JGRG28

The 28th Workshop on General Relativity and Gravitation in Japan – JGRG28 Tachikawa Memorial Hall, Rikkyo University 5-9 November 2018

Volume II

Proceedings of the 28th Workshop on General Relativity and Gravitation in Japan

November 5th–9th 2018 Tachikawa Memorial Hall, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, Japan

Volume II

Oral Presentations: Day 3, 4, 5

JGRG : http://www-tap.scphys.kyoto-u.ac.jp/jgrg/index.html

Contents

Wednesday 7th November	5
Invited lecture 9:00–9:45 [Chair: Hideyuki Tagoshi] Jonathan Gair, "Science with the Laser Interferometer Space Antenna" (40+10 min.) [JGRG28 (2018) 110701]	5
Session S3A1 9:45–10:15 [Chair: Hideyuki Tagoshi] Jiro Murata, "Laboratory Tests of Newtonian Gravity as tests of Inverse Square Law" (10+5 min.) [JGRG28 (2018) 110702]	26 26
Session S3A2 11:15–12:15 [Chair: Kenichi Oohara] Yasutaka Koga, "Rotating accretion flows in D dimensions - sonic points, critical points and photon spheres -" (10+5 min.) [IGRG28 (2018)	36
110704]	36 45
Tatsuya Ogawa, "Charge Screened Boson Stars" (10+5 min.) [JGRG28(2018) 110706]	56
Session S3PI 14:00–15:30 [Chair: Masahide Yamaguchi] Akira Matsumura, "Quantum discrimination for the Universe" (10+5 min.) [IGRG28 (2018) 110708]	68
Anupam Mazumdar, "Testing Quantum Gravity via entanglement" (10+5 min.) [JGRG28 (2018) 110709]	77
(2018) 110710]	89 99
Tomotaka Kitamura, "Matter Scattering and Unitarity in Horava-Lifshitz Gravity" (10+5 min.) [JGRG28 (2018) 110712]	z 105
min.) [JGRG28 (2018) 110713]	117
Session S3P2 16:30–18:15 [Chair: Masaru Shibata] Shuntaro Mizuno, "Blue-tilted Primordial Gravitational Waves from Massive Gravity" (10+5 min.) [IGRG28 (2018) 110714]	138
Shi Pi, "Gravitational Waves Induced by non-Gaussian Scalar Perturbations" (10+5 min.) [JGRG28 (2018) 110715]	190
Yuki Niiyama, "Energy density of tensor perturbations in Einstein- Weyl gravity and its application to primordial gravitational waves" (10+5 min.) [JGRG28 (2018) 110717]	173

Wednesday 8th November

188

Invited lecture 9:00–9:45 [Chair: Tomohiro Harada] Bernard John Carr, "PRIMORDIAL BLACK HOLES: LINKING MICRO- PHYSICS AND MACROPHYSICS" (40+10 min.) [JGRG28 (2018) 110801]	188 188
Session S4A1 9:45–10:15 [Chair: Tomohiro Harada]	229
cles" (10+5 min.) [JGRG28 (2018) 110802]	229
Session S4A2 10:45–12:00 [Chair: Kenichi Nakao] Takayuki Ohgami, "Exploring GR Effects of Super-Massive BH at Galac- tic Center 2: on the detail of fitting theory with observational data"	242
(10+5 min.) [JGRG28 (2018) 110805]	242
Masashi Kimura, "Stability analysis of black holes by the S-deformation method for coupled systems" (10+5 min.) [JGRG28 (2018) 110808] .	263
Invited lecture 14:00–14:45 [Chair: Sugumi Kanno] Vincent Vennin, "Stochastic Inflation and Primordial Black Holes" (40+10 min.) [JGRG28 (2018) 110810]	274 0 274
Session S4P1 14:45–15:45 [Chair: Sugumi Kanno] Yuichiro Tada, "Stochastic formalism and curvature perturbations" (10+5 min.) [JGRG28 (2018) 110811]	285 285
Session S4P2 16:45–18:30 [Chair: Hideki Ishihara] Kohei Fujikura, "Phase Transitions in Twin Higgs Models" (10+5 min.)	292
Yi-Peng Wu, "Higgs as heavy-lifted physics during inflation" (10+5 min.) [JGRG28 (2018) 110816]	292 300
Minxi He, "Reheating in the Mixed Higgs-R ² Model" (10+5 min.) [JGRG28 (2018) 110817]	8 313
by primordial perturbations" (10+5 min.) [JGRG28 (2018) 110818] Hiroyuki Kitamoto, "Schwinger Effect in Inflaton-Driven Electric Field"	329
(10+5 min.) [JGRG28 (2018) 110821]	340
Weanesday 7th November	747
Invited lecture 9:00–9:45 [Chair: Shinji Mukohyama] Alexei A. Starobinsky, "Looking for quantum-gravitational corrections to $R + R^2$ inflation" (40+10 min.) [JGRG28 (2018) 110901]	347 347
Invited lecture 9:45–10:30 [Chair: Shinji Mukohyama] Jean-Philippe Uzan, "Astrophysical Stochastic Gravitational Wave Back-	364
ground" (40+10 min.) [JGRG28 (2018) 110902]	364

Session S5A 10:45–12:00 [Chair: Hideki Asada]	386
Atsushi Nishizawa, "Test of the equivalence principle at cosmologi-	
cal distance with gravitational waves" (10+5 min.) [JGRG28 (2018)	
110903]	386
Yuki Watanabe, "Probing the Starobinsky R2 inflation with CMB pre-	
cision cosmology" (10+5 min.) [JGRG28 (2018) 110904]	393
Chulmoon Yoo, "PBH abundance from random Gaussian curvature	
perturbations and a local density threshold" (10+5 min.) [JGRG28	
(2018) 110905]	409
Marcus Christian Werner, "New developments in optical geometry"	
(10+5 min.) [JGRG28 (2018) 110908]	426

Wednesday 7th November Invited lecture 9:00–9:45

[Chair: Hideyuki Tagoshi]

Jonathan Gair

School of Mathematics, University of Edinburgh

"Science with the Laser Interferometer Space Antenna" (40+10 min.)

[JGRG28 (2018) 110701]

Science with the Laser Interferometer Space Antenna

Jonathan Gair, School of Mathematics, University of Edinburgh Japanese General Relativity Meeting, Rikkyu University, November 7th 2018

Talk Outline

- * The Laser Interferometer Space Antenna current status
- Sources for LISA
- LISA science objectives
- * The LISA Consortium
- * Preparing for LISA data analysis and science delivery

Why space-based detectors?

The Laser Interferometer Space Antenna

- Long history. Original design (1998)
 - Operating in millihertz band.
 - Three satellites, 5 million km apart, in heliocentric, Earthtrailing orbit. 6 laser links.
 - Joint NASA/ESA project.
 - Technology demonstrator mission, LISA Pathfinder, approved. Launched 2015.
- NASA dropped out in 2011. New ESA-only mission, termed eLISA, eventually selected for L3 (2034).

LISA Status

- LISA now reinvigorated and timetable accelerated
 - LISA Pathfinder spectacularly demonstrated the technology.
 - Detection of GW150914+ renewed interest in gravitational waves.
 - mission now in phase A, adoption in 2022-2024;
 - mission launch: by 2034.
- Mid-decadal review expressed strong support for NASA re-involvement, at probe-class level (~\$400m).
- * Design: 2.5Gm arms, 6-link geometry.

Sources: massive black hole mergers

* Expected to occur following mergers of the host galaxies. LISA can observe gravitational waves from these with very high signal-to-noise ratio.

Sources: massive black hole mergers

Sources: massive black hole mergers

- Expected to occur following mergers of the host galaxies. LISA can observe gravitational waves from these with very high signal-to-noise ratio.
- Expected event rate depends on assumptions about black hole population (Klein+, 2016)
 - Light pop-III seed model: baseline configuration expected to see ~350 events.
 - Heavy seed model, no delay in binary formation: ~550 events.
 - Heavy seed model, with delays: ~50 events.
- Baseline configuration would see 150/300/4 events at z > 7 under the different models.
 - NGO-like detector (1 Gm/4-link) would see ~15/185/3 events.
 - Classic LISA-like detector (5 Gm/6-link) would see ~400/350/4 events.

Sources: massive black hole mergers

 LISA will measure the parameters of black hole mergers to high precision. Typical errors are

 $\Delta m_1/m_1, \ \Delta m_2/m_2 \sim 10^{-3} - 10^{-2}, \ \Delta a_1 \sim 10^{-2}$ $\Delta a_2 \sim 10^{-1}, \ \Delta \Omega \sim 30 \text{deg}^2, \ \Delta D_L/D_L \sim \text{few} \times 10^{-1}$

Sources: massive black hole mergers

- In two years, LISA could determine
 - both redshifted masses to 1% for ~70/100/10 systems;
 - the spin of the primary to 1% for ~30/50/2 systems;
 - sky location to 10 deg² and distance to 10% for ~7/23/4 systems.

Sources: extreme-mass-ratio inspirals

- The inspiral of a compact object into a massive black hole in the centre of a galaxy.
- Form as a result of scattering in dense galacto-centric stellar clusters.
- Orbits are expected to be both eccentric and inclined - rich waveform structure.

Sources: extreme-mass-ratio inspirals

 There are large astrophysical uncertainties, but expect to see between a few tens and a few hundreds of events.

	Mass	MBH	Cusp	M–σ		CO		EMRI rate $[yr^{-1}]$	
Model	function	spin	erosion	relation	$N_{\rm p}$	mass $[M_{\odot}]$	Total	Detected (AKK)	Detected (AKS)
M1	Barausse12	a98	yes	Gultekin09	10	10	1600	294	189
M2	Barausse12	a98	yes	KormendyHo13	10	10	1400	220	146
M3	Barausse12	a98	yes	GrahamScott13	10	10	2770	809	440
M4	Barausse12	a98	yes	Gultekin09	10	30	520 (620)	260	221
M5	Gair10	a98	no	Gultekin09	10	10	140	47	15
M6	Barausse12	a98	no	Gultekin09	10	10	2080	479	261
M7	Barausse12	a98	yes	Gultekin09	0	10	15800	2712	1765
M8	Barausse12	a98	yes	Gultekin09	100	10	180	35	24
M9	Barausse12	aflat	yes	Gultekin09	10	10	1530	217	177
M10	Barausse12	a0	yes	Gultekin09	10	10	1520	188	188
M11	Gair10	a0	no	Gultekin09	100	10	13	1	1
M12	Barausse12	a98	no	Gultekin09	0	10	20000	4219	2279

EMRI parameter estimation

 Each EMRI observation will yield very precise parameter estimates

$$\frac{\Delta M_z}{M_z}, \ \frac{\Delta \mu_z}{\mu_z}, \ \Delta \chi, \ \Delta e_{\rm pl}$$
$$\sim 10^{-6} - 10^{-4}$$

 $\Delta \Omega \sim 10^{-5} - 10^{-3}$

$$\frac{\Delta D_L}{D_L} \sim 0.05 - 0.2$$

 Precision arises from tracking GW phase over O(10⁵) cycles. Achievable even at threshold SNR of ~20.

Stellar-origin black hole binaries

- GW150914 would have been observable by LISA ~5 years before being observed by LIGO, with S/N~10 in a 5yr observation. (Sesana 2016)
- LISA provides sky location to ~0.few square degrees and time of coalescence to ~few s.
- Number of events could be high (several hundred) but there are significant uncertainties.

Stellar-origin black hole binaries

- GW150914 would have been observable by LISA ~5 years before being observed by LIGO, with S/N~10 in a 5yr observation. (Sesana 2016)
- LISA provides sky location to ~0.few square degrees and time of coalescence to ~few s.
- Number of events could be high (several hundred) but there are significant uncertainties.

 100^{+136}_{-69}

Power Law (-2.35)

 95^{+138}_{-67}

 99^{+138}_{-70}

Other sources

- Compact binaries in the Milky Way
 - Binaries of stellar remnants (white dwarfs or neutron stars) with orbital periods of ~1 hour.
 - Known (verification) and unknown sources.
 - Signals almost monochromatic.

Other sources

Other sources

- Compact binaries in the Milky Way
 - Binaries of stellar remnants (white dwarfs or neutron stars) with orbital periods of ~1 hour.
 - Known (verification) and unknown sources.
 - Signals almost monochromatic.
 - LISA expected to detect ~15000 binaries with S/N > 7.
 - LISA should determine 2D/3D location for 4500/1250 sources, measure df/dt for 3000 and d²f/dt² for ~3.

Other sources

- Compact binaries in the Milky Way
 - Binaries of stellar remnants (white dwarfs or neutron stars) with orbital periods of ~1 hour.
 - Known (verification) and unknown sources.
 - Signals almost monochromatic.
 - LISA expected to detect ~15000 binaries with S/N > 7.
 - LISA should determine 2D/3D location for 4500/1250 sources, measure df/dt for 3000 and d²f/dt² for ~3.
- Cosmological sources
 - Processes occurring at the TeV scale in the early Universe could generate a mHz stochastic gravitational wave background.
 - Cosmic string networks could produce both individual burst events and a stochastic background.

LISA science objectives

- LISA science objectives cover topics in astrophysics, cosmology and fundamental physics.
- * Astrophysics: compact binaries in the Milky Way
 - SI1.1: Elucidate the formation and evolution of GBs by measuring their period, spatial and mass distributions.
 - SI1.2: Enable joint gravitational and electromagnetic observations of GBs to study the interplay between gravitational radiation and tidal dissipation in interacting stellar systems.

LISA science objectives

- * Astrophysics: black holes
 - SI2.1: Search for seed black holes at cosmic dawn.
 - SI2.2: Study the growth mechanism of MBHs from the epoch of the earliest quasars.
 - SI2.3: Observation of EM counterparts to unveil the astrophysical environment around merging binaries.
 - SI2.4: Test the existence of Intermediate Mass Black Hole Binaries (IMBHBs).
 - SI3.1: Study the immediate environment of Milky Way like MBHs at low redshift.
 - SI4.1: Study the close environment of SOBHs by enabling multi-band and multi-messenger observations at the time of coalescence.
 - SI4.2: Disentangle SOBH binary formation channels.

LISA science objectives

* Fundamental Physics

- SI5.1 Use ring-down characteristics observed in MBHB coalescences to test whether the post-merger objects are the black holes predicted by GR.
- SI5.2 Use EMRIs to explore the multipolar structure of MBHs.
- SI5.3 Testing for the presence of beyond-GR emission channels.
- SI5.4 Test the propagation properties of GWs.
- SI5.5 Test the presence of massive fields around massive black holes with masses $> 10^3~M_{\odot}$

LISA science objectives

Cosmology *

- SI6.1: Measure the dimensionless Hubble parameter by means of GW observations only.
- SI6.2: Constrain cosmological parameters through joint GW and EM observations.
- SI7.1: Characterise the astrophysical stochastic GW background.
- SI7.2 : Measure, or set upper limits on, the spectral shape of the cosmological stochastic GW background.
- SI8.1: Search for cusps and kinks of cosmic strings.
- SI8.2: Search for unmodelled sources.

The LISA Consortium

N

- The LISA Consortium is the community of scientists who will develop the tools to exploit LISA science.
- The Consortium was recently rebooted with a round of applications for membership.
 - associate members: interested in LISA science:
 - *full members*: commit to deliver something to the Consortium.
- Have accepted ~425 full and ~550 associate members.

Consortium application form

Step by step			
1. Download the application template below			
 Download and read the Consortium application process document linked below 			
 Fill out the application template Fill out this application web-form and 			
attach completed application document 5. Submit application and wait for			
confirmation E-Mail			
If you run into issues or have questions with regards to your LISA consortium application ple			
contact us			
Your application will be reviewed and you will b			
notified of the outcome in due course.			

https://signup.lisamission.org

Consortium structure

Consortium structure

LISA Data Processing Group (LDPG)

LISA Science Group (LSG)

Work Package Groups

LISA Science Group

- * Help **define key-science objectives** for the LISA consortium; deliver work required to achieve these goals and ensure it is completed on time.
- * Interface with science working groups to ensure objectives are up to date.
- * Prioritise work according to project needs and work package dependencies.
- Work packages under the LSG will focus on identification and delivery of LISA consortium science objectives, and develop data analysis methods and prototypes that are needed to deliver this science.
- * **Implementation** in LISA data processing infrastructure will be done in conjunction with the **LISA Data Processing Group**.

LISA Data Processing Group

- The LISA Data Processing Group will oversee provision of ground segment infrastructure, frameworks for data analysis and production pipelines.
- Define standards and platforms. Responsible for data management, including public data and catalogue releases.
- * Ensure Data Processing Centre(s) are established with appropriate capacity.
- * Interface with ESA Science Operation Centre (SOC). Manage operational software for producing calibrated TDI data, that will be run in the SOC.
- * Implement production versions of pipelines developed within the LSG.

LISA Science Group Organisation

- LISA Science group structured around a data analysis description put together in September 2017. For each Science Investigation, the work needed was identified and divided into sub-elements.
- Example: SI6.1: Measure the dimensionless Hubble parameter by means of GW observations alone; SI6.2: Constrain cosmological parameters through joint GW and EM observations.
- Consortium must deliver GW observations, alerts and cosmological parameter estimate., which requires
 - * Low-latency pipelines to trigger alerts.
 - * Mechanism for sending alerts.
 - * MoUs with EM partners for joint analysis (SI 6.2) or host catalogues (SI 6.1).
 - * Mechanism to trigger protected periods.

LISA Science Group

- Work package description available in the document LISA-LCST-SGS-WPD-001, available on the consortium website. Work grouped into a number of themes.
- * Document will evolve over time and will always reflect current plans for science delivery.
- Applicants referenced the WPs when applying for membership. Currently have ~200 members in the LISA Science Group, and ~60 committed FTEs.

WP Group	Description	Members	FTEs
1	Waveform modelling	61	15.178
2	Data analysis tools	7	0.975
4	Low-latency pipelines	12	2.125
5	Global and individual source identification	55	11.722
6	Source catalogues	3	0.375
7	Multi-messenger, multi-band	31	4.197
8	Interpretation, key-science projects	89	20.662
Unspecified		10	2.38
Total		195 (distinct)	57.6

LISA Science working groups

- Three science working groups have replaced the previous consortium working groups, one focussed on each major area:
 - Astrophysics
 - Cosmology
 - * Fundamental Physics
- These will form a bridge between the LISA Consortium and the wider scientific community and provide an environment for discussion and promotion of LISA science.
- There are also LISA Data Challenge, Waveform and Simulation working groups, which form a similar role for more technical areas.

LISA Data Challenge working group

- The LDC group was established to resume activities begun by the LISA Mock Data Challenges. Biweekly telecons on Friday at 16:00 CET.
- Activity within work package group 5 (Global and individual source identification) will initially be driven by the Data Challenges. Data sets will be constructed to address specific questions posed by the Science Group.

https://lisa-ldc.lal.in2p3.fr/ldc

LISA Data Challenge 1

For usage tracking purposes, we request that you set up a login for this website before downloading the datasets. Please **submit your results by December 31, 2018**, using the submission interface and format that will appear shortly on this page. Please plan to include a description of your methods (or a link to a methods paper) with your submission. We would also greatly appreciate it if you were to share your code (e.g., on GitHub, or on our GitLab).

While we did our best to check the datasets for correctness, small problems or inconsistencies may have escaped us. The best way to validate the data is to analyze it, so let us know of any problems!

LDC1-1. A single GW signal from a merging massive-blackhole binary.

LIGO and Virgo have done it, so let's get LISA on the right path! MBHBs are represented with a frequencydomain inspiral-merger-ringdown phenomenological model (IMRPhenomD). The black holes are spinning, with spin vectors parallel to the orbital angular momentum. The release includes datasets for two methods (frequency- and timedomain) of applying the LISA response to the GWs.

LDC1-2. A single GW signal from an extreme-mass-ratio inspiral.

EMRIs are modeled with the "classic" Analytic Kludge waveforms, which will be updated in future challenges, so make your code flexible! The signal is produced in the time domain and the response is applied using LISACode. The signal is of moderate strength, but the source parameters are drawn from relatively wide priors. This should make for a good challenge!

LISA Data Challenge 1

LDC1-3. Superimposed GW signals from several verification Galactic white-dwarf binaries.

We assume circular orbits and purely gravitational interactions. The phase of the signal includes frequency and first derivative. This one should be easy!

LDC1-5. A GW signal from a population of stellar-origin (stellar-mass) black-hole binaries.

LIGO and Virgo's gift to LISA. The population follows Salpeter's mass function, with an overall rate based on recent LIGO–VIRGO estimates. Waveform and LISA response are computed in the frequency domain.

LDC1-4. A GW signal from a population of Galactic whitedwarf binaries.

Here's the classic cocktail-party problem: 26 million signals, produced with a "fast response" code. Parameters of all binaries are available in a large HDF5 file.

LDC1-6. An isotropic stochastic GW signal of primordial origin.

Statistics are Gaussian, but the spectral shape is shrouded in mystery, with parameters chosen for us by the LISA Consortium Cosmology Working Group. The signal is generated using LISACode as a choir of elementary sources uniformly distributed across the sky. To make things easier for you, instrumental noise is Gaussian, uncorrelated, and of the same level in each LISA link.

Japanese involvement in LISA

- Associate members may come from any country, and do not need to commit any time to LISA work.
- The science and technical working groups astrophysics, fundamental physics, cosmology, waveforms, data challenge and simulation — are open to both associate and full members.
- * Full membership is restricted to countries that have an agreement with ESA.
- * One Japanese group (Izumi) has already joined as full members, and are likely to provide some instrumentation. JAXA is drafting a letter of interest to ESA, so the arrangement is likely to be formalised soon.

LISA Science Group Core Team

- * LISA Science Group Core Team
 - * Chairs: Jonathan Gair, Michele Vallisneri
 - * WP group 1 (waveform modelling): Leor Barack, Harald Pffeifer
 - * WP group 2 (data analysis tools): Stas Babak, Ian Harry
 - * WP group 4 (low-latency pipelines): Tyson Littenberg, Laurentiu-Ioan Caramete
 - * WP group 5 (global and individual source identification): Neil Cornish, Curt Cutler
 - * WP group 6 (source catalogues): Enrico Barausse, Curt Cutler
 - * WP group 7 (multi-messenger, multi-band): John Baker, Zoltan Haiman, Elena Rossi
 - WP group 8 (interpretation, key science): Emanuele Berti, Vitor Cardoso, Alberto Sesana

LISA Science working groups

- LISA Science working group chairs
 - * Astrophysics: Gijs Nelemans, Shane Larson, Lucio Meier, Marta Volonteri;
 - * **Cosmology**: Robert Caldwell, Chiara Caprini, Germano Nardini;
 - * Fundamental Physics: Thomas Hertog, Philippe Jetzer, Nico Yunes
- * LISA technical working group chairs
 - * Data Challenge: Stas Babak, Michele Vallisneri;
 - Waveforms: Maarten van de Meent, Deirdre Shoemaker, Niels Warburton, Helvi Witek;
 - * **Simulation**: Luigi Ferraioli, Joseph Martino, Daniele Vetrugno.

Summary

- * LISA is on course to launch in 2034 and is expected to detect a range of sources
 - Massive black hole mergers;
 - Extreme-mass-ratio inspirals;
 - Stellar-origin BH binaries, galactic binaries, cosmological sources.
- These observations will facilitate a wide range of science investigations in astrophysics, cosmology and fundamental physics.
- * Work on LISA is being organised within the LISA Consortium.
- Science exploitation and data analysis development will be done by the LISA
 Science Group (key science definition and prototype pipelines) and the LISA
 Data Processing Group (production pipelines and infrastructure), with support from the science, simulation and data challenge working groups.
- * We very much hope that Japanese groups will participate in this endeavour and help to deliver the great science.

Session S3A1 9:45-10:15

[Chair: Hideyuki Tagoshi]

Jiro Murata

Department of Physics, Rikkyo University

"Laboratory Tests of Newtonian Gravity as tests of Inverse Square Law" (10+5 min.)

[JGRG28 (2018) 110702]

Laboratory Tests of Newtonian Gravity as tests of Inverse Square Law

Jiro Murata Rikkyo University

The 28th Workshop on General Relativity and Gravitation in Japan - JGRG28, Rikkyo University

5-9 November 2018

Nuclear physics gravity experiments

FAQ on Experimental Gravity

Q:Where is the minimum scale, at which gravity is tested?

Expected answer: 100 micron

My answer: the LHC scale (10⁻²⁰m)

Murata-Tanaka CQG 32 (2015) 033001 (arXiv:1408.3588) ATLAS PRL 110, 011802 (2013) # of Extra Dim. Searching graviton emission LEP, TEVATRON 2 $\frac{G(r)}{1 \times 10^3}$ Collider (Direct) G_N 6 5 LHC #10 TeV, mr2 -10 GeV, M-200 Gel Laboratory Irvine Best for n=2 (ADD assumed) 3 Eress [GeV] pbar-He FIG. 1 (color online). The measured $E_T^{\rm miss}$ distribution (black dots) compared to the SM (solid lines), SM + ADD (dashed lines), and SM + WIMP (dotted lines) predictions, for two particular ADD and WIMP scenarios. 4.6 TeV Washington 2 Casimir Stanford ATLAS VS=7 TeV. L dt = 4.6 tb 10 1.1.1.111 10⁻⁶ 10⁻⁵ 10⁻² 10⁻⁴ 10⁻³ 10⁻¹ 10 10² 1 M_D [TeV] H.D. Planck mass $^{2/n}\hbar$ (M_{pl}) 8π ADD interpretation λ = Number of Extra Dim $M_{pl}^{2} = M_{D}^{2+n} \lambda^{n} (c/\hbar)^{n}$ 2/nC FIG. 2 (color online). Observed (solid lines) and expected (dash-dotted lines) 95% C.L. limits on M_D as a function of the number of extra spatial dimensions n in the ADD model. The results are compared with previous results [1,3,6] (other lines). In [6], weights are applied that suppress the region with $\hat{s} > M_D^2$.

G ATLAS 302

 $\int L dt = d$

0.8

GeV

Short Range : Data > Power Law Parametrization > (ADD) > MD ₆ Collider : Data > MD > (ADD) > Power Law Parametrization > alpha-lambda

Interpretation (translation) of the ADD line (power law) in the alpha-lambda plot (Yukawa)

講題報にもつ周川型となる、書も称る状 が1995年のアルカニハメドやによるとす、 は不利数である、実験室実験との感情が制に置いた主要的に が1995年のアルカニハメドやによるとす、 は不利数である、実験室実験を1850年の一番 素ではかられれ気にとの意味のたくか料 次元)の存在により実験末純量の正面差で かった、参加気がないたがしてはINCとum、 く会開発でのものがガランなの活動により変 サンパーの実験の高齢が出してはINCとum、 く会開発でのものがガランなの活動により変 サンパーの実験である。4つの方の うち思かけびからないたかも、 ものが余剰取られった。冬季期気がつえた示の場合、もいれ 年に、日本のから、 なった、冬季期気がつえたのである、4つの方の もつた、冬季期気がつえた示の場合、もいれ いた。 本期をすることが明らかと なった。冬季期気がつえた示の場合、もいれ いた。 本期をすることが明られた。 ものが余剰気に力の中への事まりによりsum

解鍵 永力市二和田小水純地田

0304 H 4-BR72

inte a lang parte di Ballandi (1992) I CROM Son - e a compose e la compose de la compose de la LES A. Rece este faite estité à la compose e contrar to a since à clas

12

McKim Gate reet Ikebukuro Station (Metropolitan Gate)

Aitchell Hal

Gak

品

Rikkyo

Gravity Lab.

versity Bus Stop

Discussion

Theoretical suggestions for future experiments are welcome!

17
Session S3A2 11:15-12:15

[Chair: Kenichi Oohara]

Yasutaka Koga

Rikkyo University

"Rotating accretion flows in D dimensions - sonic points, critical points and photon spheres -" (10+5 min.)

[JGRG28 (2018) 110704]

Rotating accretion flows in D dimensions

- sonic points, critical points and photon spheres -

Yasutaka Koga

Rikkyo University, Japan

November 5-9, 2018

Collaborator: Tomohiro Harada JGRG @ Tokyo, Japan Y. Koga & T. Harada, PRD98, 024018 (2018), arXiv:1803.06486.

- ロ ト - 4 四 ト - 4 回 ト - - 回 ト

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions 1/13

Outline

- Introduction
- ② Rotational accretion problem in D dimensions
- Proof of SP/PS correspondence
- Summary

590

1. Introduction

• Sonic point (SP): an accretion flow transit from subsonic to supersonic state.

• Photon sphere (PS): a sphere on which circular null geodesics exist.

• SP/PS correspondence: for radiation fluid accretion, the radius of SP coincides with PS.

Yasutaka Koga (Rikkyo University, Japan) **Rotating accretion flows in D dimensions**

SP/PS correpondence

- Michel accretion (1972)
 - Spherical flow in Schwarzschild spacetime
 - SP at $r_s = 3M$ for radiation fluid
 - \rightarrow SP coincides to photon sphere ($r_{ph} = 3M$ in Sch.)
- Physical reasons?
 - Just a coincidence?
 - Due to the microscopic construction of radiation fluid? (radiation fluid = system of photons)

クへ (~ 4 / 13

E

★ ∃ ► ★ ∃ ►

< 67 ▶

590

3/13

≣⇒

SP/PS correpondence

- Michel accretion (1972)
 - Spherical flow in Schwarzschild spacetime
 - SP at $r_s = 3M$ for radiation fluid
 - \rightarrow SP coincides to photon sphere ($r_{ph} = 3M$ in Sch.)
- Physical reasons?
 - Just a coincidence?
 - Due to the microscopic construction of radiation fluid? (radiation fluid = system of photons)

SP/PS correpondence

- SP/PS correspondence in more general cases
 - Koga & Harada (2016): spherical flow in arbitrary static spherically symmetric spacetime of arbitrary dimensions
 - Koga & Harada (2018): axially symmetric flow in arbitrary static spherically symmetric spacetime of arbitrary dimensions

 \Rightarrow SP/PS correspondence is NOT just a coincidence.

-

ロト ・ 同ト ・ ヨト ・ ヨト

2. Rotational accretion problem in D dims

- Situation:
 - Stationary axially symmetric accretion flow on an equatorial plane in general static spherically symmetric spacetime in D dims.
- Metric:

$$ds^{2} = -f(r)dt^{2} + g(r)dr^{2} + r^{2}d\Omega_{D-2}^{2}$$
(1)

• SP/PS correspondence (result) :

Theorem (SP/PS correspondence)

For our accretion model, for any stationary and axially symmetric physical transonic accretion flow of radiation fluid, its sonic point is located at (one of) the unstable photon sphere(s).


```
Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions
```

Accretion model

[c.f. Abraham et al. (2006)]

- Rotational accretion (disk) model :
 - Disk lies on the equatorial plane.
 - (all the polar angles $\theta_1, ..., \theta_{D-3} = \pi/2$)
 - Ø Symmetry:
 - Stationarity & rotational symmetry along $\partial_t \& \partial_{\phi}$.
 - Reflection symmetry respective to the equatorial plane.
 - Solution Uniform distribution in θ_i -direction.
 - Geometrically thin.
 - Solution Vertical pressure supported by external rarefied gas.

 クへ (や 7 / 13

-

200

6/13

Formulation

- Basic equations :
 - $dh = Tds + n^{-1}dp$ (*h*: enthalpy)
 - $\nabla_a(nu^a) = 0$ (*n*: number density)
 - $\nabla_b T^{ab} = 0$, $T^{ab} := nhu^a u^b + pg^{ab}$
- Constants of integration:
 - Number flux: $j_n(r, n) =: \mu$
 - Energy flux: $j_{\epsilon}(r, n)$
 - Angular momentum flux: $j_{\phi}(r, n)$
- Energy square per particle $F := j_{\epsilon}^2/j_n^2$:

$$F(r,n) = h^{2}(n) \left[f(r) + \frac{\mu^{2}}{r^{2(D-2)}n^{2}} \right] \frac{1}{1 - \omega^{2}f(r)r^{-2}}, \ \omega := \frac{j_{\phi}}{j_{\epsilon}} \quad (2)$$

Our accretion problem

The solution of the accretion flow is the orbit n = n(r) on (r, n) satisfying Mater equation F(r, n) = const. with the parameters μ and ω .

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

Formulation

- Basic equations :
 - $dh = Tds + n^{-1}dp$ (*h*: enthalpy)
 - $\nabla_a(nu^a) = 0$ (*n*: number density)
 - $\nabla_b T^{ab} = 0$, $T^{ab} := nhu^a u^b + pg^{ab}$
- Constants of integration:
 - Number flux: $j_n(r, n) =: \mu$
 - Energy flux: $j_{\epsilon}(r, n)$
 - Angular momentum flux: $j_{\phi}(r, n)$
- Energy square per particle $F := j_{\epsilon}^2/j_n^2$:

$$F(r,n) = h^{2}(n) \left[f(r) + \frac{\mu^{2}}{r^{2(D-2)}n^{2}} \right] \frac{1}{1 - \omega^{2}f(r)r^{-2}}, \ \omega := \frac{j_{\phi}}{j_{\epsilon}} \quad (2)$$

Our accretion problem

The solution of the accretion flow is the orbit n = n(r) on (r, n) satisfying Mater equation F(r, n) = const. with the parameters μ and ω .

8/13

Dynamical system analysis & Critical point [c.f. Chaverra & Sarbach (2015)]

 Equation F(r, n) = const. can be recasted in the system of a Hamiltonian flow of F(r, n) :

$$\frac{d}{d\lambda} \begin{pmatrix} r \\ n \end{pmatrix} = \begin{pmatrix} \partial_n \\ -\partial_r \end{pmatrix} F(r,n)$$
(3)

- Critical point (r_c, n_c) : $\partial_r F(r_c, n_c) = \partial_n F(r_c, n_c) = 0$
- Linearization around CP :

$$\frac{d}{d\lambda} \begin{pmatrix} r - r_c \\ n - n_c \end{pmatrix} = \begin{pmatrix} \partial_r \partial_n F & \partial_n^2 F \\ -\partial_r^2 F & -\partial_r \partial_n F \end{pmatrix} \begin{pmatrix} r - r_c \\ n - n_c \end{pmatrix}$$
(4)

• Classification of CP : saddle point / extremum point

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

Sonic point & Critical point

- Sonic point
 - Sonic point (r_s, n_s) of flow n = n(r):

$$\frac{\gamma_{s}^{2}}{\gamma_{s}^{2}}\Big|_{(r_{s},n(r_{s}))} = 1, \ n_{s} = n(r_{s})$$
(5)

- , v_s : sound speed, v: 3-velocity in co-rotating frame.
- Relation to CP :

Lemma

A sonic point of physical (= with finite density gradient) transonic flow corresponds to a critical point of saddle-type.

10 / 13

E

590

9/13

3. Proof of SP/PS correspondence

- Critical point of radiation flow :
 - EOS of radiation implies $v_s^2 = 1/(D-1)$.
 - Radius r_c : $(fr^{-2})' = 0$
 - Saddle (extremum) point: $(fr^{-2})''|_{r_c} < 0 \ (>0)$
- Photon sphere [c.f. Koga & Harada (2016)]:
 - Radius r_{ph} : $(fr^{-2})' = 0$
 - Unstable (stable) circular orbit: $(fr^{-2})''|_{r_c} < 0 \ (>0)$
- One-to-one correspondence btw CP & PS

3. Proof of SP/PS correspondence

• Sketch of the proof :

3

3. Proof of SP/PS correspondence

• Sketch of the proof :

Physical SP is on the unstable PS. \Box

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

4. Summary

- Accretion problem:
 - Rotational flow in spherically symmetric spacetime of D-dim.
 - Dynamical system analysis.
- SP/PS correspondence:

Theorem (SP/PS correspondence)

For our accretion model, for any stationary and axially symmetric physical transonic accretion flow of radiation fluid, its sonic point is located at (one of) the unstable photon sphere(s).

- Discussions
 - The physical reason?
 - In other cases? e.g. spacetime of different symmetries (in progress)

3

12

Toshiaki Ono

Hirosaki University

"Gravitomagnetic bending angle of light in stationary axisymmetric spacetimes" (10+5 min.)

[JGRG28 (2018) 110705]

Gravitomagnetic bending angle of light in stationary axisymmetric spacetimes

Hirosaki Univ. (Japan) Toshiaki Ono, Asahi Ishihara, Hideki Asada Phys. Rev. D **96**, 104037 (2017) Phys. Rev. D **98**, 044047 (2018)

7 November 2018 JGRG28 @ Rikkyo University

Outline

- · INTRODUCTION
- · EXTENSION TO AXISYMMETRIC SPACETIMES
- Kerr black hole and rotating Teo wormhole
- · CONCLUSION

bending angle of light in Schwarzschild spacetime

$$\alpha = \frac{4GM}{c^2b}$$

Usually, distance r_R and r_S

 $r_R, r_S \to \infty$

However observer and source are located at finite distance from lens object.

INTRODUCTION

Gibbons and Werner (2008)

- They used the Gauss-Bonnet theorem to a spatial domain described by the optical metric, for which a light ray is described as a spatial curve.
- Light ray deflected by a static, spherically symmetric massive body
- Light ray deflection is small

INTRODUCTION

Werner [Gen. Rel. Grav. 44, 3047 (2012)]

- He proposed an extension of the Gibbons-Werner approach for calculating the deflection of light in a Kerr black hole.
- He used the Nazim's osculating Riemannian construction method via the Randers-Finsler metric.

However

 Source and receiver are located at an asymptotic Minkowskian region

INTRODUCTION

Our works : [Phys. Rev. D **96**, 104037 (2017)] [Phys. Rev. D **98**, 044047 (2018)]

- We discuss a possible extension of the method of calculating the bending angle of light to stationary, axisymmetric and asymptotically flat spacetimes.
- · By using generalized optical metric method.
- Taking account of the finite distance from a lens
 object to a light source and a receiver by using the
 Gauss-Bonnet theorem.

We consider the light rays on the equatorial plane in **stationary, axisymmetric and asymptotically flat spacetime** by using the Gauss-Bonnet theorem in differential geometry.

The line element for this spacetime (The Wely-Lewis-Papapetrou form)

$$ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu}$$

= $-A(r,\theta)dt^{2} - 2H(r,\theta)dtd\phi$
 $+B(r,\theta)dr^{2} + C(r,\theta)d\theta^{2} + D(r,\theta)d\phi^{2}$

where we used the polar coordinates.

Assume
$$\left. \frac{\partial g_{\mu\nu}}{\partial \theta} \right|_{\theta=\pi/2} = 0$$

EXTENSION TO AXISYMMETRIC SPACETIMES

The null condition $ds^2 = 0$ is solved for dt as

$$\begin{split} dt &= \sqrt{\gamma_{ij} dx^i dx^j} + \beta_i dx^i ,\\ dl^2 &\equiv \gamma_{ij} dx^i dx^j \equiv \frac{B(r,\theta)}{A(r,\theta)} dr^2 + \frac{C(r,\theta)}{A(r,\theta)} d\theta^2 + \frac{A(r,\theta)D(r,\theta) + H^2(r,\theta)}{A^2(r,\theta)} d\phi^2,\\ \beta_i dx^i &\equiv -\frac{H(r,\theta)}{A(r,\theta)} d\phi . \end{split}$$

Generalized optical metric γ_{ij} defines the arc length (*l*) along the spatial curve.

l is an affine parameter along the light ray [H. Asada and M. Kasai, Prog. Theor. Phys. 104, 95 (2000)].

 β_i causes difference from a static, spherically symmetric case.

Gauss-bonnet theorem (regular surface)

EXTENSION TO AXISYMMETRIC SPACETIMES

Gaussian curvature (For a two-dimensional surface)

$$K = \frac{R_{r\phi r\phi}}{\det \gamma_{ij}^{(2)}}$$
$$= \frac{1}{\sqrt{\det \gamma_{ij}^{(2)}}} \left[\frac{\partial}{\partial \phi} \left(\frac{\sqrt{\det \gamma_{ij}^{(2)}}}{\gamma_{rr}^{(2)}} \Gamma^{\phi}{}_{rr} \right) - \frac{\partial}{\partial r} \left(\frac{\sqrt{\det \gamma_{ij}^{(2)}}}{\gamma_{rr}^{(2)}} \Gamma^{\phi}{}_{r\phi} \right) \right]$$

 $\gamma_{ij}^{(2)}$ denotes the two-dimensional metric in the equatorial plane

geodesic curvature can be defined in the tensor form as

$$\kappa_g = \varepsilon_{ijk} N^i a^j e^k$$

 e^i : unit tangential vector along the spatial curve

- N^i : unit normal vector for the surface
- \boldsymbol{a}^i : acceleration vector along the spatial curve

These vectors for the light ray

$$\begin{split} e^{i} &= \frac{A(r)[H(r) + bA(r)]}{A(r)D(r) + H^{2}(r)} \left(\frac{dr}{d\phi}, 0, 1\right) , \quad a^{i} = \gamma^{ij} (\beta_{k|j} - \beta_{j|k}) e^{k} , \\ N^{i} &= \left(0, \frac{1}{\sqrt{\gamma_{\theta\theta}}}, 0\right) \end{split}$$

EXTENSION TO AXISYMMETRIC SPACETIMES

In electromagnetism

variational principle

$$\delta S = -mc^2 \delta \int_{t_1}^{t_2} \sqrt{1 - v^2/c^2} dt - q\delta \int_{t_1}^{t_2} [\phi(t, x, y, z) - \vec{v} \cdot \vec{A}(t, x, y, z)] dt$$

Lorentz force $\propto rot \vec{A}$

In our work, since $dt = \sqrt{\gamma_{ij} dx^i dx^j} + \beta_i dx^i$,

$$\delta S = \delta \int_{t_1}^{t_2} \left[\sqrt{\gamma_{ij} e^i e^j} + \beta_i e^i \right] dt$$
$$e^i{}_{|k} e^k = a^i, \quad a^i \equiv \gamma^{ij} \left(\beta_{k|j} - \beta_{j|k} \right) e^k$$

EXTENSION TO AXISYMMETRIC SPACETIMES

Gauss-bonnet theorem (regular surface)

$$\int \int_{T} K dS + \sum_{a=1}^{N} \int_{\partial T_{a}} \kappa_{g} dl + \sum_{a=1}^{N} \theta_{a} = 2\pi ,$$

$$\int \int_{\mathbb{R}^{\infty} \square_{S}^{\infty}} K dS + \int_{R}^{S} \kappa_{g} dl + \phi_{RS} + \Psi_{R} + \pi - \Psi_{S} + \pi = 2\pi.$$

We define deflection angle of light as

$$\alpha \equiv \Psi_R - \Psi_S + \phi_{RS}$$
 .

By using Gauss-bonnet theorem, it is rewritten as

$$\alpha = -\iint_{\underset{R}{\infty} \square_{S}^{\infty}} KdS - \int_{R}^{S} \kappa_{g} dl$$

This form show α is **coordinate-invariant**.

Kerr spacetime and rotating Teo wormhole The Boyer-Lindquist form of the Kerr metric is

$$ds^{2} = -\left(1 - \frac{2Mr}{\Sigma}\right)dt^{2} - \frac{4aMr\sin^{2}\theta}{\Sigma}dtd\phi$$
$$+ \frac{\Sigma}{\Delta}dr^{2} + \Sigma d\theta^{2} + \left(r^{2} + a^{2} + \frac{2a^{2}Mr\sin^{2}\theta}{\Sigma}\right)\sin^{2}\theta d\phi^{2} ,$$

where we denote

$$\Sigma \equiv r^2 + a^2 \cos^2 \theta,$$
$$\Delta \equiv r^2 - 2Mr + a^2$$

Gaussian curvature and geodesic curvature

$$K = -\frac{2M}{r^3} + O\left(\frac{M^2}{r^4}, \frac{a^2M}{r^5}\right) \quad , \quad \kappa_g = -\frac{2aM}{r^3} + O\left(\frac{aM^2}{r^4}\right)$$

Kerr spacetime and rotating Teo wormhole

prograde motion of light

$$\begin{aligned} \alpha_{prog} &= -\iint_{\substack{R \ \square_{S}^{\infty}}} KdS - \int_{R}^{S} \kappa_{g} dl \\ &= \frac{2M}{b} \left(\sqrt{1 - b^{2} u_{S}^{2}} + \sqrt{1 - b^{2} u_{R}^{2}} \right) - \frac{2aM}{b^{2}} \left(\sqrt{1 - b^{2} u_{S}^{2}} + \sqrt{1 - b^{2} u_{R}^{2}} \right) + O\left(\frac{M^{2}}{b^{2}}, \frac{aM^{2}}{b^{3}}\right) \end{aligned}$$

retrograde case

$$\alpha_{retro} = \frac{2M}{b} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) + \frac{2aM}{b^2} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) + O\left(\frac{M^2}{b^2}, \frac{aM^2}{b^3}\right)$$

where $u \equiv 1/r$.

We take the limit as $u_R \rightarrow 0, \ u_S \rightarrow 0$

$$\begin{split} \alpha_{prog} &\to \frac{4M}{b} - \frac{4aM}{b^2} + O\left(\frac{M^2}{b^2}\right), \\ \alpha_{retro} &\to \frac{4M}{b} + \frac{4aM}{b^2} + O\left(\frac{M^2}{b^2}\right). \end{split} \qquad \begin{array}{l} \text{[R. Epstein et al.,} \\ \text{PRD 22, 2947 (1980)].} \\ \end{array}$$

Kerr spacetime and rotating Teo wormhole

Rotating Teo wormhole metric [E. Teo, Phys. Rev. D 58, 024014 (1998).]

$$ds^{2} = -N^{2}dt^{2} + \frac{dr^{2}}{1 - \frac{b_{0}}{r}} + r^{2}H^{2}\left[d\theta^{2} + \sin^{2}\theta(d\phi - \omega dt)^{2}\right]$$

where

$$N = H = 1 + \frac{d(4a\cos\theta)^2}{r}, \ \omega = \frac{2a}{r^3}.$$

Gaussian curvature and geodesic curvature

$$K = -\frac{b_0}{2r^3} - \frac{56a^2}{r^6} + O\left(\frac{a^2b_0}{r^7}, \frac{a^4}{r^{10}}\right) , \ \kappa_g = -\frac{2a}{r^3} + O\left(\frac{a^3}{r^7}, \frac{a^3b_0}{r^8}\right).$$

Kerr spacetime and rotating Teo wormhole

prograde motion of light

$$\begin{aligned} \alpha_{prog} &= -\iint_{\mathbb{R}\ \square_S^{\infty}} KdS - \int_R^S \kappa_g dl \\ &= \frac{b_0}{2b} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) - \frac{2a}{b^2} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) + O\left(\frac{b_0^2}{b^2}, \frac{ab_0}{b^3}\right) \end{aligned}$$

retrograde case

$$\alpha_{retro} = \frac{b_0}{2b} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) + \frac{2a}{b^2} \left(\sqrt{1 - b^2 u_S^2} + \sqrt{1 - b^2 u_R^2} \right) + O\left(\frac{b_0^2}{b^2}, \frac{ab_0}{b^3}\right)$$

We take the limit as $u_R \to 0, \ u_S \to 0$

$$\begin{split} \alpha_{prog} \rightarrow & \frac{b_0}{b} - \frac{4a}{b^2} + O\left(\frac{{b_0}^2}{b^2}, \frac{ab_0}{b^3}\right), \\ \alpha_{retro} \rightarrow & \frac{b_0}{b} + \frac{4a}{b^2} + O\left(\frac{{b_0}^2}{b^2}, \frac{ab_0}{b^3}\right). \end{split}$$
 K. Jusufi and A. Ovgun, Phys. Rev. D 97, 024042 (2018).

CONCLUSION

- By using the **Gauss-Bonnet theorem**, we formulated the method of calculating the bending angle of light to **stationary**, **axisymmetric and asymptotically flat spacetimes**, especially by taking account of **the finite distance from a lens object to a light source and a receiver**.
- · Bending angle of light $\,lpha\,$ is **coordinate-invariant**.
- We considered Kerr black hole and rotating Teo wormhole in order to examine how the bending angle of light is computed by the our method.
- Recently, we discuss a possible extension of our method to an asymptotically nonflat spacetime.
 - [T. Ono et, al., arXiv]

Tatsuya Ogawa

Department of Mathematics and Physics, Graduate School of Science, Osaka City University

"Charge Screened Boson Stars" (10+5 min.)

[JGRG28 (2018) 110706]

Charge Screened Boson Stars

Tatsuya Ogawa

and Hideki Ishihara

• 1/16

Department of Mathematics and Physics, Graduate School of Science, Osaka City University

November 7th, 2018 @Rikkyo University

Localized Bosonic Objects

Classical solutions in field theories

Bound state of bosonic particles

Attraction force:

➤ Gravity

Boson star : M. Colpi, et.al, (1986)

Interaction between boson fields

Non-topological soliton

✓ A complex scalar field and a real scalar field

 R. Friedberg, T.D. Lee, & A. Sirlin, (1976)

 ✓ A complex scalar field with nontrivial self coupling

 S. Coleman, (1985)
 Q-balls
 2/16

Basic equations

Action of our model

$$S = \int \sqrt{-g} d^4 x \left\{ \qquad -g^{\mu\nu} (D_{\mu}\psi)^* (D_{\nu}\psi) - g^{\mu\nu} (D_{\mu}\phi)^* (D_{\nu}\phi) \\ -\frac{\lambda}{4} \left(|\phi|^2 - \eta^2 \right)^2 - \mu |\phi|^2 |\psi|^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right\} \\ D_{\mu} = \nabla_{\mu} - ieA_{\mu}$$

We found the existence of the non topological soliton solutions.

We add the Einstein gravity term and show the existence of the boson star solutions by using numerical analysis.

• 3/16

Basic equations

Action of our model

$$S = \int \sqrt{-g} d^4 x \left\{ \frac{R}{16\pi G} - g^{\mu\nu} (D_{\mu}\psi)^* (D_{\nu}\psi) - g^{\mu\nu} (D_{\mu}\phi)^* (D_{\nu}\phi) - \frac{\lambda}{4} \left(|\phi|^2 - \eta^2 \right)^2 - \mu |\phi|^2 |\psi|^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right\}$$

$$D_{\mu} = \nabla_{\mu} - ieA_{\mu}$$

Basic equations

Action of our model

$$S = \int \sqrt{-g} d^4x \left\{ \frac{R}{16\pi G} - g^{\mu\nu} (D_{\mu}\psi)^* (D_{\nu}\psi) - g^{\mu\nu} (D_{\mu}\phi)^* (D_{\nu}\phi) - \frac{\lambda}{4} \left(|\phi|^2 - \eta^2 \right)^2 - \mu |\phi|^2 |\psi|^2 - \frac{1}{4} F_{\mu\nu} F^{\mu\nu} \right\}$$
Field equations

$$g^{\mu\nu} D_{\mu} D_{\nu} \psi - \mu |\psi|^2 \phi = 0, \qquad D_{\mu} = \nabla_{\mu} - ieA_{\mu}$$

$$g^{\mu\nu} D_{\mu} D_{\nu} \phi - \frac{\lambda}{2} (|\phi|^2 - \eta^2) - \mu |\psi|^2 \phi = 0,$$

$$\nabla_{\mu} F^{\mu\nu} = j^{\nu}_{\psi} + j^{\nu}_{\phi},$$

$$g^{\mu}_{\phi} = ie \{\phi^* (D^{\mu}\phi) - (D^{\mu}\phi)^* \phi\},$$

$$g^{\mu}_{\psi} = ie \{\psi^* (D^{\mu}\psi) - (D^{\mu}\psi)^* \psi\}$$

$$\nabla_{\mu} j^{\mu}_{\phi} = 0, \qquad \nabla_{\mu} j^{\mu}_{\psi} = 0$$

Basic equations

Static spherically symmetric spacetime ansatz

$$ds^{2} = -\sigma(r)^{2} \left(1 - \frac{2m(r)}{r}\right) dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\varphi^{2}$$

Stationary spherically symmetric matter fields ansatz

 $\phi(t,r) = e^{-i\omega t} \tilde{\phi}(r) , \ \psi(t,r) = e^{-i\omega' t} \tilde{\psi}(r) , \ A_{\mu}(r) = (A_t(r), 0, 0, 0)$

$$\Omega := \omega - \omega'$$

Basic equations

Variables : $\tilde{\phi}(r), \tilde{\psi}(r), \tilde{A}_t(r), m(r), \sigma(r)$ Parameters : $e, \mu, \lambda, \eta, \Omega$

EOM of the complex scalar fields

$$\begin{split} \tilde{\psi}'' + \left\{ \frac{2}{r} \left(1 + \frac{m - rm'}{r - 2m} \right) + \frac{\sigma'}{\sigma} \right\} \tilde{\psi}' + \left(1 - \frac{2m}{r} \right) \left[\frac{(e\tilde{A}_t - \Omega)^2 \tilde{\psi}}{\sigma^2 (1 - 2m/r)} - \mu \tilde{\phi}^2 \tilde{\psi} \right] &= 0, \\ \tilde{\phi}'' + \left\{ \frac{2}{r} \left(1 + \frac{m - rm'}{r - 2m} \right) + \frac{\sigma'}{\sigma} \right\} \tilde{\phi}' + \left(1 - \frac{2m}{r} \right) \left[\frac{e^2 \tilde{\phi} \tilde{A}_t^2}{\sigma^2 (1 - 2m/r)} - \frac{\lambda}{2} \tilde{\phi} (\tilde{\phi}^2 - 1) - \mu \tilde{\phi} \tilde{\psi}^2 \right] &= 0, \\ \end{split}$$

$$\begin{split} \mathbf{Maxwell equation} \\ \tilde{A}''_t + \left(\frac{2}{r} - \frac{\sigma'}{\sigma} \right) \tilde{A}'_t + \left(1 - \frac{2m}{r} \right) \left[-2e^2 \tilde{\phi}^2 \tilde{A}_t - 2e^2 \tilde{\psi}^2 \tilde{A}_t + 2e \Omega \tilde{\psi}^2 \right] &= 0, \\ \end{aligned}$$

$$\begin{split} \mathbf{Einstein equations} \\ \frac{2m'}{r} - 8\pi G n^2 \left[\frac{e^2 \tilde{\phi}^2 \tilde{A}_t^2}{r^2} + \frac{(e\tilde{A}_t - \Omega)^2 \tilde{\psi}^2}{r^2} + \left(1 - \frac{2m}{r} \right) \left\{ (\tilde{\phi}')^2 + (\tilde{\psi}')^2 \right\} \end{split}$$

$$\frac{2m}{r^{2}} - 8\pi G \eta^{2} \left[\frac{e \ \varphi \ \Pi_{t}}{\sigma^{2} (1 - 2m/r)} + \frac{(e \Pi_{t} \ d t) \ \varphi}{\sigma^{2} (1 - 2m/r)} + \left(1 - \frac{2m}{r} \right) \left\{ (\phi')^{2} + (\psi')^{2} \right\} + \frac{\lambda}{4} (\tilde{\phi}^{2} - 1)^{2} + \mu \tilde{\phi}^{2} \tilde{\psi}^{2} + \frac{(\tilde{A}_{t}')^{2}}{2\sigma^{2}} \right] = 0,$$

$$\frac{(r - 2m)\sigma'}{r^{2}\sigma} - 8\pi G \eta^{2} \left[\frac{e^{2} \tilde{\phi}^{2} \tilde{A}_{t}^{2}}{\sigma^{2} (1 - 2m/r)} + \frac{(e \tilde{A}_{t} - \Omega)^{2} \tilde{\psi}^{2}}{\sigma^{2} (1 - 2m/r)} + \left(1 - \frac{2m}{r} \right) \left\{ (\tilde{\phi}')^{2} + (\tilde{\psi}')^{2} \right\} = 0$$

$$\bullet$$

$$\bullet$$

$$\bullet$$

Boundary conditions

Potential of the Higgs field

$$V(\tilde{\phi}) = \frac{\lambda}{4} (\tilde{\phi}^2 - \eta^2)^2$$

Metric ansatz

$$ds^{2} = -\sigma(r)^{2} \left(1 - \frac{2m(r)}{r}\right) dt^{2} + \left(1 - \frac{2m(r)}{r}\right)^{-1} dr^{2} + r^{2} d\theta^{2} + r^{2} \sin^{2} \theta d\varphi^{2}$$

 $r \rightarrow 0~$: Regularity at the origin

$$\frac{d\tilde{\psi}}{dr} = 0 \ , \ \frac{d\tilde{\phi}}{dr} = 0 \ , \ \frac{d\tilde{A}_t}{dr} = 0 \ , \ \frac{d\tilde{A}_t}{dr} = 0 \ , \ m = 0 \ , \frac{d\sigma}{dr} = 0$$

 $r\to\infty~$: Fields approach to vacuum and Schwarzschild solution $\tilde\psi=0~,~\tilde\phi=\eta~, \tilde A_t=0~,~m=m_\infty=const.~,~\sigma=1$

•8/16

$\begin{array}{l} \textbf{Numerical solutions} \left(G\eta^2 = 1 \ , \ \mu = 1 \right) \\ r \to 0 \ : \text{Regularity at the origin} \\ \Omega := \omega - \omega' \\ \boldsymbol{\Omega} = 0.9 \end{array} \qquad \begin{array}{l} r \to 0 \ : \text{Regularity at the origin} \\ \frac{d\tilde{\psi}}{dr} = 0 \ , \ \frac{d\tilde{\phi}}{dr} = 0 \ , \ \frac{d\tilde{A}_t}{dr} = 0 \ , \ m = 0 \ , \frac{d\sigma}{dr} = 0 \\ r \to \infty \ : \text{Fields approach to vacuum and Schwarzschild solution} \\ \tilde{\psi} = 0 \ , \ \tilde{\phi} = 1 \ , \tilde{A}_t = 0 \ , \ m = m_\infty = const. \ , \ \sigma = 1 \end{array}$

Charge of the boson star

The charge distribution of ψ is screened by the counter charge distribution of ϕ .

Variation of $G\eta^2$

Einstein equations

$$\begin{aligned} \frac{2m'}{r^2} - 8\pi G \eta^2 \bigg[\frac{e^2 \tilde{\phi}^2 \tilde{A}_t^2}{\sigma^2 (1 - 2m/r)} + \frac{(e\tilde{A}_t - \Omega)^2 \tilde{\psi}^2}{\sigma^2 (1 - 2m/r)} + \left(1 - \frac{2m}{r}\right) \left\{ (\tilde{\phi}')^2 + (\tilde{\psi}')^2 \right\} \\ &+ \frac{\lambda}{4} (\tilde{\phi}^2 - 1)^2 + \mu \tilde{\phi}^2 \tilde{\psi}^2 + \frac{(\tilde{A}_t')^2}{2\sigma^2} \bigg] = 0, \end{aligned}$$

$$\frac{(r-2m)\sigma'}{r^2\sigma} - 8\pi G\eta^2 \left[\frac{e^2 \tilde{\phi}^2 \tilde{A}_t^2}{\sigma^2 (1-2m/r)} + \frac{(e\tilde{A}_t - \Omega)^2 \tilde{\psi}^2}{\sigma^2 (1-2m/r)} + \left(1 - \frac{2m}{r}\right) \left\{ (\tilde{\phi}')^2 + (\tilde{\psi}')^2 \right\} = 0$$

$$G\eta^2 = \eta^2 / M_{pl}^2$$

We change breaking scale

Upper bound of the mass

Conclusion

- We constructed the boson star solutions by using the gravitating gauged Friedberg-Lee-Sirlin model:
 - massless complex scalar field, U(1) gauge field, complex Higgs scalar field with the Mexican hat potential, and gravitational field.
- The charge distribution of the complex scalar field is screened by the counter charge of the Higgs scalar field.
- > Maximum mass of the boson stars appear in the case of SSB η/M_{pl} is high..
- > As η/M_{pl} decreases, the maximum mass of the boson stars increases.
- $\gg \eta/M_{pl} \le \eta_{cr}/M_{pl} \sim 0.1$, m_{max} increases rapidly as η/M_{pl} decreases .

Future work

- Stability by the perturbation.
- Does the large N solutions collapse to black hole?

• 17/41

Binding energy of the boson star

•

.

In this case, the binding energy of the boson stars are always negative.

Session S3P1 14:00–15:30

[Chair: Masahide Yamaguchi]

Akira Matsumura

Nagoya University

"Quantum discrimination for the Universe" (10+5 min.)

[JGRG28 (2018) 110708]

Quantum discrimination for the universe

Akira Matsumura (Nagoya Univ.) Collaborator : Yasusada Nambu (Nagoya Univ.)

JGRG28@Rikkyo Univ.

This squeezing can be evidence of the primordial quantum fluctuation

□The squeezing cannot be detected by LIGO and LISA

B. Allen, et al. PRD 61, 024024 (1999)

These two Gaussian distributions of PGW cannot be distinguished statistically each other by LIGO and LISA

□How can we discriminate between the stationary and squeezed state?

In the present time, it is difficult to discriminate

If we do observations of the past universe, like CMB or GW map, is it possible to discriminate each other?

We want to discuss the theoretical limitation of statistical discrimination of the two distributions

Quantum discrimination problem

Massless scalar field in the expanding universe

Massless scalar field in the inflation and radiation era

We need to get the squeezed distribution and define the stationary one

Friedmann spacetime

$$ds^{2} = a^{2}(\eta)(-d\eta^{2} + d\boldsymbol{x}^{2}) \qquad a(\eta) = \begin{cases} -\frac{1}{H_{\rm dS}(\eta - 2\eta_{\rm r})} & (-\infty < \eta \le \eta_{\rm r}) \\ \\ \frac{\eta}{H_{\rm dS}\eta_{\rm r}^{2}} & (\eta_{\rm r} < \eta) \end{cases}$$
Massless scalar field

. "

 $\begin{array}{ll} \text{Massless scalar field} & \varphi(x,t) \\ & \text{(fluctuation)} \end{array} \end{array}$

Equation of motion

Mode equation

$$\ddot{f}_k + \left(k^2 - \frac{\ddot{a}}{a}\right)f_k = 0$$

□Quantization and pair creation

$$\begin{split} \hat{q}(\boldsymbol{x},\eta) &= \begin{cases} \int \frac{d^3k}{(2\pi)^{3/2}} \left(\hat{a}_{\boldsymbol{k}} f_{\boldsymbol{k}} + \hat{a}_{-\boldsymbol{k}}^{\dagger} f_{\boldsymbol{k}}^* \right) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} & (-\infty < \eta \le \eta_{\mathrm{r}}) \\ \\ \int \frac{d^3k}{(2\pi)^{3/2}} \left(\hat{b}_{\boldsymbol{k}} u_{\boldsymbol{k}} + \hat{b}_{-\boldsymbol{k}}^{\dagger} u_{\boldsymbol{k}}^* \right) e^{i\boldsymbol{k}\cdot\boldsymbol{x}} & (\eta_{\mathrm{r}} < \eta) & \hat{b}_{\boldsymbol{k}} = \alpha_{\boldsymbol{k}} \hat{a}_{\boldsymbol{k}} + \beta_{\boldsymbol{k}}^* \hat{a}_{-\boldsymbol{k}}^{\dagger} \\ \\ \end{bmatrix} \\ \begin{pmatrix} \text{Mode function of the} & f_{\boldsymbol{k}}(\eta) = \frac{1}{\sqrt{2k}} \left(1 - \frac{i}{k(\eta - 2\eta_{\mathrm{r}})} \right) e^{-ik(\eta - 2\eta_{\mathrm{r}})} \\ \\ \text{Mode function in the} & u_{\boldsymbol{k}}(\eta) = \frac{1}{\sqrt{2k}} e^{-ik\eta} \\ \\ \text{Bogolyubov coefficients} & \alpha_{\boldsymbol{k}} = \left(1 + \frac{i}{k\eta_{\mathrm{r}}} - \frac{1}{2k^2\eta_{\mathrm{r}}^2} \right) e^{2ik\eta_{\mathrm{r}}} & \beta_{\boldsymbol{k}} = \frac{1}{2k^2\eta_{\mathrm{r}}^2} \\ \\ |0_{\mathrm{BD}}\rangle_{\mathrm{a}} &= N \bigotimes_{\boldsymbol{k} \in \mathbb{R}^{3+}} \left[\sum_{n=0}^{\infty} \left(\frac{\beta_{\boldsymbol{k}}^*}{\alpha_{\boldsymbol{k}}^*} \right)^n |n_{\boldsymbol{k}}, n_{-\boldsymbol{k}}\rangle_{\mathrm{b}} \right] \\ \\ \text{Pair creation of k and -k mode squeezed distribution} \\ \end{cases}$$

 $\Box \mbox{Definition}$ of the stationary distribution

Squeezed distribution
$$|0_{\rm BD}\rangle_{\rm a} = N \bigotimes_{\boldsymbol{k} \in \mathbb{R}^{3+}} \left[\sum_{n=0}^{\infty} \left(\frac{\beta_k^*}{\alpha_k^*} \right)^n |n_{\boldsymbol{k}}, n_{-\boldsymbol{k}}\rangle_{\rm b} \right] \hat{b}_{\boldsymbol{k}} = \alpha_k \hat{a}_{\boldsymbol{k}} + \beta_k^* \hat{a}_{-\boldsymbol{k}}^{\dagger}$$

Definition of the stationary Gaussian distribution

$$\begin{split} \underline{\mathrm{Tr}}[\hat{b}_{k}\hat{b}_{k'}\rho_{\mathrm{st}}] &= 0 \quad \mathrm{Tr}[\hat{b}_{k}^{\dagger}\hat{b}_{k'}\rho_{\mathrm{st}}] = \langle 0_{\mathrm{BD}} | \, \hat{b}_{k}^{\dagger}\hat{b}_{k'} | 0_{\mathrm{BD}} \rangle \\ & \text{phase independent distribution} \end{split}$$

$$\begin{aligned} \mathrm{Corresponding \ density \ operator} \\ \rho_{\mathrm{st}} &= \bigotimes_{k \in \mathbb{R}^{3}} \rho_{k} \qquad \rho_{k} = |N_{k}|^{2} \sum_{n=0}^{\infty} \left| \frac{\beta_{k}}{\alpha_{k}} \right|^{2n} |n_{k}\rangle \langle n_{k}| \end{split}$$

$$\begin{aligned} \mathrm{We \ consider \ the \ quantum \ state \ discrimination \ between \ |0_{\mathrm{BD}}\rangle \ and \ \rho_{\mathrm{st}}} \end{aligned}$$

Quantum state discrimination

□State discrimination for a single sample

Failure probability of the guess

probability that we mistake ho_1 as ho_0 or ho_0 as ho_1

$$p_{\rm f} = \frac{1}{2} {\rm Tr}[\hat{E}_0 \rho_1] + \frac{1}{2} {\rm Tr}[\hat{E}_1 \rho_0] \qquad \hat{E}_0 + \hat{E}_1 = \hat{I} \qquad \hat{E}_i : {\rm projection \ operator}$$
prior probability

□ State discrimination for N sample sizes

N partite system : $\rho_0^{\otimes N}$ or $\rho_1^{\otimes N}$ $\rho_0 \otimes \rho_0 \otimes \cdots \otimes \rho_0$ $\rho_1 \otimes \rho_1 \otimes \cdots \otimes \rho_1$ Measurement $0 \quad 1$ $\rho_1 \otimes \rho_1 \otimes \cdots \otimes \rho_1$ Result : $0 \quad \bigoplus \quad \text{Guess} : \rho_0$ Result : $1 \quad \bigoplus \quad \text{Guess} : \rho_1$

Failure probability of the guess

$$p_{\rm f} = \frac{1}{2} \operatorname{Tr}[\hat{E}_0^{(N)} \rho_1^{\otimes N}] + \frac{1}{2} \operatorname{Tr}[\hat{E}_1^{(N)} \rho_0^{\otimes N}]$$

we treat N partite system as a single system

 $\hat{E}_i^{(N)}$: projection operator for N partite system

Quantum Chernoff bound

$$\frac{1}{2} \left(1 - \sqrt{1 - \left[\inf_{0 \le s \le 1} Q_s \right]^N} \right) \le \min_{\hat{E}_i^{(N)}} p_{\mathbf{f}} \le \frac{1}{2} \left[\inf_{0 \le s \le 1} Q_s \right]^N \quad Q_s = \operatorname{Tr}[\rho_0^{1-s} \rho_1^s] \quad 0 \le Q_s \le 1$$

For large N sample sizes, the failure probability can be sufficiently small

Our assumptions for the setting of observation

Observables on a two-dimensional sphere

the distribution on a two-dimensional sphere

for example, the last scattering surface

$$\begin{aligned} \hat{q}_{\mathrm{L}}(\vec{n}) &= \hat{q}(r_{\mathrm{L}},\vec{n},\eta_{\mathrm{L}}) \quad \hat{p}_{\mathrm{L}}(\vec{n}) = \hat{p}(r_{\mathrm{L}},\vec{n},\eta_{\mathrm{L}}) \\ p &= \dot{q} - \frac{\dot{a}}{a}q \end{aligned}$$

As observables, because of focusing on Gaussian distributions

$$\begin{split} C_l^{\rm qq} &= \frac{1}{4\pi} \int_{\vec{n_1},\vec{n_2}} P_l(\vec{n}_1 \cdot \vec{n}_2) \left\langle \hat{q}_{\rm L}(\vec{n}_1) \hat{q}_{\rm L}(\vec{n}_2) \right\rangle \Big|_{|\boldsymbol{k}| \leq \Lambda} & \text{UV cutoff, thickness of the sphere} \\ C_l^{\rm qp} &= \frac{1}{8\pi} \int_{\vec{n_1},\vec{n_2}} P_l(\vec{n}_1 \cdot \vec{n}_2) \left\langle \hat{q}_{\rm L}(\vec{n}_1) \hat{p}_{\rm L}(\vec{n}_2) + \hat{p}_{\rm L}(\vec{n}_2) \hat{q}_{\rm L}(\vec{n}_1) \right\rangle \Big|_{|\boldsymbol{k}| \leq \Lambda} \\ C_l^{\rm pp} &= \frac{1}{4\pi} \int_{\vec{n_1},\vec{n_2}} P_l(\vec{n}_1 \cdot \vec{n}_2) \left\langle \hat{p}_{\rm L}(\vec{n}_1) \hat{p}_{\rm L}(\vec{n}_2) \right\rangle \Big|_{|\boldsymbol{k}| \leq \Lambda} & \text{we assume the knowledge of these correlations to get the theoretical limitation} \end{split}$$

Quantum Chernoff bound and Cosmic variance for our observational assumptions

$$\Lambda \eta_{
m r} \ll 1$$
 Long wave length Sample sizes $N \leq 2l+1$ Cosmic variance

Evaluation of the quantum Chernoff bound

Example : discrimination efficiency on the last scattering surface for N=1

The case N=2I+1 and asymptotic approximation

Summary

□We consider quantum discrimination between the Bunch-Davies vacuum and the stationary distribution.

□ To get the theoretical limitation of the statistical discrimination, we assume the knowledge of qq, qp and pp correlations on a two-dimensional sphere (e.g. Last Scattering Surface).

□ For a single direction observation with a short wave length, even if we know the qq, qp and pp correlations, the efficiency of the discrimination becomes bad, similar to the previous work B. Allen, et al (1999).

□ However, if we can carry out the quantum measurement for 2l+1 directions, then the discrimination efficiency can be improved for the observation of a short wave length.

$$\min_{\hat{E}_i^{(N)}} p_{\mathrm{f}} \leq \frac{1}{2} \Big[\inf_{0 \leq s \leq 1} Q_s \Big]^N \quad \Big[\inf_{0 \leq s \leq 1} Q_s \Big]^{2l+1} \sim \exp \Big[-c \frac{r_{\mathrm{L}}}{\eta_{\mathrm{L}}} \Big]$$

Anupam Mazumdar

University of Groningen

"Testing Quantum Gravity via entanglement" (10+5 min.)

[JGRG28 (2018) 110709]

Testing Quantum Gravity via Entanglement

Anupam Mazumdar

Van Swinderen Institute, University of Groningen

Thanks to **JSPS** for the invitation & thanks to all of you for hosting me: **TiTech, Yukawa Inst./Kyoto, IPMU, KEK, Universities of Kobe, Nagoya, Tokyo & Waseda,**

Part-1

Ghost free and non-non-singular construction of gravity & Towards Conformally flat solutions in the UV

Construction of Scale Free/Conformally Flat Theory of Classical & Quantum Gravity in the UV, which is Perturbatively Unitary

 $S = \int d^4x \sqrt{-g} \left[\frac{R}{16\pi G} + R\mathcal{F}_1\left(\frac{\Box}{M^2}\right) R + R_{\mu\nu}\mathcal{F}_2\left(\frac{\Box}{M^2}\right) R^{\mu\nu} + R_{\mu\nu\lambda\sigma}\mathcal{F}_3\left(\frac{\Box}{M^2}\right) R^{\mu\nu\lambda\sigma} \right]$

Einstein-Hilbert Recovers IR

UV modifications, and non-local gravitational interactions

Known as IDG (infinite derivative gravity)

Salient features

- * Dynamical degrees of freedom remains the same from UV <-> IR, but no Ghosts
- * Unitarity constraints the form factors F's around a given background

* Non-singular Static & Rotating, No-Horizon, compact objects as planets, as heavy as billion solar masses can be formed: Testable features at LIGO/VIRGO/ KAGRA

* Non-locality plays an important role in smearing blackhole singularity and emergence of a new scale in the IR

Non local Squishy Stars

 $r_{sch} = 2Gm$

 $r_{NL} \sim 2M_s^{-1} > r_{sch}$

 $C_{\mu\nu\lambda\sigma} \to \infty \text{ as } r \to 0$

Schwarzschild's blackhole Non-local, compact object in infinite derivative gravity Biswas+Gerwick+Koivisto+AM, PRL, 2011 [1110.5249] Biswas+Koshelev+AM, PRD, 2017, [1606.01250] Construction of ghost free conditions Koshelev+Marto+AM, PRD, 2017, [1606.01250] Construction of ghost free conditions Buoninfante+Koshelev+Lambiase+Marto+AM, JCAP, 2018 [1804.01895] Non-singular, Non-perturbative solutions Buoninfante+Cornell+Harmsen+Koshelev+Lambiase+Marto+AM, PRD, 2018 [1807.08896] Non-singular, ROTATING, Non-perturbative solutions AM+Stettinger [1811.00885] Non-singular, ROTATING, Non-perturbative solutions

Unitarity for AdS (3) massless +massive gravity

Part-2

Entangling matter via graviton

How do we know whether gravity is classical or Quantum?

Could you devise a TEST?

Bose+AM+Morley+Ulbricht+Toros+Paternostro+Geraci+Barker+Kim+Milburn Phys. Rev. Lett. (2017) [1707.06050]

Real versus virtual Graviton

Follows classical "equations of motion"

Virtual Graviton as a Quantum Mediator

Graviton Exchange

Off shell (Virtual)

 $P^{(0)}$ $P^{(2)}$ $\Pi(k^2)$

Graviton propagator in terms of spin projection operators in 4d, Minkowski space time

Biswas+Koivisto+AM, 1302.0532

World Record in Quantum Superposition

If you *decohere* (kill superpositions) nonclassical features of quantum mechanics go away. Even old quantum mechanics: the right difference between energy levels obtained only through a superposition of localized states.

Local Operations & Classical Communication

Cannot create entanglement

Nielsen, PRL (1999)

Separable state remains Separable (Cannot create entanglement)

2 Masses & Virtual Graviton

A Schematic of two matter-wave interferometers near each other

Consider two neutral test masses *held* in a superposition, each exactly as a path encoded qubit (states |L> and |R>), near each other.

Evolving the Quantum Phase

where

$$\phi_{RL} \sim \frac{Gm_1m_2\tau}{\hbar(d-\Delta x)}, \phi_{LR} \sim \frac{Gm_1m_2\tau}{\hbar(d+\Delta x)},$$
$$\phi_{LL} = \phi_{RR} \sim \frac{Gm_1m_2\tau}{\hbar d}$$

Witnessing Quantum Gravity

A newly proposed experiment could confirm that gravity is a quantum force. It involves two microdiamonds, each placed in a quantum "superposition" of two possible locations. If gravity is quantum, the gravitational attraction between the diamonds will entangle their states. If it's not, the diamonds won't become entangled.

Step 2: Gravitational interaction induced phase accumulation on the joint states of masses 1 &2 (*mapped to nuclear spins*)

Step 3: SG recombination: $|L,\uparrow\rangle_j \to |C,\uparrow\rangle_j, \; |R,\downarrow\rangle_j \to |C,\downarrow\rangle_j$

Measuring Spin Correlation

$$\begin{split} |\Psi(t=t_{\mathrm{End}})\rangle_{12} &= \frac{1}{\sqrt{2}} \{|\uparrow\rangle_1 \frac{1}{\sqrt{2}} (|\uparrow\rangle_2 + e^{i\Delta\phi_{LR}}|\downarrow\rangle_2) \\ &+ |\downarrow\rangle_1 \frac{1}{\sqrt{2}} (e^{i\Delta\phi_{RL}}|\uparrow\rangle_2 + |\downarrow\rangle_2)\}|C\rangle_1|C\rangle_2 \\ \text{through the correlations:} \\ \mathcal{W} &= |\langle\sigma_x^{(1)}\otimes\sigma_z^{(2)}\rangle - \langle\sigma_y^{(1)}\otimes\sigma_z^{(2)}\rangle| \end{split}$$

we have

$$\Delta \phi_{RL} \sim \frac{Gm_1m_2\tau}{\hbar(d-\Delta x)} >> \Delta \phi_{LR}, \Delta \phi_{LL}, \Delta \phi_{RR}$$

For mass ~ $10^{(-14)}$ kg (microspheres), separation at closest approach of the masses ~ 200 microns (to prevent Casimir interaction), **time ~ 1 seconds**, gives: Scale of superposition ~ 100 microns, **Delta phi_{RL} ~ 1**

Planck's Constant fights Newton's Constant!

Protocol

Spin Entanglement Witness:

Step 1: SG splitting:

$$|C\rangle_j \frac{1}{\sqrt{2}}(|\uparrow\rangle_j + |\downarrow\rangle_j) \rightarrow \frac{1}{\sqrt{2}}(|L,\uparrow\rangle_j + |R,\downarrow\rangle_j)$$

Step 2: Gravitational interaction induced phase accumulation on the joint states of masses 1 & 2 (*mapped to nuclear spins*)

Step 3: SG recombination: $|L,\uparrow
angle_j o |C,\uparrow
angle_j,\;|R,\downarrow
angle_j o |C,\downarrow
angle_j$

Step 4: Witness spin entangled state:

$$\begin{split} |\Psi(t=t_{\rm End})\rangle_{12} &= \frac{1}{\sqrt{2}} \{|\uparrow\rangle_1 \frac{1}{\sqrt{2}} (|\uparrow\rangle_2 + e^{i\Delta\phi_{LR}}|\downarrow\rangle_2) \\ &+ |\downarrow\rangle_1 \frac{1}{\sqrt{2}} (e^{i\Delta\phi_{RL}}|\uparrow\rangle_2 + |\downarrow\rangle_2) \} |C\rangle_1 |C\rangle_2 \end{split}$$

through the correlations:

$$\mathcal{W} = |\langle \sigma_x^{(1)} \otimes \sigma_z^{(2)} \rangle - \langle \sigma_y^{(1)} \otimes \sigma_z^{(2)} \rangle|$$

Conclusion

Bose+AM+Morley+Ulbricht+Toros+Paternostro+Geraci+Barker+Kim+Milburn, PRL (2017) [1707.06050]

Many atom/laser optics groups are thinking seriously about our proposal, inspite of experimental challenges. There is a proposal to test it at IBM Quantum Computer...

Extra Slides

How can we increase the scale of the superposition?

Free particle in an inhomogeneous magnetic field (acceleration +a or -a)

Gravity is Quantum

Graviton must obey the quantum superposition principle

Graviton as a mediator ought to be off shell

Virtual communication or Quantum communication via off shell mediator

Local coupling

Local coupling

Graviton can entangle 2 masses

Shinpei Kobayashi

Tokyo Gakugei University

"Algebraic construction of solutions in noncommutative gravity and squeezed coherent state"

(10+5 min.)

[JGRG28 (2018) 110710]

ALGEBRAIC CONSTRUCTION OF SOLUTIONS IN NONCOMMUTATIVE GRAVITY AND SQUEEZED COHERENT STATE

SHINPEI KOBAYASHI (TOKYO GAKUGEI UNIVERSITY) AND TSUGUHIKO ASAKAWA (MAEBASHI INST. OF TECH.)

JGRG28 @ Rikkyo University, November 5–9, 2018

QUANTUM GRAVITY AND NONCOMMUTATIVITY

- quantum gravity: some candidates
 - string theory, causal dynamical triangulation, ...
- noncommutativity appears: $[x, y] = i\theta \leftarrow Moyal plane$
 - string length, D2-brane with flux and more
- minimal length and noncommutativity indicate:
 - discretized spacetime (Ueda-SK [PA7])
 - dimensional flow (Takagi-SK-Sano [PB8])
 - nontrivial solutions ← algebraic calculation is powerful

OPERATOR ALGEBRA & FUNCTIONS WITH DEFORMED PRODUCT

- Operators on the Moyal plane
 - \rightarrow all fields can be seen as operators based on

$$[\hat{x}, \hat{y}] = i\theta \iff [\hat{z}, \hat{\bar{z}}] = 1 \left(\hat{z} = \frac{\hat{x} + i\hat{y}}{\sqrt{2\theta}}, \hat{\bar{z}} = \frac{\hat{x} - i\hat{y}}{\sqrt{2\theta}}\right)$$

Functions with deformed product (e.g., Wick-Voros product)

$$(f \star g)(z, \bar{z}) = \exp\left(\frac{\partial}{\partial \bar{z}'} \frac{\partial}{\partial z''}\right) f(z', \bar{z}')g(z'', \bar{z}'')\Big|_{z'=z''=z}$$

$$[z, \bar{z}]_{\star} = z \star \bar{z} - \bar{z} \star z = 1$$

HOW TO USE OPERATORS: ANALOGY TO QUANTUM MECHANICS

$$\mathsf{QM} \begin{bmatrix} [x, p] = i\hbar & [a, a^{\dagger}] = 1\\ \hat{a} = \frac{\hat{x} + i\hat{p}}{\sqrt{2\hbar}} & \hat{a}^{\dagger} = \frac{\hat{x} - i\hat{p}}{\sqrt{2\hbar}} & \hat{N} = \hat{a}^{\dagger}\hat{a} = \frac{\hat{x}^2 + \hat{p}^2}{2\hbar} \\ & \bullet & \mathsf{N} \mid n \rangle = n \mid n \rangle \quad \text{any operator is written as} \quad \hat{O} = \sum_{m,n} C_{mn} \mid m \rangle \langle n \mid n \rangle \\ \mathsf{NCG} \begin{bmatrix} [x, y] = i\theta & [z, z^{\dagger}] = 1\\ \hat{z} = \frac{\hat{x} + i\hat{y}}{\sqrt{2\theta}} & \hat{z}^{\dagger} = \frac{\hat{x} - i\hat{y}}{\sqrt{2\theta}} & \hat{N} = \hat{z}^{\dagger}\hat{z} = \frac{\hat{x}^2 + \hat{y}^2}{2\theta} \\ \mathsf{all circularly symmetric operators} & \hat{O} = \sum_{n} C_n \mid n \rangle \langle n \mid n \rangle \\ \mathsf{and circularly symmetric operators} & \hat{O} = \sum_{n} C_n \mid n \rangle \langle n \mid n \rangle \\ \mathsf{and circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And circularly symmetric operators} & \mathsf{And circularly symmetric operators} \\ \mathsf{And$$

projection operator

MAP FROM OPERATOR TO FUNCTION: WEYL-WIGNER CORRESPONDENCE

e.g., projection operator \rightarrow generalized Gaussian function

$$|n\rangle\langle n| \quad \longleftrightarrow \quad f = \frac{1}{2\pi\theta(2\theta)^{n/2}}r^{2n}e^{-r^2/2\theta}$$

 $(\rightarrow$ BH with scalar & Gaussian source (Sadohara-SK [PB6]))

FROM QM TO NC GRAVITY: "NUMBER" STATE = CONCENTRIC CUTTING OF MOYAL PLANE

 $\hat{p}_n \equiv |n\rangle \langle n|$: projection operator radius $R \sim \sqrt{2N\theta}$ Each annulus has the area $2\pi\theta$

TWO GENERALIZATIONS: TRANSLATION AND SQUEEZEING

- many nontrivial solutions in NC gravity [Asakawa-SK 2010]
 - \leftarrow circularly symmetric with centers at the origin
- two generalizations
 - translation
 - \rightarrow coherent state
 - squeezing
 - → squeezed state
 & time-dependent harmonic oscillator

COHERENT STATES AND TRANSLATION OF SOLUTIONS

coherent state

 $a|\alpha\rangle=\alpha|\alpha\rangle$: eigenstate of annihilation operator

- displacement operator $|\alpha\rangle = e^{\alpha \hat{a}^{\dagger} - \alpha^{*} \hat{a}} |0\rangle \equiv D(\alpha)|0\rangle$ $D(\alpha)\hat{a}D(\alpha)^{\dagger} = \hat{a} - \alpha$: displacement in complex plane
- wave function (e.g., ground state) $\varphi(\alpha; x) \propto \exp\left\{-\frac{m\omega}{2\hbar} \left(x - \sqrt{\frac{2\hbar}{m\omega}} \operatorname{Re}(\alpha)\right)^2 + i\sqrt{\frac{2m\omega}{\hbar}} \operatorname{Im}(\alpha)x\right\}$

DISPLACED PROJECTION OPERATOR AND TRANSLATION OF SOLUTIONS

- translation in complex plane (QM) $\langle x_{\alpha} \rangle \sim \operatorname{Re}(\alpha), \quad \langle p_{\alpha} \rangle \sim \operatorname{Im}(\alpha)$
- translation in xy-plane (NC gravity) $\langle x_{\alpha} \rangle \sim \operatorname{Re}(\alpha) = x_0, \quad \langle y_{\alpha} \rangle \sim \operatorname{Im}(\alpha) = y_0$ $\left(\alpha = \frac{z}{\sqrt{2\theta}} = \frac{x_0 + iy_0}{\sqrt{2\theta}}\right)$
- displaced projection operator: $\hat{p}_n(\alpha) = D(\alpha) |n\rangle \langle n| D(\alpha)^{\dagger} = |\alpha; n\rangle \langle \alpha; n|$

FEATURES OF DISPLACED PROJECTION **OPERATOR**

• orthogonal:
$$\hat{p}_m(\alpha)\hat{p}_n(\alpha) = \delta_{mn}\hat{p}_n(\alpha)$$

• completeness for
$$n$$
: $\sum_{n=0}^{\infty} \hat{p}_n(\alpha) = 1$
• overcomplete for α : $\frac{1}{\pi} \int d^2 \alpha \ \hat{p}_n(\alpha) = 1$
 \rightarrow multi BH sln?

APPLICATION: SOLUTIONS OF NC GRAVITY

• noncommutative gravity with large- θ

$$S = -\frac{\Lambda}{\kappa^2} \int d^3x \sqrt{-g}_{\star} = -\frac{\Lambda}{\kappa^2} \int d^3x \frac{1}{3!} \epsilon_{abc} \epsilon^{\mu\nu\rho} E^a_{\mu} \star E^b_{\nu} \star E^c_{\rho}$$

- diagonal solution using projection operator $E_i^i = \hat{p}_i(\alpha) = |\alpha; i\rangle \langle \alpha; i|$ (i = 0, 1, 2)
- diagonal solution using Clifford algebra with arbitrary size

$$E_0^0 = \gamma^3, \ E_1^1 = \gamma^1, \ E_2^2 = \gamma^2 \ \{ \gamma^{\mathsf{i}} \}: \text{Gamma matrices}$$
$$\blacksquare ds^2 = Ce^{-\frac{(x-x_0)^2 + (y-y_0)^2}{2\theta}} \eta_{\mu\nu} dx^{\mu} dx^{\nu}$$

SQUEEZED STATES AND SQUEEZING OF SOLUTIONS

squeezed state

$$\hat{b}|\zeta\rangle = \zeta|\zeta\rangle \quad \hat{b} = \mu\hat{a} + \nu\hat{a}^{\dagger} \ (|\mu|^2 - |\nu|^2 = 1)$$

squeezing operator
$$\begin{aligned} |\zeta\rangle &= e^{\frac{\zeta}{2}(\hat{a}^2 - \hat{a}^{\dagger 2})} |0\rangle \equiv S(\zeta)|0\rangle \\ S(\zeta)\hat{a}S(\zeta)^{\dagger} &= \hat{a}\cosh\zeta - \hat{a}^{\dagger}\sinh\zeta \\ &= \hat{x}e^{-\zeta} + i\hat{p}e^{\zeta} \quad \leftarrow \text{squeezed} \\ &\quad \langle x\rangle \sim xe^{-\zeta}, \quad \langle p\rangle \sim pe^{\zeta} \end{aligned}$$

squeezing parameter

DISPLACEMENT OPERATOR AND ISOMETRY

• unitary transformation by displacement operator $\hat{p}_n(\alpha) = D(\alpha)|n\rangle\langle n|D(\alpha)^{\dagger} = |\alpha, n\rangle\langle \alpha, n|$ $\varphi_n(\alpha; x) = \langle x|\alpha; n\rangle = \langle x|D(\alpha)|n\rangle$

translation symmetry
 isometry of the Moyal plane

- There is Weyl-Wigner correspondence
 - \rightarrow function counterpart exists: translated Gaussian function

SQUEEZING OPERATOR AND ISOMETRY

- unitary transformation by squeezing operator $\hat{p}_n(0,\zeta) \equiv S(\zeta)D(0)|n\rangle\langle n|D(0)^{\dagger}S(\zeta)^{\dagger} = |0,\zeta;n\rangle\langle 0,\zeta;n|$ $\varphi_n(0,\zeta;x) = \langle x|S(\zeta)D(0)|n\rangle$
- squeezing \neq isometry of the Moyal plane \rightarrow \rightarrow
- Is there Weyl-Wigner correspondence? squeezed function ⇒ ?

TIME-DEPENDENT "HARMONIC OSCILLATOR"

- time-dependent creation and annihilation operators

$$\begin{split} \hat{a} &= \sqrt{\frac{1}{\theta k^{1/2}}} \left\{ \left[\frac{\sqrt{k}}{2\rho} + i\frac{2B\rho - \dot{\rho}}{2A} \right] \left(\hat{x} - x_p(t) \right) + i\rho(\hat{y} - y_p(t)) \right\} \\ \hat{a}^{\dagger} &= \sqrt{\frac{1}{\theta k^{1/2}}} \left\{ \left[\frac{\sqrt{k}}{2\rho} - i\frac{2B\rho - \dot{\rho}}{2A} \right] \left(\hat{x} - x_p(t) \right) - i\rho(\hat{y} - y_p(t)) \right\} \end{split}$$

They satisfy time-independent commutation relation:

$$[\hat{a}, \hat{a}^{\dagger}] = 1$$

LEWIS-RIESENFELD METHOD: SOLVING TIME-DEPENDENT HO

- time-dependent Schroedinger equation: $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$
- invariant operator \hat{I} : $\frac{d\hat{I}}{dt} = \frac{\partial\hat{I}}{\partial t} + \frac{1}{i\hbar}[\hat{I},\hat{H}] = 0$
- eigenvalue problem: $\begin{cases} \hat{I}\phi_n(x,p,t) = \lambda_n\phi_n(x,p,t) \\ \psi(x,p,t) = e^{i\epsilon(t)}\phi(x,p,t) \\ \hbar\dot{\epsilon} = \langle \phi_n(t) | \left(i\hbar\frac{\partial}{\partial t} \hat{H}\right) | \phi_n(t) \rangle \end{cases}$
- time-dependent solution can be obtained

 \rightarrow e.g., Caldirola-Kanai oscillator $\hat{H} = A \ e^{\gamma t} \hat{x}^2 + B \ e^{-\gamma t} \hat{p}^2$

SUMMARY

- A gravity theory based on noncommutative geometry
- Product of functions is deformed
 → algebraic method using operators is useful
- Extension to more general solutions

 - squeezing of functions \$\x
 squeezed state

time-dependent HO with
appropriate identification

future work: quantum diffeo and function counterpart?
 → check with spherical D2-brane and fuzzy sphere

Yota Watanabe

Kavli IPMU, University of Tokyo

"Anisotropy problem in Horava-Lifshitz gravity" (10+5 min.)

[JGRG28 (2018) 110711]

Anisotropy problem in Hořava-Lifshitz gravity

Yota Watanabe (Kavli IPMU, U Tokyo) JGRG28@Rikkyo, 7 Nov 2018

Ongoing work based on discussion with S. Mukohyama

Outline

- Hořava-Lifshitz gravity
- As an alternative to inflation
- Kinetic eq. from action
- Kinetic eq. for Lifshitz scalar

Hořava-Lifshitz gravity (HL)

HL: a candidate of quantum gavity achieved by Lorentz breaking $(t \rightarrow b^3 t, \vec{x} \rightarrow b\vec{x}) @ E \ge M$ Propagator $\sim \frac{1}{\omega^2 - k^6/M^4}$: more convergent Renormalizability has been shown Barvinsky, Blas, in minimal setup N = N(t)

Foliation-preserving diffeo.

GR: non-renormalizable

 $t \to t'(t), \vec{x} \to \vec{x}'(t, \vec{x})$

- No local Hamiltonian constraint
- 2+1 DoF: scalar graviton behaves as dark matter

Mukohyama 0905.3563

Hořava 0901.3775

Herrero-Valea, Sibiryakov, Steinwachs 1512.02250

HL as an alternative to inflation

Vector perturbations in HL

 \succ Consider the action of HL gravity & vector field A_i

- Photons are described by distribution func. $f(x^{\mu}, p_i)$ Need evolution eq. for f
- In ordinary cases f obeys the Boltzmann eq. in kinetic theory derived from 1st principle

Derivation of kinetic eq.

Relativistic kinetic eq.

 $\left[p^{\mu}\partial_{\mu} + p^{\mu}p_{\nu}\Gamma^{\nu}_{\mu i}\frac{\partial}{\partial p_{i}}\right]f \simeq \text{(interactions, corrections)}$

Method: use Wigner func.

de Groot, van Leeuwen, van Weert (1980)

 $\tilde{f}_{\text{flat}}(x^{\mu}, p_i) = \int d^3 r \, e^{-\frac{i}{\hbar}r^i p_i} \left\langle :\phi\left(x + \frac{r}{2}\right)\phi\left(x - \frac{r}{2}\right) : \right\rangle$

- Known to systematically derive interaction, quantum correction & field-theoretic correction terms
- Formalism for curved spacetime is developed Winter (1985) Calzetta, Habib, Hu (1988) Fonarev 9309005 Antonsen 9701182

Review: for relativistic real scalar

Friedrich, Prokopec 1805.02767 based on 3+1 decomposition

9

Π

(

Wigner func. on curved spacetime

$$X, Y = \left\{ \phi, \frac{\Pi}{\sqrt{\gamma}} = \partial_{\perp} \phi \right\}$$
$$= \sqrt{\gamma} \int d^{3}r \ e^{-\frac{i}{\hbar}r^{i}p_{i}} \left\langle : \left[e^{\frac{r^{i}}{2}\nabla_{i}^{H}}X(x^{\mu}) \right] \left[e^{-\frac{r^{i}}{2}\nabla_{i}^{H}}Y(x^{\mu}) \right] : \right\rangle$$
$$f_{1}^{+} = \frac{1}{2\hbar} \left[\frac{\omega}{\hbar}F_{\phi\phi} + \frac{\hbar}{\omega}F_{\Pi\Pi} \right] = \left(1 + \frac{r^{i}}{2}\nabla_{i} + \frac{r^{i}r^{j}}{8}\nabla_{i}\nabla_{j} + \cdots \right) X$$
$$f_{1}^{-} = \frac{i}{2\hbar} \left[F_{\Pi\phi} - F_{\phi\Pi} \right]$$
$$f_{2} = \frac{1}{2\hbar} \left[\frac{\omega}{\hbar}F_{\phi\phi} - \frac{\hbar}{\omega}F_{\Pi\Pi} \right]$$
$$f_{3} = \frac{i}{2\hbar} \left[F_{\Pi\phi} + F_{\phi\Pi} \right]$$

Review: for relativistic real scalar

Friedrich, Prokopec 1805.02767 based on 3+1 decomposition

$$T_{\perp\perp} = \frac{1}{\sqrt{\gamma}} \int \frac{d^3 p}{(2\pi\hbar)^3} \omega f_1 + \mathcal{O}(\hbar^2) \qquad f_1 = f_1^+ + f_1^-$$
$$T_{\perp i} = \frac{1}{\sqrt{\gamma}} \int \frac{d^3 p}{(2\pi\hbar)^3} p_i f_1 + \mathcal{O}(\hbar)$$
$$T_{ij} = \frac{1}{\sqrt{\gamma}} \int \frac{d^3 p}{(2\pi\hbar)^3} \frac{p_i p_j}{\omega} f_1 + \mathcal{O}(f_2) + \mathcal{O}(\hbar)$$

 f_1 : classical distribution func.

 f_2 , f_3 : field-theoretic corrections

≻ Calculate $\partial_t f$ using EOM: $\Box \phi$ =(int.)

 $= \left[p^{\mu} \partial_{\mu} + p^{\mu} p_{\nu} \Gamma^{\nu}_{\mu i} \frac{\partial}{\partial p_{i}} \right] f_{1} \simeq \text{(interactions, corrections)}_{_{7/9}}$

Kinetic eq. for Lifshitz matter

> Apply the method to Lifshitz matter Final goal: Vector with $\omega^2 \simeq p^6/M^4$ (called z = 3)

1st step: Scalar with $\omega^2 \simeq p^4/M^2$ (called z = 2) > EOM for N = N(t)

$$\Box \phi + \frac{\hbar^2}{M^2} \Delta^2 \phi = 0$$

> New result:

Kinetic eq. for z = 2 Lifshitz scalar with N = N(t)

$$\left[p^{\mu}\partial_{\mu} + p^{\mu}p_{\nu}\Gamma^{\nu}_{\mu i}\frac{\partial}{\partial p_{i}} - \frac{4}{M^{2}}p^{2}p^{i}\left(\nabla_{i} + {}^{(3)}\Gamma^{k}_{ij}p_{k}\frac{\partial}{\partial p_{j}}\right)\right]f_{1} \simeq 0$$

RHS: interactions, $O(\hbar)$, field-theoretic corrections ^{8/9}

Summary & discussion

>HL: candidate of quantum gravity & alternative to inflation

 Alternative to inflation must solve isotropy problem in vector perturbation

Photons: described by distribution func. $f(x^{\mu}, p_i)$

• Derived kinetic eq. for f using Wigner func.

for z = 2 Lifshitz scalar as 1st step

≻Future work

- Obtain kinetic eq. for f for z = 3 vector
- Obtain eq. for vector pert. combining EOM for gravity
- See whether vorticity grows or not

 \rightarrow whether HL gravity can be an alternative to inflation or not

Tomotaka Kitamura

Waseda University

"Matter Scattering and Unitarity in Horava-Lifshitz Gravity" (10+5 min.)

[JGRG28 (2018) 110712]

Matter Scattering and Unitarity in Horava-Lifshitz Gravity

The 28th Workshop on General Relativity and Gravitation in Japan

Tomotaka Kitamura		Waseda University
with	Takeo Inami	SungKyunKwan U
	Keisuke Izumi	Nagoya University

1.Introduction

Tree-leve	l Unitarity
-----------	-------------

Tree-level Unitarity

No counterexample is known

C.H.Llewellyn Smith '73 J. M. Cornwall etal '73 Berends & Gastmans '74

tree-level unitarity	🔶 renorma	lizability
(e ⋅ g)	Tree-level unitarity	renormalizability
QED	0	0
Y-M theory	0	0
Weinberg-Salam model	0	0
4-Fermi theory	×	×
Einstein Gravity	× counter-exampl	e! X

Tree-level Unitarity

S-Matrix Unitarity and Renormalizability in HD theory

Abe, Inami, Izumi, Noumi, TK '18

Even the existence of Ghost

See Keisuke's Poster PB27

2. Horava-Lifshitz Gravity

2.Hořava-Lifshitz gravity

Remarks:

Two important problems in Hořava gravity

1. proof of renormalizability

(non-Projectable version $\ N=N({f x},t)$)

2.restoration of Lorentz sym in IR?

(Projectable version ${\cal N}={\cal N}(t)$)

(Non-Projectable version $N=N(\mathbf{x},t)$)

Tree-level unitarity and HLGravity

Remarks:

Tree-level unitarity

tree unitarity ~ renormalization

we use the way to check the tree unitarity instead of loop calculation

1.don't have to introduce Faddeev-Popov ghost

2.easier and simpler than loop calculation

As first step to study the renormalizability of non-Projectable HL Gravity, we try to check the correspondence in projectable HI gravity

Horava-Lifshitz gravity

z=3 (1+3) dim Projectable HL gravity

$$S_{pHL} = \frac{1}{2\kappa^2} \int dt dx^d \sqrt{\gamma} N \left(K_{ij} K^{ij} - \lambda K^2 - \mathscr{V}_{pHL} \right)$$

 $\mathscr{V}_{pHL}{}^{d=3} = 2\Lambda - \eta R^2 + \mu_1 R^2 + \mu_2 R_{ij} R^{ij} + \nu_1 R^3 + \nu_2 R R_{ij} R^{ij} + \nu_3 R^i{}_j R^j{}_k R^k{}_i + \nu_4 \nabla_i R \nabla^i R + \nu_5 \nabla_i R_{jk} \nabla^i R^{jk}$

Propagator

$$\langle h_{ij}(p)h_{kl}(-p) \rangle = 2\varkappa^{2} (\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}) \mathcal{P}_{tt}(p) - 2\varkappa^{2} \delta_{ij}\delta_{kl} \left[\mathcal{P}_{tt}(p) - \frac{1-\lambda}{1-3\lambda} \mathcal{P}_{s}(p) \right] - 2\varkappa^{2} (\delta_{ik}\hat{k}_{j}\hat{k}_{l} + \delta_{il}\hat{k}_{j}\hat{k}_{k} + \delta_{jk}\hat{k}_{i}\hat{k}_{l} + \delta_{jl}\hat{k}_{i}\hat{k}_{k}) \left[\mathcal{P}_{tt}(p) - \mathcal{P}_{1}(p) \right] + 2\varkappa^{2} (\delta_{ij}\hat{k}_{k}\hat{k}_{l} + \hat{k}_{i}\hat{k}_{j}\delta_{kl}) \left[\mathcal{P}_{tt}(p) - \mathcal{P}_{s}(p) \right] + 2\varkappa^{2} \hat{k}_{i}\hat{k}_{j}\hat{k}_{k}\hat{k}_{l} \left[\mathcal{P}_{tt}(p) + \frac{1-3\lambda}{1-\lambda} \mathcal{P}_{s}(p) - 4\mathcal{P}_{1}(p) + \frac{2\mathcal{P}_{2}(p)}{1-\lambda} \right] ,$$

$$\mathcal{P}_{tt} = \frac{1}{\omega^{2} + \nu_{4}k^{6}} , \qquad \qquad \mathcal{P}_{1} = \left[\omega^{2} + \frac{k^{6}}{2\sigma} \right]^{-1} ,$$

$$\mathcal{P}_{s} = \left[\omega^{2} + \frac{(8\nu_{4} + 3\nu_{5})(1-\lambda)}{1-3\lambda} k^{6} \right]^{-1} \qquad \qquad \mathcal{P}_{2} = \left[\omega^{2} + \frac{(1-\lambda)(1+\xi)}{\sigma} k^{6} \right]^{-1}$$

Lifshitz Scalar theory

z=1,2,3 (1+3) dim

Projectable Lifshitz scalar theory

$$S_{pLS} = \frac{1}{2\kappa^2} \int dt dx^3 \sqrt{g} \frac{1}{N} \left(\left(\partial_t \phi - N^i \partial_i \phi \right)^2 - \beta_1 \phi \left(D_i D^i \right) \phi - \beta_2 \phi \left(D_i D^i \right)^2 \phi - \beta_3 \phi \left(D_i D^i \right)^3 \phi \right)$$

Tree-level Unitarity in HL gravity

Two scattering states are considered in Lifshitz-type theory

All scattering systems are able to be studied in CM system thanks to Lorentz symmetry.

Lifshitz-type theory : Lorentz symmetry is violated

all scattering process are independent Need to study even laboratory-like system

Unitarity conditions of Lab-like system is more strict than CM-like system

Tree-level Unitarity in HL gravity

Unitarity bound for scattering amplitude

UB for scattering amplitude

Tree-level Unitarity in HL gravity

implication that the relation between renomalizability and tree-level unitarity

 Projectable Horava gravity
 →
 Renormalizable

 Appropriate gauge fixing ○

 Non-projrctable Horava gravity
 →
 Renormalizable?

 Appropriate gauge
 ×

Thank you!!

Satoshi Akagi

Nagoya University

"Massive spin-two theory in arbitrary background" (10+5 min.)

[JGRG28 (2018) 110713]

- Flat spacetime: Fierz-Pauli (FP) model, DoF=5 in 4 dim
- > Arbitrary background: Minimal coupled model, DoF=6=Spin2+ghost
- > Nonminimal coupling terms (NCT) are necessary

INTRODUCTION

Bottom-up approach [Buchbinder et al. (2000)]

 \blacktriangleright Small curvature approximation $R/m^2 \ll 1$, Leading order

$$S_{\text{general}} = \int d^{D}x \sqrt{-g} \left[\frac{1}{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}\mu_{3}\nu_{3}} \nabla_{\mu_{1}}h_{\mu_{2}\nu_{2}} \nabla_{\nu_{3}}h_{\mu_{3}\nu_{3}} + \frac{1}{2} \left\{ m^{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + \gamma_{1} R g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + \frac{\gamma_{2}}{2} \left(R^{\mu_{1}[\nu_{1}}g^{\nu_{2}]\mu_{2}} - R^{\mu_{2}[\nu_{1}}g^{\nu_{2}]\mu_{1}} \right) + \gamma_{3} R^{\mu_{1}\mu_{2}\nu_{1}\nu_{2}} \right\} h_{\mu_{1}\nu_{1}}h_{\mu_{2}\nu_{2}} + \mathcal{O}\left(R^{2}/m^{2} \right) \right]$$

> Three free parameters are allowed, Existence of completion is NOT guaranteed

Top-down approach [L. Bernard et al. (2015)]

Linearized dRGT model = A class of the completion

$$\gamma_1 = \frac{s_2 D - 1}{2(D - 1)}, \quad \gamma_2 = -4s_2, \quad \gamma_3 = 1$$

Only one free parameter, Existence of completion is guaranteed

INTRODUCTION

<u>Our research</u>

> Purpose: Identifying the most general class whose completion exists

Bottom-up

- > Possibility: Leading order NCTs may be constrained by higher order conditions
- Result: Linear order NCTs are constrained by fourth order condition

 $\gamma_1, \gamma_2, \gamma_3$: not constrained $\longrightarrow \gamma_1, \gamma_2$: not constrained, $\gamma_3 = 1$

Top-down

- > Possibility: Linearized dRGT model may be extended
- **Result:** A trivial extension of linearized dRGT coincides with bottom-up result

$$\gamma_1 = \frac{s_2 D - 1}{2(D - 1)}, \quad \gamma_2 = -4s_2, \quad \gamma_3 = 1 \longrightarrow \gamma_1, \quad \gamma_2 \text{ :not constrained}, \quad \gamma_3 = 1$$

> Conclusion: We identify the most general class of the leading order NCTs

NOTATION

Definition

- $\succ \eta^{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n}$: Anti-symmetrization of $\eta^{\mu_1 \nu_1} \eta^{\mu_2 \nu_2} \cdots \eta^{\mu_n \nu_n}$ with respect to $\nu_1 \nu_2 \cdots \nu_n$
- $\succ \eta^{\mu_1\nu_1\mu_2\nu_2} \equiv \eta^{\mu_1\nu_1}\eta^{\mu_2\nu_2} \eta^{\mu_1\nu_2}\eta^{\mu_2\nu_1}$
- $\succ \eta^{\mu_1\nu_1\mu_2\nu_2\mu_3\nu_3} \equiv \eta^{\mu_1\nu_1}\eta^{\mu_2\nu_2}\eta^{\mu_3\nu_3} + \eta^{\mu_1\nu_2}\eta^{\mu_2\nu_3}\eta^{\mu_3\nu_1} + \eta^{\mu_1\nu_3}\eta^{\mu_2\nu_1}\eta^{\mu_3\nu_2} \\ \eta^{\mu_1\nu_2}\eta^{\mu_2\nu_1}\eta^{\mu_3\nu_3} \eta^{\mu_1\nu_1}\eta^{\mu_2\nu_3}\eta^{\mu_3\nu_2} \eta^{\mu_1\nu_3}\eta^{\mu_2\nu_2}\eta^{\mu_3\nu_1}$

Fierz-Pauli theory

$$\mathcal{L}_{\rm FP} = -\frac{1}{2} \partial_{\lambda} h_{\mu\nu} \partial^{\lambda} h^{\mu\nu} + \partial_{\mu} h_{\nu\lambda} \partial^{\nu} h^{\mu\lambda} - \partial_{\mu} h^{\mu\nu} \partial_{\nu} h + \frac{1}{2} \partial_{\lambda} h \partial^{\lambda} h - \frac{1}{2} m^2 (h_{\mu\nu} h^{\mu\nu} - h^2)$$
$$= \frac{1}{2} \eta^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \partial_{\mu_1} h_{\mu_2 \nu_2} \partial_{\nu_1} h_{\mu_3 \nu_3} + \frac{m^2}{2} \eta^{\mu_1 \nu_1 \mu_2 \nu_2} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2}$$

 \blacktriangleright As the same way, we would like to define $g^{\mu_1\nu_1\mu_2\nu_2\cdots\mu_n\nu_n}$, $\delta^{i_1j_1i_2j_2\cdots i_nj_n}$.

CONSTRAINTS IN FP-MODEL

Fierz-Pauli model

> EoM of the FP model in flat spacetime,

$$E^{\mu\nu} \equiv -\eta^{\mu\nu\mu_1\nu_1\mu_2\nu_2}\partial_{\mu_1}\partial_{\nu_1}h_{\mu_2\nu_2} + m^2\eta^{\mu\nu\mu_1\nu_1}h_{\mu_1\nu_1} = 0$$

Lorentz covariant constraints:

$$\phi_{\text{vector}}^{\nu} \equiv \partial_{\mu} E^{\mu\nu} = m^2 \eta^{\mu\nu\mu_1\nu_1} \partial_{\mu} h_{\mu_1\nu_1} = 0 \qquad \qquad : \text{Vector constraints}$$

$$\phi_{\text{scalar}} \equiv \partial_{\mu}\partial_{\nu}E^{\mu\nu} + \frac{m^2}{D-2}\eta^{\mu\nu}E_{\mu\nu} = \frac{D-1}{D-2}m^4h = 0 \quad : \text{Scalar constraint}$$

- In the Furrier space, these constraints reduce the number of the polarizations
- > In curved background, minimal coupled model violate a scalar constraint
- > We construct the model in curved background so that a scalar constraint exists

IREDUCIBLE DECOMPOSITION Assumption $\begin{aligned} &= \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_3 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ m^2 g^{\mu_1 \nu_1 \mu_2 \nu_2} + \Delta^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \right]$ $\Rightarrow \Delta^{\mu_1 \nu_1 \mu_2 \nu_2} \text{ General covariant, First or higher order with respect to curvatures} \\ \Rightarrow \Delta^{\mu_1 \nu_1 \mu_2 \nu_2} \text{ does not contain any covariant derivatives acting on } h_{\mu\nu} \end{aligned}$

IRREDUCIBLE DECOMPOSITION

Irreducible decomposition

- \blacktriangleright Let us decompose $\Delta^{\mu_1\nu_1\mu_2\nu_2}$ into irreducible symmetric tensors.
- \blacktriangleright For any $\Delta^{\mu_1
 u_1 \mu_2
 u_2}$, NCT can be decomposed as follows,

 $\Delta^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2} = T^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2} + N^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2}.$

We would like to proceed our calculation with using the symmetries of these tensors, without giving the specific forms, until the specific forms become necessary.

CONDITION FOR GHOST-FREENESS

EoM in curved background

$$E^{\mu\nu} \equiv \left[-g^{(\mu\nu)\mu_1\nu_1\mu_2\nu_2} \nabla_{\mu_2} \nabla_{\nu_2} + m^2 g^{(\mu\nu)(\mu_1\nu_1)} + T^{(\mu\nu)(\mu_1\nu_1)} + N^{\mu\nu\mu_1\nu_1} \right] h_{\mu_1\nu_1} = 0$$

Vector constraints

$$\nabla_{\mu}E^{\mu\nu} = \left[m^{2}g^{(\mu\nu)(\mu_{1}\nu_{1})} + S^{(\mu\nu)(\mu_{1}\nu_{1})} + N^{\mu\nu\mu_{1}\nu_{1}} + Q^{\mu\nu\mu_{1}\nu_{1}}\right] \nabla_{\mu}h_{\mu_{1}\nu_{1}} + (\text{terms without any derivatives of }h) S^{\mu\nu\mu_{1}\nu_{1}} \equiv T^{\mu\nu\mu_{1}\nu_{1}} - R^{\mu\mu_{1}\nu\nu_{1}} + \left(R^{\mu[\nu}g^{\nu_{1}]\mu_{1}} - R^{\mu_{1}[\nu}g^{\nu_{1}]\mu}\right) \sim \square$$
$$Q^{\mu\nu\mu_{1}\nu_{1}} \equiv \frac{1}{2} \left[R^{\mu\nu}g^{\mu_{1}\nu_{1}} - g^{\mu\nu}R^{\mu_{1}\nu_{1}} + 2R^{\mu(\mu_{1}}g^{\nu_{1})\nu} - 2R^{\nu(\mu_{1}}g^{\nu_{1})\mu}\right]$$

- There are contributions from kinetic terms = Problem in arbitrary background
- \blacktriangleright For the existence of a scalar constraint, we have to restrict $S^{\mu\nu\mu_1\nu_1}$, $N^{\mu\nu\mu_1\nu_1}$

CONDITION FOR GHOST-FREENESS

Vector constraints

$$\nabla_{\mu} E^{\mu\nu} = \left[m^2 g^{(\mu\nu)(\mu_1\nu_1)} + S^{(\mu\nu)(\mu_1\nu_1)} + N^{\mu\nu\mu_1\nu_1} + Q^{\mu\nu\mu_1\nu_1} \right] \nabla_{\mu} h_{\mu_1\nu_1} + (\text{terms without any derivatives of } h)$$

Condition for ghost-freeness

$$\begin{split} & \text{Det}(V^{0}_{\ \nu}{}^{\mu 0}) = 0 : \text{Determinant is defined on } {}_{\nu}{}^{\mu} \\ & V^{\mu\nu\mu_{1}\nu_{1}} \equiv m^{2}g^{(\mu\nu)(\mu_{1}\nu_{1})} + \bar{S}^{\mu\nu\mu_{1}\nu_{1}} + N^{\mu\nu\mu_{1}\nu_{1}} + Q^{\mu\nu\mu_{1}\nu_{1}} \\ & \bar{S}^{\mu\nu\mu_{1}\nu_{1}} \equiv S^{(\mu\nu)(\mu_{1}\nu_{1})} : \text{Symmetric bases of the mixed tableau} \end{split}$$

PERTURBATIVE SOLUTION

Perturbation

- > We solve the condition ${\rm Det}(V^0_{\ \nu}{}^{\mu 0})=0$ perturbatively
- \blacktriangleright Let us expand tensors $S^{\mu
 u\mu_1
 u_1}, \; N^{\mu
 u\mu_1
 u_1}$ in powers of curvatures R/m^2 ,

$$\bar{S}^{\mu_1\nu_1\mu_2\nu_2} = \sum_{n=1}^{\infty} \frac{1}{m^{2(n-1)}} \bar{S}^{(n)\mu_1\nu_1\mu_2\nu_2} \qquad N^{\mu_1\nu_1\mu_2\nu_2} = \sum_{n=1}^{\infty} \frac{1}{m^{2(n-1)}} N^{(n)\mu_1\nu_1\mu_2\nu_2}$$

Superscript (n): n th-order terms with respect to curvature

(1) Leading order

 $0 = N^{(1)0000} + \bar{S}^{(1)0000} + Q^{0000} = N^{(1)0000} \longrightarrow N^{(1)\mu_1\nu_1\mu_2\nu_2} = 0$

- > There are no totally symmetric tensors satisfying the above condition
- \blacktriangleright There are no constrains on the mixed symmetric tensor $S^{(1)\mu_1
 u_1\mu_2
 u_2}$

 $S^{(1)\mu_1\nu_1\mu_2\nu_2} \;\; \Rightarrow \;\; Rg^{\mu_1\nu_1\mu_2\nu_2}, \;\; R^{\mu_1[\nu_1}g^{\nu_2]\mu_2} - R^{\mu_2[\nu_1}g^{\nu_2]\mu_1}, \;\; R^{\mu_1\mu_2\nu_1\nu_2}$

PERTURBATIVE SOLUTION

(2) Second order

 $N^{(2)0000} + \frac{1}{2}g^{00\mu\nu}R^0_{\mu}R^0_{\nu} = 0$

$$N^{(2)\mu_1\nu_1\mu_2\nu_2} = -\frac{1}{2}g^{\alpha\beta(\mu_1\nu_1}R^{\mu_2}_{\alpha}R^{\nu_2)}_{\beta}$$

> Full components of totally symmetric tensor $N^{(n)\mu_1\nu_1\mu_2\nu_2}$ are uniquely determined > Nonminimal coupling terms cannot be truncated at leading order

(3) Third order

 $N^{(3)0000} + \bar{S}^{(1)0\alpha\beta0} R^0_{\alpha} R^0_{\beta} = 0$

$$N^{(3)\mu_1\nu_1\mu_2\nu_2} = \frac{1}{2}S^{(1)\alpha\beta(\mu_1\nu_1}R^{\mu_2}_{\alpha}R^{\nu_2}_{\beta}$$

 \succ We find that $N^{\mu_1\nu_1\mu_2\nu_2}$ is not independent of $S^{\mu_1\nu_1\mu_2\nu_2}$

 \blacktriangleright At this time, there are no constraints on $S^{\mu_1
u_1\mu_2
u_2}$

PERTURBATIVE SOLUTION

(4) Fourth order

$$N^{(4)0000} + \left(\bar{S}^{(2)0\alpha\beta0} + N^{(2)0\alpha\beta0}\right) R^{0}_{\alpha} R^{0}_{\beta} + \frac{1}{8} g^{00\alpha\beta} \left(R^{2}\right)^{0}_{\alpha} \left(R^{2}\right)^{0}_{\beta} + \frac{2}{a^{00}} R^{0\nu} \bar{S}^{(1)0}_{\ \nu} {}^{\rho 0} \bar{S}^{(1)0}_{\ \rho} {}^{\sigma 0} R^{0}_{\sigma} = 0$$

- > Fourth order condition contains a noncovariant term
- > This term cannot be canceled by the other terms
- > This fact means that $S^{(1)\mu_1\nu_1\mu_2\nu_2}$ is constrained by the condition,

$$R^{0\nu}\bar{S}^{(1)0}{}_{\nu}{}^{\rho 0}\bar{S}^{(1)0}{}_{\sigma}{}^{\sigma 0}R^{0}_{\sigma} = g^{00}M^{0000}$$
 M^{0000} : Some covariant tensor

> This condition reduce the three free parameters of $S^{(1)\mu_1\nu_1\mu_2\nu_2}$ to the following two free parameters,

$$S^{(1)\mu_1\nu_1\mu_2\nu_2} = \gamma_1^{(1)} R g^{\mu_1\nu_1\mu_2\nu_2} + \frac{\gamma_2^{(1)}}{2} \left(R^{\mu_1[\nu_1} g^{\nu_2]\mu_2} - R^{\mu_2[\nu_1} g^{\nu_2]\mu_1} \right)$$

PERTURBATIVE SOLUTION

Resulting NCT in leading order

$$\begin{split} S_{\text{general}} &= \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_3} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ m^2 g^{\mu_1 \nu_1 \mu_2 \nu_2} + \gamma_1 R g^{\mu_1 \nu_1 \mu_2 \nu_2} \right. \\ &+ \frac{\gamma_2}{2} \left(R^{\mu_1 [\nu_1} g^{\nu_2] \mu_2} - R^{\mu_2 [\nu_1} g^{\nu_2] \mu_1} \right) + \gamma_3 R^{\mu_1 \mu_2 \nu_1 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} + \mathcal{O} \left(R^2 / m^2 \right) \Big] \end{split}$$

Leading order condition $\gamma_1, \gamma_2, \gamma_3$: not constrained Fourth order condition γ_1, γ_2 : not constrained, $\gamma_3 = 1$

Linearized dRGT model

$$\gamma_1 = \frac{s_2 D - 1}{2(D - 1)}, \quad \gamma_2 = -4s_2, \quad \gamma_3 = 1$$

Compatible with fourth order condition

However, there remains a difference by one free parameter

TRIVIAL EXTENSION

Trivial extension

 \succ Let us consider the model obtained by the replacement $m^2 \longrightarrow \mu^2(x)$: any local function

$$S' = \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \right]$$

The condition for ghost-freeness

I

$$\operatorname{Det}(V'^{0\mu\nu0}g_{\nu\rho}) = 0$$

$$V'^{0\mu\nu0} = \mu^2(x)g^{(0\mu)(\nu0)} + \bar{S'}^{0\mu\nu0} + N'^{0\mu\nu0} + Q^{0\mu\nu0}$$

> Although a derivative of $\mu^2(x)$ appears in $abla_\mu E^{\mu
u}$, it does not affect to the condition.

Once we obtain a ghost-free model with $m^2,~T^{\mu_1\nu_1\mu_2\nu_2}(m^2),~N^{\mu_1\nu_1\mu_2\nu_2}(m^2)$

A model with
$$\mu^2(x)$$
, $T^{\mu_1\nu_1\mu_2\nu_2}(\mu^2(x))$, $N^{\mu_1\nu_1\mu_2\nu_2}(\mu^2(x))$ is also ghost-free

TRIVIAL EXTENSION

Trivial extension of linearized dRGT model

$$\begin{split} & \blacktriangleright \text{ We obtain the trivial extension by replacing } m^2 \longrightarrow \mu^2(x) \\ S'_{\text{dRGT}} \equiv \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + \frac{s_2 D - 1}{2(D - 1)} R g^{\mu_1 \nu_1 \mu_2 \nu_2} \right. \\ & \left. - 2s_2 \left(R^{\mu_1 [\nu_1} g^{\nu_2] \mu_2} - R^{\mu_2 [\nu_1} g^{\nu_2] \mu_1} \right) + R^{\mu_1 \mu_2 \nu_1 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} + \mathcal{O} \left(R^2 / \mu^2(x) \right) \right] . \\ & \downarrow \qquad \mu^2(x) = m^2 + \alpha R + \mathcal{O} (R^2 / m^2) \\ S'_{\text{dRGT}} = \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ m^2 g^{\mu_1 \nu_1 \mu_2 \nu_2} + \gamma'_1 R g^{\mu_1 \nu_1 \mu_2 \nu_2} + \frac{\gamma'_2}{2} \left(R^{\mu_1 [\nu_1} g^{\nu_2] \mu_2} - R^{\mu_2 [\nu_1} g^{\nu_2] \mu_1} \right) + R^{\mu_1 \mu_2 \nu_1 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} + \mathcal{O} \left(R^2 / m^2 \right) \right] \\ & \gamma'_1 \equiv \alpha + \frac{s_2 D - 1}{2(D - 1)}, \quad \gamma'_2 \equiv -4s_2 \end{split}$$

 $\succ \gamma'_1, \gamma'_2$ are no longer related with each other \rightarrow Coincides with the Bottom-up result

SUMMARY

Summary

- In previous works, the linearized dRGT model seems a subclass of the bottom-up result based on the leading order condition.
- > We obtained a constraint on the leading order NCTs from the fourth order condition.
- > We found a trivial extension of the linearized dRGT model.
- > We confirmed the equivalence between the bottom-up result and the top-down result.

Future works

- > Confirmation of the correspondence beyond the leading order
- Derivative nonminimal coupling terms
- Spin-three extension (There is a work solving the leading order condition [M. Fukuma et al. (2016)])

THANK YOU FOR YOUR ATTENTION

INTRODUCTION

Linear theory of massive spin-two field

- Flat spacetime: Fierz-Pauli model, DoF=5 for D=4
- > Arbitrary background: Minimal coupled model, DoF=6=Spin2+ghost
- Nonminimal coupling terms (NCT) are necessary

Bottom-up approach [Buchbinder et.al. (2000)]

 \blacktriangleright Small curvature approximation $R/m^2 \ll 1$

$$S_{\text{general}} = \int d^{D}x \sqrt{-g} \left[\frac{1}{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}\mu_{3}\nu_{3}} \nabla_{\mu_{1}}h_{\mu_{2}\nu_{2}} \nabla_{\nu_{3}}h_{\mu_{3}\nu_{3}} + \frac{1}{2} \left\{ m^{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + \gamma_{1}Rg^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + \frac{\gamma_{2}}{2} \left(R^{\mu_{1}[\nu_{1}}g^{\nu_{2}]\mu_{2}} - R^{\mu_{2}[\nu_{1}}g^{\nu_{2}]\mu_{1}} \right) + \gamma_{3}R^{\mu_{1}\mu_{2}\nu_{1}\nu_{2}} \right\} h_{\mu_{1}\nu_{1}}h_{\mu_{2}\nu_{2}} + \mathcal{O}\left(R^{2}/m^{2}\right) \right]$$

- Three free parameters are allowed
- Existence of completion is NOT guaranteed

INTRODUCTION

Our research

Purpose: Identifying the most general class whose completion exists

Possibilities and results

Bottom-up: Leading order NCTs may be constrained by higher order conditions

Leading order condition

Fourth order condition

 $\gamma_1, \gamma_2, \gamma_3$: not constrained γ_1, γ_2 : not constrained, $\gamma_3 = 1$

Top-down: Linearized dRGT model may be extended

Original linearized dRGT

A trivial extension

 $\gamma_1 = \frac{s_2 D - 1}{2(D - 1)}, \quad \gamma_2 = -4s_2, \quad \gamma_3 = 1 \longrightarrow \gamma_1, \quad \gamma_2 \text{ :not constrained}, \quad \gamma_3 = 1$

Conclusion: We identify the most general class of the leading order NCTs

CONSTRAINTS IN FP-MODEL

Fierz-Pauli model

EoM of the FP model in flat spacetime,

$$E^{\mu\nu} \equiv -\eta^{\mu\nu\mu_1\nu_1\mu_2\nu_2}\partial_{\mu_1}\partial_{\nu_1}h_{\mu_2\nu_2} + m^2\eta^{\mu\nu\mu_1\nu_1}h_{\mu_1\nu_1} = 0$$

Lorentz covariant constraints:

(1) $\phi_{\text{vector}}^{\nu} \equiv \partial_{\mu} E^{\mu\nu} = m^2 \eta^{\mu\nu\mu_1\nu_1} \partial_{\mu} h_{\mu_1\nu_1} = 0$

: Vector constraints

constraint

(2)
$$\phi_{\text{scalar}} \equiv \partial_{\mu}\partial_{\nu}E^{\mu\nu} + \frac{m^2}{D-2}\eta^{\mu\nu}E_{\mu\nu} = \frac{D-1}{D-2}m^4h = 0$$
 : Scalar

- (3) $E_{\mu\nu}|_{\phi_{scalar}=0}^{\phi_{vector}=0} = (\Box m^2) h_{\mu\nu} = 0$
 - > In the Furrier space, Eq.(3) determine the dispersion relation.
 - > Eqs.(1), (2) can be regarded as constraints
 - > In the case of curved background, minimal coupled model violate a scalar constraint.

LAGRANGIAN ANALYSIS

Lagrangian analysis

- Lagrangian analysis = Method for counting DoF in lagrangian formulation
- Let us count DoF of Fierz-Pauli theory

Fierz-Pauli theory

$$E^{\mu\nu} \equiv -\eta^{\mu\nu\mu_1\nu_1\mu_2\nu_2}\partial_{\mu_1}\partial_{\nu_1}h_{\mu_2\nu_2} + m^2\eta^{\mu\nu\mu_1\nu_1}h_{\mu_1\nu_1} = 0$$

$$E^{ij} = \delta^{iji_1j_1}\ddot{h}_{i_1j_1} + (\text{terms without }\ddot{h})^{ij} = 0$$
(a)

$$\phi^{(1)\nu} \equiv E^{0\nu} = -\eta^{0\nu i_1\nu_1 i_2\nu_2} \partial_{i_1} \partial_{\nu_1} h_{i_2\nu_2} + m^2 \eta^{0\nu i_1\nu_1} h_{i_1\nu_1} = 0$$
 (b)

- \succ Eqs.(a) contain \ddot{h}_{ij}
- \succ Eqs.(b) do not contain any accelerations ightarrowAll the Eqs do not contain $\ddot{h}_{0\mu}$
- $ightarrow\ddot{h}_{0\mu}$ can be decided from time derivative of Eqs.(b)

LAGRANGIAN ANALYSIS

$$\phi^{(1)\nu} \equiv E^{0\nu} = -\eta^{0\nu i_1\nu_1 i_2\nu_2} \partial_{i_1} \partial_{\nu_1} h_{i_2\nu_2} + m^2 \eta^{0\nu i_1\nu_1} h_{i_1\nu_1} = 0$$
 (b)

Requiring ``consistency condition" of Eqs.(b):

$$\dot{\phi}^{(1)\nu} = 0$$
 . (c)

- \succ Eqs.(b) are satisfied in initial time \Rightarrow Eqs.(b) are valid in any time
- Eqs.(b) can be regarded as ``constraints" on initial values
- \blacktriangleright Equivalence on initial time: pprox

$$\phi^{(1)
u}pprox 0$$
 .

- > We continue this procedure until $\ddot{h}_{0\mu}$ appears in the equations
- \succ Counting the numbers of constraint \rightarrow DoF can be decided
- We would like to deform consistency condition (c)

LAGRANGIAN ANALYSIS

Consistency condition of Eqs.(b)

$$0 = \dot{\phi}^{(1)\nu} \approx \partial_{\mu} E^{\mu\nu} = m^2 \eta^{\mu\nu\mu_1\nu_1} \partial_{\mu} h_{\mu_1\nu_1} \equiv \phi^{(2)\nu}.$$
 (c')

 \succ Eqs.(c') can also be regarded as constraints Consistency condition of (c')

$$\dot{\phi}^{(2)i} = m^2 \ddot{h}_{0i} + (\text{terms without }\ddot{h}) = 0 \text{,} \qquad (d)$$

$$0 = \dot{\phi}^{(2)0} \approx \frac{D-1}{D-2} m^4 h \equiv \phi^{(3)}.$$
 (e)

- > From Eqs.(d), acceleration \ddot{h}_{0i} is decided
- > On the other hand, Eq.(e) is constraint
- \succ Consistency condition of (e) is also constraint: $\phi^{(4)}=\dot{\phi}^{(3)}pprox 0$
- > Finally, we obtain two vector constraints and two scalar constraints

Reconsideration

From Buchbinder's result, basis of linear order NCTs are given by,

$$Rg^{\mu_1\nu_1\mu_2\nu_2}, R^{\mu_1[\nu_1}g^{\nu_2]\mu_2} - R^{\mu_2[\nu_1}g^{\nu_2]\mu_1}, R^{\mu_1\mu_2\nu_1\nu_2}$$
 (a)

> All of the above terms have same symmetries as,

$$T^{\mu_1\nu_1\mu_2\nu_2} = -T^{\mu_2\nu_1\mu_1\nu_2} = -T^{\mu_1\nu_2\mu_2\nu_1} = T^{\mu_2\nu_2\mu_1\nu_1} \qquad T^{[\mu_1\nu_1\mu_2]\nu_2} = 0$$

- Those are symmetries corresponding to Young tableau:
- > Conversely, the terms in (a) are also the most general representation of $T^{\mu_1\nu_1\mu_2\nu_2}$ in leading order
- By only using these symmetries, we ought to show that the terms in (a) is not constrained in leading order

IRREDUCIBLE DECOMPOSITION

We consider the model with the nonderivative nonminimal coupling terms expressed by general tensor $\Delta^{\mu_1\nu_1\mu_2\nu_2}$ constructed by curvature and metric,

$$S = \int d^{D}x \sqrt{-g} \left[\frac{1}{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}\mu_{3}\nu_{3}} \nabla_{\mu_{1}}h_{\mu_{2}\nu_{2}} \nabla_{\nu_{1}}h_{\mu_{3}\nu_{3}} + \frac{1}{2} \left\{ m^{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + \Delta^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} \right\} h_{\mu_{1}\nu_{1}}h_{\mu_{2}\nu_{2}} \left\{ m^{2} g^{\mu_{1}\nu_{1}} + \Delta^{\mu_{1}\nu_{2}\nu_{2}} \right\} h_{\mu_{1}\nu_{1}}h_{\mu_{2}\nu_{2}} + \Delta^{\mu_{1}\nu_{2}}h_{\mu_{2}}$$

The tensor $\Delta^{\mu_1
u_1 \mu_2
u_2}$ can be decomposed as follows,

$$\begin{split} &\Delta^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2} = T^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2} + N^{\mu_1\nu_1\mu_2\nu_2}h_{\mu_1\nu_1}h_{\mu_2\nu_2}, \\ &T^{\mu_1\nu_1\mu_2\nu_2} = \frac{1}{2}\left(\Delta^{[\mu_1|\nu_1|\mu_2]\nu_2} - \Delta^{[\mu_1|\nu_2|\mu_2]\nu_1}\right) + \frac{1}{6}\left(\Delta^{\mu_1[\nu_1\nu_2]\mu_2} - \Delta^{\mu_2[\nu_1\nu_2]\mu_1}\right) + \frac{1}{3}\Delta^{[\nu_2\nu_1][\mu_1\mu_2]}, \\ &N^{\mu_1\nu_1\mu_2\nu_2} = \Delta^{((\mu_1\nu_1\mu_2\nu_2)} \\ &\Delta^{[\mu_1|\nu_1|\mu_2]\nu_2} \equiv \frac{1}{2}\left(\Delta^{\mu_1\nu_1\mu_2\nu_2} - \Delta^{\mu_2\nu_1\mu_1\nu_2}\right) \end{split}$$

 $\Delta^{(\mu_1 \nu_1 \mu_2 \nu_2)}$: perfect symmetrization of $\Delta^{\mu_1 \nu_1 \mu_2 \nu_2}$

LEMMA

Proposition

1. $D^{\mu_1
u_1 \mu_2
u_2}$ depends only on metric and its partial derivatives

2. $D^{\mu_1
u_1 \mu_2
u_2}$ is general covariant

 $\mathbf{3.}D^{0000}(g_{\mu
u})=0$ for any metric

For any $D^{\mu_1\nu_1\mu_2\nu_2}$ satisfying the above properties, we can show $D^{(\mu_1\nu_1\mu_2\nu_2)}=0$

Proof

> From assumption 3,
$$D^{0000}(g_{\mu\nu} + \delta g_{\mu\nu}) - D^{0000}(g_{\mu\nu}) = 0$$
 for any $\delta g_{\mu\nu}$

$$\blacktriangleright$$
 Taking $\delta g_{\mu
u}$ as $\delta g_{\mu
u} = \mathcal{L}_{\xi}g_{\mu
u} = 2
abla_{(\mu}\xi_{
u)}$

- \succ Using assumption 1 and commutativity $[\mathcal{L}_{\xi},\partial_{\mu}]=0$, $\mathcal{L}_{\xi}D^{0000}=0$
- > From assumption 2, $\mathcal{L}_{\xi}D^{0000} = \xi^{\alpha}\partial_{\alpha}D^{0000} 4D^{(\rho 000)}\partial_{\rho}\xi^{0}$.
- > Thus, $D^{(\rho 000)} = 0 \rightarrow$ Repeating this procedure, $D^{(\mu_1 \nu_1 \mu_2 \nu_2)} = 0$

DRGT MODEL

The action [C. de Rham et al. (2010)]

$$S_{\text{dRGT}}[g;f] = M_g^{D-2} \int d^D x \sqrt{-g} \left[R(g) - 2m^2 \sum_{n=0}^{D-1} \beta_n e_{(n)}(\mathcal{S}) \right],$$
$$e_{(n)}(\mathcal{S}) = \frac{1}{n!} \delta_{\mu_1}^{\nu_1} {}_{\mu_2}^{\nu_2} \cdots {}_{\mu_n}^{\nu_n} \mathcal{S}_{\nu_1}^{\mu_1} \mathcal{S}_{\nu_2}^{\mu_2} \cdots \mathcal{S}_{\nu_n}^{\mu_n}, \quad \mathcal{S}_{\nu}^{\mu} \equiv \sqrt{g^{-1} f}_{\nu}^{\mu}$$

> The potential terms have been tuned so that a ``scalar" constraint exists.

Scalar" constraint [S. Akagi and T. Mori (In preparation)]

$$\Psi \equiv \nabla_{\nu} \left(\mathcal{S}^{-1\nu}_{\ \rho} \nabla_{\mu} E^{\mu\rho} \right) + \sum_{n=1}^{D-1} \frac{\beta_n}{(n-1)!} \theta^{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n} \mathcal{S}_{\mu_2 \nu_2} \cdots \mathcal{S}_{\mu_n \nu_n} \left(\frac{\theta_{\mu_1 \nu_1} \theta_{\rho\sigma}}{D-2} - \theta_{\rho(\mu_1} \theta_{\nu_1)\sigma} \right) E^{\rho\sigma}$$

= (terms without $\partial_{\mu} \partial_{\nu} g_{\alpha\beta}$)
 $\theta^{\mu\nu} \equiv g^{\mu\nu} - \frac{g^{0\mu} g^{0\nu}}{g^{00}} \quad :$ Projection operator living in D-1 dim space
 $\theta^{\mu_1 \nu_1 \mu_2 \nu_2 \cdots \mu_n \nu_n} \equiv \delta^{\mu_1 \mu_2 \cdots \mu_n}_{\rho_1 \rho_2 \cdots \rho_n} \theta^{\rho_1 \nu_1} \theta^{\rho_2 \nu_2} \cdots \theta^{\rho_n \nu_n}$

LINEARIZATION

Complete NCT from dRGT [L. Bernard et al. (2015)]

$$E^{\mu\nu} \equiv G^{\mu\nu} + m^2 \sum_{n=0}^{D-1} \frac{\beta_n}{n!} g^{\mu\nu\mu_1\nu_1\cdots\mu_n\nu_n} \mathcal{S}_{\mu_1\nu_1}\cdots \mathcal{S}_{\mu_n\nu_n} = 0$$

- > Background EoM can be solved for $f \rightarrow$ denoting as f=f(g)
- > Substituting f=f(g) into the linearized action, we obtain,

$$S_{\text{dRGT}} \left[g + \frac{\sqrt{2}}{M_g^{(D-2)/2}} h \; ; \; f(g) \right]_{\text{linear}}$$

= $\int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ m^2 g^{\mu_1 \nu_1 \mu_2 \nu_2} + \frac{s_2 D - 1}{2(D-1)} R g^{\mu_1 \nu_1 \mu_2 \nu_2} - 2s_2 \left(R^{\mu_1 [\nu_1} g^{\nu_2] \mu_2} - R^{\mu_2 [\nu_1} g^{\nu_2] \mu_1} \right) + R^{\mu_1 \mu_2 \nu_1 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} + \mathcal{O} \left(R^2 / m^2 \right) \right]$

> This result is included in the bottom-up result by, $\gamma_1 = \frac{s_2 D - 1}{2(D-1)}, \ \gamma_2 = -4s_2$

CONDITION FOR GHOST-FREENESS

 $\operatorname{Det}(V^0_{\ \nu}{}^{\mu 0}) = 0 \qquad V^{0\mu\nu 0} \equiv m^2 g^{(0\mu)(\nu 0)} + \bar{S}^{0\mu\nu 0} + N^{0\mu\nu 0} + P^{0\mu\nu 0}$

Properties of decomposition into time+space direction $\theta^{\mu}_{\nu} \equiv \delta^{\mu}_{\nu} - \frac{g^{\mu 0}g^{0}_{\nu}}{g^{00}} \qquad g^{(0\mu)(\nu 0)} = -\frac{1}{2}g^{00}\theta^{\mu\nu}$ $\bar{S}^{0\mu\nu 0} = \theta^{\mu}_{\alpha}\bar{S}^{0\alpha\beta 0}\theta^{\nu}_{\beta}$

 $\hat{N}^{\mu\nu} \equiv N^{0\mu\nu0} \qquad \hat{S}^{\mu\nu} \equiv \bar{S}^{0\mu\nu0} \qquad [XY]^{\mu\nu} \equiv X^{\mu}_{\ \rho}Y^{\rho\nu}$

SCALAR CONSTRAINT

$$\begin{split} E^{\mu\nu} &= G^{\mu\nu} + m^2 \beta_0 g^{\mu\nu} + m^2 \beta_1 g^{\mu\nu\mu_1\nu_1} \mathcal{S}_{\mu_1\nu_1} \\ \nabla_{\mu} E^{\mu\nu} &= m^2 \beta_1 g^{\mu\nu\mu_1\nu_1} \nabla_{\mu} \mathcal{S}_{\mu_1\nu_1}. \\ \frac{1}{m^2 \beta_1} \nabla_{\nu} \left(\mathcal{S}^{-1\nu}_{\ \ \rho} \nabla_{\mu} E^{\mu\rho} \right) + \frac{1}{D-2} g_{\mu\nu} E^{\mu\nu} = \Phi + \Psi + \frac{D}{D-2} m^2 \beta_0 + \frac{D-1}{D-2} m^2 \beta_1 \mathcal{S} \end{split}$$
$$\Phi &= \frac{1}{2} \nabla_{\nu} \left(\mathcal{S}^{-1\mu\nu} \mathcal{S}^{-1\mu_1\nu_1} - \mathcal{S}^{-1\mu(\mu_1} \mathcal{S}^{-1\nu_1)\nu} \right) \cdot \nabla_{\mu} f_{\mu_1\nu_1} - \nabla_{\nu} \mathcal{S}^{-1[\nu}_{\ \ \rho} \cdot \nabla_{\mu} \mathcal{S}^{\mu]\rho} \\ &\equiv \frac{1}{2} \left(\mathcal{S}^{-1\mu\nu} \mathcal{S}^{-1\mu_1\nu_1} - \mathcal{S}^{-1\mu(\mu_1} \mathcal{S}^{-1\nu_1)\nu} \right) \nabla_{\nu} \nabla_{\mu} f_{\mu_1\nu_1} - \frac{1}{2} R^{\mu_1\mu_2\nu_1\nu_2} \mathcal{S}^{-1}_{\mu_1\nu_1} \mathcal{S}_{\mu_2\nu_2} = (\text{terms without } \partial_{\mu} \partial_{\nu} g_{\alpha\beta} \mathcal{S}^{\mu} \mathcal$$

COFACTOR EXPANSION

 $\operatorname{Det}(V^{0\mu\nu0}g_{\nu\rho}) = V^{0000}\operatorname{Det}_{\theta}(V^{0\mu\nu0}\theta_{\nu\rho}) - V^{0\ 00}_{\ \mu} V^{00\ 0}_{\ \nu} Y^{\mu\nu}_{\theta}(V^{0\alpha\beta0})$

$$Det_{\theta}(V^{0\mu\nu0}\theta_{\nu\rho}) \equiv \frac{1}{(D-1)!} \theta^{\mu_{2}\nu_{2}\cdots\mu_{D}\nu_{D}} V^{0}_{\mu_{2}\nu_{2}} \cdots V^{0}_{\mu_{D}\nu_{D}} \theta^{0}_{\mu_{D}\nu_{D}}$$
$$Y^{\mu\nu}_{\theta}(V^{0\alpha\beta0}) \equiv \frac{1}{(D-2)!} \theta^{\mu\nu\mu_{3}\nu_{3}\cdots\mu_{D}\nu_{D}} V^{0}_{\mu_{3}\nu_{3}} \cdots V^{0}_{\mu_{D}\nu_{D}} \theta^{0}_{\mu_{D}\nu_{D}}$$
$$\theta^{\mu}_{\nu} \equiv \delta^{\mu}_{\nu} - \frac{g^{\mu0}g^{0}_{\nu}}{g^{00}}$$

 Ψ

$$COFACTOR EXPANSION$$

$$Det(V^{0\mu\nu0}g_{\nu\rho}) = V^{0000}Det_{\theta}(V^{0\mu\nu0}\theta_{\nu\rho}) - V^{0}_{\mu}{}^{00}V^{00}_{\nu}{}^{0}Y^{\mu\nu}_{\theta}(V^{0\alpha\beta0})$$

$$Det_{\theta}(V^{0\mu\nu0}\theta_{\nu\rho}) \equiv \frac{1}{(D-1)!}\theta^{\mu_{2}\nu_{2}\cdots\mu_{D}\nu_{D}}V^{0}_{\mu_{2}\nu_{2}}\cdots V^{0}_{\mu_{D}\nu_{D}}$$

$$Y^{\mu\nu}_{\theta}(V^{0\alpha\beta0}) \equiv \frac{1}{(D-2)!}\theta^{\mu\nu\mu_{3}\nu_{3}\cdots\mu_{D}\nu_{D}}V^{0}_{\mu_{3}\nu_{3}}\cdots V^{0}_{\mu_{D}\nu_{D}}$$

$$V^{0\mu\nu0}_{\theta} = -\frac{m^{2}}{2}g^{00}\theta^{\mu\nu} + \Delta^{\mu\nu}.$$

$$\Delta^{\mu\nu} \equiv \bar{S}^{0\mu\nu0} + N^{0\mu\nu0} + Q^{0\mu\nu0}$$

$$\Delta^{00}_{\mu} + \sum_{n=0}^{\infty} \left(\frac{2}{m^{2}g^{00}}\right)^{n+1}\Delta^{0}_{\nu} \left[\theta(\Delta\theta)^{n}\right]^{\nu\mu}\Delta^{0}_{\mu} := 0$$

Re

 $N^{(1)\mu_1\nu_1\mu_2\nu_2} = 0$

$$\begin{split} N^{(2)\mu_1\nu_1\mu_2\nu_2} &= \frac{1}{2}g^{\alpha\beta(\mu_1\nu_1}R_{\alpha}^{\ \mu_2}R_{\beta}^{\ \nu_2)}\\ N^{(3)\mu_1\nu_1\mu_2\nu_2} &= -\frac{1}{2}S^{(1)\alpha\beta(\mu_1\nu_1}R_{\alpha}^{\mu_2}R_{\beta}^{\nu_2)} \end{split}$$

 $T^{(1)\mu_1\nu_1\mu_2\nu_2} = S^{(1)\mu_1\nu_1\mu_2\nu_2} + R^{\mu_1\mu_2\nu_1\nu_2} - \left(R^{\mu_1[\nu_1}g^{\nu_2]\mu_2} - R^{\mu_2[\nu_1}g^{\nu_2]\mu_1}\right)$

$$\begin{array}{l} \textbf{PERTURBATIVE SOLUTION} \\ \textbf{Restriction up to fourth order} \\ S = \int d^{D}x \sqrt{-g} \left[\frac{1}{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}\mu_{3}\nu_{3}} \nabla_{\mu_{1}}h_{\mu_{2}\nu_{2}} \nabla_{\nu_{1}}h_{\mu_{3}\nu_{3}} + \frac{1}{2} \left\{ m^{2} g^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + T^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} + N^{\mu_{1}\nu_{1}\mu_{2}\nu_{2}} \right\} h_{\mu_{1}\nu_{1}}h_{\mu_{2}\nu_{2}} \end{array}$$

 $=\gamma_1^{(1)}Rg^{\mu_1\nu_1\mu_2\nu_2} + \frac{\gamma_2^{(1)} - 2}{2}\left(R^{\mu_1[\nu_1}g^{\nu_2]\mu_2} - R^{\mu_2[\nu_1}g^{\nu_2]\mu_1}\right) + R^{\mu_1\mu_2\nu_1\nu_2}$

SUMMARY

Relationships with other theories

- > Our result: γ_1, γ_2 :not constrained, $\gamma_3 = 1$
- ► Linearized dRGT model: $\gamma_1 = -\frac{1}{2} \left(\frac{1}{D-1} s \right), \quad \gamma_2 = -4s, \quad \gamma_3 = 1 \quad \rightarrow \text{Compatible}$
- String theory: $\gamma_1 = 0, \ \gamma_2 = -2, \ \gamma_3 = -1$ \rightarrow Incompatible
 - \rightarrow Derivative NCT? Background EoM?

Future works

- \blacktriangleright Higher order calculation \rightarrow More on relationship with linearized dRGT
- Simplification of constraint analysis of linearized dRGT
 - \rightarrow Minimal model has been completed
- > Derivative NCT → String theory? No-go? G-B dRGT?
- Higher spin extension

TRIVIAL EXTENSION

Trivial extension

 \blacktriangleright Let us consider the model obtained by the replacement $m^2 \longrightarrow \mu^2(x)$: any local function

$$S' = \int d^D x \sqrt{-g} \left[\frac{1}{2} g^{\mu_1 \nu_1 \mu_2 \nu_2 \mu_3 \nu_3} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\nu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_3 \nu_3} + \frac{1}{2} \left\{ \mu^2(x) g^{\mu_1 \nu_1 \mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} + T'^{\mu_1 \nu_1 \mu_2 \nu_2} + N'^{\mu_1 \nu_1 \mu_2 \nu_2} \right\} h_{\mu_1 \nu_1} h_{\mu_2 \nu_2} \nabla_{\mu_1} h_{\mu_2 \nu_2} \nabla_{\mu_2} h_{\mu_2} \nabla_{\mu_2} h_{\mu$$

The condition for ghost-freeness

Det
$$(V'^{0\mu\nu0}g_{\nu\rho}) = 0,$$

 $V'^{0\mu\nu0} = \mu^2(x)g^{(0\mu)(\nu0)} + \bar{S'}^{0\mu\nu0} + N'^{0\mu\nu0} + Q^{0\mu\nu0}$

- \succ Although a derivative of $\mu^2(x)$ appears in $abla_\mu E^{\mu
 u}$, it does not affect to the condition.
- > Once we obtain a ghost-free model with mass m^2 and tensors $T^{\mu_1\nu_1\mu_2\nu_2}(m^2)$, $N^{\mu_1\nu_1\mu_2\nu_2}(m^2)$, the model with local mass $\mu^2(x)$ and tensors $T^{\mu_1\nu_1\mu_2\nu_2}(\mu^2(x))$, $N^{\mu_1\nu_1\mu_2\nu_2}(\mu^2(x))$ are also ghost-free.

INTRODUCTION

Our research

- Possibility: 1. Leading order NCTs may be constrained by higher order conditions
 2. Linearized dRGT model may be extended
- Result: Linear order NCTs are constrained by fourth order condition A trivial extension of linearized dRGT coincides with bottom-up result

<u>Bottom-up result</u>	<u>Top-down result</u>
Leading order condition	Original linearized dRGT
$\gamma_1, \gamma_2, \gamma_3$: not constrained	$\gamma_1 = \frac{s_2 D - 1}{2(D - 1)}, \gamma_2 = -4s_2, \gamma_3 = 1$
	<u>A trivial extension</u>
$\gamma_1, \ \gamma_2 $:not constrained, $\gamma_3 = 1$	$\gamma_1, \ \gamma_2$:not constrained, $\gamma_3 = 1$

Session S3P2 16:30-18:15

[Chair: Masaru Shibata]

Shuntaro Mizuno

Yukawa Institute for Theoretical Physics

"Blue-tilted Primordial Gravitational Waves from Massive **Gravity"** (10+5 min.)

[JGRG28 (2018) 110714]

JGRG28 @ Rikkyo University

2018-11-7

Blue-tilted primordial gravitational waves from massive gravity

Shuntaro Mizuno (YITP, Kyoto)

with Tomohiro Fujita, Sachiko Kuroyanagi, Shinji Mukohyama

arXiv:1808.02381[gr-qc]

Interferometers and PGWs

Interferometers can get information of PGWs on various scales !!

Planck constrains $\Omega_{GW} \lesssim 10^{-15}$ on interferometers' scales !!

Interferometers and Blue-tilted PGWs

Can we obtain consistent and detectable blue-tilted PGWs ?

Blue-tilted PGWs from Supersolid inflation

• Supersolid inflation is based on effective field theory of inflation with both time diffs and space diffs.

Endlich, Nicolis, Wang `12, Nicolis, Penco, Rosen `14

interpreted as (Lorentz violating) massive gravity

 $m/H \sim$ degree of space diffs.

• Because of the mass term of the graviton, we can obtain Blue-tilted PGWs without violating the null energy condition

Cannone, Tasinato, Wands `14

massive gravity has Higuchi ghost in de Sitter space

when $0 < m^2 < 2H^2$

In supersolid inflation, n_T can be positive but still $\mathcal{O}(\epsilon)$...

PGWs from extended supersolid inflation Ricciardone, Tasinato `17

Extension with nonminimal coupling to introduce hierarchy between the degree of time diffs and spatial diffs .

But we still need some enhancement mechanism for detection

Minimal theory of massive gravity (MTMG) De Felice, Mukohyama `15 Properties of MTMG De Felice, Mukohyama `15 Cf. Oliosi's talk Having only 2 propagating d.o.f. (No scalar and vector gravitons) FRW background, tensor perturbations around it are same as the nonlinear massive gravity by de Rham, Gabadaze, Tolley (dRGT) Higuchi ghost and other ghosts are absent !!

Construction of MTMG

Obtaining Precursor theory by fixing vielbein in dRGT to be ADM one

Writing down the Hamiltonian based on the canonical variables

Imposing 2 constraints to obtain desirable d.o.f.

Set-up

- Decomposition and quantization of h_{ij} with $g_{ij} = a^2 \left[e^h\right]_{ij}$ $h_{ij} = \frac{2}{aM_{\text{Pl}}} \sum_{\lambda=+,\times} \int \frac{\mathrm{d}^3 k}{(2\pi)^3} e^{i\mathbf{k}\cdot\mathbf{x}} e^{\lambda}_{ij} \left[v_k^{\lambda}(\tau)\hat{a}_k^{\lambda} + \text{h.c.}\right],$
- Equation of motion for the mode function

$$v_k'' + \begin{bmatrix} k^2 + a^2 \mu^2 - \frac{a''}{a} \end{bmatrix} v_k = 0,$$

with $a(\tau) = \begin{cases} -1/(H_{inf}\tau) & (\tau < -\tau_r) \\ a_r \tau/\tau_r & (\tau > \tau_r) \end{cases} \quad \mu(\tau) = \begin{cases} m & (\tau < \tau_m) \\ 0 & (\tau > \tau_m) \end{cases}$
$$-\tau_r & \tau_r & \tau_m \end{cases}$$

inflation η radiation dom. radiation dom. $a(\tau)$
massive identify massive massless $\mu(\tau)$

Evolution – inflation era

$$v_k'' + \left[k^2 - \frac{1}{\tau^2}\left(\nu^2 - \frac{1}{4}\right)\right]v_k = 0 \qquad \nu \equiv \sqrt{\frac{9}{4} - \frac{m^2}{H_{\inf}^2}}$$

with Bunch-Davies vacuum initial condition

$$v_{k}(\tau) = \frac{\sqrt{-\pi\tau}}{2} H_{\nu}^{(1)}(-k\tau) \propto \tau^{\frac{1}{2}-\nu} k^{-\nu}$$

on super horizon scales

$$\implies \mathcal{P}_{\rm GW} \simeq \frac{2H_{\rm inf}^2}{\pi^2 M_{\rm Pl}^2} \left(\frac{k}{k_{\rm UV}}\right)^{3-2\nu} \text{for } k < k_{\rm UV} = a(\tau_r)H_{\rm inf}$$

Compared with the standard (massless) case, PGWs decrease due to the graviton mass during inflation !!

PGWs from extended supersolid inflation Ricciardone, Tasinato 17 Extension with nonminimal coupling to introduce hierarchy between the degree of time diffs and spatial diffs . GW spectrum vs LISA & LIGO Sens.Curves 10-6 LIGO O2 $n_T \simeq 3 - 2\nu$ IGO 05 LISA A2M 10-9 $\nu \equiv \sqrt{\frac{9}{4} - \frac{m^2}{H^2}} \,,$ 10-12 $h^2\Omega_{GW}$, qc=.84 10⁻¹⁵ $\frac{m}{H} = \mathcal{O}(1)$ is possible 10-18 with small ϵ 10-2 10-16 10-11 10-6 10-1 f[Hz]

But we still need some enhancement mechanism for detection
Graviton energy density

· Graviton energy density

$$T^{(\text{GW})}_{\mu\nu} = \frac{M_{\text{Pl}}^2}{4} \langle \partial_{\mu} h_{ij} \partial_{\nu} h_{ij} \rangle \implies \rho^{(\text{GW})} \propto \frac{1}{2a^2} (h'_{ij})^2 \qquad \text{(massless)}$$

(analogy with scalar field)

$$ho^{(\mathrm{GW})} \propto rac{1}{2a^2} (h_{ij}')^2 + rac{1}{2} m^2 h_{ij}^2$$

Massive phase

$$\rho_k^{\rm GW} \propto m^2 h_k^2 \propto a^{-2} v_k^2 \propto a^{-3}$$

decays like non-relativistic matter!!

Massless phase

$$\rho_k^{\text{GW}} \propto a^{-2} {h'_k}^2 \propto a^{-2} [(a^{-1} v_k)']^2 \propto a^{-4}$$

decays like relativistic matter (as usual)

Power spectrum of PGWs

$$\mathcal{P}_{\mathrm{GW}}^{\mathrm{massive}} \sim \frac{\tau_m}{\tau_r} (k\tau_r)^{3-2\nu} \mathcal{P}_{\mathrm{GW}}^{\mathrm{standard}}$$

$$\mathcal{P}_{\rm GW} \equiv \frac{4k^3 |v_k|^2}{\pi^2 M_{\rm Pl}^2 a^2}$$
$$\nu \equiv \sqrt{9/4 - m^2/H_{\rm inf}^2}$$

1. Inflation

Blue-tilt

From BD-vacuum, GWs are produced and decay on super -horizon scales in same way as $\delta \phi_k$

 $\mathcal{P}_{\rm GW} \sim (k\tau_r)^{3-2\nu}$

2. Mass-dominant

After instant reheating, $k \ll am$ and gravitons behave as matter.

Slow decay

 $\rho_k^{\rm GW} \propto a^{-3}$

3. Massless

At some point in RD era, gravitons lose the mass to avoid some obs. bounds.

Detection

2

Constraints and classifications of parameters

Conclusions

• PGWs gives information of scales different from CMB, which is very helpful to distinguish and/or constrain inflation models

• Highly blue-tilted PGWs can be detected by interferometers, even if their signal is not observed on the CMB scales

• There were obstacles to construct consistent theoretical model producing highly blue-tilted and detectable PGWs

• We construct a consistent model producing highly blue-tilted and largely amplified PGWs based on MTMG

Discussions

Non-Gaussianity of primordial gravitational waves

Fujita, SM, Mukohyama, in preparation

Extension of MTMG

As in dRGT, μ is related with effective cosmological constant

$$\Lambda_{\text{eff}} = \frac{m_{\text{g}}^2}{2} X (c_1 X^2 + 3c_2 X + 3c_3) \qquad X : \text{ratio of scale factors} \\ \mu^2 = \frac{m_{\text{g}}^2}{2} X \left[c_2 X + c_3 + \frac{H}{H_f} (c_1 X + c_2) \right] \qquad \begin{array}{c} X : \text{ratio of scale factors} \\ \text{satisfying} \\ c_1 X^2 + 2c_2 X + c_3 = 0 \end{array}$$

To make c_i dynamical, one must promote them to $c_i(\phi)$

Influence of reheating/preheating

Kuroyanagi, Lin, Sasaki, Tsujikawa, `17

Thank you very much !!

Shi Pi

Kavli Institute for the Physics and Mathematics of the Universe

"Gravitational Waves Induced by non-Gaussian Scalar Perturbations"

(10+5 min.)

[JGRG28 (2018) 110715]

Gravitational Waves Induced by non-Gaussian Scalar Perturbations

Shi Pi Kavli IPMU, University of Tokyo

Based on arXiv:1810.11000, with Rong-Gen Cai and Misao Sasaki

Content

- Mechanism of SGWB
- PBH abundances
- Induced GWs: A probe for non-Gaussianity
- Conclusion

Content

- Mechanism of SGWB
- PBH abundances
- Induced GWs: A probe for non-Gaussianity
- Conclusion

SGWB from binaries

- Origin: incoherent superposition of the GWs emitted by compact star binarys (BH, NS,...)
- Frequencies: 100 Hz(for 10M_☉)
- Amplitude: 10⁻⁹ Hz

1608.06699

SGWB from PBHB

- PBH binaries
- Frequency: 1000Hz (for 1M_☉)
- Amplitude: 10⁻⁹ Hz
- Can be used to constrain PBH abundances

SGWB from 10PT

Mark Hindmarsh's Talk on Monday.

Content

- Mechanism of SGWB
- PBH abundances
- Induced GWs: A probe for non-Gaussianity
- Conclusion

SP, Zhang, Huang & Sasaki 1712.09896

The Press-Schechter Mass Function

• When $\sigma_M \ll \delta_c$, β can be approximated by exponential:

$$\beta \approx \sqrt{\frac{2}{\pi}} \frac{\sigma_M}{\delta_c} \exp\left(-\frac{\delta_c^2}{2\sigma_M^2}\right)$$

The Press-Schechter Mass Function

The current PBH mass measured in critical mass is

$$\Omega_{\rm PBH} = \beta \frac{a_{\rm eq}}{a_{\rm re}} = \beta \frac{a_{\rm eq}}{a_0} \frac{a_0}{a_{\rm re}} \simeq \beta \Omega_r (1 + z_{\rm re}(M))$$

- where "eq" means equality and "re" means re-entry for the peak of the variance of the density perturbation at mass *M*.
- It is easy to estimate z(M) relation at horizon reentry

$$M = \frac{c^3}{GH_{\rm re}} = \frac{c^3}{G\Omega_r^{1/2}(1+z)^2 H_0}$$

• Therefore we have

$$f \equiv \frac{\Omega_{\rm PBH}}{\Omega_{\rm CDM}} \approx 4.11 \times 10^8 \beta(M) \left(\frac{M}{M_{\odot}}\right)^{-1/2}$$

1807.11495

1807.11495

1807.11495

Content

- Mechanism of SGWB
- PBH abundances and GWs
- Induced GWs: A probe for non-Gaussianity
- Conclusion

• From the nonlinear equation of motion for the tensor perturbation

$$h_{\mathbf{k}}'' + 2\mathcal{H}h_{\mathbf{k}}' + k^{2}h_{\mathbf{k}} = \mathcal{S}(\mathbf{k}, \eta)$$

• where the source term is (Ananda et al. gr-qc/0612013)

$$\begin{aligned} \mathcal{S}(\mathbf{k},\eta) &= 36 \int \frac{d^3l}{(2\pi)^{3/2}} \frac{l^2}{\sqrt{2}} \sin^2 \theta \begin{pmatrix} \cos 2\varphi \\ \sin 2\varphi \end{pmatrix} \Phi_{\mathbf{l}} \Phi_{\mathbf{k}-\mathbf{l}} \\ &\times \left[j_0(ux) j_0(vx) - 2 \frac{j_1(ux) j_0(vx)}{ux} - 2 \frac{j_0(ux) j_1(vx)}{vx} + 3 \frac{j_1(ux) j_1(vx)}{uvx^2} \right]. \end{aligned}$$

• This equation can be solved by the Green function method.

• The quantity we want to calculate is

$$\Omega_{\rm GW}(k) \equiv \frac{1}{12} \left(\frac{k}{Ha}\right)^2 \frac{k^3}{\pi^2} \overline{\langle h_{\bf k}(\eta) h_{\bf k}(\eta) \rangle}.$$

- Then we know that $\Omega_{GW} \sim h \gg S \gg \Phi \Phi \Phi \gg P_{\Phi^2}$.
- It is naive to believe that Φ stays Gaussian when it becomes very large on small scales.
- Therefore we want to consider the non-Gaussian scalar induced GWs (Komatsu & Spergel astro-ph/0005036)

$$\mathscr{R}(\mathbf{x}) = \mathscr{R}_g(\mathbf{x}) + F_{\mathrm{NL}} \left[\mathscr{R}_g^2(\mathbf{x}) - \langle \mathscr{R}_g^2(\mathbf{x}) \rangle \right].$$

Induced GWs

• Then the 2pt of Φ is

$$\langle \Phi_{\mathbf{k}} \Phi_{\mathbf{p}} \rangle = (2\pi)^3 \delta^{(3)}(\mathbf{k} + \mathbf{p}) \frac{4}{9} \left(P_{\mathcal{R}}(k) + 2F_{\mathrm{NL}}^2 \int d^3 l \ P_{\mathcal{R}}(|\mathbf{k} - \mathbf{l}|) P_{\mathcal{R}}(l) \right).$$

 And we have to specify the power spectrum of the primordial curvature perturbation. As we mentioned, we suppose there is a narrow peak at around k*.

$$P_{\mathcal{R}}(k) = \frac{\mathscr{A}_{\mathcal{R}}}{(2\pi)^{3/2} 2\sigma k_*^2} \exp\left(-\frac{(k-k_*)^2}{2\sigma^2}\right).$$

• Narrow means $\sigma < < k^*$. This is for simplicity.

• The result is the integral (Cai, SP & Sasaki, 1810.11000):

$$\begin{split} \Omega_{\rm GW} &= 6\mathcal{A}_{\mathcal{R}}^2 \frac{k^2}{2\pi\sigma^2} \left(\frac{k}{k_*}\right)^4 \int_0^\infty dv \int_{|1-v|}^{1+v} du \, uv \, \mathcal{T}(u,v) \\ &\times \left[e^{-\frac{(vk-k_*)^2}{2\sigma^2}} + 2\mathcal{A}_{\mathcal{R}} F_{\rm NL}^2 \frac{\sigma}{vk} \sqrt{\frac{\pi}{2}} \mathrm{erf}\left(\frac{vk}{2\sigma}\right) \right] \\ &\times \left[e^{-\frac{(uk-k_*)^2}{2\sigma^2}} + 2\mathcal{A}_{\mathcal{R}} F_{\rm NL}^2 \frac{\sigma}{uk} \sqrt{\frac{\pi}{2}} \mathrm{erf}\left(\frac{uk}{2\sigma}\right) \right]. \\ \mathcal{T}(u,v) &= \frac{1}{4} \left(\frac{4v^2 - (1+v^2-u^2)^2}{4uv} \right)^2 \left(\frac{u^2+v^2-3}{2uv} \right)^2 \\ &\times \left\{ \left(-2 + \frac{u^2+v^2-3}{2uv} \ln \left| \frac{3-(u+v)^2}{3-(u-v)^2} \right| \right)^2 \right. \\ &+ \pi^2 \left(\frac{u^2+v^2-3}{2uv} \right)^2 \Theta \left(u+v - \sqrt{3} \right) \right\}. \end{split}$$

Induced GWs

• Then the result is the integral:

$$\begin{split} \Omega_{\rm GW} &= 6\mathcal{A}_{\mathcal{R}}^2 \frac{k^2}{2\pi\sigma^2} \left(\frac{k}{k_*}\right)^4 \int_0^\infty dv \int_{|1-v|}^{1+v} du \, uv \, \mathcal{T}(u,v) \\ \\ \text{Saito \& Yokoyama,} \\ 0812.4339 \\ & \left[e^{-\frac{(vk-k_*)^2}{2\sigma^2}} + 2\mathcal{A}_{\mathcal{R}} F_{\rm NL}^2 \frac{\sigma}{vk} \sqrt{\frac{\pi}{2}} \mathrm{erf}\left(\frac{vk}{2\sigma}\right) \right] \\ & \left[e^{-\frac{(uk-k_*)^2}{2\sigma^2}} + 2\mathcal{A}_{\mathcal{R}} F_{\rm NL}^2 \frac{\sigma}{uk} \sqrt{\frac{\pi}{2}} \mathrm{erf}\left(\frac{uk}{2\sigma}\right) \right] . \\ \mathcal{T}(u,v) &= \frac{1}{4} \left(\frac{4v^2 - (1+v^2-u^2)^2}{4uv} \right)^2 \left(\frac{u^2+v^2-3}{2uv} \right)^2 \\ & \times \left\{ \left(-2 + \frac{u^2+v^2-3}{2uv} \ln \left| \frac{3-(u+v)^2}{3-(u-v)^2} \right| \right)^2 \right. \\ & \left. + \pi^2 \left(\frac{u^2+v^2-3}{2uv} \right)^2 \Theta \left(u+v - \sqrt{3} \right) \right\} . \end{split}$$

non-Gaussian contributions

- Up: $\mathscr{A}_{\mathscr{R}} = 10^{-2}$
- Down: $\mathscr{A}_{\mathscr{R}} = 10^{-3}$
- Gray curve: LISA
- Frequency: PBH window <—>LISA band
- Coincidence, but fortunate for our universe.

• Frequency: 0.003 Hz

Summary

- Induced GW is a very important source of SGWB.
- GWs induced by non-Gaussian scalar perturbations: k^3 slope, multiple peaks, cutoff.
- If PBHs can serve as all the DM, induced GWs must be detectable by LISA, no matter how small $\mathscr{A}_{\mathscr{R}}$ or $f_{\rm NL}$ is.

Thank you!

Yuki Niiyama

Hirosaki University

"Energy density of tensor perturbations in Einstein-Weyl gravity and its application to primordial gravitational waves" (10+5 min.)

[JGRG28 (2018) 110717]

Energy density of tensor perturbation in Einstein-Weyl gravity and its application to primordial gravitational waves

Yuki Niiyama (Hirosaki U.)

Collaborator

Nathalie Deruelle (Université Paris 7) Yu Furuya, Yuuiti Sendouda (Hirosaki U.)

Introduction

· Consider Einstein-Weyl gravity whose action is

$$S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left[R - \frac{\gamma}{2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right] \qquad \begin{array}{l} \kappa = 8\pi G, \ c = 1\\ \gamma \quad : \text{coupling constant} \end{array}$$

- A motivation to add such quadratic curvature terms is from renormalization of quantum field theory [1,2].
- There exist massless and massive spin-2 DOFs in Minkowski space, but the massive ones are ghost [3], which is thought to lead to instabilities when interacting with the other non-ghost fields [4].

[1] G.' t Hooft et al., Ann. Inst. Henri. Poincaré(1974)
 [2] K. S. Stelle, Phys. Rev. D16(1977)
 [3] K. S. Stelle, Gen. Rel. Grav. 9(1978)
 [4] A. Pais and G. E. Uhlenbeck, Phys. Rev. 79(1950)

Introduction

· Consider Einstein-Weyl gravity whose action is

$$S[g] = \frac{1}{2\kappa} \int d^4x \sqrt{-g} \left[R - \frac{\gamma}{2} C_{\mu\nu\rho\sigma} C^{\mu\nu\rho\sigma} \right] \qquad \begin{array}{l} \kappa = 8\pi G, \ c = 1\\ \gamma \quad : \text{coupling constant} \end{array}$$

- A motivation to add such quadratic curvature terms is from renormalization of quantum field theory [1,2].
- There exist massless and massive spin-2 DOFs in Minkowski space, but the massive ones are ghost [3], which is thought to lead to instabilities when interacting with the other non-ghost fields [4].

G.' t Hooft et al., Ann. Inst. Henri. Poincaré(1974)
 K. S. Stelle, Phys. Rev. D16(1977)
 K. S. Stelle, Gen. Rel. Grav. 9(1978)
 A. Pais and G. E. Uhlenbeck, Phys. Rev. 79(1950)

Introduction

- · This theory should be tested by observations, quantitatively.
- · As a first step, we concentrate on the classical theory.
- The two DOFs are decoupled at linear level on Minkowski [3] and de Sitter background [5], so they are harmless on these background.
- What happens in the case that two DOFs are coupled each other has not been clarified so far on, e.g., the decelerated universe.
- In this talk, we show how the two primordial gravitational waves (PGWs), massless and massive DOFs, can contribute to the cosmic expansion as energy components.

Setup and assumptions

• Consider the tensor perturbation h_{ij} on the flat FLRW metric:

$$ds^{2} = a^{2}(\tau)[-d\tau^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j}]$$

a : scale factor au : conformal time $\delta^{ij}h_{ij} = 0 = \partial^j h_{ij}$

- Introduce the Weyl radius, $\sqrt{\gamma}$, and assume $\sqrt{\gamma} \gg H_{\rm ini}^{-1}$.
- The modes, with physical wavelength $\frac{a}{k}$, cross with the Weyl radius $\sqrt{\gamma}$ after entering the horizon.

Setup and assumptions

 \cdot Consider the tensor perturbation h_{ij} on the flat FLRW metric:

$$ds^2 = a^2(\tau)[-d\tau^2 + (\delta_{ij} + h_{ij})dx^i dx^j]$$

a : scale factor au : conformal time $\delta^{ij}h_{ij}=0=\partial^j h_{ij}$

- Introduce the Weyl radius, $\sqrt{\gamma}$, and assume $\sqrt{\gamma} \gg H_{\rm ini}^{-1}$.
- The modes, with physical wavelength $\frac{a}{k}$, cross with the Weyl radius $\sqrt{\gamma}$ after entering the horizon.

Setup and assumptions

· Consider the tensor perturbation h_{ij} on the flat FLRW metric:

$$ds^{2} = a^{2}(\tau)[-d\tau^{2} + (\delta_{ij} + h_{ij})dx^{i}dx^{j}]$$

a : scale factor au : conformal time $\delta^{ij}h_{ij} = 0 = \partial^j h_{ij}$

- Introduce the Weyl radius, $\sqrt{\gamma}$, and assume $\sqrt{\gamma} \gg H_{\rm ini}^{-1}$.
- The modes, with physical wavelength $\frac{a}{k}$, cross with the Weyl radius $\sqrt{\gamma}$ after entering the horizon.

Second order action

• Consider an action equivalent to the second order action for tensor perturbation h_{ij} in Einstein-Weyl gravity:

Note: ϕ_{ij} and ψ_{ij} are NOT metric, but ϕ_{ij}/a and ψ_{ij}/a correspond to metric.

• ϕ_{ij} and ψ_{ij} are useful to investigate the late-time behavior since the interaction gets negligible as time proceeds.

EOM in the radiation era: $a(\tau) \propto \tau$

• In this talk, we only consider the evolution of the modes ϕ_k and ψ_k in radiation era, $a \propto \tau$, where

$$f_{ij}(au,ec x) = \sum_{\lambda=+, imes} \int rac{d^3k}{(2\pi)^{3/2}} f_k(z) \epsilon^\lambda_{ij}(ec k) \mathrm{e}^{iec k\cdotec x}$$
 (f is either ϕ , ψ or h .)

 \cdot The System of equations is, with a time coordinate $\, z := k au \propto a \,$,

$$\phi_k'' + \phi_k = \frac{2}{z}\psi_k', \quad \psi_k'' + \left(1 + \frac{2}{z^2} + \frac{z^2}{z_\gamma^2}\right)\psi_k = \frac{2}{z}\phi_k' - \frac{2}{z^2}\phi_k$$

where a prime denotes the derivative wrt z , and

$$\frac{z^2}{z_{\gamma}^2} = \frac{a^2}{\gamma k^2}, \quad \phi_k = \frac{z_{\gamma}^2}{z} (h_k'' + h_k) + zh_k, \quad \psi_k = -\frac{z_{\gamma}^2}{z} (h_k'' + h_k)$$

• z_{γ} is a dimension-less parameter, and $z = z_{\gamma}$ represents a time when the wavelength catches up with Weyl radius $\sqrt{\gamma}$.

Boundary condition at $z = z_{ini} = 0.1$ A simple setup: $h_k(z_{ini}) = 1,$ $h'_k(z_{ini}) = h''_k(z_{ini}) = h'''_k(z_{ini}) = 0$ Insert them into the derivatives below $\phi_k = \phi_k(h, h''), \ \phi'_k = \phi_k(h, h', h'', h''')$ $\psi_k = \psi_k(h, h''), \ \psi'_k = \psi_k(h, h', h'', h''')$

· We can see that ϕ_k and ψ_k are decoupled after $z = z_\gamma$.

- For $z > z_{\gamma}$, ϕ_k/z is damped as z^{-1} , while ψ_k/z scales as $z^{-\frac{3}{2}}$.
- We further find an interesting behavior that $h_k = \frac{\phi_k + \psi_k}{z}$ grows as z at early time $z < z_{\gamma}$, but it will be discussed somewhere else.

Numerical solutions (Radiation era: $a \propto z$)

Boundary condition at $z = z_{ini} = 0.1$ A simple setup: $h_k(z_{ini}) = 1,$ $h'_k(z_{ini}) = h''_k(z_{ini}) = h'''_k(z_{ini}) = 0$ \downarrow Insert them into the derivatives below $\phi_k = \phi_k(h, h''), \ \phi'_k = \phi_k(h, h', h'', h''')$ $\psi_k = \psi_k(h, h''), \ \psi'_k = \psi_k(h, h', h'', h''')$

- \cdot We can see that ϕ_k and ψ_k are decoupled after $z=z_\gamma$.
- For $z>z_{\gamma}$, ϕ_k/z is damped as z^{-1} , while ψ_k/z scales as $z^{-\frac{3}{2}}$.
- We further find an interesting behavior that $h_k = \frac{\phi_k + \psi_k}{z}$ grows as z at early time $z < z_{\gamma}$, but it will be discussed somewhere else.

lacksquare Behavior at the late time: $z\gg z_\gamma$

- From now on, we concentrate on understanding this behavior of tensor mode at late time, analytically.
- \cdot As $z
 ightarrow\infty$, the system of equation is reduced to

$$\phi_k'' + \phi_k = \frac{2}{z} \frac{\psi_k'}{z}, \quad \psi_k'' + \left(\frac{1}{1+z^2} + \frac{z^2}{z_\gamma^2}\right) \psi_k = \frac{2}{z} \frac{\psi_k'}{z^2} \frac{2}{z^{\phi_k}} \frac{2}{z^{\phi_k}} \frac{\psi_k'}{z^2} \psi_k$$

6/10
Behavior at the late time: $z \gg z_{\gamma}$

- From now on, we concentrate on understanding this behavior of tensor mode at late time, analytically.
- \cdot As $z
 ightarrow \infty$, the system of equation is reduced to

Behavior at the late time: $z \gg z_{\gamma}$

• The problem to solve is the approximated equations below:

$$\phi_k'' + \phi_k \simeq 0$$
, $\psi_k'' + rac{z^2}{z_\gamma^2} \psi_k \simeq 0$ as $z o \infty$

• We then have the following solutions:

$$\frac{\phi_k}{z} \propto \frac{\mathrm{e}^{\pm i z}}{z} , \quad \frac{\psi_k}{z} \propto \frac{D_{-\frac{1}{2}}[-(i\pm 1)z/\sqrt{z\gamma}]}{z} \xrightarrow{z \to \infty} \quad \frac{\mathrm{e}^{\pm i\frac{t}{\sqrt{\gamma}}}}{z^{\frac{3}{2}}} \quad t : \text{cosmic time}$$

- We can see from the above solutions that ϕ_k oscillates with the conformal time τ while ψ_k with the cosmic time t.
- These solutions agree with the numerical solutions on the right or previous slide.

8/10

Behavior at the late time: $z \gg z_{\gamma}$

· The problem to solve is the approximated equations below:

$$\phi_k'' + \phi_k \simeq 0$$
, $\psi_k'' + rac{z^2}{z_\gamma^2} \psi_k \simeq 0$ as $z \to \infty$.

• We then have the following solutions:

 10^{4}

0.01

 These solutions agree with the numerical solutions on the right or previous slide.

- **Behavior at the late time:** $z \gg z_{\gamma}$
- · The problem to solve is the approximated equations below:

$$\phi_k''+\phi_k\simeq 0$$
 , $\psi_k''+rac{z^2}{z_\gamma^2}\psi_k\simeq 0$ as $z
ightarrow\infty$

· We then have the following solutions:

8/10

Energy density of GWs

- Give a definition for energy density of GWs in Einstein-Weyl gravity from the (00) component of Noether pseudo tensor.
- \cdot The Noether pseudo for ϕ_{ij} and ψ_{ij} are

where $\sqrt{-g} = a^4$, L_ϕ and L_ψ are extracted from the total Lagrangian L :

$$8\kappa L_{\phi} = -\frac{1}{2}(\partial\phi)^{2} + \frac{\ddot{a}}{2a}\phi\cdot\phi$$

$$L = L_{\phi} + L_{\psi} + L_{\text{int}} \qquad 8\kappa L_{\psi} = \frac{1}{2}(\partial\psi)^{2} + \frac{1}{2}\left(\frac{\ddot{a}}{a} + 2\frac{\dot{a}^{2}}{a^{2}} + \frac{a^{2}}{\gamma}\right)\psi\cdot\psi$$

$$8\kappa L_{\text{int}} = 2\frac{\dot{a}}{a}\psi\cdot\left(\frac{\dot{a}}{a}\phi - \dot{\phi}\right)$$

Energy density of GWs

- Give a definition for energy density of GWs in Einstein-Weyl gravity from the (00) component of Noether pseudo tensor.
- The Noether pseudo for ϕ_{ij} and ψ_{ij} are

$$\Theta_{\mu}^{\nu(\phi)} := -\frac{1}{\sqrt{-g}} \frac{\partial L_{\phi}}{\partial(\partial_{\nu}\phi_{ij})} \partial_{\mu}\phi_{ij} + \delta_{\mu}^{\nu} \frac{L_{\phi}}{\sqrt{-g}} \qquad \Theta_{\mu}^{\nu(\psi)} := -\frac{1}{\sqrt{-g}} \frac{\partial L_{\psi}}{\partial(\partial_{\nu}\psi_{ij})} \partial_{\mu}\psi_{ij} + \delta_{\mu}^{\nu} \frac{L_{\psi}}{\sqrt{-g}} = -\frac{1}{8\kappa a^{4}} \partial^{\nu}\psi \cdot \partial_{\mu}\psi + \delta_{\mu}^{\nu} \frac{L_{\psi}}{a^{4}}$$

where $\sqrt{-g} = a^4$, L_ϕ and L_ψ are extracted from the total Lagrangian L :

$$8\kappa L_{\phi} = -\frac{1}{2}(\partial\phi)^{2} + \frac{\ddot{a}}{2a}\phi\cdot\phi$$
$$L = L_{\phi} + L_{\psi} + L_{\text{int}} \qquad 8\kappa L_{\psi} = \frac{1}{2}(\partial\psi)^{2} + \frac{1}{2}\left(\frac{\ddot{a}}{a} + 2\frac{\dot{a}^{2}}{a^{2}} + \frac{a^{2}}{\gamma}\right)\psi\cdot\psi$$
$$8\kappa L_{\text{int}} = 2\frac{\dot{a}}{a}\psi\cdot\left(\frac{\dot{a}}{a}\phi - \dot{\phi}\right)$$

9/10

I Time dependence of energy density: $z\gg z_\gamma$

 Inserting the analytical solutions at late time into the (00) component of Noether pseudo tensor, we find

· Insertion of numerical solutions into ρ_{ϕ} and ρ_{ψ} yields

10/10

I Time dependence of energy density: $z\gg z_\gamma$

 Inserting the analytical solutions at the late time into the (00) component of Noether pseudo tensor, we find

Summary

- \cdot We investigated the behavior of tensor mode at the late time.
- \cdot Two DOFs, $\,\phi_{ij}$ and $\,\psi_{ij}$, are decoupled after the wavelength catches up with the Weyl radius $\sqrt{\gamma}$.
- ϕ_{ij} behaves as radiation, while ψ_{ij} as matter with negative energy.
- \cdot The amount of their energy should be restricted by

 $\begin{tabular}{lll} \bullet \ \Omega_{\phi} < \Omega_r \end{tabular} \begin{tabular}{lll} \bullet \ \Omega_{\psi} | < \Omega_{DM} \end{tabular} \end{tabular} \begin{tabular}{lll} \bullet \ \Omega_{\psi} | < \Omega_{DM} \end{tabular} \end{tabular} \begin{tabular}{lll} \bullet \ \Omega_{\psi} | < \Omega_{DM} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{lll} \bullet \ \Omega_{\psi} | < \Omega_{DM} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{lll} \bullet \ \Omega_{\psi} | < \Omega_{DM} \end{tabular} \end$

Future work

• To evaluate the observable, energy of GWs at the current epoch, we'd like to decide the initial condition for ϕ_{ij} and ψ_{ij} by, e.g., connecting the solution in the radiation era with the one in the inflationary era.

Noether pseudo tensor

Variation of the Lagrangian density is

$$\begin{split} \partial_{\mu}L &= \frac{\partial L}{\partial \phi_{ij}} \partial_{\mu}\phi_{ij} + \frac{\partial L}{\partial (\partial_{\nu}\phi_{ij})} \partial_{\mu\nu}\phi_{ij} + \frac{\partial L}{\partial \psi_{ij}} \partial_{\mu}\psi_{ij} + \frac{\partial L}{\partial (\partial_{\nu}\psi_{ij})} \partial_{\mu\nu}\psi_{ij} + \hat{\partial}_{\mu}L \\ &= \mathcal{E}_{\phi}^{ij}\partial_{\mu}\phi_{ij} + \mathcal{E}_{\psi}^{ij}\partial_{\mu}\psi_{ij} + \partial_{\nu}\left(\frac{\partial L}{\partial (\partial_{\nu}\phi_{ij})} \partial_{\mu}\phi_{ij} + \frac{\partial L}{\partial (\partial_{\nu}\psi_{ij})} \partial_{\mu}\psi_{ij}\right) + \hat{\partial}_{\mu}L \quad , \end{split}$$

where L , \mathcal{E}_{ϕ}^{ij} , and \mathcal{E}_{ψ}^{ij} are

$$L = L_{\phi} + L_{\psi} + L_{\text{int}} \quad , \quad \mathcal{E}_{\psi}^{ij} \coloneqq \frac{\partial L}{\partial \psi_{ij}} - \partial_{\nu} \frac{\partial L}{\partial (\partial_{\nu} \psi_{ij})} \quad , \quad \mathcal{E}_{\phi}^{ij} \coloneqq \frac{\partial L}{\partial \phi_{ij}} - \partial_{\nu} \frac{\partial L}{\partial (\partial_{\nu} \phi_{ij})} \quad .$$

 \cdot Moving the divergence term on RHS to LHS, we have

$$\partial_{\nu}(\sqrt{-g}\Theta^{\nu}{}_{\mu}) = \mathcal{E}^{ij}_{\phi}\partial_{\mu}\phi_{ij} + \mathcal{E}^{ij}_{\psi}\partial_{\mu}\psi_{ij} + \hat{\partial}_{\mu}L \quad , \qquad \Theta^{\nu}{}_{\mu} := \frac{1}{\sqrt{-g}}\left(\delta^{\nu}{}_{\mu}L - \frac{\partial L}{\partial(\partial_{\nu}\phi_{ij})}\partial_{\mu}\phi_{ij} - \frac{\partial L}{\partial(\partial_{\nu}\psi_{ij})}\partial_{\mu}\psi_{ij}\right)$$

• Finally we define the energy density for \phi and \psi as follows:

$$\Theta_{\ \mu}^{\nu(f)}:=-\frac{1}{\sqrt{-g}}\frac{\partial L_f}{\partial(\partial_\nu f_{ij})}\partial_\mu f_{ij}+\delta_{\ \mu}^{\nu}\frac{L_f}{\sqrt{-g}} \quad \text{ (} f \text{ is either } \phi \text{ or } \psi \text{ .)}$$

Behavior at the Early time: $z \ll z_{\gamma}$

• The variables ϕ_k and ψ_k are not convenient, so let us take the variable transformation such that

$$\phi_k = z Q_k + rac{R_k}{z}$$
 , $\psi_k = -rac{R_k}{z}$

Thus the EOM for new variables is

lacksquare Behavior at the Early time: $z\ll z_\gamma$

 \cdot Assuming that the term $\, zQ_k^\prime \,$ in the EOM is negligible, we have

$$R_k'' + \left(1 + \frac{z^2}{z_{\gamma}^2}\right) R_k = -2zQ_k'$$
, $Q_k'' + Q_k = \frac{R_k}{z_{\gamma}^2}$ as $z \to 0$,

where we have used $z \ll z_{\gamma}$ on LHS, so its solutions are

$$R_k = C_1 e^{iz} + C_2 e^{-iz} , \quad Q_k = \frac{C_1}{2i} \frac{z}{z_{\gamma}^2} e^{iz} - \frac{C_2}{2i} \frac{z}{z_{\gamma}^2} e^{-iz} + C_3 e^{iz} + C_4 e^{-iz}$$

• Going back to ϕ_k/z and ψ_k/z they behave as

lacksquare Behavior at the Early time: $z\ll z_\gamma$

 \cdot Assuming that the term $\, z Q_k^\prime \,$ in the EOM is negligible, we have

$$R_k'' + \left(1 + \frac{z^2}{z_{\gamma}^2}\right) R_k = -2zQ_k'$$
, $Q_k'' + Q_k = \frac{R_k}{z_{\gamma}^2}$ as $z \to 0$,

where we have used $z \ll z_{\gamma}$ on LHS, so its solutions are

$$R_k = C_1 e^{iz} + C_2 e^{-iz} , \quad Q_k = \frac{C_1}{2i} \frac{z}{z_{\gamma}^2} e^{iz} - \frac{C_2}{2i} \frac{z}{z_{\gamma}^2} e^{-iz} + C_3 e^{iz} + C_4 e^{-iz}$$

• Going back to ϕ_k/z and ψ_k/z they behave as

Behavior at the Early time: $z\ll z_\gamma$

- $\boldsymbol{\cdot}$ Discuss about the validity of neglecting $\, zQ_k'$ term in the EOM for R_k .
- If the initial value for Q_k is smaller than the one for R_k , $Q_k(z_{ini}) \ll R_k(z_{ini})$, we can see from the below plot that the term zQ'_k is negligible numerically. (Inflationary setup yields $Q_k(z_{ini}) \ll R_k(z_{ini})$.)

Wednesday 8th November Invited lecture 9:00–9:45

[Chair: Tomohiro Harada]

Bernard John Carr

Queen Mary University of London

"PRIMORDIAL BLACK HOLES: LINKING MICROPHYSICS AND MACROPHYSICS"

(40+10 min.)

[JGRG28 (2018) 110801]

PLAN OF TALK

- Formation and evaporation of PBHs
- PBHs, dark matter and LIGO events
- PBHs and large-scale structure
- PBHs and quantum gravity

BLACK HOLE FORMATION

$R_{S} = 2GM/c^{2} = 3(M/M_{O}) \text{ km } \Rightarrow \rho_{S} = 10^{18}(M/M_{O})^{-2} \text{ g/cm}^{3}$ Stellar BH (M~10¹⁻²M_O), IMBH (M~10³⁻⁵M_O), SMBH (M~10⁶⁻⁹M_O)

Small "primordial" BHs can only form in early Universe

cf. cosmological density $\rho \sim 1/(Gt^2) \sim 10^6 (t/s)^{-2} g/cm^3$

 $M_{PBH} \sim c^{3}t/G = \begin{array}{ll} 10^{-5}g \mbox{ at } 10^{-43}s & (minimum) \\ 10^{15}g \mbox{ at } 10^{-23}s & (evaporating) \mbox{ => huge range} \\ 10^{5}M_{O} \mbox{ at } 1 \mbox{ s} & (maximum) \end{array}$

Mon. Not. R. astr. Soc. (1971) 152, 75-78.

GRAVITATIONALLY COLLAPSED OBJECTS OF VERY LOW MASS

Stephen Hawking

(Communicated by M. J. Rees)

(Received 1970 November 9)

SUMMARY

It is suggested that there may be a large number of gravitationally collapsed objects of mass 10⁻⁵ g upwards which were formed as a result of fluctuations in the early Universe. They could carry an electric charge of up to ± 30 electron units. Such objects would produce distinctive tracks in bubble chambers and could form atoms with orbiting electrons or protons. A mass of 1017 g of such objects could have accumulated at the centre of a star like the Sun. If such a star later became a neutron star there would be a steady accretion of matter by a central collapsed object which could eventually swallow up the whole star in about ten million years.

SOVIET ASTRONOMY - AJ VOL. 10, NO. 4 JANUARY-FEBRUARY, 1967

THE HYPOTHESIS OF CORES RETARDED DURING EXPANSION AND THE HOT COSMOLOGICAL MODEL Ya. B. Zel'dovich and I. D. Novikov

Translated from Astronomicheskii Zhurnal, Vol. 43, No. 4, pp. 758-760, July-August, 1966 Original article submitted March 14, 1966

The existence of bodies with dimensions less than $R_g=2GM/c^2$ at the early stages of expansion of the cosmological model leads to a strong accretion of radiation by these bodies. If further calculations confirm that accretion is catastrophically high, the hypothesis on cores retarded during expansion [3, 4] will conflict with observational data.

Mon. Not. R. astr. Soc. (1974) 168, 399-415.

BLACK HOLES IN THE EARLY UNIVERSE

B. J. Carr and S. W. Hawking

(Received 1974 February 25)

SUMMARY

The existence of galaxies today implies that the early Universe must have been inhomogeneous. Some regions might have got so compressed that they underwent gravitational collapse to produce black holes. Once formed, black holes in the early Universe would grow by accreting nearby matter. A first estimate suggests that they might grow at the same rate as the Universe during the radiation era and be of the order of 10^{15} to 10^{17} solar masses now. The observational evidence however is against the existence of such giant black holes. This motivates a more detailed study of the rate of accretion which shows that black holes will not in fact substantially increase their original mass by accretion. There could thus be primordial black holes around now with masses from 10^{-5} g upwards.

 \Rightarrow no observational evidence against them!

=> need to consider quantum effects

letters to nature Nature 248, 30 - 31 (01 March 1974); doi:10.1038/248030a0

Black hole explosions?

S. W. HAWKING

Department of Applied Mathematics and Theoretical Physics and Institute of Astronomy University of Cambridge

QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that the radius of curvature of space-time outside the event horizon is very large compared to the Planck length $(G\hbar/c^3)^{1/2} \approx 10^{-33}$ cm, the length scale on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add up to produce a significant effect over the lifetime of the Universe $\approx 10^{17}$ s which is very long compared to the Planck time $\approx 10^{-43}$ s. The purpose of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at just the rate that one would expect if the black hole was a body with a temperature of $(\varkappa/2\pi)$ ($\hbar/2k$) $\approx 10^{-6}$ ($M\odot/M$)K where \varkappa is the surface gravity of the black hole¹. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity and so increase the rate of emission. The black hole would therefore have a finite life of the order of 10^{71} ($M\odot/M$)⁻³ s. For a black hole of solar mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in the early Universe². Any such black hole of mass less than 10^{15} g would have evaporated by now. Near the end of its life the rate of emission would be very high and about 10^{30} erg would be released in the last 0.1 s. This is a fairly small explosion by astronomical standards but it is equivalent to about 1 million 1 Mton hydrogen bombs.

PBHs are important even if they never formed!

PBH EVAPORATION

Black holes radiate thermally with temperature

$$T = \frac{hc^{3}}{8\pi GkM} \sim 10^{-7} \left[\frac{M}{M_{0}}\right]^{-1} K$$
=> evaporate completely in time $t_{evap} \sim 10^{64} \left[\frac{M}{M_{0}}\right]^{3} y$
M ~ $10^{15}g$ => final explosion phase today (10^{30} ergs)
 γ -ray background at 100 MeV => $\Omega_{PBH}(10^{15}g) < 10^{-8}$
=> explosions undetectable in standard particle physics model
T > T_{CMB}=3K for M < $10^{26}g$ => "quantum" black holes

BLACK HOLES

FORMATION MECHANISMS

Primordial inhomogeneities Inflation

Pressure reduction Form more easily but need spherical symmetry

Cosmic strings PBH constraints => G $\mu < 10^{-6}$ 0.44

Bubble collisions Need fine-tuning of bubble formation rate Domain walls PBHs can be very large

PBH FORMATION => LARGE INHOMOGENEITIES

To collapse against pressure, need (Carr 1975) $R > \sqrt{\alpha}$ ct when $\delta \sim 1 \Rightarrow \delta_{H} > \alpha$ (p= $\alpha \rho c^{2}$) Gaussian fluctns with $\langle \delta_{H}^{2} \rangle^{1/2} = \varepsilon(M)$ \Rightarrow fraction of PBHs $\beta(M) \sim \varepsilon(M) \exp\left[-\frac{\alpha^{2}}{2\varepsilon(M)^{2}}\right]$ $\varepsilon(M)$ constant => $\beta(M)$ constant => $dN/dM \propto M^{-\left(\frac{1+3\alpha}{1+\alpha}\right)-1}$

p=0 => need spherical symmetry => $\beta(M) \sim 0.06 \epsilon(M)^6$ (Khlopov & Polnarev 1980)

2.0

1.5

0.5

1.0

ММ,

0.42 δ_c 0.40 0.38 0.36 0.34

0.0

Limit on fraction of Universe collapsing

$\beta(M)$ fraction of density in PBHs of mass M at formation

General limit

$$\frac{\rho_{PBH}}{\rho_{CBR}} \approx \frac{\Omega_{PBH}}{10^{-4}} \left[\frac{R}{R_0} \right] \Longrightarrow \beta \sim 10^{-6} \Omega_{PBH} \left[\frac{t}{\text{sec}} \right]^{1/2} \sim 10^{-18} \Omega_{PBH} \left[\frac{M}{10^{15} g} \right]^{1/2}$$

=> constraints from entropy, γ-background, BBNS

CONSTRAINTS ON $\beta(M) \implies$ CONSTRAINTS ON $\epsilon(M)$

PBHs are unique probe of ε on small scales.

Need blue spectrum or spectral feature to produce them.

PBHS FROM NEAR-CRITICAL COLLAPSE

Critical phenomena => M = k M_H(δ - δ_c)^{γ} (Niemeyer & Jedamzik 1999, Shibata & Sasaki 1999) spectrum peaks at horizon mass with extended low mass tail $dN/dM \propto M^{1/\gamma-1} \exp[-(M/M_f)^{1/\gamma}]$ ($\gamma = 0.35$) (Yokoyama 1998) Later calculations and peak analysis =>

 $\delta_C \sim 0.45$ and applies to $\delta - \delta_C \sim 10^{-10}$ (Musco & Miller 2013)

MORE PRECISE ESTIMATE OF δ_C

Threshold of primordial black hole formation

¹Tomohiro Harada,
* $^{\rm 2}$ Chul-Moon Yoo, and $^{\rm 3,4}$ Kazunori Kohri

* For uniform-Hubble gauge but 0.4 for synchronous gauge

NON-GAUSSIAN EFFECTS

Expected whenever fluctuations are large

$$P(\delta) = \frac{1}{\sqrt{2\pi\Sigma}} \left[1 - \left(\frac{\delta^3}{\Sigma^6} - \frac{3\delta}{\Sigma^4} \right) \right] \exp \left[-\frac{\delta^2}{2\Sigma^2} \right]$$
 Seery & Hidalgo 2006

NON-SPHERICITY EFFECTS

On Ellipsoidal Collapse and Primordial Black-Hole Formation

Florian Kühnel^{1,*} and Marit Sandstad^{2,†}

arXiv:1602:04815

r Simple estimate: 🛛 🔶 🔰 consider collapse of largest enclosed sphere (green curve):

$$\frac{\delta_{\rm ec}}{\delta_{\rm c}} \simeq (1+3\,e) = 1 + \frac{9}{\sqrt{10\,\pi}} \left(\frac{\sigma^2}{\delta_{\rm c}^2}\right)^{1/2}$$

PBHS AND INFLATION

PBHs formed before reheat inflated away =>

 $M > M_{min} = M_{Pl}(T_{reheat}/T_{Pl})^{-2} > 1 \text{ gm}$

CMB quadrupole => $T_{reheat} < 10^{16} GeV$

But inflation generates fluctuations

$$\frac{\delta
ho}{
ho} \sim \left[\frac{\mathrm{V}^{3/2}}{\mathrm{M}_{\mathrm{Pl}}^{3} V'} \right]_{H}$$

Slow roll plus friction-domination

$$\xi = (M_{Pl}V'/V)^2 \ll 1, \quad \eta = M_{Pl}V''/V \ll 1$$

=> nearly scale-invariant fluctuations

$$|\delta_k^2| \sim k^n$$
, $\delta_H \sim M^{(1-n)/4}$ with $n = 1 - 3\xi + 2\eta \sim 1$

 $CMB \Longrightarrow \delta_{\rm H} \sim 10^{-5} \Longrightarrow need n > 1 \text{ for PBHs}$

Observe n < 1 on horizon scale => need running index for PBHs.

Planck gives $\frac{d \ln n}{dk} \approx -0.02 \pm 0.01$ (wrong sign!)

Need inflation model with n > 1 or some feature in $V(\phi)$ at large k

There are numerous other inflationary models for PBH formation.

Vincent Vennin "Stochastic inflation and PBHs"

CONSTRAINTS FOR EVAPORATING PBHS

B. Carr, K. Kohri, Y. Sendouda & J. Yokoyama PRD 81(2010) 104019

CAN PBH EXPLOSIONS GENERATE γ-RAY BURSTS?

 $GRB \Rightarrow dn/dt < 10^{-6} \text{ pc}^{-3}\text{y}^{-1} \text{ (if uniform) or } < 1 \text{ pc}^{-3}\text{y}^{-1} \text{ (if in halo)}$ Galactic γ -halo $\Rightarrow dn/dt = 0.06 \text{ pc}^{-3}\text{y}^{-1}$ Lehoucq et al (2009) Cosmic rays $\Rightarrow dn/dt = 0.02 \text{ pc}^{-3}\text{y}^{-1}$ Maki et al (1996) Observational limit depends on details of final explosive phase

Can some short $(100 \text{msec})\gamma$ -ray bursts be PBH explosions?

Cline et al (2003) => 42 BATSE events Cline et al (2005) => ? KONUS events Cline et al (2007) => 8 Swift events Local => Euclidean dbn, V/V_{max} test

Maybe Shibazaki not so wrong!

PRIMORDIAL BLACK HOLES AS DARK MATTER

PRO

- * Black holes exist
- * No new physics needed
- * LIGO results

CON

* Requires fine-tuning

PBH can do it!

10

baryon-to-photon ratio n

 $BBNS \Rightarrow \Omega_{baryon} = 0.05$

 Ω_{vis} = 0.01, Ω_{dm} = 0.25 \Rightarrow need baryonic and non-baryonic DM MACHOS WIMPs

PBHs are non-baryonic with features of both WIMPs and MACHOs

 $\begin{array}{l} 10^{17}\text{-}10^{20}\text{g PBHs excluded by femtolensing of GRBs} \\ 10^{26}\text{-}10^{33}\text{g PBHs excluded by microlensing of LMC} \\ \text{Above } 10^{3}\text{M}_{0} \text{ excluded by dynamical effects} \end{array} \tag{2010}$

=> windows at 10¹⁶-10¹⁷g or 10²⁰-10²⁴g or 10³³-10³⁶g for dark matter

Early microlensing searches suggested MACHOs with 0.5 M_O => PBH formation at QCD transition?

Pressure reduction => PBH mass function peak at $0.5 M_{O}$

Later found that at most 20% of DM can be in these objects

PRIMORDIAL BLACK HOLES AS DARK MATTER

Bernard Carr,^{1, *} Florian Kühnel,^{2, †} and Marit Sandstad^{3, ‡}

PRD 94, 083504, arXiv:1607.06077

 $f(M) \sim (\beta / 10^{-8}) (M/M_o)^{-1/2}$

Three windows: (A) intermedate mass; (B) sublunar mass; (C) asteroid mass.

Also (D) Planck mass relics

But some of these limits are now thought to be wrong

WHICH MASS WINDOW IS MOST PLAUSIBLE?

Primordial black holes with an accurate QCD equation of state

Christian T. Byrnes,^{1, *} Mark Hindmarsh,^{1, 2, †} Sam Young,^{1, ‡} and Michael R. S. Hawkins^{3, §}

arXiv:1801.06138

Explains why M_{PBH} ~ M_{C} ~ 1 M_{o} but β must be fine-tune

Primordial black holes from inflaton and spectator field perturbations in a matter-dominated era

Bernard Carr,^{1,*} Tommi Tenkanen,^{1,†} and Ville Vaskonen^{2,‡} Phys Rev D 96, 063507 (2017)

Primordial Black Hole Formation During Slow Reheating After Inflation

Bernard Carr, $^{1,\,*}$ Konstantinos Dimopoulos, $^{2,\,\dagger}$ Charlotte Owen, $^{2,\,\ddagger}$ and Tommi Tenkanen $^{1,\,\$}$

arXiv:1804.08639

Primordial Black Holes With Multi-Spike Mass Spectra

Bernard Carr^{1,*} and Florian Kühnel^{2,3,†}

Primordial Black Holes Perspectives in Gravitational Wave Astronomy

Misao Sasaki^a, Teruaki Suyama^b, Takahiro Tanaka^{c,a}, and Shuichiro Yokoyama^{d,e}

arXiv:1801.05235

Microlensing constraints on primordial black holes with the Subaru/HSC Andromeda observation

Niikura et al. arXiv:1701.02151v3

CONSTRAINTS ON PRIMORDIAL BLACK HOLES

Bernard Carr, $^{1,\,2,\,*}$ Kazunori Kohri, $^{3,\,\dagger}$ Yuuiti Sendouda, $^{4,\,\ddagger}$ and Jun'ichi Yokoyama $^{2,\,5,\,\$}$

Progress Theoretical Physics (2018)

Each constraint comes with caveats and may improve or go away.

These constraints are not just nails in a coffin!

Each constraint is a potential signature PBHs are interesting even if f << 1

CKS 2016

EXTENDED MASS FUNCTION?

Most constraints assume monochromatic PBH mass function

Can we evade standard limits with extended mass spectrum?

But this is two-edged sword!

PBHs may be dark matter even if fraction is low at each scale

PBHs giving dark matter at one scale may violate limits at others

PBH CONSTRAINTS FOR EXTENDED MASS FUNCTIONS

Carr, Raidal, Tenkanen, Vaskonen & Veermae (arXiv:1705.05567)

FIG. 2. Upper panets: Combined observational constraints on M_{e} and σ for a lognormal PBH mass function. The color coding above the maximum allowed fraction of PBH NM. In the white region lognof_{max} = -3, while the solid, dashed, dod-shabel, and dotted contours correspond to $f_{max} = 1$, $f_{max} = 0.5$, $f_{max} = 0.2$, and $f_{max} = 0.1$, respectively. In the left panel only the constraints depicted by the solid lines in Fig. 1 are included, whereas the right panel includes all the constraints. Lower panels: Same as the upper left panel but for a power-law mass function with $\gamma < 0$ (d) right).

FIG. 3. Observational constraints on M_e and σ for a lognormal PBH mass function, assuming 100% PBH DM. The left panel presents a zoom into the high-mass region relevant for the LIGO events, while the right panel presents a zoom into the low-mass region. The color coding is the same as in Fig. 1.

PBHS AS GENERATORS OF COSMIC STRUCTURES

B.J. Carr & J. Silk

arXiv:1801.00672

What is maximum mass of PBH?

Could 10⁶ -10¹⁰ M_O black holes in galactic nuclei be primordial?

BBNS => t < 1 s => M < $10^{5}M_{O}$ but β < 10^{-6} (t/s)^{1/2}

Supermassive PBHs could also generate cosmic structures on larger scale through 'seed' or 'Poisson' effect

Upper limit on μ distortion of CMB excludes $10^4 < M/M_0 < 10^{12}$ for Gaussian fluctuations but some models evades these limits. Otherwise need accretion factor of $(M/10^4M_o)^{-1}$

CONSTRAINTS FROM CMB DISTORTIONS

PBHs => density fluctuations

S increase for t < 7 x 10^6 s => weak BBNS limit

=> μ distortions for 7 x 10⁶ s < t < 3 x 10⁹ s v distortions for 3 x 10⁹ s < t < 3 x 10¹² s

 $\Rightarrow \delta(M) \le \mu^{1/2} \ge 10^{-2}$ for $10^4 \le M/M_o \le 10^{12}$

=> PBHs have $M < 10^5 M_o$ for Gaussian fluctuations

Kohri, Suyama & Yokoyama PRD 90, 083514 (2014)

But can alleviate limits if PBHs form from phase transition or from non-Gaussian fluctuations or in 'patch' model

Limits on primordial black holes from μ distortions in cosmic microwave background

Tomohiro Nakama,¹ Bernard Carr,^{2,3} and Joseph Silk^{1,4,5}

PHYSICAL REVIEW D 97, 043525 (2018)

If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the number in the mass range $10^5 - 10^{12} M_{\odot}$ is severely constrained by upper limits to the μ distortion in the cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated by Silk damping in the redshift interval $5 \times 10^4 \leq z \leq 2 \times 10^6$. If the primordial fluctuations on a given mass scale have a Gaussian distribution and PBHs form on the high- σ tail, as in the simplest scenarios, then the μ constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial fluctuations, can this conclusion be obviated.

SEED AND POISSON FLUCTUATIONS

PBHs larger than $10^{2}M_{\odot}$ cannot provide dark matter but can affect large-scale structure through seed effect on small scales or Poisson effect on large scales even if f small.

If region of mass M contains PBHs of mass m, initial fluctuation is

$$\delta_i \sim \begin{cases} m/M & (\text{seed}) \\ (fm/M)^{1/2} & (\text{Poisson}) \end{cases}$$

f = 1 => Poisson dominates; f <<1 => seed dominates for M < m/f. Fluctuation grows as z^{-1} from $z_{eq} \sim 10^4$, so mass binding at z_B is

$$M \approx \begin{cases} 4000 \, m z_B^{-1} \quad \text{(seed)} \\ 10^7 f m z_B^{-2} \quad \text{(Poisson)} \end{cases}$$

SEED VERSUS POISSON

f = 1 => m < 10³ $M_{\rm O}$ => M <10¹¹ $z_{\rm B}^{-2} M_{\rm O}$ < $M_{\rm gal}$ (Poisson)

Can constrain PBH scenarios by requiring that various cosmic structures do not form too early

First clouds bind earlier than in standard model Extended PBH mass function => DM <u>and</u> cosmic structures

SUPERMASSIVE PBHS AS SEEDS FOR GALAXIES

Seed effect => $M_B \sim 10^3$ m ($z_B/10$) \Rightarrow naturally explain M_{BH}/M_{bulge} relation

Effect of mergers?

Also predict mass function of galaxies (cf. Press-Schechter)

$$dN_g/dM \propto M^{-2} \exp(-M/M_*)$$
 $M_* \sim 10^{12} M_{\odot}$

and core density profile $\rho(r) \propto r^{-9/4}$. Bondi accretion => $m \approx m_i/(1 - m_i \eta t)$, $M_{eq} \sim 10^{15} M_O$ => diverges at $\tau = 1/(\eta m_i) \sim (M_{eq}/m_i)(c_{eq}/c)^3 t_{eq}$ => upper limit $m_i > M_{eq}(t_{eq}/t_o) \sim 10^{10} M_{\odot}$

Joe Silk

What IMBH can do for dwarf galaxies motivation: something new may be needed mostly passive today but active in gas-rich past

- 1.Suppress number of luminous dwarfs
- 2. Generate cores in dwarfs by dynamical heating
- 3 Resolve the "too big to fail" problem
- 4. Create bulgeless disks
- 5. Form ultrafaint dwarfs & ultradiffuse galaxies
- 6. Reduce baryon fraction in MWG-mass galaxies
- 7. Seeds for SMBH at high z
- 8. ULXs in outskirts of galaxies: relics of dwarfs
- 9. AGN triggering of star formation in dwarfs
- 10. Early galaxy formation

Predictions: 21cm, LISA, TDEs, μ-lensing

PBHS AND LIGO

Do we need Population III or primordial BHs?

Prescience of Japanese!

GRAVITATIONAL WAVES FROM COALESCING BLACK HOLE MACHO BINARIES Takashi Nakamura, Misao Sasaki, Takahiro Tanaka and Kip Thorne THE ASTROPHYSICAL JOURNAL, 487:L139–L142, 1997

If MACHOs are black holes of mass ~0.5 M_{\odot} , they must have been formed in the early universe when the temperature was ~1 GeV. We estimate that in this case in our Galaxy's halo out to ~ 50 kpc there exist ~5 × 10⁸ black hole binaries the coalescence times of which are comparable to the age of the universe, so that the coalescence rate will be ~5 × 10⁻² events yr⁻¹ per galaxy. This suggests that we can expect a few events per year within 15 Mpc. The gravitational waves from such coalescing black hole MACHOs can be detected by the first generation of interferometers in the LIGO/VIRGO/TAMA/GEO network. Therefore, the existence of black hole MACHOs can be tested within the next 5 yr by gravitational waves.

POSSIBLE INDIRECT CONFIRMATION OF THE EXISTENCE OF POP III MASSIVE STARS BY GRAVITATIONAL WAVES

Tomaya Kinagawa, Kohei Inayoshi, Kenta Hotokezaka, Daisuka Nakauchi and Tahashi Nakamura

MNRAS 442, 2963–2992 (2014

We perform population synthesis simulations for Population III (Pop III) coalescing compact binary which merges within the age of the Universe. We found that the typical mass of Pop III binary black holes (BH–BHs) is $\sim 30 \,\text{M}_{\odot}$ so that the inspiral chirp signal of gravitational waves can be detected up to z = 0.28 by KAGRA, Adv. LIGO, Adv. Virgo and GEO

Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess¹

arXiv:1603.00464

Dark matter in 20-100 M_O binaries may provide observed rate of 2-53 Gpc⁻¹yr⁻¹

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Misao Sasaki,¹ Teruaki Suyama,² Takahiro Tanaka,^{3,1} and Shuichiro Yokoyama⁴

arXiv:1603.08338

Only need small f and comparable to limits from CMB distortion

LIGO gravitational wave detection, primordial black holes and the near-IR cosmic infrared background anisotropies

A. Kashlinsky¹,

arXiv:1605.04023

PBHs generate early structure => infrared background

Spin Distribution of Primordial Black Holes

Takeshi Chiba¹ and Shuichiro Yokoyama²

arXiv:1704.06573

Abstract

We estimate the spin distribution of primordial black holes based on the recent study of the critical phenomena in the gravitational collapse of a rotating radiation fluid. We find that primordial black holes are mostly slowly rotating.

Gravitational Waves Induced by non-Gaussian Scalar Perturbations

Rong-gen Cai a,b , Shi Pi c and Misao Sasaki c,a,d,e

arXiv:1810.11000

if PBHs with masses of 10^{20} g to 10^{22} g are identified as cold dark matter of the Universe, the corresponding GWs must be detectable by LISA, irrespective of the value of $f_{\rm NL}$.

Testing Primordial Black Holes as Dark Matter through LISA

N. Bartolo^{a,b,c}, V. De Luca^d, G. Franciolini^d, M. Peloso^{a,b}, D. Racco^{d,e} and A. Riotto^d

arXiv:1810.12224

CONCLUSIONS

PBHs are best MACHO candidate and invoked for three roles:

Dark matter

LIGO events

Cosmic structure

These are distinct roles but with an extended mass function PBHs could possibly fulfill all three.

This talk is dedicated to the memory of my friend and mentor Stephen Hawking. He wrote the first paper on primordial black holes in 1971. If they play any of the roles discussed here, this may have been his most prescient and important work

[FOLLOWING SLIDES NOT SHOWN]

PBHS, HIGHER DIMENSIONS AND QUANTUM GRAVITY

COMPTON-SCHWARZSCHILD DUALITY

BLACK HOLE UNCERTAINTY PRINCIPLE CORRESPONDENCI

What happens where Compton and Schwarzschild intersect?

$$R_P = \sqrt{Gh/c^3} \sim 10^{-33} cm, \quad M_P = \sqrt{hc/G} \sim 10^{-5} g,$$

This must be an important feature of theory of quantum gravity.

Critical point or smooth minimum?

Planck Scale Criticality?

But this breaks T-duality $M \to M_P^2/M, \quad R \to R_P^2/R$

In string theory this relates momentum-carrying string states to winding states & relates sub-Planck and super-Planck lengths

Compton scale becomes Schwarzschild scale for M>>M_P? Compton irrelevant for M>>M_P since $R_C << R_P$? Cannot localize on scale below R_s ?

=> BHs are intrinsically quantum (BH radiation, firewalls)
 Schwarzschild scale becomes Compton scale for M<<M_P?
 => link between elementary particles and sub-Planckian BHs

ARE ELEMENTARY PARTICLES SPINNING BLACK HOLES?

Sivaram & Sinha "Strong gravity, black holes and hadrons" PRD 16, 1975 (1977)

- 1. Both hadrons and Kerr-Newman black holes are almost entirely characterized by just three parameters: mass, charge and angular momentum.
- Both hadrons and Kerr-Newman black holes have magnetic dipole moments, but do not have electric dipole moments.
- 3. Typical hadrons and Kerr-Newman black holes have gyromagnetic ratios of 2.
- Hadrons and Kerr-Newman black holes have similar linear relationships between angular momentum and mass squared, i.e., J M².
- When Kerr-Newman black holes interact, their surface areas may increase but can never decrease, which is potentially analogous to the increase of cross-sections found in hadron collisions.

Oldershaw "Hadrons as Kerr-Newman black holes" arXiv/0701006

COMPTON-SCHWARZSCHILD CORRESPONDENCE

Simplest expression asymptoting to Compton/Schwarzschild is

$$R_{CS} = \frac{\beta\hbar}{Mc} + \frac{2GM}{c^2}$$

 $R'_{C} = \frac{\beta\hbar}{Mc} \left[1 + \frac{2}{\beta} \left(\frac{M}{M_{P}} \right)^{2} \right] \quad (M \ll M_{P}) \qquad \text{generalised Compton wavelength}$ $R'_{S} = \frac{2GM}{c^{2}} \left[1 + \beta \left(\frac{M_{P}}{M} \right)^{2} \right] \quad (M \gg M_{P}) \qquad \text{generalised event horizon}$

More generally consider any function $R'_C(M) \equiv R'_S(M)$ such that

$$R_{C}^{\prime} \equiv R_{S}^{\prime} \approx \frac{h/(Mc) \quad (M \ll M_{P})}{2GM/c^{2} \quad (M \gg M_{P})}$$

Can interpret in terms of Generalised Uncertainty Principle.

UNCERTAINTY PRINCIPLE

Photon of momentum p determines position to precision $\Delta x > \lambda = h/p \text{ but imparts momentum } \Delta p \sim p$ $\Rightarrow \Delta x > \frac{h}{(2)\Delta p} \Rightarrow R_c = \frac{h}{Mc} \text{ (Compton wavelength)}$

GENERALIZED UNCERTAINTY PRINCIPLE

Photon of frequency ω approaching to distance R induces => acceleration $a \sim Gh\omega/(cR)^2$ over time $t \sim R/c$ => uncertainty in momentum $\Delta p \sim p \sim h\omega/c$ and in position

This suggests
$$\Delta x > \frac{h}{\Delta p} + \alpha R_p^2 \frac{\Delta p}{h} = \frac{h}{\Delta p} \left[1 + \alpha \left(\frac{\Delta p}{cM_p} \right)^2 \right]$$

Putting $\Delta x \rightarrow R$ and $\Delta p \rightarrow cM$ gives

$$R > R_{c}' = \frac{h}{Mc} + \frac{\alpha GM}{c^{2}} \approx \frac{h}{Mc} \left[1 + \alpha \left(\frac{M}{M_{p}} \right)^{2} \right] \qquad (M << M_{p})$$

=> Generalized Compton Wavelength

DO GUP UNCERTAINTIES ADD LINEARLY?

Root-mean-square error would give

$$\Delta x > \sqrt{\left(\frac{h}{\Delta p}\right)^2 + \left(\alpha R_p^2 \frac{\Delta p}{h}\right)^2} \Rightarrow R_c^{\prime} = \sqrt{\left(\frac{h}{Mc}\right)^2 + \left(\frac{\alpha GM}{c^2}\right)^2}$$
$$\Rightarrow R_s^{\prime} = \sqrt{\left(\frac{2GM}{c^2}\right)^2 + \left(\frac{\beta h}{Mc}\right)^2} \approx \frac{2GM}{c^2} \left[1 + \frac{\beta^2}{8} \left(\frac{M_p}{M}\right)^4\right]$$

"Generalized Uncertainty and Self-dual Black Holes" Carr, Modesto & Premont-Schwarz, arXiv: 1107.0708

 $C(r) = \frac{(r - r_{+})(r - r_{-})(r + r_{*})^{2}}{r_{+}}$

LOOP BLACK HOLES

Metric
$$ds^2 = -G(r)dt^2 + \frac{dr^2}{F(r)} + H(r)d\Omega^{(2)}$$
, $F(r) = \frac{(r-r_+)(r-r_-)r^4}{(r+r_+)^2(r^4+a_o^2)}$,
 $H(r) = r^2 + \frac{a_o^2}{r^2}$.
Where $r_- = 2Gm/c^2$ and $a_o = A_{\min}/8\pi = \sqrt{3}\gamma\zeta R_P^2/2$
 $\vec{r}_* \equiv \sqrt{r_+r_-}$
At large r $\frac{G(r) \rightarrow 1 - \frac{2M}{r}(1-\epsilon^2)}{F(r) \rightarrow 1 - \frac{2M}{r}}$, implies $M = m(1+P)^2$ (ADM mass)
 $H(r) \rightarrow r^2$.
Metric has self-duality with dual radius $r = r = \sqrt{a_o}$

=> another asymptotic infinity (r=0) with BH mass M_P^2/m

Physical radial coordinate
$$R = \sqrt{H(r)} = \sqrt{r^2 + \frac{a_o^2}{r^2}}$$

$$\Rightarrow R_s = \sqrt{\left(\frac{2Gm}{c^2}\right)^2 + \left(\frac{c^2a_o}{2Gm}\right)^2} \approx \frac{\frac{2Gm}{c^2}}{\sqrt{3\gamma\varsigma}} \frac{(m > M_p)}{h}$$

$$\Rightarrow R_s = \sqrt{\left(\frac{2Gm}{c^2}\right)^2 + \left(\frac{c^2a_o}{2Gm}\right)^2} \approx \frac{\sqrt{3\gamma\varsigma}}{4mc} \frac{h}{mc} \quad (m < M_p)$$

This removes singularity and corresponds to the quadratic GEH.

Suggests GR origin for quantum effects!

Sub-Planckian black holes are hidden within wormholes

Sub-Planckian Black Holes and the GUP

B. Carr, J. Mureika, P. Nicolini, JHEP 07 (2015) 52, arXiv:1504.07637

Can black holes exist below the Planck mass?

Include GUP in GR by emphasizing *duality* in the black hole mass

$$M \longrightarrow M\left(1 + \frac{\beta}{2}\frac{M_{\rm Pl}^2}{M^2}\right)$$

$$Metric is:$$

$$ds^2 = F(r)dt^2 - F(r)^{-1}dr^2 - r^2d\Omega^2$$

$$F(r) = 1 - \frac{2}{M_{\rm Pl}^2}\frac{M}{r}\left(1 + \frac{\beta}{2}\frac{M_{\rm Pl}^2}{M^2}\right)$$

Planck mass is now critical point for which...

$$M \gg M_{\rm Pl} \implies F(r) \sim 1 - \frac{M}{r}$$
$$M \ll M_{\rm Pl} \implies F(r) \sim 1 - \frac{1}{Mr}$$

Black Hole Characteristics: Horizon

Black Hole Temperature

A Duality Between Curvature and Torsion Swanand Khanapurkar^{*†} and Tejinder P. Singh[†] arXiv: 1804.00167

ABSTRACT

Compton wavelength and Schwarzschild radius are considered here as limiting cases of a unified length scale. Using this length, it is shown that the Dirac equation and the Einstein equations for a point mass are limiting cases of an underlying theory which includes torsion. We show that in this underlying theory the gravitational interaction between small masses is weaker than in Newtonian gravity. We explain as to why the Kerr-Newman black hole and the electron both have the same non-classical gyromagnetic ratio. We propose a duality between curvature and torsion and show that general relativity and teleparallel gravity are respectively the large mass and small mass limit of the ECSK theory. We demonstrate that small scale effects of torsion can be tested with current technology.

BLACK HOLES IN HIGHER DIMENSIONS

M-theory => extra compactified dimensions (n)

Standard model => $V_n \sim M_{P^{-n}}$, $M_D \sim M_p$, Large extra dimensions => V_n >> $M_{P^{-n}}$, $M_D << M_p$

TeV quantum gravity?

Schwarzschild radius $r_S = M_P^{-1}(M_{BH}/M_P)^{1/(1+n)}$ Temperature $T_{BH} = (n+1)/r_S < 4D$ case Lifetime $\tau_{BH} = M_P^{-1}(M_{BH}/M_P)^{(n+3)/(1+n)} > 4D$ case

BLACK HOLES AND HIGHER DIMENSIONS

Assume D=3+n dimensions for $R < R_E$

Gauss law

$$F_{grav} = \frac{G_D m_1 m_2}{R^{2+n}} \qquad (\mathsf{R} < \mathsf{R}_{\mathsf{E}})$$
$$F_{grav} = \frac{G m_1 m_2}{R^2} \qquad (\mathsf{R} > \mathsf{R}_{\mathsf{E}})$$

3D black hole smaller than R_E for $M < M'_E \equiv c^2 R_E/G$

$$R_S = R_E \left(\frac{M}{M'_E}\right)^{1/(1+n)} \quad \text{for} \quad M_P < M < M'_E \equiv c^2 R_E/G.$$

This intersects standard Compton boundary at new Planck scales

$$R'_P \sim (R_P^2 R_E^n)^{1/(2+n)}, \quad M'_P \sim (M_P^2 M_E^n)^{1/(2+n)}$$

All extra dimensions with scale R_E

For hierarchy of compactification scales:

$$R_i = \alpha_i R_P$$
 $\alpha_1 \ge \alpha_2 \ge \dots \ge \alpha_n \ge 1$

we can define average compactification scale

$$\langle R_E \rangle = \left(\prod_{i=1}^n R_i\right)^{1/n} = R_P \left(\prod_{i=1}^n \alpha_i\right)^{1/n}$$

For $R_{k+1} \lesssim R \lesssim R_k$ Schwarzschild radius becomes

$$R_S = R_{*(k)} \left(\frac{M}{M_P}\right)^{1/(1+k)}, \quad R_{*(k)} = \left(R_P \prod_{i=1}^{k \le n} R_i\right)^{1/(1+k)}$$

This intersects standard Compton boundary at

$$R'_P \sim (R_P^2 \langle R_E \rangle^n)^{1/(2+n)} \qquad M'_P \sim (M_P^2 \langle M_E \rangle^n)^{1/(2+n)}$$

Hierarchy of compactified dimensions

DETECTABLE AT LHC?

$$M_D \sim TeV \Rightarrow R_C \sim 10^{(32/n)-17} cm \sim egin{array}{c} 10^{16} \, {
m cm} & (n=1) & {
m excluded} \ 10^{-1} \, {
m cm} & (n=2) \ 10^{-6} \, {
m cm} & (n=3) \ 10^{-13} \, {
m cm} & (n=7) \end{array}$$

from LHC so far

No evidence

Yukawa correction

"Does Compton–Schwarzschild duality in higher dimensions exclude TeV quantum gravity?"

Matthew Lake and Bernard Carr

IJMPD 28 (2019) 1930001

COMPTON WAVELENGTH IN 3D

Cross-section for photon-electron scattering $R_C = h/(Mc)$

Reduced wavelength appears in KG or Dirac equations $\hbar/(Mc)$

de Broglie $E = \hbar \omega$, $\vec{p} = \hbar \vec{k}$ => pair-production for R<R_C

COMPTON WAVELENGTH IN (3+n) SPATIAL DIMENSIONS

To preserve duality, effective Compton wavelength must become $R_C = R_E \left(\frac{M}{M_E}\right)^{-1/(1+n)}$ for $M > M_E \equiv \hbar/(cR_E) = M_P^2/M'_E$

Then revised Planck length is $R_* \sim (R_P R_E^n)^{1/(1+n)} \gg R'_P$

but Planck mass is unchanged => no TeV quantum gravity!

BUT IS THIS TRUE?

If (3+n)D wave function is spherically symmetric in <u>all</u> dim'

=> $R_c \sim M^{-1}$ (as in 3D case)

If (3+n)D wave function is <u>quasi</u>-spherical (i.e. spherically symmetric in large dimensions but pancaked in extra dim')

=>
$$R_{c} \sim M^{-1/(1+n)}$$

This preserves duality between R_C and R_S

REFERENCES

B. Carr, L. Modesto & I. Premont-Schwarz, Generalized Uncertainty Principle and Self-Dual Black Holes, arXiv: 1107.0708 [gr-qc] (2011).

B. Carr, Black Holes, Generalized Uncertainty Principle and Higher Dimensions, Mod. Phys. Lett. A 28, 134001 (2013).

B. Carr, Black Hole Uncertainty Principle Correspondence, Proc KSM 2013 (2015); arXiv:1402.1427.

B. Carr, J. Mureika, P. Nicolini, Sub-Planckian black holes and Generalized Uncertainty Principle, JHEP 07, 52 (2015).

M. Lake and B. Carr, Compton-Schwarzschild correspondence from extended de Broglie relations, JHEP 1511, 105 (2015)

M. Lake and B. Carr, Does Compton-Schwarzschild duality in higher dimensions exclude TeV quantum gravity? IJMPD 28, 1930001(2018).

B. Carr, Quantum Black Hole as the Link between Microphysics and Macrophysics, Proc KSM 2015 (2018); arXiv:1703.08655.

PBHs may play a crucial role in the marriage of QT and GR

Session S4A1 9:45-10:15

[Chair: Tomohiro Harada]

Kazumasa Okabayashi

Department of Physics, Waseda University.

"Collisional Penrose process of spining particles" (10+5 min.)

[JGRG28 (2018) 110802]

<u>Collisional Penrose process</u> of <u>spinning particles</u>

Kazumasa Okabayashi(Waseda Uni.) with Kei-ichi Maeda(Waseda Uni.) and Hirotada Okawa(YITP) Based on PhysRevD.98.064027 (arXiv:1804.07264)

Introduction

 In 2009, it is showed that the center of mass energy diverges when two particles (1),(2) collide near the horizon of an extreme Kerr BH. (BSW process) (Banados, Silk and West '09)

 $E_{cm} \equiv -(P_1^{\mu} + P_2^{\mu})(P_{1\mu} + P_{2\mu}) \rightarrow \infty$ (at the horizon of an extreme BH)

• Due to the red shift, it is not trivial that the energy at infinity (of a resulting particle (3)) also diverges.

Introduction

• The observable energy efficiency at infinity

 $\eta \equiv \frac{E_3}{E_1 + E_2}$ The ratio of the resulting energy to the sum of initially energy

Elastic collision of the same mass particles

 \rightarrow 6.32(Leiderschneider & Piran '16)

Compton scattering (a photon & a massive particle)

 \rightarrow 13.92 (Schnittman '14) \rightarrow Maximum efficiency

(c.f. Ogasawara, Harada & Miyamoto '16, Leiderschneider & Piran '16, Zaslavskii '16)

• The above works do not include the case that particles are spinning. This case is also physically reasonable.

• We studied the effect of spin to the energy efficiency.

0

-2

-4

-6

-8

J = 2EM

Collisional Penrose Process

Head-on collision

Collisional Penrose Process

• Conservation laws

$$\begin{split} E_1 + E_2 &= E_3 + E_4 \\ J_1 + J_2 &= J_3 + J_4 \\ P_1^r + P_2^r &= P_3^r + P_4^r \\ \underline{s_1 + s_2} &= s_3 + s_4 \end{split}$$

Head-on collision

• The collision near the horizon: $r_c = \frac{M}{1-\epsilon}$ $J_1 = 2E_1M, J_2 = 2E_2M(1+\zeta) (\zeta < 0)$

Collisional Penrose Process

Collisional Penrose Process

<u>The "Compton" scattering</u> (the scattering of a massless particle (1) and a massive particle (2))

The contour map of E_3/E_1 in terms of s_2 and α_3 . The timelike condition is trivial for a spinless particle.

 E_3/E_1 can also reach the maximum at the red point: $(s_2, \alpha_3) = (-0.27, +0)$

$$E_{3,max} = 26.85E_1$$

Conclusion and discussion

The maximum efficiency in the elastic collision of the same mass spinning particles: <u>15.01</u>

(the spinless case: 6.32)

The maximum efficiency in the "Compton" scattering: <u>26.85</u> (the spinless case: <u>13.93</u>)

we can obrain about twice as large efficiency as the spinless case when the spin of the particle (2) is negative. (chosen as antiparallel to the BH).

- In the case of the rear-end collision, the efficiency is not good as the head-on collision case.
- The case where particle (2) is also near critical
- □ The case of non-extreme BH

About the super Penrose process

Negative β_3 when α_3 is zero

To bounce back, $\alpha_3 \epsilon + \beta_3 \epsilon^2 > 0$ is needed; hence, the particle 3 cannot come back to infinity when α_3 is exactly zero and β_3 is negative.

Like (ϵ, δ) -definition of limit, we can choose ϵ as much smaller than any small α_3 . Therefore, the particle 3 can bounce back when β_3 is negative and in the sence of $\alpha_3 \rightarrow +0$, $\alpha_3 = 0$.

How to describe a spinning particle

• Timelike condition

 $P^{\mu} = \mu v^{\mu} + v_{\nu} \frac{\mathrm{DS}^{\mu\nu}}{d\tau} \qquad u^{\mu} = \frac{p^{\mu}}{\mu} \qquad u^{\mu} v_{\mu} = -1$

In the case of the spin-less case, the time-like condition is trivial but in this case this condition nontrivial because momentum is not parallel to 4 velocity.

Momentum of a spinning particle

Momentums of a particle can be written by E, J as below;

$$\begin{split} u^{(0)} &= \frac{(r^3 + (1+s)r + s)E - (r+s)J}{\mu r^2 \sqrt{\Delta} (1 - \frac{s^2}{r^3})} & \Delta = (r-1)^2 \\ \Sigma &= r^2 \end{split}$$

$$u^{(3)} &= \frac{-(1+s)E + J}{\mu r (1 - \frac{s^2}{r^3})} \\ u^{(1)} &= \\ \frac{\sigma \sqrt{r^2 \left[(r^3 + (1+s)r + s)E - (r+s)J \right]^2 - (r-1)^2 \left[(r^3 - s^2)^2 + r^4 (J - (1+s)E)^2 \right]}{(r-1)(r^3 - s^2)} \end{split}$$

$$e_{\mu}^{(a)} = \begin{pmatrix} \sqrt{\frac{\Delta}{\Sigma}} & 0 & 0 & -a\sqrt{\frac{\Delta}{\Sigma}}\sin^2\theta \\ 0 & \sqrt{\frac{\Sigma}{\Delta}} & 0 & 0 \\ 0 & 0 & \sqrt{\Sigma} & 0 \\ -\frac{a}{\sqrt{\Sigma}}\sin\theta & 0 & 0 & \frac{(r^2+a^2)}{\sqrt{\Sigma}}\sin\theta \end{pmatrix}$$

Radial momentum conservation at 1st order

The elastic scattering (the same masses)

$$\begin{split} \sigma_3 \frac{f(s_1, E_3, \alpha_3)}{1 - s_1^2} &= \sigma_1 \frac{f(s_1, E_1, 0)}{1 - s_1^2} + \frac{[E_1(2 + s_2) - E_3 g_1(s_2, \alpha_3)]}{1 - s_2^2} \\ f(s, E, \alpha) &:= \sqrt{E^2 [3 - 2\alpha(1 + s)] [1 + 2s - 2\alpha(1 + s)] - (1 - s^2)^2} \,, \\ g_1(s, \alpha) &:= 2 + s - 2\alpha(1 + s) \,, \end{split}$$

We get a quadratic equation of E_3 : $\mathcal{A}E_3^2 - 2\mathcal{B}E_3 + \mathcal{C} = 0$

$$E_3 = \frac{\mathcal{B} + \sqrt{\mathcal{B}^2 - \mathcal{AC}}}{\mathcal{A}}$$

$$\begin{aligned} \mathcal{A} &= -[3 - 2\alpha_3(1+s_1)][1 + 2s_1 - 2\alpha_3(1+s_1)] + \frac{(1-s_1^2)^2}{(1-s_2^2)^2}g_1^2(s_2,\alpha_3) \\ \mathcal{B} &= g_1(s_2,\alpha_3)\frac{(1-s_1^2)}{(1-s_2^2)} \left[(2+s_2)\frac{(1-s_1^2)}{(1-s_2^2)}E_1 + \sigma_1 f(s_1,E_1,0) \right] \\ \mathcal{C} &= E_1 \left[\left(\frac{3(1+2s_1)(1-s_2^2)^2 + (1-s_1^2)^2(2+s_2)^2}{(1-s_2^2)^2} \right) E_1 + 2\sigma_1 \frac{(1-s_1^2)(2+s_2)}{(1-s_2^2)} f(s_1,E_1,0) \right] \end{aligned}$$

Radial momentum conservation at 2nd order

 $\mathcal{P}E_2 = (1 - s_2)^3 (E_1 - E_3)^2$ Linear equation of E_2

Since this fixes the value of E_2 , we obtain the efficiency by

 $\eta \equiv \frac{E_3}{E_1 + E_2}$ This efficiency is obtained when α_3 , β_3 , and ζ are given.

$$\begin{split} \mathcal{P} &:= 2(E_3 - E_1)(1 - s_2)^3 + 4\zeta \Big[\frac{(1 - s_2^2)^2}{(1 - s_1^2)^2} \mathcal{Q} + 2(1 + s_2) E_3[\alpha_3(2 + s_2) - \beta_3(1 - s_2^2)] - s_2(2 + s_2)^2(E_3 - E_1) \Big] \\ \mathcal{Q} &:= \sigma_1 \frac{E_1^2 h(s_1)}{f(s_1, E_1, 0)} - \sigma_3 \Big[\frac{E_3^2}{f(s_1, E_3, \alpha_3)} \times \Big(h(s_1) - 2(1 + s_1)^2(2 + s_1)g_2(s_1, \alpha_3) + 2\beta_3(1 + s_1)(1 - s_1^2)g_1(s_1, \alpha_3) \Big) \Big] \\ f(s, E, \alpha) &:= \sqrt{E^2[3 - 2\alpha(1 + s)][1 + 2s - 2\alpha(1 + s)] - (1 - s^2)^2} \\ g_1(s, \alpha) &:= 2 + s - 2\alpha(1 + s) , \\ g_2(s, \alpha) &:= \alpha(2 + s - 2\alpha) , \\ h(s) &:= 1 + 7s + 9s^2 + 11s^3 - s^4 \end{split}$$

Session S4A2 10:45-12:00

[Chair: Kenichi Nakao]

Takayuki Ohgami

Daido Univ.

"Exploring GR Effects of Super-Massive BH at Galactic Center 2: on the detail of fitting theory with observational data" (10+5 min.)

[JGRG28 (2018) 110805]

Exploring GR Effects of Super-Massive BH at Galactic Center 2: on the detail of fitting theory with observational data

Takayuki Ohgami (Daido Univ.) / 大神隆幸(大同大学) member

H. Saida (Daido Univ.) / 齋田浩見 (大同大学)

S. Nishiyama (Miyagi U. Edu) / 西山正吾(宮城教育大学)

Y. Takamori (Wakayama NCT)/ 孝森洋介(和歌山高専)

M. Takahashi (Aichi U. Edu) / 高橋真聡 (愛知教育大学)

+Some Collaborators in Obs. and Instr.

JGRG28@Rikkyo Univ., Tokyo Nov. 8, 2018

1. What we want to do

1.Fitting with data and Parameter search (Newton, GR)

2.Simulation and obtaining RV curve ($\mathit{cz}_{\mathrm{Newton}}(t),\,\mathit{cz}_{\mathrm{GR}}(t)$)

3.Calculate GR effect $c\Delta z := cz_{GR}(t) - cz_{Newton}(t)$

4.Comparison between $c\Delta z$ and data

Saida-san has talked about Step 2, 3 and 4. I wll talk about detail of Step 1.

2. fitting method : χ^2 -fitting

<u>Method</u>

 $\chi^{2\text{-}}$ fitting of theory with obs. data

Newton Gravity General Relativity Astro. data : Keck + VLT Spect. data : Subaru + Keck + VLT

<u>fitting parameters</u> (19 parameters)

- $M_{
 m SgrA^*}$: Mass of Sgr A*
- $R_{
 m SgrA^*}$: Distance to Sgr A*
- $ec{x}_{
 m apo}, \, ec{v}_{
 m apo}$: S2's initial conditions
- $ec{v}_{
 m E}$: Our velocity
- $(X, Y)_{\mathrm{Keck}}$: Astro. ref. point for Keck
- $(\dot{X},\,\dot{Y})_{\mathrm{Keck}}$: Velocity of ref. point for Keck
- $(X,\,Y)_{\rm VLT}$: Astro. ref. point for VLT
- $(\dot{X},\,\dot{Y})_{\rm VLT}$: Velocity of ref. point for VLT

(X, Y) = (RA, Dec)

- Fitting and Test of a Model using Obs. Data
 - Hypotheses
 - Measurement of each obs. data z_i is individually a stochastic process obeying $P(Z; \mu_i, \sigma_i)$.
 - Mean μ_i of each obs. data z_i is modeled with L parameters, $\mu_i = f_i(A_1, \cdots, A_L)$.

Step1 : Find the best-fit values of A_i.
Step2 : Test the goodness of fitting.
Step3 : If good, then estimate the error of fitting.

3. Best-fit parameter

Best-fit values $A_1^{(\mathrm{best})},\cdots,A_L^{(\mathrm{best})}$ correspond to the minimum of χ^2

$$\chi_{\min}^2 = \sum_{i=1}^N \left[\frac{z_i - f_i(A_1^{\text{(best)}}, \cdots, A_L^{\text{(best)}})}{\sigma_i} \right]^2$$

→ χ^2_{\min} is a stochastic variable, because z_i 's are the stochastic variables.

→The probability distribution of χ^2_{\min} is χ^2 -distribution of *N*-*L* degrees of freedom.

Two approaches to find χ^2_{min}

- Maximum Likelihood Estimation (MLE)
 - Just find χ^2_{min}
 - Merit : Short calculation times
 - Demerit : Cannot obtain the error (Need an extra estimation)
- Bayesian inference \leftarrow Our next approach
 - Compute probability distribution of parameters A_i.
 - Merit : Introduction of a prior Prob. Dist. from previous result.
 Prob. Dist. we want = Likelihood × prior Prob. Dist.
 - Demerit : very long time

Markov Chain Monte Carlo method (MCMC)

- One of the Monte Carlo method
- Random Walk following Markov process (Markov Chain)
- Change the parameter values following probability (Likelihood).
- Next step tends to go to high likelihood value. (Metropolis method)

- How to obtain the Likelihood?
 - Now, we use χ^2 -fitting.
 - p-value (cumulative probability) of χ^2 = Likelihood

Histogram by MCMC

- Taking many step of Markov chain, we can obtain the histogram showing prob. dis. of parameters.
- Estimate mean, deviation, … form this histogram.

4. Fitting Examples

- Setting
 - Theory : Newton Gravity
 - Fitting data : only RV data (Subaru + Keck + VLT)
 - Fitting params. : $M_{
 m SgrA^*}, \, ec{x}_{
 m apo}, \, ec{v}_{
 m apo}$

Here, we can convert	t $\vec{x}_{\rm apo}$,	$ec{v}_{ m apo}$ to
----------------------	-------------------------	---------------------

- $t_{\rm apo}$: inclination : Date at apocenter i
 - : Eccentricity e
- Ω : Longitude of the Ascending Node ω
- T: Period
- : Argument of Perigee
- Prior Prob. Dist. :
- Uniform \rightarrow Test Model
- Normal Dist. following result of GRAVITY+(2018) → Referencing Model

- I explained detail of our fitting theory with observational data (χ²- fitting, MCMC).
 - The plan using MCMC is not complete yet. (in progress)
- Test fitting by MCMC (only Newton Grav.)
 - If we fit with only RV data, does NOT work.
 - RV data is not enough statistically.
 - It is necessary to fit with both datas (Astro. and RV).

Filip Ficek

Jagiellonian University

"Planar domain walls in Kerr spacetime" (10+5 min.)

[JGRG28 (2018) 110806]

Planar domain walls in Kerr spacetime

Filip Ficek Jagiellonian University Cracow, Poland

Plan

- Domain walls
- Searching for domain wall transits
- Details of the simulation
- Results
- Summary

Domain walls

PHYSICAL REVIEW D 67, 025017 (2003)

Thick domain walls around a black hole

Yoshiyuki Morisawa,^{1,*} Daisuke Ida,^{2,†} Akihiro Ishibashi,^{3,‡} and Ken-ichi Nakao^{1,§}
 ¹Department of Physics, Osaka City University, Osaka 558-8585, Japan
 ²Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
 ³Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637 (Received 20 September 2002; published 28 January 2003)

We discuss the gravitationally interacting system of a thick domain wall and a black hole. We numerically solve the scalar field equation in the Schwarzschild spacetime and obtain a sequence of static axisymmetric solutions representing thick domain walls. We find that, for the walls near the horizon, the Nambu-Goto approximation is no longer valid.

PHYSICAL REVIEW D 73, 125017 (2006)

Black holes escaping from domain walls

Antonino Flachi,^{1,*} Oriol Pujolàs,^{1,2,†} Misao Sasaki,^{1,‡} and Takahiro Tanaka^{3,§} ¹Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8503, Japan ²Center for Cosmology and Particle Physics, Department of Physics, New York University, 4 Washington Place, New York, New York 10003 US, USA ³Department of Physics, Kyoto University, Kyoto 606-8502, Japan (Received 14 February 2006; published 20 June 2006)

Previous studies concerning the interaction of branes and black holes suggested that a small black hole intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm previous results, however, unlike the cases previously studied, in the more general set-up considered here, we are able to follow the evolution of the system also during the separation, and completely illustrate how the escape of the black hole takes place.
annalen physik

The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model

Szymon Pustelny^{1,2,*}, Derek F. Jackson Kimball³, Chris Pankow⁴, Micah P. Ledbetter^{2,**}, Przemyslaw Wlodarczyk⁵, Piotr Wcislo^{1,6}, Maxim Pospelov^{7,8}, Joshua R. Smith⁹, Jocelyn Read⁹, Wojciech Gawlik¹, and Dmitry Budker^{2,10}

Received 18 March 2013, revised 10 July 2013, accepted 22 July 2013 Published online 21 August 2013

PUBLISHED ONLINE: 17 NOVEMBER 2014 | DOI: 10.1038/NPHYS3137

Hunting for topological dark matter with atomic clocks

A. Derevianko^{1*} and M. Pospelov^{2,3}

Terrestrial experiments

Astrophysical effects

Details of the simulation

- φ⁴ model
- Black hole with either angular momentum or charge
- Initially planar domain wall
- Axial symmetry (2D simulation)

- Crank-Nicholson method
- Kerr-Schild-type coordinates
- Minkowski solution as a boundary condition at the outer boundary
- Inner boundary of the domain below the outer horizon (no boundary conditions)
- · Causality under the horizon imposed during the discretisation

Details of the simulation

-80

-60

Summary

- Domain wall transits are an active area of research.
- There exist observational campaigns, both terrestrial and astrophysical.
- Domain walls seem to be stable under the black hole transits
- Angular momentum of the black hole have a little impact on the results

Thank you for your attention

• F. Ficek, P. Mach, Planar domain walls in black hole spacetimes, Phys. Rev. D 97, 044012 (2018)

- S. Pustelny et. al. The Global Network of Optical Magnetometers for Exotic physics (GNOME): A novel scheme to search for physics beyond the Standard Model, Annalen der Physik **525**, 659 (2013)
- A. Derevianko, M. Pospelov, Hunting for topological dark matter with atomic clocks, Nature Physics 10, 933 (2014)
- Y.V. Stadnik, V.V. Flambaum, Searching for Topological Defect Dark Matter via Nongravitational Signatures, PRL 113, 151301 (2014)
- V. Radhakrishnan, R. N. Manchester, Detection of a Change of State in the Pulsar PSR 0833-45, Nature 222, 228 (1969)
- Y. Morisawa, D. Ida, A. Ishibashi, K. Nakao, *Thick domain walls around a black hole*, Phys. Rev. D 69, 084018 (2004)
- A. Flachi et. al. Black holes escaping from domain walls, Phys. Rev. D 73, 125

Masashi Kimura

Instituto Superior Tecnico, Universidade de Lisboa

"Stability analysis of black holes by the S-deformation method for coupled systems" (10+5 min.)

[JGRG28 (2018) 110808]

Stability analysis of BHs by the S-deformation method for coupled systems

MK, CQG **34**, 235007 (2017) MK & T.Tanaka, CQG **35**, 195008 (2018) MK & T.Tanaka, arXiv:1809.00795

Masashi Kimura (IST, Univ. of Lisbon) w/ Takahiro Tanaka (Kyoto Univ.) 8th Nov 2018

Linear (mode) stability of BH

Linear gravitational perturbation on a highly symmetric BH usually reduces to

$$\left[-rac{\partial^2}{\partial t^2}+rac{\partial^2}{\partial x^2}-V(x)
ight] ilde{\Phi}=0$$

$$\tilde{\Phi}(t,x) = e^{-i\omega t} \Phi(x)$$

$$\left[-rac{d^2}{dx^2}+V
ight]\Phi=\omega^2\Phi$$

unstable mode $\rightarrow \omega^2 < 0 \mod (\text{negative energy bound state}) = 1/18$

To prove (mode) stability, we need to show the non-existence of $\omega^2 < 0$ mode

$$\begin{bmatrix} -\frac{d^2}{dx^2} + V \end{bmatrix} \Phi = \omega^2 \Phi$$
$$\implies \left[\bar{\Phi} \frac{d\Phi}{dx} \right]_{-\infty}^{\infty} + \int dx \left[\left| \frac{d\Phi}{dx} \right|^2 + V |\Phi|^2 \right] = \omega^2 \int dx |\Phi|^2$$
$$V \ge 0 \text{ implies non-existence of } \omega^2 < 0 \text{ mode}$$

Sometimes, V contains negative regions 2/18

S-deformation [Kodama and Ishibashi 2003]

$$-\frac{d}{dx} \left[\bar{\Phi} \frac{d\Phi}{dx} + S|\Phi|^2 \right] + \left| \frac{d\Phi}{dx} + S\Phi \right|^2 + \left(V + \frac{dS}{dx} - S^2 \right) |\Phi|^2 = \omega^2 |\Phi|^2$$
For continuous S

$$- \left[\bar{\Phi} \frac{d\Phi}{dx} + S|\Phi|^2 \right]_{-\infty}^{\infty} + \int dx \left[\left| \frac{d\Phi}{dx} + S\Phi \right|^2 + \left(V + \frac{dS}{dx} - S^2 \right) |\Phi|^2 \right] = \omega^2 \int dx |\Phi|^2$$
We can say $\omega^2 \ge 0$ if $V + \frac{dS}{dx} - S^2 \ge 0$
In general, it is hard to find an appropriate S analytically
In that case, numerical approach
(e.g. solving PDE) was used so far $3/18$

We propose a simple method for finding an appropriate S-deformation

Also, extend this method to coupled systems

4/18

Very easy method

[Kimura 2017] [Kimura & Tanaka2018]

Just solve $V + \frac{dS}{dx} - S^2 = 0$ numerically

The existence of global regular solution is non-trivial

Regular S usually can be obtained from the initial condition S = 0 at V > 0 region 5/18

We can find regular S without fine-tuning 6/18

Relation with Schrödinger Eq.

 $V + \frac{dS}{dx} - S^2 = 0$ is the Riccati equation

$$rac{1}{\phi}rac{d\phi}{dx}:=-S \ \
ightarrow \ \ -rac{d^2\phi}{dx^2}+V\phi=0$$

Schrödinger Eq. with zero energy

A solution which does not have any zero corresponds to a regular S

8/18

Nodal theorem

A theorem in the Sturm-Liouville theory

 $\left[-\frac{d^2}{dx^2}+V\right]\Phi=E\Phi$

If we solve the Schrödinger Eq. with the boundary condition $\Phi = 0, d\Phi/dx = 1$ at a sufficiently large distance, the number of zeros coincides with the number of the negative energy bound states.

There should exist a regular S for stable spacetime 9/18

Under some assumption, we can show that S constructed from a sol. with decaying boundary condition is regular if the spacetime is stable.

Proposition. There exists a regular S-deformation for stable spacetimes

10/18

Extension to multiple degrees of freedom

If there exist two or more physical degrees of freedom, and they are coupled, master Eqs sometimes become

$$\left[-rac{d^2}{dx^2}+V
ight]\Phi=\omega^2\Phi$$

- $V: n \times n$ Hermitian matrix
- Φ : *n* components vector

We assume the coupling term $\mathcal{L} \sim \Phi^{\dagger} V \Phi$

11/18

For any $n \times n$ Hermitian S,

$$-\left[\Phi^{\dagger}\frac{d\Phi}{dx} + \Phi^{\dagger}S\Phi\right]_{-\infty}^{\infty} + \int dx \left[\left|\frac{d\Phi}{dx} + S\Phi\right|^{2} + \Phi^{\dagger}\left(V + \frac{dS}{dx} - S^{2}\right)\Phi\right] = \omega^{2}\int dx |\Phi|^{2}$$
$$= \tilde{V}$$

If V is non-negative definite, spacetime is stable

We can still find a regular S by solving $V + \frac{dS}{dx} - S^2 = 0$ 12/18

Schwarzschild BH in dCS

[Molina, Pani, Cardoso, Gualtieri 2010]

$$-\frac{d^{2}}{dx^{2}}\Phi_{1} + V_{11}\Phi_{1} + V_{12}\Phi_{2} = \omega^{2}\Phi_{1} \qquad f = 1 - \frac{2M}{r}$$
$$-\frac{d^{2}}{dx^{2}}\Phi_{2} + V_{12}\Phi_{1} + V_{22}\Phi_{2} = \omega^{2}\Phi_{2} \qquad fd/dr = d/dx$$
$$V_{11} = f\left[\frac{\ell(\ell+1)}{r^{2}} - \frac{6M}{r^{3}}\right]$$
$$V_{12} = f\frac{24M\sqrt{\pi(\ell+2)(\ell+1)\ell(\ell-1)}}{\sqrt{\beta}r^{5}}$$
$$V_{22} = f\left[\frac{\ell(\ell+1)}{r^{2}}\left(1 + \frac{576\pi M^{2}}{\beta r^{6}}\right) + \frac{2M}{r^{3}}\right]$$
13/18

Schwarzschild BH in dCS

We solve $V + \frac{dS}{dx} - S^2 = 0$ numerically with the initial condition S = 0 at a large distance

14/18

Remarks for general case

The nodal theorem for coupled systems suggest the existence of regular S (we can explicitly show the existence of regular S for rapidly decaying potential)

If V > 0 in asymptotic region, S = 0 at large x is a candidate for an appropriate initial condition

Merit of S-deformation method

- We do not need to care about boundary condition at infinity very much, we can solve equation from finite point
- Any fine-tuning is not needed
- It is clear that the existence of regular S is the sufficient condition for stability (proof of nodal theorem is very difficult)
- Easy to show the non-existence of zero mode (by showing two different S) 17/18

Summary

We proposed a simple method for finding S-deformation by solving $V + \frac{dS}{dx} - S^2 = 0$

This is a good test for stability of BH

If stable, this method should work

We can guess the threshold of the parameter where unstable mode appears

18/18

Invited lecture 14:00–14:45

[Chair: Sugumi Kanno]

Vincent Vennin

APC Paris

"Stochastic Inflation and Primordial Black Holes" (40+10 min.)

[JGRG28 (2018) 110810]

Stochastic Inflation and Primordial Black Holes

Vincent Vennin

Tokyo, 8th November 2018

Outline

- Quantum State of Cosmological Perturbations
- The Stochastic- δN Inflation Formalism
- Primordial Black Holes

14:00 – 14:45	Invited Talk 7 (Chair: S. Kanno)
	Vincent Vennin APC Paris Stochastic Inflation and Primordial Black Holes
14:45 – 15:45	Session 4P1
	 [T61*] Yuichiro Tada Nagoya University Stochastic formalism and curvature perturbations [T62*] Junsei Tokuda Kyoto University On the contribution of infrared secular effects to primordial fluctuations via quantum interference

Outline

- Quantum State of Cosmological Perturbations
- The Stochastic- δN Inflation Formalism
- Primordial Black Holes

Based on:

- VV and A. Starobinsky, 1506.04732 (EPJC)
- H. Assadullahi, H. Firouzjahi, M. Noorbala, VV, D. Wands, 1604.04502 (JCAP)
- VV, H. Assadullahi, H. Firouzjahi, M. Noorbala, D. Wands, 1604.06017 (PRL)
- C. Pattison, VV, H. Assadullahi, D. Wands, 1705.05746 (JCAP)

November 2018

JGRG 28

 $0\,/\,15$

Cosmological Perturbations in Inflation

Inflation is a high energy phase of accelerated expansion in the early Universe

$$\mathrm{d}s^2 = -\mathrm{d}t^2 + a^2(t)\mathrm{d}x^2 \quad \text{with} \ \ddot{a} > 0$$

Quantum fluctuations sourcing the background

November 2018

Cosmological Perturbations in Inflation

ullet One scalar degree of freedom: $v\propto \zeta$ (curvature perturbation) $\propto \delta T/T$ (CMB T° fluctuation)

 $\begin{array}{l} \bullet \ |\Psi\rangle = \bigotimes_{\boldsymbol{k}\in\mathbb{R}^{3+}} |\Psi_{\boldsymbol{k}}\rangle \quad \text{with} \quad |\Psi_{\boldsymbol{k}}\rangle = \frac{1}{\cosh r_k} \sum_{n=0}^{\infty} e^{2in\varphi_k} (-1)^n \mathrm{tanh}^n r_k |n_{\boldsymbol{k}}, n_{-\boldsymbol{k}}\rangle \\ & \text{Two-mode squeezed state (Gaussian state)} \end{array}$

• Wigner function $W(v_k, p_k) = \int \frac{\mathrm{d}x}{2\pi^2} \Psi^*(v_k - \frac{x}{2}) \ \mathrm{e}^{-ip_k x} \ \Psi(v_k + \frac{x}{2})$

• Evolution Equation $\frac{\partial}{\partial t}W(v,p,t) = -\{W(v,p,t), H(v,p,t)\}_{\text{Poisson Bracket}}$ For quadratic Hamiltonians

2/15

Quantum State of Cosmological Perturbations

$$\frac{\partial}{\partial t}W\left(v,p,t\right) = -\left\{W\left(v,p,t\right), H\left(v,p,t\right)\right\}_{\text{Poisson Bracket}}$$

November 2018

0

Cosmological Perturbations in Inflation

ullet One scalar degree of freedom: $v\propto \zeta$ (curvature perturbation) $\propto \delta T/T$ (CMB T° fluctuation)

• Evolution Equation $\frac{\partial}{\partial t}W(v, p, t) = -\{W(v, p, t), H(v, p, t)\}_{\text{Poisson Bracket}}$ For guadratic Hamiltonians

- Quantum Mean Value and Stochastic Average $\left\langle \hat{\mathcal{O}}\left(\hat{v},\hat{p}\right) \right\rangle_{\text{quant}} \stackrel{2}{\Rightarrow} \int W\left(v,p\right) \mathcal{O}\left(v,p\right) \mathrm{d}v \,\mathrm{d}p$
 - True for $\mathcal{O}(\hat{v})$ and $\mathcal{O}(\hat{p})$
 - True for <u>Hermitian</u>, <u>quadratic</u> $\mathcal{O}(\hat{v}, \hat{p})$
 - True for proper $\mathcal{O}(\hat{v}, \hat{p})$ in the super-Hubble limit

Lesgourgues, Polarski, Starobinky (1997) J. Martin, VV (2016)

Stochastic Formalism

Starobinsky, 1986

Quantum backreaction on super-Hubble scales

November 2018

Primordial Black Holes from Inflation

 Primordial density perturbations when modes re-enter the Hubble radius after inflation

$$\left.\frac{\delta\rho}{\rho}\right|_{k=aH}\sim\zeta$$

• Rare fluctuations exceeding critical value $\zeta > \zeta_{\rm c} \sim 1$ collapse to form black holes

ullet number of e-fold is a stochastic variable $\mathcal{N}\left(\phi
ight)$

$$\zeta_{\text{coarse grained}} = \mathcal{N} - \langle \mathcal{N} \rangle$$

Moments obey an iterative relation (Vennin and Starobinsky 2015)

$$\left\langle \mathcal{N}^{n}\right\rangle ^{\prime\prime}-\frac{v^{\prime}}{v^{2}}\left\langle \mathcal{N}^{n}\right\rangle ^{\prime}=-\frac{n}{vM_{_{\mathrm{Pl}}}^{2}}\left\langle \mathcal{N}^{n-1}\right\rangle$$

November 2018

Power Spectrum

Full PDF required for PBHs!

- Define characteristic function (includes all the moments) $\chi_{\mathcal{N}}(t,\phi) = \left\langle e^{it\mathcal{N}}(\phi) \right\rangle = \int e^{it\mathcal{N}(\phi)} P\left(\mathcal{N},\phi\right) \mathrm{d}\mathcal{N}$
- Obeys partial differential equation $\left(\frac{\partial^2}{\partial \phi^2} - \frac{v'}{v^2}\frac{\partial}{\partial \phi} + \frac{it}{vM_{_{\mathrm{Pl}}}^2}\right)\chi_{\mathcal{N}}\left(t,\phi\right) = 0$
- Inverse Fourier transform gives full probability distribution $P\left(\mathcal{N},\phi\right) = \frac{1}{2\pi} \int_{-\infty}^{\infty} e^{-it\mathcal{N}} \chi_{\mathcal{N}}\left(t,\phi\right) \mathrm{d}t$

Example:
$$v(\phi) = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$$

 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$
 $v_1 = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$

10/15

Example:
$$v(\phi) = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$$

"Classical" Regime

Example:
$$v(\phi) = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$$

Example:
$$v(\phi) = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$$

Example:
$$v(\phi) = v_0 \left[1 + \left(\frac{\phi}{\phi_0} \right)^p \right]$$

Conclusions

- Stochastic-δN needed to calculate primordial density perturbations beyond perturbative approach
- In the classical regime, Gaussian approximation may fail!
- Primordial Black Hole bounds require N<1 in quantum diffusion regime
- Extension to multi-field?
- Transient slow-roll violation (inflection point models)?

Thank you for your attention!

Session S4P1 14:45–15:45

[Chair: Sugumi Kanno]

Yuichiro Tada

Nagoya U.

"Stochastic formalism and curvature perturbations" $_{(10+5\ min.)}$

[JGRG28 (2018) 110811]

285

{▽}

0

Stochastic Formalism & Curvature Perturbations

Yuichiro Tada (C-lab. Nagoya U.)

Pinol, Renaux-Petel, Vennin, Fujita, Tokuda arXiv: 1806.10126 and in preparation

Key Question

- Curv. PTB beyond 1st order?
- Resummation eff.?
- Intuitive understanding of curv. PTB?

Stochastic Formalism & Curvature Perturbations

T61 Yuichiro Tada

3 /11

Stochastic Form.

StocDeltaN.cpp

Stochastic Formalism & Curvature Perturbations

T61 Yuichiro Tada

```
9 /11
```

StocDeltaN.cpp $V = \Lambda^4 \left[\left(1 - \frac{\psi^2}{M^2} \right)^2 + 2 \frac{\phi^2 \psi^2}{\phi_c^2 M^2} + \frac{\phi - \phi_c}{\mu_1} - \frac{(\phi - \phi_c)^2}{\mu_2^2} \right]$ - hybrid inflation $\log_{10}(\delta N^2)$ 0.1410 0.1412 0.1414 0.1416 0.1418 0.1420 2 (IdW//M)01gol -2 -5 -6 -7 -8 |M/|∥|)01gol -4 ϕ -6 $(\phi_c, 0)$ -8 -10 -9 -12 stochastic -10 0.1410 0.1412 0.1414 0.1416 0.1418 0.1420 -10 -14 critical point d/Mm $\phi/M_{\rm P}$ 10-2 overproduce PBHs (Kawasaki, YT 2015) $\mathfrak{g}^{\sim} 10^{-5}$ ψ 10^{-8} Clesse & Ga Bellido 2015 10 15 20 25 $\langle N \rangle$ 10 /11 Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada

Conclusions

- Stochastic + $\delta N \rightarrow$ non-pert. algorithm
- StocDeltaN : automatic num. code
 - visit my GitHub page (NekomammaT/StocDeltaN_dist)!

Session S4P2 16:45–18:30

[Chair: Hideki Ishihara]

Kohei Fujikura

Tokyo Institute of Technology

"Phase Transitions in Twin Higgs Models" (10+5 min.)

[JGRG28 (2018) 110815]

Phase Transitions in Twin Higgs Models

Kohei Fujikura (Titech) In collaboration with Kohei Kamada (RESCEU) Yuichiro Nakai (Rutgers.U) Masahide Yamaguchi (Titech)

Based on arXiv:1810.00574

Hierarchy Problem

Electroweak phase transition in SM is not first order with $m_h \simeq 125 {
m GeV}$

However, SM has a problem.

 $\delta m_h^2 \gg m_h^2 \simeq 125^2 {
m GeV}^2$ Fine-tuning is needed!

It is natural to consider Beyond Standard Model (BSM) physics.

Twin Higgs Models

[Chacko et al. 2005]

Twin Higgs provides excellent solution to the (Little) Hierarchy Problem. SM Higgs is considered as pseudo-Nambu-Goldstone Boson.

$$\mathcal{H}=\left(egin{array}{c} \Phi_1\ \Phi_2\ \Phi_3\ \Phi_4\end{array}
ight) \quad V(\Phi)=\lambda\left(|\mathcal{H}|^2-rac{f^2}{2}
ight)^2$$

 ${oldsymbol{\mathcal{H}}}$: belongs to the (global) U(4) Fundamental Representation

$$\langle \Phi_4 \rangle = rac{f}{\sqrt{2}} \implies$$
 U(4) symmetry is spontaneously broken to U(3) symmetry.
 $\dim (U(4)/U(3)) = 16 - 9 = 7$
7 Nambu-Goldstone modes arise
(4 of them are identified with SM-like Higgs)

Matter contents

copy of SM sector

 $V_{\text{eff}} \supset \left(-\frac{3y_t^2}{8\pi^2} + \frac{9g_2^2}{64\pi^2}
ight) \left(|H_A|^2 + |H_B|^2\right) \Lambda^2 \,\,\text{respects the global U(4) symmetry.}$ pNGB (SM-like Higgs) is insensitive to the mass correction.

Higgs potential

A structure of Higgs potential in SUSY twin Higgs models is too complicated.

We take the decoupling limit to consider the general features of twin Higgs models.

Phase Transition(s) in Twin Higgs Models

There are two spontaneous symmetry breakings (twin EW symmetry and EW symmetry)

 $(1)(0, 0) \Rightarrow (0, v_B) \Rightarrow (v_A, v_B)$ $(2)(0, 0) \Rightarrow (v_A, v_B)$ $(3)(0, 0) \Rightarrow (v_A, 0) \Rightarrow (v_A, v_B)$

We consider the case $(\mathbf{1})$ and analyze the two phase transitions.

In this talk, I focus on the phase transition associated with twin EW symmetry breaking.

Overview of calculation method

We (numerically) calculate the bounce eq. and found the following statement.

small	$\lambda + \kappa$	Large latent heat density and long-duration	large	$\Omega_{ m GW}$
large	$\lambda + \kappa$	Small latent heat density and short-duration	small	$\Omega_{ m GW}$

GW amplitude cannot be detected by DECIGO and BBO...

Summary

GWs from first-order phase transitions are tested by future experiments such as DECIGO and BBO.

We calculate the GW amplitude from a first-order phase transition associated with twin EW symmetry breaking in twin Higgs models with the light twin stop effect.

Twin Higgs models cannot provide detectable GW amplitude by DECIGO and BBO with light twin stop in the linear realization and decoupling limit.

Yi-Peng Wu

RESCEU, the University of Tokyo

"Higgs as heavy-lifted physics during inflation" (10+5 min.)

[JGRG28 (2018) 110816]

Higgs as heavy-lifted physics during inflation

Yi-Peng Wu

RESearch Center for the Early Universe (RESCEU) The University of Tokyo

November 8th (2018)

in progress

Heavy particles during inflation

Standard single-field inflation with Einstein gravity

> No evidence beyond slow-roll (nor feature in the potential).

UV completion of single-field inflation

UV completion of single-field inflation

The origin of heavy particles

SUSY breaking / SUGRA ?

Baumann & Green [1109.0292]

Yamaguchi [1101.2488]

heavy-lifted SM particles ?

Chen, Wang & Xianyu [1610.06597] Kumar & Sundrum [1711.03988]

Heavy particle production

 $k_{\rm long}/k_{\rm short}$

wave interference

The source

$$\Psi_1(\vec{r}, t) = A_1(\vec{r}) e^{-i[\omega t - \alpha_1(\vec{r})]}$$
$$\Psi_2(\vec{r}, t) = A_2(\vec{r}) e^{-i[\omega t - \alpha_2(\vec{r})]}$$

The intensity

$$I(\vec{r}) = \int dt \ \Psi \Psi^* \sim A_1^2 + A_2^2 + 2A_1 A_2 \cos[\alpha_1 - \alpha_2]$$

credit: physics@TutorVista.com

$$\Psi = \Psi_1 + \Psi_2$$

cosmological quantum interference

Two sources in de Sitter space

$$\begin{split} \zeta(k,\eta) &\sim \hat{O}(\mathbf{k}) \, \eta^{3/2} & \text{analytic waves} \\ \sigma(k,\eta) &\sim \hat{O}^+(\mathbf{k}) \, \eta^{\Delta +} + \hat{O}^-(\mathbf{k}) \, \eta^{\Delta -} & \text{analytic + non-analytic waves} \end{split}$$

fixed by isometries of dS:
$$\Delta^{\pm} = \frac{3}{2} \pm i \sqrt{\frac{m_{\sigma}^2}{H^2} - \frac{9}{4}}$$

non-analytic effects

The correlation function

$$\left\langle \hat{Q}[\zeta, \dot{\zeta}, \sigma, \dot{\sigma}] \right\rangle = (\text{non-oscillatory}) + (\text{oscillatory})$$

Arkani-Hamed et. al [arXiv:last week]

The bulk time evolution is encoded in boundary correlators.

$$\frac{\langle \zeta^3 \rangle}{\langle \zeta^2 \rangle_S \langle \zeta^2 \rangle_L} \sim \sum_i w_i \left(\frac{k_L}{k_S}\right)^{\Delta_i}$$

Heavy-lifting mechanism

Spontaneous symmetry breaking during inflation

Heavy-lifting from EFT

Kumar & Sundrum [1711.03988]

(weak-coupling)

$$\mathcal{L}_{\text{int}}^{\text{inf-gauge}} = \frac{c_1}{\Lambda} \partial_\mu \phi(\mathcal{H}^{\dagger} D^{\mu} \mathcal{H}) + \frac{c_2}{\Lambda^2} (\partial \phi)^2 \mathcal{H}^{\dagger} \mathcal{H} + \frac{c_3}{\Lambda^4} (\partial \phi)^2 |D\mathcal{H}|^2 + \frac{c_4}{\Lambda^4} (\partial \phi)^2 Z_{\mu\nu}^2 + \frac{c_5}{\Lambda^5} (\partial \phi)^2 \partial_\mu \phi(\mathcal{H}^{\dagger} D^{\mu} \mathcal{H}) + \cdots$$

conclusion for non-Gaussianity

	Goldstone EFT	Goldstone EFT	Slow-roll Models
F	with $\Lambda \sim 5 H$	with $\Lambda \sim 10 H$	with $\Lambda \sim 60 H$
h	1 - 10	0.1 - 1	0.01 - 0.1
Z	0.1 - 1	0.01 - 0.1	0.001 - 0.01

Heavy-lifting from broken symmetry

this work

(can be strongly coupled)

Heavy-lifting from broken symmetry this work

(can be strongly coupled)

Energy scales in this talk:

> strong-coupling does not necessarily violate perturbativity.

Power spectrum

 ΔP_{ζ} : Higgs contribution to power spectrum

Bispectrum (beyond single-field inflation)

Heavy Higgs production

$$\delta h \sim \sum_i \hat{O}_i \, \eta^{\Delta_i}$$

See also An et. al [1706.09971] for three-point functions

the non-analytic scaling with strong-coupling:

$$L_h \to \sqrt{\frac{\mu_h^2}{H^2} - \frac{9}{4}} = \sqrt{\frac{m_h^2}{H^2 c_h^2} - \frac{9}{4}}$$

REMARKS and outlook $L_h \rightarrow \sqrt{\frac{\mu_h^2}{H^2} - \frac{9}{4}} = \sqrt{\frac{m_h^2}{H^2 c_h^2} - \frac{9}{4}}$

- SM particles can turn into heavy degrees of freedom during inflation, due to lifting mechanism (important background signals for the cosmological collider physics).
- Spontaneous symmetry breaking during inflation makes SM particle production more efficient (larger non-Gaussianity signals).
- In this work, we numerically confirm the non-analytic scaling of heavy particle production in the strong-coupling regime (enhanced oscillatory feature).
- Challenge: SM signals or new physics?

Minxi He

RESCEU, UTokyo

"Reheating in the Mixed Higgs- R^2 Model" (10+5 min.)

[JGRG28 (2018) 110817]

Reheating in the Mixed Higgs- R^2 Model

SPEAKER: Minxi He

COLLABORATORS: Ryusuke Jinno, Kohei Kamada, Seong Chan Park, Alexei A. Starobinsky, Jun'ichi Yokoyama

JGRG28@Rikkyo University

Contents

- Inflation in the Mixed Higgs- R^2 model
- Spikes in preheating
- Preheating in the Mixed Higgs- R^2 model
- Future Work and Outlook

Inflation in the Mixed Higgs- R^2 Model

$$S = \int d^4x \sqrt{-\hat{g}} \left[\frac{M_p^2}{2} \hat{R} + \frac{M_p^2}{12M^2} \hat{R}^2 + \frac{1}{2} \xi \chi^2 \hat{R} - \frac{1}{2} \hat{g}^{\mu\nu} \hat{\nabla}_{\mu} \chi \hat{\nabla}_{\nu} \chi - \frac{\lambda}{4} \chi^4 \right]$$

Starobinsky model

Higgs inflation

A. A. Starobinsky, Phys. Lett. B 91, 99 (1980)
J.L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442 (1995) 391
F. L. Bezrukov, M. E. Shaposhnikov, Phys.Lett.B659:703-706,2008
A.O. Barvinsky, A. Yu. Kamenshchik and A.A. Starobinsky, JCAP 11 (2008) 021
Y. Ema, Phys. Lett. B770:403-411, 2017
Y-C. Wang, T. Wang, Phys. Rev. D96(12):123506, 2017
<u>MH</u>, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

JGRG28@Rikkyo University

Inflation in the Mixed Higgs- R^2 Model

$$S = \int d^4x \sqrt{-g} \left[\frac{M_p^2}{2} R - \frac{1}{2} g^{\mu\nu} \nabla_{\mu} \psi \nabla_{\nu} \psi - \frac{1}{2} e^{-\sqrt{\frac{2}{3}} \frac{\psi}{M_p}} g^{\mu\nu} \nabla_{\mu} \chi \nabla_{\nu} \chi - U(\psi, \chi) \right]$$

scalaron Curved field space
$$U(\psi, \chi) \equiv \frac{\lambda}{4} \chi^4 e^{-2\sqrt{\frac{2}{3}} \frac{\psi}{M_p}} + \frac{3}{4} M_p^2 M^2 e^{-2\sqrt{\frac{2}{3}} \frac{\psi}{M_p}} (e^{\sqrt{\frac{2}{3}} \frac{\psi}{M_p}} - 1 - \frac{1}{M_p^2} \xi \chi^2)^2$$

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

JGRG28@Rikkyo University

Low energy effective single field theory

A. Achucarro et al, JCAP 1101:030,2011 A. Achucarro et al, Phys. Rev. D 86, 121301(R) (2012)

$$S_{\text{eff}} = \frac{1}{2} \int a^3 \frac{\dot{\phi}_0^2}{H^2} \left[\frac{\dot{\mathcal{R}}^2}{c_s^2(k)} - \frac{k^2 \mathcal{R}^2}{a^2} \right]$$
$$c^{-2} = 1 + \frac{4\dot{\theta}^2}{4}$$

$$c_s^{-2} = 1 + \frac{40}{\frac{k^2}{a^2} + U_{NN} + \epsilon H^2 R - \dot{\theta}^2}$$

Fix $\lambda = 0.01$, $c_s \approx 1$; Amplitude of curvature perturbations $\sim 2 \times 10^{-9}$.

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

Effective Starobinsky model

$$S_J = \int d^4x \sqrt{-\hat{g}} \left[\frac{M_p^2}{2} \hat{R} + \frac{M_p^2}{12M_{\text{eff}}^2} \hat{R}^2 \right]$$
$$M_{eff}^2 \equiv \frac{M^2}{1 + \frac{3\xi^2 M^2}{\lambda M_p^2}} \qquad \text{Higgs inflation: } \xi \to \xi_c \sim 4441$$

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

JGRG28@Rikkyo University

Spikes in Preheating

$$S_{\text{single-J}} = \int d^4 x \sqrt{-g_{\text{J}}} \left[\frac{M_p^2}{2} R_{\text{J}} + \frac{1}{2} \xi \chi^2 R_{\text{J}} - \frac{1}{2} (\nabla \chi)_{\text{J}}^2 - \frac{\lambda}{4} \chi^4 \right]$$
$$\ddot{\chi} + 3H_{\text{J}} \dot{\chi} + \lambda \chi^3 - \xi \left(6\dot{H}_{\text{J}} + 12H_{\text{J}}^2 \right) \chi = 0$$

Effective mass of the Higgs field

Y. Ema et al, JCAP 1702(02):045, 2017


```
Y. Ema et al, JCAP 1702(02):045, 2017
```

JGRG28@Rikkyo University

JGRG28@Rikkyo University

Y. Ema et al, JCAP 1702(02):045, 2017

Spikes in Preheating

Y. Ema et al, JCAP 1702(02):045, 2017

JGRG28@Rikkyo University

JGRG28@Rikkyo University

Y. Ema et al, JCAP 1702(02):045, 2017

Preheating in the Mixed Higgs- R^2 Model

Cutoff scale $\Lambda \longrightarrow M_p$

D. Gorbunov and A. Tokareva, arXiv:1807.02392 [hep-ph]

JGRG28@Rikkyo University

JGRG28@Rikkyo University

JGRG28@Rikkyo University

วฉกฉ∠oლกเหหงบ University

Y. Ema et al, JCAP 1702(02):045, 2017

$$\chi = h e^{i\theta}$$
$$\theta_c \equiv a^{3/2} e^{-\sqrt{\frac{1}{6}}\frac{\psi}{M_p}} h\theta$$

Future Work and Outlook

- The distribution of the height of the spikes in the parameter space
- Calculate the height of the spikes analytically to find out the nature of them
- Number density of the produced gauge bosons
- The reheating process after preheating

JGRG28@Rikkyo University

Reheating in the Mixed Higgs- R^2 Model

Thank you!

SPEAKER: Minxi He

COLLABORATORS: Ryusuke Jinno, Kohei Kamada, Seong Chan Park, Alexei A. Starobinsky, Jun'ichi Yokoyama

Keisuke Inomata

ICRR, The University of Tokyo

"Power spectra of CMB circular polarizations induced by primordial perturbations" (10+5 min.)

[JGRG28 (2018) 110818]

Power spectra of CMB circular polarizations induced by primordial perturbations

Institute for Cosmic Ray Research (ICRR), The University of Tokyo

Keisuke Inomata Collaborator: Marc Kamionkowski (Johns Hopkins University) (cf. arXiv:1804.06412)

What we focus on

The state of CMB radiation can be described with Stokes parameters.

$$\langle E_i^* E_j \rangle = \frac{1}{2} \begin{pmatrix} \mathcal{I} + \mathcal{Q} & \mathcal{U} - i\mathcal{V} \\ \mathcal{U} + i\mathcal{V} & \mathcal{I} - \mathcal{Q} \end{pmatrix}$$

 $\mathcal I$: related to temperature perturbations of CMB

 $\mathcal{Q},\,\mathcal{U}:$ related to E-mode, B-mode polarizations of CMB

 $\mathcal{V}:$ describes circular polarizations of CMB

We focus on this!

Keisuke Inomata

Outline

- Introduction
- Calculation of Φ_{ab}
- Power spectra of circular polarization
- Summary

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

4/20

CMB and Cosmology

CMB anisotropies have determined and constrained the cosmological parameters.

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Polarizations and Stokes parameters

The state of radiations can be described with Stokes parameters.


```
Keisuke Inomata
```

Power spectra of CMB circular polarizations induced by primordial perturbations

Polarizations in CMB

$$\langle E_i^* E_j \rangle = \frac{1}{2} \begin{pmatrix} \mathcal{I} + \mathcal{Q} & \mathcal{U} - i\mathcal{V} \\ \mathcal{U} + i\mathcal{V} & \mathcal{I} - \mathcal{Q} \end{pmatrix} \quad \mathcal{Q}, \begin{array}{c} \mathcal{I} : \text{ related to temperature perturbations} \\ \mathcal{U} : \text{ related to E-mode, B-mode polarizations} \\ \mathcal{V} : \text{ describes circular polarizations} \end{cases}$$

Thomson scattering can produce only linear polarizations. There is no circular polarization at the last scattering surface (LSS).

However,

circular polarizations can be produced from the linear polarizations through the Faraday conversion.

Keisuke Inomata

6/20

Faraday conversion 1

Faraday conversion occurs due to the anisotropic refraction (birefringence).

General refraction tensor:

 \odot V 0.U Faraday conversion observer LSS 100% Q 100% V 100% U +U +Q +V $n_I + n_Q$ $n_I + n_U$ $n_I + n_V$ Q > 0; U = 0; V = 0Q = 0; U > 0; V = 0 0: V > 0 Q = 0; U -U -Q $-n_Q$ $\dot{n}_I - n_U$ $n_I - n_L$ $Q = 0, U \stackrel{|}{<} 0, V = 0$ Q = 0; U = 0: V < 0 Q < 0; U = 0; V = 0(d) (f) (b) Wikipedia

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Faraday conversion 2

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

8/20

Outline

- Introduction
- Calculation of Φ_{ab}
- Power spectra of circular polarization
- Summary

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Source of anisotropic refraction

We focus on the source coming from primordial scalar, vector, tensor perturbations.

The dominant source comes from photon-photon scattering.

(Montero-Camacho, Hirata, 2018)

10/20

<u>The perturbations of background radiation</u> leads to the anisotropic refraction.

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Anisotropic refraction index

The refraction index: (Montero-Camacho, Hirata, 2018)

$$n_Q(\boldsymbol{x}) \equiv \frac{1}{2} (n_{xx} - n_{yy})(\boldsymbol{x}) \simeq 48 \sqrt{\frac{\pi}{5}} A_e \mu_0 a_{\mathrm{rad}} T_{\mathrm{CMB}}^4 \mathrm{Re} \, a_{2,-2}^E(\boldsymbol{x})$$
$$n_U(\boldsymbol{x}) \equiv n_{xy}(\boldsymbol{x}) \simeq 48 \sqrt{\frac{\pi}{5}} A_e \mu_0 a_{\mathrm{rad}} T_{\mathrm{CMB}}^4 \mathrm{Im} \, a_{2,-2}^E(\boldsymbol{x})$$

Induced by primordial perturbations

$$Q(\hat{p}, \boldsymbol{x}) = \frac{1}{2} \sum_{l,m} \left(a_{2,lm}(\boldsymbol{x}) \,_{2}Y_{lm}(\hat{p}) + a_{-2,lm}(\boldsymbol{x}) \,_{-2}Y_{lm}(\hat{p}) \right), \qquad A_{e} = \frac{2}{45\mu_{0}} \frac{\alpha^{2}\lambda_{e}^{3}}{m_{e}c^{2}}$$
$$U(\hat{p}, \boldsymbol{x}) = \frac{1}{2i} \sum_{l,m} \left(a_{2,lm}(\boldsymbol{x}) \,_{2}Y_{lm}(\hat{p}) - a_{-2,lm}(\boldsymbol{x}) \,_{-2}Y_{lm}(\hat{p}) \right),$$
$$a_{lm}^{E}(\boldsymbol{x}) = -\frac{1}{2} \left(a_{2,lm}(\boldsymbol{x}) + a_{-2,lm}(\boldsymbol{x}) \right) \qquad \hat{\boldsymbol{p}} : \text{Photon momentum direction}$$

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

What we derive in this work

To get V, we need to calculate

$$\begin{split} P_{ab}(\hat{\boldsymbol{n}}) &= \frac{1}{\sqrt{2}} \begin{pmatrix} Q(\hat{\boldsymbol{n}}) & U(\hat{\boldsymbol{n}}) \\ U(\hat{\boldsymbol{n}}) & -Q(\hat{\boldsymbol{n}}) \end{pmatrix}, \\ \Phi_{ab}(\hat{\boldsymbol{n}}) &= \frac{1}{\sqrt{2}} \begin{pmatrix} \phi_Q(\hat{\boldsymbol{n}}) & \phi_U(\hat{\boldsymbol{n}}) \\ \phi_U(\hat{\boldsymbol{n}}) & -\phi_Q(\hat{\boldsymbol{n}}) \end{pmatrix}. \end{split} \begin{pmatrix} \varphi_{Q,U}(\hat{\boldsymbol{n}}) &= \frac{2}{c} \int_0^{\chi_{\text{LSS}}} \frac{d\chi}{1+z} \,\omega(\chi) n_{Q,U}(\hat{\boldsymbol{n}}\chi) \\ n_Q(\boldsymbol{x}) &\equiv \frac{1}{2} (n_{xx} - n_{yy})(\boldsymbol{x}) \simeq 48 \sqrt{\frac{\pi}{5}} A_{e\mu_0 a_{\text{rad}}} T_{\text{CMB}}^4 \text{Re} \, a_{2,-2}^E(\boldsymbol{x}) \\ n_U(\boldsymbol{x}) &\equiv n_{xy}(\boldsymbol{x}) \simeq 48 \sqrt{\frac{\pi}{5}} A_{e\mu_0 a_{\text{rad}}} T_{\text{CMB}}^4 \text{Im} \, a_{2,-2}^E(\boldsymbol{x}) \end{pmatrix}$$

Concretely speaking, we calculate $\mathsf{P}_{\mathsf{Im}}{}^{\mathsf{E}/\mathsf{B}}$ and $\Phi_{\mathsf{Im}}{}^{\mathsf{E}/\mathsf{B}}$, which are defined as

12/20

Derived formulae

After tedious calculation, we finally derive

$$\begin{split} \Phi_{lm}^{E,L} &= 4\pi A \int \frac{k^2 dk}{(2\pi)^3} \int_{\eta_{\rm LSS}}^{\eta_0} d\eta \left(1+z\right)^4 \left(\bar{a}_{2,0}^E(k,\eta)\right) h_{lm}^{k,(L)} \epsilon_l^{(0)}(k(\eta-\eta_0)), \\ \Phi_{lm}^{E/B,VE/VB} &= 4\pi A \int \frac{k^2 dk}{(2\pi)^3} \int_{\eta_{\rm LSS}}^{\eta_0} d\eta \left(1+z\right)^4 \sqrt{2} \left(\bar{a}_{2,1}^E(k,\eta)\right) h_{lm}^{k,(VE/VB)} \phi_l^{(1)}(k(\eta-\eta_0)), \\ \Phi_{lm}^{E/B,TE/TB} &= 4\pi A \int \frac{k^2 dk}{(2\pi)^3} \int_{\eta_{\rm LSS}}^{\eta_0} d\eta \left(1+z\right)^4 \sqrt{2} \left(\bar{a}_{2,2}^E(k,\eta)\right) h_{lm}^{k,(TE/TB)} \phi_l^{(2)}(k(\eta-\eta_0)). \end{split}$$

Primordial perturbations and their evolutions $\begin{aligned} h_{(lm)}^{\lambda,k} &= \int d\hat{k} \ (-1)^{\lambda} h^{-\lambda}(k) (_{-\lambda}Y_{(lm)}(\hat{k}))^* \\ &\langle h_{(lm)}^{\alpha,k} [h_{(l'm')}^{\alpha',k'}]^* \rangle = \begin{cases} \delta_{ll'} \delta_{mm'} \delta^{\alpha \alpha'} \frac{(2\pi)^3}{k^2} \delta(k-k') P_L(k) & (\alpha = L) \\ \delta_{ll'} \delta_{mm'} \delta^{\alpha \alpha'} \frac{(2\pi)^3}{k^2} \delta(k-k') P_V(k) & (\alpha = VE, VB) \\ \delta_{ll'} \delta_{mm'} \delta^{\alpha \alpha'} \frac{(2\pi)^3}{k^2} \delta(k-k') P_T(k) & (\alpha = TE, TB) \end{cases} \\ \bar{a}_{2,m}^E(k,\eta) : \text{Transfer function} \\ \\ \begin{aligned} \text{Photon-Photon scattering} \\ A \equiv 96 \sqrt{\frac{\pi}{5}} A_e \mu_0 a_{\text{rad}} T_0^4 c^{-1} \omega_0 = 1.11 \times 10^{-38} \left(\frac{\nu_0}{100 \text{GHz}}\right) \text{m}^{-1} \end{aligned}$

 $\begin{array}{l} \mbox{Radial functions} \\ \left(\begin{array}{c} \phi_l^{(m)} = \begin{cases} \epsilon_l^{(m)} & (\mbox{for E-mode}) & \epsilon_l^{(0)}(x) = \sqrt{\frac{3}{8}\frac{(l+2)!}{(l-2)!}}\frac{j_l(x)}{x^2}, \\ \beta_l^{(m)} & (\mbox{for B-mode}) & \epsilon_l^{(1)}(x) = \frac{1}{2}\sqrt{(l-1)(l+2)}\left[\frac{j_l(x)}{x^2} + \frac{j_l'(x)}{x}\right], \\ & \epsilon_l^{(2)}(x) = \frac{1}{4}\left[-j_l(x) + j_l'(x) + 2\frac{j_l(x)}{x^2} + 4\frac{j_l'(x)}{x}\right], \\ & \beta_l^{(0)}(x) = 0, \\ & \beta_l^{(1)}(x) = \frac{1}{2}\sqrt{(l-1)(l+2)}\frac{j_l(x)}{x}, \\ & \beta_l^{(2)}(x) = \frac{1}{2}\left[j_l'(x) + 2\frac{j_l(x)}{x}\right]. \end{array} \right)$

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Outline

- Introduction
- Calculation of Φ_{ab}
- Power spectra of circular polarization
- Summary

Keisuke Inomata

Calculation of circular polarization

Now, we calculate V using the formulae for $P_{ab'} \Phi_{ab'}$ and V $V(\hat{n}) = \epsilon_{ac} P^{ab}(\hat{n}) \Phi_b^{\ c}(\hat{n}).$

$$V_{lm} = \int d\hat{\boldsymbol{n}} V(\hat{\boldsymbol{n}}) Y_{lm}^{*}(\hat{\boldsymbol{n}}) P_{ab}(\hat{\boldsymbol{n}}) = \sum_{lm} (P_{lm}^{E} Y_{(lm)ab}^{TE}(\hat{\boldsymbol{n}}) + P_{lm}^{B} Y_{(lm)ab}^{TB}(\hat{\boldsymbol{n}})) \Phi_{ab}(\hat{\boldsymbol{n}}) = \sum_{lm} (\Phi_{lm}^{E} Y_{(lm)ab}^{TE}(\hat{\boldsymbol{n}}) + \Phi_{lm}^{B} Y_{(lm)ab}^{TB}(\hat{\boldsymbol{n}})) \Phi_{ab}(\hat{\boldsymbol{n}}) = \sum_{lm} (\Phi_{lm}^{E} Y_{(lm)ab}^{TE}(\hat{\boldsymbol{n}}) + \Phi_{lm}^{B} Y_{(lm)ab}^{TB}(\hat{\boldsymbol{n}})) \Phi_{ab}(\hat{\boldsymbol{n}}) = \sum_{lm} (\Phi_{lm}^{E} Y_{(lm)ab}^{TE}(\hat{\boldsymbol{n}}) + \Phi_{lm}^{B} Y_{(lm)ab}^{TB}(\hat{\boldsymbol{n}}))$$

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations

Power spectra of circular polarization

15/20

16/20

Uniform circular polarization

Uniform circular polarization can be produced by chiral GWs.

18/20

Degeneracy for uniform V

To establish that GW background is chiral with 2σ in V₀₀, the parameters should satisfy

$$\Delta \chi > 0.12 (r/0.06)^{-1/2}$$

Keisuke Inomata

Outline

- Introduction
- Calculation of Φ_{ab}
- Power spectra of circular polarization
- <u>Summary</u>

Keisuke Inomata

20/20

What we did

- We made the formulations for circular polarization induced by primordial scalar, vector, tensor perturbations.
- Using the formulations, we calculated the power spectra and uniform circular polarizations.

Hiroyuki Kitamoto

National Center for Theoretical Sciences

"Schwinger Effect in Inflaton-Driven Electric Field" (10+5 min.)

[JGRG28 (2018) 110821]

Schwinger Effect in Inflaton-Driven Electric Field

Hiroyuki Kitamoto (NCTS)

Based on arXiv:1807.03753

Introduction (Statistical isotropy of inflation)

 Concerning the primordial universe, we find no significant evidence for violation of rotational symmetry from the current status of cosmic microwave background observations '13 J. Kim, E. Komatsu, '18 Planck Collaboration

 $\langle \zeta_{\mathbf{k}} \zeta_{\mathbf{k}'} \rangle = (2\pi)^3 \delta^{(3)} (\mathbf{k} + \mathbf{k}') P(\mathbf{k})$ $P(\mathbf{k}) = P_0(|\mathbf{k}|) \left\{ 1 + g_* (\hat{\mathbf{k}} \cdot \hat{\mathbf{n}})^2 \right\}, \quad |g_*| \lesssim 10^{-2} \qquad \hat{\mathbf{n}}: \text{ preferred direction}$

• From a theoretical viewpoint, an anisotropic inflation can be obtained if an U(1) gauge field has a classical value like an inflaton

$$A_i \neq 0$$

• In fact, if the gauge field respects the conformal symmetry as its kinetic term is canonical, the electromagnetic field decays with the cosmic expansion and then there is no statistical anisotropy

Introduction (Model with a canonical kinetic term)

$$ds^{2} = -dt^{2} + a^{2}(t)d\mathbf{x}^{2}$$

= $a^{2}(\tau)(-d\tau^{2} + d\mathbf{x}^{2})$ $H \equiv \frac{1}{a}\frac{da}{dt} \simeq \text{const.}$

$$S_{\text{gauge}} = \int \sqrt{-g} d^4 x \, \left[-\frac{1}{4} g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \right] = \int d^4 x \, \left[-\frac{1}{4} \eta^{\mu\rho} \eta^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \right] \qquad \begin{array}{c} \text{conformal} \\ \text{symmetry} \end{array}$$

$$\Rightarrow \qquad \frac{d^2}{d\tau^2}A = 0 \iff \frac{d}{d\tau}A = \text{const.}$$

temporal gauge: $A_0 = 0$ homogeneity: $A_i = A(\tau)\delta_i^{-1}$

$$\Rightarrow \qquad E_{\rm phys} = -a^{-2}\frac{d}{d\tau}A \propto a^{-2}$$

The electric field decays with the cosmic expasion \Rightarrow Isotropic inflation If the conformal symmetry is broken, this discussion does not hold true

> Introduction (Model with a dilatonic coupling)

'09, '10 M. Watanabe, S. Kanno, J. Soda

$$S_{\rm bg} = \int \sqrt{-g} d^4 x \, \left[\frac{M_{\rm pl}^2}{2} R - \frac{1}{2} g^{\mu\nu} \partial_\mu \varphi \partial_\nu \varphi - V(\varphi) - \frac{1}{4} f^2(\varphi) g^{\mu\rho} g^{\nu\sigma} F_{\mu\nu} F_{\rho\sigma} \right]$$

Solving the classical field eqs. by use of the ansatz: $f(\varphi) = \exp\left\{\frac{2c}{M_{\rm pl}^2}\int d\varphi \ \frac{V}{\partial_{\varphi}V}\right\}$,

$$f = (a^{-4} + qa^{-4c})^{\frac{1}{2}} \rightarrow a^{-2}$$
 for $c > 1$ q: integration const.

$$E_{\rm phys} = -fa^{-1}\frac{d}{dt}A = \underline{f^{-1}}a^{-2}E \rightarrow E \qquad E = \frac{\sqrt{3\epsilon_V(c-1)}}{c}M_{\rm pl}H$$
$$\epsilon_V \equiv \frac{1}{2}\left(\frac{M_{\rm pl}\partial_{\varphi}V}{V}\right)^2$$

we obtain a persistent electric field (inflaton-driven electric field)

 $c-1 \lesssim 10^{-7}$ to satisfy the observational bound $g_* = 24 \frac{c-1}{c} N^2 \lesssim 10^{-2}$

Motivation

• We consider the case that a charged test scalar field exists

$$S_{\text{test}} = \int \sqrt{-g} d^4 x \left[-g^{\mu\nu} (\partial_\mu + ieA_\mu) \phi^* (\partial_\nu - ieA_\nu) \phi - m^2 \phi^* \phi \right]$$

• A strong electric field leads to the pair production of charged particles (Schwinger effect), and the pair production induces the U(1) current

 $\tilde{j} = 2e \int \frac{d^3k}{(2\pi)^3} v_{\mathbf{k}} n_{\mathbf{k}}$ $n_{\mathbf{k}}$: particle number $v_{\mathbf{k}}$: velocity of particle

- It is reasonable to conjecture that if we take into account the Schwinger effect, the induced current screens the inflaton-driven electric field
- Evaluating the induced current, and solving the field eqs. with it, we verify the no-anisotropic hair conjecture for inflation

Differences from other studies

The studies of Schwinger effect in inflation are divided into the two groups

Our case \bullet By introducing a dilatonic coupling, the classical field eqs. show that the electric field approaches to a constant value E

$$E_{\rm phys} = -fa^{-1}\frac{d}{dt}A = E, \quad f = a^{-2} \quad \Rightarrow \quad A = -\frac{E}{3H}a^{1+2}$$

'17 J. J. Geng, B. F. Li, J. Soda, A. Wang, Q. Wu, T. Zhu, '18 H. Kitamoto

• Without mentioning the mechanism to generate a persistent electric field, the electric field is fixed at a constant value *E*

$$E_{\rm phys} = -a^{-1}\frac{d}{dt}A = E \quad \Rightarrow \quad A = -\frac{E}{H}a^{1}$$

'14 T. Kobayashi, N. Afshordi, '16 T. Hayashinaka, T. Fujita, J. Yokoyama, '18 T. Hayashinaka, S. S. Xue, '18 M. Banyeres, G. Domenech, J. Garriga

Validity of WKB approximation

Klein–Gordon eq.: $\begin{cases} \frac{d^2}{d\tau^2} + \omega_{\mathbf{k}}^2(\tau) \\ \\ \tilde{\phi}_{\mathbf{k}}(x) = 0 & \tilde{\phi} = a\phi \end{cases}$ $\omega_{\mathbf{k}}^2 = (k_1 - eA)^2 + k_2^2 + k_3^2 + (m^2 - 2H^2)a^2$ $A = -\frac{E}{3H}a^{1+2}$

At $a \to 0$, the WKB approximation is trivially valid

$$\omega_{\mathbf{k}} \simeq |\mathbf{k}| \qquad \Longrightarrow \qquad \omega_{\mathbf{k}}^{-4} \left(\frac{d\omega_{\mathbf{k}}}{d\tau}\right)^2 \simeq 0, \quad \omega_{\mathbf{k}}^{-3} \frac{d^2 \omega_{\mathbf{k}}}{d\tau^2} \simeq 0$$

At $a \to \infty$, the validity is ensured due to the presence of f

$$\omega_{\mathbf{k}} \simeq \frac{eE}{3H} a^{1+2} \quad \Rightarrow \quad \omega_{\mathbf{k}}^{-4} \left(\frac{d\omega_{\mathbf{k}}}{d\tau}\right)^2 \simeq 9 \left(\frac{eE}{3H^2} a^2\right)^{-2}, \quad \omega_{\mathbf{k}}^{-3} \frac{d^2\omega_{\mathbf{k}}}{d\tau^2} \simeq 12 \left(\frac{eE}{3H^2} a^2\right)^{-2}$$

Particle number and Induced current

In the semiclassical picture,

$$n_{\mathbf{k}} = \exp\left\{4 \operatorname{Im} \int^{\tau_*} d\tau' \,\,\omega_{\mathbf{k}}(\tau')\right\}, \quad \omega_{\mathbf{k}}(\tau_*) \equiv 0 \qquad \begin{array}{c} \text{'61 V. L. Pokrovskii,} \\ \text{I. M. Khalatnikov} \end{array}$$

$$\tilde{j} = 2e \int \frac{d^3k}{(2\pi)^3} v_{\mathbf{k}} n_{\mathbf{k}}, \quad v_{\mathbf{k}} = (k_1 - eA)/\omega_{\mathbf{k}} \qquad \qquad \tilde{j}_0 = 0, \\ \tilde{j}_i = \tilde{j}(t)\delta_i^{-1}$$

We evaluate the late time behavior at $\frac{eE}{H^2}a^2 \gg 1$:

$$\tilde{j} \simeq \frac{e^3 E^2}{4\pi^3} \frac{a^7}{7H} \exp\left\{-\pi \frac{m^2 - 2H^2}{eEa^2}\right\}$$

At $\frac{|m^2 - 2H^2|}{eEa^2} \ll 1$, the contribution from the mass term becomes irrelevant

$$\tilde{j} \simeq \frac{e^3 E^2}{4\pi^3} \frac{a^7}{7H}$$

Field eqs. with Induced current

$$\begin{bmatrix} V = 3M_{\rm pl}^2 H^2 \\ 3H\frac{d}{dt}\varphi + \partial_{\varphi}V - f^{-1}\partial_{\varphi}f \cdot E_{\rm phys}^2 = 0 \\ \frac{d}{dt} \left(fa^2 E_{\rm phys}\right) + a^{-1}\tilde{j} = 0 \end{bmatrix}$$

Solving them by use of the ansatz: $f(\varphi) = \exp\left\{\frac{2c}{M_{\rm pl}^2}\int d\varphi \ \frac{V}{\partial_{\varphi}V}\right\}$,

$$f = a^{-2} \left\{ 1 - \frac{1}{1 + \frac{3}{2}\frac{1}{c-1}} \cdot \frac{e^3 E}{4\pi^3} \frac{a^6}{42H^2} \right\}$$
 for $c > 1$
$$E_{\rm phys} = E \left\{ 1 - \frac{\frac{3}{2}\frac{1}{c-1}}{1 + \frac{3}{2}\frac{1}{c-1}} \cdot \frac{e^3 E}{4\pi^3} \frac{a^6}{42H^2} \right\}$$

Considering the first-order backreaction, the electric field decays with the cosmic expansion \Rightarrow The statistical isotropy of this model is indicated

Summary

- In the inflation theory with a dilatonic coupling between the inflaton and the U (1) gauge field, a persistent electric field (and then an anisotropic inflation) is obtained as a solution of the classical field eqs.
- We investigated the pair production of scalar particles in the inflatondriven electric field. In particular, we evaluated the induced current due to the pair production
- Solving the field eqs. with the induced current, we found that the firstorder backreaction screens the electric field with the cosmic expansion
- The result indicates that the statistical isotropy of inflation holds true regardless of whether the dilatonic coupling is present or not

Open problems

- In order to prove the no-anisotropic hair conjecture completely, the whole time evolution of the electric field should be investigated
- For the investigation, we need to evaluate the induced current on general backgrounds $~E_{\rm phys},~f$

e.g. if the WKB approximation is valid,

$$\tilde{j} \simeq \frac{e^3}{4\pi^3} \int_{t_0}^t dt' \ a^3(t') f^{-2}(t') E_{\rm phys}^2(t') \exp\left\{-\pi \frac{m^2 - 2H^2}{ef^{-1}(t')E_{\rm phys}(t')}\right\}$$

• The investigation of the pair production of charged fermions in the inflaton-driven electric field is another future subject

Wednesday 9th November Invited lecture 9:00–9:45

[Chair: Shinji Mukohyama]

Alexei A. Starobinsky

L.D. Landau Institute for Theoretical Physics

"Looking for quantum-gravitational corrections to $R + R^2$ inflation"

(40+10 min.)

[JGRG28 (2018) 110901]

Looking for quantum-gravitational corrections to $R + R^2$ inflation

Alexei A. Starobinsky

Landau Institute for Theoretical Physics RAS, Moscow - Chernogolovka, Russia

The 28th Workshop on General Relativity and Gravitation in Japan - JGRG28 Rikkyo University, Tokyo, Japan, 09.11.2018

・ロ・・日本・ 山・ ・ 山・ ・ 日・ うくぐ

Present status of inflation

The simplest one-parametric inflationary models

Inflation in f(R) gravity

Quantum corrections to the simplest model during inflation

Conclusions

Inflation

The inflationary scenario is based on the two cornerstone independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) – a stage of accelerated, close to exponential expansion of our Universe in the past preceding the hot Big Bang with decelerated, power-law expansion.

2. The origin of all inhomogeneities in the present Universe is the effect of gravitational creation of particles and field fluctuations during inflation from the adiabatic vacuum (no-particle) state for Fourier modes covering all observable range of scales (and possibly somewhat beyond).

Existing analogies in other areas of physics.

1. The present dark energy.

2. Creation of electrons and positrons in an external elecric field.

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Outcome of inflation

In the super-Hubble regime $(k \ll aH)$ in the coordinate representation:

$$ds^{2} = dt^{2} - a^{2}(t)(\delta_{lm} + h_{lm})dx^{l}dx^{m}, \ l, m = 1, 2, 3$$

$$h_{lm} = 2\mathcal{R}(\mathbf{r})\delta_{lm} + \sum_{a=1}^{2} g^{(a)}(\mathbf{r}) e_{lm}^{(a)}$$
$$e_{l}^{l(a)} = 0, \ g_{lm}^{(a)} e_{lm}^{l(a)} = 0, \ e_{lm}^{(a)} e^{lm(a)} = 1$$

 \mathcal{R} describes primordial scalar perturbations, g – primordial tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

$$n_s(k) - 1 \equiv rac{d \ln P_{\mathcal{R}}(k)}{d \ln k}, \ \ r(k) \equiv rac{P_g}{P_{\mathcal{R}}}$$

In fact, metric perturbations h_{lm} are quantum (operators in the Heisenberg representation) and remain quantum up to the present time. But, after omitting of a very small part, decaying with time, they become commuting and, thus, equivalent to classical (c-number) stochastic quantities with the Gaussian statistics (up to small terms quadratic in \mathcal{R} , g). In particular:

$$\hat{\mathcal{R}}_{k} = \mathcal{R}_{k} i(\hat{a}_{\mathbf{k}} - \hat{a}_{\mathbf{k}}^{\dagger}) + \mathcal{O}\left((\hat{a}_{\mathbf{k}} - \hat{a}_{\mathbf{k}}^{\dagger})^{2}\right) + \ldots + \mathcal{O}(10^{-100})(\hat{a}_{\mathbf{k}} + \hat{a}_{\mathbf{k}}^{\dagger}) + \ldots + \mathcal{O}(10^{-100})(\hat{a}_{\mathbf{k}}$$

The last term is time dependent, it is affected by physical decoherence and may become larger, but not as large as the second term.

Remaining quantum coherence: deterministic correlation between \mathbf{k} and $-\mathbf{k}$ modes - shows itself in the appearance of acoustic oscillations (primordial oscillations in case of GW).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ● ● ● ●

CMB temperature anisotropy

Planck-2015: P. A. R. Ade et al., arXiv:1502.01589

CMB temperature anisotropy multipoles

590

CMB E-mode polarization multipoles

Present status of inflation

Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been measured and its deviation from the flat spectrum $n_s = 1$ in the first order in $|n_s - 1| \sim N_H^{-1}$ has been discovered (using the multipole range $\ell > 40$):

$$<\mathcal{R}^{2}(\mathbf{r})>=\intrac{P_{\mathcal{R}}(k)}{k}\,dk,\ P_{\mathcal{R}}(k)=(2.10\pm0.03)\cdot10^{-9}\left(rac{k}{k_{0}}
ight)^{n_{s}-1}$$

$k_0 = 0.05 \text{ Mpc}^{-1}, \ n_s - 1 = -0.035 \pm 0.004$

Two fundamental observational constants of cosmology in addition to the three known ones (baryon-to-photon ratio, baryon-to-matter density and the cosmological constant). Existing inflationary models can predict (and predicted, in fact) one of them, namely $n_s - 1$, relating it finally to $N_H = \ln \frac{k_B T_{\gamma}}{\hbar H_0} \approx 67.2$. (note that $(1 - n_s)N_H \sim 2$).

Direct approach: comparison with simple smooth models

Combined BICEP2/Keck Array/Planck results P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)

< ロ > < 回 > < 回 > < 回 > < 回 >

æ

5900

The simplest models producing the observed scalar slope

$$\mathcal{L} = \frac{f(R)}{16\pi G}, \quad f(R) = R + \frac{R^2}{6M^2}$$
$$M = 2.6 \times 10^{-6} \left(\frac{55}{N}\right) M_{\rm Pl} \approx 3.1 \times 10^{13} \,\text{GeV}$$
$$n_s - 1 = -\frac{2}{N} \approx -0.036, \quad r = \frac{12}{N^2} \approx 0.004$$
$$N = \ln \frac{k_f}{k} = \ln \frac{a_0 T_{\gamma}}{k} - \mathcal{O}(10), \quad H_{dS}(N = 55) = 1.3 \times 10^{14} \,\text{GeV}$$

The same prediction from a scalar field model with $V(\phi) = \frac{\lambda \phi^4}{4}$ at large ϕ and strong non-minimal coupling to gravity $\xi R \phi^2$ with $\xi < 0$, $|\xi| \gg 1$, including the Brout-Englert-Higgs inflationary model.

The simplest purely geometrical inflationary model

$$\mathcal{L} = \frac{R}{16\pi G} + \frac{N^2}{288\pi^2 P_{\mathcal{R}}(k)}R^2 + \text{(small rad. corr.)}$$
$$= \frac{R}{16\pi G} + 5.1 \times 10^8 R^2 + \text{(small rad. corr.)}$$

The quantum effect of creation of particles and field fluctuations works twice in this model:

a) at super-Hubble scales during inflation, to generate space-time metric fluctuations;

b) at small scales after inflation, to provide scalaron decay into pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time t_r when the radiation dominated stage begins:

$$N(k) pprox N_H + \ln rac{a_0 H_0}{k} - rac{1}{3} \ln rac{M_{
m Pl}}{M} - rac{1}{6} \ln (M_{
m Pl} t_r)$$

The most effective decay channel: into minimally coupled scalars with $m \ll M$. Then the formula

$$\frac{1}{\sqrt{-g}}\frac{d}{dt}(\sqrt{-g}n_s) = \frac{R^2}{576\pi}$$

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252 (1977)) can be used for simplicity, but the full integral-differential system of equations for the Bogoliubov α_k , β_k coefficients and the average EMT was in fact solved in AS (1981). Scalaron decay into graviton pairs is suppressed (A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

$$N(k)pprox N_H+\lnrac{a_0H_0}{k}-rac{5}{6}\lnrac{M_{
m Pl}}{M}$$

Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as the specific case of the fourth order gravity in 4D

$$\mathcal{L} = rac{R}{16\pi G} + AR^2 + BC_{lphaeta\gamma\delta}C^{lphaeta\gamma\delta} + (ext{small rad. corr.})$$

for which $A \gg 1$, $A \gg |B|$. Approximate scale (dilaton) invariance and absence of ghosts in the curvature regime $A^{-2} \ll (RR)/M_P^4 \ll B^{-2}$.

One-loop quantum-gravitational corrections are small (their imaginary parts are just the predicted spectra of scalar and tensor perturbations), non-local and qualitatively have the same structure modulo logarithmic dependence on curvature.

2. Another, completely different way:

consider the $R + R^2$ model as an approximate description of GR + a non-minimally coupled scalar field with a large negative coupling ξ ($\xi_{conf} = \frac{1}{6}$) in the gravity sector::

$$L = rac{R}{16\pi G} - rac{\xi R \phi^2}{2} + rac{1}{2} \phi_{,\mu} \phi^{,\mu} - V(\phi), \ \ \xi < 0, \ \ |\xi| \gg 1 \; .$$

Geometrization of the scalar:

for a generic family of solutions during inflation and even for some period of non-linear scalar field oscillations after it, the scalar kinetic term can be neglected, so

$$\xi R \phi = -V'(\phi) + \mathcal{O}(|\xi|^{-1}) \; .$$

No conformal transformation, we remain in the the physical (Jordan) frame!

These solutions are the same as for f(R) gravity with

$$L = \frac{f(R)}{16\pi G}, \ f(R) = R - \frac{\xi R \phi^2(R)}{2} - V(\phi(R)).$$

For $V(\phi) = \frac{\lambda(\phi^2 - \phi_0^2)^2}{4}$, this just produces $f(R) = \frac{1}{16\pi G} \left(R + \frac{R^2}{6M^2} \right)$ with $M^2 = \lambda/24\pi\xi^2 G$ and $\phi^2 = |\xi|R/\lambda$.

The same theorem is valid for a multi-component scalar field, as well as for the mixed Higgs- R^2 model.

Inflation in the mixed Higgs- R^2 Model

M. He, A. A. Starobinsky and J. Yokoyama, JCAP **1805** (2018) 064; arXiv:1804.00409.

$$\mathcal{L} = \frac{1}{16\pi G} \left(R + \frac{R^2}{6M^2} \right) - \frac{\xi R \phi^2}{2} + \frac{1}{2} \phi_{,\mu} \phi^{,\mu} - \frac{\lambda \phi^4}{4}, \ \xi < 0, \ |\xi| \gg 1$$

In the attractor regime during inflation (and even for some period after it), we return to the $f(R) = R + \frac{R^2}{6M^2}$ model with the renormalized scalaron mass $M \to \tilde{M}$:

$$\frac{1}{\tilde{M}^2} = \frac{1}{M^2} + \frac{24\pi\xi^2 G}{\lambda}$$

More generally, R^2 inflation (with an arbitrary n_s , r) serves as an intermediate dynamical attractor for a large class of scalar-tensor gravity models.

Inflation in f(R) gravity

The simplest model of modified gravity (= geometrical dark energy) considered as a phenomenological macroscopic theory in the fully non-linear regime and non-perturbative regime.

$$S=\frac{1}{16\pi G}\int f(R)\sqrt{-g}\,d^4x+S_m$$

$$f(R) = R + F(R), \ R \equiv R^{\mu}_{\mu}$$

Here f''(R) is not identically zero. Usual matter described by the action S_m is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its derivatives) are assumed to be included into f(R). The normalization point: at laboratory values of R where the scalaron mass (see below) $m_s \approx \text{const.}$

Metric variation is assumed everywhere. Palatini variation leads to a different theory with a different number of degrees of freedom.

Field equations

$$\frac{1}{8\pi G} \left(R^{\nu}_{\mu} - \frac{1}{2} \, \delta^{\nu}_{\mu} R \right) = - \left(T^{\nu}_{\mu \, (\text{vis})} + T^{\nu}_{\mu \, (DM)} + T^{\nu}_{\mu \, (DE)} \right) \; ,$$

where $G = G_0 = const$ is the Newton gravitational constant measured in laboratory and the effective energy-momentum tensor of DE is

 $8\pi G T^{\nu}_{\mu(DE)} = F'(R) R^{\nu}_{\mu} - \frac{1}{2} F(R) \delta^{\nu}_{\mu} + \left(\nabla_{\mu} \nabla^{\nu} - \delta^{\nu}_{\mu} \nabla_{\gamma} \nabla^{\gamma} \right) F'(R) .$

Because of the need to describe DE, de Sitter solutions in the absence of matter are of special interest. They are given by the roots $R = R_{dS}$ of the algebraic equation

$$Rf'(R) = 2f(R)$$
.

The special role of $f(R) \propto R^2$ gravity: admits de Sitter solutions with any curvature.

Reduction to the first order equation

In the absence of spatial curvature and $\rho_m = 0$, it is always possible to reduce these equations to a first order one using either the transformation to the Einstein frame and the Hamilton-Jacobi-like equation for a minimally coupled scalar field in a spatially flat FLRW metric, or by directly transforming the 0-0 equation to the equation for R(H):

$$\frac{dR}{dH} = \frac{(R - 6H^2)f'(R) - f(R)}{H(R - 12H^2)f''(R)}$$

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J C 77, 538 (2017), but in the special case of the $R + R^2$ gravity this was found and used already in the original AS (1980) paper.

Analogues of large-field (chaotic) inflation: $f(R) \approx R^2 A(R)$ for $R \to \infty$ with A(R) being a slowly varying function of R, namely

$$|A'(R)| \ll rac{A(R)}{R} \;,\; |A''(R)| \ll rac{A(R)}{R^2} \;.$$

Analogues of small-field (new) inflation, $R \approx R_1$:

$$f'(R_1) = rac{2f(R_1)}{R_1} \;,\; f''(R_1) pprox rac{2f(R_1)}{R_1^2} \;,$$

Thus, all inflationary models in f(R) gravity are close to the simplest one over some range of R.

Perturbation spectra in slow-roll f(R) inflationary models

Let $f(R) = R^2 A(R)$. In the slow-roll approximation $|\ddot{R}| \ll H|\dot{R}|$:

$$P_{\mathcal{R}}(k) = rac{\kappa^2 A_k}{64\pi^2 A_k'^2 R_k^2}, \quad P_g(k) = rac{\kappa^2}{12A_k\pi^2}$$

$$N(k) = -\frac{3}{2} \int_{R_f}^{R_k} dR \frac{A}{A'R^2}, \quad \kappa^2 = 8\pi G$$

where the index k means that the quantity is taken at the moment $t = t_k$ of the Hubble radius crossing during inflation for each spatial Fourier mode $k = a(t_k)H(t_k)$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ
Different types of quantum corrections to the simplest model

- Logarithmic running of the free model parameter *M* with curvature.
- Terms with higher derivatives of *R* considered perturbatively (to avoid the appearance of ghosts).
- Terms arising from the conformal anomaly.

First type: logarithmic running with curvature

Due to the scale-invariance of the $R + R^2$ model for $R \gg M^2$, one may expect logarithmic running of the dimensionless coefficient in front of the R^2 term for large energies and curvatures. This running should be also related to the imaginary part of the effective action describing the scalaron decay after the end of inflation.

The concrete 'asymptotically safe' model with

$$f(R) = R + \frac{R^2}{6M^2 \left[1 + b \ln\left(\frac{R}{\mu^2}\right)\right]}$$

was recently investigated in L.-H. Liu, T. Prokopec, A. A. Starobinsky, Phys. Rev. D **98**, 043505 (2018); arXiv:1806.05407.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

However, comparison with CMB observational data on $n_s - 1$ shows that *b* is small by modulus: $|b|N_H \lesssim 1, |b| \lesssim 10^{-2}$. Thus, from the observational point of view this model can be simplified to

$$f(R) = R + rac{R^2}{6M^2} \left[1 - b \ln\left(rac{R}{\mu^2}
ight)
ight],$$

for which the analytic solution exists:

$$n_{s} - 1 = -\frac{4b}{3} \left(e^{\frac{2bN}{3}} - 1\right)^{-1}$$
$$r = \frac{16b^{2}}{3} \frac{e^{\frac{4bN}{3}}}{\left(e^{\frac{2bN}{3}} - 1\right)^{2}}$$

For $|b|N \ll 1$, these expressions reduce to those for the $R + R^2$ model.

Second type: terms with higher derivatives of R

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left[R + \alpha R^2 + \gamma R \Box R \right], \quad \alpha = \frac{1}{6M^2}$$

An inflationary regime in this model was first considered in S. Gottlöber, H.-J. Schmidt and A. A. Starobinsky, Class. Quant. Grav. **7**, 803 (1990). But this model, if taken in full, has a scalar ghost in addition to a physical massive scalar and the massless graviton.

Its recent re-consideration avoiding ghosts: A. R. R. Castellanos, F. Sobreira, I. L. Shapiro and A. A. Starobinsky, arXiv:1810.07787. The idea is to treat the $\gamma R \Box R$ term perturbatively with respect to the $R + R^2$ gravity, i.e., to consider only those solutions which reduce to the solutions of the $R + R^2$ gravity in the limit $\gamma - 0$. Then the second (ghost) scalar degree of freedom does not appear.

Results:

1. $|\mathbf{k}| \lesssim 0.3$ where $\mathbf{k} = \frac{\gamma}{6\alpha^2}$.

2. In the limit $kN \ll 1$, leading corrections $\propto kN$ to $n_s - 1$ and r vanish. The first result is in the agreement with that in a more general non-local gravity model without ghosts constructed in A. S. Koshelev, L. Modesto, L. Rachwal and A. A. Starobinsky, JHEP **1611**, 067 (2016); arXiv:1604.03127 which contains an infinite number of R derivatives.

Third type: terms arising from the conformal (trace) anomaly

The tensor producing the $\propto \left(R_{\mu\nu}R^{\mu\nu} - \frac{R^2}{3}\right)$ term in the trace anomaly:

$$T^{\nu}_{\mu} = \frac{k_2}{2880\pi^2} \left(R^{\alpha}_{\mu} R^{\nu}_{\alpha} - \frac{2}{3} R R^{\nu}_{\mu} - \frac{1}{2} \delta^{\nu}_{\mu} R_{\alpha\beta} R^{\alpha\beta} + \frac{1}{4} \delta^{\nu}_{\mu} R^2 \right)$$

It is covariantly conserved in the isotropic case only! Can be generalized to the weakly anisotropic case by adding a term proportional to the first power of the Weyl tensor.

$$T_0^0 = \frac{3H^4}{\kappa^2 H_1^2}, \quad T = -\frac{1}{\kappa^2 H_1^2} \left(R_{\mu\nu} R^{\mu\nu} - \frac{R^2}{3} \right), \quad H_1^2 = \frac{2880\pi^2}{\kappa^2 k_2}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへで

The spectrum of scalar and tensor perturbations in this case was calculated already in A. A. Starobinsky, Sov. Astron. Lett. **9**, 302 (1983).

$$n_s - 1 = -2\beta \frac{e^{\beta N}}{e^{\beta N} - 1}, \quad \beta = \frac{M^2}{3H_1^2}$$

If $n_s > 0.957$ and N = 55, then $H_1 > 7.2M$.

Conclusions

- The simplest viable inflationary model in f(R) gravity is the $R + R^2$ one. It is one-parametric and has the preferred value $r = \frac{12}{N^2} = 3(n_s 1)^2 \approx 0.004$.
- Thus, it has sense to search for primordial GW from inflation at the level r > 10⁻³ using CMB polarization and temperature anisotropy!
- Inflation in f(R) gravity represents a dynamical attractor for slow-rolling scalar fields strongly coupled to gravity.
- Comparison with observational data on n_s(k) 1 shows that quantum corrections to the R + R² model in the observable part of inflation are small, no more than a few percents. This smallness has been expected since it is caused by the anomalously large value of the dimensionless coefficient in front of the R² term which finally follows from actual smallness of present large-scale inhomogeneity of the Universe.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

Invited lecture 9:45–10:30

[Chair: Shinji Mukohyama]

Jean-Philippe Uzan

CNRS / Institut d'Astrophysique de Paris

"Astrophysical Stochastic Gravitational Wave Background" (40+10 min.)

[JGRG28 (2018) 110902]

5/11/2018

JGRG/Tokyo

Astrophysical Stochastic Gravitational Wave Background

Jean-Philippe UZAN

Astro-models w. I. Dvorkin, K. Olive, J. Silk, E. Vangioni GW background w. G. Cusin, I. Dvorkin, C. Pitrou

Gravity waves

Since September 2015, we can detect GW with interferometers

5 binary BH systems and 1 binary NS system

But there are many other types of sources

(1) binary inspiralling objects

(2) binary merging objects

(3) exploding supernovae

Sources: sensitivity curces and expected fluxes

Origin of stellar mass black holes

Galaxy stellar population evolution

galaxy of mass M_G and metallicity Z

Each galaxy has a stellar formation history that depends on its mass and metallicity.

A stellar evolution model gives the lifetime of the star and $m_{BH}=g_s(M_*, Z_*)$ so that one can predict

- the rate of SN
- the rate of BH formation
- the BH mass spectrum

as a function of time after the galaxy formation (and then redshift)

How to predict the BH binaries formation rate

For a galaxy of mass M_{G} and metallicity Z

- The star formation rate

 $\psi(z)$

[Springel-Hernqvist (2003)] - Initial mass function $\phi(M_*) = \frac{\mathrm{d}N_*}{\mathrm{d}M_*} \propto M_*^{-\alpha}$ [Salpeter α =2.35]

- Stellar evolution model

[Woosley-Weaver (1995)] $m_{\rm BH} = g_s(M_*, Z_*)$ [Fryer et al. (2012)] $\tau(M_{*}, Z_{*})$ [Limongi et al. (2017)]

Fraction of BH in binary systems

 $\beta(M_{\rm BH})$

Birth rate of binaries

BH formation rate

les formed from given initial mass

 $\mathcal{R}_1(m,t) = \psi[M_G,t-\tau(M_*)]\phi(M_*) \times dM_*/dm$

 $\mathcal{R}_2(m,t) = \beta \mathcal{R}_1(m,t)$

 $\mathcal{R}_{\rm bin}(m,m') = \mathcal{R}_2(m)\mathcal{R}_2(m')P(m,m')$

BH mergers rate

This depends on the lifetime of the binary BH systems, that is on their orbital parameters at formation (and eventually environment)

$$\mathcal{R}_f[m, m', a_f, t] = \mathcal{R}_{bin}(m, m')f(a_f)$$

$$\mathcal{R}_m[m, m', a_f, t] = \mathcal{R}_f[m, m', a_f, t - \tau_m(m, m', a_f)]$$

Stress-energy tensor of a GW

The GW stress-energy tensor is quadratic in $h_{\mu\nu}$ and obtained by expanding the Einstein tensor to second order.

Long but textbook computation gives

$$t_{\mu\nu} = \frac{c^4}{32\pi G} \left[\partial_\mu h_{\alpha\beta} \partial_\nu h^{\alpha\beta} \right]$$

where the [...] is defined as

$$[A(t)] \equiv \frac{1}{T_0} \int_0^{T_0} \mathrm{d}t \, A(t)$$

The GW energy density is then defined as

$$t^{00} = \frac{c^2}{32\pi G} [\dot{h}_{ij}^{TT} \dot{h}_{ij}^{TT}]$$

Energy density

This leads to the definition of the

$$\rho_{\rm GW}(\nu_0) = t^{00}$$

from which one defines the density parameter

$$\Omega_{\rm GW}(\nu_0) = \frac{1}{\rho_c} \frac{\mathrm{d}\rho_{\rm GW}}{\mathrm{d}\ln\nu_0}$$

In a FL universe, it gives (I shall come back on this later)

$$\Omega_{\rm GW}(\nu_0) = \frac{1}{\rho_c} \int \frac{\mathrm{d}z}{(1+z)^4 H(z)} \int \mathrm{d}\theta_{\rm G} n_{\rm G}(z;\theta_{\rm G}) \mathcal{L}_{\rm G}(\nu_{\rm G};\theta_{\rm G})$$
$$\nu_{\rm G} = \nu_0(1+z)$$

Elements to predict Ω_{GW}

It depends on

- the background cosmology;
- the distribution of galaxies $n(M_G,z)$;
- the subgalactic physics (SFR, IMF, stellar evolution, binarity);
- the GW emission of each type of source

To integrate over the galaxy distribution one needs the Halo mass function (calibrated on numerical simulations [Tinker et al. (2008)])

$$\frac{\mathrm{d}n}{\mathrm{d}M_G}(M_G,z)$$

[Dvorkin, Vangioni, Silk, JPU, Olive, 1604.04288].

BH mass & influence of metallicity

[Dvorkin, JPU, Vangioni, Silk, 1709.09197].

BH merger rate

Table 1. Merger rates deduced from LIGO O1 observations assuming different astrophysical models (see text for discussion).

	Rate [Gpc ⁻³ yr ⁻¹]	
Fryer	18	
WWp	59	
Limongi	15	
Limongi300	32	

[Dvorkin, Vangioni, Silk, JPU, Olive, 1604.04288],

Merger rate by unit BH mass at z=0

Merger rate by unit mass as function of z

Comparing astrophysical models

 $\rm Log_{10}$ of the detection rate in units of $\rm M_{\odot}^{-2}\,yr^{-1}.$

[Dvorkin, JPU, Vangioni, Silk, 1709.09197]

GW background

[Dvorkin, JPU, Vangioni, Silk, 1607.06818]

Anisotropy of the AGWB

This assumes that the spacetime is spatially stricly homogeneous and isotropic (FL)

- Isotropic distribution of sources (no structures)
- Propagation of GW in homogeneous medium

This is indeed not realistic

Anisotropy of the AGWB

Univers has large scale structure:

Sources are not isotropically distributed + light propagates in a perturbed spacetime

$$\Omega_{\rm GW}(\nu_0) = \int d^2 \mathbf{e}_0 \,\Omega_{\rm GW}(\nu_0, \mathbf{e}_0)$$
$$\Omega_{\rm GW}(\nu_0, \mathbf{e}_0) = \frac{1}{\rho_c} \frac{d^3 \rho_{\rm GW}(\nu_0, \mathbf{e}_0)}{d \ln \nu_0 \, d^2 \mathbf{e}_0}$$

Strain and density

At the observer the GW is the superposity of many individual strains produced by different astrophysical systems

$$h_0(\mathbf{x}_0, t_0, \mathbf{e}_0; t) \propto \sum_i^{N(\mathbf{e}_0)} h_i[P_{\mathrm{em}}(\mathbf{x}_0, t_0, \mathbf{e}_0), t] e^{i\varphi_i}$$

Its energy density from direction \mathbf{e}_{o} is

$$\frac{\mathrm{d}^2 \rho_{\mathrm{GW}}}{\mathrm{d}^2 \mathbf{e}_0} (\mathbf{x}_0, t_0, \mathbf{e}_0) \propto \left[\dot{h}_0(t_O, \mathbf{x}_0, \mathbf{e}_0; t) \dot{h}_0(t_0, \mathbf{x}_0, \mathbf{e}_0; t) \right] \\ \propto \sum_{i}^{N(\mathbf{e}_0)} \sum_{j}^{N(\mathbf{e}_0)} \left[\dot{h}_i[P_{\mathrm{em}}, t] \dot{h}_j^*[P_{\mathrm{em}}, t] \right] e^{i(\varphi_i - \varphi_j)} \\ \propto \sum_{i}^{N(\mathbf{e}_0)} \left[\dot{h}_i[P_{\mathrm{em}}, t] \dot{h}_i^*[P_{\mathrm{em}}, t] \right],$$

Since sources are incoherent

Strain and density

So the energy density,

[Cusin, Pitrou, JPU, 1711.11345]

$$\frac{\mathrm{d}^2\rho_{GW}}{\mathrm{d}^2\boldsymbol{e}_{\mathrm{o}}}(\boldsymbol{x}_{\mathrm{o}},\boldsymbol{t}_{\mathrm{o}},\boldsymbol{e}_{\mathrm{o}}) \propto \sum_{i}^{N(\boldsymbol{e}_{\mathrm{o}})} \frac{\mathrm{d}^2\rho_{GW,i}}{\mathrm{d}^2\boldsymbol{e}_{\mathrm{o}}}[P_{\mathrm{em}}(\boldsymbol{x}_{\mathrm{o}},\boldsymbol{t}_{\mathrm{o}},\boldsymbol{e}_{\mathrm{o}})]$$

is a stochastic quantity. So it has a non-vanishing correlation function

$$C(\boldsymbol{e}_{\mathrm{o}}\cdot\boldsymbol{e}_{\mathrm{o}}') = \left\langle \frac{\mathrm{d}^{2}\rho_{GW}}{\mathrm{d}^{2}\boldsymbol{e}_{\mathrm{o}}}(\boldsymbol{e}_{\mathrm{o}})\frac{\mathrm{d}^{2}\rho_{GW}}{\mathrm{d}^{2}\boldsymbol{e}_{\mathrm{o}}'}(\boldsymbol{e}_{\mathrm{o}}')\right\rangle$$

The strain is also a stochastic variable, but uncorrelated on the sky because sources are incoherent

$$\begin{split} & \langle h_{\rm obs}(\boldsymbol{x}_{\rm o}, t_{\rm o}, \boldsymbol{e}_{\rm o}; t) h_{\rm obs}(\boldsymbol{x}_{\rm o}, t_{\rm o}, \boldsymbol{e}_{\rm o}'; t) \rangle \\ & \propto \delta^2(\boldsymbol{e}_{\rm o} - \boldsymbol{e}_{\rm o}') \langle \sum_{i}^{N(\boldsymbol{e}_{\rm o})} \left| h_i[P_{\rm em}(t_{\rm o}, \boldsymbol{x}_{\rm o}, \boldsymbol{e}_{\rm o}), t] \right|^2 \rangle \end{split}$$

The strain is not correlated while its energy density is.

The good quantity to describe the AGWB is NOT the strain but its energy density.

Anisotropy of the AGWB

[Cusin, Pitrou, JPU, 1704.06184]

Anisotropy of the AGWB

(1) Cosmological scale

(1) **cosmological scale**. The observer receives flux of GW in a solid angle around the direction of observation. Galaxies: point-like sources moving with the cosmic flow

cosmological approach

(2) galactic scale. A source -i inside a galaxy is characterized by parameters $\theta^{(i)}$ and is moving with velocity Γ . Effective luminosity and frequency of a galaxy defined taking into account contributions sources

statistical approach

(2) Galactic scale

(3) Astrophysical scale

(3) **local scale**. Scale of single sources emitting GW inside a galaxy

astrophysical approach

Anisotropy of the AGWB: GW propagation

As in electromagnetism, it can be shown that in the eikonal limit GW follows null geodesics.

$$k^{\mu} = \frac{\mathrm{d}x^{\mu}}{\mathrm{d}\lambda} \qquad \qquad k^{\mu}k_{\mu} = 0 \qquad \frac{Dk^{\mu}}{D\lambda} \equiv k^{\nu}\nabla_{\nu}k^{\mu} = 0$$

Ghe observer 4-velosity defines a preferred notion of spatial sections. The GW 4-vector can then be decomposed as:

$$k^{\mu} = E\left(u^{\mu} - e^{\mu}\right)$$

Direction of observation

$$e^{\mu}u_{\mu} = 0, \quad e^{\mu}e_{\mu} = 1$$

Energy/Cyclic frequency

$$E = 2\pi\nu \equiv -u_{\mu}k^{\mu}$$

Spatial projection of the GW 4-vector: $p^{\mu} \equiv (g^{\mu\nu} + u^{\mu}u^{\nu}) k_{\nu} = -Ee^{\mu}$

Anisotropy of the AGWB: redshift

The general definition of the redshift is then

$$1 + z_{\rm G} \equiv \frac{\nu_{\rm G}}{\nu_0} = \frac{u_{\rm G}^{\mu} k_{\mu}(\lambda_{\rm G})}{u_0^{\mu} k_{\mu}(\lambda_0)}$$

Given initial conditions at the observer

$$x^{\mu}(\lambda_0) = x_0^{\mu}, \left. \frac{\mathrm{d}x^{\mu}(\lambda)}{\mathrm{d}\lambda} \right|_{\lambda=\lambda_0} = E_0(u_0^{\mu} - e_0^{\mu}).$$

One gets

$$x^{\mu}(\lambda, x_0^{\mu}, e_0^{\mu}) \qquad z(\lambda, x_0^{\mu}, e_0^{\mu}) \qquad e^{\mu}(\lambda, x_0^{\mu}, e_0^{\mu})$$

AGWB: general derivation

Galaxy G, at z_G and observed in e_O . Associated flux:

$$\Phi(e_O, z_G, \theta_G) \equiv \frac{\text{Energy}}{A_O \Delta t_O} \qquad \qquad \theta_G \text{ parameters describing G (mass, metallicity...)}$$

$$\int d\nu_O \Phi(e_O, \nu_O, z_G, \theta_G) \equiv \Phi(e_O, z_G, \theta_G)$$
specific flux
$$A_\circ \qquad \qquad A_\circ$$

To find the total flux received, we need to sum the contributions from all the galaxies in the solid angle $d\Omega_O$

AGWB: (1) cosmological scales

For each galaxy, characterized by θ_G we define

$$\int_{0}^{\infty} \mathcal{L}_{G}(\nu_{G}, \theta_{G}) d\nu_{G} = L_{G}(\theta_{G}) \qquad \text{effective luminosity}$$
$$\nu_{G} = (1 + z_{G})\nu_{O} \qquad \text{effective frequency}$$

The flux measured by the observer in the frequency band $[\nu_{o},\!\nu_{o}\!+\!d\nu_{o}]$

$$\begin{split} \Phi(z_G, e_O, \theta_G) &\equiv \frac{1}{4\pi D_L^2(z_G, e_O)} L_G(\theta_G) \\ \Phi_{\nu}(z_G, e_O, \nu_O, \theta_G) d\nu_O &\equiv \frac{(1+z_G)}{4\pi D_L^2(z_G, e_O)} \mathcal{L}_G(\nu_G, \theta_G) d\nu_O \qquad d\nu_G(1+z_G) = d\nu_O \end{split}$$

AGWB: (2) galactic scales

The effective luminosity (per unit frequency) can be split as

$$\mathcal{L}_G(\theta_G, \nu_G) = \mathcal{L}_G^I(\theta_G, \nu_G) + \mathcal{L}_G^M(\theta_G, \nu_G) + \mathcal{L}_G^{SN}(\theta_G, \nu_G)$$

There are 2 types of contributions.

Inspiraling binaries

$$\mathcal{L}_{G}^{I}(\theta_{G},\nu_{G}) = \sum_{(i)}^{I} \int d\theta^{(i)} \mathcal{N}^{(i)}(\theta^{(i)},\theta_{G}) \int d^{3}\Gamma f(\Gamma,\theta_{G}) \frac{dE_{G}^{(i)}}{dt_{G}d\nu_{G}}(\nu_{G},\Gamma,\theta_{G})$$

Mergers and supernovae

$$\left[\mathcal{L}_{G}^{M,SN}(\theta_{G},\nu_{G})\right] = \sum_{(i)}^{M,SN} \int d\theta^{(i)} \frac{d\mathcal{N}^{(i)}}{dt_{G}}(\theta^{(i)},\theta_{G}) \int d^{3}\Gamma f(\Gamma,\theta_{G}) \frac{dE_{G}^{(i)}}{d\nu_{G}}(\nu_{G},\Gamma,\theta_{G}) \frac{dE_{G}^{(i)}$$

AGWB: General expression

This expression is covariant, valid in any spacetime geometry.

It requires - the determination of the past lightcone structure [geodesis of the spacetime]

> - a cosmological model [galaxy distribution, ...]

- an astrophysical model [type of sources / emissivity / effective luminosity]

At background level (FL), it recovers the standard formula used in the literature

$$\frac{\mathrm{d}^{3}\rho_{\mathrm{GW}}}{\mathrm{d}\nu_{0}\mathrm{d}^{2}\Omega_{0}}(\nu_{0}) = \frac{1}{4\pi H_{0}}\int\mathrm{d}\bar{z}\frac{1}{E(\bar{z})}\frac{1}{(1+\bar{z})^{4}}\int\mathrm{d}\theta_{\mathrm{G}}\,\bar{n}_{\mathrm{G}}(\bar{z},\theta_{\mathrm{G}})\mathcal{L}_{\mathrm{G}}(\nu_{\mathrm{G}},\theta_{\mathrm{G}})$$

Perturbed FL

Spacetime metric at linear order in (scalar) perturbation

$$\mathrm{d}s^2 = a^2 \left[-(1+2\psi)\mathrm{d}\eta^2 + (1-2\phi)\delta_{ij}\mathrm{d}x^i\mathrm{d}x^j \right]$$

Bardeen potentials

$$\psi = \Psi + \Pi, \qquad \phi = \Psi - \Pi,$$

Velocity field

$$u^{\mu} \equiv \frac{1}{a}(1-\psi, v^i) \equiv \bar{u}^{\mu} + \delta u^{\mu}$$

Perturbed FL: general expression

Gathering these 3 elements and plugging in the general formula, one gets

$$\begin{split} \Omega_{\rm GW} &= \frac{1}{4\pi} \bar{\Omega}_{\rm GW} + \delta \Omega_{\rm GW} (\mathbf{e}, \nu_0) \\ \delta \Omega_{\rm GW} (\mathbf{e}, \nu_0) &= \frac{\nu_0}{\rho_c} \mathcal{E}(\eta_0, \mathbf{x}_0, \mathbf{e}, \nu_0) \\ \mathcal{E} &= \frac{4}{4\pi} \int \mathrm{d}\eta \, a^4 \int \mathrm{d}\theta_G \, \bar{n}_G \, \mathcal{L}_G \underbrace{\nu_G}_{\Theta} \theta_G \left[\delta_{\rm G} + 4\Psi + 4\Pi - 2\mathbf{e} \cdot \nabla v - 6 \int_{\eta_0}^{\eta} \mathrm{d}\eta' \dot{\Psi} \right] \\ \text{Local physics} \\ \text{Local overdensity} \\ \end{split}$$

Einstein effect

[Cusin, Pitrou, JPU, 1704.06184]

Perturbed FL: general expression

$$\begin{split} \delta\Omega_{GW}(\boldsymbol{e},\nu_{\rm o}) &= \frac{\nu_{\rm o}}{4\pi\rho_c} \int_{\eta_*}^{\eta_{\rm o}} \mathrm{d}\eta \,\mathcal{A}\left(\eta,\nu_{\rm o}\right) \left[\delta_{\rm g} + 4\Psi - 2\boldsymbol{e}\cdot\nabla\boldsymbol{v} + 6\int_{\eta}^{\eta_{\rm o}} \mathrm{d}\eta'\dot{\Psi}\right] \\ &+ \frac{\nu_{\rm o}}{4\pi\rho_c} \int_{\eta_*}^{\eta_{\rm o}} \mathrm{d}\eta \,\mathcal{B}(\eta,\nu_{\rm o}) \left[\boldsymbol{e}\cdot\nabla\boldsymbol{v} - \Psi - 2\int_{\eta}^{\eta_{\rm o}} \mathrm{d}\eta'\dot{\Psi}\right] \end{split}$$

$$\begin{split} \mathcal{A}(\eta,\nu_{\rm O}) &\equiv a^4 \bar{n}_{\rm G}(\eta) \int d\theta_{\rm G} \mathcal{L}_{\rm G}(\eta,\bar{\nu}_{\rm G},\theta_{\rm G}) \\ \mathcal{B}(\eta,\nu_{\rm O}) &\equiv a^3 \nu_{\rm O} \bar{n}_{\rm G}(\eta) \int d\theta_{\rm G} \frac{\partial \mathcal{L}_{\rm G}}{\partial \nu_{\rm G}} \Big|_{\bar{\nu}_{\rm G}}(\eta,\bar{\nu}_{\rm G},\theta_{\rm G}) \end{split}$$

Now one needs the angular power spectrum of this thing.

[Cusin, Dvorkin, Pitrou, JPU, 1803.03236]

Cl: first prediction – BH mergers

[Cusin, Dvorkin, Pitrou, JPU, (in prep.)]

Cl: analytic estimation

On large scales, the dominant contribution arises from the density contrast and from the contribution at late time.

Assuming bias scales at $(1+z)^{1/2}$ and matter dominated

$$(\ell + \frac{1}{2})C_{\ell}(\nu_0) \simeq \left[\frac{\nu_0 \mathcal{A}(\eta_0, \nu_0)b(\eta_0)}{4\pi\rho_{\rm c}}\right]^2 \int_{k_{\rm min}} P_{\delta}(k) \mathrm{d}k$$

Variance due to the large scale structure can be estimated to be

$$\sigma_{\rm GW}^2(\nu_0) \equiv \sum_{\ell} \frac{(2\ell+1)}{4\pi} C_{\ell}(\nu_0)$$

	32 Hz	100 Hz
NL	14%	32%
L	8%	16%

Cross-correlations

General expression has a cosmological and a local astrophysical components

[Cusin, Dvorkin, Pitrou, JPU, 1803.03236]

Conclusions

First expression of the astrophysical GW backgound

First shape of the angular power spectrum for BH-merger sources

Stellar evolution models lead to significantly different predictions for binary-BH systems distribution.

Lots need to be done:

- explore dependence on astrophysical models
- most of the astrophysical parameters are badly known
- explore effects of the cosmology
- include other sources

It opens a potential new window bridging astrophysics and cosmology

- understand the population of stellar BH
- test correlation between BH and dark matter distribution.
- Upper bounds obtained by LIGO up to l=7
- and indeed, you can even put PBH

References and sources

Astrophysical models

- Metallicity-constrained merger rates of binary black holes and the stochastic gravitational wave background [1604.04288], I.Dvorkin, E. Vangioni, J. Silk, J.-P. Uzan, and K. Olive, Month. Not. R. Astron. Soc. 461, 3877 (2016).
- A synthetic model of the gravitational ave background from evolving compact objects [1607.06818], I. Dvorkin, J.-P. Uzan, E. Vangioni, and J. Silk, Phys.Rev. D 94, 103011 (2016)
- *Exploring stellar evolution with gravitational-wave observations* [1709.09197], I. Dvorkin, J.-P. Uzan, E. Vangioni, and J. Silk, Month. Not. Astron. Soc. 479, 121 (2018)

AGWB formalism

- Anisotropy of the astrophysical gravitational wave background I: analytic expression of the angular power spectrum and correlation with cosmological observations, G. Cusin, C. Pitrou, and J.-P. Uzan, Phys. Rev. D 96, 103019 (2017)
- The signal of the stochastic gravitational wave background and the angular correlation of its energy density [arXiv:1711.11345], G. Cusin, C. Pitrou, and J.-P. Uzan, Phys. Rev. D 97, 123527 (2018)

Numerical computation

- First predictions of the angular power spectrum of the astrophysical gravitational wave background [1803.03236] G. Cusin, I. Dvorkin, C. Pitrou, and J.-P. Uzan, Phys. Rev. Lett. 120, 231101 (2018)

Nov. 16th

26th CGPM

The International System of Units (SI)

Palais des Congrès, Versailles | Friday 16th November 2018 | 11 a.m. Paris time (10:00 UTC)

Witness a historic moment; join an open session of the General Conference on Weights and Measures (CGPM) considering the revision of the SI - including redefinition of four of the base units

SUPPORT COMMITTEE Nabila Aghanim (IAS, Orsay, France) Djounai Baba Aissa (CRAAG, Algeria) Steven Balbus (Oxford University, England, UK) Damdin Batmunkh (Mongolian Academy of Sciences, Mongolia) Zouhair Benkhaldoun (Cadi Ayyad University, Morrocco) Sevar Helgi Björnsson (Iceland) Hasnaa Chennaoui (Hassan II Casablanca University, Morrocco) Jean-Francois Clerovy (Astronaut, France) Françoise Combes (Observatoire de Paris, Collège de France) Robbert A. Craddock (Smithsonian Institution, Washington, USA) Peter Dunsby (University of Cape Town, South Africa) Dirk Frimout (Astronaut, Belgium) Claudie Haigneré (European Space Agency, Astronaut, France) Kamil Hornoch (Ondrejov, Czech Republic) Maram Kaire (ASPA, Senegal) Kevin Govender (IAU, South Africa) James W. Head III (Brown University, USA) Gulchera Kokhirova (Institute of Astrophysics, Dushanbe, Tajikistan) Michel Mayor (Observatoire de Genève, Suisse) John Mather (Nobel Prize Physics 2006, USA) Claire Mouton (CFHT, Hawaii & IRAP, Toulouse, France) Chingis Omarov (Fesenkov Astrophysics) Institute, Kazakhstan) Arno Penzias (Astrophysicist, Nobel Laureate Physics, 2011, USA) Martin Rees (Cambridge, England) Hubert Reeves (France) Adam Riess, (Nobel Laureate in Physics, 2011, USA) Sduit Termitter (Jacket) England) Hubert Reeves (France) Adam Riess, (Nobel Laureate in Physics, 2011, USA) Pranav Sharma (Birla Science Centre, Hyderabad, India) BG, Sidharth (Birla Science Centre, Hyderabad, India) George Smoot (Nobel Laureate, 2006, USA) Naoshi Sugiyama (Nagoya University, Japan) Joseph Taylor (Nobel Laureate in Physics, 1993, USA) Solomon Tessema Belay (Ethiopia) Caroline Terquem (Oxford University, England) Michel Tognini (European Space Agency, Astronaut, France) Amanda Wellman (University of Cape Town, South Africa) Simon White (MPI for Astrophysics, Munich, Germany) Alexander Wolszczan (Penn State University, USA)

GET YOUR TELESCOPE OUT TO SHARE THE MOON ON JULY 12 AND 13 2019

JOIN ON https://www.onthemoonagain.org

Session S5A 10:45–12:00

[Chair: Hideki Asada]

Atsushi Nishizawa

KMI, Nagoya University

"Test of the equivalence principle at cosmological distance with gravitational waves"

(10+5 min.)

[JGRG28 (2018) 110903]

Test of the equivalence principle at cosmological distance with gravitational waves

Atsushi Nishizawa (KMI, Nagoya U.)

Nov. 5-9, 2018 @ Rikkyo U. 28th JGRG

Test of gravity with GWs

- GWs from 5 BBH and 1 BNS have been detected so far. LIGO Scientific Collaboration 2016-2017
- GW propagation

$$h_{ij}'' + (2+\nu)\mathcal{H}h_{ij}' + (c_{\rm T}^2k^2 + a^2\mu^2)h_{ij} = 0$$

graviton mass $\mu \leq 7.7 \times 10^{-23} \,\mathrm{eV}$ LIGO Scientific

Collaboration 2017

From GW170817/GRB170817A, GW speed has been measured so precisely /LSC + Fermi + INTEGRAL, ApJL 848, L13

$$-3 \times 10^{-15} < \frac{c_{\rm T} - c}{c} < 7 \times 10^{-16}$$

Constraint on amplitude damping rate

 $-75.3 < \nu < 78.4$

Arai & Nishizawa 2018

GW amplitude damping

In modified gravity that explains the cosmic accelerating expansion, the equivalence principle is likely to be broken.

Horndeski theory

$$S = \int dx^4 \sqrt{-g} \left(\sum_{i=2}^5 \mathcal{L}_i + \mathcal{L}_m \right)$$

Horndeski 1974 Deffayet, Gao, Steer, and Zahariade 2011 Kobayashi, Yamaguchi, Yokoyama 2011

$$\begin{split} \mathcal{L}_{2} &= G_{2}(\phi, X) ,\\ \mathcal{L}_{3} &= -G_{3}(\phi, X) \Box \phi ,\\ \mathcal{L}_{4} &= G_{4}(\phi, X) R + G_{4,X}(\phi, X) \left[(\Box \phi)^{2} - (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) \right] ,\\ \mathcal{L}_{5} &= G_{5}(\phi, X) G_{\mu\nu} (\nabla^{\mu} \nabla^{\nu} \phi) \\ &- \frac{1}{6} G_{5,X}(\phi, X) \left[(\Box \phi)^{3} - 3(\Box \phi) (\nabla_{\mu} \nabla_{\nu} \phi) (\nabla^{\mu} \nabla^{\nu} \phi) + 2(\nabla^{\mu} \nabla_{\alpha} \phi) (\nabla^{\alpha} \nabla_{\beta} \phi) (\nabla^{\beta} \nabla_{\mu} \phi) \right] \end{split}$$

- Most general scalar-tensor theory containing up to 2nd order spacetime derivatives.
- A single scalar field, but with four arbitrary functions of ϕ and $X = -\nabla_{\mu}\phi\nabla^{\mu}\phi/2 \longrightarrow G_2, G_3, G_4, G_5$

Model parameter estimation

We estimate parameter errors with the Fisher information matrix.

- generate 500 sources with SNR > 8 for each case.
- source direction & inclination angles: uniformly random
- GW waveform:

phenomenological IMR waveform (PhenomD) for BBH Khan et al. 2016

post-Newtonian inspiral waveform for BH-NS and BNS

3rd gen. detectors

BNS can be observed for long time because of good sensitivity at low frequencies (1-10Hz).

Using time-dependent (Earth rotation) antenna pattern functions for BNS. (1 day at 2 Hz, 2 hours at 5 Hz before merger)

 \mathcal{V} is measured with the error of O(0.01). Nishizawa & Arai, in prep.

Summary

- The equivalence principle at cosmological distance has not been tested precisely yet and can be a key test for modified gravity theories that explain the cosmic accelerating expansion.
- Gravitational constant for GWs is proved by measuring the amplitude damping rate $\,\mathcal{V}\,$ during GW propagation.
- -75.3 $\leq \nu \leq 78.4$ Arai & Nishizawa 2018

current detector network (aLIGO, KAGRA, etc.)

 $\Delta\nu\sim \mathcal{O}(1)$

future detector network (ET-D, CE, etc.)

 $\Delta \nu \sim \mathcal{O}(0.01) \iff \dot{G}_{\rm N}/G_{\rm N} \lesssim 0.02 H_0$

Yuki Watanabe

NIT, Gunma College

"Probing the Starobinsky R2 inflation with CMB precision cosmology" (10+5 min.)

[JGRG28 (2018) 110904]

Probing the Starobinsky R² inflation with CMB precision cosmology

Yuki Watanabe NIT, Gunma College

Based on JHEP 02(2018)118 [arXiv:1801.05736] with I. Dalianis; JHEP 02(2015)105 [arXiv: 1411.6746] with T. Terada, Y. Yamada, J. Yokoyama

The 28th Workshop on General Relativity and Gravitation in Japan JGRG28

Tachikawa Memorial Hall, Rikkyo University November 9, 2018

CMB observations and BSM physics

- · (ns, r) precision measurements from CMB
- No signal of physics beyond the Standard Model (BSM) at the LHC

credit: NASA

CMB constraint on inflation models

• Monomial potentials ($p \ge 2$) in GR are disfavored.

CMB constraint on inflation models

- Monomial potentials (p ≥ 2) in GR are disfavored.
- What if we could nail down to further precision?
Starobinsky R² Inflation

[Starobinsky 1980; Mukhanov & Chibisov 1981]

$$S = \frac{1}{2\kappa^2} \int d^4x \sqrt{-g} \left(R + \frac{R^2}{6M^2} \right) + S_m$$
$$S_m = \int d^4x \sqrt{-g} \left[-\frac{1}{2} (\nabla \sigma)^2 - V(\sigma) \right] \quad \leftarrow \text{Higgs}$$
$$+ \text{minimally coupled SM, RHN}$$
$$+ \text{"desert" or BSM}$$

- One of the oldest models of Inflation, before models of Sato and Guth
- A single parameter M characterizes the model.

R² Inflation as scalar-tensor theory

[Whitt 1984; Maeda 1988]

$$S_{J} = \frac{1}{2\kappa^{2}} \int d^{4}x \sqrt{-\hat{g}} \left(\hat{R} + \frac{\hat{R}^{2}}{6M^{2}} \right) + S_{m}$$
$$S_{m} = \int d^{4}x \sqrt{-\hat{g}} \left[-\frac{1}{2} (\hat{\nabla}\hat{\sigma})^{2} - V(\hat{\sigma}) \right]$$

Jordan frame $\hat{g}_{\mu\nu}$ \downarrow $g_{\mu\nu} = \hat{g}_{\mu\nu}\Omega^2$ $\Omega^2 = 2\kappa^2 \left|\frac{\partial \mathcal{L}_J}{\partial \hat{R}}\right| = 1 + \frac{\hat{R}}{3M^2} \equiv e^{\sqrt{\frac{2}{3}}\kappa\varphi}$ Einstein frame $g_{\mu\nu}$ $\hat{R} = \Omega^2[R + 3\Box(\ln\Omega^2) - \frac{3}{2}g^{\mu\nu}\partial_{\mu}(\ln\Omega^2)\partial_{\nu}(\ln\Omega^2)]$

$$S_{E} = \int d^{4}x \sqrt{-g} \left[\frac{1}{2\kappa^{2}} R - \frac{1}{2} (\nabla \varphi)^{2} - U(\varphi) - \frac{1}{2} e^{-\sqrt{\frac{2}{3}}\kappa\varphi} (\nabla \hat{\sigma})^{2} - e^{-\sqrt{\frac{8}{3}}\kappa\varphi} V(\hat{\sigma}) \right]$$
$$U(\varphi) = \frac{3}{4} M^{2} M_{p}^{2} \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^{2} = \begin{cases} \frac{3}{4} M^{2} M_{p}^{2} & \text{for } \varphi \gg \varphi_{f} \\ \frac{1}{2} M^{2} \varphi^{2} & \text{for } \varphi \ll \varphi_{f} \end{cases}$$
$$\varphi : \quad \text{Scalaron} = \text{Inflaton}$$

R² Inflation [Starobinsky 1980]

$$U(\varphi) = \frac{3}{4} M^2 M_p^2 \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^2 = \begin{cases} \frac{3}{4} M^2 M_p^2 & \text{for } \varphi \gg \varphi_f \\ \frac{1}{2} M^2 \varphi^2 & \text{for } \varphi \ll \varphi_f \end{cases}$$

R² Inflation [Starobinsky 1980]

$$U(\varphi) = \frac{3}{4} M^2 M_p^2 \left(1 - e^{-\sqrt{\frac{2}{3}}\kappa\varphi} \right)^2 = \begin{cases} \frac{3}{4} M^2 M_p^2 & \text{for } \varphi \gg \varphi_f \\ \frac{1}{2} M^2 \varphi^2 & \text{for } \varphi \ll \varphi_f \end{cases}$$

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

$$\begin{split} \Gamma(\varphi \to \sigma \sigma) &= \frac{\mathcal{N}_{\sigma} (M^2 + 2m_{\sigma}^2)^2}{192\pi M_{\rm Pl}^2 M} \\ &\simeq \frac{\mathcal{N}_{\sigma} M^3}{192\pi M_{\rm Pl}^2} + \frac{\mathcal{N}_{\sigma} m_{\sigma}^2 M}{48\pi M_{\rm Pl}^2} \qquad \Gamma(\varphi \to \bar{\psi}\psi) = \frac{\mathcal{N}_{\psi} m_{\psi}^2 M}{48\pi M_{\rm Pl}^2} \\ \hline \\ \hline \\ \textbf{Leading term} \\ T_{\rm rh} &\simeq 0.1 \sqrt{\Gamma_{\rm tot} M_p} \left(\frac{\mathcal{N}_{\rm tot}}{100}\right)^{-1/4} \sim 10^{-9} M_p, \\ N_* &\simeq 54 + \frac{1}{3} \ln \left(\frac{T_{\rm rh}}{10^9 \text{ GeV}}\right), \end{split}$$

If we know the matter sector (e.g. SM minimally coupled to gravity), inflationary predictions can be made without uncertainty.

Predictions depend on reheating temperature

scalaron mass

$$M \simeq 10^{-5} M_p \frac{4\pi\sqrt{30}}{N_*} \left(\frac{\mathcal{P}_{\zeta}(k_*)}{2 \times 10^{-9}}\right)^{1/2}$$
 e-folds of inflation
 $N_* \simeq 54 + \frac{1}{3} \ln\left(\frac{T_{\rm rh}}{10^9 \text{ GeV}}\right),$
 $\sim 10^{-5} M_p \sim 10^{27} \text{cm}^{-1} \sim 10^{51} \text{Mpc}^{-1},$
 $\sim 10^{13} \text{GeV}$

grav. waves

$$r = \frac{\mathcal{P}_{\gamma}(k)}{\mathcal{P}_{\zeta}(k)} \simeq 16\epsilon \simeq \frac{12}{N_{*}^{2}}, \qquad n_{s} - 1 = \frac{d\ln\mathcal{P}_{\zeta}(k)}{d\ln k} \simeq -6\epsilon_{V} + 2\eta_{V} \simeq -\frac{2}{N_{*}},$$
$$n_{t} = \frac{d\ln\mathcal{P}_{\gamma}(k)}{d\ln k} \simeq -2\epsilon_{V} \simeq -\frac{3}{2N_{*}^{2}},$$
$$\frac{dn_{s}}{d\ln k} \simeq 16\epsilon_{V}\eta_{V} - 24\epsilon_{V}^{2} - 2\xi_{V}^{2} \simeq -\frac{2}{N_{*}^{2}},$$
$$\frac{dn_{t}}{d\ln k} \simeq 4\epsilon_{V}\eta_{V} - 8\epsilon_{V}^{2} \simeq -\frac{3}{N_{*}^{3}},$$

Broad resonance: $|d\omega/dt|/\omega^2 > 1$ $0.2M_p \lesssim \Phi \lesssim 2M_p$ $\left(\frac{k}{M}\right)^2 < -1 - \frac{7}{6}\left(\frac{\Phi}{M_p}\right)^2 + \sqrt{6}\frac{\Phi}{M_p}\cos(Mt) + \left(\frac{3}{2}\right)^{\frac{1}{3}}\left(\frac{\Phi}{M_p}\right)^{\frac{2}{3}}|\sin(Mt)|^{\frac{2}{3}},$

Parametric resonant spectrum

Preheating in R² inflation (Friedmann) [Takeda & YW 1405.3830]

No eqn:

$$\begin{aligned}
& \omega_k \\
& \delta \ddot{\phi}_k + 3H \delta \dot{\phi}_k + \left[\frac{k^2}{a^2} + V''(\phi_0) + \Delta F\right] \delta \phi_k = 0 \\
\end{aligned}$$
Back-reaction
from metric:

$$\Delta F \equiv \frac{2\dot{\phi}_0}{M_p^2 H} V'(\phi_0) + \frac{\dot{\phi}_0^2}{M_p^4 H^2} V(\phi_0).$$

Metric preheating in R² inflation [Takeda & YW 1405.3830]

1st narrow resonance: $-q^2 < A_k - 1 < q^2$,

$$0 \le \frac{k}{M} \lesssim a_{\rm ini} H_{\rm ini} \sqrt{\frac{3a_{\rm ini}}{aHM}} \propto a^{1/2}$$

The resonance is not strong enough to form quasi-stable objects!

Higher derivative SUGRA [Cecotti 1987; Ferrara & Porrati 2014]

$$\begin{split} \mathbf{R} \text{ is the supercurvature} \\ S &= \int \mathrm{d}^4 x \mathrm{d}^4 \theta E \left(N(\mathcal{R}, \bar{\mathcal{R}}) + J \left(\phi, \bar{\phi} e^{gV} \right) \right) \, \mathbf{\phi}, \, \mathbf{V} \text{ are the matter sector} \\ &+ \left[\int \mathrm{d}^4 x \mathrm{d}^2 \Theta 2 \mathscr{E} \left(F(\mathcal{R}) + P(\phi) + \frac{1}{4} h_{AB}(\phi) W^A W^B \right) + \mathrm{H.c.} \right] \end{split}$$

↓ duality trans. by T, S (T is the Lagrange multiplier)

$$S = \int d^4x d^2 \Theta 2\mathscr{E} \frac{3}{8} \left(\bar{\mathscr{D}} \bar{\mathscr{D}} - 8\mathscr{R} \right) e^{-K/3} + W + \frac{1}{4} h_{AB} W^A W^B + \text{H.c.}$$

Kahler pot: $K = -3 \ln \left(\frac{T + \overline{T} - N(S, \overline{S}) - J(\phi, \overline{\phi}e^{gV})}{3} \right),$ Superpot: $W = 2TS + F(S) + P(\phi).$

Starobinsky SUGRA R2 inflation

[Terada, YW, Yamada, Yokoyama 1411.6746; Dalianis & YW 1801.05736]

$$\begin{split} \mathcal{L} &= -3M_P^2 \int d^4\theta \, E \, \left[1 - \frac{4}{m_{\Phi}^2} \mathcal{R}\bar{\mathcal{R}} + \frac{\zeta}{3m_{\Phi}^4} \mathcal{R}^2 \bar{\mathcal{R}}^2 \right] \\ N(S,\bar{S}) &= -3 + \frac{12}{m_{\Phi}^2} S\bar{S} - \frac{\zeta}{m_{\Phi}^4} \left(S\bar{S} \right)^2 \qquad \qquad \downarrow \\ \mathbf{S}, \, \text{ImT are stabilized.} \\ F(S) &= 0, \end{split}$$

Real part of T becomes the inflaton: $V = \frac{3m_{\Phi}^2}{4} \left(1 - e^{-\sqrt{2/3}\widehat{\operatorname{Re}T}}\right)^2$ $S = \int d^4x d^2\Theta 2\mathscr{E}^{\frac{3}{2}} \left(\bar{\mathscr{D}}\bar{\mathscr{D}} - 8\mathscr{R}\right) e^{-K/3} + W + \frac{1}{2}h_{AB}W^A W^B + \mathrm{H.c.}$

$$= \int d^4x d^2 \Theta 2\mathscr{E} \frac{3}{8} \left(\mathscr{D} \mathscr{D} - 8\mathscr{R}\right) e^{-K/3} + W + \frac{1}{4} h_{AB} W^A W^B + \text{H.c.}$$
$$K = -3 \ln \left(\frac{T + \overline{T} - N(S, \overline{S}) - J(\phi, \overline{\phi} e^{gV})}{3} \right),$$
$$W = 2TS + F(S) + P(\phi).$$
$$Grav. coupling to matter$$

Starobinsky SUGRA R2 inflation

[Terada, YW, Yamada, Yokoyama 1411.6746; Dalianis & YW 1801.05736]

$$\begin{split} \mathcal{L} &= -3M_P^2 \int d^4\theta \, E \, \left[1 - \frac{4}{m_{\Phi}^2} \mathcal{R}\bar{\mathcal{R}} + \frac{\zeta}{3m_{\Phi}^4} \mathcal{R}^2 \bar{\mathcal{R}}^2 \right] \\ N(S,\bar{S}) &= -3 + \frac{12}{m_{\Phi}^2} S\bar{S} - \frac{\zeta}{m_{\Phi}^4} \left(S\bar{S}\right)^2 \\ F(S) = 0, \end{split}$$

Real part of T becomes the inflaton:

$$V = \frac{3m_{\Phi}^2}{4} \left(1 - e^{-\sqrt{2/3}\widehat{\operatorname{Re}T}}\right)^2$$

SUSY breaking field:

$$J(z, \bar{z}) = |z|^2 - \frac{|z|^4}{\Lambda^2},$$
$$P(z) = \mu^2 z + W_0,$$

Z may dominate after inflation.

Constraints from gravitino abundance

[Terada, YW, Yamada, Yokoyama 1411.6746]

Gravitinos generated from:

- 1) inflaton decay
- 2) thermal scatterings
- 3) decay of particles
- 4) decay of oscillating Z

Wino LSP is assumed for:

gravitino mass > $10^{4.5}$ GeV \rightarrow anomaly mediation

gravitino mass < $10^{4.5}$ GeV \rightarrow gravity mediation

CMB uncertainties from the post-inflationary evolution [Easther, Galvez, Ozsoy, Watson 2013]

Thermal History

Alternative History

Shift in (ns, r) due to late entropy production

 After inflaton decay, a diluter field X (modulus, flaton) may dominate the universe until BBN. Decays of X produce entropy:

Supersymmetric dark matter cosmology

Merits: Gauge coupling unification, stable dark matter, baryogenesis, stringy UV completion, ...

- 1. Gravitino LSP
- 2. Neutralino LSP (WIMP)
 - Thermal DM (freeze out): thermal scatterings with the MSSM, messenger fields
 - Non-thermal DM (freeze in): decays, thermal scatterings

Light WIMP mass is disfavored by the LHC. $\Omega_{DM}h^2$ is severely constrained when sparticle masses increase:

$$\begin{split} \Omega_{3/2} \propto \ m_{3/2}^{\alpha} \, \left(\frac{m_{\tilde{g}}}{m_{3/2}}\right)^{\beta} \, \left(\frac{m_{\tilde{f}}}{m_{3/2}}\right)^{\gamma} \, T_{\rm rh}^{\delta} \,, \qquad m_{3/2} < m_{\tilde{g}}, m_{\tilde{f}} \,, \\ \Omega_{\tilde{\chi}^{0}} \propto \ m_{\tilde{\chi}^{0}}^{\tilde{\alpha}} \ m_{3/2}^{\tilde{\beta}} \, \left(\frac{m_{\tilde{f}}}{m_{3/2}}\right)^{\tilde{\gamma}} \, T_{\rm rh}^{\tilde{\delta}} \,, \qquad m_{\tilde{\chi}^{0}} < m_{3/2}, m_{\tilde{f}} \,, \end{split}$$

Alternative cosmic histories and SUSY

• If $\mathcal{O}(\text{TeV}) < (m_{\text{LSP}}, \tilde{m}) < T_{\text{rh}}$ then $D_X \ge D_X^{\min} \equiv \frac{\Omega_{\text{LSP}}^<}{0.12 \, h^{-2}}$

where \tilde{m} the sparticle mass scale.

CMB observables: Starobinsky R2 inflation

$$N_*|_{R^2} = 55.9 + \frac{1}{4}\ln\epsilon_* + \frac{1}{4}\ln\frac{V_*}{\rho_{\rm end}} + \frac{1}{12}\ln\left(\frac{g_{*\rm rh}}{100}\right) + \frac{1}{3}\ln\left(\frac{T_{\rm rh}}{10^9\,{\rm GeV}}\right) - \Delta N_X$$

CMB observables: Starobinsky R2 inflation [Dalianis & YW 1801.05736]

$$\mathcal{L} = -3M_P^2 \int d^4\theta \, E \, \left[1 - \frac{4}{m^2} \mathcal{R}\bar{\mathcal{R}} + \frac{\zeta}{3m^4} \mathcal{R}^2 \bar{\mathcal{R}}^2 \right] \quad + \text{MSSM, Z, X,}$$
(messengers)

Gravitino DM (in GeV units)

Neutralino DM

#	m_Z	$m_{3/2}$	$m_{ ilde{f}}$	$m_{ ilde{\chi}^0}~({ m LSP})$	$D_{(X)}$	N_*	n_s	r	Origin
4	10^{5}	10^{5}	10^{5}	10^{3}	1	54	0.965	0.0034	Th

CMB observables: Starobinsky R2 inflation [Dalianis & YW 1801.05736]

$$\mathcal{L} = -3M_P^2 \int d^4\theta \, E \, \left[1 - \frac{4}{m^2} \mathcal{R}\bar{\mathcal{R}} + \frac{\zeta}{3m^4} \mathcal{R}^2 \bar{\mathcal{R}}^2 \right]$$

+ MSSM, Z, X, (messengers)

Gravitino DM (in GeV units)

#	m_Z	$m_{ ilde{g}}$	$m_{ ilde{f}}$	$m_{3/2}~({ m LSP})$	D_X	N_*	n_s	r	Origin
1	10^{4}	10^{4}	10^{4}	10^{2}	$10^{4} _{min}$	$51 _{\rm max}$	$0.963 _{\rm max}$	$0.0038 _{\min}$	Th
2	10^{4}	10^{4}	10^{5}	10^{3}	$10^{10} _{\rm min}$	$46 _{\rm max}$	0.960 _{max}	$0.0044 _{\min}$	Th
3	10^{6}	10^{5}	10^{6}	10^{4}	$10^{6} _{\rm min}$	$49 _{\rm max}$	$0.962 _{\mathrm{max}}$	$0.0041 _{\min}$	Non-th
4	10^{3}	10^{3}	10^{4}	10	1	54	0.965	0.0034	Th

Neutralino DM

#	m_Z	$m_{3/2}$	$m_{ ilde{f}}$	$m_{ ilde{\chi}^0}~({ m LSP})$	$D_{(X)}$	N_*	n_s	r	Origin
1	10^{7}	10^{6}	10^{6}	10^{3}	$ 10^{2} _{\rm min}$	$52 _{\rm max}$	$0.964 _{\rm max}$	$0.0036 _{\min}$	Non-th
2	10^{9}	10^{8}	10^{8}	10^{3}	$ 10^{2} _{\rm min}$	$52 _{\rm max}$	$0.964 _{\mathrm{max}}$	$0.0036 _{\min}$	Th
3	10^{8}	10^{7}	10^{7}	10^{5}	$10^{8} _{\rm min}$	$ 48 _{\rm max}$	$0.961 _{\max}$	$0.0042 _{\min}$	Non-th
4	10^{5}	10^{5}	10^{5}	10^{3}	1	54	0.965	0.0034	Th

CMB observables: Starobinsky R2 inflation [Dalianis & YW 1801.05736]

 n_{s}

- We cannot exclude or verify SUSY by (ns, r) precision measurements even if R2 inflation is verified.
- Nevertheless we can support the presence of BSM physics by ruling out the "BSM-desert" hypothesis for a particular inflation model.
- Hence precision cosmology can offer us complementary constrains to the parameter space of SUSY.

Chulmoon Yoo

Nagoya University

"PBH abundance from random Gaussian curvature perturbations and a local density threshold" (10+5 min.)

[JGRG28 (2018) 110905]

PBH Abundance from random Gaussian curvature perturbations and a local density threshold

arXiv:1805.03946

Chulmoon Yoo(Nagoya Univ.)

with Tomohiro Harada Jaume Garriga Kazunori Kohri

Main message 1

arXiv:1805.03946 Significantly improved from the 1st version

Submission history

From: Chul-Moon Yoo [view email] [v1] Thu, 10 May 2018 12:56:03 UTC (541 KB) [v2] Wed, 1 Aug 2018 05:26:04 UTC (667 KB) [v3] Mon, 10 Sep 2018 01:20:48 UTC (667 KB) [v4] Fri, 26 Oct 2018 00:37:26 UTC (750 KB)

Large modification

2

→ PTEP accepted version

Please check it (again)!!

JGRG28@Rikkyo

Chulmoon Yoo

Main message 2

A new procedure to estimate PBH/abundance

OBetter motivated than Press-Schechter

ONON-linearity is taken into account

Optimized criterion proposed in Shibata-Sasaki(1999)

ONo window function dependence for a narrow spectrum

Please use our procedure!!!

(Although it is a bit(?) more complicated than PS...)

JGRG28@Rikkyo

Chulmoon Yoo

Introduction

JGRG28@Rikkyo

Chulmoon Yoo

Perturbation Variables

OSpatial metric

$$\mathrm{d}l^2 = a^2 \mathrm{e}^{-2\zeta} \widetilde{\gamma}_{ij} \mathrm{d}x^i \mathrm{d}x^j$$

\bigcirc Relation between ζ and density perturbation δ

$$\delta = -rac{4(1+w)}{3w+5}rac{1}{a^2H^2} \; e^{5/2\zeta}\Delta \mathrm{e}^{-\zeta/2}$$

with long wave-length approx. comoving slicing, $p = w\rho$

ONewtonian counterpart

 $\zeta \sim \phi$:Newton potential, $\delta \sim \rho$: density

JGRG28@Rikkyo

Press-Schechter

©Simplest conventional estimation(Press-Schechter)

- Assumption 1: threshold is given by the amplitude of ζ or δ
- Assumption 2: Gaussian distribution for ζ or δ
- Production probability(PBH fraction to the total density) $m{eta}_0$

$$m{eta}_0 = 2 ig(2\pi\sigma^2 ig)^{1/2} \int_{|\delta_{
m th}|}^{\infty} \exp ig[-rac{\delta^2}{2\sigma^2} ig] d\delta = \operatorname{erfc} ig(rac{|\delta_{
m th}|}{\sqrt{2}\sigma} ig)$$

OPoints at issue

- δ has an upper bound~ $\mathcal{O}(1) \Rightarrow$ cannot be a Gaussian variable

- $\zeta \sim$ potential \Rightarrow depends on environments

JGRG28@Rikkyo

Chulmoon Yoo

10

$\delta_{ m th}$ and Statistics of ζ

©Threshold should be set based on δ

OStatistical properties are well known for ζ

What we have to do

- Statistics of $\zeta \Rightarrow$ probability of $\delta \Rightarrow$ PBH formation prob.

- w/ long-wavelength approx. and w/o linear approx.

ORelation between ζ and δ w/ long-wavelength approx.

$$\delta = -\frac{4(1+w)}{3w+5} \frac{1}{a^2 H^2} e^{5/2\zeta} \Delta e^{-\zeta/2}$$

comoving slicing, $p = w\rho$

JGRG28@Rikkyo

Chulmoon Yoo

 OVariables: $\mu = -\zeta|_{r=0}, k_*^2 = \Delta \zeta|_{r=0}/\mu$

 profile: $-\zeta(r)$

 peak amplitude

 $\mu = -\zeta|_{r=0}$

 peak scale $1/k_*$ with $k_*^2 = \Delta \zeta|_{r=0}/\mu$

Typical Peak Profile

OTypical peak profile for a given set of (μ, k_*)

OMean value of $\zeta(r)$ with the conditional probability $P(\zeta(r)|\mu, k_*)$ [Bardeen et. al(1986)]

$$\overline{\zeta}(\boldsymbol{r};\boldsymbol{\mu},\boldsymbol{k}_*) = \boldsymbol{\mu}\left(-\frac{1}{1-\gamma^2}\left(\boldsymbol{\psi}+\frac{\sigma_1^2}{\sigma_2^2}\Delta\boldsymbol{\psi}\right) + \frac{k_*^2}{\gamma(1-\gamma^2)}\frac{\sigma_0}{\sigma_2}\left(\gamma^2\boldsymbol{\psi}+\frac{\sigma_1^2}{\sigma_2^2}\Delta\boldsymbol{\psi}\right)\right)$$

where
$$\psi(r) = \frac{1}{\sigma_0^2} < \zeta(r)\zeta_0 > = \frac{1}{\sigma_0^2} \int \frac{\mathrm{d}k \sin(kr)}{kr} \mathcal{P}(kr)$$

OVariance

JG

$$\frac{\langle \Delta \zeta(r)^2 | \mu, k_* \rangle}{\sigma_0^2} = \mathbf{1} - \frac{\psi^2}{1 - \gamma^2} - \frac{1}{\gamma^2 (1 - \gamma^2)} \left(2\gamma^2 \psi + \frac{\sigma_1^2}{\sigma_2^2} \Delta \psi \right) \frac{\sigma_1^2}{\sigma_2^2} \Delta \psi$$
$$- \frac{5}{\gamma^2} \left(\frac{\psi'}{r} - \frac{\Delta \psi}{3} \right)^2 - \frac{1}{\gamma^2} {\psi'}^2 \sim \mathcal{O}(1) \Rightarrow \Delta \zeta(r)^2 \sim \sigma_0^2 \ll 1$$
$$\frac{\partial \zeta(r)^2}{\partial r} = \frac{1}{\gamma^2} \frac{\partial \psi}{\partial r} + \frac{\partial \psi}{\partial$$

Threshold for $\overline{\zeta}$

©Shape of the profile

$$\boldsymbol{g}(\boldsymbol{r};\boldsymbol{k}_*) \coloneqq \frac{\bar{\zeta}(\boldsymbol{r})}{\mu} = -\frac{1}{1-\gamma^2} \left(\boldsymbol{\psi} + \frac{\sigma_1^2}{\sigma_2^2} \Delta \boldsymbol{\psi} \right) + \frac{\boldsymbol{k}_*^2}{\gamma(1-\gamma^2)} \frac{\sigma_0}{\sigma_2} \left(\gamma^2 \boldsymbol{\psi} + \frac{\sigma_1^2}{\sigma_2^2} \Delta \boldsymbol{\psi} \right)$$

$$\boldsymbol{\psi}(r) = rac{1}{\sigma_0^2} \int rac{\mathrm{d}k}{k} rac{\sin(kr)}{kr} \mathcal{P}(\boldsymbol{k})$$

©Compaction function

$$\mathcal{C} = rac{1}{3} \left[1 - (1 - r\zeta')^2
ight] \Rightarrow \mu = rac{1 - \sqrt{1 - 3C}}{rg'}$$

OThreshold $C_{th} \Rightarrow$ Threshold $\mu_{th}^{(k_*)}(k_*)$

$$\mu_{\rm th}^{(k_*)}(k_*) = \frac{1 - \sqrt{1 - 3C_{\rm th}}}{\bar{r}_{\rm m}(k_*)g'_{\rm m}(k_*)} = \frac{2 - \sqrt{4 - 6\delta_{\rm th}}}{2\bar{r}_{\rm m}(k_*)g'_{\rm m}(k_*)}$$

20

Horizon Entry and Threshold

©Estimation of the PBH mass for the typical profile

$$M(\mu, k_*) = \frac{1}{2} \alpha H^{-1} = \frac{1}{2} \alpha R \Big|_{r=\bar{r}_{\mathrm{m}}} = \frac{1}{2} \alpha a \bar{r}_{\mathrm{m}} e^{-\bar{\zeta}} = M_{eq} k_{eq}^2 \bar{r}_{\mathrm{m}}^2(k_*) e^{-2\bar{\zeta}(\mu, k_*)}$$
horizon entry

where we have assumed $\alpha \sim \mathcal{O}(1)$ factor

note $\alpha = K(k_) (\mu - \mu_{th}(k_*))^{\gamma}$ with $\gamma \simeq 0.36$ if we take into account the critical behavior

OWe obtain the relation of M, k_* , μ

$$M = M(\mu, k_*) \iff k_* = k_*(\mu, M) \iff \mu = \mu(M, k_*)$$

Chulmoon Yoo

22

Note on Window Function

ODon't we need a Window function any more?

©Two roles in the PS formalism

1. Smooth out the smaller scale inhomogeneity

2. Introduce the scale dependence of the mass spectrum

©For our specific power spectrum

No smaller scale inhomogeneity(single scale)

•The scale dependence is automatically induced by the random variable k_* , which characterizes the profile

OWe need a window function for a broad spectrum

JGRG28@Rikkyo

Chulmoon Yoo

32

31

Main message

A new procedure to estimate PBH abundance

©Better motivated than PS

ONON-linearity is taken into account

Optimized criterion is implemented

◎No window function dependence for a narrow spectrum

Please use our procedure!!!

OA bit(?) complicated, but see 1805.03946 for the analytic expression for the monochromatic case for a simpler approximate formula

Thank you for your attention

JGRG28@Rikkyo

Chulmoon Yoo

Marcus Christian Werner

Yukawa Institute for Theoretical Physics, Kyoto University

"New developments in optical geometry" (10+5 min.)

[JGRG28 (2018) 110908]

New Developments in Optical Geometry

Marcus C. Werner, Kyoto University

9 November 2018 JGRG28, Rikkyo University, Tokyo

Introduction

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

Gravitational lensing theory can be approached in three ways:

- 1 null geodesics in 4-dimensional spacetime;
- standard approximation used in astronomy: quasi-Newtonian impulse approximation in Euclidean 3-space;

Gravitational lensing theory can be approached in three ways:

- 1 null geodesics in 4-dimensional spacetime;
- standard approximation used in astronomy: quasi-Newtonian impulse approximation in Euclidean 3-space;
- **3** optical geometry: 3-dimensional manifold whose geodesics are spatial projections of null geodesics, by Fermat's principle:

Static spacetime: Riemannian optical geometry.

E.g., for $ds^2 = g_{tt}dt^2 + g_{ij}dx^i dx^j$, null curves obey $dt^2 = h_{ij}dx^i dx^j$ with optical metric $h_{ij} = -\frac{g_{ij}}{g_{tt}}$. Stationary spacetime: Finslerian optical geometry.

The Mathematics of Gravity and Light

AMS MRC Conference at Whispering Pines, Rhode Island, USA, coorganized with Arlie Petters (Duke) and Chuck Keeton (Rutgers)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

In Euclidean geometry, an area A bounded by perimeter L satisfies

 $L^2 \ge 4\pi A$,

the isoperimetric inequality. The limiting case is the circle.

The isoperimetric problem

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

The theorem of Dido, queen of Carthage! 814BC?

カルタゴの女王ディードー

Devenere locos, ubi nunc ingentia cernis moenia surgentemque novae Karthaginis arcem mercatique solum, facti de nomine Byrsam taurino quantum possent circumdare tergo.

Aeneis I 365-368 古代ローマの「アエネーイス」

In Euclidean geometry, an area A bounded by perimeter L satisfies

$$L^2 \ge 4\pi A$$
,

the isoperimetric inequality. The limiting case is the circle.

Question: what does the isoperimetric problem imply for optical geometry? Constraints on time delays/angles for lensed images?

The isoperimetric problem

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

In Euclidean geometry, an area A bounded by perimeter L satisfies

$$L^2 \ge 4\pi A_2$$

the isoperimetric inequality. The limiting case is the circle.

Question: what does the isoperimetric problem imply for optical geometry? Constraints on time delays/angles for lensed images?

Theorem

In Schwarzschild equatorial optical geometry, assume sets S and $\Sigma := \{r \le c\} \supseteq \{r = 3m\} \text{ satisfy}$ $|S| \ge |\Sigma|. \text{ Then, } |\partial S| \ge |\{r = c\}|.$

[Roesch & Werner (2018), forthcoming]

A closed area $A \subset M$ in metric surface (M, h) with piecewisesmooth boundary $\partial A = \bigcup_i \gamma_i$ obeys the Gauss-Bonnet theorem,

$$\chi(A) = \int_A \frac{K}{2\pi} \, \mathrm{d}A + \sum_i \left(\int_{\gamma_i} \frac{k}{2\pi} \, \mathrm{d}t + \frac{\theta(N_i^-, N_i^+)}{2\pi} \right),$$

with Euler characteristic χ , Gaussian curvature K, exterior jump angle $\theta(N_i^+, N_i^-)$ at vertex i, geodesic curvature $k : \nabla_{\dot{\gamma}} \dot{\gamma} = kN$.

The Gauss-Bonnet method

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A closed area $A \subset M$ in metric surface (M, h) with piecewisesmooth boundary $\partial A = \bigcup_i \gamma_i$ obeys the Gauss-Bonnet theorem,

$$\chi(A) = \int_A \frac{K}{2\pi} \, \mathrm{d}A + \sum_i \left(\int_{\gamma_i} \frac{k}{2\pi} \, \mathrm{d}t + \frac{\theta(N_i^-, N_i^+)}{2\pi} \right),$$

with Euler characteristic χ , Gaussian curvature K, exterior jump angle $\theta(N_i^+, N_i^-)$ at vertex i, geodesic curvature $k : \nabla_{\dot{\gamma}} \dot{\gamma} = kN$. Note for later: by definition, k = 0 iff γ is geodesic.
A closed area $A \subset M$ in metric surface (M, h) with piecewisesmooth boundary $\partial A = \bigcup_i \gamma_i$ obeys the Gauss-Bonnet theorem,

$$\chi(A) = \int_A \frac{K}{2\pi} \, \mathrm{d}A + \sum_i \left(\int_{\gamma_i} \frac{k}{2\pi} \, \mathrm{d}t + \frac{\theta(N_i^-, N_i^+)}{2\pi} \right),$$

with Euler characteristic χ , Gaussian curvature K, exterior jump angle $\theta(N_i^+, N_i^-)$ at vertex i, geodesic curvature k: $\nabla_{\dot{\gamma}}\dot{\gamma} = kN$.

Note for later: by definition, k = 0 iff γ is geodesic.

This can be applied to gravitational lensing, e.g. on a domain

- including the lens, for topological image multiplicity;
- excluding the lens, for the asymptotic deflection angle,

$$\hat{lpha} = -\int_{\mathcal{A}_{\infty}} \mathcal{K} \, \mathrm{d}\mathcal{A}.$$

[Gibbons & Werner, Class. Quantum Grav. (2008)]

But stationary spacetimes?

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Given the Kerr solution in Boyer-Lindquist coordinates,

$$ds^{2} = \frac{\Delta}{\rho^{2}} (dt - a \sin^{2} \theta d\phi)^{2} - \frac{\sin^{2} \theta}{\rho^{2}} ((r^{2} + a^{2})d\phi - adt)^{2}$$
$$-\frac{\rho^{2}}{\Delta} dr^{2} - \rho^{2} d\theta^{2},$$

solving for the optical geometry, one finds

$$\mathrm{d}t = \sqrt{h_{ij}(x)\mathrm{d}x^{i}\mathrm{d}x^{j}} + \beta_{i}(x)\mathrm{d}x^{i},$$

where *h* is a Riemannian metric, and $\beta \propto a$ is a one-form.

Given the Kerr solution in Boyer-Lindquist coordinates,

$$ds^{2} = \frac{\Delta}{\rho^{2}} (dt - a \sin^{2} \theta d\phi)^{2} - \frac{\sin^{2} \theta}{\rho^{2}} ((r^{2} + a^{2}) d\phi - a dt)^{2}$$
$$- \frac{\rho^{2}}{\Delta} dr^{2} - \rho^{2} d\theta^{2},$$

solving for the optical geometry, one finds

$$\mathrm{d}t = \sqrt{h_{ij}(x)\mathrm{d}x^{i}\mathrm{d}x^{j}} + \beta_{i}(x)\mathrm{d}x^{i},$$

where *h* is a Riemannian metric, and $\beta \propto a$ is a one-form.

This is not Riemannian but a special case of Finsler geometry called Kerr-Randers optical geometry (away from the ergoregion boundary).

Finsler geometry

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

A Finsler manifold (M, F), with $x \in M$, $V \in T_x M$, has a smooth function $F : TM \setminus 0 \to \mathbb{R}_0^+$ with is homogeneous such that $F(x, \lambda V) = \lambda F(x, V)$, $\lambda > 0$, and convex such that the Hessian

$$g_{ij}(x, V) = \frac{1}{2} \frac{\partial^2 F^2(x, V)}{\partial V^i \partial V^j}$$

is positive definite.

A Finsler manifold (M, F), with $x \in M$, $V \in T_x M$, has a smooth function $F : TM \setminus 0 \to \mathbb{R}_0^+$ with is homogeneous such that $F(x, \lambda V) = \lambda F(x, V)$, $\lambda > 0$, and convex such that the Hessian

$$g_{ij}(x, V) = \frac{1}{2} \frac{\partial^2 F^2(x, V)}{\partial V^i \partial V^j}$$

is positive definite. Note, using Euler's theorem of homogeneity,

$$F^2(x,V) = g_{ij}(x,V)V^iV^j.$$

Finsler geometry

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

A Finsler manifold (M, F), with $x \in M$, $V \in T_x M$, has a smooth function $F : TM \setminus 0 \to \mathbb{R}_0^+$ with is homogeneous such that $F(x, \lambda V) = \lambda F(x, V)$, $\lambda > 0$, and convex such that the Hessian

$$g_{ij}(x, V) = \frac{1}{2} \frac{\partial^2 F^2(x, V)}{\partial V^i \partial V^j}$$

is positive definite. Note, using Euler's theorem of homogeneity,

$$F^2(x,V) = g_{ij}(x,V)V^iV^j.$$

There is also a unique torsion-free and almost metrically compatible connection called the Chern connection $\Gamma^{i}_{jk}(x, V)$. $\forall iz., \Gamma^{i}_{jk}(x, V) = \frac{1}{2}g^{is}\left(\frac{\delta g_{sj}}{\delta x^{k}} + \frac{\delta g_{sk}}{\delta x^{j}} - \frac{\delta g_{jk}}{\delta x^{s}}\right),$ where $\frac{\delta}{\delta x^{i}} = \frac{\partial}{\partial x^{i}} - (\{\frac{j}{ik}\}V^{k} - C^{j}_{ik}\{\frac{k}{mn}\}V^{m}V^{n})\frac{\partial}{\partial V^{j}}$, with Cartan tensor $C_{ijk} = \frac{1}{2}\frac{\partial g_{ij}(x, V)}{\partial V^{k}}$. How to apply the Gauss-Bonnet method to gravitational lensing in stationary spacetimes like Kerr, with Finslerian optical geometry?

Gauss-Bonnet for Kerr-Randers

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

How to apply the Gauss-Bonnet method to gravitational lensing in stationary spacetimes like Kerr, with Finslerian optical geometry?

1 Osculating Riemannian geometry: find a suitable vector field \bar{V} yielding a fiducial optical geometry $\bar{g}_{ij}(x) = g_{ij}(x, \bar{V}(x))$;

[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Övgün, (2018)]

How to apply the Gauss-Bonnet method to gravitational lensing in stationary spacetimes like Kerr, with Finslerian optical geometry?

1 Osculating Riemannian geometry: find a suitable vector field \bar{V} yielding a fiducial optical geometry $\bar{g}_{ij}(x) = g_{ij}(x, \bar{V}(x))$;

[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Övgün, (2018)]

2 Riemannian Gauss-Bonnet in spatial, not optical, geometry where light rays are non-geodesic curves $\Rightarrow k \neq 0$.

[Ono, Ishihara & Asada, Phys. Rev. D (2017; 2018)]

Gauss-Bonnet for Kerr-Randers

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

How to apply the Gauss-Bonnet method to gravitational lensing in stationary spacetimes like Kerr, with Finslerian optical geometry?

1 Osculating Riemannian geometry: find a suitable vector field \bar{V} yielding a fiducial optical geometry $\bar{g}_{ij}(x) = g_{ij}(x, \bar{V}(x))$;

[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Övgün, (2018)]

2 Riemannian Gauss-Bonnet in spatial, not optical, geometry where light rays are non-geodesic curves $\Rightarrow k \neq 0$.

[Ono, Ishihara & Asada, Phys. Rev. D (2017; 2018)]

3 Finslerian Gauss-Bonnet applied directly to Kerr-Randers. Basic steps to be discussed in the following.

[Gudapati & Werner, in preparation]

For Finsler surfaces, this yields [Itoh, Sabau & Shimada, Kyoto J. Math. (2010)]

$$\begin{split} \chi(A) &= \int_{A} \frac{1}{L} \left(N^{*} (K\omega^{1} \wedge \omega^{2} - J\omega^{1} \wedge \omega^{3}) - \mathsf{d}L \wedge N^{*} (\omega^{3}) \right) \\ &+ \sum_{i} \left(\int_{\gamma_{i}} \frac{k^{(N)}}{L\sigma} \mathsf{d}t + \frac{\lambda(N_{i}^{-}, N_{i}^{+})}{L} \right), \end{split}$$

with coframe fields ω^i over $TM \setminus 0$, normal vector fields N, Gaussian curvature K, indicatrix length L, Landsberg scalar J, the Landsberg angle λ , and length parameter $\sigma^2 = g(\gamma, N)_{ij} \dot{\gamma}^i \dot{\gamma}^j$.

Note, in particular, the following property of the so-called N-parallel curvature $k^{(N)}$:

Note on geodesics and curvature

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ● のへで

In Finsler geometry, a covariant derivative is defined with respect to a vector field V, that is $(\nabla_Y^{(V)}X)^i = \frac{dX^i}{dt} + \Gamma^i{}_{jk}(x,V)X^jY^k$. Now Finsler geodesics, minimizing Finslerian curve length, satisfy

$$abla^{(\dot{\gamma})}_{\dot{\gamma}}\dot{\gamma}=0.$$

In Finsler geometry, a covariant derivative is defined with respect to a vector field V, that is $(\nabla_Y^{(V)}X)^i = \frac{dX^i}{dt} + \Gamma^i{}_{jk}(x,V)X^jY^k$.

Now Finsler geodesics, minimizing Finslerian curve length, satisfy

$$abla^{(\dot{\gamma})}_{\dot{\gamma}}\dot{\gamma}=0.$$

However, unlike in Riemannian geometry, there exist also different autoparallels, called *N*-parallels,

$$\nabla_{\dot{\gamma}}^{(N)}N=0.$$

N-parallel curvature, defined by the relation $\nabla_{\dot{\gamma}}^{(N)} N = -\frac{k^{(N)}}{\sigma^2} \dot{\gamma}$, vanishes for those *N*-parallels, not for the geodesics.

Concluding remarks

・□ ▶ ・□ ▶ ・ ■ ▶ ・ ■ ● ● ● ● ● ●

- The Gauss-Bonnet method can be extended to the Finslerian optical geometry of stationary spacetimes;
- However, the Riemannian simplification with k = 0 for geodesic light rays does not carry over to Finsler geometry;

- The Gauss-Bonnet method can be extended to the Finslerian optical geometry of stationary spacetimes;
- However, the Riemannian simplification with k = 0 for geodesic light rays does not carry over to Finsler geometry;
- A technical similarity with the Asada group's Riemannian approach emerges thus even in the Finslerian treatment;

Concluding remarks

▲□▶ ▲□▶ ▲三▶ ★三▶ 三三 のへで

- The Gauss-Bonnet method can be extended to the Finslerian optical geometry of stationary spacetimes;
- However, the Riemannian simplification with k = 0 for geodesic light rays does not carry over to Finsler geometry;
- A technical similarity with the Asada group's Riemannian approach emerges thus even in the Finslerian treatment;
- We are currently exploiting this Gauss-Bonnet theorem for the concrete case of Kerr-Randers optical geometry.