The 28" Workshop on General Relativity and Gravitation in Japan - JGRG28
Tachikawa Memorial Hall, Rikkyo University
5-9 November 2018

Volume I1




Proceedings of the 28th Workshop on Gen-
eral Relativity and Gravitation in Japan

November 5th-9th 2018

Tachikawa Memorial Hall, Rikkyo University,
3-34-1 Nishi-Ikebukuro, Toshima, Tokyo, Japan

Volume I1

Oral Presentations: Day 3, 4,5

JGRG : http://[www-tap.scphys.kyoto-u.ac.jp/jgrg/index.html



Contents

'Wednesday 7th November| 5

Invited lecture 9:00-9:45 [Chair: Hideyuki Tagoshi]| 5
[Jonathan Gair, “Science with the Laser Interferometer Space Antenna”

| (40+10 min.) [JGRG28 (2018) 1107011/ . . . . . . . . . . . . . ... ... 5

ISession S3A1 9:45-10:15 [Chair: Hideyuki Tagoshi]| 26

Jiro Murata, “Laboratory Tests of Newtonian Gravity as tests of Inverse |

| Square Law” (10+5 min.) [[GRG28 (2018) 110702](. . . . . . . ... .. 26

Session S3A2 11:15-12:15 [Chair: Kenichi Oohara 36

asutaka Koga, “Rotating accretion flows in D dimensions - sonic points,

critical points and photon spheres -” (10+5 min.) [JGRG28 (2018)

1107041 . . . . . . 36

[Toshiaki Ono, “Gravitomagnetic bending angle of light in stationary |

| axisymmetric spacetimes” (10+5 min.) [JGRG28 (2018) 110705]|. . . 45

[Eatsuza O)gawa, “Charge Screened Boson Stars” (10+5 min.) [JGRG28 |

2018) 110706 . . . . . . o o e e 56

[Session S3P114:00-15:30 [Chair: Masahide Yamaguchi]] 68

lAkira Matsumura, “Quantum discrimination for the Universe” (10+5 |

| min.) [JGRG28 (2018) 110708 . . . . . . . . . . .. ... ... ... .. 68

lJAnupam Mazumdar, “Testing Quantum Gravity via entanglement” (10+5 |

| min.) [JGRG28 (2018) 110709]| . . . . . ... .. ... ... ... . ... 77
[Shinpe1 Kobayashi, “Algebraic construction of solutions in noncom-

mutative gravity and squeezed coherent state” (10+5 min.) [J[GRG28

(2OI8) TTO7ION . . o o o e et et e et e et e e e 89

[Yota Watanabe, “Anisotropy problem in Horava-Lifshitz gravity” (10+5 |

| min.) [JGRG28 (2018) 110711]|. . . . . . . ... .. ... 99

Tomotaka Kitamura, “Matter Scattering and Unitarity in Horava-Lifshitz |

| Gravity” (10+5 min.) [JGRG28 (2018) 110712]| . . . . .. ... ... ... 105

|Satosh1 Akagi, “Massive spin-two theory in arbitrary background” (10+5 |

| min.) [JGRG28 (2018) 110713]| . . . . . . . o oot e e 117

Session S3P2 16:30-18:15 [Chair: Masaru Shibata 138

Shuntaro Mizuno, “Blue-tilted Primordial Gravitational Waves from |

Massive Gravity” (10+5 min.) [JGRG28 (2018) 110714]| . . . ... ... 138

[Shi P1, “Gravitational Waves Induced by non-Gaussian Scalar Pertur- |

| bations” (10+5 min.) [JGRG28 (2018) 110715/ . . . . . . .. .. .. ... 148
[Yuki Niiyama, “Energy density of tensor perturbations in Einstein-
Weyl gravity and its application to primordial gravitational waves”

(10+5 min.) [JGRG28 (2018) 110717]|. . . . . . . . o v i i e 173

'Wednesday 8th November| 188




PHYSICS AND MACROPHYSICS” (40+10 min.) [JGRG28 (2018)

| TIO8OIJ|. . . . . e 188

Session S4A1 9:45-10:15 [Chair: Tomohiro Harada 229
Kazumasa Okabayashi, “Collisional Penrose process of spining parti-

| cles” (10+5 min.) [[GRG28 (2018) 110802]| . . . . . . . .. . . ... ... 229

Session S4A2 10:45-12:00 [Chair: Kenichi Nakao 242

akayuki Ohgami, “Exploring GR Effects of Super-Massive BH at Galac-
tic Center 2: on the detail of fitting theory with observational data”

(10+5 min.) [JGRG28 (2018) 110805]| . . . . . . . . . v v it 242
Filip Ficek, “Planar domain walls in Kerr spacetime” (10+5min.) [[GRG28 |
[ (2018) 110806 | e 249

[Masashi Kimura, “Stability analysis of black holes by the S-deformation |
| method for coupled systems” (10+5 min.) [JGRG28 (2018) 110808]|. 263

@rﬁi]ted lecture 14:00-14:45 [Chair: Sugumi Kanno] 274
incent Vennin, “Stochastic Inflation and Primordial Black Holes” (40+10 |
| min.) [J[GRG28 (2018) 110810]| . . . . . . . . o it 274
\S_esrgion S4P114:45-15:45 [Chair: Sugumi Kanno]| 285
uichiro Tada, “Stochastic formalism and curvature perturbations” (10+5 |

| min.) [JGRG28 (20I18) 110811]| . . . . .. ... . .o v v 285
ISession S4P2 16:45-18:30 [Chair: Hideki Ishihara 292
Kohei1 Fujikura, “Phase Transitions in Twin Higgs Models” (10+5 min.) |

| [JGRG28 (20I8) TIOBIST . . - « ¢ v e e e oo et ee oo e e 292
Yi-Peng Wu, “Higgs as heavy-lifted physics during inflation” 10+5min.) |

| JGRG28 (2018)TI08T6] . . . . . . . . . . ... 300
Minxi He, “Reheating in the Mixed Higgs- R* Model” (10+5 min.) [[GRG28 |
[ (20IQ) TIO8I7T . . . . . . . . . . . ... 313

[Keisuke Inomata, “Power spectra of CMB circular polarizations induced
by primordial perturbations” (10+5 min.) [JGRG28 (2018) 110818]| . 329
[Hiroyuki Kitamoto, “Schwinger Effect in Intlaton-Driven Electric Field” |

| (10+5 min.) [JGRG28 (2018) 110821]f . ... . ... ... ... . .. ... 340

Wednesday 9th November| 347

Invited lecture 9:00-9:45 [Chair: Shinji Mukohyama]| 347
|Alexe1 A. Starobinsky, “Looking for quantum-gravitational corrections

| to R + R* inflation” (40+10 min.) [[GRG28 (2018) 110901]| . . . . . . 347

Invited lecture 9:45-10:30 [Chair: Shinj1 Mukohyama]| 364
Jean-Philippe Uzan, “Astrophysical Stochastic Gravitational Wave Back- |

| ground” (40+10 min.) [[GRG28 (2018) 110902]. . . . . . .. ... ... 364




386

tsushi Nishizawa, “Test of the equivalence principle at cosmologi-

cal distance with gravitational waves” (10+5 min.) [JGRG28 (2018)

110903]]. . . . . . .

[Yuki Watanabe, “Probing the Starobinsky R2 inflation with CMB pre-

cision cosmology” (10+5 min.) [JGRG28 (2018) 110904]| . . . ... ..

[Chulmoon Yoo, “PBH abundance from random Gaussian curvature

perturbations and a local density threshold” (10+5 min.) [[GRG28

(2OIB)YTI0905]| . . . . . . o e e

[Marcus Christian Werner, “New developments in optical geometry”

(10+5 min.) [JGRG28 (2018) 110908] . . . . . . . . . .o oo v v v ..




Wednesday 7th November
Invited lecture 9:00-9:45

[Chair: Hideyuki Tagoshi]
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“Science with the Laser Interferometer Space Antenna”
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Science with the Laser Interferometer
Space Antenna

Jonathan Gair, School of Mathematics, University of Edinburgh
Japanese General Relativity Meeting, Rikkyu University, November 7th 2018

Talk Outline

The Laser Interferometer Space Antenna - current status

Sources for LISA

- LISA science objectives

The LISA Consortium

Preparing for LISA data analysis and science delivery




Why space-based detectors?
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The Laser Interferometer Space Antenna

Long history. Original design
(1998)

Operating in millihertz band.

Three satellites, 5 million km
apart, in heliocentric, Earth-
trailing orbit. 6 laser links.

Joint NASA /ESA project.

Technology demonstrator
mission, LISA Pathfinder,
approved. Launched 2015.

NASA dropped out in 2011. New
ESA-only mission, termed eLISA,
eventually selected for L3 (2034).




LISA Status

LISA now reinvigorated and timetable
accelerated

— LISA Pathfinder spectacularly
demonstrated the technology.

— Detection of GW150914+ renewed
interest in gravitational waves.

- mission now in phase A, adoption

in 2022-2024; 1075} i
- mission launch: by 2034. g
o=}
Mid-decadal review expressed strong ~ v ) \ =
~— V VAVTA -',,’-»4‘»‘..',»\'
support for NASA re-involvement, at 33 N
VR vl
probe-class level (~$400m). "I
10791 February 2017
Design: 2.5Gm arms, 6-link geometry. ks T B .
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Sources: massive black hole mergers

»  Expected to occur following mergers of the host galaxies. LISA can observe
gravitational waves from these with very high signal-to-noise ratio.

Sources: massive black hole mergers




Sources: massive black hole mergers

Expected to occur following mergers of the host galaxies. LISA can observe
gravitational waves from these with very high signal-to-noise ratio.

Expected event rate depends on assumptions about black hole population
(Klein+, 2016)

- Light pop-III seed model: baseline configuration expected to see ~350
events.

- Heavy seed model, no delay in binary formation: ~550 events.
- Heavy seed model, with delays: ~50 events.

- Baseline configuration would see 150/300/4 events at z > 7 under the
different models.

- NGO-like detector (1 Gm/4-link) would see ~15/185/3 events.
— Classic LISA-like detector (5 Gm/6-link) would see ~400/350/4 events.

Sources: massive black hole mergers

»  LISA will measure the parameters of black hole mergers to high precision.
Typical errors are
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Sources: massive black hole mergers
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Sources: extreme-mass-ratio inspirals
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Sources: extreme-mass-ratio inspirals

* There are large astrophysical uncertainties, but expect to see between a few
tens and a few hundreds of events.

Mass MBH  Cusp M-o CcO EMRI rate [yr— ]

Model  function spin  erosion relation Ny, mass [Mg] Total Detected (AKK) Detected (AKS)
M1 Baraussel2  a98 yes Gultekin09 10 10 1600 294 189
M2  Baraussel2  a98 yes KormendyHol3 10 10 1400 220 146
M3 Baraussel2  a98 yes GrahamScott13 10 10 2770 809 440
M4  Baraussel2  a98 yes Gultekin09 10 30 520 (620) 260 221
M5 Gairl0 a98 no Gultekin09 10 10 140 47 15
M6  Baraussel2  a98 no Gultekin09 10 10 2080 479 261
M7 Baraussel2  a98 yes Gultekin09 0 10 15800 2712 1765
M8 Baraussel2  a98 yes Gultekin09 100 10 180 35 24
M9 Baraussel2 aflat yes Gultekin09 10 10 1530 217 177
M10 Baraussel2 a0 yes Gultekin09 10 10 1520 188 188
M11 Gairl0 a0 no Gultekin09 100 10 13 1 il
M12 Baraussel2 a98 no Gultekin09 0 10 20000 4219 2279

EMRI parameter estimation

= Model A
= Model B
= Model C
== Model D

= Model €
M Model F

* Each EMRI observation will yield .
very precise parameter estimates
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Stellar-origin black hole binaries

GW150914 would have been
observable by LISA ~5 years
before being observed by
LIGO, with S/N~10 in a 5yr
observation. (Sesana 2016)

LISA provides sky location to
~0.few square degrees and
time of coalescence to ~few s.

Number of events could be
high (several hundred) but
there are significant
uncertainties.
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Stellar-origin black hole binaries

GW150914 would have been
observable by LISA ~5 years
before being observed by
LIGO, with S/N~10 in a 5yr
observation. (Sesana 2016)

LISA provides sky location to
~0.few square degrees and
time of coalescence to ~few s.

Number of events could be
high (several hundred) but
there are significant
uncertainties.
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Other sources

Compact binaries in the Milky Way

— Binaries of stellar remnants (white dwarfs or neutron stars) with orbital
periods of ~1 hour.

— Known (verification) and unknown sources.

- Signals almost monochromatic.

Other sources

10—16 . | | |
N
s 10—17 i
—
: . . : .:" pLi b ) 0 i

[ ] 1 .
'§ -18 V803 Ce AL ‘SDSS_J%Si e e
4; 10 — AM\:’CV’E{?%" N a"an:.aa;ena,e; . 1
Y . CR BOO 3, N‘_;§$ ¥ i ::'5””
o | . . » ES C tg, RAN k DE' HM CnC |
2 =L = V407 Vul
_19 [ .

= 10 — . e |
Q -
E . "
= | T eLISA resolvable binaries: 100

10720 | , | . | . [loudest (red points) .

-3.5 3 25 1000 loudest (grey points)
- log (f/Hz) Amaro-Seoane et al. (2013)




Other sources

Compact binaries in the Milky Way

Binaries of stellar remnants (white dwarfs or neutron stars) with orbital
periods of ~1 hour.

Known (verification) and unknown sources.
Signals almost monochromatic.
LISA expected to detect ~15000 binaries with S/N > 7.

LISA should determine 2D /3D location for 4500/ 1250 sources, measure
df/dt for 3000 and d2f/dt2 for ~3.

Other sources

Compact binaries in the Milky Way

Binaries of stellar remnants (white dwarfs or neutron stars) with orbital
periods of ~1 hour.

Known (verification) and unknown sources.
Signals almost monochromatic.
LISA expected to detect ~15000 binaries with S/N > 7.

LISA should determine 2D /3D location for 4500/ 1250 sources, measure
df/dt for 3000 and d2f/dt2 for ~3.

Cosmological sources

Processes occurring at the TeV scale in the early Universe could generate
a mHz stochastic gravitational wave background.

Cosmic string networks could produce both individual burst events and
a stochastic background.



Other sources
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LISA science objectives

LISA science objectives cover topics in astrophysics, cosmology and
fundamental physics.

Astrophysics: compact binaries in the Milky Way

 SI1.1: Elucidate the formation and evolution of GBs by measuring their
period, spatial and mass distributions.

 SI1.2: Enable joint gravitational and electromagnetic observations of
GBs to study the interplay between gravitational radiation and tidal
dissipation in interacting stellar systems.



LLISA science objectives

- Astrophysics: black holes
SI2.1: Search for seed black holes at cosmic dawn.

SI2.2: Study the growth mechanism of MBHs from the epoch of the
earliest quasars.

SI2.3: Observation of EM counterparts to unveil the astrophysical
environment around merging binaries.

« SI2.4: Test the existence of Intermediate Mass Black Hole Binaries
(IMBHBSs).

SI3.1: Study the immediate environment of Milky Way like MBHs at
low redshift.

« SI4.1: Study the close environment of SOBHs by enabling multi-band
and multi-messenger observations at the time of coalescence.

SI4.2: Disentangle SOBH binary formation channels.

LISA science objectives

*  Fundamental Physics

SI5.1 Use ring-down characteristics observed in MBHB coalescences to
test whether the post-merger objects are the black holes predicted by
GR.

« SI5.2 Use EMRISs to explore the multipolar structure of MBHs.
SI5.3 Testing for the presence of beyond-GR emission channels.
+ SI5.4 Test the propagation properties of GWs.

SI5.5 Test the presence of massive fields around massive black holes
with masses > 103 Mo.



LLISA science objectives

Cosmology

 SI6.1: Measure the dimensionless Hubble parameter by means of GW
observations only.

+ SI6.2: Constrain cosmological parameters through joint GW and EM
observations.

+ SI7.1: Characterise the astrophysical stochastic GW background.

« SI7.2: Measure, or set upper limits on, the spectral shape of the
cosmological stochastic GW background.

« SI8.1: Search for cusps and kinks of cosmic strings.

« SI8.2: Search for unmodelled sources.

The LISA Consortium

The LISA Consortium is the //';‘/—,’ .
community of scientists who ‘\((?/) lisa
will develop the tools to \_‘

exploit LISA science.

- Consortium application form
The Consortium was recently

R Name
rebooted with a round of > Step by step
applications for membership. M S —
. Bexample 2. Dow‘nlo‘?d and read the Consorfium
— associate members: ) e e
. ki ] Affiliation 4. Fill out this appl-cation. web-form and
interested in LISA science; e e e
confirmation E-Mail
—  full members: commit to Appication type
dellver Somethlng tO the i:::nale If you run into issues or have questions with

regards to your LISA consortium application please

Consortium. Application document S

hoose File | no file selected
< Lol o fle se! Your application will be reviewed and you will be

erred, POF will also be accepted.) notified of the outcome in due course.

Have accepted ~425 full and
~550 associate members.

Comments

https://signup.lisamission.org



onsortium structure
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LISA Science Group

Help define key-science objectives for the LISA consortium; deliver work
required to achieve these goals and ensure it is completed on time.

Interface with science working groups to ensure objectives are up to date.

Prioritise work according to project needs and work package dependencies.

» Work packages under the LSG will focus on identification and delivery of

LISA consortium science objectives, and develop data analysis methods
and prototypes that are needed to deliver this science.

Implementation in LISA data processing infrastructure will be done in
conjunction with the LISA Data Processing Group.

LISA Data Processing Group

The LISA Data Processing Group will oversee provision of ground segment
infrastructure, frameworks for data analysis and production pipelines.

Define standards and platforms. Responsible for data management,
including public data and catalogue releases.

Ensure Data Processing Centre(s) are established with appropriate capacity.

Interface with ESA Science Operation Centre (SOC). Manage operational
software for producing calibrated TDI data, that will be run in the SOC.

Implement production versions of pipelines developed within the LSG.



LISA Science Group Organisation

LISA Science group structured around a data analysis description put together
in September 2017. For each Science Investigation, the work needed was
identified and divided into sub-elements.

Example: SI6.1: Measure the dimensionless Hubble parameter by means of
GW observations alone; S16.2: Constrain cosmological parameters through
joint GW and EM observations.

Consortium must deliver GW observations, alerts and cosmological parameter
estimate., which requires

Low-latency pipelines to trigger alerts.
Mechanism for sending alerts.
MoUs with EM partners for joint analysis (SI 6.2) or host catalogues (SI 6.1).

Mechanism to trigger protected periods.

LISA Science Group

Work package description available in the document LISA-LCST-SGS-WPD-001, available
on the consortium website. Work grouped into a number of themes.

»  Document will evolve over time and will always reflect current plans for science delivery.

Applicants referenced the WPs when applying for membership. Currently have ~200
members in the LISA Science Group, and ~60 committed FTEs.

WP Group  Description Members

1 Waveform modelling 61

2 Data analysis tools 7 0.975
4 Low-latency pipelines 12 2.125
5 Global and individual source identification | 55 145722
6 Source catalogues 3) 0.375
i Multi-messenger, multi-band 31 4.197
8 Interpretation, key-science projects 89 20.662
Unspecified 10 2.38
Total 195 (distinct) 57.6




LISA Science working groups

* Three science working groups have replaced the previous consortium
working groups, one focussed on each major area:

* Astrophysics
+ Cosmology

* Fundamental Physics

3
oo

These will form a bridge between the LISA Consortium and the wider
scientific community and provide an environment for discussion and
promotion of LISA science.

* There are also LISA Data Challenge, Waveform and Simulation working
groups, which form a similar role for more technical areas.

LISA Data Challenge working group

# The LDC group was established to resume activities begun by the LISA
Mock Data Challenges. Biweekly telecons on Friday at 16:00 CET.

+  Activity within work package group 5 (Global and individual source
identification) will initially be driven by the Data Challenges. Data sets will
be constructed to address specific questions posed by the Science Group.

LISA Data Challenge 1: Radler

We are glad to announce the release of datasets for the first “new” LISA Data Challenge, codenamed
Radler. The purpose of this first challenge is to tackle the main LISA sources separately, under an idealized
instrument-noise model. Our aim Is to introduce new researchers to LISA data analysis, to rehabllitate
existing analysis codes developed during the original Mock LISA Data Challenges (2005-2011), and to LDC-1 documentation »
establish LDC process and standards.

Log in to download »

Radler includes six subchallenges, described below. This challenge will not be blind (source parameters are
available), but you are welcome to try the analysis without referring 1o the answer. Furthermore, versions of Log in to get LDC-1 code »
the datasets without instrument noise are included in the release. LDC working-group members will be

preparing their own analysis using their algorithms of choice, and invite you to join them (to do so, e-mail us

$0 we can pair you appropriately). Of course, you may organize to work on your own, or with your

collaborators.

For usage tracking purposes, we request that you set up a login for this website before downloading the
datasets. Please submit your results by December 31, 2018, using the submission interface and format
that will appear shortly on this page. Please pian to Include a description of your methods (or a link to a
methods paper) with your submission. We would also greatly appreciate it if you were to share your code

e https:/ /lisa-1dc.lal.in2p3.fr /1dc

While we did our best to check the datasets for , small or may have
escaped us. The best way to validate the data is to analyze it, 0 let us know of any problems!




LISA Data Challenge 1

For usage tracking purposes, we request that you set up a login for this website before downloading the
datasets. Please submit your results by December 31, 2018, using the submission interface and format
that will appear shortly on this page. Please plan to include a description of your methods (or a link to a
methods paper) with your submission. We would also greatly appreciate it if you were to share your code

(e.g., on GitHub, or on our GitLab).

While we did our best to check the datasets for correctness, small problems or inconsistencies may have
escaped us. The best way to validate the data is to analyze it, so let us know of any problems!

LDC1-1. A single GW signal from a merging massive-black-

hole binary.

LIGO and Virgo have done it, so let's
get LISA on the right path! MBHBs
are represented with a frequency-
domain inspiral-merger-ringdown
phenomenological model
(IMRPhenomD). The black holes are
spinning, with spin vectors parallel to
the orbital angular momentum. The
release includes datasets for two
methods (frequency- and time-
domain) of applying the LISA
response to the GWs.

LISA Data Challenge

LDC1-3. Superimposed GW signals from several
verification Galactic white-dwarf binaries.

We assume circular orbits and purely
gravitational interactions. The phase
of the signal includes frequency and
first derivative. This one should be
easy!

LDC1-5. A GW signal from a population of stellar-origin
(stellar-mass) black-hole binaries.

LIGO and Virgo's gift to LISA. The
population follows Salpeter's mass
function, with an overall rate based
on recent LIGO-VIRGO estimates.
Waveform and LISA response are
computed in the frequency domain.

LDC1-2. A single GW signal from an extreme-mass-ratio

inspiral.

EMRIs are modeled with the
“classic” Analytic Kludge waveforms,
which will be updated in future
challenges, so make your code
flexible! The signal is produced in the
time domain and the response is
applied using LISACode. The signal
is of moderate strength, but the
source parameters are drawn from
relatively wide priors. This should
make for a good challenge!

1

LDC1-4. A GW signal from a population of Galactic white-

dwarf binaries.

Here's the classic cocktail-party
problem: 26 million signals,
produced with a “fast response”
code. Parameters of all binaries are
available in a large HDF5 file.

LDC1-6. An isotropic stochastic GW signal of primordial

origin.

Statistics are Gaussian, but the
spectral shape is shrouded in
mystery, with parameters chosen for
us by the LISA Consortium
Cosmology Working Group. The
signal is generated using LISACode
as a choir of elementary sources
uniformly distributed across the sky.
To make things easier for you,
instrumental noise is Gaussian,
uncorrelated, and of the same level
in each LISA link.



Japanese involvement in LISA

Associate members may come from any country, and do not need to commit
any time to LISA work.

The science and technical working groups — astrophysics, fundamental
physics, cosmology, waveforms, data challenge and simulation — are open
to both associate and full members.

Full membership is restricted to countries that have an agreement with ESA.

One Japanese group (Izumi) has already joined as full members, and are
likely to provide some instrumentation. JAXA is drafting a letter of interest
to ESA, so the arrangement is likely to be formalised soon.

LISA Science Group Core Team

+ LISA Science Group Core Team

Chairs: Jonathan Gair, Michele Vallisneri
WP group 1 (waveform modelling): Leor Barack, Harald Pffeifer
* WP group 2 (data analysis tools): Stas Babak, Ian Harry
- WP group 4 (low-latency pipelines): Tyson Littenberg, Laurentiu-loan Caramete
- WP group 5 (global and individual source identification): Neil Cornish, Curt Cutler
WP group 6 (source catalogues): Enrico Barausse, Curt Cutler
WP group 7 (multi-messenger, multi-band): John Baker, Zoltan Haiman, Elena Rossi

WP group 8 (interpretation, key science): Emanuele Berti, Vitor Cardoso, Alberto
Sesana



LISA Science working groups

LISA Science working group chairs
Astrophysics: Gijs Nelemans, Shane Larson, Lucio Meier, Marta Volonteri;
Cosmology: Robert Caldwell, Chiara Caprini, Germano Nardini;
Fundamental Physics: Thomas Hertog, Philippe Jetzer, Nico Yunes

LISA technical working group chairs
Data Challenge: Stas Babak, Michele Vallisneri;

Waveforms: Maarten van de Meent, Deirdre Shoemaker, Niels Warburton,
Helvi Witek;

Simulation: Luigi Ferraioli, Joseph Martino, Daniele Vetrugno.

Summary

- LISA is on course to launch in 2034 and is expected to detect a range of sources
- Massive black hole mergers;

— Extreme-mass-ratio inspirals;

— Stellar-origin BH binaries, galactic binaries, cosmological sources.

- These observations will facilitate a wide range of science investigations in
astrophysics, cosmology and fundamental physics.

- Work on LISA is being organised within the LISA Consortium.

Science exploitation and data analysis development will be done by the LISA
Science Group (key science definition and prototype pipelines) and the LISA
Data Processing Group (production pipelines and infrastructure), with support
from the science, simulation and data challenge working groups.

» We very much hope that Japanese groups will participate in this endeavour and
help to deliver the great science.
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Laboratory Tests of Newtonian Gravity
as tests of Inverse Square Law

Jiro Murata ‘

Rikkyo University

5-9 November 2018

Nuclear physics

gravity experiments

Newton Proiects at Rikkyo: cm to mm scale

Small Scale, Legacy, but unique and powerful tool:
Torsion Balance Bar

Newton-Il Experiment (2009)
Wire




FAQ on Experimental Gravity

Q:Where is the minimum scale, at which gravity is tested?

Experimental Constraints on Gravitational Inverse Square Law

Our analysis Murata-Tanaka CQG 32 (2015) 033001
(arXiv:1408.3588)

Yukawa —

—G@[ua-e—f”]

Collider

Casimir ; o~ Apollo-11

Ay 103 km

Gravity not observed

Torsion Balance
Our experiments

Distance (r) dep. of graviton mass

Yukawa parametrization \ \§mw L Earth — Binary Starts distance (10%°m)
Boson exchange / 1t KK excitation i & (at the Rs Schwarzschild radii 210km)




Kaluza-Klein modes

0 mode Newtonian Gravity

1st mode

2nd mode

+
3rd mode
+
i
n-th mode

= power law

Extra Dimension : Power Law type

Compactification of one extra-dimension of extradimension

$

momentum
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seen as discrete graviton “ ”in 4d
world
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Murata-Tanaka CQG 32 (2015) 033001

ATLAS PRL 110, 011802 (2013) # of Extra Dim. (arXiv:1408.3588)
Searching graviton emission LEP, TEVATRON
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Collider
(Direct)

FIG. 1 (color online). The me:
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as a function of the
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Interpretation (translation) of the ADD line (power law) in the alpha-lambda plot (Yukawa)

Murata-Tanaka CQG 32 (2015) 033001
(arXiv:1408.3588)
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Murata-Tanaka CQG 32 (2015) 033001
(arXiv:1408.3588)

10P Publishing Classical and Quantum Gravity

Class. Quantum Grav. 32 (2015) 033001 (32pp) doi:10.1088/0264-9381/32/3/033001

Topical Review

A review of short-range gravity experiments

in the LHC era

Jiro Murata and Saki Tanaka

Department of Physics. Rikkyo University, 3-34-1 Nishi-Ikebukuro, Tokyo 171-8501,
Japan
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Ninomiya-Murata CQG 34 (2017) 1¢

(arXiv:1708.01482)

WEP Violation Parameter

10P Publishing Classical and Quantum Gravity

Class. Quantum Grav. 34 (2017) 185005 (15pp) https://doi.org/10.1088/1361-6382/aa837f

Short-range test of the universality of
gravitational constant G at the millimeter

scale using a digital image sensor S |05 NEWIoRT (S oK)
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Discussion

Theoretical suggestions for future experiments are
welcome!
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Rotating accretion flows in D dimensions

- sonic points, critical points and photon spheres -

Yasutaka Koga
Rikkyo University, Japan

November 5-9, 2018

Collaborator: Tomohiro Harada
JGRG @ Tokyo, Japan
Y. Koga & T. Harada, PRD98, 024018 (2018), arXiv:1803.06486.

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

© Introduction

© Rotational accretion problem in D dimensions
@ Proof of SP/PS correspondence
@ Summary

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions




1. Introduction

@ Sonic point (SP): an accretion flow transit from subsonic to

supersonic state.
¥

N ¥
d subsonic
‘<— -

supersonic

@ Photon sphere (PS): a sphere on which circular null geodesics exist.

@ SP/PS correspondence: for radiation fluid accretion, the radius of SP

coincides with PS.
¢ N
» subsonic
4 -«|—

supersonic

coincides

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

SP/PS correpondence

@ Michel accretion (1972)

e Spherical flow in Schwarzschild spacetime
e SP at r, = 3M for radiation fluid
e — SP coincides to photon sphere (r,, = 3M in Sch.)

@ Physical reasons?

e Just a coincidence?
e Due to the microscopic construction of radiation fluid?
(radiation fluid = system of photons)

¥ microscopic behavior
of individual photons

Y

I’4
v : . .
@J : macroscopic behavior
seesene of system of photons

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions



SP/PS correpondence

@ Michel accretion (1972)

e Spherical flow in Schwarzschild spacetime
e SP at r, = 3M for radiation fluid
e — SP coincides to photon sphere (r,, = 3M in Sch.)

@ Physical reasons?

e Just a coincidence?
e Due to the microscopic construction of radiation fluid?
(radiation fluid = system of photons)

¥ microscopic behavior
of individual photons

‘) === - macroscopic behavior

supersonic Of System Of phOtOnS

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

SP/PS correpondence

@ SP/PS correspondence in more general cases

o Koga & Harada (2016): spherical flow in arbitrary static spherically
symmetric spacetime of arbitrary dimensions

o Koga & Harada (2018): axially symmetric flow in arbitrary static
spherically symmetric spacetime of arbitrary dimensions

= SP/PS correspondence is NOT just a coincidence. J

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions



2. Rotational accretion problem in D dims

@ Situation:
e Stationary axially symmetric accretion flow on an equatorial plane in
general static spherically symmetric spacetime in D dims.

@ Metric:

ds? = —f(r)dt* + g(r)dr® + r?dQ3_, (1)
@ SP/PS correspondence (result) :

Theorem (SP/PS correspondence)

For our accretion model, for any stationary and axially symmetric physical
transonic accretion flow of radiation fluid, its sonic point is located at (one
of) the unstable photon sphere(s).

subsonic

supersonic

coincides

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

Accretion model
[c.f. Abraham et al. (2006)]

@ Rotational accretion (disk) model :
@ Disk lies on the equatorial plane.
(all the polar angles 64, ...,0p_3 = 7/2)

@ Symmetry:

e Stationarity & rotational symmetry along 0; & 0,.

@ Reflection symmetry respective to the equatorial plane.
© Uniform distribution in 8;-direction.
©Q Geometrically thin.
© Vertical pressure supported by external rarefied gas.

A 61' ] 9D—3

external gas P
¥

—

accretion disk

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions



Formulation

@ Basic equations :

o dh= Tds+ ntdp (h: enthalpy)

e V,(nu?) =0 (n: number density)

o VT2 =0, T := nhuu® + pg?®
@ Constants of integration:

o Number flux: j(r,n) =: p

o Energy flux: j(r,n)

o Angular momentum flux: j,(r, n)

o Energy square per particle F := j2/j2 :

) .
- , I s
F(r, n) = h (n) f(l’) + r2(D_2)n2 1 — w2f(r)r—27 w = je (2)

Our accretion problem

The solution of the accretion flow is the orbit n = n(r) on (r, n) satisfying
Mater equation F(r,n) = const. with the parameters y and w.

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

Formulation

@ Basic equations :

o dh = Tds+ n—tdp (h: enthalpy)

o V,(nu?) =0 (n: number density)

o VT =0, T := nhu?u® + pg®
@ Constants of integration:

o Number flux: j,(r,n) =: p

o Energy flux: jc(r, n)

o Angular momentum flux: js(r, n)

o Energy square per particle F := j2/j2 :

) .
- , ! s
F(r, n) — h (n) f(r) + r2(D_2)n2 1 . w2f(r)r—27 W = j6 (2)

Our accretion problem

The solution of the accretion flow is the orbit n = n(r) on (r, n) satisfying
Mater equation F(r,n) = const. with the parameters © and w.

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions




Dynamical system analysis & Critical point

[c.f. Chaverra & Sarbach (2015)]

e Equation F(r,n) = const. can be recasted in the system of a
Hamiltonian flow of F(r,n) :

S(0)=( % )ren 3)

@ Critical point (rc,nc) @ 0,F(re,ne) = OpF(re,nc) =0
@ Linearization around CP :

i r—re \ [ 0:0nF O2F r—re (4)
d\\ n—n. )]\ —0°F —0,0,F n— ne

o Classification of CP : saddle point / extremum point

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

Sonic point & Critical point

@ Sonic point
e Sonic point (r, ns) of flow n = n(r) :

2
s

2

=1, ng = n(rs) (5)
(rs,n(rs))

,Vs: sound speed, v: 3-velocity in co-rotating frame.
e Relation to CP :

A sonic point of physical (= with finite density gradient) transonic flow
corresponds to a critical point of saddle-type.

n

saddle
\‘7Z,—/’ F(r,n) = const.
V52 . 1 Ney =f====’-=-==
F - ]
(rcync) Nep -
extremum
r

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions




3. Proof of SP/PS correspondence
@ Critical point of radiation flow :

o EOS of radiation implies v2 = 1/(D — 1)
o Radius r: (fr2)" =0

o Saddle (extremum) point: (fr_z)” .. <0 (>0)
@ Photon sphere [c.f. Koga & Harada (2016)]:
o Radius rpp: (fr_2)/ =0

o Unstable (stable) circular orbit: (fr~2)" |, <0 (> 0)

@ One-to-one correspondence btw CP & PS

CP of radiation flow & PS have one-to-one correspondence:

Saddle point < Unstable photon sphere
Extremum point &

Stable photon sphere

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions

O = = E \PAN &4
3. Proof of SP/PS correspondence
@ Sketch of the proof :

Physical SP, — saddle

extremum

for radiation fluid

Unstable  Stable

Yasutaka Koga (Rikkyo University, Japan) Rotating accretion flows in D dimensions
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Yasutaka Koga (Rikkyo University, Japan)

3. Proof of SP/PS correspondence

@ Sketch of the proof :

extremum

Physical SP is on the unstable PS. [

Yasutaka Koga (Rikkyo University, Japan)

Rotating accretion flows in D dimensions

@ Accretion problem:

e Rotational flow in spherically symmetric spacetime of D-dim.
e Dynamical system analysis.

@ SP/PS correspondence:

Theorem (SP/PS correspondence)

For our accretion model, for any stationary and axially symmetric physical

transonic accretion flow of radiation fluid, its sonic point is located at (one
of) the unstable photon sphere(s).

@ Discussions

e The physical reason?

o In other cases? e.g. spacetime of different symmetries (in progress)

] (i C;
Rotating accretion flows in D dimensions
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Gravitomagnetic bending
angle of light in stationary
axisymmetric spacetimes

Hirosaki Univ. (Japan)
Toshiaki Ono, Asahi Ishihara, Hideki Asada

Phys. Rev. D 96, 104037 (2017)
Phys. Rev. D 98, 044047 (2018)

7 November 2018 JGRG28 @ Rikkyo University

Outline

- INTRODUCTION
- EXTENSION TO AXISYMMETRIC SPACETIMES

- Kerr black hole and rotating Teo wormhole

- CONCLUSION



INTRODUCTION

/'\*

TR rs

Receiver(R) Lens(L) Source(S)

bending angle of light in Schwarzschild spacetime
4G M
o =
c2b
Usually, distance rrand rs
TR, Ts — OO

However observer and source are located at finite
distance from lens object.

INTRODUCTION
Gibbons and Werner (2008)

- They used the Gauss-Bonnet theorem to a
spatial domain described by the optical metric,
for which a light ray is described as a spatial
curve.

- Light ray deflected by a static, spherically
symmetric massive body

- Light ray deflection is small



INTRODUCTION

Werner [Gen. Rel. Grav. 44, 3047 (2012)]
- He proposed an extension of the Gibbons-
Werner approach for calculating the deflection
of light in a Kerr black hole.

- He used the Nazim’s osculating Riemannian
construction method via the Randers-Finsler
metric.

7—[0weve1’

- Source and receiver are located at an

asymptotic Minkowskian region

INTRODUCTION

Our works : [Phys. Rev. D 96, 104037 (2017)]
[Phys. Rev. D 98, 044047 (2018)]

- We discuss a possible extension of the method of
calculating the bending angle of light to stationary,
axisymmetric and asymptotically flat spacetimes.

- By using generalized optical metric method.
- Taking account of the finite distance from a lens

object to a light source and a receiver by using the
Gauss-Bonnet theorem.



EXTENSION TO AXISYMMETRIC SPACETIMES

We consider the light rays on the equatorial plane
in stationary, axisymmetric and asymptotically
flat spacetime by using the Gauss-Bonnet theorem
in differential geometry.

The line element for this spacetime
(The Wely-Lewis-Papapetrou form)
ds? =g, dztdz”
= — A(r,0)dt* — 2H(r, 0)dtdo
+ B(r,0)dr* + C(r,0)d9” + D(r,0)d¢*
where we used the polar coordinates.
OGpuv

o0 =0

O=m/2

Assume

EXTENSION TO AXISYMMETRIC SPACETIMES

The null condition ds® = 0 is solved fordt as

dt = \/%j dzridxi + Bidx"

.. B(r,0) C(r,0) A(r,0)D(r,0) + H*(r,0)
2 _ ot dad — 2 2 2
dl* = v;dx"dx =A0n.0) dre + A(r, 0) do” + A2(r,0) do”,
., H(r0)
Bidx' = A00) do

Generalized optical metric 7i; defines the arc
length (1) along the spatial curve.

[ is an affine parameter along the light ray
[H. Asada and M. Kasali, Prog. Theor. Phys. 104, 95 (2000)].

B; causes difference from a static, spherically
symmetric case.



EXTENSION TO AXISYMMETRIC SPACETIMES
Gauss-bonnet theorem (regular surface)

N N
//de+2/ Rgdl + 0, =21
T ‘1 JoT.,

a=1

EXTENSION TO AXISYMMETRIC SPACETIMES

Gaussian curvature (For a two-dimensional surface)

R'I"’l"
K Atrore

*det %(JQ )

1 o [ y/dety 1 o [ /det;; 16
Jdety ) |99 @ ] o O
J

77“7' ’Yrr
(2)

7i;  denotes the two-dimensional metric in the
equatorial plane




EXTENSION TO AXISYMMETRIC SPACETIMES

geodesic curvature can be defined in the tensor
form as

Kg = eijkNiajek
e’ : unit tangential vector along the spatial curve
N unit normal vector for the surface

a' : acceleration vector along the spatial curve

These vectors for the light ray

o _ A()H(r) +bA(r)] ( dr P
© = A(r)D(r) + H2(r) <d¢’0’l> @ =7 (B = Bawle”

: 1
N*' = (0, —, O)
\/ Y66

EXTENSION TO AXISYMMETRIC SPACETIMES

In electromagnetism
variational principle

t2 t2
68 = —mc*s V1—v2/c2dt — q5/ [o(t,z,y,2) —U- A(t, z,y, 2)]dt
t1 tl

Lorentz force o rotA

In our work, since dt = \/%'jda?ida’:j + Bidx" |

0S5 = 5/: [\/%-jeiej izez] dt

i ko i i ij k
epe” =a, a :73<ﬁk|j—5j|k)e



EXTENSION TO AXISYMMETRIC SPACETIMES

Yij (0 =m/2)

geodesic curvature

1
Be,r
Yy

Kg = —
g 00

geodesic curvature

For the asymptotically flat spacetime, fg =
and dl — rcd¢ . Hence

R dRr
/ Kgdl = / dp = ¢Rrs .
S ¢s

EXTENSION TO AXISYMMETRIC SPACETIMES

Yij (0 =7/2)




EXTENSION TO AXISYMMETRIC SPACETIMES
Gauss-bonnet theorem (regular surface)

N N
//de+2/ Rgdl +) 0, =27 |
T a—1 0Ty

a=1
//D de+/smgdz+¢35+@3+/—xpsV(:/%r.
FOg R

We define deflection angle of light as
a=Vg— Vs + drs .
By using Gauss-bonnet theorem, it is rewritten as

S
a:—// KdS—/ Kgdl
r U R

This form show (v is coordinate-invariant.

Kerr spacetime and rotating Teo wormhole

The Boyer-Lindquist form of the Kerr metric is

.9
e <1_ 2]\57“) a2 4aM;sm 0dtd¢

2a%2Mr sin® 0
b

¥
+ Zdr? + 2do?* + (7‘2 +a’ + ) sin? Odg?

A )

where we denote

¥ =72 4+ a?cos? 6,

A=7r2—2Mr+a°.

Gaussian curvature and geodesic curvature

oM M? a’M 2aM M?
e ro(f) | ne o ()
9




Kerr spacetime and rotating Teo wormhole

prograde motion of light

s
Qprog = —// KdS —/ Kgdl
708 R

oM 2aM M2 aM?
== (VI=tPus? + V1 - WPur?) - = (VI=0Pus? + V1= 0up?) + 0 <b2ab3>

retrograde case

2M 2aM M2 M2
Gretro = b (\/1 — brug® + \/1 B bQuRQ) + Zz <\/1 — b%ug? + \/1 — bQUR2> + 0 ([;27 ab3 )

where v=1/r .

We take the limit as ugr — 0, ug — 0

AM  4aM (M2)
_ _|_O :

Oprog — —_—
b b? b [R. Epstein et al.
AM daM M? PRD 22, 2947 (1980)].
Olyetro — b + b2 O b—2 .

Kerr spacetime and rotating Teo wormhole

Rotating Teo wormhole metric
[E. Teo, Phys. Rev. D 58,024014 (1998). ]
2 2 7,2 dr? 2172 102 1 win2 2
ds® = — N*“dt —}—1—bo+7‘ H? [d6” + sin® §(d¢ — wdt)?]

where

d(4 0)2 2
N=H=1+ (4a cost) ,w:—fj.
T T

Gaussian curvature and geodesic curvature

2 2 4 9 3 .3
K:_bo_56a +O<a_l)()a) /{g:__a_i_O(a a_bo>
Y .

r7 7 pl0 r7’ 8




Kerr spacetime and rotating Teo wormhole
prograde motion of light

S
Qprog = —// KdS—/ Kgdl
rUT R

_bO 2, .2 2, 2 2_a B20, 42 12, .2 @a_bo
—2—b<\/1—bus +\/1_buR>_bZ<\/1 b2ug? + /1 buR)—i—O PREE

retrograde case

b 2 bo? ab
v = 0 (VT 4 T 02) + 20 (VTP 4 T ar?) 0 (. 20

b2 B3
We take the limit as ur — 0, us — 0

b() 4a (b02 ab())
Oprog =5 — 75 T @) o5 s 32 |
preg— T p o p2 b2 " b3 K. Jusufi and A. Ovgun,
bo 4a 0 (502 abo) Phys. Rev. D 97, 024042 (2018).

Qretro _>€+b_2+ b_27b_3

CONCLUSION

By using the Gauss-Bonnet theorem, we formulated the
method of calculating the bending angle of light to stationary,
axisymmetric and asymptotically flat spacetimes, especially
by taking account of the finite distance from a lens object
to a light source and a receiver.

Bending angle of light ¢y is coordinate-invariant.

We considered Kerr black hole and rotating Teo wormhole
in order to examine how the bending angle of light is computed
by the our method.

Recently, we discuss a possible extension of our method to an
asymptotically nonflat spacetime.
[T. Ono et, al., arXiv]
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Charge Screened Boson Stars

Tatsuya Ogawa

and Hideki Ishihara

Department of Mathematics and Physics,

Graduate School of Science, Osaka City University

R November 7th, 2018 @Rikkyo University i

Localized Bosonic Objects

» Classical solutions in field theories

» Bound state of bosonic particles
Attraction force:
» Gravity
Boson star : M. Colpi, et.al, (1986)

> Interaction between boson fields

Non-topological soliton

v" A complex scalar field and a real scalar field
. R. Friedberg, T.D. Lee, & A. Sirlin, (1976)
v A complex scalar field with nontrivial self coupling
o . S. Coleman, (1985) Q-balls °2/16



Basic eguations

Action of our model

g / \/—_gd%{ — " (Du)* (D)) — g™ (D)™ (Du )
- % (Ifbl2 - 772)2 — wlo® [of° - iFnuFW}

D, =V, —1teA,

We found the existence of the non topological soliton solutions.

We add the Einstein gravity term
and show the existence of the boson star solutions
by using numerical analysis.

° ©3/16

Basic eqguations

Action of our model

¥ / \/—_gd4a:{ 167G 9" (D) (D) — g™ (D) (Du o)
=5 (10 =) = lol 9 - 1B

D, =V, —1teA,

° 04/16



Basic equations

Action of our model

B / ‘/__gd%{ 16§G — g"" (D))" (D) — g™ (Dydp) " (Du )

1

A 2
— S (o =) = nlof* 1wl - ZFF}

Field equations

QMVD,U,DUw — H |’Qb|2 =0, D, =V, —ieA,

y A
9” D,uD.ugb - §(|Cb|2 - 772) — M |¢|2
VL FR = 4 5,

= ie {6 (D) — (D)6},
G = 87GT,, b

= ie {¢"(D*y) — (D“iﬁ)*w}
VMJ¢—0 V”jw

©5/16

Basic eqguations

Static spherically symmetric spacetime ansatz

2 2 -1
ds® = —o(r)? (1 - m) dt? + (1 - m) dr? + r2df? + r? sin? Odp?

T T

Stationary spherically symmetric matter fields ansatz

O(t,r) = e h(r) , w(t,r) = e h(r) , Au(r) = (Ai(r),0,0,0)

Q:=w-—u

° ©46/16



Basic equations .
Variables : ¢(r), ¥ (r), A¢(r), m(r), o(r)

Parameters : e, u, A, n, 2
EOM of the complex scalar fields
(22 2} ()
T r—2m o r
~, 2 m —rm’ a - 2m e2p A2 A=~ w0
¢ +{; <1+ T_Qm)-l-;}(/) + (1—7) [m—§¢(¢ —1) — po ] =0,

Maxwell equation [ ) o= Ayfr) 4 w]

(eA — Q)%
o2(1—2m/r)

. w;az] o,

/

" 2 - 2 S - -
p (; . %) A+ (1 . Tm> [—2e2</)2At — 22024, + 2eﬂ¢2] —0,
Einstein equations

s [ St + (1) (@ e @)

Ao 2 72 72
+ (07 = 1)+ ug™ + g

(r — 2m)o’ 2 *$* A (eAr — 9)21;2 2m 77\2 v
eg ~C {02(1 —2m/r) * a2(1—2m/r) * (1 a T) {(¢ ) } =

®7/16

Boundary conditions
Potential of the Higgs field

V) =24

= Z(Cbz —n°)?
Metric ansatz

2 2 !
ds? = —0'(7")2 (1 - M) dt® + (1 — M) dr? + r2df? + r? sin? Odp?

T T

¥

r — 0 : Regularity at the origin

%:0, d—gb:(), d—At:(),m:O,d—J:O
dr dr dr dr

r — oo : Fields approach to vacuum and Schwarzschild solution

?,BZO, QB:W,AtZO,m:mm:CORSt. ,o=1

©8/16



Numerical solutions (Gn* =1, u=1)

r — 0 : Regularity at the origin

Q:=w—w i) dd dA d
L R
dr dr dr dr
r — oo : Fields approach to vacuum and Schwarzschild solution
=09 P=0,¢d=1,4=0, m=m=const. , c=1
Q.03 1.\.‘\"4.\ 4 | /_ a (T)
\l (r) ,
ozl : : : : : - osl g : : ; 1Moo
. m(r)
/
0.2 f.f
. . oof | .
-1
2 2
ds? = —o(r)? (1 _ M) a2 + (1 _ M) dr? + r2d6* + 2 sin? 0dp>
T T
° ©9/16

Charge of the boson star
4 —262(/;2}1t B —2621;2;175 + 269152
pp(r) = o(l—=2m/r)’ Py (r) = o(l —2m/r)

0.0010

0.0005 -

0.0000 -

-0.0005 Lo

The charge distribution of ¢ is screened
by the counter charge distribution of ¢ .

° ©10/16



Mass of the boson star (Gn° =1, u=1)

Mass of boson stars

Mypan== 0.6087

0.2 ]
: ~ —8 :
ol ~ 1.2 x 10~%kg :
ook forn=Mp .
0.20 0.25 0.90 0.95 1.00 i®
Variation of Gn?
Einstein equations
2m/ : 2P A? (ed; — 2¢2 2 72
r? ~Cosy er(l—Zm/r) o?(1—2m/r) (1_ _) (@) + () }
A 1202 1 (4)%] _
Z(Qb 1)? + pg?y W} =0,
(r —2m)o’ 5 292 A2 (eA; — Q)22 2m ~/\ o o)
r2o — 8mGin [02(1—2m/'r) +02(1—2m/r) + (I_T) {((/)) + () }_0

Gn* =n* /M,

We change breaking scale

° ®12/16



Yariation of G7?

100 |

10 E

7]2/1\15[ = 10_15

=1

0.8 0.7 0.8 0.9 1.0

As breaking scale decreases, upper bound of the mass increases.

0

Upper bound of the mass

®13/16

Mmax — mmaxn Mmar -— MaX Mo

'1['4 ! * 1 T | T |

Mnax

0.01

.15—4 - 1
1078 0.001 1 1000

A00 b "q,‘ ................... _ ........................ __

0 (G?) T = (/M) T
.
Ut PP f?',#‘.. . .......................... ........ i
...".,“
S ?T""i',:; ..... ........ _

®14/16



Upper bound of the mass

J\"'{nflalm — 'nl'-]r}fla.m {]? Mmar -— IMaX Mo
104 T . T T T T
er 2v—1 2 a2 —1 |
WO (Gn) T = (07 /M)
- I e,
£ ! e, '
I ..... .’
0.01 | B " |
I ) .0.
] .'0.
1::‘4 1 I 1 1
10~< 0.001 (0_1)2 1 1000
T I, At n/Mpy ~ 0.1
*  Mumas & (7/My) "2 for n/My, < 0.1 the line breaks. « y
Conclusion

» We constructed the boson star solutions by using the gravitating gauged Friedberg-

Lee-Sirlin model:
» massless complex scalar field, U(1) gauge field, complex

Higgs scalar field with the Mexican hat potential, and
gravitational field.

» The charge distribution of the complex scalar field is screened by the counter
charge of the Higgs scalar field.

> Maximum mass of the boson stars appear in the case of SSB 1/My, is high..

» Asn /Mpg decreases, the maximum mass of the boson stars increases.

> n/Mp < 1jer /My ~ 0.1, Mmaz increases rapidly as 1/M,,; decreases .

Future work
» Stability by the perturbation.

. » Does the large N solutions collapse to black hole? ©16/16



. ®17/41

Binding energy of the boson star

B:: E — (Awaq, -|— jL{quqb)

E.= 47T/ 2 Tye (1) dr
0

0.80 .85 0.90 0.95 1.00

In this case, the binding energy of the boson stars are always negative.

° ©18/16



Compactness of the boson star(Gn* =1, u=1)
Compactness and radius of the boson stars

2GM | . .
=M R |Qw|+|Q¢|/ V=1 {100 ()] + lpo(r)]}

° ®19/18

Compactness of the boson star(Gn* =1, u=1)
Compactness and radius of the boson stars

c.m 2GM R /\/— {ow ()] + |oa(r)]} dr

R |Qw| + IQqﬂ»I

° ©20/18



Compactness of the boson star(Gn* =1, u=1)

Compactness and radius of the boson stars

A >
=" R:= V=gr’ d
c= 2 oo AR IR PG 2

" N Relativistic

E Newtonian
01f

00k

The green region is more relativistic than the yellow region.

©21/18
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Quantum discrimination for the universe
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Introduction and Motivation

OPrimordial guantum fluctuation
CMB, LSS, PGW

Hubble horizon

Horizon out Horizon in
1
In[Length] i
i
1
: In[H~!
Primordial ' n[ ]
fluctuation H
1
1
1
i ln[)\p]
|
| Ap = aX
i
1
1
1
1
1
/l
Ina

Inflation radiation matter



OPair creation and standing wave

@ Quantum fluctuation is
extended by the expansion

Quantum fluctuation

The property of the quantum fluctuation Expansion
. _ o —— o Pair creation
Particle creation of k and —k mode
Squeezed vacuum

Vacuum fluctuation

Superposition of k and —k mode
Standing wave

This squeezing can be evidence of the primordial quantum fluctuation

OThe squeezing cannot be detected by LIGO and LISA
B. Allen, et al. PRD 61, 024024 (1999)

Stationary p(h|st) Squeezed p(h|sq)

Hy ~ 10~ 18Hy, Hubble paramejcer for
the present time

-
f€1073,10%Hz
detection frequencies
of LIGO and LISA
¢ € [0,2m) o~ 0,
f/Ho > 10" p(hlsq) ~ p(hlst)

These two Gaussian distributions of PGW cannot be distinguished
statistically each other by LIGO and LISA



OHow can we discriminate between the stationary and squeezed state?

Stationary Squeezed

¢ € [0,2m) o~ 0,
In the present time, it is difficult to discriminate

If we do observations of the past universe, like CMB or GW map,
is it possible to discriminate each other?

We want to discuss the theoretical limitation of statistical discrimination of the two distributions

Quantum discrimination problem

Massless scalar field in the expanding universe
CdMassless scalar field in the inflation and radiation era

We need to get the squeezed distribution and define the stationary one

( 1
Friedmann spacetime — —00 <N <1y
Has(n — 21x) ( )
ds* = a*(n)(—dn* +dz*)  a(n) =<
n
r <
\ Hasn? 0t < 1)

Massless scalar field
x. t
(fluctuation) C,O( ’ )

Equation of motion

. a
§=Viq——g=0

Mode equation

JEk + (kz . é)fk -0 Inflation _ radiation
a n="r




[JQuantization and pair creation

d3k
/(2 379 akfk + a_kfk) (—o0 <m <)

g(x,n) = «

3k /- Y ik .
e R R R A A o

Mode function of the f (77) — 1 (1 - i )e—m(n—mr)
Bunch-Davies vacuum vV 2k k(ﬁ - 277r)
. . 1 .
Mode functioninthe 4, (n) = ——¢— 7
radiation era () V 2k
i 1 : 1
Bogolyubov coefficients o = (1 + oy, — W)ehkm Br = W

o) =N ® [So(% )" o)

keR3T n=0 Pair creation of k and —k mode
squeezed distribution

[1Definition of the stationary distribution

n ~
Squeezed distribution |Ogp), = N ® [Z( *) |nk,n_k>b} b = arar + ﬁzdik
kere+ n=0 Ok

Definition of the stationary Gaussian distribution

[ Tl“[bkbkfpst] =0 Tl"[b bk’pst] (UBD|b bi |OBD) ]

phase independent distribution

I I Corresponding density operator

Pst = ® Pk pr = | Ny
kcR3

12k) (M|

oo
DI
n— Ok

We consider the quantum state discrimination between |Opp) and Pst



Quantum state discrimination

[IState discrimination for a single sample

System: Po or P1

Measurement
0 1 i Result: 0 Guess : £0
/7< Result : 1 Guess: P1

Failure probability of the guess probability that we mistake 21 as P0 or 0 as P1

~

1 - 1 A A . .
= §Tr[Eop1] + §Tr[E1p0] Eo+E=1 E; : projection operator
prior probability

min pr characterizes the error of the statistical discrimination

T

[State discrimination for N sample sizes

N
N partite system : 106@ or p?N
Measurement
(nonoom)
0 1 i Result: 0 Guess : P0
tpl Rp1 & @ ,OJ /ﬂ Result: 1 Guess: P1

Failure probability of the guess
1 (N) @N 1 (N) @N
pt = §TY[E0 pr |+ §TT[E1 Po ] wetreatN partite system as a single system
Ei(N) : projection operator for N partite system

Quantum Chernoff bound

l(1—\/1—{ inf QS}N) < min pf < l[ inf QS}N Qs =Trlpp"pi] 0<Qs<1

2 0<s<1 Ei(N) — 2 lo<s<t

For large N sample sizes, the failure probability can be sufficiently small



Our assumptions for the setting of observation

[1Observables on a two-dimensional sphere

It is assumed that we know
n =17y,  thedistribution on a two-dimensional sphere

n
for example, the last scattering surface
Observer =N = A -
qu(n) = q(ru, 7, nu)  pL() = p(ru, 7, L)
. a
P=4q——q
TL =10 — 1L a
€------=-=-3 >

As observables, because of focusing on Gaussian distributions

1 Py(7iy - 712): Legendre function

=L [ R ()
A 1,705 [kI<A - yy cutoff, thickness of the sphere
1

P — Piiir - 7o) (61 (7)) D1 (7o) = D1 (715G (71

! o . 1 (1 - fiz) (Gr(71)pr (1) + pr(72)qr(71)) kl<A

1 we assume the knowledge of these

PP _ > 2 N (a7 Ve (7

“ T dr iy - 7i2) (pr. (nl)pL(nQ»‘ k|<a  Correlations to get the theoretical limitation

ny

[JQuantum Chernoff bound and Cosmic variance for our observational assumptions

Squeezed and stationary Each covariance matrix
|0 > v v qu Clqp
BD) Pst 1,LBD Vst Vi= { qp pp]
c®
In[l/ary]
n =L
In[A/a]
- / : Observer
Inflation radiation
=T rL =To — 7L
€-—-—-—=-=3 >
Quantum Chernoff distance
Visp|'*[Vise]® 1 min 1[ }N
—(1—-4/1—=| inf O, < pf < f
|(1—5)Vi,BD + 5V st 2( [UénﬂQ} )_ ES T2 Og;<1QS

Sample sizes N <2l+1

An. <1 Long wave length Cosmic variance



Evaluation of the qguantum Chernoff bound

[L1Example : discrimination efficiency on the last scattering surface for N=1

(770 + 776q>2 . 1027

L+ Zena = Ho ~107¥Hz ~ 107%3GeV Hgs ~ 101 GeV N ~ 70
477r776q 0
L4 Zg = T gt 1z = (7’70“76‘1)2%103
4 4772q -~ - L + Tleq
10/ M ~ 10%°  np/n, ~ 1023 LMy ~ 102 7L =10 — 1L
BD vs stationary for s=s;;; N=1
A= lmax/TL lmax = 104 049" I | | _,,.»-—‘--...,_"__,w"'é
048 T ]
' Wy x> 1
, 1 N 047 - 1 et
min O I N Sl . ]
BN = 2[0;&516)5} N=1 2 046 & . " a roe;chefs 1
' —= 0045 - app
0.44- ]
1 N ‘ 043 3
- _ _| i min
2 (1 \/1 [oinqus} ) S A 0.42

200 400 600 800 1000
|

OThe case N=2l+1 and asymptotic approximation
BD vs stationary for s=s;,; N=2I+1

%,

mo/me ~ 10% nu/me ~ 107y /gy ~ 1020 10_14,.'. P
N L A-17 .
A= lL’max/TL lmax = 104 Z/UT 10
G 10720 . -
. 1 A N ~ . . '
oo Prsg [Og;fg@s} N=2+1 10723 .
For lmax/l>>1 [>1 l/TLXT]L>>1 N=2l+1 200
2041 L
IR
L)g;q@s exp an c~0.3
ki, l
For l/roxnmL=—>1 ky=
Hy, a(ny)ry
TL/?7L =RiH, <1 Discrimination error cannot be ignored
ro/nL = RpHp > 1 Discrimination error can be small

Ry, = a(n)rL



Summary

[1We consider quantum discrimination between the Bunch-Davies vacuum and the
stationary distribution.

OTo get the theoretical limitation of the statistical discrimination, we assume the
knowledge of qq, gp and pp correlations on a two-dimensional sphere (e.g. Last
Scattering Surface).

L] For a single direction observation with a short wave length, even if we know the qq, qp
and pp correlations, the efficiency of the discrimination becomes bad, similar to the
previous work B. Allen, et al (1999).

ClHowever, if we can carry out the quantum
measurement for 2[+1 directions, then the
discrimination efficiency can be improved for the
observation of a short wave length.

min pf<%[ inf QS}N [mf Os N=2+1

20+1
B — 2 lo<s<1 0<s<1 }

TL
~ exp[ ]
Ui
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Thanks to JSPS for the invitation & thanks to all of you for
hosting me:
TiTech, Yukawa Inst./Kyoto, IPMU, KEK, Universities of Kobe, Nagoya, Tokyo &
Waseda,

Part-1

Summary

Ghost free and non-non-singular
construction of gravity & Towards
Conformally flat solutions in the UV



Construction of Scale Free/Conformally Flat Theory of Classical &
Quantum Gravity in the UV, which is Perturhatively Unitary

R 0 0 ., 0 e
S = /d4$\/ —g [W +R]:1 (W) R+Rl“,]:2 (W) RH +RMV)\0]:3 (W) R* A :|

Einstein-Hilbert o .
Recovers IR UV modifications, and non-local

gravitational interactions

>

Known as IDG ( infinite derivative gravity )

Salient features

* Dynamical degrees of freedom remains the same from UV <—> IR, but no Ghosts
* Unitarity constraints the form factors F’s around a given background

* Non-singular Static & Rotating, No-Horizon, compact objects as planets, as
heavy as billion solar masses can be formed: Testable features at LIGO/VIRGO/
KAGRA

* Non-locality plays an important role in smearing blackhole singularity and
emergence of a new scale in the IR

Non local Squishy Stars

-1
rseh = 2G'm 'NL ™~ 2A[§ > T'sch

Cuvre >0 asr — 0 Cuvre +0asr—0

Schwarzschild’s blackhole Non-local, compact object
in infinite derivative gravity

Biswas+Gerwick+Koivisto+AM, PRL, 2011 [1110.5249]

Biswas+Koshelev+AM, PRD, 2017, [1606.01250] } Construction of ghost free conditions

Koshelev+Marto+AM, PRD, 2018 [1803.00309]
Buoninfante+Koshelev+Lambiase+Marto+AM, JCAP, 2018 [1804.01895] Non-singular, Non-perturbative solutions

Buoninfante+Cornell+Harmsen+Koshelev+Lambiase+Marto+AM, PRD, 2018 [1807.08896]

. Non-singular, ROTATING, Non-perturbative solutions
AM+Stettinger [1811.00885]

Unitarity for AdS (3) massless +massive gravity



Part-2
Entangling matter via graviton

How do we know whether gravity is classical or Quantum ?

Could you devise a TEST?

Bose+AM-+Morley+Ulbricht+Toros+Paternostro+Geraci+Barker+Kim+Milburn
Phys. Rev. Lett. (2017) [1707.06050]

Real versus virtual Graviton

Gravitational wave

P e Joon On shell
= -
Direction of i N W

propagation

Gravitational wave

Follows classical “equations of motion”




fl R Log

Graviton Exchange

Off shell ( Virtual )

Yy _ /
W v
115>

S

- b .
p2 . p) 1

G~ V

Graviton propagator in terms of spin projectioh operators in 4d, Minkowski space time

Biswas+Koivisto+AM, 1302.0532

The Superposition Principle Underpins Quantum Mechanics
| | 3y
Eij Very familiar
in experiments

World record

10720 grams
in quantum superposition

S. Gerlich, S. Eibenberger, M. Tomandl, S. Nimmrichter,
K. Hornberger, P. J. Fagan, J. Txen, M. Mayor,

and M. Arndt, Nat. Comm. 2, 263(2011).

If you decohere (kill superpositions) nonclassical features of quantum mechanics go away.
Even old quantum mechanics: the right difference between energy levels obtained only
through a superposition of localized states.



Local Operations & Classical GCommunication

Cannot create
entanglement

Nielsen, PRL (1999)

Separable state remains Separable
( Cannot create entanglement)

2 Masses & Virtual Graviton

A Schematic of two matter-wave interferometers near each other

A
v
A
v

Consider two neutral test masses seld in a superposition, each
exactly as a path encoded qubit (states |[L> and |R>), near
each other.
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Spin Correlation Functions Certifying Entanglement

L d -
< Ax > < Ax > If they

interact only
@ (om0 @ (my through the
gravitational

L), |R), L), R), force

1 1
U(t=0 = —(|LY; +|R);)—=(|L)s + |R
| ( )12 \/5(‘ )1+ [R)1) 2(! )2 +[R)2)
1
= §(|L>1|L>2 + |L)1|R)2 + |R)1|L)2 + |R)1|R)2)
1 .
— |V (t =17))12 = §(eZ¢LL\L)1|L>2 - €Z¢LR|L>1‘R>2
+ €' PRL|R)1| L), + €'*7R|R)1|R)2),
where
5 GmimeoT 5 GmyimaoT
B hd = Az) "M R(d+ Az)
GmlmgT

¢rLL = OrRR ~ i



Ax Ax If they
interact only

@ @ through the
Lomp o Lm, . .
gravitational

force
12, [R), L, [R),

1 . .
(W(t=7))12 = =(e"?2¥|L)1|L)s + €'?*7|L)1|R)2

A
v

2
+ €'PFL|R)1|L)2 + €'°7R|R)1|R)2)
eichR 1

= {IL)1—=(IL)2 + €227 |R) )

V2 V2

n |R>1%<emmw>2 L IR)y))

The above state is maximally entangled when A¢rr +
A¢RL ~ Tr.

Witnessing Quantum Gravity

A newly proposed experiment could confirm that gravity is a quantum force.
It involves two microdiamonds, each placed in a quantum “superposition”
of two possible locations. If gravity is quantum, the gravitational attraction
between the diamonds will entangle their states. If it’s not, the diamonds
won’t become entangled.

Quantum Gravity Classical Gravity

o

‘ Micro- ‘ Two microdiamonds ‘ ‘
diamonds

are levitated a small

with nitrogen
core distance apart.

Nrcrona & s
=’ Microwave ‘4 Each is put into

pulse : a superposition

of two spin directions.

Step 1: SG splitting:

1
1C); —

(|1 +14) = 7

1
7 (1L, 15 + [R, 1)5)



©

Magnetic A magnetic field
flaid separates the spin

components.

(4]

If gravity

is quantum,

Quantum g}avity l each component Classical

., g L | gravny
) SR K E K] will feel a unique ‘

gravitational Superpositions
may be forced

to collapse

* ©

Entangled states
attraction.

If it's classical,

it won't.

©

A magnetic field
Reverse draws the
magnetic
field components

back together.

Step 2: Gravitational interaction induced phase accumulation on Step 3: SG recombination: |, 1), — |C,1);, |R,|); — |C,]);
the joint states of masses 1 &2 (mapped to nuclear spins)

‘ N N
Entangled (1 ‘ ema::;led ‘
6]

= L il The objects’

Detectors .
spins are

measured,

‘ ‘ collapsing the ﬁ ‘

\ ) superpositions. | J

If gravity is quantum, pairs If gravity is classical, pairs
of measurements will be of measurements will be
correlated more often than uncorrelated and random.

random chance would allow.

Step 4: Witness spin entangled state:

[W(t = tgna))12 = —={| D1—=( D2 + 227| |)2)

\/_
1o (@20m 1)y + | H2)}HCh

V2
through the correlations:

W= (V) @y — (i) @)

f

C)2



we have

GmimeT

h(d — Ax) >> A¢Lr, AdLL, APRR

ARy ~

For mass ~ 10”(-14) kg (microspheres), separation at
closest approach of the masses ~ 200 microns (to prevent
Casimir interaction), time ~ 1 seconds, gives:

Scale of superposition ~ 100 microns, Delta phi_ {RL} ~ 1

Planck’s Constant fights Newton’s Constant!

Spin Entanglement Witness:
Step 1: SG splitting:

O == (1), + 1 15) = —=(1L. 1), + R 1))

\/_ V2

Step 2: Gravitational interaction induced phase accumulation on
the joint states of masses 1 &2 (mapped to nuclear spins)

Step 3: SG recombination: ‘L T> — ’C T>j7 |R ¢> — ‘C ¢>

Step 4: Witness spin entangled state:

(W (t = tgna))12 = {| Ni—=( D2 + 2227] 1)o)

\/—
+ [

\/_

E(GZM”I T2+ 11)2)}HCO[C)2

= (o 1)®0(2)> <(1)®0(2)>|

through the correlations:



Alice, Bob and Eve

We are
all
entangled

Iirmfitv IS
QUANTUM!

A .
Nowwe cantestit!
L]

Bose+AM+Morley+Ulbricht+Toros+Paternostro+Geraci+Barker+Kim+Milburn, PRL (2017) [1707.06050]

Many atom/laser optics groups are thinking seriously about our proposal, inspite of
experimental challenges. There is a proposal to test it at IBM Quantum Computer..



How can we increase the scale of the superposition?

Free particle in an inhomogeneous magnetic field (acceleration +a or —a)

3T/4

Gravity is Quantum

Graviton must obey the quantum superposition principle

Graviton as a mediator ought to be off shell

T T,

Virtual communication
or Quantum
communication via
off shell mediator

!/
W v
175,

Local coupling Local coupling

Graviton can entangle 2 masses
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ALGEBRAIC CONSTRUCTION
OF SOLUTIONS

IN NONCOMMUTATIVE GRAVITY
AND

SQUEEZED COHERENT STATE

SHINPEI KOBAYASHI| (TOKYO GAKUGEI UNIVERSITY)

AND
TSUGUHIKO ASAKAWA (MAEBASHI INST. OF TECH.)

JGRG28 @ Rikkyo University, November 5-9,2018

QUANTUM GRAVITY

AND NONCOMMUTATIVITY

® quantum gravity: some candidates
= string theory, causal dynamical triangulation, ...
" noncommutativity appears: [x, y] =i0 <« Moyal plane
= string length, D2-brane with flux and more
= minimal length and noncommutativity indicate:
= discretized spacetime (Ueda-SK [PA7])
= dimensional flow (Takagi-SK-Sano [PB8])

= nontrivial solutions «— algebraic calculation is powerful



OPERATOR ALGEBRA &

FUNCTIONS WITH DEFORMED PRODUCT

= Operators on the Moyal plane

— all fields can be seen as operators based on

= Functions with deformed product (e.g., Wick-Voros product)

(1 9)(:09) =exp (s ) £ 202

2/'=zl"=z

[2,Z]y =2xZ—Zx2z=1

HOW TO USE OPERATORS:

ANALOGY TO QUANTUM MECHANICS

QM | . E4ip g E—ip o g BT 4D :
a = a = =a a=
,—2h ,—2h Qh numober

- N |n) =mn|n) anyoperator is written as 0= Z Crn|m) (n]

m,n
[z, y] =6 [z,2T] =1
NCG |, _ Bt 4 E—if N:2T2:£2+g2 "
\/% \/% 20 radius
all circularly symmetric operators O = Z Cr|n)(n|
in NC gravity are written as n f

projection operator



MAP FROM OPERATOR TO FUNCTION:

WEYL-WIGNER CORRESPONDENCE

operator function

[ F e fea =l

e.g., projection operator — generalized Gaussian function

_ 1 2n _—r2 /26
[\n)(n\ — f= 2#9(29)"/2T e ]

(— BH with scalar & Gaussian source (Sadohara-SK [PB6]))

FROM QM TO NC GRAVITY: “NUMBER” STATE
= CONCENTRIC CUTTING OF MOYAL PLANE

po=10)(0]

Pn = |n)(n| :projection operator
radius R ~ V2N§ Each annulus has the area 276



TWO GENERALIZATIONS:

TRANSLATION AND SQUEEZEING

= many nontrivial solutions in NC gravity [Asakawa-SK 2010]
«— circularly symmetric with centers at the origin
= two generalizations
= translation
— coherent state
" squeezing

— squeezed state
& time-dependent harmonic oscillator

COHERENT STATES AND TRANSLATION OF

SOLUTIONS

= coherent state

ala) = ar|a) :eigenstate of annihilation operator

= displacement operator
@) = e*® =274|0) = D()|0)

D(a)aD(a)! = a — a :displacement in complex plane

= wave function (e.g., ground state)

2
o(a;x) o< exp {—T;—;j (m — 4/ %Re(a)) +1i QTZWIm(a)ﬂ?}




DISPLACED PROJECTION OPERATOR

AND TRANSLATION OF SOLUTIONS

= translation in complex plane (QM)

<xa> ~ Re<a)v <pa> ~ Im<a>

= translation in xy-plane (NC gravity)
(ra) ~Re(0) =20, {yo) ~Im(a) =9p

(a— z :1;0—|—iy0)
V20 V260

= displaced projection operator:
pn(a) = D(a)|n)(n|D(a)’ = |o;n){a;n

FEATURES OF DISPLACED PROJECTION

OPERATOR

= orthogonal: Dy, ()Pp () = dpnPn ()

oo
= completeness for n: E pn(a) =1 _
n=0 ’___; /

= overcomplete for a: — [ d*a p,(a) =1

T
s multi BH sln? /
o




APPLICATION:

SOLUTIONS OF NC GRAVITY

® noncommutative gravity with large-0

A
S=—-— [ &z —g, = ——/d3 —eabce“”pEa*Eb*Ec

= diagonal solution using projection operator
B} = pi(e) = |l i){asi] (i =0,1,2)
= diagonal solution using Clifford algebra with arbitrary size

E) =~°, Ef =~', E3 =~% {7 }: Gamma matrices
(z—20)%+(y—vo)?
s’ =Ce o datda”

SQUEEZED STATES AND SQUEEZING OF

SOLUTIONS

= squeezed state

bIC) = C[¢) b= pa+val (|u?—v2=1)

u squeezing operator
¢) = 3@ =20y = 5(¢)|0)
S(0)asS(¢)T = acosh( —a'sinh(
= Fe ¢ 4 ipe® <« squeezed
(x) ~ we‘f ., (p) ~ pe%

squeezing parameter



DISPLACEMENT OPERATOR

AND ISOMETRY

= unitary transformation by displacement operator
pn(a) = D(a)ln)(n|D(e)" = |a, n) (e, n]
pn(a;x) = (zlasn) = (z[D(a)n)

= translation symmetry
= isometry of the Moyal plane

= There is Weyl-Wigner correspondence

— function counterpart exists: translated Gaussian function

SQUEEZING OPERATOR
AND ISOMETRY

= unitary transformation by squeezing operator
pn(0,€) = S(O)D(0)|n) {n| D(0)TS(C)T = [0, ¢;m){0, ¢
#n(0, G ) = (2[S(C)D(0)|n)

= squeezing
# isometry of the Moyal plane "

= |s there Weyl-Wigner correspondence!

squeezed function & ?



TIME-DEPENDENT “HARMONIC

OSCILLATOR”

= general, quadratic, time-dependent Hamiltonian of HO
A, pot) [Choi-Gweon (2004)]

= A(t)2® + B(t)(2p + p2) + C(t)p* + D(t)3 + E(t)p + F(t)

= time-dependent creation and annihilation operators

1 {[\/E+Z,23p—p

Ok1/2 2A

at =4/ 1 @_iZBpfp
Ok1/2 2p 2A

They satisfy time-independent commutation relation:

[ a4 =1]

(@ —ap(t) +ip(9 — yp(t))}

(& —xp(t) —ip(y — yp(t))}

LEWIS-RIESENFELD METHOD:

SOLVING TIME-DEPENDENT HO

time-dependent Schroedinger equation: zh ¢ Hy

i dI ol 1[
invariant operator P 8t

Ion(z,p,t) = Apon(x, p,t)
eigenvalue problem: | (z,p, t) = ¢*®¢(x, p, 1)

b= (6a(0)| (ingy — 1) |,(0)

time-dependent solution can be obtained

I,H =0

— e.g., Caldirola-Kanai oscillator H = A V32 + Be ’Yt H2



SUMMARY

= A gravity theory based on nhoncommutative geometry

® Product of functions is deformed
— algebraic method using operators is useful

= Extension to more general solutions
= translation of functions & coherent state
= squeezing of functions ¥ squeezed state

S time-dependent HO with
? appropriate identification

= future work: quantum diffeo and function counterpart?
— check with spherical D2-brane and fuzzy sphere
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Anisotropy problem
in Horava-Lifshitz gravity

Yota Watanabe (Kavli IPMU, U Tokyo)
JGRG28@Rikkyo, 7 Nov 2018

Ongoing work Outline

based on discussion - Hofava-Lifshitz gravity

with S. Mukohyama - As an alternative to inflation
* Kinetic eq. from action
* Kinetic eq. for Lifshitz scalar

Horava-Lifshitz gravity (HL)

Horava 0901.3775

»GR: non-renormalizable
HL: a candidate of quantum gavity

achieved by Lorentz breaking (- w3tz > bx)@E=M

1
Propagator ~ : more convergent
Pag w2 — k6/M4 g
Renormalizability has been shown Barvinsky, Blas,
. . . _ Herrero-Valea, Sibiryakov,
in minimal setup N = N(t) Steinwachs 1512.02250

» Foliation-preserving diffeo.
t - t'(t),x - x'(t,x)

* No local Hamiltonian constraint
Mukohyama 0905.3563

e 2+1 DoF: scalar graviton behaves as dark matter »



HL as an alternative to inflation

» HL has some properties of inflation
* Scale-invariant perturbation Mukohyama 0904.2190
* Solves Horizon problem

° SOIVeS Flatness problem Bramberger, Coates, Magueijo,
Mukohyama, Namba, YW 1706.06809

» |sotropy problem
Vector perturbation around flat FLRW in GR

1(1—9W) w: EOS param. of matter

(VO rtICIty)OC a 2 Albrecht, Magueijo 9811018
L. . Kodama, Sasaki (1984) PTP Suppl.
If w > 1/9, vorticity grows: isotropy problem

cf. Inflation (w = —1) is a solution
» This can be used a test for an alternative to inflation
Does HL solve the isotropy problem?: Goal
This talk is 15t step e

Vector perturbations in HL

» Consider the action of HL gravity & vector field A;

* Photons are described by distribution func. f(x*, p;)

Need evolution eq. for f

* In ordinary cases f obeys the Boltzmann eq.

in kinetic theory derived from 15t principle

What is the Boltzmann eq. for Lifshitz vector?

4/9



Derivation of kinetic eq.

» Relativistic kinetic eq.

) : : :
[p“@u + p“pvl“;[i a_p-] f =(interactions, corrections)
l

> Method: use Wigner func. de Groot, van Leeuwen, van Weert (1980)

~ _Liy. r T
frae e, p) = [ dr e TP (x4 3) 6 (x = 3))
* Known to systematically derive interaction,
guantum correction & field-theoretic correction terms

* Formalism for curved spacetime is developed winter (1985)
Calzetta, Habib, Hu (1988)

Fonarev 9309005

Antonsen 9701182
5/9

Review: for relativistic real scalar

Friedrich, Prokopec 1805.02767
based on 3+1 decomposition

» Wigner func. on curved spacetime

I1
X,Y — {¢’W: aJ_(,b}

FXY(x‘u;pi) . i i
3 _Lrip. [ T yH ][ _I yH ]
:Wfd re h l:eZlX(x/") e ZLY(X'U’)Z
, 1w h rt rir/
fi ZE %Fd)qb +ZFHH = 1+?Vi+TViVj+--- X
T
fi =2_h_Fn¢—F¢n]
1 [w h
fo =55 |7 fee 5 fom

i
f3= o5 Fp + Fypn] 6/




Review: for relativistic real scalar

Friedrich, Prokopec 1805.02767
based on 3+1 decomposition

d3
= \/7.[ (anI:)B wf; + 0(h?) A=f+fA

_ d’p .
TJ_i _\/VJ(ZT[h)gplfl +0( )

r_ L[ v pp
Yooy ) @nh)? w

fi: classical distribution func.

fi+0(fz) +0(h)

[, f3: field-theoretic corrections

» Calculate d;f using EOM: O¢=(int.)

[p“@u + php, I ™ ]f1 (interactions, corrections)

7/9

Kinetic eq. for Lifshitz matter

» Apply the method to Lifshitz matter
Final goal: Vector with w? =~ p®/M* (called z = 3)
15t step: Scalar with w? =~ p*/M? (called z = 2)
» EOM for N = N(t)
hZ
O¢ + —Ang =0
» New result:
Kinetic eq. for z = 2 Lifshitz scalar with N = N (&)

o v, +® 1k 0
0 szp ,pkap] f=

RHS: interactions, O(h), field-theoretic corrections :/s

p*o, + p*p,T);



Summary & discussion

»HL: candidate of quantum gravity & alternative to inflation

* Alternative to inflation must solve isotropy problem
in vector perturbation
Photons: described by distribution func. f (x¥, p;)

 Derived kinetic eq. for f using Wigner func.

for z = 2 Lifshitz scalar as 1% step

» Future work
* Obtain kinetic eq. for f for z = 3 vector

* Obtain eq. for vector pert. combining EOM for gravity
* See whether vorticity grows or not
— whether HL gravity can be an alternative to inflation or not,
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Matter Scattering and Unitarity in
- Horava-Lifshitz Gravity

The 28th Workshop on General Relativity and Gravitation in Japan

Tomotaka Kitamura Waseda University
Takeo Inami SungKyunKwan U
with
Keisuke lzumi Nagoya University
Purpose
Checking

Renormalizability of Horava-Lifshitz gravity
via Tree-Level Unitarity of Matter scattering




1.Introduction

Tree’;level Unitarity

' Conjecture C.H.Llewellyn Smith *73
N J. M. Cornwall etal ’73
tree unitarity renormalizability
equivalent?

Tree unitarity in Lorentz inv. theory

pr——— , p— : , — ,
an scattering amplitude does notgrowas F — oo |

M~y E°(e<0) E — oo

| _/\/l amplitude E Energy in center of mass

- if e<0_ a theory has tree unitarity

e T »

this condition is modified in Lifshitz theories




Tree“-leveal Unitarity

~ tree unitarity condition:Lorentz invariant theory

(1+d)dim 2-2 scattering

amplitude <2‘T|2>Nk5 B<3—-d
(1+3)dim 2-2 scattering
amplitude (2 | T'| 2) ~ kP B <0

“(9-9>1) q54 theory
>< M~ A\ (N ko) tree unitarity ()

(e.g 2) Einstein gravity
xj"ﬁ 2 tree unitarity X

M ~ k ree unitarity

Jf”‘g

Treeﬂ-level Unitarity

No counterexample is known _
- - C.H.Llewellyn Smith 73

J. M. Cornwall etal ’73
Berends & Gastmans ’'74

Weinberg-Salam model
4-Fermi theory
Einstein Gravity

No counter-example!

4 .
tree-level unitarity renormalizability
(e - g) Tree-level unitarity renormalizability
QED O O
Y-M theory O

O

X
X

O
O
X
X




Tree¥level Unitarity

No counterexample is known
S— - i s . C.H.Llewellyn Smith °73
J. M. Cornwall etal ’73

Berends & Gastmans ’74

i ) ' ' ' ) ' )
tree-level unitarity renormalizability
(e-g) Tree-level unitarity renormalizability |
QED O O
Y-M theory O O
Weinberg-Salam model O O
4-Fermi theory X X
Einstein Gravity X X

No counter-example!

Tree’;level Unitarity

Métter scattering and U;nitarity

Berends & Gastmans ’'74

Abe, Inami, lzumi, TK’18
- ~ ' ' ' » ' ' ' ~ ey

tree-level unitarity

renormalizability

Matter in R,.” Gravity

(e g) Tree-level unitarity
Einstein Gravity X
Matter in Einstein Gravity X

O

No counter-example!

renormalizability

X
X

O




Tree¥level Unitarity

S-Matrix Unitarity and Renormalizability in HD theory |

Even the existence of Ghost

Abe, Inami, lzumi, Noumi, TK’18
See Keisuke’s Poster PB27

il

"Vq

tree-level unitarity renormalizability
(e-g) Tree-level unitarity renormalizability
Non-renormalizable

/d4;1?¢')2(|3(,f))2 X X

Renormalizable

)\/(14;1? {(f)ﬂqb)Q}Q O O

No counter-example!J

2. Horava-Lifshitz Gravity




2 Horava-Lifshitz gravity

Lifshitz scaling z] =—1 [t] = —2 inmassdim
£ +— bX b arbitrary number

t +— b*t Z dynamical critical exponent

223 (143)dim - | | 'P.Horava "09 |
| M 5
| SHL = /dtd3x\/§]\]{7p <Kinz‘7 — )\K2)

“Kinetic term

+ (ViR ViR + s ViRV’ R+ -+ )} (i,5,k=1,2,3)

Potential ternﬁ ]

- extrinsic curvature Power-counting rerenormalizable
|
Ki' = ﬁ (gz] — VZNJ — VJNZ) [Mp,Oél,Ckg,...,Ckn...] =0 ]

A1 o Loren}sﬁmetry
Even containing Higher derivative, there no ghost

\ —— ~3d Yij lapse variable [V shift vector /V;

2. Hofava-Lifshitz gravity

Remarks:

- Two iimpoﬁrtant provaeAms in Horava gravity

r

1. proof of renormalizability
(non-Projectable version N = N(x,t) )

~ 2.restoration of Lorentz sym in IR?
(Projectable version N = N (t) )

(Non-Projectable version N = N (x,t) )

»




| Tree-’leveIA uniAtarity and HLGraVity -

Remarks:

Tree-level unitarity

%

tree unitarity ~ renormalization

we use the way to check the tree unitarity instead of loop calculation

1.don’t have to introduce Faddeev-Popov ghost

2.easier and simpler than loop calculation

As first step to study the renormalizability of non-
Projectable HL Gravity, we try to check the
correspondence in projectable HI gravity



_HoravaFLifshitz aravity

z=3 (1+3)dim
Projectable HL gravity

SpHL = %/dtdxdﬁN (K,'jKij —le - 1/pHL)

Your™> = 2A —R? + 1 R* + oRi;RY + viR? + VoRR;jRY + V3R jR) R*; + v4V,RV'R + vs VR VIR ¥

4 - ' o
Propagator i
1-A
(hij(p)hri(—p)) =25 (051 + i1k ) P (p) — 2%25ij5kl [Ptt (p) — 1_—3/\775(17)]
— 2%2(611:];]1251 + Jil];j];k‘ + ijkikl + 6]1123112};) [Ptt (p) — Pl (p)]
+ 2%2(51'1";71»-]}[ + icikj(skl) [Ptt (p) — 'Ps(p)]
JA 1-3)\ 2P
+ 2%2kikjkkk'l[ w(p) + T Ps(p) — 4P1(p) + 1 i(lj\)] )
1 -1
‘ - kS
Pu w? + k8’ Py = [w2 + %] ;
2 Bua+3u)(1-)) 47 -1
s — k -
Bl P2 = [w2+—(1 N +8) k6]
" ) _ _ g ) _J

v{ Lifshitz Scalar theory

z=1,2,3 (1+3) dim
Projectable Lifshitz scalar theory

Sprs = % / dtde® /g (006 — N'9.6)* 516 (DiD') 60 (DiD')* 636 (D:D') )

e - ‘ ‘ — .
®ph;; 3 point vertex
\\\\\:\1{3 2 2
00000 7] —(ky ks (k)i (ks) —++ - - -
t"’k
1




Tree-level Unitarity in HL gravity ”

Two scattering states are considered in Lifshitz-type theory

y CoM-like ~ - One particleis at rest
e
) 18)

All scattering systems are able to be studied in CM system
thanks to Lorentz symmetry.

Lifshitz-type theory : Lorentz symmetry is violated

all scattering process are independent
Need to study even laboratory-like system

Unitarity conditions of Lab-like system is more strict than CM-like system

‘Tree-level Unita“rity in HL gravity |

Unitarity bound for scattering amplitude

UB for scattering amplitude
M(py, Py — ki, ko)| = P 2=3 d=3
j\/l(a — a) a<3z—d 0

z=3 d=3
M(B — D) a<2z—1 5
y CoM-like ~ - One particleis at rest
L./ %\ . 0%— o) 1
J \

) 18)




Tree-level Unitarity in HL gravity “

. ‘ . B ™\
> v CM -like system
,/\/l k6 k — oo
~Y
N
.. J
i "
\‘\\ /’{’
Lab-like system
L ]
Summary
i Y

Even Matter scattering in Projectable Horava gravity

implication that the relation between renomalizability
and tree-level unitarity

4 T ' ) ' ‘ K
Projectable Horava gravity — Renormalizable

Appropriate gauge fixing o
Non-projrctable Horava gravity — Renormalizable?

Appropriate gauge %
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MASSIVE SPIN-TWO THEORY
IN ARBITRARY BACKGROUND

7 SATOSHI AKAGI, NAGOYA UNIVERSITY
NAGOYA [ARXIV:1810.02065 [HEP-TH]] ® —
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\/ INTRODUCTION

el

-

Linear theory of massive spin—two field

» Flat spacetime: Fierz-Pauli (FP) model, DoF=5 in 4 dim

» Arbitrary background: Minimal coupled model, DoF=6=Spin2+ghost

» Nonminimal coupling terms (NCT) are necessary



INTRODUCTION

Bottom—up approach [Buchbinder et al. (2000)]

» Small curvature approximation R/m2 < 1, Leading order

Sgeneral = /de\/ -9

1 1
§QM1V1M2V2M3V3vulhugugvughugug + 5 {m29M1V1M2V2 +,legM1V1M2V2

_|_é_2 (Rul[ulguz]uz _ Ruz[ulguz]ul) 4+ ,YSRuluzuluz} hHlVth2V2 +0 (RQ/mQ)}

» Three free parameters are allowed, Existence of completion is NOT guaranteed

Top—down approach [L. Bernard et al. (2015)]

Bottom—up

» Linearized dRGT model = A class of the completion
dRGT
SQD —1

7 2(D—1)’ Y2 S2, 73

» Only one free parameter, Existence of completion is guaranteed

INTRODUCTION

Our research

» Purpose: Identifying the most general class whose completion exists
— Bottom—up
» Possibility: Leading order NCTs may be constrained by higher order conditions

» Result: Linear order NCTs are constrained by fourth order condition

Y1, 72, V3 : not constrained Y1, 72 :not constrained, v3 =1

— Top—down

» Possibility: Linearized dRGT model may be extended

» Result: A trivial extension of linearized dRGT coincides with bottom-up result

soD —1
2(D_1)7 Y2 52, U3

» Conclusion: We identify the most general class of the leading order NCTs

"= Y1, 72 :not constrained, v3 =1



o OUTLINE
@)

» Constraints in FP theory
» Irreducible decomposition
» Condition for ghost-freeness

> Perturbative solution

ial extension

NOTATION

Definition

v Vo« hy V1 M2l o HnVn
> nlh 1M2V2 n n

“": Anti-symmetrization of 7" with respect to ViV2 - Vp
> nu1V1#2V2 = ,,7#11/1,,7.M2V2 _ ,,7!1-11/2,,7#2'/1

— 1% v 12
> ,'7["'1'/1”'2”2["'3”3 =,’7["'1V1,,7.“"2V2.,7F'3V3 _|_ ,'7.“"1'/2.'7[1'2”3.,7[‘3”1 _|_ .,7.“"1 3.,7["2 1,’7[‘3 2




CONSTRAINTS IN FP-MODEL

Fierz—Pauli model

» EoM of the FP model in flat spacetime,

v o__ VLV o Vo 2 IATRR 21 _
EF = _77“ o # a,uvlal/lh’IJQUQ Tm 77“ o huﬂ/l =0

> Lorentz covariant constraints:

Gbi;ector = 3uE'W = anWulul 3,uh,u1 wn =10 : Vector constraints
2
m D -1
Gscalar = 8},L8UEMV + D 277qu“1/ = m’ﬁ#h =0 . Scalar constraint

» In the Furrier space, these constraints reduce the number of the polarizations
» In curved background, minimal coupled model violate a scalar constraint

» We construct the model in curved background so that a scalar constraint exists

- 4
-4 IRREDUCIBLE DECOMPOSITION

'

Assumption

1 1
&= /dDiL‘ /_g |:§g#«11/1/121/2/l3usvulhuzyzvylhugyg + 5 {m29H1V1M2U2 e Alhmﬂzuz} hMlVthQVZ

> AH1V1H2Y2 . General covariant, First or higher order with respect to curvatures

> AHLVIH2Y2 goes not contain any covariant derivatives acting on /..



IRREDUCIBLE DECOMPOSITION

Irreducible decomposition

» Let us decompose AHLY1H2V2 into irreducible symmetric tensors.

» For any A#1V1#2¥2 NCT can be decomposed as follows,

HAV1ip2a Vo _ M1V o V2 H1V1p2V2
A hMLVlh’le/z - T hﬂlvlhquz + N h’fhl/lhquQ'

1ViIp2Ve 211 V2 122V 2V U111
Trvipzs THIVIpaVe — _ THaVipVe — _ TH1VapaVi — THaV2j

lasekon=—i : "Mixed symmetric tensor”

NHviszve o [T 1] N#Hwvipzve — N (paviperz) ; Totally symmetric tensor”

» We would like to proceed our calculation with using the symmetries of these tensors,
without giving the specific forms, until the specific forms become necessary.

CONDITION FOR GHOST-FREENESS

EoM in curved background

EMY = [_g(uu)mmuzuz VsV, + m2g(uu)(mu1) 1+ ) (pavy) 4 NMVM1V1:| Py, =0

Vector constraints

vV, EM = [mQQ(Mu)(mVl) 4 g)(pavy) 4 puvpary waulm} A R
+ (terms without any derivatives of h)

SHVHIVL —THVHIVL _ RUMIVYL (Ru[vgm]m _ Rm[ugm]u)

QML = |:Rl“’g.ull’1 — g" RMV 4 9 Rt gul)u _ 2RV(ngVl):U'i|

DO | =

» There are contributions from kinetic terms = Problem in arbitrary background

» For the existence of a scalar constraint, we have to restrict SH/H1¥1  NHVH1IV



CONDITION FOR GHOST-FREENESS

Vector constraints

v, B = [m2g(w)(u1m) 4 SN 4 Npvpvs 4 Q;wmm] Y ohnin

+ (terms without any derivatives of h)

Condition for ghost—freeness

PERTURBATIVE SOLUTION
Perturbation
» We solve the condition Det(V°, #?) = 0 perturbatively

» Let us expand tensors SHVF1¥1 - NHVE1YL in powers of curvatures R/m2,

1

m2(n—1)

o o

Suivipzve 2 ’ 1 g(n)mvmgm NH1V1p2ve 2 ’
m2(n—1)

» Superscript (n): n th-order terms with respect to curvature

N (R)pivipzvs




PERTURBATIVE SOLUTION
(2) Second order

N@pivipzvs _%gaﬂ(ulngz REZ)

> Full components of totally symmetric tensor N(WH1V1H272 gre yniquely determined
» Nonminimal coupling terms cannot be truncated at leading order

(3) Third order
N(3)0000 gu)oaﬁoRgR% o

N @ urvapzrs lg(l)a/@(mm RMQRVQ)
) o il

» We find that NV#1¥112¥2s not independent of SH1¥1H212

» At this time, there are no constraints on SH1V1H2V2

PERTURBATIVE SOLUTION

(4) Fourth order
N (4)0000 4 (S«(Q)OQBO +N(2)0a,@0) RZR%

L 90 2\0 (p2y0 2 00 &(1)0 50 5(1)0 00 0
0y GRY): (R )B+WR AR e = )
» Fourth order condition contains a noncovariant term

» This term cannot be canceled by the other terms

> This fact means that 5(D#114272 s constrained by the condition,

RS0 P0G 0 RY — 50020000 270000 ; Some covariant tensor

> This condition reduce the three free parameters of §(#1¥1#272 16 the following
two free parameters,

(1)
S(l),u,lul,uzug s ,yil)Rngllll,u,gng + 727 (Rﬂl[ylguz]ll«z — RHM2 [Vlgyz]#l)



PERTURBATIVE SOLUTION
Resulting NCT in leading order

1 1
Sgeneral = /deV =Y |:§gu11/1uzl/21131’3vu1 huzuzvu3hu3u3 ol 5 {m29M1V1u2V2 aF ,legulVlquz

_|_é_2 (Rul[ulguz]uz = Ruz[ulguz]ul) 8 ,YSRNINZVlVZ} hMlVth2V2 +0 (RQ/mQ)}

Leading order condition Fourth order condition

Y1, Y2, Y3 : not constrained Y1, Y2 : not constrained, v3 =1

Linearized dRGT model

82D —1 4 1
B 2 <52, Y3 =
2(D—-1) » However, there remains a difference by

one free parameter

» Compatible with fourth order condition
Rlilass=

TRIVIAL EXTENSION

Trivial extension

> Let us consider the model obtained by the replacement m? — u?(z): any local function
iy /dDa:\/—_g Bguwmwwswvmhuzuzvmh#sw + % {“2(95)9“1”1“2”2 il N,MVWWZ} Py v Pyagve
» The condition for ghost-freeness
Det(V'**%,,) =0,

Opr0

ORI _ 20 JOm(0) | GORVO L 0ROt 0

> Although a derivative of u?(z) appears in V,E*”, it does not affect to the condition.
Once we obtain a ghost-free model with m?, TH1#272(m?) NH1VIH2Y2 (12)

|:> A model with p2(z), TH1r2v2 (42 (x)), NH¥#2v2(,2(x)) is also ghost-free



TRIVIAL EXTENSION

Trivial extension of linearized dRGT model

» We obtain the trivial extension by replacing m? —s ,uQ(a:)

| 1 L soD —1
S/dRGT E/de i |:§gul T Svﬂlhuzvzvmhﬂe,l/'s B 5 {MQ(‘r)g'ul A A 2

2
25y (Rutbrghalin — pualngralin) 4 pussanvat by, + O (B2 /0?(2)))]

Rgﬂl VipaV2

J 2 (x) = m? + aR + O(R?*/m?)

1 1
SldRGT :/de\/__g |:§gli1l’1uzl/2u31/3vmhugugvulhugyg uE 5 {m29u1u1p«zl’2 _l_,)/leuquLng

/
+% (Rm[lqguz]uz - Ruz[lﬁgw]m) + R/Ll#zuluz} R i e (RQ/mQ)]

SQD—].

s s ]
2(D—1)7 Y 2 52

’Y,1 S

> 71, V2are no longer related with each other = Coincides with the Bottom-up result

SUMMARY
Summary

» In previous works, the linearized dRGT model seems a subclass of the bottom-up result
based on the leading order condition.

» We obtained a constraint on the leading order NCTs from the fourth order condition.

> We found a trivial extension of the linearized dRGT model.

» We confirmed the equivalence between the bottom-up result and the top-down result.

Future works

» Confirmation of the correspondence beyond the leading order

» Derivative nonminimal coupling terms

» Spin-three extension (There is a work solving the leading order condition [M. Fukuma et
al. (2016)])



THANK YOU FOR YOUR ATTENTION

INTRODUCTION

Linear theory of massive spin—two field

» Flat spacetime: Fierz-Pauli model, DoF=5 for D=4
» Arbitrary background: Minimal coupled model, DoF=6=Spin2+ghost

» Nonminimal coupling terms (NCT) are necessary

Bottom—up approach [Buchbinder et.al. (2000)]

» Small curvature approximation R/m2 <1

Sgeneral = /deV -9

%g“luluzuzugygvulhugugvughugug L % {mQQP«lVleVz A ,Ylelhl’huzl’z

+§ (Rm[ulguzluz i Ruz[ulguz]m) i ,)/3RN1N2V1V2} e 0 - O (R2/m2)}

» Three free parameters are allowed

» Existence of completion is NOT guaranteed



INTRODUCTION

Our research

Purpose: Identifying the most general class whose completion exists

Possibilities and results

Bottom-up: Leading order NCTs may be constrained by higher order conditions

Leading order condition Fourth order condition

Y1, Y2, 73 : not constrained Y1, 72 :not constrained, v3 =1

Top-down: Linearized dRGT model may be extended

Original linearized dRGT A trivial extension
SQD —1
2(D — 1) '

v = Vo = —4s3, 3 =1 Y1, 72 :not constrained, v3 =1

Conclusion: We identify the most general class of the leading order NCTs

\/ -/
./ CONSTRAINTS IN FP-MODEL

] [ \-/
Fierz—Pauli model
» EoM of the FP model in flat spacetime,
B = _n;w,ulm,uzuz am ayl huzvz A m2nw/u11/1 hul = 0
» Lorentz covariant constraints:
QR 0, B — m ' 119, b, =0 : Vector constraints
D -1
e — 0,0, F" + e 2?7‘“’ pr = m’ffﬁh =0 . Scalar constraint
¢’vec or:D S 2 i
(3) Buwlgrecir—y = (B —m?) hyy =0
o

» In the Furrier space, Eq.(3) determine the dispersion relation.
» Eqgs.(1), (2) can be regarded as constraints \/

» In the case of curved background, minimal coupled mogdel violate a scalar constraint. /
= )\



LAGRANGIAN ANALYSIS

Lagrangian analysis

» Lagrangian analysis = Method for counting DoF in lagrangian formulation

» Let us count DoF of Fierz-Pauli theory

Fierz—Pauli theory

EW = —qgtinianag 8, By, + gt Ry, = 0
EY = 5”“»7'1.};1'1]-1 + (terms without h)” =0 (a)
qb(l)" — E(Jy _ —noyillIIiQUQailaVlh‘iQUg + mQ?,’Omlllllhilyl =0 (b)

» Eqs.(a) contain h”
» Eqgs.(b) do not contain any accelerations —All the Eqs do not contain FLO,u

> FLOM can be decided from time derivative of Egs.(b)

LAGRANGIAN ANALYSIS

qb(l)z/ = EOI/ — _noyilyliZVZailaul hizl/g 4+ m2?70ui11/1 hi11/1 —0 (b)

» Requiring "“consistency condition” of Egs.(b):
gL(I)V =0, (c)
» Eqs.(b) are satisfied in initial time = Eqgs.(b) are valid in any time
» Eqgs.(b) can be regarded as *“constraints” on initial values
» Equivalence on initial time: /2
¢(1)V ~0.
» We continue this procedure until ;LOH appears in the equations
» Counting the numbers of constraint — DoF can be decided

» We would like to deform consistency condition (c)



LAGRANGIAN ANALYSIS

Consistency condition of Egs.(b)

0= QL(UU ~ auE,uz/ — mQﬁuuuﬂqauhulUl = ¢(2)u. (')
» Egs.(c’) can also be regarded as constraints
Consistency condition of (c¢’)
g'bmi = m?hg; + (terms without h) =0, (d)
. D—1
0 = ([)(2)0 ~ mleh = (/)(3) (e)

» From Eqs.(d), acceleration ho; is decided
» On the other hand, Eq.(e) is constraint
» Consistency condition of (e) is also constraint: gb(4) = q_;)(‘o’) ~ 0

» Finally, we obtain two vector constraints and two scalar constraints

-/ -/
-y IRREDUCIBLE DECOMPOSITION

o, 4
Reconsideration
e’
» From Buchbinder’s result, basis of linear order NCTs are given by,
Rgt1vikave Rm[lllgl/z]uz — RH2ln gm]ul RH1H2viIV2 (a)
? ?
» All of the above terms have same symmetries as,
THIVIH2V2 _ _ H2VIVe — _ TH1V2H2V — TH2V2 VL T[,u1u1u2]u2 —ig)
I’
» Those are symmetries corresponding to Young tableau:
» Conversely, the terms in (a) are also the most general representation of
Y 9 P
THIV1E2V2 §n leading order Q

not constrained in leading order

~ N\

» By only using these symmetries, we ought to show that the terms in (a) is /

~—/ b\



IRREDUCIBLE DECOMPOSITION

We consider the model with the nonderivative nonminimal coupling terms expressed
by general tensor AF171H2V2 constructed by curvature and metric,

S:/de\/—_g

1 1
§gu1y1uzuzu3u3vm huzuzvulh’MBVB + 5 {m29M1U1/JzV2 _I_A/hl/l#zuz} huluth2V2:|

The tensor A#1¥1H2¥2 can be decomposed as follows,

HiVi a2 — VI p2V2 MiVq 22
A hﬂlulhuzuz =T hM1U1hM2U2 + N hN1V1hM2U27

TH1V1p2Y2 — l (A[Mll”llﬂz]l’z N A[M1|V2|M2]V1> -l-l (AMl[VlVZ]MZ % Auz[l’ll’z]ﬂl) i lA[Vlel[muz]
2 6 3 4

N#Hvipevs — A (pavipevz)

A[#1|V1|H2]V2 — l (A#luluzuz e A#zl’luluz)

2

Alvipzr2) : perfect symmetrization of AHLV1H2V2

\/ EINSTEIN MANIFOLD CASE

4

Einstein manifold case [Buchbider et.al.(2000) ] [Akagi, Ohara, Noijiri(2014)]

R
» We consider the case of Einstein manifold R, = o Iur
> QrrivL = % [R/Wgull/l R 2RH(M19U1)U fin QRV(Mlng)H )

» In this case, the condition Det(V°, #%) = 0 is “*uniquely” solved as,

R L2l 2 — () SHIVIH2V2 . ot constrained

» Indeed,
VO}LUO e mQQ(Ou)(UO) o S(O,u)(u()) :> VOuuogg ] o
» There is a zero eigen vector 92 =/

AR e )



LEMMA

Proposition

1.D#H1¥1H2Y2 depends only on metric and its partial derivatives
2.DHVIH2Y2 s general covariant
3.0%%(g,,.,) = Ofor any metric

For any DH1V1H2¥2 satisfying the above properties, we can show D(H1Vik2r2) — ()

Proof
» From assumption 3, DOOOO(QMV + dg,) — DOOOO(guy) = 0 for any dg,.

» Taking 89, as §g,, = Legu, = PAVIIR I
» Using assumption 1 and commutativity [L¢, 0, =0, EgDOOOO =0
» From assumption 2, EgDOOOO = £%9,D00 _ 4D(p000)8p€0.

» Thus, D(P000) — () — Repeating this procedure, [(H1vitzr2) — ()

DRGT MODEL

The action [C. de Rham et al. (2010)]

ipal|
SdRGT[Q;f] o= MfQ/dDJ«”\/—_Q R(Q) —2m? Z Bne(n)(s)] ’
n=0

1 14 1% L m
e(n)(s) =_9/ Z_V.Hnnsmulguzug = .S”’V;jn, Suu — g‘lf ?

T ol B p2

» The potential terms have been tuned so that a *“scalar” constraint exists.

" "Scalar” constraint [S. Akagi and T. Mori (In preparation)]

D—1
il =1l Bn v V2 UnVn 0 1U10 = 2
U=V, (S lpquup) L Z (n 5 1)|0N1 1H2V2 S;Lzug oo .Sunun ﬁ e Qp(meul)a EP
=il E
= (terms without 0,0, 943)
g()pbg()u

s T
0" =g 400

: Projection operator living in D-1 dim space

9M1U1H2V2"'unl/n — 5#1 H2 o Hn 91011/19»021/2 = Hp'n.yn
g p1 P2 " Pn



LINEARIZATION
Complete NCT from dRGT [L. Bernard et al. (2015)]

D—1 B
Ly 2 T e by Uy i
ERY =GR +m Z Fguuulyl gt Sy o =0
n=0 """

» Background EoM can be solved for f — denoting as f=f(g)

» Substituting f=f(g) into the linearized action, we obtain,

S4rRGT

V2
G S U f(9)
Mg( 4 linear

:/de\/__g [%gmmuzr/zuavathuzyzvylhww L % {m2g#11/1u21/2 o 28(25 _ll)Rgmmquz

—255 (Rul[l’1gl’2]u2 s RHz[”lsz]lh) -+ R#1H2V1V2} hmm huzl/z L@ (R2/m2)}

SQD—I

22 2 ]
2(D_1)7 Y2 52

» This result is included in the bottom-up result by, T =

CONDITION FOR GHOST-FREENESS

Det(VOU MO) =0 Vom0 — m2g(0u)(u0) g G0nv0 Ll NO#r0 irh powr0

ZON

/Properﬁes of decomposition into time+space direction \

0.0
55 = M g(Ou)(UO) s _19009;1,11

u
0, 400 2

SOWJO = QggOQBOQE

N = NOur0 Svpu = GOm0 [XY]”U = X”pY‘ou



SCALAR CONSTRAINT

J5 = @l e mZBOQW s m2,519'“y”1y18p1u1

VuBr = m 1 g Sy

1 5 1 D 1
o v 117} 3 ur 2 2
25,V (STHVLE) + 550w B = @+ ¥ + m—m*fo + 5—om A1

R <,‘_“ »"L,’

COFACTOR EXPANSION

Det(VO,uuogyp) _ VOOOODetg(VOpVOBVp) _ Vo,u OOVOC,]/ Oyguu(v(]a,BO)

1% 1 V- -llpV
Dete(VO'u OHVP) = (D _ 1)!9H2 o DVOPQVS a 'VO»U'DVDO




\ - 4
~“  COFACTOR EXPANSION o

<
O Det(‘rﬂy,v()gvp) VOOOODetg(VO“”OH,,p) all V—O’L 00‘70(3/ 0]’9‘“}(‘ rOa’BU)
1
0 VO — Doeee v 0 0 0 0
D S = (7D1)!9H2 N oty e
1
v ‘r()a 4 RS- Vliala--- » 0 0 0 0
YOM( 6)—(—D_2)!9'””33 i Ms”s'“V,uDVD

2
s 90091“/ + AV

PERTURBATIVE SOLUTION

Restriction up to fourth order

1 1
S /dDm /_g |:§gll11/1ll21/2.ll31/3vulhuzyzvylh‘ugy3 + 5 {m2gM1V1M2V2 + TH1V1H2V2 +NM1V1M2V2} hlnvlhltzl/z

TWmvipzv: — gWmvipeve || purapevivs _ (Rm[l&gl/z]uz -5 Rﬂz[wg"zlm)

B = 7§1)RgH1V1ILZV2 + 727_2 (RM1[V19V2]M2 i RM[Vlszlltl) + RMakavive

"""""""

4 b R



Extensions of FP model

Nonlinearization
(**Unique”)

dRGT model

FP in flat space

Curved space extension Linearization around

FP in curved space Unique ?

various backgrounds

Linearized dRGT

SUMMARY

Relationships with other theories

» Our result: Y1, 72 not constrained, vz =1

1 1
» Linearized dRGT model: 71 = i (ﬁ — 5) , 72 =—4s, v3=1 — Compatible

» String theory: =0, 12=-2, 3=-1 — Incompatible
— Derivative NCT ? Background EoM ?

Future works

» Higher order calculation — More on relationship with linearized dRGT
» Simplification of constraint analysis of linearized dRGT

— Minimal model has been completed
» Derivative NCT — String theory ? No-go? G-B dRGT ?

» Higher spin extension



TRIVIAL EXTENSION

Trivial extension

> Let us consider the model obtained by the replacement m? — ?(x): any local function
o = /de\/_—g [%gmumumugvmh#mvylhmw " % (W2 (@)ghasave i | s
» The condition for ghost-freeness
Det(V'**%g,,) = 0,
om0 12 (2)g O 0) 4 GO0 | 10O | 00

> Although a derivative of u?*(z) appears in V,E*”, it does not affect to the condition.

> Once we obtain a ghost-free model with mass m? and tensors T#171#2¥2 (;;?) NF1¥1K2¥2 (12)
, the model with local mass 1°(x) and tensors TH112v2 (42 (z)), NH¥1H2v2(12(3)) are
also ghost-free.

INTRODUCTION

Our research

» Possibility: 1. Leading order NCTs may be constrained by higher order conditions
2. Linearized dRGT model may be extended

» Result: Linear order NCTs are constrained by fourth order condition
A trivial extension of linearized dRGT coincides with bottom-up result

Bottom—up result Top—down result

Leading order condition Original linearized dRGT

Y1, Y2, 3 : not constrained v = %, Yo = —4s9, 13 =1
Fourth order condition l A trivial extension l

Y1, Y2 :not constrained, v3 =1 1, 2 :not constrained, v — 1
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Blue-tilted primordial
gravitational waves from

massive gravity

Shuntaro Mizuno (YITP, Kyoto) . Y TP

m"nmm YUKAWA INSTITUTE FOR
= THEORETICAL PHYSICS

with Tomohiro Fujita, Sachiko Kuroyanagi, Shinji Mukohyama

arXiv:1808.02381[gr-qc]

"
Interferometers and PGWs

10l Density parameter

| 2 ~ of PGWs
o A T -
Planck LISA falico W™ prordInk
§ 1077 SKAE AN / l ~ Frequency
\ntma@' | f=k/2m
10°14 I’ \\ ///I :
~ - We have already
107" ~constraints on Q¢
10" 1078 100 102 from BBN and Planck

fHz]

Interferometers can get information of PGWs on various scales !!



"
Interferometers and ~"Standard” PGWs

o T PGWs from inflation
| |
o 2H”
BN PV =
Planck : USA :}yaLIGO
gP 1079 SKAT /o ﬂ
L L \\ N ,’II
/ RECIGO
N L0 AIMOSt at (Redktltec
S
kY r=0.001 PGWSs spectrum
10-19
10718 1078 100 1012

Planck constrains Qcw < 1071 on interferometers’ scales !!
GW

" JEE
Interferometers and Blue-tilted PGWs

10

il N 4 _____ BBN are better for detection

Planck  faLIG0 ﬁ

, }  Blue-tilted PGWs

§ 107° SKA:
" In standard inflation,
10714 Citis difficult to realize
10-19
1018 10°8 100 1012

Can we obtain consistent and detectable blue-tilted PGWs ?



" JEE
Blue-tilted PGWs from Supersolid inflation

 Supersolid inflation is based on effective field theory of

inflation with both time~diffs and space-diffs.

Endlich, Nicolis, Wang "12, Nicolis, Penco, Rosen 14
interpreted as (Lorentz violating) massive gravity

m/H ~ degreeofM.

» Because of the mass term of the graviton, we can obtain
Blue-tilted PGWSs without violating the null energy condition

Cannone, Tasinato, Wands "14
massive gravity has Higuchi ghost in de Sitter space

when 0 < m?2 < 2H?

|:> In supersolid inflation, 727 can be positive but still O(¢)

"
PGWs from extended supersolid inflation
Ricciardone, Tasinato "17

Extension with nonminimal coupling to introduce hierarchy
between the degree of time~diffs and spatiakdiffs .

GW spectrum vs LISA & LIGO Sens.Curves
T T T

1
LIGO OZI’

S
N
2
wo
|
N
R

Sl\)

N
Il
| ©

H2'

= O(1) is possible

T| 3

L 1 n ]
1 | ] -
! ; 1 with small €
L L L L L L L L L L L L L L L L P L L T L L
10716 10" 107 10" 10*

f[Hz]
But we still need some enhancement mechanism for detection




" JEE
Minimal theory of massive gravity (MTMG)

: De Felice, Mukohyama "15
- Properties of MTMG y Cf. Oliosi’s talk

Having only 2 propagating d.o.f. (No scalar and vector gravitons)

FRW background, tensor perturbations around it are same as

the nonlinear massive gravity by de Rham, Gabadaze, Tolley (dRGT)
|:> Higuchi ghost and other ghosts are absent !!

»Construction of MTMG

' Obtaining Precursor theory by fixing vielbein in dRGT to be ADM one

Writing down the Hamiltonian based on the canonical variables

Imposing 2 constraints to obtain desirable d.o.f.

"
Set-up

» Decomposition and quantization of ;; with gij = a” [e"] .

J
2
hi: =
7«7 aMp )\;x

ik-x

d3k. A A AN
27 e el [’Uk (7)ay + h.c.] ,

(

« Equation of motion for the mode function

CLN

vy, + [k2 +a*p® — ;] v = 0,

. _ —1/(Hjnf7_> (T < —TT) _)m (7_ < Tm)
with  a(7) = {CLTT/TT (7> 7) p(r) = {O )
_Tfr TT' Tm T
‘>
Iinflation \ /‘ radiation dom. radiation dom. a(7)

massive  19€NUTY  magsive massless u(7)



|

Evolution — inflation era

1 1 2
vg+[k2—ﬁ(y2—z)}vk20 v = %—;—2

inf
with Bunch-Davies vacuum initial condition

== v, (1) = Y5 H (~hr) o T2 VR

on super horizon scales

2H-2 L 3—2v
|:> PGW ~ inf ( )

Compared with the standard (massless) case,
PGWSs decrease due to the graviton mass during inflation !!

PGWs from extended supersolid inflation
Ricciardone, Tasinato "17

Extension with nonminimal coupling to introduce hierarchy
between the degree of time~diffs and spatiakdiffs .

GW spectrum vs LISA & LIGO Sens.Curves
T T T

1
LIGO OZI’

S
N
2
wo
|
N
R

10-12 9 m2
= V= - — —=,
IS _ 4 H?
m
108 - = O 1 i I
7 (1) is possible

L 1 n ]
1 | ] -
! ; 1 with small €
L L L L L L L L L L L L L L L L P L L T L L
10716 10" 107 10" 10*

f[Hz]
But we still need some enhancement mechanism for detection




*

Graviton energy density

 Graviton energy density

2 1
T,Sfm = %@uh@j&/hm — plEW) ﬁ(h’ )2 (massless)
. . 1
(analogy with scalar field) ) p(CV) —2a2 (hi;)? +§m2hfj

» Massive phase
PV oc m?hi < a0 o a”?

decays like non-relativistic matter!!
» Massless phase

P a_zhﬁf2 xa ?[(a o) ]? oca™?

decays like relativistic matter (as usual )

"

Power spectrum of PGWs 4k3 vy, |2
OV = NE e
Pmasswe Tm (kT )3 QVPstandard Pl
T
TT V= \/9/4 m2/ 1nf
From BD-vacuum, After instant re- At some pointin RD
GWs are produced heating, k < am era, gravitons lose
and decay on super  and gravitons the mass to avoid
-horizon scales in behave as matter. some obs. bounds.

same way as 09y

Blue-tilt Slow decay Detection
Paw ~ (kr,)° 72" PV o a”? PV o a?



" J
Theoretical prediction of Qaw

v+ = 3—2v
Qe (f) = 10797 [Tt |0 S
7. | 10M4GeV 2 x 108Hz
10 I
Hir=108GeV i B k
1074 BBN_ | | 2m
109 : =10 f<fuv
% i // Pt /I //:II
G [ \\\/ DEGIGO |2
H. 3
= et g | _ Hint
,,,,, - 2> 10 l1014GeV] Hz
10—19 —————
\\ ’¢’ o-§¢”
10-t¢ 10°1'  10¢ 107! 104 10°

f [Hz]

"
Constraints and classifications of parameters

excluded by aLIGO <m
“ME__em  LISA¢m

10% - | detected by
DECIGO

H,;=10° GeV

1

02 04 06 08 10 12 14
m2 /HQ

inf



=
Conclusions

* PGWs gives information of scales different from CMB, which
IS very helpful to distinguish and/or constrain inflation models

 Highly blue-tilted PGWs can be detected by interferometers,
even if their signal is not observed on the CMB scales

* There were obstacles to construct consistent theoretical model
producing highly blue-tilted and detectable PGWs

» We construct a consistent model producing highly blue-tilted
and largely amplified PGWs based on MTMG

" J
Discussions
* Non-Gaussianity of primordial gravitational waves

Fujita, SM, Mukohyama, in preparation

» Extension of MTMG

As in dRGT,  is related with effective cosmological constant

2
Ao = %X(ch 2+ 33X + 3c3) X :ratio of scale factors
. i satisfying
p = TgX X +c3+ H—f(ch-i‘Cz) 1 X% +2cX +c3=0

Tomake ¢; dynamical, one must promote them to c;(¢)

* Influence of reheating/preheating
Kuroyanagi, Lin, Sasaki, Tsujikawa, "17



Thank you very much !!
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Based on arXiv:1810.11000,
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Content

Mechanism of SGWB

PBH abundances

Induced GWs: A probe for non-Gaussianity

e Conclusion

Qcw
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primordial
tensor
perturbation

induced by
scalar
perturbations

incoherent
superposition
by BH/NS
binaries
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1/Hy

log(a)

SGWB from

dend deq A0

binaries

\ J — Stellar

Origin: incoherent \ E'S’:?"IL?’F”" Plffo{}.
superposition of the GWs } :::::::: zgm
emitted by compact star 0T mordial, 50M,,,
binarys (BH, NS,...) i
Frequencies: 100 Hz(for 10Mo) R
Amplitude: 100 Hz il .

10 10 0

Frequency [Hz]

1608.06699

v



SGWB from PBHB

* PBH binaries 107°
107}
* Frequency: 1000Hz |
(for 1Mo) 1075
B 1070 e
e Amplitude: 10-° Hz | — Ot senstivty
10 . __ O pratestion
--:- 05 projection
* Can be used to 1071} g M = 1M fo = 0,05
constrain PBH oo M,=0.1Mp, fuu =006
—-12 i i i i
abundances ST 07 i0° 107 10°
Frequency/Hz
1610.08725

SGWB from 10PT

_ ﬂ T Ix
~ 107%Hz | —
Tpeak ‘ (H 100Gev / \ 100

ﬁ -2 g -1/3
Q h2~100( = -
peak < H. > ( 100 )

* For B/H-~100,
frequency is
10-4Hz, in LISA
band, but the peak i
is only 10-10, "

1512.06239

H Qe (6)

W Qaw(f)
S

W Qg ()
S
Qg (D)

16
105 104 0.001 0.01 0.1

f[Hz]

Mark Hindmarsh’s Talk on Monday.
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PBH abundances

Induced GWs: A probe for non-Gaussianity

Conclusion

f ’ 7 ’ Angular scale ’ ) ) \
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4 Planck
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The formation of
Primordial Black
Holes

dend Are-entry  deq ao

There is a peak on the primordial density
perturbation, which leaves horizon and gets
frozen at a-.

k*:Ha*

SP, Zhang, Huang & Sasaki 1712.09896

The formation of
Primordial Black eyt
Holes |

N L

dini ax dend Are-entry  deq ao

The peak scale re-enters the horizon at radiation
dominated era. If it exceeded some critical
value O(0.1), PBH will form. Its mass is O(Mg).




The Press-Schechter
Mass Function

0.3

o(MH) (mass variance) I
typical size of fluctuations,Nh PBH forming

/ fluctuations

P(8)

0.1

e When oy <<d.,  can be approximated by exponential:

5 \/iUMe ( 52 )
~ — Xp | —
™ 50 20']2\/[

The Press-Schechter
Mass Function

0.3

PBH forming

/ fluctuations

o(Mw) (mass variance) i
typical size of fluctuati(N

P(3)

0.1

Non-Gaussianity can increase (fn.>0) or decrease (fn.<0) the |
PBH adundances.

1307.4995



The Press-Schechter
Mass Function

aeq agp

Ae
Qppn = — =0

Are ap Qre

variance of the density perturbation at mass M.

03 C

M =

3

The current PBH mass measured in critical mass is

It is easy to estimate z(M) relation at horizon reentry

Therefore we have

f= {lepn 254JJ_X]OSB(A1)(

Qcpm

GHre B GQ71~/2(1 + Z)2H0

Mo

M >—1/2

— =~ B (1 4 2 (M))

where “eq” means equality and “re” means re-entry for the peak of the

PBH Mass [g]
1016 1020 1024 1028 1032 1036
100 r T -l| -“ |‘, T T T T T T T T T T T T T T]
i l\ fémtO- ’,"’:
.lm{sing’,
E t_\:lll
3 By (’”(1) ‘I:H)”:('m : ‘ : : : : \

S ot O o N~ ) B
% (projection) A
2 : : :

G i
s ;

2 :

2 |
o | |
o : :

A~ : :

10° 18 i-16 ' i-14 ' i-12 ' i-1o ' i-s ' i-e ' i-4 ' i-z ' io ' i2
10 10 10 10 10 10 10 10 10 10 10

PBH Mass [M , ]

1807.11495



PHB fraction QPBH/QDM

Y ag=1Pf : ‘ ‘ ; : : :
,,,20 RBsmoe DN Y A 2\
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Macuo/ /
‘ . EROS/OGLE
{ The fact that LIGO has
3not detected SGWB can
~put an upper bound for
PBH abundance

%Suharu HSC

PHB fraction QPBH/QDM

T T ST E AT = BT C AT LR T

PBH Mass [M , ]
1807.11495
PBH Mass [g]
1024 1028 1032 1036
%A
3 : Xel\\
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" Wave| ffect makes it |mpOSS|bIe' N
6 constrain PBH on small scales
1701.02151 v3
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PBH Mass [g]
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Content

Mechanism of SGWB

PBH abundances and GWs

Induced GWs: A probe for non-Gaussianity

Conclusion



Induced GWs

. . . 10 T
L ° 5101 y-ray background,
od .. L fe!ntolens!ng,
&,{\0 . °. m|crolen5|_ng, _
Qe'sb ° () 1“ LIGO, CMB p-distortion

Peak of scalar 0 W AR W M
perturbation PBH Mass
on small scales 6‘@0

Saito & Yokoyama,

0812.4339

Induced GWs

e From the nonlinear equation of motion for the tensor perturbation

W+ 2%+ k*hy, = Sk, 1)

* where the source term is (Ananda et al. gr-qc/0612013)

Bl 1?5, (cos2p
S(k,n) = 36/ Wﬁ sin“ 0 ( in 2@) (pl(I)k—l
% lJO(USU)jo(U:U) . 2]1(UIL’)]0(’U.’,U) . 2]0('&1’)]1(’01:) + 3]1(U$)j12(1)$)
ux vIx uvx

e This equation can be solved by the Green function method.



Induced GWs

e The quantity we want to calculate is

213
Qw0 = 15 (772 ) Tt

e Then we know that Qew~<hh>~<SS>~<OPPOP>~Pp2.

* |t is naive to believe that @ stays Gaussian when it becomes
very large on small scales.

e Therefore we want to consider the non-Gaussian scalar
induced GWs (Komatsu & Spergel astro-ph/0005036)

R0 = RX) + Py, | B2 = (20|

Induced GWs

e Thenthe2ptof @ is

(D D,) = 2 6Dk + p)g <P%(k) + 2F§LId3z Py(|k—1| )P@(Z)> .

* And we have to specify the power spectrum of the primordial
curvature perturbation. As we mentioned, we suppose there
is a narrow peak at around k*.

by Do (k — ki)
(k) = (2n)3220k?2 “xP A

e Narrow means o<<k*. This is for simplicity.




Induced GWs
e The result is the integral (Cai, SP & Sasaki, 1810.11000):

14w
Qaw _6AR2w02 < ) / dv/ duuv T (u,v)

vk—ky)? k
X {e_( P + 2ARF§ILEﬁ / gerf (%7)]
)

Induced GWs
e Then the result is the integral:
Qaw = 6./47327m2 ( ) / dv/HU duuv T (u,v)

_ (vk—ky)? U /7‘(’ Uk
20’E f

(uk—ks)? T uk
|: 2052 +2ARFNL kferf (%)] .
7.( _ 14?1+ —u2)2 T lu? 0% =3\
u,v) 4 4uv Quv
Kohri & Tareda, u _H) _31n 3 — (u+v)? 2
1804.0&?2 R ——
‘ 2
u? 4 v? —3) ¥
N ( o) Ol )




Induced GWs

e Then the result is the integral:

14w
Q =6 d

awW = AR27TO'2 < > / U/Ll y

(vk—Fkx)? o T
T2 H2ARFR — 4/ zerf
X [6 2 AR Nka 261‘

uk —kx 2

X [6_( kQO-I; ) QARFNL k.\/?erf

4% — (1 +v? —u?)? ? u? +v? —3
4uv 2uv

1
Z!
Kohri & Tareda, w2 +0v2 -3
-2+

1 804.08.2

non-Gaussian
contributions

1075
1077
e Up: .Q[% = 10_2 L 1079
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. -3 10~ 1 Fn=10
o =
DOWﬂ. d% 10 FNL=20
10713 A
FnL=50
e Gray curve: LISA o5 | | | |
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* Frequency:
PBH window <—>LISA band

10—7,
* Coincidence, but fortunate _
for our universe. R F =0
: 10~ Fne=10
Fri=20
o7 Fai=50
10—15
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10~° Multiple Peaks
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* Frequency: 0.003 Hz
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PBH as
all Dark Matter

Constraint if |
PBH as DM
oA, <03

S

-2 0 2 4 6
log(IFNLD

log(Fni 2AR)

log(FNL)



PBH as

all Dark Matter

log(Fni 2AR)

log(FNL)

PBH as

all Dark Matter

N‘""‘M_

LISA bound )

log(FNi2AR)
(e}




6 =

| . ] PBH as ,
/ all Dark Matter
4L

[\
T

’ # LISA bound ]ﬁ

log(Fni.2AR)
N

If PBH serves as all DM,
the induced GWs must be
detectable by LISA,
independent of 7, or Fy.

6

Summary

e Induced GW is a very important source of SGWB.

e GWs induced by non-Gaussian scalar perturbations: k-
slope, multiple peaks, cutoff.

e |f PBHs can serve as all the DM, induced GWs must be
detectable by LISA, no matter how small & g or fyi is.



Thank you.’
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Energy density of tensor perturbation
in Einstein-Weyl gravity and
its application to primordial gravitational waves

Yuki Niiyama (Hirosaki U.)

Collaborator
Nathalie Deruelle (Université Paris 7)

Yu Furuya, Yuuiti Sendouda (Hirosaki U.)

. 1/10
B Introduction /

- Consider Einstein-Weyl gravity whose action is

1 k=8rG, c=1

_ 4 g vpo
Slg] = B /d v —9g [R - §pracu g 7 : coupling constant

- A motivation to add such quadratic curvature terms is from
renormalization of quantum field theory [1,2].

- There exist massless and massive spin-2 DOFs in Minkowski space,
but the massive ones are ghost [3], which is thought to lead to instabilities
when interacting with the other non-ghost fields [4].

[1] G t Hooft et al., Ann. Inst. Henri. Poincaré(1974)
[2] K. S. Stelle, Phys. Rev. D16(1977)

[3] K. S. Stelle, Gen. Rel. Grav. 9(1978)

[4] A. Pais and G. E. Uhlenbeck, Phys. Rev. 79(1950)

v
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B Introduction /

- Consider Einstein-Weyl gravity whose action is

1 . ~ k=8rG, c=1
Slgl = o /d =g [R — 5 Curpa O v : coupling constant

- A motivation to add such quadratic curvature terms is from
renormalization of quantum field theory [1,2].

- There exist massless and massive spin-2 DOFs in Minkowski space,
but the massive ones are ghost [3], which is thought to lead to instabilities
when interacting with the other non-ghost fields [4].

9 A
€T

Hy = — +V(z) [1] G t Hooft et al., Ann. Inst. Henri. Poincaré(1974)
— +00 [2] K. S. Stelle, Phys. Rev. D16(1977)
[3] K. S. Stelle, Gen. Rel. Grav. 9(1978)

£ [4] A. Pais and G. E. Uhlenbeck, Phys. Rev. 79(1950)

v

- 2/10
B Introduction /

- This theory should be tested by observations, quantitatively.

- As a first step, we concentrate on the classical theory.

- The two DOFs are decoupled at linear level on Minkowski [3] and
de Sitter background [5], so they are harmless on these background.

- What happens in the case that two DOFs are coupled each other
has not been clarified so far on, e.g., the decelerated universe.

- In this talk, we show how the two primordial gravitational waves (PGWSs),
massless and massive DOFs, can contribute to the cosmic expansion
as energy components.

[5] T. Clunan and M. Sasaki, Class. Quant. Grav. 27(2010)



B Setup and assumptions 3/10

- Consider the tensor perturbation h;; on the flat FLRW metric:

ds® = a*(1)[—dr? + (8ij + hsj)dz'dz?]
a : scale factor T : conformal time §7h;; =0 = & hy;
* Introduce the Weyl radius, /v, and assume /7 > H L.

- The modes, with physical wavelength % , cross with the Weyl radius v
after entering the horizon.

Logl[length]

A

Weyl radius /7y

Hubble radius {1 /

» Log[scale factor]
a4 = Qinj

B Setup and assumptions 3/10

- Consider the tensor perturbation h;; on the flat FLRW metric:

ds® = a®(1)[—d7?* + (8;j + hyj)dx'da?]
a : scale factor T : conformal time §7hi; = 0= & hyj
- Introduce the Weyl radius, /7, and assume 7 > H,.|

- The modes, with physical wavelength 2 , cross with the Weyl radius v
after entering the horizon.

Log[length]

A

Weyl radius /7y

Large CA2

Hubble radius H !

> Log[scale factor]
a = QAjnj
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- Consider the tensor perturbation h;; on the flat FLRW metric:
ds® = a*(1)[—dr? + (8ij + hsj)dz'dz?]

a : scale factor T : conformal time §7h;; =0 = & hy;
- Introduce the Weyl radius, /7, and assume 7 > H.! .

- The modes, with physical wavelength % , cross with the Weyl radius v
after entering the horizon.

Logl[length]

A

Weyl radius /7y |---mmemmmmmdemeneeeee g

Large CA2 /
Hubble radius {1

a = Qjni

Log[scale factor]
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B Second order action /

- Consider an action equivalent to the second order action for
tensor perturbation h;;in Einstein-Weyl gravity:
(‘l2

a e 2 ) -
8/€5[¢,¢]=/d4$ [—;(3¢)2+Z¢'¢+;(8¢)2+;<Z+2a2+:>¢.¢+222¢.¢_22¢.¢

1 [Massless tensor field ¢i; |

1 613 = = Y2 0y + Vahy
hij = —=(¢ij + Vi) ’ a ’
V2a

|Massive ghost tensor field ¥;; |

V2y
v i = —_—Hhi

Second order action

in E+W gravity 8rkS[h] = /d4x [_QQ(ah)2 - 'Y(Dh)Q]

Note: ¢ij and ?i; are NOT metric, but ¢;;/a and v;;/a correspond to metric.

+ ¢ij and 1;;are useful to investigate the late-time behavior
since the interaction gets negligible as time proceeds.



B EOM in the radiation era: a(7) oc 7 5/10

- In this talk, we only consider the evolution of the modes ¢, and vy
in radiation era, a X 7, where

3L I
fij(1,2) Z / d 3/2fk -(k)e’k'“" ( f iseither ¢ , ¢ or h.) ]
- The System of equations is, with a time coordinate z := k7 «x a ,

2 2 2
Z‘Ffbk:;% k+(1+—+ )%— ¢2—;¢k,

where a prime denotes the derivative wrt 2, and

2 2 2 2

z a z z

2 ¢k:§( )t D) + zhy, W:—f( K hw)
~ ’

Z~ is a dimension-less parameter, and z = 2z, represents
a time when the wavelength catches up with Weyl radius v~ .

. . . . 6/10
B Numerical solutions (Radiation era: a «2)

Pk 1!%

Blue: Red:

o |

Boundary condition at z = 2ini = 0.1 |

A simple setup:
hi(zini) = 1,
. (2ini) = h(2ini) = hy (Zini) = 0

Insert them into
the derivatives below

Log[amplitude]

d)k = ¢k(h7 h//)a ¢;<: = ¢k<h> h/) hl,a h/,/)
Y = (b, h"), by = r(h, W' 07 R

0 100
Logl[z]

- We can see that ¢x and ¥ are decoupled after z = z, .

3

-For z> z,, ¢/z is damped as z~', while /2 scales as 2”2,

- We further find an interesting behavior that i = M grows as 2
at early time z < z,, but it will be discussed somewhere else.



B Numerical solutions (Radiation era: a « 2 )

Log[amplitude]

B Behavior at the late time: z > z,

Pk

»
z

Blue: @ Red: %

Y

z

Z = 2y

10°
+
otk Green: hi = M
: %
'\

Boundary condition at 2z = 2ini = 0.1 |

- We further find an interesting behavior that h. =

A simple setup:
hi(zini) = 1,
. (2ini) = hi(2ini) = hy (Zini) = 0

Insert them into
the derivatives below

(bk - ¢k(h7 h//)a ¢;c = ¢k(h7 hl? h/,7 h///)
’(/}k: = ’(/)k(h7 h//)v 1% = ’L/}k(hﬁ h/’ h”’ hl”)

- We can see that ¢r and ¥ are decoupled after z = z, .

-For z > z,, ¢r/z is damped as 2z~ 1 while ¥1/z scales as 275,

@ grows as 2

at early time z < z,, but it will be discussed somewhere else.

G+ on = =

Log[length]

A

Weyl radius /7y |------------1

Hubble radius 7! /

- From now on, we concentrate on understanding this behavior of
tensor mode at late time, analytically.

- As z — 00 , the system of equation is reduced to

2 22 2 2
Ui+ (if‘?zﬂr%) Vi = =gy
2l

Logl[z]

6/10

7/10



B Behavior at the late time: 2 > z, 7/10

- From now on, we concentrate on understanding this behavior of
tensor mode at late time, analytically.

- As z — 00 , the system of equation is reduced to

2 2 2 2 2
L= = w%+(izt7—+;>wk=§¢%ﬁ¢%
” )

The interaction between ¢;; and v;;becomes negligible.

Logl[length]
r' H_l
a
k
Weyl radius /7y |------------
Hubble radius H !
Log[Z]

. . 8/10
B Behavior at the late time: z > z, /
- The problem to solve is the approximated equations below:

2
z

¢Z+¢k20, Z+Z—2¢k20 as z — oo.
2

- We then have the following solutions:

b et Vi D_%[—(ijzl)z/\/Z] Z— 00 eii\tﬁ t : cosmic time

.
z z 5z 2 25 t:/ a(7)dr

- We can see from the above solutions that ¢ oscillates with
the conformal time 7 while ¥ with the cosmic time ¢ .

- These solutions agree with
the numerical solutions
on the right or previous slide.

e
4

o
z




B Behavior at the late time: 2 > z, 8/10

- The problem to solve is the approximated equations below:

2
z

¢ +dr =0, Z+Z—2¢k20 as z — oo.
5

- We then have the following solutions:

t : cosmic time

t= /T a(7)dT

b, et v  Doi-(x1)z/\z] #7® o
Yk ~

z Z z z

1
2

o
<

- We can see from the above solutions that ¢x oscillates with
the conformal time 7T while % with the cosmic time ¢ .

- These solutions agree with
the numerical solutions i
on the right or previous slide.

B Behavior at the late time: z > z, 8/10
- The problem to solve is the approximated equations below:
P+ ok =0 Z+§—;wk:0 as z — oo.
- We then have the following solutions:
b et i D—%[—(iilﬂ/ﬁ] 2o GFigE t : cosmic time

z Z z

- These solutions agree with
the numerical solutions =i
on the right or previous slide.
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B Energy density of GWs

- Give a definition for energy density of GWs in Einstein-Weyl
gravity from the (00) component of Noether pseudo tensor.

- The Noether pseudo for ¢ijand ¥ij are

1 oL L 1 OL L
@V(Lb) = _77458 17 +5V 7¢ l/(’lﬁ) = —77#]8 i +5V P
) V=9 0(9,dij) hOu O = g NG Wi T =
1 v v L<Z> 1 » y Ld)
= Srat 0 ¢ O+ T — OO+ 8,

where/—g = a?, Lyand L, are extracted from the total Lagrangian L :
) .
8Ly = —5(06) + 50+ 6
.. .2 2
L=1Lgy+ Ly + Ling 8&L¢}:;(3¢)2+;<Z+2a+:)¢'¢

a2

8 Lo = 240 - (aas— </>>
a a

. 9/10
B Energy density of GWs
- Give a definition for energy density of GWSs in Einstein-Weyl
gravity from the (00) component of Noether pseudo tensor.
- The Noether pseudo for @ijand ¥ij are
viey L 0Ly o . o Lo vy L 0Ly oo Ly
O 00, O = e M e
1 L 1 L
- W8V¢'a“¢+5y“?f - _smﬁw'aWJf‘syu?f

where/—g = a*, Lyand L, are extracted from the total Lagrangian L :

, )
8hLy = =3 (06)° + 5-0- &

22 2

L =Ly+ Ly + Ling suio = 3007+ (G425 + 5 v

a2

8kLing = 291/) : (a¢ - ¢)>
a a



B Time dependence of energy density: z >z, ' °

- Inserting the analytical solutions at late time into
the (0O0) component of Noether pseudo tensor, we find

dp etz = py=(0"Yxz7*  Radiation

oFit/ /A
NE

- Insertion of numerical solutions into ps and py yields

Vg — = (@(¢)> _,—3 Negative matter

- Blue: pg¢
\\j Red: py
T Solid line: positive
§\§ Dashed line: negative
S~
&

;

. . 10/10
B Time dependence of energy density: z > z,
- Inserting the analytical solutions at the late time into
the (00) component of Noether pseudo tensor, we find
b x et —> 0, =0 x 2™ Radiation
For consistency with observations, they need to satisfy
Y Q4 < Q,
- Inserti Q| < Qpar or Qy +Qpry ~ 0.3
1 dp; . 2
.= — = c — 3H
= TTogk (i=¢,9), p /K
), :energy density of radiation
] Qpur energy density of dark matter tive
~|I0TFE wasrieunric: llegative
=+
Sz




B Summary

- We investigated the behavior of tensor mode at the late time.

- Two DOFs, ¢;j and ;; , are decoupled after the wavelength catches up
with the Weyl radius /7 .

¢ij behaves as radiation, while ¥;; as matter with negative energy.

- The amount of their energy should be restricted by

> Q¢<Qr [ 2 |Q¢|<QDM or Qw—I—QDMNO.S
B Future work

- To evaluate the observable, energy of GWs at the current epoch,
we'd like to decide the initial condition for ¢;;and %i; by, e.g., connecting
the solution in the radiation era with the one in the inflationary era.

Connected

|Inflationary era | at = Zoen

2k Hiy¢ T @k (Zren) + Vi (Zren)

hk Zron) ™~ s Minf h . _ k\<reh k\<reh
(Zren) Ny k(Zren) .

[N. Deruelle et al., JHEP09(2012)009] with 4 constants of integration



B Noether pseudo tensor

- Variation of the Lagrangian density is

oL oL oL oL A
= 90 9T 50 b ij T ii + =0,V L
Oij Oudia 3(31/(251'.7')8#”(23” * Oij Outhis 8(31/7!)1'3‘)8# Vi + O
ij ij oL oL .
—_£u ) o - oL I
g(Z) au(blj + gw au’l/)LJ + 81/ <a(a’/¢”)aﬂ¢w + a(ayw”)aqu> + aﬂ ,

0,L

where [, &/, and & are

oL oL i oL oL
_ ) ij . _ ij._ _
L=Lo+ Ly + Lint ’ & = 0y % 0(0yi5) » & 0oy O 0(0ybij) -

- Moving the divergence term on RHS to LHS, we have

A , 1 , oL oL
AVTIO,) = E0ut + £t ¥ OuL | 1= S (9L s s

- Finally we define the energy density for \phi and \psi as follows:

L
fij+(syu—f ( f is either ¢ or ¢ .)

1 dL
o) = L)
V=4

b V=900, f5) "

B Behavior at the Early time: 2 < z,

- The variables ¢r and % are not convenient, so let us take the
variable transformation such that

R R

4
* Thus the EOM for new variables is
rt (14 2) R = 22 v Q=
k 2 k= —22Q | Q”Q’“_E'
Log[length]
) i)
-
a

Weyl radius /7y [f------------ o A

Hubble radius 7!




B Behavior at the Early time: z < z,

- Assuming that the term 2@}, in the EOM is negligible, we have

22 R
R%+(1+%Rk:—:2;z@€ Qr T Q="  as 20,
Y ’ Y

where we have used z < z, on LHS, so its solutions are

) ) C, z . Cy 2z i ) s
Rk _ Clezz + Cge—zz , Qk — 2_}_Qezz 22 2 iz C3ezz + C’4e )
1 Z’Y 25,7

- Going back to  ¢r/zand /% they behave as

R —i R 112z, 112\ . »
%:*fk:cl%+cze QL—Qk+l_Cl(7 ffz)e”JrCz(**fj)e’Z+Cge”+C4e v
z z 223 .

22 s z22 2 22

o
z

B Behavior at the Early time: 2 < z,

- Assuming that the term 2@}, in the EOM is negligible, we have

7 22 / Rk
Rt (1 Ry = =220, Q+Qk—z as z — 0,
,y 9

™

where we have used z < z, on LHS, so its solutions are

Ry = Cie” +Che™ | Q= 2_}_2€zz 2—2 ze 7+ Cse” + Che™ ™"
i 22 22

- Going back to  ¢éx/zand /7 they behave as

iz —iz R 1 1 1 l )
%:—&2016*-"-0267 g _Qk"r k =(C f‘J‘*i ezz+02 T*i 7“—'—03622-%046 vz
z 22 22 22 2 ?Y 2 2 'Qy .

o
z

1 10 100 1000 10t



B Behavior at the Early time: z < z,
- Discuss about the validity of neglecting 2Qj term in the EOM for R, .

- If the initial value for Qis smaller than the one for Ry, Qu(zini) < Ri(%ii),
we can see from the below plot that the term 2@, is negligible
numerically. ( Inflationary setup yields Q. (zini) < Ri(2ini) . )

Red: Qi , Blue: Ry

Solid line: presence of zQ)}, , Dashed line: absence of 2@, .

Boundary condition at z = z;,; = 0.01

S
3
3

C(Re() B2 Qu2)
V= {Qw)’ Qu(z) Qk<z>}

Qk = hk s Rk = Zi(h% + hk)

Z=Zini

S
T

=

Log[Amplitude]

Inflationary setup |

0.001

hi(2ini) = const.,
. (Zini) = By (Zini) = by (2ini) =0
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PLAN OF TALK

e Formation and evaporation of PBHs
 PBHs, dark matter and LIGO events

 PBHs and large-scale structure

 PBHs and quantum gravity

BLACK HOLE FORMATION

Rg=2GM/c?=3(M/My) km => pg = 10'3(M/M;)2 g/cm?
Stellar BH (M~10!-2M,,), IMBH (M~103-M,), SMBH (M~105M,)

Small “primordial”’ BHs can only form in early Universe
cf. cosmological density p ~ 1/(Gt?) ~105(t/s)-2g/cm’
10-3g at1043s  (minimum)

Mpg ~ ct/G= 101°g at 10-23s (evaporating) => huge range
10°M, atls (maximum)



Mon. Not. R. astr. Soc. (1971) 152, 75—78.

GRAVITATIONALLY COLLAPSED OBJECTS OF VERY
LOW MASS

Stephen Hawking
(Communicated by M. J. Rees)

(Received 1970 November 9)

SUMMARY

It is suggested that there may be a large number of gravitationally collapsed
objects of mass 1075 g upwards which were formed as a result of fluctuations in
the early Universe. They could carry an electric charge of up to + 30 electron
units. Such objects would produce distinctive tracks in bubble chambers and
could form atoms with orbiting electrons or protons. A mass of 1017 g of such
objects could have accumulated at the centre of a star like the Sun. If such a
star later became a neutron star there would be a steady accretion of matter by
a central collapsed object which could eventually swallow up the whole star in
about ten million years.

SOVIET ASTRONOMY — AJ VOL. 10, NO. 4 JANUARY-FEBRUARY, 1967

THE HYPOTHESIS OF CORES RETARDED DURING
EXPANSION AND THE HOT COSMOLOGICAL MODEL
Ya. B. Zel’dovich and 1. D. Novikov

Translated from Astronomicheskii Zhurnal, Vol. 43, No. 4,

pp. 758-760, July-August, 1966
Original article submitted March 14, 1966

The existence of bodies with dimensions less than Rg = 2GM/c? at the early stages of ex-
pansion of the cosmological model leads to a strong accretion of radiation by these bodies.

cores retarded during expansion [3, 4] will conflict with observational data.




Mon. Not. R. astr. Soc. (1974) 168, 309—415.

BLACK HOLES IN THE EARLY UNIVERSE
B. ¥. Carr and S. W. Hawking

(Received 1974 February 25)

SUMMARY

The existence of galaxies today implies that the early Universe must have
been inhomogeneous. Some regions might have got so compressed that they
underwent gravitational collapse to produce black holes. Once formed, black
holes in the early Universe would grow by accreting nearby matter. A first
estimate suggests that they might grow at the same rate as the Universe during
the radiation era and be of the order of 1015 to 1017 solar masses now. The
observational evidence however is against the existence of such giant black
holes. This motivates a more detailed study of the rate of accretion which
shows that black holes will not in fact substantially increase their original
mass by accretion. There could thus be primordial black holes around now
with masses from 1075 g upwards.

= no observational evidence against them!

=> need to consider quantum effects

HAWKING RADIATION

Singularity

letters to nature | Event Horizon
Nature 248, 30 - 31 (01 March 1974); doi:10.1038/248030a0

Black Hole

Collapsing Star

Black hole explosions?
S. W. HAWKING
Department of Applied Mathematics and Theoretical Physics and Institute of Astronomy University of Cambridge

QUANTUM gravitational effects are usually ignored in calculations of the formation and evolution of black holes. The justification for this is that
the radius of curvature of space-time outside the event horizon is very large compared to the Planck length (Gh/c 312 ~ 10733 ¢m, the length scale
on which quantum fluctuations of the metric are expected to be of order unity. This means that the energy density of particles created by the
gravitational field is small compared to the space-time curvature. Even though quantum effects may be small locally, they may still, however, add
up to produce a significant effect over the lifetime of the Universe =~ 10'7 s which is very long compared to the Planck time = 103 5. The purpose
of this letter is to show that this indeed may be the case: it seems that any black hole will create and emit particles such as neutrinos or photons at
just the rate that one would expect if the black hole was a body with a temperature of (/27) (h/2k) = 1078 (Ma/M)K where x is the surface gravity
of the black hole!. As a black hole emits this thermal radiation one would expect it to lose mass. This in turn would increase the surface gravity
and so increase the rate of emission. The black hole would therefore have a finite life of the order of 107 (M@/M)‘3 s. For a black hole of solar
mass this is much longer than the age of the Universe. There might, however, be much smaller black holes which were formed by fluctuations in
the early UniverseZ. Any such black hole of mass less than 1015 g would have evaporated by now. Near the end of its life the rate of emission would
be very high and about 10* erg would be released in the last 0.1 s. This is a fairly small explosion by astr ical standards but it is equivalent to
about 1 million 1 Mton hydrogen bombs.

PBHs are important even if they never formed!



PBH EVAPORATION

Black holes radiate thermally with temperature
-1

3
T=_1 _q107| M| K
8nGkM M, .
M
=> evaporate completelyin time t,,,~10% [ﬁ] y
0

M ~10%5g => final explosion phase today (10°° ergs)
v-ray background at 100 MeV => Qpgu(1015g) <103

=> explosions undetectable in standard particle physics model

T > Tewe=3K for M < 10%g => “quantum” black holes

BLACK HOLES
HIGHER DIMENSIONS

Planck 107g 1022My  Universal

10°My QSO
exploding 10'0g 10°M, MW
evaporating 101g 102M, IMBH
lunar 10%'g 1 Mg Stellar

terrestrial P 0%°g

QUANTUM/CLASSICAL



FORMATION MECHANISMS

Primordial inhomogeneities Inflation

Pressure reduction Form more easily but need spherical symmetry

0.44

Cosmic strings PBH constraints => G p< 106 %
g 0.40

8.
0.38

0.36
03¢
00 05 1.0 15 20
MM,

Bubble collisions
Need fine-tuning of bubble formation rate

Domain walls PBHs can be very large

PBH FORMATION => LARGE INHOMOGENEITIES

To collapse against pressure,need (Carr1975)

R>+/act whend~1 => oy>a  (p=apc?)

P()

Variance ¢

Gaussian fluctns with <dy>>12=¢(M)

— fraction of PBHs

2
a

2e(M)?

B(M) ~&(M) exp

1+3ot)_1

€(M) constant => (M) constant => JdN/dM « M _( Ira

p=0 => need spherical symmetry => B(M)~ 0.06 £(M)*®
(Khlopov & Polnarev 1980)



Limit on fraction of Universe collapsing

B(M) fraction of density in PBHs of mass M at formation

General limit

1/2 1/2
Prea Qs R 6 IL] 18 M
Ocsr 107 R, => B ~10°Qpgy sec|”™ 10"° Qppy 105 g
Unevaporated M>101g => Qppy < 0.25 (CDM)

Evaporating now  M~10%g=> Qppy < 10® (GRB)
Evaporated in past M<1015g

=> constraints from entropy,y-background, BBNS

CONSTRAINTSON B(M) => CONSTRAINTS ON g(M)

PBHs are unique probe of &€ on small scales.

Need blue spectrum or spectral feature to produce them.



PBHS FROM NEAR-CRITICAL COLLAPSE

Critical phenomena =>M =k My(6-9,)"
(Niemeyer & Jedamzik 1999, Shibata & Sasaki 1999)

spectrum peaks at horizon mass with extended low mass tail
dN/dM = M"" " exp[~(M /M,)""] (y=0.35) (Yokoyama 1998)
Later calculations and peak analysis =>

8¢~ 0.45 and appliesto 8§ =8¢ ~ 10710 (Musco & Miller 2013)

. 10"
— 10% B=10%", k=(10" m)" /"“\
‘P@f b ‘E 10% \
e = \
o < 25
0 |
- e &! \
3 &
S & 5 10% |
Ve 3
, o |
i ; . |
§ 10%° |
S
10 initial )
‘0" urrent
(6-6.) 10 10 10 107 10" 10 10 10

MORE PRECISE ESTIMATE OF &

Threshold of primordial black hole formation

Tomohiro Harada,* 2Chul-Moon Yoo, and **Kazunori Kohri

! : ! T T —
Musco  Miller (2012) + / PRD 88 084051 (2013)
Our formula
(0735 — L
08 r Gauged Carr -
Maximumw
0.6 L I e
- Ry SUH _ 2 /W
04} L | UH _ gin
g 1+ 3w
0.62 for radiation
0 £ L
0 0.2 0.4 0.6 0.8 1

* For uniform-Hubble gauge but 0.4 for synchronous gauge



NON-GAUSSIAN EFFECTS

Expected whenever fluctuations are large

Bullock & Primack 1997, lvanov 1998, Hidalgo 2007, Young & Byres 2013, Byrnes et al 2014
P(4)

PBH productionis deep inside tail of distribution.

% This means, PBH production is largely
sensitive to non-Gaussianity.

*

... even more so, asthe PBH abundance

depends exponentially on the amplitude
of the perturbations.

% As shown by Byrneset al,, there is a very u

strong modal coupling between long- and
short-wavelength modes.

... typically larger than
5 to 10 sigma

Quantum field theory => n-point correlation function
Slow-roll correction using inflation 3-point correlataor

P) = 1 1- §_3_‘S exp _5_2 Seery & Hidalgo 2006
\N27mE DR 232

NON-SPHERICITY EFFECTS

On Ellipsoidal Collapse and Primordial Black-Hole Formation

Florian Kiihnel®>* and Marit Sandstad?:

arXiv:1602:04815

% Non-Sphericity

0.100 ~ Spherical
k=047, y=062
(_ elipsoidal threshold 0.001 : z I‘\) :}J : z : :4
5 Y g
ec g [
— ~14+kK ¥)
50 50

spherical threshold 1
10°° 107 10° 0001 0010 0100 1
Mt

% Simple estimate: —2  consider collapse of largest enclosed sphere (greencurve):

Gec 9 o2\'/?
¢ (1 (T
3, (1+3e) + oo <5§)



PBHS AND INFLATION
PBHs formed before reheat inflated away =>
M > Myin = Mpy(Teneat/ Tp) 2> 1 gm
CMB quadrupole => T, .. < 10°GeV

But inflation generates fluctuations v

(Sp V3/2
p MPI V H
Can these generate PBHs? % g ’

Slow roll plus friction-domination

E=(M,V'IV) <<l, n=M,V"IV <<1

=> nearly scale-invariant fluctuations

18,2l ~ K", 8 ~ M4 withn =1-3E +2n~1

CMB => 83~ 10 =>need n > 1 for PBHs
Observe n <1 on horizon scale => need running index for PBHs.

dinn

Planck gives ~-0.02 +0.01 (wrongsign!)

Need inflation model with n > 1 or some feature in V(¢) at large k

There are numerous other inflationary models for PBH formation.

Vincent Vennin “Stochastic inflation and PBHSs”



CONSTRAINTS FOR EVAPORATING PBHS

B. Carr, K. Kohri, Y. Sendouda & J. Yokoyama PRD 81(2010) 104019

16

10

Big bang nucleosynthesis
0™t

Gamma-ray background

10
Extragalactic cosmic rays 10#
=
. . 0™
Neutrino relics
10
LSP relics
10 L :
CMB distortions L 2em
ID.M A A A A A A
9 10 I 12 13 14 15 16
log(M/g)

CAN PBH EXPLOSIONS GENERATE y-RAY BURSTS?

GRB => dn/dt < 106 pc3y! (if uniform) or < 1 pc3y-! (if in halo)
Galactic y-halo =>dn/dt=0.06 pc3y! Lehoucqetal (2009)
Cosmic rays => dn/dt=0.02 pc3y!  Makietal (1996)
Observational limit depends on details of final explosive phase

Can some short (100msec) y-ray bursts s .
be PBH explosions? 3 L g E
Cline et al (2003)=>42 BATSEevents = ~——— =
Cline et al (2005)=> ? KONUS events = g e
Cline et al (2007) => 8 Swift events § % LR ‘\ﬂ\;
Local => Euclideandbn, V/V_,, test 3 \;i 4 -

Maybe Shibazaki not so wrong! T e =



PRIMORDIAL BLACK HOLES AS DARK MATTER

PRO PBH can do it!

L} =
T 7Y

* Black holes exist
* No new physics needed i

* LIGO results

CON

* Requires fine-tuning

WAR PRODUCTION CO-ORDINATING COMMITTEE

0,h?
0.01 0.02 0.03
0.26 T T

st [ ; 025
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baryon-to-photon ratio n

Q.= 0.01, Q= 0.25 = need baryoTnic and non—bﬁaryonio DM
MACHOs WIMPs
PBHs are non-baryonic with features of both WIMPs and MACHOs

1017-102g PBHs excluded by femtolensing of GRBs
1026-1033g PBHs excluded by microlensing of LMC  (2010)
Above 103M, excluded by dynamical effects

=> windows at 10'6-1017g or 1020-1024g or 1033-1036g for dark matter

Asteroid Sublunar Intermediate Mass
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Early microlensing searches suggested MACHOs with 0.5 M,
=> PBH formation at QCD transition?

Pressure reduction => PBH mass function peak at 0.5 M

Later found that at most 20% of DM can be in these objects

PRIMORDIAL BLACK HOLES AS DARK MATTER

Bernard Carr,'* Florian Kiihnel,? T and Marit Sandstad® *

PRD 94, 083504, arXiv:1607.06077
f(M) ~ (B /10-8) M/M, )12
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Three windows: (A) intermedate mass; (B) sublunar mass; (C) asteroid mass.

Also (D) Planck mass relics

But some of these limits are now thought to be wrong

WHICH MASS WINDOW IS MOST PLAUSIBLE?

PBH dark matter @10%°g

PBH dark matter @10 M,
from hybrid inflation from double inflation
Clesse & Garcia-Bellido Inomata et al
arXiv:1701.02544

arXiv:1501.07565
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Primordial black holes with an accurate QCD equation of state

Christian T. Byrnes,'"* Mark Hindmarsh,"?> T Sam Young,'* and Michael R. S. Hawkins®

arXiv:1801.06138
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Explains why Mpgy ~ Mc ~ 1 M, but B must be fine-tune

Primordial black holes from inflaton and spectator field perturbations
in a matter-dominated era

Bernard Carr,l‘* Tommi Tenkanen,” and Ville Vaskonen>*

Phys Rev D 96, 063507 (2017)

Primordial Black Hole Formation During Slow Reheating After Inflation

Bernard Carr,"* Konstantinos Dimopoulos,? T Charlotte Owen,? ¥ and Tommi Tenkanen'-$

arXiv:1804.08639

Primordial Black Holes With Multi-Spike Mass Spectra

Bernard Carr’>* and Florian Kiihnel? 2
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Primordial Black Holes
Perspectives in Gravitational Wave Astronomy
d,e

Misao Sasaki®, Teruaki Suyama®?, Takahiro Tanaka®®, and Shuichiro Yokoyama

arXiv:1801.05235

Millilensing

Microlensing constraints on primordial black holes
with the Subaru/HSC Andromeda observation

Niikura et al. arXiv:1701.02151v3
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CONSTRAINTS ON PRIMORDIAL BLACK HOLES

Bernard Carr,™? * Kazunori Kohri,® T Yuuiti Sendouda,* ¥ and Jun’ichi Yokoyama

Progress Theoretical Physics (2018)
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These constraints are not just nails in a coffin!

Each constraint is a potential signature

PBHSs are interesting even if f << 1

CKS 2016

EXTENDED MASS FUNCTION?

Most constraints assume monochromatic PBH mass function

Can we evade standard limits with extended mass spectrum?

But this is two-edged sword!

PBHs may be dark matter even if fraction is low at each scale

PBHs giving dark matter at one scale may violate limits at others



PBH CONSTRAINTS FOR EXTENDED MASS FUNCTIONS
Carr, Raidal, Tenkanen, Vaskonen & Veermae (arXiv:1705.05567)
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PBHS AS GENERATORS OF COSMIC STRUCTURES
B.J. Carr & J. Silk
arXiv:1801.00672

What is maximum mass of PBH?

Could 108-10"° Mg black holes in galactic nuclei be primordial?
BBNS =>t<1s=>M<10°Mg.....but B < 106 (t/s)"2

Supermassive PBHs could also generate cosmic structures
on larger scale through ‘seed’ or ‘Poisson’ effect

Upper limit on p distortion of CMB excludes 10* < M/Mg< 102
for Gaussian fluctuations but some models evades these limits.
Otherwise need accretion factor of (M/10*M,)-"

CONSTRAINTS FROM CMB DISTORTIONS

PBHs => density fluctuations

S increase for t < 7 x 10 s => weak BBNS limit
=> pn distortionsfor 7x106s<t<3x10°s
y distortions for 3x 109s <t<3 x 10%?s

— (M) < u'2 ~ 102 for 104 < M/M, < 1012

=> PBHs have M < 10° M,, for Gaussian fluctuations

Kohri, Suyama & Yokoyama PRD 90, 083514 (2014)

But can alleviate limits if PBHs form from phase transition
or from non-Gaussian fluctuations or in ‘patch’ model

Nakama, Suyama & Yokoyama PRD 93, 103522 (2016)



Limits on primordial black holes from g distortions
in cosmic microwave background

Tomohiro Nakama,1 Bernard Carr,2’3 and Joseph Silk'*?

PHYSICAL REVIEW D 97, 043525 (2018)

If primordial black holes (PBHs) form directly from inhomogeneities in the early Universe, then the
number in the mass range 103 — 10'2 M, is severely constrained by upper limits to the y distortion in the
cosmic microwave background (CMB). This is because inhomogeneities on these scales will be dissipated
by Silk damping in the redshift interval 5 x 10* < z <2 x 10, If the primordial fluctuations on a given
mass scale have a Gaussian distribution and PBHs form on the high-o tail, as in the simplest scenarios, then
the y constraints exclude PBHs in this mass range from playing any interesting cosmological role. Only if
the fluctuations are highly non-Gaussian, or form through some mechanism unrelated to the primordial
fluctuations, can this conclusion be obviated.

FIRAS, fyi=co,

-HYPERPIXIE

_..-="8INGLE

SEED AND POISSON FLUCTUATIONS

PBHs larger than 102My cannot provide dark matter but can
affect large-scale structure through seed effect on small scales
or Poisson effect on large scales even if f small.

If region of mass M contains PBHs of mass m, initial fluctuation is

5 m/M (seed)

(fm/M)Y? (Poisson)

f =1 => Poisson dominates; f <<1 => seed dominates for M < m/f.
Fluctuation grows as z-! from z,, ~ 104, so mass binding at zg is

4000 mzz'  (seed
- 5 (seed)

107 fmzz*  (Poisson)



SEED VERSUS POISSON

S M
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f=1=>m<10°Mg =>M <10"252 Mg < Mg, (Poisson)

Can constrain PBH scenarios by requiring that various
cosmic structures do not form too early

first bound clouds (M = 10 M)

Can apply to | dwarf galaxies (M = 10'° M)
MW galaxies (M = 102 M)
clusters (M = 103 M)
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- m/M,
102 104 106 108 1010 1012 10

First clouds bind earlier than in standard model
Extended PBH mass function => DM and cosmic structures



SUPERMASSIVE PBHS AS SEEDS FOR GALAXIES

Correlating Black Hole Mass
to Stellar System Mass

Seed effect => Mg~ 103 m (zz/10)
= naturally explain Mgy/My,qe relation

Effect of mergers?

Also predict mass function of galaxies (cf. Press-Schechter)

dN,/dM oc M~ exp(—M/M,) M, ~ 10'2M,,

and core density profile  p(r) oc /4

Bondi accretion => m ~ m;/(1 —m;nt), Meq~105Mo

=>diverges at 7 = 1/(nm;) ~ (Meq/mi)(CGQ/c)Steq
=> upper limit ~ m; > Meg(teg/t,) ~ 10" My

Joe Silk

What IMBH can do for dwarf galaxies

motivation: something new may be needed
mostly passive today but active in gas-rich past

1.Suppress number of luminous dwarfs

2. Generate cores in dwarfs by dynamical heating
3 Resolve the “too big to fail” problem

4. Create bulgeless disks

5. Form ultrafaint dwarfs & ultradiffuse galaxies
6. Reduce baryon fraction in MWG-mass galaxies
7. Seeds for SMBH at high z

8. ULXs in outskirts of galaxies: relics of dwarfs
9. AGN triggering of star formation in dwarfs

10. Early galaxy formation

Predictions: 21cm, LISA, TDEs, u-lensing




PBHS AND LIGO

Masses in the Stellar Graveyard

in Solar M.

Known Neutron Stars -

LIGO/VIRGO collaboration

Do we need Population Il or primordial BHs?

Prescience of Japanese!

GRAVITATIONAL WAVES FROM COALESCING BLACK HOLE MACHO BINARIES

Takashi Nakamura, Misao Sasaki, Takahiro Tanaka and Kii Thorne

THE ASTROPHYSICAL JOURNAL, 487:1.139-1.142,

If MACHOs are black holes of mass ~0.5 M, they must have been formed in the early universe when the
temperature was ~1 GeV. We estimate that in this case in our Galaxy’s halo out to ~ 50 kpc there exist ~5 X
10® black hole binaries the coalescence times of which are comparable to the age of the universe, so that the
coalescence rate will be ~5 x 107> events yr ' per galaxy. This suggests that we can expect a few events per
year within 15 Mpc. The gravitational waves from such coalescing black hole MACHOs can be detected by the
first generation of interferometers in the LIGO/VIRGO/TAMA/GEO network. Therefore, the existence of black
hole MACHOs can be tested within the next 5 yr by gravitational waves.

POSSIBLE INDIRECT CONFIRMATION OF THE EXISTENCE OF POP Ill MASSIVE STARS BY
GRAVITATIONAL WAVES

Tomaya Kinagawa, Kohei Inayoshi, Kenta Hotokezaka, Daisuka Nakauchi and Tahashi Nakamura

MNRAS 442, 2963-2992

We perform population synthesis simulations for Population III (Pop III) coalescing com-
pact binary which merges within the age of the Universe. We found that the typical mass of
Pop III binary black holes (BH-BHs) is ~30 Mg so that the inspiral chirp signal of gravita-
tional waves can be detected up to z = 0.28 by KAGRA, Adv. LIGO, Adv. Virgo and GEO



Did LIGO detect dark matter?

Simeon Bird,* Ilias Cholis, Julian B. Mufioz, Yacine Ali-Haimoud, Marc
Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, and Adam G. Riess’

arXiv:1603.00464
Dark matter in 20-100 My, binaries may provide observed rate of 2-53 Gpc-lyr -

Primordial Black Hole Scenario for the Gravitational-Wave Event GW150914

Misao Sasaki,1 Teruaki Suyama,2 Takahiro Tanakal,3’l and Shuichiro Yokoyama4

arXiv:1603.08338

Only need small f and comparable to limits from CMB distortion

LIGO gravitational wave detection, primordial black holes and the near-IR
cosmic infrared background anisotropies

A. Kashlinsky?,
arXiv:1605.04023

PBHs generate early structure => infrared background

Spin Distribution of Primordial Black Holes

Takeshi Chiba! and Shuichiro Yokoyama?

arXiv:1704.06573

Abstract
We estimate the spin distribution of primordial black holes based on the recent study of the crit-
ical phenomena in the gravitational collapse of a rotating radiation fluid. We find that primordial

black holes are mostly slowly rotating.
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Gravitational Waves Induced by non-Gaussian Scalar Perturbations
Rong-gen Cai®®, Shi Pi¢ and Misao Sasaki®®d-®

arXiv:1810.11000

if PBHs with masses of 10?°g to 10*?g are identified as cold dark matter of the Universe, the
corresponding GWs must be detectable by LISA, irrespective of the value of fni,.

Testing Primordial Black Holes as Dark Matter through LISA

N. Bartolo®®¢, V. De Lucad, G. Franciolini?, M. Peloso®”, D. Racco®® and A. Riotto?
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CONCLUSIONS
PBHs are best MACHO candidate and invoked for three roles:

Dark matter LIGO events Cosmic structure

These are distinct roles but with an extended mass function
PBHs could possibly fulfill all three.

This talk is dedicated to the memory of my friend
and mentor Stephen Hawking. He wrote the first
paper on primordial black holes in 1971. If they
play any of the roles discussed here, this may
have been his most prescient and important work

[FOLLOWING SLIDES NOT SHOWN]
PBHS, HIGHER DIMENSIONS AND QUANTUM GRAVITY

COMPTON-SCHWARZSCHILD DUALITY

BLACK HOLE UNCERTAINTY PRINCIPLE CORRESPONDENCI
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What happens where Compton and Schwarzschild intersect?

R, =\Gh/c* ~10%cm, M, =+lhc/G ~107g,
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This must be an important feature of theory of quantum gravity.

Critical point or smooth minimum?



Planck Scale Criticality?

Smallest black hole
or largest particle

Inaccessible

T T T 1
0 1 2 3 4
M

But this breaks T-duality A7 — M2/M, R — R%/R

In string theory this relates momentum-carrying string states to
winding states & relates sub-Planck and super-Planck lengths

Smooth minimum? Preserves T-duality?
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Compton scale becomes Schwarzschild scale for M>>Mp?
Compton irrelevant for M>>Mp since Rc<<Rp?
Cannot localize on scale below Rg?

=> BHs are intrinsically quantum (BH radiation, firewalls)
Schwarzschild scale becomes Compton scale for M<<Mp?
=> link between elementary particles and sub-Planckian BHs



ARE ELEMENTARY PARTICLES SPINNING BLACK HOLES?

Sivaram & Sinha “Strong gravity, black holes and hadrons” PRD 16, 1975 (1977)

1. Both hadrons and Kerr-Newman black holes are almost entirely characterized by
just three parameters: mass, charge and angular momentum.

2. Both hadrons and Kerr-Newman black holes have magnetic dipole moments, but
do not have electric dipole moments.

3. Typical hadrons and Kerr-Newman black holes have gyromagnetic ratios of 2.

4. Hadrons and Kerr-Newman black holes have similar linear relationships between
angular momentum and mass squared, i.e., J M2

5. When Kerr-Newman black holes interact, their surface areas may increase but can

never decrease, which is potentially analogous to the increase of cross-sections

found in hadron collisions.

Oldershaw “Hadrons as Kerr-Newman black holes” arXiv/0701006

COMPTON-SCHWARZSCHILD CORRESPONDENCE

Simplest expression asymptoting to Compton/Schwarzschild is

R — 00 26GM
5 Me c2
Ry Oh 1y + 2 (M 2 (M < Mp) generalised Compton wavelength
¢ Mec B\ Mp
R - ch:ZM i <J\]@p)2] (0 S Mp) generalised event horizon

More generally consider any function Ry (M) = Ry (M) such that
hl/(Mc) (M<<M,)

2GM /c* (M >>M,)

Can interpret in terms of Generalised Uncertainty Principle.



UNCERTAINTY PRINCIPLE

A
Photon of momentum p determines position to precision
Ax>A=h/p butimparts momentum Ap~p @

h
—R.=—
DAp = e (Compton wavelength)

Ax >

GENERALIZED UNCERTAINTY PRINCIPLE

Photon of frequency o approaching to distance R induces
=> acceleration a ~ Ghw /(cR)* over time t~ R/c
=> uncertainty in momentum Ap ~ p ~ hw/c and in position

Ax
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=> Generalized Compton Wavelength

DO GUP UNCERTAINTIES ADD LINEARLY?

Root-mean-square error would give
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“Generalized Uncertainty and Self-dual Black Holes”
Carr, Modesto & Premont-Schwarz, arXiv: 1107.0708

LOOP BLACK HOLES
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Metric has self-duality with dual radius r=r= \/ai

implies M=m(1+P} (ADM mass)

=> another asymptotic infinity (r=0) with BH mass Mp2/m

aO

Physical radial coordinate R=+/H(r) =4/r’ +—=2
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J c
This removes singularity and corresponds to the quadratic GEH.

h (m<M,)
mc

Suggests GR origin for quantum effects!

Sub-Planckian black holes are hidden within wormholes



Sub-Planckian Black Holes and the GUP

B. Carr, J. Mureika, P. Nicolini, JHEP 07 (2015) 52, arXiv:1504.07637

Can black holes exist below the Planck mass?

Include GUP in GR by emphasizing duality in the black hole mass

B Mg,
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Black Hole Temperature
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A Duality Between Curvature and Torsion

Swanand Khanapurkar*' and Tejinder P. Singh'

arXiv: 1804.00167

ABSTRACT
Compton wavelength and Schwarzschild radius are considered here as limiting cases of a
unified length scale. Using this length, it is shown that the Dirac equation and the Einstein
equations for a point mass are limiting cases of an underlying theory which includes torsion.
We show that in this underlying theory the gravitational interaction between small masses
is weaker than in Newtonian gravity. We explain as to why the Kerr-Newman black hole
and the electron both have the same non-classical gyromagnetic ratio. We propose a duality
between curvature and torsion and show that general relativity and teleparallel gravity are
respectively the large mass and small mass limit of the ECSK theory. We demonstrate that

small scale effects of torsion can be tested with current technology.



BLACK HOLES IN HIGHER DIMENSIONS
M-theory => extra compactified dimensions (n)

Standard model =>V, ~ Mp™ ,Mp, ~ M,
Large extra dimensions =>V, >>Mp™, Mp << M,

TeV quantum gravity?

Schwarzschild radius rg= Mp !(Mpy/Mp)V/(+0
Temperature Tgy= (n+1)/rg < 4D case
Lifetime tgy =Mp ! (Mpy/Mp)+3/(1+0 > 4D case

BLACK HOLES AND HIGHER DIMENSIONS

Assume D=3+n dimensions for R<Rg

G, mm
Fgrav =—2 2-:n : (R<RE) GD
R G = g
Gauss law ( R )
G mym, E

(R>Rg)

grav ~
3D black hole smaller than Rg for M < M}, = ¢*Rg/G

M
M,

1/(14n)
RszRE( ) for Mp< M < My =c*Rg/G.

This intersects standard Compton boundary at new Planck scales

Rp ~ (RBR}p)YT - M ~ (MEM)/ )



All extra dimensions with scale Rg
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For hierarchy of compactification scales:
R, = o;Rp ap > ag > ... > ap > 1

we can define average compactification scale

n 1/n n 1/n
i=1 1=1

For R..1 < R<R, Schwarzschild radius becomes

~Y

A7\ V/(HR) k<n \ V/OTR)
Rs = Ry <M_P) , Ruwy=|Rp H R; :
=1

This intersects standard Compton boundary at

Rp ~ (RB(Rg))V/ My~ (ME(Mg)™)Y/ )



Hierarchy of compactified dimensions
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DETECTABLE AT LHC?
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“Does Compton—Schwarzschild duality in higher
dimensions exclude TeV quantum gravity?’

Matthew Lake and Bernard Carr

IJMPD 28 (2019) 1930001

COMPTON WAVELENGTH IN 3D

Cross-section for photon-electron scattering o = h/(Mc)

Reduced wavelength appears in KG or Dirac equations #/(Mec)

de Broglie £ = hw, p= hk => pair-production for R<R;

COMPTON WAVELENGTH IN (3+n) SPATIAL DIMENSIONS

To preserve duality, effective Compton wavelength must become
M

—1/(14n)
Rc = Ry (M—> for M > Mpg = h/(cRp) = M2 /Ml
E

Then revised Planck length is  R. ~ (RpRE)Y ™) > R

but Planck mass is unchanged => no TeV quantum gravity!
logR




BUT IS THIS TRUE?

If (3+n)D wave function is spherically symmetricin all dim’

=> R, ~ M- (as in 3D case)

If (3+n)D wave function is quasi-spherical (i.e. spherically
symmetric in large dimensions but pancaked in extra dim’)

=> R ~ M-1/(1+n)

This preserves duality between R and Rg
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Collisional Penrose process
of
spinning particles

Kazumasa Okabayashi(Waseda Uni.)
with Kei-ichi Maeda(Waseda Uni.)
and Hirotada Okawa(YITP)
Based on PhysRevD.98.064027
(arXiv:1804.07264)

Introduction

* In 2009, it is showed that the center

of mass energy diverges when two ;O

particles (1),(2) collide near the { Particle(1)

horizon of an extreme Kerr BH.

(BSW process) (Banados, Silk and West 09) f Particle(3)

Ecm = —(P{' + qu)(Plu + PZM) —
(at the horizon of an extreme BH)

* Due to the red shift, it is not trivial ;
that the energy at infinity (of a '_.-;,artide(z)
resulting particle (3)) also diverges. o



Introduction

» The observable energy efficiency at infinity

E3 The ratio of the resulting energy

o
= E, + E, tothe sum of initially energy '

U]
; Particle(1)

Elastic collision of the same mass particles

- 6.32(Leiderschneider & Piran <16) f Particle(3)
Compton scattering (a photon & a massive particle) /\
— 13.92 (Schnittman ‘14) — Maximum efficiency ' [\ :

(c.f. Ogasawara, Harada & Miyamoto ‘16, .~‘O

Leiderschneider & Piran ‘16, Zaslavskii *16) ®

T Barticled)
 The above works do not include the
case that particles are spinning. This

case Is also physically reasonable. - Particle(2)

« We studied the effect of spin to the energy efficiency.

- - . An extreme
Spinning particle <ot B
- EO.M

Dp# _ *iﬁﬂ v §Po -
dr 2 VP _ 0=/
D.SHY The center =/
I pro” — pYot of mass z#
_f,u-}u ll \%\ N S S = 2:“2""2
St p, =0 —— —
s/uM
* The Mometum and the four velocity
DSHY L dz e
pli = ‘UU# + v, dt ve = W 17”17# 5’0’________——————J
2 3:-/
1= —p'pu
: . Ewe
The signature v¥v, - T
|:> is non trivial The relation between E and s for a

particle to reach the horizon with
satisfying v#v, < 0.




Splnnlng DarUCIe ﬁ;\ﬁ)grljme
* The radial motion
Bhue g poat
LoBuwis=o
: r
Spinning particle s
* The radial motion
e oo -

Green:s = —0.27uM . ;
N # This value is the max angular

momentum with which the
particle can reach the horizon.
5 M This particle is called critical.

] =2EM

7




Spinning particle

* The radial motion

Red :s = 0.44uM
Blue:s =0
Green:s = —0.27uM

Spinning particle

* The radial motion

Red :s = 0.44uM
~  Blue:s=0
__. Green:s = —-0.27uM

An extreme
Kerr BH

6=m/2

This value is the max angular
momentum with which the

particle can reach the horizon.
This particle is called critical.

] =2EM

A particle greater than
critical is called super-critical.

] > 2EM

An extreme
Kerr BH

0=m/2

A

This value is the max angular
momentum with which the

particle can reach the horizon.
This particle is called critical.

] =2EM

A particle greater than
critical is called super-critical.

] > 2EM

sub-critical ] <2EM




An extreme
Kerr BH

Spinning particle

* The radial motion

Red :s = 0.44uM
Blue:s =0 o =m/2

Green:s = —0.27uM i i
reen:s : 1 This value is the max angular

momentum with which the
particle can reach the horizon.
This particle is called critical.

. =

__________________________

] =2EM

A particle greater than
critical is called super-critical.

] > 2EM

sub-critical ] <2EM

iti e We choose th ty of
(1): critical (2): sub-critical. © choose the property o

the spinning particle as
with the spinless case.

Collisional Penrose Process
* Conservation laws //
g

E1 +E2 - E3 +E4
Ji+L=]3+]4

Pl +P; =P + P/ Q ;

S1+S, =857+ 5,

.. . M
» The collision near the horizon: r,, = P

Head-on collision



Collisional Penrose Process

» Conservation laws

//
E,+E,=E;+E, AC —
=

Ji+L=]3+]4
P{+P{=P§"+PL{
S1+S, =S7+ S,

.. . M
The collision near the horizon: r, = T

<>

3

>
>

.
Z

NN

Ji=2E.M, ], =2E,M(1+¢)(<0)

Collisional Penrose Process

Head-on collision

» Conservation laws //
E1 + Ez - E3 + E4
it =J3+ /4 -

Pl +P; =P + P/
S1+S, =857+ 5,

.. . M
The collision near the horizon: r, = T

J1 =2E:M, ], =2E;M(1+{)({ <0)

Head-on collision

J3 = 2EsM(1 + aze + Bz€?) S3 = S1,54 = Sy




Collisional Penrose Process

Conservation laws

El +E2 - E3 +E4
Jitl2=J3+]4

Pl + P} = P] +P]
S1 +S') Sq‘l‘SA_

s
=
<>

3

-
>

The collision near the horizon: r, =

M
1—€

.
£

Ji=2E.M, ], =2E,M(1+¢)(<0)

NN

Head-on collision

]3 = 2E3M(1 + 0536 + ﬁ3€2)

53 == 51,54 == 52

Solve in terms of E, and E5

Expand the radial momentum about € and
check the conservation law order by order.

Analyze the energy efficiency: n =

E3
E{+E,

The elastic scattering (the same masses)

The effect of spin in the case of E; = u, a3 = +0

02 0

0.0 0.1

=02 -01 04

3
S1

The contour map of E3 in terms of s; and s,.

In the green region the timelike condition of the

particle (3) is satisfied. E5 can reach the maximum

at the red point: (s;,5,)=(0.013,-0.27)
E3 max = 30.016p

| Js = 2EsM(1+ aze + Bye?) |

|y = 2EM, ], = 2E,M(1+0) |

E3 = EB(El'SLSZla?))’
EZ = EZ (El' S$1,582, %3, ,83, Q

It has to be analyzed whether E, = u
| is possible or not since the particle (2)
| has the restriction E, > p,

oF T
20|
-a0f
Ps
-60 |

-a0}

=100 |-

IR R '—::.f PR a.g Z
The relation giving E, = p in
terms of ¢ and S5

Maximum efficincy:15.01




The “Compton” scattering
(the scattering of a massless particle (1)
and a massive particle (2))

The contour map of E5/E; in terms of s, and as.
The timelike condition is trivial for a spinless particle.

E;/E; can also reach the maximum at the
red point: (s,, a3)=(—0.27,+0)

Eg,max=26.85E1

‘ J3 = 2EsM(1 + aze + f3€?) l

1= 2EM, ] = 2E,M(1+0) |

E3/E; = E5(s2, a3),
E, = E5(Eq, 52, a3, £3,6).

____________________________________________________________

The parameters giving E, = u

B3

¢

The relation giving E; = u in terms of ¢
and S5 in the case of E; = 10%u.

The maximum efficiency:
26.85 (E; — 0).

Conclusion and discussion

» The maximum efficiency in the elastic collision of the same

mass spinning particles: 15.01
(the spinless case: 6.32)

» The maximum efficiency in the “Compton” scattering: 26.85

(the spinless case: 13.93)

(chosen as antiparallel to the BH).

we can obrain about twice as large efficiency as the
spinless case when the spin of the particle (2) is negative.

> In the case of the rear-end collision,

the efficiency is not good as the head-on collision case.

O The case where particle (2) is also
near critical

O The case of non-extreme BH

O About the super Penrose process

-~
o 7
4 Rear-end collision




Neqgative . when a, IS zero

To bounce back, ase + 3¢ > 0 is needed; hence,
the particle 3 cannot come back to infinity when a5
IS exactly zero and 35 is negative.

EM

Like (€, §)-definition of limit, we can choose € as much smaller
than any small a5. Therefore, the particle 3 can bounce back
when 5 is negative and in the sence of a; = 40, a3 = 0.

| Js = 2EsM(1+ aze + Bye?) |

The elastic scattering (the same masses) (s = 2EM Jp = 2EM(1 4 ) |

From the timelike condition we find that B = E3(Eq 51,52, @3),
EZ = EZ(El'Sl'SZI ag,ﬁS'{)_

s; and s3 must be small. Hence, we first
set s; and s is set to zero. °s

0.4]
Jg‘
_oe E

. From the left graph, we find a3 = +0
so | gives the largest efficiency.

Hence next we set a; = +0 and
analyze the maximal efficiency.

00 01 02 03 04

The contour map of E5 in terms of a5 and
s, when s; and sz is set to zero.



| Js = 2EM(1 + aze + Bye?) |

The iIlVCI'_Se ¢ COIIID'[O_H” Scaj[tering | Jy = 2E.M, J, = 2E,M(1 + Q) |
(the scattering of a massive particle (1)
and a massless particle (2)) E3 = E3(E1, 51, @3),

The effect of spin in the case of E; = u, a3 = +0 Ez = Ea(Ey, 81,23, B3, €).

S

0.05

The contour map of E, in
terms of ¢ and f3.

20

0.00}

007
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-0.05}
0.05
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0.02
-0.10 0.02

0.01

-0.15 »I PR TS 1 " 7 | 1 A 1 ol
0.0 0.1 0.2 03 0.4 0.5

*3
The contour map of E5 in terms of s; and s,.

In the green region the timelike condition of the
particle (3) is satisfied.

E3max = 15.64u Maximum efficincy:15.64

E, = 0 is possible when 3¢ — oo,

How to describe a spinning particle

—
1 1 11 = DS#V “’ pr— p— l'}";q .
« Timelike condition PH =t vy = = ulv, = —1

In the case of the spin-less case, the time-like condition is trivial but in this
case this condition nontrivial because momentum is not parallel to 4 velocity.
S A

vy <0 [ > R —

0.4f
This graph is obtained by
a - M(Extreme Kerr),
r — M(to evaluate at the horizon)

0.0 >

For E = p,
—0.270 < s < 0.449

0.4k




Momentum of a spinning particle

Momentums of a particle can be written by E, ] as below;

3 _
u© - CHAXIHE 2 () b= 1)
ur2vVAa(1 — r_3) X=r
—(1+s)E+
s - ZAEIE L]
pr (1—-3)
u@® =
cr\/'r'«? (r3 + (14 5)r+$)E — (r+5)J]" = (r —1)2[(r3 — s2)2 + r4(J — (1 + 5) E)?]
(r—1)(r3 —s?)
v.flg 0 0 —a Vj% sin’ ¢
e, (@) — 0 \’g [L 0
0 0 VE “
—%smrﬁ' 0 0 r;%“ ) sin @

The elastic scattering

Radial mqmentum (the same masses)
conservation at 15t order

f(s1, E3,a3) _ f(s1,E1,0 (E1(24+ s2) — Esg1(s2, a3)]
1—s? 71— S% 1—s3

O3

f(s.E,a) := \/E2[3 —2a(1 + s)][1 + 2s — 2a(1 + s)] — (1 — s2)2,

gi(s.a) =2+s—2a(l+s),

We get a quadratic equation of Es: AE§ —2BEs+C =10

A= 7[3790‘3(1 +S1)][l + 254 720‘3(1 781): + ) T
(1 —s3)

2
3291(82-.0'3)2;) [( + 52 )8 ;E1 +o1f(s1, En, 0]}

2
_ o [(3042s1)(1—s3)? + (1 —s])?2+2)% .,
C=E K 2 )El—zalw

(-sh)@ts) o



Radial momentum T ot
conservation at 2" order

PE; = (1 — .92)3(E1 — E3)2 . Linear equation of E,

Since this fixes the value of E,, _E This efficiency is obtained
we obtain the efficiency by T=E +E  when as, B3, and ¢ are given.
P = 2(Ba— E)(1 - s2)* + 40 [ {210 +-2(1 4 sa) Elaa(2 + 52) = fall = )] = sa(2 + 5)2(Ea — )

T 2
Q:= o fiihgﬂo) —og{f{%‘%&ag) x (h.(sl) — (1 + 51)2(2 + s1)g2(s1, as) + 2Bs(1 + s1) (1 —sf)gl(sl.ag)”
f(s, B a) = /E2[3 - 2a(1 + s)][1 + 25 — 2a(1 + 5)] — (1 — s2)2
qi(s, ) =24+ 5 —2a(l + s,
go(s,a) = a(2+s—2a),
h(s) =1+ 7s+0s% +116% — ¢4
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‘Exploring GR Effects of Super-
- Massive BH at Galactic Center 2:

on the detail of fitting theory with
observational data

Takayuki Ohgami (Daido Univ.) / X#HEsE (KEIKZE)
member
H. Saida (Daido Univ.) / BHE&ER (KEKEE)
S. Nishiyama (Miyagi U. Edu) / BAILEE (BEHEKF)
Y. Takamori (Wakayama NCT)/ Z#F%FFN (FIRILUEE)
M. Takahashi (Aichi U. Edu) / & El (BEFMHEEKRF)
+Some Collaborators in Obs. and Instr.

JGRG28@Rikkyo Univ., Tokyo
Nov. 8, 2018

1. What we want to do

1.Fitting with data and Parameter search (Newton, GR)
2.Simulation and obtaining RV curve ( ¢2Newton(t), czar(t) )
3.Calculate GR effect cAz := czgr(t) — czNewton ()

4.Comparison between cAz and data

Saida-san has talked about Step 2, 3 and 4.
| wll talk about detail of Step 1.




2. fitting method : y2-fitting
- Method

x2- fitting of with obs. data
N\

Newton Gravity Astro. data : Keck + VLT
General Relativity Spect. data : Subaru + Keck + VLT

. fitting parameters (19 parameters)

- Msgra+ : Mass of Sgr A*
- Rsgra~  : Distance to Sgr A*
: S2’s initial conditions
: Our velocity
: Astro. ref. point for Keck
: Velocity of ref. point for Keck
: Astro. ref. point for VLT

: Velocity of ref. point for VLT (X, Y) = (RA, Dec)

. Fitting and Test of a Model using Obs. Data
» Hypotheses
- Measurement of each obs. data z; is individually
a stochastic process obeying P(Z; p;, 0;) .
- Mean p; of each obs. data z; is modeled with L

parameters, i = fi(A1,---,AL) .

Step1 : Find the best-fit values of A;.

Step2 | Test the goodness of fitting.
Step3 | If good, then estimate the error of fitting.




3. Best-fit parameter

Best-fit values A" ... 4"*Y correspond to the
minimum of 2

2
N o f@'(A(beSt) .” ,Ag;beSt))

2 e 1 1 9
Xmin — § :
g;

ES

2 ) ) ; ’
= Xmin IS @ stochastic variable, because z;’s are the
stochastic variables.

= The probability distribution of Ximin iS w2 -distribution
of N—-L degrees of freedom.

. Maximum Likelihood Estimation (MLE)
- Just find »2min

- Merit : Short calculation times

- Demerit : Cannot obtain the error (Need an extra estimation)

. Bayesian inference < Our next approach

- Compute probability distribution of parameters A;.

- Merit : Introduction of a prior Prob. Dist. from previous result.
Prob. Dist. we want = Likelihood x prior Prob. Dist.

- Demerit : very long time




. Markov Chain Monte Carlo method (MCMC)

One of the Monte Carlo method

Random Walk following Markov process (Markov Chain)

Change the parameter values following probability (Likelihood).
Next step tends to go to high likelihood value. (Metropolis method)

Probability

parameter
. How to obtain the Likelihood?

- Now, we use y2-fitting.

- p-value (cumulative probability) of x2 = Likelihood

. Histogram by MCMC

- Taking many step of Markov chain, we can obtain the histogram
showing prob. dis. of parameters.

- Estimate mean, deviation, --- form this histogram.

20000 40000 60000 80000
step

http://hosho.ees.hokudai.ac.jp/~kubo/stat/2010/Qdai/b/kuboQ2010b.pdf




. Setting
- Theory : Newton Gravity
- Fitting data : only RV data (Subaru + Keck + VLT)
- Fitting params. : Mgg A+, Zapos Vapo

Here, we can convert Zapo; Vapo 10

tapo : Date at apocenter 1 > inclination
e . Eccentricity () : Longitude of the Ascending Node
" : Period W Argument of Perigee

— Prior Prob. Dist. :
Uniform — Test Model

Normal Dist. following result of GRAVITY+(2018)
— Referencing Model

Test Model

ol i BH mass, period
’ : (others?)

Cel 67 :"%:-' ] . BH mass seems to
S SO | be too small.

oarso |- - Because of fitting
by only RV.

s 00500 |-
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Referencing Model

Parameter Mean 1o
MBH [x106 Msun] 4.117 0.032
tapo [yr] 1994.30070 : 0.00014
: e 0.88476 0.00022
F | . T iy 16.05263 0.00018
w0 ] i [deg] 133.804 0.091
Q [deg] 227.82 0.22
 [deq] 66.15 0.11
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. | explained detail of our fitting theory with observational
data (y2- fitting, MCMC).

- The plan using MCMC is not complete yet. (in progress)

. Test fitting by MCMC (only Newton Grav.)
- If we fit with only RV data, does NOT work.
» RV data is not enough statistically.

- It is necessary to fit with both datas (Astro. and RV).
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Planar domain walls
INn Kerr spacetime

Filip Ficek
Jagiellonian University
Cracow, Poland

Plan

e Domain walls

» Searching for domain wall transits

e Details of the simulation

e Results

e Summary



Domain walls

PHYSICAL REVIEW D 67, 025017 (2003)

Thick domain walls around a black hole

Yoshiyuki Morisawa,'* Daisuke Ida,>" Akihiro Ishibashi,>* and Ken-ichi Nakao'®
'Deparfmem of Physics, Osaka City University, Osaka 558-8585, Japan
2Departmem of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
3Yukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8502, Japan
and Enrico Fermi Institute, University of Chicago, Chicago, Illinois 60637
(Received 20 September 2002; published 28 January 2003)

We discuss the gravitationally interacting system of a thick domain wall and a black hole. We numerically
solve the scalar field equation in the Schwarzschild spacetime and obtain a sequence of static axisymmetric
solutions representing thick domain walls. We find that, for the walls near the horizon, the Nambu-Goto
approximation is no longer valid.

PHYSICAL REVIEW D 73, 125017 (2006)

Black holes escaping from domain walls

Antonino Flachi,™™* Oriol Pujolas,'*" Misao Sasaki,""* and Takahiro Tanaka>*
YYukawa Institute for Theoretical Physics, Kyoto University, Kyoto 606-8503, Japan
2Center for Cosmology and Particle Physics, Department of Physics, New York University,
4 Washington Place, New York, New York 10003 US, USA
3Department of Physics, Kyoto University, Kyoto 606-8502, Japan
(Received 14 February 2006; published 20 June 2006)

Previous studies concerning the interaction of branes and black holes suggested that a small black hole
intersecting a brane may escape via a mechanism of reconnection. Here we consider this problem by
studying the interaction of a small black hole and a domain wall composed of a scalar field and simulate
the evolution of this system when the black hole acquires an initial recoil velocity. We test and confirm
previous results, however, unlike the cases previously studied, in the more general set-up considered here,
we are able to follow the evolution of the system also during the separation, and completely illustrate how
the escape of the black hole takes place.



. annalen h H k
Ann. Phys. (Berlin) 525, No. 8-9, 659-670 (2013) / DOI 10.1002/andp.201300061 der p ySI

The Global Network of Optical Magnetometers for Exotic
physics (GNOME): A novel scheme to search for physics beyond
the Standard Model

Szymon Pustelny"*, Derek F. Jackson KimbalPB, Chris Pankow#, Micah P. Ledbetter®**,
Przemyslaw Wlodarczyk?, Piotr Wcislo®%, Maxim Pospelov’-%, joshua R. Smith?, Jocelyn Read®,
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Hunting for topological dark matter with
atomic clocks

A. Derevianko™ and M. Pospelov?3

Terrestrial experiments

>
>

Difference in clock readings

— I, —> Time

Global Network of Optical
Magnetometers for Exotic Physics

GPS.DM
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Detalls of the simulation

®*4 model
Black hole with either angular momentum or charge
Initially planar domain wall

Axial symmetry (2D simulation)

Crank-Nicholson method

Kerr-Schild-type coordinates
Minkowski solution as a boundary condition at the outer boundary
Inner boundary of the domain below the outer horizon (no boundary conditions)

Causality under the horizon imposed during the discretisation



Detalls of the simulation
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Results

Summary

e Domain wall transits are an active area of research.

* There exist observational campaigns, both terrestrial and
astrophysical.

« Domain walls seem to be stable under the black hole
transits

* Angular momentum of the black hole have a little impact
on the results
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‘== Stability analysis of BHs

by the S-deformation method
for coupled systems

MK, CQG 34, 235007 (2017)
MK & T.Tanaka, CQG 35, 195008 (2018)
MK & T.Tanaka, arXiv:1809.00795

Masashi Kimura
(IST, Univ. of Lisbon)

w/ Takahiro Tanaka (Kyoto Univ.)
8th Nov 2018

" Linear (mode) stability of BH

Linear gravitational perturbation on a

highly symmetric BH usually reduces to
[ 92 92

P(t,z) = e P (x)

d2
[—— + V] d = WP

dx?

unstable mode — w? <0 mode
(negative energy bound state)

1/18



To prove (mode) stability, we need to
show the non-existence of w? < 0 mode

dx?

_d®d]>® dPo
= [‘I’E]_WJ“/dw[dw

d2
[—— + V} d = WP

2
+V|<I>|2} =w2/‘d:13|<1>|2

Vv >0 implies non-existence of w* < 0 mode

Sometimes, V' contains negative regions

2/18

=~ S-deformation [Kodama and Ishibashi 2003]

d [_d® ;] |d®
0 [@E+S|<I>| }+|%+Sq)
For continuous S

[éd@ +SI<I’I2]°°
dx —oo
+fd:1:

We can sayw? >0 if V+

2

ds
+(V e 52) ®* = w? |8
dx

d®
—+ S®
da:+

2
+ (V+ ﬁ — Sz) |<I>|2 =:..;2/d:z:|<1>|2
dx
dS

e S2>0

£

In general, it is hard to find an appropriate
S analytically

In that case, numerical approach

(e.g. solving PDE) was used so far 3/18




=" Today’s talk

We propose a simple method for
finding an appropriate S-deformation

Also, extend this method to coupled
systems

4/18
" Very easy method
[Kimura 2017]

[Kimura & Tanaka2018]

s .
Just solve Vv + ——§°=0 numerically

xIr

The existence of global regular solution
IS non-trivial

Regular S usually can be obtained from
the initial condition S =0 at V > 0 region

5/18



== 10 Dim Schwarzschild BH

10

r/ry

10

We can find regular S without fine-tuning

6/18

= 5D Black string

|

1.0
95! =
= 0'5f\ rik = 0.877
% 0.0
S
™
S -0.5) k

_1'0 1 1

1 5 10 15

r/rg

If ruk < rake. ~0.876 there exists an
unstable mode [Gregory and Laflamme, 1993]

//18



Relation with Schrodinger Eq.

Schrodinger Eq. with zero energy

A solution which does not have any zero
corresponds to a regular S

8/18

" Nodal theorem
A theorem in the Sturm-Liouville theory

d2
——— +V|®=E®
[ da? T ]

If we solve the Schrodinger Eg. with the
boundary condition ® = 0,d®/dx =1

at a sufficiently large distance, the number of
zeros coincides with the number of the negative

energy bound states.

There should exist a regular S for stable

spacetime 9/18



Under some assumption, we can show that
S constructed from a sol. with decaying
boundary condition is regular if the
spacetime is stable.

Proposition. There exists a regular
S-deformation for stable spacetimes

10/18

= Extension to multiple degrees of freedom

If there exist two or more physical degrees
of freedom, and they are coupled, master
Eqs sometimes become

d2
[—— + V] P = w?dP

dx?

V :n X n Hermitlan matrix
$ : n.components vector

We assume the coupling term £ ~ ®TV &
11/18



For any n» x n Hermitian S,
2

d®d >0 d®d
—|®T—— + PSP +/dx — 4+ SP
dx e dx
vt (v 25 s2)a] ot [wia
£T

~

=V
If V is non-negative definite, spacetime
IS stable

We can still find a regular S by solving

s
et Al 12/18

== Schwarzschild BH in dCS

[Molina, Pani, Cardoso, Gualtieri 2010]

d? 2M
—@(I)l + Vllq)l + Vlg(I)Q = w2<I>1 f =1 - —
r

d2
_ﬁ(% + Vig®@1 + Voo @y = w’ Py fd/dr =d/dx
77

_— V(H 1) 6M‘

r2 r3

24M /(€ +2) (€ + 1)€(¢ — 1)
VBr®

00+ 1) 576mM2\  2M
V= |10 (142 ) + 5

Vio=f

13/18



== Schwarzschild BH in dCS

ds _
We solve V + e S° =0 numerically

with the initial condition
S =0 at alarge distance

14/18

10

2M Tr(S)

1 5 10 15 20
r/2M e
¢=2,8M*=1/10 V4 —52=0

('S'is bounded if Tr(S) is bounded) ; 5 /4 g



=~ Remarks for general case

The nodal theorem for coupled systems
suggest the existence of regular S

(we can explicitly show the existence of
regular S for rapidly decaying potential)

If V > 0 in asymptotic region,

S =0 at large = is a candidate for
an appropriate initial condition

= Merit of S-deformation method

* We do not need to care about boundary
condition at infinity very much, we can
solve equation from finite point

« Any fine—tuning is not needed

- It is clear that the existence of regular S
Is the sufficient condition for stability
(proof of nodal theorem is very difficult)

- Easy to show the non—existence of
zero mode (by showing two different S/
17/18



We proposed a simple method for finding

S-deformation by solving v + Z_S —_S2—=0
T

This is a good test for stability of BH

If stable, this method should work

We can guess the threshold of the
parameter where unstable mode appears

18/18
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RESEARCH & INNOVATION

o " <@ fhlsion Marie Curie Actions

Stochastic Inflation
and Primordial Black Holes

Vincent Vennin

28

Tokyo, 8th November 2018

Outline

* Quantum State of Cosmological Perturbations
* The Stochastic-6N Inflation Formalism
* Primordial Black Holes

14:00 — 14:45 Invited Talk 7 (Chair: S. Kanno)

Vincent Vennin  APC Paris
Stochastic Inflation and Primordial Black Holes

14:45 - 15:45 Session 4P1

[T61*] Yuichiro Tada Nagoya University

Stochastic formalism and curvature perturbations

[T62*] Junsei Tokuda Kyoto University

On the contribution of infrared secular effects to primordial fluctuations via guantum interference

November 2018 JGRG 28 0/15



Outline

* Quantum State of Cosmological Perturbations
* The Stochastic-6N Inflation Formalism
* Primordial Black Holes

Based on:
= VV and A. Starobinsky, 1506.04732 (EPJC)
= H. Assadullahi, H. Firouzjahi, M. Noorbala, VV, D. Wands, 1604.04502 (JCAP)
= VV, H. Assadullahi, H. Firouzjahi, M. Noorbala, D. Wands, 1604.06017 (PRL)
= C. Pattison, VV, H. Assadullahi, D. Wands, 1705.05746 (JCAP)

November 2018 JGRG 28 0/15

Cosmological Perturbations in Inflation

@ Inflation is a high energy phase of accelerated expansion in the early Universe

ds? = —dt? + a*(t)dz?®  with @ >0

@ Quantum vacuum fluctuations are stretched to cosmological scales

N Ak wavelength

Particle Production =2

Minkowski a/a Hubble radius
vacuum ‘

> time

Structure Formation

Quantum fluctuations sourcing the background

November 2018 1/15



Cosmological Perturbations in Inflation

@ One scalar degree of freedom: v o ( (curvature perturbation) oc 6T/T (CMB T° fluctuation)

1 &
° ’\Ij> = ® |\Ilk> with ‘\I}k> = coshry, Z 62”“”’“(—1)”tanhnrk\nk,n_k)
kcR3+ n=0
Two-mode squeezed state (Gaussian state)
dx T , x
@ Wigner function W(Ukapk) = / W\Ij*(vk o §) e Pk \I/(vk + 5)

0
@ Evolution Equation aW (v,p,t) = —{W (v,p,t) , H (V,0,t)} poisson Bracket

For quadratic Hamiltonians

2/15

Quantum State of Cosmological Perturbations

0
EW (vvpa t) = - {W (vvpa t) ’ H (vapvt)}Poisson Bracket

—-1.0}

—1.5}

-2.0 . . . . . . .
-20-15-1.0-05 00 05 1.0 15 20

p

November 2018 JGRG 28 3/15



Cosmological Perturbations in Inflation

@ One scalar degree of freedom: v o ( (curvature perturbation) oc 6T/T (CMB T° fluctuation)

. . 0
@ Evolution Equation EW (v,p,t) = —{W (v,p,t) ; H (v,0,) } poisson Bracket

For quadratic Hamiltonians

@ Quantum Mean Value and Stochastic Average Lesgourgues, Polarski, Starobinky (1997)

N J. Martin, VV (2016)
(06.) F[Wepowrdd

e Truefor ® ({;) and O (ﬁ)

SOV INISO S INte
S e e 27 RFAAZTS
TS LA LA ZAT S
P L S Y &
LTI FTS
'.....'h.:.h
<L

L
. A A . _ . . p
True for proper O (U, p) in the super-Hubble limit Super-Hubble limit

* True for Hermitian, quadratic ) (1}7 13)

Example: O = vk'v;rcpkp;re —|—pkaUk’U;; _—> <O>quant = <O>stoch + 1/4

| = ez(N_NHubble crossing) 4/15

Stochastic Formalism
Starobinsky, 1986

coarse-grained field:

écoarse grained — / d3k |:¢k: (N) e_ik'wdk + (bz: (N) 67’1‘533&2}
k<ocaH(N)

at leading order in slow roll:

d V' (¢cg)

H (¢
LI | H (bey)

" 3H? (¢eg) o

¢£(N)

Modes smaller than the coarse-graining
scale are constantly escaping
the Hubble radius and source the
coarse-grained sector.

mm>  Quantum backreaction on super-Hubble scales

November 2018 JGRG 28 5/15



Primordial Black Holes from Inflation

@ Primordial density perturbations when modes re-enter the
Hubble radius after inflation

op
s ~(
P k=aH

@ Rare fluctuations exceeding critical value ¢ > (. ~ 1
collapse to form black holes

@ Mass fraction
B(M) <1078

The Stochastic-6N Formalism

Engvist, Nurmi, Podolsky, Rigopoulos (2008)
Fujita, Kasawaki, Tada, Takesako (2014)
VV, Starobinsky (2015)
VV, Assadullahi, Firouzjahi, Noorbala, Wands (2017)

uniformfdensity slice 6p(x)=0

C(t,x) = N (t,z) — No(t) =N

spatially flat slice W(x)=0

@ number of e-fold is a stochastic variable N (¢)

Ccoarse grained — N — <N>

@ Moments obey an iterative relation (vennin and Starobinsky 2015)
/
v / n -1
WY = G N = = ()

November 2018 JGRG 28 7/15




Power Spectrum

//,U2

Saddle Point Approximation 20 — <1

v'?

2 03 (¢,
Pelo) =3 :ﬂ(((i*))

2 ()0 (6) }

l1+5v (ps) — 4 2 (6))

Classical result / \ First order correction

5 ) ’1)'2 0" U/2 0" " ,U//2

November 2018 JGRG 28 8/15

Full PDF required for PBHs!

@ Define characteristic function (includes all the moments)

v (6,6) = (e (6)) = / N @ P (N, ) AN

@ Obeys partial differential equation
02 v 0 it
—s — — t,9) =0
(a¢2 2 og UM;) X (£ 9)

@ Inverse Fourier transform gives full probability distribution

P =5 [ T ity () dE

21 J_ o

9/15




Example: v(¢) =vo |1+

Se

108 T ‘ T
2 1 12 i m— full result
VU ~ v 109} : — slow—roll classical limit [
not the “naive” criterion! | .| 1| 77 classical limit
. —— stochastic limit
'U A 102 | :
1001 )
1
ol 1072t !
104} X
1
10°6F 1
1
.‘Z__, 1075} &
> ¢ 10710} :5:
=12 L L \/I : L L L L L
— 10721078 10-7 1076 10=% 107* 1072 10~2 10! 10°
0
A¢Well ¢/9
10/15
¢ p
Example: v(¢) =vo |1+ | —
bo
“Classical” Regime
700 — =002
I v =0.03
U 4 600 L — v =0.04}
— =005
5001 — v =0.06 |
- - NLO
— vy e NNLO
= 400}
S in
— o
R 3001 il |
/ ! ".‘
=TEEA 200 | 1
> ¢ S
100 < g
A
A 11 0 ‘ = —
qbwe 0.000 0.005 0.010 0.015 0.020 0.025
voN

Is the Gaussian approximation sufficient? .

15



Example:

v

Example:

£ mass fraction

v

v(¢) = v [1+(

v(¢) = v [1+(

¢

b0

)|

“Stochastic” Regime

Adrar

— 5 |
’Uo]\fp1

12

12/15

¢

b0

)|

“Stochastic” Regime

1071 :
10-20 Observationally excluded_
10-25
10730
10735
10—40
10—45
1077

— ¢ = qjend + Ad)well
10—55 4 ||

— ¢ = dend + 107 Adbyenn
10-60 T

107! 10° 9 10t
,UQ _ A¢Well
o 2
Vo M Pl 13/15



Qb p
Example: v(¢) =vo |1+ | —
Po

“Stochastic” Regime

4.0 1
10°
0.9
1075 3.5 A ¢2 i
10—10 | i /,l/2 — We].l 08
1077 ) Vo 431 | Bo-
Observationally excluded ’
10720 i
™ 0.6
10~2 <
®. 1030 > 0.5
: >
10735 . 04
1074
0.3
1074
100 0.2
55 — ¢ = Pend + Ayen
10 — = Pena + 107 Ay ] 0.1
107% ‘
107! 10° 10! 0
"
14/15

Conclusions

* Stochastic-6N needed to calculate primordial density perturbations
beyond perturbative approach

* Inthe classical regime, Gaussian approximation may fail!

* Primordial Black Hole bounds require N<1 in quantum diffusion
regime

¢ Extension to multi-field?

* Transient slow-roll violation (inflection point models)?

November 2018 JGRG 28 15/15



Thank you for your attention!
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Stochastic Formalism &

Curvature Perturbations
Yuichiro Tada (C-lab. Nagoya U.)

Pinol, Renaux-Petel, Vennin, Fujita, Tokuda
arXiv: 1806.10126 and in preparation

IKey Question

— Curv. PTB beyond Ist order?

— Resummation eff.?

— Intuitive understanding of curv. PTB?




scalar PTB

horizon: Ry

 1

quantum fluctuation

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada

scalar PTB

horizon: Ry

v 2n

classical random £
" (0)g, # 0

slow-roll stochastic EOM  starobinsky 1986

dd)IR__ Vv H N o
W - 3 T (GWNEW)) =8N - N)

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada




scalar PTB

current horizon R |

. . s
slow-roll stochastic EOM  starobinsky 1986 ON formalism  starobinsky1985 a = ame

__ vV H, SN =N —(N):curv. PTB ¢

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada

Stochastic Form.

x classical approx.

/intuition In x-space x unclear k-dependence

/all resummation eff.
/allinfo.aboutCstat.

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada




Stochastic-ON

Fujita, Kawasaki, YT, Takesako 2013
Fujita, Kawasaki, YT 2014

(64%) = (C*(x))

_ &k ik-0
= J 2y Py(k)e

log k¢ :
= J dlog k 2k) <gn;= %&)
!

og ke—(N)
d(e/?
P k) = )
d(L)
i L . )
inflationary region k=kee=")

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada

1 1
eg V= EM2¢2 + Emzyﬁ

Vennin's PDE

160
Vennin & Starobinsky 2015 15 140
120
_ = <
Fokker-Planck eq. 1 e m
oyP = — 9, (D'P) +=0,0, (DVP) > [
DI — 2 M2 VI DIJ = H 2GIJ 40
€.8. =T e = <Z> 20
$ -s
15 - =7
Vennin's PDE =)
-9 EQ
]. -10 2
<DIaI + EDIJGI()J> ‘%n — n%n_l i %

<Dla, + %D"a,a ,) €, =—D" (opM,) (0,,)

Mo D) = (N")P),  Cp() = (842) ()

Stochastic Formalism & Curvature Perturbations T61 Yuichiro Tada




StocDeltaN.cpp

- double mass-term V= 1M2¢2 + lmzy/z M=9m=10"M,
> ; PI

) — log,(ON?)

~180 ‘ | -6
~ 160 =7

140 8 s
- 120 -9

100 =10

80 -1 1071 stochastic
60 12 0 linear
40 -13

0 20 40 60 80

20 5 20 [ (N)

Stochastic Formalism & Curvature Perturbations

T61 Yuichiro Tada

StocDeltaN.cpp

2
- hybrid inflation V= At (1_£) +2¢2‘l’2 +¢—¢c (@ —¢.)

2 2AM2 2
M pM H “3
N log1o(OA?)
35 -2
z 30 z
= = E -4
= | Y 6
2 20 2 73
g 15 &
10 ! -10
¥ i e i i -12
o | AT S—— . (1) || i
StOChaStlc 0.1410 0.1412 0.1414 0.1416 0.1418 0.1420 @2 0.1410 0.1412 0.1414 0.1416 0.1418 0.1420 -14
o : =
critical point 1M ol

0-2
overproduce PBHs

(Kawasaki, YT 2015) <105

1078

= stochastic

Clesse & Garcia-Bellido 2015

0 5 10 15 20 25

(N)
Stochastic Formalism & Curvature Perturbations

T61 Yuichiro Tada



Conclusions

— Stochastic + SN - non-pert. algorithm

— StocDeltaN : automatic num. code
e visit my GitHub page (NekomammaTl/StocDeltaN_dist)!
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Phase Transitions in Twin Higgs Models

Kohei Fujikura (Titech)

In collaboration with
Kohei Kamada (RESCEU)
Yuichiro Nakai (Rutgers.U)
Masahide Yamaguchi (Titech)

Based on arXiv:1810.00574

First-order Phase Transitions

Verr
1 N A first-order phase
transition proceeds through

bubble nucleation.

T >Tc T=T¢

There are three sources of
the Gravitational Waves

Bubble collisions
[Kosowski et al. 1992]
Sound Waves of the plasma
[Hindmarsh et al. 2014]
Tunneling! Turbulence of the plasma
[Kamionkowski et al. 1993]




Motivation

Twin Higgs models
BSM physics

Figure Figure

Hierarchy Problem

Electroweak phase transition in SM is not first order with m, ~ 125GeV

93 A
2
— yt2 2 + 992 A2 _I_LAZ
472 3272 472

A : cut-off scale

dm?; > m; ~ 125°GeV? Fine-tuning is needed!



Twin Higgs Models  ichocoetal 2005

SM Higgs is considered as

P,
2
P, 2
H= V(®)=A[|H]* —
D3
2
P,y
‘JH : belongs to the (global) U(4) Fundamental Representation
(Py) = \/ii - U(4) symmetry is spontaneously broken to U(3) symmetry.

dim (U(4)/U(3)) =16 —9=7
7 Nambu-Goldstone modes arise
(4 of them are identified with SM-like Higgs)

Matter contents
copy of SM sector

Standard Model
H 4
SU3)e x SU2)w xU(1)y
Quarks and Leptons T

2\ 2

= (g;) Higgs Mixing v(®) = (1 - )

2

2
Vet D (—?’yt + 09> > (|Hal? + |Hg|?) A® respects the global U(4) symmetry.
8w2  64w?2

pNGB (SM-like Higgs) is insensitive to the mass correction.



Higgs potential
General Higgs potentlal
: 2 :
1% :EA <|HA|2 + |Hp|* — J;) i+ o1 f? |HA|2 i+ k1 (|Hal* + |Hp|* ) + p1|Hal*

: Soft twin Z, E Twin Z, preserving but i Twin Z, and

Spontaneous symmetry breakmg : (explicit) U(4) breakmg u@)

breaking v (4) — U(3)

: : E term. : symmetries
: This term must be dominant E To satisfy i : : breaking
: compared to (explicit) U4)  : i This term is naturally : term.

: . : : generated by
: DI R L : 2va < f | : Coleman-Weinberg (CW)

: E potential.
A o1, K : :
>> 1y 1y P1 These quartic terms generate the

SM-like Higgs mass

A structure of Higgs potential in SUSY twin Higgs models is too complicated.

We take the decoupling limit to consider the general features of twin Higgs models.

Electroweak symmetry breaking(EWSB)

To realize correct EWSB, following conditions must be satisfied.
(Hp) = va >~ 246GeV, my, >~ 125GeV

Yellow regions satisfy the two conditions and A > k1, p;.

va/f = 0.223 va/f = 0.123

0.10 T T T T 0.10 T T T T

Allowed region Allowed region
0.08} 1 0.08}
0.06 1 0.06

~ A>ky A>py ~ A>ky A>py
0.04 1 0.04
0.02} 150 1 0.02}
g1>0
0.00 ‘ ‘ ‘ ‘ 0.00 : ‘ ‘ :
0.00 0.02 0.04 0.06 0.08 0.10 0.00 0.02 0.04 0.06 0.08 0.10

Ky K1



Phase Transition(s) in Twin Higgs Models

(1)(0, 0) = (0, vs) = (va, vE) Hy
(2)(0, 0) = (va, vg) vs 1@
(3)(0, 0) = (va, 0) = (va, vB) o 4, (Has Hs)
We consider the case (1) and analyze the two i > 4
phase transitions. VA

In this talk, | focus on the phase transition associated with twin EW symmetry breaking.

Twin Top quark

0
Hy = (8) , Hg = (¢_B _I_ SU(2)y gauge fields thermal loops
V2

Overview of calculation method

Fix a model Quantum and Thermal effects

£(¢7 ,(p) AZ? * .) VCW(qb) and VThermal(¢)

Vet Solve bounce e
\' u .
/ I' ~ Foe’Bt k
(@ T: Bubble nucleation rate per

* unit time per unit volume

GW spectrum Bubble and fluid dynamics
h Latent heat density: (¢
Dh’l-“/ = ]_67TGTMV Duration of phase transition: (3

etc..



Effective potential and GW

“ ot M?*(T) A+
B K
Ver U v =20 g prg A
o <¢B:> ~ 3 5 \/§A3 SU(2) gauge coupling: g2 ~ g2
\\./ B~ 327;92 + ayt top Yukawa coupling: ¥: =~ Y
M?*(T) ~ aT? — Af* (a : const.)

We (numerically) calculate the bounce eq. and found the following statement.

small \ —+ K Large latent heat density and long-duration large Qcw
large A -|— K~ Small latent heat density and short-duration  small Qcow

GW amplitude

M— =0 (s ~0.05)

vA / f =0.123
T T T T stop
‘ /\:0.05? tan,B:lo‘, vA/f:o.}zg

\_Allowed region

1 [ DECIGO
BBO

° o
° °
© £
7
Log,o[Qgwh?]
|
&

0.00 : : : :
0.00 0.02 0.04 0.06 0.08 0.10

A, K bounded below to realize the Logolv][Hz]
SM-like Higgs mass. _ _
Maximal GW amplitude

A2>0.05 k20.05 T 16T | op/Tn] o B/A(T)

682 1 7% 1073 7 x 10%

GW amplitude cannot be detected by DECIGO and BBO...



Summary

GWs from first-order phase transitions are tested by future
experiments such as DECIGO and BBO.

We calculate the GW amplitude from a first-order phase
transition associated with twin EW symmetry breaking in
twin Higgs models with the light twin stop effect.

Twin Higgs models cannot provide detectable GW
amplitude by DECIGO and BBO with light twin stop in the
linear realization and decoupling limit.
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Higgs as heavy-lifted physics
during inflation

Yi-Peng Wu

in progress

RESearch Center for the Early Universe (RESCEU)
The University of Tokyo

November 8th (2018)

Heavy particles during inflation



Standard single-field inflation with Einstein gravity

TT,TE,EE+lowE+lensing

TT,TE,EE+lowE+lensing
+BK14

TT,TE,EE+lowE+lensing
+BK14+BAO

Natural inflation
PLANCK (201 8) Hill:f:p qtuartic model
« attractors

- Power-law inflation
R? inflation

V x ¢?

V x ¢/

V¢

V x ¢2/3

Low scale SB SUSY
N.=50

N.=60

Tensor-to-scalar ratio (r9.002)

0.00

0.94 0.96 0.98 1.00

Primordial tilt (n)

‘ny = 0.9649 +0.0042 at 68 % CL.

» No evidence beyond slow-roll (nor feature in the potential).

UV completion of single-field inflation

v




UV completion of single-field inflation

The origin of heavy particles

o SUSY breaking / SUGRA ?

Baumann & Green [1109.0292] Yamaguchi [1101.2488]

© heavy-lifted SM particles ?

Chen, Wang & Xianyu [1610.06597]
Kumar & Sundrum [1711.03988]




Heavy particle production

¢ ¢ q
| contact process
m > H
q S q
| eXChange process
my ~ H



The simplest non-Gaussian observable (¢°)

0

0

0

0.2+

0

0.15

8+ 0.10

005
6
0.00

0.0
4

0

fffffffffffffffffffffffffff

001 ” 0.1

particle production

EFT

1074

0.001 0010 0.100 1

klong/kshort

wave interference

The source

The intensity

ua:/ﬁmw
~ A7 + A5 + 2A1 Ay cos[a — o]

) — AI(F)efi[wtfal(F)]
) = Az(f’)e_i[‘“t_a2("?)]

U=y + VU,

1y

credit: physics@TutorVista.com




cosmological quantum interference

Two sources in de Sitter space

C(k’, 77) ~ O(k) 773/2 analytic waves

o(k,n) ~ OF (k) 77A+ + 0~ (k) nA_ analytic + non-analytic waves

‘S
[SIISEN

|
N

fixed by isometries of dS: AT = ; +1

non-analytic effects

The correlation function

<Q[C ¢, 0, d]> = (non-oscillatory) + (oscillatory)

Arkani-Hamed et. al [arXiv:last week]

boundary

asssssssnnnnns ; bulk

The bulk time evolution is encoded in boundary correlators.



Heavy-lifting mechanism

Chen, Wang & Xianyu [1610.06597]
Chen, Wang & Xianyu [1612.08122]

------------
-------
¢¢¢¢¢
v

v
........
---------------

Kumar & Sundrum [1711.03988]

h = larger fnL



Spontaneous symmetry breaking during inflation

)\4
Zh

tachyonic mass

Kumar & Sundrum [1711.03988]

—E(RK?
—F(¢,0,¢)h*

see also Minxi He’s talk

Kumar & Sundrum [1711.03988]

Heavy-lifting from EFT

(weak-coupling)

L = LO.0(H DIH) + T3(00)H M + 5 (00) | DHP + 15 (00) 2,

+ 50620, 0(HI D" H) + - -

conclusion for non-Gaussianity

Goldstone EFT | Goldstone EFT | Slow-roll Models
F| with A~b5H with A ~ 10H with A ~ 60H
h 1-10 0.1-1 0.01 —-0.1
Z 0.1-1 0.01 —0.1 0.001 —0.01




Heavy-lifting from broken symmetry tniswor

(can be strongly coupled)

Equilibrium state: (k) = +00/vA

Py = Oy /A

=50

|81L(I>IH|2 — |8;L(I>H|2 +

m2 = 203

b @y

L2 (D) + -

R = (A*+n%)'2, 0= p/A,

Heavy-lifting from broken symmetry tniswor

(can be strongly coupled)

Equilibrium state: (h) = +6y/v/A

non-flat field space

mi = 263

1 h2 1
£3—§<1H@)@@f—§@ﬁf

weak — coupling :  h%/A? < 1

strong — coupling :  h?/A% > 1

quadratic coupling R= (A + 1), 0 =o/A,

6Ly = pdh (RG0)



Energy scales in this talk:

(energy)
A
non—perturbative
Ay
scale of heavy Higgs
light Higgs
HMhT
pn = (miy + @) = mp ey
heavy Higgs
H4+

» strong-coupling does not necessarily violate perturbativity.

dispersion relations

(2) pn > H

0.01 0.10 1 10 100



Power spectrum

AP : Higgs contribution to power spectrum

100; ~~~~~~~~ — EoM
; EFT
10, /\ """" e
2N i
L 1L S
<
0.10,
E wer g heavy Higgs
0.01 ]
0.1 1 10 100
4/H
two-field inflation - > quasi-single field inflation
i —1 c; —1/3

Bispectrum (beyond single-field inflation)

]ﬁ = kg = Ckig
o T : :
1.5
6
= —
= 10
<\|1 N
Ly L
~ ~
&l 2
NQ Nb
0.5
2
0.0} iz e T
0L, ‘ ‘ ‘ 1 ‘ ‘ ‘ ‘ ‘
107 0.001 0.010 0.100 1 107 0.001 0.010 0.100 1
c c

quasi-equilateral heavy particle production



Heavy Higgs production

108
1.x10™
K 1«10 i
1.x107%
1.x10°3 " | | ‘ ‘
1078 1075 0.01 10
|71 See also An et. al [1706.09971]

for three-point functions
the non-analytic scaling with strong-coupling:

My

Lh — 2

REMARKS

and outlook

SM particles can turn into heavy degrees of freedom during
inflation, due to lifting mechanism (important background signals
for the cosmological collider physics).

Spontaneous symmetry breaking during inflation makes SM
particle production more efficient (larger non-Gaussianity signals).

In this work, we numerically confirm the non-analytic scaling of
heavy particle production in the strong-coupling regime
(enhanced oscillatory feature).

Challenge: SM signals or new physics?
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Inflation in the Mixed Higgs-R? Model

M? . M? 1 _ X
_ 4, /- P P P2 2 1 A4
_/da:\/g SR+ 2R+§XR 59" VuxVox = 7x

Starobinsky model Higgs inflation

A. A. Starobinsky, Phys. Lett. B 91, 99 (1980)

J.L. Cervantes-Cota and H. Dehnen, Nucl. Phys. B 442 (1995) 391

F. L. Bezrukov, M. E. Shaposhnikov, Phys.Lett.B659:703-706,2008

A.O. Barvinsky, A. Yu. Kamenshchik and A.A. Starobinsky, JCAP 11 (2008) 021
Y. Ema, Phys. Lett. B770:403-411, 2017

Y-C. Wang, T. Wang, Phys. Rev. D96(12):123506, 2017

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018

JGRG28@Rikkyo University

Inflation in the Mixed Higgs-R? Model

M? 1 1 _ /7w
S = /d4x\/—g —PR— gV, bV, — € Vi, 9**'VuxVux = U(¥, x)
scalaron Curved field space

2 o

A 3 1
Uy, x) = 7x"e” Vi T My Me VR (Vi 1 - —5Ex%)”

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018
JGRG28@Rikkyo University



MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018
JGRG28@Rikkyo University
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Low energy effective single field theory

A. Achucarro et al, JCAP 1101:030,2011

A. Achucarro et al, Phys. Rev. D 86, 121301(R) (2012) r
0.14}
2712
Sff: 3%[732 _kR] 0.12|
¢ 2 2(k) a?
0.10}
21 4 462 -
c,° = - 08/
Z_§+UNN+€H2R_‘92
0.06}
. 0.04}
FixA=0.01,¢c; = 1;
Amplitude of curvature 0.02}
; - -9
perturbations ~2x107". 0.00! —

095 096 097 098 n,

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018
JGRG28@Rikkyo University

Effective Starobinsky model

M2
S;= [ d*z\/—§ pR —L_R?
7 ! T,

M?
1+ 3e2 M2 Higgs inflation: § — &,.~4441
)\AIQ

Meff =

MH, A. A. Starobinsky, J. Yokoyama, JCAP, 1805(05):064, 2018
JGRG28@Rikkyo University



Reheating

JGRG28@Rikkyo University

Spikes in Preheating

M? 1 1 A
Ssingle-J = /d4$ —q1 [TPRJ + §£X2RJ - 5 (VX)? — ZX4

5('+3HJ).(+/\X3_£(6HJ+12HJ2)X =0

Effective mass of the Higgs field

Y. Ema et al, JCAP 1702(02):045, 2017
JGRG28@Rikkyo University



Spikes in Preheating

0.02

0.01F

EAAL DN Vaviy
Ehs@./@w U 9531\0‘)/ 10410

-001F

Y. Ema et al, JCAP 1702(02):045, 2017
JGRG28@Rikkyo University

Spikes in Preheating

2

Myess
0.01¢
m \/7 10—4|_

-1
At X \/I 10—6|_ \
¢-independent 1078}
10-10}
‘ ' ‘ 2
0 5%10° 10° 1.5x10°  2x10

Y. Ema et al, JCAP 1702(02):045, 2017
JGRG28@Rikkyo University



Spikes in Preheating

M3
2

5= [aev=a [( # €162 ) Ry = B ™ = (D) (D*65) = Vil(6sP)

1,2 " 2
k M7 o
k2 +m?% Q2

2
772AL ~

Y. Ema et al, JCAP 1702(02):045, 2017
JGRG28@Rikkyo University

Spikes in Preheating

mJeff2
0.01F

107*

~r

Unphysical? A~M,, /¢
Small number density?

1076k

1078

~r

10710}

L 1 1 1 t
0 5%10° 10° 1.5x10° 2><10"E
Y. Ema et al, JCAP 1702(02):045, 2017
JGRG28@Rikkyo University



Preheating in the Mixed Higgs-R? Model

Cutoff scale A — Mp

D. Gorbunov and A. Tokareva, arXiv:1807.02392 [hep-ph]

JGRG28@Rikkyo University
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JGRG28@Rikkyo University
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Non-pertu

Y. Ema et al, JCAP 1702(02):045, 2017 JGRG28@Rikkyo University



The effective mass
squared of the Higgs
field in Jordan frame

JGRG28@Rikkyo University

Y = heie

0. = a3/26_\/%Mip h6

JGRG28@Rikkyo University
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The effective mass
squared of the imaginary
part of the Higgs field in
Jordan frame

JGRG28@Rikkyo University
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Future Work and Outlook

* The distribution of the height of the spikes in the parameter
space

e Calculate the height of the spikes analytically to find out the
nature of them

* Number density of the produced gauge bosons

* The reheating process after preheating

JGRG28@Rikkyo University

Qseagsane A Gs6C
Reheating in the Mixed
Higgs-R? Model

Thank you!

SPEAKER: Minxi He

COLLABORATORS: Ryusuke Jinno, Kohei Kamada, Seong Chan Park,
Alexei A. Starobinsky, Jun’ichi Yokoyama

JGRG28@Rikkyo University
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Power spectra of CMB circular
polarizations induced by primordial
perturbations

Institute for Cosmic Ray Research (ICRR),
The University of Tokyo

Keisuke Inomata
Collaborator: Marc Kamionkowski (Johns Hopkins University)
(cf. arXiv:1804.06412)

2/20

What we focus on

The state of CMB radiation can be described with Stokes parameters.

gy~ L T+Q U-
T2\ UV T-Q
L : related to temperature perturbations of CMB

Q, U : related to E-mode, B-mode polarizations of CMB

V : describes circular polarizations of CMB
“>~We focus on this!

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations



DfT [uK?)

ADIT

Outline

* Introduction
* Calculation of @,

* Power spectra of circular polarization
e Summary

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations

CMB and Cosmology

CMB anisotropies have determined and constrained the cosmological parameters.

6000 7 . . . . T . n However
5000 | Planck 2018 ]

so0of The Planck mission has already reached
cosmic variance in temperature perturbations.

l Therefore

It is important to discuss other quantities.

3000 |-
2000 |
1000 |

OF,
600 7
300 F

0F
-300 F
-600 —|

| I L L | L |
2 10 30 500 1000 1500 2000 2500

distortion, CMB Polarization

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Polarizations and Stokes parameters

The state of radiations can be described with Stokes parameters.

ey L I+Q U—V
</EiEJ>_2<u+z'V I—Q)

. 100% Q 100%U 100% V

° " ar
Concrete example (plane wave) x A x

_ 0 2 0\2
1= (E ) + (Ey) N .
0 . i(wt—e1) 0\ 2 Q-0 “(:)°’V=° Q=0 U(;)O,V—O Q-0; u(;)o;vw
E{I} = Ex (§] Q (E ) Q y U 7 V v
_ 170 Ji(wt—e2) 0 -0 - - - K{\
E,=Eje = 2E E, cos[e; — €3] . \ )
V= 2E2E2 sinfe; — €3] \V
Q<0;U=0;V=0 Q=0,U<0,V=0 Q=0;U=0;V<0
(b) (d) (f)
Wikipedia
Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Polarizations in CMB

o 7 : related to temperature perturbations
<E?“E.> — 1 ( 51’ % Lé g} ) Q, U : related to E-mode, B-mode polarizations
/L —

Y : describes circular polarizations

Thomson scattering can produce only linear polarizations.
There is no circular polarization at the last scattering surface (LSS).

However,

circular polarizations can be

produced from the linear polarizations © Vv _ Q, L[
through the Faraday conversion. observer Faraday conversion

LSS

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations



Faraday conversion 1

Faraday conversion occurs due to the
anisotropic refraction (birefringence).

General refraction tensor:
e — nr+mng nu+iny
Y\ ny —iny  nr—ng
Difference of refraction indexes
= Difference of phase velocities

Example
|
r |

or Q—o,u;éo

# 5V = u—nQér

7/20

© V_Qu

observer Faraday conversion
LSS
100% Q 100%U 100% V
y y
+Q +U +V
x e ) .
g+ ng nr +nu hr +ny
Q>0;U=0;V=0 Q=0;U>0;V=0 Q=0;U=0;V>0
(a) (c) (e)
y y y
@ b N
nr—ng i —ny @j\/I — v
Q<0;U=0;V=0 Q=0,U<0,V=0 Q=0;U=0;V<0
(b) (d) (f)

Wikipedia

Keisuke Inomata

Faraday conversion 2

Power spectra of CMB circular polarizations induced by primordial perturbations

Generally speaking, the induced circular

polarization can be described as

V(n) = ¢o(n)U(n)
dQu(n) = %/0 ﬂfz

— ¢u(n)Q(n)

8/20

@) V_Qu

observer

LSS

w(x)nq,u(nx)

For later convenience, we define P,, and @, as

1 (Qm U@
Pa) =75 ( By Lot )
S L dalh) du(n)
() = \/5( ou(h) —oq(n) )

Faraday conversion
Q Uu v
== U==,V==
Q 7 7 =z
7T - Averaged intensity

7 : The direction from which
photons come

>

Then we can rewrite V as
V() = €0 P (1) ®,C(12).

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations



Outline

* Introduction
» Calculation of &,
* Power spectra of circular polarization

e Summary

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Source of anisotropic refraction

We focus on the source coming from primordial scalar, vector, tensor
perturbations.

The dominant source comes from photon-photon scattering.
(Montero-Camacho, Hirata, 2018)

Photons propagating to us Photons propagating to us

Background photons Background photons

The perturbations of background radiation leads to the anisotropic refraction.
N Induced by primordial perturbations

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Anisotropic refraction index

The refraction index: (Montero-Camacho, Hirata, 2018)

1 T
ng(x) = §(nm — Nyy) () ~ 48\/;AeuoaradTéMBRe aéE’,Q(w)

™
ny () = ngy(x) ~ 48\/;Ae,uoaradTéMBIm ag_z(:c)

Induced by primordial perturbations

2 a2/\2\

Q(pa 2 Z a2 1im ZB) 2}/lm( ) +a_2 lm( ) 2}/lm(p)) ) A, = I o2
. 1 . .
Up,x) = 5 ) (a2.1m(@) 2Yim (B) — d—2.m () —2Yim (),
I,m
1 ~
\ ap,(z) = _§(a2,lm($> +a_2m(x)) P : Photon momentum direction j

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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What we derive in this work

To getV, we need to calculate ye—
L ( Q(n) U(R) ) bau(@) =2 [ {2 wtinau i)
U

Py(f) = — A
2 n T
\{_ ) ( ( ? ) ( ( 2 no(x) = %(nm — nyy) () =~ 45\/;AepgadeéMBRe ay_,(z)
Ly L Qn n R
<I>ab(n) = \/5 ( ¢U(fb) Q(,ﬁ) > : (@) = Ny (x) = 48\gAepoadeéMB1ma§,2(m)

Concretely speaking, we calculate P,,”® and @B, which are defined as

Pab(ﬁ/) = Z(PZ%YV({;E)G(J (ﬁ’) + f)llfnyv(?rf)ab(ﬁ’))? yTE _ V2 ( w2V +o2Yim  —i(12Yim ——2 Yim) )
m =g\ —i(42Yim ——2 Yim)  —(42Yim +—2 Yim)
. V2 i(4oYim ——2 Yim) Yim +—2 Yim
Dun(R) = S(OEYEE, () + OF,YIE (). | =5 (e )
Ilm
AB
CPrPr/Pret corresponds to Cj FEIeE (G = (AimBim))

l
B We derive the formulae for ®,,,¥8.

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Derived formulae

After tedious calculation, we finally derive

k2dk
N / U+ 3 (8o 1) WD b — ),
nLSS

Ilm

E/BVEVE _ A/ k2dk

ans

2
(I)E/B TE/TB _ 4 A/ k dk

7MLss

Primordial perturbations and their evolutions ﬁ
hAk L. - I

iy = [ e (1P () (¥ ()"

{awamm,aw’%%w ~K)PL(k) (a=L)
) =

<hak

o K
lww[h

'm

f_lf,m(k, 1) : Transfer function

dn (14 2)*v2 (‘_12E,2(k7 n

S Gmme3° C5(k — K)Py (k) (o =VE,VB)
i 3
81 G 8% @ 5(k — k') Py (k) (o = TE,TB) 4@ = ¢ [t + it o)+ 22552+ 4 10)),

d7] (1 + 2)4\/_ (a2 1(k7 77)) hk (VE/VB)d)(l)( (77 - 770))7

) BT ETE 63 k() — 110)).

_ 342 () \
)= 8(1—2)! =%

¢ @) = 5V/I-1+2) [MJr@] ;

xT

Radial functions

o _ ™ (for E-mode) ¢
ﬁ(m) (for B-mode)

) 80) =

Photon-Photon scattering

_1 (@)
N = V=D 27

s 14
A=96,] " Apioaraa e lwy = 111 x 1 —38( 0 ) -1
L 96 5 Horadlyc™  wo x 10 100GHz m

ﬂt )
\ 80 = g [ito)+ 222 j
J

Keisuke Inomata

Outline

* Introduction
* Calculation of @,

Power spectra of CMB circular polarizations induced by primordial perturbations

* Power spectra of circular polarization

e Summary

Keisuke Inomata

Power spectra of CMB circular polarizations induced by primordial perturbations




15/20

Calculation of circular polarization

Now, we calculate V using the formulae for P,,, ®,,, and V
V(7) = €. P (R) D, ().

VI S S P ¥, [ A E (Y (Vi ()
limq lamo

Vi = [ d v (@)Y, ()
Pu) = SO(EE YT () + PEY TS ()

Im

+PE, o8, / BREYE  (RYE, ()Y (R)

B E ~ _aby B ~ E [N * (o
@) = S OF VR () + B Y5 0 R) Y L

tm B §B o _aby B - \\ B CUAVVF (2
+13llm1 ¢'l2m2 \/d’n’6 1/(llfml)ac(n)1/(127712)17 (n)yvlm(n))
Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Power spectra of circular polarization

Y = VinVi) >0 ((CPPel™" — el + (el et - el ot

lymalama(odd)

vPEPE ~pP el PPaE ~pPal l—m 2
20, TG, T =20, 7 O Gt tams |

Pink terms are zero in parity
+ 3 (c{jEPEcg”‘P” + Cf;”PBCg%E + 2C§E<I>Ec;;”’¢>” conserved universe.

Lymylama (even)

PEGE ApEQE  APPGE ApBRE o pEPB ApESEN | f )
—C T e O 2 O ) (G )
0 vo=100GHz, scalar perturbations vo=100GHz, r=0.06, tensor perturbations
10-
10—]5,
— —20[ .-
5 10k
e
10>
10—30
103 — ——— . 1040 " . e
5 10 50100 500 1000 5000 5 10 50 100 500 1000 5000
! 1
IV = / d?l vV 3 x 10714 (for scalar perturbations)
(@2m)2 7t T 7x 10717 (g%5) (for tensor perturbations)

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Uniform circular polarization

Uniform circular polarization can be produced by chiral GWs.

EgB B&E _ —17 r
(Vim) = ZZ (CE"2" _ gPP®®y(—glm (Voo) = 2.6 x 107" Ay (m)
S, (cPTe? — cf%ﬂ% (I=m=0) 2Pr(k) = Pr.g(k) + Pr.o(k)
- {0 (others) Pr.o(k) = (1+ Ax)Pr(k)

Prr(k) = (1-Ax)Pr(k)

In addition, there is the cosmic variance of V.

S (2l+1)2 EpE BgB B pB EgE EgE BgB ~
<V(>0V00>=ZT(CJPPCzq><I> S e o o Voo = Voo — (Voo)
1
E g B EgB B§E BgE E pB EgB
A S s < e I
' No dependence of Ay
<‘7‘7> 15X10—18< r >l/2/
\/ oovoo) = 4.
0.06
Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Degeneracy for uniform V

Induced by chiral GW Cosmic variance

(Voo) = 2.6 x 1017 Ay (ﬁ) \/m —1.5%x 1018 (()7“@) 1/2

2Pr(k) = Pr,g(k) + Pr.p(k)
Pr (k) =1+ Ax)Pr(k)

Prr(k) = (1 - Ay)Pr(k) /

To establish that GW background is chiral with 26 in V(, the parameters should satisfy

Voo = Voo — (Voo) ]

Ay > 0.12(r/0.06) "1/

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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.
What we did

* We made the formulations for circular polarization induced by
primordial scalar, vector, tensor perturbations.

* Using the formulations, we calculated the power spectra and uniform
circular polarizations.

Power spectra
107[0

vo=100GHz, scalar perturbations vo=100GHz, r=0.06, tensor perturbations

b 1 ol 1
— VV
10730,//\, - J o
///_\ Y
107 1074
5 10 50 100 500 1000 5000 5 10 50 100 500 1000 5000

. . . . 1
Uniform circular polarization

(Voo) = 2.6 x 10-1TAy (Jm> V(Foolo) = 15 x 1077 (ﬁyp

Keisuke Inomata Power spectra of CMB circular polarizations induced by primordial perturbations
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Schwinger Effect in Inflaton-Driven Electric Field

Hiroyuki Kitamoto (NCTS)

Based on arXiv:1807.03753

Introduction
(Statistical isotropy of inflation)

* Concerning the primordial universe, we find no significant evidence
for violation of rotational symmetry from the current status of cosmic
microwave background observations ’13 J. Kim, E. Komatsu, 18 Planck Collaboration

(Glwr) = (2m)36®) (k + K') P (k)

P(k) = Po(|k[) {1 +gu(k- ﬁ)Q} , gl S 1072 n: preferred
direction

* From a theoretical viewpoint, an anisotropic inflation can be obtained
if an U(1) gauge field has a classical value like an inflaton

A #£0

* Infact, if the gauge field respects the conformal symmetry as its
kinetic term is canonical, the electromagnetic field decays with
the cosmic expansion and then there is no statistical anisotropy



Introduction
(Model with a canonical kinetic term)

ds® = —dt* + a®(t)dx>
= a®(7)(—dr? + dx?)

H =

2=

da ~
T const.

1 vo 1 Vo conformal
Sgauge:/v_9d4x [_Zgupg FWFPU] =/d4x [_ZUWU FuFps

symmetry

d2 d N =
= A=0 & L A— const. temporal gauge: Ayg =0
dr? dr

homogeneity: A; = A(7)6,*

= Ephys = —a_QdiA x a2

The electric field decays with the cosmic expasion = Isotropic inflation

If the conformal symmetry is broken, this discussion does not hold true

Introduction 09, 10 M. Watanabe,
. . . . S. Kanno, J. Soda
(Model with a dilatonic coupling)

M? 1 1
"R —g"0,00,0 — V() — = f2(¢)g""g"" F, F,
9 29 uPOvP ¥ 1 ®Y)g g vt po

Sbg:/\/—gd‘lx

Solving the classical field eqs. by use of the ansatz: f(¢) = exp { ]é% [ do %LV },
pl

1
= (a_4 + qa_4c) > sa? fore>1 ¢: integration const.

d -1
Ephys = _fa_laA =ft'?E - E E = @MMH
C

2
— l Mp18¢V
V=73 ( 1%

we obtain a persistent electric field (inflaton-driven electric field)

c—1 <1077 to satisfy the observational bound g, = 24%]\]2 <1072



Motivation

*  We consider the case that a charged test scalar field exists
Stest = / V—gdtz [—g‘“’(@u +ieA,)¢" (0, —ieA,)p — m2¢*¢]

* A strong electric field leads to the pair production of charged particles
(Schwinger effect), and the pair production induces the U(1) current

~ d3k . .

j= 26/ W VKN nyx: particle number
™

vk: velocity of particle

* Itis reasonable to conjecture that if we take into account the Schwinger
effect, the induced current screens the inflaton-driven electric field

* Evaluating the induced current, and solving the field egs. with it, we verify
the no-anisotropic hair conjecture for inflation

Differences from other studies

The studies of Schwinger effect in inflation are divided into the two groups

Our case  (¢) By introducing a dilatonic coupling, the classical field egs. show that
the electric field approaches to a constant value E

E .
A=E, f=a? = A=-_—a'*?
 f=a 3H "

4 d
EPhYS - _fa la

17 J. ). Geng, B. F. Li, J. Soda, A. Wang, Q. Wu, T. Zhu, 18 H. Kitamoto

*  Without mentioning the mechanism to generate a persistent electric
field, the electric field is fixed at a constant value F

., d
Ephys = —a IEA:E = A=-—

0,1

T| &=

’14 T. Kobayashi, N. Afshordi, 16 T. Hayashinaka, T. Fujita, J. Yokoyama,
18 T. Hayashinaka, S. S. Xue, '18 M. Banyeres, G. Domenech, J. Garriga



Validity of WKB approximation

2

Klein—-Gordon eq.: {% + wi(T)} dr(z) =0 ¢ =agp

wi = (k1 —eA)* + k3 + k3 + (m® — 2H?)a?

E .
A=_—— 142
30"

At a — 0, the WKB approximation is trivially valid

[ dwe\? _ad*w
wk ~ K| = wk4<d—7_k> ~ 0, wk?’ﬁzo

At a — oo, the validity is ensured due to the presence of f

—2 -2
el g dPwy eE
~9 <3ﬁa > y wk de ~ 12 3FCL

2
el 1.5 _4 [ dwy
W= ¢ =~ Yk ( ir

Particle number and Induced current

In the semiclassical picture,

K , ’61 V. L. Pokrovskii,
ni = exp | 4 Im dr’ wi(r') ¢, wi(m) =0 I. M. Khalatnikov
= dSk :7:0 - 0’
Jj=2e | =3 vknk, UVk= (k1 — eA)/wk o
(2m) Ji =),

We evaluate the late time behavior at g—b;az > 1

- e3FE% 47 { m2 —2H2}
j =~ ——

473 TH eXP eEa?

2 2
At % < 1, the contribution from the mass term becomes irrelevant

e3FE? a7

J= 43 TH



Field egs. with Induced current
V =3M}H?

d
3 3Hatp + 0,V = [T 0uf - B2y =0

T (fa*Epnys) +a~'j =0

Solving them by use of the ansatz: f(¢) = exp {% Jde (%LV},
pl

1 3E b
f=a?{1- 3 1 '63 a2
1+ 3L 4n® 22H

forc>1

c% e3E af
L 473 42H2

c—1

3
2

EphyS:E{1—1

_|._
[\el[V]

Considering the first-order backreaction, the electric field decays with
the cosmic expansion = The statistical isotropy of this model is indicated

Summary

In the inflation theory with a dilatonic coupling between the inflaton
and the U (1) gauge field, a persistent electric field (and then an
anisotropic inflation) is obtained as a solution of the classical field eqs.

We investigated the pair production of scalar particles in the inflaton-
driven electric field. In particular, we evaluated the induced current
due to the pair production

Solving the field egs. with the induced current, we found that the first-
order backreaction screens the electric field with the cosmic expansion

The result indicates that the statistical isotropy of inflation holds true
regardless of whether the dilatonic coupling is present or not



Open problems

* In order to prove the no-anisotropic hair conjecture completely, the
whole time evolution of the electric field should be investigated

* For the investigation, we need to evaluate the induced current on
general backgrounds E,, f

e.g. if the WKB approximation is valid,

¢ 1 34\ =241 2 / m2—2H2
dt’ a (t )f (t )Ephyb‘(t )exp {_Tref_l(t/)Ephys(t/) }

to

63

473

J o~

* The investigation of the pair production of charged fermions in the
inflaton-driven electric field is another future subject
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Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
400,000 yrs. Galaxies, Planets, elc.

Infiation

1st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

NASAMMAP Sclence Team

Inflation

The inflationary scenario is based on the two cornerstone
independent ideas (hypothesis):

1. Existence of inflation (or, quasi-de Sitter stage) — a stage of
accelerated, close to exponential expansion of our Universe in
the past preceding the hot Big Bang with decelerated,
power-law expansion.

2. The origin of all inhomogeneities in the present Universe is
the effect of gravitational creation of particles and field
fluctuations during inflation from the adiabatic vacuum
(no-particle) state for Fourier modes covering all observable
range of scales (and possibly somewhat beyond).

Existing analogies in other areas of physics.

1. The present dark energy.

2. Creation of electrons and positrons in an external elecric
field.



Outcome of inflation

In the super-Hubble regime (k < aH) in the coordinate
representation:

ds? = dt* — a*(t)(Ojm + him)dx'dx™, I,m=1,2,3

2
him = 2R()0im + »_ g(r) e}

a=1

e =0, g el =0, g ™) =1
‘R describes primordial scalar perturbations, g — primordial

tensor perturbations (primordial gravitational waves (GW)).

The most important quantities:

_ dInPg(k) B
ns(k) — 1= SFTVER r(k) = P,

In fact, metric perturbations hj,, are quantum (operators in
the Heisenberg representation) and remain quantum up to the
present time. But, after omitting of a very small part,
decaying with time, they become commuting and, thus,
equivalent to classical (c-number) stochastic quantities with
the Gaussian statistics (up to small terms quadratic in R, g).

In particular:
Ric = Ry i(8—)+0 (8 — &)%) +..+0(10 ) (&+8)+ .,

The last term is time dependent, it is affected by physical
decoherence and may become larger, but not as large as the
second term.

Remaining quantum coherence: deterministic correlation
between k and —k modes - shows itself in the appearance of
acoustic oscillations (primordial oscillations in case of GW).



CMB temperature anisotropy

Planck-2015: P.

A. R. Ade et al., arXiv:1502.01589

DI [uK?]

ADIT

6000

5000

4000

3000

2000

1000

600
300

-300
-600

—300 —-200 —100 0 100 200 300
,U'Kcmb
o = = = = wae
CMB temperature anisotropy multipoles
: ::::::::::+::::::: ::::::::::::—;60
il B b Ebe
3 R T 30
E_ L1l |i| ||+I||||I| |I||||I||||I_§-60
10 30 500 1000 1500 2000 2500
l
o T = = = ©Hace



CMB E-mode polarization multipoles
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Present status of inflation
Now we have numbers: N. Agranim et al., arXiv:1807.06209

The primordial spectrum of scalar perturbations has been
measured and its deviation from the flat spectrum n; =1 in
the first order in |n, — 1| ~ N, " has been discovered (using
the multipole range ¢ > 40):

< R3(r) >_/PRk(k) dk, Pr(k)= (2.10 % 0.03)-107° (k%

ko = 0.05 Mpct, n, — 1= —0.035=+ 0.004

Two fundamental observational constants of cosmology in
addition to the three known ones (baryon-to-photon ratio,
baryon-to-matter density and the cosmological constant).
Existing inflationary models can predict (and predicted, in
fact) one of them, namely n, — 1, relating it finally to

Ny = In %5 ~ 67.2. (note that (1 — n.) Ny ~ 2).



Direct approach: comparison with simple smooth
models

0.25

[ Planck 2013

\ IR Planck TT+lowP
[ Planck TT,TE,EE+lowP
[ |

~xlc \
g g i O”VQ\' Natural Inflation
e Hilltop quartic model
\0/ o Power law inflation
s = Low scale SSB SUSY
o R? Inflation
S o Vo
g ; V x ¢?
t V x ¢/3
o
% - Vo
= g V x ¢*/3
N,=50
N,=60

0.00

0.94 0.96 0.98 1.00
Primordial tilt (ns)

Combined BICEP2/Keck Array/Planck results
P. A. R. Ade et al., Phys. Rev. Lett. 116, 031302 (2016)
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The simplest models producing the observed scalar
slope

f(R) R
- f(R) =R+ ——
£=1org TR =Rt
-6 55 13
M =26 x 107 (=) Mp &~ 3.1 x 107 GeV
2 12
ng — 1= —N ~ —0036, r = W ~ 0.004
k T
N =1n="=1In aok T _O(10), Hys(N = 55) = 1.3x 10 GeV

The same Erediction from a scalar field model with

o . .
V(¢) = =5~ at large ¢ and strong non-minimal coupling to
gravity ER¢? with £ < 0, |£| > 1, including the

Brout-Englert-Higgs inflationary model.

The simplest purely geometrical inflationary model

R N2

r—
167G | 28872 Pr (k)

R? + (small rad. corr.)

= 6C + 5.1 x 10® R? + (small rad. corr.)

The quantum effect of creation of particles and field
fluctuations works twice in this model:

a) at super-Hubble scales during inflation, to generate
space-time metric fluctuations;

b) at small scales after inflation, to provide scalaron decay into
pairs of matter particles and antiparticles (AS, 1980, 1981).

Weak dependence of the time t, when the radiation dominated
stage begins:
aoHo 1 Mpl 1

P — glnv — gln(Mpltr)

N(k) ~ Ny + In



The most effective decay channel: into minimally coupled
scalars with m < M. Then the formula

1 d, — R?
\/—ga( _gns)_5767r

(Ya. B. Zeldovich and A. A. Starobinsky, JETP Lett. 26, 252
(1977)) can be used for simplicity, but the full
integral-differential system of equations for the Bogoliubov
o, Ok coefficients and the average EMT was in fact solved in

AS (1981). Scalaron decay into graviton pairs is suppressed
(A. A. Starobinsky, JETP Lett. 34, 438 (1981)).

For this channel of the scalaron decay:

N(k) ~ Ny +In—— — —In —

Possible microscopic origins of this phenomenological model.

1. Follow the purely geometrical approach and consider it as
the specific case of the fourth order gravity in 4D

L + AR? + BC,3,5C*° 4 (small rad. corr.)

B 167G

for which A > 1, A>> |B|. Approximate scale (dilaton)
invariance and absence of ghosts in the curvature regime

A2 < (RR)/M} < B2,

One-loop quantum-gravitational corrections are small (their
imaginary parts are just the predicted spectra of scalar and
tensor perturbations), non-local and qualitatively have the
same structure modulo logarithmic dependence on curvature.



2. Another, completely different way:

consider the R + R? model as an approximate description of
GR 4 a non-minimally coupled scalar field with a large
negative coupling & ({conr = ¢) in the gravity sector::

2
R ¢R$ 1

L= — —
167G 2 2

Gt = V(o), £<0, [§|>1.

Geometrization of the scalar:

for a generic family of solutions during inflation and even for
some period of non-linear scalar field oscillations after it, the
scalar kinetic term can be neglected, so

ERp = —=V'(¢) +O(|¢] ) .

No conformal transformation, we remain in the the physical
(Jordan) frame!

These solutions are the same as for f(R) gravity with

(R) = R—EB) _yi4my).

f(R)

| =
167G’

For V(¢) = A(¢24_¢g)2’ this just produces
F(R) = -1 (R n fw) with M2 = )\ /247£2G and
¢* = [E|R/A.

The same theorem is valid for a multi-component scalar field,
as well as for the mixed Higgs-R? model.



Inflation in the mixed Higgs-R? Model

M. He, A. A. Starobinsky and J. Yokoyama, JCAP 1805
(2018) 064; arXiv:1804.004009.

1 R2\ ERP 1. . A
£=Torc <R+W>_ 2 Fa0udtm <0 >

In the attractor regime during inflation (and even for some
. . 2 .
period after it), we return to the f(R) = R + /> model with

the renormalized scalaron mass M — M:

1 _ 1, 247¢%6
M2 M2 A

More generally, R? inflation (with an arbitrary n., r) serves as
an intermediate dynamical attractor for a large class of
scalar-tensor gravity models.

Inflation in f(R) gravity

The simplest model of modified gravity (= geometrical dark
energy) considered as a phenomenological macroscopic theory
in the fully non-linear regime and non-perturbative regime.

1 4
16WG/ f(R)V—gd*x + S,

S:

f(R)= R+ F(R), R=R"
Here f”(R) is not identically zero. Usual matter described by
the action S, is minimally coupled to gravity.

Vacuum one-loop corrections depending on R only (not on its
derivatives) are assumed to be included into f(R). The
normalization point: at laboratory values of R where the
scalaron mass (see below) mg ~ const.

Metric variation is assumed everywhere. Palatini variation
leads to a different theory with a different number of degrees
of freedom.



Field equations

1 124 1 124 174 124 174
816G (Ru 3 5MR) =— (Thwi) + Tiomy + Tl 0p)) -
where is the Newton gravitational constant
measured in laboratory and the effective energy-momentum

tensor of DE is

174 / 174 1 v 1% 174 /
87GT) pey = F'(R) Ri—> F(R)o,+ (V. V" =0V, V") F'(R).

Because of the need to describe DE, de Sitter solutions in the
absence of matter are of special interest. They are given by
the roots R = Rys of the algebraic equation

Rf'(R) = 2f(R) .

The special role of f(R) o R? gravity: admits de Sitter
solutions with any curvature.

Reduction to the first order equation

In the absence of spatial curvature and p,, = 0, it is always
possible to reduce these equations to a first order one using
either the transformation to the Einstein frame and the
Hamilton-Jacobi-like equation for a minimally coupled scalar
field in a spatially flat FLRW metric, or by directly
transforming the 0-0 equation to the equation for R(H):

dR (R —6H?)f'(R) — f(R)

dH ~  H(R — 12H2)f"(R)

See, e.g. H. Motohashi amd A. A. Starobinsky, Eur. Phys. J C
77,538 (2017), but in the special case of the R + R? gravity
this was found and used already in the original AS (1980)

papetr.



Analogues of large-field (chaotic) inflation: f(R) ~ R?A(R)
for R — oo with A(R) being a slowly varying function of R,
namely

AR < A8 ary <« AR

Analogues of small-field (new) inflation, R ~ R;:

2f(Ry) 2f(Ry)

f'(R) = L F(Ry) &
(1) Rl (1) R]?

Thus, all inflationary models in f(R) gravity are close to the
simplest one over some range of R.

Perturbation spectra in slow-roll f(R) inflationary
models

Let 7(R) = R* A(R). In the slow-roll approximation
|R| < HIR):
2A 2
— . g 2 Pg(k) - .
642 Ar R? 12A, 72

Pr (k)

3 [ A ,
N(k):—§/R R S ms, K =87G

f

where the index k means that the quantity is taken at the
moment t = t, of the Hubble radius crossing during inflation
for each spatial Fourier mode k = a(t,)H(t,).



Different types of quantum corrections to the
simplest model

» Logarithmic running of the free model parameter M with
curvature.

» Terms with higher derivatives of R considered
perturbatively (to avoid the appearance of ghosts).

» Terms arising from the conformal anomaly.

First type: logarithmic running with curvature

Due to the scale-invariance of the R + R? model for R > M?,
one may expect logarithmic running of the dimensionless
coefficient in front of the R? term for large energies and
curvatures. This running should be also related to the
imaginary part of the effective action describing the scalaron
decay after the end of inflation.

The concrete 'asymptotically safe’ model with
R2
6M? |1+ bIn (£)]

F(R) = R+

was recently investigated in L.-H. Liu, T. Prokopec,
A. A. Starobinsky, Phys. Rev. D 98, 043505 (2018);
arXiv:1806.05407.



However, comparison with CMB observational data on n, — 1
shows that b is small by modulus: |b|Ny < 1,|b| < 1072,
Thus, from the observational point of view this model can be
simplified to

f(R) = R+6R—A;2 [1b|n (%)]

for which the analytic solution exists:
~1
n5—1:—4—b(e2gN—1>
3

4bN

1652 es
r =

2
)

For |b|N < 1, these expressions reduce to those for the
R + R? model.

Second type: terms with higher derivatives of R

1 1
S=—"— [ d'xv/—g [RJrozRZ +7RDR} L a=on

K2

An inflationary regime in this model was first considered in

S. Gottlober, H.-J. Schmidt and A. A. Starobinsky, Class.
Quant. Grav. 7, 803 (1990). But this model, if taken in full,
has a scalar ghost in addition to a physical massive scalar and
the massless graviton.

Its recent re-consideration avoiding ghosts:
A. R. R. Castellanos, F. Sobreira, I. L. Shapiro and
A. A. Starobinsky, arXiv:1810.07787.



The idea is to treat the YRLIR term perturbatively with
respect to the R + R? gravity, i.e., to consider only those
solutions which reduce to the solutions of the R + R? gravity
in the limit v — 0. Then the second (ghost) scalar degree of
freedom does not appear.

Results:
1. |k| < 0.3 where k = ¢15.

2. In the limit kN < 1, leading corrections o< kNN to ns — 1
and r vanish. The first result is in the agreement with that in
a more general non-local gravity model without ghosts
constructed in A. S. Koshelev, L. Modesto, L. Rachwal and
A. A. Starobinsky, JHEP 1611, 067 (2016); arXiv:1604.03127
which contains an infinite number of R derivatives.

Third type: terms arising from the conformal
(trace) anomaly

The tensor producing the o (RWRW — %) term in the trace

anomaly:

ko y) 1 1
TV = RORY — ZRRY — Z6“R.sR*" + Z§“R?
z 288O7r2(“0‘ 3 ptpliak +4”)

It is covariantly conserved in the isotropic case only! Can be
generalized to the weakly anisotropic case by adding a term
proportional to the first power of the Weyl tensor.

3H* 1 R 288072
020 o (RR™-) . H2=
O K2HZ K2 H? ( : 3 ) P K2 ks




The spectrum of scalar and tensor perturbations in this case
was calculated already in A. A. Starobinsky, Sov. Astron. Lett.
9, 302 (1983).

eBN MZ
1 U= 3

ng—1=-2p3

If n. > 0.957 and N = 55, then H; > 7.2M.

Conclusions

» The simplest viable inflationary model in f(R) gravity is
the R + R? one. It is one-parametric and has the
preferred value r = 15 = 3(n, — 1) &~ 0.004.

» Thus, it has sense to search for primordial GW from
inflation at the level r > 1073 using CMB polarization
and temperature anisotropy!

» Inflation in f(R) gravity represents a dynamical attractor
for slow-rolling scalar fields strongly coupled to gravity.

» Comparison with observational data on ns(k) — 1 shows
that quantum corrections to the R + R? model in the
observable part of inflation are small, no more than a few
percents. This smallness has been expected since it is
caused by the anomalously large value of the
dimensionless coefficient in front of the R? term which
finally follows from actual smallness of present large-scale
inhomogeneity of the Universe.
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GW background w. G. Cusin, 1. Dvorkin, C. Pitrou
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Gravity waves -

Since September 2015, we can detect GW with interferometers

5 binary BH systems and 1 binary NS system

But there are many other types of sources

(1) binary inspiralling objects

(2) binary merging objects

(3) exploding supernovae




Sources: sensitivity curces_

10°
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N
Unresolvable
107 galactic binaries
10"
107 10* 10* 1?" 10% 10° 10? 104 10°
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cosmic strings...) expected regime of frequencies and strain

for astrophysical stochastic background

Origin of stellar mass blac

Supernova Neutron star

) Core collapse
Massive star p

M., Z.)

Black hole
Physical models Mgy

Stellar evolution model
Initial mass of the star, binarity

Environmental properties
Chemical composition
Porperties of the host galaxy



Galaxy stellar population evolution

galaxy of mass M and metallicity Z

St

& =0

Each galaxy has a stellar formation history that depends on its mass and metallicity.

A stellar evolution model gives the lifetime of the star and mp=g (M., Z.)

so that one can predict
- the rate of SN
- the rate of BH formation
- the BH mass spectrum

as a function of time after the galaxy formation (and then redshift)

How to Predict the BH binaries formation rate

For a galaxy of mass M and metallicity Z

- The star formation rate
Y(2)
- Initial mass function

AN,
o(M.) = o M,

[Springel-Hernqvist (2003)]

[Salpeter a=2.35]

- Stellar evolution model

MBH = 95<M*, Z*)
T(My, Zy)

[Woosley-Weaver (1995)]
[Fryer et al. (2012)]
[Limongi et al. (2017)]

Fraction of BH in binary systems

B(Mpwn)

BH formation rate

Ri(m,t) = ¥[Mg,t — 7(M.)|p(M.) x dM, /dm

# black holes formed from given initi

Birth rate of binaries

Ro(m,t) = Ry (m,t)

al mass

Riin(m,m’) = Ry(m)Ro(m')P(m, m’)



BH mergers rate _

This depends on the lifetime of the binary BH systems, that is on their orbital
parameters at formation (and eventually environment)

Ry[m,m',az,t] = Ryin(m,m’) f(ay)

Rum[m,m’ as,t] = Ry[m,m’,ap,t — 7,n(m,m’,ay)]

O 09 | Rapid mergers

Eccentricity
o

e o
=

——a0-0.1AU; €002
——a0=0.1 AU; €0 =0.5
---20=0.5 AU; 00 =0.2 01
---a0=05AU; €0 =05

- 05
10 10! 102 Log10(a/AU)

Stress-cnergy tensor of a GW _

The GW stress-energy tensor is quadratic in h, and obtained by expanding the
Einstein tensor to second order.

Long but textbook computation gives

C4

U
H 327TG

where the [...] is defined as

0, hap0y R ]

1 [To

AW =7 [ A

The GW energy density is then defined as

2
C
tOO 327_‘_G [hTThTT]



Energy densitly

This leads to the definition of the

paw (10)

from which one defines the density parameter

_ 400

1 dpaw
pe dInyg

Qcaw(vo) =

In a FL universe, it gives (I shall come back on this later)

Qcaw(vo) = ic/ (1+:)iH(z) /deGnG(Z';eG)EG(VG;eG)

ve =vo(l+ 2)

Elements to predict Q¢

It depends on
- the background cosmology;
- the distribution of galaxies n(M,z);

- the subgalactic physics (SFR, IMF, stellar evolution, binarity);

- the GW emission of each type of source

To integrate over the galaxy distribution one needs the Halo mass function
(calibrated on numerical simulations [Tinker et al. (2008)])

dn
— (M
dMG( Gaz)



Evolution models

SFR as function of redshift

100 Parameters of the models
s
el SrRseopil
st o
Model name Ref. Parameters Parameter values
10
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[Dvorkin, JPU, Vangioni, Silk, 1709.09197],



BH merger rate

Total merger rate normalized .
to 107 Mpce3yrtatz=o0. Merger rate by unit BH mass at z=0
10° T T T

~ViWp + Poplil
s W + GRB-basod SFR
e WWp + st00p IMF

—Fryer
=== Fryer + steep IMF
1071 f == WWp
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- = ~WWp + steep IMF
s WWp + K (g Z, /Z, = -3)
s WWp + K (o2 Z, 7, = 2)

5 10 15 20 25 30 a5 40 45 50
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o 4 6
Redshift

Merger rate by unit mass as function of z

Table 1. Merger rates deduced from LIGO Ol observations assuming dif-
ferent astrophysical models (see text for discussion).

Rate [Gpe 3 yr~!]
Fryer 18
WWp 59
Limongi 15
Limongi300 32
‘ o . : : : T
[Dvorkin, Vangioni, Silk, JPU, Olive, 1604.04288], Redshift
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GW background
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[Dvorkin, JPU, Vangioni, Silk, 1607.06818

AnisotroRy of the AGWB

This assumes that the spacetime is spatially stricly homogeneous and isotropic (FL)

- Isotropic distribution of sources (no structures)

- Propagation of GW in homogeneous medium

This is indeed not realistic



Anisotropy of the AGWB

Univers has large scale structure:

Sources are not isotropically distributed + light propagates in a perturbed spacetime

Qaw (1) = /d2e0 Qaw (10, €o)

1 dSpgw(Vo e())
Q = - !
GW(VO, eO) Pc dIn 140 d2€0

Strain and densitz

At the observer the GW is the superposity of many individual strains produced by
different astrophysical systems

N(eo)
ho(xo,to, €0;t) Z hi[Pem (X0, to, €0), t]e"#

(2
Its energy density from direction e, is

dQIOGW

d2eo (X07t07e0) X [hO(t07X07e0;t)h0(t07XanO;t)]

N(ey) N(eg)
% 3 [l Pt [P, 1] i)
g i

N(eo']

x Y [iu[pcm,f]iz;[R,,,,,q].

Since sources are incoherent



Strain and density _

[Cusin, Pitrou, JPU, 1711.11345]

So the energy density,
N(e,
d2p d2P W,i
d2:w o:tor€o) Z - [Pem 0:t01€5)]

is a stochastic quantity. So it has a non—vanishing correlation function

Cley -€) = <d2p‘” (e) LW (e'o>>

2 2,
d’e, d7el,

The strain is also a stochastic variable, but uncorrelated on the sky because
sources are incoherent

(hobs(T o1 t0s €035 t)hobs(To, Lo, e:) : t))
Neg)

2
& 62(20 - e’o)( Z |hi[Pem(t0$mo’eo)’t] )
The strain is not correlated while its energy density is.

The good quantity to describe the AGWB is NOT the strain but its
energy density.

Anisotropy of the AGWB _

U'g Observer 4-velocity

60 Direction of observation

d V 3D-physical volume

It is given by the intersection of the 4-
volume and the observer past-light
cone.

[Cusin, Pitrou, JPU, 1704.06184]



Anisotropy of the AGWB _

CT/\;, W
s o i 4
G/ Q- (1) cosmological scale. The observer receives flux of GW in a
; C)/ . (’?/“ solid angle around the direction of observation. Galaxies:
) g " € point-like sources moving with the cosmic flow
(1) Cosmological scale cosmological approach

lE )

(2) Galactic scale

(2) galactic scale. A source -i inside a galaxy is characterized
by parameters #(*) and is moving with velocity T'. Effective
luminosity and frequency of a galaxy defined taking into
account contributions sources

statistical approach

(3) local scale. Scale of single sources emitting GW inside a

o~
\ galaxy
\C astrophysical approach

(3) Astrophysical scale

Anisotropy of the AGWB: GW pro_

As in electromagnetism, it can be shown that in the eikonal limit GW follows null
geodesics.

d DR
dA DA

Ghe observer 4-velosity defines a preferred notion of spatial sections. The GW 4-
vector can then be decomposed as:

kKt = FE (u¥ —e!)

k=

kM, =0 = k'V, k" =0

P — By —
Direction of observation €Uy = 07 € ey = 1

Energy/Cyclic frequency E =2mv=—u m kH

Spatial projection of the GW 4-vector: p“ = (g’u' Y+ ut u”) ky = — Fet



Anisotropy of the AGWB: re_

The general definition of the redshift is then

7
_va _ ugku(Ac)
1 = — —
=0, ug Kk (Xo)

Given initial conditions at the observer

dzH (A
) =, LN g et
dA =y,
One gets
xu()‘7xga€g) Z(A7xg?€g) eu(Aaxl()Laeg)

AGWB: general derivation _

Galaxy G, at 2¢ and observed in ep. Associated flux:

Energy

®(eo, 26,0c) = m fc parameters describing G (mass, metallicity...)

/dVo@(eo,Vo,Zc,OG) = ®(eo, 2¢,0c)
specific flux Ao

To find the total flux received, we need to sum the contributions from all
the galaxies in the solid angle dQo




AGWB: (1) cosmological sc_

For each galaxy, characterized by 6, we define

- ‘ e w j
Lc(va,0c)dve = La(8 ffective luminosi ; e W

/0 c(e,0c)dvg = Lg(fc)  effective luminosity e 6 Py

ve = (1+zg)vo effective frequency ~ G}’ O,a @} ) g

The flux measured by the observer in the frequency band [v,,v,+dv,]

1
4w D2 (2¢, €0)

®(2¢,e0,0c) = Le(bc)

(1+2¢)
41rD%(zG,eo)

S, (2¢,€0,v0,0c)dvo = Le(ve,0c)dvo dva(1+z¢) = dvo

AGWSRB: (2) galactic scales

The effective luminosity (per unit frequency) can be split as

Lc(bc,ve) = L&(Oa,ve) HEE (Ba,ve) + L2N (e, ve)

There are 2 types of contributions.

Inspiraling binaries
I - @) A7) (D) 3 dEg
= VN g\t T f(T r
L&(0c,ve) =) :/d9 N (0 790)/11 f( ,OG)dtGdVG(VG, ,0c)

(?)

Mergers and supernovae

M,SN

. (@
Eg,SN(GG’VG) _ Z /dﬂ(z)d;\tf_c(()(z),(ic)/d3rf(l‘,0c:)
(7)

dES)
dI/G

(VGa Faec)




AGWB: General expression _

d®paw d*Ng -
—— (vg.eq) = | A\ | dOqc @ [2*(N), v, 0] ———=— [2"()\). 0
CPE (o) = [ an [ GT[ :0,06] 51 e (N, b
1+ 2 NGl (V) 0] = nala (V) 0V 24 ()

o = D% EG BVah(A)] = D3 (A)d2eny/pu (A)pr(A)dA

Spatial displacement

Effective luminosity

/
Loaw (oL Ve P L

/ Galaxy number

redshift density

[Cusin, Pitrou, JPU, 1704.06184]

AGWB: General expression _

This expression is covariant, valid in any spacetime geometry.

It requires - the determination of the past lightcone structure
[geodesis of the spacetime]

- a cosmological model
[galaxy distribution, ...]

- an astrophysical model
[type of sources / emissivity / effective luminosity]

At background level (FL), it recovers the standard formula used in the literature

d*paw 1 1 1 -
drpd?Qg (vo) = 4 Hy /dzE(Z) (1+2z)4 /deG na (% 06)Lelve, fa)




Perturbed FL e

Spacetime metric at linear order in (scalar) perturbation

ds® = a® [—(1+ 2¢)dn® + (1 — 2¢);;da’ da’|

Bardeen potentials

W=U+I, =TI

Velocity field

ut = = (1 — 1, v") = at 4 dut

Q| =

Perturbed FL: general expression _
Gathering these 3 elements and plugging in the general formula, one gets

1 _
Qow = EQGW + 0Qaw (e, 1)

14
Qaw(e, ) = —Og(ﬁo,xoye, 0)

o
£=_" dna‘*/degngcg@,ag) l5G+4\I!+4H—2e-Vv—6/ dn’\lf]
47 n

! °
Local physics / /

Local overdensity Doppler

Integrated « SW »

Einstein effect

[Cusin, Pitrou, JPU, 1704.06184]



Perturbed FL: general expression _

v To Mo .
aw(e,v,) = —2 / dnA(n,v,) |6, +4¥ —2e- Vv + 6/ dn'¥
ampe J. n
Yo /nod B( )[ Vo — U 2/%(1'\1:]
+ vV € - v — -
47rpc - 77 777 (8] . T’
— 4= —
Al v6) = a*ig (1) [ 8L, 7, 00)
_ oL _
B(n,v,) = a’ VoNg (n)/dgc < _ (n,7,05)
81/G Ve
Now one needs the angular power spectrum of this thing.
Output | | Observables
Sub-galactic scales
Sources lSFR IMF Stellar evolut‘ionJ Galaxy GW luminosity
dE, Ni[e(I% 0] b Lin,0c]
v R0, 6]
Z(eg, z)
Galactic scales
Halo mass function RZ (V, Z) :/Ie;(::liissi‘gon
\l' > Bi(l/, Z) — QGW(V)
dng A’L (V7 Z)
WG(QG’Z) J(
Cosmological scales 5QGW (e, V) Og (V)
Initial conditions: inflation
Cosmological perturbations
i, K(e, 2) B(0,v) — Bf(v)
i (1), 0k (), - . —> ke(2), Aic(2), .. ——>  A(e, z) ——>
T(e, Z) D(H,Z,V)—D[(Z,I/)



BH-mergers source function

10—36
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10—38

Cl: first prediction — BH mergers
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[Cusin, Dvorkin, Pitrou, JPU, 1803.03236]



Cl: first prediction — BH mergers -
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[Cusin, Dvorkin, Pitrou, JPU, (in prep.)]

Cl: analytic estimation -

On large scales, the dominant contribution arises from the density contrast and
from the contribution at late time.

Assuming bias scales at (1+z)*/2 and matter dominated

(£ 4 5)Ce(rp) ~ [VOA(UZ;T;Z)b(UO)r/k Ps(k)dk

min

Variance due to the large scale structure can be estimated to be

() = 3 H D 0, m)
14

L 8% 16%




Cl: z-dependenee
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Cross-correlations _

General expression has a cosmological and a local astrophysical components
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[Cusin, Dvorkin, Pitrou, JPU, 1803.03236]



Conclusions

First expression of the astrophysical GW backgound
First shape of the angular power spectrum for BH-merger sources

Stellar evolution models lead to significantly different predictions for binary-BH
systems distribution.

Lots need to be done:
- explore dependence on astrophysical models
- most of the astrophysical parameters are badly known
- explore effects of the cosmology
- include other sources

It opens a potential new window bridging astrophysics and cosmology
- understand the population of stellar BH
- test correlation between BH and dark matter distribution.

- Upper bounds obtained by LIGO up to 1=7

- and indeed, you can even put PBH....
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Test of gravity with GWs

e GWs from 5 BBH and 1 BNS have been detected so far.
LIGO Scientific Collaboration 2016-2017

e GW propagation

. —23 LIGO Scientific
e gravitonmass < 7.7 x 107" eV Collaboration 5017

e From GW170817/GRB170817A, GW speed has been
measured so precisely  LSC + Fermi + INTEGRAL, ApJL 848, L13

3% 10715 <« L€ 710716

C

e Constraint on amplitude damping rate
—75.3 <v <784 Arai & Nishizawa 2018



GW amplitude damping

set cr =1, u=0, h;+ (2+v)Hh};+k’hi; =0

4

N 1 [ v
h=e Pher D:—/ 1+Z,dz’ Nishizawa 2018
0

‘ in Horndeski theory

=P M, (z) _ Gew(0) G gy : gravitational constant
M., (0) Gow(2) for GWs
Gow(2)

effective distance to a source dp, e (2) = dr,(2)

Ggw(0)

Source redshift is necessary to compare with true distance.

Equivalence principle in modified gravity

P
1 : _
GWs Ggw ng = 647TGgW {hfj —a 2(thj)2} ]
\_
4 . )
galaxy clustering  G'matter All are Gx
kQ\Ij — _47TGmatter(k7 T)(Spm in GR
\_ y,
( o , Q 7\ Well constrained at
gravitational lensing light small scale, but not
2 _ at cosmological
L k (\I’ + (I)> — _87TGlight(k7 7’)5,0m ) distance yet.

In modified gravity that explains the cosmic accelerating
expansion, the equivalence principle is likely to be broken.



Horndeski theory

Horndeski 1974

5
S = /dajély/— L.+ L Deffayet, Gao, Steer, and Zahariade 2011
g ; ’ " Kobayashi, Yamaguchi, Yokoyama 2011

Ly = Ga(d, X) ,

L3 =—G3(¢, X)0e,

Ly = Ga(¢, X)R+ Gux(4,X) [(O9)? — (V. V0)(VIV 9)]
Ls =Gs5(¢, X)G,, (VHVY @)

— $Gsx(6,X) [(O9)° = 3(06)(VuVu8) (VHV76) + ATV#Vad) (VY 36)(VPV,16)

e Most general scalar-tensor theory containing up to 2" order
spacetime derivatives.

e A single scalar field, but with four arbitrary functions of
® and X = —V,.oVFe/2 —— (Go,Gs, Gy, G5

Gravitational constants
in Horndeski theory

In the limit of quasi-static approximation,

De Felice, Kobayashi, Tsujikawa 2011
Pogosian & Silvestri 2016

Poisson eq.
Gmatter :GNVPQ(l_'_O‘T_l_%) *
from scalar
lensing eq. / field fluctuations

M?2 B2 + Bl
pl aT 3 BME

*




Model parameter estimation

We estimate parameter errors with the Fisher information matrix.

e generate 500 sources with SNR > 8 for each case.
e source direction & inclination angles: uniformly random

o GW waveform:

phenomenological IMR waveform (PhenomD) for BBH
Khan et al. 2016

post-Newtonian inspiral waveform for BH-NS and BNS

Sensitivity with 2nd gen. detectors

Nishizawa 2018 HLV network, redshift prior Az = 1077
0100 | 1 constant V, U
2 098 1 — 30Mp — 30M,
Z 0.06} 1|
2 0.04} | — 10Mg — 10Mg
a®
0.02¢ H o — 10Mg — 1.4M,
0.00 b= nl . Tan, |
1 10 100 1.4 Mg — 1.4 Mg
Av

L/ is measured with the error of O(1)

| R+ 2+ v)HE + PkPhi; =0 ]



3d gen. detectors

BNS can be observed for long time because of good sensitivity at
low frequencies (1-10Hz).

Using time-dependent (Earth rotation) antenna pattern functions
for BNS. (1 day at 2 Hz, 2 hours at 5 Hz before merger)

10—20 .
— aLIGO
10721 L —— Voyager |-
5 — ET-D
T 10721 — CE
=) _23 P\
@ 1077 :
1
10720 1
1 1
10—25 : : \ | )
1 " 10 100 1000

f [Hz]

Sensitivity with 3rd gen. detectors

3 Voyager 2 ET-D
>0.075} >02
8 0.050¢ 2
o '8 0.1
5 0.025 a
0.0005-1 10° 10! 10? 090" 100 10!
3 CE
0.10f
>0.15 2
3 3
8010 8 0.05}
o o
S 0.05 s
1 Ir 1
0.00 0-006==""70T "10° 10!
Av

L/ is measured with the error of O(0.01). Nishizawa & Arai, in prep.



10!

10°

Av ~ 0.03 :
10!
1072
10t
10°
Av ~ 0.07 3
1071
102
10!
10°
Av ~ 0.3 3

107t

1072

Redshift dependence

EITRRRRRR Y
ALIRRLL

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

10M, — 10Mp,

é&&émaé%é

T T 1T
0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

HHH

1.4 Mg — 1.4 My,

0.050.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
redshift

Summary

detector network
3CE@H, L,V

thick bars (25-75%)
thin bars (5-95%)

I/ erros are independent
of source redshifts

Av 2
log(1+ 2) x SNR

smaller errors for
heavier binaries
(deu to larger SNR)

e The equivalence principle at cosmological distance has not
been tested precisely yet and can be a key test for modified
gravity theories that explain the cosmic accelerating expansion.

e Gravitational constant for GWs is proved by measuring the
amplitude damping rate 1/ during GW propagation.

e current constraint from GW170817

—753< v <784

Arai & Nishizawa 2018

current detector network (aLIGO, KAGRA, etc.)

Av ~ O(1)

future detector network (ET-D, CE, etc.)
Av ~ 0(0.01) 4=y C\/Gy <0.02H,
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Probing the Starobinsky R2 inflation with
CMB precision cosmology

Yuki Watanabe
NIT, Gunma College

Based on JHEP 02(2018)118 [arXiv:1801.05736] with |. Dalianis;
JHEP 02(2015)105 [arXiv: 1411.6746] with T. Terada, Y. Yamada, J. Yokoyama

The 28th Workshop on General Relativity
and Gravitation in Japan
JGRG28

Tachikawa Memorial Hall, Rikkyo University
November 9, 2018

CMB observations and BSM physics

- (ns, r) precision measurements from CMB
- No signal of physics beyond the Standard Model (BSM)
at the LHC

-200 T(uK) +20




Tensor-to-scalar ratio (¢.002)

Tensor-to-scalar ratio (r9.002)

CMB constraint on inflation models

[Fig. from Planck 2018]
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CMB constraint on inflation models

[Fig. from Planck 2018]
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0.94

e Monomial potentials (p = 2) in GR are disfavored.

e What if we could nail down to further precision?




Starobinsky R2 Inflation

[Starobinsky 1980; Mukhanov & Chibisov 1981]

2
S = d*x\/— <R+ al )+Sm

2/4;2 602
1
S = /d4x\/—g [—5(V0)2 — V(O’)] < Higgs
+ minimally coupled SM, RHN
+ or BSM

¢ One of the oldest models of Inflation, before models of
Sato and Guth

e A single parameter M characterizes the model.

R2 Inflation as scalar-tensor theory

[Whitt 1984; Maeda 1988]

A

S, = 222 diz/—§ <R+ 6?;) + S,
— /d4x\/—_§ [—5(%)2 - V(&)]

Jordan frame gu. 02 — 9,2

g,ul/ _— g,U,I/QQ 3M2

Einstein frame guv R =02 (R +30(InQ?) — ;gwau(ln 02)0, (In Q0?)]

=1+ = e\/_’w

S = [ 0oy | ga = 5(ToF - V() - e VI - e Vivv (o)

2 3Ar2ar2
U(p) = 2 MM (1-e Vi) :{41M M, for so>>gof}
4 sM2p? for ¢ < @y

@ : Scalaron = Inflaton



R2 Inflation [starobinsky 1980

P Scalaron = Inflaton

/30 Pe(ky) 1/2
N, 2 x 1079

~10*"ecm ™! ~ 10°'Mpc ™1,

2 3 N2 5
Ulp) = SM2M2 (1-eVine) _@fm v ‘pf}
1 P sM?p2 for ¢ < @5

R2 Inflation [starobinsky 1980]

¢ : Scalaron = Inflaton

2 3Ar2ar2
U(p) = §]\42]\42 (1 — e_\/g"”vso) _ M Mp’; for > ¢y
4 p %M2<p2 or < gy



Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

_ 55 .
oc=e¢ V675

1 2,2 2 3
‘Cscalar — _Ea'uaauo’ — K—\/%@uaﬁ“go — ng 8#908'u90 _ Te V6 <P0_2
_ 3k, ~
v =e 2\/69017&
'Cfermlon - www —e V6 (Pmd,w”(ﬂ
r 1 Do + ng 2, mi v
® V6Mp, g V6 Mpy V6Mp
o ¥
@oooo.oo(:: 9@"'0000
5‘ U ¢

Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Ny (M? + 2m2)?
1927TMP2,1M
3 2 2
- N M N Nym?2 M o du) = Nymi, M
1927?]\4?,1 4871']\4%,1 487er%1

Leading term
Hy =T

o (Nt )
Trh ~ 0.1 FtotMp (ﬁ)
" 0- /lp

g

(e —o00)=

@ooooooot: s@.oooooo



Gravitational reheating by scalaron decay

[YW & Komatsu gr-qc/0612120; YW 1011.3348; YW & White 1503.08430]

Ny (M? + 2m2 )2
1927TMI%1M
3 2 2
~ NoM + N”mUM T'(p— &w) — M
1927TM1—_2,1 487r]\41;2)1 487TMP2’1

Aftot /4 —9
Tin 2 0.1y/Tor M, ~ 107" M,

I'(p —o00) =

100
1 Trh

No~544 —In| —2 ),

T3 Il(109 Gev>

If we know the matter sector (e.g. SM minimally coupled to gravity),
inflationary predictions can be made without uncertainty.

Predictions depend on reheating temperature

scalaron mass e-folds of inflation
o430 [ Pe(k) \Y? 1 Tin
M ~10"°M N, ~ 54+ -1 P —
0 My <2><10—9 5+3Il 109 GeV )’
~107° M, ~ 10*"cm ™! ~ 10> Mpc ™",
~ 1013GeV
grav. waves tilt and running of spectra
dInP:(k
PC(k) N*Q dlnk N,
- _ dInP, (k) ~ 9 3
T dlmk - TV T T aN
dns 9 5 2
dnt 2 3
~ 4 — ~——
din g~ Aeviv — 86y = 1,



Preheating in R2 inflation (Minkows

¢(x,t) = do(t) + 0¢(x, 1)
S + widdy, =0

3./4.%(1-exp(-abs(x ( 3N

ski) [Takeda & va 1405 383()]

7/ ®\?
2 _ 1.2 2 rf® ,
wy, =k + M 1+6 <Mp> ] ¢o(t) >~ @ cos(Mt)
d 7 d\? - "
— V6M?— cos(Mt) + = M? <—> cos(2Mt)
My, 6 My, P
= Qﬁﬁ,
867 + | Auk — 2q1 cos(21)]| 4, = 0 ST
Alk—4+4< ) +%qf
2nd narrow resonance: 2 5q2
—q—<Ak—4<i, b < 0.2M
0 < k q1 12 12
<= <=
M 32

dw /dt|/w?® > 1

() +

Broad resonance:

(

k

M

2
<—1-=(—
)il

M,

\/6E cos(Mt) +

0.2M, < & < 2M,

3

(_

2

-

d

M,

W

)g sin (M)

) (

Parametric resonant spectrum
[Takeda & YW 1405.3830]

0.1

P=2 Mp ©=0.5 Mp
‘ 1010 ‘
tM=Q ——
/" Broad respnance_| "o -~
! 10° F 102 ..............
: -— 44107
& 10°
o
=
= 10°
£
10710 | o™
10-15 . . 10-15 . .
0.01 0.1 0.01 0.1 1 10
K[M] k[M]
®=0.1 Mp $=0.01 M
10° \ \ 10°
~2nd narrow respnance
& . 10° [5e10
R
=
NQ_
= 10°
N_
£
— 107
10-15 f
0.01

01 1
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0.01
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Preheating in R2 inflation (Friedmann) [Takeda & YW 1405.3830]

108
10710 -
:2 107 :; 1012 ¢
= =
e o 14|
£ 018 g
10-16 L
1022
: 10—18 L L . - fr o] e
0.1 1 10 100 0.1 1 10 100
k[M] KM
Without back-reaction from metric, With back-reaction from metric,
Hubble damping wins over instabilities. preheating is balanced with
5 Hubble damping.
MS eqn: Wi

. i 2
S¢i + 3HOp, + o +V"(¢g) + AF| ¢y = 0,

i
MIH?

Back-reaction AF = 200
from metric: ~ M2H

V'(¢o) + V(o).

Metric preheating in R2 inflation [Takeda & YW 1405.3830]

Aini % 108
®o(t) >~ do(tini) ( ) sin (Mt)
¢ 1070
K b0 | 2dodo —
wi ~ a2 + M ( \/_— + HM2 ‘;'Ea 1012 |
%—f 10714 |
—~1 R — bt
0y, + [A3k: — 2q3 COS(QT)} 5y, =0 oe |
— aignigbg(tini)M . k2 10718
Q3:2a3H—]\/_[27 Askzl—i-m.

0y = 3/25@

1st narrow resonance: —q¢° < A, — 1 < ¢°,

k 3ini
a al/?

0< S iniHini\| ——5 X
— ~Y mi1 1mi aHM

The resonance is not strong enough to form quasi-stable objects!



Higher derivative SUGRA [Cecotti 1987; Ferrara & Porrati 2014]

R is the supercurvature

g :/d4:cd49E (N(R,R) + J (¢, 0e9")) s V are the matter sector

+ U d*xd?02& <F(R) +P(¢) + lhAB(¢)WAWB) N H.c.]

4

! duality trans. by T, S (T is the Lagrange multiplier)

S = /d4a:d2@2£% (22 - 8R) e X3 + W + ihABWAWB +He.

S7 S) T J(¢7 qgegV)

Kahler pot: K = —3In (T+T — N(

; )

Superpot: W =2T7'S + F(S) + P(¢).

Starobinsky SUGRA R2 i

nflation

[Terada, YW, Yamada, Yokoyama 1411.6746; Dalianis & YW 1801.05736]

L =—-3Mp / d'0E [1 ~Lars ¢ 9229‘z2]

Mg
N(S.5) =~ 3+ 285 (85)°
mg My
F(S) =0,

3myg
l
S, ImT are stabilized.

Real part of T becomes the inflaton: | |/

4

_ 3mg (1 _ e—\/2/3§é\T>2

_ 1
S = /d4xd2@26‘§ (29 —8R) e K3 + W + ZhABWAWB + H.c.

T+T—-N
K:—3ln( i (5,

W = 2TS + F(S) + P(¢).

‘g) B J<(ba d_)egv))
Ty
Grav. coupling to matter




Starobinsky SUGRA R2 inflation

[Terada, YW, Yamada, Yokoyama 1411.6746; Dalianis & YW 1801.05736]

4 _
L= —3M§/d49E {1 — SRR+ %9{2&2]
Mg 3my,
=34 2gs_ < (say
N(S,5) = =3+ 555~ (S3)
F(S) =0,
2 ' — \ 2
Real part of T becomes the inflaton: | |/ = 37Z<I> (1 _ e~ V2/ 3RGT>
SUSY breaking field:
- 2 |2 * : -
J(z,z) =|z|" — v Z may dominate after inflation.

P(2) =z + Wy,

Constraints from gravitino abundance

[Terada, YW, Yamada, Yokoyama 1411.6746]

147\ T [ T T T [ T T T [ T T T [ T T T

Gravitinos generated from:

inflaton decay *
thermal scatterings 12f

1)
2) _
3) decay of particles , — T
4) decay of oscillating Z /\/
10+
Wino LSP is assumed for:

Log_10 [z mass/GeV]

gravitino mass > 10°4.5 GeV

— anomaly mediation /“

gravitino mass < 10°4.5 GeV 6.
— gravity mediation

2‘ll4lll6‘ll8ll‘10l‘l12l‘
Log_10 [Gravitino mass/GeV]



CMB uncertainties from the post-inflationary evolution

[Easther, Galvez, Ozsoy, Watson 2013]

Thermal History Alternative History

Scale N, = j;iend Hdt — ln(a/end/a*> Scale ,

Planck

Planck
Radiation Phase T

10" Gev L Inflation — (instant reheating) T, 10" GeV J Inflation

Scalar Oscillations Dominate———

T Q

T ns(ky) =1— N

“ AN (1 —ny)?
i Ang, = « Nz = - AN

GeV-“— <«<——— Thermal DM Freeze-out

MevL- BBN Particles Decay and Reheat MeVl BBN

eV 4+ CMB eV 1 CMB

Shift in (ns, r) due to late entropy production

After inflaton decay, a diluter field X (modulus, flaton) may dominate the
universe until BBN. Decays of X produce

/4
1 g*<T§°m))1 1. -
ANx = =-In ( Dx| =-InDx
XT3 g (T<) 3
P PRy G P XC SO Gl s
Sbefore s (T)(%ec) Js (T;}om) Tf}ec Tjd(ec o
R?*, T.,=10° Gev
1020,,,,,‘, ,,,,,,,,,,,, ‘,,,,,,,,,,,,,,‘,,,,,,,,,,,,,‘, ,,,,,,, ]
2
£ 105
'S
%0 1010, ””””””””””””””””””””””””””””””
E -Condensate
_8 105,
é Thermal Inflation
Q ) I LT _________________E B N A ]
1075

0950 0955 0960  0.965
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Supersymmetric dark matter cosmology

Merits: Gauge coupling unification, stable dark matter, baryogenesis,
stringy UV completion, ...

1. Gravitino LSP
2. Neutralino LSP (WIMP)

e Thermal DM (freeze out): thermal scatterings with the MSSM,

messenger fields
e Non-thermal DM (freeze in): decays, thermal scatterings

Light WIMP mass is disfavored by the LHC.
Qpwmh? is severely constrained when

B -\
mg m
Q.0 X MY —g> ( f) TS, | Ms/o < Mg, M7,
3/2 3/2 <m3/2 M3 )2 h / g ey
(67
Q0 o< MY My <—m3/2) Ty Mgo < Mgj9, M

Alternative cosmic histories and SUSY

10%5

BBN lower T, = 10° GeV |

— Dilution Bound

my mass bound

=
=]
E 1012 - c=1, Gravitino LSP
E N -- c=10%, >> >>
% 109’ - c=1, Thermal Neutralino LSP
'z -- c=10%, >> >>
7] 6 5
9?4 10 - c=1, Thermal Gravitino LSP
g 1000+ - CZle, >> >>
10 J cC m
1000 100 105 106 107 108 10 Iy = — _);
myx = mysp(GeV) 4 M Pl
* High reheating temp. generally overproduce light LSP
— Dilution of DM abundance is necessary:
o If Dx =1 then T <m or m ~ TeV
~ : Qs
o If O(TeV) < (mpsp,m) < Ty then p, > pun = ; 12LShP_2

where m the sparticle mass scale.



CMB observables: Starobinsky R2 inflation

R*, ngz=ny(Dy,?), r=r(Dyx, 8)

0.966 ,

(th) . i ~10.0050
ns R2 = 0965, 0.964| ;c_?
- i 10.0045 =
r(|,, =0.0034 2% E
% 0.960 10.0040 L
@ i |
th) __ 0.958 5
N = 54 |
0.956¢ .

‘ 0.0030

]- 1 ‘/* ]- g*rh ]- Trh
Nl =559+ —lne, + =1 —1( ) Sl —2h ) AN
e et s 12" Voo +3“( ) X

CMB observables: Starobinsky R2 inflation

[Dalianis & YW 1801.05736]

L= —3M3 / POE |1 -~ RR4+ - R2R2| + MSSM,Z, X,
m? 3m* (messengers)

Gravitino DM (in GeV units)

# | mz mg mj| My (LSP) Dx N, N, r Origin

# | mz Mz mMmf | mgo (LSP) | D(x N, Ng r Origin

41100 10°  10° 103 1 54 0.965 0.0034 Th




CMB observables: Starobinsky R2 inflation

[Dalianis & YW 1801.05736]

4 _ _
L =—3M} / d'0E [1 - —2933”%912322 + MSSM, Z, X,

m 3m (messengers)
Gravitino DM (in GeV units)
# | mz mg mj| myp (LSP) Dx N, N, r Origin
1| 10" 10* 10* 102 10 min | 51|max  0.963|max  0.0038|i, | Th
2 [ 104 10* 10° 10° 10 iy | 46]max  0.960[1.  0.0044|,;, |  Th
3105 10° 10° 10* 10%min | 49max  0.962|max  0.0041],,;, | Non-th
4 | 10° 10% 104 10 1 54 0.965 0.0034 Th
Neutralino DM
# | Mz M3z Mj | Myo (LSP) | Dx N, T, T Origin
1] 10" 10% 108 103 10 min | 52|max  0.964|.c  0.0036|,,:, | Non-th
2 | 10° 10% 108 103 10| min | 52|max  0.964]|,.c  0.0036]|,:, | Th
31 10% 107 107 10° 10%min | 48|max  0.961|ax  0.0042]|,, | Non-th
41100 10° 10° 10° 1 54 0.965 0.0034 Th

CMB observables: Starobinsky R2 inflation

[Dalianis & YW 1801.05736]

Tensor—to—scalar ratio

== Gravitino LSP
0.1
0.01
0.001
094 095 096 097 098 099

g




Conclusion

We cannot exclude or verify SUSY by (ns, r) precision
measurements even if R2 inflation is verified.

Nevertheless we can support the presence of BSM physics by
ruling out the “BSM-desert” hypothesis for a particular inflation
model.

Hence precision cosmology can offer us complementary constrains
to the parameter space of SUSY.
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PBH Abundance from random
Gaussian curvature perturbations and
a local density threshold

arXiv:1805.03946

Chulmoon Yoo(Nagoya Univ.)
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Jaume Garriga
Kazunori Kohri

Main message 1

arXiv:1805.03946
Significantly improved from the 1st version
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Main message 2

A new procedure to estimate PBH abundance

OBetter motivated than Press-Schechter

©ONon-linearity is taken into account

©Optimized criterion proposed in Shibata-Sasaki(1999)

©No window function dependence for a narrow spectrum

Please use our procedure!!!

(Although it is a bit(?) more complicated than PS...)

JGRG28@Rikkyo Chulmoon Yoo

Introduction

JGRG28@Rikkyo Chulmoon Yoo




Primordial BHs

[Zeldovich and Novikov(1967),Hawking(1971)]
ORemnant of primordial non-linear inhomogeneity

OTrace the inhomogeneity in the early universe
OMay provide a fraction of dark matter and BH binaries

OSeveral aspects

-Inflationary models which provide a large number of PBHs

reshold of PBH formation

servational constraints on PBH abundance

-Spin distribution of PBHs
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PBH formation epoch

©Just after the horizon entry

1eV
In(length) !

Horizon entry /' 1/H ~ const for inflation
i ~a? for RD
~a3? for MD

[

inflation earlyMD RD Mp In(a)
©Mass of PBH in RD era
Ep)

M~ 1/ ¢ 1717 1787 o M~ by (2 ~ 10 (152
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Press-Schechter formalism
and the point at issue
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Perturbation Variables

O©Spatial metric

di? = a’e Xy ;dx'dx

ORelation between { and density perturbation 6

414w 1
" 3w+5 a?H?

with long wave-length approx. comoving slicing, p = wp

es/Z(Ae_{/Z

©Newtonian counterpart

¢{ ~ ¢:Newton potential, § ~ p: density
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Press-Schechter

©Simplest conventional estimation(Press-Schechter)

- Assumption 1: threshold is given by the amplitude of { or §
- Assumption 2: Gaussian distribution for { or §

- Production probability(PBH fraction to the total density) g,

1/2 o0 52 8
Bo = 2(2ma?) f|5th| exp [— ﬁ] dé = erfc (%)

©Points at issue

- 6 has an upper bound~ 0(1) = cannot be a Gaussian variable
- { ~ potential = depends on environments
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6, and Statistics of ¢

OThreshold should be set based on §

OStatistical properties are well known for {

OWhat we have to do
- Statistics of { = probability of 6 = PBH formation prob.
- w/ long-wavelength approx. and w/o linear approx.

ORelation between { and 5§ w/ long-wavelength approx.

40+ w) 1
" 3w+5 a?H?

comoving slicing, p = wp

eS/Z(Ae_(/Z
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Our Procedure
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Variables for Profile of (

OVariables: u = —{|,_¢s k2 = All,_o/1

profile: —{(r)

peak scale 1/k, with k? = AJ|,_,/1
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[Bardeen et. al(1986)]
r— Peak Theory for Gaussian { with P (k) —1

Peak # density ngl‘;)(u, k)dudk, Typical profile {(r; 1, k.)

Horizon entry cond. I Optimized criterion
\J

PBH mass M = M(u,k,) Threshold p{” = u{ (k)
k* = k* (M; M) > 1
¥

M _ (M)
nll (, M)dpdM o= pik., M) b = iy ()

Bounded below as I
H > Hmin (M) ‘

iy = max {ppmin (M), 1y (D)}

7
PBH # density: ngyd InM = ( [ duni(n M)) Md InM
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Typical profile {(r; 1 k.)

Horizon entry cond. I Optimized criterion
\J

PBH mass M = M(u k) Threshold u{ = u{ (k.)
k* = k* (ﬂ; M) > 1
}

M
nlO (u, M)dpdM p = p(k,, M) Mo = Mo (M)

Bounded below as I

u> ”min(M) ‘

Hp = max {”mm (M) I"(M) (M)}

v
PBH # density: ngyd InM = (f;: du ng’k(u, M)) Md InM
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sion around Extremum
OProbability distribution of linear combinations of {(x!)

PW,)AW = (21) "2 |detM | 1/2exp [—%V,(M‘l)u V| amv

correlation matrix: M;; =<V,V; >= | (zdk)g (;’T‘)g <V (k) v, (E’) >

OTaylor expansion of ¢
{=00+8ix;+= (zx xj+ 0(x3)

©Non-zero correlations in pairs of {,, {’,
of = [P =< Golo>  oF = [SEKEP(k) = -3 < §off > =3 < {idh >
03 = [SCKP(k) =5 < JHl > =15 < i) > =15 < {Jq) > with i # j

O©Peak number density(skip details...) [Bardeen et. al(1986)]
(k)ddk—233/2ka k: ””kddk
— npk # # em3zt s Gif ) oy O #
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[Bardeen et. al(1986)]

1—— Peak Theory for Gaussi i (3) —1

Peak # density ngl‘:)(u, k.)dudk, Typical profile {(r; 1 k.)

Horizon entry cond. I Optimized criterion
\J

PBH mass M = M(u k) Threshold u{ = u{ (k.)
k* = k* (ﬂ; M) > 1
}

M
nlO (u, M)dpdM p = p(k,, M) Mo = Mo (M)

Bounded below as I

u> umin(M) ‘

Hp = max {”mm (M) I"ﬂn:’) (M)}

v
PBH # density: ngyd InM = (f;: du ng’k(u, M)) Md InM
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OTypical peak profile for a given set of (i, k,)

OMean value of {(r) with the conditional probability P({(r)|u, k.)
[Bardeen et. al(1986)]

{(r;uk)=n (— 1_1y2 (IIJ + :_%All)) + (1kzy2) o ( 2 +24 o1 At[)))

dk sm(kr)

where ¥(r) = i <)o >= zf P (k)

©Variance

<Al(M?|pk.> 1

2 4 D)
5 (2r20 + B aw) D aw

2201 = A2 ~02 K1
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[Bardeen et. al(1986)]
1—— Peak Theory for Gaussian { with P (k) —1

Peak # density ngl‘:)(u, k.)dudk, Typical profile {(r; 1 k.)

Horizon entrm l Optimized criterion

\

PBH mass M = M(u, k.)

k.=k.(uM)
\

old u®) = k)

M
nlO (u, M)dpdM p = p(k,, M) Mo = Mo (M)

Bounded below as I

u> umin(M) ‘

Hp = max {”mm (M) I"(M) (M)}

v
PBH # density: ngyd InM = (f;: du ng’k(u, M)) Md InM
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Compaction Function

ODefinition of the compaction function C

= ‘%M M = Mys(r) — Mg(re~%)

©OCompaction function C and averaged density perturbation &
C= %3(HR)2

OCriterion forc™* atr = r,

cmax > %Sth = 0.267 in comoving slice(0.4 for CMC slice)

profile depj.. ' ; profile dep.
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Threshold for ¢

©Shape of the profile

gk =50 = - (4 Do) + % 2y 4 Sy

dk sm(kr)

Y(r) = zf P(k)

©Compaction function

1
625[1—(1—1"()2]: g

OThreshold C;, = Threshold u\(k,)

- J1-3Cs 2-.4- 68,

m(k*)gin(k*) 27 (k) gm (k)

ui (k) =
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Flow Chart

[Bardeen et. al(1986)]
r— Peak Theory for Gaussian { with P (k) —1

Peak # density ngl‘;)(u, k)dudk, Typical profile {(r; 1, k.)

Horizon entrycapd. I l Optimized criterion
\J

PBH mass M = M(u, k.)

k.=k.(uM

\

nO (u, M)dpdM n = p(k, M)

Bounded below as
j 24 > Hmin (M)

iy = max { i (M), u” (M)}

7
PBH # density: ngyd InM = ( [ duni(n M)) Md InM
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‘ | o Eeaks . By
olgrac i -1l ‘\H“ Bl
OEstimation of the PBH mass for the typical profile

1 1 1 1 )
M(uk,) = E“H_l =—aR = Ea:an‘«,ne—é’ = M k2,72 (k,)e 2wk

2 r=Tm
horizon entry

where we have assumed a ~ 0(1) factor

*note a = K(k*)(ﬂ — uth(k*))y with y = 0.36
if we take into account the critical behavior

©OWe obtain the relation of M, k., u

M=M@k,) < >k, = k.1, M) <
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B oeesy Ol o no
' ] OW Lhnart
[Bardeen et. al(1986)]
r— Peak Theory for Gaussian { with P (k) —1

Peak # density ngl‘;)(u, k)dudk, Typical profile {(r; 1, k.)

Horizon entry cond. I Optimized criterion
\J

k. k.
PBH mass M = M(u k,) Threshold p{” = p{~ (k.)
< k* — k* (M; M) > I
(a : ) ' (M) I
nO (u, M)dpdM n=p(k, M) Hen = Mgy (M)

Bounded below as I
j 24 > Hmin (M) ‘

iy = max { i (M), u” (M)}

7
_ PBH # density: ngyd InM = ( [ duni(n M)) Md InM )
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An Extended

©P(k) =3 J:% o2 (k—’:))?’

©OMoments ©2 point correlation

3 k21?2
r <E + n) azk%" PY(r) = exp (— 06 )

OProfile g(r;k.)
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[Bardeen et. al(1986)]
1—— Peak Theory for Gaussian { with P (k) —1

Peak # density ngl‘:)(u, k.)dudk, Typical profile {(r; 1 k.)

Horizon entry cond. I Optimized criterion
A\

< PBHmass M = M(,i)> Threshold u{” = " (k.)
< k., = ’i (I"’r M) > 1

M
nlO (u, M)dpdM p = p(k,, M) Mo = Mo (M)

Bounded below as I

u> umin(M) ‘

Hp = max {”mm (M) I"ﬂn:’) (M)}

v
PBH # density: ngyd InM = (f;: du ng’k(u, M)) Md InM
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©M=Muwk.)

\

ﬂmin(M) = M(OI M)
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[Bardeen et. al(1986)]
1—— Peak Theory for Gaussian { with P (k) —1
Peak # density ngl‘:)(u, k.)dudk, Typical profile {(r; 1 k.)

A criterion with
) compaction function

k., K,
PBH mass M = M(u, k.) Threshold p(” = u{ (k.)
< k* = k*(ﬂ; M) > 1
}

v
M M
nlO (u, M)dpdM p = p(k,, M) Mo = Mo (M)

Bounded below as

Hu > Hmin (M)

T ~_Hp = max {umin (M), u@)

PBH # density: npd InM = ( [ duni(n M)) Md InM
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OSteeper suppression in larger mass

JGRG28@Rikkyo

— Full
-+ Approx.
— 0=0.08
— =01
— 0=0.13
By wl 0=0.3

-24
0 - By5wl 0=0.3

10729 1 1 1

10711 10-10 107

M/Meq

1078

Bo

1079

10719

10729
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— Bo
PS

0.6

significant enhancement

0.1 0.2 0.5

OSpectrum shift by one order of mag.

kzq R
17-2 kze_zﬂ(m
kz m"0
0

M

Mg

2

k
~%x10

0

©OSignificantly larger abundance

JGRG28@Rikkyo

- Optimized criterion

- No suppression

from a window function
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Note on Window Function

O©Don’t we need a Window function any more?

©Two roles in the PS formalism
1. Smooth out the smaller scale inhomogeneity
2. Introduce the scale dependence of the mass spectrum

OFor our specific power spectrum

No smaller scale inhomogeneity(single scale)

The scale dependence is automatically induced by
the random variable k., which characterizes the profile

©OWe need a window function for a broad spectrum

JGRG28@Rikkyo Chulmoon Yoo

Main message

A new procedure to estimate PBH abundance
OBetter motivated than PS

©Non-linearity is taken into account

©Optimized criterion is implemented

©No window function dependence for a narrow spectrum

Please use our procedure!!!

©OA bit(?) complicated, but see 1805.03946
for the analytic expression for the monochromatic case
for a simpler approximate formula

Thank you for your attention
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Marcus Christian Werner
Yukawa Institute for Theoretical Physics, Kyoto University

“New developments in optical geometry”
(10+5 min.)

[JGRG28 (2018) 110908]
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New Developments in Optical Geometry

Marcus C. Werner, Kyoto University

9 November 2018
JGRG28, Rikkyo University, Tokyo

Introduction

Gravitational lensing theory can be approached in three ways:
@ null geodesics in 4-dimensional spacetime;

® standard approximation used in astronomy: quasi-Newtonian
impulse approximation in Euclidean 3-space;



Introduction

Gravitational lensing theory can be approached in three ways:
@ null geodesics in 4-dimensional spacetime;
® standard approximation used in astronomy: quasi-Newtonian
impulse approximation in Euclidean 3-space;
© optical geometry: 3-dimensional manifold whose geodesics are
spatial projections of null geodesics, by Fermat’s principle:
Static spacetime: Riemannian optical geometry.
E.g., for ds? = gudt? + g;jdx’dx/,

null curves obey dt? = h,-jdx"dxj

8ij

with optical metric hj; = — g

Stationary spacetime: Finslerian optical geometry.

The Mathematics of Gravity and Light

AMS MRC Conference at Whispering Pines, Rhode Island, USA,
coorganized with Arlie Petters (Duke) and Chuck Keeton (Rutgers)

AMERICAN

*
{AMS e
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Howd>
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Mathematics Research Communities

I o
Ot

MRC Week 1a, June 3 -9, 2018
The Mathematics of Gravity and Light
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Charles Keeton, Rutgers University
2019 Program Arlie Petters, Duke University
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The isoperimetric problem

In Euclidean geometry, an area A bounded by perimeter L satisfies

[? > 47 A,

the isoperimetric inequality. The limiting case is the circle.

The isoperimetric problem

The theorem of Dido, queen of Carthage!
814BC?
LY T ET A — R —

Devenere locos, ubi nunc ingentia cernis

moenia surgentemque novae Karthaginis arcem
mercatique solum, facti de nomine Byrsam

taurino quantum possent circumdare tergo.

Aeneis | 365-368
ff\n—=o [7Z3—1 Z]




The isoperimetric problem

In Euclidean geometry, an area A bounded by perimeter L satisfies

L? > 47A,

the isoperimetric inequality. The limiting case is the circle.

Question: what does the isoperimetric problem imply for optical
geometry? Constraints on time delays/angles for lensed images?

The isoperimetric problem

In Euclidean geometry, an area A bounded by perimeter L satisfies
L? > 47 A,

the isoperimetric inequality. The limiting case is the circle.

Question: what does the isoperimetric problem imply for optical
geometry? Constraints on time delays/angles for lensed images?

Theorem

In Schwarzschild equatorial optical
geometry, assume sets S and

Y :={r < c} 2 {r =3m} satisfy

S| > []. Then, |8S] > [{r = c}|.

[Roesch & Werner (2018), forthcoming]



The Gauss-Bonnet method

A closed area A C M in metric surface (M, h) with piecewise-
smooth boundary A = U;~; obeys the Gauss-Bonnet theorem,

x(A)zng dA + (/ Q(N%Nﬂ),

with Euler characteristic y, Gaussian curvature K, exterior jump
angle «9(N,-+7 N) at vertex i, geodesic curvature k : Vs = kN.

The Gauss-Bonnet method

A closed area A C M in metric surface (M, h) with piecewise-
smooth boundary A = U;~; obeys the Gauss-Bonnet theorem,

X(A)I/A%d/\ (/ 9(N27TN+))7

with Euler characteristic x, Gaussian curvature K, exterior jump
angle O(N;", N7) at vertex i, geodesic curvature k : V.7 = kN.

Note for later: by definition, k = 0 iff vy is geodesic.



The Gauss-Bonnet method

A closed area A C M in metric surface (M, h) with piecewise-
smooth boundary A = U;~; obeys the Gauss-Bonnet theorem,

x(A)zng dA + (/ Q(N%Nﬂ),

with Euler characteristic y, Gaussian curvature K, exterior jump
angle «9(N,-+7 N) at vertex i, geodesic curvature k : Vs = kN.

Note for later: by definition, k = 0 iff v is geodesic.

This can be applied to gravitational lensing, e.g. on a domain
e including the lens, for topological image multiplicity;

e excluding the lens, for the asymptotic deflection angle,

64:—/ K dA.

[Gibbons & Werner, Class. Quantum Grav. (2008)]

But stationary spacetimes?

Given the Kerr solution in Boyer-Lindquist coordinates,

sm 20
— (

g2 = 2 dt — asin? 0d¢)? — 2+ 2%)de — adt)’
02

2
—Zdr2 — p2d6?,

solving for the optical geometry, one finds

dt = \/hU(X)dXide + Bi(x)dx’,

where h is a Riemannian metric, and 3 o a is a one-form.



But stationary spacetimes?

Given the Kerr solution in Boyer-Lindquist coordinates,

A in?
ds? = S(dt—asin?6dg)? — w ((r? + 2%)d¢ — adt)”
p p

p2
—Zdﬁ — p?d6?,

solving for the optical geometry, one finds

dt = \/h,-j(x)dx"dxf + Bi(x)dx’,

where h is a Riemannian metric, and 3 o a is a one-form.

This is not Riemannian but a special case of Finsler geometry
Ca”ed Kerr—RanderS Optica| geometry (away from the ergoregion boundary).

Finsler geometry

A Finsler manifold (M, F), with x € M, V € T,M, has a smooth
function F: TM\0 — Ry with is homogeneous such that
F(x,A\V) = AF(x, V), A >0, and convex such that the Hessian

19°F?(x, V)
2 OVigVi

gii(x, V) =

is positive definite.



Finsler geometry

A Finsler manifold (M, F), with x € M, V € T,M, has a smooth
function F : TM\0 — R{ with is homogeneous such that
F(x,AV) = AF(x, V), A >0, and convex such that the Hessian

19°F?(x, V)
2 OVioVJ

gij(x, V) =
is positive definite. Note, using Euler’'s theorem of homogeneity,

F2(x, V) = gji(x, V)V' V.

Finsler geometry

A Finsler manifold (M, F), with x € M, V € T,M, has a smooth
function F : TM\0 — RJ with is homogeneous such that
F(x,A\V) = AF(x, V), A >0, and convex such that the Hessian

19°F?(x, V)
2 OVigVi

gij(x, V) =
is positive definite. Note, using Euler's theorem of homogeneity,
F2(x, V) = gj(x, V)V' V.

There is also a unique torsion-free and almost metrically
compatible connection called the Chern connection I j,(x, V).

i is [ 68sj & 5g;
. i _1_is s &k _ °5jk
Viz, Iy (x, V) = 58 (5xk + 5 55 |

9gjj(x,V)

5 ) iVwk _ i, [k 0 wi :
where -0 = 07 — {Jyve— Cjik{mn}vmvn)a\/j , with Cartan tensor Cjj = 5 e




Gauss-Bonnet for Kerr-Randers

How to apply the Gauss-Bonnet method to gravitational lensing in
stationary spacetimes like Kerr, with Finslerian optical geometry?

Gauss-Bonnet for Kerr-Randers

How to apply the Gauss-Bonnet method to gravitational lensing in
stationary spacetimes like Kerr, with Finslerian optical geometry?

@ Osculating Riemannian geometry: find a suitable vector field
V vyielding a fiducial optical geometry gji(x) = giji(x, V(x));

[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Ovgiin, (2018)]



Gauss-Bonnet for Kerr-Randers

How to apply the Gauss-Bonnet method to gravitational lensing in
stationary spacetimes like Kerr, with Finslerian optical geometry?

® Osculating Riemannian geometry: find a suitable vector field
V yielding a fiducial optical geometry g;(x) = gij(x, V(x));

[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Ovgiin, (2018)]

® Riemannian Gauss-Bonnet in spatial, not optical, geometry
where light rays are non-geodesic curves = k # 0.

[Ono, Ishihara & Asada, Phys. Rev. D (2017; 2018)]

Gauss-Bonnet for Kerr-Randers

How to apply the Gauss-Bonnet method to gravitational lensing in
stationary spacetimes like Kerr, with Finslerian optical geometry?

(1) Osculatlng Riemannian geometry: find a suitable vector field
V yielding a fiducial optical geometry g;i(x) = gji(x, V(x));
[Werner, Gen. Rel. Grav. (2012); Jusufi, Werner et al., Phys. Rev. D (2017); Jusufi & Ovgiin, (2018)]

® Riemannian Gauss-Bonnet in spatial, not optical, geometry
where light rays are non-geodesic curves = k # 0.

[Ono, Ishihara & Asada, Phys. Rev. D (2017; 2018)]

© Finslerian Gauss-Bonnet applied directly to Kerr-Randers.
Basic steps to be discussed in the following.

[Gudapati & Werner, in preparation]



Gauss-Bonnet for Kerr-Randers

For Finsler surfaces, this yields [ioh, sabau & Shimada, Kyoto J. Math. (2010)]
1
Y(A) = / 7 (N*(Kw! Aw? — Jw! Aw?®) —dL A N*(w?))
A

k(N) AN, N
+ Z( dt (’L ’)>,

Vi

with coframe fields w’ over TM\0, normal vector fields N,
Gaussian curvature K, indicatrix length L, Landsberg scalar J,
the Landsberg angle A, and length parameter 02 = g(v, N);¥'+/.

Note, in particular, the following property of the so-called
N-parallel curvature k(V):

Note on geodesics and curvature

In Finsler geometry, a covariant derivative is defined with respect
to a vector field V, that is (V{)X)" = X 4 17, (x, V)XI YK,

Now Finsler geodesics, minimizing Finslerian curve length, satisfy

() _
V,-y v = 0.



Note on geodesics and curvature

In Finsler geometry, a covariant derivative is defined with respect
to a vector field V, that is (V(YV)X)’ =9 T (x, V)XIYE

Now Finsler geodesics, minimizing Finslerian curve length, satisfy
v = o,

However, unlike in Riemannian geometry, there exist also different
autoparallels, called N-parallels,

(M) —
v,s/ N h— 0.
N-parallel curvature, defined by the relation V%N)N = —%’7,

vanishes for those N-parallels, not for the geodesics.

Concluding remarks

e The Gauss-Bonnet method can be extended to the Finslerian
optical geometry of stationary spacetimes;

e However, the Riemannian simplification with k = 0 for
geodesic light rays does not carry over to Finsler geometry;



Concluding remarks

e The Gauss-Bonnet method can be extended to the Finslerian
optical geometry of stationary spacetimes;

e However, the Riemannian simplification with k = 0 for
geodesic light rays does not carry over to Finsler geometry;

e A technical similarity with the Asada group’s Riemannian
approach emerges thus even in the Finslerian treatment;

Concluding remarks

e The Gauss-Bonnet method can be extended to the Finslerian
optical geometry of stationary spacetimes;

e However, the Riemannian simplification with k = 0 for
geodesic light rays does not carry over to Finsler geometry;

e A technical similarity with the Asada group’s Riemannian
approach emerges thus even in the Finslerian treatment;

e We are currently exploiting this Gauss-Bonnet theorem
for the concrete case of Kerr-Randers optical geometry.
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	Shi Pi, ``Gravitational Waves Induced by non-Gaussian Scalar Perturbations'' (10+5 min.) [JGRG28 (2018) 110715]
	Yuki Niiyama, ``Energy density of tensor perturbations in Einstein-Weyl gravity and its application to primordial gravitational waves'' (10+5 min.) [JGRG28 (2018) 110717]

	Wednesday 8th November
	Invited lecture 9:00–9:45 [Chair: Tomohiro Harada]
	Bernard John Carr, ``PRIMORDIAL BLACK HOLES: LINKING MICROPHYSICS AND MACROPHYSICS'' (40+10 min.) [JGRG28 (2018) 110801]

	Session S4A1 9:45–10:15 [Chair: Tomohiro Harada]
	Kazumasa Okabayashi, ``Collisional Penrose process of spining particles'' (10+5 min.) [JGRG28 (2018) 110802]

	Session S4A2 10:45–12:00 [Chair: Kenichi Nakao]
	Takayuki Ohgami, ``Exploring GR Effects of Super-Massive BH at Galactic Center 2: on the detail of fitting theory with observational data'' (10+5 min.) [JGRG28 (2018) 110805]
	Filip Ficek, ``Planar domain walls in Kerr spacetime'' (10+5 min.) [JGRG28 (2018) 110806]
	Masashi Kimura, ``Stability analysis of black holes by the S-deformation method for coupled systems'' (10+5 min.) [JGRG28 (2018) 110808]

	Invited lecture 14:00–14:45 [Chair: Sugumi Kanno]
	Vincent Vennin, ``Stochastic Inflation and Primordial Black Holes'' (40+10 min.) [JGRG28 (2018) 110810]

	Session S4P1 14:45–15:45 [Chair: Sugumi Kanno]
	Yuichiro Tada, ``Stochastic formalism and curvature perturbations'' (10+5 min.) [JGRG28 (2018) 110811]

	Session S4P2 16:45–18:30 [Chair: Hideki Ishihara]
	Kohei Fujikura, ``Phase Transitions in Twin Higgs Models'' (10+5 min.) [JGRG28 (2018) 110815]
	Yi-Peng Wu, ``Higgs as heavy-lifted physics during inflation'' (10+5 min.) [JGRG28 (2018) 110816]
	Minxi He, ``Reheating in the Mixed Higgs-R2 Model'' (10+5 min.) [JGRG28 (2018) 110817]
	Keisuke Inomata, ``Power spectra of CMB circular polarizations induced by primordial perturbations'' (10+5 min.) [JGRG28 (2018) 110818]
	Hiroyuki Kitamoto, ``Schwinger Effect in Inflaton-Driven Electric Field'' (10+5 min.) [JGRG28 (2018) 110821]

	Wednesday 9th November
	Invited lecture 9:00–9:45 [Chair: Shinji Mukohyama]
	Alexei A. Starobinsky, ``Looking for quantum-gravitational corrections to R+R2 inflation'' (40+10 min.) [JGRG28 (2018) 110901]

	Invited lecture 9:45–10:30 [Chair: Shinji Mukohyama]
	Jean-Philippe Uzan, ``Astrophysical Stochastic Gravitational Wave Background'' (40+10 min.) [JGRG28 (2018) 110902]

	Session S5A 10:45–12:00 [Chair: Hideki Asada]
	Atsushi Nishizawa, ``Test of the equivalence principle at cosmological distance with gravitational waves'' (10+5 min.) [JGRG28 (2018) 110903]
	Yuki Watanabe, ``Probing the Starobinsky R2 inflation with CMB precision cosmology'' (10+5 min.) [JGRG28 (2018) 110904]
	Chulmoon Yoo, ``PBH abundance from random Gaussian curvature perturbations and a local density threshold'' (10+5 min.) [JGRG28 (2018) 110905]
	Marcus Christian Werner, ``New developments in optical geometry'' (10+5 min.) [JGRG28 (2018) 110908]


