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Stars in K-mouflage gravity

M2 Chiaki Nasu(Rikkyo Univ.)
Collaborator Tsutomu Kobayashi(Rikkyo Univ.)

What is K-mouflage gravity[1]?
— One of scalar-tensor theories(modified gravity)

—> To explain latetime cosmological expansion

Introducing A ; ] Modified gravity

L—— |n solar system, theory of gravity should recover GR

screening mechanism

GR | Modified gravity

Center of a star . I . \
Screening radius R,

Fifth force F,

. We consider g, = A2(6)g,.
Jordan metric

Einstein metric

geodesic equation

A2z - dz* dzv
in Jordan fra Gy o =0
In Jordan frame (g; ) ar2 + 1 dr dr
in Einstein frame (g,.,) * ()
A2z 8 dxt dz”
e, + ——(V,60; 0 = Vb9 gw) | G- qr =
dT2 + |: 23 + 1\'IP1 (v ¢ H + v“¢ v V)\Q(] g“ ):| dr dr 0

. K-mouflage gravity ‘

5= [dav=g [@R + MK (x)] + [ da /=G, 5)

{ K()=-1+x+EKox* Ko>0 Kinetic function

- 1
v = AQ(‘*”){/W X = *W(Vo)z

Energy momentum tensor

. . 1 0 :
In Einstein frame T}, = —2—— —— /=L (0%, G
) =5 5gi ( )
. 1§ .
In Jordan frame T = —2——=——/—3Lu(®, G0
} = 55 ( )

in the theory,

. 1
fifth force Fy x ——
K'(x)

Screening radius R, o« M'/? (M is mass of a star)

Feature of this theory

Ix|>1 F, issuppressed (screening effect)
x| <1 Fy is not suppressed
Motivation

Only the case of a point source has been studied[2]

What about the stellar structure?
. To consider a star (not point source)

In the vicinity of the stellar center,
the gradient of the scalar field is small
because of the regularity

Does sufficient screening occur?

Purpose :

Verify a scalar effect on a star in K-mouflage gravity

Numerical solution

« Setup
Metric ds® = guvdztdz” = —e*M a2 4+ AN gr? 4 2402
Perfect fluid {1/} = diag{—p, P, P, P}
Equation of state

~ - Ql/3_2/3  _ .
P=Kp, K= T my, Y3 (white dwarf)
N\ L
- 2 ~
p= (%) +P, K=773x10"38rGN)*M2 (neutron star)
KG: Ky=1
Linear: K, =0
ﬂ =0.1 (771 = ﬂf}il)
Density-Mass relation
" White dwarf " Neutron star
. KG i, . KG
12 GR 12 HA GR
.......... Linear . Linear
Mass-Radius relation
e White dwarf e Neutron star
. K6 1 2 - - KG
12 GR o GR
Linear o N - Linear
Compactness(M/R)
; White dwarf , Neutron star
0.006 - K6 © K6

GR GR

0.004 Linear Linear

0002

0.000
o

s 10 15 o pels/ e

o pe=3.89 x 10¥%g/cm?

Density in a star p+ M*K(x) and P

— K6

GR GR
20
20
00 100 \
o 0

i ir

Conclusion and Discussion
- The star solution In K-mouflage gravity is similar to that in GR

There is difference between K-mouflage gravity
and GR in inner structure

Reference

[1]E. Babichev, C. Deffayet and R. Ziour, Int. J. Mod. Phys. D 18, 2147 (2009)
[2]A. Barreira, et al., Phys. Rev. D 91, no. 12, 123522 (2015)
[3]T. Kobayashi and T. Hiramatsu, Phys. Rev. D 97, no. 10, 104012 (2018)
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Relativistic stars in a cubic Galileon Universe

Hiromu Ogawa (Rikkyo Univ.)

Collaborators: Tsutomu Kobayashi (Rikkyo Univ.), Kazuya Koyama (Portsmouth Univ., ICG)

1.Introduction

2.Cubic Galileon

Abstract

Recently it was pointed out that the de Sitter-like black hole solution with
nontrivial scalar hair which depends linearly on time exists in the cubic
Galileon theory. The non-trivial scalar hair modifies the cosmological
constant, corresponding to three branches (black hole solutions):
self-accelerating and self-tuning solutions. We numerically construct
relativistic star solutions where the external spacetime is the de Sitter
spacetime obtained in the previous work.

Modified gravity theory
| is still unl
fundamental and intriguing problems in cosmology

Origin of |

9

sign of “new physics"?

beyond standard model, exotic matter, modification to general relativity

Modification to GR is tightly

d in solar sy
many modified gravity models are equipped with a screening mechanism

can evade the strong constraint from experiments

After GW170817/GRB 170817A [1]
Provides tight constraints on modified gravity
leaw/c—1] <1071
The propagation speed of gravitational waves is close to that of light
Surviving theory [2]
General relativity, quintessence, Brans-Dicke, Kinetic Gravity Braiding, ...
simplest models survive (also DHOST, vector-tensor so on)

TO DO in surviving theory

find and study star solutions and its structures
Black holes, Neutron stars: natural laboratory for testing theory of gravity
In this poster, we focus on cubic Galileon theory

Cubic Galileon theory[3]
S = /d“x\/?g [CR —n(04)? ++06(94)*] ¢, 7,7 constants
has been studied in the context of cosmology
self accelerating/tuning solution, cosmological perturbation...
not excluded by gravitational waves constraint

i d with Vainshtein hani:

qQuiPP

3.BHs and NSs

Black holes in Galielon theory
No-hair theorem holds in many cases[4]

Shift-symmetric Galileon theory with time-dependent scalar
_)BH solutions are found with non-trivial scalar hair [5]
BH solutions in cubic Galileon theory (with cosmological constant) [6]
5= /dﬂﬁ[((x —20) = n(06)* +100(00)" , B(r,t) = gt + /(JTX(T)

h(r)
ds? = —h(r)dt* + ar +r2d0?
f(r)
h(r)=f(r)=1— A;"r? x(r) =2 :asymptotic behaviour at large 7
1 - .
Ac = 1 (A+VATFINLG) ifn<o :self accelerating sol. .
i Tan) 10 < 9 are found numerically
Amr={ AL % (A+ VAT TRgp) if >0 and [A] > 2 Acn within ¢~ O(q)
:self tuning sol. o
Az % (A= VAT TREgy) it >0 and A > 2 Axca

By = 1) =1 2802 () = =

can be mapped to

— xiq

T g 5107 )
homogeneous solution
— ds® = —dr? + 27 (dp? + p2d0?)
-5 6(r) = qor
0 = 5 12
A AV ¢
A b= | AN
% 2 b~ Jr) 1= S » {n* () w}
-10 q ~ 0.89¢q

4.0ur Setup

Neutron stars in a cubic Galileon universe (minimally coupled matter)
‘Ancalﬂ,
o

[spherical symmetric spacetime

. o,
ds? = —~h(r)dt® + —— + r?dQ?
MANTT)

Dimension less quantities

' ) ) R S
lineally time-dependent scalar field [y = e T
o(rt) = qt + / "’ZE;; = . am ng’ o A
. V=, @2 =—S—5, Q3= —5
perfect fluid and EoS | ¢m? m?

/2 :
Ty = diag(~p.P,P.P) 0= () +P.K=123M3 a1, az, ag:parameters

Using shooting method, we solve the field equations numerically
!

an () 47+ 20thy = i =0

4 asi? [1 - %f] 42 (=14 [ +aar?) + 20 fH = 22hP = 0
% 2221 + oy + (7f)) — azrth (\ + %yz)
P~0 Fanag [artnr (4) +2r 2y (1) -ty + sl vartnzp=o
(1) istar surface [ 1/” ! g yet
0 Boundary
conditions

Tune

h=het 2r? 4 0 .
set iy * h¢ :shooting parameter

_ 20, i
f=1egrt _givencentral density | to match externaj\\ solutions
=Xer o Th(r) = fr) =1 =2
P, 3

P=Pot i atlarge r

Star structure and external geometry o =30, a2 =10"° a3 =10"", ¢~ 0.51g

Inner geometry Outer geometry

1 ) o 500 -
PG
X0 = ¢ I
) ‘ F 6 h(F) ~ f(F) ~ 1~ ‘\;“12
0 star surface
Scalar profile with various ¢ ©
L}') Inner profile e Outer profile P
50 Yw=1 0 < 500
» / a/m =051 e
SN
/ oo =012 2% solutions
é — ~ —500 S behave identically
0 0.6 !

. . LN
*measured in the unit 3;

Comparisonto GR  £=R—2Acg + L (Aer #A) A:in Galileon theory
1 Inner geometry 12 Innerstructure
| Solid Line:GR,
Dash:cubic Galileon
M =13Mg, Ry ~ 10km
no difference?

~

Relativistic stars in a cubic Galileon theory
two solutions are found: self accelerating and tuning universe

structure seemed to be same as that in general relativity

Outlook

Why is there no difference between general relativity and Galileon?

We should check the Vainshtein screening around the stars
corresponding Newtonian potential, Galileon force...

We should explore solutions with various parameters a1, g, as

We should check our numerical code...

References

[1]e.g., B. P. Abbott et al., Astrophys. J. 848, no. 2, L13 (2017) [arXiv:1710.05834 [astro-ph.HE])
[2]e.g., J. M. Ezquiaga and M.~Zumalacérregui, arXiv:1807.09241 [astro-ph.CO].
[3Je.g., A. Nicolis, R. Rattazzi and E. Trincherini, Phys. Rev. D 79, 064036 (2009) [arXiv:0811.2197 [hep-th]].
[4]E. Babichev, C. Charmousis and A. Lehébel, Class. Quant. Grav. 33, no. 15, 154002 (2016) [arXiv:1604.06402 [gr-gell.
[5le.g., E. Babichev, C. Charmousis, JHEP 1408 (2014), 106, [arXiv:1312.3204 [gr-qc]l.
T. Kobayashi and N. Tanahashi, PTEP 2014 (2014) 7, 073E02 [arXiv:1403.4364 [gr-qcll.
[6]E. Babichev, C. Charmousis, A. Lehébel and T. Moskalets, JCAP 1609, no. 09, 011 (2016) [arXiv:1605.07438 [gr-gcll.
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Data Analysis of Gravitational Waves from Core Collapse

Supernovae with Hilbert-Huang Transform (l)
2 8 Yuta Hiranuma (1Niigata University) % J@%S@% University (Nov. 5-9, 2018)

collaborated with
Y. Watanabe', K. Hayama?, N. Kanda?, K. Kotake?, T. Kuroda*, K. Oohara’,
K. Sakai®, Y. Sakai',T. Sawada®, H. Takahashi®, T. Takiwaki’, S. Tsuchida®, T. Yokozawa®
(?Fukuoka U., 30Osaka City U., “T. U. Darmstadt, >°Nagaoka CT, éNagaoka U. of Tech., ’NAOJ, 8ICRR)

4. Target Signal
““"‘“‘""‘! SFHx: (hy) [7]
¥ N

+ 3-D core collapse supernova
simulation of a no-rotating 15M¢
star.

+ Standing accretion shock
instability (SASI) is active in this
case (B part in the left figure)

102

1. Introduction

* Hilbert-Huang Transform (HHT) [1] is one of the S
time-frequency analysis with the high resolution.
» HHT has been adapted to the various fields:
e.g.) Nonlinear ocean wave analysis [2]
* HHT was applied to Gravitational Wave (GW) data analysis
first by Jordan et al. [3], and Japanese group follows them
< Binary black hole merger [4]
. Binary neutron star merger [5] 0 100 g (rzg;) 300 ¥ T. Kuroda, K. Kotake, and T. Takiwaki, ApJ, 827, L14 (2016)
» Quasinormal modes in ringdown [6] 3 :
* We apply HHT to GW signals from core collapse supernovae. Results of the Target SIQnaI

In this poster, we focus on the discussion of (E)EMD 5.1 IMFs

EXAMPLE1: (Small noise added) EXAMPLE2: (Large noise added)
arameters.
P € =10"", Neemd = 1000, 0cemg = 107+ £ =10"", Neema = 1000, 0¢erng = 10
x 102 ad

10

2. Hilbert-Huang Transform “ '
Hilbert-Huang Transform consists of two parts

SIGNAL
SIGNAL

v" Empirical Mode Decomposition (EMD) e *

v" Hilbert Spectral Analysis (HSA) fa - 4 i

Atarget signal h(t) R(t)—>, ——— ‘(5:'?3 w

‘ EMD  (Like high pass filter) WM) § o pr *
IMF i 2 w0

Intrinsic Mode Functions (IMFs)
§ s
Instantaneous Amplitude (IA)

Instantaneous Frequency (IF) IMF1-IA  IMF2-IA IMF i-IA o o MWWWWNWMWWWW
IMF1-IF  IMF2-IF IMF i-IF o5 o

IMF3

iis0e
IMF3

fon s

IMF4
IMF4

Empirical Mode Decomposition "
L0 o ] |+ D
. 0 H I
2. r(t) «r(t) —m(t) . )12 R B T R I e —m
(m(®) = (U + L@)/2) Al The SASI signal is split into IMF2 and 3 in EXAMPLE
if a stoppage criterion is satisfied then Y lr(t)I? *+ The signal is split into and 3in :
5e(ttl)M::r((tt)),_ N0 (In this poster, ¢ is fixed to be 1071) 5.2 e-Frequency Map
gooto 1 0 ’ U(t) : envelope of local maximum of r(t), |EXAMPLE1: (Small noise added EXAMPLE?: (Large noise added)
else ’ L(t) : envelope of local minimum of r(t)) & =10"%, Neema = 1000, Geeppg = 1071 € =107%, Nygma = 1000, Gpomg = 10
goto 2. + o o
end if it S W’ﬁf’d
N S— - le-20 - 1e-20
Hilbert Spectral Analysis 5 ‘ ) =
x(t):IMF Zo.s baeptd' Zo.s ?
1 © x(t) ) b e21| &
= - — = -2
Y(t) - nPVf ot — -[dr (PV: Principal value) 50.2 %0.2 te-2t
B . g g D
2(t) = x(t) + iy(t) = a()e®® 6@ = tan~! {%};Phase) GIRE | Ho.1 4
AW e 22 le-22
—_ . B 100 200 300 100 200 300
» a(t) = ,/lxd70+ y2 : Instantaneous Amplitude (1A) rime Tms1 ine tae1
fl) === : Instantaneous Frequency (IF)

> » The SASI signal in EXAMPLEZ2 is more visible than in EXAMPLE1.
zdt 6. Conclusion and Future Works
£ Ensembl Empirical Me Decomposition * We found that the selection of EEMD parameters is IMPORTANT!
Ensemble Empirical Mode Decomposition (EEMD): » We found that it is likely to be better to add noises larger than
(i) Add a white Gaussian noise with a standard deviation g, to the we expected to the original wave in making an ensemble for the

original data h(t). (op,:standard deviation of h(t)) . -
(G0 = Op X Teema With a pre-determined o ooma) EEMD, which is an essential part of the HHT.

(i) Decompose the data with the white noise into IMFs. + We need to find the optimal values of EEMD parameters.
(iii) Repeat steps (i) and (i) many times but with different white Gaussian | * To do this, we should consider how to quantitatively evaluate the
noise series at each time. time-frequency map of HHT.
(iv) Obtain the ensemble means for the series of the obtained IMFs. The Reference
number of ensemble trials, N..,q, has to be large enough. Neepnq is [1]N. E. Huang, and S.S P Shen, Hilbert-Huang Transform and lts Applications, World Scientific (2005)
o . . [2] P. A. Hwang, N. E. Huang, D. W. Wang, and J. M. Kaihatu, CHAPTER 10 of [1], pp. 211-225
fixed to be 1000 in this poster. (E)EMD parameters 3] J. B. Camp, J. K. Cannizzo, and K. Numata, Phys. Rev. D 75, 061101 (2007)
p e [4]A. Stroeer, J. K. Cannizzo, and J. B. Camp, Phys. Rev. D 79, 124022 (2009)
£ . Stoppage criterion [5] M. Kaneyama, K. Oohara, H. Takahashi, Y. Sekiguchi, H. Tagoshi, and M. Shibata, Phys. Rev. D 93, 1203010
toppag t (2016)
Neemd . ensemble number, [6] K. Sakai, K. Oohara, H. Nakano, M. Kaneyama, and H. Takahashi,

Phys. Rev. D 96, 044047 (2017)
[7] T. Kuroda, K. Kotake, and T. Takiwaki, ApJ, 827, L14 (2016)

Oeemd | iNjection noise parameter
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Massive vector field perturbations on

extremal static black holes

JGRG28
11/5-11/9 (2018) .
PA4

Phys. Rev. D97 124050 (2018) arXiv:1805.02479

Department of physics, Kindai University, Kodai Ueda and Akihiro Ishibashi

By expanding (near) extremal Reissner-Nordstrom geometry and massive vector field with respect to 4, we
show that the Proca equation for the scalar-type components at each order of A can reduce to a set of two

mutually decoupled wave equations of which the source terms consist only of the lower-order variables.

Introduction

In 2015, LIGO directly observed a gravitati

gravitational-wave
,,,,,, e
In the future, we may possibly verify...
The existence of ultralight axions
A. Arvanitaki et al. Phys. Rev. D81, 123530 (2010)
Verification measure:

To investigate the interaction between -
black hole and ultralight boson fields

Beginning of the new era of

onal wave.

“Black Hole Bomb” (Superradiant instability):

e Ultrahght ™S
boson field \
—— \
/

Ergo sphere
N

\/L\m

astronomy

\nﬂ

the candidates
of dark matter

If Compton wavelength ~

black hole radius

Supperradiance will occur repeatedly.

Observation of this phenomenon could
lead to the verification of dark matter.

W. H. Press and S. A. Teukolsky, Nature 238, 211 (1972)

Our objective:

We can use
“Black Hole
Bomb”

To analyze the dynamics of massive boson field
perturbations on Kerr spacetime

Our strategy for massive vector and tensor fields on extremal black holes

Proca equation:

Massive tensor field equation:

In the massive case, analytical

1 the extremal case
2:  scaling transformation
3:  perturbation expansion

Reissner-Nordstrom case.

‘ Advantagel: extremal case can be used

‘ Advantage2: easy to separate variables

Vﬂpﬂv Bhy, + ZRaHthtzB — ZREthv)a i@ study is very difficult due to the
degrees of freedom: 3 degrees of freedom: 5 mass term.
Analysis approach 1: Analysis approach 2: our goal:
3 strategies for analysis As a practice, we apply 3 strategies to field equation

decoupled ODE

It’s not achieved even in Schwarzschild
spacetime case.

J.G. Rosa and S. R. Dolan, Phys. Rev. D85, 044043 (2012)

Massive vector/tensor fields on RN spacetime

Results of the perturbation expansion

d 2
Tiz = —F(x)dv? + 2dvdx + R?(x)dQ?
+
x(x + o)
F(x) —m JR(x) = (14 Ax)

A — 0 : anear horizon geometry

(Near) extremal RN metric: (Strategy 1,2)|"

=0

massive vector case.

For simplicity, in what follows we describe our result in the

Proca equation at the nth order of 4 :

(even parity mode)

L0 0 /o

. ©
o 12 o e
0 0 |\ pm
0 L(yz Ly3 q)sg

Near horizon region: 1 — 0

Decoupled homogeneous master
equations can be obtained.

Far region:
Strategy 3 : perturbation expansion

) _ ;0 _ ;0 _
Laz - La3 - L£3 =0

master

(m) (m) (m) -

n |[Lat ey Las | (@&
(m) (m) -

=S o uw o || el
=1 (m) (m) (n—-m)

" 0 Ly Ly ) \eg™

RHS is a source term

2 decoupled inhomogeneous

wave equations

Summary and outlook

‘ A, = AP + 240 + 2249 +

() 1 2
‘ guv(l) = g;(l.v) + Ag( ) + Azgfw)
We view A as a perturbation parameter

and expand 4, g,,,, around 1 = 0.

Perturbation expansion method

1ol =M

Extremal

* We have developed a new perturbation method to study the
massive vector/tensor field in (near) extremal RN spacetimes.

* Proca equation reduces to a set of 3 decoupled
inhomogeneous master wave equations.

* Massive vector/tensor case on Kerr black hole case
= work in progress (w/ Igata, Ishibashi, Cardoso)

\
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Gravitational Waves And Chaos

Priti Gupta = Kei-ichi Maeda / Waseda University. @ JGRG28, Rikkiyo University

» Gravitational waves from chaotic systems has generated considerable interest.
> In particular [Kiuchi at el.(2007)] showed signature of chaos in gravitational waves and energy spectra from a chaotic system :
A Point Mass with a Disk
» Goal : We aim at studying the energy spectra of gravitational waves from chaotic orbits taking into account radiation reaction mechanism.

» We will not consider quadrupole radiation damping as a secular effect, but include radiation reaction terms in the Hamiltonian equations of motion.

with a massive accretion disk.

We consider the Newtonian limit of a black hole-disk system. B
The dynamics of a test particle (mass u) in this background is governed by the following Hamiltonian. z o )
I AL VY |
Sttt T T T T g Incosh | —
2 2 2u2w2 \/w2 + 22 2
a = the surface mass denSlty Of the .dlSk A point mass (M) located at origin while a
L— angular momentum Of the partlcle disk exists on equatorial plane z = 0.

Zo — thickness of the disk.

M=1 to fix unit, and G=c=1

» As considering the same model, we first reproduced results of (Kiuchi et al.;2007).
» We use Implicit Runge Kutta (Order-6) for numerical analysis. [FORTRAN] Thickness of the disk is fixed
» The integrated time is such that particle moves thousand times around central mass. Z:=0.5

> The numerical accuracy is monitored by conservation of Hamiltonian which is 1078. 0 :

(surface density of disk a)
a = 0.01 onset of chaos

o

a =0.1 (chaotic orbit)
comparable mass of disk and point mass
leads to chaos [M=1;a = 0.1]

a =10.0 (regular orbit)

Cemssgessss Ssssgesess Cweeg i nitial conditions (r, vy, z,v,) = (1.2,0,0,0.76)

Poincare maps GR waves (+) and (x) modes Fourier transforms H=-0.2;L=1
Simpler problem: Point mass-test particle (Including Radiation Reaction)
= Including radiation reaction terms in the Hamiltonian. ‘ RR terms

Hypo(t) = f—Q, 1@, (p.9). AN
Q, (p.q) denotes that Q,;' has to be treated as a function of position and mo- i NO
mentum variables, a b
[G. Schafer, Astron. Nachr. 311, 213 (1990).]
Fig (a) orbit of test particle around a point mass (M=1) ; VES

(b) Gravitational Wave (+) polarization mode.
(c) inspiral orbit after including radiation reaction. e S X v |
(d) Gravitational Wave (+) mode. (CHIRP effect) C ) I

= As shown above, by varying surface density of disks we
can have change from reqgular orbit to a chaotic one.

1. Gravitational Wave signals from a chaotic system : A point mass with
a disk (Kiuchi et al. 2007)

= Firstly, we want to include radiation reaction effect in our 2. Gravitational waves from a chaotic dynamical system
model: Point mass-disk. (Kiuhchi K MaLeda 200:?(1 ) . |
= We want to see effect of radiation reaction in the energy ?S%uazﬂii'"f‘;,l;"ezr;slcgé7)s”acet'me e motion of a spinning particle

spectra of chaotic orbits. (« = 0.1 in our case). STAY TUNED!
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Discrete Integrable Systems and Its Application to Discretization of Geodesics

Shu Ueda and Shinpei Kobayashi
Department of Physics, Tokyo Gakugei University, IGRG28 @Rikkyo University, 5 - 9 November, 2018

Introduction Discretization with preservation of solution structure

e.g., Logistic equation

U —Uu,
% = auy,(1—Upyq) 6=18

‘ Quantization of spacetime? ‘ cf. String theory

: Noncommutative geometry du I
Universal feature: Causal Dynamical Triangulation @& au(l—u),a>0 ° % =aup(1-uy) 6=13
minimal length of spacetime a=2u,=01 discretize
= discretized spacetime would appear ) —) e e o
t=né

Black hole? Early universe?
First step : How to discretize?
What is “the best” discretization?

=) \Ve focus on discrete integrable systems

Discretization of geodesics in (2 + 1)-dimensional Massive Gravity
As a first step to discretize geometry, we want to consider the discretization of geodesics (prototype of the discretization of geometry).

Static, circularly symmetric Black hole oliva et al(2009)

ds? = —f(r)dt> + ——dr® +r2d¢? b gravitational hair parameter Procedure of discretization
f(r) | : mass parameter ith k ing int bilit
f(T) = —Ar? +or—p If b = 0, it represents BTZ black hole wi eeping integrability
Geodesic equation for massive particles 9@
2 * Introduction of new functions r(¢) = )
A 2 2,3 2 2 2
- 2L2 [6Ar® = 5br® 44 (B% + p + AL*) r® — 3bLPr* + 2uLr] ‘ + 1(¢) is invariant under arbitrary gauge
- — — transformation h(¢):integrability
Hirota’s bilinearization method‘ ) = 9(@)h(¢) )
=T
Bilinear form of the geodesic equation 2 f(@)h(9) @
. gt & s 4 Discretization
Dgg - f+ ﬁlf— -m 7 +eg” —&gf=0 ‘ * Replace Dy with Ay
, , - Bpg-f =87 g(d + (D) — g(P)f ($ + )]
Dyf-f- “F B2 7 +920° = e2gf + & f* =0 * §is the interval of difference
where Dy g - f = gof — 9fs (D is called Hirota’s derivative)
_3A 5 2(E2+u+AL?)
wf _3ﬁbl #h =gy Shon =T + Inverse transformation g(¢) = r(¢)f (¢)
e=gt+e=—~F=&+&=p l * Remove the common term written in f(¢)

* Rewrite to mapping form ¢ = nd,r(¢) =1,
Discretized geodesic equation

- 52 52
(2 + 5262) Tn — Th—1 {1 - &TO + %7‘,,

Tn41 = -
52 52 .
[1 - —512 + 602 7”:| — Tp— 162[ (173 ;‘37‘,{4—71‘,, '—61]

- * This form is same as that of QRT system, which is an integrable second-order discrete equation.
* We obtained the discrete geodesic equation with keeping integrability by using Hirota’s method.

Solution of the discretized geodesic equation Conclusion & Discussions
* We applied the Hirota’s method to the geodesic

Bounded orbit Hirota’s method Ot?ni:nﬁi:;oc' -> The discrete geodesics gives the same result

*  We will investigate the solution of the discrete geodesic

E =251 =10, . L .
1 I BH equation for various intervals of difference §
7o = 10,90 _EE » Towards discretization of Einstein equation
Discrete:e; = €3 =, -> For stationary axisymmetric spacetime,
& =& = 515 =0.005 \ Einstein equation reduces to Masuda et al(1998)
\ \‘"x \ FrF 1. 7 7 Fd
~J ~J f(fpp +_fp +fzz)_fp2 _f22 +¢;2)+¢2 =0
Falling orbit
f(wpp +-= lpp + lpzz) - prl»bp - Zlepz =0
- — H2+F?
E=V30L= U / Introducing new functlons f=-= l/J == and K==——
7o =10,¢0 = 2 | 1
Discrete: e; = €, ==, I Bilinear form of Einstein equation { [D2 +;Dp +DZ]G-F=0
{ ’ 2 1 2 —
& =& =2,6=0.005, l discretize [D? +;Dp +DZ]H-F=0

2 1 2
(D} + 2D, + D 1K-F =0

mm) Hirota’s bilinearization method gives the same result ’Discrete Einstein equation
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More accurate equation for the gravitational lens

Ryunosuke Kotaki, Masashi Shinoda and Hideaki Suzuki

Hirosaki University, Japan
with T.Ono, A Ishihara and H.Asada (Hirosaki)

JGRG28 in Tokyo Nov. 5 -9, 2018
Abstract

We propose a more accurate equation for the gravitational lens, where we assume Schwarzschild spacetime as one example.
Our result is compared with previous works.

1 Introduction
The kown lens equations are usually based on the thin lens approximation, in which

the effect of gravity is expressed only by the deflection angle and the Euclidean
space is assumed except for the lens plane.

2 Previous lens equations

The well-known lens equation is [3]
Drs

B=0- Dos a. (1)
Ohanian lens equation is [5]

O+0—a=n. @)
Virbhadra and Ellis lens equation is [2]

Dostan 3 = Dog tan6 — Dpg[tan 6 + tan(a — 0)]. (3)

3 Schwarzschild spacetime
Schwarzschild spacetime as a simple example
) A
== (1-2)aet+ (1-2) e + 2002 ()
r r
Orbit equation for the photon is
dr\? ot 5 Ty
- ) == - _ s =
(do) o (1 r ) : ®)

By solving this, we obtain

TR bdr TS bdr
Ors = / = — + / = - (6)
S O (e R N O N ()
This is the exact lens equation. Given rg, s, drs, this determines 6.
e Weak field approximation
7 < 1 equation(6) becomes

¢RSZW7§79+%(C()S9+COS§)
1) S G g4 sin0cosd + sinfeosd 7o)
+(b) 16(7.' 0 — 0+ sinf cos 0 + sinf cos ) + O (b) (7)
e Strong field approximation

Light ray passing near the photon sphere : -2 £ < 1

TR TS
onszz/‘ #

oo - )

b1/ b\ 1r, (b\!
LI U RN LS

rr 6 \rg 8b \rg

b1\ 1, 0\ b\’ b\’
me() s () el () (%) ®

4 Numerical calculations

We consider Sgr A*, Do, = 8kpc = 2.5 x 10107‘g and Dpg = 1000r,.
‘We plot the relative error ¢ in the image positions with respect to the exact lens
equation.

0
5= 1 9
Oexact ©)
where
Oexact = Solution of Eq.(6), (10)
0 = Solution of Approximation Egs.(1,2,3,7,8). (11)
\ |
-2
. \\&
& f/
-6 v
=)
8’ -8
— T
-10
=12

~ —is

— H2

-10.0 -75 -5.0 -2

Figure 1: The relative error ¢ as a function of the source position /3 for the Basic lens
equation(BS),Virbhadra and Ellis lens equation(VE), Ohanian lens equation(OB),
Eq.(7) (H1) and Eq.(8) (H2).3 is expressed in milli arc-seconds.For 3 > 0 the plot
represents the primaty image, for 5 < 0 it represents the secondary image.

5 Conclusion

1. A more accurate equations for GL is proposed and compared with previous
ones.

2. Future work: Astronomical applications.

References
[1] A. Ishibara et al, Phys. Rev. D 94, 084015 (2016)
[2] K.S. Virbhadra and G.F.R. Ellis, Phys. Rev. D 62, 084003 (2000).

[3] P. Schneider, J. Ehlers, and E.E. Falco, Gravitational lenses, Springer-Verlag,
Berlin (1992).

[4] V. Bozza, Phys. Rev. D78:103005(2008)
[5) H.C. Ohanian, Am. J. Phys. 55, 428 (1987).

[6] R. Kotaki et al, In preparation.



Shoichiro Miyashita
Waseda University

“Energy spectrum of spacetime: complex saddle points in
Euclidean path integral”

[JGRG28 (2018) PAIQ]

18



Energy spectrum Of Spacetime: Shoichiro Miyashita [Waseda U.]
complex saddle points in Euclidean path integral

Abstract : we investigate microcanonical partition function of gravity by mini(micro)superspace model.

Although complex saddle points have been attracted much attention in a context of Quantum Cosmology,
they haven’t in a context of gravitational thermodynamics. (However, see[Halliwell, Louko, 1990] and [Whiting, Louko, 1992])

Motivation/Previous works

Thermal equilibrium of Gravity may be described by Partition function;
punorZ

wRE
[Gibbons, Hawking, 1977] If we only concentrate on only real
z

—IE saddle points, the behavior of free energy
C=> 7[QW] = | Dg e”'om ight i
r

Free Energy F

or entropy as right figures.

1P (©) Temperature T e
Our aim is to reconsider thermodynamical properties of Gravity in following setups;
n i @ Integration measure ) o ) . ,
. * spacetime with rigid spherical boundary (i.e. IM = R X §?)
o . q
@ Action functional * mini(micro)superspace model  *choosing the contour as (a set of) steepest contour(s)
Depending on ensemble, we have to change Action. . Lo ; N
— . P g ! g Especially, we show entropy behavior in microcanonical ensemble in this poster.
® Integr_atlon Con‘tour Another motivation is Holography. Assume GKP-Witten like relationships Zsaviey = Zfietd theory for the general class of GR.
For Euclidean path integral of GR, If we regard the entropy behavior of above panel as (approximately) correct behavior of Zgrqiry, the number of state
it is known that integration contour must be genuinely complex. N ~ [ dE Zfie14 tneory[E, V] becomes finite. This may be peculiar. So the one of the aims is to resolve the boundedness of either (both) of
[Gibbons, Hawking, Perry, 1978] energy or(and) energy in order for N to be infinite which may be required for Z to be the partition function of field theory.
Minisuperspace model

Since
2
We approximate Z by minisuperspace functional integral 8IF Ir:T 3 [——51‘ S Rzﬁ( e )]
E rE.O.M. «“ ”
Z[Q, W) f dN Df DR e 'am RN e "R 2f'R' at the “center,
= +

N N all off-shell histories must satisfy
_[Eon=shell f' Am
(9 =0, —| = t ([ =—
J-dNe f - N |ri cons’ 7o

R

r Constraint
2 —_ 2
where corresponding metric is fQRY*+f'RR"=N

N2
g=f()de* + mdrz + R(r)%?d0?

T € (0,B0), r € (1, 15)

Microcanonical ensemble mc={E,V}

. T p , 2L ,
Ine@ = =% [Rg — 4LRyz + (312 + 2)z2 — R—bz3

-1 -1
E _ 4 3 _
e = 1oz [@xvg R + o [ @y yr@ - 0)

_ 2 ’ 2 s
=ﬁf dr[f(R) +ka +N lfo(/R +4fRR) L BoRR'f

G N
(r, -1)N (GE )
EOM. + ‘Jf(rf =R \R, ! N

N
'A\// =

2G N N

r=ry

Ry (N)?
I = G —2mRy (N)(R, — Ry(N)) +5 N ——c
2 1 S J : Steepest decent direction * : Saddle point and satisfy constraint
Ry(N) = Rb +U(N) + ?m ——>—— :integration contour @ : Saddle point but NOT satisfy constraint

- nRy [, 2 1
Imc(z):—ﬁz +22+2+;+Z—z

3 2 3 2 GE
vy = [VERo _RE NLRy |1, mRE L=(f_1)
8m 27 2m 16 27N

2 i, L
o2t
0<E<2R,

Since this seems difficult to evaluate, we consider following two alternative
“micro”superspace model.

Instead of integrating over N, integrating over the “distance” between
horizon and boundary;

z=R,—Ry(N) = N=-

s
W z%(z— Ryp)

Ry,=5 E=0 Ry=5 E=05 Ry=5 E=102
Changing variable N to z by N 16nRZ (2% + 1)2
2712 73

In both cases, if we choose integration contour as above, the energy-entropy
relationships are the same.

Summary & problems

@We investigated the partition function of gravity by the method of minisuperspace & steepest descent approximation —— :contribution from Y
@ if we choose some contour, both of energy and entropy are shown to be unbounded from above, which is different
from the result by evaluating only real saddles.

:contribution from @
@ ¢ of state may be infinite. This may resolve (one of ) the discrepancy(s) between Zy, apiey and Zfiera theory

O We did NOT evaluate minisuperspace path integral BUT evaluate microsuperspace path integral. It causes
the saddle points which are NOT the solution of Euclidean GR.

O Depending on model and contour, the results are different. But in any cases, there always still remains peculiar
behavior, such as the divergence of entropy at finite energy or appearece of negative energy.
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Instability of stars in screened modified gravity

Tomohiro Nakamura

Nagoya University NAGOYA

In collaboration with Chulmoon Yoo(Nagoya U.) UNIVERSITY

Introduction Instability of simple stellar model

« Modified gravitational theories usually have additional degrees of freedom Action

coupled with matter, whose interaction works as “fifth force” on the motion / dir War
of matter.

« These theories must have a screening mechanism of the fifth force to satisfy
experimental constraint within the solar system scale.

P‘R - —vyww V($)| + S [Ts; A2($)gp] -

Consider a non-relativistic star consists of perfect fluid.
We concentrated on spherical symmetric system and derive a static solution

i g i - . . - - .
Screening mechanism[1] and equations which a perturbation from the solution follows in linear order.

S=J diz\/= [ 1Z’“’ (¢, 00, )00, — V(o) + g(d))T} Equations Perturbation
2 2 2 3 Viay = dnGp 2(1) = po(r) + pa(r.1)
Z()p — () |IV e +m?(d)p = g($) M&® (7) %45 (o) = pg i-ﬂa<>(+)m<m>( )
B, t) = Dvo(r) + P (r, ¢
v {
_ . . L @-V)b} ~p— -—pw 9(r,8) = n(r) + 61 (1.1
Ewionment ___g(0) M - i
gig?:g?ence Z($)c2(¢) 4mr i)"w 1 z(z, B, =2
W@ o T m 3 "
chameleon, symmetron, environmental dilaton... 1“\ \\\ o »!
{ 1 [ ,Topod, 8
For chameleon model, % ) zeroth order P ( /‘;:’” (ﬁ”) = —dnGripy — 1 Tl‘ (60 = 3
the fifth force sourced by a constant density star is > 4/ .d "
9 D), o ( . u“) V' (¢o) +*r 2po
G]V[ 1
Fd) ~ ﬂeff = ———=I'Newton first order
m((/))R FC_Ld a0 (1 |28 b B )
- wi = o)+ (0=l = 25w - S G ) ¢
Screening for inhomogeneous objects? B L0
The above calculation is done for a constant density star. , Jlfv' ror
In the case of inhomogeneous density objects, does the screening work properly? Py _ Py 2041, 8 10 4 v L as doo
oz = Tror Mt aEay (*60c) R
Screening in inhomogeneous Equation ofsate chameleon model
p=Kp V() = Vo/&™, B(¢) = const

density profile

We consider a simple situation where the system composed by spherical shells with same

Eigen value problem [negative eigen value—instable mode ]

width[2]. We assume static configuration and the inner region is vacuum, then it has We solve these e_quations numer_ically by Shomif‘g method. .
extremally inhomogeneous density profile. We found there is parameter region where imaginary frequency (=negative
« field profile ' eigen value) modes are obtained.
For well screened objects, the equations becomes much simpler.
5 s 10
o \ /.\ /\/ We can assume m2éy ~ o (*poC)
- U My r2 or
M Using dimensionless variables,
R 5 W= 7#% {(76n+1 — o) 54%}
x=r/R, ohde X
« fifth force value '°f T T T T 1d6 1d6 o140
N, —{(3’:/—A1)(n+1)g¥—na <3Zd—é+0 1@4-(7171)

-

— thin shel (6=7r/R, po=pct™(€), po = pcb™" ™, v =1+1/n)
— width=1/30 " 2G M? a0
— width=1/12 a=_" _Pe Bée If pe~ pyes o |

T m+1p. My
P a~1/(m2R*) :small

T 05 10

. Instability does not occur in linear level.
we found the fifth force appears inside the inhomogeneous objects and its

value becomes larger as the width of the shells are reduced. CO n C | u S I 0 n S

Intuitive explanation

We investigate the instability of a star in screened modified gravity.

screened 14, < or unscreened A¢ > 6r « We found the coupling between the perturbation of matter and scalar field
Al =——« p—1/2 may leads instability.
%67“ 4 m(¢p) ] * However, the instability happens in only a limited parameter region and it is

not the realistic region.
As we write in the motivation, non-linear effect is significant.

v

mass conservation i i
§rocpt Bibliography
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Improved Analysis
of

Axion Bosenova

Hirotaka Yoshino (Osaka City University)
Hideo Kodama (YITP)

JGRG28 @ Rikkyo University
Nov. 6—7, 2018

AXIVERSE SCENARIO

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel,
PRDS81 (2010), 123530.

* String axions

In string theory, many moduli appear when the extra dimensions get
compactified.

Some of them (10-100) are expected to behave like scalar fields with
very tiny mass, which are called string axions.

Anthropically Constrained

. Inflated
Black Hole Super-radiance De\c\x}'s By

1 1 1 ‘ S

10733 4 % 10728 3x 1018 108
2 x 10720 3 x 1010
. . CD axion
Axion Mass in eV Q

1 1
L= —5 (Vai)Va(I) + V(‘I’)) e Zga’y’Y@Fab*FQb + ..

V = 2121 — cos(®/ f.)]




Energy extraction from a Kerr BH

@  Metric

d52:—(
‘]

A — a?sin’ 6
D)

2asin? 0(r? 4 a® — A)
DY

dtde

)dt2—

(r? +a?)? — Aa®sin 0
Z

p)
} sin? 0d¢? + Zdﬂ + 2db?

@ BH’s rotational energy v

Mrot =M —

ﬁ)

Event nonzon)
~

Ergosphere ‘

Ergosphere

©

Stationary limit
surface S,

Event horizon
+

Energy extraction

® = Re[e “tR(r)S(h)e"™?]

Superradiant condition:

:}f;.*‘ w< Qgm
A H [ i
M = _ 4 i Aour
167r Q* A;( horizon\' ~1 ’ ~ Ain
\\Q\\a y '/"’/J/ /
Penrose process Superradiance
Gravitational Atom
022
. . 0.21 : :
@ Massive Klein-Gordon field V2@ — uzq) =0 o2} I I||iIHi IV
0.19 i H
— st 5 ¢ > 0.18
® = Re[e " R(r)S(0)e'™?] 017 :
0.16 i \
u d?u 9 0.15 TR
Bemm B ot Tlle=0 s,
r«/M
Ww=wgr+1wy Unstable if positive
@ Growth rate Y and Kodama, arXiv:1505.00714. Wavefunctions
a*:0.99 =099, I=m=1
: i Mp=04
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Issues to be explored

@ String axion field forms an axion cloud
around a rotating astrophysical BH by
extracting BH’s rotation energy.

YIL D JJJ
gravitons \/‘\/\, ..’ W axions

Superradiant instability
Nonlinear self-interaction
V2o —p’sing=0 ¢

GW emission

Long-term evolution of BH

_2
~ Ja

parameters
: ; Gravitational waves
@ Simulation:
We solve Teukolsky equation in time domain:
SCalar ﬁeld [(Tz +a2)2 (L2 sm2 0} (921;9 " AMar 82’([) |:a2 1 :I 021/)
iy e 92 T A otog | |A T sin2e) 042
We have codes that are , . oy )j ( “nj‘[) ¢ oo
q 9 0 1 dY C .00 a(r — M icosf] Y
sufficiently satisfactory. A (A ;) = (Sm@ ae) —2s { Atz 0] %
(2 2
But recently’ we added —2s [w —r —iacos 9] %—f + (s?cot? 0 — 8)¢ = 4rET
improvement on the treatement
of the outer boundary.. ‘We have completed the Schwarzschild case.

A code for a Kerr spacetime is beginning to work.

Improvement of scalar field code

@ QOuter boundary

Previously, we imposed the fixed boundary condition at the boundary:.

This is because it is difficult to impose outgoing boundary condition
in the massive case (there are modes with various velocities!)

But there exists reflected waves, and they might have helped the

occurrence of the bosenova.

® Improved method

0.0001

We gradually
change the scalar

g
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q‘“‘“«- Here, we impose

the outgoing BC

for massless field.
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amplitude

Current obtained results

(A

® |=m=1mode

time

= Vi 7] SJ 0.3 Energy extraction from the BH may stop, and
gradually positive energy may fall from scalar cloud.

M 2 0.4 Energy continues to be extracted from the BH.

HY and Kodama, CQG32, 214001 (2015)

Require modification from
HY and Kodama, PTP128, 153 (2012)

® 1=m=2mode

o> Energy continues to be extracted from the BH.

No modification from HY and Kodama, CQG32, 214001 (2015)

l=m =2 mode (1)

6
o Setup - Energy a'nd angular momentum
- are continue to be extracted:
2 0
E" -11 0.1
12| ~
13 | 2 0
awll ]
0 02 04 06 08 1 12 14 16 18 = 00 |
R 02 50 1000 1500, 2000
Kerr black hole a, = 0.99 2 o S
Scalar field Energy and angular momentum are
continue to be emitted to distant place:
The case where
(the initial amplitude) = 1.0 R
a
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30 2 2 3
- i.s i.s '%: 2+
10 05 1 0s g ! 1
= | 1\
0 0 40 il |
. o P d s o bV A A Bl
-1 -1 200 400 600 800 1000 1200 1400 1600 1800 2000
s 15 15 oM
30 2

-30 20 -10 0 10 20 30 -30 20 -10 0 10 20 30




] =m =2 mode (2)

@  Growth of the superradiant

instability saturates at the energy

Log;o(Mawy)

-14 . . . n
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Mu

12 14 16 18

Mu | 05 | 06
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1= m = 2 mode (3) (Appendix)

{

il

) e 10000
@® Emitted Gravitational
Waves
5000 | H
Observation point N . H ‘
m‘
. = 200M U
25000 |
-10000
400
2 T T T
frequency (GW)
1.5
3 \V
05
0400 500 600 700 800 900 1000

tiM

500

A/ Ainear

600

700

800 900

1000

tIM
10000 T T T T
Amplitude (GW)
8000 - ‘r\
|
6000 [ (‘\‘
|
4000 / \
»C\
1
VAV

0
400 500 600 700 800 900 1000

tIM




1= m =1 mode, Mu=0.4 (1)

@ Setup
Kerr black hole a, = 0.99 5
Mp =04 ™
Scalar field 0 02 04 o0s d_sM D12 1 “‘1“.'6‘ 1

Simulation (A): (Initial amplitude) = 0.6

Simulation (B):

We adopt the scale transformed data for the results of (A)
at t=toooM . A
e B (t = 0) = Co®™ (¢t = 1000M)

@B (t = 0) = Cp™ (¢t = 1000M)

for the results of (A) at t=toooM with C=1.09.

We calculate gravitational waves of m =2 mode

l=m =1 mode, Mu=0.4 (2)

ol : . The superradiant instability continues.

erayuxrsm1od data’
aaaaaaaaaaaaaaa

i | Energy flux toward théhorjzon
o 15

‘ O £ rr

| —— V‘v\——/\/\/\ﬂ[
001
002

t/M

5000

Total energy in the region —200M <7, < 400M

Final state of the axion cloud may extract energy from the
BH and emit it to the distant place




I = m = 1 mode, Mu=0.3 ()

@ Setup

o 4 &

-9 - /
SUNS /4
A

i
1200
13t
-14

Kerr BH a, = 0.99
Mup=0.3

Log((Mw)

2 |

| |
/ |
Ze L

0 02 04 06 08 1 12 14 16 18

Mu

As an initial condition
Simulation (A): (initial amplitude) = 0.3
Simulation (B):

Perform a scale transformation

e B (t = 0) = Cp™ (¢t = 1000M)
¢B)(t = 0) = CpM (t = 1000M)

to the result of simulation (A) with
C=1.08, 1.07, 1.06, 1.05, 1.04.

l=m=1mode, Mu=0.3()

Energy flux toward the horizon
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Superradiant instability stops.




I=m = 1 mode,

Mu=0.3 (3)

@ Total energy in the C=1.04 and C=1.05 cases

Total energy in the domains {

C=1.04

2760

2750 |

2740

2730

0 b/ ] |
Vo
\ / \
2710 | Y J
|/
\/
Y
2700
10000 12000 14000 16000 18000 20000

t/M

e A, M]

—100 < 7, /M < 300
—100 < 7, /M < 200
~100 < r, /M < 100

2820

2810 |
\\\\\\_,“\\
2800 \\\\\4

2770
2760
2750

2740

27

=W J“\\‘”VO\\

t/M

30
10000 15000 20000 25000 30000 35000 40000 45000 50000

Thank you!
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Optical Berry phase in gravitational lensing by a Kerr black hole

Sousuke Noda, Marcus Werner (Yukawa Institute for Theoretical Physics, Kyoto University)

Abstract

Chiao and Wu (1986) suggested the optical analogue of the Berry phase for polarization of light, and Tomita and Chiao (1986)
observed experimentally the geometrical phase for light rays propagating in an optical fiber for which initial and final directions are
identical. The geometrical interpretation of the optical Berry phase was discussed by Segert (1987) and Ryder (1991). According to
them, the optical Berry phase can be understood as a classical effect by considering the orbit of light ray in the three dimensional
Euclidean space. In this poster, we will try to generalize this for light rays in the Kerr spacetime.

What is the optical Berry phase?

O Berry phase in Quantum Mechanics The geometrical phase e solid angle

[5(t0) = (D), F(t)
geometrical phase

O Optical Berry phase (Chiao and Wu 1986)
+ Linearly polarized light propagating in an optical fiber.

- Directions of both ends of the optical fiber are identical.
Polarization

+ We can understand this at the classical level. vector

Optical Fiber
Optical Berry phase
= geometrical phase due to the rotation of polarization vector

Optical Berry phase in Euclidean space
o Setup Segert (1987), Ryder (1991)

tangent vector

k= dz . T € optical fiber

linear polarization
B

orthonormal basis b
(k> n, b) P
dae

geodesic curvature and torsion k

dk db T
% om. P
4 wo(O)m, d¢ (On £ : arc length

O Calculating the rotation of the polarization vector
We consider the rotation of the polarization plane between two points on the fiber.
P(lp), Q(tp + dO)
5Q b(P)
K df =angle between b(P)and b(Q) = —7({)dl
e x From A to B, the change of polarization vector Af is
B B 2
1 dk  d°k
ao—- [ T(@de:/ Lk (7 x 7)
— A A Kj de "~ de
O Analysis in momentum space E,; Euclidean metric
Since k is normalized as E;;k'k? = 1, its tip lives on a sphere
in the momentum space. This means that we can define the
following map at each point on the optical fiber :
xr — Y (tipofk),
where Y is a point on the sphere in the momentum space,
and the radius of the sphere does ‘not’depend on the position
on the fiber . Moreover, as the initial and final directions of the
fiber are identical, ¥ (tip of k) traces out a closed curve (C) on the surface.
We define the tangent vector to C as T = dy/ds and represent A# in terms of Y.
d i Gauss-Bonnet theorem
_ Y Y

Ae*if;y (dsxdsz)ds fCKCZQﬂ'—/ KdA
b Ko ds AG:/ KdA — 27
geodesic curvature of C 1

— Solid angle
Optical Berry phase = solid angle on a sphere in momentum space.

Summary
1. Optical Berry phase (due to the rotation of the polarization vector)
has been observed for light propagating in an optical fiber for which
the initial and final directions are identical. ka = kg

2. This geometrical phase can be understood as a classical effect, and

it corresponds to the solid angle on a sphere in the momentum space.

3. Similar situations may be found for light rays in the Kerr spacetime.
e.g.) photon sphere, principal null geodesics

Optical Berry phase in the Kerr spacetime

The Polarization vector can rotate
due to the black hole’s spin
= Gravitational Faraday rotation
(Ishihara and Takahashi 1988)

For the initial and final directions of a
light ray to be identical, the light ray
needs to loop around BH'’s spin axis.

Optical Berry phase in the Kerr spacetime
~ photon sphere, principal null geodesics

Optical Berry phase in the Kerr spacetime
O Slowly rotating Kerr BH in the quasi-isotropic coordinates (t,p, 0, )
A 4Masin® 0
TR e
From the null condition ds = 0 , we get

4,2
dt = \[vijdaidad + Bidx' | ~i; = 1/1A/’

For fixed A and B, Fermat’s principle gives a 3-dimensional curve.
c.f Asada & Kasai (2000)

B
6/ dt=0 —> VIk = x,n, B
A
where { is the arc length defined by d¢* = ,;dz'da? 'Jm;;uwe

Null geodesics in 4d spacetime (14 = 0) = Curve in 3d space (x4 # 0) ‘

dt* — dedt +* [(dp* + p*d6?) + p* sin® 0d¢?|
= (1+ M/2p)*
= (¥p)? — 2Myp

E;;  conformally Euclidean

O Conformal transformation to a model space and optical Berry phase
k is the tangent vector of which components are defined as k' = dzi/dl,
but it is not normalized since 7Vij is conformally Euclidean metric: 7ij(p)k'k’ =1,
Although we can define the map to the momentum space at each point on the

spatial curve (light ray), the radii of the spheres in the momentum space ‘do’
depend on the radial coordinate (p) due to the conformal factor «*p%/A .

Therefore, we obtain a open curve (C) spanning the multiple different size spheres
even for the case that the initial and final directions of the light ray are identical.

surfaces given by vi;(p)k'k’ = 1 in k space

Observable in real space?

EjdX'dX7 I

A0=/ KdA - 27

Conformal transformation :

A — d? =

Ky =Kp
_P
(ka = kp)
Possible only for looping orbit?

e.g.) photon sphere, principal null geodesics

./

Closed curve on single sphere

Questions
1. What is the signature of this phase in an observation?

2. Fixed point of a lensing map ?
P g map Position of a lensed image

kg I}
Ob Position of a source

conformattyEuctidean—

3. General spin parameter case
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Uniqueness of static, isotropuc low-pressure solutions of the Einstein-VIasov system

Tomohiro Harada (Department of Physics, Rikkyo University )

5-9/11/2018 JGRG28@Rikkyo. This presentation is based on Ref. [1].

Introduction

@ Beig and Simon (1992) [2] prove that a static solution in the Einstein-Euler (or perfect-fluid) system is spherically symmetric and uniquely determined

by the surface potential of the fluid body under certain circumstances.

@ The Einstein-Vlasov system consists of infinitely many collisionless particles of infinitesimal mass which follow along geodesics in the background
spacetime which is sourced by the stress-energy tensor of the ensemble of the collisionless particles, where we assume all particles have the same

mass m.

Beig and Simon’s theorem

@ Metric
g = —VZ (x%, %2 x%) dt? + yap (x*, x2,x%) dx?ax®, 1)
where V € C! and v, is the Riemannian metric.
@ Barotropic EOS: ¢ = o(p) with do/dp > 0. We define
1 dr o+p do
I =2k + 25 —,  wh = —=. 2
gt h+(0+p)dp, where 2 3pdp 2

@ Theorem (Beig & Simon 1992) [2]
Assume we are given a static perfect fluid model with an EOS
satisfying | < 0, and a spherically symmetric solution. Then the given
model and the spherically symmetric solution are isometric.

Vlasov matter
@ Mass shell: 7 dimensional submanifold

Pm={(X,p) € T.# : gu(X)p"p” = —m?, p futuredirected}.  (3)
@ Distribution function: f € C* (Pm; R)
@ Vlasov equation (geodesic equation)
7] ; 7]
n _r vaA_ Y _
P Ox,‘f FAP"P Opif 0 (4)
@ Stress-energy tensor
1
Wiy _ = - LV
() m/p(m)f(x PIPIP P ®)

where P y) is the fibre of P, and i, is the volume form on it.

Isotropic Einstein-Vlasov system
o Tetrad: {e(n)} (A =0,1,2,3), p'dk = vWey
@ Isotropic distribution function

f € C}(Pm; R) is called isotropic if there exist a tetrad basis {e(x)}
(A=0,1,2,3) and a function F : R* x R, — R, such that
f(x,p) =F (x,v), vZ=¢g;vINO) (1,3=123), (6)
for all (x,v) € Pp.
@ Equivalence to a perfect fluid
Let F satisfy
F(x,v) =0V %9, e>0. (7
Further let
o(X) := 4r /DC \/m2+v2dv (8)
=3 / F (x m2 7 ————dv. 9)
Then T+ takes the form
TH = putu” + p (u"u” + g"), (10)
where u(x) := e(g)|, = &(g)|, - is a timelike unit vector field.
@ Energy as a conserved quantity: ¢
F(x,v)=®(E(x,v))=:¢ (17%3)> . (11)

Summary

@ The Vlasov matter reduces to a perfect fluid if the distributi

@ A static solution of the Einstein-Vlasov system with isotro
given surface potential provided that the pressure is suffic

© For a shallow potential and isotropic distribution functio
becomes polytropic. The uniqueness holds for 0<n<7/2

© We analytically and numerically investigated the case of a s
solution for a shallow potential, while the uniquness may br

,[1] T. Harada and M. Thaller, arXiv:1806.10539 [gr-qc].
:[2] R. Beig and W. Simon, Comm. Math. Phys. 144 (1992) 373.

T. Harada harada@rikkyo.ac.jp ()

tep-function distribution. There exists a unique spherica
eak down if the regime of a deep potential is included.

Unique EV

Uniqueness theorem
@ Assumption: The energy cutoff be not too smooth.
¢ : (—o0,1] — R, is an analytic function on [0, 1], ¢(x)
thatIn e N : #(+0) = --- = p("1(+0) =
@ Theorem
Let Ep > 0 and n < 3. Then, there exists pp > 0 such that if
Sup,cx P(X) < po, the model is spherically symmetric and the unique
solution determined by ¢ and Eo.
@ We omit the proof. If interested, please look at Ref. [1].
Physically interesting limits
@ Ultrarelativiastic limit and massless case
The EOS for radiation fluid, o(p) = 3p, is recovered. One obtains
I(p) = % > 0 and the Beig-Simon theorem cannot be applied.
@ Low-pressure limit
We assume that ¢(x) = 0 for x < 0 and limy_, ;0 Xx "¢(x) = C > 0 for
n > 0, where n is not necessarily integer. If V < Eg and V is sufficiently
close to Ep, we obtain the polytropic EOS p ~ K", where
7 =(2n+5)/(2n + 3) and K is a positive constant determined by n and
C, and

=0ifx <0, and
0, ¢M(+0)> 0.

5:_) 26K -2y 1)/,
Therefore, the Beig-Simon theorem appliesfory >6/50r0<n <7/2.
Example: Step-function distribution
@ Distribution function: F(x,v) = (E) = ©(Eq — E).
We can obtain p(V), p(V), p(p) and I(V), analytically.

P
0.3

| ~

(12)

B
St e e s Figure: Plot of I(V) for Eg = 0.9. For each
Figure: Plot of p(p) for Eg = 0.9. Eo, I(V) has one zero denoted as Vo(Eo).
@ Numerical integration of the TOV eq.
There exists a unique spherically symmetric solution for a given Ej if
V > Vg(Eop), while uniqueness may break down in the other regime.
V

B = 0.99

low-pressure regime

---------- Vi (Ey)

------ intersection point, j

(Ey ~ 0.875, V.  0.665)

! two solutions with the same surface potential Fy
0.4 i

%o =01

Eq

0.8 0.85 0.9 0.95 1

Figure: (Eo, Vo) lie on the dashed line. The solid line represents a succession of

(Eo, V¢) obtained by integrating the TOV eq.

on function is isotropic in momentum space.
pic distribution function is necessarily spherically symm
iently low and the energy cutoff of the distribution functio
nF(E)with F=0for E>Epand F ~C

etric and unique for a
nis not too smooth.
(Eo — E)" near the cutoff Eg, the EOS

lly symmetric static
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Particle acceleration
by ion-acoustic solitons in plasma

H. Ishiharal, K. Matsunol?, M. Takahashi3, S. Teramael

10saka City University
2Osaka Butsuryo University
3Aichi University of Education

arXiv: 1807.10460 1
Introduction
ngh energy phenomena % mq: d—_ Fluxes of Cosmic Rays
in the Universe f o : K'(— 1 particle per m2 second
=> Cosmic rays "
Non-thermal energy spectrum %, Knee
- %, 1 particle per m2 year
N(E)o<E™ (s=2~3 "'-°
(EyocEs (s=2~3) i o

v’ Fermi acceleration by shock wave is [
a major candidate.

> We propose Ankle
. ) L 1 particle per kin2 year ﬁ‘.._
a new acceleration mechanism: [ Lk
Particle acceleration by

Energy (eV)
cylindrical / spherical ion-acoustic soliton in plasma



Particle acceleration by ion-acoustic soliton

v’ Acoustic soliton wave, described by cylindrical / spherical
Kortweg-de Vries equation, grows in its wave height as wave
shrinks to the center.

» Charged particles confined by electric potential accompanied
with the shrinking wave get energy by reflections.

- - o

fffff

lon-electron plasma system

Mn® (E)v(i) + (fv(i) : V) v(i)) = en(®) (E + 0@ x B) —vp@

ot
D D) = 0. Ab= (@ _ p©
o TV () =0 A= ——(nl —nl9)

M: ion mass, n, vi), Pi): number density, velocity, pressure of ion fluid
@ : electric potential, n'®): electron number density

v' Assumption :
No magnetic field, Cold ion and hot electron fluids with cylindrical / spherical symmetry

¥ new variables : _ €2 (rtcot). 7= 63/260t Debye length A,
AD AD sound velocity ¢,
v’ reductive perturbation : ,
ed 5 () 5
Wzﬂbl‘i—ﬁ oY =evy +€vo+ -
(@)
B 14 eni+ng+ -
ng

» We obtain ®=¢; = —v; =1y

and Korteweg-de Vries (KdV) equation 4



Korteweg-de Vries equation

oD odb 183 b
T

0 (planar)
y = 1 1/2 (cylindrical)
1 (spherical)
T=17m9 — T17=0((r=0)
{ Early time (large radius and t): planar soliton like

Late time (small radius and t): the last term on Il.h.s. becomes
important

v’ Cylindrical / spherical soliton wave height grows in time

Evolution of wave form of soliton

0.5 r=-25

0.4 ]
5

=—6 . )
¢ 03 __100] Cvlindrical soliton
(early stage)
0.2 ]
0.1 k J .
0.0 ]
50 10

—-150 —-100 -50 0 0 150
r
250 j
— _10-3
200 T=-10
150
() = —45%1073 Cylindrical soliton

100 1 (final stage)

50

0




Time evolution of wave height

9k Cylindrical soliton - 6 Spherical soliton
T 1 :
£ & 4 ]
=R 4 @
S =
5o 1 24} -
— 1 | i
Dax X T ol B oy O T3
-]_ E =1 . . . . N
-14 -10 -6 -2 2 -4 3 -2 -1 0 1
logyo | 7| logyg |7

v' growth rate of wave height is power law in time

» In order to simplify the system, we make a model where the
cylindrical/spherical soliton is replaced by a thin shell wall

» We calculate test particle motion enclosed by the shrinking thin shell
and obtain energy spectra of accelerated particles

~ Thin shell wall models
1. Shell wall: Initial radius r, of shell at initial time t, (<0),
moves with sound velocity ¢, = r(t)=—c,t
1 2. Electric potential : ®(t) = dg (t/tg) ™
a=1/2,2/3: Cylindrical, a= 1, 4/3 : Spherical

3. Final time: (Shell radius) = (Debye length) acceleration stops

A Test charged particles: Elastic reflection by the moving shell wall
= Particle velocity: v = (UL, '“II) — (—’UJ_ — 2c¢g, U”>
B. Escaping particles: (Particle energy) > @ (t)

= Particles escape to infinity

100

~0.6 04 —02 00 02 04 06 -1.0 . . ] ] 8
) t



Energy spectra of output particles

10° f a0, Cylindrical 1 100 | e T Cylindric/al 1
- N -2/3 ™ —-1/2
10° F \.\ :;_02(_; / 1 10® B 2—051.2 1
N 10 | 1 N0 1
10" f : 10" 1
N
10° | iﬂ\gm 10° | i\
10~k = 1071 A
0.0 0.5 1.0 1.5 2.0 2.5 0.0 05 1.0 1.5
log,o(E/kBT) log,o(E/kpT)
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10" f *<>-< & ot /3 ] o ’t\ d ottt
108 r Peq E—0.87 E 10° 1 ™~ E—2.1 1
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9
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Summary

We propose a new acceleration mechanism for charged

particles by using cylindrical / spherical solitons
propagating in ion-electron plasma.

Electric potential grows with a power law

in time as waves shrink.

4

We obtain power law spectra of energy for accelerated particles.

» We expect that the

acceleration mechanism by solitons

are applicable to cosmic rays associated with Solar flare, etlcl.

Application to Solar cosmic ray

v’ High energy protons with energy range MeV to GeV are observed
when the solar are occurs.
v In magnetic reconnection region, a footpoint of the flare,
magnetic field becomes negligibly small and solitons would be excited there.
We assume

[ temperature of solar plasma : 1 ~ 100 eV
number density of electrons : 10> ~10%® m-3
Debye length A, : 104 ~103 m

_initial wave radius (size of reconnection region) : r, = 10*m = 107 ~108A,,

If our model is applicable till the cylindrical or spherical shell wall shrinks
to size of Debye length, maximum energy is estimated as

£\ —4/3 o\ /3
Emax ~ ®q | -1 — kpT(e) [ 10 ~2 GeV ~ 5 TeV
0 tO B >\D

Soliton acceleration would be a candidate for

origin of the solar cosmic rays energetically. 12
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4 N

Emergence of AdS,
thermodynamic quantities
\ in extremal CFTs y

Yasunari Kurita

Kanagawa Institute of Technology

AdS; pure gravity and Witten’s idea

* Basically trivial (no gravitational waves)

* But, existence of BTZ black hole (finite size = entropy)

* AdS/CFT = finding CFT!

* 3-dim. Gravity = Chern-Simons description (gauge invariant)

Igrav—m—/dm\/a {R+/~2~] Tes (A) /T [A/\LZ_A 2A/\.A/\-A]
s = 3 +3
b where : 3

av = EICS (Ar) — %Ics (Ar) kp = kr =k =(/16G
= CS normalization will give the value of ¢ !!
* gauge group:S0O(2,1) X SO(2,1) or its covering
» | Witten’s assumption: holomorphic factorization |

T

= k;, kr areinteger = ¢, = 24k;, cgr = 24kp



k=1case [c=2ek=24 |

71 CFTs are known.
Pure gravity (no matter field)
= FLM model (uniquely determined!)

Frenkel, Lepowsky, Meurman(‘88) " having monster symmetry |

In FLM model, the Lowest dimension of primary field (other than
identity) is 2(=k+1)

Witten considered k>1 extenstion.

. ) . Witten, arXiv:0706.3359
Witten’s conjecture

[Pure 3-dim. AdS quantum gravity is extremal CFT]

| k: positive integer |

* extremal CFT is CFT whose central charge is c=24k and its
lowest dimension of primary operators (other than identity)
is precisely k+1

¢ k=1: FLM model is known

e k>2:extremal CFTs have not been found



Why k+1 ?
The ground state energy:

— (o
L0:L0:_

ﬁ—
The mass of BTZ: Ml = Ly + Ly
M>0 = LOZ]-

—k

The difference between the ground state and minimum (finite
size) BTZisk + 1

In Witten’s interpretation, primaries (whose lowest conformal
dimension is k + 1) create BTZ black hole states

The Partition function of ECFT

o0

Z(r)="Tr g 5] =¢q7* [H - j + (’)(q’c“)}

n
n=2 q

7 1
Ground state and | BTZ (primary field) contributions
Virasoro descendants

Pole structure of the partition function and modular invariance
require that Z(7) should be polynomial of J-function
(mathematically known, see Apostol p.40 for example)

J(q) = 1728j(q) — 744 = q~* + 196884q + 2149376042 + 864299970¢> ++ - -+

Klein’s modular invariant |

2miT
€

q= ﬁ moduli parameter of boundary torus ‘

ECFT = uniquely determined!

1 i
= 27T <QE+ ?)




Witten, arXiv:0706.3359

The partition function of ECFT on g=1 torus

¢ The result for the first several k

A1E4(7)® 4 31Es(1)2|” Iohfnﬁ"i'é’ﬁ‘;;?l‘if””” was
2n(7)%4

Zy(q) = |T(q)? — 3937672

Zs(q) = | T(q)* — 590651.7(q) — 64481279

Zy(q) = |J(q)* — 787535 () — 859750391 (q) + 74069025266

Partition functions are computable for any k, for example

Zio = |J'—1968839.J° — 214937599.]7 + 1348071256190.7°
+253704014739574.J° — 361538450036076764.7*
—82414308102793025330./° + 30123373072315438416085./°
+6219705565173520637592236.] — 264390492553551717748100292|°

Expansion of the partition functions

e Note the coefficients! FLM interprets the number
Z1(q) = g~ + 196884 + O(¢?)? of primaries with
dim.= 2=k+1

Z3(q) = g% + 14 42987520 + O(¢?)|?

Zi(q) = lg* +q 2 + ¢ + 2 + 810266094287 + O(¢°)|?

* Take log!
k=1 In196883 ~ 12.19 47v1 ~ 12.57
k=2 1n42987519 ~ 17.58 D AnV2 = 11T
k=4  1n81026609426 ~ 25.12 A4 =~ 25.13

Good! close agreement!!




Witten, arXiv:0706.3359

Entropy of BTZ black holes

G (2((;)1/2 (\/m “ T4+ VMt J) T ArVE (\/E+ \/E_o)

Mt =1Ly + z,o.

3¢

= =24k
2G

J=Lo—Log. ¢

* For Ly=1, Log of coefficients are nearly equals to entropy
(for each holomorphic sector and anti-holomorphic sector )

* The coefficients are (almost nearly) the number of primary
operators that create BTZ black holes.

Petersson-Rademacher formula

* Asymptotic behavior of the coefficients of the J-function:

o0

J(q) = Z cmq™,

m=—1

3 1
Ine,, ~ 4m/m — 1 Inm — 51112 + ...

* Asymptotic behavior of the coefficients of the partition function

- 1 3 1
Zi(r) =Y brnd” In b%m ~4ArvVkn + 1 Ink — 4 Inn — 5 In2+....

n=—Fk

Comparing BTZ entropy and this
asymptotic behavior, one can read
the correspondence: n ~ L,

This part vanishes when k=4 and n=1.

The difference (between BH entropy and the
coefficients) remain always.

Quantum correction?



Canonical ensemble

Internal Energy obtained from ECFT partition functions

* k=1 case
(B) =T*0rIn 7,

Fis

BTZ

AdS ,

(we set J=0, for simplicity)

* k=10 case
<E> = T{Za'[' In Z]()

[ BTZ

AdS ,

(thermodynamic limit).

It agrees with mass of AdS; at low T and with mass of BTZ at
high T. The transition becomes sharper as k increases

Canonical ensemble

Canonical entropy, canonical angular
momentum from ECFT partition function

k=2, Qp=0.2 (rotational case)

oF
Sc = _a_: = 0r (T LogZy)

100
8
60

w BIZ « —ECFT

20

AdS,

0.5 1.0 1.5

20 T

Euclidean
_ 0Fy _
Je = 555 = =00, (T LogZy)
3.5
30 -~ ECFT BTZ
25
2.0
15
1.0f
o5l AdS,
— . ‘ ‘ ‘
05 1.0 1.5 2.0 25

At low temperature, ECFTs give AdS, behavior, even when the boundary rotates (non-zero Q).
Thermodynamic relation gives correct thermodynamic quantities.

I
3.0



Canonical ensemble
Canonical entropy, canonical angular
momentum from ECFT partition function

k=4, Qg=0.2 (rotational case) Euclidean
d OF
Sc = _% = 0r (T LogZy) Jc= ﬁ = —0q, (T LogZy)
s ECFT

N

100
BTZ /
/

.‘ '\ L5 2.0 r ,
AdS, .
[ ECFT

At low temperature, ECFTs give AdS, behavior, even when the boundary rotates (non-zero Q).
Thermodynamic relation gives correct thermodynamic quantities.

piscussion | The dominant contribution to the
partition function : Z, case

By use of dimensionless temperature and angular velocity, ¢ = 2k, T = 27lT, 0 =10

Tirivial?

. . ~ 2 ~ 2 i
the lowest Virasoro op. can be written as T _ T Canonical
o=k ~ o=~k . ensemble
1-0 1+0 representation

When 0=0 and T =V2, L, =8. When Q=0 and T =2, L,= 16.
The term g2 (including the coefficient) gives The term ¢ (including the coefficient) gives
dominant contribution. dominant contribution.
ssx101 | . gx10% |
5.0x10M |
Tx IU:U r
45104 |
ni 6x 1020
4.0 x 10
35x10M sx1020 [
7 8 ’ 10 ]I? ]I‘l 15 1‘6 ]‘7 Il‘i




Discussions

* Extremal CFTs are a good candidate for pure AdS; quantum
gravity. (though it is not found for k > 1)

* The partition functions give expected thermodynamic behavior.

* The critical temperature of Hawking-Page transition is at |[7] = 1
in the moduli space. The transition becomes sharper as k,c —»
(semiclassical limit).

* How can we understand microscopic origin of BTZ entropy?
There is always a bit difference between Bekenstein-Hawking
entropy and microscopic entropy (log of # of BTZ primaries).

e What is quantum gravity? What should we investige further in
this model?

Some More Discussions

* What is microscopic understanding of angular momentum, which
emerges as thermodynamic quantity at high temperature?

* For Ly = 2, ECFT states will include some information of massive BTZ
black hole. How should we count the number of states? It will relate
with some microscopic understanding of black holes.
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Pulse profiles of highly
compact pulsars
iIn general relativity

Hajime SOTANI (NAOJ)

Physical Review D 98, 04417 (2018)

photon trajectory & deflection angle

metric: g, dx*dx* = —A(r)di* + B(r)dr* 4+ C(r)(d0* + sin*0dy*)

e deflection angle and impact parameter:
odr[ 1 (1 A\]-V2 IC(R

W(R):[e E[A_ (ﬁ_E)] where b = sina —( )

maximum value of ¥ corresponds to the value when v =

photon trajectory 20

——

N (R T SO L

bserver
T -
]

010 015 020 025 030 035
M/R

Nov. 5-9/2018 JGRG28 @Rikkyo University



pulse profile from NSs

adopting a pointlike spot approximation (Beloborocov 02),

assuming the black body emission from the hot spot with

isotropic intensity I,

. _ d
Flux from area ofS§, := de = 4R*Syd¢psiny: F.(y) =F0Smacosad—a, Fy:
The observed flux: r(,) — r, Cosa@ where g, .=

§7
Considering the observation of the pulse profile from

with angular velocity Q with angles © & /

u(t) = sin i sin O cos(wt) + cos i cos O

wWhere yt = cosy = n, -d

observed flux from pulsar:

Fop(1) = F(1) + Fy(1)

Nov. 5-9/2018

JGRG28 @Rikkyo University

NS models

fixing the radius to be 10 km.

- Yo = 09087, v = 1.078x., w . = 1.604r.

primary

antipodal

_ 4IOA(R)R2511/6¢
= I
sA(R)
(0] D2
rotating NS
rotational
axis

observer

(HS & Miyamoto 18)

we consider three NS models with M/Me=1.8, 2.0, & 2.2 1,

2.5 L T T LI LI B R
: <
20 =5 PSR J0348+0432
- <0 . \
i ~ )
§ 1.5¢ \\ \. |
L ! |
= : N I GW170817
S 10f Voo
 —— - FPS \\ AN
:_ .......... SLy N -‘.." \\
O05F o APR S JmeiTs N
O:. N | .Sh.enl . P Ll ._..—-l..—.."_.-..u:l
9 10 11 12 13 14 15
R (km)

Nov. 5-9/2018 JGRG2
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how to observe the hot spots 1

depending on the angles © & /
I) only the primary spot can be observed at any time
II) the primary spot can be observed at any time

and the antipodal spot can also be observed sometime
Il only the primary spot can be observed,

or both spots can be observed,
or only the antipodal spot can

be observed

IV) the both stops can be observed

at any time

Nov. 5-9/2018

1- WCri/‘T[

JGRG28 @Rikkyo University

S

wcri/ﬂ -05

0.5

0

01—l
O/

YerilT—0.5

0.5

how to observe the hot spots 2

depending on the angles © & /
i) the primary has always 1 path, the antipodal has always 2 paths

ii) the primary has always 1 path, the antipodal has sometime 2 paths
iii) the both have sometime 2 paths

iv) the both hot spots have always 1 g)/%th

0.5 .

cri/ T

il

wcri/ﬂ' -1

T< Yoy <372 ]

1114
1312 — il

1\

O... TR
0 wcri/‘n_1
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how to observe the hot spots 3

0.5

2- 1/}cri/ 7

i/

0

Nov. 5-9/2018

depending on the angles © & /
i) the primary has always 1 path, the antipodal has always 2 paths

ii) the primary has sometime 2 paths, the antipodal has always 2 path
iii) the both have sometime 2 paths

iv) the both hot spots have always 2 paths

Peril T = 312

i

32 <y <27

L
JGRG28 U@[Z@o

2—ypoln 0.5

University

wcri/ﬂ'— 3/2

6

behavior of F/ F, adopted (i,©)
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pulse profile from 1.8M_ NS

050F =
—049f | ]
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D048t e (0.02,0.35) ]
3048 0.1.0.15) — (002,0.15) — == (0.02,0.45)
o e (02.0.25) e (0.10,0.25) 1 — - (0.10,0.35) ]
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04f
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pulse profile from 2.0M 5 NS
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pulse profile from 2.2 1M NS
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conclusion

We investigate the pulse profile of highly compact rotating NS for
which the bending angle exceeds /2 (M/R > O.284).

We make a classification of the number of path from the primary
and antipodal hot spots, dpending on the angles (i, ©).

We find that the pulse profiles of highly compact NSs are
qualitatively different from those for the standard NSs.

— In particular, F___ /F

max min

is significantly larger for highly compact NSs

One would be able to constrain the EOS for NSs through the
observations of pulse profiles with the help of the observational
constraint on (i, ©).

Nov. 5-9/2018 JGRG28 @Rikkyo University 12
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Gravitational radiation
from a spinning particle
orbiting a Kerr black hole

Kyushu University

Norichika Sago
with
Ryuichi Fujita (YITP)

N\

\“/

N 28th workshop on General Relativity and Gravitation
jl‘”‘lj(% Rikkyo University, 5-9 November 2018

KYUSHU UNIVERSITY

Motivation

To study extreme-mass ratio inspirals (EMRIs) as GW sources
by using the black hole perturbation theory.




Motion of a spinning particle in Kerr geometry

Test particle case [ *O((u/M)°) ]

The particle moves along a geodesic,

characterized by E, L, C.

E :energy
L :azimuthal angular momentum

C : Carter constant

\_\
i/ H \\
particle M, a \

fl's Kerr BH
Atistorder [ =O((u/M))] —
Deviation from the geodesic orbits because of
- radiation reaction effect
- effect of the particle's spin

Question
How does the spin affect the particle's orbit and the GW?

GW

EOM of a spinning particle

/ Mathisson-Papapetrou-Pirani(MPP) equation ™~
D
EPM(T) = _ERMvpavv(T)Spa(T) vH: 4-velocity

p*: 4-momentum

BS,LW (1) = Zp[“(‘[)vv] (1) SHV: spin tensor

& Y,

(Neglect higher multipoles than quadropole, accurate up to the linear order of spin)

14 degree of freedom for 10 equations
— 4 additional conditions are required to close the system.

Spin supplementary condition
[ SHY (‘L‘)pv (‘L') =0 (correspond to deciding the CoM) ]




Simplification of MPP equation

Introduce the tetrad frame

VA VA VE
el = <—,0, 0, —a sin? 9—) ep = <0,—,O, 0)
VI VZ VA
a r? 4+ a?
=(0,0,VZ,0 e3=<——sin9,0,0,—sin9>
( ) u \/E \/f

Rewrite MPP equation in the tetrad frame up to O(S?),

dv? a d(a B 4 e o
[ dT—a)bcvv—SR ?_wbcv(_sv(Rb ]
where v =ut + 0(52) a = ﬁ = _Lc_-abcdubscd
S 24S
wabc = eéfe,‘,’eﬁm R¢ = R*ab av uczd — _RabcdvbScd

2usS

Formal expression of energy flux

< > 24 [lzlmnlz + almnlzlmnl ]

o /H in/u . .
Zlm/n ~ fdrR{,n{np(r) Ton (r)  : Amplitude of partial wave

homogeneous solution source term constructed from
of radial Teukolsky eq. energy-momentum tensor

Energy-momentum tensor

T = f dr {P(“vﬁ) 0P —z(@) _ 7, (SY(avB) 5™ (x — Z(ﬂ))}

V=9 =i /)

\f
contribution from spin



Calculate the energy flux
e

® Solve the EOM for a spinning particle

® Construct the energy-momentum tensor to
derive the source term

® Solve the Teukolsky equation
(by analytic technique [Mano et al.(1995)])

® Calculate the amplitude of each mode

= Sum over all modes

Setup

e circular, slightly inclined orbit
* particle's spin also slightly misaligned to the BH spin

&

Construct the energy-momentum tensor from the solution of
MPP equation, then calculate the energy flux.



circular, slightly inclined orbit, slightly misaligned

Orbital part
r =const.  (v? =0) = circular
6 —Z=ycosQgr+0(y®), (¥ K1) = slightlyinclined
t = Q.7+ y?t, cos2QpT + 0(y?) )
@ = QyT + y*Py cos 2097 + 0(y3) .
L AS

»

Spin part
% =G +y?(3 cos 207 + 0(¥°)
¢° =y7sinQyT + 0(y?)
= yfll sin Qg7 + 0(y?) slightly misaligned
3 = y(3sinQyt + 0(y?)

Results
|
v? = M/r : PN parameter
. 9 q = a/M : spin parameter of central BH
d_E — £ u_ 10 s = S/M : spin parameter of particle
dt 0 5} M? y :inclination parameter

1247 . 7373 95 92 .
1 — P ldr— (= - =P ) g— [ = 29?2 ) s|0?
X{ 336l+lﬂ (12 24y>q (4 :3‘”)‘5]t
L[ omT s 527 G\, (T 63T, y
9072 6 96 7 )14 g 14’ )7

L[o8100 870 8749 L\ (2403 2741 L\ 463 L1
672 336 62 Y )9\ T2 T 1792 Y 79 SEY

6643730519 1712 3424 ) 16 e
69854400 105 | 105 3 105 "
169 , 187 8 ,
T (92 B ;
o (2—v) ma ( ¢ 37 )“’

L(BU9 T3 5\ o (2411859 S\ 0T8T, 50
w217 )1 168 252 V)T Y 1s|v
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Summary and future works

Summary

® Calculate the energy flux of GW from a spinning particle moving
along a circular, slightly inclined orbit in Kerr spacetime.

m Consistent with the circular, equatorial case [Tanaka et al.(1996)]
m Consistent with the nonspinning particle case [NS-Fujita(2015)]

® Not trivial to compare our result to the standard PN result
because v (0r r) and y are gauge dependent.

Future works

m Re-express the flux formula in terms of gauge invariant variables
in order to compare with PN result.

m GW waveform including the effect of the particle’s spin
m Beyond the linear order of particle's spin

11
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GW polarizations with aLIGO, Virgo and KAGRA

Yuki Hagihara, Naoya Era, Daisuke Iikawa

Hirosaki University, Japan
with H. Asada (Hirosaki)

JGRG28 in Rikkyo University Nov. 5 -9, 2018
Abstract: Based on Phys. Rev. D 98, 064035 (2018), We are giving a poster presentation on GW polarizations with Advanced LIGO, Advanced
Virgo and KAGRA. Assuming that, for a given source of GWs, we know its sky position, as a case of GW events with an electromagnetic
counterpart such as GW170817, we discuss a null stream method to probe GW polarizations including spin-0 (scalar) GW modes and spin-1
(vector) modes.

(1 Introduction )

3 Numerical calculations

There are two polarizations of gravitational wave (GW) in GR or some theories of
gravity. But six polarizations are possible in general metric theories of gravity. We
can test theories of gravity by probing GW polarization. So, we study null stream
method as one polarization test.

The null stream is particular linear combination that cancels out a spin-2 modes
signal. Extra GW polarization will make the null stream non-zero.

We investigated the direction in which extra polarization are more likely to be
detected when using the null stream method.

Gravitational-Wave Polarization
o [0}

5f3¥

(e

Fig 1: Six GW polarizations in a general metric theory of gravity. [2] (a) and (b)
are spin-2 modes, (c) and (d) are spin-0 modes and (e) and (f) are spin-1 modes.
In GR, only (a) and (b) are present.

signal. A GW signal in a laser interferometer is the phase difference of laser lights.
The phase difference A® is expressed as

S(t), (1)

where v is frequency of the laser light, L¢ is unperturbed length of each arm. We
call S(t) a signal of GW. For a detector labeled by a (a = 1, 2, 3, and 4), the signal
from a GW source at the location denoted as (6, ¢) on the sky is

Sa(t) = Ffnt + FXn* + FY (b —h") + FYnY + VRV, 2)

AD — Amwv Lo

where h™ and h* denote the spin-2 modes called the plus and cross mode, respec-
tively; h% and h* denote the spin-0 modes called the breathing and longitudinal
mode, respectively; and hY and h" denote the spin-1 modes often called the
vector-x and vector-y mode, respectively; and Fi , FX | FS | EY  and YV are
the antenna patterns for polarizations of GWs. The antenna patterns are functions
of a GW source location 6 and ¢.

If GW has only spin-2 modes, by eliminating the two modes in signals at three
detectors in the ideal case, we obtain a null stream as, for a= 1, 2, and 3 for

instance,

02351 () + 03152 (t) + 01253(t) = 0, (3)
where

bup = FF Y — FXE} @

Next, we consider four detectors and incorporate scalar and vector polarization
modes. Let us denote two null streams including spin-0 and spin-1 polarizations as

PoSa =02351(t) + 631.52(t) + 01295(t)

=P Fy (h¥ = h*) + PEYRY + PR hW, (5)
QaSa =03452(t) + 042593(t) + d2354(t)
=QuFy (1° = 1") + QFYRY + QuFy hY, (©)

where we use Eq. (2) and the summationis taken over @ = 1, 2, 3 and 4. Note
that the tensor null stream is built in and hence h™ and h* do not appear in
the above equations. Without loss of generality, we can choose P, and Q, as
(Pa) = (023, 031,012,0) and (Qq) = (0, 034, 042, 023)-

( 2 Null stream method ,

The null stream is particular linear combination that cancels out a spin-2 modes

e
In numerical calculations for the HLVK network, we choose H=1, L=2, V=3, and
K=4 for a=1, 2, 3, and 4 for its simplicity. See Figs. 2 and 3 for the network of
HLVK.
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Fig 3: The 70 sky positions that satisfy simultaneously P,F?S = 0 and Q,F? = 0.
If we are extremely lucky to observe such a GW event with an electromagnetic
counterpart at the location at which spin-0 modes fade out from the null streams,
Egs.(5) and (6) will enable us to constrain A" and h", separately.

(4 Conclusion

In expectation of the near-future network of Advanced LIGO, Advanced Virgo, and
KAGRA, we discussed a null stream method to probe GW polarizations including
spin-0 (scalar) GW modes and spin-1 (vector) modes, where we assumed that, for
a given source of GWs, we know its sky position, as is the case for GW events with
an electromagnetic counterpart such as GW170817. We studied a location on the
sky, exactly at which the spin-0 modes of GWs vanish in null streams for the GW
detector network, though the strain output at a detector may contain the spin-0
modes. By numerical calculations, we showed that there are 70 sky positions that
kill the spin-0 modes in the null streams. If a GW source with an electromagnetic
counterpart is found in one of the 70 sky positions, the spin-1 modes will be testable
separately from the spin-0 modes by the null stream method.
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Possibility of forming unstable circular orbit of photon in boson star

OKazuma Tani , Masashi Kuniyasu ,Nobuyuki Sakai(Yamaguchi univ.)

Abstract:Boson star is one of the soliton solutions. Solitons exist on the scale from elementary particles to astronomical objects. It is
expected that boson star can be as compact as Black holes(BHs). The existence of unstable circular orbit of photon(UCOP) is one of the
phenomena in massive objects. So as We make the index of boson star’ s compactness. we investigated the possible that boson star can form
UCOP. As the result, we show the existence of UCOP in the case no quartic self-interaction. Next stage in the research is expansion that

include quartic self-interaction, and check its stability.

/—I 1. Introduction i

@ Basic knowledge and background
Boson stars are complex scalar

fields which have U(1) symmetry.
It’ s necessary for observing BH :
shadow to exist circular orbit of
photon(UCOP) . If BSs have
UCOP, it must be distinguish
between BH shadow and BS one.

BH’ s effective potential
@ Purpose
*In my research, we used a model which including nonminimally

coupling to scalar curvature.

*In the model, we investigated whether BSs have UCOP or not.

J

@ Setting situation
We assume that spacetime is static and spherical.
So ansatz is given by
g = diag(—e¥™, 2™, 72 r25ing)

(. 1) = po(r)e L,
*the model’ s action

S= f d“x\/—_g{(ﬁ + €<0*<p) R —g"o,¢ 0,9 —mbo*p — %(tp*mz
(Note) A¢ . quartic self-interaction
& the strength of coupling
mg,: scalar field" s mass
We get the basic equations by varying those of action with
respect to g, or ¢*. For example, we can get scalar field s
equation of motion,

[o-mg —24¢°¢ +ER]p =0

@ Numerical solution example
We show the solution of BSs basic equation below:

1 —— 0.25
g=0 ——
10
0.8 20 1 0.2
50 ——
06 |1 o0 015
© 5
04 A\ 1 0.1
N
02 1 0.05
0 L L - L 0 L L L L

0 2 4 6 8 10 12 14 o 2 4 6 8

rlm 2
Right panel is the graph which change some values of /1¢ Left
panel is the graph which change some values of ¢.

/‘|2. Situation and solution of Boson star '—\

}

f_|3. Unstable circular orbit of photon I—\

@ Schwarzschild Black hole

By solving geodesics equation with Sch
metric. We can get the trajectory of photon: |
around Sch Black hole(like right panel).

The light blue line is unstable circular
orbit of photons (UCOP). The phenomenon °
imply that there is a compact object in 2f
center.

Schwarzschild Blackhole sem—.

s

4z o0 2z 4
xlry
Source : Ohgami(2017
We can consider the UCOP as index of compactness.

@ Boson star
In similar way, We searched BS’ s UCOP.

P2 +V(; L) =E
geodesics eq.

2+ V(r;LE) =0

= UCOP exist!

Vi)
Vi)

¥

-

In the constant & = 4, we found two case. One has UCOP,
another doesn’ t have. The difference is parameter w. In above
graph, we show the potential in the cases each other. It is not
restricted the case § = 4. For example, we show the existing
UCOP in & = 0.1 below. In my research until now, we found UCOP
in the case § > 0 and not found in the case § < 0

UCORP exist!

Qe

V()

r
AN

'—|4. Summary and future works i

@ Summary
*We focused on the boson stars with nonminimally coupled
scalar field to gravity and showed its numerical solution.

*In the case 14 = 0, We showed that the UCOP in BS exist
ifé>0

@ Future works
We will analyze boson stars for 14, # 0, ¢ # 0 and its their

stability. Finally we’ Il make the parameter map continuously as

possible.
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PB3| Negative Deflection Angle in Three-Dimensional Massive Gravity
Keisuke Nakashi (Rikkyo U.), Shinpei Kobayashi (Tokyo Gakugei U.), Shu Ueda (Tokyo Gakugei U.), Hiromi Saida (Daido U.)
JGRG28 @ Rikkyo Univ., 5-8, November, 2018

We study the null geodesics in a static circularly symmetric (SCS) black hole spacetime which is a solution
in the three-dimensional massive gravity. We obtained the analytic solutions for the geodesic equation

for massless particles and the explicit form of the deflection angle. We found that for various values of

the impact parameter the deflection angle can be positive, negative, even zero in this black hole spacetime.
The negative deflection angle indicates the repulsive behavior of the gravity.

BHT Massive Gravity | Bergshoct, et al. 2009) | Deflection Angle |

¢ Action * Explicit Form

1 1 3 _
S = d*x/—¢ |R-21—-— | R, R" — ZR? bD +2 2
167TGJ W l m? < w7 >] _ L | AR D

A -7, = TN
» Two DoFs of the massive graviton (Ghost free). bD 2\/ﬁ L+ DA

» Some nontrivial solution of BH spacetimes. D : impact parameter

« SCS BH Spacetime P We can obtain the expression for a exactly.

dr? P o can be positive, negative, even zero for
ds* = = (=Ar? + br — pdt* + I rrde? various values of D
—Ar?+br—p

b : gravitational hair parameter Oliva, er al. (2009 * Critical Value D,_,
[ : mass parameter

[A=21=2m? [p>0,4>0,A<0]

d
» Curvature » Horizon btanh —

BH
R=6A—% —b+\/b2—4Aﬂ Receiver

r = —2A P This value is the boarder of the positive and

= A = 0: Asymptotically locally flat negative deflection angle.

a Source

Horizon

| Behavior of Null Geodesics |

* Effective Potential V.

2
Vers

Vinar A=0,b=1,u=1

» b is essential for the repulsive behavior and
the repulsive behavior appears only when 5>0.
= It does not appear in the BTZ BH background.

0

Th Summary and Discussion

» One unstable circular orbit at 7. . . . .
i o “ * We obtain the analytic solution for the geodesic eq.
* Behavior of Null Geodesics in Region IT1 for massless particles in the SCS BH spacetime
geodesic E%=23 geodesic E=15 m of the BHT MG.
horizon horizon
* We derive the deflection angle analytically and
find that it can be positive, negative. even zero.
* The negative deflection angle denotes the repulsive
behavior of the gravity and the linear term br is
Attraction Repulsion essential for the repulsive behavior.

B In region IIT the gravity works repulsivel * Since BH solution of the Weyl gravity and dRGT MG,

. contains the linear term, the repulsive behavior may
for null geodesics with £<z, /j_ - A
m

also appear in four dimensions.
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GRAVITATIONAL WAVES FROM PLASMA TURBULENCE

Triggered by First-order Phase Transitions in the Early Universe

Principle: Gravitational wave
emission ensuing from plasma
turbulence driven by first-order
phase transitions conveniently
peaks at the Kolmogorov de-
coherence frequency.

Symmetry Breaking: For a scalar field
¢, vacuum expectation value corrected
for temperature T, with coupling (&) and
decoupling (1) constants is given by:

V(I¢P, T) = [(-m? + aT?)] |¢* + 2% |pI*
Ve

/ey

2989 T0zEAXE/SqR B0

Figure 1: Variation of scalar field with its Potential for
different values of temperatures

From Condensed Matter Physics of gauge
bosons with mass m, T? = -m%a is the
critical temperature.

+ T2>TZ - Symmetric
¢ T2<TZ - Symmetry broken!

nucleation

Figure 2: True vacuum bubble breaking the symmetry
of the universe, instigating phase transition

Through broken phase bubbles, first-order

phase transitions cooled the infant
universe below T, breaking symmetry.
[BUBBLES NUCLEATE]|
® 2
— Z
@ o
ot g
H
g
[PUBBLES CORTESCE 2
° ©

Figure 3: Gas phase undergoes phase transition into
hydrodynamic phase resulting in plasma turbulence

While both first-order and second-order
phase transitions are believed to have led
to inflation, the dramatic effect of first-
order phase transition is chosen over the
smooth second-order phase transition.

Prof Mark Hindmarsh, Yashmitha Kumaran

University of Sussex, United Kingdom

Hydrodynamic turbulence: During the
phase transition, plasma enters turbulent
phase due to the formation of eddies
through TURBULENT CASCADE!

]
¥ Lo
[
e
[ e ——
: < —
i . 5 ey O3
— - L . —
-t b —
b “ S ) b
Lo = —
" — . N 7’

TN X hitps://www.comsol.com/turbulence-model/

Laminar s< Transition -« Turbulent

Figure 4: Transition to turbulence through eddies

According to the Kolmogorov model of
eddies, similarity principle states that:

As Reynolds number of the fluid tends to
infinity, the energy spectrum becomes
independent of viscosity.

Velocity correlation function is the root
mean squared velocity averaged over a
physical time. Auto-correlation function of
a system consistent with Kolmogorov

turbulence is defined as:

N = 1 £1/32/3

V2m

k : wavenumber; €: energy dissipation rate
per unit enthalpy; t: physical time.

Reference Models:

1. Stationary turbulence model: GKK!!

2. Top-hat decorrelation model: CDS[2!

De-correlation function is obtained from
the Kraichnan’s square exponential time
dependence equation by GKK model:

- 22

fet) = eXp( 7 Tkt )
Induced anisotropic stress spectrum is
positive when integrated, if the Top HAT

APPROXIMATION is applied, as done by
CDS model:

Mk, ty, t3)
oMk, ty,t,) O (t; —t,) © (% —(tz— t1))
+ 1kt t2) O (t; —t2) © (% —(t — tz))

This is taken as de-correlation function
over the one proposed by GKK for the new
model. Here, © is the Heaviside function.

Source:

To neglect expansion of universe when
turbulence was on, the source is taken to be
finite, continuous and short-lasting. Energy
spectrum of stationary turbulent source
with an anisotropic stress I, is:

m o« f dtcos(kt) I(k, ty, t,)

SWEEPING HYPOTHESIS:

It assumes that spacetime correlations are
pre-dominantly determined by root mean
square velocity of the plasma.

Results of these models were replicated and
the procedure was applied to the proposed
model (DTM). Final plot of gravitational
wave power spectrum with respect to k
obtained from the analysis:

1072 107! 10° 10t 102
z

Figure 5: Variation of gravitational wave power spectrum
against non-dimensionalised wavenumber

Unlike the reference models, this model is
not limited to low Reynold’s number, while
it still retains the characteristics of the
spectrum such as range and slope, as
inferred by the reference models.

Amplitude (hg) varies with frequency (f) in
a similar fashion:

107

10-21

1072

<

1025

10727

Figure 6: Variation of amplitude with frequency

Although the spectral behaviours have
improved over the predicted range, this
model possesses an inability to account for
freely decaying turbulence.

Conclusion: Added to honing the peaks of
the spectra, the source term demands
modifications so that turbulence lasts

longer than one Hubble time. Finer
adjustments can improve experimental
sensitivity of the gravitational wave

detectors, enhancing the chances of
successful detection in the future.

REFERENCES
1. Gogoberidze, G., et al (2007) Phys. Rev., D76:083002
2. Caprini, C., et al (2009) JCAP, 0912:024
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Data Analysis of Gravitational Waves from Standing
Accretion Shock Instability of Core Collapse Supernovae

with Hilbert-Huang Transform

Yukinobu Watanabe'! ('Niigata University)
Y. Hiranuma?, K. Oohara', K. Hayama?, N. Kanda3, K. Kotake?, T. Kuroda*,
K. Sakai®, Y. Sakai',T. Sawada3, H. Takahashi®, T. Takiwaki’, S. Tsuchida?3, T. Yokozawa®

(2Fukuoka U., 30Osaka City U., *T. U. Darmstadt, 5N

1. Introduction

We perform analysis of gravitational waves (GWs) by using Hilbert-
Huang transform (HHT).We focus on the signal from standing
accretion shock instability (SASI) [1]. In this poster, we report on
the current results.

2. HHT of gravitational waves from a core collapse
supernova

The GWs are decomposed into some Intrinsic Mode Functions (IMFs) by
the Ensemble Empirical Mode Decomposition (EEMD) as Fig.1. The
signal from SASI is captured in the 5th IMF (IMF5), the Instantaneous

Amplitude (IA) and Instantaneous Frequency (IF) are plotted in Fig.2 as a
function of time.

i
‘M M A AN AR~

IMF6  IMFS IMF4 IMF3  Signal

0.l

0.15 02 025
Time [s]

Fig.1

Il
03 035 o
0 005 01 015 02 025 03 035

Time [s]

Fig.2

3. Time interval when the SASI mode appears
We will determine the time when the SASI mode appears in the
waveform and characteristics of frequency.

» The frequency is apparently constant at 0.1s St < 0.35s.
» To determine the region where the frequency is constant,

® For Thin ST < Tmaxs Nmin S N S Npax, Where N = T /At and At is the
sampling interval of the data:
@ For various ny, in the interval fromn = n, ton =ny + N,
B Calculate the average(*) of the frequency (f) and the standard
deviation .
B Find the value of ny for which o is minimal.
@ Plot o as a function N.

(*) The average is weighted by the amplitude (IA), assuming that the accuracy
of the frequency (IF) is proportional to IA.

. . 05
14 |
121 04
10 F tond = t[no + N
end — [nO ]
| {03 ~
o ¥
6 -
{02
4k
2 \‘f-wf 0.1
() 1 1 1

2000
N
Fig.3

3000 4000

» The optimal interval is

* 0.16s S t < 0.33 s (the left vertical line)
or

agaoka CT, ®Nagaoka U. of Tech., ’/NAOJ, 8ICRR)
4. Checking whether the frequency is constant
» The linear and the quadratic regressions
flin(t) =ag+ a7, fquad(t) = by + b7+ bZTZ
t—tc

1
- tend_tstartl c — 2( start end)

are made with the (IA)2?-weighted least-squares fitting to compare
them with the constant-frequency.

N
1= ) W) — fa(t)?  [A=lin,quad]
i=1

a(t;)?
w(t) = o
Y Ta(t)?
+ Figure 4 shows the result of the interval 0.11s S t < 0.35s.

140

(fito

14

Frequency[Hz)

Timels]

Fig.4

(f) = 1285+ 8.6

ap=1299+1.0, a; = —488+5.02

by =1317+13, b =151£558 b, =-509%195

Xnst =02 =741,  Xfn =213, Xauaa = 144

* For0.16s <t < 0.33s.

—(f)

Frequency|[Hz]

1o K| i:“‘ |

100 &

0.25
Timels]

Fig.5
(f)=129.8+4.9

ap = 130.1 £ 1.0, a; = —5.83 +4.22

by =1317+13, by =-520£4.24, b,=-2761+156

Xczonst =02 = 23.8, Xlzin =129, Xczluad =9.77

5. Conclusion and Future Works

* The frequency of the component considered to be SASI can be
regarded as constant.

* The quadratic regression may be better, but it is caused by the end of
SASI mode, outside of which the frequency of the IMF gets lower.

» We should confirm our proposed analysis method to more realistic
case i.e. simulation noise plus signal and real noise plus signal.

6. Reference
[1] T. Kuroda, K. Kotake, and T. Takiwaki, ApJ, 827, L14 (2016)

* 0.11s S t < 0.35 s (the right vertical line)
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1. Introduction

0y

P :energy density

Rey (), Imy(n) a : scale factor
Q,.Q,.Q,
: density parameters of
vv \ C (r) relativistic matter,
(m) non-relativistic matter,

(A) cosmological constant

> time
GWs are produced _Q _Q,
) ) s P=— P p=Q,
(e.g. inflation, phase transition, ) a a
radiation dominant matter dominant A dominant

GW wave equation

o 2“'('1> Y00 + K =0 - Absolute value of the amplitude |x()| is physically important (strength of signals, energy density of GWs).
a(n) - Analytic solutions are known only for single component cases (e.g. radiation dominant, matter dominant,---).

We consider the time evolution of y = [ x()|*, instead of ritself,

Friedmann equation

a\? on matter+cosmological constant, p = Q,/a* + Q, background.
(i) -
2. General formalism [1] 3. Application to GWs
Essential idea 3rd order ODE for the squared amplitude y = [x()|* :
Consider 2nd order ODE: ;
X)) + p(y'(x) + gox(x) = 0. (1) [{Qma (0 + 5) + Q'O+ 6>}<e+ 3)+ 420 + 2)] y=0. ®

Instead of solving this ODE directly, we treat 3rd order ODE satisfied by d . k&
the square of the two solutions: o= I k= H Hy : Hubble constant at a=1

Y4 3py"+ (' +4q + 2y + 24 +4pg)y = 0, (2) Surprisingly, it has a polynomial solution,

YEXX-- Q, 4k

4
y=—7f+—+40Q, )
a a

How to construct x fromy

If once we obtain the solutions of (2), we can construct a constant -
. . . 2iCO;

associated with X4 X-: )

+2
I o fvros G gy
C?=—exp <2 Jp(x)dx) [2vy" + 2pyy + 4gy* — )] . (3) xelt) = V2 11:! PW=6E) [6(Cj +17) ‘ (19)

From the general formula (6), amplitude itself is derived:

The constant C can be represented by x..x- ii~Hy, ¢, ©, C :constants determined by k.
, / : Weierst lliptic function,
C=exp <Jp(x)dx> Gax =20 . @ §(2) eierstrass ellip |c' unc |or'| , o)
Z and o obey the following relations: §2(z) = — {(2), {(z) = ——
By differentiating the definition of y, 0(2)
Y =xexlta e zoor
Combining egs. (3), (4), and (5), solutions for (1) can be derived from
solutions of (2), 100
C(1
X+ = €Xp i? —exp | — | p(x)dx ) dx| . (6)
y
—
~ 1.0
4. Matching condition
Solution with an initial condition “s, -100
d,
20 =c. 2L =0 N
n
is given by the following superposition: 200 N
Fig.1 Solution for k = 10, Q,, = 0.3, Q, = 0.7
X = (e = 22)/2i, 04
o 3 [1 8@ 5. Remarks
2c0) = 0/2¢ @ +F +4 - Basic properties (wave number dependence and asymptotic behavior)
a V2Cada TV are investigated in our paper([3].
X sin [J m} B R TR TR T T - When the effect of radiation is included, i.e. Q, # 0, 3rd order ODE (8)
0 Va+at(l+8ka+da’) matter A cquality doesn’t permit any polynomial solution, therefore we could not obtain
References closed form solutions.
[1] R. Burger, G. Labahn, M. van Hoeij, Proceeding of ISSAC '04 Proceedings of the 2004 international symposium on Symbolic and algebraic computation,
(2004) 58-64

[2] For the definition and properties, see, Bateman, Harry, Higher Transcendental Functions, vol.2, McGraw-Hill (1953)
[3] T. Sasaki and H. Suzuki, arXiv:1806.08052[astro-ph.CQO]
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Realization of the Change of Effective Dimension
in Gravity via Multifractional Theories

Kanna Takagi, Shinpei Kobayashi and Arisa Sano
Department of Physics, Tokyo Gakugei University, JGRG28 @ Rikkyo University, 5-9 November, 2018

. ) . - ™\
[ I. Introduction (" 1Il. Effect of dimensional flow
candidates of quantum gravity (at small scale (high energy)) What should we see using multifractional theory?
causal dynamical string noncommutative reduction of dimension
triangulation theor geometr ‘ Calcagni et al(2016)
Carlip(2017)  Calcagni(2017) *Reduction of DoF -> GW (and other waves) can exist?
. . . . *Propagation of GW in discretized spacetime would change?
Spacetime becomes effectively lower-dimensional - Log oscillation?
<- due to existence of minimal length g .
Example) Hausdorff dimension gets lower for spacetime with GW with maltifractional theory
fractal structure I (9(2)) = Ny + hyu (q(2)) [hp(q(2))] < 1
1o (] e dInV (1) " 1
dy(l) = dinl Voo 191 du(q(x)) = huw(q(z)) — 5ng,w(q(;I:))
. e 1
(i)Square , (ii) Slerp|rzk| gasket (fractal) are, = 5.6/””(%;:\" + Yovlu — Guvle) ¢ 1 =0dg)
l o Ry =g = Wy, + T T =TT,
q _ 1 1
Rajov= E(h'uu\;m = huvjac) — 5( haoluy = Ppojav)
dy p
LY e s M
less than 2 Linearized Einstein equation
s T slur = 0 — Mg, = 0
Is it possible to change effective dimension at different scales?
P 5€ eltec $ 1T eauge (47,=0, ¢ =0)
multifractional theory , b
v Kol . Vo N _
Does interesting physics appear? v (v")2 P + va(vu)z‘pgt/-u +90¢u, =0
. . . . L gt ~ xt 4 ef(at) vt ~ 1+ eF(z*)
e.g.) Log oscillation in discrete self-similar geometry approximation | ¢, = ¢{% 1 ep(l) | |e| « 1
v = P W,
Random walk in Sierpinski gasket O = aue M) 4 g, e iR
r : the source-target distance E‘(s‘"(}u) = [F(z") ﬂ@(?} , — F(a") (,(,653,) ,— F(z%) n(‘J(B,) ol
the dotted points : numerical data ! o ! ot e
gaskets of generation 3,4,5,6
respectively in yellow, blue,
green, red
. =
Z
Akkermans et al(2009) Pre.“mm.ary.resylt - . F(t),:=0, F(2),,=|=
: : discretization in spatial direction L,
. J z
fe=t Gfl) = b, Derilit
——) Bl » . N ST —i(kt—kz)
H H +b, B (i + 1)VkTE[(1 + i)VE/Z]e
Il. Multifractional theory e (4 DVEVAE((L+ ) ViV
. . . ‘ ‘\H\M\" ,_a110‘_1
x :coordinate of continuous spacetime (‘ il “\ [ H‘ b
o , o (M )
q(x) : coordinate of discretized spacetime with fractal structure \,} ‘H U‘ ‘H H byy: amplitude
. U €
dimensional flow can be realized by g-coordinate , . AR I tensor of ¢y
Definition Amplitude changes at small scale.
9 L 9 ) o is not summed
0 0 L o) — ( L
dgh(x) = vk (z) Ozt - (x) = Oxh q"(«) \ J
() :ri+%‘ ILILQ 1+ Acos (wln %D+Bsin (wln %)} (
¢ (z") =
t+ :\—G % ’ [1 + Acos (wln ‘éD + Bsin (wln |é|)} Iv‘ Summary & fUture Works
log oscillation = Using multifractional theory, we found GW can exist, even if
l,,t. :fundamental length scale there is dimensional flow
le ,te : Planck scale, Planck time . o .
«,a : fractional exponent (lacunarity(Z2I&HE)) Prolpagat|on of GW in discretized spacetime changes at small
0<aa,<1 scale. . .
( ° ) * Effect of log oscillation? -> F(z) =1+ Acos (”I"‘I_D + Bsin (wlu [—D
. ?
dV = dedydz — d¢'dg?dq® , q~ z+ Cz® What ¢|,,, means? ,
‘ * Possibility of observation? -> evaluate of <¢p>
large scale V ~1* —dy =3
V ~ B 5 dy =30 <3 (dimensional flow
\ small scale H ( ) y k )
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The Research of Inflation Fields
in Anisotropic Inflationary Cosmology

I: Satoru Sugimoto, Kazuharu Bamba

Fukushima University Faculty of Symbiotic Systems Science

Abstract

I research the cosmological magnetic fields and primordial gravitational waves in aniso-
tropic inflationary cosmology. To clarify the origin of initial density fluctuations for the
source of cosmological structure, | study the behavior of inflation fields by numerically.

1. Introduction ~ 3. Results ~
In the early universe, cosmic accelerated expansion -
occurred, called inflation. The fields caused inflation, ;
. . 2108
inflaton, expand the space, after the fields decay the
other particles and bring the generation of radiation. o
W 2008
In addition, the quantum fluctuations of fields are L - \.
extended by the inflation, then those are the macro- -
scopic fluctuations, which have been the seeds of struc- . \
ture formation of stars and galaxies in the universe. e
) L. ) 3 ) _umrs»z ] 2 4 [ ] 10 12
Anisotropic inflation model considering the gauge ®
fields has been proposed. The inflaton coupled to the Fig.1 Phase space diagram of inflaton ¢ in isotropic inflation
gauge fields are caused anisotropic inflation. -
G J
s
2. MethOd N\ ]
- - - 5] /
I researched the behavior of inflaton ¢ numericaly. g >0
The following simultaneous differential equation of T an®
three variables calculated. P \
1 ,., 1 1 242 B
a2 =¢g2+ —K2¢2 +—K2m§l(f)2 +—K2pie_c’( P —4a-4o @ R
6 6 6 oS
1 1 2.2 -2 o 2 4 1] B 10 12
8= =3d% 4 Pt +pitpieT T @] . e
1 Fig.2 Phase space diagram of inflaton ¢ in anisotropic inflation
G =—3d0 + gkzpﬁe_c’cz“’z_‘*“_‘“’ 3)
¢ = —3ad —m¥¢ + cKp3pecK P’ -ta—to 4) According to the method, I carried out numerical
calculation. As the parameter, coupling constant is
— — — -5
e® is a isotropic scale factor, o is the variance from the ¢=2,K=10,mp =10x10">
Isotropy. (= ¢ is derivative with time t, i is reduced Calculation results show in the above figures. The
grgvnatlona_l constant, my, is plank mass, p, is integral constant, case of the anisotropic inflation (Fig.2), the behavior
¢ is a coupling constant.) of inflaton ¢ are different from the case of the iso-
I studied the time evolution of these variables «, o, ¢. tropic one (Fig.1).
- RN J
Conclusion

I researched the behavior of inflaton ¢ in anisotropic inflationary cosmology. The model
is that inflaton interacted the gauge fields cause anisotropic inflation. | studied it by nume-
rical calculation, and indicated the difference with isotropic inflation.
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Gauge dependence of gravitational waves induced
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Background

o
ST

Cosmological perturbation theory

l g+0g T+6T +SVT decomposition

Scalar
Perturbed EoM for Vector mode

Tensor

EoM of tensor mode

Linear WY 4 oamn — ARl =0

2nd-order hg?” + 27-[}%(]2.)’ _ Ahﬁ?
2nd-order GWs are induced
by scalar perturbations[1]

Problem

2nd-order tensor mode is Gauge dependent
Linear ot — gt — r & = (s,0")
1 1
hl(j) — hl( )
oty gk — g(l)u

1 v 4
72 (5(111)”5(1) - 5(2)} )
h;?) — hg) + 8,5(1)8]5(1)

— 31.C(1)aj<(1) N

Gauge dependence of 2nd-order GWs at a large scale(MD)[3]

Formalism and Results
4 M3, ‘ Loy
§= [ dlay=g |5 R+ P(6,X) X = —59"0,00,9
ds® = —(1+ 2(5N)dt2 + 20 xdtdz® + a®e* (eh)ij datda?
ON,x, ¢, hij ¢ Perturbations s = (0N, x,()
P(¢,X) = X2+ & Perfect fluid satisfying P = wp [4]
S = Shh + Shss + Sss

5 )
S0N) 3y

Integrate out ‘

::":::;::::‘ constraint dN(¢), x(¢)

EoM of GWs

EoM of ( — ¢ =((n)
hQ'J + 2Hh"ij -

Ahm = 8,§8J( + = S

Fourier tr. Celn) = Ckn) Za,
Transfer Primordial
function perturbation

Using Green’s function

% / " a5 Guln,m)am)SE @)
|

+ + 1 " " + +
<hk (n)hk/(n)> = m/ dm/ dnaGr(n,m)a(m)Gr (1, 12)a(n2) <Sk (7Z1)Skr(7lz)>
|

(Zka'>*f:h(kl i(k + k')
(b () = 2 Pk ) (e + ) o

of curvature perturbation

by curvature perturbations

Keitaro Tomikawa Collaborator: Tsutomu Kobayashi

Power spectrum of 2nd-order GWs

Pulion) = o [ m [ am [k Flb ) P

Time evelution

(B)P(|k — k|)

Primordial curvature spectrum

of source terms

2nd-order GWs depend on

® Barotropic parameter w
¢ Primordial curvature perturbation P (k)

2nd-order GWs can be detected

] fm\;ﬁ;mmj.en;; Pc(k) = Ac = const

EoM of 2nd-order GWs
hY; + 2Hbl; — 0%hi; = A Sp

. Thprojection tensor
Newtoninan gauge

vector perturbation
. 1 i
ds? = —a%(1 + 20)dy? + a2 ((1 — 205 + Eh”> dpidgd  Neslectthe *Vovorder oWs

* anisatropic stress
4 . -
Sij =4 |409;0;® + 20,20; — ma’ (H o'+ @) 9; (H'0 + @)}
Comoving gauge

ds® = —a?(1 4 ON)dn? + 2ad;xdnda’ + a® ((1 +20)8i; + %hu> da'da’
N . 2 6 1,
Sij = 2i¢5 = 4Oy = 26Ni0N ;= “N"Xi5 + —C'Xig + 50 (ix.5)
The difference between the two gauges
appears in the source term
® The 2nd-order GWs were mainly calculated
only in the Newtonian gauge

® Ref[3] shows the gauge dependence of the 2nd-order GWs
at a large scale (in Matter Dominant era)

® Is there gauge dependence even in a small scale?

The fraction of the GW energy density

Qaw (k,n) = 214 (m) Pr(k,n)

1 U n
Ph(k,mzm/o dm/o dne [ e E(k. ) P(B) P (e~ )

contains transfer function
depends on 1

I
¢ In the RD universe

® For the monochromatic k
curvature perturbation Pe(k) = Aco (10g (H))
e.g) k, = 3.5 x 10°Mpc~" for PBH

w=1/3

—— Comoving
Newtonian

_—

0.001
0.005 0.010

0.050 0.100
Kk

0500 1

The gauge dependence of 2nd-order GWs
is significant even in a small scale
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Separability of Equations of Form field
in Schwarzschild spacetime

Daiske Yoshida, Jiro Soda (Kobe University)

- In higher dimensions, the form field generally.
For examples, in 6 dimensions, there are the metric, the scalars,
the vectors and the 2-form fields.
But, there isn't the formalism of the master equations of the form
field in arbitrary dimensions even on spherical BH solutions.

- So, we study the master equation of the form field in arbitrary
dimensions.

- In this poster, we give the master equations of the 2-form field in
arbitrary dimensions on spherical BH solution.

Spherical BH solution

- We are interested in spherical static solution for simplicity.

« One example is Schwarzschild-Tangherlini solution.
The metric is given by

ds* = —f (r) i +

n=D-2
1
fr)

In 4-dimension, this solution becomes the Schwarzschild solution.

GWs on Schwarzschild solution

Schwarzschild Spacetime(1916)
42 = —f (1) df? + ——dr® + 12qupdatda®, f(r)=1— 2CM
T T
Perturbation on Schwarzschild BH(Regge-Wheeler(1957),

dr® + P qapdatda®. f—1—
rn—1

Zerili(1970) 4 = gSBHdatda” + hy,,dadz”
0 0 Wi fHY H\Y 0
Y= 0 0 w/ PRl = HmY fTHY 0
vVa w¥a O 0 0 r?KYqap
AJih == Da¥im =0} AY = —qY
Master variable ¥ »
. !
Regge-Wheeler : 0 = f (fw) w= }\I/Rw
Wi H=H=rk - - 3K - L ~ " (4K
Zerill s H = H =rK' — 55341 -3))K — . Hlff(dﬂrK)
P 1-— 3f‘I’Z
T

Master equation of GWs

« The equations of motion of the GWs on Schwarzschild spacetime
is
—2U 4+ Vol y =Ty

VRWE%(Z(Z+1)*3'¥>

CFP BN+ (97 -6 + 1)y~ (92 -9 +3f —3)
r Bf—7-1

A=RWorZ

Vz =

« There is the method to the extension to higher dimensional theory.
f5ll) Schwarzschild-Tangherlini: Kodama & Ishibashi (2003)
Spherical and static Lovelock BH: Takahashi & Soda (2009)

- From these formulations, we can get the information of the higher
dimensions.
For examples, we study the stability of the BH solutions, QNMs,
etc.

Form fields

+ The form field is defined by 4 — 1 A dz® Adz® A - A dz®
= ay-a,dT 7
p!

- The equations of motion of the form field is given by
dF =0 and xd*xF =0. (F=dA)
« The existence of the form field in each dimensions are
in 4-dim : O-form, 1-form, (2-form),
in 5-dim : O-form, 1-form, (2-form, 3-form).
or in 6-dim : O-form, 1-form, 2-form, (3-form, 4-form).

. The 2-form field in arbitrary dimensions is decomposed as follows,
via+Va

0 Agr Aia 0 A
A= —Aw 0 Aa | = —A 0 w.a +Wa
—Ata —Ara Aas —(va+Va) —(wa+Wa) 2Zap + Asp
Here, we chose Va4 =0, W44 =0 and Z4* =0 for vector part
and AP =0 for tensor part.

)

Gauge fixing method

. The p-form field have the gauge invariance as follows,

A—A=A+dE. €£—€=¢+dA 2 =0
For 2-form field, it is transformed by T
Awp = Ay = Aap +0u6p — &a.  &a= R 544 =0
8.4+ Sa
But the scalar component sof £ is automatically removed by the
gauge transformation.
. The gauge transformation of the components of the 2-form field is
given by . - N
A= Va=Va+tSa, tensor
scalar  § — o vector Wa=Wa+S,  and Aap=Aap .
w=w-R, Za=2a—Sa,

« We can choose the gauge condition as follows,
vo0=0v-T=0, waw=w—-—R=0
and ZAﬁZA:ZA—SA:(J.
This gauge is completely fixed.

0 A Va
Finally, the 2-form field becomes A,;, = -A 0 Wa
~Va —Wa Aup

. This is similar to the Regge-Wheeler gauge or Zerilli gauge (1957).

- We use the scalar, vector, tensor harmonics.

Master equation of field

From those ansatz, we can derive the master equations.
A=0.
. 4— -2
Vector part is V;”) = % (w,(f) +(n—-1)K+ T” (7-/’ - (n 5 ) f))
T
1
2

Tensor partis V" =5 ({,7”)+2K(n—2)+4;2" ((G;n) f—w‘f’)) (n>3).

Scalar part is

« The plots of the effective potential are given below.

Tensor Vector

Quasinormal modes of 2-form field

« We can calculate the quasinormal mode if the potentials are
positive definite.

- We use the 9-th order WKB method for the quasinormal mode
which is invented by Schutz & Will (1985) and lyer & WIII (1987).

- The results are

Tensor  QNM(preliminary)
D=6 1.2618-0.4615i
1.7509 - 0.5920 i
22231-07192i
26681 -0.8555 i
3.0791 - 1.0080 i

Vector  QNM(preliminary)

D=6 1.2618-0.46151
1.5387 - 0.5652 i
1.8352-0.7345
2.2630-0.8521i
2.6910-0.9444 i

and

Conclusion

- We studied the master equations of the 2-form field in arbitrary
dimensions.

- We checked the relations between the master equations of the
scalar field or the vector field and the master equations of the 2-
form field.

« We found the positivity of the potential of the 2-form field in 6 -
10 dimensions under some parameter sets.

- We gave the QNM of the 2-form field in 6 - 10 dimensions.
« We must study the S-deformed potentials of the 2-form field.

- This analysis gives the hints of the extension for the master
equation of the p-form field.
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Integrable higher-dimensional cosmology with separable variables

in an Einstein-dilaton-antisymmetric field theory

Masashi Kuniyasu, Kiyoshi Shiraishi, Kohjiroh Takimoto ( Yamaguchi University )

Nahomi Kan (Gifu College ) based on Phys. Rev D 98, 044054 (2018). (arXiv:1806.10263) [1]

We consider a D -dimensional cosmological model with a dilaton field and two (D —d —1)-form field strengths which
have nonvanishing fluxes in extra dimensions. Exact solutions for the model with a certain set of couplings are obtained
by separation of three variables. Some of the solutions describe accelerating expansion of the d-dimensional space.
Quantum cosmological aspects of the model are also briefly mentioned.

1.Introduction 3.Accelerating Universe
Scalar fields may play important role of inflationary scenario or dark +** Physical * (d + 1 )-dimensional metric and cosmic time
energy problem. Several models ( for example, scalar field with exponential 9 _A(D-d-1)b T 3 mo
potential ) have exact cosmological solutions. ds” =¢ Fudrds" + € Grndz’ dz’
-Dilaton gravity arises form low-energy effective theory of string theory. is ConSide_red to define the E_in“ein frame of the
—Scalar fields naturally appears with exponential potential. ( Such theories thus, (d+1)-dimensional space-time
often contains totally anti-symmetric tensor fields.) i 2fda(t)+(D—d-1)b(0)] 32 2000 gy ? 1 260 g2 Y
2 “D—
- In this work, we consider analytical solvable models of D -dimensional .
cosmology with a scalar dilaton and anti-symmetric tensor fields. Our model =e & (7&;; 458 (n)dx ) +e E'd!},, e
in which equation of motion can be expressed by three separate equations of 1, ey
Liouville-type. where () = *OHIFETHO gy — 4 daO+EER MO Gy gd gy
. +Judgments of the accelerating physical universe
Why exact solutions?
Y : . . . . ds ds 1 dstd d&’s 1 d2gtd
Exact solutions play the most important role in understanding and growing e e A e —d
the crude concepts in many areas of physics! diy di d—1 dt drp? d— 1 di?
- A(t) = =Sty ‘——M O} |::> Accelerating !
2'Ana|yt|ca| Iy Solvable Model S is the ** physical ? scale factor of d -dimensional space in flat space in
+ D -dimensional model ( there are two p -form field strengths ) (d+ 1) dimensional view and 7 is the cosmic time for the (d+ 1 )-
1 o2 P pagetiyd dimensional space-time
[ﬂ'“! \/—[ . a_ T‘D) — )Mﬁ'.:r[i)” ~2r 24 F:G] ®
E - *One of the example (D =6, d =3, l=r=1,a=1,g=1and# =0)
R ; Ricci scalar derived from the metric gary (M, N =0.1..... D—1)
; ) . ; . . Aty At expidid(ti)
@ ; s rela scalar field which has dilaton-like coupling to the p -form field strength 0.1 o 3

F(T and F”lI

K, a,l, r;constants, 0=%x1 (+; canonical, — ; phantom )

+Ansatze ( FLRW universe with D —d —1 extra dimensions )
ds® = gundzMda™ = —*"Odt? + > Vdx® + 20dOG 4

Ricci tensor of the extra space is written by Rmn =ky(D —d — 2)Gmn (@) (b) e)

I.'-';P ; metric of the extra space FIG. 1. A (¢) for k,= —1 as a function of t in the canonical case. The curves correspond to the

T cases with ,= —3, —2, —1, 0 and &, — £; = 1, according to location of the peak from left to right.
F 5 normalized to be —1, 0,0 (b) A(¢t) for k, = 0 as a function of t. The choice of parameters are the same as (a). (c) exp
(4% ®(¢)) as a function of £ The color of the curve corresponds to (a).
We futher consistently assume that the p -form field strength
(1) -(r) i
p=D—d—1Fp 4, lasr a4, 0-1 — " [P=d=llgi1ai3.po1 f>0 4.Quantum CosmOIOQy (We choose the natural unit Ji = 1)

—form field strengths 1ake ‘constant” ( flux ) value in the extra space . . . :
P 9 ( ) P -We can get Wheeler - De Witt equation H' = (0 by replacing #a —+ —t5-
Separation of variables

gauge choice n(t) = da(t) + (D —d — 1)b(t) t

A Pz
where H = —— > 2 g 20,
Substituting the ansatze to our model D, we get 2z 2
S xfrlf{—d.(a‘— 1)a2 —2d(D —d— 1)ab— (D — d — 1)(D — d — 2)i? +aé<i>2 -Normalizable wave function (¢ = 1, { > 0 and r > 0)
2 e
(D —d—1)(D — d — 2)kyelidat(D=d=28] _ %_1’" [1e2lda+rat +1_(_'z\m-m¢vm|]} W(x,y,2) _f riqf 40 A(q,0) L]F* VVieMT o) +L16,i(\, Tiehz /)
- N _ (VIf/(27q))iac0sbire :
If we set the constant « = % action as S5 = f L dt with Wﬁ o (VI [xg)
12(D—d—1) 1 1 o 2AD—-2) .. .72 2(vTf1(2X3)) —igsinéfra = Aaz
== o (D —d—2 ——= 2= i+ kad SWTIALSAN] T g ane (T FEM ),
b=y a7 e ”] T todD—d-2) [da+1 ‘]} X i) ey )
1 o> 2(D-9 a2 1 1 .
= ——— |di — k— h g —_— 2+ Ju(2)], Gu(z) = e=——=[d(2) = Ju(z
i@ rodD—d-2) [‘I“ ’mq)} where B(2) = goag () + G Gule) = gt () = 1 (2)]

W 2[da-+(D—d-2)b] _ 1 o 2dat ko] . 2{da=ke® /&) ¢, and ¢, are constants
Sl f * [re nTe 1 ( *Normarization of wave function
where Vi = (D —d— 1)(D —d—2)(~2k) We refer C. de Lacroix, H. Erbin and E. E. Svancs, Phys. Lett. B758 (2016) 186
The action can be written in three independent variables ! coefficient of incomming planer waves are unity at —
—d— " . 1 holEy £a3f2
z(t) = % [da+ (D —d=2)b] Xy=da+rad A3z =da——P Wave function [tg(£1.£2])]
a

. . _ . To simplify, we assume amplitude A is independent of 6. We define
Hereafter, we restrict =1 ( canonical case ) = - .

. _ _— 2 2(2yiueos 2(2)wsin .
with da=+Val+1lr, As=vVa2+1k Gl £ = 10 3 3 . o ST - 3 &2

Pg(61, &) = 4 I T Kiqooso(€” )l"(feqsm 7 igsina(e™)

Finally, we get the reduced cosmological Lagrangian

1 1 1 Vi . U-Q ’.fﬂ ) . Many peaks of the function are located in the
L=eeiig 1 _.‘,;3 g2 Lepmr M Doy JJ Pz . ‘ region(§; < 0.& < 0) and considerably high
2 2 2 2 2 2 -~ peaks are found &, ~ &.

|::> This is just a Liouville type Lagrangian !
Then, we can derive exact solutions of the model. Probably density |[¥/|* appear at discrete

positions where sy ~ Az, ie, ® ~0fora~ 1,

However, there are so many solutions in our model. Detail discussion of

them were done in our paper [1]. — Stationary value of dilaton field.

e el r
JGRG 2018 11/5 - 11/9 @ Rikkyo U. FIG-2. [thq(§1,£2)[" with q =4
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Chameleonic Dark Matter in Logarithmic F(R) gravity

Hiroshima University Yamato Matsuo in collaboration with T. Inagaki, S. D. Odintsov, H. Sakamoto

Motivation
F(R) gravity is ...
> Bring new particles Einstein-Hilbert R)
g or : F(R gravity
§° N Expand general relativity 1 action
4
Unknown substance Introduce new particle 1S 3 d*z/—gR| _ S = ﬁ /d z/—gF (R )‘
Dark matter exists —Explain dark matter K
For a review, S. Nojiri and S. D. Odintsov, Phys, Rept, 505 (2011) 59-144
Modified gravity theory
Dist: —Explain dark ener: - y 5
hitps:// TS STg 20T O O oS T e gaTae s have-dark-matter-halos/ P i Lq,w = G = 2@/ ‘/ggm,l b”(R) = ¢ oV6 J
The universe expands We explain the dark matter by F(R) gravity
‘_7 of modified gravity theory 1 _ . _ 1._ -
5= — | dh/TER + | dhe/7E |~ 0,0)0,0) — V)| + Syt
he unknown energy - Py 2k 2 o
Dark matter exists IWhat is Dark Matter ? I ‘We call the scalar particle “scalaron”.
Int on term
o A, £ i
This problem is solved by e \ 3 veetor Fermion Boson
the mechanism of scalaron mass <1l:' \\\ h . 7:_ T ALA, g ,755 2t ore
T R SRR ) 0 7“
The definition of scalaron mass i
a Contradiction from observation ??
i i L Vers(#) ) > € > Ay,
If the effective potential has a minimum,
there is a stable ground state for the scalaron field = -
The scalaron mass varies with b

- =

In a vacuum Light = V,(¢) is constant — cause the effect of DE

The effective potential of scalaron

On the matter field Hea the interaction is screened out
o= L FR@YR@) = FR@) 1y i ) : " 3 Heavy - the intere
Ve FARG) W ecause the wave length becomes shor!
Frmin VAVAVAV,
The EoM of scalaron The effective potential depends on Light in a vacuum Heavy on the earth
= - alaro
(D v/ off |v va) w=0 the trace of Energy-Momentum Tensor sC n Can not be observed
@ regard as mass ‘ ‘ Chameleon mechanism
2
m, The scalaron mass also depends on the trace of EMT — m,(T7) In a vdcuum On the earth Expected as a candidate for dark matter

'

Logarithmic F(R)

. : . We following repl and
R R R 2 The Starobinsky inflation mode21 5 DE term also transform as logarithmic.
F(R)=R—-Apg|l—-a—=1n +r2 |1+ 7 1n R F(R) = R + fpp(R) + k°y(R)R
Rc \Rc¢ Ry - R
. D. Odintsov, V. K. OikonomouandL. Sebastiani, Nucl. Phys. B923,608(2017)doi : 10.1016/j.nuclphy Cause DE effect A 1R = | 1+nin R_U
@707 : free constant parameters  Our F(R) model is motivated by one-loop Cause inflation effect
R, : inflation scale parameter ti to coupling We imp ints for p by following diti
R;: DE scale parameter (1)explain inflation era and DE era  —Either the lipr term or the R2 term becomes effective
(2)Inflation dominant era —Parameters are constrained by the observed value of CMB

(3)DE dominant era (explain DM) —The scalaron explains the current DM in DE dominant era

Constraint (1) Constraint (2) Constraint (3) —/

To satisfy the current CMB fluctuations,
For a small curvature the DE term should be neglected, the model t are ined as follow, The scalaron which is the candidate for DM must have
N ) R, R, N ~50 — 60 9 a stable vacuum solution,
Ro- %10 1+ 1 In(O(D))] RS 3> Ap | 1= “Re In *)| 0.9652 4 0.0042 70 =(0.88 ~ 1.2) x 10 and the life time of scalaron is long enough.
ns =0.965' . e
For a large curvature the R? term should be neglected, n(10°4 N —3.043 4+ 0.014 71 =(1.0~14) x 10 ¢
Re n <) =3 . Ro/App =1.8 The scalaron decay to yy via the SM particle from S,,,,,,
Res Apgl1 = aln(O(1)] > k% | 1+7,In RE. r <0.106
RU N. A m et al. [Planck Collaboration], arXiv:1807.06209 [astro-ph.CO] —yy decay occurs
7 For example,
Massive boson loop ,The upper bound for the scalaron mass In the solar system scale, the upper bound is
Massive fermion loop Heavy ¢ © Most of scalarons have
@ Scalaron mass v_ ¢ already decayed, and po ~ 1077GeV* m, < 0(1)GeV .
Scalaron lifetime should be longer . washed out. y .
than the age of the universe \ . Scalarons rarely decay and The effect of pressure is ignored
v r;L,, >107s Light remain in the current universe T. Katsuragawa, S.Matsuzaki. Phys Rev. D95 (2017)
Upper bound for the scalaron mass is obtained
60000 35pT T T T T T . . . — . .
“an 108 - Z 1
3.0
50000 4
25 - - - - - = - 0 _':;h
40000 DE domi era ’ — - ool
. y 20 from constraint (1) - o0l
< 30000 K 10T | - L ]
N _ £15 w 0
g - 0ol
20000 10 3 ~ Ood
=
10000 05 6 Dol
x10¢ c 1 traint 3 U8 1
A3 ‘ ‘ ‘ ) > onstrdint (3) ',:/
0.00 0.0: 0.04 0.06 0.08 10 0.12 0 2 4 6 8 10 """ hlﬂatioll domin‘ant era
Kol KT ihoe oot from constraint|(1),(2)
For a small ¢, V() becomes linear function. The solid line corresponds to the numerical result. 109 L1 . L ) ) N
For a large ¢, V,,,(¢) becomes increasing function. The dashed line corresponds to the approximated values. 10760 10740 102 1 1020 1040 1080
F 1 .V, hi tabl int. K? . @ . .
or a large p, V,;(¢) has a stable poin n? o f”’ - =< 0(10%)a Constraints for « and R./A,; : Colored area is allowed region.
We obt the 3a. fE o4 th b dof In the area, our model can explain the inflation era and the DE era with DM,
@ obtain the constraint from e upp €1 bound ol mass. V() has a stable point and the life time of scalaron is large enough. )
‘We have checked if the logarithmic F(R) gravity can explain both the inflation dominant and the DE dominant era. Furth we obtain ints of the model parameters to

explain DM, the scalaron gives a stable vacuum and the life time is longer than the age of the universe. To obtain a concrete constraint for the life time we have to evaluate the relic
abundance of the DM. It can be obtained from the relation between the decay rate of scalaron and the energy density.
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Extension of the input-output relation
for a Michelson interferometer

to arbitrary coherent state light sources:

--- Gravitational-wave detector and weak-value amplification ---

JGRG28@Rikkyo Univ. (Nov. 5t — gth, 2018)
Kouji Nakamura (NAOJ)

Contents :

I. Introduction
Il. Michelson weak measurement setup
1. Extension of the input-output relation to arbitrary coherent state

Re-derivation of the conventional input-output relation

V.
V. Weak-value amplification from the extended input-output relation
V1. Summary and Discussion

References:

K.N. and M.-K. Fujimoto, Ann. Phys. 392 (2018), 71.

A. Nishizawa, PRA 92 (2015), 032123.
A. Nishizawa, K.N., and M.-K. Fujimoto, PRA 85 (2012), 062108. 1

H. Miao, PhD Thesis, The Univ. of Western Australia (2010).

I. Introduction

1-1. Weak measurement in terms of density matrix:
Density matrix for the total system : P = Ps & pd

System : Ps — |sz><l/)@| Measuring device : P4 = |¢><¢5|
Pre-selection
Weak interaction : ‘H = gd(t — tg)A @ P (AP <« 1)

A : an operator associated with the System Ps

P : the momentum conjugate to the pointer variable ()
associated with the Measuring device : Od

Post-selection of the system : ol — P’Hf Hf — Wf)(wﬂ -
r
The density matrix of the detector after the post-selection : p;;, = t;;?’H !
f

When (P|¢) is even, (P") =0, (n: odd) &Q :=try(Qp}) — tra (Qpa)

§Q = gReA,, + gImA,,({Q, P}) + O(g?),
0P = 2gImA,(P?) + O(9%).  jozsa (2007)

Weak value : A, := M’ --> Weak-Value Amplification,
(glti) (WVA)




I-2. Nishizawa model (1)

The Nishizawa model is a simple application of WM to GW
detectors. (Michelson interferometer, A. Nishizawa, PRA 92 (2015), 032123.)
( Cf. N. Brunner and C. Simon, PRL 105 (2010), 010405.)

* The operator of the system to be measured is
which path information in Michelson int..
A=yl —Il=)z]  |AZ=1 ¢} —— mirror

1 ) )
« Pre-selection : |¥i) = 7 ('e”’”ly) + e‘”’/2|a:)) .

lv)
« The observable of the measuring device is 6 1
photon’s momentum “p” (frequency) (which

measures the phase shift induced by the mirror L
displacements).
« Weak interaction : (pulse mirror
H=gp® Ad(t —ty), g= —2I. Ilightsource L I
e Post-selection : |z) 41
1 b litter
w =—(ly) —|z)). eam splitte ¢
%) 7 (ly) = |=)) -
photodetector

. Weak | N AT T _;
eakK value ("(,b |1,D2> 2 cot —. 3

( imaginary )

I-2. Nishizawa model

, ') (P’ , _
The density matrix of MD after the post-selection : rs = <q),>|(q),>= |®) = fdp@(p)lp)(wfle IAP|yp;).
For a single photon, the “signal” (the frequency shift) is given by
(w) = /dww(wpﬂw}, fdw(w\pfﬂw} =1, ({w)" includes weak value.)

Assume that the output in each frequency mode is a coherent state.
---> The photon number n(w) fluctuates (Poisson distribution).

n(w) = n(w) + An(w), averaged photon number : n(w) = Nout<w|p‘;l|w),

The observed frequency shift : @ =

out

/d,wwn(w) = (w) + Aw

1
Nout

1
Nout

Shot noise : Aw :=

(w?)’

/dwwAn(w), Var[Aw] = ((Aw)?) p =

Here, we used mode independency: [(An(w)An(w))p = n(w)d(w — w’).

Detection limit of the mirror displacement: we set “signal”’/’shot noise” =1 and solve for I.

A Ao (U_W>_1
" 4 /2Ny, cos(0/2) \ wo 1
N

J

Y
Detection limit for the conventional
continuous monochromatic laser.

Nishizawa model is weaker against shot noise. 4




I-2. Nishizawa model (3) : Radiation-pressure noise

In the research on quantum noise in GW detectors, not only the shot noise

in the laser but also the radiation-pressure noise is important.
 Radiation-pressure noise:
random shot noise in laser ---> random motion of mirrors (EOM of mirrors)
---> random noise in the reflected laser
---> radiation-pressure noise in data
To treat this radiation-pressure noise, (as far as | know,) QED treatments of
the interferometer (a standard treatment of quantum noise in GW detectors) is

necessary.

If we want to discuss the problem whether the ideas of weak-
measurements are applicable to gravitational-wave detectors, or not,
QED treatments, which are same level of the standard treatment of
gquantum noise in GW detector, is necessary.

I-4. A. Nishizawa, PRA 92 (2015), 032123.

— Shot noise and radiation-pressure noise in this model are evaluated through the QED
analyses. However, it is assumed that the mirror displacements are almost
constant in the analyses.

— The weak-value amplification in this model is realized only by classical carrier field.

— This model is weaker than the conventional gravitational-wave detector against shot
noise (as previous analyses).

— The weak-value amplification cannot reduce radiation-pressure noise, neither.

* The radiation-pressure noise is arose from the random motion of the mirrors and
weak-value amplification also amplifies this random motion. Then, there is no
improvement in the signal-to-noise ratio.

— There is a “standard quantum limit” as in the usual gravitational-wave detectors.

I-5. K.N. and M.-K. Fujimoto, Ann. Phys. 392 (2018), 71.

— We consider the “extension of the input-output relation for the Michelson
interferometer to arbitrary coherent light-sources.”

— This extension enable us to discuss the conventional Michelson gravitational-wave
detector and weak-value amplification from the same input-output relation.

— The key difference from [A. Nishizawa, PRA 92 (2015), 032123.]:
= We consider the continuous measurement of the time-dependent end-mirrors’ displacement
through the pulse train. (No correlated each mode coherent state.)
— Nishizawa discussed the shot noise and the radiation-pressure noises in each pulse.
— We want to measure gravitational-wave signals in the frequency range 10 Hz — 10 kHz.
= If we inject the femtosecond pulses, a sufficiently large number of pulses are used to measure
the signal with 10 kHz and the output signal is averaged these many pulses.

— We regard that the output signals in the frequency domain are given as the result of this
average of many pulses. 6




e The meaning of the “constant displacement in time”?

Light
source
~1 fs (1015 sec.) plus
4==)
If we concentrate on 1 plus, the time-variation due to GW is extremely small. 10Hz — 10kHz GW signal

(=101 — 104 sec. variation)

However, we cannot regard GW-signal as a signal within this treatment.

P Then,--..-

Light
source

A
v

~10-1 — 10 sec.
plus train average =)
10Hz — 10kHz GW signal
(—10* — 10 sec. variation)

“+oo
E(w) := f th(t)eHwt : We regard the time-integration in Fourier transformations as “the
—oo average of many pulses.
Further, we regard the system is almost stationary as the
result of the average of many pulses.

II. Michelson weak measurement setup

We assume that the central beam splitter is
~ in the inertial motion and the end-mirrors in the
XyT — geodesic motion at least in the longitudinal
direction of the lasers.
We apply the proper reference frame whose
& center is the central beam splitter.

In this frame, the deviation of the geodesic
distances of the end-mirrors from the beam
splitter are given by X, and Xy , which are

Phase rotator ( /2 ) | | induced by gravitational-waves.
The equation of motion of the end-mirrors
are given by B2X
1

dt?

= —RyjuX’.

3 L
— [
Light source - f |_|
Cyp
A

Phaserotator (—(/2) =

A

a ||l b X,

[ )

Photo-detector




I11. Extension of input-output relation to
arbitrary coherent state

Here, we regard the mirrors are under the
free motion (geodesic motion) except for the
radiation pressure due to the light source.

In this case, we have to treat the
Bogolyubov transformation and it is convenient
to introduce the notation for the electric field as

- T dw [27mh|lw
Bt — — hetad A —'Lw(t—z},
(t-2= [ G Tt A
where the operator A(w) is defined by

Aw) = a(w)O(w) + i (~w)O(—w) = { &gb("lw) Ei ; g;
and ©(w) is the Heaviside step function and a(w) is the annihilation operator satisfies
the commutation relations
[&(w),&T(w’)] =2n8(w—w'), [a(w),a(w)]= [&T(w),&f(w’)] =0.

We can derive the inverse relation from the definition of the §-function :

.AC +00 ) R +o0 ) ,
)= Sl / dte ™™ B, (t), / dtet?' @)t — 9765(w — W').
TRIW| J — oo —0o0

. Beam splitter junctions :

A cht—Ecrt N A{l_Aa . B ¢ Aad
B = SO g BB g ) B0+ B0
e O -Clw) L D) —Aw) ., D)+ Aw)

B(w) - \/ﬁ 3 Cﬂ:(w) — —\/E N y(UJ) = —\/i
. Arm propagation conditions:

Eo [t = E.. [t —2(r + X, /e) + At.«;] , By lf=E, [t —2(r+ X, /¢) - Atg] :

. Fourier transformation of displacements:
R +oco 0 . i R +o0 Q .
X, () ::/ ‘25 Z. ()™, X, (1) ::f ‘;—z (Q)e~
—0C Q —oC

+o0 Foo
2.(0) = f dtet R (1), Z,(Q) = j dtet X (1),

— 00 — 00

----> Arm propagation conditions:

. . s . _ 2i A0 R .
C;(UJ) — 6—29/2e+21wrcx+e—10/2e+21w7ﬁ/ d_e—’LQT /|w—Q](w—Q)C’x(w—Q)Zx(Q),

. . L ) ) +o° J0)
C;(w) — e+zﬂ/2e+2zw'rcy+e+19/2e+21w'rc\/’?/ d_ —iQ7 |W— |(W— )C (w Q)Zy(ﬂ)




- State of the incident photon : [¥) = Dal0)a® [0}, Da:=exp U%{a(w)aﬁ(w) —a(w)*d(w)}]-
- We may treat the electric field as D}E,D; with the state [0)4]0)q.
— The operators d(w) and dt(w) are regarded as D}d(w)Ds and D}d(w)Dq
respectively. Then,
DYD(w) Dy = De(w) + Dy(w),
De(w) := a(w)O(w) + o (—w)O(—w), Dy(w) := d(w)O(w) + d' (—w)O(—w).
— Neglecting the terms 4Z and D,Z , we obtain the input-output relation :

e_QiWTD:;B(w)Dd = isin(€/2)D (w) (Classical carrier)
+1i Sln(9/2)D (w) + COS(G/Q) (w) (Shot noise)

+
+i B ior Tl w — Q) De(w — Q)

jwl /oo 27

x [z $in(8/2) D! Zeom () Da — c08(8/2) D! Zai 1 () Dy -

(Radiation pressure
+ GW signal)

Zeom(@) = 5 (o) + 2,(@) . Zus(@) = 5 (290 = D). Ze = Zeom+ Zui, 2y = Beom — Zis.

2

e Eq. of motion for mirror displacements :

m &% . . 82 m 8 . 1m (‘)
EWXW{E) = Fw(w)(t) 2 2 3}(2 == h(t), E@Xy(t) = Fv'n(:u)(t) )12'; ().

e Radiation pressure force :
— We evaluate the radiation pressure to the mirrors from

o () = 2% (Be, [t = (7 + Xufe) + Aty /2])2 , Py () = zﬁ (Be, [t— (7 + Xy /0) — At /2] )2

« Summary of the input-output relation
— Input-output relation :

e—2iw‘ngB(w)Dd = 4sin(0/2)D.(w) (Classical carrier)
+isin(8/2) D, (w) + cos(8/2) A(w) (Shot noise)

: +o0
+i dQ _’QT\/|w Q(w — Q) De(w — Q)

(Radiation pressure |w| —00

*+ GW signal ) X [z sin(9/2)b2260m(9)l§d = COS(G/Q)D;Zdif(Q)Dd} d

— Egs. of the mirror motion :

szD;ZCUm(Q)Dd = QHCHQTCOS (0/2) dw\/|w(Q W)|De(w)D w)

—Ee“ﬂT dw lw(Q —w)|D ()(COS(@/Q)D (Q —w) —isin(6/2) A(Q — w))

’
—icos(ﬁ/Q)% f / 0 (@ + &) D) Do) Dl Zeom (2 — w0 — ) D7

. h dw dw' - A 5 (ot )T
- sm(@/?)@ = lwa'|(w + ') De(w) De(w') DY Z4i (2 — w — ) Dgetie+)7

sz D;Zdif(Q)Dd

z2£e+iQTsin 0/2)/d—w\/\w(ﬂfw Do(w) Do (9 — w)
+m"/ V]w(© — w)|De( [zsm 0/2)D, (2 — w) — cos(6/2)A(Q — w)

dw dw'’ 17 i +i(wtw’)T
sin(0/2) 2 2// o om Viww'|[(w + ') D, (w) Do(w WD Z o (2 — w — w') Dge

dw d. 2 2 . o
,ECOS(Q/Q)@//§%1/| wl w+w')D )DC(UI)DZZGH!(Q7M*W’)Dde+z(w+w )7l

1
+;mLQQh(Q). (Gravitational-wave signal)




IV. Rederivation of the conventional
input-output relation

Here, we consider the monochromatic light source case, where
a(w) = 2rNo(w —wo), N:= \/g“u Do(w) = 20N (5(w — wo)O(w) + 8(w + wo)O(—w)) -
In conventional gravitational-wave detectors, we concentrate on the
sideband frequencies wp = with carrier frequency wo, and consider the
situation where wp > €. In this case the above D.(w) is given by

D, (wo £ Q) = 27N (0(£Q) + §(2wo £+ Q)) ~ 2nN§(£0Q).
rapidly oscillating term : we neglect this term.

Through the same approximation, we obtain
' ; Ay, 0 A 0\ -
Input-output relation : ¢ *“*?"DBw £ 2Dy = isin (5) De(wo Q) + isin (5) Dy (wo + Q) + cos (§> Ao £Q)
2iNuwy2eFOT [ (0 i (0N i s
c— m isin 3 D} Zcom(£2)Dg — cos 3 DY Zaiy (£ Dyl
T tiT f
,Mms (g) (VI =l Dol — wo) + v/ F wol De(2 + o))
,w {Mm ol (cos (g) Dy (9 — wy) — isin (g) A2~ ,_,J(,))
+/]9Q + wol (cos (g) Dy (£ + wy) —isin (g) Ao +un)) } .
mﬂ?DZZ“‘N(SI)D.[ +w sin (%) {\/ [ = wol Do (92 = wo) + V192 + wol D(02 + ’-v‘u)}
O N I
+M {‘/|g ~ {1 sin (g) Dol — wo) — cos (g) Al w")]
/10 + wol [isin (g) 12,(82 + wp) — cos (g) A0 +:ur,)} }

Egs. of motion :

]

m!ZQDf,Z»mn (Q) Dy

+%mL!22h(52).

We also apply the approximation in which wo £, in the coefficients of the
input-output relation are regarded as wy+Q ~wp, SiNCE wy > N. (wWoxQ2>0, Q—w<0).
L
Furthermore, we choose arm length L so that wer =W = 2nm, neN, and we

H H 8&)0[0 8h - . .
introduce variables &« := —aqrr hser=\/—cars - Then, the input-output relation is

iven b A
J y D;biDd = sin (g) (1 + K cos (g)) ﬁfSnQﬂ'é(Q)
) 0\ - 0 5
—l-ei?’QT [isin (—) d4+ + cos (—) diw + sin@ (d! +d4 ) +icosd al + a4
shot noise 2 2 [ ( © ) ( ¥ )}
. radiation-pressure noise
—i/retT T cos (Q) h(iﬂ)7 . . 2
hsgr _gravitational-wave signal

carrier leakage
HeiZiﬂ.’r

2
where a:(Q) = a(wy £ Q), b(Q) :=blwo £Q), di () := d(wo £ Q).
Introducing amplitude and phase quadratures as

1. . 1 . . 1. - R 1 .
b+ b)), b= (b =b), di=—=(dy+d), do=—(ds—dl),
(by +b1), by ﬁiu ), di ﬁ(+ ), da ﬁiu )

\ 1y . . P, .
iy = —=(ay +al), az=—=(ay —al), b

V2 Vai C T
The above input-output relation is given by

~ 1 1 . Y\ - 7] ) .
T o« 0 +2iQ7 ) _ s 7 (725 +2iQ7 . o
D}b1Dg \/ﬁbmﬂml—moﬁﬁ(ﬂ)-ke { sin (2) d2 + cos (2) al} +e K sin Ody,
. T, . A : : Q
D;bng = /2sin Q —027r5(Q) + 12807 Lgin Q dy + cos Q Go v + cosBeT2 ki, — et cos Q V2K )
2]V hwo 2 2 2 hsor

When @ = 0, these input-output relation yields a well-known form:
- . 2 » : h(Q2
DZbIDd — 6+219T&1, D:_rlbng, — 20T (&2 + "3&1) _ e+z$27\/ﬂ} ( ) |

LSQL

Therefore, our extended input-output relation is a natural extension of the
conventional input-output relation for the Michelson gravitational-wave detector.



V. Weak-value amplification from the
extended input-output relation

Here, we show the weak-value amplification from our extended input-output
relation. To do this, we consider the case w > 0. In this case, our input-output
relation is given by

’2i“TDj,B(w)Dd = isin (g) a(w) + isin (g) d(w) + cos (g} a(w) shot noise

carrier Ieakagezl ) e o ; ;
Radiation-pressure | ! oo “";‘(w - Q) {z sin (5) De(w — Q) D} Zeym(Q) Dy — cos (5) De(w— Q)D;Zdiff(mpdl
yis
2

+ GW signal C w

To discuss the weak measurement from this input-output relation, we concentrate

on the output-photon number operator #(w) := b'(w)b(w) to the photo-detector and

its expectation value 7(w) under the state |¢) = Dyl0)s® [0}y, Da:=exp U% {n(w)df’f(w) - n(w)*ni(w)}] .
For simplicity, we consider the situation where 7., and Z,;, are classical and

their frequency-dependence are negligible in this case we obtain

— [Z [Z 8 z 7 .
— ain2 2 s 2 .
n(w) = sin (5) a(w) — sin (5) 27|'cw—1/213+3/2(77 a)a(w) (cos(w'r)Zwm + cot (5 ' s1n(w'r)Zdiff)

| — | Imaginary part of the weak viaue |
fio(w) ‘oo dn(w)
where ZI,y3/(t,a):= dzz®/? sin(z7)a(z).
0

To consider the weak-value amplification, we introduce the conditional

distribution function f(w) defined b n(w) Nout{w]pl|w)
f) Y Fw) = —e = St WP _ (|l f)
— N Nout
/ dwn(w)
0

Under the conditional distribution function f(w) defined by

n(w)
flw) = ———
/ dwn(w)
0
we evaluate the expectation value of the frequency w by
+0o0 +00
oo f dw(w — wp)dn(w) dwwng(w)
= [ o)~ ot L) = @) + dnfe), o= .
dwng(w) / dwng(w)
0
Then, we obtain
A 8
w) — wo Zcom W1s+3/2 (7, ) (wozc—1/2 (T,0) — Ic+1/2(Ta CV))
AN 8
-+ cot (5) Zdz'ff m13+3/2(7, O[) (UJQIS_I/Q(T, Oé) — IS+1/2(T, a))
2 4 8
+5Zdz‘ffmfs+3/z(ﬂa) (woZs—1/2(7, @) — Zy11/2(T,))  when 6 < 1

Weak-value amplification!!

+oa

+oo +oo
where J(a) :=/(; o?(w). Teoyy2(m ) ::f dex=""? cos(zr)a(z), and Ty_y/2(7. ) :=f dzz~'?sin(z7)a(z).
0 0




VI. Summary and Discussions

Here, we considered the extension of the input-output relation for a conventional
Michelson gravitational-wave detector to include the situation of the weak-value amplification.
Specifically, we extended the photon state injected from the light source into their
interferometer to a coherent state with an arbitrary complex amplitude a(w).

Due to this extension, we can discuss a conventional input-output relation for a Michelson
gravitational-wave detector and the situation of the weak-value amplification from the same
input-output relation. (Main result of this work.)

1. Weak-value amplification effect is determined by a(w).

2. Weak-value amplification also amplifies the shot noise and the radiation pressure
noise which are important for the sensitivity of gravitational-wave detectors.

3. The effect of the weak-value amplification corresponds to the common mode
rejection in conventional gravitational-wave detectors, which is achieved by the
complete dark port in conventional gravitational-wave detectors. In this sense, a
weak-value amplification is already and implicitly included in a conventional
gravitational-wave detector.

In the weak measurement, we evaluated the photon number expectation value
n(w) i= (i(w)) = (| D4 (w)b(w)Dal0) = (0| D}p (w) DaDjb(w) Dal0}

from the input-output relation .
These terms do not contribute to (n(w)) but contribute to noise.

e 2T DI(w)Dy = {sin (g) a(w) 4 isin (g) d(w) + cos (g) a(w)
“ th-order” g; pto° ) - . N . .
zerothrorder 2 dQ —iar ‘M‘(w ) [z sin (9) D, (w — Q) D} Zn () Dy —|cos (9) Deo(w — Q)D;Zdiff(Q)Dd} .
e J_ o 27 w 2 2
“first-order”
Conditional photon frequency distribution: f(w):= ng), Nout :=/ n(w).
out 0
+oo
| dwlw —wo)dn(w) “first-order” sin(f/2) + cos(6/2) 0
(W) —wo ~ T ~— — — = + cot (—)
f dmo(@) zeroth-order sin(6/2)
0

“weak value”

Since “zeroth-order” term is proportional to sin(8/2) , the term in the “first-order” which
proportional to cos(6/2) in the input-output relation is amplified by the weak-value amplification.

The input-output relation for the conventional Michelson GW detector:
N 0 0 1
I — lsn(Z ; z 0
DibiDy; = |sin (2) (z + Kk cos (2)> \/ mQ?ﬁ(S(Q)
R +2iQ7 .
20T [z sin (g) dy +|cos (Q &4 + 5 sin 0 ((ﬁF + di) +1cos (a; + &i)]

2
Ry ( Q) h(£2)
2 )l hsor

If we regard that the effect of the weak-value amplification is reduction of the terms
proportional to sin(#/2) but the terms proportional to cos(6/2) is finite, we should say that
we can reduce both the shot noise and the radiation-pressure noise from the light
source but we cannot reduce neither the shot noise nor radiation-pressure noise
from the dark port.




Within this work, we did not evaluate the quantum noises (shot noise
and radiation-pressure noise) in the situation where the weak-value
amplification occurs. This evaluation will be possible in our framework.

In this evaluation, we have to take care of the differences in the weak
measurement from conventional gravitational-wave detectors. In the
theory of conventional gravitational-wave detectors, we used three

assumptions to derive the input-output relation:
1. Concentrate quadratures of the mode wg £ ;
2. Ignore the term of the rapid oscillation 2wy + €2 ;
3. Apply wgy > € in the coefficients of input-output relation.

We have to discuss whether these assumptions are valid even for the
situation of the weak measurement, or not.

Furthermore, we have to investigate the following problem:

— What is the signal indicator in this setup???? (Noise spectral density?,
photon number expectation value?)

— How to treat the divergence Q2 in the response function ??? (Technical?)

These should be clarified to discuss the relation between the current
understanding of gravitational wave detectors and weak measurement.
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Introduction & Motivations

@ Black hole shadow edge is related to spherical photon orbits

@ Rapidly rotating black hole has the throat geometry near the horizon.

AR

Question J

Observational signature of the near-horizon extremal Kerr throat on the black hole shadow?

The spherical photon orbits on the throat turn around and around at almost the horizon radius
and are related to a part of the shadow edge at a distant observer. The photons feel the
geometry near the horizon radius. We consider the null congruence, which is closely related to

the intensity of the shadow edge.

Takahisa IGATA (Rikkyo U.) 2/8



Kerr geometry

@ Metric (M: mass, a: specific angular momentum, |a| < M):

AY Y A 2M 2
guvdzida?’ = — =2 dt? + Zdr? 4+ 5d6? + = sin2 0 [dgo _arar dt} :

A A A @
S =r’>+a’cos®0, A=r’>+a’>—-2Mr, A= (TQ + a2)2 —a*Asin® 0. (2)

@ Killing vectors: £€* = (9/0t)® and ¥ = (9/0¢p)*
@ Horizon radius, angular velocity, and generator: (use units in which M = 1)
ryi=14V1—a2, Q=a/(] +a%), x=(9/0)" +Wm(9/90)",  (3)
@ Conformal Killing—Yano 2-form
h=r[dt— asin? 0de] Adr+ acosfsinb [adt — (7“2 + a2) de] A do. (4)

@ Killing=Yano 2-form f = *h, Killing tensor: K, = fac fp©, conformal Killing tensor:
Cap = hachp®

Takahisa IGATA  (Rikkyo U.) 3/8

Null geodesics

@ Null geodesic tangent: k% (A: affine parameter)

@ Conserved quantities
E=—ka(8/00)*(#0), b=ka(0/09)"/E, q=E Kk’ —(b-a)?, (5

@ Equations of motion (o, og = £1)

._1 .2 r2+a2 ._O'T- ,_0-9 ._1 b
t_g[ (b—asm e)+ X P:|,T—§\/—V,0_E —U,¢_§ sin29_a+_P]’
2
V:A[Q+(b—a)2]—P2,U:cosze|:.b2 _a2:|_q’P:7"2—|—a(a—b),
sin“ 0
@ V=0&V'=0:
bZ[——a} _(r ) L3, q:r(a r+6r° —r) (6)
a r—1 a a a?(r —1)2
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Spherical photon orbits (SPOs)

— (be, \/@)

by ~2a O @ by " 02 04 06 08 107
Shape of the shadow for a ~ 1. Photons with parameters on the red comes from the Kerr throat.

@ SPOs exist in the range

r1 <r<r,0<r<rs, (7)

Takahisa IGATA  (Rikkyo U.) 5/8

Convergence of SPOs to the horizon in a — 1

q 2 3 P

Allowed range of 6 (U < 0) for spherical photon orbits in the limit a — 1.

@ Near extremal & near horizon
a=1l—¢€ r=140 (K0K1) (8)
@ limiting values
8
b— 2, ¢— qo € [0,3] (finite range) (e < \/;61/2 <18l < 1) (9)

@ The SPO radii degenerate into r while the variable 6 takes a value in a finite range

jeost] < 2= [Via+ Da+9) —a—3] " < V2v5 -3, (10)

Takahisa IGATA (Rikkyo U.) 6/8



Weyl curvature on SPOs

@ parallelly propagated tetrad

o Rt MR e e C?Cax, + N&; Crpy

 no=Jdk o _ T kT, (11)
VCik V Kk VCii 202,
@ {k*,1® m® i}: regularized tetrad in the limit e — 0 and § — 0
@ Weyl curvature components C; 4 g7 = Caveak®(es)?(es)¢k® on SPOs
12(1 — 10cos? @ + 5cos* 0) , ,
Crmmk = ~Crank = (1 + cos? 6)5 (5 - 46) — 0, (12)
12cos (5 — 10 cos? 0 + cos? 0) , o
Comik = Cramk = (1 + cos? )5 (6% —4e) =0, (13)

@ The Weyl curvature does NOT generate the shear of SPOs in the limit ¢ — 0 and § — O:

o 02

o
0= 5 oc*Posp, ocap=-O0oap +Ceasir (14)
zE

Conclusions & Discussions

@ When photons on the spherical photon orbits have impact parameters
within a certain range, the radii collect on the event horizon in a — 1
while each photon moves in a different range of 6.

@ Weyl curvature components do not generate the shear for the
congruence of the special SPOs.

@ This result implies that the intensity of the black hole shadow edge
becomes large when the black hole rotates rapidly.

@ The tangent of the special class of SPOs must be proportional to the
null generator on the event horizon, which is identified with the
outgoing principal null vector. Hence, the Weyl curvature components
correspond to the complex Weyl scalar 1)y associated with the
principal null. Since 19 = 0 in the Kerr geometry (Petrov type D), the
Weyl curvature components also vanish for the special class of SPOs.

Takahisa IGATA (Rikkyo U.) 8/8
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Linear stability analysis of a rotating thin-shell wormbhole

Naoki Tsukamoto (Tohoku University)
(From this December, a limited-term assistant professor at National Institute of Technology, Hachinohe College)

Phys. Rev. D 98, 044026 (2018) with Takafumi Kokubu (KEK and Rikkyo University)

Abstract: Rotation is expected to make wormholes stable. We construct a rotating BTZ thin-shell wormhole by using a cut-
and-paste method in a corotating frame on a throat. We investigate the linear stability of the thin shell of the rotating wormbhole
against the radial perturbations of the throat at x = 2. The larger its dimensionless angular momentum |j| is, the more the
wormhole becomes stable |j| until it reaches 1. The behavior of a condition for its stability significantly changes when |j| > 1.
The rapidly rotating wormhole with the throat at z, = |j| /v/2 is stable regardless of the equation of state for the barotropic

fluid. Stable regions on a plane (43, where 35 = (9p/d0),_,,

and p and o are the surface pressure and energy density of the shell,

respectively, are shown in the following figures. Shaded regions indicate the stable regions. For [j| = 0 and 0.99, solid lines denote

the radius of the event horizon.

j=0 |41 = 0.99
3 3
\
2 ~ 2 |
R IRREEERREEEEEEEE e
L e Sl L e il |
-1 -1
0.C 0.5 1.C 1.t 2.C 0.C 0.5 1.C 1.8 2
x %
Introduction

A wormhole is a spacetime structure which connects two regions in our uni-
verse or multiverse. Existence of wormholes in nature will require their stability.
Dzhunushaliev et al. [V. Dzhunushaliev, V. Folomeev, B. Kleihaus, J. Kunz, and
E. Radu, Phys. Rev. D 88, 124028 (2013)] investigated a five-dimensional rotating
wormhole with equal angular momenta filled with a ghost scalar field and discussed
its stability. They found that the unstable mode of the five-dimensional wormhole
disappears when the wormhole rotates fast. Their result might show that rotation

makes wormholes stable.

Construction of rotating BTZ wormbhole

‘We cut and paste two BTZ spacetimes with a line element, in a corotating frame

on a throat, given by

dr? Je 1 1 2
ds? = —fo(ry)dt2 + —=— 412 [do‘ +—(,77f)dr, } ,
= (re)dts Felre) T T 2 @2 L)
where
7'§ Ji
= —M. -+
fa(rs) ++ 7 + e}

il = 1.1 lil=5

[

-
SN O N s oy 0 O

=
o
SN O N s oy 0 O

12 14 0 2 4 6 8

and where My, Ji, and Iy = y/—1/A4 are a mass parameter, an angular mo-
ale of a curvature related to a negative cosmological constant

mentum, and the
A+ <0, respectively. Here we have permitted that the radius of the throat a is a
function of time, a = a(t). As shown in a left figure, we identify the boundaries of
the manifolds Q4 which are the timelike hypersurfaces 92 = 92y = 9Q_ and we

obtain a manifold M describing a rotating thin-shell wormhole.

Stability of the rotating wormhole

We assume that the thin shell is filled with a barotropic fluid with the surface
pressure p = p(o), where o is the surface density. From the the Darmois-Israel

junction conditions, the motion of the shell is described by

(d“)z +V(a) =0,

dt

where

‘We investigate the stability of the rotating wormhole with the throat which stays in
the radial direction at r = ag, where ay is a constant. By introducing z = a/(IvV M)
and zy = ag/(IvV M), the effective potential V(z) can be expanded in the power of
T — o as

1 d*V
V(z) = 3

e (x —20)2 4+ O ((z— Zg)x) .

z=mz0

The thin shell is stable (unstable) for

4

42V
dz?

1 [—8af +12)%0 — 623 +
- Mz} dad — 423 + 52

z=z0

where j = J/(IM) and

Jp
#=(5)...,

against linearized fluctuations in the radial direction. We can rewrite the stable
condition as
—8af + 125%a} — 6% + j*
dad — 423 + 52

+ (223 — j%) B3 > 0.

The behavior of the stable condition with [j| > 1 is different from the behavior

with [j| <1 as shown in the figures of the abstract.
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CMB Bispectra induced by lensing

Takashi Hiramatsu
Rikkyo University

Collaboration with Daisuke Yamauchi (Kanagawa)

Microwave radiation from
last-scattering surface at z = 1089

- The remnant of Big-Bang
- Almost isotropic
- Almost complete blackbody radiation with 2 726K

7T2
S (cf. COBE)

15
- Tiny anisotropic fluctuations with ((10)uK are induced

P~ =
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Introduction : CMB observation

Many kinds of information on the history
of the Universe come out.

From the angular power spectrum,

1
TT __ T |12

Multipole moment, ¢ m
2461111041150 500 1000 1500 2000 2500

5000 f\) CET'T

4000 , ‘\

(C(k1)¢(ka)) = (2m)3 Pe(k1)6® (k1 + ko)

f A
0 f tj\/\\*\\‘\ N1 A =92.196+0-080 o 199
: —0.078
1000 TMIL&;&./ R PC(]C) = A (l{j_*> ns = 0.968 + 0.006

Temperature fluctuations [ /4 K? ]

)

90°  18° 1P 0.2° 0.1° 0.07°

http://www.sciops.esa.int

we can estimate the primordial curvature pertubation

Angular scale Planck Collaboration, arXiv://1502.01589

Observations of E/B-mode polarisation give
more information on, for instance, primordial
gravitational waves.

3 Declination [deg.]
\

30 20 10 2 .
Right ascension [deg.] 7%

CMB bipectrum induced by lensing

Introduction : Non-Gaussianity

We focus on the 3-point function (Bispectrum)

(C(k1)¢(k2)C(ks)) = (2m) Be(kn, ko, k3)5™® (k1 + ko + k)

Primordial curvature fluctuations

Bispectrum gives the statistical properties beyond the power specttrum,

Gaussian: (((k1)((ks)((ks)) =0
Non-Gaussian :  (((k1)((ks)((ks)) # 0
Non-Gaussianity is quantified by

) . Rtemp(i)
£ (B¢ - B )
NL (Btemp(i) . Btemp(i)) e.g., Komatsu, Spergel, PRD 63 (2001) 063002

Some inflation models predict large fx1, and such models have been roled out
by recent Planck Observations’ fNL =0.84+5.0 Planck Collaboration, A&A 594A (2016) 17

In the next decade, the focus would move to the non-Gaussianity of primordial
tensor perturbations that generate the B-mode signals such as (BBB) o (hhh)

3/19
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Introduction : Non-Gaussianity by CMB lensing

We cannot see ( or hij directly, but observe © = §7"/T" and E/B-modes.

If the corresponding bispectra are linearly related, ©(k) = factor x ((k), it's easy
to get the primordial contribution, (C(k1)¢(k2)¢(ks3)) = factor™> (0 (k1)O(k2)O(ks3))

But, unfortunately, it is not the case....

New inflation
Chaotic inflation inflation after inflation
Power-law inflation 9
DBI inflation '
K-inflation N — fNL CMB .
Hybrid inflation
MSSM inflation : : , _ _
Brane inflation primordial JNL generated by non-linearity of gravity
. (=CMB lensing) dominates the observational signals

It is crutial to correctly remove the non-linear contributions to estimate the
primordial one. If done, we can kill a large number of inflation models.
Here we revisit the influence of CMB lensing, and estimate the significance
of all kinds of lensing contributions to the CMB bispectra.

CMB bipectrum induced by lensing

5/19

Formulation of CMB lensing

Multipole expansion

Given the temperature or polarisation map, X (n),
as a function of the directional vector n,

the next step is to quantify the pattern on the celestial sphere.

CMB signal X = ©/F/B is expanded by the spherical harmonics,
Xipm = /dﬂ X(n)Y/y(n)
The harmonics coeffient is related with the primordial fluctuations,
X2 = am(~ / i kg S WTO WY R = (m 9

Z = S(calar), V (ector), T(ensor) [s =0,£1,+2]

CMB bipectrum induced by lensing 6/19



Formulation of CMB lensing

CMB Lensing / Gradient-mode

CMB lensing is characterised in terms of the defelection vector d = V¢ + (xV)w ,

Curl-mode
Yamauchi, Namikawa, Taruya, JCAP 1308 (2013) 051

actual photo“'s path \Ij @

gravity potential

deflection vector

The lensed CMB signal can be written as
X(n)=X(A+d)
Expanding it in the assumption that |d| is small, we have

= Lot XX | <= 1 L0t sz XX -~
o =Xeut Y MEG Tt 3 Y M o Ko
X 00 mm/ xy X 00" mm/ m’!
MLM’;;C;XY . (_1 M L l v MXY,Q:
Mmm/' - ) M m m/ Lee
Wigner's 3j-symbol

The coefficient matrix M will be defined next.

CMB bipectrum induced by lensing 7/19

Formulation of CMB lensing

Coefficient matrix

The integration of triple products of spherical harmonics and their derivative with respect to
the solid angle yields the coeffient matrix,

© E B

©e¢ ._ (0)o 0w _ = o(0)w
o Séoe);/: 0 0 C] 8513223 T CZ1£2£3€SZ1£253’ Lilals " 6‘6162‘636851@243’
XXz, _ (+)z (=)= (o ._ ¢ (Hw —ow
MLM/ - ! S%HS' _‘S(Y‘lL-gg/ E S£1Z243 T 68162636851132%’ 018203 051825368515253
0 Sy b Syt B (=)o _ — o (Hw . _ @
Lee Lee S€1£2€3 T CﬁléglegeSglngS? S€1£2€3 T C€1‘€2ZSCSE1£2Z3
where

\/(251 + 1) (202 + 1)(203 + 1)

Cotats 167
(0)¢ 0y Ly
esgléze3 =001+ 1)+ la(la+ 1) + l5(l5 + 1)] C 0
eSpeg, =20l + 1)l3(ls + 1) (01 o
01 by Y-
82(263 =001 + 1)+ la(la 4+ 1) + l3(l5 + 1)] (21 02 _52>
0y i £1 62 €3
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Formulation of CMB lensing

CMB Bispectrum
Bispectrum is defined as a three-point function of © / E'/ B-signal,

_ npXYZ
<XL1M1 YL2M2 ZL3M3> - BL1L2L3;M1 M2M3

Angular-averaged bispectrum is then defined as

BXYZ ._ Li Lo L3 BXYZ
LiLoL3 " z : M, My Ms; Ly LoLg; My MaMs
My My Ms

Lensed bispectrum up to 2nd-order

After a little bit long but systematic calculations, we finally find

S5XY Z,sss’ XX,z ~XY Z(s' TTYX,x ~XX Z(s'
BL1L2L3 = Z (MLlL;;LQCLz (8)01353 (= + ML2L3L10L1 (8)01353 (s )) (3 4 5/)

Xz
SXY Z, . XX, XY (s) ~xZ(s) YX, X Z(s) ~xX(s) zZX, X X(s) ~xY(s)
BLILQE:S - Z (MLlL;ZQCLz CL3 + MLlexLS CL3 CLI + ML3L2IL10L1 OLz )
Xx
TIXX,x ~AXZ(s)~xY(s) | 77Y X, e ~XX(s) ~xZ(s TrZX,x XY (s) ~xX(s)
+ Z <MLlLQL30L3 (é CIJZQ ( + ML2L3L10I11 (5)023 (é) + MLngLchQ O].Iil ( >
Xz

[Y2.0¢ Oy +-Lo+b3 7 XX,
X=T,E,B z=¢,w s=Scalar/Vector/Tensor M ;)" = (~1) bt My i

CMB bipectrum induced by lensing 9/19

Boltzmann solver “CMB2nd”

% CMB2nd

* Angular power spectra, CP°,CcP”, cF¥ PP, from Scalar/Vector/Tensor
Perturbations, which are consistent to CAMB results with O(0.1)% error.

* Lensed bispectra B;.;7;*** as well as the lensed power spectra C; *

(not mentioned in this poster) can be computed.

* To quantify the significance of the bispectra, we compute the

. . .S . . .
signal-to-noise ratio, — , where F;; is the Fisher matrix,

1
N VT
i R
Fy = Z By 1,081,150, (Z,] — XYZ)

XXWYYZZ
L1L2L3 AL1L2Lg61[/1 CLZ CLS

AL1L2L3 =6 (L1 = L2 = L3), 2 (L1 = L2 # L3 etc.), 1 (OthGI’WiSG)

* To quantify the shape of bispectra, CMB2nd can compute fyp, parameters
for the frequently-used template functions, local/equilateral/orthogonal/folded.

* [Future] To see the modified gravity effects, the effective theory of degenerate
higher-order scalar-tensor theory (EFT DHOST) is ready for implementation.



Assumptions

* Cosmological parameters

Basically, we use Planck 2015 results, and assume the Lambda-CDM model with
Planck Collaboration, A&A 594A (2016) 13

h =0.6774 Yite = 0.24667
h2Qcpy = 0.1188 7 =0.066
h2Qp = 0.02230 To = 2.7255 K
Neg = 3.046

* Initial power spectrum

Scalar: P (k) = AW <_

Ny (Large and flat vector spectrum
Vector : P(V) (k) _ TVA(S) (ﬁ) 7y = 0.01 i not realistic, but we use it to
Ny = demonstrate the influence of vector
modes on the lensing bispectra.)

Tensor : P(T)(k) — rp A ﬁ) "o =001

nt:0

CMB bipectrum induced by lensing 11/19

Results : signal-to-noise ratio (vector)

(Tv, ’I“T) = (0.01, 0) Cosmic variance limited =——— LiteBIRD ssssransesess.
"lebe6 " —l[@er = mm=|leeB  wm=|lepE = ===
10" 1F IF 1F 3
w“/_’_/—/—/——"->
107 1

4 L L L L L L L L L L L L L L L L L L L L L L L L . L L L L L L L L L L L
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10? " i ! ! ! ! ! ] T — ! ; ! ! ! ! ! ! — : ! ! ! ! ! ! 4 — ! i ' ' ' ' A —
OFEB w=rx—| | OBB e — | |[EEE e EBB L
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m| EEB 2= BBB " | Weshow the S/N in the cosmic-variance-limited
! f case (solid) and that expected in observing with a

LiteBIRD-like observatory (dashed). LiteBIRD
has a angular resolution with 30 arcmin, so the
signal is no longer increasing for 1>500.
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Results : signal-to-noise ratio (tensor)

(

TV, ’I“T) = (0, 0.01)

Cosmic variance limited

LiteBIRD sssssssussssan:

L 000 T —
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008
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OFEF
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TEB TE'Bp
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EEB ==i—| BBB In the absence of vector modes, the cosmic variance
10'F i 1. . . .

is reduced, resulting in the increase of S/N. Our

” /f// ’ results imply that 000 /0OE/OEE/OEB/EEE
oy 1 ‘have a potential to be observed, and EBB is the only
Wt e ] f’//"'signal sourced by the curl-mode and to be observed
W 1L {if the cosmic-variance-limited observation is possible.
10"‘@ 2‘0@ 4‘0@ 6‘% H‘W 16% 1‘20@ 14‘10@ 'Iéﬂ@ 'Iéﬂ@ 20000 Z‘ﬁ 4‘% 600 800 1000 1200 1400 1800 1&‘!00 200¢

CMB bipectrum induced by lensing

Results : bispectrum shape

13/19

Next we focus on the shape of bispectra. In particular, here we compare the squeezed slice
(€1,09,03) = (4,4, ¢+ 4) with the equilateral slice (¢1,{2,03) = (£ — 2,0, + 2).
To save the number of slices, we show the case with (rv,r7) = (0,0.01)only.
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Some signals indicate the equilateral shape rather than local (squeezed) shape.
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Results : Estimating “fnr.”

Fisher analysis

15/19

To quantify the shape of bispectra, we introduce the paramter fxr, which is defined as a quantity
minimising the following chi-square,

where XY, Z=0/F/B and A =

BXYZ

£, <l3<¥3

18203

XY Z,A
NL

(temp), A
b18243

)

local /equilateral /orthogonal /folded.

In the usual analysis, a template function is given as a reduced bispectrum bz 0,0, and the relation
with the angular-averaged bispectrum is

(temp),A
B£1€2£3

However, B(temp) 4

000

bA
010503010505

$18283 . __
IE lols "

(201 +1)(202 4+ 1)(203+ 1)

by U3

i

4

(5 )

S2 83

is non-zero only if ¢; + /5 4+ ¢35 = even. Hence it is impossible to quantify

the shapes of oa(f' -parity bispectra (non-zero only if /1 + {5 + 3 = odd) like ©OB/OEB/EEB
and BBB. Instead we use

(temp),A

B€1£2£3

— 7%
- Iélégﬁg

—1,-1; 4

b 010205 Shiraishi, Liguori, Fergusson, JCAP 1405 (2014) 008

This template function has no longer the original meaning, but we use it to quantify the shapes
of both even- and odd-parity bispectra.
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We estimate the fNL paramter with four kinds of frequently-used tern]i)llate functions to quantify the shape

27

of bispectrum in the cosmic-variance-limited case. Here we used 1, ;’,."factor to define the templates, so
notice that the original role of fNL parameter is lost.

In particular, ©©B/OEB/EEE have a equilateral feature in comparison with ©©06. Besides, BBB
seems to be featureless in the sense that the fxr, paramter is not highly sensitive to the shape.

CMB bipectrum induced by lensing 17/19

&) 1B

Results : Estimating “fnr” &) Frepes

First we define the ratio of /nvL's for equilateral/orthogonal/folded to local-type.

RAX) .=

A(X) A = equilateral, orthogonal, folded

oy X = 09,001,008, 058, 018,055
NL \EEE,EEB, EBB.BBB

The statistic R roughly gives the trend of each shape comparing with local-type shape.
Next we define the ratio of R for each bispectrum and R for TTT:

gax) R
'~ RA(©606)

The statistic S gives the trend comparing with ©©© bispectrum.

equilateral orthogonal folded

We estimate S for all bispectra (CVL) at £imax = 2000 .

TTT
TTE
TTB
TEE
TEB
TBB
EEE
EEB
EBB
BBB

1 1 1
0.48 0.46 0.38
50.09 2.85 2.37
2.49 1.46 0.47
16.63 2.26 2.32
0.81 0.96 1.01
13.39 4.46 3.46
25.68 3.21 4.00
54.85 15.60 18.74
0.37 0.81 0.78

S-statistic implies that ©©9B/OEB/EEE/EEB
look “more equilateral” comparing with ©606.

<—— All S-statistics for EBB are large, implying

(Tv, TT) = (0, 001)

that EBB is not local.
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Three-lines summary

- In near future, we will succeed to observe the B-mode signal and
it will be possible to estimate the CMB bispectra of primordial origin.

- To extract the primordial signals from the real observations, we need
to estimate the lensing contributions with a good accuracy.

- We found that ©660/600E/OEE/OEB/EEE could be observable with
a LiteBIRD-like observatory, and the bispectra induced by the curl-mode
are highly difficult to be observed.
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PB20: An ostentatious model of cosmological scalar-tensor theory
N. Kan (NIT, Gifu College) and K. Shiraishi (Yamaguchi U.)

based on:

An ostentatious model of
cosmological scalar-tensor theory

arXiv:1807.10411 [gr-qc]
Nahomi Kan and Kiyoshi Shiraishi

We consider a novel model of gravity with a
scalar field described by the Lagrangian with
higher order derivative terms in a
cosmological context. The model has the
same solution for the homogeneous and
isotropic universe as in the model with
General Relativity (GR), notwithstanding the
additional higher order terms. A possible
modification scenario is briefly discussed
lastly.

§ 1. Introduction

§ 2. our model

§ 3. not-so-ostentatious model
§ 4. Modification?

§ 5. Summary

§ 1. Introduction
Neutron star merger:
GW170817 / GRB 170817A

jie ‘.,1*‘._, ki g LULE 4

the speed of GW ~ the light speed i ighaccuracy
e.g. Phys. Rev. Lett. 119 (2017) 251301--251304
i

Severe constraints on parameters in
Modified Gravities (MG) in general!
+ Recently, Motohashi and Minamitsuiji (phys. Let:. 8781 (2018) 728) proposed a

possible form of the Lagrangian for Modified Gravity, which leads to
General Relativity solutions.

What is the simplest model of MG which
admits GR solutions?

Suppose the gravitating scalar system in GR:
Io= /f/*.,-\ﬁ,,nu - ./{1'.,- Veri [H i n%(V{'})" - V(g)|.
This leads to GR solution:

1 &lo

=gog

=Ry~ él{q,,, 7aév,‘,.v,,u + nlINu]'{q,w + %\'11:.»;1,(,,
1 e
= T = 579w + 5V (6)9 =0,
If one considers
L= Lo+ F(T,,) (Fis 2nd or higher orderin T e )5

he can obtain the GR solution T “=O(as one of solutions )
A MG model which admits GR solutions!

-+ Such a model describes Higher-Order Gravity!

higher-derivative— Ghost

1 15| 1 1
propagator ~ m-;{? /«w}

Is it pathological in quantum field theory?
*many cure methods have been proposed
.9, Anselmi and Piva, arXiv:1806.03605, otc etc.

We won't touch them in this talk.

(semi-) classically, ghost modes cause finite-range force,
which may modify the gravitation law at the galactic scale.

Meissner--Olechowski Gravity

(PRL86(2001)3708, PRD65(2002)064017)
which includes ghost tensor modes and no scalar mode,
found through the study of "Critical Gravity"(PRL106(2011)181302)
(in a narrow definition, critical means prop.~1/k*)
[© F(R) theory includes a scalar degree of freedom, no tensor ghost]
is governed by the Lagrangian expressed by LC of:

Ll = =841 be Sayh -+ Sryn, = —|Sr -+ SRl

R T T
LA o
T R
o o oy

w _ pu _ Lpow, B =
SH e ERU‘“ |
Lg% SRR 74

[Well, we don't want any more scalar modes than ¢ ...]

§ 2. our model

We can use [SS], [SSS] and [SSSS] in the Lagrangian for our model,

eSS, =T, — =10,

3

(in the absence of the scalar kinetic and potential term, $=S, )

For example: L = oLy + 3[SS]

) )
L=a [Iifrr—ly!Vm‘l, w.u)] = {(n;; 7n%v“,;,vu‘,) = ‘X (n ,”%‘VWZ)

e 1 1=
-Rt (@) (l(’—ns(Vu}’) - R‘ \u)}

[SSS] and [SSSS] contribute O(#,,*) and O(hy")
in terms of h., = g, — g, deviation from the B.G. T,, = 0.

We then consider
L= aLy+ 3[SS] + 7[S-55] + 9[S:5:55]
where S, = T — 27gu.
Then, we obtain

. -
=y A= {nllzw"’vl/r,u. = { 54 ”—"" + A%} ST ]

There is a Ghost tensor mode with mass
m2(d) = a(3+7V(¢)/3+0V2(4)/18)7,
which affects galaxy rotation curve(?)

(possibly time-dependent)

§ 3. not-so-ostentatious model

We consider L' = L + 3 (RURY — $R?), 1= alLo+ 5ls9).
L' and L lead to the same FLRW GR solution,
because R: R — 3 #*=0 for conformally flat spacetime.
The model includes no ghost tensor mode
but higher order of the scalar field ¢:

L= o [n —oh(vey - \'((,,)] g [’”%"“")[V""V 4 ﬂ‘l‘i‘[[Vu)l].l . %\"ﬁu,.)
13 (V(0) +0(V0)?) R - ﬁ’f"‘/v,‘(’rv,,n} i

wheref’ = —3.

The speed of GW

Kobayashi,Yamaguchi,Yokoyama,PTP126(2011)511,
Defelice, Tsujikawa, PRDB4(2011)083504;JCAP1303(2013)030

ds? = —dt? + a*(t)(1 + 2®)dx*
4 SRRl R o i ey
/ {[l.r\/f_q[" = / d'va® [E(()i(b)z i .Sm](I)) T ]
where w1 =2 (r\ + %‘V(w)) = %n‘ 5, w=2 (n + i"‘-[n)) + %(r 35

L wy 203 -2
cecw=—=1-——0¢
GW w1 ™
needs fine tuning

§ 4. Modification?
The 1st model up to 2nd order:

L=aly-p (T’“’T,,,, - éT2>

is equivalent to the Lagrangian including an
auxiliary symmetric tensor field

L= aLo— 32T 8™ — 5,5 + §2),

where § = 5{;

The condensation (S4) = Ad,
brings about

L=(a+28A) (R— %a(w)‘z) — (+ 48NV (8) — BA?

(the condensasion mechanism needs
quantum effects of additional fields ...)

§ 5. Summary

We consider a novel model of gravity with a scalar field
described by the Lagrangian with higher order derivative terms
in a cosmological context. The model has the same solution for
the homogeneous and isotropic universe as in the model with
General Relativity (GR), notwithstanding the additional higher
order terms. A possible modification scenario is briefly
discussed.
Ghost condensasion?

future study : relating with
induced gravity / quantum cosmology / higher dimensions /
supersymmetry / torsion / helthy quantization?
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Outline & Summary

R e

HREFH (KRTFEK), HEE—, FWRFER, WBE—8, B GRCFARER, BHEDT JAXA)

-

~N
The new technique of measuring frequency by optical lattice clocks now approaches to the relative precision of (Af/f)=0(10718).
We propose to place such precise clocks in space and to use Doppler tracking method for detecting low-frequency gravitational wave below 1 Hz.
Our idea is to locate three satellites at one A.U. distance (say at L1, L4 & L5 of the Sun-Earth orbit), and apply the Doppler tracking method by
communicating “the time” each other. Applying the current available technologies, we obtain the sensitivity for gravitational wave with three or
four-order improvement (hn ~ 1017 or 10718 level in 10> Hz -- 1 Hz) than that of Cassini satellite in 2001.
This sensitivity enables us to observe black-hole mergers of their mass greater than 105 Msun in the cosmological scale. FPEEEEY R 200
Based on the hierarchical growth model of black-holes in galaxies, we estimate the event rate of detection will be 20-50 a year.
\We nickname "INO" , named after Tadataka Ino (1745--1818), a Japanese astronomer, cartographer, and geodesist. [arXiv:1809.10317] )

. A
1. Introduction ; Optical Lattice Clock
“Optical Lattice Clock™
H. Katori UPs Jewnal 2002, 754)
rap atoms at standing laser wave
read frequency of transient phase

Cs atomic clock  At/t = 5x101¢
Optical Lattice Clock (2015) 1018
magic freq. compensates multi-polarization

OLC targets  At/t= 1019

.
Geopotential measurements with synchronously
linked optical Lattice clocks
grav. patential of 15m difference
relativistically measured * Sem

. J
W detctor v Optca Lotice Oocks i Spoce

3. Principle of GW detection

{1emon the Earth  Atft= 1.1 x10-'8)

1. Each satellite has Opt Lattice Clock,
send out each time to others.

2. Each satellite recognizes.
direction - distance - velocity
of others, and we know all of them
(including the potentioal of the Sun.)
Mote: effects of planets are O{month).

O

3. When GW passes, we know its

Improvement of Doppler-tracking sensitivity

/ 2. Doppler tracking of Cassini Satum Explorer |
Cassini 2001-2002 (Armstrong, LAR 2006)

st ot 9,0

hetf)
T 3x1078
T = =
s
Ty okt sy VIS i 27 281 gt clock
e Tl in

2. Improvement of Doppler sensitivity (2)

rad, press, F=P/c
P=1.3 kW/m2
1000 kg, 10 m?
acceleration
a=5x104 m/s2
AP/P 4 1/1000
Aa/a k10
» solar panel parasol
89/g 5 102

1 AU baseline » 10-%Hz

e et s b s e g iy 4

~

2. Improvement of Doppler sensitivity (1)

» monitor the time by Opt Lattice Clocks
in 3 satellites

1 radia transmission,
= usetwo frequency ranges (doubla tracking)
to check phase differences due to interplanctary plasma
I 11 gnt transmission,

o effects trom piasra. <JISTICR

.

" W——— 4

1 AU baseline » 10Hz

Frepe— o £ V]

e

e s
Gl vt e
Tnprpbr S -

2. Improvement of Doppler sensitivity (3)

With current technologies, we can obtain 3-order less than Cassini |

ot § - G =
fy  differences. - . Lattica Cloc 107 104 100 100
| 1ftheeventsare ~10s (yr), i " TL;‘: o Trequency [Hz]
then we can calibrate them well. e ety sk e 21 plasea b light transaission —_—
P ot rad pressure B solar panel parasol sensittvity -+ sensitivity f0410:
] \ e e % cantrod technalogy satellite control perturbation Ont, Lattice Clock Ilmltaum/
b Y
Detectable Distance
( S/N=10 S/N=100 USA 170200786 \
M .
z s A U - Ear it At 010 z | .
T a5 T 25 h 8
-4 o 3 N
2 14 = 14 4 o}
g 021 g o 021 :
2 o024 2w 0024 » A
4 H B aax
3 000z 3w 000z o
3 il |7 e
g E . e aar tanLish
3 . 3. = "
- v w - = - 0 =
102 104 108 108 102 104 108 108 2
k chirp mass M_c [Msun] chirp mass M_c [Msun] R j
How many BH mergers in 1-year observation ?
4 i . 4 )
Hierarchical growth model of SMBH
How many BH in a Galaxy? How iy BH mergors b the Univers? _
g {
E E-3 Rt
5 | sm=10 3
H
2 S/N=30
IMEH:
l ‘.:Tr 10, 5 o SN=100
H 108
SMBI - = =
M, BH mass [Msun] BH mass [Msun] BH mass [Msun]
- .
ApJ. 835 (2017) 276 8/N=10 520/year S/N=10 18000/year 19.2/yr 29.8/yr
{range: 550M-3.8x105M) {range: 10M-7.9x104M) S/N=10
§/N=30  6/yesr S/N=30 4300/year =
(range: 5.5x103M-3.3x104M) (range: 10M-3.3x104M)
. AN J
. J/

http://www.oit.ac.jp/is/~shinkai/

@JGRG28, Rikkyo U., 2018/11/5-11/9
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Reformulating Yang-Mills
Theory as a Non-Abelian
Electromagnetism

Atsushi Miyauchi

Research Organization for Information
Science and Technology (RIST),

Kobe, Japan ‘2/
RIST

Motivation

Einstein’s equations accompany constraints which reflect gauge invariance. In
numerical relativity, constraints are able to be managed rather well recently.
However, its instruments are still empirical or intuitive. To understand such
constrained system mathematically better, | investigated Yang-Mills theory as a
preliminary step to general relativity. Notice that both theories are non-Abelian.
Differential forms are consistently employed for manipulation. Discussion
proceeds as parallel to Abelian theory(i.e. Maxwell’s equations) as possible.

Prerequisite formula

4D exterior derivative of a 3D form can be decomposed into a sum of 3D
exterior derivative and temporal form. As an example, 1-form is shown below.
With direct manipulation, we can confirm any form can be written in a same
formula. Underline in the bottom line designates 3D exterior derivative.

dA = d(Aydx + A,dy + A,dz)
= dAyNdx + dA,\dy + dA,\dz
= (0,Aydx + 0yA,dy + 0,A,dz + 8. A cdt) Ndx
+(0,Aydx + 0,A,dy + 0,A,dz + 9, A,cdt) Ndy
+(0,A,dx + 0,A,dy + 0,A,dz + 0,A,cdt) Ndz
= cdtN\A + dA



Maxwell’s theory

Assume there exists connection A for gauge group U(1), then

Field strength (geometry) F =dA

Action (dynamics) S[Aj] = f(%F AF +jAA)

dF =0, | - Bianchiidentity (geometry)

Equations to be solved d*F =j,| » Euler-Lagrange equation (dynamics)

3+1D decomposition F=—cdtNE+B, "F=G=cdtANH+D, A=¢cdt+A,

Electric and magnetic fieldsin terms of connection
Applying 3+1D decomposition,
dA =d¢ Acdt + dA = (cdtdp + dp) Acdt + cdt AA + dA = cdt A (A— do) + dA,

v F=dA=cdtA(A-d¢)+dA,
Therefore,

E=dp—A  B=dA,

Bianchiidentity
Applying 3+1D decomposition,

0 =dF =cdt AdE + dB = cdt A (cdt AE + dE) + +cdt AB + dB = cdt A (dE + B) + dB

Consequently, we have Faraday's law: ;B = —dE, Gauss'slaw: dB = 0.

Euler-Lagrange equation
j=D*F =dG
= —cdt AdH + dD
= —cdt A (cdtAH + dH) + cdtAD + dD
= —cdt A (dH — D) + dD

Notice that j = —cdt A i + pConsequently, we have

Ampere’'slaw: 0D =dH—1i, Gauss'slaw: dD = p.

Differential forms Differential equations
0:B = —dE, VXE=-B, > Faraday's law
0D =dH -1, VxH=i+D, + Ampere’s law
dab = p, V-D=p, :
dB =0, V-B=0, Gauss’slaw

If Gauss’s law(i.e. constraint) is fulfilled initially,
it remains ever after under charge conservation.

at(iB) =d(9B) = _Q(QE) =0,
9:(dD —p) = d(9;D) — 0,p = d(dH —i) — 8,p = —(8,p + di) = 0,



Yang-Mills theory
Assume there exists connection A for gauge group SU(N), then
Field strength (geometry) F=DA=dA+AAA (D: covariant exterior derivative)

Action (dynamics) S[A,j] = f(%F AF +jAA)

DF =0, | » Bianchiidentity (geometry)

Equations to be solved D'F =j, | » Euler-Lagrange equation (dynamics)

3+1D decomposition F=—cdtNE+B, "F=G=cdtANH+D, A=¢cdt+A,

(We assume there exists a function ¢ instead

Electric and magnetic fieldsin terms of connection , .
of matrix Ay, since at least one component of

Applying 3+1D decomposition of A for field strength, Hermitian matrices 4 can be diagonalized
through some coordinate transformation.
dA =d¢ Acdt + dA [ suppose it corresponds to a local-frame

selection such as maximal slicing.)

= (cdtp + dp) Acdt + cdt NA + dA
=cdtA(A—de)+dA,

ANA = (¢pcdt + A) A (¢pedt + A)
= ¢%cdt Acdt + pcdt AA+AAGcdt + ANA
=AAA.

. F=dA+AANA=cdtA(A—d¢)+dA+ANA,
Comparing it with 3+1 decomposition of F, we have,

E=d¢ —A, B=dA+AAA, (*)

Bianchiidentity
0=DF=dF+AANF—-FAA
=cdt ANdE+dB+AA(—cdt ANE+B) — (—cdt A\E+B)AA
=cdt N(dE+AANE+EAA)+dB+AAB—-—BAA
=cdt A (cdt AE+ dE+ ANE+EAA)+cdt AB+dB+AAB—BAA
=cdtAN(dE+B+AANE+EANA)+dB+AANB—BAA
=cdt/\(gE+B+(¢cdt+A)/\E+E/\(¢cdt+A))+gB+(¢>cdt+A)/\B—B/\(¢cdt+A)

=cdtAN(dE+B+AANE+EAA)+dB+AAB—BAA (Notice that E is 1-form,
B 2-form, respectively)
Substituting (),

ANE+EAA=ANA(dp—A)+(dp—A)AA
=AANdp —ANA+dPAA—AANA
=—-ANA-ANA
=—(AAA),

BAA—AAB=(dA+AANA)AA—AA(dA+ANA)
=dAANA—ANdA
=d(AAA).

Consequently, we have

Faraday's law: 9,(B —AAA) = —dE, Gauss'slaw: d(B—AAA) =0.




Euler-Lagrange equation
j=DF=dG+AAG—GAA
=—cdt ANdH+dD+AA(cdt A\H+D) —(cdt AH+D)AA
=—cdtAN(dH+AAH+HAA)+dD+AAD—-DAA
= —cdt A(cdtA\H+dH+AAH+HAA) + cdtAD+dD+AAD—-DAA
=—cdtAN(dH-D+AAH+HAA)+dD+AAD—-DAA
=—cth(gH—D+(¢cdt+A)AH+HA(¢cdt+A))+gD+(¢cdt+A)AD—DA(¢cdt+A)

=—cdtAN(dH-D+AAH+HAA)+dD+AAD—-DAA (Notice that H is 1-form,
D 2-form, respectively)

After some manipulation, we have
pP=AAD—-DAA=—([AA:] + ][4y, 4y + [42,4;])dx Ady Adz, cf A= Adx+Aydy + A,dz,
I=AANH+HAA =i dyAdz+i,dzAdx+idx Ady,

where, i, = [A,0,A] + [VA,, Al + 2A(AyA) — {AA, Ay},
L l 1 ] L l L Inner product pair

iy = [A,0,A] +[VAy, A] + 2A4 - (A, A) — {A - A A},

i, = [A,0,A] + [VA, Al + 24 (A, A) —{A- A4},  cf A= (4x4,,4,),

Recall that j = —cdt Ai+ p, consequently,

Ampere’'slaw: D=dH—-i+1, Gauss'slaw: dD =p —p.

Differentiation of Gauss’s law in time gives
0(dD —p+p) =d(dH—-i+1) - p+,

Therefore, combining charge conservation and following condition,
di +p=0.

Gauss’s law is nothing but an initial condition as Maxwell equations are.
Skipping detail calculation, equations above can be rewritten as followings.

B = —([Aw Ay] + [Ay, 4y) + [A, 4,])dx A dy A dz,

di = ([Ax Kol + [A), K| + [Az K,])dx Ady A dz,

where, K, =A A, — 0,(VA) + [VA, A] + [0, A, Al + 2[VA,, Al,
L L1 L 1

Ky, =A Ay, — 0,(VA) + [VA, A, | + [0yA, A + 2[VA,, A,
K, =A A, — 8,(VA) + [VA,A,] + [0,A4, A] + 2[VA,, A,

Finally, we obtain specific gauge condition as follows.

Constraints preservinggauge: A —A A+ V(VA) — [VA, A] — [VA, A] — 2[VA,A] = 0
L1 (| L —




Conclusion

Yang-Mills theory defined in four dimension has been decomposed into 3+1
dimension. Resultant equations turn out to be natural extension of Maxwell’s
equations. Constraints can be treated similarly under constraints preserving
gauge proposed in this presentation. Meanwhile, in the field of computational
electromagnetics, it is well known that finite integration technique (FIT)
employing Whitney form enables three dimensional differential forms to realize
nilpotent relation (d? = 0) exactly. Therefore, truly-free evolution of Yang-
Mills theory is possible using FIT in which constraints can be managed without
any loss of accuracy. Application to general relativity is in progress.
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Inflation inspired by the string theory with Planck and future CMB data

Koichi Hirano
Department of Teacher Education, Tsuru University, 3-8-1, Tahara, Tsuru, Yamanashi, 402-8555, Japan
E-mail: k_hirano@tsuru.ac.jp

Abstract

We study D-brane inflation model and Kéhler-moduli inflation model. These inflation models predict the very small
value of the tensor-to-scalar ratio r. The primordial density perturbations are parametrized by the spectral index ns and
the tensor-to-scalar ratio r, and they are constrained by the Planck data combined with other CMB and cosmological
observations. We compare the Planck 2018 data with the models. Furthermore, we discuss comparison of future tensor-to-
scalar ratio data with the predictions by the inflation models inspired by the string theory, focusing on part of the quantum
fluctuation origin.

1 Model Table 1: Value of the spectral index n, and the tensor-to-scalar ratio r
The action we consider is of the form Model spectral index ng tensor—to—scaliu: ratio r
D-brane 0.960 < ng < 0.967 r<22x107°

Kahler-moduli  0.960 < ng < 0.967 7 < 10~

M?
sz/d%\/?g 71’13+X7v<¢) Y

(X = —01dup/2) 2 Comparison with Planck 2018

. We compare the Planck 2018 data with the models.
Under the slow-roll approximations ¢2/ 2 < V and

|c25| < |3H gz$|7 the Friedmann equation and the scalar- 01

Planck+BK14 ——
field equation of motion, respectively, reduce to Planck+BK14+BAO ——
2 7172 y 0.08 - D-b ol
SMpH” =V, 3Hp=~—V,. @ . Kahler-modui
K
The number of e-foldings can be expressed as E 0.06
[+]
1 [PV - g
No~—s | —do. (3) T ooaf
2 - 5
Mpl o5 V’d) g
8
The slow-roll parameter € and parameter 7 is defined 002 f
as follows
2 2 2 \
_ JWDI Vi _ ]wplv’@(/) 0 s ‘
€e=—— , nN=—— 4) 0.94 0.96 0.98 1
2 |4 14 Spectral Index ng
The observables reduce to Figue 1: Comparison of the Planck 2018 data with the inflation models.
The vertical axis is liner.
ng=1—06e+2n, r=-8ny mnpg=-2¢ (5
Planck+BK14 ——
Small-field inflation can be realized by the potential 10° ¢ Planck+BK14+BAO —— 1
A\l ) ﬁ’_j? oo
Vi(g) = AL — p(g)]. (6) - 107 ¢ ( ;; Kabler-mod
In D-brane inflation [1] we have g o
(]
/M 5
u(g) =M, (7§ s
©
T
in which case ng and r are 8 10
2 e
2 8 (M
ng~l——, r~—|——]|. 8 -10 |
S N N2 < Mp1> ( ) 10
For M < My and N = 50 — 60, it follows that 07 004 0.96 098 1
Spectral Index ng
0.960 < ng < 0.967 and r < 2.2 x 10*3. (9) Figure 2 Comparison of the Planck 2018 data with the inflation models.
' The vertical axis is logarithmic.
In Kéhler-moduli inflation [2] we have S
, : 3 Summary
A3~
=c e c1 > 0,¢c9 > 0). 10
o) 19 (e 2 ) (10) The models are inside the 95% CL boundary constrained
The inflationary observables are in the ranges, by the Planck + BK14 + BAO data, are consistent with
for N = 50 — €0 ’ the observational data as well. In future work, we discuss
comparison of future tensor-to-scalar ratio data with the
0.960 < ns < 0.967 and 7 < 10710, (11) predictions by the inflation models inspired by the string

theory, focusing on part of the quantum fluctuation origin.
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Collisional Electric Penrose Process in Flat Spacetime

Akihiro Yatabe

Advanced Research Institute for Science and Engineering, Waseda University
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Abstract

-

The Penrose process is an impressive physical process in the framework of general relativity. This process is that an object splits into two objects in the
so-called ergoregion of a rotating black hole and that one of them gains energy. Recently, the process of gaining energy is shown to be possible even in
the limit of the flat spacetime and energy is extracted from the electric potential energy in this case. In this study, we assume whether the energy gain of
two photons is possible when we consider the two-photon pair annihilation, which makes an electron-positron pair. We also consider the case for the
Born-Infeld theory, which is a nonlinear theory of electrodynamics, as well as the Maxwell theory.

J

»— L. Introduction and Settings

M Penrose Process
At Kerr Blackhole
|

has the
negative energy and
matter 2 gains energy.

Matter 0 falls into
the ergoregion.

Matter 0 splits into
matters | and 2.

M Motivation

Recent paper [1] discusses the energy gain around the electric charge. This
corresponds to the zero limit of gravitational constant of the Penrose process
around Reissner-Nordstrom black hole.
At Charge

|

/

Matter 0 approaches
the charge.

[1]Zaslavskii, arXiv: 1807.05763

nl -4//'.

Matters 1 and 2 gain
or lose the
electrostatic energy.

Matter 0 splits into
matters 1 and 2.

If matters 1 and 2 are infinitely charged, the electrostatic energy is not
bounded. There is no limitation of the energy gain. This is so-called super-
Penrose process.

Realistic process? How much is the energy gain?

B More realistic process: Two-photon pair annihilation

M Setting of Two-Photon Annihilation

For simplicity, radial motion is
only considered.

E; : Total Energy
X; : Kinetic Energy
Z; : Momentum

M Equations
- Total Energy Conservation

Ey + Ey = E3 + Ey, E; = Xi + gip. qi : Charge
. . ¢ : Electrostati
- Kinetic Energy and Momentum ¢ p;i,:fi;a 'C
X;
Z; = o for phOtOhS ¢ : Light Speed

‘m : Electron Mass

2
Zi = (X7> —(me)2, for electrons and positrons
+ Momentum Conservation
X1+ Xo = X3+ Xy,

ﬁﬁ_ﬁz\/(%)2_("19)2_\/(%+%—%>2—(mc)2.

c c

-

N

Photon 1
[ Positron Positron
Electron u
/ L e —
/ Electron
|
Photon 2

,— 2.Results
M Solutions of Kinetic Energy (E; = 1MeV)

Solutions of Kinetic Energy of Positron X; and Electron X,

X

Xy
c e

Equation

10
of!
afl o
Pl

3

AL

s 5]

<X Al

& ;

< 3fRegion. .-
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1

i
05— 10

4

E; [MeV]
There exist solutions for kinetic energy.

Conservation laws allow the existence of this process.

B Total Energy vs Place of Annihilation

E,=1MeV, E,=2MeV
Au nucleus (q=79e) are considered.

Coulomb Potential ¥ = ’g

25
i Energ T 1
) E.
20\ A =2
B Au "UCllzeUS surface Energy gain is possible
E 15 r=7.8x10 om E;=16MeV when the annihilation
S0 \“— r-13%101%m, E,~10MeV occurred enough near
: . to the nucleus.
sf .
: N
2MeV [+ D
0 10712 107" 10710
r[cm]

B Comparison with Another Theory

We finally compare the case for another theory of electromagnetism, the Born-Infeld
theory [2], with the case for now. We will show whether there exist differences between
the Maxwell theory and the Born-Infeld theory.

= Difference between the two theory m—————

Maxwell Theory Born-Infeld Theory
TR G e
Electric Field B = q Bo_ 4

y a Charge 2 m
E;t:gtri\?rge Y= 2 ¢lr) = /’“ ! e,
7 - \/m

b: Maximum Field Maximum field is determined by experiments.

Comparison of Electrostatic Energy

10°

Maxwell ——
Born-Infeld (b=4.3 x 10°° V/cm) -
Born-Infeld (b=1.7 x 10%° V/cm)
Born-Infeld (electron)

i i

Ellis, Mavromatos, You (2017) [3]
b~100GeV

Soff, Rafelski, Greiner (1973) [4]
b~200MeV

02 10 1010

10719

cm]
No difference even at the surface of the nucleus with the latest

1
1075 105 101

J

\Iimit. But the energy-gain process can occur in both theory.

N

J

~— Summary

We consider whether the gaining energy by the two-photon annihilation is possible. We solve equations of the conservation of energy and momentum
and it is shown that there exist the solution. It is also shown that the initial particle gains energy when the annihilation process occurs near the charge,
which is the source of the Coulomb potential. These results are based on the Maxwell theory. We finally, compare the results in the Maxwell theory with
\_ those for the Born-Infeld theory. It is found that there is no difference in the case of the process concerned in this poster but the energy gain is possible. )

N\
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Rotating merger remnant models
of white dwarf binaries

Shin Yoshida

Department of Earth Science & Astronomy
The University of Tokyo

Abstract

I present new numerical models of rapidly rotating white dwarfs with large degree of differential rotation and thermal stratification.
The model has a core composed of ions and completely degenerate electrons and has an isentropic envelope composed of ions,
photons, partially degenerate electrons and positrons. The models are intended to mimic very early phases of remnants of white dwarf
binary mergers, some of which may lead to type Ia supernovae.

l. Introduction
our *non-standard* interest in BWD merger remnants
precedent studies of BWD merger remnants
Il. Formulations
modified HSCF for two layer stars
Ill. Results
a. non-rotating star
b.  uniform rotation
c. differential rotation
c-1. YoonO7 rotational profile
c-2. Kepler rotational profile
d. some equilibrium sequences of interests
IV. Summary

l. Introduction

bimodal distribution

mergers of binaries of white dwarfs (BWD) of white dwarf mass

- progenitors of Type la supernovae (SNla) !
double-degenerate models merger remnants

- bimodal distribution of mass
- origin of high B (1026-9G) WD —

- gravitational wave emission or B
— *foreground noise* for 60 - DA .
spaceborne detector sl ]
o D !
520 DB .
27 ]
g " 5 _—."J:_\_h]..\..:—{:..l.::l..:_
p El50 r 0.60 +0.05 M, N
" E I 0.80 £0.11 M, 1
= C ]
100 — N
SN1994D - ]
50 [ .
0.2 n ; 0.6 O.éd = 1 1.2 1.4
Mass (M)

Kilic et al.(2018)
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Our interest here is NOT in the merging phase:--

M>Mg, Y < SNla

binary white dwarfs —

/“O merging | | OUR CURRENT
S \'/ INTEREST

M < Mgy,
— . @
(\6\ \\J
QI/ 7) 6(6“ ’A“e Rapidly Rotating
e }J\) Remnant

elLISA DECIGO / BBO / ALIA
| OO frequéncy(Hz)

Stellar Vibrations

max —2 0.6
ow =3%x107Hz for M, = 0.6M, ,q:E




Characteristic strain from binary WD merger remnants

[9
he(f) = V“Tlu, : h(t) = V2ho exp(o(l)), Neyel

o

fdp  f?

Tardf f

; D \'/ M R \*/ f\°/ e\2
}'(' = 1 -2, ]V("t &
1e(f) = 3x10 yel (301\-‘1pc> (;’V[@) (109(:m) (1Hz) (0.1)

Assuming N=3 polytrope
M: mass of the merger remnant
event rate (BWD merger) R: radius of the remnant
f: GW frequency
& dimensionless deformation (ellipticity)

At Gl e U Noycl: # of cycles of quasi-periodic source
merger rate per mass:  (j _ g0) x 10~13 yr-!u3! Maoz & Hallakoun (2017)
# density of MW gals: 0.016 Mpc™3 Kalogera et al. (2001)
107" eLISA
mass of MW gals.: 6.4 x 10" M,
6 Copo—3yr—1 gro=
— R =(0.74 -5.9) x 10° Gpc™yr :§
b
g~ e
E DECIGO  &omme )
© +
Assuming distance D to Virgo cluster = 30 Mpc’ 102 L
# of merger per year
4zD? . 10®
_ 4 2 o 2
R X = (83 - 671) yr b 10 Frequency / Hz 10 1
drawn with http://gwplotter.com/
Goal of the study
methodology
Assessment of GW from merger remnants
by their oscillations linear perturbation analysis of merger remnants
Early evolution of remnants including GW time domain
back-reaction frequency domain

Before the study---
Remnant models to be perturbed needs to be constructed.

Debris of disrupted secondary accretes onto the primary
— hot envelope + cold core

Merger of 2 orbiting stars
— large angular momentum, differential rotation

[precedent studies] - outcomes of merger simulations Not useful for our current study
Guerrero et al. (2004), Yoon et al. (2007), Shen et al. (2012), Schwab et al. (2012) - no adiabatic index, sound speed provided

Schwab et al. (2016) - “coarse grid” -
Raskin et al. (2012), Zhu et al. (2013), Dan et al. (2014), Sato et al. (2015) Sl AcavAlcrninaton

of each simulation
Kashyap et al. (2017)

Current study Obtaining remnant models that are to be used
in linear perturbation analysis

— Equilibrium models with
differential rotation
thermal structure



Il. FORMULATION

stationary & axisymmetric - after the dynamical accretion has ceased (< O[10%4] s)

thermal stratification
cold core (primary) - degenerate free electron EOS (cf. Chandrasekhar 1967)
hot envelope (secondary) - ‘Helmholtz’ EOS (Timmes & Swesty 2000)

angular frequency profile
simplified profiles - analytic

log RHO [gem™]

=240s

Figure 1. Density profiles in the equatorial plane for the dynamical evolution of our merger simulation. The mass combination is 1.1 nd the resolutior

500k M_". Colors indicate density on a logarithmic scale.

partially degenerate e/e+

ions, photon
Rotational
axis
'y
P
surface

core/envelope
boundary

finite temperature
(Helmholtz) EOS

fully degenerate
electron EOS

_ Equatorial

Sato et al. (2015) >
0 B A plane
modified HSCF procedure (SY in preparation)
Rotational
axis
i d,
4
J— +® - [QRdR = C, ;o
core/envelope p
boundary
fully degenerate finite temperature p 37
Formhors) £65 d=— GJ — dr
o B A plane | ;_' _ r/ |
fixed parameters: 7,
central density
temperature at the core-envelope boundary 7,
deformation OP/OA
chemical composition X, Xj.. Xc. Xo Original HSCF (Hachisu 1986)

pressure ratio f, = p(B)/p(0)

1) give initial guess of enthalpy A(7)

2) invert EOS A(F) — p(7)

3) solve Poisson @(7)

4) 1lstintegrals at O, B, A, P, and
continuity of pressure (5 eqs)

are solved for

r(A), r(B), C's for core & envelope
and Q(0) (5 unknowns)

5) use Istintegrals to obtain /,,q,q(7)

6) if not converged, GOTO 1)

powerful method to compute configurations of rotating stars

stationary & axisymmetric
Equation of state (EOS) : barotropic
angular frequency : analytic profile

Ist integral of hydrostationary jd_p LD JQszR -C
balance -
P
4 ;
Poisson P =- [ —— &
[F— 1]

0) Fixing OB/OA, central density.

1) give initial guess of 2(7)

2) integrate Poisson

3) solve for OA, C, ©(0)
B by applying 1st integral at O,B,A
4) use 1st integral to obtain Pypdaea(”)
5) if not converged, GOTO 2)

D I R T R I I I I I AT A AT AP A



entropy

SergK')

log(7) (K)

2

T (K)

Q(rads™’)

Specific Energy (ergg™')
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10
10"
10
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10"

10°
10"

10"

107

08

0.6

An assumption on the envelope : constant entropy

- results from preceding simulations

- cooling envlps tend to be isentropic Vs =0
hot envlp -> rad. cooling
-> convectively unstable (Loeb & Rasio 1994)

-> neutrally stable (cf. Kippenhahn & Weigert 1990)

CO +CO : 0.4 +,0.8M,, Schwab et al. 2012

2

- t=0

0.9

ol = t=10°s

— t=10"s

t=3x10%s

T [108 K]
0.6

.3

3

0

9.00.0
9.00

spse[CIfl(_; 18K71’§T°py T [108 K]

T

<o f =3

'—“ o0 o0

°0 0
1 &0 o0 2

- He + He : 0.2 + 0.3M, : CO+CO:0.6+09M,
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M(M.)
M, M, M.
Zhu et al. 2013 Mo] M Mo

lll. RESULTS

a. non-rotating models

uniformly rotating models

c. differentially rotating models
c-1. YoonOQ7 rotational profile
c-2. Kepler rotational profile

d. some sequences of interest

o

current results assume:
core - carbon or oxygen X, =1
envelope - hydrogen+helium Xy = 0.1, X = 0.9



a. non-rotating models

T,=9x10°K, f,=0.1

T,=9x 10°K, f, = 001

0.03 T
whole star
COrE -weeerreeee
0.025 - degenerate ---- /
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T o015
Q: \
7
0.01 5
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b. uniformly rotating models

T=kinetic energy
W=|gravitational energy|

highly flattened by centrifugal force

0.12 whole star
-
............ 7
0.1 core /IU'm[ﬂ /1 gem™]
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R/R,

b. uniformly rotating models

mass-radius parametrized by T/W

T,=9x10°K, f,=0.01 T, = 10K, f,=0.01
0.02 — ‘ 0.012 —
non-rotating —— non-rotating
core —— x core
; pc: 567 —=— 0.01 i Pg: 567 wmtenn |
core —&s— ' X x core e
, :1e8 ... TS
0.015 P 169 —e—o \ e F Pe COP;S ..... o
core —e— 0.008 o 11€9 g
po: 168 —— e S e e

core —&+—

\‘\."" core
e 3
0.006

0.01 T ,
. 9 ‘Eﬁ
0.004 e \,H\“'“

0.005 | = A \
- \</ 0.002 S

0.9 1 1.1 1.2 1.3 1.4

R/R,

0.9 1 1.1 1.2 1.3 1.4

increment in max. mass never exceeds a few %

c. differentially rotating models

we compare 2 different profiles for £

1. Yoon07 analytical fit of profile of a remnant in Yoon et al. (2007)

2.8 :
26 | owl
2.4 | slowly
, 22 rotating N Vko X (R<n)
] 21 core = "y p-3 5/4
§ 18] Vko = R (R=bY/* (R 2 rp)
16 f €
1.4+ b = l’b - €b
12} n
1 L L L L
0 02 04 06 08 1 l"b : equatorial core/envelope boundary

R

2. Kepler asymptotes to Keplerian profile for large R
1

rapidly

rotating A /ko
p core Y Y
d I
g o1 R"=+ 1
Kepler Ty
001 R :
0.01 0.1 1



rotational axis

M/ M,

c-1. YoonQ7 profile stars

pe=108gem™3, T, = 5 x IOSK,ﬁ, =0.1

mass-radius relation
of YoonO7 law models

Pe = 108gcm_3, T,=5x% 108K

T T
fo: 107" - unirot
for 5107 =mmmmmmem fo: 5x107 - unirot
fo: 1072 - unirot

M =231My, M, = 0.785My, T/W = 0.062 (Q = 0.852Hz)
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c-1. YoonQ7 profile stars

mass and radius as functions of T/W

YoonO7 law models
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-2. Kepler profil r

pe = 10%gem™, T, = 5x 10°K, f, = 0.1
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IV. SUMMARY

* Numerical method & code to compute equilibrium

merger remnants of BWD
modified HSCF — cold degenerate core + hot envelope

* differential rotation + hot envelope
=> super-Chandrasekhar with relatively small core mass is possible

A realistic merger process may prohibit M >2 Mch(cold)

* model evolutionary sequences : M=const.
Tb=const. — rapid J removal
physical sequences terminate at finite J

J=const. — rapid cooling
model sequences do not terminate at finite Tb
and may cool down to entire degeneracy

_1
secondary R, M ’
WD mass-radius 0.01R, - 0.5M,
Roche lobe radius a, 0.462 3 = MM
of secondary D % l+gqg 4=
_1 1
. 001 [ M T1+q\?
if the Roche lobe is filled (R, = a,) D= 0462 <0 5;/[ > < q) Rs
. SM,, q

D>R +R? — (14¢g)7>0462(1+¢%)?

L.H.S. - R.H.S.

secondary fills its Roche lobe

0.315- before the stars touch




expected temperature of envelope

3
specific heat Cy = ENk

energy avaiable . GM,M,

in merger 2R,
=
i R, M ‘
mass-raaius =
of primary* 0-01Ro OSM@ * good for low mass WD
for high mass WD, R_1
may be much smaller
total particle #  , _ M, => higher T
AmH

<eX.> Ml = 0.9M®, M2 = 0.6M®
R =57x10%cm — E~12x10%rg

N=1.8x10"°

E 9
— =3x10°K
\%4

T

envlp =

Original HSCF (Hachisu 1986)

powerful method to compute configurations of rotating stars

stationary & axisymmetric
Equation of state (EOS) : barotropic
angular frequency : analytic profile

1st integral of hydrostationary Jd_p + P — J'QszR =C

balance

P
P —
Poisson b =-— GJA_)—_,CZ3 r
|r—r]
Z
A 0) Fixing OB/OA, central density.
P

1) give initial guess of p(7’)

2) integrate Poisson

3) solve for OA, C, (0)

B ’/\ by applying 1st integral at O,B,A

o) ) —> W 4) use 1st integral to obtain Pypdated(7)
5) if not converged, GOTO 2)




Norihiro Tanahashi
Institute of Mathematics for Industry, Kyushu University

“Separability of Maxwell equation in rotating black hole
spacetime and its geometric aspects”

[JGRG28 (2018) PB26]

145



Separability of Maxwell equation

Rotating black hole spacetime
its Geometric aspects

Norihiro Tanahashi [Kyushu U]

with
Tsuyoshi Houri [NIT, Maizuru College]
YukinoriYasui [Setsunan U]

Recently, a progress was made about Maxwell field perturbation
on Kerr BH spacetime and its separability.

We try to find the geometric origin of this bland-new technique.

€ Perturbations of Kerr black hole
€ Recent breakthrough on separability
€ Construction of commuting operators

€ Summary




Perturbations of Kerr black hole

» Scalar field, Maxwell field, Metric perturbations on Kerr BH

* Important, but difficult
Complicated PDE, many physical d.o.f. coupled with each other

* Teukolsky equation based on Newman-Penrose formalism
[Teukolsky ’72]

EoM - decoupled PDEs that admit separation of variables
- set of ODEs

Teukolsky eq. for Maxwell perturbations on 4D Kerr BH

1

JAN

= =26, ny) + 2my, My "“\/W

2
dsie = E{ — A[dt — asin® 8d¢]* + sin® 0[(r* + a*)d¢p — adt]2} e ldL + d02]

m 12

ij =rd [(bl (n[ul,,] 3% m[um,,]) + @2 Z[Hm,,] + ¢o m[unyﬂ %l o
Vi = ¢, Y = p 2, Y5 = € TOR(r)S(6)

Maxwell equation V*F),,, = 0> Teukolsky equation
1d AS“@ i K(K — 2isr) + 2isM K
As dr dr JAN

1 e
sin f df do

=gt — N\ — (aw+m)2+m2} Ha—0

2
} + {(awcosHﬁLs)Q—w—i—s(l—s)—i—A} S="0

sin” 6
(s=41, p=r+iacosd, K = (r* + a*)w — am)

{sin 0

v’ ¢y and ¢, are solved by Teukolsky eq. (while PDE for ¢, cannot be separated)

v" Works only in 4D: separation of variables NOT achieved in higher dim.




Recent breakthrough on Separablllty

L 2 Lumn s new ansatz [Lunin’17] Teukolsky s ansatz

[ *A, = Gl o B Bh= DY (1), (6)
n*A, = G_(r)n"9, ¥ widy=  ZLurg, iy (1)f_(0)
mtA, = Fi(0)m"0,¥ il = — g, [ (0)g, (1)

|t A, = F(0)m" 0, A, = — = kg, [ (0)g (1)

8 iacosf

G4.(r), F(0) chosen to achieve separation of variable
v' Separable equations for all the variables [\IJ =G W p( 1) 5(9)]
v" Works even in higher dimensions

& Covariant version of Lunin’s ansatz  [Krtous, Frolov, Kubiziiak ’18]
A*=B*V,Z  with  BM = (g — Bhyu)”
h pv : Principal tensor = non-degenerate closed conformal Killing-Yano tensor
= “square root” of Killing tensor K, = (xh),”(xh)
Killing tensor K Y (VW K, = ()) = “Hidden symmetry” of spacetime: K, p/p”- = (constant of motion)

Killing vector f“ (V(/[.f,,) = O) = Symmetry of spacetime: f Pu = (constant of motion)

Cova rlant ansatz [Krtous, Frolov, Kubiznak "18]
@ Most-general 2N dim. spacetime admitting /. up = Kerr-NUT-(A)dS

Xy = X (a")

N U ® N-—1 : 9 :
ds?® = Z l X_dei o U_M < Z A(L‘Z)d@bj) ] Uy = [[ =2 - =3
2 123 i—0
T J

VFEN

T A&f)* Z 1,/1...(

V1< <V FE

ot =T TR S

3% s % e 5 . = (3) p23
nontrivial directions Killing directions A= 4D B

=0

[ Maxwell equation (7 = (D -+ QngBk”Vn) 7 =
| Lorenz gauge CZ=Vp(B™V,Z)=0 BV, 7

Aoy AR e & e X ) 1 — B2
c=Y 50, G=Y TG, Le==igy G —(1+Fa ”)—[Hdzxzar | = =22+ i85

2(1—-N)
X, e} [,]

IEEBEmas

v' Both equations given by commuting operators [Ci,C;] = [Ck, L] = [Lk, Li] =0

- Z is given by simultaneous eigenfunctions of C;., Lk Eigenvalues Cy, L

/ = Separation constants
Cr 7 =807
F» IR T e L Ly
=t (8; Co, C1 ~n-1, Lo N-1)

— ?: What is the geometric origin & covariant form of the commuting operators? g




Construction of commuting operators

1. Express perturbation equations in terms of gauged Laplacian:
(V“ =7 l(].A/l)(v’u/ ~ /L.qA’u,) + S 0

2. Expressit as Ij¢ = ( by applying the Eisenhart-Duval lift: g,,, — JAB

[Eisenhart 1928, Duval+ 1985]

3.1t turns out that the geodesic equation for the lifted metric JAB admits
separation of variables completely. [penenti o1
Then, there exists the Killing tensors K 4p s.t. {QAB;DAPB, K ABPAPB} 4l

2 0 ; A, 3 Ao PSRN S 4 A = ) e
4. By quantization p, — —iV,, it follows [§*#VaVa, Vak* PV = 2V (KMRPC) V.

5. Then, if the anomaly-free condition v, (KC[A}?B]C) — 0 is satisfied,

it follows |2V 4V 3, @AK‘AB@R} = (0. [Carter 1977]

6. The commuting operators s.t. [G,CK} = 0 is then given by ¢, = V,K4PVp.

Construction of commuting operators
 Lunin’s equation (O+ 26£kBk”Vn) i~ 0
i Teukolsky equation (OO + 'V, + f2) ¥ =0
Both given by gauged wave equation (V* —igA*)(V, —igA,) +--- =0

Can be expressed as wave operator in higher dimensions ﬂw = ()

by lifting the metric § to a higher-dimensional one LCA] {41/ [Eisenhart 1828, Duval+ 1985]

ds® = Gapdzidz? = g dztdz? +2q A, dz" du + 2dudv — 2V du?, P(xh) = p(zh)e”

[ﬂzﬁ =€ (Oa—2V)y (Ou=0-20gA"V, - PA" A, — iqV . A"]

« It turns out that the geodesic eq. for the uplifted metric §4p admits
separation of variable completely. [Benenti’91]

* Separation of variable for geodesics ‘ :

: e—-q \/;/)‘\/)/’

- d Constants of motion 9f 99 9f 9

- 3 Killing tensor satisfying {#, Kapp*p®} =0 195 = Bropi ~ op ows

> Commuting operators [[], V.4 (K*2V3)] = 0 by quantization p, — —iV,

if anomaly-free condition V 4 ( G legpe 1 ) — ( is satisfied.




Construction of commuting operators
ex.) Teukolsky eq. for 4D Kerr BH

1 8 (i i 9\ . K(K - 2isr) +2isMK
[AS ar <A 0r> T (Sme ) v A eer

_( &2 )2_|_ 2_|_( 0+ )Q_M
aw m m aw COoS S Sin29

(O0-2ig APV, — PAFA, — igV AP — 2V) o =

+s(1—s)|v=0

ds® = gABd:cAde — g dutde FAgA dr du + 2dudv — 2V du?

z N 7 i
Metric Killing tensor
(AR A i M —

g/u/ s g/“J g/l'u AR 0 ‘Am; r‘rl‘s([\"[A f) Kuu 3 K}Lél:“ I(’l‘lb e 0 Arn I(” ( A 7)

r'r'/':sa’(jgzi 7.) i g()(} S'CO;; - K(}w =) I((/m e ’[:'5'(1’(]2[27 ,) At A'(J() S (‘();:

Sin S11
. ]\[ PR ; . el 12

Gt = gilis “ + M + ¢%%(—sacosf K" = K™is 3 - —(——{—1—) + K% (—sacosd
A A A A2
'(A’uu 9l .()m' i g(msz ('Ot2 9

KWw=0 KW=K ()() 2 (OtZ 0
NS —, NS

» {5*Ppapp, Kapp*p®} =0 » [, Va(R4BVE)] =0 if Va(kcMRP) =0

V'V, (KC[ARB]C> — 0 is indeed satisfied, hence V,K“?Vp becomes a commuting op

v'This procedure works also for 4D Kerr-NUT-AdS spacetime 9

Construction of commuting operators
ex.) D-dim. Kerr-NUT-AdS spacetime (D =2n +¢)

n

g —
Ly ke,0=0 81/% CWJE
n—1+e 2(2n—2—k—2) EEL
S (1A (-1)"
gt = Q/w ,(/ Z Q(,z o (2/: C(u) 5 =

+ Ot On
2 2 T ne
== Xu c:L’#X#

N R R
—1 k¢
g ;(X BX,+X,0X;)+eXo@Xp = Zg”“ (a ) + >

[ Perturbation eq. ([ + 23, B*"V, Vil Z

— 0 > gauge field ¢A” = 2i3¢, B
Lifted metric

g/l.,u. ot g/l,/l,’ g g g;n) 23 _qguuAl“ gkv = —ngAg, gm; i 'Lq leA guv =

n
== .OML:QM (}AB Z AB(' )

7
i

( u)Qu (A:B7é#)

By Benenti’s construction, the Killing tensor K ()A B of the lifted metric AR is given by

Rt = 06,000 KA =308

et

The anomaly-free condition V 4 (K o“RB ]C> = 0 turns out to be satisfied by K (j)AB

hence the operator @A (KG?@B) commutes with the Laplacian ﬂ : [@, @A (K{}B@B)J =0

2u)0(2,)Qu (A= B # p)

v The operator N (f( @fg \Y, B) coincides with the commuting operators & k




Summary

v'New ansatz for Maxwell perturbations on Kerr BH

v'EoMs given by commuting operators > Separability for all variables

@ Tried to give geometric interpretation to the commuting operators
* Master eq. = scalar field eq. with gauged wave operator
= scalar eq. with (non-gauged) wave op. in higher dimensions
* Uplifted higher-dimensional metric possesses Killing tensors
+ This Killing tensor generates commuting operators [, V4 (K*8Vg)] =0

* Procedure above works for Teukolsky eq. and also Lunin’s eq.

B Future tasks

» Uplifted spacetimes corresponding to Teukolsky eq. and Lunin’s eq. are
apparently different. What is the essential difference?

* Can we apply this procedure to gravitational perturbations in higher D?
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Newton-V experiment: Test of gravitational inverse square law at a micrometer scale

T. Kajihara, M. Hatori, S. Inaba, K. Ninomiya, S. Saiba, H. Shibaguchi,
N. Shinozaki, Y. Tanaka and J. Murata

Department of Physics, Rikkyo University, 3-34-1 Nishi-lkebukuro, Tokyo 171-8501, JAPAN:

Contact Address: takumakajihara@rikkyo.ac.jp

According to the large extra-dimension model[1], a deviation from the Newtonian inverse square law is expected at sub-millimeter scale. We
have developed an experimental method using a wire cantilever with a digital image analysis system, aiming to test Newton’s gravitational law
in a laboratory experiment. We report the status of the experiment at the micrometer scale using the wire cantilever.

F"';ﬂmema' Relative force Modification of Newton's inverse square law
i Vg y is extremely weak? parameter in Yukawa potential
Strong foce ->Hierarchy problem Mm Distance Dependence o Gravitationa Force 3
Weak force 10°° ‘ Fr>>,\ =G B
Electromagnetic force | 102 ) o r2 E = Mm g
Only gravity propagates toward extra dimensions r . Mm i V(r) = -G=—2(1 + ae A) H
- = — 3 equrement £
Large Extra Dimension Model [1] r<<A 4+di ot i 3
There is the possibility of compacted extra dimensions below mm scale. § 1 . y
2 : interaction length ] A :interaction length LA
o ) . d : the number of extra dimension A Distance:r @ : coupling constant interaction length A [m]
Deviation from Newton'’s inverse square law is expected at below mm scale. (ADD model -+ d=2, 2=0.1mm) Limits on the Yukawa interaction [2]

We have tested gravitational inverse square law at cm ~mm scale using torsion pendulum.
Because torsion pendulum is too large to measure gravity on pm scale, we introduce a wire cantilever to measure gravity.

Torsion pendulum

‘ mm scale measurement ‘

Newton-V/

Newton-IV

Newton-| Newton-II Newton-lil Newton-IVh

force using a wire cantilever and seventeen wires.

We have established how to measure the

Wire cantilever (Target)

Wire cantilever is made of 50um tungsten wire.

Gravity source

Gravity source is composed of a toroidal shaped acrylic resin and
tungsten wires(attractor).

They are put on a rotating rod which is rotated by a stepping motor.
In addition, they are covered by a electromagnetic shield which is
made by an aluminum box and a permalloy membrane.

@-

Rotating rod with a
Whole apparatus

motor
The entire system set in a vacuum chamber , which its
vacuum level is 1Pa.

By rotating the wires(attractor) near the wire cantilever,
periodical gravitational signal is expected as periodical
motion of gravity of attractor.
rotate
+ Gravitational attraction
between wires

y iDisplacement of cantilever

VX

Section of whole apparatus

The digital image analysis system s our original system.
We set up a digital microscope outside on side of chamber, which captures the motion of the wire cantilever as a movie data.
This movie data is converted as pixel intensity information. Finally, the displacements of the wire cantilever are determined using data.

image analysis system [3]

Video capturing

Split the static image
(Flame late : 30fps)

Determining center of gravity of intensity for each static image sequence
sequence

amplitude[micron] Ew
ma e
e 3 Obtained displacement
20 . resolution at 2.5Hz is
s i 2.27x10*um
s Discrete fourier .
S transformation '~ \““WM&
time[sec] Frequency [Hz]
time sequence of the wire cantilever frequency graph

Result of the frequency analysis

We tested the Newtonian inverse square law using a frequency

analysis. This analysis performs Fourier transformation for the  —=
o L 5 o € 102

periodical gravitational signal, and calculate the gravitational 5. 10 gravity

force from the peak height. T o signal

The attractor continuously rotates near the wire cantilever. = (0.147Hz) | 17w,

The wire cantilever oscillates periodically because of gravity of £ 107~ (2.5Hz)

the attractor. 1072

In this case, the rotating frequency wq of the attractor is setto | 0'3: l

924mrad/s (0.147Hz), so the corresponding gravitational signal £ M,“_“Jv\ Frequency

frequency is 2.5Hz (17w,). 102 10 [Hz]

Our device is placed on the basement of Rikkyo University Building 13. It is because vibration effects from the buildings and
temperature changing are relatively small.

This measurement was tested with a duration of about
_7.84days.Each data is measured for about 11 minutes.
Ber €
A 11 minutes g WE 7.84 days
[ 3 1
2o 2
‘F 4 b =3 -
0* 10
: £
ot 10~
10
L ov ot 107
10 10
10 Result of the averaging data Frequency[Hz]
é 04 gravity signal
3 17wy
2 035 (2.5Hz) Test of displacement of cantilever
—4.00x107*% + 1.42x107** m
03
i . -
o o gy Red line : Gauss + Noise fitting
i L
In this test, it is difficult to bring
2 245 25 25 2% X Target closer to Attractor.
Frequency (H]

By fitting the averaging data using Gauss and Noise fitting around 2.5Hz, displacement of cantilever is obtained as Gauss height
— 4.00x107 m

Parameterized in Yukawa potential
We can set upper limit on the alpha-lambda plot using the experiment data.
-143.3um, 7.84days 2018result

, Y axis is the coupling constant “a’
Center distance : 188.3um

) .‘—‘.C\osestdlstance 143.3um

We aim to set new upper limit on the alpha-lambda plot .
-575um, 30days expected result (statistical error only)

Mm
V() = -G

We are developing next generation device aiming to achieve the most
precise test of the inverse square law at ym scale.

For the new gravity source, the an acrylic resin is going to be changed to
tungsten. 18 trenches is patterned in stead of 17 tungsten wires. This
enables us to bring the target closer to the attractor than now.

Wire cantilever

O

attractor

laser new attractor model

We will change the detector from the digital microscope to the Laser displacement
sensor.

This laser can measure 5000 data per second ( more than 100 times more data per
second than the digital microscope).

ent at pm scale.

[1] N. Arkani-Hamed, . Dimopoulos, and G.Dvali, Physics Letter B, 429, 263 (1998)
[2]J. Murata and S. Tanaka CQG. 32(2015)033001
3] K. Ninomiya, et al. In Journal of Physics: Conference Series Vol. 65, p. 012019. IOP Publishing,2009
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