1K>
Uy (r) = Ua(r) =1~~~ ~ f;;h .

Sebastian Bahamonde (*) Black Holes in metric-affine



New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-

@ The metric behaves as
Solution - metric part

|

dr
ds® = Uy (r) dt® — — 2 (d6? + sin? 6, d6?
s 1(7r) T r( 1 + sin” 6, 2),
om  2f1k2
y(r) = Tap(r) =1 =~ f?{;h.
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New solution only with shears

@ By plugging these conditions in the field equations, there are several
branches but only one has solutions with dynamical shears. This
branch involves the constants of the theory as

fa=— %fl-

@ The metric behaves as
Solution - metric part

dr?
ds® = Uy (r)dt? — —— — r? (d6? + sin” 0,dh3
S 1(r) W) fr( 1+ sin” 6, 2),
Im  2fi1Kk2
Uy (r) = Ua(r) =1~~~ ~ f;;h.

Here, k4, is interpreted as a new charge, "shear charge”.

@ See our paper to see the form of ¢; and ¢;. One component of
nonmetricity is arbitrary (problem?).
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ After finding the shear part alone, we found a theory containing our
previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second
(with only shears).
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ After finding the shear part alone, we found a theory containing our
previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second
(with only shears).

@ The action of the full model is

1
64

+ 2d; (R[/W] + R[,uu]) <R[ul/] + R[MV]) + 18d1R)\[p,uy]R(>‘p)'uV

S = |— 4R — 61 Ry N1 — 0y Ry R
= 3d1R()\p)HVR(Ap)'uV + 6d1R(>\p)W/R(AN)pV + 2 (261 = fl) RA AW/RP o rv
+8f1Rixp)yur RO _9p ( R fg(w)> ( R _ gw))

+ 3 (1 = 2a2) Tpu) T day/=5.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ After finding the shear part alone, we found a theory containing our
previous result JCAP 09 (2020), 057 (with spin+dilation) plus the second
(with only shears).

@ The action of the full model is

1
647

+ 2d, (R[,uy] + R[HV]) <R[MV] + R[Mv]> + 18d1R>\[puy]R()\p)uy

S = {— AR — 6y Ry RN — 0 Ry RPPVP)

— 3d1 Rx pyur RO 4 6y R )y R 2 (261 — f1) R 3 RP )M
+ 8f1R(>\p),U«VE(>\p)MV - 2f1 (R(,uy) - R(p,y)) <R(p,1/) — E(uy))

+3(1 - 2as) T[W]T[Wq dz/=g.

@ When traceless part of nonmetricity is zero, the above action
coincides with our previous study.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

Sebastian Bahamonde (*) Black Holes in metric-affine



Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of ¢;, t; and the field strength
tensors in the irreducible modes.
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of ¢;, t; and the field strength
tensors in the irreducible modes.

@ The solution gives us the following metric
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of ¢;, t; and the field strength
tensors in the irreducible modes.

@ The solution gives us the following metric

Solution General - metric part

dr?
=0 ? = — r? (d6F + sin® 0,63
ds 1(r) dt o0 r* (d67 + sin® 61d65) |

2m n dlng — 461&3 — 2f1/<,gh

\Ifl(T) = \112(7’) =1-

r r2 ’
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of ¢;, t; and the field strength
tensors in the irreducible modes.

@ The solution gives us the following metric

Solution General - metric part

dr?
ds? = Uy(r)dt® — — 72 (d6? + sin? 6, d6>
S 1(7r) W50 r( { -+ sin” 64 2),

2m i diK2 — de1k? — 2f1K2,

\111(7“) = ‘112(7“) =1-

r r2
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Reissner-Nordstrom-like solutions with spin, dilation and shear charges

@ Since we already found the solution for each model independently, it
was not so difficult to find the solution for the full model.

@ In this case, all nonmetricity components are fully set by the field
equations (remember that in the shear case, one component was
free). See our paper to see the form of ¢;, t; and the field strength
tensors in the irreducible modes.

@ The solution gives us the following metric

Solution General - metric part

dr?
=0 ? = — r? (d6F + sin® 0,63
ds 1(r) dt o0 r* (d67 + sin® 61d65) |

2m n dlng — 461/% — 2f1/<,§h

\Ifl(T) = \112(7’) =1-

r r2 ’

v

having the three possible charges of MAG: spin, dilation and shear.
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Solution with the geometrical charges, cosmological constant and electromagnetic field

On the other hand, the solution can also be trivially generalised to
include the cosmological constant and Coulomb electromagnetic fields
with electric and magnetic charges ¢. and ¢,,, which are decoupled
from torsion under the assumption of the minimal coupling principle.
This natural extension is then described by a Reissner-Nordstrom-de
Sitter-like geometry

Solution General - metric part

2m d1n§—4emﬁ—2f1/<:§h—l—q§—l-q%1 A,
— i T3

U(r)=1-

which turns out to represent the broadest family of static and
spherically symmetric black hole solutions obtained in MAG so
far.
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Q We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not in GR?

@ The solution is in vacuum and a charge «, appears (spin charge).
Analogue to the case of Schwarzschild where the mass M appears.
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What do these charges physically represent? - Torsion

o Torsion part 7%, :

@ Intrinsic spin generates gravitation. This effect does not exist in GR.

@ We know that the spin is a fundamental property of particles. Since
their masses contribute to gravity, why their spin do not in GR?

@ The solution is in vacuum and a charge «, appears (spin charge).
Analogue to the case of Schwarzschild where the mass M appears.

@ We expect that the spin charge might be important in certain
astrophysical scenarios such as: highly mangnetized neutron stars;
supermassive black holes with endowed spin.
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@ Nonmetricity part - only Weyl IV,
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What do these charges physically represent? - Nonmetricity

@ Nonmetricity part - only Weyl IV,

Q Intrinsic dilations generates gravitation. This effect does not exist in
GR.

Q dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

Q@ Weyl part of nonmetricity is "scale invariant”

@ Nonmetricity part - Traceless part ¢, . :

Sebastian Bahamonde (*) Black Holes in metric-affine



What do these charges physically represent? - Nonmetricity

@ Nonmetricity part - only Weyl IV,

Q Intrinsic dilations generates gravitation. This effect does not exist in
GR.

Q dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

@ Weyl part of nonmetricity is "scale invariant”

@ Nonmetricity part - Traceless part ¢, ,,

@ Intrinsic shears generates gravitation. This effect does not exist in GR.

Sebastian Bahamonde (*) Black Holes in metric-affine
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@ Nonmetricity part - only Weyl IV,

Q Intrinsic dilations generates gravitation. This effect does not exist in
GR.

Q dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

Q@ Weyl part of nonmetricity is "scale invariant”

@ Nonmetricity part - Traceless part ¢, . :

@ Intrinsic shears generates gravitation. This effect does not exist in GR.

@ Shears: Deformations without changing the volume.
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What do these charges physically represent? - Nonmetricity

@ Nonmetricity part - only Weyl IV,

Q Intrinsic dilations generates gravitation. This effect does not exist in
GR.

Q dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

Q@ Weyl part of nonmetricity is “scale invariant”
@ Nonmetricity part - Traceless part ¢, ,,
@ Intrinsic shears generates gravitation. This effect does not exist in GR.

Q@ Shears: Deformations without changing the volume.

@ Solution: x4 and x4, appear which are the dilation and shear
charges. Analogue to the case of Schwarzschild M.
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What do these charges physically represent? - Nonmetricity

@ Nonmetricity part - only Weyl IV,

Q Intrinsic dilations generates gravitation. This effect does not exist in
GR.

Q dilation: deformation that involves only change of volume (in this case,
intrinsic dilation!)

Q@ Weyl part of nonmetricity is "scale invariant”

@ Nonmetricity part - Traceless part ¢, . :

@ Intrinsic shears generates gravitation. This effect does not exist in GR.

@ Shears: Deformations without changing the volume.

@ Solution: x4 and k¢, appear which are the dilation and shear
charges. Analogue to the case of Schwarzschild M.

@ Do all particles in nature have different dilations and shears? are
these properties important in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine 14/15
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(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.
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@ We found the first solution with the traceless part of nonmetricity
having a dynamical role where the shear charge appears in the
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@ The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

@ It is worth studying:

@ Cosmology of the complete model: from inflation to dark energy.

Q Perturbations of this solution: Is it stable? quasinormal modes?
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Conclusions and what do to next

@ We found the first solution with the traceless part of nonmetricity
having a dynamical role where the shear charge appears in the
metric.

@ The general solution contains the three fundamental charges
(spin,dilation and shear) and the mass which constitute the most
general spherically symmetric solution with all the possible intrinsic
geometrical properties of matter.

@ It is worth studying:

@ Cosmology of the complete model: from inflation to dark energy.

@ Perturbations of this solution: Is it stable? quasinormal modes?

@ What is the role of dilations/shears in particle physics?

Sebastian Bahamonde (*) Black Holes in metric-affine
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Vector-tensor theories
In the metric-affine formalism

@JGRG3 | Oct, 2th (Thu))
Tact lkeda (Rikkyo University)

Based on ongoing work with T. Kobayashi (Rikkyo)

Introduction

* Modified gravity is actively studied
> To better understand the nature of gravity
> To understand mysteries in the universe
@ |nflation, dark matter, etc.
* How: Add new gravitational d.o.f.

» Scalar-tensor theories: g, + ¢
» Vector-tensor theories: g, + A,

@ Generalized Proca theory (L Heisenberg (2014)]


C62


Generalized Proca theory

* Generalized Proca theory (L Heisenberg (2014)]
X=—A%,2
I =Gy (A Fla Fly)

a Labs n i F ab = aaAb B abAa

L= GyX)V, A° F, = e®dF
a. C

Fy=GOR+ G, [( V,49° -V, A, VbA“]
1 o
=G 006G VA= gcs,x [(V-AP+2V A, VCA“VPA = 3(V - A)V, A, VP AY] — g XOF“F° V A,

e
Lo = GX)LYAY AV A, + %F"”F“’VHACVbAd

» In the limit A, - 9,4,

the theory reduces to (shift-symmetric) Horndeski

* This work:
| would like to consider this in the metric-affine formalism

Metric v.s. Metric-affine formalism
* Metric formalism (GR, etc.):

1
= L) i= 58 “U0,8 4 + 0c8pa — 048pe)

w Torsionless: 'Y, =T, DA =04, 1A
V(lAb - aaAb i FcabA
g Metricity: D,g,. =0

* Metric-affine formalism:
4 a a 1 ad
- #4)= 58 (9584: + 0800 — 0485)

g Geometrical variables: 79, =17 - T%,, 0. =-Y ¢

» g, and I are independent variables



Integrating out I

* [heories in the metric-affine formalism: L(g,T")

* We can solve SL/6T = 0,
It Is algebraic equation in our cases

» We can integrate out I
L(g,T) = L(g)

» The metric-affine formalism reduces to
the metric formalism

O avoid ghost instability

* |n the metric-affine formalism,
most theories without imposing any symmetry
suffer form ghost instability

> One of following 2 ways is useful
eg) F(gﬂl/, R,uu) theories, etC. [iménez and Delhom (2019)]

g lorsionless conditiofy 1'%, =149
@ projective symmetry: 1'%, =T, + 6U,

* \We assumed torsionless condition/projective symmetry
in our theories



[Tl and Kobayashi (in preparation)] T h - -t I k

Vector-tensor theories Scalar-tensor theories
' 13

A . DHOST s

Extended vector-tensor theories”
1 A
(Degenerate vector-tensor theories) 1 Chest e (Degenerate scalar-tensor theories)
: [Langlois and Noui (2015)]

[Kimura+ (2017)] '
g [Crisostomi+ (2016)]
1

Generalized Proca |

in the metric-affine formalism

[this work] __)

il )

Generalized Proca
in the metric formalism

il

Horndeski
in the metric-affine formalism

[Aoki and Shimada (2018)]
[Helpin and Volkov (2019/2020)]

.i ¢ Horndeski .
in the metric formalism

[Horndeski (1974)]
[Deffayet+ (2011)]
[Kobayashi+ (2011)]

G s e

[Heisenberg (2014)]

-
%K

b

Theory with torsionless cond.

[Tl and Kobayashi (in preparation)]

* This theory is extension of [Helpin and Volkov (2019)]
(all ¢ terms are extended to A)

» We impose torsionless condition: I'%, =T,

3
L= GyX) + G(X)Z3 + G,X)g"Ryp + Y HX)Z,
=1

Rabcd = 21_‘e[alclr‘db]e a5 2a[al_‘db]c’ Rab = Racbc
L= 8ab VA, 3}; = (VaAa)z, 3421 = gadgbc V. ALV A, 3431 = 8acgdeaAb VA,

* We can Integrate out I'

» The metric-affine formalism reduces to
the metric formalism



Theory with torsionless cond.

[Tl and Kobayashi (in preparation)]

L., A) = Gy(X) + G3(X) L3 + G,(X)g"R,, + ) H(X)Z)

> Z(g.4) = (up to linear in D,A4) + GOR+ Y (X)L,

integrating out I’ L = %D A,D.A, L,=g%“D AD.A,
Ly = (A“A’¢“ + A°A“g"") D,A,D A, L,= (A"A€g?" + A’A“g") D A,D A,
Ls=A“A’A°A“D,A,D A; Ls=gg"D,AD.A, L,=(AAlg?_APAlgd)D AD A,
Ly= (A”Afgbd —AbAdg”“) DADA, Lo—c D ADA, [Kimura+ (2017)]
* To avoid ghost instability,
coefficient functions a. must satisfy degeneracy conditions

» Degeneracy requires a certain constraint among H,

(but it does not completely fix H)

» This theory is described in the framework of
degenerate vector-tensor theories, not generalized Proca theory

Theory with projective symm.

[Tl and Kobayashi (in preparation)]

* This theory is extension of [K. Aoki and K. Shimada (2018)]
(all ¢ terms are extended to A))

> We impose projective symmetry: I'%, . =19, + §U,

E G (XpR, + FOOGUAA;
+G)(X) + G;(X) L5 + H(X) L5 + Hy(X) L8
be’ = €abcd€ab’c’d’Rch/d/, ggal — eadeea,b/chaAa/VbAb'
gial o eadeea/b/C/dAaAa’VbAb’VcAc/’ gial’ 2 €abcd€a’b’c’dAaAa/VbAb/VC/AC
* We can also Integrate out I'

» The theory is always ghost-free and described in the framework
of degenerate vector-tensor theories



Theory with projective symm.

[Tl and Kobayashi (in preparation)]

* We can also construct a theory with projective symmetry in a different way

DA =04 1 14

» The theory depends on DA,
VaAb = aaAb T 1ﬁcabAc

through a projective-invariant combination: &%,

3
L = Gy(X) + G(X)Z; + G,(X)g™R,, + ), Q(X) &}
=1
A= (VEA, A+ g, VEAD 2, - Ly =%,
3}1 = 555cdﬂabﬂcd’ 33 = 5clz)5cdﬂad‘dcb’ 3431 = gacgbdﬂabdcd
* We can also Integrate out I’

» Degeneracy requires Q; =0

@ The theory is also described in the framework of
degenerate vector-tensor theories

Summary

[Tl and Kobayashi (in preparation)]
* We investigated what is the metric-affine version of generalized Proca theories

» The theory with torsionless condition

@ Under a certain constraint
one gets ghost-free degenerate vector-tensor theories

» Constricting the epsilon tensor (with projective symm.)
@ Always ghost-free degenerate vector-tensor theories
» Using the projective-invariant combination (with projective symm.)

@ Under a certain constraint
one gets ghost-free degenerate vector-tensor theories

* torsionless condition / projective symm. alone is not perfect!
* Future work

» Adding higher curvature terms to action, etc.
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Vector-tensor theories

*
'ii

[Kimura+ (2017)]

Extended vector-tensor theories
(Degenerate vector-tensor theories) :

e

O N N N NN NN NN NN NN NN Wy

>
9%

Generalized Proca

[this work]

in the metric-affine formalism

o

Generalized Proca
in the metric formalism

[Heisenberg (2014)]

~

b4

~

-_EmE e s EE s T T e eSS = P

Ghost-free

Scalar-tensor theories

2 e

5

DHOST

[Langlois and Noui (2015)]
[Crisostomi+ (2016)]

(Degenerate scalar-tensor theories)

N O O W O N NN N NN NN W W N Wy

~

e

Horndeski

[Aoki and Shimada (2018)]
[Helpin and Volkov (2019/2020)]

in the metric-affine formalism

~H

Horndeski
in the metric formalism

[Horndeski (1974)]
[Deffayet+ (2011)]
[Kobayashi+ (2011)]

X

e

~

LR TR B R R R R RN T O R TR U R R IR R B
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“Modification to the Hawking temperature of a dynamical black hole by a time-dependent l@@@;{g@l@lgz@?@?
supertranslation,” JHEP 20 (2020) 089 arXiv:2004.05045 @,@@ 3 \,f}%
e asinormal modes and photon orbits of deformed @@N@ @%
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Long-lived Quasinormal Modes
of Black hole with Matter Inflow

Hsu-Wen Chiang

Yu-Hsein Kung, Che-Yu Chen, Jie-Shiun Tsao Pisin Chen
Keisuke Izumi, Feng-Li Lin, Misao Sasaki Bill Unruh

(LeCosPA)
(NTU)

Image credit (Left) LIGO/Virgo/Georgia Tech/S. Ghonge & K. Jani. (Right) A. Chael etal. ApJ. 918 (2021) 1, 6

Era of Black Hole Observation

* Multi-messenger astronomy?

4 :
Photon Ring
GW150914 M GW151012 {
Sy ool

Inner Shad(;‘vy

\

\

[

I

GW170608 bl GW170729 I

|

|
GW170818 GW170823
AN

0.1 0.2 E 0.1 0.2
TIME [SECONDS] TIME [SECONDS]
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Matter Inflow Toy Model

i U

e

* For simplicity, let’s neglect the spin of
the black hole and the gas stream
orbital angular momentum.

* The system is described exactly by

the dynamical soft hair model.
JHEP 20 (2020) 089 arXiv:2004.05045 (Yu-Hsein Kung, HWC, Pisin Chen)

* The flow stretches the horizon and leads
to grav. lensing, forming an ergosphere.

* No gravitational wave (GW) is emitted though.

Extreme Mass Ratio Inspiral

* Let us introduce GW by a small (relative
to the matter inflow) companion BH.




Image credit (Left) LIGO/Virgo/Georgia Tech/S. Ghonge & K. Jani. (Right) A. Chael etal. ApJ. 918 (2021) 1, 6

Era of Black Hole Observation

* Multi-messenger astronomy?

GW150914 GW151012

Photon Ring

Inner Shadc\)‘vy

12
: j
GW170608 Al GW170729

1 Spin DirectiPn
I :

!
1
1
[}
1

25 Gw170818 M” Il
AANAAA vy ",-f
|

GW170823 ‘/v\/v\/\/ Ll
i

‘ L

& 0.
TIME [SECONDS]

TIME [SECONDS]

Extreme Mass Ratio Hspirat
Ring down

* Let us introduce GW by a small (relative
to the matter inflow) companion BH.
* Focus on ring-down GWs and utilize

guasinormal modes (QNM) of minimally
coupled scalar field as the test bed:

0u(V=99*"dy¢) = 0

¢ =771 Y Pim () Ve Ctm =7+ 2m




Deformed Quasinormal Modes

e Expand around smallness of flow density €:

0 1
Juv = g;(w) + Eg;(w)

* Consider time scale where the horizon growth and
the flow variation can be neglected.

el >T KM
e Assume an axisymmetric flow.
* KG eg. can be cast into Schrodinger form
CI)l’r’n("'*) + (wlzm o Vlm(r*)) chm(r*)
i Cf PRD 102 (2020) 044047 (Cano etal.), PRD 106 (2022) 044068 (Che-Yu Chen, HWC,

jie-Hsiun Tsao) aNd Che-Yu Chen’s talk later ©.

Deformed Effective Potential

Y,
e Anisotropic density: —2 s > 2.
P Y amr2 W s=2 [ls=3 [0 s=5
* Deform factor is roughly : —
rs?+4M V at eikonal limit (Mwg > 1)
€ 0————. = Spectrum '— ,
s*(r—-2M)

is modified.

0.20 = Ny

* Expansion fails o

r—2M 0_10%
at oM €. 0.05f Y
Qo W 2.0

* Divergence is N
either physical = Echo.

* Or regularizable. ) y _Radius(2ZM)
- Theoretic interest. 040710 8



Near-horizon Expansion

* Let us zoomintor —ry = 0(€) and € > 0.

Vim = Xn=ok M) 2e™(r —ry) ™" Fiesim »

where n is the order in € and k is r* divergence.

k=-3 k=-2 k=-1 k=0 k>0 Fp
6 -3 1 e€ " 0 n=0
Irrelevant | Irrelevant | log(r —ry) Irrelevant 0 n=1
Irrelevant | Irrelevant | —log(r — )2 relevant | 0 n=2
egularjzed by
Irrelevant | Irrelevant | log(r — 1) | pushing ry out\1vafd 3
9

Near-horizon Expansion

* Let us zoomintor —ry = 0(€) and € > 0.

Vim = Zn=ok PM) 2e™(r —ry) ™" Fie stm »

where n is the order in € and k is r* divergence.

k=-3 | k=-2 k=—1 k=0 k>0 | FP
6 -3 1 e~ 0 n=0
Irrelevant | Irrelevant log(r — ry) Irrelevant 0 n=1
Irrelevant | Irrelevant ||—log(r — 1)? relevant | 0 n=2
egularjzed by
Irrelevant | Irrelevant || log(r — )3 pushing Ty Out\1vard= 3
10




Near-horizon Expansion

* Let us zoomintor —ry = o(e) and € > 0.

Vim = Xn=ok M) 2e™(r —ry) ™" Fiesim »

where n is the order in € and k is r* divergence.

k=-3 | k=-2 k=—1 =0 k>0 | FP
6 Sch. -3 / e € 0 n=0

Irrelevant | Irrelevant |\ log(r —ry) Mt 0 n=1

N =
Irrelevant | Irrelevant ||—log(r — 1)? ﬁrelev nt | 0 n=2
egularjzed by
Irrelevant | Irrelevant || log(r — )% | | pushing ry out\1varel 3
11

—1 r—-ry
*V(r) <« Ae e +W(1 + Belog(

Decay Time Estimate

) )

1

1 2, "=

r—ry _ . l“e Be

* Weakly trapped at ~ e Be, with AV ~ :

y trapp oM , (2M1)?2

k=-3 | k=-2 k=—1_ | k=0 | k>0 F}!
6 Sch. -3 / e~ 0 n=0
Irrelevant | Irrelevant log(r —ry) Wt 0 n=1

N T
Irrelevant | Irrelevant ||—log(r — 1)? relevant | 0 n=2
egularjzed by

Irrelevant | Irrelevant || log(r — )3 | | pushing|ry out\1vard 3
13




Decay Time Estimate

(1 +Belog("” i) ), |

120 Be
(2m)?”

. /A T WV
Rough estimate of decay time by WKB T € PV'P,

* Weakly trapped at—H ~ ¢ Be with AV ~

* These modes correspond
inside the photon sphere
lensing. = Ergosphere!

‘Ar*~2M:

to geodesics trapped
by gravitational

AV p 14

Conclusion and Future Work

e Our toy model suggests that QNM potential is
deformed by transient matter flow.

° Serles analySIC lAaaAdA~ +A A AhviAr~ tnea mArAnFiAl

e After careful a
to small dip of

- Niyabonga
* Relate these n e danke”gjﬁ%u lesekkur edenmw =
totrapped TRl L e [][38|33~
geodesics insi f§ §§§§ an wy sanied sMOchChaKKeraM =

<7 nans uke

Uh”ua mmgc”su ”yak) BES Ianemm[][ angal[] = dakUJem {rugarez

fahmet 3 ik dhanyavadagalu ShUkIWH Mepcm

s = B

S
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Photon escape probability and
near-horizon extremal Kerr geometry

Co4* Kota OGASAWARA (Kyoto Univ.)
In collaboration with Takahisa IGATA (Gakusyuin Univ.)

arXiv: 2211.XXXXX

Black Hole (BH) Observations e

[EHT Collaboration] [LVK Collaboration]
M87*  April 11, 2017 Masses in the Stellar Graveyard

* BH observation: receiving signals emitted from its vicinity.

* How visible is the neighborhood of BH? a
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Photon Escape Cone i

[Synge (1966), Semerak (1996), Takahashi+(2010)]

2.25M 3M 6M

Photon sphere

* As the source approaches BH, the probability of photon
escape decreases. — It's hard to see near BH---

BH Spin & Proper Motion of Emitter

29% * High spin BH is more visible
than non-spining BH.
Kerr BH W%

a>0

0.7+

LNRF emitter

0.6

0.5F

0.4

0.3

0.2+

01

[KO+(2020)]



BH Spin & Proper Motion of Emitter

55% * High spin BH is more visible

than non-spining BH.
Kerr BH WY
e Proper motion of the emitter
a>0 . ..
increases the escape probability.
SV

... LNRF emitter 89! circular emitter

' 0.75}

il a=0.9
o 04 P oo A

0.3+

0.65} a=0.98
0.2} — a=0.999
0L 0.60¢ —— a=0.99999
— a=1
L L L L ) L 0.55 L L L J
1 1.5 2 2.5 3 1.0 1.5 2.0 2.5 3.0
" [KO+(2020)] r [lgata+(2020)]

BH Spin & Proper Motion of Emitter

~

d Near-Horizon (r — ry)
Kerr BH WY & Near-Extremal (a - M)
look interesting!!
a>0 \ J
S—V

- LNRF emitter 89F circular emitter
o = g a=0.9
Ar a=0.C¢ P ’ — a=0.95

a=0.98
— a=0.999
— a=0.99999
— a=1
1 15 2 25 s 15 2.0 25 30
Ty [KO+(2020)] r llgata+(2020)]



Typical Radii around a Kerr BH Az

.................. S~ marginally stable
~~—__ . (ISCO)
= | . v ~
\g 3‘,:: '''''' ‘\\\\ \\ rms
- ~ o 'mb \\
~Ipn TS AN
- T~ ~ AN \
> _fro(9-1r/2) \\> \3 \
- —— direct
-« retrograde
degenerate...
| L | 1 I ! I I ]
0 2 4 6 .8
[Bardeen+(1972)] a / M

Near-Horizon Extremal Kerr Geometry i

* B.L. (¢, r,¢) = Bardeen-Horowitz (T, R, ®)

et r—M t
T 5 , R . , D=9 5 , (e—=0) v Qpor ¢ HOg

F:1+c0529 A 2sin @

e NHEK metric , P e
Iy PRAXHAXY = 2M°T [—RQdTQ + dRiz + df? + A*(d® + RAT)?

e symmetry : Kerr exterior RxU(1) — Kerr throat SL(2,R)xU(1)
[H())H:i:] — q:H:ta [H+7H—] - 2H0

Ho =T0r — ROg, Hy = 07, Wy = 05,

1 2
2
H_ = <T + ﬁ) Or — 2T RORr — anp



Extremal Kerr Throat

e extremal limit 4 )
=0
a=MVI—r2, 0<k<1 o
* near horizon radi ds ~ M|log k|
" }
r=MI1+r"R), 0<p<1| i = p<l1
1 e NHEK
rms = M (1 + 2/352/3) \_/} s~ Mg
rmpb = M (1 + V2k) R < >
ron = M(1 4 2/V/3k) V2 T "'mb p=1
ry =M(1+ k) 2/V/3 + Fisin [Gﬁ?fr}_(
1+ &+ >
_ a— M, (k—0) )

Extremal Kerr Throat 1

aleseere <\\\\ marginally stable p — 0
““““ — > _ (isco) Far
A— o= e @
RSN ds ~ M|log x|
1o (8=1/2) S~ ~ \\ = S }
; = - >
NS N
- -~ direct horizon \\\\\ 21/3_ Tms p < ]-
«ewee retrograde M NHEK
| | 1 1 | | 1 \
(0] 2 4 6 8 1.0 \/
o/M v } ds ~ M| log k|
I - D
A
.o \/_ T Tmb p = ]_
Degeneracy of radi
is resolved!! 2/V3 1 "ph near-
o NHEK
1+ & I+ >
_ a— M, (k—0) )




: —¢y)
Calculation Procedure i

@ rest frame of the emitter {¢®) (@)

e

C(T)

Calculation Procedure e

@ rest frame of the emitter {{}

2 emission angles (a, B)

L(®) —k(0)
cosa = PGR cos 3 = \/(k:(t))2 = (k(¢))2 C(T)
v () : escapable region
( it \
boundary

= photon unstable circular orbit
(in general, Spherical Photon Orbits)

fall escape




Calculation Procedure i

@ rest frame of the emitter {¢®)

2 emission angles (a, B)
1(¢) —k©)
cosa = ——, cosf3 =

k7 VED)Z = (k)2 1)
v () : escapable region

@ area-preserving projection (p, @)
dA = pdp A dp = sinada A dfS = dS2

(6% 7
p= 2008 (%), =T 5
A dp A d
@ integrate P:4_ :%
T

[Gates+ (2021)]

Three Emitters Motion =i

circular: r > 1, pF: 0
Q ar
Py marginally — - } ds ~ M|log x|
i :‘@} ; ¥ bounded: | p<l1
. . 1 T
) r>ron =2 NHEK
_______ —
Q , } ds ~ M|log k|
Locally non rotating frame:
r> I"+ (no proper motion) "'mb p=1
Tph near-
NHEK
T




Escape Probability in NHEK (p<1)

} ds ~ M|log k|

p<l
NHEK

}ds~M|log/-£|

p=1
near-
NHEK

circular (mb) a— M, (k—0)

1.0 15 2.0 25 3.0
r

p=20
Deleted y o
C___ﬂn,% s~ M|logk
due to — <
NHEK

preliminary P

results. : b p=1

T'ph near-
NHEK




Limit of P as a Function of Energy .

“
54.7 % ------ . . NHEK p=0
Deleted [""""""3"""==77m="0r
due to g g ® 2% Far
reliminar : H :
’ reesults. : : E > — - } ds ~ M|log k|
Emb Emb Eph p < 1
— 3—1/2 =1 - o0 T'ms NHEK
\/
P — }ds~M|log/<|
N p=1 =
Deleted [ Cantreach near-NHEK Tmb
dueto | . P = 1
i R R
5 : | NHEK
; FE C Ty >
Emb Emb Eph
_ 312 e a— M, (k—0)
Summary

v How visible is the neighborhood of BH? — Escape Probability

v Focus on the near BH region Deleted

— near-NHEK throat

v Deepest part of the NHEK due tO
throat

— emitter asymptotic to s+ preliminary

— we want to find the limit of

P as a function of energy: reSUItS-

P(E), (r - r,)

e Nature of extremal Kerr BH

° Kerr (AdS) CFT? Thank you for your attention
Feel free to comment me 7 e
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@ Introduction

D. Soligon Maximum size of BH
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Introduction

Introduction

@ |t has been shown in previous studies that in a spacetime with
positive cosmological constant the area of a black hole horizon
has an upper bound

@ For example, in Hayward, Shiromizu and Nakao (1994) it was
shown that for an apparent horizon A < 47 /A

@ Further development took into consideration the angular
momentum of a rotating black hole (eg. Clement, Reiris and
Simon, 2015), leading to a more refined inequality

@ This study took into consideration all the variables previously
considered separately (angular momentum, matter,
gravitational waves) to produce an even more accurate upper
bound

D. Soligon Maximum size of BH

Outline

© Setup

D. Soligon Maximum size of BH



Definitions

Given a four-dimensional spacetime (M, g,p) with a
three-dimensional hypersurface (X, g,p), we consider a compact
2-surface in it denoted (S, hp).

8ab = hap + rarp — Nanp = Qap — Nanp

with n? the future-directed normal to 2 and r? the spacelike
normal to S.

D. Soligon Maximum size of BH

Definitions

The second fundamental forms of ¥ and S respectively are
_ . d
Kab = 9395 Vend
and

kap = hSh3V cry

(%/j)

CZI7/K)

D. Soligon Maximum size of BH




Setup

We can decompose the second fundamental form K, as
Kab = K(r)ratb + Kab + Varb + Vpra

where
K(r) = Kabrarb

e d
Kb i = hSh? Koy

V, 1= hgrbec

D. Soligon Maximum size of BH

Setup

Defining 6. = k + k we obtain the key equation
a 1 ab 1 2 1 a a a, b
riVa,0, = —§0+ab9+ —§9++0+(K(,)+/1)+§R+D3V —V,Ve—G,pkn

with
Vo, =v,—D,lnp

a spacelike vector tangent to S and
k?:=n+r?

a future-directed null vector

D. Soligon Maximum size of BH



Definitions

0. as defined before is the outgoing null expansion rate associated
with k2, with 0, = h?"V k, = h?"0_,,. Then, a stable marginally
outer trapped surface can be defined as a compact 2-surface S
satisfying

6ils =0 and r*Vabils >0

D. Soligon Maximum size of BH

Derivation of a cosmological upper bound

Outline

© Derivation of a cosmological upper bound
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Derivation of a cosmological upper bound

Area of a stable MOTS

If we consider a spacetime with a positive cosmological constant A,
the Einstein equation reads G, = 87 T, — Agap. Then, if we
integrate the key equation over S we obtain

1
5/RdAz/\A+/[VaV"’+87T(p++p+gw)] dA
S S

with
Py = T.pk?n® = Topn?n® + T,,r2n®

1o =y 1. . o - o
87Tp+gw = §9+ab9j_b = E(KabRab + kabkab) + Kabkab

The tilde indicates traceless part.

D. Soligon Maximum size of BH

Derivation of a cosmological upper bound

Area of a stable MOTS

If the dominant energy condition holds, i. e. p; > 0, then the RHS
in the integral equation is non-negative. From the Gauss-Bonnet
theorem we can then infer that a stable MOTS is topologically a
2-sphere, so that fs RdA = 8m. The integral equation then
becomes

A< ———/ [VaV7 + 87(p+ + pgw)] dA.

or
/ [VeV, + 87 (p4 + ptew)] dA < 41 — NA
S

D. Soligon Maximum size of BH



Derivation of a cosmological upper bound

Simplification with surface-averaged quantities

Defining the surface-averaged total density

1
) le) —_ — OdA
P+tot A/Sp—l—tt

the inequality is simplified as

ar 1
A< = [ vav,da
A A s

where
Ay = N+ 8Tptot

D. Soligon Maximum size of BH

Derivation of a cosmological upper bound

Application to Kerr-de Sitter metric

If we consider a Kerr-de Sitter metric, integrating over the surface
of the horizon we obtain

2
/ V,VadA = 247r(a'Z) +0(a%)
SH

Fr

Note that there is no dependence on the cosmological constant at
the leading order. While higher order computation is possible, the
physical or geometrical meaning of higher order terms would not
be immediately clear.

D. Soligon Maximum size of BH



Applications

Outline

@ Applications

D. Soligon Maximum size of BH

Applications

Consequence for black hole event horizons

@ Since we can describe a black hole horizon as a marginally
outer trapped surface, our result effectively impose an upper
bound to the size of a black hole.

@ The results can be applied in various models, but given the
scale of the quantities in consideration it is especially relevant
in the study of the early Universe.

@ However, when considering black hole formation higher order
perturbations become relevant, so the surface-averaged
approach becomes less viable.

D. Soligon Maximum size of BH



Applications

Further applications

Another interesting case is if we consider n dimensions. The
following equation holds:

1
5 / (=D RdA > NA + / [VaV? +87(p+ + pygw)] dA
S S

For n > 4 we cannot use Gauss-Bonnet theorem to evaluate the
integral.

D. Soligon Maximum size of BH
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Introduction

e String Theory predicts Higher Curvature Corrections to GR
Einstein-Gauss-Bonnet theory is one of the simplest

1

5= 167G

/ (R + aGBLGB)d% Lop = R? — 4R, R™ + Ry po RMP°

e However, only static spherically symmetric BH [Boulware-Deser (1985)]
is found in EGB theory so far

No exact solutions like Myers-Perry or black string as in GR
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Stationary BH in EGB theory

Stationary solutions are important. But finding sols is not successful.

+ D=5 Kerr-Schild ansatz does not include rotating solution in general
Anabalon+ (2008)

Instead, numerical or perturbative approaches have been used
* D=5 equally-rotating BH

numerical Brihaye-Radu (2008) MP+small agg approx ma-Li-Lu (2021)

» Singly-rotating BH with small 2 Kim-Cai (2007)

Then, we try to find analytic solutions beyond small parameter limit
using the large D effective theory approach

Large D limit



Large D limit of General Relativity

Emparan, RS, Tanabe (2013)

Spy = nde1 /—gR

Assume Large Spacetime Dimension (D — o0)
( Mostly consider large symmetric part like SP~7)

BH dynamics

— Effective Theory@D=o0 + 1/D correction
(analogy to) Large N limit of SU(N) Super Yang-Mills

3/14

Localization of Gravity

Gravity is localized around BH at large D
Near horizon coordinate

R := (r/ry)P~3

"o
rzr0+BlnR

ex) Schwarzschild Near region
r—rg~ O(I"O/D)] —1/D expansion as function of R
g =8gR)+gR)/D+ ...

o

/

Far region
[ r—ry~ 0(1”0))—> post Minkowski

NTQ/D

Overlap region 7o/D < r —1rog K79 (1 <R < ¢P)

—Near sols. and Far sols. can be matched



Large D Effective Theory

Emparan-Shiromizu-RS-Tanabe-Tanaka (2015), Emparan-RS-Tanabe (2015)
Bhattacharyya-De-Minwalla-Mohan-Saha (2015)

~ O(D)o
O D) Rx” : along BH

Horizon .,

Consider general shape of BHs
Assume near region@D=o is solved with R := (#/r,)" — 0, ~ O(D)og

» d,~O0MD)>9, (9,=001)~ 0(/D))

Radial gradient o is enhanced by D in Einstein equation

5/14

Large D Effective Theory

Emparan-Shiromizu-RS-Tanabe-Tanaka (2015), Emparan-RS-Tanabe (2015)
Bhattacharyya-De-Minwalla-Mohan-Saha (2015)

d.~ O(D)o
r O )Rx”:along BH

Horizon .,

Consider general shape of BHs
Assume near region@D=c is solved with R := (/1) 0.~ O(D)og

w0 ~0D)>0d & =00)~0D)

Radial gradient oy is enhanced by D in Einstein equation

Einstein equation@D=c0 ——— ODE w.r.t R ( ) is dropped)

Constraints w.r.t X



Large D Effective Theory

Emparan-Shiromizu-RS-Tanabe-Tanaka (2015), Emparan-RS-Tanabe (2015)
Bhattacharyya-De-Minwalla-Mohan-Saha (2015)

~ O(D)o
O D) Rx” : along BH

Horizon .,

Consider general shape of BHs
Assume near region@D=o is solved with R := (#/r,)" — 0, ~ O(D)og

» d,~O0MD)>9, (9,=001)~ 0(/D))

Radial gradient o is enhanced by D in Einstein equation

Einstein equation@D=c0 ——— ODE w.r.t R ( ) is dropped)

Integrable in R — integration functions of x;
= Effective fields on the horizon

Constraints w.r.t X

Large D Effective Theory

Emparan-Shiromizu-RS-Tanabe-Tanaka (2015), Emparan-RS-Tanabe (2015)
Bhattacharyya-De-Minwalla-Mohan-Saha (2015)

d.~ O(D)o
r O )Rx”:along BH

Horizon .,

Consider general shape of BHs
Assume near region@D=c is solved with R := (/1) 0.~ O(D)og

w0 ~0D)>0d & =00)~0D)

Radial gradient oy is enhanced by D in Einstein equation

Einstein equation@D=c0 ——— ODE w.r.t R ( ) is dropped)

Integrable in R — integration functions of x;
= Effective fields on the horizon

o

— Effective equation (theory) for the effective fields
5/ 14

Constraints w.r.t X



Rotating BH@Large D

At large D, Myers-Perry has simple structure:
Myers-Perry(@D=00 = static black holes@D=o0
(with the line elements replaced by the boosted frame)
Emparan-Grumiller-Tanabe (2013), Emparan-RS-Tanabe (2014)

D=2n+3 Equally-rotating Myers-Perry@LargeD R := P2
-1
1 1
dsp =~ — (1 - E>(e<0>)2 + <1 —~ E) dr* + (e@)2 + dZgpn
e := Ndt + N y(dp + o) T g
—(dt,d¢p + &) in Schwarzschild@Large D

Rotating BH@Large D

At large D, Myers-Perry has simple structure:
Myers-Perry(@D=o0 = static black holes@D=o0
(with the line elements replaced by the boosted frame)
Emparan-Grumiller-Tanabe (2013), Emparan-RS-Tanabe (2014)

D=2n+3 Equally-rotating Myers-Perry@LargeD R := P2

1 1\
dsip ~ — (1 — E)(e@))2 + (1 - E) dr* + (e@)2 + dZp,
e® = Aldt + N y(dep + o) T s
—(dt,d¢p + &) in Schwarzschild@Large D

This property simplifies the analysis of Myers-Perry at large D
* Leading order equation becomes that of static BHs

* Equation decouples to separate ODEs ( then Integrable )

. . _ Emparan-RS-Tanabe (2014)
ex) perturbative analysis Myers-Perry BH RS-Tanabe (2015)

Charged Myers-Perry Tanabe (2016), Mandlik-Thakur (2018)



Rotating BH@Large D

At large D, Myers-Perry has simple structure:
Myers-Perry(@D=00 = static black holes@D=o0
(with the line elements replaced by the boosted frame)
Emparan-Grumiller-Tanabe (2013), Emparan-RS-Tanabe (2014)

D=2n+3 Equally-rotating Myers-Perry@LargeD R := P2
-1
1 1
dsp =~ — (1 - E>(e<0>)2 + <1 —~ E) dr* + (e@)2 + dZgpn
e := Ndt + N y(dp + o) T g
—(dt,d¢p + &) in Schwarzschild@Large D

This property simplifies the analysis of Myers-Perry at large D
* Leading order equation becomes that of static BHs

- Equation decouples to separate ODEs ( then Integrable )

x) perturbative analysis Myers-Perry BH Emparan-RS-Tanabe (2014)
ex) p y y Ty RS-Tanabe (2015)

Charged Myers-Perry Tanabe (2016), Mandlik-Thakur (2018)

Main Strategy: assume the same property in EGB theory

EGB theory at large D



Large D limit in EGB Theory

Large D limit of EGB BH depends on how the GB coupling scales

1 L a
RNV + §Rg/i1/ + aGBHMV =0 H"w - _iﬁGBgHV + 2RRHV B 4R#QR v
’ — 4R,0ws R + 2R 05, R

Assume agg = O(D7?) so that EH term~GB term@D—

Near Horizon@D—o : R ~ D?/ rg (rad: ry)

NOTE: EH>GB or EH<KGB cases
are obtained as the parameter limit DzaGB — Qor DzaGB — 00

e Large D effective theory has been applied to several black hole
analysis in EGB theory

Q~1/An/D
Black hole perturbation, Black String, Black Ring — VD
Chen-Li (2017), Chen-Li-Zhang (2017,2018)

But not yet for (spherical) rotating black holes

Setup

For simplicity, we consider equally-rotating BH in D=2n+3.
Background : Minkowski in Eddington-Finkelstein coord.

ds* = — dt* + 2didr + r*(d¢ + o) + r*dZi,,
$2+1 s a hopf fibration of S' on CP"




Setup

For simplicity, we consider equally-rotating BH in D=2n+3.
Background : Minkowski in Eddington-Finkelstein coord.

ds? = — di* + 2didr + r’(d¢) + A)* + r*dZ%,,
§2m*+1 _; a hopf fibration of S' on CP”

Assume the ansatz in the boosted frame
(expecting the same simplification as in Myers-Perry)

ds®> = —A(r)(e?)? + 20 (r)e@ e 4 20(r)e@e® + H(r)(e®)? + r2ds?

(dt,dr,d¢ + /) — boosted frame

0) _ dt — Qr(dg + A) e — gp 2 _ r(de + A) — Qdt
V1I—Q2 V1-Q2

8/14

1/D expansion and Assumption

Ansatz
ds® = —A(r) ()2 +20(r)e@e™ 4+ 20(r)e@e® + H(r)(e?)? + r2dx?

1/n-expansion with R := 7" (ry; = 1) (D=2n+3) a = (2n)’agg

=3 LAR), U= > Luw, o=y tow. m=y L)
- = =0 i=0

9/14



1/D expansion and Assumption

Ansatz
ds? = —A(r) ()2 +20(r)e@e™ +20(r)e®e® + H(r)(e?)? 4 r2dx?
1/n-expansion with R := 72" (r; = 1)  (D=2n+3) a = (2n)2aGB
— 1 1 | =1
A:ZZ_;EAZ-(R), U:ZEEUi(R), C:;EQ(R), H= > —H,(R).

Assumption: LO-metric = static BH ( with boosted frame)

ds® ~ — f(r)dt* + 2dtdr + (dp + A)* + dZ* + O(n™)
eV od, eV odr, e®odp+o

sl C(r) = 6(1/n), H(r) = 1+ 6(1/n)

— EGB equation decouples to
separate ODEs w.r.t R with source terms — Integrable

Leading order solution

9/14

1 1 da(a+1)m
Ap=14+ — — —4/1
° i 200 2« i R

U0:17 00:()7 H():l)

ds? = — Ay(eD)? +2eWe® + (@) + d2? + O(n™Y)

Withe©® o dr, eV o dr, e® o dop + o

Identical to D=2n+3 Boulware-Deser @large D
(as expected)

10/14



Higher order corrections

Higher order corrections are obtained by solving the sourced ODEs w.r.t R

With an auxiliary variable X = \/ 14 w

Next-to-Leading order sols : A, C|, H, U,

s (X2 -1)0%log (X2 +1) (X2 —1) Q?(arctan X —arctan(l +20r)) (X —1) (X 4202 — 1) log(X — 1)
' T 160 (202 +3a+1) X (22— 1) + B8ala+1)X (22 -1) B 4aX (922 -1)
(X —1)log(X +1) (a (49% — 2) + X (204 Q% + 2) + 502 — 2) a
- Sala+ 1)X (22— 1) tataX+ 2,
o = X -1 log (40(1 + a)) g (X —1)0%a(x 1) -1
da(l - ) X2 -1 LT 2+ D2a+ ) (X2+1) (22— 1)

02 X+1 m 1 X% +1
= —)- = 1
H,y CESICE0E) [log( 5 ) arctanX+4 220 1) 0g< 5 )},

NNLO is also obtained ( much complicated )

Thermodynamics

Metric is solved up to NLO in 1/n-expansion
— Thermodynamic variables are obtained up to the same order

Entropy < Iyer-Wald formula  The Istlaw is checked up to NLO
S= % /H(l + 2ageR)VhdP 2z
scalar curvature of horizon surface

1/n-expansion up to O(1/n) o, := a/m

~ nfnq1 (I +ag)m

8rG 1-02

2n41

8oy (1+ag)m™n Q
T 81G 1-02

R e A B

71+ 20y

g — QQn+1 (1 + 20&].1)7712;7:1

4G V1-Q2




Thermodynamics

Metric is solved up to NLO in 1/n-expansion
— Thermodynamic variables are obtained up to the same order

Entropy < Iyer-Wald formula  The Istlaw is checked up to NLO

S = L/ (14 20gR)VhdP 2z
4G Jg

scalar curvature of horizon surface
1/n-expansion up to O(1/n) o, := a/m

_ n92n+1 (]. +aH)m |: 1

= - 4 — 802%a? -8 +2(r —6)Q% +8
8n(1792)(aH+1)(2aH+1)( o+ +2(r = 6)2° +8) an

8rG  1-Q2
—20%log (203, + 2oy + 1) +49% 2y + 1) (log (ay + 1) — arctan (2ay + 1)) + Q% (7 — 4))] ,
nQont1 (1+aH)m%Q [17 1 (
87G 1- Q2 8n(1—Q2) (ag + 1) (20 + 1)
+4(1 + 207 ) (arctan (2ay + 1) — log(ay + 1)) — 2ay (1 — 16)Q% + 10) — (7 — 8)Q* —8)],
(492 +1) oy + 403, + 202
2n(1—-02) (ag +1) oy +1) |’

J= 8 (20 — 1) af + 207 log (207, + 2ay + 1)

_nl+4ay

= — m-zi\/1— Q2
14+ 2ay

1—

g Qonin (14 2ag)m™ 5 - 1
e V102 8n(1— 02) (ag +1) 2oy +1)
+4(1 + 20)Q° (log(1 4 agr) — arctan (2ag + 1) + 7/4) — 20%log (203 + 2ag +1))] .

(8 (1—29%) aj +8ag (1—20%)

Phase diagram

Mass-Normalized Entropy and Angular momentum

j=

8nGJ < 8rGM T 4GS TG M ~ 5
( (( )

(n+ Dnr1 \(n+1/2)2041 - (n+1)Q241 \(n+1/2)Q0, 11

N

a>0 — _

Thick : O(1)+O(1/n) 15— n=4D=1D) _ Myers—Perry
Dotted : O(1) o — oyt

7777777777777777777777777 — aH=0

0os - — ay=-0.25
02 04 06 08 \\\j
S = 17]2(2QH+1) . . . .
an + 1 i e 1/n expansion is bad around extremal limit
x [1 + Qn(ll_jg) (log (114:51{) ( the same is true in GR)

e For any j, Entropy Increase for a>0
Decrease for a<0

g (4(1—4%) ap — 452 +3)
(aH =+ 1) (2aH + 1)




Summary

Summary
e The exact sols for rotating BHs in EGB theory are missing

e With an assumption ( LO metric = static metric with boosted frame)
the metric functions are solved in Equally-rotating case in 1/D expansion

e The same assumption would apply to the singly rotating case ( and more)
Large D would be a viable approach for rotating EGB BHs

Future Work

e Dynamical analysis by Large D effective theory ( Work in Progress )
m = const. — m(t, 0, ¢)

e More general cases ( 1.e. single rotation )

e Rotating BHs in Lovelock theory or more generic higher curvature theory

Large D Effective Theory of BS

Ex) Dynamical Black String Emparan-RS-Tanabe (2015)

f, 1 2p(t, dz?
ds? = — 2drdr— (1 =D g L2ED 4 L 9 gangge
R D R D »

with R = /P4 undetermined functions :m(t, z), p(t, 2)

Constraints eqs
— Simple theory of effective fields {m(z, z), p(¢,z)}

om(t, z) = O7m(t, 2) = — 9, p(t,2)

2
0,p(t,2) — 02p(t,z) = 0, <m(t, 27— p(t, Z)>

m(t, z)

t=0 t=125 t=200 t=250 t=500
z z z z z
3
2
’ 1 \
PRI PR B " 2
-1 -1
2 -2
-3 -3

Appearance of Non-uniform BS
as End point of GL@D =

in a second with NDSolve on Laptop

-1

—

\:/’




Ergo Region

Ergo radius is obtained by

0= git = (1 — Q2)_1(—A — 200 + QzH)

Using the leading order solution

_ (1+a)m 1
Rerso = A=A v a(i =2y 90 )

e Ergo region exists for any o
e Size of ergo region monotonically increases with o
Reach a limit at a—o©

o 12 Nermo

m

R -
a=0 (1 —Q2)2

ergo

Higher order equations

oy [(1 +X72)(1 + 2a — X)dxH,| = Src)

X* -1 0
Y OxyH;| = src

0X [Ul_ U
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Geometric-optics correspondence
of deformed black holes

Che-Yu Chen
Institute of Physics, Academia Sinica, Taiwan

- CYC, Hsu-Wen Chiang (LeCosPA, NTU), Jie-Shiun Tsao (NTNU)

R

Geometric-Optics (Eikonal) Approximations

Strain

Ringdown:
QNM
— > Time
Field propagation in BH spacetimes Photon propagation in BH spacetimes
VeV, A = - k%, =0

(1)
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Geometric-Optics (Eikonal) Approximations

Strain|

Geometric-optics approximations

Time
Field propagation in BH spacetimes Photon propagation in BH spacetimes
VéV,A=0(A/L)~0 k%, =0

()

How does the correspondence manifest in BH spacetimes?

= Spacetime symmetry is crucial

= Non-rotating BH:

Static and spherically symmetric

d2
<d_r*2 + w2>‘{’ = %LP

\ Photon

sphere

approach PS when [ —» o

* The peak of the QNM potential in the eikonal limit

(high frequency limit, or [ - o) coincides with the Vy
photon sphere (PS) 1.5}
1.0f
0.5 r — 0
{
en )l @
3 4 5




Correspondence in Kerr Spacetime

* Separable geodesic equations (Carter constant), and separable wave equations

Wave Quantity Ray Quantity Interpretation

Wave frequency is same as energy of null ray
(0) 4 &

(determined by spherical photon orbit).

Azimuthal quantum number corresponds to z angular momentum
(quantized to get standing wave in ¢ direction).

1 2412 Real part of angular eigenvalue related to Carter constant
Im ‘ (quantized to get standing wave in 6 direction). _>

Wave decay rate is proportional to Lyapunov exponent

y Y=—4] ) . :
of rays neighboring the light sphere.

Nonzero because @y # 0
(see Secs. II B 2 and III C 3 for further discussion).

Im

Yang et al. (2012)

Recently extended to Kerr-Newman by Li et al. (2021)

Eikonal QNMs and BH Shadows

wr < Angular frequency onPS < Size of shadow image

w; < Lyapunov exponentonPS « Higher-order ring structures

Jusufi (2020), Cuadros-Melgar et al. (2020)

Jusufi (2020), Yang (2021)

= What if the black hole spacetime has less symmetry?

(-)

(-)



Deformed Schwarzschild Spacetime

* Consider small but general axisymmetric deformations
of Schwarzschild BHs

In the presence of deformations:

* Radial and latitudinal sectors of geodesic equations are

NOT separable

Generic photon orbits r(6) do NOT have constant r ,
Inseparable QNM equations if deformations are not
small

* Can be made separable if deformations are small

Cano, Fransen, Hertog (2020)

(02 +0?) Wi = Verr(r, L)Wy | | Vege(r, L, m) = Ve, + 6V ")

Two Kinds of Photon Orbits

= Planar circular photon orbits with a constant radius:

= The peak of V(1) is precisely on these orbits
(ml=1>»1)

* Generic photon orbits do not have constant r

* These photon orbits should
= be periodic
= form a class of limit cycles

= We can integrate the orbits along full periods § dA = $§ §~1d@




Generic Orbits

i grrT) ) = (O F(r*,0)(r —r* definition of limit cycle
d\

=0

* The peak of V(1) coincides with the root of this integrated equation
(Im| <landl>» 1)

(-)

Generic Orbits

i grr’f" = 8,.F T‘*,H r—r* definition of limit cycle
dA\

= 0, Fy(r p o(¢)  Lyapunovexponentis 0(1)

—0 averaged radius along one period

* The peak of V(1) coincides with the averaged radius of these orbits
along one period

(-)



Conclusions

» Geometric-optics approximation adopted in BH spacetime
= Correspondence between eikonal QNMs and photon orbits

= Schwarzschild and Kerr: Using their symmetries
= What if the black hole spacetime has less symmetry?

= Identify eikonal correspondence through the definition of averaged
radius along full closed photon orbits

= Future:
* Non-axisymmetric deformations
* Deformed Kerr
= Observational implications

©

Deformed Schwarzschild Spacetime

2M ;
Gu = — (1 — = ) (1+ €Aj(r)cos’ §) ,
r e A general axisymmetric
IMN\ ™ 1 . deformation which excludes
Grr = (1 _ _) (1 + €B; () cos? 9) ’ frame-dragging effects
r

goo =12 (1 + eCj(r) cos’ 9) ,
9o = r?sin’ 0 (1+ eD;(r) cos’ §) ,
gir = €aj(r) cos’ 0, gip = €bj(r) cos’ 0, =

gro = €cj(r) cos’ 0 gro = €d;(r) cos’ 0,

9o, = €e;(r)cos’ 6.

* Small deformation: |e| K 1 @
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Vanishing Love of Black Holes

in General Relativity:
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of a Two-dimensional Reduced Geometry
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Introduction: Test of GR with tidal Love numbers

¢ N\ no tides '
I
g ’,u
< l.:‘.hu
( 1l
8 O T
3 yoopn TR ,"\ TR nn
> A0 AN e
S| oan N Ny R e
B Ny nyh 1 1] 1 11 R
\ 1 ! Vit IR 1! [
S A IR A R R R TR R
< H A/ \y \' v Vel ey |||'|||' II||I
= VoUW g g e
RS vy gy l: HRT! :. :,,
= Y ou [N
8 U
= . . l,'l':
= with tides ,»~— ™\ v
=
on

-/ time
[Yunes et al, 2022]

* Tidal deformability of bodies is measured by tidal Love numbers [Love, 1911]

R 2/0+1
14 2k5@<?>

* Constraint of EoS of neutron stars by GW170817 [Abbott et al, 2017]

GM Pe.
Dot = 10 (ZW+ - 1 dimYim (8,0) [Poisson&Will, 2014]

r

L,m

I:> Test of GR in strong-field regime [Cardoso et al, 2017]
arXiv: 2209.10469



C68


Vanishing of tidal Love numbers of Schwarzschild BHs

o ;e external (weak)
Situation: @ < s ®tida|fie|d

* Linear perturbation to Schwarzschild BHs in the static limit:

[Regge&Wheeler, 1957]

Ad(Ad‘I’E> A{W“) 3]@:0 A=2(z-1), z=—

22dz \ 22 dz 22

* (Relativistic) tidal Love numbers are defined by: [Binnington&Poisson, 2009]

®plos1 ~ 2 (1+2k27%) | under regularity at horizon

e Schwarzschild BH in 4 dim has zero Love humbers [Binnington&Poisson, 2009]

* This is also the case of enen-parity perturbation
arXiv: 2209.10469

Beyond GR or non-vacuum or higher dimensions

Some nontrivial underlying structure may prohibit acquiring Love numbers

* Schwarzschild BH in 4 dim has zero Love numbers for spin-s fields [Hui et al, 2021]

* Their vanishing is also the case for Kerr BHs [Tiec et al, 2021; Chia, 2021;
Charalanbous et al, 2021]

* BHs in some modified theories of gravity, BHs in GR with matter fields,

and higher-dim Schwarzschild BHs can have nonzero Love numbers
[Kol&Smolkin, 2012; Cardoso et al, 2020]

* Is Love numbers = 0 a unique feature of BHs in vacuum in 4 dim GR?

No | [Cardoso et al, 2017] [Cardoso et al, 2020]
Schwarzschild BH in Brans-Dicke, Riessner-Nordstrom BH also have zero

arXiv: 2209.10469




Previous works and our work

* Previous works argued

“hidden” symmetric structure is important

[Porto, 2016; Penna, 2018; Charalambou et al, 2021;
Hui et al, 2022; Achour et al, 2022; Charalambou et al, 2022]

* Our question

Why does such a hidden symmetric structure exist? Geometrical origin?

We study the underlying symmetric structure of Love numbers = 0
in terms of spacetime symmetry
in a unified manner for scalar (s = 0), vector (s = 1), and tidal fields (s = 2)

arXiv: 2209.10469

Reduction to AdS2

* Regge-Wheeler eq. for spin-s fields in static limit:

z 23

Ad (AdD\_ATee+1) £-1]_
22dz \ 22 dz 2 b

Field redefinition: ¢,(z) = s
z

d (  dey s

* This can be identified as an equation for static scalar fields in AdS2

2-dim spacetime

. . 1
with negative constant curvature: ds®> = —Adt* + Zdz2 Ao 1) el )

2
[DAdsz ~ (4(5 A 1) iy ;)] ¢$e =0 [Castro, et al, 2010]

* Low-frequency perturbation can also be reduced arXiv: 2209.10469




Generator of hidden symmetries: Ladder operators

2
* Ladder operators: Dy, = 2(2 — 1), — %i (2z -1- ]:—2> S b Tl Lk
S

: Closed conformal Killing vector field of AdS2, £.g{29 = (v,¢¢) gl84%2)
with vaCb = vbCa

Y

* Ladder operator shifts £ into £ — ¢+ 1

hia (@-1)@—? Dot
[DAdsz_ (£(€+1)_§)] ik / [ AdS < )] k_Pe
= Osas, — (@ D€+ 2]- )] Drcoe =0

arXiv: 2209.10469

Supersymmetric structure

* Let us consider a pair (¢¢, pex1):

d d s
Hé¢£ :0, H, ::—AE <A£>—|—A|:€(£+l)—?:|
EoM: . where - p 2
Hot1¢041 =0 9 A <A—> A {((il) (€i1+1)—8—]
dz dz %

* Hamiltonians can be “factorized": {#, = D_i, D, + B2,, Her1=Di, Dy, + b7,

k)2 S
B -0 h )t izk:
:: Dyu Hede = Dis (D—kuDis + B2, ) e = Hesr Dy =0, ¢ (1
D_p, Her10e+1 =Dy, (DkiD—ki = 5;1) e+1 = HoD_g, Ppo+1 = 0. |
i
g
Dk+ “““““““““
..‘u“: ‘‘‘‘‘‘ D—k+
: o ,-" ‘‘‘‘‘
¢¢ and ¢ex1 are symmetric partners %2
Inductively, all the modes are symmetric partners be b1

arXiv: 2209.10469




Supersymmetry Algebra

* Hidden symmetric structure can be understood from supersymmetry algebra

HEOl =0 —0 S[0:0l= N 6001l — 10 OF — O
Wjiere H:(le_oﬁzi Heilo—ﬁii)’ Q:<D(])€:t 8)’ Q:<8 Daki)’

Spin-s field perturbation to Schwarzschild BH has supersymmetric structure

* odd-parity / even-parity are also supersymmetric [Chandrasekar, 1975]
parity parity persy

{=14 PO OO >
A

Ty >
A
v

—9 €=--=-=-=-- >
Odd Even

Linearized GR around Schwarzschild BHs has supersymmetric structure

arXiv: 2209.10469

Love numbers = 0 from radially conserved quantities

: - : d ap-_
* Radially conserved quantities exist: W, := (D_i, ¢p+1) (A%) — (A%) .

* For a pair of lowest multipole and originally “unphysical” mode, (¢s,¢s-1)

d
LW, =0 — — "Dt =0
%

dz
= Y;

5|1 otonsty " Inflo— 1/2)
Asymptotic sols.:

¢s|z>>1 o a1l
¢s|2—1 ~ const. Oof i Il 18
. —iiop %L 0o
¢S‘z>>1 > ¢s|z>>1 S

Horizon-regular sol. is purely growing at large distances,
showing Love number = 0

[Cooper et al, 1994]
* Y, = 0 is similar to unbroken supersymmetry in SUSY quantum mechanics




Love numbers = 0 from radially conserved quantities

* Higher multipole can be mapped into the lowest one with ladder operators

Radially conserved quantity: Y, := ZSDSQBS , where ¢, = Dei1---Dy_1Dyy

¢¢|2—1 ~ const., In(l—1/z)

Asymptotic sols.: s

¢£|Z>>1 e Zea <
ng implies that gz~55|z_>1 ~ const. is @Ps|z>1 ~ 2°
because ¢ is the lowest multipole

Ladder operator Dy, _keeps the asymptotic feature:
the horizon-regular sol. is mapped into that and
the growing sol. at large distances is mapped into that.

Horizon-regular sol. of @y is purely growing at large distances;

therefore,iall the Love numbers = 0

Kerr BH case

* Static Teukolsky eq. can be reduced to static scalar fields in AdS2:
[Teukolsky, 1972]

Sl <A5+1 Lo, )) (m2X2 st e e 1)) () (2) = 0,

A
dz A

)

A=2z(z-1), Z:hr—r,’ x € [0,1)

¢(5)( ) = AS/2<I>(S)

m>

4 DD i) L >
|:|:|Ad82_ (E(E—i—l)—%-l—zmxs )] ¢()—

* Ladder operators and supersymmetric structure exist:

* Radially conserved quantities allow one to show Love numbers = 0

without solving the perturbation equations
arXiv: 2209.10469




S umma ry arXiv: 2209.10469

* First attempt to explain Love numbers = 0 from symmetric structure

arising from spacetime symmetry in a unified manner for spin-s fields

* Perturbation field can be reduced into a set of infinite scalar fields in AdS2

14
* Linearized GR around 4-dim BHs in vacuum has supersymmetric structure :
arising from conformal symmetry of the effective AdS2 geometry :
(=3
* Radially conserved quantity allows one to show Love numbers = 0 :
=%

without solving the perturbation equations

Comment

* Our ladder operator includes generators of hidden symmetry in previous works
* Time-dependent field with low frequencies also has supersymmetric structure

* Supersymmetric structure explains the result of higher-dim Schwarzschild BH

Ladder operator and generic potential

* Consider generic scalar fields in AdS2: {[Haas, — (k(k + 1) + P(2))] ¥x(t,2) = 0.

* Requiring commutation relation:

[Oadgs, — P,D] = —2kD + 2Q [Oags, — (k(k+ 1) + P)],

— [Oaas, — (k= 1)k + P)| DYy = (D + 2Q) [Oaas, — (k(k +1) + P)] Ty
e Assuming D is a 1st order derivative operator: D = V*V, + K

V.= YV e gaﬁdsz) (Closed conformal Killing eq. in AdS2)

:{> VK = —kV°,

it X VEP = i (v o) ke 1) - P

* D and P(z) compatible with the above conditions are:

: R T e
D=2(2-1)8,—k(z—cp), P= e :




Schwarzschild-Tangherlini case

* Supersymmetric structure explains the result of the Schwarzschild BH in n dims

Static scalar fields with £ o« n — 3 have zero Love numbers [Hui et al, 2021]

* Problem can be reduced into a set of infinite scalar fields in AdS2:

‘

n—3

[DAd32 —f(+ 1)] ®;,=0, {=

* Ladder operators exist but shift / into ¢ + 1

|:> @¢ with ¢ x n — 3 connects to the lowest multipole

* In the same manneras n =4 ,

the radially conserved quantities exist, allowing to show
Love numbers =0 for £ oc n — 3
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QPOs of a particle in the background of a deformed compact object
I—Motivation

High Frequency QPOs and General Relativity
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QPOs of a particle in the background of a deformed compact object
I—Motivation

High Frequency QPOs and General Relativity

0001 ¢

QPOs in BH divided in

Sco X-1 £ . .
4 various classes. QPOs in BH
g 107 2 XRBs are normally divided
2 /‘\§ into two large groups:
e N
10 g/ 1\ » the low frequency QPOs
[ |
t& ,‘u' ~ 50 HZ
l“ 10 f 100 \\_\mun // » the h|gh—frequency
redqrenty QPOs, above ~ 100Hz

up to ~ 500Hz.

Source GRO 1655 — 40 XTE 1550 — 564 GRS 1915 + 105

vy 447 - 453 273 =279 165 - 171
VL 295 - 305 179 - 189 108 — 118
% 6.03 - 6.57 85-9.7 9.6 -184
a 0.65 - 0.75 0.29 - 0.52 0.98 -1

TABLE II. Observed HF QPO data for the three micro-quasars, in-
dependent of the HF QPO measurement, and based on the spectral
continuum fitting.

QPOs of a particle in the background of a deformed compact object
I—Motivation

Model to explain HFQPOs
Large variety of ideas to explain the phenomenon of HF QPOs: Main

idea is that it is related to the motion of the inner part of accretion
disk

Local oscillations analysis
— RP Model (Stella)
— TD Model (Cadez)
— WD Model (Kato)

Global oscillations analysis
— ER Model (Abramowicz & Kluzniak)

— p-modes, c-modes,.. (Rezzolla, Kato ...



QPOs of a particle in the background of a deformed compact object
|—Background spacetime

Background metric : q-Metric
A static, axially symmetric metric that is non-spherically symmetric

. (14+a) (14+a)
ds2:— x—1 dt2+/\/l2(X2—1) x+1
x+1 x—1

x2 =1\ /g2 dy? 2\ 742
[(XQ_y2> (X2—1+1—y2> +(1_y )d(b . (1)

» describes the exterior gravitational field of a static deformed
compact object

» « positive for a oblate compact object and negative for an
prolate one

0
Oy
I
u
!
S
je)
9

QPOs of a particle in the background of a deformed compact object
I—Geodesic equations & Epicyclic frequencies

Class of orbits that slightly deviate from the circular geodesics

W2 = B,U — ¥ = A2, (2)
wy =0, UY = AQ°. (3)
_(1 _ 1/X2)—a(2+a) B B B (X2 _ 1)
A = @~ 1) 2(25 — x)(S — x) 5 (1+«)
_ 2\ —a(2+a) B=0
Ay:(l 1/x5) (1+a) 1.0
Schwarzschild case: 05
2 _ 1 .
Wy, = 77— 3>
Yoo (x+1)3 0.0
1 6
2
- (1=
x (x+1)3( x+1)




QPOs of a particle in the background of a deformed compact object

I—Geodesic equations & Epicyclic frequencies

Class of orbits that slightly deviate from the circular geodesics:
In a uniform magnetic field

d*¢t 1 dg’ n B Fu
dt2 +2’yn¥—|—€&7U —F,
x2—1 —(24a) xfi(x)+ S
Wy2 — (T) [92% + (1 + fl(x))QwB} ,
Qz(l o 1/X2)—a(2+a) x—S
2 _ -
Wy = X(]. — X2) [gl(x7 Oé) S + g2(X7 Oé)] (4)
(1—1/x%)2Fa) 2 2
(1= x2) [—wa(S — x)* + Qupgo(x, a)} ,

QPOs of a particle in the background of a deformed compact object

I—Geodesic equations & Epicyclic frequencies

Epicyclic frequencies in the background of a deformed compact
object

0.15)

a=0.1

0.10]
Wix

0.05]

0.00!

0.10

0.05]

0.00




QPOs of a particle in the background of a deformed compact object
I—Parametric resonance & QPOs Models

Epicyclic resonances: 3:2 frequency ratio
Effect of the quadrupole moment

Table 1. Frequency relations corresponding to individual QPO models

1.0 B=0 Model vu L
RP Q Q- wy
Kp Q Wy

0.5

a Ep wy Wy

TD Q+ wy Q

0.0 WD 2Q - wy 2Q - 2wy
RPI wy Q- wy
RP2 20— w, Q- wy

X
VK VK — Vx

10

-0.4 0.0 0.4 10

A

QPOs of a particle in the background of a deformed compact object
I—Parametric resonance & QPOs Models

Epicyclic resonances: 3:2 frequency ratio
Effect of the magnetic field

Q=-0.001
T

Q
Q
n

A



QPOs of a particle in the background of a deformed compact object
L Data Source & Data Fit

Data Fitting with Galactic Microquasars: 1/M relation
Effect of the quadrupole moment

3
B=0 Vs = 1 ¢ Qy
500 |- l\‘ T T T T T T B p — P
£\ — a=-01 2 GM
450 -
400 - Table 1. Frequency relations corresponding to individual QPO models
_ Slo) o Model vu VL
N
.I§ 00 |- RP Q Q- w,
%04 Kp Q Wy
Ep Wy Wy
20 -
D Q+ wy Q
150 WD 2Q - wy 2Q - 2wy
100 RPI wy Q- wy
RP2 20— w, Q- w,
O = = E, E A

QPOs of a particle in the background of a deformed compact object
L Data Source & Data Fit

Data Fitting with Galactic Microquasars: 1/M relation
Effect of the magnetic field

Q=-0.001,a=07 Q=0.001,a=0.7
T T T r T T

T T T 500F

1

S B2
Il

8

S

T

400 KPM

LI I )
B o
1

QR ]! RK

w

— 200 200+

v 100 100 £

Q=-0.0001, a=0
T T

Table 1. Frequency relations corresponding to individual QPO models 0" S00F T ' o Em
GRO 1655 — 40 — RPM
Model v VL 400 - 400 -
RP Q Q- w, 5 -
L 300 L 300
Kp Q Wy H =
Ep wy @x 200 200
™D Q+wx Q GRS 1915 — 105
100 = 1 | L | | L L k| 100 & L | |
WD 2Q-wy 2Q - 2wy 50 75 100 125 150 175 200 50 75 100 125 10 175 200
M M
RPI wy Q- wy s Ly
RP2  20-w, Q- w,
] = = E E Ay



QPOs of a particle in the background of a deformed compact object

I—Conclusion

Conclusion

» The quadrupole moment and magnetic field alter the motion
and epicyclic frequencies of charged particles moving in this
background.

» cause strong deviation from the corresponding quantities in
the Schwarzschild case

» the resonant phenomena of the radial and vertical oscillations
at their frequency ratio 3:2 for different parameters can be
adequately related to the frequencies of the twin 3:2 HF
QPOs observed in the microquasars

Future work ? Question ?

» extend this work from a single particle to a complex system,
such as accretion discs

» Global oscillations analysis

QPOs of a particle in the background of a deformed compact object

I—Conclusion

Class of orbits that slightly deviate from the circular geodesics

d?xH ey dx¥ dx?”
ds? YPds ds

x'"" = xP + £ and consider terms up to linear order in &#

= 0. (6)

d2¢r dgn ag”
L T2 10U =0, —r T = (7)
2£x )
dt? + Wi =0, (8)
o 60,0 d2¢y
ol [2|_ st (u”)” }:0, dti + w2 =0, (9)

Ut = [ypu(®) ] -
[ m L’ZO where in the first equation 7 can be

taken t, or ¢; and
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q Creating stars orbiting in AdS
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i Timelike geodesic in AdS/CF

Can we create a star (timelike geodesic)
orbiting around BH using AdS/CFT?

If it is possible,

Extraction of information about
BH geometry from QFT.

Setup: Massive scalar field

i in Sch-AdS4
2 _ () dt? d_7“2 2 2 | qin? 2
ds? = — f(r)dt +f(r)+ (d6” + sin’H d¢?),

f(r)y =1+ r2 — rr(1 + r%)/r
AdS radius=1

Probe scalar field

O = p°d



i Source and response

Near AdS boundary r — 00
O(t,7,0,0) = J(t,0,0)r = +(O(t,0,0)) r™ "+,
non-normalizable normalizable

(boundary condition)

Ay =3/2+v v =+/9/4+ pu2.
J :Source (External field)
(O) :lts response
How should we apply the external field
to create a star (particle-like configuration of scalar)
in the bulk? (inverse problem)

Creation of radially localized

i scalar field

O = u%®
1 & =S Wi (b 2) Vi (6,6) v

'm’

(07 — 02 + V()| Wy (t,2) =0
B dr B ' +1) o, 1df
[.T = m V(IL‘) —f(?“)( 2 + u +;§>,J

We create the localized
scalar field here.
(Stable circular orbit) A

=)
S
S
S
=3

S
S 8 =3
S =3 S

a10d aA08Ye

150000

120000

rh=0.3, 1=210, nu=20.5 [

[=o0



i Localized QNM

Quasi normal mode (fundamental tone)

0.9

rh=0.3, 1=210, nu=20.5 ‘ \\
08 | .

L i -1
06 ITm Wonm| < 10716
05 | .

04 | . Almost normal
03 | | mode
02 -
01| -
0 —-2.5 —‘2 —f‘.s —‘1 —0.5
-3 25 2 15 -1 0.5 0

We create this QNM by choosing
boundary condition of ¥y, (¢, x) .

i Toy example

How should we shake the endpoint of the string to
realize the fundamental tone?

f(t,z) =esinx

(07 — 02)f(t,2) =0
I |

™

Eigenfrequency w =1,2,3,---

fa =) = o | - L2 AVAV/\U/\UWUAVAVA t
t=T

t



:-‘ Localized QNM

t—T)?
TA—_llIJl/m/ (t,x)|p=0 = exp [— ( )

2
207

1

t =-40.000

08 |
06 |
’\Illm|

04t

02}

0 J
-3 25 -2 15 -1 05 0

Creation of the radially localized solution
for each (I',m’).

i Superposing (I’,m’)-modes

\Ij(t, X, 0, Qb) — Z cm' Virm (ta x))/l’m’ (97 ¢)

l’!m/’

For an appropriate Ci’m/

the solution can also be localized angular directions.



Creation of star in VAVAUMV%\V(\UAUAVA
}L Sch-AdS (rh=0.3)

t=T

t-_40.00 rh=0.3, m=210, nu=20.5

7777777777

Equatorial plane

i Linear response

O(t,r,0,0) = J(t,0,0)r >~ +(O(t,0,¢)) r™ =+,

“Tt>0

0 sl I

———————

|||||

----------

We can see the star from
the response function.



i Summary

We can create stars orbiting around BH in AdS bulk
by applying appropriate source in QFT.

We can observe the created star from the
response function.

We can read out the information about the
geometry in the AdS bulk.

i Appendix
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i Parameters of created star

Our source is

_ t-T7)?* (0-7/2? (¢—Qt)> .
J(t,0,9) = Jy exp [ 207 207 20; wt + ime
( Specific energy € — E
‘ < Specific angular mom j=—
v
Angular velocity Q

\

i Implication to gauge/gravity

ChF. EEOIRIILF— AEPE - NEAREEHOEEENDL
B2 TSI TIEHELY,

F#E DRI R (L. 1-parameter 7 731)—,

DFEY. MEFEFRODLE.

IRILF— AEERE - NEARENTRTRELINLGTHD.
2 _ AR—rp)(R?+rpR+r} +1)?
S5 R{2R — 3ri(1 + r2))}
4 RQR+ri+rm) o 2R +rl+r,
P = R a4 VT R

{j—j@)
€
Q= Q(e)

SFENSMLITH, RRICRBRTENEINIL
FA#MEYHHFDOIRLT— BEHE - NEGEAEE ) HEDIER
DEAGRMN LI D,



i Future prospect

BOEBHBONMEEIFGERNK, EHRTEELEES,
AEENIETEALESEIM?
@null;A|h$3 A
NEESZTHL,ZDILELEN @

HETICKMEZELHDITT

@3EM#E
“YBREE - TSI R—ILANET T H8ERE,
AEBE=-0D#E > BHAHLINELHDHIE

i Future prospect

@D-brane

D3-D7f2IEIE HEELTHEREYT Do
pure AdSIZ4 EZE M T T, D3/D7%
,Eﬂz;h'% 75\ ? Kirscha&Vaman, 05

SYMIZH5Z M TS EQCDIZES?

O FHiR
sk FEHZTAISHERIZEN DD ?

@ K3 F?



p? >0 DANT—i5TH 57 A
i NBEEDEE

O(t,r,0,0) = J(t,0,0)r™ 2 +(O(t,0,¢)) r™ 2+,

JEOT=E . D— oo, EM tensor— .

BackreactionmM™#EH TN,
r=ATcutof aF ANTEDRBIDZFAFIOVREEZD,

YA TDHMATIE, BRNEESNT,
DFEEANESNTEHEEZ D,

L= —(02)" — A(¢)*@* — (09)* + 29"
A(¥) = ptanh(y)

i AdS/CFT x4 i S

TRV TERANDIGF?
AdS/QCD, AdS/CMP

AdS black hole

Condensed
matter physics

Hartnoll, Herzog & Horowitz, 08

A2, TIVIR—ILERERD
MENFET 2DHN?
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A2, ENBRREFOVENHo1=L?

ZTOMEFE - TENFEDRRE
BRITESIET,
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FETIER?
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limli
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AER?

/@ >

ENFARZEHIT S, EALUX
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— ~ A\
= K.Hashimoto, S. Kinoshita, KM, 18,
|n Ad S/CI— K.Hashimoto, S. Kinoshita, KM, 19,

hmh

Y.Kaku, KM, J.Tsujimura, 21

AdS boundary AdS black holeD &

Black hole
‘ <<<< Gaussian
source
Response
¢(t7 T? 97 ¢) = j(t7 07 ¢) T_ < (t 9 ¢ )

AdSEFZER DS’ "&ﬁo’Cs
AdS black holeMZEZ#R5ZEMHFKS,

FrE B EE R 0N D?

i BRIt E R HH?

® = 11°P zEmsEHCTERLS.

P = a(gj) exp(z’S(x)) AN BURET 5L 5.,
—a(V8)? + 2iVa- Oa = pa

(S(x) ~ —wt + img OuS ~ w,m>>1 |

0,S0"S = —p?



i Klein-Gordon —s | #h 4%

s u, =0,5/p  EBHFIE
0,898 = — 12 uyut = —1

8#‘96#‘9 = _:u2 i

0=V,(9,50"S)=20"SV,(9,9)
= 20"5V ,(0,5) = 2u"'V u,

iR RELITIL., Klein-Gordon AFEXX A 5.
A AREXANFELNS,

AR EZTDINTA—FD

J)(-q- Ftl; Fﬁ 1,% ® = a(x) exp(iS(x))

BB IRILF—LAEFHE(L

E=—mu,(0)" L =mu,(dy)"
TEZONBHIEZR T &,
BUHEHYDTALE—: € = —1Uy

HHEEHLYOAEHE: ] = Ug

-5, Uy, = 0,5/ rotoc,

1 1
€ — ——8755 , ] — —8¢S .
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De-singularizing the
extremal GMGHS black
hole via higher
derivatives corrections

Carlos A. R. Herdeiro (University of Aveiro)
Eugen Radu (University of Aveiro)

Kunihito Uzawa (Kwansei Gakuin University)
Phys.Lett.B 818 (2021) 136357 [2103.00884 [hep-th]]

veSummary

* We construct a regular extension of the GMGHS extremal
black hole in a model with O(a") corrections in the action. The
de-singularization is supported by the O(a’)-terms.

* The regularized extremal GMGHS BHs are asymptotically flat,
possess a regular (non-zero size) horizon of spherical topology,
with an AdS, X S2 near horizon geometry.

_ *The near horizon solution is obtained analytically and some
o illustrative bulk solutions are constructed numerically.
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[1] Introduction

v The Gibbons-Maeda-Garfinkle-Horowitz-~Strominger
(GMGHYS) black hole is an influential solution of the low energy
heterotic string theory compactified to four spacetime

dimensions.
(G.W. Gibbons, K.i. Maeda, Nucl. Phys. B 298 (1988) 741)
(D. Garfinkle, G.T. Horowitz, A. Strominger, Phys. Rev. D 43 (1991) 3140)

_ VeProperty of the GMGHS solution

* Its extremal limit is singular.

* The area of the spatial sections of the horizon shrinks to zero.
* The Kretschmann scalar blows up at the horizon.

Nobody knows whether the possible stringy o'~corrections
could de-singularize the extremal solution in the Einstein-
Maxwell-dilaton action.

Cf)
*There is a perturbative extension of the extremal magnetic

GMGHS BH.
(M. Natsuume, Phys. Rev. D 50 (1994) 3949, arXiv:hep ~th/9406079)




* The corrected solution inherits all basic properties of the
extremal GMGHS BH.

* The horizon area still vanishes.

= The task of constructing the fully non-linear BH solutions
of the O(a') corrected action has not yet been considered.

The main purpose of our work is to reply to the key question
whether such corrections can de-singularize the extremal
GMGHS solution.

[2] The model

» Starting with a general model for the O(«") corrections to the
Einstein~-Maxwell-dilaton action.

- = 2 . ~ ~ I -
5= / dar/—Ge 2 [R +4(Ve) —F+ o/{a (Byvpo R#P7 — 4Ry R + R?)
~ 2 ~
+5 (F?)° +cF? (Vo) + hR“”P"FWFpUH

Here, I' = dA is the U(1) field strength tensor, ¢ is a real scalar
field and a, b, ¢, h are constant coefficients.

/ /. - . | - ; ?yi;!‘ : ii \: - b,
’ ¢ A & Bl Al e [N
g / ; g 2 & <y \




Yea'=0 limif: the GMGHS solution
(M. Natsuume, Phys. Rev. D 50 (1994) 3949, arXiv:hep~th/9406079)

1
ds? = (1——>dt +(1—r—+) dr? + 12 (1—T—_) 402 .

r r

A:th7 e2¢:1(1_7“__)7 M:T_‘*', Q:(T_T+
r 2 r 2

The two free parameters r,, r_ (with 7— < r1 ), corresponding
to outer and inner horizon radius, respectively.

veHorizon area Ax and Hawking temperature 1y :

r 1
Ag =4mri (1—- = 141
j W+< 7“+>’ i

* In the extremal limit, Ay — 0 while Ty approaches a constant.
(It gives singular solution)

r 1
Ay =4mr? |1 - — Ty =
" W+( 7“+>’ T g

» Magnetic version of the GMGHS solution

ds? = (1——)dt2—|—(1——)dr + 2 (1—r—_)d§22

r r r

1 _
A = Qcos Odep, e 20 = — <1 _ r_)
2 r

* Magnetic solution is also singular in the extremal limit.

)



veSetup: static spherically symmetric solutions with a purely
electric U(1) potential

ds® = —a(r)?dt® + c(r)?dr® + b(r)?dQ?, o = o(r), A=V (r)dt

* The field equations of the full model possess an exact solution

describing an AdS, X S$% metric, an electric field and a constant
dilaton.

*There is no counterpart of this solution with a magnetic charge.

*Qur choice here is to work with

1
o — 3 b,c: arbitrary , h' =4
¢ Ansatz:
ds® = v§ @ — r?dt? | + 0dQ? o(r) = ¢ V =qr
Y 7,,2 1 (2)> — @0, = dq

*Near horizon field configuration for the ansatz is consistent with
the SO(2, 1) XSO(3) symmetry of AdS, X S?
(A. Sen, J. High Energy Phys. 0509 (2005) 038, arXiv:hep-th/0506177)

*We choose to determine the unknown parameters by extremizing
an entropy function.
(A. Sen, Gen. Relativ. Gravit. 40 (2008) 2249, arXiv:0708.1270 [hep-~th])



The entropy function is defined by

F(vo,v1,q,Q, ¢0) =27 (qQ — f(vo,v1,q,¢0)) @ : electric charge of the solutions

The black hole entropy Sgy is given by the value of the function F

at the extremum with vy, v1, ¢o :

SBH(q7 Q):F<U07 v1, 4, Q7 (/)O)

The Lagrangian density f(vo,v1,¢,¢0) can be evaluated as

!
f(vo,v1,q,¢0) = E/dewv—gﬁ
2 2 2 —4¢9 44
0 — Y1 —2¢y 2”_1_1 1 _—2¢g 1—4b6 e
2 T€ 4 21}% 404 ¢ 118

veThe scalar and the metric field equations in the near
horizon geometry correspond to extremizing F :

OF oF oF oF
L) =0, = =0 |
Jvg T Oy " 0do " Oq
 Solution :
Vale=o | NG
Z , _ ol e—%o |
y V2 il V14126 — /1 + 16b

_\/J,/,/1+16(,_1 O Va2t \/b(1+16b)(\/1+16b—1)
; oo 1+ 12b— I+ 160

)



YeBulk extremal BH

2

d
ds® = —e 2D IN(r)dt? + ——

NG + 7%(d6? + sin? 0dp?)

If we assume the existence of a horizon located at » = rg > 0,
one finds the following approximate solution:

N(r)=No(r —rg)*+..., é(r)=380+o0(r—rg)+...,
o(r)=do+o1(r—rg)+..., Vir)=vi(r—rg)+...,
with

V14126 V11160 2V’ Vb

vcFor large r , the asymptotic form of the solution becomes

2 2
N(r)zl—u—l—..., (/)(r)z%—l—...,
2
- V(r):VO-|-§-|—..., S~ 2

Qs : scalar charge

*These extremal BHs have finite global charges M, ) as well as
a finite scalar “charge” (), while their Hawking temperature
vanishes.

= .



Y¢ Profile of a typical BH solution

| — : . , 0.08 ;
; 0'=0.5 1=3.135
@=0.5 r=3.135 NG b=0.1 c=15
© b=0.1c=I5 : .
05y 004}
S 3(r)
(s
s .
<! §:
05 5
-1

0 0.5

0.75 1 0 0.35 0.75 1

l-r};)/rs l-rI?/rS

Profile functions of the Ricci (R) and Kretschmann (K)
extremal BH scalars

Charge to mass ratio Value of dilaton

o=0.5

b=0.01

*The most interesting feature of the solutions found so far is
that the charge-~to~-mass ratio Q/M is always greater than one.

*The ratio Q/M decreases when c increases for fixed b .
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*As the parameter ¢ grows, the BH mass ) decreases for
fixed value of b .

[3] Discussion and remarks

* In this work, we have focused on static BHs but there
are also studies with rotating BHs with first order
correction in o'

* We have confirmed that a’ corrections can de-~
singularize the extremal GMGHS solution, an influential
stringy BH whose extremal limit is long known to be
singular.




* The charge-to~mass ratio Q/M decreases when the BH
mass M decreases for fixed value of a parameter.

* Although we get Q/M>1, Q/M decreases as the mass
decreases. Hence, our results do not assure that an

extremal BH is always able to decay to smaller extremal
BHs of marginally higher Q/M.

(C. Cheung, J. Liu and G. N. Remmen, JHEP 1810 (2018) 004)
(G. J. Loges, T. Noumi and G. Shiu, Phys. Rev. D 102 (2020) no.4,046010)
(C. Herdeiro, E. Radu, K. Uzawa, in preparation)
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Holographic Dark Energy
from AdS Black Hole
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Outline

€ Holographic Dark Energy
@ Bounds of QFT system
e HDE from AdS BH

© Cosmological models
@ Hubble radius as IR length scale
@ Particle horizon as IR length scale

© Summary
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Holographic Dark Energy
©000000

UV/IR Relationship

o Let us consider a system in a box volume L3 for a
conventional QFT with UV cutoff Ayy. The entropy of this
system scales by its volume,

S~ LA}y (1)
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Holographic Dark Energy
@®000000

UV/IR Relationship

@ Let us consider a system in a box volume L3 for a
conventional QFT with UV cutoff Ayy. The entropy of this
system scales by its volume,

S~ L3N}, (1)
@ It was found that the volume scaling entropy of QFT system

is bounded by the area scaling entropy of a black hole as
[Bekenstein, Phys. Rev. D. 23, 287 (1981)]

Bekenstein bound

L3A3), S Sgh ~ L2M3. (2)

3/18
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Holographic Dark Energy
0®00000

UV/IR Relationship

Bekenstein bound (Entropy bound)
L3A3), S Sy ~ L2M3. (2)

@ For any value of Ayy, there exists a sufficiently large length
scale (i.e., L > M3/A3,,) compatible with the IR cutoff in
which the QFT breaks down ['t Hooft, arXiv:gr-qc/9310026].

@ Obviously, the IR cutoff depends on the UV cutoff in this
aspect.

4/18
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Holographic Dark Energy
O0@e0000

Energy Bound

@ Cohen et al proposed that the entropy of the quantum field
theory never saturate to the Bekenstein bound. It is because
the maximum energy of the matter in QFT corresponds to the
Schwarzschild energy (mass) will be reached before.

[Cohen et al, Phys. Rev. Lett. 82, 4971 (1999)]

Energy bound

L*A\y < LM3. (3)

They also proposed that the states, when the energy bound is
satisfied, can be described by QFT.

5/18
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Holographic Dark Energy
000@000

HDE model

@ This is possible to interpret as the energy density for the
holographic dark energy (HDE) [Hsu, Phys. Lett. B 594, 13 (2004);
Li, Phys. Lett. B 603, 1 (2004)]

Ay ~ prpe = 3b° M3/ L2

6/18
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Holographic Dark Energy
[e]e]e] lelele}

HDE model

@ This is possible to interpret as the energy density for the
holographic dark energy (HDE) [Hsu, Phys. Lett. B 594, 13 (2004);
Li, Phys. Lett. B 603, 1 (2004)]

ANy ~ pHpE = 3b°M3 /L2,

@ The terminology “Holographic” in this context is
conventionally used because this DE model is actually
constructed from the physical quantities at boundary

(i.e., Mp and L).

6/18
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Holographic Dark Energy
0000e00

Hubble horizon

To describe the dynamics of the Universe, one can choose suitable
IR length scale for this HDE model
@ Choose L = H™1

Energy Density
pPde = 36> M3 H?. (5)

The Friedmann with this type of HDE reads
3M2H? = pp + 36 M3 H?. (6)

7/18
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Holographic Dark Energy
O000e00

Hubble horizon

To describe the dynamics of the Universe, one can choose suitable
IR length scale for this HDE model
@ Choose L =H1

Energy Density

Pde = 3B*M3H?. (5)
The Friedmann with this type of HDE reads
3M3H? = ppy + 36> M3 H?. (6)
@ It is seen that the Universe evolves as the MD epoch (scaled
by b?)
3MEH? = (1'0_—Mb2) = pM- (7)

It is not possible to drive the accelerated expansion using this
HDE. [Hsu, Phys. Lett. B 594, 13 (2004)] 7/18

JGRG31 at The University of Tokyo 27th Oct 2022



Holographic Dark Energy
0000080

Particle horizon

Energy Density

362 M2 t df
= = t

(8)
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Holographic Dark Energy
[e]e]elele] e}

Particle horizon

Energy Density

The EoS parameter for HDE can be determined from the
conservation eq,

Pde + 3H(1 + Wde)pde =0. (9)
Then, one can compute (Qge = ,(ﬂ’gekp)
1/ 2 R 2 Q
wgoo1-Lboe g 2R ) 2y [
3H pde 3H Ry, 3 b2

8/18
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Holographic Dark Energy
0000080

Particle horizon

Energy Density

2 42 -
_ 36 Mp R =a(t) % (8)

The EoS parameter for HDE can be determined from the
conservation eq,

Pde + 3H(1 + Wge) pde = 0. (9)
Then, one can compute (Qge = 3,\’4)2’1,2)
1/ 2 R
PR S . ] P L4 )
3H Pde 3H Rh 3 b2 3

— |t cannot drive the accelerated expansion of Universe.
JGRG31 at The University of Tokyo

8/18
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Holographic Dark Energy

O00000e

Future particle horizon

@ Let us consider instead [Li, Phys. Lett. B 603, 1 (2004)]
Rr=a(t) | ©—. (11)

Eventually, the EoS parameter becomes

mk:—1+§(1— if). (12)

— The accelerated expansion can be explained by this DE
model (wge = —1 when Qqe = b?).

9/18
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Holographic Dark Energy
000000

Future particle horizon

@ Let us consider instead [Li, Phys. Lett. B 603, 1 (2004)]

R = a(t) /tm% (11)

Eventually, the EoS parameter becomes

Wde:—1+3(1— Q"e). (12)

3 b2

— The accelerated expansion can be explained by this DE
model (wge = —1 when Qge = b?).

@ However, it obviously suffers the problem of causality.

@ Many HDE models with other length scales are also

investigated.
9/18
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Holographic Dark Energy

AdS-HDE

@ Since the dark energy is defined as the energy bound
corresponding to BH mass, it is possible to study HDE via
some properties of BH.

10/18
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Holographic Dark Energy

AdS-HDE

@ Since the dark energy is defined as the energy bound
corresponding to BH mass, it is possible to study HDE via
some properties of BH.

@ In this work, we proposed the HDE model by modifying the
mass of Schwarzschild BH to that of AdS BH,

rp rn A 2)
Mseh = 2 & Mags= 2 (1+202). (@3
Sch = 5 = AdS 2G( tgr (13)

@ The dimensional estimation of Cohen'’s energy bound is
straightforwardly modified as

L3N]y S Mags ~ MBL(1 + AL?). (14)

10/18
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Holographic Dark Energy
(o] J

This work

AdS-HDE energy density

1
Pde = 3b>M3 (p + /\) . (15)

@ This A is a constant which will be dominant at late-time
similar to ACDM model.

11/18
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Holographic Dark Energy
oe

This work

AdS-HDE energy density

1
Dde =3b2/\/l,§(p+A). (15)

@ This A is a constant which will be dominant at late-time
similar to ACDM model.

@ Interestingly, this constant associated to the AdS BH can
somehow give the dS space in cosmological context.
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Holographic Dark Energy
(o] J

This work

AdS-HDE energy density

1
Pde = 3b>M3 (p + /\) . (15)

@ This A is a constant which will be dominant at late-time
similar to ACDM model.

@ Interestingly, this constant associated to the AdS BH can
somehow give the dS space in cosmological context.
@ We are interested in investigating the cosmological model for
this AdS-HDE with 2 types of length scale
1. L=H"1 )
2. L=Ry=a(t) Jy 55

11/18
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Cosmological models
®0

Outline

© Cosmological models
@ Hubble radius as IR length scale
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Cosmological models

o
[ ]

Energy Density

pde = 3b°Mp(H* + \), (16)

@ Friedmann eq
3MEH? = proa™® + pmoa > + 3MBL?(H? + A). (17)

@ It can be rearranged as

r m 3M2
IVEH? = (p’o )a_4+( P )a_3+ P_A

1- b2 1- b2 1- b2
= proa t+ pmoa >+ M3EA. (18)

This is identical to ACDM model.
(just rescale p; by parameter b)

13/18
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Cosmological models
©000

Outline

© Cosmological models

@ Particle horizon as IR length scale
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Cosmological models
0@00

Energy Density

1 t dt
=3p°M3 = + ], Ry, = a(t —. 19
e =30 (g0 Ry=ato) 1S o)
@ Define the dimensionless parameters as €2; = W. One then
P

has the constraint eq as 1 = Qp + (O + Qp.

Autonomous system

2H
Q;\/l = —3QM (1 + Wy + 3?) - (20)
2H
Vo= 30— 21
% - s (2 ). (21)
. 2H
with 3? = —(]_+W/\/I)QM—(].+WR)(1—QM). (22)
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Dynamical System Analysis

| FPs | Wie | wer | Epoch | Stability |
() | —5+3m | ~3+t35 | Qr-dom | saddle (s> 2.), unstable (o< 2.-)
(b) -1 - Q-dom stable

(c1) | undefined W Qp-dom unstable

(c2) Wy Wy Qr +Qum saddle (Exists only |b] < 2/(1 +3wy))

1.0f ;f:i\\ N 1.0 #é?i\\ | :
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Summary
°

Summary and remarks

@ We have studied 2 HDE models
1. L=H71: it is identical to ACDM model.
2. L=Ry: it is able to predict the late-time expansion without
suffering the causality problem.
@ This model cannot solve the coincidence problem since the

dominant contribution at late-time is the constant similar to
ACDM model.

@ It is difficult to investigate the full perturbation analysis
because the field description of HDE is still ambiguous.

@ The result might lead to a proposal of the relation
between dS (cosmology) and AdS (black hole).

Thank You for Your Attention
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Brane Dynamics of
Holographic BCFTs

Norihiro Tanahashi [Chuo U]

based on
Keisuke lzumi, Tetsuya Shiromizu, Kenta Suzuki, Tadashi Takayanagi & NT

“Brane Dynamics of Holographic BCFTs”
JHEP 10, 050 (2022) [arXiv:2205.15500]

Brane Dynamics of BCFTs ST

’I‘L

Boundary conformal field theory (BCFT)
Quantum field theory living on space with boundaries

Applications to string theory, condensed matter physics, ...

AdS/BCFT correspondence

BCFT = Higher-dimensional gravity with a membrane (brane)
[Takayanagi ’11; Karch+ ‘01, ...]

Dynamics in BCFT = Dynamics of gravity and brane in higher dim.

Energy-momentum tensor of BCFT = Gravitational perturbation
in higher dim.

Complete treatment of gravitational dynamics in AdS/BCFT
—> Dynamics of BCFT in general dimensions

Properties of energy & momentum flux in BCFT in general dimensions
[Izumi, Shiromizu, Suzuki, Takayanagi, NT '22]
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Boundary conformal field theory (BCFT)

HFL
i
AR

BCFT = CFT + boundary preserving a part of conformal symmetries

d dim. CFT [ ~— )
S0(2,d) t /J_r('
d dim. BCFT \1"1\
50(2,d—1) | ————Sw |
N Vi

ex.) Conformal scalar ¢ ind dim. + Neumann boundary condition d,,¢p = 0atw =0

1 -2
I = ﬁ/ddaz |:8a¢8 o+ mRo¢2:|

d 60. 2 d—2 (d B 2)50 2
Tar = G —qy0u000— 57— 1y (09" — 3= 1y Qedrd)o+ gz =y (9°9)9

2> Twilw=o = 0; energy & momentum flux = 0 across the boundary

Dynamics in AdS/BCFT

* AdS/BCFT correspondence: BCFT, = “braneworld” in AdS,,
* Dynamics in AdS/BCFT

.—
e 1 ¥ 4
\Excitation reflected at the boundary/

L Reflection of wave in the bulk? )

Scalar field in bulk spacetime

- Corresponds to (O) (O: scalar operator) in BCFT Study dynamics of

Gravitational perturbation in bulk spacetime bulk scalar & gravitational wave
. =~ d ics of hol hic BCFT:
> Corresponds to (T,,,) in BCFT (= dynamics of holographic BCFTs)



Bulk geometry: AdS,,, spacetime & brane

AdS, brane in AdS,, spacetime

brane Spacetime metric:

1
\\ {Z ds? = = (dz? + dw? + 2L dx?)
N Brane with tension o :
ords v =0 (A= ——2o
AdS w+ Az = < = 4(d_1)2+02)

AdS, slicing of AdS,,, spacetime

brane ) o« y AdS,,,

N P ;0 p
JAdS

dy?+3%2 dx?
yZ

ds? =dp? + cosh2p< ) ; Braneatp = p, = —sinh™11

Gravitational perturbation in bulk

Gravitational EoM: Einstein equation brane

y
1 P
RMN_ERgMN+AgMN=0 P

. . . aAdsd+1
Gravitational perturbations
(AdS ;) y Adsd+l y
ds? =dp? + (Cosh2 P Gy L+ hw) dx*dx? V
Work in the transverse-traceless (TT) gauge >
F u £ Pl
Vlh,, =0, h™, =0

Separation of variables w.r.t. p & y V,: covariant derivative of AdS, ]

hyy = cosh? p R(p) Y, (3, t, %)
-1

_ (4
R,pp + dtanhpR,p = mR

(G+2-2,)Y, =0 [ﬁ = 7,V#: d'Alembertian in AdS, }



Gravitational perturbation in bulk

Reflection symmetry

Boundary conditions
* Dirichlet condition at dAdSy,;: hy, (p = ©) = 0
* Dirichlet condition at dAdS,: hy,,(y =0) -0
* Junction condition at the brane:
K", —Ké&*, = —%5“v

@ In the TT gauge we used to derive the EoM,

brane position fluctuates: p = p, — @(x*) y
- Junction condition for becomes
o - - p(x*)
aphw + mhlw = Z(VMVV — ]/#v)(p
> P

Gravitational perturbation in bulk

Summary: AdS,,, gravitational perturbations brane

y
ds? =dp? + (cosh2 p- g,(i‘?,dsd) + hw) dx*dx¥ p
EoM J

hyy = cosh? p - R(p) Y, (v, t, %)

R,,+dtanhpR, = % R y y
0P P~ CoshZ p V

(B+2-2,)Y, =0

7 b
Boundary conditions at dAdS: P //\

hyy(p = ), by (y = 0) - 0

. - o o~
Junction condition at the brane: 9,n,, e = 20,7, = vn)e
@(x*): brane displacement
st(@-de=0

S
NS

Two types of the modes
Bulk graviton modes (@(x*) = 0): = bulk gravitational wave

Brane-bending mode (¢ (x#) # 0): = bending of brane ~ massive scalar field



Bulk graviton mode / brane-bending mode iz

@Il

/AR

hyy = cosh? p - R(p) YV, (y,t,%) AdS,,,

Yy Yy
—A \_~
1)
EOM R,pp +dtanhpR'p :mR J%J
~ / P/ &%
(D+2_AP)YMV =0 p*]//—\ »

Bulk graviton modes (¢ (x*) = 0) o
P direction: R(p) given by Legendre function NN

d =1+ [(d-1)2+42,
R(P) = P;“(()(l - {Z)Z {( = tanh p, l:ﬂ

5 ,
* Dirichlet condition at dAdSy,, : R(p=o)=0 N
* Junction condition at the brane: ,R(p=p)=0

Eigenvalue 4,fixed

y direction: Y, given by massive tensor on AdS, ds* = yi? (dy? + msjda’da?)

d—2 A

(E+2-2,)Y, =0 CoYyy = = =0 Yo = y—;’Yyy =0
e - OoY,: — diayyyi i 2; Ao W = Z&Yyy =0
y y y
Y p—vg
v d—6 2d — 6+ A 2 2
Yiy, Yij OoY;; — Tayyi‘ - T’)Yij ~y (0:Yy; + 0;Yyi) + ?Yyymj =0

hyy = cosh? p - R(p) Y, (y, ¢, X)

Yy Yy
—A
EoM R,,+dtanhpR, = —L R M/\l%

cosh? p >
(E+2-2,)Y, =0 p]/
Brane-bending mode (¢ (x*) # 0)

* Boundary conditions at dAdS:  hy,, (p = ), h,,,(y =0) > 0
* Junction condition at the brane

o .~ 1 _ ) »
Ophyy + mh’“’ =2 (VMVV — EV’”D> © (@ (x*): brane displacement, (8 — d)¢ = 0)

Brane bending ¢ (x*) = bulk graviton excited
1
d

R &)
[

lj'yw) ¢ : satisfies ¥, eq. with A, = —(d — 2) ‘55 ]

v - (9.9 -

2

o .. 1
dyhyy +——h =2<l7|7——y ﬁ)(p _ _
ptuv — Ny uYv uv — -
d—1 d > 9,R(p = p.) coshZ p



Holographic stress-energy tensor T, of BCFT \ i .y
p
ds? =dp® + (cosh2 p- gf{?}dsd) + hw) dxtdx? ) .
d _ 1 d . P d-2 w=0
v = l6rGy 20} za=2 v (0w, 2) = 167Gy gl—{go <E> s (2:7,)

Behavior of T, near the BCFT boundary
hyy = cosh?p - R(p) Y, 0,6, %) = Ty X ¥y
Bulk graviton modes Traceless part of ¥;;

S Tow x w Tl T TR0 T B Hv>—1; T = 0 at the boundary
’ we 9 (Z]) (W - ())

s p o — p Ty —¢ T
[ex') d=3: Typwoxws™, Tyioxwdo™ b Tuyocws™? (§>1’”:1'2‘3‘“'> }

Holographic stress-energy tensor
Holographic stress-energy tensor T, of BCFT i y
2 _ g2 2. (AdSy) y \p
ds® =dp” + (COSh P Guv + hw) dx*dx w
d 1 d  [(er\'? vl
Ty = T6nGr ?_r)% ) hw(x, w,z) = mgl_{rc}o Z huv(x: y,p)

Behavior of T},,, near the BCFT boundary
hy = cosh?p - R(p) Y, (0,6, %) = T, <Y,

Brane-bending mode Tiaceless part of ¥;;
d— d— d
Yyy XYy 2) sz XYy 17 }/('L]) Xy
> Tww X wo, Tewi X ’wl, ’7@]-) x w? Ty = 0 at the b?undoa)ry
w =
?

[ex.) Agrees with d = 2 (BCFT,) results; dual to AdS, (brane-bending mode only)]
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Summary: Brane Dynamics of Holographic BCFTs

BCFT, satisfies the reflection boundary condition T;,; = 0

Holographic dual of BCFT,|=/AdS,; spacetime with a brane
T,y of BCFT, =|gravitational perturbation of AdS,,

Scalar field & gravitational dynamics in AdS braneworld
w/ junction condition at the brane

Bulk gravity dynamics: bulk graviton modes & brane-bending mode

T,,; = 0 satisfied for any dimensions, any brane tension;
consistent with the BCFT, picture

Complete description of dynamics in AdS,,,/BCFT, correspondence

Summary: Brane Dynamics of Holographic BCFTs

@

We also explored veo [lzumi, Shiromizu, Suzuki, Takayanagi, NT ’22]
Duality between BCFT, & CFT +AdS, gravity
Interaction of the bulk scalar field and the brane

BCFT, = braneworld in AdSy,; = CFT, + (CFT+gravity),

BCFT o
LeC T N &

bulk gravity

Future directions
BCFT counterpart of bulk graviton modes & brane-bending mode?
Any interesting dynamics in BCFT?
Relationship between Liouville gravity & JT gravity? [suzuki Takayanagi '22; Geng+ 22]
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N SRR AL IR AL
SEMMERRIC SEAE ETHIMIE

Ryuya Kudo (Hirosaki Univ.)

Collaborator:
Hideki Asada (Hirosaki Univ.)

CONTENTS

|. Introduction

2. Equations of light rays and definition of
photon cylinder

3. Properties of photon cylinder

4. Summary
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CONTENTS

|. Introduction

Backgrounds

v Imaging of black hole shadow

* Observation and testing of strong
gravity region have become possible

Credit: EHT Collaboration

Sgr A* (2022)

v The shape and the size of shadows are closely connected
with the properties of the spacetime, e.g., photon sphere

e.g. [A. Grenzebach + (2014), (2015)], [V. Perlick + (2021)]

v Photon sphere also plays an important role in gravitational
physics; gravitational waves and gravitational lensing

e.g. [V.Caldoso + (2014)], [K. S.Virbhadra + (2002)]



Previous works

Behavior of light rays in any static spherically symmetric spacetime

Deflection angle of light 05

For an unstable photon sphere:

fall into the singularity

Divergent logarithmically escape with less
than 50%

Photon Sphere

For a marginally stable photon

sphere:
Divergent power functionally

[N.Tsukamoto (20 | 7), (2020)] Unstable / Marginally stable

Photon Sphere

For a stable photon sphere (SPS)  [RK and H.Asada (2022)]

v Total angle change is described by
inverse trigonometric function

\

v The light rays are bound orbits Stable Photon Sphere

® |f a source and an observer are located
outside of SPS, then we cannot take the
strong deflection limit (ry — 7py)

* Total angle change does not diverge

Stable Photon Sphere




Motivation

To test the theory of gravity in the strong gravity region.

Investigate the behavior of light in the strong gravity region
in less symmetric spacetimes

Clarify the difference between static spherically
symmetric spacetime and static cylindrically

symmetric spacetime

v Deflection angle of light

v Black hole shadow

CONTENTS

2. Equations of light rays and definition of
photon cylinder




Equations of light rays

v Assumption: static cylindrically symmetric spacetime
Metric: ds* = — A(p)dt* + B(p)dp?* + C(p)dz? + D(p)dp>
A>0, B>0, C>0, D>0

dx"
Tangent vector: k¥ =

v Null condition: dA

A(p)B(p)p* + L2V(p) = E%, V(p) := A(p)[P2L72C(p)™" + D(p)™!]

i

v Constants of motion: E :=—k, E‘;) = A(p)i,
P,:= ku (’;) = C(p)z,

L = kgl = D(p)d

Definition of photon cylinder £ =ai

Vip,) = E*/L2, V(p,) =0

V(P)“ / Vip),

P p

>
>
> >

P

We define Photon Cylinder as the hypersurface{p = p, |
Vi(p) = A(p) |[PZILZF(p)C(p)~" + G(p)D(p)™']
F(p) .= A(p)A(p)~' = C(p)C(p)~!,
G(p) := A(p)A(p)~' = D'(p)D(p)~"



Example (Levi-Civita Solution) [Levi-Civita (1919)]

40(1 — 20) 2(1 = 20)

Metric: ds? = — R¥df? + dp’+R—~ = dz?+a 'R T d¢?
O<o<1/2, R:=3p, T:=406>—20+1

; g 8o(l — 0) PZZ _26(1 - 402
Effective potential: V(p) = R = + R T

L2

— a=1, P,/L,=0, 0=1/100 — a=1, P;/L;=1, 0=1/100

0.10¢ ‘ 1 14 | ]
P/L =0 P/L =1
0.081 Z < g 1.40F Z Z ]
0.06¢ 1.35 .
> . Photon Cylinder
0.04l 1.30f
002l 1.25}
1.20f
0.00¢
(] 5 10 15 20 25 30 0 5 10 15 20 25 30

CONTENTS

3. Properties of photon cylinder




Photon cylinder <= Photon surface!

Photon surface:
one of the generalized concepts of the photon sphere

based on only the property that any null geodesic initially tangent S = {r = 3M}
will remain tangent to S. [C.M. Claudel + (2001)]

Let us check whether the hypersurface is a photon surface or not,

by calculating the following equations;

Xakk° =0, Y€ TS YpeS

|

Gab=0

Xab *= V.1, : second fundamental form, n,dx* = \/I_er :normal unit vector,

O = Xap — %hab :trace-free part, ¥ =h"%u.  hy, :induced metric

Vkdie— NP L, Fp)=Glp)=0 — 7 k% =g, =0

\/

S = {pm eR |G(pm) =0, Flp,) = 0} : Photon Surface

p,, is the radius of a photon surface




Stability of photon cylinder

V'(p.) >0 (< 0,=0) = the photon cylinder is stable

(unstable, marginally stable)

v For F(p.) # 0 and G(p,) # 0,

V= — e tGcop —
pc_D c © c c F

C c

v For F(p,,) = 0 and G(p,,) = O (photon surfaces),

il nl e T

Example 1. (Levi-Civita Solution)

46(1 - 20) 21 = 20)

Metric: ds? = — R¥df* + dp?+R— * dz’+a 'R T d¢?

0<o<1/2, Ri=3p, T:=402—20+1

There exists no p,, such that F(p,) = G(p,,) =0

But
For 0 < o < 1/4, there exist {p_} such that

_PFp) | G
ey Do)

Vip.)




v Stability of photon cylinder

fO0<o<1/4anda >0,

4a(l — 4o0)(1 — 20)(1 + 20)

0= RA1—0)(1-20)/ =
G

* Photon cylinder in LC spacetime is stable

v Shape of photon cylinder
Insert P2/L? = — C(p.)G(p,)/D(p.)F(p,)
dzo 2 5 D@)

3 L)

And plot y, (¢) = (p.cos ¢, p,sin g, z(¢)) pocosg o PeSind

into

Example 2. (Conformal Weyl Gravity) |[.L Said + (2012)]

Metric: ds? = — f(p)dt®> + f(p)~'dp? + a’p?dz® + p?d*?

3
f(p)=£+ —fy+%+k2p2, p<0, y<0
p

2
1 7]
Flp) = G(p) = p—+/3|P
P2 f(p) 2
* There exists a photon surface at p,, = 24/3p/y

It is marginally stable




CONTENTS

4. Summary

Summary

® Photon cylinder is defined as the hypersurface
{p=p.| P2ILZF(p)C(p)~" + G(p)D(p,) ™" = 0}

® In static cylindrical symmetric spacetimes, Photon Surfaces

are the hypersurface {p =P, | G(p,) =0, F(p,) = 0}

Future works

v Investigate more details of structure of photon cylinder
v Calculate the shadows and the deflection angle

v Expand to stationary axisymmetric spacetime



C1/8

Amo, Izumi, Shiromizu, Tomikawa, Yoshino, in prep.

- Y'TP d4vCepal

- THEORETICAL PHYSICS

Generalization of photon sphere
referring to null infinity

Masaya Amo YITP, Kyoto U

Collaborators: Keisuke Izumi, Tetsuya Shiromizu, Yoshimune Tomikawa, Hirotaka Yoshino

Intro. 2

Black Holes

® Predicted by GR.

observer

® Cannot be connected to.# T by causal curve.

® BHs have no effect on observers outside of BHs.

Redefining (something like) BH connected to.# by causal curve

Masaya Amo Generalization of photon sphere referring to null infinity
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Intro. 3

Photon sphere

® Defined in static & spherical symmetric spacetimes

® Collection of circular photon orbits (r = 3M in Schwarzschild) photon sphere

® Edge of BH shadow l
® Mathematically rich structures il
BH shadow
Generalize photon sphere to spacetimes w/o symmetry!
Masaya Amo Generalization of photon sphere referring to null infinity
Intro. 4

Previous attempts to generalize photon sphere

ex.) Yoshino et al. (2017), Yoshino et al. (2019), Siino (2021).
Applicable spacetimes for several attempts:

applicable not applicable
Def. 1: @ stationary spacetimes / & dynamical spacetimes.

Def. 2 : @ some dynamical spacetimes / & rapidly rotating BHs.

Def. 3: @ rapidly rotating BHs / & photon spheres w/o BHs.

... anyway, case-by-case definitions, so far.

Let’s consider more comprehensive definition!

Masaya Amo Generalization of photon sphere referring to null infinity



Outline

2. Definition of dark horizon

Masaya Amo Generalization of photon sphere referring to null infinity

Def. of dark horizon

Escape Cone

spacelike hypersurface
Consider directions of photon reaching #+ projected on X.

— Collection of these directions on two-sphere is escape cone.

2

escape escape
cone

do not
escape

Masaya Amo Generalization of photon sphere referring to null infinity



Def. of dark horizon 7
Escape cone in Schwarzschild
escape escape escape
cone cone cone
@ >
Agreat circle IM Agreat circle r
outside of escape cone inside of escape cone
photon sphere
% great circle : inter section of sphere and plane containing the center of the sphere
Masaya Amo Generalization of photon sphere referring to null infinity
Def. of dark horizon 8

>depend on projected hypersurface £

Generalization of photon sphere : dark horizon

Classify points in spacetime into three regions :

]

escape .

cone ‘

escape escape

cone

3great Getlef points on this bdry. vgreat circle Set of points on thigkstycircle
outsifle ofieealipe coneer dark horizon*"terspct bdry. of escape copegjjeq “outerigsidelsirézape cone

\ P

collectively called ““dark horizon”

>

distance
to BH

Masaya Amo Generalization of photon sphere referring to null infinity



Outline

3. Property of dark horizon

Masaya Amo Generalization of photon sphere referring to null infinity

Property of dark horizon 10
Spherical symmetric spacetime
escape escape escape
cone cone cone
3great circle $ dgreat circle distar;e
inside of escape cone to BH

outside of escape cone
inner dark horizon

outer dark horizon
photon sphere (if static)

Masaya Amo Generalization of photon sphere referring to null infinity



Property of dark horizon 11

General properties (independent of spacetime symmetry)

Inner dark horizon is located “‘inner” than outer dark horizon,

or they coincide.

based on Amo, Izumi, Shiromizu, Tomikawa, Yoshino (2021a, 2021b, 2022)

Two dark horizons both exist in BH spacetimes

when radiation is not so strong (compared to Planck luminosity)

Masaya Amo Generalization of photon sphere referring to null infinity

Outline 12

4. Examples

Masaya Amo Generalization of photon sphere referring to null infinity



Examples

13

Kerr BH

Mass : M =1, Kerrparameter:a (0<a<1)

Amo, Izumi, Shiromizu, Tomikawa, Yoshino, in prep.

:inner dark horizon
: outer dark horizon

) a=0.999
30 3
[ 2}
1 2
14 1t 17
0 ema € 0
i oint inprevio
-1 _1 L _1 L
2+
2 2t
30
-3k ‘
Examples 14
I n g Oi n g Va i dya Amo, Izumi, Shiromizu, Tomikawa, Yoshino, in prep.
cf.) Koga, Asaka, Kimura, Okabayashi (2022).
Tr
9 [ -
dark horizon
8 4
Al previous
A £/ generalization
Dark horizon exists.
6| ,"
. Differs from previous generalization (due to
5 II =3 . .
" m() assumed position of light source)
4+ S
—50 0 50 160 150




Outline

15

5. Conclusion

Masaya Amo

Conclusion

Generalization of photon sphere referring to null infinity

16

Summary

® Proposed dark horizon, a generalization of photon sphere

® Explicit plot in Kerr & Vaidya

® Overcome some weak points in previous generalization

Future Work

® Dark horizon in other spacetimes?

® Correspondence to shadow observations?

® Dependence on spacelike hypersurface X ?

Masaya Amo

Generalization of photon sphere referring to null infinity
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Back Up

Back Up 18

Area inequality

[Ap: area of outermost photon sphere, Ag: area of shadow, Aj: area of horizon, M: BH mass]

@ Penrose inequality (conjecture, without assuming symmetry of spacetime)

(;)2 Ay < 4m(3M)?

2 Area inequality for photon sphere (static & spherical symmetry)

3 2

Discuss area inequality foer photon sphere without assuming symmetry of spacetime.

Masaya Amo Generalization of photon sphere referring to null infinity



Examples 19

Outgoing Vaidya

d a rk .'.\\‘
8 horizon ™

-50 0 50 100 150

Property of dark horizon 20

Minkowski spacetime

There is no boundary.

Escape

cone

~
7

radial
coordinate

Dark horizon does not exists in Minkowski spacetime.

Masaya Amo Generalization of photon sphere referring to null infinity
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Four types of attractive gravity probe surfaces

Graduate School of Mathematics, Nagoya Univ.
Kangjae Lee

K. Lee, T. Shiromizu and K. Izumi, Phys. Rev. D 105, no.4, 044037 (2022)
K. Lee, T. Shiromizu, K. Izumi, H. Yoshino and Y. Tomikawa, Phys. Rev. D 106, no.6, 064028 (2022)

Contents

Introduction

Attractive gravity probe surface

Refined area inequalities with angular momentum
Summary

sl
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1. Introduction

4/16

Generalized gravity region from photon sphere

Trapped Surface (TS) : proposed for strong gravity region
- singularity theorem Penrose (1965) : proved by using TS

Penrose inequality Penrose (1973) : area inequality for apparent horizon

However, TS cannot be observed because blackhole envelope it!

photon sphere : unstable circular photon orbit in Schwarzschild BH

‘ Generalize

Loosely Trapped Surface (LTS)
Shiromizu, Tomikawa, Izumi and Yoshino (2017)
Dynamically Transversely Trapping Surface (DTTS)

Yoshino, Izumi, Shiromizu and Tomikawa (2020)

LTS/DTTS

< . .
4 3.dim. spacelike hypersurface ‘ Generalize LTS for weak gravity

Attractive Gravity Probe Surface (AGPS)

Izumi, Tomikawa, Shiromizu and Yoshino (2021)



Area inequalities

m I mass

A :area, R :measure of size
J :angular momentum

Minimal Surface (MS)

Loosely Trapped Surface (LTS) /

Dynamically Transverse Trapping Surface (DTTS)

Attractive Gravity Probe Surface (AGPS)

Area inequalities
with ang. mom.

Jang & Wald, Shiromizu et al. / Yoshino et al. [zumi et al.
Huisken & Ilmanen,
Bray 2 m> ] A m> 12 fA

m >4/ — — V367 “34+4aVi4r (a>-1/2)

167
Anglada
A J?
2

> 4+ = r

m? > o+ Our study

N\

\

Refine area inequalities for AGPS by taking account of
contribution from angular momentum, gravitational
waves and matters

2. Attractive gravity probe surface



Classification of Attractive Gravity Probe Surface

LAGPS-k : use mean curvature
LTS - Longitudinal AGPS

Loosely Trapped Surface  generalize LAGPS-r : use scalar curvature

TAGPS-k : use mean curvature
DTTS - Transverse AGPS {

Dynamically Transversely Trapping Surface generalize

TAGPS-r :use scalar curvature

LAGPS : consider variation with respect to ;

orthogonal to surface

TAGPS : consider variation with respect to

tangential to surface

In this talk, | focus LAGPS-k

Longitudinal Attractive Gravity Probe Surface-k
For 2-sphere 0 in Schwarzschild spacetime, k= 2\/1 - QTm ’Mé)iirk = —% (1 - 3T)p$0nlj:p’::1aximal at r =3m

oo LTS &L { k>0
2-surface (3)£rk} >0

in spacelike hypersurface

Shiromizu, Tomikawa, lzumi and Yoshino (2017)

‘ Generalize LTS for weak gravity

00 : LAGPS-k &L [k>0

3 2
2-surface in spacelike hypersurface ( )£rk Z ka (a@>-1/2)

Izumi, Tomikawa, Shiromizu and Yoshino (2021) C

3)
In Schwarzschild spacetime, ]:D;Tk >« » r < 3+ da

7/16



Area inequality for LAGPS-k

Assume . Asymptotic flat spacelike hypersurface ¥ with GR >0

. : o 2
is foliated by {Uy}yeR in inverse mean curvature flow where oy = S

and 0 is LAGPS-k.

monotonicity of Geroch energy
& definition of LAGPS-k

=

area of Oy: A(y) = Apexpy

MADM =

1+ 2«

R
3 +4a A0

(> —-1/2)

{

areal radius R4 := \/ﬁ
47

mapMm : ADM mass

lzumi, Tomikawa, Shiromizu and Yoshino (2021)

a—00  (Sus) Rao < 2mapm
a=0 (Surs) Rao < 3mapwm
Oc—>—1/2 (S..) Noupperbound of R 4q

10/16

3. Refined area inequalities with angular momentum
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Theorem (LAGPS-K) .. 5o and i 2022

Let 3 be asymptotic flat spacelike maximal hypersurface equipped by inverse mean curvature flow {0y}, cp
with o, ~ S?  where 00 is LAGPS-k. Assuming that the energy density of matters is nonnegative.

We have an inequality for the LAGPS-k 00,

3 1+ 2a 1
mav g (mEXt - mmim) = 3+44a - R0
L 142, o342 Ty T : g
= 3+4a 3+4aR3, (a>—1/2)

mapm : ADM mass, Ruao : areal radius of 0g
* 3 . ar 5 e
Mext 1= 27 dyR 4 prot * exterior energy | Mint = ?RAUptotO “internal energy
0
_ 1 1, -~ . L
1 Peely) = / dA/’mt(’!/), Prot = P+t Paw | 8mpgy 1= §(Habl<“” + kak®) * energy density of gravitational waves

i) e A a b
(87r=7(y)) = 67/ vv"dA : area averaged angular momentum | Vo 1= R Kpe | Kap i= REAE K e

jmin = ?(Ef; j(y)

12/16

Sketch of proof e [ain [0

s, 8Py 1= i(gahkah + ]'cab]'cab)
Mint 1= —RA0Ptoto

. o 3 )
maximal sllce,_ inverse mean curvature flow T (SWJ@)Z::%/ A
and nonnegative energy density Prot(y) ':Z/Oud pron(y) ™ Jo

Vg 1= thCKbC

e 2

Monotonicity of Geroch energy | + asymptotically flatness

R R o 1 o
) oy - 2+ 0 / dAK® > 27 / dyRa(y) Prot (y) + 7o— / dyRa(y) / dAvvg > 0
2 327 oo 0 167 0 o

y

Definition of LAGPS-k | + maximal slice

167

- 4 , _lém 2
— < — _— _ a < —
(1 + 3@) /UO dAk 3 3 /UO dA(].Gﬂptot + 2'Ua'U ) 3

3 14+ 2a 1 3 - -
- X in > R ( J2 J2
) 7o (met+3+4am t>_3+4a A0t R 37470 "
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mint - internal energy
Result L

P internal radial pressure

Longitudinal Attractive Gravity Probe Surface (LAGPS-k)
142« 1 3

> [

2 3 da A T R <3+4a

Transverse Attractive Gravity Probe Surface (TAGPS-k)

: 1+28 1 3, - T
(int) _ >_"p = J%24 J2.
Pr et 2 37500 T R3 (3+46 0+ Jumin !

1
1
I
S~/
S
!
~ e

LAGPS-k, TAGPS-k —» MS (o, 3 — o0 )
Rao  J2

(a>—-1/2)
jg + ernin)

3
MADM — (mext + m"hm)

mabM + 37

MADM — Mext = 5 + Rr?’;z
Rao\? . P . (P2 - (Rao\? | T2 AP
o 2 >( AO) min ( mm) >( AO) min 2
» (maDM — Mext)” 2 (= +Rio + =) 2\ +R?40 » m” 2 7o— + 755 Anglada (2018)

1 For equality, the area is same with Agerr := 8mm(m + \/m?2 — J2/m?)

14/16

Inequality for mass and angular momentum

1+ 2a 1,03 .,
mMmADM — (mext + (

i, Rao + m (e
3+da t)—3+4a 0T R3 37 40

for vacuum & axially symmetric case,

- [2(1+2u)]3/"’

1 5
- < < <
s1da | O+x)" ) 3740 =X =370

prolate o » mapm > 0?2

1
Komar angular momentum J(y) := g/ 4P dA
o.

Y

¢* : axial Killing vector

Vg 1= hZTCKbC
a— oo (MS),

MADM > |J|1/2 Dain (2008) : For vacuum, axisymmetric, asymptotically flat, maximal ¥,
Dain proved this inequality where initial data close to extreme Kerr.
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4. Summary

Summary

We proved area inequalities for AGPS taking account of contribution
from angular momentum, gravitational waves and matters.

k>0
Gle k> ak?

_ _ LAGPS-k <d:ef>{
Longitudinal Attractive Gravity Probe Surface (LAGPS-k)

14 2a 1< 3

R — (——— T2+ J2.
= 3+ 4a A0+R§40 3+4a O+ min

Transverse Attractive Gravity Probe Surface (TAGPS-k)

‘ 1423 ] 3
() e > " Roag 4 = [ ——J2 + J2,
e T Mext = 37 g VA0 e (3+4/3 0+ Jmin

3
MADM g (me"t t3T 4ami“t> ) (a>—1/2)

mADM+3+4IB

( o 47 N 1
Mexy 1= 2T / AYRYPror  Mine = ?Rioﬁmto , Prot(y) == A / dApiot (y)
. ’ ay

Contribution of charge and EM fields? o 1

N AT 0 —(tot p(tot) 1 (tot)
P(rmt) = ?Ri()g((t) v , PTO - AU -/170 P,. A

Non maximal spacelike hypersurface? J .
Prov = Pt pg | PV = Pyt PEY) - 8rPEY) = o (Rupk™ + Fapi®) = 87

Relax restrictions of parameter? e
(Sﬂ'J(y)) = —l/ vavtdA , Vai= hZ’I’CKbC

61

Jmin := min J(y)

’ oy}



Appendix

Transverse Attractive Gravity Probe Surface-k

. . 3)p 2 3m
In Schwarzschild spacetime, for photon surface S, “ £,k = o} 1-— -
def k=0 O
0o :DTTS max(f(abkakb) =0 : transversely trapped
2-surface

(3>£n/~c <0:® D&® — maximal with

in spacelike hypersurface -
respect to time

Yoshino, Izumi, Shiromizu and Tomikawa (2020)

‘ Generalize DTTS for weak gravity

k=0
k% : null tangenton S def B

i O-O : TAGPS-k — max(K,,k°k®) < —pk
K, * extrinsic curvature on S
2-surface in spacelike hypersurface (3) £,5<0

_ 1
Ko = 5 £rpab

lzumi, Tomikawa, Shiromizu and Yoshino (2021)

3448
m

1123

lapse function of n% is constant

In Schwarzschild spacetime, maX(Kabkakb) < —Bk - r <



Area averaged angular momentum

- 2 A2
(87rJ(y)) = vav*dA va = hor K

67 /s,

¢“ : axial Killing vector

. . - Ra\t
2 2 1
For axisymmetric case, J* > (R¢) J Komar angular momentum J(y) := 87/ v padA

8w
?R;‘) = / $a9"dA

a’m?

0@

In Kerr spacetime, / v,dA = 247

Ty

) J? ~a’m® + O(a?)
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Introduction 4/19

2 Gravitational Lens

@ Conventional configuration
Gravitational lens equation is a basic equation of lensing which relates a deflection
angle of light to angular positions at an observer.

Light source

v Deflection angle of light

For Schwarzschild metric:

Dy 4GM M2
a = + 0| —
c?b ( b?
Dy \ v/ Lens equation
D
B=0- #a
D, S

a : Deflection angle of light

P : Intrinsic position of light source

v v

Observer 0 : Apparent position of light source (Observables)
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> Conventional lensing method

@ Assumptions in Conventional method

v Asymptotic flatness

A limit ¥ — oo is used for calculation of the deflection angle of light.

» It causes no problem in asymptotically flat spacetimes.

However,

e An asymptotically non-flat spacetime does not allow r — o limit

L A horizon crossing of a light ray can occur (Horizon crossing problem)

e In Astronomy, distances between objects are finite

L» Contradiction: Lens equation includes distances as a finite value

Introduction 6/19

7 Extension beyond Conventional lensing method

@ Finite distance method

v Deflection angle of light based on Gauss-Bonnet theorem
[Gibbons & Werner (2008)]

» Finite distance correction to the deflection angle of light [Ishihara+ (2016)]

» Improving to be valid even for asymptotically non-flat spacetimes [KT+ (2020a)]

v Gravitational lens in Finite distance configuration
[KT, Ono, Asada (2020b), KT & Asada (2021)]

» Lens equation consistent with the finite distance framework
» Application: Lensing in Weyl gravity model (Asymptotically non-flat spacetime)

» Finite distance effects in strong deflection limit
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Z Is Minkowskian background valid for any spacetimes ?

® Motivation for Lensing on constant-curvature background

If the spacetime is not Minkowskian asymptotically,
can we take the flat BG ?

/

We investigate

a new the method which is valid for
GL on (optical) constant-curvature backgrounds.

Extendable?

- Outline -
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Background for Gravitational lens

2 Definition of Background

We consider that the light deflection
is caused by lens objects.

Lens parameter: p, =p,, p,, - p, (mass, spin, charge of BH, etc.)

Definition: Background spacetime as p; = 0

For a full metric including the lens objects:
ds? = Suv(pi) dxtdx”
a background metric is defined as

gyv = gyv(Pi)lpizo

Background for Gravitational lens

7 Optical space Unit c=1,G=1
A static & spherically symmetric spacetime (Equatorial plane):

ds*> = —A(r)dt?> + B(r)dr* + C(r)d >

ds? =0 —— df? = yydxdy/
_ B2 CO0)
a0t an

e.g. Asada & Kasai (2000),
Gibbons & Werner(2008)

Yy - Optical metric (Riemannian metric of light ray)

Light ray: 0o / dt =0 (Fermats principle)

dxl dx]
/ \/ 7/11 =0

We consider a space defined by y;; where light rays are spatial geodesics.




Background for Gravitational lens

7 Background spacetime
® Background optical metric
Let a background be the optical metric with p, =0 as
V11 = Y1i7(Pi)lpi=0
v Background optical metric

de? = 77de1dx]
_B0),2, CO)

= — —2d¢p?
an"" A0
Circumference radius: 7 = % = Vrr — V7 = F(7)7}
r

df? = F(7)1d# + #d p?

- Outline -
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Optical constant-curvature background

2 Optical constant-curvature space

® Spatial curvature of Background space

Gaussian curvature of the background optical space is

Rovt = 7079
det(771])

We focus on the space that have a “constant-curvature”:

8Kopt
57 =0 — 2nd order differential equation for F(7)
7

v Solution

F(7) =1+ «#  (with the condition F(*)|._, = 1)

Optical constant-curvature background

2 Optical constant-curvature approach
® Optical constant-curvature background

Gaussian curvature under F(7#) = 1 + «7# is given by
KOPt = —  (const.)

* e.g., de Sitter & anti-de Sitter -+« k = A/3
Mannheim-Kazanas solution (in Weyl gravity) --- k = v214 + k

R=0 || K™<0 || K™>0

Euclidean Hyperbolic Spherical
For gravitational lens configuration
Flat LE Hyperbolic LE Spherical LE

— already proven in [KT & Asada (2022)]
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Background dependence of Deflection angle

7 Deflection angle of light for Asymptotically non-flat spacetime

@ Finite distance framework to Deflection angle
v/ Definition based on Gauss-Bonnet theorem [Ishihara+ 2016, KT+ 2020ad]

a=Wg—Ws+ Prs

Ps
= // KdSs +/ Kodl + Prs
Qr+Qg Pr

e This form is valid even in asymptotically
no-flat spacetimes [KT+ 2020ad]

e This is the exact form which does not assume BG

There should be a background dependence. K \g/



Background dependence of Deflection angle

> Deflection angle of light as a function of parameters

® Parameters in the metric function

pi : Lens parameters ¢, : Others (BG)

© Background dependence of «
a is the function of these parameters: a(p;, 4;)

What we have to do is to consider only the
contributions due to the lens objects.

Then, we denote o due to the lens object as

alpi) = alpi, q;) —alpi=0, q))
Effects by Lens Full o BG effects

- Outline -
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2 Optical constant-curvature approach for Gravitational lens

® We defined the background as a metric with the lens parameter p, = 0

v Optical constant-curvature approach (for SSS spacetime)

» We focused on “constant-curvature” background

< BG optical metric function: F(r) = 1 + ki

Euclidean Hyperbolic Spherical
\ \ . * [KT & Asada,
Flat LE Hyperbolic LE Spherical LE| ™ "ppp (2022)]

v BG dependence of Deflection angle of light

» a which consists with the optical constant-curvature approach

v Working on

» Concrete example: Calculating lens effects on MK(Weyl gravity) background

Background geometry for Gravitational lens

? Lens equation for Optical constant-curvature B.G.

v Non-flat extension for B.G. geometry

Depending on K°" of the optical constant-curvature space for B.G. ...

Euclidean geometry Hyperbolic geometry Spherical geometry
A |
RZ
c
b
B
a C
¢ =a®+b*-2abcosC | coshpap = cosh pca cosh ppc COS PAB = COS PCA COS PBC

— sinh pca sinh pgc cos C — sin pca sin ppc cos C

* pag> Pac> Pca are proper lengths based on the optical metric

* In hyperbolic & spherical geometry, length is the same dimension as angles (dimensionless).



Gravitational lens equation

? Lens equation for Flat background

® LE based on Flat trigonometry [KT+ (2020b)]

. . S
v Angular diameter distances 5
R re
dp =ry, dpg =rpg, dg =7rg.
L=TL, dLs = TLs, s =15 ris
R
. rL L
v Lens equation (Flat)
_(dL . [ds .
a — 0 = arcsin | — sin 0 | — arcsin | — sin 8 Lens plane Source plane
drs drs .y n
-'.___ ........
“ ‘ /---_‘.:"‘S

0 : Apparent position , /3 : Intrinsic position ,

o : Deflection angle of light .

Gravitational lens equation

? Lens equation for Spherical background

@ LE based on Spherical trigonometry

. . S
v Angular diameter distances s
. . Ps
dr =sinpr, dis =sinprs,
n PLs
ds = sin ps . R
. L
d pL

* Physical angular diameter distance is d =

1/ Kopt

v Lens equation (Spherical)

Lens plane Source plane

a — 0 = arcsin (fI—L sin 9) — arcsin (ii_s sin ﬁ)
dLS dLS




Gravitational lens equation

? Lens equation for Hyperbolic background

@ LE based on Hyperbolic trigonometry

. . 5
v Angular diameter distances 2
s . pPs
dr =sinhpr, drs =sinhprs, oL
ds = sinh ps .
S Ps R oL ~
. . . . d
* Physical angular diameter distance is d =
1/ — Kopt
v Lens equation (Hyperbolic)
. . ... Lens plane Source plane
(AL . [ds . K"
a — 6 = arcsin | = sin 0 | — arcsin | — sin 8 o
dLS dLS

LEs for each B.G. written by the angular
diameter distance between 2-points can be
expressed in the same form. R

Gravitational lens equation

2 Lens equations in terms of distance between planes

v Unification of LEs
LE for Euclidean B.G in terms of distances between planes which does not
use any approximations is as [KT, Ono, and Asada (2020b)]

a — 6 = arcsin

Dy sin 0 ( Ds )
—arctan [ — tan
V(Dis)? + (Ds)? tan? B Dis

Hence, we can unify write these LEs as below, by introducing a parameter K .

J1+KD2tan?g Dy s
a — 0 = arcsin Dy sin 6 | — arctan (A— tan [3)
\/Dis + DZ tan? B Ds

where
+1 --- Spherical
K=4 0 --- Flat
-1 --- Hyperbolic



Gravitational lens equation

2 Iterative analysis

@® Iterative method

v/ Approximation

Apparent position 6 and Intrinsic position 3, and Deflection angle of light
o are small for the unit:

0l <1, |Blx1l, |o]lx1

e Treating of angles

o0

0= eM0u, a=) Waw, p=cpy
k=1

k:
v Iterative solutions for LE

Each order of iterative solutions for LE can be systematically obtained as

89(1) p 826(2) p 839(3) y °

Gravitational lens equation (&3

2 Iterative analysis
® Background effects

The deviation from the flat B.G. begins at the 3rd-order of the small angle.

g Dis  Ds [ _Ds 5
O BL+Dis ¥ 3Dy + Dys) D2 .
— 5
_ (@-KD.Ds , ol Dy D 63
2D% (D + Dys)™ 6(Dy + Dis) D2 )

v New effects due to dS/AdS B.G.

+1 AdS Positive
K=< 0 Flat

-1 dS Negative

New

6
®) 2D2 (Dy, + Dy )ﬁ 7

The new effects in Hyperbolic B.G.(K=1) increases the lensed image
position 0, while that in Spherical B.G.(K = — 1) decreases it.



Deflection angle of light

> Deflection angle of light on dS backgrounds

v Background dependence of o

We denote the deflection angle of light on dS B.G. as a®(p;, A).
* Lens system is characterized by p; (i = 1,2, ---) (e.g., m) in addition to A.
For dS B.G., and thus

a® = a(p;, A) - a(pi =0, A)
B.G. effects

95 in the case of SdS lensing as

Drs

+ O(mz, m63, mADG?, mA2D3)

For example, we obtain a

D16 D

N mAD; 0
3

For also negative A (i.e., AdS B.G.), a9 can be obtained in the same form.
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Introduction
» Symmetric teleparallel gravity
» f(Q) gravity and Coincident gauge

e Dynamics of constrained systems

e Hamiltonian analysis of f(Q) gravity

» ADM decomposition of f(Q) gravity
» Primary constraints and secondary constraints

Summary
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Symmetric teleparallel gravity (J.m. Nester, H-J Yo, 1999)

In GR, gravity is described by curvature.

Curvature = energy density

ﬂ (torsion-free, metric-compatible)

General Relativity

Metric Yuv | Only variable

But there exist two other equivalent ways to describe gravity.

» The Teleparallel representation: (TEGR) > arXiv:1303.3897

» Nonmetricity representation: (STEGR) > arXiv: 9809049

Qa;w

= Wag;w

Central China Normal University

Symmetric teleparallel gravity (J.m. Nester, H-J Yo, 1999)

While the V is corresponding to IA““W = { ¢ } + K%, +L%,
uv

The general quadratic action

If we choose our f“,j’a to be total inertial I", =

Saq = / d* (/=GO P + 2" ROy, + 2T,

Non-metricity scalar defined

Q = (—g* g™ +2g* P g7 + g™ g7 g" — 2g°P g 4°P) - Qo Q pyuv

We can prove the relationship

0=R(I'%) =R({)) —Q(g,0,1%) HV.(@" — Q)

8$U 82§A
o0& 0" 0z

After the integral of the action, GR and STEGR are equivalent.

P3

Central China Normal University



f(Q) gravity and Coincident gauge (Lavinia Heisenberg, 2018)

Why f(Q) gravity

* In order to describe the accelerated expansion of the Universe.
We need to modify this gravitational theories.

Extend to an arbitrary function of nonmetricity scalar

Ssrecr = %/d‘ix X/EQ |::> Sr= %/d4w\/§f(Q)

»  But before that, we need to figure out the number of independent
d.o.f. it possesses.

*  For simplicity, we fix the gauge to Coincident gauge.

Diffeomorphism

R 8x" a2€A
_ £ o _
x(l - 6 |:> FVOt ag)\ axvaxaﬁo

P4 Central China Normal University

Dynamics of constrained systems (Dirac-Bergmann, 1951)

* In gauge theories, redundant d.o.f. may exist, some of which are
closely related to the gauge symmetry.

In the Hamiltonian formalism, they are characterized by the presence
of constraints. The symmetries inherent in a theory can be explored
by performing a Hamiltonian analysis.

- Forageneral action S = /dtL(qs,Qs)

, OL d [OL
» Euler-Lagrange equations < ) =0 s=1,..,k

dqs - % dqs
: 0°L |. OL 0L |
It can be rewrite as — (s = — —(s
9Grqs 9qr  0qsqy

hessian matrix

P5 Central China Normal University



Dynamics of constrained systems (Dirac-Bergmann, 1951)

Conjugate momenta is defined by ps =

If some of above momenta is not the function of velocities, it means
that there exist independent relations among p and q. This relations

are called primary constraints.

oL
9qs

Gp(qs:s) = pp — &(4s,05)

We define Total Hamiltonian via Lagrange multipliers

L=p'4—H(q,p)+u’9,

For an arbitrary function of the phase space, the evolution reads

P6

fa{f.H} +u’{f ¢}

0

{ts, H} + u’{¢s, P,} = 0| (consistency equation)

Central China Normal University

Dynamics of constrained systems (Dirac-Bergmann, 1951)

If the consistency equations are not automatically satisfied, they
form new constraints, called secondary constraints.

Then we have two major possibilities:

> Situation 1 if {¢5 ¢y} =0

O

Consistency equations does not contain u”

P7

{¢

Evolution of the secondary

constraints give tertiary constraints

U

The process ends after consistency

equations naturally satisfied

U

The u” stay arbitrary

(Example: GR)

Central China Normal University



Dynamics of constrained systems (Dirac-Bergmann, 1951)

» Situation 2 _ x) 8G(y) 8G(y) 6F(x)
b= [ (G, s )
if {¢g ¢p} #0 U \/
O
The matrix {¢,, ¢,} must be singular ( When we exchange the

{

We can not determinate all u”
from consistency equations

U

order of two functions in
PBs, The only difference is
a minus sign )

We "missed" the additional constraint

U

We need to formulate extra constraints "
imposed by the null eigenvector of {¢,,, 7}

U

of phase space variables

All the u” can be solved as functions (Example: f(T), f(Q))

P8

Central China Normal University

Hamiltonian analysis of f(Q) gravity (kun Hu, T K, Taotao Qiu, 2022)

A. ADM decomposition of f(Q) gravity

» To facilitate the calculation, we introduce an auxiliary field, we

rephrase the action

f(Q) gravity «== scalar-nonmetricity theory

Si@= /d4wff(cz)<::{> Sr@) = /dm_[f 0)Q + f(9) — of' ()]

equivalent

* The Arnowitt-Deser-Misner (ADM) metric

___________

_____

* There are 11 dynamical variables in total. we insert above metric into
the scalar-nonmetricity action, and with the help of the relations

R({}) = Q- Va (Q*-Q")

P9

R =0 - DQ' Q)

Central China Normal University



Hamiltonian analysis of f(Q) gravity (kun Hu, T K, Taotao Qiu, 2022)

We reach the ADM decomposed action

Sr@ = /d% {NVR[f+f (Q+ KyKY - K* = o) - DS Q' - *QY)]

L i rin gl h I (nTi j 3 i
+@f" (OiN') = = N'Oif' — == 0if' (N'0;N7 — Nkg.NY)

Primary constraints and secondary constraints

For N,Nj, hij, ¢ , conjugate momenta are defined by

..........................................

N !
f” =5N —— Go TN =0,
L, 48 Vh ., Vh, !
: b= — = ——0" , ok _—> i - Ty —0; ~ s
__.7r 3N, N(?f,": 10) 7T+Naf 0
7 = ;5 =Vh[f (K7 - hIK)] + A" be:p— \/Wﬁf” (0;N) =0
............ Vi e,
88 Vh,, N / (5 primary constraints)
Cp=E—=—f (&N ) :
0Q N E
Central China Normal University P10

Hamiltonian analysis of f(Q) gravity (kun Hu, T K, Taotao Qiu, 2022)

We define total Hamiltonian in f(Q) gravity

H = H AP
P

— / d>x ()\aﬂ'N + N + XN, + %’6)
poM == == ==
while
% L= Wijhij +7TiNi +pgb—.,2”
Vh

= NC +2D;N;7% —

The Poisson Brackets
0 A, Ay A3 —B
-A, 0 0 0
Cn’n - {¢n’7 ¢n} - _A2 0 0 0 C12
—As 0 0 0 (4
B -C; -Cy —C5 0

Unsurprisingly, the det(C,.r,,) vanish. This implies that we miss an

~ 0 f (N19'N; — N'9; N7 + 2N19;N*?)

eguation to determine the Lagrange multipliers.

Central China Normal University



Hamiltonian analysis of f(Q) gravity (kun Hu, T K, Taotao Qiu, 2022)

* However, there exist an additional constraints imposed by the null
eigenvector

X =y = € ({mi, 0} + {Vi, ) ~ 0 hyy = ({n, H0})

» The consistency conditions of above six constraints become six
equations that contain unknow u”(q, p).

«  We define a new matrix ®,,,,, and we check ®,,,, is full rank
matrix. —> All the u”(q,p) can be solved from this six equations.

0 A A4 Ay -B

-4 0 0 0 Cy

(@ )E{CM]: —4; 0 0 0 Cs
T X on} —As3 0 0 0 Cs
B -0, —-C, —C3 0

b0} X, 02} {0y} {02} {x.bc}

(all the constraints are Second class!)

Central China Normal University P10

Hamiltonian analysis of f(Q) gravity (kun Hu, T K, Taotao Qiu, 2022)

* Inserting back those Lagrange multipliers, the consistency
conditions must be automatically satisfied.

D.o.f. = 1/ Number of original  Total number ~ Number of
00 =5 canonical variables of constraints gauge conditions
_ 1/ Number of original y Number of ~ Number of
9 canonical variables FC constraints SC constraints
1
=--(22-0-6)=8.
S )

Central China Normal University P11



« f(R), f(T), and f(Q), will not be equivalent to each other
because the total derivative term is no longer boundary term.

* The geometrical trinity of gravity

Number of basic variables Degrees of freedom Symmetry breaking
f(R) 1041 (9. ¢) (22-8x2-0)/2=3 No symmetry is broken
f(T) 16 +1 (e, @) (34-8x2-8)/2=5 Local Lorentz is broken
f(Q) 104+ 1 (g ¢) (22-0-6)/2=38 Diff. is broken

Ty, TC; [14°,C4 } a+4 FC

} 4+4 FC Ty, TT;
fR)< Co, G f(T){ r4e f@< p 8SC
X

* In f(Q) gravity, all of constraints are second class, which imply

the Diff-symmetry is broken. Because the gauge fixing.
(Coincident gauge) I

* You!!!

Central China Normal University P12

i, p
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l. Introduction/Motivation

Proposal for matter energy and conserved charge in general relativity

S. Aoki, T. Onogi, S. Yokoyama, Int. J. Mod. Phys. A36 (2021) 2150098,2150201. 9

matter energy Y (2): a constant z° spacelike hypersurface ‘ k ‘m
E(2°) = / [dd_lw]“T“V(x)f%(w), Ep(x) = =6, with coordinate condition  goj; = 0
(z9) —_—
Energy Momentum Tensor (EMT)

The charge for “time” translation, but is not conserved in general.
matter conserved charge

Q(z°) := / (@ ) T (2) B(2) €5 (2) B satisfies V,,(T",, 8¢};) = 0.
3 (x0)
The charge from the Noether’'s 1st theorem. S. Aoki, arXiv:2206.00283[hep-th].

This charge can be regarded as entropy with the inverse temperature g for

some cases such as FLRW universe.
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A criticism against our proposal

A black-hole (like object) may be created by a collision of two gravitational waves.

', #0 — Q#0 0 T, =0 —> Q=0

contradiction

In this talk, | investigate how our proposal works/fails in a model of colliding
plane gravitational waves by Szekeres.

S. Aoki, arXiv:2209.11357[gr-qc]

lI-1. Model of colliding plane gravitational waves
P. Szekeres, J. Math. Phys. 13 (1972) 286.
left-moving GW + right-moving GW —  singularities
ds? = —2e MW qudy 4 e~V (w0) (ev(“’”)da)2 + e_V(“’”)dy2> , R, — %g,u,R =0
T

(% u

|\/ colliding plajne GWs

spacetime is uniform
in x & y directions

Singularities

s

[[| right-moving plane GW

left-moving plane GW
kowski M(u),U(u), V(u)

M=U=V=0




lI-2. Solutions and singularities

: 1
A class of solutions R, — 59‘“’R =0 P. Szekeres, J. Math. Phys. 13 (1972) 286.
2
M = —logt?, V——k—logt2 -, M= %<l—ki2>logt2+~~,
2 1 n 1 n k2 1
7= f(u) +9(v), f(u) =5 —(au)"8(u), g(v) = 5 — (bv)"0(v) kiz=kitky, o =1-—

Continuity at u=0 or v=0 —— n; > 4, integer ————  singularities at > = 0

v U cf. Kahn-Penrose. Nature 229 (1971)185.

N\

Singularities

n1:n2:2

u2+y2=]

Apparent horizon

S. Aoki, arXiv:2209.11357[gr-qc]

-
v ' _ u 1. Plane GW has a singularity at 1> =
End of the Universe /

2. Singularities are protected by apparent horizons.

3. No spacetime beyond singularities.

4. University ends.

5. Non-zero EMT at singularities.

Energy Momentum Tensor at singularities

w v fugv 2 v '3 2 u 92 2
V=gT"y =/—g1T", = — 87TG (t)\/ 91", = WGN(S(t)7V gTv_87TGN5(t)
_df dg
Foi= G 9 4

S. Aoki, arXiv:2209.11357[gr-qc]



lll-1. Matter energy and conserved charge

7' ..- Energy finally vanishes at the “End of the Universe”.

.
P

Energy decreases during collision (region C)

E(T) Va (gv_fu . )>

_ Ju— 9o
N 87TGN \/5 +
Vs ::/d:vdy

z=zR(T) \/i

ZR(T)

- Energy is conserved before collision (region B)

Vo (n1a+ nob)
_87TGN \/§

E(7)

The charge is always conserved but zero due to a cancellation of two GWs.

Va3 Gv — Ju v — Ju
Q) =g~ — + P =0
TGN |gv fu| z=2g(T) |gu fu' 2=z (1)
=1, left-moving =-1, right-moving

Zero charge is consistent with the end of the Universe, where the charge must be zero.

llI-2. Other spacetimes

. . . . S. Aoki, arXiv:2209.11357[gr-
Scattering of GW (from left-moving to right-moving) ol ara [gr-acl

right-moving plane GW

‘/2 TLQb
E(r) = —=
(T) 87TGN \/§

scattering GW
No spacetime
here

Spacetime Vo futge
E(r) =
J— — (T) 87TGN \/§

z=zr(T)

left-moving plane GW

Vo nia

- 87TGNE

E(7)

1. Energy is not conserved during the scattering.
2. The charge is conserved and non-zero.

Q(r) = VaBo —gv — Jfu _ Wb
87GN |gv + fu sz (7) G N




llI-3. Non-conservation of Komar integral

our charge Versus Komar integral (Noether’s 2n theorem)
Quun(a) = [ (" a], Quuala®) = [ (a1l K7l
2(z0) S(x0)
JE=TH,BE V" =0 KU = 5V, [Vie] VK =0

conserved Qours (%) = Qours(y°) not conserved  Qana(2°) # Qana(y°)

unphysical

» 0
ny KM[E] # 0 )

o A conservation of the current does not imply
normal direction

nht a conservation of the total charge for Komar
integral due to its unphysical nature.
physical / Z(xo)
n,J" =0

IV. Conclusion
1. A spacetime structure in the colliding plane gravitational waves by Szekeres
Is investigated.
2. The energy momentum tensor at singularities is evaluated.
3. The matter energy in our proposal is not conserved during the collision.

4. The matter conserved charge in our proposal is indeed always conserved.

Our proposal works for this spacetime, despite the criticism.

A new spacetime
. . o . ot o+
A pair creation and annihilation of GWs Hh e w
(Minkowski vacuum bottle) NS e :
Tb T,
I
V_y L L/ IV, \t?=0
- 1 T,
Thank / N
ank you ! NS .
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Periapsis shift of a quasi-circular orbit in a general static
spherically symmetric spacetime
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with T. Igata®, H. Saida3, Y. Takamori*

1Rikkyo U, 2Gakushuin U, 3Daido U, *NIT, Wakayama College

JGRG310@U Tokyo
24-28/10/2022
arXiv:2210.07516

JGRG31
Introduction

+++
z0z
5E58

Se

@ The periapsis (perihelion) shift is one of
the first classical tests of GR.

6 M

Adpw —
Ppow a(l — e?)

(weak field),

"1

1
Appge = 27 |——— —1

/ 6M
l_T

(quasi-circular)

0.00 -0.02 -0.0:
RA["]

@ The periapsis shift of S2 around Sgr A* E The orbit of S2
_ igure: € orbit o
has been observed. f = 1.10 £0.19 . =0, 5419 (Abuter et

for A¢p = fA¢p,Wf (Abuter et al. al. (2020))
(2020)).

T. Harada (Rikkyo U) Periapsis shift JGRG31

1/10

2/10
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Black hole candidate

@ We do not know much about the central object.

» The standard assumption is a Kerr (Schwazschild) BH.
» Alternative possibities, such as a dense core, boson star, naked
singularity, wormhole, dark matter spike and BH hair, are discussed.

@ The periapsis shift can be “retrograde” in non-standard scenarios.
Figure: Prograde shift and retrograde shift
@ Extended-mass effect in Newtonian gravity (Jiang and Lin (1985))

@ We derive formulae for the periapsis shift of a quasi-circular orbit in a
general static spherically symmetric spacetime.

T. Harada (Rikkyo U) Periapsis shift JGRG31 3/10

Timelike geodesic

@ Line element in the static spherically symmetric spacetime
ds? = —e’™Mdt? + MM dr2 4 2 (dl92 + sin? 0dqb2).

e Gravitational mass m(r)

A —, (1 _ 27"(’“))_1,

T

where 7 > 2m(r) must be satisfied.
@ The geodesic equation with g, & = —1 reduces to

1
F+VI(r)=0, Si*+V(r)=0,
1, L? I
V(T) = Ee [(1+r—2> — e E ]

where E and L are the energy and angular mometum, respectively,
and the dot denotes the differentiation w.r.t. the proper time 7.

T. Harada (Rikkyo U) Periapsis shift JGRG31 4/10



Periapsis shift of a quasi-circular orbit

@ Circular orbit » = rg

» We can fix E, L and V.
» We concentrate on stable circular orbits, where V'’ > 0.

@ Periapsis shift Ag,

» 0r = r — 1o obeys a simple harmonic motion with w,., while orbiting
with wg, where

. L
wr, =VV"” and wgp =0¢ = —

r2’
> A¢@p is calculated to give
Ad 2 (w"b 1) 2 < ! 1)
= T | — — =27 | — —
P w, A ’

N (1/)2,+ (3/r)v' (> 0).

14

A = re

» A¢pp, >0, <0and =0if A <1, >1and =1, respectively.

T. Harada (Rikkyo U) Periapsis shift JGRG31 5/10

Expression in terms of the gravitational mass

e Natural orthonormal basis: €5 oc Ot, €; o< Or, €5 x 00, €5 x O¢

@ General case
» A=A, 0+ A1 in terms of m and Gaé’ where

6m
Ao = 1——,
T
2m\ Ggo + Gii + 2Gs5 1
A = 1-— 00 11 22 + “(Gan — 3G+7)12.
ml < r ) 2,’4—?+Gij 2( 00 11)

@ This with Gdﬂ* = 0 reproduces the Schwarzschild formula.

6M 1— 3r2w§)

A=1-— = ,
r 1—|—3r2w§)

@ A, stands for the discrepancy from the Schwarzschild value.

T. Harada (Rikkyo U) Periapsis shift JGRG31 6/10



Expression in terms of the orbital angular velocity

@ We cannot directly access m from r and wgy because
1

rPw? — 5G1ir® (1 + r?w3)
14 3r2w} ’

m =

whereas We is more accessible from the relation
dt do

wp = — — = (1 + 2) Q.
¢ = grag - LT
@ General case
» A = AwO +Aw1, where
2,,2
A _ 1—3r wy,
w0 —_— 5 .27
1+ 3r Wy
1 |1 1—|—7r2w3)
Aor = Gz g | G0t Gt s G

+r2w2 (Gop + Gaa) | -

» A1 stands for the discrepancy from the Schwarzschild value.

T. Harada (Rikkyo U) Periapsis shift JGRG31 7/10

Post-Newtonian regime near a massive compact object

° ¢/€,%/€,II/e€ = O(ax) with a < 1, where

a7 5

Gpo =: 8me, Gi3 =: 873, Gss = Gzz =: 8wll, m =: 5 e

@ Assuming the PN regime with a << 1 simultaneously,

6T™mMm € )
Ag, = 1 — — | + higher order terms

where we have defined the critical density

2m _ 3m?

ec :: —e — .
r 27rrd

» Agp, >0, < 0and =0if € <, € > and € = €, respectively.
> If Agp > 6m/r ~ 67‘(‘7"2(.0(275, then € < 0 must hold.

T. Harada (Rikkyo U) Periapsis shift JGRG31 8/10



Implications to the Galactic Centre

@ Let us apply (extrapolate) the formula to the elliptical orbit of S2.
» Choose r to a(1 — e?) ~ 210au. cf. A¢pwe ~ 67M/[a(1l — e?)]
> A¢p = fA@pwr can be recast to € ~ (1 — f)e..

@ The observed value f = 1.10 £ 0.19 implies

2 —4
m T
e = (—4.5 £ 8.5) x 107°Mg /au® ( ) < >
4.3 x 108 Mg 210au

» As stringent as Takamori et al. (2020)'s upper bound

» Consistent with vacuum but ...

» The best-fit value f = 1.10 is in the range of the WEC violation.
» Caveat: large eccentricity and spin of the central object

T. Harada (Rikkyo U) Periapsis shift JGRG31 9/10
Summary

@ General formulae for the periapsis shift of a quasi-circular orbit

» Reproduce the Schwarzschild formula in R,,,, = 0 and the
extended-mass effect in Newtonian gravity

» The deviation from the Schwarzschild formula comes from a particular
combination of the Ricci tensor components.

@ PN regime near a massive compact object

» Critical energy density €. beyond which the shift is retrograde

» Prograde shift greater than the Schwarzschild value implies the
breakdown of the WEC in GR.

» Constraint on the energy density around the Galatic Centre

T. Harada (Rikkyo U) Periapsis shift JGRG31 10/10
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Outline

© Introduction
© The Vaidya-de Sitter metric and its subcases

© Building the models
@ Sending mass to de Sitter
@ Sending mass to a (would-be) already-formed black hole

@ Discussion
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Introduction

@ In XXlst Century we have learnt there is a positive
cosmological constant A > 0

@ A positive A imposes restrictions on the area of marginally
(outer) future-trapped surfaces if these are stable and the
dominant energy Condition hO|C|S (Hayward-Shiromizu-Nakao 1994)

@ The area A for (stable) MTS is limited by

47
A< N (1)

o M(O)TS are defined by a null mean curvature vector H. This
H defines the “outer” direction.

@ MTSs are said to be stable if, when perturbed in some
non-timelike outer directions, they become untrapped

@ Thus, the stability assumption basically says that the MTS
enclose a black hole (BH) region.

Introduction (continued)

@ This is certainly puzzling... What happens if we keep sending
mass into the BH?

@ In principle a BH will simply become bigger by adding mass, so
what can prevent such physical process?

@ To understand this problem, | consider some simple models of
spherical BHs that keep increasing their masses until stable
MTS reach the area-limit value and beyond.

@ The global structure of the resulting spacetimes is shown in
convenient conformal diagrams.




The Vaidya-de Sitter metric

ds® — (1 _2ml) %ﬁ) dv? + 2dvdr + Q% (2)
T

d? is the standard metric of the unit round sphere
r is the areal coordinate (area 47r?)
v € (—00,00), 1 € (0,00) (or r € (—00,0)).

2 dm
r2 dv
k,dx" = —dv kt0, = —g
H ’ H or’
@ massless particles propagate along null hypersurfaces v =
const. towards decreasing r (smaller area).

@ DEC is satisfied if

T = kuky

dm
— >0
dv —

@ | will also assume m > 0 everywhere.

Case with m = 0: (partial) de Sitter

S (r=o0)




Cases with m =const. Kottler (1): 9m* < 1/A

r = 0 singularity

F = (r =o00)

Cases with m =const. Kottler (1'): 9m? < 1/A

r = 0 singularity f+ (7’ = OO)

identify?
identify?

r = 0 singularity Z~ (r=o00)




Cases with m =const. Kottler (2): 9m* > 1/A

(r) =t = 0 singularity

>

:(r) =t =00

The idea

m(v <0) =0, m(v > v1) = p

and interpolate with non-decreaasing m(v) in v € (0,v7).

7 = 0 singularity 1 (r=o00)

r = 0 singularity Z~ (r=0o0)

(r) =t = 0 singularity

D

FT i (r)=t=00




r = 0 singularity B r=0

r = 0 singularity

Kottler

Kottler

»
Sy

red

7

Observe that the (timelike) MTT and the (spacelike) AH merge at
r = 1/\/K the round MTS of maximal area.
MTT and AH become null there.
No 7+ 1



Vaidya-dS conformal diagram (2): 9u2 > 1/A

r = 0 singularity

7= s
mgu]arjty

"= 1VE
Kottler
red
red = =
. B Kottler I
N ¢ N
2 . © N\ 2
A AN & 7 .
7 %

Oppenheimer-Snyder-dS conformal diagram

singularity B +

Kottler

X = X0




Oppenheimer-Snyder-Vaidya-dS conformal
diagram: 9p* > 1/A

singularity

"=1/vx

Kottler

I
X
_//

" Kottler

Discussion

@ The limit (1) is not violated in any of the models, despite
having huge total mass of the spacetime.

@ MTSs simply approach one with the maximum area that
ceases to be stable.

@ Thus, the dynamical horizon foliated by stable marginally
trapped spheres then simply ends its existence.

@ The cosmological horizon totally vanishes.

@ The global nature of event horizons is partly behind its
dematerialization in these ultra-massive spacetimes.

@ The main feature is the vanishing of future null infinity # .
This absence leads to ‘frustrated event horizons'.

@ The conclusions are robust in spherical symmetry, as follows
from a simple analysis of initial data placed at 7~

@ | conjecture that the conclusion still holds without spherical
symmetry.




Discussion: problematic questions arise

@ An important puzzling question arises: is there any Hawking
radiation?

@ First, there is no Event Horizon.

@ But even from the dynamical horizon AH, where will any such
radiation go? There is no infinity that allows the system to
radiate (lose) energy away!

@ How quantum gravity might resolve this puzzle is uncertain.

@ The results have implications on BHs mergers.

@ The time reversals of ultra-massive spacetimes are worth
considering (just look at the diagrams upside down).

@ They describe a universal big-bang singularity in the past and
expanding Universes such that mass-energy is radiated away
towards ¢ T leaving behind either (i) a portion of de Sitter
spacetime or (ii) an expanding FLRW universe.

@ This may lead to several interesting speculations.

Discussion: how much mass is needed?

@ The mass needed to produce ultra-massive spacetimes depends
on the value of the cosmological constant A

@ From the observed accelerated expansion of the visible

Universe
A~1.1x10""2m2,

@ Then, the limit (1) requires a gravitational radius 2m
2m Z 6.4 x 10*°m
@ This translates into a total mass of about
2.2 x 102 M ~ 4.32 x 10°?Kg.
@ Estimated total mass of the observable universe now is
8.8 x 10°% — 1.0 x 10°*Kg

@ There is enough mass in the already observed universe to
produce such ultra-massive objects.




HWT<NTHYMLrESTITWELE

Thank you very much for your attention
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Surface stress tensor and junction
conditions on a rotating null horizon

Paolo Gondolo
University of Utah / Tokyo Tech / IPMU
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® Junction conditions at the common 3-dimensional boundary
of two parts of spacetime are the gravitational analog of the
electromagnetic boundary conditions at the interface between
two media (for example, AE, = o/¢y,, AE) = 0).

® Junction conditions in General Relativity have a long history.
They are well understood when the boundary is everywhere
spacelike or everywhere timelike, but obscure points remain
when the boundary is null or is allowed to change signature.

® In a study of rotating exotic compact objects, we needed
junction conditions on a rotating axisymmetric null horizon.
The prescriptions we could find in the literature did not
produce sensible results, so we worked out the junction
conditions on our own.
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Israel junction conditions

Applicable to spacelike or timelike boundary hypersurfaces

Specify the embeddings xﬁ(éi) of the common

M + boundary hypersurface into each side, where x! are
spacetime coordinates and &' are hypersurface
coordinates. Then el.“i = ox|// 0" represent the

aM, =2 same basis of vectors tangent to the boundary on
M + - either side. Let n* be the unit normal and ¢ the
- geodesic distance along the normal geodesic.
First junction condition: el et =e e =hy
(continuity of the induced metric)
Second junction condition: BT = 5(¢) SV el.”i ej”ir

(actually a recipe to compute
the surface stress tensor)

o + +
extrinsic curvature K;; = —n e/ Vbe].”—

Kyl = Kj—Kj  K*=Kjh

Barrabés-Israel junction conditions

For null boundary hypersurfaces
Null hypersurfaces do not have a unit normal vector.

Barrabes & Israel: replace the unit normal in Israel’s conditions with a null
vector N* along each side of the null surface satisfying

N*-N*=0, Nt-ef=N"-¢

i

The first junction condition remains the same as Israel’s.

Define an “oblique exterior curvature” % ; along the null surface as
+ _ +
K =—Nef Vye]f‘
Then the surface stress tensor T* is proportional to
S = [27"n?) — yntn¥ — ygh — (n-n) (y** — yg"*)1/(16m)

where y* satisfies 2}/Wel.”ef = [% ]



A general stationary axisymmetric metric can be written as

ds? = — e2di? + e (dp — w di)” + eXdr? + e d6?

Combine the Killing vectors K ;) = 0,, K ;) = 0, into ¥ = K, + 0K,
which is null at the horizon and tangent to it.

Introduce the frame {Z, N, 0, d¢}, where 0, 6¢ are spacelike and
tangent to the horizon,and N is null and transversal to the horizon,

N-N=0, N-9,=0, N-9;=0, ¢-N=-1

The first junction condition is the same as Israel’s.

The stress tensor density concentrated on the horizon at r = Ry is

(2>Tij (—g)2 d*x = osﬂ'j 5(r — Ry) dr dA dt

invariant volume correct integration measure

where dA is the area element of the horizon, and
872G S', = — wy [ F] 8ﬂG§t¢=[f] 8ﬂG§99=[K]
872G §* = — wy (K] — w} [ 7] 87G 87 = [x] + oy [7]

Here wy; is the angular velocity of the horizon, and [x], [ 7] are the
discontinuities at the horizon of the surface gravity k = N7, (V")

and of a new invariant quantity ¥ = — Nl/y( V”K(”¢)) proportional to

the angular momentum density.



® We have checked that the conservation equations for the
Komar mass and angular momentum fluxes lead to the same
surface stress tensor ",

We have found a modification of the Israel junction conditions
that leads to the correct null horizon limit, while the unmodified
Israel junction conditions diverge.

We have shown that the Barrabes-Israel prescription for
junction conditions at null hypersurfaces leads to an incorrect
surface stress tensor.

We have computed the Weyl tensor and found that it has no
O(r — Ry) term at the horizon: there is no impulsive
gravitational wave at a stationary axisymmetric rotating null
horizon.

® We have obtained the stress energy tensor on a rotating

stationary axisymmetric null horizon by direct calculation, and
expressed in invariant terms, i.e., the discontinuities of the
surface gravity and a new angular momentum invariant of the
geometry.

A key step is recognizing that an integration measure must
accompany the Dirac d-function, and that the correct integration
measure follows from the stress-energy tensor density.

Our result is a major improvement on previous prescriptions for
the surface stress tensor on a null surface, which either diverge
or do not give the physically correct surface stress.

Our result applies to the stationary axisymmetric case, and a
generalization is in progress.



