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I.  Introduction

[Sofue et al., Annu. Rev. Astron. 
Astrophys. 24, 459 (1986)]

[Clarke et al., Astrophys. J.  547, L111 (2001)]

Galactic magnetic fields 

Magnetic fields in clusters of galaxies

ø öG

0:1à 10öG 10kpcà 1Mpc

Recent reviews (examples)

[Kandus et al., Phys. Rep. 505, 1 (2011)] [Yamazaki et al., Phys. Rep. 517, 141 (2012)]

[Durrer and Neronov, Astron. Astrophys. Rev. 21, 62 (2013)]

[Maleknejad et al., Phys. Rep.  (2013)]

*

Void region

[Neronov and Vovk, Science 328, 73 (2010) 
[arXiv:1006.3504 [astro-ph.HE]]]
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Origin of cosmic magnetic fields

1 Astrophysical process: Plasma instability

(a) Biermann battery mechanism

(b) Weibel instability

3

[Biermann and Schlüter, Phys. Rev. 82, 863(1951)]

[Hanayama et al., Astrophys. J. 633, 941 (2005)]

[Weibel, Phys. Rev. Lett. 2, 83 (1959)]

[Fujita and Kato, Mon. Not. Roy. Astron. Soc. 364, 247 (2005)]

Origin of cosmic magnetic fields (2)

(First-order) Cosmological Phase transitions

Primordial density perturbations before 
the epoch of recombination

(i) Electroweak phase transition (EWPT)

2 Cosmolosical processes:

(ii) Quark-hadron phase transition (QCDPT)

4

[Baym, Bödeker and McLerran, Phys. Rev. D 53, 662 (1996)]

[Quashnock, Loeb and Spergel, Astrophys. J. 344, L49 (1989)]

[Ichiki et al., Science 311, 827 (2006)]

[Kobayashi, et al, Phys. Rev. D 75, 103501 (2007)]



Coherence scale
Strength

It is difficult that these processes generate the magnetic 
fields on megaparsec scales with sufficient field strength 
to account for the observed magnetic fields in galaxies 
and clusters of galaxies without requiring any dynamo 
amplification. 

Origin of cosmic magnetic fields (3)

5

The most natural origin of large-scale magnetic fields:

Electromagnetic quantum fluctuation 
generated at the inflationary stage

Friedmann-Lema tre-Robertson-Walker 
(FLRW) metric is conformally flat.

The Maxwell theory is conformally invariat.

The conformal invariance of the 
electromagnetic fields has to be 
broken at the inflationary stage.

Obstacle
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Breaking mechanisms (1)

[Ratra, Astrophys. J. 391, L1 (1992)]
1.  Coupling of a scalar field to 
electromagnetic fields 

[Turner and Widrow, Phys. Rev. D 37, 2743 (1988)]2.  Non-minimal coupling of 
electromagnetic fields to gravity 

: Ricci scalar

(R=m2)Fö÷F
ö÷

Cf. [KB and Yokoyama, Phys. Rev. D 69, 043507 (2004)]

L = à 4
1f(Ð)Fö÷F

ö÷

A

AAF Electromagnetic field-strength tensor

:          gauge fieldU(1)

G: Dilaton field,Ð

[Drummond and Hathrell, Phys. Rev. D 22, 343 (1980)]: Mass scale

R
m

, : Dimensionless constantõ

Such a term is known to arise in curved spacetime due 
to one-loop vacuum-polarization effects.

Breaking mechanisms (2)

[Dolgov, Phys. Rev. D 48, 2499 (1993)]

3.  The conformal anomaly in the trace of the energy-
momentum tensor induced by quantum corrections to 
Maxwell electrodynamics

Cf. Baryon isocurvature constraints on the primordial 
hypermagnetic fields 

[K. Kamada, F. Uchida and J. Yokoyama, JCAP 04 (2021) 034]



II. Model
Action:

Potential of an inflaton

invariant

Breaking of the conformal 
invariance of the 
electromagnetic fields.

: Model parameter

: Coupling between     and

: Maxwell theory

(3) Non-minimal 
coupling between  
electromagnetic 
fields and gravity 

: Scalar curvature

(1)

(2)

Spatially flat FLRW metric : Scale factor

: Conformal time

Field equations

Quasi de Sitter Inflation

: Conformal Hubble parameter=

: Slow-roll parameter

: Initial time of inflation
: e-folding number

( )



III. Energy density and spectrum of electric and magnetic fields  

Energy-momentum tensor of electromagnetic fields

Quantization of U(1) gauge fields

Comoving wave number

: Creation operator
Polarization vector

: Annihilation operator

Mode expansion

Energy density

Power spectrum



Equations of motion of U(1) gauge fields

Sub-horizon mode:  

Initial condition: 
Bunch-Davies vacuum

( )

: Bessel function



Super-horizon mode:  

Energy density of electromagnetic fields during inflation (           )

: Energy scale of inflation

Backreaction in the inflationary 
stage is negligible.

ñ = ñc



÷(q)

q

Present magnetic strength for the case of 
instantaneous reheating

: Final time of inflation

Electric fields are screened because the value of the electric 
conductivity becomes very large instantaneously.



IV. Present magnetic strength for the case of the 
reheating phase with a non-zero e-folding number  

[Dai, Kamionkowski and Wang, Phys. Rev. Lett 133, 041302 (2014)]

[Cook, Dimastrogiovanni, Easson and Krauss, JCAP 04(2015), 047]
e-folds number at the 
reheating stage  

Phys.Rev.D 100, 023524 (2019)]

: Reheating temperature

: Present value of 

: Effective equation of state

: Present temperature of 
the cosmic microwave 
background (CMB) 
radiation

)

Equations of motion of U(1) gauge fields : Mode function of U(1) 
gauge fields at the 
reheating stage

Connection condition at the end of inflation



Bogoliubov coefficients 
at the reheating stage

The vacuum of the electromagnetic 
fields change  from the Bunch-Davies 
vacuum owing to  the particle creation 
at the reheating stage.

Solution



Spectrum of electric and magnetic fields at the reheating stage

/

/

Reheating stage: Electric conductivity

û < H
Electric fields induce 

magnetic fields.

Spectrum of magnetic fields at the present time

Magnetic fields at the present time



B0(Gauss)

Present magnetic strength

Magnetic fields with the strength 
consistent with the observations 
can be generated. 

V.  Schwinger backreaction   
[Kobayashi and Sloth, Phys. Rev. D 100, 023524 (2019)]



: Conductivity

:

:Condition that 
Schwinger backreaction 
is negligible

Condition that 
Schwinger backreaction 
is negligible

The maximum of the 
left-hand side of the 
above relation



= 1

Schwinger backreaction 
is negligible.

V. Conclusions
We have investigated the generation of magnetic fields from 
inflation for the case that the electromagnetic fields couple 
with the Ricci scalar and the Gauss-Bonnet invariant.

We have analyzed the evolution of the quantum fluctuations 
of the electromagnetic fields during inflation due to the 
breaking of the conformal invariance of the electromagnetic 
fields. 

It has been shown that for the case of the reheating phase 
with a non-zero e-folding number, the present strength of 
magnetic fields can be consistent with the observations. 
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Introduction (1)

Inflation models are the most vigorously studied model of 
the early universe.

ex. Starobinsky model, hill-top model, etc...

A singularity occurs at early stage of inflation due to a 
component of Ricci tensor diverges.

Does the singularity due to the divergence of a component 
of Ricci tensor cause problems?

1/17



Introduction (2)

From what point of view do you find out "whether the 
initial singularity causes problems"?

Effects of quantum gravity become important on the early 
stage of inflation.

The singularity is expected to be resolved by the effects of 
quantum gravity if it causes a problem.

2/17

Supposing string theory to investigate the initial 
singularity of the inflationary universe.

Short summary

What is a breakdown of theory due to an initial singularity?

A divergence of expectation values of mass means a 
breakdown of theory.

Our results : Suggesting a method to distinguish inflation 
models whether they break down or not due to the initial 
singularity.

Is it OK?

Starobinsky model

Cosine type hill-top model

3/17

Calculating expectation values of mass of a string 
passing through the initial singularity.



Contents

1, Introduction

2, Initial singularity in FLRW space-time

3, String excitation by initial singularity in FLRW

4, String excitation in inflation models

5, Summery

4/17

Initial singularity in FLRW space-time

Considering flat FLRW space-time in light cone coordinates.

Along a null geodesic, a singularity cause at the past 
by divergence of component of Ricci tensor.

What are expectation values of mass 
when strings pass through the singularity?

5/17



Contracting universe

Constructing a contracting universe using a continuity of 
the metric.

We can compare the mass before the singularity and after 
it through Bogoliubov transformation.

6/17

String theory

String theory is strong candidate of quantum gravity.

Thinking of the inflationary universe as a low-energy 
effective theory of string theory.

Excitations of string correspond to expectation values of 
mass of particle.

Calculating effects of the initial singularity to excitation of 
string.

7/17



String excitation by singularity (1)

Considering a quantization of string and EOM in simplified 
previous FLRW space-time.

A field determine the motion of strings follow the 
following equation.

This is Schrödinger-like equation has a potential 
determined by .

8/17

Considering Bogoliubov transformation from in-state to 
out-state.

String excitation by singularity (2)

in out

9/17

(Contracting universe) (Our universe)

: Bogoliubov coefficients



String excitation by singularity (3)

Calculating an expectation value of mass of out-state 
looked from in-state by using Bogoliubov coefficients. 

Bogoliubov coefficients is the following as,

so we can calculate the mass when we obtain components 
of Ricci tensor .

10/17

String excitation by singularity (4)

In general, takes the following form in inflation 
models. ( varies from model to model)

The expectation value of mass converges for and 
diverges for .

We can distinguish models whether break down or not by 
reading the value of .

converge

diverge

11/17



Inflation model and Initial singularity

Calculating and reading for inflation models.

The initial singularity in some inflation models causes the 
problem.

Is it OK? Value of 

Starobinsky model

Cosine type hill-top model

12/17

Preparing for the calculation

is calculated by potential

EOMs of inflaton are

13/17



Starobinsky model

The potential of Starobinsky model is

We can calculate easily as

This corresponds to , so the mass diverges.

The initial singularity in Starobinsky model should be 
removed by effects of quantum gravity.

14/17

Cosine type hill-top model

The potential of Cosine type hill-top (axion) model is

Then, we obtain

If we ignore the slow-roll condition,

converge

diverge

15/17



Summery

The initial singularity causes at early stage of inflation. 
Do inflation models break down due to the singularity as 

EFT of string theory?

The calculation method can be easily used for other models 
as well.

The strength of the initial singularity is important for 
quantum gravity.

16/17

Is it OK? Value of

Starobinsky model

Cosine type hill-top model

Outlook

Calculating the time-dependence of excitation without the 
contracting universe.

Taking into account a back reaction of the excitation.

17/17
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Eisenhart-Duval lift for 
minisuperspace quantum cosmology

(Yamaguchi University)

Taiga Hasegawa

Nahomi Kan

Takuma Aoyama , Kiyoshi Shiraishi

Phys. Rev. D104 (2021) 086001

(National Institute of Technology, Gifu College) 

Collaborators:

(Yamaguchi University)

Wheeler-DeWitt (WDW) equation

There is a problem of factor ordering.

Dirac-square-root formulation

probability density

Arbitrariness arises due to the presence of                 

in addition to      

P. D. , S. W. Hawking 
and O. Obregon (1993)

when replacing it with the Dirac equation.



We apply the method in Eisenhart-Duval lift to the simple models 
and extend the minisuperspace .

It is possible to describe a system by geometric treatment 
even in the presence of the potential term.

We introduce Dirac type WDW equation in term of the      
covariance of the extended minisuperspace.

We derive a positive-definite probability density.

We obtain the fundamental solution to the Dirac type WDW 
equation in the extended minisuperspace of specific models.

There is no arbitrariness comes from       .

There is no arbitrariness comes from                  .

FLRW metric

2. WDW equation

Einstein-Hilbert action + scalar field action

A scalar field depend only time :



Canonical conjugate momenta

Hamiltonian

2. WDW equation

Lagrangian

Quantize      and      using the canonical quantization.

WDW equation

Replace the momenta with differential operators

Hamiltonian constraint condition :

2. WDW equation

Arbitrariness arises due to the presence of                 

in addition to      when replacing it with the Dirac equation.

indicates the arbitrariness in factor ordering of        .



3. Eisenhart-Duval lift for minisuperspace L. P. Eisenhart (1928)

C. Duval et al. (1985)

: The component of the extended minisuperspace

The metric of the 
extended minisuperspace

us to treat it as a free system
in a curved space .

Extension with a new degree of freedom       .

Hamiltonian in the extended minisuperspace

Conformal 
transformation

3. Eisenhart-Duval lift for minisuperspace

Replace the Hamiltonian with differential operators in term of 
covariance

This Hamiltonian has conformal covariance. 



WDW equation in the extended minisuperspace

the scalar curvature of the 
extended minisuperspace

3. Eisenhart-Duval lift for minisuperspace

We consider two models with

Arbitrariness does 
not exit.

Model 1 :

Model 2 :

C. Kiefer (1988)

A. A. Andrianov et al.(2018)

Constraint condition :

C. Kiefer (1988)

3. Eisenhart-Duval lift for minisuperspace

The fundamental solution :

Model 1 :

General solution :



3. Eisenhart-Duval lift for minisuperspace

A. A. Andrianov et al.(2018)

Constraint condition :

Model 2 : ,

General solution :

The fundamental solution :

4. Dirac type WDW equation 

Dirac type equation in the extended minisuperspace

gamma matrices

covariant derivative

dreibein

Since this equation is defined in term of covariance in extended

minisuperspace, there is no arbitrariness comes from                  .

spin connection



4. Dirac type WDW equation 

By setting the wave function to ,

the equation is in matrix form:

Model 1 :

4. Dirac type WDW equation Model 1 :



By setting the wave function to ,

the equation is in matrix form.

4. Dirac type WDW equation Model 2 : ,

4. Dirac type WDW equation Model 2 : ,



the probability density

positive-definite

the conservation law

4. Dirac type WDW equation 

The modified Bessel function of second kind in the Klein-Gordon type

The modified Bessel of second kind in the function in the Dirac type

These wave functions have a common wave packet solution.

4. Dirac type WDW equation 

Comparing asymptotic behaviors of scale factor



5. Summary and Prospects  

We have applied the method in Eisenhart-Duval lift to a simple    
models and extend the minisuperspace.

Applying the technique to the general cosmological models.

We have formulated Dirac type WDW equation in 
an extended minisuperspace.

The probability density is positive definite.

Summary

Prospects

Third quantization and global property of extended 
minisuperspace.

There is no arbitrariness comes from      and                 .

For the case of simple models, Dirac type WDW equation can be 
solved exactly.
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HUBBLE TENSION 
WITH EXTRA RADIATION 

AND NEUTRINO DEGENERACY
YO TODA

HOKKAIDO UNIVERSITY

Osamu Seto, Yo Toda   Phys.Rev.D 104 (2021) 6, 063019

in explaining the evolution of our Universe.
Distant observation
Based on 

Local observation

Hubble Tension



Focus on the extra radiation and neutrino degeneracy

TODAY I WILL

Treat the extra radiation parameter as independent of degeneracy 
because we consider the sterile neutrinos or axions under the degeneracy

Conclude that 
the combination of extra radiation and neutrino degeneracy  
is a promising solution

WHAT IS HUBBLE TENSION?

Distant observations suggest 
67 km/s/Mpc

Local observations suggest 
74 km/s/Mpc

Di Valentino, arXiv:2011.00246 [astro-ph.CO] 



The relativistic degrees of freedom 

EXTRA RADIATION

photon

neutrino annihilation

How contribute to CMB?

Directly Measured

Angular Size : 

NASA / WMAP Science Team 

: comoving angular diameter distance

: comoving sound horizon at the recombination

ANGULAR SIZE OF THE SOUND HORIZON



: energy density

ANGULAR SIZE OF THE SOUND HORIZON

Angular Size : 

Directly Measured

Increase in the early universe

Ex) extra radiation

TO INCREASE 

Analysis results

EXTRA RADIATION RELIEVES THE HUBBLE TENSION

Planck + Pantheon + BAO + R19

Higher 
increase 



Larger 
increase 

VS. HELIUM MASS FRACTION MEASUREMENT  

Planck + Pantheon + BAO + R19

Extra radiation increases :
the expansion rate of the universe, 
the decoupling temperature of the weak interaction,  
the neutron-to-proton ratio

Neutrino degeneracy

The degeneracy parameter 

: chemical potential for neutrino 

: temperature of neutrinos 

NEUTRINO DEGENERACY

Number Densities of 
neutrinos and antineutrinos

Distribution functions



More neutrinos than antineutrinos 

Positive electron neutrino degeneracy

The process is more suppressed than 

Neutron-to-proton ratio (n/p) decrease

Helium mass fraction decrease

EXTRA RADIATION
AND 

ELECTRON NEUTRINO DEGENERACY 

Next, I will show the results of analysis of



Larger 
increase 

VS. WITH THE DEGENERACY 

Larger 
decrease 

BEST-FIT

measurement

measurement



The combination of extra radiation and neutrino degeneracy  is 

a promising solution of the Hubble tension.

Non-zero degeneracy and extra radiation is the best-fit 

at the combination of CMB, BBN, BAO and the local measurements.

The model of particle physics

which takes large neutrino degeneracy and extra radiation 

is worth constructing. (sterile neutrino +

TAKE-HOME MESSAGE

Thank you for your kind attention!

Osamu Seto, Yo Toda   Phys.Rev.D 104 (2021) 6, 063019 
y-toda@particle.sci.hokudai.ac.jp
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Model-Independent Techniques to 
Reconstructing Late-Time Cosmological Data

Jackson Levi Said, Jurgen Mifsud, Reginald Christian Bernardo

Based on: arXiv:2106.08688, arXiv:2103.05021, 
arXiv:2009.14582, arXiv:2105.14332

Outline
Using Gaussian Processes (GP) for cosmology

Estimating value using GP

Improving GP with genetic algorithms

Utilizing artificial neural networks (ANNs) to approximate 

Levi Said (ISSA), Dec 2021 - 2 of 21



What are Gaussian Processes?
Definition: A GP is a stochastic (random) process where any finite subset is a 
multivariant Gaussian distribution with mean and covariance

Setting the each to zero, the covariance function can be used to learn 
the behavior that produced the data points

Truth Best fit Gaussian
Process

Levi Said (ISSA), Dec 2021 - 3 of 21

Gaussian Processes Regression
The covariance function contains non-physical hyperparameters 
which define the distribution 

Iterating over these values using Bayesian inference (or others) can 
produce better hyperparameters

The result is a (physics) model-independent reconstruction of the 
behavior of some parameter

This is superior to regular fitting because it is nonparametric and so 
assumes no physical model whatsoever

Levi Said (ISSA), Dec 2021 - 4 of 21



The Covariance Functions
Squared Exponential (Radial basis function - RBF)

Rational Quadratic (RQ)

Cauchy (CHY) occurs for 

Matérn (M)

Levi Said (ISSA), Dec 2021 - 5 of 21

Hubble Data ( )
Cosmic Chronometers (CC): Spectroscopic dating that depends on stellar evolution and 
differential aging but independent of cosmological models

SnIa: 5 compressed redshift gaussian points based on 1048 SnIa at from 
Pantheon data + 15 SnIa at from CANDELS and CLASH programs obtained by 
the Hubble Space Telescope

Baryonic Acoustic Oscillations (BAO): 10 model dependent points from SDSS for 

Priors

Planck Collaboration (18): CDM Model dependent 

SH0ES Survey [ ]: Riess et al. (2019) mainly using Cepheid variables 

Levi Said (ISSA), Dec 2021 - 6 of 21
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Hubble Data ( )
CDM using 

Planck 
parameters

The Tension

Planck Mission 
(predictions from 
the CMB)

The SH0ES Project (mainly Cepheid 
variables)

(visible and near-infrared survey)

H0LICOW (strong lensing -
cosmography)

tension
Wong et al. (2019)

Levi Said (ISSA), Dec 2021 - 8 of 21



Levi Said (ISSA), Dec 2021 - 9 of 21

Square Exponential GP
GaPP code from 
Seikel et al. (2012)

Levi Said (ISSA), Dec 2021 - 10 of 21

Cauchy GP



Levi Said (ISSA), Dec 2021 - 11 of 21

Testing the Fit

Data set(s)

CC

CC+ 6

CC+SNIa

CC+SNIa+

CC+BAO

CC+BAO+

CC+BAO+SNIa

CC+BAO+SNIa
+

Distance (in units) between the arguments:

Square Exponential kernel Cauchy kernel

Genetic Algorithms (GAs)
Fitness function: Score to characterize the performance 

of each generation (BIC inspire)

Selection: Population that will survive
Crossover: Inheritance of kernels
Mutation: Changes in addition to crossover

PyGAD code from 
Ahmed Fawzy Gad 
et al. (2021)

CC dataset

Levi Said (ISSA), Dec 2021 - 12 of 21



Trials for GAs 
Trial Population 

size
Selection 
rate

Mutation 
rate

No. of 
generations

Best fitness

1

2

3

4

Kernel fitness Penalty

Hybrid RBF-RQ

Hybrid RBF-RQ-
M52

Mostly RQ

Hybrid RBF-M52

Levi Said (ISSA), Dec 2021 - 13 of 21

Artificial Neural Networks (ANNs)
Hidden LayersInput Layer Output Layer

Redshift ( )

Cosmological 
parameters 
(ex. )

Input 1

Output 1

Output 2

Output 3

RefANN code from 
Wang et al. (2020)

Levi Said (ISSA), Dec 2021 - 14 of 21



Training Data for the ANN

This observes the gamma distribution: Mean:
Upper error: 
Lower error: 

CC+BAO dataset

Levi Said (ISSA), Dec 2021 - 15 of 21

Designing the ANN
Risk Optimizes the number of hidden layers and neurons in an ANN

Loss Balances the number of iterations a system needs
1. L1 (Least absolute deviation)

2. Smoothed L1 (SL1)
3. Mean Square Error (MSE)

Levi Said (ISSA), Dec 2021 - 16 of 21



Building the ANN

Risk function for one layer (
)

Levi Said (ISSA), Dec 2021 - 17 of 21

Using the ANN

One layer is preferred

MSE:
L1:
SL1:

Levi Said (ISSA), Dec 2021 - 18 of 21



What about priors?

:
:

Levi Said (ISSA), Dec 2021 - 19 of 21

Conclusion and Prospects
GPs offers an interesting approach to tackling tension in 

GAs provide a model independent approach to resolving the kernel 
selection problem

Using ANNs, we can determine a completely nonparametric 
reconstruction of the Hubble diagram

Levi Said (ISSA), Dec 2021 - 20 of 21
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Would GW Implosion around BH
Generate Horizon Deformation

akin to Super-translation?
Hsu-Wen Chiang

based on works in collaboration with
Yu-Hsein Kung, Che-Yu Chen, Feng-Li Lin and Pisin Chen
Leung Center for Cosmology and Particle Astrophysics (LeCosPA)

National Taiwan University (NTU)
1JGRG30, Waseda 2021

Modification to the Hawking temperature of a dynamical black hole by a time-dependent
supertranslation 20 (2020) 089 arXiv:2004.05045

scalar field quasinormal
-soft-hair-induced ergosphere via the

Blandford Znajek will be online this year (?)

How to Kick a Black Hole?

2

Numerical GR result

Frauendiener, plenary talk at AAPPS-DACG 2021.

GW self-interaction

Driving GW

High strain region
near singularity?

Nothing 
happens 
here?



Intuitive Derivation of Soft Hair

3

Doppler effect on Gravitational attraction.
Moving toward us Blueshift More attraction.

Moving away from us Redshift Less attraction.

Net result Permanent displacement: soft hair.

-wave bursts with memory: The Christodoulou S. Thorne.
Phys. Rev. D 45, 520 (1992)

Constant r Surface after 2 Particles 
toward and Staying at the Center

4



Most general large r coor. transform w/ asymptotic 
flat condition w/o rigid boost, rotation &translation 
is supertranslation (static anisotropic translation)

Supertranslation can be generated by matter flow.

Hawking, Perry, Strominger (HPS) extended it to 
near horizon region (no GW).

5

Lensing Pot.(Abelian)

H. Bondi, M. G. J. van der Burg & A. W. K. Metzner, Proc. Roy. Soc. Lond. A269, 21 (1962)
Superrotation Charge and Supertranslation Strominger
(1611.09175)

Bondi news aspect 

How to Kick a Black Hole?

6

Numerical GR result

Frauendiener, plenary talk at AAPPS-DACG 2021.

GW self-interaction

Driving GW

High strain region
near singularity?

Nothing 
happens 
here?



Gravitational Wave Implosion 
around Black Hole

7

Gravitational wave? Solution of linearized EFE
(polar/axial perturbation).

Soft hair? 2nd order DC effect!
.

is our target of interest.

Could it appear as HPS envisioned?
What should be the i.b.c. of GW?

Gravitational Wave Implosion 
around Black Hole

8

Graviton? Solution of the linearized GR
.

Many incarnations: Cross/plus modes, Bondi news, 
polar/axial perturbation, etc.
Soft hair? 2nd order DC effect!

.

is our target of interest.

What should be the i.b.c. of GW?

FloWave Research Facility at https://youtu.be/iWKFPTgkpXo



UV & Coarse-graining Limit

9

Implosion radius inverse of GW freq. .
Metric perturbation is small even inside horizon.
2nd order term bilinear in GW form Complicated 
except for special cases.
We choose squeezed triangle limit.
I.e., coarse-graining: .

Only free parameter is the
scaling relation between and .

(GW)

(GW)
(2nd order term)

Scaling Relation and the 
Emergence of HPS Soft Hair

10

Parametrizing as .
: Soft hair, i.e., focused beam .
: GW self-interaction between polar and axial 

mode dominates.
Breakdown of the perturbation series.

: Polarized GW only.
Inter-mode self-interaction diverges.

: Axial mode generates soft hair
but the polar mode breaks down.

: diverges inside



Conclusion and Future Work

GW implosion leads to either soft hair or strong 
gravity region outside BH, validating HPS.
Near-singularity behavior? Implosion core or 
supertranslation singularity perhaps.
Nonstationary setup such as shockwaves?
AC (time-domain)
2nd order effect?
Fine-grain
horizon
deformation?

11
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Uniqueness of static spacetime with 
conformal scalar in higher dimensions

Yoshimune Tomikawa
Faculty of Economics, Matsuyama University

JGRG30 12/6-10 2021

based on
K. Izumi, Y. Tomikawa, T. Shiromizu, PRD 104, 104025  (2021)
(arXiv: 2108.02588 [gr-qc])

Contents

1.  Introduction

2.  Setup

4.  Summary & Comment

3. Uniqueness of static spacetime with conformal scalar in n-dimensions



BBMB black hole solution Bocharova, Bronnikov, Melnikov (1970),
Bekenstein (1974, 1975)

metric :

event horizon : scalar field diverges at event horizon, but curvature does not

BBMB black hole has photon surface at 

scalar field :

: surface specified by

photon surface

BH
event horizon

(Bocharova-Bronnikov-Melnikov-Bekenstein)

n=4 static and spherically symmetric



Uniqueness of BBMB solution

n=4

The outside region of Sp for the static and asymptotically
flat spacetime in the Einstein-conformal scalar field system
is unique to the BBMB solution.

Tomikawa, Shiromizu, Izumi, PTEP (2017), CQG (2017),
Shinohara, Tomikawa, Izumi, Shiromizu (2021)

(dose not mean uniqueness of black hole!)

: surface specified by
corresponding to photon sphere

event horizon

unique to BBMB solution

For n>4, static and spherically symmetric solution exist, but not black hole

Einstein-conformal scalar system in higher dim.
Xanthopoulos, Dialynas (1992), Klimcik (1993),
Martinez, Nozawa (2021)

No singularity outside Sp photon sphere

Uniqueness outside Sp such as 4 dim.?



Einstein-conformal scalar system in n-dim.

Einstein gravity + conformal scalar field

action :

field equations :

: scalar field

: Ricci scalar

(            )

Einstein eq. is singular when this part vanishes 



Static and Asymptotically flat spacetime

event horizon :

asymptotic boundary conditions :

metric :

(n-dim.)

: mass

Field equations

Einstein equation

scalar field equation

(0,0)

(i, j)

static, n-dim.
: Ricci tensor on

: covariant derivative on

=0 when

: surface specified by



n>4

: surface specified by

n>4 

integration over , boundary conditions



0
Sp

0

Sp

Curvature invariant & Regularity at Sp

From regularity at Sp,

: covariant derivative w.r.t. 

: extrinsic curvature of

: induced metric of
n>4

,

Uniqueness theorem

The outside region of Sp for static and asymptotically flat
spacetime in the Einstein-conformal scalar field system is
spherically symmetric spacetime.

n>4 

: surface specified by



Proof (1/2)

glue
positive mass theorem

is totally umbilic in flat space

flat

is conformally flat

: surface specified by

: spatial infinity

Proof (2/2)

is totally umbilic in the flat space.

is spherically symmetric in the Euclid space.

The electrostatic potential problem tells us that            is spherically symmetric.

in flat space
: flat Laplacian

Spacetime outside Sp is unique!



We proved that the region outside Sp of static and 
asymptotically flat spacetime in the n-dim. Einstein-
conformal scalar field system is unique.

: surface specified by

However, the uniqueness inside of Sp in the 4/higher dim. 
spacetime has not been proven because the analyticity 
at Sp might not hold.

future work
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Dynamical p-brane on 
orbifolds

Kunihito Uzawa 
(Hirosaki University, Kwansei Gakuin University, 

Keio University)
with

Munero Nitta (Keio University)

[1] Introduction and our results

We construct a dynamical p-brane solution on orbifold 
(the complex line bundle over CPn space) as a solution.

There are interesting properties when branes are located at an orbifold. 
(M.R. Douglas and G.W. Moore, hep-th/9603167)
(M.R. Douglas, B.R. Greene and D.R. Morrison, Nucl. Phys.B 506 (1997) 84 [hep-th/9704151] )

- Orbifold singularities are resolved in the D-brane world volume theory.

- One can expect that the spacetime itself  becomes regular without any 
naked singularity once p-branes are placed at the orbifold singularities. 



This is important when one finds hints that the gravity theory giving a
p-brane on the orbifold is known and well-defined supergravity, thus
giving a handle on the strong coupling dynamics of string theory.

Black hole on the Eguchi-Hanson space
(H. Ishihara, M. Kimura, K. Matsuno and S. Tomizawa,Phys. Rev. D 74 (2006) 047501 [hep-th/0607035])
(Hideki Ishihara, Masashi Kimura, Shinya Tomizawa, Class.Quant.Grav.23 (2006) L89 [hep-th/0609165])
(Chul-Moon Yoo, Hideki Ishihara, Masashi Kimura, Ken Matsuno, Shinya Tomizawa, Class.Quant.Grav. 25
(2008) 095017 [0708.0708 [gr-qc])

Black holes on the complex line bundle over CPn space
(M. Nitta, K. Uzawa, Eur.Phys.J.C 81 (2021) 6, 513, [arXiv:2011.13316 [hep-th]])

(Static) Black p-brane on the orbifolds
(M. Nitta, K. Uzawa, JHEP 03 (2021) 018, [arXiv:2012.13285 [hep-th]])

Plan of my talk

Black holes on Eguchi-Hanson space in 5D Einstein-Maxwell
theory

Black p-brane

Extension to dynamical p-brane

Summary and discussions



[2] Black holes on Eguchi-Hanson space in 5D Einstein-Maxwell theory
(H. Ishihara, et al., Phys. Rev. D 74 (2006) 047501 [hep-th/0607035])

5D-metric

1-form gauge potential
Eguchi-Hanson space (4D)
Complex line bundle over CP1

(i) Extension to p-brane

(2) Extension to orbifold



[3] Black p-brane

Gravity and antisymmetric tensor fields of arbitrary rank in D-dim.

Action in the Einstein frame
(K. S. Stelle, [arXiv:hep-th/9701088 [hep-th]])

Einstein eq. :

gauge field eq. :

Bianchi identity :

Solution
(M. Nitta & K. Uzawa, JHEP 2103 (2021) 018, arXiv:2012.13285 [hep-th])
(G.W. Gibbons, G.T. Horowitz and P.K. Townsend, Class. Quant. Grav. 12 (1995) 297
[hep-th/9410073])

metric

p-form field strength



[3] Extension to dynamical p-brane on orbifolds

Metric of dynamical p-brane in D dimensions
(Pierre Binetruy, Misao Sasaki, Kunihito Uzawa, Phys.Rev.D 80 (2009) 026001 0712.3615 [hep-th])
(Kei-ichi Maeda, Nobuyoshi Ohta, Kunihito Uzawa, JHEP 06 (2009) 051, arXiv: 0903.5483 [hep-th])

(p+2)-form field strength

orbifold

It is straightforward to check that with such an ansatz the
Bianchi identity is trivially satisfied.

The field equation for the antisymmetric tensor becomes

(Kei-ichi Maeda, Nobuyoshi Ohta, Kunihito Uzawa, JHEP 06 (2009) 051,
arXiv: 0903.5483 [hep-th])



Einstein equations

The space Y is not Ricci flat, but the Einstein space such as CPn if 0,
and the function h can be more non-trivial.

(Pierre Binetruy, Misao Sasaki, Kunihito Uzawa, Phys.Rev.D 80 (2009) 026001 0712.3615 [hep-th])
(Kei-ichi Maeda, Nobuyoshi Ohta, Kunihito Uzawa, JHEP 06 (2009) 051, arXiv: 0903.5483 [hep-th])

If we set

the solution for h0 is given by

When the space Y is Ricci flat like orbifold, the function h0 is linear
in the coordinates because of =0.



Dynamical p-brane on the orbifold

cf) Black holes on Eguchi-Hanson space :
(H. Ishihara, M. Kimura and S. Tomizawa,
Class.Quant.Grav. 23 (2006) L89 [hep-th/0609165])

Eguchi-Hanson space complex line bundle over CP1 (2-sphere)

p-brane on orbifold

If we impose , the field equations become for

the solution for is given by

There is a naked singularity at h=0.

(1) : static p-brane solution.

(2) : asymptotically Kasner geometry



Dynamical solution on the CPn space

Metric

For the CP1 space

CPn space

Solution

For the CP2 space



Solution

[4] Discussion and remarks

(1) Extension to dynamical p-brane

Dynamical p-brane on the complex line bundle over CPn space.

We will be able to describe p-brane collision.

(2) Black hole

Black hole on orbifolds (complex line bundle over CPn space).

Time dependent black hole.



For Kei-ichi Maeda san, 

Wishing you a new journey of  success and happiness in the new page of  your life!

Kei-ichi Maeda, Kunihito Uzawa, Phys.Rev.D 68 (2003) 084017, arXiv: hep-th/0308137.

Kei-ichi Maeda, Nobuyoshi Ohta, Kunihito Uzawa Journal of  High Energy Physics, JHEP 06 (2009) 051, 
arXiv: 0903.5483 [hep-th]

Kei-ichi Maeda, Masato Minamitsuji, Nobuyoshi Ohta, Kunihito Uzawa, Phys.Rev.D 82 (2010) 046007,
arXiv: 1006.2306 [hep-th]

Kei-ichi Maeda, Kunihito Uzawa Physical Review D, Phys.Rev.D 85 (2012) 086004, 
arXiv: 1201.3213 [hep-th]

Kei-ichi Maeda, Kunihito Uzawa Physical Review D, Phys.Rev.D 94 (2016) 12, 126016, 
arXiv:1603.01948 [hep-th]
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Proposal of a gauge-invariant treatment 
of l=0,1-mode perturbations 

on Schwarzschild Background Spacetime

Kouji Nakamura (NAOJ)
References : 

K.N. PTP 110 (2003), 723;  K.N. PTP 113 (2005), 413. 
K.N. PRD 74 (2006), 101301R;  K.N. PTP 117 (2007), 17;

K.N. Bulg. J. Phys. 35 (2008), 489;  K.N. PRD 80 (2009), 124021; 
K.N. PTP 121 (2009), 1321;  K.N. Adv. in Astron. 2010 (2010), 576273. 
A.J. Christopherson, et al, CQG 28 (2011), 225024. 

K.N. CQG 28 (2011), 122001;  K.N. PTEP 2013 (2013), 043E02; 
K.N. IJMPD 21 (2012), 1242004; 
K.N. CQG 31 (2014), 135013;
K.N. Book Chapter “Theory and Applications of Physical Science Vol.3” Chapter I (2020);
K.N. CQG vol.38 (2021), 145010;  [ arXiv:2102.00830v3 [gr-qc] ];
K.N. LHEP 2021 (2021), 215; [arXiv:2102.10650 [gr-qc] ];
K.N. arXiv:2110.13508 [gr-qc]; Full paper Part I  : --- Formulation and odd-mode perturbations ---
K.N. arXiv:2110.13512 [gr-qc]; Full paper Part II : --- Even-mode perturbations ---
K.N. arXiv:2110.13519 [gr-qc]; Full paper Part III: --- Realization of exact solutions --- 1

@JGRG30 (online conference) 
[6th Dec. – 10th Dec. (2021).]

Poster # P4

The higher order perturbation theory in general relativity 
has very wide physical motivation.

– Cosmological perturbation theory
• Expansion law of universe : “Back-reaction?” 

( CDM ?, inhomogeneous cosmology ?, or modified gravity ?)
• Non-Gaussianity in CMB (beyond Planck)

– Gravitational-wave physics
• Black hole perturbations

– Radiation reaction effects due to the gravitational wave emission.
» GW from SgA* EMRI.  --> LISA target.

• Binary coalescence through the post-Minkowski expansion
– LIGO-Virgo detected GW from BH-BH binary coalescence !!!

– Perturbation of a star (Neutron star)
• Rotation – pulsation coupling (Kojima 1997)

2

I. Introduction

Gravitational physics is now toward a precise science.

There are many physical situations to which higher order 
perturbation theory should be applied.



3

However, general relativistic perturbation theory 
requires very delicate treatments of “gauges”.

It is worthwhile to formulate the 
higher-order gauge-invariant perturbation 
theory from general point of view.

• According to this motivation, from 2003, we have been formulating a 
general-relativistic higher-order perturbation theory in a gauge-invariant 
manner. 
– General formulation : 

• General framework of higher-order gauge-invariant perturbation theory : K.N. PTP110 (2003),723; ibid. 113 (2005), 
413.

• Construction of gauge-invariant variables for the linear-order metric perturbation and the proposal of the “zero-mode 
problem” : K.N. CQG28 (2011),122001; PTEP2013 (2013),043E02; IJMPD21 (2012), 1242004.

• The nth-order extension of the definitions of gauge-invariant variables : K.N. CQG 31 (2014), 135013.

– Application to cosmological perturbation theory :
• Einstein equations :  K.N. PRD74 (2006), 101301R; PTP117 (2007), 17.
• Equations of motion for matter fields :  K.N. PRD80 (2009), 124021.
• Consistency of the 2nd order Einstein equations :  K.N. PTP121 (2009), 1321.
• Summary of current status of this formulation :  K.N. Adv. in Astron. 2010 (2010), 576273.
• Comparison with a different formulation :  A.J. Christopherson, et al., CQG28 (2011), 225024.
• Summary of current status updated 2019 : K.N. Book “Theory and Applications of Physical Science Vol.3”, Chapter I, 

(2020); arXiv:1912.1280v2 [gr-qc].

– Application to Black Hole perturbation theory :
• Proposal of a gauge-invariant treatment of l=0,1-mode perturbations on Schwarzschild 

background spacetime: K.N. CQG 38 (2021), 145010. [arXiv:2102.00830v3[gr-qc] ].
• Formal solutions of the any-order mass, angular-momentum, dipole perturbations on the Schwarzschild background spacetime: 

K.N., LHEP 2021 (2021), 215. [arXiv:2102.10650[gr-qc] ].
• Full Paper-Series of these short papers:  Part I : --- Formulation and odd-mode perturbation --- K.N., arXiv:2110.13508 [gr-qc];

Part II : --- Even-mode perturbations --- K.N., arXiv:2110.13512 [gr-qc];
Part III : --- Realization of exact solutions -- K.N. arXiv:2110.13519 [gr-qc].

Our general formulations for the higher-order gauge-invariant perturbation 
theory is based on the following conjecture:

4

In [K.N.(2011); K.N.(2013).], a proof of this conjecture was discussed, but the existence of 

Green functions for some elliptic differential operators was assumed. For this reason, the kernel modes 

(zero modes) of these elliptic differential operators were ignored (zero-mode problem).

In the perturbations on the Schwarzschild background spacetime, 
l=0,1 modes correspond to these kernel modes!!

Conjecture (Decomposition conjecture):

If we found a gauge-invariant treatment of l=0,1 modes, 
our general framework of the higher-order gauge-invariant
perturbation theory becomes applicable to any order.

In this poster, ....
I propose a gauge-invariant treatment of l=0,1-mode perturbations 

on the Schwarzschild background spacetime. 
[K.N. arXiv:2102.00830v3 [gr-qc].-->CQG38 (2021), 145010.]



• The first kind “gauge” is a coordinate system on a 
single spacetime manifold.

• The second kind “gauge” appears in the perturbation 
theory.
This is a point identification between the physical 
spacetime and the background spacetime.
– Our gauge-invariant formulation exclude this second 

kind “gauge”.

II. “Gauge” in general relativity 

• There are two kinds of “gauge” in general relativity.
– The concepts of these two “gauges” are closely related to the 

general covariance.
– “General covariance” :

There is no preferred coordinate system in nature. 

(R.K. Sachs (1964).)

5

• The background spacetime has the spherically symmetric.
– Spacetime topology :                 .
– Metric :

– Metric perturbation : 

– Conventional decomposition of the metric perturbation :

where             ,             , and                . 
– This conventional decomposition requires the existence of 

the Green functions of the operators              and        .

III. Linear perturbations on spherically
symmetric background

6



– This situation is also seen from the spherical harmonics           :

• The conventional decomposition requires the existence of the 
Green functions of the operators               and        .

7

Inverse relation

One-to-one correspondence between the variable              and
is not guaranteed in l=0,1 mode.

– Zero-modes are kernel modes of the operators     or   .

---> l=0,1 mode (                             ) are zero-modes.

– To resolve the problem of l=0,1-mode perturbations, we use the 
decomposition of the perturbations by           instead of by           .

• Proposal to solve this l=0,1-mode problem (1)

8

– This decomposition is invertible if the following conditions are satisfied.

– (II)

– (I)



– Explicitly, we use the following functions.

• Proposal to solve this l=0,1-mode problem (2)

9

– These functions satisfy the previous conditions when         .
– When        , we have 
– These functions are singular except for the case        .

Proposal :

– (III)

– Since the decomposition (II) is invertible, we can construct gauge-invariant 
variables and evaluate the field equations through the mode-by-mode 
analyses including l=0,1 modes.

• The gauge-transformation rule of linear-metric perturbation      :

– Mode decomposition of the generator    .

– Mode by mode gauge-transformation of metric perturbations : 
• Odd modes : 

• Even modes : 

IV. Construction of gauge-invariant 
variables for linear perturbations

10

gauge-invariant variable gauge-variant variable gauge-transformation rule

gauge-variant variables gauge-transformation rules

gauge-invariant variable



• The expression of the original metric perturbation     :

11

– Using the gauge-invariant variables                          we define the variables as

– Using the gauge-variant variables                          we define the vector field      as

– The original components of the metric perturbation       as

– Identifying the gauge-invariant part         of the metric perturbation        as

the original metric perturbation is given by

– This expression includes not only          modes but also            modes.
– This is the assertion of the above Decomposition Conjecture!!!

The decomposition conjecture is proved in the perturbations
on the Schwarzschild background spacetime including l=0,1 modes.

• The linearized Einstein equations are given in the form

– Here,                                       is the linearized Einstein tensor with the vacuum 
background Einstein equation

– Similarly, the linear perturbation of the energy-momentum tensor is given by
with the vacuum background condition

• Here, we consider the conventional Einstein equation. Therefore, the linear metric perturbation       
is not included in         .

– The linear perturbation of the energy-momentum tensor should satisfy the equation

• c.f. Identity:

– Here, we decompose the components of          as

– The components of                are summarized as

V. l=0,1 solutions to the linearized 
Einstein equations

12



• Notes on components of         when         :
– For l=0,1 modes, we may choose
– For l=0 mode, we may also choose

• Because of                       these conditions for l=0 modes yields             for l=0 mode.

13

4-1. l=1 odd mode perturbations

• If we impose the regularity        , there is no l=0 mode in odd-mode 
perturbation.

• l=1 mode (we concentrate only on m=0 mode):
– Components of the odd-mode gauge-invariant variable:

– Einstein equations:

[l=1 version of Regge-Wheeler eq.]

Constraints

Odd-mode of Integrability condition 

Kerr parameter perturbation

: arbitrary function of t.

l=1 Odd-mode sol.

• For l=0,1 even mode,           
– Components of the gauge-invariant tensor        :

– Einstein equations:

• Moncrief variable

• Zerilli equations:

• Evolution equation for     (l=0):

– Even-mode of

– The consistency of these equations can be check due to the tedious calculations. 14

4-2. l=0,1 even mode perturbations

l=0 version of Regge-Wheeler eq.

Einstein eq.



• For l=0 even mode, it is convenient to introduce the variables :
– Mass perturbation definition:   
– Einstein equations for          : 

– Even-mode of 

• l=0 mode
• Solution of the mass perturbation            :

• Zerilli equations becomes trivial.
• Moncrief variable definition and           

• Integrability of Eqs.                                                                                with respect to      
is guaranteed by the Zerilli equations and evolution equation for     :

where        is an arbitrary function of r, and     is an arbitrary constant.

15

4-2-1. l=0 even-mode solutions (1)

Schwarzschild mass perturbation

Integrability condition

• Then, the metric perturbation for l=0 even mode is given by

where

• Solution to the Einstein equations for l=1 even mode:

where
16

4-2-1. l=0 even-mode solutions (2)

4-2-2. l=1 even-mode solutions



• We proposed a gauge-invariant treatment of the l=0,1 mode perturbations on 
the Schwarzschild background spacetime.
– Harmonics:

– Decomposition:

–

– Following our proposal, we derive the l=0,1 mode perturbation solution to the linearized Einstein 
equation with a generic linearized energy-momentum tensor for the matter field. 

– Derived solutions include Kerr parameter perturbations and the additional mass parameter 
perturbations in the vacuum case, except for the terms which has the form of the Lie derivative of 
the background spacetime. --> Our proposal is reasonable!!!

• Thus, we have resolved the zero-mode problem in the perturbation 
theory on the Schwarzschild background spacetime. 

• Then, we can apply our general formulation of higher-order 
perturbation theory to this background spacetime and can develop it 
to the any-order perturbations.
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VI. Summary and Discussions on our proposal

Proposal :

(I) (III)

(II)
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Excluded region

Gravitational positivity bounds on scalar potentials
Junsei Tokuda (Kobe university) Mainly based on [PRD104,066022(2021), T. Noumi, JT]([arXiv: 2105.01436])

A. Motivation ＆ Abstract

𝜆: fixed,𝑚2 → 0 limit is prohibited: 
Lower bound on the mass

It is found that scalar potentials 𝑽(𝝓) cannot be arbitrarily flat. 

• Method:

e.g.) 𝑉 𝜙 = 𝑚2𝜙2 + 𝜆𝜙4

* See [D. Results] for details.

• Motivation:

• Background:

We want to clarify which low-energy effective field theories (EFT) are 

consistent with UV complete quantum gravity.

Recently, it has been noticed that “positivity bounds” which are derived from 

S-matric unitarity, analyticity, etc, have been useful in this context.

We discuss positivity bounds on 4D scalar QFT + GR:

ℒ ∼ 𝑀pl
2 𝑅 − 𝜕𝜙 2 − 𝑉 𝜙 +⋯ , to derive swampland conditions on 𝑉 𝜙 .

• Result:

B-1. background: (1) Positivity bound without gravity

B-2. background: (2) Positivity bound with gravity D. Result

• S-matrix Unitarity・・・useful for finding new physics e.g.) W-boson scat. → (perturbative) unitarity requires (Higgs mass) ⪅ 1 TeV

[Lee–Quigg–Thacker (‘77)]

• S-matrix analyticity, unitarity etc + unitarity → More info. of UV theory (new physics) 

𝜙𝜙 → 𝜙𝜙 scat. amplitude ℳ 𝑠, 𝑡
* 𝜙: a massive scalar

𝜙

𝜙

𝜙

𝜙

Analytic structure of ℳ 𝑠, 0
＆Integration contour

𝐶∞
−

𝐶∞
+

𝑠

• Under clear assumptions, we can derive positivity bounds with gravity. [JT, K. Aoki, S. Hirano (‘20)]

ℳ 𝑠, 𝑡 ∼ s, t, u poles + 𝑂 𝑠0 + 𝑐2𝑠
2 +⋯

Low-energy expansion

𝑐2 ∼ න
4𝑚2

∞

d𝑠
Imℳ 𝑠, 0

𝑠3
+ර

𝑐∞

d𝑠

𝜋𝑖

ℳ 𝑠, 0

𝑠3
> 0

𝟎

Positive! (unitarity) lim
𝑠 →∞

ℳ 𝑠, 0 /𝑠2 = 0 .“Locality”(Froissart-Martin)

𝑐2(Λ) = lim
𝑡→0−

න
Λ2

∞

d𝑠
Imℳ 𝑠, 𝑡

𝑠3
+

1

𝑀pl
2 𝑡

>
−𝑂 1

𝑀pl
2𝑀s

2

C. Method・Setup

𝑐2 Λ ≔ 𝑐2 −න
4𝑚2

Λ2

d𝑠
Imℳ 𝑠, 0

𝑠3

• Separating EFT pieces (4𝑚2 < 𝑠 < Λ2 integral, Λ: EFT cutoff) and high-energy pieces,

𝒄𝟐 𝚲 ∼ න
𝚲𝟐

∞

𝐝𝒔
𝐈𝐦𝓜 𝒔,𝟎

𝒔𝟑
> 𝟎 “Positivity bounds (without gravity) ”

[Adams et al. (‘06), Bellazzini (‘16), de Rham et al. (‘17)]

*Additional assumptions (motivated by perturbative string amplitude)

1. Mild high-energy behavior lim
𝑠 →∞

ℳ 𝑠, 𝑡 < 0 /𝑠2 = 0

2. Regge behavior with single scaling Imℳ 𝑠, 𝑡 ∼ 0 ȁ𝑠≫𝑀𝑠
2 ∼ 𝑓 𝑡

𝑠

𝑀𝑠
2

2+𝛼′𝑡+𝛼′′𝑡2+⋯

,
𝜕𝑡𝑓

𝑓
,
𝛼′′

𝛼′
⪅ 𝛼′ ∼ 𝑀s

−2

𝑀s: scale of Reggeization ∼ mass of the lightest higher-spin state

(*see also [Hamada et al. (‘18),  Herrero-Valea et al. (‘20), Bellazzini et al. (‘19),  Alberte et al. (’20, ‘21), Caron-Huot et al. (‘21)])

(approximate) gravitational positivity bounds

• Consider 4D scalar QFT+GR and compute 𝑐2(Λ). Discuss implications of 𝒄𝟐(𝚲)> 
−𝑶 𝟏

𝑴𝒑𝒍
𝟐 𝑴𝒔

𝟐 .

𝑉 𝜙 =
𝑚2𝜙2

2
+
𝑔𝜙3

3!
+
𝜆𝜙4

4!
ℒ =

𝑀pl
2 𝑅

2
−
1

2
𝜕𝜙 2 − 𝑉 𝜙 + (counterterms)

*In this poster, we neglect higher-order terms such as 𝜙6 and 𝜕𝜙 4 just for simplicity.

[JHEP11(2020)054 JT, K. Aoki, S. Hirano] 

[PRL127,091602(2021), K. Aoki, T.Q. Loc. T. Noumi, JT]  

See also: 

• E.g.) 𝜆𝜙4 theory:

𝑐2 Λ ≃
𝜆2

16𝜋2Λ4
−

𝜆𝑔2

6𝜋2Λ6
ln

Λ2

𝑚2 −
1

6
+

𝑔4

12𝜋2𝑚2Λ6
−

1

𝑀pl
2

45−8𝜋 3

1296𝜋2
𝑔2

𝑚4 +
10−𝜋2

4608𝜋4
𝜆2

𝑚2 > −𝑂 𝑀pl
−2𝑀s

−2 .

（Nongravitational terms）> 0

ℎ𝜇𝜈

（Gravitational terms）< 0

• Results：

✓ In the limit 𝜆, 𝑔/𝑚 : fixed, 𝑚 → 0, we have (Gravitational terms) → −∞, leading to the violation of an inequality. 

This implies that 𝑽 𝝓 cannot be arbitrarily flat.

*𝜆 = 10−2, 𝑀𝑠 = 1016 GeV
is used in this plot.

（Grav. terms）= 𝑀pl
−2𝑀𝑠

−2

⇔𝑚 = 5.4 × 10−4 𝜆 𝑀s

𝑚 = 0.0068 Λ2/𝑀pl

≈ 2.8 × 109
Λ

1015 GeV

2
GeV

𝑚 ≥ 0.0068 Λ2/𝑀pl Summary＆Prospects

• 𝑽(𝝓) cannot be arbitrarily flat. 

• Under some clear assumptions, we 

derived swampland conditions on 𝑽 𝝓 .

• Applications to other models. 

• Justification of assumptions? Physical 

meaning of 𝑐2 Λ ?

• Bounds on 𝑉(𝜙) around 𝜙 ≠ 0?

(I apologize for changing the title slightly…)
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Hawking radiation from
squashed Kaluza-Klein black holes 

with quantum gravity effects

Ken Matsuno
(Osaka City University Advanced Mathematical Institute)

arXiv: 2104.00891

1

Introduction
Hawking radiation is interesting phenomenon where both
of general relativity and quantum theory play a role.

During its final stages, semiclassical approach would be
expected to break down due to dominance of quantum
gravity effects.

Some quantum gravity models suggest that there exists
a minimal measurable length which would be of order
Planck length.

From string theories, such minimal length would be
obtained by generalized uncertainty principle, which is
quantum gravity inspired modification to Heisenberg
uncertainty principle.

2



Introduction 
Some generalized uncertainty principles, derived from 
thought experiments, have been applied to some different 
systems and played an important role to consider its 
corrections by supposed quantum theories of gravity. 

 

We investigate Hawking radiation from 5D charged static 
squashed Kaluza-Klein black holes by tunneling of 
charged fermions and charged scalar particles, including 
quantum gravity effects predicted by quadratic 
generalized uncertainty principle with minimal 
measurable length. 

 

We consider evaporation process of 5D black holes with 
quantum gravity effects by tunneling of particles. 

3 

: compact extra dimension size at infinity 

: parameter regions  ( : horizons ) 

 Mass, Charge, Hawking temperature, Entropy :  

 Smarr-type formula :  

5D charged squashed Kaluza-Klein black holes 
(H. Ishihara, K.M.) 

4 



Horizon and asymptotic structures

Surface gravity on outer horizon of black hole :

At infinity ( ) :

A twisted S1 fiber bundle over 4D Minkowski spacetime
( r :  size of compactified extra dimension at infinity )

:  outer horizon

:  inner horizon

Squashed S3 horizons in the form of Hopf bundle :

5

Physical meanings of parameter 0
For observer                               ,
4D Reissner-Nordstrom black hole with a twisted constant S1 fiber :

For observer                               ,
5D Reissner-Nordstrom black hole with round S3 horizons :

Parameter 0 gives typical scale of transition from five dimensions 
to effective four dimensions.

6



Heisenberg Uncertainty Principle
For operator A,

Canonical commutation relation:

Robertson inequality:

Heisenberg uncertainty relation:

x can be made arbitrarily small by letting p grow correspondingly.

Resolution of small distances requires test particles of short 
wavelengths and thus of high energies.

At such small scales, gravitational effects by high energies of 
test particles would significantly disturb spacetime structure 
which was tried.

7

,

Modified commutation relation with correction term:

Some quantum gravity theories, including string theory and loop 
quantum gravity, suggest that there would exist a finite limit to 
possible resolution of distances, which would be of order Planck 
length and obtained by modified Heisenberg uncertainty principle.

Generalized Uncertainty Principle  (GUP)
(Kempf, Mangano, Mann)

Modified uncertainty relation from Robertson inequality:

8



Generalized Uncertainty Principle  (GUP)
(Kempf, Mangano, Mann)

Generalized uncertainty principle with minimal measurable length:

Minimal position uncertainty:

Absolutely smallest uncertainty 
in position with <p> = 0:

( 0 : quantum gravity parameter )
9

Generalized Uncertainty Principle  (GUP)
(Kempf, Mangano, Mann)

,

( 0 : quantum gravity parameter )

Minimal measurable length :

Modified commutation relation :

Modified position and momentum operators :

Using energy mass shell condition  E2=p2+m2  ( m : particle mass ),
modified energy operator up to first order in :

10



Modified Dirac equation with Maxwell field 
(Hossenfelder et al, Chen et al.) 

 According to GUP, modified Dirac equation up to first order in : 

, 

 Assuming spinor field for spin-up state: 

 Gamma matrices of 
     squashed KK BH: 

11 

Equation of motion for charged fermions 
 WKB approximation to leading order in : 

 According to Killing vector fields                                           , the action ansatz: 

(  : fermion energy,  J and L : fermion angular momenta ) 

 From 3rd EOM:  complex function   

12 



Tunneling of fermions 
 From 1st and 2nd EOM: 

 Action for outgoing and ingoing modes for classically forbidden trajectory: 

 Tunneling probability amplitude of charged fermions:  

13 

Modified Hawking temperature 
 Comparing tunneling probability amplitude with Boltzmann factor                                         

                                               at temperature T, we obtain modified 
Hawking temperature of squashed Kaluza-Klein black hole: 

 Hawking temperature depends upon energy , mass m, charge e 
and  angular momentum L of emitted fermion, and is modified 
by squashed Kaluza-Klein geometry, Maxwell field and 
generalized uncertainty principle through parameters 0 , - and . 

 

Taking limits, we obtain some known quantum-corrected 
Hawking temperatures of 5D and 4D black holes: 

    -=0, L=0, r  :       5D Schwarzschild-Tangherlini black hole 
    0=0, e=0, L=0 :           4D Reissner-Nordstrom black hole 
    -=0, 0=0, e=0, L=0 : 4D Schwarzschild black hole 

14 



Modified thermodynamics
We consider uncharged massless fermion radiation without momentum in extra
dimensional direction from uncharged Kaluza-Klein black hole, i.e., -=0, m=0, L=0.

Using saturated form of uncertainty principle                         and
uncertainty in position x for events near black hole horizon                       ,
Hawking temperature and entropy with quantum corrections:

Heat capacity                               with quantum correction:

BH evaporation modified by GUP: quantum gravity effect in Hawking radiation 15

Modified evaporation process of black hole

As black hole mass decreases, quantum-corrected temperature with 0 0 reaches
local maximum value and then decreases to zero at minimum value of mass Mrm.
At local maximum temperature, the system undergoes transition from unstable
negative heat capacity phase to stable positive heat capacity cooling down towards
cold extremal configuration with mass Mrm.
At minimum mass Mrm, since both Hawking temperature and heat capacity vanish,
black hole may not exchange its energy with surrounding environment.

Generalized uncertainty principle prevents squashed Kaluza-Klein black hole to
completely evaporate and results in thermodynamic stable remnant.

If quantum gravity parameter is 0 1 and extra dimension size is r 0.1 mm,
mass of black hole remnant is Mrm 10-8 kg, which is of order Planck mass. 16



Tunneling of scalar particles 
According to GUP, modified Klein-Gordon equation with Maxwell 
field up to first order in   (Feng, Li, Zu, Yang):  

 Tunneling probability amplitude of charged s-wave scalar particles:  

 Modified Hawking temperature of squashed Kaluza-Klein black hole:  

 Thermodynamic stable Planck mass remnant after evaporation 17 

Summary 
We study Hawking radiation from 5D charged static 
squashed Kaluza-Klein black hole by tunneling of charged 
particles based on GUP with minimal measurable length. 
 

We derive corrections of Hawking temperature to 
general relativity, which are related to energy of emitted 
particle, size of compact extra dimension, charge of 
black hole, quantum gravity effect coming from the 
existence of minimal length. 

 

We show that GUP may slow down increase of Hawking 
temperature due to radiation, which may lead to 
thermodynamic stable remnant of the order of Planck 
mass after evaporation of squashed Kaluza-Klein BH. 

18 
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Following (iv)： analysis of the non-linear conversion done using cylindrical exact solutions in E-M system 

⚫ No conical singularity on the axis

⚫ The wave fields become strong near the axis  and 

weak near infinity generally. 

⚫ Some useful quantities like Thorn’s C-energy or 

Bondi news are available[Thorne ’65 ],[Stachel ’66 ]

＜features or assumptions＞

I.2 storyline

II. Settings and solution-generating method using simple harmonic 

map method

III. Construction of interacting gravitational and electromagnetic 

waves

IV. Study of conversion phenomena in the Einstein-Maxwell system

V. Summary and discussion

3/16

II. Settings and solution-generating method 

II.1 Settings and basic equations

＜Kompaneets - Jordan - Ehlers metric and elemag. gauge field＞ ***

(1)

( gauge field )

（ Ernst potentials ）

(i)   

(ii)   

＜ Ernst equations for E-M system[Ernst ’68]＞

(2)

◼ Here twist potentials are introduced: ( χ , Φ ) ← ( A , w )

◼ These are defined on a hypothetical 3-dim. Minkowski space M2,1 with cylindrical symmetry.

（ so-called target space）

(3)

4/16

Nonlinear behavior of new cylindrically symmetric waves of 

Einstein-Maxwell system

2021 Dec. /  Poster

( JGRG30 Waseda Univ. online )

We construct exact solutions of gravitational and electromagnetic waves that 

interact nonlinearly, applying a simple harmonic mapping method to the 

cylindrically symmetric Einstein-Maxwell system. As an interesting feature of 

the solutions, we show that the large conversion phenomena occur in the 

intense area of fields with no background.

T. Mishima (Nihon Univ.) 

S. Tomizawa (Toyota Tech. Inst.) 

P10 

1/16

Construction of exact solutions of Einstein-Maxwell system(E-M system) with full modes:4modes

I.1 purpose

I. Purpose and Introduction

Full nonlinear analysis of conversion between gravitational waves and electro-magnetic waves 

by using the exact solutions

＜ some previous studies＞

(i) Gravit-elemag conversion in the background electromagnetic field: perturbative approach

Olson & Unruh[1974],  …  Crispino,Dolan,Higuchi & Oliveira[2014],    Saito, Soda & Yoshino[2021],   Hadj & Dolan[2021]

Chandrasekhar & Xanthopoulos[1985～],  Halilsoy[1989]… ⇒Griffiths「Colliding Plane Waves」 for more other treatments

(ii) Colliding plane waves in E-M system: many works, not focused on the conversion

(iii) Cosmological behavior of E-M system : not focused on the conversion
Charach & Malin[1980], … Narita, Torii & Maeda(Ken)[2000], Yazadjiev[2003]

(iv) Behavior of cylindrical waves of E-M system: not so many 
Halilsoy[1983], Yazadjiev[2005],        Alekseev[2015],        Barreto,Oliveira & Rodrigues[2017]

(conversion treated, numerical study)(cosmologically conversion treated)
2/16

(i) is replaced with the solutions            of vacuum Ernst equation.

III.2 Formal solutions of Ernst potentials 

case (a) case (b)

Halilsoy[1989], Griffith[’91]

the solutions            of Ernst equation (5)

(ii) Fields and twist potentials: (3)

(7)’ (8)’

8/16

II.2 Alternative basic equations and target space/potential space

Introducing another set of complex potentials （ ξ , η ） and the corresponding basic equations

Kinnersley[1973]

(5) 

Parker[’03] ,  Goldman[‘99]

(6) 

Griffiths[1991]

(4) 

Solutions of Equation set (5) are given as the harmonic map/wave map  from M2,1 (base space) to 

a ball model of complex 2-dim. Hyperbolic space       (target space).     

Metric of  

5/16

i. construct an harmonic mapping from the base space M to a intermediate space K 

ii. find out a totally geodesic embedding map of K into the target space N

iii. combine finally these maps

As a simple method, we adopt here the composite harmonic method[Eells and Sampson ’63].

II.3 Simple and convenient solution-generation method by composit harmonic mappinig

＜ Procedure ＞

(harmonic map from M to K )

( zero extrinsic curvature )

(harmonic map from M to N )

M K           N

6/16

Case (a)

Klein disc model

Case (b)

III. Construction of interacting gravitational and electromagnetic waves

III.1 Choice of totally geodesic subspaces in 

Isometrically only two different types of totally geodesic surfaces:

(a) Poincare disc model         (complex line L)           

(b) Klein-Beltrami disk model (totally real and totally geodesic plane R )

Poincare disc model

M K                N M K                N

◼ Totally geodesic embedding of L in        :      ◼ Totally geodesic embedding of R in        :      

7/16

(7) (8) 

: simple example for (a)
: simple example for (b)

(iii) Using  the previous solution[MT ’17] as a simple harmonic map from M2,1 to        

to construct ( f , B, Φ, χ) :

MT [’17]

case (a) :  case (b) :  

◼ two parameters: ( A, θ )       ◼ Three parameters: ( A, α, β )       

(10) (11)

(9) 

τ: seed function

(iv) metric component w and gauge field component A are derived by integrations. Here we neglect  

their explicit form.
9/16

13/16

The large amplification of electromagnetic waves may occurs when spreading out from the axis to infinity.

(a) diagram for A=1/6, θ= 3π/4

Rem = 0.9931

(near infinity: τ = 0, elemag. wave dominance )

Rem = 0.0001767 

( near axis: τ = 5, gravitational wave dominance  )

Amplification rate = 0.9931/0.0001767

= 5.620×103

Ratio

Rem

R＋

R×

Infinity: Near axis: 

（A=1/6, θ= 3π/4)

◼ It should be noticed that the seed function τ cannot always take appropriate values for the optimal  

conversion, so that the electromagnetic contribution to the C-energy really becomes smaller.

＜An interesting example: large amplification of electromagnetic waves ＞

Analysis using a specific seed function 14/16

(b) WWB solution as a seed wave function τ : Weber-Wheeler[’57]・Bonnor[’57]

◼ Regular and packet-like wave solution ～ one of the Einstein-Rosen solutions     

ρ 

 t =1 

ρ 

 t =0  

ρ 

t =12 

(c) Snapshots of the seed function τ ( t =0, t =1, t =12 )

15/16

(d) Time dependence of total electromagnetic contribution to the C-energy 

Tem(t=0) = 0.1080, Tem(t=200) = 0.9865 

t 

Tem

(15)

◼ The contribution of Electromagnetic waves are amplified by about 10 times against 

the initial electromagnetic waves.

Tem(t=200)/ Tem(t=0) = 9.14
Tem(t=0) = 0.1080

Tem(t=200) = 0.9865 

IV. Study of the conversion phenomena in the Einstein-Maxwell system:

◼ To what extent such phenomena occur ?

IV.1 Preparation: useful quantities related to C-energy γ

The C-energy density is generalized to treat the conversion and divided into gravitational 

part(＋-mode and ×-mode) and  electromagnetic part(Az and Aφ ).

(Generalized C-energy density)

(12)

(13)

Thorne[1965] Piran, Safier and Stark [1985] 

Generalization of Piran, Safier and Stark [1985] 

(Amplitudes)

(gravitational part) (electromagnetic part)
10/16

(Generalized C-energyγ)

(14)

IV.2 Occupancy ratios of gravitational and electromagnetic parts for the C-energy density 

Once the parameters ( A, θ ) given, the spacetime dependence of the 

occupancy of each part is controlled by the seed function τ(t, ρ)！

◼ Total C-energy density has no dependence on ( A, θ ) as below; that is, the C-energy has the same 
dependence as the solution for ( A, θ ) = (0, 0), which corresponds to so called Einstein-Rosen waves.  

All solutions have the same overall shape, but with different  distribution 

ratios of  contents !
11/16

(15)

(Occupancy: definition and results )

IV.3 An example of conversion phenomena: based on the case (a): 

＜Occupancy Rem ＞

Occupancy diagram: plotted against τ for A=1/50, θ=π/30; other ratios R＋ and R× also added for comparison.

Rem

R＋

R×

R×

R＋

Rem

（A=0, θ=0)

(Einstein-Rosen :+-mode only)

（A=1/50, θ=π/30)Ratio

◼ By using such diagrams, the approximate behavior of the conversion can be known 

through the behavior of seed wave    !

Infinity Near axis

Come from infinity; 

turn near the axis;

retun back to the infinity.

half line

12/16

◼ Analysis of spacetime structure

◼ more systematic analysis and introducing more general totally geodesic embeddings

◼ Including soliton solutions

◼ Behavior of  test charges

◼ Extension to other systems (K-K gravity, higher dimension…) 

◼ ・・・・・

V. Summary and discussion 

◼ Depending on the parameters, the solutions show interesting aspects of conversion: especially, it 

is found, as conjectured in the previous paper[TM,’17], that if gravitational waves sufficiently 

concentrate near the axis and very weak electromagnetic waves exist together, large 

amplification of electromagnetic waves occurs as the waves spread out from the axis to infinity.

◼ Observing the behavior of the generalized C-energy density, we have clarified the conversion 

phenomena between gravitational waves and electro-magnetic waves. 

◼ We have shown a convenient procedure to  generate new solutions that represent non-linearly 

interacting gravitational and electromagnetic waves, by using the composite harmonic mapping 

method.

16/16
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Predicting complex trajectories around Kerr black 
hole via deep learning

Seiga SATO

@JGRG30, online

[P12]

Motivation & Summary

Some previous works claim that the Deep Learning(DL) can not 
predict the chaotic system.

I would like to know that whether chaos is critical for the deep 
learning.

I investigate whether the DL can predict the test particle 
trajectories around the Kerr Black hole without EoM.

The test particle dynamics is quite complicated, and the 
dynamics becomes chaos when it has spin.

I employed 2 DL models, LSTM(previous work) and Lagrangian
Neural Network.



Set-up:Bianchi type-IX ( : const)

EoM

Dynamic is same as the ball on the 
right potential.

High energy : Chaos
Low energy  : Almost periodic

Low energy High energy

cf. Y.Misonoh, JGRG27 proceeding Vol.3

DL(LSTM) can not 
predict longer than 
about 

: Lyapunov exponent



Motivation : Chaos is so important for DL?
At low energy in the previous work, the exact EoMs are non-integrable but the solution is almost 
periodic. DL could predict it  at low energy.

How about the integrable but complicated trajectories?

It is a more realistic situation.
Spin interactions between the test particle and BH make the dynamics chaos.
Unlike the previous study, the EoMs itself are changed.
Since I suppose the observations, I provide the information of position and speed only without EoMs. 

S.Suzuki&K.Maeda(1996), 
K.Kiuchi & K.Maeda(2018)

unpredictable ?

predictable ?

Kerr BH

Non-Spinning Spinning

: Angular momentum
: test particle energy
: Carter Constant

Dixon(1970),Basic equations

Kerr Metric

S.Suzuki&K.Maeda(1996), 
K.Kiuchi & K.Maeda(2018)

Integrable Non-integrable
Dixon(1970)



Spinless Spinning ChaosNot chaos

It is difficult to judge whether 
it is chaotic or not just from 
its appearance.

plane

Training data are obtained by numerical calculation. 
We give the information of position and speed for training.
The input form is sequence of them, which is about 1/27 cycle of r dynamics.
The dynamics is predicted by repeatedly reinserting the obtained output into the input.

How to predict deep learning : LSTM model

OutputInput

recurrence

Can the DL predict the trajectories without EoMs?



Standardized data set

All values 

r Unbouded values:

How to predict deep learning : LSTM model

Input data value should be 0~1.
.

Since is always positive, it is easy.

After the scaling, the values are shifted

S.Hochreiter & J. Schmidhuber (1997)
F.Gers, J.Schmidhuber & F. Cummins (1999,2000)

Previous RNN LSTM

How to predict deep learning : LSTM model

I adopted Long Short Term Memory (LSTM) model.
It is one of the Recurrent Neural Network (RNN), which treats the sequence data.
RNN is good at predicting the future from sequence of the previous information, like translations .
LSTM is an advanced model of RNN, which has an additional flow of the parameters in the model.

Part 2

Part 3

Part 4

Part 1

Part 2

Part 3

Part 4

Information flow
input parameter

#para 



Result (spinless)

=98.8%

predictable

Numerical

Deep learning

Answer values
: Predicted valuesSetup

(Accracy )

Numerical

Deep learning



Setup

80.5%Non-predictable

Numerical

Deep learning

(Accracy )

Numerical

Deep learning



Learning coordinate dependence : Cartesian

62.4%

I used the Cartesian coordinate as the input data.

Result (spinless)

Coordinate independent model How about learning the Lagrangian?

How to predict deep learning : LNN model
I also adopted another model, Lagrangian Neural Network(LNN) model.
In this model, the DL model learn the Lagrangian functional by the unsupervised method.
This model  is expected effective when the system contains conserved quantities.

Input : not sequence

Lagrangian : 

Deep 
Learning
Model

Euler- Lagrangian equation

Loss fun. = 

#para 

C.Miles et al (2020)



Result (spinless)

predictable

Numerical

Deep learning

Setup : same as LSTM
Dynamics

98.3%

Loss fun. = 

Result (spinless)
Cnserved Quantities

LNN Numerical Cal. LSTM

There does not seem to be much difference between LNN and 
LSTM in the evaluation of conserved quantities.
The longer time scale may cause difference.



Result (spinning/chaos)

Learning

If learning is successful, the line will be aligned on the diagonal (dashed line).
Continuing the learning any longer causes the over learning.
This figure shows the learning are not going well In the chaos case, as long as the number of 
parameters are same as LSTM.

Learning is not going well.
Standardization spoiled the 
physical meaning?

Summary

If the system is not chaos, the trajectories can be predicted without the 
EoMs by DL.

Though I employed the new DL model for the chaos, Neural Lagrangian
Network, they could not predict the chaos dynamics either.

The chaos is critical for the deep learning.

Reference
K.Kiuchi & K.Maeda, Phys Rev D.70.064036, gr-qc/0404124
S.Suzuki & K.Maeda, Phys Rev D.55.4848
S.Suzuki & K.Maeda, Phys Rev D.61.024005
Y.Misono, JGRG27 proceeding Volume.3 P26
M.Cranmer et al, ICLR 2020 Deep Differential Equations Workshop, arXiv:2003.04630
code: github.com/MilesCranmer/lagrangian_nns]

http://colah.github.io/posts/2015-08-Understanding-LSTMs/



Random noise distribution Gaussian noise distribution

Appendix : Noise effect on the learning

raw data Gaussian noiseRandom noise

89.0%%

Appendix : effect on the learning
Result (spinless)

Numerical+ Noise

Deep learning

Noise effect is not 
negligible.

Should I remove it 
before training by 
another deep learning?

Random
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orbits indynamical spacetimes

Yong Song
Department of Modern Physics,
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Introduction
In 2019, the Event Horizon Telescope Published
the first image of a black hole at the center of
the M87 galaxy [1]. In the image, one can see
a shadow region which is called the black hole
shadow, and the black hole lies in the shadow.
One can also see a ring-like structure that cor-
responds to the accretion disk, and the study of
the innermost stable circular orbit (ISCO) plays
a vital role in analyzing this image.
Up to date, there are many studies based on
the effective potential to study ISCO in space-
time. On the one hand, ISCO has many im-
portant properties. For example, it is the inner
edge of an accretion disk; it is also the bound-
ary between the stable orbits and the unstable
orbits, and the accretion flow changes dramat-
ically across the ISCO in a thin disk. On the
other hand, ISCO has many applications. Such
as, for a rotating black hole, the radius of ISCO
is a key fit parameter to measure the spin of
the black hole, and there are many other stud-
ies about the ISCOs in Kerr-like spacetimes. In
the modified gravitational theories, ISCOs may
also exist. Also, ISCO may have some applica-
tions in AdS/CFT. In recent years, some studies
suggest that ISCO should describe field theory
long-lived excitations that do not thermalize like
typical excitations.
Through the effective potential method, one can
efficiently study the ISCOs in static and station-
ary spacetimes. But, this method is not suitable
for dynamical spacetimes because the effective
potential cannot be defined in dynamical space-
times.
In this paper, we get a method to study the evo-
lutions of the ISCOs in dynamical spacetimes.
As examples, we studied the ISCOs in Vaidya
spacetime, Vaidya-AdS spacetime and the slow
rotation limit of Kerr-Vaidya spacetime. The re-
sults given by these examples are reasonable and
have similar evolution curves to photon spheres
in dynamical spacetimes [3].

Conclusion
In this paper, we reviewed the two methods to
get the ISCO in Schwarzschild spacetime. We
domenstrated the extremum method is equiva-
lent to the effective potential method in static
and stationary spacetimes. We verify this equiv-
alence in general spherically symmetric space-
times and Kerr spacetime. We then general-
ized the extremum method into dynamical space-
times. From this generalization, we studied the
evolutions of the ISCOs in Vaidya spacetime,
Vaidya-AdS spacetime, and Kerr-Vaidya space-
time under the limit of slow rotation. These ex-
amples are all giving reasonable resluts.

Reference
[1] K. Akiyama et al. [Event Horizon Telescope Col-

laboration], Astrophys. J. 875, no. 1, L1 (2019)
[arXiv:1906.11238 [astro-ph.GA]].

[2] T. Berry, A. Simpson and M. Visser, Uni-
verse 7, no.1, 2 (2020) doi:10.3390/universe7010002
[arXiv:2008.13308 [gr-qc]].

[3] A. K. Mishra, S. Chakraborty and S. Sarkar,
Phys. Rev. D 99, no.10, 104080 (2019)
doi:10.1103/PhysRevD.99.104080 [arXiv:1903.06376
[gr-qc]].

lessons from Schwarzschild spacetime
we get two critical properties of the ISCO in Schwarzschild spacetime:

(1). For a general circular orbit, it does not evolve in time, i.e.,

dro/dτ = d2ro/dτ
2 = 0 . (1)

(2). For a family of circular orbits, ISCO has a minimal orbital angular momentum, i.e.,

δlo/δro = δl2o/δro = 0 , (2)

where lo should be regarded as a function of ro

If the solution of eq.(2) is single-valued, it is an ISCO. If the solution of eq.(2) is double-valued, such
as Schwarzschild-dS spacetime, Kerr-dS spacetime and so on, the one with δ2lo/δr

2
o > 0 is ISCO,

and the one with δ2lo/δr
2
o < 0 is OSCO (outermost stable circular orbit). Below, we only treat

single-valued cases.

ISCOs in static and stationary spacetimes
In the general static and stationary spacetimes, eq.(1) is obviously valid. Below we will demonstrate
that eq.(2) is also valid in some conditions.
In the general static and stationary spacetimes, suppose one can define the effective potential as
Vl(r), where l is the conserved orbital angular momentum. Consider a free point particle, and for a
given circular orbit, one always has the following relation

V ′
lo(ro) = 0 , (3)

and for this circular orbit, lo is a constant. Considering a family of circular orbits and varying eq.(3),
one can get the following equation,

0 =
δV ′

lo
(ro)

δro
= V ′′

lo (ro) +
∂V ′

lo
(ro)

∂lo

δlo
δro

. (4)

Here, lo should regard as a function of ro. Then, one have the following relation

V ′′
lo (ro) = −

∂V ′
lo
(ro)

∂lo

δlo
δro

, (5)

where we have assumed that ∂V ′
lo
(ro)/∂lo

∣∣
risco,lisco

̸= 0. In general, this assumption can be satisfied.
So, for an ISCO, the condition V ′′

lisco
(risco) = 0 is equivalent to δlo/δro = 0 [2], and the stable circular

orbits should satisfy the condition that δlo/δro ≥ 0.

The evolutions of the ISCOs in dynamical spacetimes
In general dynamical spacetimes, condition (1) does not hold anymore. Enlightened by [3], we assume

dro(t) =
∂ro(t)

∂t
dt = ṙo(t)dt , (6)

where t is the coordinate time and a dot stands for the derivative with respect to this coordinate
time. As for condition (2), we generalize it to the following equation

δlo
δro(t)

=
δl2o
δro(t)

= 0 . (7)

Here, lo should regard as a function of ro(t). The evolution of the ISCO of Kerr-Vaidya spacetime
in the slow rotation limit is shown below.

The left figure is correspond to the “direct” rotation and The right figure is correspond to the
“retrograde” rotation. Thses results are similar to the evolutions of the photon sphere in Kerr-Vaidya
spacetime under the slow rotation limit [3].



Poster session

Takahiro Tanaka

Kyoto University

“Simple justification of \delta N formalism and its
generalization”

[JGRG30 (2021) PA15]



1

Simple justification of N
formalism and its generalization

Takahiro Tanaka and Yuko Urakawa
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• Constraints related to gauge symmetry including diffeo.
• Constraints to simply eliminate auxiliary fields

In higher order cosmological perturbation theory, 
we often meet with .

Even if the original Lagrangian looks local,
it may become non-local after solving the constraints. 

Then, the locality condition that we have to impose is the 
locality after solving the constraints of the second kind.

We can leave the first constraints because they are guaranteed 
to be satisfied once the initial conditions are properly chosen.

2



The locality condition: The relaxed equations give local 
time evolution equations to all the remaining variables. 

One can uniquely determine the background 
homogeneous universe model once the initial conditions 
are provided. 

Def.) Relaxed equations
set of evolution eqs. excluding spatial derivative constraint like 

MC(momentum constraint), which vanishes at the leading order 
of spatial grad. expansion.

Locality Kinetic terms of relaxed eqs. are not degenerate. 
                          No elliptic type equation

3

MC necessarily contains spatial derivatives, and so finding a 
solution of MC to specify the initial conditions becomes non-local. 

Form of MC

Time derivative and the shift should appear in the combination. 

However, we do not have to solve MC in general at a 
sufficiently late time for the reason explained in the next slide.

i
t t ix x

i i i ix x x
i i iN N

i
I I

t N

3 3 3 3
i i

i i I I
i Ii I N N

S S
d x gH N d x N d x d x g

N
, i

I
I i N
H MC is the generator of 3d diffeo. transform.

: fields with an arbitrary spinI

4

L-

L- L-



The locality condition
   “Lagrangian in the long-wavelength limit ( 0)”
          =“Lagrangian for the homogeneous universe model” 

Large gauge transformation:

At a late time, right hand side vanishes, and hence shear 
[ i

j]TF can be determined by the matter field.  

0I I I I
II I

L L d L
L dt dt dt

dt

For the model with a vector field:

const. I I
II

L
g

i i i j
jx x x M x i i i j

jA A A M A

1

2
ij k ij k i j

j ki i jk A i jS g M M M A

TFi i i
j A j jA Q g

0j
jM

const.i
jQ

5

If we substitute this equation into MC
    We have an equation that determines Qi

j.  

Approximate initial data for the relaxed eqs. can be 
obtained by simply setting Qi

j=0.

(matter contribution)i
i jQ

,

TFi i i
j A j jA Q g

symmetric part of Qi
j: 

   5 components = 3 components to be determined by MC
                                  + 2 decaying modes of GWs

In most cases, the decay of i
j means the decay of t ij .
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When charged fields are non-vanishing

Gauge field constraint also contains spatial derivatives, and so 
finding its solution to specify the initial conditions can be non-local. 

0

0 0

1 1
0

2
i matt

i

S L
F

A Ag

When there is no non-vanishing charged field

- The second term, which is not associated with spatial 
differentiation, can be used to solve the constraint equation locally. 

- So, the gauge field constraint is not a spatial derivative constraint 
in this case.

- Solving gauge constraint introduces non-locality.

7

When there is no non-vanishing charged field
  
    

Our focus is on the case 2).

A A x i
i xx M

i i iA A M

const. I I
II

L
g

i i
A Q g

If we are allowed to adjust Qi simply as decaying modes, 
one can freely cure the violation of the gauge constraint. 
However,                                guarantees the decay of i

A

but not the decay of tAi .  

i i
A Q g

8

0I I
I

d L
L dt dt

dt

4

f
L g F F i

A t if A



- LGT generates a solutions of relaxed eqs.
     

  - But Qi
j=0 is maintained by the LGT, 

      since Qi
j transforms as a 3-d tensor

I I I

( , ) is promoted to  , ( )I Is sx x x

MC is not satisfied after this promotion. 

- When we have some gauge field in the background, 
   the violation of gauge constraint must be cured, 
which is slightly non-trivial. 
  It depends on the relation between i

A and tAi

9

- Given a set of gauge invariant variables obtained by 
solving the sub-horizon dynamics

- At a late time, Qi
j=0 can be a substitute of MC. Then, 

the late time super-horizon evolution is described by the 
solutions of relaxed eqs. = anisotropic separate universes.  

• -formalism=Separate universe approach

To give the initial data for the relaxed eqs., we need 
to solve the MC, which makes the problem non-local. 

The formalism can be extended to include  anisotropic inflation, 
If we can use the approximation Qi=0 for gauge field. 

Main message) Even if we are not allowed to set Qi
j=0 and Qi=0,  the 

super-horizon dynamics can be described by a set of background 
homogeneous universes as long as the locality condition is satisfied. 

10



Relaxed equations
  set of evolution eqs. excluding spatial derivative constraint like momentum 
constraint, which vanishes at the leading order of spatial grad. expansion.

When the action is local after solving all the constraints except for 
gauge constraints, related to the symmetry of the system, like 
momentum constraint, we refer to such a model as local.  

Main claim) If the model is local, the super-horizon dynamics can be 
described by a set of background homogeneous universe solutions, 
because relaxed equations at the leading order of gradient expansion are 
identical to the equations governing the background homogeneous (but 
not isotropic) universe. 

Important remark) Gauge invariant variables are not enough to give the 
initial conditions for the super-horizon dynamics in general. To give a 
complete initial data, we need to solve the momentum constraint, which 
introduces singular behavior in the IR limit. However, we can use an 
approximation to set the generically existing decaying modes to zero. Then, 
the initial data can be locally obtained from gauge invariant perturbations. 
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We study the Bogomol’nyi-Prasad-Sommerfield (BPS) solutions of the asymptotically flat,

stationary microstate geometries with bi-axisymmetry and reflection symmetry in the five-

dimensional ungauged minimal supergravity. We show that the angular momenta of the

microstate geometry with a small number of centers (at least, five centers) have lower bounds,

which are slightly smaller than those of the maximally spinning BMPV black hole. Therefore,

there exists a certain narrow parameter region such that the microstate geometry with a small

number of the centers admits the same angular momenta as the BMPV black hole. Moreover,

we investigate the dependence of the topological structure of the evanescent ergosurfaces on

the magnetic fluxes through the 2-circles between two centers.

PACS numbers: 04.50.+h 04.70.Bw

I. INTRODUCTION

The microstate geometries [1–14] are smooth horizonless solutions in the bosonic sector of

supergravity which have the same asymptotic structure as a given black hole or a black ring. So

far, these solutions have been constructed and thought of as one of ways to resolve the problem of

black hole information loss. This idea to describe black hole microstates by horizonless geometries

originated from the works on fuzzballs of Mathur [15–17]. The existence of such solutions itself

should be surprising because of the earlier results [18–21] on “No-Go” which exclude completely

smooth soliton solutions which are regular in four spacetime dimensions. In five dimensional

supergravity, the conclusion of the no-go theorem can be evaded because the spacetime admits the

spatial cross sections with non-trivial second homology and the Chern-Simons interactions.

Therefore, despite the absence of horizons, the microstate geometries should closely approximate

the geometries of black holes and need to describe all phenomenon which could occur in black hole

spacetimes, such as the gravitational lens effect and gravitational wave radiation. However, the

analysis is not still sufficient to say that such microstate geometries well describes black hole

∗Electronic address: tomizawa@toyota-ti.ac.jp
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physics. From this point of view, it is an important issue to probe what extent asymptotically

flat microstate geometries possess the classical features of stationary black holes with the same

asymptotic structure. There are many ways to probe physical aspects of such microstate geometries.

A natural and simple way is to investigate whether these spacetimes can carry the same asymptotic

charges, the mass and angular momenta, as rotating black holes [22–24], rotating black rings [25–

28] and rotating black lenses [29–33] in the same theory. If not so, such spacetimes cannot be

regarded as the description of these black objects. For instance, as proved mathematically in [34],

there are no asymptotically static microstate geometries in higher dimensional Einstein-Maxwell

theory, which implies that any static black hole cannot be described by the soliton solutions. In

particular, it is well known that there exist the microstate geometries corresponding to maximally-

spinning black holes and maximally-spinning black rings that have zero horizon area, which are

referred to“ zero-entropy microstate geometries” [37]. Moreover, using the merge of such zero-

entropy microstate geometries, Refs. [35, 36] constructed the first microstate geometries with the

same charges as black holes and black rings which have nonzero horizon area. In general, it is,

however, not known how to construct the microstate geometries that correspond to black holes and

black rings with non-zero horizon area without introducing the merger of zero-entropy microstate

geometries.

The main purpose of this paper is to investigate whether there exist the microstate geometries

in five dimension having the same asymptotic charges (mass and angular momenta) as the black

hole, without using zero-entropy microstate geometries and by merely imposing a simple symme-

try. In this paper, based on the work developed by Gauntlett et al. [38] in the framework of the

five-dimensional minimal ungauged supergravity, we consider asymptotically flat, stationary and

bi-axisymmetric BPS microstate geometries with n centers on the z-axis of the Gibbons-Hawking

space. In addition, we impose reflection symmetry, which means the invariance under the trans-

formation z → −z, on the solution since such an assumption dramatically simplifies the constraint

equations for the parameters included in the solutions, a so-called“ bubble equations”, and this

enables us to solve the constraint equations for the parameters. It can be shown that under the

symmetry assumptions, the geometry has equal angular momenta. It is of physical interest to com-

pare the mass and angular momenta of the Breckenridge-Myers-Peet-Vafa (BMPV) solution [24]

since it describes a spinning black hole with equal angular momenta in the same theory. We will

show that asymptotically flat, stationary, bi-axisymmetric and reflection-symmetric microstate ge-

ometries (at least, for five centers) can have the same mass and angular momenta as the BMPV
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black hole.

The rest of the paper is organized as follows: In the following Sec. II, we review the BPS

solutions of the microstate geometries in the five-dimensional minimal supergravity. In Sec. III,

we compute the mass, angular momenta and magnetic fluxes through the bubbles, and show the

existence of evanescent ergosurfaces. In Sec. IV, imposing reflection symmetry, we simplify the

solution and the bubble equations and thereafter show numerically that the microstate geometries

have the same angular momentum as the BMPV black hole. In Sec. V, we summarize our results

and discuss possible generalizations of our analysis.

II. MICROSTATE GEOMETRY

A. Solutions

First, we begin with supersymmetric solutions in the five-dimensional minimal ungauged su-

pergravity [38], whose bosonic Lagrangian consists of the Einstein-Maxwell theory with a Chern-

Simons term. In this theory, the metric and the gauge potential of Maxwell field for the supersym-

metric solutions take the form:

ds2 = −f2(dt+ ω)2 + f−1ds2M , (1)

A =

√
3

2

[
f(dt+ ω)− K

H
(dψ + χ)− ξ

]
. (2)

Here, the four-dimensional metric ds2M is the metric of an arbitrary hyper-Kähler space, where we

use the Gibbons-Hawking space metric [39] which is written as

ds2M = H−1(dψ + χ)2 +Hds2E3 , (3)

ds2E3 = dx2 + dy2 + dz2, (4)

H =
n∑
i=1

hi
ri
, (5)

with

ri : = |r − ri| =
√
(x− xi)2 + (y − yi)2 + (z − zi)2, (6)

r : = (x, y, z), (7)

ri : = (xi, yi, zi), (8)

The function H in Eq.(5) is a harmonic function with n point sources (n centers) on three-

dimensional Euclid space E3, and the 1-form χ on E3 is determined by

∗dχ = dH, (9)
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where the Hodge dual ∗ is associated with E3. χ can be written as

χ =

n∑
i=1

hiω̃i, (10)

where the 1-form ω̃i on E3, which is defined by

∗dω̃i = d(1/ri), (11)

can be written as

ω̃i =
z − zi
ri

(x− xi)dy − (y − yi)dx

(x− xi)2 + (y − yi)2
. (12)

The vectors ∂/∂t and ∂/∂ψ are commuting Killing vector fields. The Gibbons-Hawking metric (3)

is preserved under the scaling transformation H → λ2H, χ → λ2χ, ψ → λψ and xi → λ−1xi,

which enables us to fix the period of the coordinate ψ as 0 ≤ ψ < 4π. These Gibbons-Hawking

spaces are nontrivial U(1) fibration over a flat space E3 and the unique class of four-dimensional

hyper-Kähler metric with tri-holomorphic isometry.

The function f−1 and the 1-forms (ω, ξ) are given by

f−1 = H−1K2 + L, (13)

ω = ωψ(dψ + χ) + ω̂, (14)

ωψ = H−2K3 +
3

2
H−1KL+M, (15)

where the functions K, L and M are harmonic functions on E3,

K =
n∑
i=1

ki
ri
, (16)

L = l0 +

n∑
i=1

li
ri
, (17)

M = m0 +

n∑
i=1

mi

ri
, (18)

The 1-forms ω̂ are ξ are determined by

∗dω̂ = HdM −MdH +
3

2
(KdL− LdK), (19)

∗dξ = −dK, (20)

and take the forms

ω̂ =
n∑

i,j=1(i ̸=j)

(
himj +

3

2
kilj

)
ω̂ij −

n∑
i=1

(
m0hi +

3

2
l0ki

)
ω̃i, (21)

ξ = −
n∑
i=1

kiω̃i, (22)
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where the 1-form ω̂ij (i ̸= j) on E3, which is determined by

∗dω̂ij = (1/ri)d(1/rj)− (1/rj)d(1/ri), (23)

can be written as

ω̂ij = −(r − ri) · (r − rj)

rirj

[
(ri − rj)× (r − ri+rj

2 )
]
k
dxk∣∣∣(ri − rj)× (r − ri+rj

2 )
∣∣∣2 . (24)

In this paper, we set ri = (0, 0, zi) (i = 1, . . . , n), by which x∂/∂y−y∂/∂x becomes another U(1)

Killing vector field, and assume zi < zj for i < j (i, j = 1, . . . , n) without loss of generality. In terms

of standard spherical coordinates (r, θ, ϕ) such that (x, y, z) = (r sin θ cosϕ, r sin θ sinϕ, r cos θ), the

1-forms ω̃i and ω̂ij are simplified as

ω̃i =
r cos θ − zi

ri
dϕ, (25)

ω̂ij =
r2 − (zi + zj)r cos θ + zizj

zjirirj
dϕ, zji := zj − zi. (26)

and so the 1-form ω̂ can be written as

ω̂ =

[ n∑
i,j=1

(
himj +

3

2
kilj

)
r2 − (zi + zj)r cos θ + zizj

zjirirj

−
n∑
i=1

(
m0hi +

3

2
l0ki

)
r cos θ − zi

ri
+ c

]
dϕ, (27)

where we have added the integration constant c since ω̂ is determined by only the derivatives in

Eq. (19).

B. Boundary conditions

As the detail is reviewed in [10, 40], in order that the supersymmetric solution describes the BPS

microstate geometry solution of physical interest, we must impose suitable boundary conditions (i)

at infinity, (ii) at the Gibbon-Hawking centers r = ri (i = 1, ..., n) and (iii) on the z-axis x = y = 0

of E3 in the Gibbons-Hawking space. More precisely, we consider the following boundary conditions:

(i) at infinity r → ∞, the spacetime is asymptotically Minkowski spacetime.

(ii) at the n centers r = ri (i = 1, ..., n) such that each harmonic function diverges, the space-

time is regular, and behaves as the coordinate singularities like the origin of the Minkowski

spacetime. The spacetime admits no causal pathology such as closed timelike curve (CTCs)

around these points.
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(iii) on the z-axis I = {(x, y, z) | x = y = 0} of E3 in the Gibbons-Hawking space, there appear

no Dirac-Misner strings, no orbifold singularities and no conical singularities.

1. Infinity

The asymptotic flatness demands that at infinity r → ∞, the functions (f−1, H), the 1-forms

(χ, ω) behave as, respectively,

f−1 ≃ 1, (28)

H ≃ 1

r
, (29)

ω ≃ 0, (30)

χ ≃ ± cos θdϕ, (31)

which ensure that in terms of the radial coordinate ρ = 2
√
r, and at r → ∞ (ρ → ∞) the metric

is indeed approximated as

ds2 ≃ −dt2 + dρ2 +
ρ2

4

[
(dψ + cos θdϕ)2 + dθ2 + sin2 θdϕ2

]
. (32)

This is the metric of five-dimensional Minkowski spacetime where the metric on S3 is written in

terms of Euler angles (ψ, ϕ, θ), whose ranges must be 0 ≤ θ ≤ π, 0 ≤ ϕ < 2π and 0 ≤ ψ < 4π with

the identification ϕ ∼ ϕ+ 2π and ψ ∼ ψ + 4π.

At infinity r → ∞, the metric functions f and H behave, respectively, as

f−1 ≃ l0 +

(∑
i

ki

)2

+
∑
i

li

(∑
i

hi

)−1

r−1, (33)

H ≃

(∑
i

hi

)
r−1. (34)

Since for r → ∞, the metric function ωψ and the 1-forms (ω̃i, ω̂ij) behave as, respectively,

ωψ ≃ m0 +
3

2
l0

(∑
i

hi

)−1∑
i

ki, (35)

ω̃i ≃ cos θdϕ, (36)

ω̂ij ≃ dϕ

zji
, (37)
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the 1-forms χ and ω are approximated by

χ =
∑
i

hiω̂i ≃
∑
i

hi cos θdϕ, (38)

ω ≃

(
m0 +

3

2
l0
∑
i

ki

)
(dψ + cos θdϕ)−

∑
i

(
m0hi +

3

2
l0ki

)
cos θdϕ

+

 ∑
i,j(i ̸=j)

himj +
3
2kilj

zji
+ c

 dϕ. (39)

Thus, in comparison with Eqs. (28)-(31) and Eqs. (33), (34),(38), (39), the parameters must satisfy

the following constraints

l0 = 1, (40)
n∑
i=1

hi = 1, (41)

m0 = −3

2
l0

n∑
i=1

ki, (42)

c = −
n∑

i,j=1(i ̸=j)

himj +
3
2kilj

zji
. (43)

2. Gibbons-Hawking centers

The metric obviously has divergence at the points r = ri (n = 1, ..., n) on the Gibbons-Hawking

space. We hence impose the boundary conditions at the points r = ri (n = 1, ..., n) so that these

become regular points like the origin of Minkowski spacetime:

ds2 ≃ −dt′2 +
[
dρ2 +

ρ2

4

{
(dψ′ ± cos θdϕ′)2 + dθ2 + sin2 θdϕ′2

}]
. (44)

Let us choose the coordinates (x, y, z) on E3 of the Gibbons-Hawking space so that the ith point

r = ri is an origin of E3. Near the origin r = 0, the four harmonic functions H, K, L and M

behave as, respectively,

H ≃ hi
r

+
∑
j( ̸=i)

hj
|zji|

, K ≃ ki
r
+
∑
j(̸=i)

kj
|zji|

, (45)

L ≃ li
r
+ 1 +

∑
j(̸=i)

lj
|zji|

, M ≃ mi

r
+m0 +

∑
j(̸=i)

mj

|zji|
, (46)

which lead to

f−1 ≃
k2i h

−1
i + li
r

+ c1(i), (47)

ωψ ≃
k3i h

−2
i + 3

2kilih
−1
i +mi

r
+ c2(i), (48)
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where the constants c1(i) and c2(i) are defined by

hic1(i) := hil0 +

n∑
j=1(j ̸=i)

2h2i kikj − hik
2
i hj + h3i lj

|zij |h2i

= hi +

n∑
j=1(j ̸=i)

2kikj − hik
2
i hj − hihjk

2
j

|zij |
, (49)

hic2(i) := him0 +
3

2
kil0 +

n∑
j=1(j ̸=i)

−2k3i hj + 3hik
2
i kj + 3h2i kilj + 2h3imj

2|zij |h2i

= him0 +
3

2
ki +

n∑
j=1(j ̸=i)

−2mihj − 3likj + 3kilj + 2himj

2|zij |
, (50)

where we have used h2i = 1 (hi = ±1 will be imposed below. See Eq. (65)) in the second equalities

of Eqs.(49) and (50). The 1-forms ω̃j and ω̂kj are approximated by

ω̃i ≃ cos θdϕ, ω̃j ≃ − zji
|zji|

dϕ (j ̸= i), (51)

ω̂ij ≃ −cos θ

|zji|
dϕ (i ̸= j), ω̂kj ≃

zjizki
|zjizki|zjk

dϕ (k ̸= j, k, j ̸= i), (52)

and hence, 1-forms χ and ω̂ behave as

χ ≃
(
hi cos θ + χ0(i)

)
dϕ , ω̂ ≃ (ω̂1(i) cos θ + ω̂0(i))dϕ , (53)

where

χ0(i) := −
∑
j(̸=i)

hjzji
|zji|

, (54)

ω̂0(i) :=
∑

k,j(̸=i,k ̸=j)

(
hkmj +

3

2
kklj

)
zjizki

|zjizki|zjk
+
∑
j(̸=i)

(
m0hj +

3

2
kj

)
zji
|zji|

+ c , (55)

ω̂1(i) := −
∑
j(̸=i)

(
himj − hjmi +

3

2
(kilj − kjli)

)
1

|zji|
−
(
m0hi +

3

2
ki

)
. (56)

One therefore obtains the asymptotic behavior of the metric around the ith point as

ds2 ≃ −
(
k2i h

−1
i + li
r

+ c1(i)

)−2 [
dt+

(
k3i h

−2
i + 3

2kilih
−1
i +mi

r
+ c2(i)

){
dψ + (hi cos θ + χ0(i))dϕ

}
+(ω̂1(i) cos θ + ω̂0(i))dϕ

]2
+

(
k2i h

−1
i + li
r

+ c1(i)

)
r

hi

×
[{
dψ + (hi cos θ + χ0(i))dϕ

}2
+ h2i

(
dr2

r2
+ dθ2 + sin2 θdϕ2

)]
. (57)

To remove the divergence of the metric, it is sufficient to impose the following conditions on the

parameters (ki, li,mi) (i = 1, ..., n):

k2i + hili = 0, (58)

k3i h
−2
i +

3

2
kilih

−1
i +mi = 0, (59)
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which are equivalent to the condition for the parameters (li,mi),

li = −k
2
i

hi
, (60)

mi =
k3i
2h2i

, (61)

and these yield the equation

hic2(i) = −ω̂1(i). (62)

Introducing the new coordinates (ρ, ψ′, ϕ′) by

ρ = 2
√
h−1
i c1(i)r, ψ′ = ψ + χ0(i)ϕ, ϕ′ = ϕ , (63)

we can write the metric near r = ri as

ds2 ≃ −c−2
1(i)d[t+ c2(i)ψ

′ + ω̂0(i)ϕ
′]2 +

[
dρ2 +

ρ2

4

{
(dψ′ + hi cos θdϕ

′)2 + dθ2 + sin2 θdϕ′2
}]

. (64)

Comparing the (ϕ′, ψ′)-part of the above metric (64) with the boundary condition (44), we must

impose for each hi (i = 1, . . . , n)

hi = ±1. (65)

To ensure the five-dimensional metric with Lorentzian signature, the following inequities must

be satisfied

h−1
i c1(i) = hi +

n∑
j=1(j ̸=i)

2kikj + lihj + hilj
|zij |

> 0 (i = 1, . . . , n). (66)

The above metric (64) is locally isometric to the flat metric, but CTCs necessarily appear near

ρ ≃ 0 because the Killing vector ∂/∂ψ′ = ∂/∂ψ becomes timelike. To avoid the existence of

CTCs around ri (i = 1, . . . , n), c2(i) = 0 and ω0(i) = 0 must be simultaneously satisfied at r = ri

(i = 1, ..., n) but it is sufficient to impose only c2(i) = 0, which can be written as

0 = hic2(i)

= him0 +
3

2
ki +

n∑
j=1(j ̸=i)

himj −mihj − 3
2(likj − kilj)

|zij |

= him0 +
3

2
ki +

n∑
j=1(j ̸=i)

(hikj − hjki)
3

2|zij |
. (67)

These equations are so-called “bubble equations” in Refs. [9, 41], which physically means the

balance between the gravitational attraction and the repulsion by the magnetic fluxes over the
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2-cycles. Moreover, let us note that ω̂0(i) = 0 automatically hold for all i = 1, ..., n, if we impose

(67) since from Eqs. (60) and (61), ω̂0(i) can be shown to vanish,

ω̂0(i) =
∑

k,j(k,j ̸=i,k ̸=j)

(
hkmj +

3

2
kklj

)
zjizki

|zjizki|zjk
+
∑
j(̸=i)

(
m0hj +

3

2
kj

)
zji
|zji|

−
∑

k,j(j ̸=k)

hkmj +
3
2kklj

zjk

=
∑

k,j(k,j ̸=i,k ̸=j)

(hkkj − hjkk)
3

4zjk

zjizki
|zjizki|

+
∑

k,j(j ̸=i,k ̸=j)

(hkkj − hjkk)
3

2|zjk|
zji
|zji|

−
∑

k,j(k ̸=j)

(hkkj − hjkk)
3

4zjk

= 0, (68)

where we have used Eq. (67) for the 2nd term in the right-hand side of the first equality, and the

last equality can be shown by long but simple computations.

Furthermore, the n bubble equations c2(i) = 0 (i = 1, . . . , n) are not independent because the

summation of hic2(i) (i = 1, . . . , n) automatically vanishes, regardless of the bubble equations, as

n∑
i=1

hic2(i) =
n∑
i=1

him0 +
3

2

n∑
i=1

ki

+
n∑
i=1

n∑
j=1(j ̸=i)

himj −mihj − 3
2(likj − kilj)

|zij |

=

n∑
i=1

n∑
j=1(j ̸=i)

(hikj − hjki)
3

2|zij |

= 0, (69)

where we have used Eqs. (40) and (42) in the second equality and the antisymmetry for i and j in

the last summation. Thus, the bubble equations hic2(i) = 0 (i = 1, . . . , n) give (n− 1) independent

constraint equations for the parameters (ki, zi) (i = 1, . . . , n).

3. Axis

The z-axis of E3 (i.e., x = y = 0) in the Gibbons-Hawking space consists of the (n+1) intervals:

I− = {(x, y, z)|x = y = 0, z < z1}, Ii = {(x, y, z)|x = y = 0, zi < z < zi+1} (i = 1, ..., n − 1) and

I+ = {(x, y, z)|x = y = 0, z > zn}. On the z-axis, the 1-forms ω̂ij and ω̃i are, respectively,

simplified to

ω̂ij =
(z − zi)(z − zj)

zji|z − zi||z − zj |
dϕ, ω̃i =

z − zi
|z − zi|

dϕ. (70)
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In particular, on I±, ω̂ij and ω̃i become, respectively,

ω̂ij =
1

zji
dϕ, ω̃i = ±dϕ. (71)

Hence, on I±, ω̂ = ω̂ϕdϕ vanishes since

ω̂ =
∑

k,j(k ̸=j)

(
hkmj +

3

2
kklj

)
ω̂kj −

∑
j

(
m0hj +

3

2
kj

)
ω̂j + cdϕ

=
∑

k,j(k ̸=j)

(
hkmj +

3

2
kklj

)
dϕ

zjk
∓
∑
j

(
m0hj +

3

2
kj

)
dϕ−

∑
k,j(k ̸=j)

(
hkmj +

3

2
kklj

)
dϕ

zjk

= ∓
∑
j

(
m0hj +

3

2
kj

)
dϕ

= ∓

m0 +
3

2

∑
j

kj

 dϕ

= 0, (72)

where we have used Eq. (42) in the last equality.

On z ∈ Ii (i = 1, ..., n− 1), the 1-forms ω̂ij and ω̂j are written as

ω̂kj =
zikzij

zjk|zikzij |
dϕ (k, j ̸= i), ω̂ij = − 1

|zij |
dϕ (j ̸= i) (73)

ω̃j =
zij
|zij |

dϕ (j ̸= i), ω̃i = dϕ, (74)

and therefore,

ω̂ϕ − ω̂0(i) = −
∑
j(j ̸=i)

himj − hjmi +
3
2(kilj − kjli)

zji
−
(
m0hi +

3

2
ki

)
= hic2(i)

= 0, (75)

where we have used Eq. (67) and (68). Thus, we can show that ω̂ = 0 also holds on Ii for

i = 1, ..., n−1. We therefore conclude that ω̂ = 0 holds at each interval I± and Ii (i = 1, . . . , n−1).

This means that there are no Dirac-Misner strings in the spacetime, which can be obtained as the

result of the bubble equations (67) (see [10, 41]).

Next, we show the absence of orbifold singularities. On the intervals I±, the 1-form χ becomes

χ = ±dϕ, (76)
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and on the intervals Ii (i = 1, . . . , n− 1), it takes the form

χ =

 i∑
j=1

hj
z − zj
|z − zj |

+

n∑
j=i+1

hj
z − zj
|z − zj |

 dϕ

=

 i∑
j=1

hj −
n∑

j=i+1

hj

 dϕ. (77)

The two-dimensional (ϕ, ψ)-part of the metric on the intervals I± and Ii can be written in the form

ds22 = (−f2ω2
ψ + f−1H−1)(dψ + χϕdϕ)

2. (78)

Here let us use the coordinate basis vectors (∂ϕ1 , ∂ϕ2) with 2π periodicity, instead of (∂ϕ, ∂ψ), where

the coordinates ϕ1 and ϕ2 are defined by ϕ1 := (ψ + ϕ)/2 and ϕ2 := (ψ − ϕ)/2. It can be shown

from (78) that the Killing vector v := ∂ϕ − χϕ∂ψ vanishes on each interval. Indeed we can show

1. on the interval I−, the Killing vector v− := ∂ϕ + ∂ψ = ∂ϕ1 vanishes,

2. on each interval Ii (i = 1, ..., n− 1), the Killing vector

vi := ∂ϕ − χϕ
∣∣
Ii
∂ψ (79)

=
1− χϕ

∣∣
Ii

2
∂ϕ1 −

1 + χϕ
∣∣
Ii

2
∂ϕ2 (80)

=
1

2

1−
i∑

j=1

hj +
n∑

j=i+1

hj

 ∂ϕ1 −
1

2

1 +
i∑

j=1

hj −
n∑

j=i+1

hj

 ∂ϕ2 (81)

=

 n∑
j=i+1

hj

 ∂ϕ1 −

 i∑
j=1

hj

 ∂ϕ2 (82)

vanishes, where we have used
∑

i hj = 1 in the last equation.

3. on the interval I+, the Killing vector v+ := ∂ϕ − ∂ψ = −∂ϕ2 vanishes.

From these, we can observe that the Killing vectors v±, vi on the intervals satisfy with

det (vT−, v
T
1 ) = h1, det (vTn−1, v

T
+) = −hn, (83)
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det (vTi−1, v
T
i ) = −

 n∑
j=i

hj

 i∑
j=1

hj

+

 n∑
j=i+1

hj

 i−1∑
j=1

hj


= −

 n∑
j=i

hj

 i∑
j=1

hj

+

 n∑
j=i

hj − hi

 i∑
j=1

hj − hi


= h2i −

 n∑
j=i

hj +
i∑

j=1

hj

hi

= h2i −

 n∑
j=i

hj + hi

hi

= −

 n∑
j=i

hj

hi

= −hi. (84)

Therefore, it turns out that |det (vT−, v
T
1 )| = |det (vTn−1, v

T
+)| = |det (vTi−1, v

T
i )| = 1 hold, which

means that there exist no orbifold singularities at adjacent intervals, as proved in Ref. [42].

C. Gauge freedom

As discussed in Ref. [43], the supersymmetric solutions have a gauge freedom, which means

that for the linear transformation for the harmonic functions H,K,L and M ,

K → K + λ̄H, L→ L− 2λ̄K − λ̄2H, M →M − 3

2
λ̄L+

3

2
λ̄2K +

1

2
λ̄3H, (85)

the metric and Maxwell field are invariant, where λ̄ is a constant. Indeed, it is easy to show that

under the transformation (85), (f, ωψ, χ) remain invariant, and the 1-form ξ changes as ξ → ξ− λ̄χ,

which merely corresponds to the gauge shift of A, A→ A+ λ̄dψ. Using this gauge transformation

and the appropriate choice of λ̄, one can set

km = 0, (86)

for a certain m (m = 1, . . . , n) because the coefficient of 1/rm in K changes km → km + λ̄hm.

Moreover, using the shift of z → z+const., one can set

zm = 0 (87)

for a certain m (m = 1, . . . , n).
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D. Parameter counting

The solution (1) and (2) includes the 4n+3 continuous parameters (ki, l0, li,m0,mi, zi, c) and the

n discrete parameters hi = ±1 (i = 1, . . . n). The conditions (40), (42), (43) (60), (61), (67) and the

gauge conditions (86), (87) reduce the number of independent continuous parameters from 4n+ 3

to n− 1, where the bubble equations (67) give not n but rather (n− 1) independent equations due

to the constraint equation (69), and the condition (41) reduces the number of independent discrete

parameters from n to n−1. Moreover, these parameters must be subject to the n inequalities (66).

It follows from the constraint equation (41) and the conditions (65) that the number n of

centers r = ri must be odd, and so in Sec. IV, we consider three centers and five centers as the

simplest nontrivial examples of the microstate geometries (the case n = 1 corresponds to Minkowski

spacetime).

III. PHYSICAL PROPERTIES

Under the appropriate boundary conditions mentioned in the previous section, let us investigate

some physical properties of the solutions.

A. Conserved quantities

To begin with, we consider conserved quantities of the microstate geometries. From the bound-

ary conditions at infinity (40)-(43), the ADM mass and two ADM angular momenta can be com-

puted as

M =

√
3

2
Q = 3π

(∑
i

ki

)2(∑
i

hi

)−1

+
∑
i

li

 , (88)

Jψ = π

(∑
i

ki

)3

+
∑
i

mi +
3

2

(∑
i

hi

)−1(∑
i

ki

)(∑
i

li

) , (89)

Jϕ =
3π

2

(∑
i

hi

)−1 [
−

(∑
i

ki

)(∑
i

hizi

)
+

(∑
i

kizi

)]
, (90)

where Q is the electric charge, which saturates the BPS bound [44].

Each interval Ii (i = 1, ..., n− 1), which is introduced in Sec. II B 3, denotes the bubble which is

topologically a two-dimensional sphere since the ψ-fiber of the Gibbons-Hawking space (3) collapses
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to zero at the centers z = zi and z = zi+1, and so along the interval, the fiber sweeps out two-

dimensional sphere. Since the Maxwell gauge field Aµ is obviously smooth on the bubbles, the

magnetic fluxes through Ii (i = 1, ..., n− 1) can be defined as

q[Ii] :=
1

4π

∫
Ii

F, (91)

which are computed as

q[Ii] = [−Aψ]
z=zi+1
z=zi =

√
3

2

(
ki
hi

− ki+1

hi+1

)
(i = 1, ..., n− 1). (92)

B. Evanescent ergosurface

The existence of ergoregions gives rise to strong instability due to a superradiant-triggered

mechanism in spite of the existence of the horizon [45, 46]. It was demonstrated that a certain

class of non-supersymmetric microstate geometries with ergoregion in type IIB supergravity are

unstable, which is a general feature of horizonless geometries with ergoregion [47]. The BPS

microstate geometries does not admit the presence of ergoregions but evanescent ergosurfaces [10,

48], which are defined as timelike hypersurfaces such that a stationary Killing vector field becomes

null there and timelike everywhere except there. Reference [49] proved that on such surfaces,

massless particles with zero energy (E = 0) relative to infinity move along stable trapped null

geodesics. Since this stably trapping leads to a classical non-linear instability of the spacetime [45,

49, 50], it is of physical importance to investigate the existence of evanescent ergosurfaces, which

exist at f = 0 which corresponds to

H =
n∑
i=1

hi
ri

= 0. (93)

For simplicity, let us consider the microstate geometries with reflection symmetry zm = −zn−m+1

and km = kn−m+1 (m = 1, . . . n). For the microstate geometries with three centers (n = 3) and

(h1, h2, h3) = (1,−1, 1), they intersect the z-axis at the points

F3(z) := |z||z − z3| − |z − z1||z − z3|+ |z||z − z1| = 0. (94)

It turns out from simple computations that F3(z) = 0 has no root on I± and a single root Ii (i =

1, 2). As seen FIG. 1, the evanescent ergosurfaces on the timeslice t =const. is the closed surface

surrounding the center r2 = (0, 0, 0), where we have introduced the radial coordinate by ρ =√
x2 + y2.



16

For the microstate geometry with five centers (n = 5) and (h1, h2, h3, h4, h5) = (1,−1, 1,−1, 1),

they intersect the z-axis at the points z satisfying F5(z) = 0, where F5(z) is written as

F5(z) : = |z + z2||z||z − z2||z − z1| − |z + z1||z||z − z2||z − z1|+ |z + z1||z + z2||z − z2||z − z1|

−|z + z1||z + z2||z||z − z1|+ |z + z1||z + z2||z||z − z2|. (95)

The roots of the equation F5(z) = 0 are determined by the ratio k2/k1 through the bubble equa-

tions (67). As seen in FIG. 2, for the small ratio 0 < k2/k1 ≪ 1, the intervals z21(z54) of I1 (I4) are

much larger the intervals z32(z43) of I2 (I3), whereas for the comparable ratio 1 ≲ k2/k1 ≲ 2, the

intervals z21(z54) also become comparable with z32(z43). This reason can be physically interpreted

as the result that the magnetic fluxes need to support the bubbles. More precisely, this is caused

by the force balance between a gravitational force that tend to contract the bubbles and a repulsive

force by the magnetic fluxes that tend to expand the bubbles. For k2/k1 ≪ 1, the magnetic flux

through I1 (I4) is much larger than one through I2 (I3) [|q[I1]| ≫ |q[I2]| (|q[I4]| ≫ |q[I3]|)], and so

the size of the bubble on I1 (I4) is larger than I2 (I3), whereas for k2/k1 ≃ 2, two magnetic fluxes

are comparable [|q[I1]| ≃ |q[I2]| (|q[I4]| ≃ |q[I3]|)], and hence the size of the bubbles also becomes

comparable. For k2/k1 ≪ 1, the evanescent ergosurface exists as a common surface surrounding

three centers r = ri = (0, 0, zi) (i = 2, 3, 4), for k2/k1 ≃ 1, another ergosurface appears as the

surface surrounding the center r = r3 = (0, 0, z3), whereas for k2/k1 ≃ 2, two ergosurfaces combine

into one, and thereafter separates into two parts.

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

0

1

2

3

ρ

z

FIG. 1: Evanescent ergosurface in the microstate geometry for n = 3 in the (ρ, z)-plane: The black points

corresponds to three centers that are located at r1, r2 and r3 on the z-axis, and the red curve denotes an

evanescent ergosurface, which surrounds a center at r2 = (0, 0) but does not other two centers r1 = (0,−2)

and r3 = (0, 2).
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FIG. 2: Evanescent ergosurfaces in the microstate geometry with five centers in the (ρ, z)-plane for k3 =

0, k4 = k2, k5 = k1, z3 = 0, z4 = −z2, z5 = −z1: The upper and lower figures correspond to the ratios

k2/k1 = 0.1, 0.6, 0.9, and k2/k1 = 1.1, 1.9, 2.0, respectively, from left to right. The black points correspond

to the five centers that are located at ri (i = 1, . . . , 5) on the z-axis, and the red curves denote the evanescent

ergosurfaces, whose shapes depend on k1 and k2.

IV. MICROSTATE GEOMETRIES WITH REFLECTION SYMMETRY

In Sec. II, we have considered the stationary and bi-axisymmetric microstate geometries with n

centers on the z-axis of the Gibbons-Hawking space which satisfy the bubble equations (67). The

nasty constraint equations (for the parameters included in the solutions) make it difficult for us to

understand the physical properties. In this section, in addition to such symmetry assumptions, we

impose a further reflection symmetry on the solutions:

zm = −zn−m+1, km = kn−m+1 (m = 1, . . . n), (96)

which means the invariance of the solutions under the transformation z → −z. This additional

assumption extremely simplifies the bubble equations so that one can solve them and express

zi (1, . . . , n) in terms of ki (i = 1, . . . , n), at least, for small n. In particular, it is easy to show

from Eq. (90) that the angular momentum Jϕ always vanishes under the additional symmetry
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assumption. In this section, for simplicity, let us consider only two cases of n = 3 and n = 5.

A. Three-center solution

First, let us consider the solution with three centers (n = 3) and (h1, h2, h3) = (1,−1, 1) that

describes the simplest asymptotically flat, stationary and bi-axisymmetric microstate geometry,

which has the four parameters (k1, k3, z1, z3), where we have set k2 = 0 and z2 = 0 from the two

gauge conditions (86) and (87). Moreover, under the assumption of the reflection symmetry

z3 = −z1 =: a (> 0), k3 = k1, (97)

the bubble equations (67) are simply written as

c2(1) = −1

2
c2(2) = c2(3) =

k1[k
2
1 − 3a]

2a
= 0, (98)

which imply

k1 = 0, (99)

a =
k21
3
. (100)

It is obvious that in the former case hic1(i) = 0 (i = 1, 2, 3), and so the inequalities (66) cannot be

satisfied. In the meanwhile, in the latter case, the inequalities (66) can be automatically satisfied

because hic1(i) (i = 1, 2, 3) can be directly computed as

h1c1(1) = h3c1(3) = 4, h2c1(2) = 5. (101)

Therefore, for arbitrary nonzero k1, this describes a regular and causal solution of an asymptoti-

cally flat, stationary microstate geometry with the bi-axisymmetry and reflection symmetry. This

solution was previously analyzed in Ref. [10].

The z-axis of E3 in the Gibbons-Hawking space consists of the four intervals: I− = {(x, y, z)|x =

y = 0, z < z1}, Ii = {(x, y, z)|x = y = 0, zi < z < zi+1} (i = 1, 2) and I+ = {(x, y, z)|x = y =

0, z > z3}. From the result in Sec. II B 3, one can see

1. on I−, the Killing vector v− = ∂ϕ1 vanishes,

2. on I1, the Killing vector v1 =
(∑3

j=2 hj

)
∂ϕ1 − h1∂ϕ2 = −∂ϕ2 vanishes,

3. on I2, the Killing vector v2 = h3∂ϕ1 −
(∑2

j=1 hj

)
∂ϕ2 = ∂ϕ1 vanishes, and
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4. on I+, the Killing vector v+ = −∂ϕ2 vanishes.

Thus the rod structure of this three-center microstate geometry is displayed in Fig. 3.

FIG. 3: Rod structure for the microstate geometry with three centers and (h1, h2, h3) = (1,−1, 1).

Under the symmetric conditions (97) and gauge conditions k2 = 0, z2 = 0, the ADM mass and

two ADM angular momenta in Eqs. (88)-(90) are reduced to

M =

√
3

2
Q = 6πk21, (102)

Jψ = 3πk31, (103)

Jϕ = 0, (104)

and the magnetic fluxes in Eq. (92) are written as

q[I1] = −q[I2] =
√
3

2
k1. (105)

B. Five-center solution

Next, let us consider the stationary, bi-axisymmetric microstate geometry with five centers

(n = 5), which has the four parameters (k1, k2, z1, z2) under the reflection-symmetric conditions

k5 = k1, k4 = k2, z5 = −z1 =: a+ b, z4 = −z2 =: b (106)

and the gauge conditions k3 = 0, z3 = 0. Here, let us notice that for the five-center solu-

tions, there are two possible types of reflection-symmetric solutions, one with (h1, h2, h3, h4, h5) =

(1,−1, 1,−1, 1) and one with (h1, h2, h3, h4, h5) = (−1, 1, 1, 1,−1), but the latter numerically seems

not to satisfy the conditions (66). Thus, we here concentrate on only the former, in which case the

conditions (67) are simplified to give

2h1c2(1) = 2h5c2(5) = −3(k1 + 2k2)−
k31
a+ b

+
(k1 + k2)

3

a
+

(k1 + k2)
3

a+ 2b
= 0, (107)

2h2c2(2) = 2h4c2(4) = 3(2k1 + 3k2)−
k32
b

− (k1 + k2)
3

a
− (k1 + k2)

3

a+ 2b
= 0, (108)

h3c2(3) = −3(k1 + k2) +
k31
a+ b

+
k32
b

= 0, (109)
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where we note that Eqs. (107)-(109) are not independent due to the constraint equation∑5
i=1 hic2(1) = 2h1c2(1) + 2h2c2(2) + h3c2(3) = 0. Therefore, this solution has only two independent

parameters. If we regard a and b as the functions of k1 and k2 from Eqs. (107), (109), this solution

is a two-parameter family for (k1, k2).

Furthermore, the parameters k1 and k2 must satisfy the inequalities (66), which are reduced to

h1c1(1) = h5c1(5) = 1− k21
a+ b

+
(k1 + k2)

2

a
+

(k1 + k2)
2

a+ 2b
> 0, (110)

h2c1(2) = h4c1(4) = −1 +
k22
b

+
(k1 + k2)

2

a
+

(k1 + k2)
2

a+ 2b
> 0, (111)

h3c1(3) = 1− 2k21
a+ b

+
2k22
b

> 0, (112)

together with the inequalities

a > 0, b > 0. (113)

In the below, we assume k1 ̸= 0 and k2 ̸= 0 because from Eqs. (107) and (109), the case k1 = 0

leads to

(a, b) =

(
−1±

√
5

6
k22,

1

3
k22

)
, (114)

where only the solution with the positive sign can satisfy (110)-(113) and has j2 = 25/24, and

from Eqs. (107) -(109), the case k2 = 0 yields (a, b) = (k21/3, 0), which cannot satisfy one of the

inequalities (113). In what follows, we remove both cases of k1 = 0 and k2 = 0.

As shown in Fig.4, these inequalities are equivalent with

k2/k1 < −1, −0.2063... < k2/k1 < 0, k2/k1 > 0. (115)
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-2 -1 1 k2/k1
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Ai hic1 (i)/|hic1 (i)|

FIG. 4: The plots of Aihic1(i)/|hic1(i)| [i = 1, 2, 3, (A1, A2, A3) = (0.25, 0.5, 0.75)] for the microstate geom-

etry with five centers and (h1, h2, h3, h4, h5) = (1,−1, 1,−1, 1), where we set k1 = 1. The inequalities (110)-

(113) are simultaneously satisfied in the range k2/k1 < −1, −0.2063... < k2/k1 < 0, k2/k1 > 0, where all

graphs are positive. In particular, in the range −0.2063... < k2/k1 < 0, the solution to Eqs. (107)-(109) has

the two branches which have the same nonzero pair of (k1, k2) but two different positive pairs of (a, b). One

of two branches cannot satisfy the inequality (110).

The z-axis of E3 in the Gibbons-Hawking space consists of the six intervals: I− = {(x, y, z)|x =

y = 0, z < z1}, Ii = {(x, y, z)|x = y = 0, zi < z < zi+1} (i = 1, ..., 4) and I+ = {(x, y, z)|x = y =

0, z > z5}. Applying the result in Sec. II B 3 to this solution, one can see

1. on I−, the Killing vector v− = ∂ϕ1 vanishes,

2. on I1, the Killing vector v1 =
(∑5

j=2 hj

)
∂ϕ1 − h1∂ϕ2 = −∂ϕ2 vanishes,

3. on I2, the Killing vector v2 =
(∑5

j=3 hj

)
∂ϕ1 −

(∑2
j=1 hj

)
∂ϕ2 = ∂ϕ1 vanishes,

4. on I3, the Killing vector v3 =
(∑5

j=4 hj

)
∂ϕ1 −

(∑3
j=1 hj

)
∂ϕ2 = −∂ϕ2 vanishes,

5. on I4, the Killing vector v4 = h5∂ϕ1 −
(∑4

j=1 hj

)
∂ϕ2 = ∂ϕ1 vanishes, and

6. on I+, the Killing vector v+ = −∂ϕ2 vanishes,

Thus, it turns out that this five-center microstate geometry has the rod structure displayed in

Fig. 5.

For this solution, the ADM mass and two ADM angular momenta in Eqs. (88)-(90) are reduced
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to

M =

√
3

2
Q = 6π(k21 + 4k1k2 + 3k22), (116)

Jψ = 3π(k31 + 6k21k2 + 10k1k
2
2 + 5k32), (117)

Jϕ = 0, (118)

and the magnetic fluxes in Eq. (92) are written as

q[I1] = −q[I4] =
√
3

2
(k1 + k2), q[I2] = −q[I3] = −

√
3

2
k2. (119)

FIG. 5: Rod structure for the microstate geometry with five centers and (h1, h2, h3, h4, h5) = (1,−1, 1,−1, 1).

C. Comparison with BMPV black hole

Finally, we compare the BPS microstate geometries for n = 3 and n = 5 described in the

previous section with the rotating BPS black hole in the five-dimensional minimal supergravity,

i.e., the BMPV black hole [24], which carries mass (saturated the BPS bound) and equal angular

momenta (Jϕ = 0). For this purpose, let us define a dimensionless angular momentum by

j :=
3
√
3π|Jψ|
M3/2

. (120)

For the BMPV black hole, the dimensionless angular momentum j has the range of

0 ≤ j < 1, (121)

where j = 0 corresponds to the extremal Reissner-Nordstrom black hole. The absence of CTCs

around the horizon requires the upper bound, j = 1.

It is shown from Eqs. (102) and (103) that for n = 3, the squared angular momentum j2 takes

only the value of

j2 =
9

8
(> 1), (122)

which is a larger value than the upper bound for the BMPV black hole.
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Similarly, for n = 5, we evaluate the value of the squared angular momentum j2 from Eqs. (116)

and (117), where the ratio k2/k1 lies in the range (115). As seen in Fig. 6, The squared angular

momentum j2 asymptotically approaches 25/24 at k2/k1 → −∞. For k2/k1 < −1, j2 monotonically

increases and diverges at k2/k1 → −1, whereas for k2/k1 > −1, it has the lower bound 0.841...

at k2/k1 → −0.206..., where Eqs. (107)-(109) cannot be satisfied. Thereafter, it increases and

approaches 9/8 at k2/k1 → 0, for k2/k1 > 0 monotonically decreases and asymptotically approaches

25/24 at k2/k1 → ∞. Thus, because the squared angular momentum does not have an upper bound

but have the lower bound j2 = 0.841..., we find that it must run the range

j2 > 0.841... . (123)

From this analysis, we can conclude that the bi-axisymmetric and reflection-symmetric mi-

crostate geometry with five centers can have the angular momentum of the range 0.841... < j2 < 1

as the BMPV black hole, while the microstate geometry with three centers cannot have.

-2.5 -1 -0.2063 1.25 2.5k2/k1

1

2

3

4
j2

-0.2063 0 k2/k1
0.8417

1

25

24

9

8

j2

FIG. 6: The range of j2 for the asymptotically flat, stationary, bi-axisymemtric and reflection-symmemtic

microstate geometry with five centers (n = 5). The left figure shows the plots of j2, and the right figure the

close-up region of −0.206.... < k2/k1 < 0 in the left figure.

V. SUMMARY AND DISCUSSIONS

In this paper, we have analyzed the solutions of the asymptotically flat, stationary, BPS mi-

crostate geometries with bi-axisymmetry in the five-dimensional minimal supergravity. Moreover,

we have imposed additional reflection symmetry since this symmetry assumption extremely sim-

plifies the expression of the solutions and enables us to solve the bubble equations. We have also

computed the conserved charges, the ADM mass, two ADM angular momenta, and (n−1) magnetic
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fluxes through the bubbles between two centers. In particular, we have compared the mass and

angular momenta for the three-center solution and the five-center solution of microstate geometries

with those of the BMPV black hole. We have shown that the dimensionless angular momentum of

the five-center microstate geometry does not have the upper bound but has the lower bound which

is smaller than the angular momentum for the maximally spinning BMPV black hole, and hence

there are the parameter region such that the microstate geometry has the same angular momentum

as the BMPV black hole.

In our present analysis, we have restricted ourselves to the reflection-symmetric microstate ge-

ometries for n = 3 and n = 5, but it is not trivial whether there exist the reflection-symmetric

solutions with a larger number of centers (n = 7, 9, . . .) which admit the same mass and angular

momentum as the BMPV black hole or the microstate geometries for n = 3, 5. The bi-axisymmetric

and reflection-symmetric microstate geometry with n centers seems to have (n+3)/2 independent

physical charges or fluxes [the massM , the angular momentum Jψ or the (n−1)/2 magnetic fluxes

q[Ii] (i = 1, . . . , (n− 1)/2)], among which only (n− 1)/2 are independent since the number of the

parameters reduces to half due to reflection symmetry. The analysis for such microstate geometries

with n ≥ 7 deserves future works. Moreover, it may be interesting to compare the five-center solu-

tion dealt with in this paper with the spherical black holes having a topologically nontrivial domain

of outer communication in Refs. [51, 52], which can have not only same asymptotic charges as the

BMPV black hole but also different ones. The solution without the reflection symmetry should

be compared with the supersymmetric black ring [27] and supersymmetric black lenses [29, 31, 32]

which does not admit the limit to equal angular momenta. This may be an interest issue as our

future study. Finally, we comment that the solutions of the five-dimensional minimal supergravity

can be uplifted to the solutions of both type IIB supergravity and eleven supergravity [53, 54],

and as discussed in Ref. [55], such solutions are relevant for the most general four-dimensional

superconformal field theories (SCFTs) with holographic duals. This enables one to study some

aspects of the dual strongly coupled thermal plasma with a non-zero R-charge chemical potential.

Therefore, it might be physically interesting to study the fluid-dynamics of the thermal plasma of

the SCFTs corresponding to the microstate geometries.
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A master hydrostatic equation for Newtonian stars 
in generic higher-curvature gravity

Abstract: We derive a sixth-order master equation for spherically symmetric hydrostatic configurations in the Newtonian limit 
of higher-curvature gravity that admits generic non-linear curvature corrections to the Lagrangian. We also demonstrate how 
the solutions to the master equation look like assuming constant density.

1. Introduction 
Generic higher-curvature gravity 




 : Ricci scalar,  : Weyl tensor,


 : gravitational constant,


 and  : positive constants 


• 8 gravitational dofs (2 tensor (massless) + 2 tensor, 2 vector, 2 
scalar (all massive)) on flat background [1]


Questions to answer 
• Is this theory astrophysically viable? What roles do the extra dofs 
play in stellar structure?


Strategy 
• Derive and solve a Lane−Emden-like master equation for 
hydrostatic equilibrium in the Newtonian limit


2. Scalar perturbations 
Variables 

Consider metric perturbations about Minkowski background 
sourced by minimally coupled stress-energy tensor  . Scalar 
variables to use are (in the Newtonian gauge)





with constraints  and  .


4th-order equations for gravitational potentials 
Hereafter, we will restrict ourselves to the static spherically 

symmetric configuration and Newtonian source with negligible 
pressure. The scalar linear perturbation equations from action (1) 
reduce to a set of decoupled 4th-order equations


 


where , ,  and  . By 

solving (2) for  and  , one can obtain  and  .


Einsteinian modes and higher-curvature modes 
The 4th-order equations (2) admit 4 independent solutions for  

and . By analogy with the findings in the study of gravitational waves 
[1], we can expect 2 of these are the massless solutions in GR 
(Einstein modes), while the remaining 2 are massive solutions arising 
genuinely from the higher-curvature corrections in (1) (high-curvature 
modes).


In fact, it is confirmed that the linear combination  , 
where  and  satisfy the Einsteinian (Poisson) and higher-
curvature (Helmholtz) equations


 


respectively, satisfies the  equation in (2). Likewise, it is obvious that 
 can be decomposed into  .


The Einstein modes  and  are identical. Interestingly and 
importantly, the sum of these Einstein modes recovers the correct 

Newton potential  (outside a star).


3. Hydrostatic equilibrium 
We then formulate a Lane−Emden-like equation that determines 

the stellar structure. The hydrostatic equilibrium equation is


  .


We adopt the polytropic equations of state,  . 
Differentiating both sides with respect to  and using (3) for the 
Einstein modes, one obtains


  .


Here,  and  involve formal integrals of the matter density . 
Applying  on both sides, performing change of 

variables  with  and , and re-

defining  and , we obtain


  .


This is our master equation for a Newtonian star in hydrostatic 
equilibrium in the generic higher-curvature gravity.


4. Solving the master equation 
As a preliminary analysis, we show the solutions for  .

We have noticed there are uncertainties in the boundary conditions 

at the stellar center. The boundary condition here is


5. Conclusion 
 A hydrostatic equilibrium equation (4) has been formulated as a 

6th-order differential equation using the same variables as in the 
Lane−Emden equation in GR.


Future work 
 Imposing boundary conditions at the center of the star seems 

more complicated than GR due to the higher-derivative nature of the 
equation (4). It cannot be found by just requiring the first derivative of 
the density to vanish.


 Extension to more realistic equations of state.
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Figure 1: Solutions for .n = 0

θ(0) = 1 ,
dkθ
dξk

(0) = 0 (1 ≤ k ≤ 5) .
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1. INTRODUCTION

2. JOINT FORMALISM

3. MODIFIED PBH ABUNDANCE

4. REQUIRED THRESHOLD

5. CONCLUSION

- Primordial black hole (PBH) from curvature/density perturbations, 
in the radiation-dominated Universe [1], is considered here. 

- Formation condition(s)

(1) Compaction function [2] must exceed its threshold: 

(2) Density perturbation must be ”peaked” at formation point [3]: 

We expect that by combining these conditions the PBH
abundance today would be evaluated more precisely.

- Conditional probability of multivariate Gaussian

- Two-point correlators: 10 + 3 ×(10 + 3) matrix

- Correlators with spherical symmetry assumed

- PBH abundance at formation time 
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where, according to numerical simulation, 
<latexit sha1_base64="e7zVaFzf03ieLZbZycRk+EKj7LI=">AAACrHicSyrIySwuMTC4ycjEzMLKxs7BycXNw8vHLyAoFFacX1qUnBqanJ+TXxSRlFicmpOZlxpaklmSkxpRUJSamJuUkxqelO0Mkg8vSy0qzszPCympLEiNzU1Mz8tMy0xOLAEKxQvIxlRkKsRk5inEFJZUaigY6JmamugoGOqZmJgpaCrECygb6BmAgQImwxDKUGaAgoB8gT0MMQwpDPkMyQylDLkMqQx5DCVAdg5DIkMxEEYzGDIYMBQAxWIZqoFiRUBWJlg+laGWgQuotxSoKhWoIhEomg0k04G8aKhoHpAPMrMYrDsZaEsOEBcBdSowqBpcNVhp8NnghMFqg5cGf3CaVQ02A+SWSiCdBNGbWhDP3yUR/J2grlwgXcKQgdCF180lDGkMFmC3ZgLdXgAWAfkiGaK/rGr652CrINVqNYNFBq+B7l9ocNPgMNAHeWVfkpcGpgbNxuOeAqArKoEyoNArBoUdMKoM0SMGkxFmpGdopmcSaKLs4ASNNA4GaQYlBg1gzJgzODB4MAQwhALNbGZYybCJYTOTHlMIUzRTLEQpEyNUjzADCmBKAwAtMJqU</latexit>

⇠ 2 (0.554, 1.446)

<latexit sha1_base64="lVZswh4Ubv8K4rsuwVOmo1c24BY=">AAADN3ichVHLahRBFL3dvvLQZNRNwE3hEIkiw50wqAgTgm5cTh6TBFJhqK6pzBTpV7prGsemf8AfyCIrBUHxCwR3bvwBF1m5E8WVRHDjwts9rZIEY3VX161zz7l9qq4Tujo2iAeWfebsufMXxsYnJi9empquXL6yFgeDSKq2DNwg2nBErFztq7bRxlUbYaSE57hq3dl5mOfXExXFOvBXzTBUW57o+XpbS2EI6lReck+YvhRu2spYk/FdM0wZ7yrXCDbHE+dWGmU3Gfd09ze6UAadlBv12KSmn2W3Gac3Z3NlRMa42h3ohPFeJP7omiMClmTZ18dogdGeio+KOB1GMmQZ61SqWMNisJNBvQyqUI5WUHkLHLoQgIQBeKDAB0OxCwJiejahDgghYVuQEhZRpIu8ggwmSDsgliKGIHSHvj3abZaoT/u8ZlyoJf3FpRmRksEsfsBXeIjv8TV+wZ//rJUWNXIvQ1qdkVaFnemnMys//qvyaDXQ/6s61bOBbbhXeNXkPSyQ/BRypE+e7B2u3F+eTW/gc/xK/p/hAb6jE/jJd/liSS3vn+InJBdDyuS3F+d3R62qH2/MyWBtvla/U2ssNaqLD8qmjcE1uA5z1Jm7sAiPoAVtkNaU1bCa1oL9xv5of7I/j6i2VWquwpFhf/sFT3TPTg==</latexit>

P = {�(r) | � > �th, ⌘ ⌘ r� = 0, � ⌘ r⌦r� � 0}

<latexit sha1_base64="K3WWw5O+bAFYCMVQAJOybCz2tUM="></latexit>

f(x | y) = 1p
(2⇡)3 det⌃x|y

exp


�1

2
t(�x)⌃�1

x|y(�x)

�

- Prepare the variables assumed to be Gaussian
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x ⌘ r⇣(r0), y ⌘ (�,⌘,�)(r)

Required that density perturbation is “peaked” at formation point

Under that, statistical behavior of the compaction function is considered
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auto-correlations of density perturbations (given in [3]) 
correlations between curvature/density perturbations 

auto-correlations of curvature perturbations
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h�(r)⌦r⇣(r0)i = O6⇥3

Under the spherical symmetry, the threshold and negative-
definite condition do not affect the behavior of the curvature
perturbation (, which might be carefully re-considered.)

Abstract: Several formation conditions have been proposed for realizing primordial black holes from the curvature and/or density perturbations in the 
early Universe. A joint formulation in which both conditions are combined under the conditional multivariate Gaussian distribution is presented here. 
The modified PBH abundance becomes smaller by some orders compared to the conventional prediction, as well as smaller thresholds are obtained.
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Integration of the conditional PDF over the region in which the condition 
on the compaction function is satisfied gives the initial PBH abundance.  

- A joint formalism, in which the compaction function & density 
perturbation conditions are both required, is proposed. 

- Consequently, smaller PBH abundance is predicted as well as 
smaller threshold bounds.

Lower threshold limits for each mass (and upper bounds of the 
amplitudes of perturbations) can be obtained by converting the 
observational upper bounds on the PBH abundance today. 
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The joint analysis here predicts smaller PBH abundance by 
some orders compared to that from previous formulations. 

Various estimation formulas are compared in the graph: Carr’s
original, Press-Schechter’s, peaks counting formulas, and the  
conditional method (based on the last one) presented here. 
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On constraint preservation for quasi-linear
first-order PDEs

Fernando Abalos

FaMAF-UNC, CIEM-CONICET, Córdoba, Argentina.

Abstract

We use partial differential equations (PDEs) to describe physical systems. In general, these equations include evolution and constraint equations. One method used to find solutions to these equations is the
Free-Evolution approach, which consists in obtaining the solutions of the entire system by solving only the evolution equations. Certainly, this is valid only when the chosen initial data satisfies the constraints and
the constraints are preserved in the evolution. We establish sufficient conditions that the PDEs have to satisfy to guarantee the constraint preservation. This is achieved by considering quasi-linear first-order
PDEs, assuming the sufficient conditions and deriving strongly hyperbolic first-order partial differential evolution equations for the constraints. We show that, in general, these constraint evolution equations
correspond to a family of equations parametrized by a set of free parameters.

Geometric formalism [1, 2, 3]

I Quasi-Linear First-Order systems:

EA := NAa
α (x , φ)∇aφ

α − JA (x , φ) = 0.

over a manifold M with dim M = n + 1

a → index space-time, A→ index equations, α→ index fields.
I Foliation: Let t : M → R and the hypersurfaces Σt0 = {p ∈ M | t (p) = t0}.

Locally M = (−T ,T )× ∪
t∈(−T ,T )

Σt .

. Adapted coordinates xa :=
(
t , x i

)
, i = 1, ..,n, with x i adapted to the Σt ’s.

. Definitions ta := (∂t)
a , na := ∇at =⇒ tana = 1

. Projector ηa
b := δa

b − tanb =⇒ ηa
btb = 0 = ηa

bna
. Initial value problem: To solve

EA =
(
NAc

αnc

)
tb∇bφ

α + NAc
α η

b
c∇bφ

α − JA = NA0
α∇0φ

α + NAi
α∇iφ

α − JA = 0 with initial data φ|Σ0
.

Where ta∇a = ∇0, and ηb
c∇b = ∇i has no derivatives in the tc direction since tcηb

c∇b = 0
. Condition 1: the system has not gauge freedoms or the gauge has been fixed,

NA0
α := NAc

αnc has maximal rank

I Geroch fields CΓa
A : CΓ(a

A N
|A|b)
α = 0

Γ→ index constraints.
. Condition 2: dim Γ + dimα = dim A
. Condition 3: CΓ0

A := CΓa
A nc has maximal rank

. Constraints

ψΓ:=naCΓa
A EA = CΓ0

A NA0
α∇tφ

α + CΓ0
A NAi

α∇iφ
α − CΓ0

A JA=CΓ0
A NAi

α∇iφ
α − CΓ0

A JA = 0

ψΓ are called constraints equations since they do not have time derivatives
I Evolution equations:

eα := hαAEA = ∇tφ
α + hαAN

Ai
β∇iφ

β − hαAJA = 0, (1)

where the tensor hαA is called reduction and it satisfies hαAN
A0
β = δαβ

. Evolution and Constraint equations:
[

eα

ψ∆

]
:=

[
hαA

C∆0
A

]
EA

[
hαA

C∆0
A

]
is invertible

[
NA0

α hA
∆

] [ hαB
C∆0

B

]
= NA0

αhαB + hA
∆C∆0

B = δA
B

I Geroch fields M∆̃a
A :

M∆̃(a
A N|A|b)

α = 0, M∆̃a
A NA0

α = 0 =⇒ M∆̃0
A = 0

∆̃→ numbers the M∆̃a
A fields

. Non unicity on Geroch fields

C̃Γa
A = CΓa

A + NΓ
∆̃

M∆̃a
A , with N∆̃ free, produces the same constraints ψ∆

I Integrability conditions: Off-shell identities (for any φα)

∇d

(
CΓd

A EA
)

= LΓ
1A (x , φ,∇φ) EA (x , φ,∇φ) , ∇d

(
M∆̃a

A hA
∆CΓ0

A EA
)

= L∆̃
2A (x , φ,∇φ) EA (x , φ,∇φ) .

Results [3]

I Theorem 1 : Assuming condition 1 to 4 and the integrability conditions, the followings off-shell identity
are satisfied

∇0ψ
Γ +
(

CΓi
A hA

∆ + NΓ
∆̃

M∆̃i
∆

)
∇iψ

∆ = +
(

LΓ
1AhA

∆ −∇d

(
CΓd

A hA
∆

)
+ NΓ

∆̃

(
L∆̃

2AhA
∆ −∇i

(
M∆̃i

∆

)))
ψ∆

+
(

LΓ
1AN

A0
α −∇d

(
CΓd

A NA0
α

))
eα − CΓd

A NA0
α∇deα, (2)

where NΓ
∆̃

can be freely chosen. Here M∆̃a
Γ := M∆̃a

A hA
Γ

. The Subsidiary family systems are obtained in the on-shell case eα (φ) = 0.

. If the system does not admit Geroch fields M∆̃a
A , then NΓ

∆̃
= 0, L∆̃

2A = 0. In these cases, the

Subsidiary System is unique.

Strong hyperbolicity

I Existence, Uniqueness and Continuity of solutions with respect to the initial data
I Principal symbol: In the constant coefficient case, the evolution equations

eα = ∂tφ
α + hαAN

Ai
β∂iφ

β − hαAJ̃A = 0

are strongly hyperbolics if hαA (ki)N
Ai
βki is diagonalizable with real eingenvalues. Here the reduction

hαA (k) can depend on the wave vector ki.
. We are looking for conditions under which the evolution equations (1) and (2) (with freezzing

coefficients) are strongly hyperbolic. Namely,

When are hαAN
Ai
βki and

(
CΓi

A hA
∆ + NΓ

∆̃
M∆̃i

∆

)
ki diagonalizable with real eingenvalues? (3)

Referencias

[1] Geroch, R.. ”Partial differential equations of physics.” General Relativity, Aberdeen, Scotland (1996): 19-60.
[2] Abalos, F. and Reula, O. “On necessary and sufficient conditions for strong hyperbolicity in systems with constraints.” Classical and Quantum
Gravity 37.18 (2020): 185012.
[3] Abalos, F. ”On constraint preservation and strong hyperbolicity.” arXiv preprint arXiv:2111.06295 (2021).

Kronecker decomposition of pencil matrices

I Principal symbol: Since NA0
η has not right kernel, there exist Y A

B (k), W α
η (k) invertible matrices, such

that
NAb

η l (λ)b = λ
(
−NA0

η

)
+
(
NAi

ηki

)
= Y A

B (k) K B
α (λ, k) W α

η (k) (4)

where l (λ)b = −λnb + kb and K B
α (λ, k) is a diagonal block matrix with the following three types of

blocks

Jm (λi) =


λ− λi 1 0 0

0 λ− λi ... 0
0 0 ... 1
0 0 0 λ− λi

 ∈ Cm×m, LT
m =



m︷ ︸︸ ︷
λ 0 0 0
1 λ 0 0
0 1 ... 0
0 0 ... λ

0 0 0 1


∈ Cm+1×m and vanishing rows

Results [3]

I Definitions: For each ki, we call

d (k) := dim
(

right ker
(

CΓ0
A NAi

αki

))
r (k) := rank

(
CΓ0

A NAi
αki

)
s (k) =: dim

(
left ker

(
CΓ0

A NAi
αki

))
I Lemma : Assuming that conditions 1 to 3 are satisfied, then the Kronecker decomposition of the

pencil −λNA0
α + NAi

αki has the following blocks

J, r (k)× LT
1 , s (k)× vanishing rows

where J is a d (k)× d (k) matrix that includes all the Jordan matrices of the pencil.

I Theorem 2 :There exist hαA (k), hA
∆ (k) and NΓ

∆̃
(k) such that condition (3) is satisfied if and only if

J = d (k)× J1 (λi).

Wave Equation

I Setting: Let gab∇b∇aφ = 0 over a space-time M with a Lorentzian metric gab.
. Definitions: na = ∇at , ñb := −Nna, N := 1√

−∇t .∇t =⇒ ñaña = −1

pa := (∂t)
a − βa, (∂t)

a na = 1, βana = 0, N lapse and βa shift
. Defining ub := ∇bφ, we reduce the equation to first order in derivatives

E := gab∇aub = 0 Eb := ∇bφ− ub = 0 Eab := ∇[aub] = 0

. Projector η̃a
b, over Σt : η̃a

b := δa
b − panb = δa

b + ñañb

. Projected variables: ũ0 := ñbub ũd := η̃dbub

I Evolution (ẽ) and constraint (ψ) equations

E = − 1
N ẽ1,

Ec = − 1
N ñcẽ2 + ψ1c

Eac = 1
N ẽ3[añc] + ψ2ac

ẽ1 := Lpũ0 − NDd ũd − N (ũwSw)− Nũ0K ,
ẽ2 := Lpφ− Nũ0,

ẽ3a := Lpũa − NDaũ0 − N
(
ũrKar + ũ0Sa

)
− NũfKfa,

ψ1c := Dfφ− ũf ,

ψ2ac := D[aũc].

I Principal symbol:
[

hαA
CΓ0

A

]
NAq

α∇q

 ũ0

φ

ũw

 =


Nñq 0 −N η̃qw

0 Nñq 0
−N η̃q

s 0 N η̃w
s ñq

0 η̃q
s 0

0 0 η̃
[q
s η̃

w ]
y

∇q

 ũ0

φ

ũw


. Kronecker decomposition of

[
hαA
CΓ0

A

]
NAq

α l (λ)q:

J1

(
N
√

k .k − β.k
)
, J1

(
−N
√

k .k − β.k
)
,3× LT

1 ,3× LT
0

It satisfies the conditions of theorem 2.
. hαAN

Ai
αki is diagonalizable with real eingenvalues

I Off-shell identities: 0 = ∇f

(
δ

[f
aδ

g]
b Eg

)
+ Eab, 0 = ∇c

(
δ

[c
f δ

a
gδ

b]
h Eab

)
. Namely,

∇d

(
CΓd

A EA
)

= −LΓ
1AEA ∇d




0 −η̃d
r 0 Nñd η̃w

r 0
0 0 η̃

[q
g η̃

d ]
h 0 Nñd η̃

[w
g η̃

y ]
h

0 0 0 η̃d
[sη̃

w
r ] 0

0 0 0 0 ñfε
fdabη̃w

a η̃
y
b




ẽ1

ẽ2

ẽ3q

ψ1w
ψ2wy



 ∝


ẽ1

ẽ2

ẽ3q

ψ1w
ψ2wy

 ,

. Subsidiary system (on-shell case ẽ1 = ẽ2 = ẽ3q = 0):

0 =


η̃q

c 0
0 η̃

g
s η̃

h
r

0 0
0 0

Lp

[
ψ1q
ψ2gh

]
+


0 0
0 0

η̃f
[sη̃

q
r ] 0

0 ñdε
dfgh

Df

[
ψ1q
ψ2gh

]
+


0 0
0 0
0 η̃

g
[sη̃

h
r ]

0 0


[
ψ1q
ψ2gh

]
.

(
CΓi

A hA
∆ + NΓ

∆̃
M∆̃i

∆

)
ki is diagonalizable with real eingenvalues for NΓ

∆̃
= 0⇒ constraint preservation

Conclusions

I In this work, we continue with the formalism proposed by Geroch for dealing with constraints. We give

explicit expressions for the evolution of these constraints and find conditions that guarantee their

strong hyperbolicity, and consequently, their preservation.

fernando.abalos@unc.edu.ar



Poster session

Minxi He

KEK

“Reheating Process in Mixed Higgs-R^2 Model”

[JGRG30 (2021) PA24]



RESEARCH POSTER PRESENTATION DESIGN © 2012 

www.PosterPresentations.com

Minxi He
Reheating Process in Mixed Higgs-  Model𝑅2

Introduction Tachyonic Preheating

MH, R. Jinno, K. Kamada, S. C. Park, A. A. Starobinsky, J. Yokoyama, PLB791 (2019) 36-42;  
MH, R. Jinno, K. Kamada, A. A. Starobinsky, J. Yokoyama, JCAP 01 (2021) 066; 
MH, JCAP 05 (2021) 021

Mixed Higgs-  Model𝑅2

Motivation:  
• Inevitable emergence of  due to quantum correction [1]  
• Combination of General Relativity and Standard Model of 
particle physics  

• Natural UV-extension of Higgs inflation: cutoff scale can 
be pushed up to Planck scale [2] 

• Effective single-field inflation (effective -inflation) and 
observationally favored  predictions with condition  

                         
                       .

𝑅2

𝑅2

𝑛𝑠 − 𝑟

The Higgs field and the NG mode can experience tachyonic instability with 
fine-tuned parameters, which can reheat the Universe within 1 e-fold. 

𝑚2
𝜃𝑐

= −
𝛼
2

𝜕𝑈
𝜕𝜑

+
𝑒𝛼𝜑

h
𝜕𝑈
𝜕h

−
3
4

𝑈
𝑀2

𝑝𝑙
+

5
24

1
𝑀2

𝑝𝑙
(𝜑̇2 + 𝑒−𝛼𝜑ḣ2)

Parameter spacePotential and trajectory The following equations are solved numerically.

𝜌𝜃𝑐
≃ 10−7( 𝜆

0.01 )
−2

( 𝐶𝑡

2 )
−4

𝑈𝑖𝑛𝑓 ≪ 𝑈𝑖𝑛𝑓

𝑆𝐽 = ∫ 𝑑4𝑥 −𝑔[
𝑀2

𝑝𝑙

2
𝑅 +

𝑀2
𝑝𝑙

12𝑀2
𝑅2 + 𝜉 ℋ

2
𝑅 − 𝜕ℋ

2
− 𝜆 ℋ

4]
Jordan frame

Einstein frame

 𝑆𝐸 = ∫ 𝑑4𝑥 −𝑔[
𝑀2

𝑝𝑙

2
𝑅 −

1
2 (𝜕𝜑)2 − 𝑒−𝛼𝜑 𝜕ℋ

2
− 𝑈(𝜑, ℋ)]

𝑈(𝜑, ℋ) = 𝜆 ℋ
4
𝑒−2𝛼𝜑 +

3
4

𝑀2
𝑝𝑙𝑀

2𝑒−2𝛼𝜑(𝑒𝛼𝜑 − 1 −
2

𝑀2
𝑝𝑙

𝜉 ℋ
2)

2

Production of Nambu-Goldstone (NG) mode by its spiky effective mass is 
analytically proven to be insignificant to reheat the Universe. The spike scale 
is much lower than the cutoff, unlike the Higgs inflation case. 

Numerical results of the effective mass squared of NG mode

First Stage of Preheating

(𝑚𝑠𝑝
𝜃𝑐 )

2
≈ 𝐶𝑚 3𝜆(𝑀2 − 𝑀2

𝑐 )𝑀𝑝𝑙

∆ 𝑡𝑠𝑝 = 𝐶𝑡𝑀−1

Time evolution of Higgs and scalaron

Red: scalaron 
Black: Higgs

First stage of preheatingInflation

Usual case Fine-tuned case

Tachyonic preheating

Distribution of the fine-tuned parameters

Higgs-like -like𝑅2

# of zero-crossings of Higgs

Necessary degree of fine-tuning is defined as /  where the two 
quantities are shown schematically as follows. 

∆ 𝜃eff,𝑁 ∆ 𝜃𝑁

Number density and energy density of produced particles (e.g. Higgs) by 
tachyonic instability are given as 

, 𝜔2
h,𝑘 = 𝑘2

𝑝 + 𝑚2
h(𝑡)

Time-evolution of Higgs and scalaron

𝜌tot /2

𝜌h

Schematic picture of parameter-dependence of energy 
density of produced particles by tachyonic preheating

Necessary degree of fine-tuning

Higgs-like

-like𝑅2

Strongly-coupled regime

Strongly-coupled

Perturbative Reheating

[1] Salvi et al (2015), Netto et al (2016), Calmet, Kuntz (2016), Liu et al (2018), Ghilencea 
(2018), Ema (2019), Ema et al (2021).  
[2] Ema (2017), Gorbunov, Tokareva (2019). 

References

Time-evolution of Higgs and scalaron

Small coherent oscillations of Higgs and scalaron induce perturbative decay 
of both field. 

Dominant decay channels

• Scalaron decays into Higgs

• Higgs decays into top quarks

Reheating temperature

Numerical calculation 
continues until /  
from which the Hubble 
parameter  is fixed.  

𝜌rad 𝜌tot ≳ 20

𝐻𝑟

Reheating temperature

Initial conditions:  
Initial conditions: 

E-fold number of reheating

The reheating temperature is independent of the detail of tachyonic preheating if such 
preheating cannot completely reheat the Universe. The number of e-fold of reheating 
depends on whether there exists preheating process. 

Institute of Particle and Nuclear Studies, KEK

Particle production by the spike is insufficient to reheat the Universe. 
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• At the end of each trial, the correct category was revealed and the subjects 
recorded the accuracy of their category guess. 

Vacuum decay with the Lorentzian path integral
Takumi Hayashi, Kohei Kamada, Naritaka Oshita, Jun’ichi Yokoyama

Introduction: Vacuum decay in Euclidean analysis Result 1: Transition amplitude of critical size bubble

Result 2: Nucleation of larger bubble size

References

Method: Bubble wall nucleation by Lorentzian integral
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Summary and Discussion
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p Quantum tunneling of scalar field with metastable vacuum was 
analyzed in Euclidean spacetime.

Decay rate(=imaginary part of energy) is estimated by the action of 
bounce solution1

Γ!"#$% ∝ ∫ 𝐷𝜙𝑒&'! ( ~ 𝑒&)

After tunneling, bubble with specific size is 
nucleated and expands.
Q1. Is there any direct interpretation? (Notion of 

energy is ambiguous in curved spacetime) 

Q2. How to analyze the bubble nucleation with different size?

ü Evaluate bubble nucleation probability in Lorentzian path integral

𝑃 ∝ )
("#$%& '#(

()*))$&
𝐷𝜙𝑒*' (

p Analyze bubble wall nucleation with thin-wall approximation
Polyakov-type quadratic action for bubble wall is

𝑆+ 𝑋, , 𝛾-. = −𝜎 ∫/ℬ 𝑑
1𝑥 −𝛾 2

3
𝛾-.𝜕-𝑋,𝜕.𝑋4 − 1 + Δ𝑉 ∫ℬ 𝑑

5 8𝑥 −𝑔
𝛾-.: metric on wall,

and the bulk ℬ is de-Sitter space (including Minkowski spacetime)
𝑑𝑠3 = −𝑓 𝑅 𝑑𝑇3 + 𝑓 𝑅 &2𝑑𝑅3 + 𝑅3𝑑Ω33, 𝑓 = 1 − 𝑅3/𝑙!63

Spherical symmetry: 𝑋, → 𝑇 𝜏 , 𝑅 𝜏 and 𝛾-. → 𝑁(𝜏)

ü Transition amplitude for bubble nucleation

𝐺 𝑅2; 0 = ∫7
8𝑑𝑁 ∫9 :+ ;7

9 :, ;9,𝒟𝑇𝒟𝑅 exp(𝑖𝑆+[𝑇, 𝑅, 𝑁])

∼ ∫7
8𝑑𝑁 exp 𝑖𝑆"<< 𝑁 ,

with  𝑆"<< 𝑁 = 𝑆+ T𝑇, T𝑅, 𝑁 ,    T𝑇, T𝑅: classical sol. of ='-
= >?

= ='-
= >9

= 0

Path integral is reduced to the single oscillatory (phase) integral.2

ü Evaluate oscillatory integral by Picard-Lefshetz theory3

∫7
8𝑑𝑁 exp 𝑖𝑆"<< 𝑁 → ∫𝒞 𝑑𝑁 exp 𝑖𝑆"<< 𝑁 ,

𝒞: steepest contours of 𝐑𝐞[𝑖𝑆"<< 𝑁 ]
On steepest contours 𝒞,  𝐈𝐦[𝑖𝑆"<< 𝑁 ] is stationary.
→ integration over 𝒞 is no longer oscillatory!

approximate integration at the saddle point.

ü The transition amplitude is consistent with Euclidean decay rate

Bubble radius predicted by Euclidean analysis: 𝒓𝒃
boundary condition: T𝑅 𝜏7 = 0, T𝑅 𝜏2 = 𝑟.

→ 𝑆"<< 𝑁 = 3ABC.
/

2D ⁄C. C+ 0 coth
F
C.
− F

C.

Transition amplitude for critical size bubble
𝐺 𝑟"; 0 ∼ ∫#

$𝑑𝑁 exp 𝑖𝑆%&& 𝑁

~'())*% exp − +!,-"
#

./ ⁄-" -$ !

→

Result 3: Nucleation of larger bubble size

p We formulate vacuum decay in Lorentzian path integral, providing 

the direct interpretation as transition of bubble wall.

p We find (1)consistent probability for bubble nucleation with 

Euclidean analysis, (2)large bubble nucleation is understood as 

bubble nucleation + classical expansion, and (3)higher probability 

to find small bubble.

Future work:
• generalization to the vacuum decay with
dynamical gravity, known as CDL instanton

• nucleation of other topological defects

Euclidean
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= 𝐵/2, bounce action!

𝑃 ∼ 𝐺 𝑟.; 0 3 ∼ exp(−𝐵) cf. Γ!"#$%~ 𝑒&)

ü Probability of larger bubble nucleation is same
boundary condition: T𝑅 𝜏7 = 0, T𝑅 𝜏2 = 𝑅2 > 𝒓𝒃
→ 𝑆!"" 𝑁 = #$%&!"

#
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&
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Arccoth csch 𝑧 cosh# 𝑧 − ('%
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% (𝑧 = 𝑁/𝑟))

Transition amplitude for large size bubble:

𝐺 𝑅2; 0 ∼ ∫7
8𝑑𝑁 exp 𝑖𝑆"<< 𝑁

~J$!!K" exp −𝐵/2 + 𝑖𝑆#K(𝑟. → 𝑅2)

→

Critical size bubble is nucleated and 
classically expand to large bubble

classical phase rotation

𝑃 ∼ 𝐺 𝑟.; 0 3 ∼ exp −𝐵

same factor!
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ü Nucleation probability of smaller bubble is larger
boundary condition: T𝑅 𝜏7 = 0, T𝑅 𝜏2 = 𝑅2 < 𝒓𝒃
Transition amplitude for small size bubble:

𝐺 𝑅2; 0 ∼ ∫7
8𝑑𝑁 exp 𝑖𝑆"<< 𝑁

∼ exp −𝐵/2 + positive real

Higher probablity to find the bubble
But small bubble is not classical,
due to energy conservation.

𝑃 ∼ 𝐺 𝑟.; 0 3 > exp(−𝐵)

𝑉"<< 𝑅

𝑟.0
False Vac

𝑅2,JM$KK 𝑅2,K$NO"

classicaltunneling
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