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Invited lecture 9:30–10:30
[Chair: Masaaki Takahashi]

Nicola Bartolo (Padova Univ, INFN),
“Inflaon: current status and future prospects”

(50+10)
[JGRG27 (2017) 112901]
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Infla%on:	current	status	and	future	prospects		
	

Nicola	Bartolo	
Department	of	Physics	and	Astronomy,	``G.	Galilei’’,	University	of	Padova	
INFN-Padova,	INAF-OAPD	
		

Outline	
•  Infla%on:	a	short	introduc%on		

•  Current	status		
	
•  Prospects	for	the	future:		
					looking	for	new	signatures	and	new	observa%onal	tests	
					(primordial	non-Gaussianity,	gravita%onal	waves,	CMB	spectral	distor%ons)	

•  Conclusions		

Based	on		
N.B.,	M.	Liguori,	M.	Shiraishi,		JCAP	1603,	29		(2016)		
N.B.,	C.	Caprini,	V.	Domcke,	D.	Figueroa,	J.	Garcia-Bellido,	M.	C.	GuzzeU.	et	al.	JCAP	1612,	026	(2016)		
N.B.,	S.	Matarrese,	M.	Peloso,	A.	Ricciardone,	Phys.Rev.	D87,	023504	(2013)	
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Inflation: a short recap 

	
Fi6ng	into	the	Big	Picture	



Precision	cosmology	in	the	Planck	era	
ΛCDM:	The	standard	cosmological	model		
	
																				just	6	numbers…....	
describe	the	Universe	composiMon	and	evoluMon	

Homogeneous	background	 PerturbaMons	

Ωb,	Ωc,	ΩΛ,H0,	τ	
•  	atoms	4%	
•  	cold	dark	maUer	23%	
•  	dark	energy	73%	

As,	ns,	r	
•  	nearly		scale-invariant	
•  	adiabaMc	
•  	Gaussian	

Λ??	CDM??	 ORIGIN???	
Credit:	L.	Verde	

     

Homogeneous 

x 100,000 

Ini%al	condi%ons	

Inhomogeneous 

Quantum		
fluctuaMons	of	a	
scalar	field,	the	
inflaton,	set	the	
ini#al	condi#ons	for	
CMB	anisotropies	
and	Large-Scale	
Structure	formaMon		

accelerated	expansion	in	the	early	universe		



												Infla%on	
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the	inflaton	is	slowly	rolling	its	poten#al	
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accelerated	expansion	in	the	early	universe		
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FluctuaMons	in	the	inflaton	produce	fluctuaMons	in	the	universe	expansion	from	place	
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Observa%onal	predic%ons			
Ø 	Primordial	density	(scalar)	perturba%ons		

Ø 	Primordial	(tensor)	gravita%onal	waves:	a	smoking	gun	for	infla#on	

amplitude	

spectral	index:	
(or	``#lt’’)	
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Ø 	Tensor-to-scalar	perturba%on	ra%o	

Ø 	Consistency	rela%on	(valid	for	all	single	field	models	of	slow-roll	inflaMon):		
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Energy	scale	of	infla#on	



Current	observa#onal	status		

Planck	parameters	measurements		

n=1		excluded	at	5.6	sigma!!		



Observa%onal	constraints:	Planck	

n=1 (Harrison Zeld’ ovich spectrum) excluded at than 5.6 sigmas!  

Amplitude of primordial density (scalar) perturbations 

Spectral index  of primordial density (scalar) perturbations 
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) (�1 + �2 = even)

4 THE AUTHOR

(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) (�1 + �2 = even)
Two	fundamental	observa%onal	constants	of	cosmology		
in	addi%on	to	three	very	well	known	(Ωb	,Ωcdm,	ΩΛ).	

Constraints	on	tensor	modes	
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)

fortho
NL = �34± 33 (68%CL)

(17) f local
NL = 2.5± 5.7 (68%CL)

(17) rD > 0.16 (95%CL)

(17) V 1/4 < 1.9⇥ 1016 GeV

(17) (�1 + �2 = even)

Energy	scale	of	inflaMon	

From	the	BICEP2/Keck	Array/Planck+	
Keck	Array	95	GHz				
r<0.07	(95	@95%	CL)		
	
A	new	era	of	B-mode	polarizaMon	has		
started	



What	are	the	implica#ons	for	
infla#onary	models	?**	

**	I	am	talking	here	about	single-field	slow	roll	models	of	inflaMon	

		

€ 

Large fieldmodels V (φ)∝φα

r =
4α
N

1− n =
α + 2
2N

€ 

Exponential models

V (φ)∝exp[− 2 / p φ /MPl ]→ a(t)∝ t p

r =
16
p

1− n =
2
p

		

€ 

Small fieldmodels V (φ)∝1− (φ p /µ p ), p ≥ 3

r ~ 0 1− n =
2
N
(p −1)
(p − 2)

for examplep = 3 out of 95%CL

		

€ 

Natural inflation V (φ)∝1+ cos(φ / f )
consistent for f ≥ 5MPl

		

€ 

Starobinky model R + (R 2 / 6M 2 )

→V(φ )∝ (1− e−2 2 / 3 φ /M Pl )



	ANGULAR	POWER	SPECTRUM	OF	TEMPERATURE	CMB							
																ANISOTROPIES	MEASURED	BY	PLANCK	

Beyond-slow	roll:	Reconstruc%ng	the	infla%onary	poten%al	
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No	significant	evidence		
of	devia#ons	from	a		
featureless		power-spectrum	



Why	Infla#on	is	sensi#ve	to		
high-energy	fundamental	physics?		

Sensi#vity	of	Infla#on	to	fundamental		
physics	and	symmetries		
	
A	worked	example	
take	V(φ)slow-roll	
	
operators	like	φ2V(φ)slow-roll	/Λ2			
	
induce	η=M2

PL	(V’’/V)=(MPl/Λ)	~1!!		

whatever	physics	there	is	around	the	Planck	scale,	it	must		
ensure	these	terms	are	not	induced	(largely		suppresses	them)			
																											à	Ultraviolet	sensi#vity	
	



At	least	two	(main)	avenues:		
	
-		gravita#onal	waves	
-	primordial	non-Gaussianity	

Primordial non-Gaussianity 
    (aka: going beyond the (r-ns) plane) 



Primordial	NG	
ζ(x):	primordial	perturbaMons	
	
If	the	fluctuaMons	are	Gaussian	distributed	then	their	staMsMcal	properMes	are	
completely	characterized	by	the	two-point	correlaMon	funcMon,	<ζ(x1)ζ(x2)>			
or	its	Fourier	transform,	the	power-spectrum.				

Thus	a	non-vanishing	three	point	func#on,	or	its	Fourier	transform,	the	bispectrum		
is	an	indicator	of	non-Gaussianity	
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!
k3) fNLF(k1,k2,k3)

					Amplitude	 			Shape	

Primordial	NG	

Physical	origin	of	primordial	NG:		
self-interacMons	of	the	inflaton	field,	e.g.	λ	ϕ3, 
interacMons	between	different	fields,			
non-linear	evoluMon	of	the	fields	during	inflaMon,		
gravity	itself	is	non	linear…..					

Gaussian free (i.e. non-interacting) 
field, linear theory  

CollecMon	of	independent	harmonic	oscillators	
(no	mode-mode	coupling)	



Why	primordial	NG	is	important?		

Bispectrum	vs	power	spectrum	informaMon	

5×106	pixels	compressed	
into	~2500	numbers:	
O.K.	only	if	gaussian	
	
	
	
If	not	we	could	miss	
precious	informa#on	

Measure	3	point-func#on	
and	higher-order	

Planck	2015	Results.	I.	Overview	of	products	and	scienMfic	results		

180°	 18°	 1°	 0.2°	 0.1°	 0.07°	

MulMpole	moment,	



Another	(among	many)	good	reason:		

fNL	and	shape	are	model	dependent:		
e.g.:	standard	single-field	models	of	slow-roll	inflaMon		
predict	
					
																														fNL~O(ε,η)	<<1		
																																																																																							(Acquaviva,	Bartolo,	RioUo,	Matarrese	2002;	
																																																																																								Maldacena	2002)	

		
	
A	detecMon	of	a	primordial	|fNL|~1	would	rule	out		
all	standard	single-field	models	of	slow-roll	inflaMon	

Shapes	of	NG:	local	NG	
Bispectrum peaks for squeezed triangles k3<<k1~k2   
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Non-lineariMes	develop	outside	the	horizon	during	or	immediately	a�er	inflaMon	
(e.g.	mul#field	models	of	infla#on)	
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Single	field	models	of	infla#on	with	non-canonical	kine#c	term	L=P(ϕ,	X)	where		X=(∂	ϕ)2	(DBI	
or	K-inflaMon)	where	NG	comes	from	higher	derivaMve	interacMons		of	the	inflaton	field		
	
Example:		
					

Bispectrum	peaks	for		equilateral	triangles:	k1=k2=k3	

Equilaterl	NG	

Fergusson and Shellard 09 

Babich et al.  04   
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The	CMB	bispectrum	as	seen	by	Planck		
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Limits	set	by	Planck	

See	Planck	2015	results.	XVII.	Constraints	on	primordial	non-Gaussianity	
								

e.g.	mulM-field	models	of	inflaMon	

e.g.	models	with	non-standard	kineMc	terms		

Observa#onal	limits	set	by	Planck		

Planck	2015	results.	XVII.	Constraints	on	primordial	non-Gaussianity.		



Implica#ons	for	infla#on	models	
Ø 	The	standard	models	of	single-field	slow-roll	inflaMon	has	survived		
					the	most	stringent	tests	of	Gaussianity	to-date:	
					devia#ons	from	primordial	Gaussianity	are	less	than	0.01%	level.	
					This	is	a	fantas#c	achievement,	one	of	the	most	precise		
					measurements	in	cosmology!	
	
	
		
	
	
Ø 	The	NG	constraints	on	different	primordial	bispectrum	shapes	severly		
					limit/rule	out	specific	key	(infla#onary)	mechanisms	alterna#ve	to	the		
					standard	models	of	infla#on						
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General	single-field	models	of	infla#on:	
Implica#ons	for	Effec#ve	Field	Theory	of	Infla#on	

	

Constraints	obtained	from		
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(17) ln(1010As) = 3.062± 0.029 (68%CL)

(17) ns = 0.9677± 0.0060 (68%CL)

(17) f equil
NL = �16± 70 (68%CL)

fortho
NL = �34± 33 (68%CL)

(17) (�1 + �2 = even)
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Models with approximatively the same potential in the observable region, but completely different 
post-inflationary expansion due to a different reheating era could be distinguished with CORE.

Ø  For	future	space	CMB	missions.	 	 		

Forecasts	for	tensor-to-scalar	ra#o	r	

Future	constraints	on	inflaMonary	models	

a	CORE-like	experiment		

CORE-like	(incl.	delensing)	



LiteCORE LiteCORE CORE COrE+ Planck LiteBIRD ideal
80 120 M5 2015 3000

T local 4.5 3.7 3.6 3.4 (5.7) 9.4 2.7
T equilat 65 59 58 56 (70) 92 46
T orthog 31 27 26 25 (33) 58 20
T lens-isw 0.15 0.11 0.10 0.09 (0.28) 0.44 0.07
E local 5.4 4.5 4.2 3.9 (32) 11 2.4
E equilat 51 46 45 43 (141) 76 31
E orthog 24 21 20 19 (72) 42 13
E lens-isw 0.37 0.29 0.27 0.24 1.1 0.14
T+E local 2.7 2.2 2.1 1.9 (5.0) 5.6 1.4
T+E equilat 25 22 21 20 (43) 40 15
T+E orthog 12 10.0 9.6 9.1 (21) 23 6.7
T+E lens-isw 0.062 0.048 0.045 0.041 0.18 0.027

Table 17: Forecasts for the 1� f
NL

error bars for the standard primordial shapes as well as for the lensing-
ISW shape for the indicated configurations. Results are given for T -only, E-only and full T + E. The
results for Planck have been put between parentheses because they are not forecasts but real measured
error bars. See the main text for further details.

CORE shrinks the volume of the allowed fNL parameter region by a factor ⇡ 20, using T +E, with
little difference between the LiteCORE and COrE+ configurations. The improvement reaches a
level of ⇡ 200 if we consider polarization data only. Besides the improvements in error bars,
we stress that having EEE measurements at the same level of sensitivity as TTT is important
because it allows a much tighter control of systematics and foreground contamination, via internal
cross-validation of T -only and E-only results.

Even in the absence of a detection, tight bounds on fNL parameters are of course very important
to constrain parameters in different inflationary scenarios. As an example of this, in Fig. 33 we
forecast constraints on the inflaton speed of sound in the effective field theory of single-field
inflation, derived from our equilateral and orthogonal fNL predictions. In this case (see [88] and
also [136]) a lower bound cs > 0.045 (95% CL) can be achieved, improving by almost 50% the
present Planck constraints.

8.1.2 Isocurvature non-Gaussianity

In addition to these standard shapes, it is also interesting to investigate other shapes. One class
of shapes where one would expect a significant improvement compared to Planck is isocurvature
non-Gaussianity. If there was more than one degree of freedom during inflation, it is possible for
one or more isocurvature modes to have survived in addition to the standard adiabatic mode.
Such an additional mode will not only potentially produce a signal in the power spectrum (see
Section ??), but also in the bispectrum. It should be noted that some inflation/curvaton models
(e.g. [284]) predict even a larger isocurvature than adiabatic bispectrum, and at the same time a
negligible isocurvature power spectrum.

As explained in [285, 286], in the case of a local bispectrum produced by two modes, one
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Running	non-Gaussianity	constraints	

shapes are interesting templates to constrain with data even when NG is larger than 0.1.
The value of the running, for this class of models, is proportional to higher order derivatives
of the Inflationary potential. Since the Power Spectrum is insensitive to these quantities,
measuring n

NG

can provide additional information about primordial perturbations. If we
move to single-field scenarios with a non-canonical kinetic term, a mild running of the NG
can be also produced. A typical such example is DBI-inflation [8]. In this context, the NG
amplitude f

NL

is promoted to a function of the triangular wavenumbers configurations. A first
study of the testability of these models is presented in [9]. In that work the authors proposed
a parametrization assuming a dependence on the geometric mean of the three wavenumbers
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where k

piv

is a pivot scale and F is the shape function. In the theoretical literature (see e.g.
[10]) a different parametrization is however generally found, in terms of the arithmetic, rather
than the geometric mean. Namely:
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The geometric mean parametrization can be seen as an approximation of the theoretical
shape, which is expected to work well for equilateral shapes (typical case for DBI, and in
more general single-field models), where the significant contribution comes from configurations
with k

1

⇠ k
2

⇠ k
3

(in that case of course, the two parametrizations coincide). Its practical
advantage lies in its explicit separability. On the other hand, for an accurate measurement,
it is important at least to compare the two parametrizations, and explicitly verify their level
of correlation. The technical problem with the arithmetic mean is that it is not explicitly
separable, that is, the factor (k

1

+ k
2

+ k
3

)

nNG is not trivially factorizable. There are many
well-known ways in the literature to circumvent this problem, based for example on the
modal [11, 12] or binned [13, 14] decomposition of the shape. In this work, we take a different
approach. We stick with a KSW-type estimator, and factorize the shape by resorting to the
so-called Schwinger parametrization [15]

B(k
1

, k
2

, k
3

) / f
NL

F (k
1

, k
2

, k
3

)

�(1� n
NG

)

1

k

nNG
piv

Z 1

0

dt t�nNG

h
k
1

e�t(k1+k2+k3)
+ perm

i
, (2.5)

where � is the Gamma function. This form is valid for n
NG

< 1, which is not a very
limiting assumption, since all the models predict a running n

NG

. 10

�1. We will refer to
this shape with the superscript “am”. For an overview of the explicit form of the resulting
CMB templates, see Appendix B. The advantage of this approach, in this specific case, is
that we will not have to re-expand the shape every time we change n

NG

, while exploring the
parameter space.

3 Methodology

We aim to extend the KSW NG estimation technique [7] (for a comprehensive review about
CMB NG estimation see e.g. [16], and references therein) to include all types of bispectra
described in the previous section. We follow the indirect approach developed in [3]: we first
apply an estimator of the NG amplitude f

NL

, for different, fixed values of the running n
NG

.
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where	F	is	of	the	local	or	equilateral	type	

Figure 2. Random realizations of CMB sky with a large SD bispectrum from model 2.1. Both maps
have fNL = 1000 at k

piv

= 0.06Mpc

�1, but different spectral index. Left: nNG = �0.6. Right:
nNG = 0.6.

here we have explicitly highlighted the dependence of the likelihood on the pivot scale k
piv

.
Due to the limitations in resolution, the experimental sensitivity is not constant for different
choices of different k

piv

. As a consequence, the correlation between the two parameters
depends on the pivot scale, and this reflects on the shape of the marginalized likelihood. An
example of the dependence of L(n

NG

) on k
piv

is shown in figure 1, where we consider the one-
field model likelihood obtained from a Gaussian simulation (as extreme examples, we show
also cases in which we set the pivot outside the accessible scales, resulting in a likelihood that
diverges at the edges). The standard approach, (see e.g. [9][3]), which we also follow here,
is to start with an arbitrary value of k

piv

, compute the likelihood and finally rescale k
piv

in
order to minimize the correlation between the parameters at the peak of the likelihood.

As mentioned above, the estimated amplitude ˆf
NL

(n
NG

) is computed via KSW bispec-
trum estimation, for fixed n

NG

. The Likelihood is then profiled by iterating this operation
over a sufficiently wide n

NG

interval. Finally, with the full profiled Likelihood in hand, we can
extract the best fit value of n

NG

. In case of partial sky coverage and non-stationary noise,
it is well known that a linear term must be added to the KSW cubic statistic, to restore
optimality. This is generally computed as a Monte Carlo average over Gaussian realizations
of the masked CMB sky, including realistic instrumental noise properties. When producing
these realizations, for the WMAP analysis that follows, we adopt the procedure described in
[17], adding to it an inpainting procedure of masked regions, as done in Planck data analysis
[1]. For a complete discussion on inpainting and for studies of its efficiency in the context of
CMB bispectrum estimation see [13, 18].

3.1 Simulations of non-Gaussian maps

In order to test our estimators, we produce CMB simulations with a scale dependent f
NL

. We
follow the method described in [15], which is valid for any separable primordial shape. We
can therefore apply it in all the cases under study, since we are always able to find separable
representations for our models, eventually via Schwinger parametrization in the technically
most complex case. We can express the CMB multipoles as a sum of a Gaussian and a
non-Gaussian part, so that:
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Running	non-Gaussianity	constraints	Figure 5. Marginalized Likelihood for the one-field (left, green), two-fields(center, blue) models
and the geometric mean parametrization for the equilateral model (right, red). The shaded regions
represent the 1� central intervals.

model n
NG

k
piv

one-field (local) 0.2+1.5

�0.5

0.035Mpc

�1

two-field (local) 0.4+0.9

�0.7

0.01Mpc

�1

geometric mean (equil.) �0.4+1.4

�0.5

0.01Mpc

�1

Table 1. Experimental constraints for the different models considered in this work. First column:
model. Second column: central values and error bars (68% C.L.). Third column: Pivot scale.

assuming the best-fit Planck Power Spectrum. The angular resolution in these test maps is
`
max

= 500. We test our method both in the case of full sky-coverage and in a more realistic
case with 30% of the sky masked.
We find that, in all cases, our estimators recover correctly the initial value of the parameters,
within error bars. At the same time, the uncertainties derived from the likelihood are con-
sistent with Fisher matrix predictions. We find that 100 Gaussian simulations are sufficient
in the linear term evaluation, to correct for the partial sky coverage effects. As an exam-
ple, in figure 4 we show the likelihoods obtained for the one and two-field local models from
simulated NG maps with different value of the spectral index.

4.2 Experimental bounds

We apply our technique to provide bounds on the running of non-Gaussianity from the
WMAP9 temperature maps, considering the various running models discussed in the pre-
vious sections. Our data-set consists on the combination of the V and W WMAP bands,
coadded and weighted following the prescription in [17]. To exclude foreground and point-
source contaminated pixels we use the KQ75y9 mask, covering 31.2% of the sky. The maps
used in this analysis, as well as instrumental specifications, beams and noise per pixel are
extensively described in [20] and fully available at https://lambda.gsfc.nasa.gov. We ob-
tain our estimates using multipoles up to `

max

= 800. To compute the linear correction term
(A.9) we use 300 Gaussian realizations obtained with the procedure described in section 3,
assuming WMAP9 cosmology and instrumental specifications.
To further improve the numerical efficiency of our code, we implement the numerical optimiza-
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included in our analyses, focusing on their primordial bispectrum predictions; in section 3, we
will describe in detail our data analysis pipeline, including bispectrum estimation and gen-
eration of NG maps; in section 4 we will show the outcome of validation tests, final WMAP
experimental bounds on all running shapes and forecasts for future CMB surveys; we will
finally summarize our main results in section 5.

2 Scale dependent models

In this work we will consider inflationary models that produce a running of the NG parameter
f
NL

, parametrized via a NG spectral index n
NG

.
Running primordial NG can be sourced by a wide range of different physical processes,

such as non-linear evolution of perturbations, interactions in multi-field inflation, variation
of the sound speed in single-field inflationary models, peculiar properties of the background
metric. Note that scale-dependence can arise also in very simple models and can therefore be
considered as a fairly general prediction of Inflation.
It is actually not possible to encompass such a variety of scenarios using just a single bispec-
trum shape, with a specific ansatz for f

NL

(k). The aim of this work is to build a quite general
class of CMB bispectrum estimators, which can account for most the theoretically motivated,
scale-dependent NG parametrizations proposed so far in the literature. We start in this sec-
tion by briefly reviewing them. Scale-dependent (SD) NG in the context of slow-roll inflation
was studied for example in [5] and [6], where the authors propose explicit expressions for the
primordial three point function, in the cases of one or two fields contributing to the curvature
perturbations. The SD local generalization, when only one field contributes to primordial
perturbations reduces to:

B(k
1

, k
2

, k
3

) / f
NL

⇥
(k

1

k
2

)

n

⇣

�4knNG
3

+ 2 perms.
⇤
, (2.1)

where n
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denotes the usual spectral index. This shape was constrained using WMAP data
in [3]. It describes multi-field models (e.g curvaton or modulated rehating) in which the
Inflaton contribution to perturbations is subdominant. A large scale dependence arises here
as a consequence of strong self interactions of the field [5] . In the following, we will use the
superscript "1f " to address this model.
If two fields contribute to the curvature perturbation, the dependence on k follows a different
parametrization. This kind of template arises, for example, from the mixed Inflaton-Curvaton
theory (assuming the Curvaton field has a quadratic potential), and also in general two-field
models when the test field has a quadratic potential [5]. The resulting shape is:
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We will refer to this model with the superscript 2f.
Both these shapes are separable over wavenumbers, therefore it will be fairly straightforward
to implement them in a generalized version of the classic KSW bispectrum estimator [7], as
we will discuss in the next section. In the theoretical derivation of the previous two shapes,
it was assumed that the fields are slow-rolling and that |n

NG
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can be at most of order of 0.1. However, in this work, we wish
to argue that from a purely phenomenological point of view, the previous two bispectrum
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shapes are interesting templates to constrain with data even when NG is larger than 0.1.
The value of the running, for this class of models, is proportional to higher order derivatives
of the Inflationary potential. Since the Power Spectrum is insensitive to these quantities,
measuring n

NG

can provide additional information about primordial perturbations. If we
move to single-field scenarios with a non-canonical kinetic term, a mild running of the NG
can be also produced. A typical such example is DBI-inflation [8]. In this context, the NG
amplitude f

NL

is promoted to a function of the triangular wavenumbers configurations. A first
study of the testability of these models is presented in [9]. In that work the authors proposed
a parametrization assuming a dependence on the geometric mean of the three wavenumbers
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where k

piv

is a pivot scale and F is the shape function. In the theoretical literature (see e.g.
[10]) a different parametrization is however generally found, in terms of the arithmetic, rather
than the geometric mean. Namely:
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The geometric mean parametrization can be seen as an approximation of the theoretical
shape, which is expected to work well for equilateral shapes (typical case for DBI, and in
more general single-field models), where the significant contribution comes from configurations
with k
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(in that case of course, the two parametrizations coincide). Its practical
advantage lies in its explicit separability. On the other hand, for an accurate measurement,
it is important at least to compare the two parametrizations, and explicitly verify their level
of correlation. The technical problem with the arithmetic mean is that it is not explicitly
separable, that is, the factor (k

1

+ k
2

+ k
3

)

nNG is not trivially factorizable. There are many
well-known ways in the literature to circumvent this problem, based for example on the
modal [11, 12] or binned [13, 14] decomposition of the shape. In this work, we take a different
approach. We stick with a KSW-type estimator, and factorize the shape by resorting to the
so-called Schwinger parametrization [15]
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where � is the Gamma function. This form is valid for n
NG

< 1, which is not a very
limiting assumption, since all the models predict a running n

NG

. 10

�1. We will refer to
this shape with the superscript “am”. For an overview of the explicit form of the resulting
CMB templates, see Appendix B. The advantage of this approach, in this specific case, is
that we will not have to re-expand the shape every time we change n

NG

, while exploring the
parameter space.

3 Methodology

We aim to extend the KSW NG estimation technique [7] (for a comprehensive review about
CMB NG estimation see e.g. [16], and references therein) to include all types of bispectra
described in the previous section. We follow the indirect approach developed in [3]: we first
apply an estimator of the NG amplitude f

NL

, for different, fixed values of the running n
NG

.
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(e.g.,	curvaton	models)	

(e.g.,	two-field	models)	

(general	single-field,	with	non-standard	kineMc		
term,	e.g.	DBI	infllaMon).			
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Running	non-Gaussianity	forecasts	Figure 8. 1� error ellipses for different experiments, assuming joint temperature and polarization
analysis and different central value of fNL, from left to right:fNL = 5, 10, 25.

Experiment (`
max

) f loc

NL

= 5 f loc

NL

= 10 f loc

NL

= 25

Planck (2400) 1.7 0.8 0.3
LiteBIRD (1350) 1.6 0.8 0.3

LiteCOrE 120 (3000) 0.7 0.4 0.1
COrE (3000) 0.7 0.3 0.1

Table 3. Forecasts for the marginalized 1� nNG error bar for the arithmetic mean parametrization of
the local case considering different central value for fNL. Joint temperature and polarization analysis
is assumed.

not only to `
max

but also to the NG amplitude parameter, f
NL

. The final forecast is therefore
crucially dependent on the fiducial value chosen for f

NL

. If we consider the current local scale-
independent f

NL

central value from Planck analysis, we know that it has moved much closer
to 0, with respect to WMAP, making forecasted Planck constraints actually weaker than what
we obtained here. A similar reasoning applies also for the equilateral shape, although the shift
in measured central values from WMAP to Planck is less dramatic there. On the other hand,
it is clear that changing the central value of e.g. local f

NL

, in a scale-independent analysis,
from approximately 30 at `

max

= 500, to f
NL

= 2.5 at `
max

= 2000, does display, a posteriori,
some degree of running. Allowing for a further running parameter can therefore lead to a
shifting of the overall f

NL

amplitude to larger values. Moreover, for values of f
NL

which do
not correspond to the current best-fit value but are well within the current scale-independent
95% C.L. intervals, significant n

NG

improvements are expected with future surveys. This is
evident from the results shown in table 3 and figure 8. In summary, while there is a possibility
that the constraints obtained here will not be significantly improved with Planck or future
CMB data, several plausible scenarios do allow for significant tightening of current error bars,
up to factors of 2-3. This makes further studies, using more sensitive, higher resolution than
WMAP datasets, clearly worth pursuing.

5 Conclusions

Constraining the running of the primordial NG parameter f
NL

can provide valuable extra-
information on the Physics of Inflation, allowing for better discrimination between different
scenarios.
In this paper, we presented new constraints on the running of the primordial three-point
function, obtained from WMAP 9-year CMB temperature data. We provided bounds on the

– 11 –

			For	values	of	f_NL	which	do	not	correspond	to	the	current	best-fit	value	but	are	well	within		
			the	current	scale-independent	95%	C.L.	intervals,	significant	nNG	improvements	are	
			expected	with	future	surveys.		
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What	can	be	new	infla#onary	
signatures?	

Tensor	non-Gaussiani#es	



Mo#va#ons:	the	nature	of	gravita#onal	waves	(I)	

ü  	A	detecMon	of	GW	would	not	by	itself	determine	the	precise	mechanism	generaMng	the		
						the	tensor	modes:	alterna#ve	and	new		observa#onal	probes	
	
ü  Go	beyond	the	power	spectrum	and	look	for	the	sta#s#cal	proper#es	of	GW:	
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Full-sky
P

n `n = even
P

n `n = odd
Flat-sky left-handed = right-handed left-handed = (�) right-handed

Non-vanishing hTTT i, hTEEi, hTTEi, hBTT i, hBEEi,
in parity-conserving universe hEEEi, hBBEi, hBBT i hBET i, hBBBi

TABLE I: Properties of full-sky and flat-sky three-point functions in a parity-conserving universe. The first column contains
three-point functions studied in the standard analysis. The second column (and in particular hBTT i) is the focus of this
work. There are additional non-vanishing three-point functions when parity conservation is violated which are studied e.g. in
Refs. [14, 15].

tically improve the constraints on primordial tensor fluc-
tuations by searching for B-mode polarization on large
angular scales. Several such experiments are currently
underway, with the most recent constraints coming from
the BICEP/Keck experiment [37]. The biggest astro-
physical obstacles in constraining the primordial signal
are the contributions from dust [38, 39] and lensing of E-
modes to B-modes [40]. For the former, we will have to
rely on multi-frequency information to separate the dust
component from the primordial signal. For the latter,
delensing will become crucial for removing lens-induced
fluctuations and requires a high-fidelity lensing map [41].

While the usual searches for non-Gaussianity focus on
the N -point statistics of scalar fluctuations, in this pa-
per we will discuss the relatively unexplored observa-
tional signatures of non-Gaussian correlations involving
tensor fluctuations. Since tensor fluctuations source T ,
E, and B fluctuations, observational searches for bispec-
tra constructed from T and E fluctuations naturally place
constraints on both scalar and tensor non-Gaussianity.
Just as in the case of the power spectrum, the contri-
butions to T and E fluctuations from scalars are much
larger than those of tensors, and so constraints on tensor
non-Gaussianity with these bispectra are relatively weak.
On the other hand, bispectra involving primordial B-
mode fluctuations are sourced by tensor non-Gaussianity
but not by scalar non-Gaussianity, and are therefore ca-
pable of providing a much tighter constraint on tensor
non-Gaussianity. Since observations of B-modes are not
presently cosmic variance-limited, there is a great deal of
room for improvement with future observations of the
CMB polarization. This reasoning strongly motivates
searching for bispectra involving primordial B-modes as
a probe of primordial non-Gaussianity. In this paper, we
explore in detail how the hBTT i bispectrum can be used
to constrain tensor non-Gaussianity and thereby give us
insight into the physics of the early universe.

The primordial tensor-scalar-scalar bispectrum is nat-
urally non-vanishing, and in fact is of the same order
in slow-roll parameters as the primordial scalar-scalar-
scalar bispectrum in the simplest models of single-field
slow-roll inflation [42]. In more general models, the shape
and amplitude of the tensor-scalar-scalar bispectrum can
di↵er quite significantly from those predicted in the sim-
plest models, so observational constraints on this quan-
tity give non-trivial insight into the physics of the early
Universe [43]. The primordial tensor-tensor-scalar and

tensor-tensor-tensor bispectra are also non-vanishing in
single-field slow-roll inflation, as well as in more gen-
eral models [42–44]. Primordial non-Gaussianity involv-
ing tensors provides a set of observables which are dis-
tinct from and complementary to scalar non-Gaussianity.
Also, just as in the case of scalars [16], there is in prin-
ciple much more information in tensor non-Gaussianity
than in the tensor power spectrum alone.

Despite the di↵ering intrinsic parity of temperature
fluctuations and B-modes, the hBTT i bispectrum is non-
vanishing for particular combinations of multipoles. To
be more specific, under spatial inversion the multipole
coe�cients for T , E, and B transform as [45]
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which therefore must vanish in a parity-conserving uni-
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Table I).

The above remarks straightforwardly generalize to all
forms of non-Gaussianity. In a parity-conserving and sta-
tistically isotropic universe, any connected N -point func-
tion constructed from T , E, and B fluctuations contain-
ing an odd number of B-mode fluctuations vanishes forP
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= odd, while those con-
taining an even number of B-mode fluctuations vanish
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N = 2 is special since statistical isotropy always implies
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= even for two-point statistics.
Let us briefly summarize our motivations. Non-

Gaussian CMB statistics involving B-mode fluctuations
are non-vanishing under standard assumptions about the
properties of our Universe. Existing data can be used to
place new constraints on these quantities. Present mea-
surements of B-modes are not cosmic-variance limited, so
upcoming lower-noise CMB polarization data will drasti-
cally improve upon our current capabilities in this regard.
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Full-sky
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n `n = even
P

n `n = odd
Flat-sky left-handed = right-handed left-handed = (�) right-handed

Non-vanishing hTTT i, hTEEi, hTTEi, hBTT i, hBEEi,
in parity-conserving universe hEEEi, hBBEi, hBBT i hBET i, hBBBi

TABLE I: Properties of full-sky and flat-sky three-point functions in a parity-conserving universe. The first column contains
three-point functions studied in the standard analysis. The second column (and in particular hBTT i) is the focus of this
work. There are additional non-vanishing three-point functions when parity conservation is violated which are studied e.g. in
Refs. [14, 15].

tically improve the constraints on primordial tensor fluc-
tuations by searching for B-mode polarization on large
angular scales. Several such experiments are currently
underway, with the most recent constraints coming from
the BICEP/Keck experiment [37]. The biggest astro-
physical obstacles in constraining the primordial signal
are the contributions from dust [38, 39] and lensing of E-
modes to B-modes [40]. For the former, we will have to
rely on multi-frequency information to separate the dust
component from the primordial signal. For the latter,
delensing will become crucial for removing lens-induced
fluctuations and requires a high-fidelity lensing map [41].

While the usual searches for non-Gaussianity focus on
the N -point statistics of scalar fluctuations, in this pa-
per we will discuss the relatively unexplored observa-
tional signatures of non-Gaussian correlations involving
tensor fluctuations. Since tensor fluctuations source T ,
E, and B fluctuations, observational searches for bispec-
tra constructed from T and E fluctuations naturally place
constraints on both scalar and tensor non-Gaussianity.
Just as in the case of the power spectrum, the contri-
butions to T and E fluctuations from scalars are much
larger than those of tensors, and so constraints on tensor
non-Gaussianity with these bispectra are relatively weak.
On the other hand, bispectra involving primordial B-
mode fluctuations are sourced by tensor non-Gaussianity
but not by scalar non-Gaussianity, and are therefore ca-
pable of providing a much tighter constraint on tensor
non-Gaussianity. Since observations of B-modes are not
presently cosmic variance-limited, there is a great deal of
room for improvement with future observations of the
CMB polarization. This reasoning strongly motivates
searching for bispectra involving primordial B-modes as
a probe of primordial non-Gaussianity. In this paper, we
explore in detail how the hBTT i bispectrum can be used
to constrain tensor non-Gaussianity and thereby give us
insight into the physics of the early universe.

The primordial tensor-scalar-scalar bispectrum is nat-
urally non-vanishing, and in fact is of the same order
in slow-roll parameters as the primordial scalar-scalar-
scalar bispectrum in the simplest models of single-field
slow-roll inflation [42]. In more general models, the shape
and amplitude of the tensor-scalar-scalar bispectrum can
di↵er quite significantly from those predicted in the sim-
plest models, so observational constraints on this quan-
tity give non-trivial insight into the physics of the early
Universe [43]. The primordial tensor-tensor-scalar and

tensor-tensor-tensor bispectra are also non-vanishing in
single-field slow-roll inflation, as well as in more gen-
eral models [42–44]. Primordial non-Gaussianity involv-
ing tensors provides a set of observables which are dis-
tinct from and complementary to scalar non-Gaussianity.
Also, just as in the case of scalars [16], there is in prin-
ciple much more information in tensor non-Gaussianity
than in the tensor power spectrum alone.

Despite the di↵ering intrinsic parity of temperature
fluctuations and B-modes, the hBTT i bispectrum is non-
vanishing for particular combinations of multipoles. To
be more specific, under spatial inversion the multipole
coe�cients for T , E, and B transform as [45]
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The above remarks straightforwardly generalize to all
forms of non-Gaussianity. In a parity-conserving and sta-
tistically isotropic universe, any connected N -point func-
tion constructed from T , E, and B fluctuations contain-
ing an odd number of B-mode fluctuations vanishes forP
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Let us briefly summarize our motivations. Non-

Gaussian CMB statistics involving B-mode fluctuations
are non-vanishing under standard assumptions about the
properties of our Universe. Existing data can be used to
place new constraints on these quantities. Present mea-
surements of B-modes are not cosmic-variance limited, so
upcoming lower-noise CMB polarization data will drasti-
cally improve upon our current capabilities in this regard.
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N.B.:	single-field	models	do	predcit	these	signals	

The	nature	of	gravita#onal	waves	(II)		
ü  	These	observables	can	be	signatures	of	new	physics.				
							e.g.:		
							-	these	correlators	obey	specific	consistency	relaMons	in	standard	single-field		
									If	violated	could	signal		
										*	anisotropic	evolu#on	during	infla#on			
													(see,	e.g.,	N.B.,	Matarrese,	Peloso,	Ricciardone,	’13;		Akhshik,	Emami,Firouzjahi,			
														Wang	‘14;	Endlich,	Horn,	Nicolis,	Wang,	‘14;	Bordin,	Creminelli	et	al.	’16)	
										*	extra	light	spin-2	or	higher	spin	par#cles	
													(Harkani-Hamed,	Maldacena	’16).		
										*	symmetry	breaking	paferns	different	w.r.t		single-field	models	
												(solid-like	models	of	infla#on)	
												(Endlich,	Nicolis,	Wang,	’13;	N.B,	Cannone,	Ricciardone,	Tasinato	16;	Akhshik	15		
							-	also	parity	breaking	signatures	(see	specific	example	later)	
								
ü  Analyses	of	this	type	have	already	been	carried	out	within	Planck:		
					we	have	all	the	tools	and	exper%se	to	build	a	full	pipeline	to	fully	characterize	tensor		
				non-Gaussiani%es.			

												
								



Present	constraints	on	tensor	NG	
Planck	 WMAP	

M.	Shiraishi,	M.	Liguori,	J.	Fergusson	2014	

Planck Collaboration: Planck 2015 Results. Constraints on primordial NG

Table 25. Direction-dependent NG results for both the L = 1 and L = 2 models. We present results from both the KSW and Modal
2 pipelines. The discrepancy between the central values for the L = 2 models is due to the di↵ering ` ranges taken for the two
estimators, the key di↵erence being the KSW `min = 101. As this model peaks in the squeezed configuration, a significant portion
of the signal is lost, which is reflected in the increased error bars.

Commander NILC SEVEM SMICA

A ± �A S/N A ± �A S/N A ± �A S/N A ± �A S/N

L = 1
Modal 2 T-only �41 ± 43 �0.9 �58 ± 42 �1.4 �51 ± 43 �1.2 �49 ± 43 �1.1
KSW T-only �8 ± 46 �0.2 �62 ± 46 �1.3 �34 ± 45 �0.8 �26 ± 45 �0.6
Modal 2 T+E �28 ± 29 �1.0 �30 ± 27 �1.1 �49 ± 28 �1.7 �31 ± 26 �1.2
KSW T+E �57 ± 33 �1.7 �62 ± 32 �1.9 �79 ± 32 �2.5 �54 ± 32 �1.7

L = 2
Modal 2 T-only 0.7 ± 2.8 0.2 0.8 ± 2.8 0.4 1.1 ± 2.7 0.3 0.5 ± 2.7 0.2
KSW T�only 1.5 ± 5.1 0.3 �3.9 ± 5.1 �0.8 �0.4 ± 5.1 �0.1 0.1 ± 5.0 0.0
Modal 2 T+E 1.1 ± 2.4 0.5 0.5 ± 2.4 0.2 1.3 ± 2.4 0.6 �0.2 ± 2.3 �0.1
KSW T+E �3.0 ± 4.1 �0.7 �3.6 ± 4.0 �0.9 �3.8 ± 4.0 �1.0 �1.3 ± 3.9 �0.3

son to the analysis at higher resolution, e.g., `max = 2000 and
Healpix Nside = 2048, since the cosmic variance and instru-
mental noise are already far higher than the signals for ` & 300
(Shiraishi et al. 2013b). Only in the polarization data analysis is
an e↵ective `min also adopted, which is motivated by the high-
pass filtering process for `  40 in component separation.

Within the above ` ranges, the theoretical bispectrum tem-
plates are decomposed with the eigenbasis composed of O(1 �
10) polynomials and some special functions reconstructing the
tensor-mode features, e.g., temperature enhancement due to the
ISW e↵ect (` . 100), and two E-mode peaks created by reion-
ization (` . 10) and recombination (` ' 100). The resulting
factorized templates are more than 95 % correlated with the orig-
inal ones. The validity of our numerical computations has been
confirmed through the map-by-map comparisons of f̂ even/odd

NL at
very low resolution, showing the consistency between the values
from the Modal methodology and those obtained by the brute-
force O(`5) summations like Eq. (36). We have also checked that
our parity-even estimator successfully leads to the constraints on
f local
NL , f equil

NL , and f ortho
NL at `max = 500, compatible with the results

from the binned estimator.
Our limits estimated from the foreground-cleaned tempera-

ture and high-pass filtered polarization data (SMICA, SEVEM, and
NILC) are summarized in Table 26. The data and MC simula-
tions used here, including all experimental features, i.e., beam,
anisotropic noise levels and partial sky mask, have been in-
painted using the identical recursive process adopted in the stan-
dard fNL estimations (see Sect. 3.5). The sky fractions of the tem-
perature and polarization masks adopted here are, respectively,
fsky = 0.76 and fsky = 0.74. Although the error bars and the
linear terms have been computed using 160 MC simulations, the
resulting error bars are close to the expected values, ( fskyF)�1/2.

We have confirmed the stability of the T-only constraints,
and significant scatter of the E-only constraints both in the
parity-even case and in the parity-odd one, when changing fsky.
Such E-mode instability has given insignificant e↵ects on our
T+E constraints in the parity-even case, as they are determined
almost exclusively by TTT, like the scalar NG analyses. In con-
trast, our parity-odd T+E results vary a lot, due to the E-mode
scatter (quantitatively speaking, only a few percent change of
fsky has shifted f tens

NL by more than 1�), because TTE and TEE
contribute significantly to the signal-to-noise ratio in the parity-
odd case (Shiraishi et al. 2013b). Table 27 presents the corre-
lations of the bispectra reconstructed from the component sep-

arated maps, also indicating the robustness of the T-only con-
straints and the instability of the E-only results. We report only
stable results in Table 26 and conclude that there is no evidence
at > 2� of f tens

NL in the parity-even, parity-odd or their whole
domain.

The parity-odd components of the TTT and EEE bispectra
extracted model-independently from the SMICA data are visually
represented in Fig. 26. It is apparent from this figure that the
Planck TTT bispectrum has similar features to the WMAP one
(Shiraishi et al. 2015), e.g., distinctive signals distributed around
`1 ⇡ `2 ⇡ `3. As indicated by the roughly 70 % correlation
between the SMICA and WMAP bispectra (see Table 27), the
Planck T-only limits in Table 26 are close to the WMAP ones
(68 % CL): f tens

NL /102 = 4 ± 16 for parity-even; and f tens
NL /102 =

80 ± 110 for parity-odd (Shiraishi et al. 2015).

Table 26. Results for the tensor nonlinearity parameter
f tens
NL /102, estimated from the SMICA, SEVEM, and NILC temper-

ature and high-pass filtered polarization maps. We separately
show the central values and the errors (68 % CL) extracted from
`1 + `2 + `3 = even (Even), `1 + `2 + `3 = odd (Odd) and their
whole domain (All). The parity-odd constraints have also been
obtained from the E-mode data, but they are still preliminary and
not currently shown.

Even Odd All

SMICA
T . . . . . . . . . . . . 2 ± 15 120 ± 110 4 ± 15
T+E . . . . . . . . . . 0 ± 13

SEVEM
T . . . . . . . . . . . . 2 ± 15 120 ± 110 5 ± 15
T+E . . . . . . . . . . 4 ± 13

NILC
T . . . . . . . . . . . . 3 ± 15 110 ± 100 5 ± 15
T+E . . . . . . . . . . 1 ± 13

9. Limits on the primordial trispectrum

So far, we have considered a variety of physically motivated
possibilities for the inflationary 3-point function, or bispectrum.
A similar phenomenology exists for the 4-point function, or
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•  We	fit	parity-odd	and	parity-even	
						pseudo-scalar	bispectra	to	Planck	
						data.		

•  Constraints	and	reconstrucMon	
						consistent	with	WMAP.	
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B expt. B noise (µK-’) B beam (’) `b T expt. T noise (µK-’) T beam (’) `b area (sq. deg.)
Planck 60 5 1600 Planck 30 5 1600 33,000
BICEP/Keck 3 60 130 SPTpol 5 1 8100 625
CMB-S4

p
2 1 8100 CMB-S4 1 1 8100 33,000

TABLE II: Assumed experimental parameters for forecasts. Beamsizes in arcmin are quoted as FWHM, related to �b in Eq.
31 by a factor of 2

p
2 ln 2. For reference we also show `b ⌘ 1/�b.
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FIG. 6: Forecasts for �(
p
rfh⇣⇣

NL

) for various CMB experiments
as a function of `

max

. The colored lines present constraints
when cosmic variance is negligible. The figure shows that
cosmic variance would be subdominant for current and near
future experiments if r = 0.01. For an experiment like CMB-
Stage IV the total variance would be dominated by cosmic
variance and not by instrumental noise unless r . 0.001 (with
`T
max

= 4500).

order of magnitude below the optimal CMB constraint on
the local-type scalar non-Gaussianity f⇣⇣⇣

NL

. Furthermore,
it was shown in Ref. [50] that the hTTT i bispectrum

could provide constraints on
p

rfh⇣⇣

NL

⇠ O(10)f�1/2

sky

. The
forecasts presented in this paper show that using hBTT i
has the potential to improve that constraint by nearly
two orders of magnitude. In order to fully exploit the
power of hBTT i one should consider more general mod-
els of the early Universe that could potentially violate
this bound. We will leave this to future work.
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FIG. 7: Forecasts for �(
p
rfh⇣⇣

NL

) for various CMB experi-
ments. This figure illustrates that current experiments are
all noise dominated for allowed values of r. CMB-Stage
IV is comic variance dominated unless r . 0.005 (with
`T
max

= 3400). Cosmic variance limit can only be reduced
if we consider more modes, i.e. by increasing `T

max

).

VI. DISCUSSION AND CONCLUSION

We have explored the potential of the hBTT i bispec-
trum as probe of the early universe. The odd intrinsic
parity of B-modes gives this bispectrum some properties
which di↵er from that of the hTTT i bispectrum, but both
are generically non-vanishing in a parity-conserving uni-
verse, and are sourced by primordial bispectra which are
predicted to be of the same order in slow-roll parameters
in single-field slow-roll inflation.

One advantage of the hBTT i bispectrum is that the
signal su↵ers less from cosmic variance than its hTTT i
counterpart for constraining the tensor-scalar-scalar bis-

Present	constraints	on	tensor	NG	and	forecasts	

S4-like	experiment	can	improve	by		
two	orders	of	magnitude	w.r.t	to		
<TTT>	bispectra.		
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Figure 5. Central values and 2� errors on g

tss

obtained from the WMAP data as a function of `
max

.

500. As a further validation test, we also used the same pipeline to measure the standard f

local

NL

parameter, obtaining fully consistent results with those shown in the literature [8, 36, 41, 42].
Figure 5 shows the limits on gtss as a function of `

max

, indicating no evidence of gtss for
`

max

 500, at any scale, at 95%CL. We take the result at `

max

= 500 as our final bound:
gtss = �48± 28 (68%CL).

One may worry here about the contamination due to secondary sources of temperature
NG, which we have not considered so far. In particular, it is widely known that the lensed
bispectrum can become an important source of bias in the squeezed limit. However, such
lensed signal becomes large when higher multipoles are considered, and almost uncorrelated
to the primordial one for `

max

 500 [22]. Therefore, ISW-lensing debiasing is not necessary
in our analysis.

4 Conclusions

In this paper, we have studied the inflationary tensor-scalar-scalar three point function, for
models characterized by nonzero graviton mass. A nonvanishing CMB temperature bispec-
trum is one of the predictions of such models, so we have actually tested it, using WMAP
9-year temperature data. The primordial and the induced CMB bispectrum, b(tss)`1`2`3

, peak in
the squeezed limit, in this scenario, and specific Fisher matrix forecasts show that interesting
bounds can already be obtained at WMAP angular resolution, which motivated our analysis.

– 10 –
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Abstract. The nonlinear interaction between one graviton and two scalars is enhanced
in specific inflationary models, potentially leading to distinguishable signatures in the bis-
pectrum of the cosmic microwave background (CMB) anisotropies. We develop the tools to
examine such bispectrum signatures, and show a first application using WMAP temperature
data. We consider several `-ranges, estimating the gtss amplitude parameter, by means of the
so-called separable modal methodology. We do not find any evidence of a tensor-scalar-scalar
signal at any scale. Our tightest bound on the size of the tensor-scalar-scalar correlator is
derived from our measurement including all the multipoles in the range 2  `  500 and
it reads gtss = �48 ± 28 (68%CL). This is the first direct observational constraint on the
primordial tensor-scalar-scalar correlation, and it will be cross-checked and improved by ap-
plying the same pipeline to high-resolution temperature and polarization data from Planck

and forthcoming CMB experiments.ar
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Ø  		NoMce	that	for	an	experiment	like		LiteBird	looking	for	tensor		
					non-GaussianiMes	could	be	parMcularly	relevant:		
	
				*	high	sensiMvity	to	B-mode	polarizaMon		
	
				*	limited	to	relaMvely	low	l,	where	typically	the	tensor	modes	are		
							most	significant		
		

Modifying	gravity	during	infla%on	and	non-Gaussianity				

Ø  Example:	graviton	non-Gaussiani#es	beyond	ordinary	Einstein	gravity	
					considered	in	Madacena	&	Pimentel	(2011);	Soda,	Kodama,	Nozawa	(2011);		
					Shiraishi,	NiUa,	Yokoyama	(2011)				
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	however		such	primordial	NG	is	unobservably	small.		
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Slow-roll inflation with the Chern-Simons term

Action of the slow-roll models of inflation with the Chern-Simons term

S =
1
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Z
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p
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µ�D⌫�� 2V (�)

⇤
+f (�)✏µ⌫⇢�Cµ⌫

�C⇢��

Cµ⌫⇢�: Weyl tensor, traceless component of the Riemann tensor
✏µ⌫⇢�: Levi-Civita pseudotensor

Features of the Chern-Simons term

zero on the background (C (0)
µ⌫⇢� = 0)

parity breaking

surface term if f (�)= const. (total time derivative term)
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Polarized primordial gravitational waves

Asymmetry in the power spectrum of the primordial gravitational
waves

⇥R�L =
PR
T � PL

T

PR
T + PL

T

=
⇡

2

H

MC�S

⇥R�L quantifies the degree of parity breaking in the power spectrum
of the tensor modes

⇥R�L << 1 for the approximation made in the theory

Modification to consistency relation

rC�S = �8nT
�
1 +⇥2

R�L

�

�! probably di�cult to observe
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Ø 		Le�	(L)	and	Right(R)	polarized	gravitaMonal	waves	are	generated	

parity-breaking	term	

Slow-roll	infla%on	with	a	Chern-Simons	term	

*see	N.B.,	Giorgio	Orlando.	JCAP	2017	(arXiv:1706.04627)			

Tes%ng	parity	breaking	signatures	via	GWs	

Constraints	and	forecasts	for	future	experiments	IPMU16-0076
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Abstract. We use the 2015 Planck likelihood in combination with the Bicep2/Keck likelihood
(BKP and BK14) to constrain the chirality, �, of primordial gravitational waves in a scale-
invariant scenario. In this framework, the parameter � enters theory always coupled to the
tensor-to-scalar ratio, r, e.g. in combination of the form � · r. Thus, the capability to detect
� critically depends on the value of r. We find that with present data set � is de facto

unconstrained. We also provide forecasts for � from future CMB experiments, as COrE+,
exploring several fiducial values of r. We find that the current limit on r is tight enough to
disfavor a neat detection of �. For example in the unlikely case in which r ⇠ 0.1(0.05), then
the maximal chirality case, i.e. � = ±1, could be detected with a significance of ⇠ 2.5(1.5)�
at best. We conclude that the two-point statistics at the basis of CMB likelihood functions
is currently unable to constrain chirality and may only provide weak limits on � in the most
optimistic scenarios. Hence, it is crucial to investigate the use of other observables, e.g.
provided by higher order statistics, to constrain these kind of parity violating theories with
the CMB.

ar
X

iv
:1

60
5.

09
35

7v
1 

 [a
str

o-
ph

.C
O

]  
30

 M
ay

 2
01

6



Thus passing in Fourier space and substituting Eq. (5.61) into Eq. (5.62) we have

h�R(~k1)�R(~k2)⇣(~k3)i ' � H

�̇
h�R(~k1)�R(~k2)��(~k3)i =

= �(2⇡)3�3(~k1 + ~k2 + ~k3)
⇡

64

0

@
X

i 6=j

�T (ki)�T (kj)

1

A
✓
H2@

2f(�)

@2�

◆
⇥

⇥ (k1 + k2)k1k2P
i k

3
i

cos ✓(1� cos ✓)2 ,

(5.63)

where we recall that ✓ is the angle between the two momenta ~k1 and ~k2. Proceeding with the same
reasoning for computing the vertex h�L(~k1)�L(~k2)⇣(~k3)i, we find:

h�L(~k1)�L(~k2)⇣(~k3)i = �h�R(~k1)�R(~k2)⇣(~k3)i . (5.64)

Notice that we have obtained a result which di↵ers for a sign in the passage from left to right
gravitons. This result is not inconsistent and can be explained with a symmetry argument: if
parity was a symmetry of the theory, there would be not di↵erence between the statistics of L
and R gravitons. And thus the correlators h�R�R⇣i and h�L�L⇣i would be equal. But the Chern-
Simons term breaks parity symmetry and, as a consequence, we have a di↵erence between the two
bispectra. This is achievable e.g. by a sign di↵erence, as it happens specifically in our case. 2

Figure 1. Plot of the quantity F (1, x2, x3)x2
2x

2
3 in terms of x2 = k2

k1
and x3 = k3

k1
. The figure is normalized

to have value 1 for equilateral configurations x2 = x3 = 1.

Moreover, if we take only the dependence of the bispectrum (5.63) over the mo-
menta ki’s, we obtain the shape function

F (k1, k2, k3) =

0

@
X

i 6=j

1

k3i k
3
j

1

A (k1 + k2)k1k2P
i k

3
i

cos ✓(1� cos ✓)2, (5.65)

where cos ✓ is as in Eq. (5.60). The shape function depends only on two parameters,
that are the ratios x2 = k2

k1
and x3 = k3

k1
. The reason is that, once we have fixed two of

the three momenta, the third one is automatically fixed by momentum conservation.
Thus, it is useful to fix k1 = 1 and make a plot of the quantity F (1, x1, x2)x22x

2
3 in terms

of x2 and x3 (Fig. 1). The additional factor x22x
2
3 is just a convention and it has been

introduced in literature to define the correlator between di↵erent shapes (see Ref.
[46]). From Fig. 1 we see that the shape function peaks when x2 = 1 and x3 = 0. This
corresponds to the so-called squeezed limit, in which the momenta of the gravitational

2Notice that this is what happens similarly in the analysis of [15].
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cos ✓ = k2
3�k2

2�k2
1

2k1k2
,

h�̂L(~k1)�̂L(~k2)'̂(~k3)i = �h�̂R(~k1)�̂R(~k2)'̂(~k3)i . (4.106)

From the angular dependence of (4.105), we see that it is maximum when cos ✓ = �1. This
corresponds essentialy to the ”squeezed” limit, which is the limit in which the momenta of the
gravitational waves k1, k2 are much greater of the momentum k3 of the inflaton perturbation. Infact
in this configuration the triangle of the momenta ki’s appears very squeezed.

Now we pass to gauge invariant variables in order to make predictions about the strengh of these
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where the F(ki) is a particular shape of the momentum of the momenta ki which it is tipically
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polarizations.
Similary we see that the correlator just computed (4.107) is of the order:

h�̂R(~k1)�̂R(~k2)⇣̂(~k3)iC�S = �h�̂L(~k1)�̂L(~k2)⇣̂(~k3)iC�S ⇠ H6
⇤

M6
Pl

 
M2

Pl
@2

@2�
f (�)

!⇤ 0BBBBBB@
Y

i< j

1
k3

i k3
j

1
CCCCCCA F0(ki) ,

(4.110)
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Shape	of	the		bispectrum:	
peaks	for	squeezed		
configuraMons	k3	<<	k1~	k2	
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where X is either T or E, and we have taken into account that T anisotropies are sourced mainly
by scalar perturbations, while B polarization modes are sourced only by primordial gravitational
waves. Thus, e.g, we would obtain that the following bipectrum11
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would be proportional to the parity breaking amplitude ⇧ for the specific multipole location `1 +
`2 + `3 =odd. Namely it turns out
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where we have used Eq. (5.70) and the fact that in the model considered mixed correlators, like
h�L�R⇣i vanish. In Eq. (7.4) F (k1, k2, k3) is the shape of the bispectrum h�R�R⇣i, Eq. (5.64), while
fR
NL is its non-Gaussianity amplitude defined in Eq.(5.66), and related to ⇧ by Eq. (5.67).

To conclude, let us discuss the possibility to relax some of the conditions we have adopted so
far to investigate this model. First of all we notice that if the Chern-Simons mass can significantly
vary in time during inflation, the constraint (5.77) can be strongly relaxed, leaving f 00(�), and
thus any parity breaking signature for the bispectrum h��⇣i, theoretically unconstrained. However
this requires a deep reformulation of the analysis of the power-spectrum case, because in such a
scenario the equation of motion (4.14) will change drastically. Another interesting possibility can
be to replace the inflaton field � in the coupling function with another dynamical field � di↵erent
from the inflaton, in such a way to deal with a f(�) coupling. In this case this additional field
is not forced to follow a slow-roll dynamics as the inflaton and then, again, the constraint (5.77)
no longer holds. Moreover, in this case, the model would not be single-clock inflation and so the
discussion about the consistency relations provided in Section 6 are no more valid, in particular
regarding a potential signal-to-noise ratio loss.
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h��⇣i follows by estimating the ratio between the two S/N ratios. In fact following the same reasoning of Ref. [102]
and considering only a cosmic variance limited experiment we would have
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From this equation it follows that for enough low values of r, hBBT i would provide better constraints than hTTT i
on h��⇣i. See the discussion in [102].
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From this equation it follows that for enough low values of r, hBBT i would provide better constraints than hTTT i
on h��⇣i. See the discussion in [102].
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FIG. 3. Two-dimensional posterior distributions for r and nt: the contours in the left (right) panel are obtained without (with) the
inclusion of NGW

e↵ . In both panels the red contour is the result for the “vanilla” ⇤CDM+ r+nt model, using the Planck + BKP dataset.
The corresponding 95%CL results for r and nt are reported in Tab. III.

FIG. 4. Two-dimensional posterior distributions for r and nt, using BK14 polarization data: the contours in the left (right) panel are
obtained without (with) the inclusion of NGW

e↵ . The corresponding 95%CL results for r and nt are reported in Tab. IV.

by the lost sensitivity of the angular spectra to variations
in nt.

Similarly to the previous case, the best bounds on
tensor parameters (r < 0.067, nt = 0.00+0.68

�0.91, both
at 95%CL) are obtained by the combination of CMB
anisotropies and direct detection experiments.

When we add the contribution NGW
e↵ to the e↵ective

number of degrees of freedom Ne↵ , Tab. III shows that
we obtain more stringent constraints on r and nt, while
we see from the right panel of Fig. 3 that the steep slope
of the posterior in the nt direction is reproduced (recall
Eqs. (12)). In particular we see that in this case, even
if we are using “just CMB information” (i.e. the e↵ect
of Ne↵ on CMB anisotropies only), we reach a constrain-
ing power comparable to or even better than CMB com-

bined with GW direct detection experiments. Of course,
by adding external astrophysical datasets (as BAO and
primordial Deuterium abundance) we obtain even tighter
bounds. Our best limits, obtained using Planck + BKP
+ EXT, are r < 0.080 and nt = �0.05+0.57

�0.80, both at
95%CL.

Also in this case, adding the BK14 dataset leads to
better constraints on r: we see from Tab. IV that con-
sidering the Planck + BK14 + EXT dataset we reach
r < 0.061 (95%CL).

G.	Cabass,	L.	Pagano	et	al.	2015	
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6 Summary

In the following table we provide an overview of the main mechanisms of GW production which have
been investigated in the previous sections, that can take place during inflation and the preheating
period. In the first three columns we put in evidence the different physical origin of such mechanisms.
As illustrated up to here, the two ways for generating inflationary GW are vacuum oscillations of the
gravitational field and the presence of a source term in the GW equation of motion that leads to a
classical mechanism of GW production. In the first case the assumption that leads to different predic-
tions for the features of the GW power spectrum is the theory of gravity underlying the inflationary
model. In the second case, the form and the efficiency of the source terms are the discriminants for
the generated tensor modes. In the last two columns, following such a scheme, we organize the main
models we have investigated in the previous sections.

GW PRODUCTION Discriminant Specific discriminant Examples of specific models Produced GW

Vacuum oscillations

quantum fluctuations
of the gravitational

field stretched by the
accelerated expansion

theory of gravity

General Relativity
single-field slow-roll broad spectrum

all other models in GR broad spectrum

MG/EFT approach

G-Inflation broad spectrum

Potential-driven G-Inflation broad spectrum

EFT approach broad spectrum

Classical production

second-order GW
generated by the

presence of a source
term in GW equation

of motion

source term

vacuum inflaton fluctuations all models broad spectrum

fluctuations of extra scalar
fields

inflaton+spectator fields broad spectrum

curvaton broad spectrum

gauge particle production
pseudoscalar inflaton+gauge field broad spectrum

scalar infl.+pseudoscalar+gauge broad spectrum

scalar particle production scalar inflaton+ scalar field peaked

particle production during
preheating

chaotic inflation peaked

hybrid inflation peaked

Table 2: Summary of the main mechanisms of GW production during inflation and the preheating phase. In the
fourth column, the scenarios mainly investigated in the present work are reported as examples for each mentioned
case. They are discussed in the following sections respectively: “single-field slow-roll” section 2.3, “G-Inflation” sec-
tion 5.4.1, “Potential-driven G-Inflation” section 5.4.2, “EFT approach” section 2.4.2, “all models” section 3.1.1,
“spectator fields” section 3.2.2, “curvaton” section 3.2.1, “pseudoscalar inflaton+gauge field” section 3.3.2, “scalar
infl.+pseudoscalar+gauge” section 3.3.3, “scalar inflaton+scalar field” section 3.3.1, “chaotic inflation” section 4.1.1,
“hybrid inflation” section 4.1.2. To clarify the notation: “EFT approach” refers to all models encoded in the generic
action used in the EFT approach to inflation. “Broad spectrum” means that a power spectrum, broad on a large range
of scales is expected, while “peaked” indicates a signal peaked on a narrow range of frequencies.

7 The issue of the quantum to classical transition for infla-

tionary perturbations

According to the inflationary model, the seeds of perturbations present at last scattering are quantum
fluctuations of the scalar field that has driven the accelerated expansion and of the gravitational field.
Up to now, this is the only physical model where theoretical predictions coming from a simultaneous
use of General Relativity and quantum mechanics, are testable, in principle, by observations. There-
fore inflationary physics reveals itself as a framework where fundamental questions about quantum
mechanics and cosmology arise too. In facing such basic issues, inflationary GW play a significant
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ü  	A	detecMon	of	GW	would	not	by	itself	determine	the	precise	mechanism	generaMng	the	the	tensor	modes	
	
ü  In	addiMon	to	the	standard	quantum	vacuum	amplificaMon	of	tensor	perturbaMons		on	cosmological	scales	

various	mechanisms	exist	that	produce	during	inflaMon	(or	immediately	a�er	inflaMon)	a	classical	background	
of	gravita#onal	waves.	

		
ü  This	might	lead	to	the	breaking	of	the	one-to-one	correspondence	between	amplitude	of	gravitaMonal	waves	

and	energy	scale	of	inflaMon	à	crucial	to	study	and	constrain	these	scenarios	
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Blue	tensor	#lt	from	new	symmetry	
paferns	in	the	infa#onary	sector	

Ø Blue	tensor	#lt	can	also	arise	in	models	with	a	non-standard	
spaceMme	symmetry	breaking	paUern,	such	as	solid	(Endlich,	Nicolis,	
Wang,	2013)	or	supersolid	infla#on		

				(Bartolo,	D.	Cannone,	A.	Ricciardone	and	G.	Tasinato,	2016;			
				Cannone,		Tasinato	and	Wands,	2015)	
	

Ø 	In	these	scenarios,	space	reparameterizaMon	invariance	is	
spontaneously	broken	during	inflaMon,	by	means	of	background	
fields	with	space-dependent	vacuum	expectaMon	values	leading	to	a	
mass	for	the	graviton	and	consequently	to	a	blue	tensor	Mlt.		

	
	
	

While the unitary gauge is well suited for geometrically understanding the dynamical degrees of
freedom, in our work we adopt a second approach to study an inflationary system with broken space-
time di↵eomorphisms. We interpret the new dynamical modes that arise as Goldstone bosons of broken
space-time symmetries. In order to do so, it is convenient to define our coordinates to be aligned with
the background values of the fields that spontaneously break di↵eomorphisms.

The vacuum expectation values for the symmetry breaking fields are

�̄0 = t , �̄i = ↵xi , (5)

�̄0 and �̄i are respectively clock and rulers during inflation. The parameter ↵ controls the breaking
of spatial di↵eomorphisms: we assume it to be small, and we will use it as an expansion parameter.
Using the Stückelberg trick, we can restore full di↵eomorphism invariance by introducing a set of four
fields, ⇡ and �i, and write the gauge invariant combinations �µ as

�0 = t+ ⇡ , �i = ↵xi + ↵�i . (6)

The Stückelberg fields ⇡ and �i transform under di↵eomorphisms such to render the previous combi-
nations gauge invariant. For the system that we consider, �

i

can be decomposed into longitudinal �
L

and transverse components �T

i

. The longitudinal component �
L

interacts with ⇡, starting already at
quadratic level: the interaction among these scalars will be the main topic of our work.

We make further assumptions: we would like to preserve homogeneity and isotropy, imposing extra
internal symmetries on the field configuration [8],

�i ! Oi

j

�j , �i ! �i + ci , (7)

where Oi

j

2 SO(3). We further assume an approximate shift symmetry �0 ! �0 + c0, which is a
technically natural assumption to protect the small time dependence of the coe�cients that will appear
in the action. Notice that these internal symmetries we impose act on field space. Di↵eomorphism
invariance of eq (1) acts on coordinate space instead, and is spontaneously broken in our system.
Notice that our pattern of symmetry breaking is di↵erent from the recent [18], that breaks rotational
symmetry in the internal field space.

With this in mind, we can write – at lowest order in a derivative expansion – the di↵eomorphisms
invariant action describing our system

S =

Z
d4x

p
�g


1

2
M2

Pl

R+ F (X,Y i, Zij)

�
, (8)

where F is an arbitrary function, respecting the internal group of spacetime shifts and rotations (7)
and g is the determinant of the metric tensor. The building blocks that appear in the function F are
the operators:

X = @
µ

�0@
⌫

�0gµ⌫ ,

Y i = @
µ

�0@
⌫

�igµ⌫ , (9)

Zij = @
µ

�i@
⌫

�jgµ⌫ ,

where i = 1, 2, 3. In what follows, we discuss the consequences of this form of the action for the
dynamics of the Stückelberg fields.

3 Inflationary background and fluctuation dynamics

3.1 The equations for the background

Our first task is to determine the background evolution. We selected the background values for the
fields that break di↵eomorphisms to be aligned with the space-time coordinates, as in eq. (5). Such
background fields are expected to drive inflation. We now consider what conditions our function F have

4

with the symmetry breaking pattern one wishes to study. The fact that they can lead to
a blue spectrum for tensor modes, as well as to other distinctive properties in the tensor
spectrum, has been pointed out in ref. [126], recently studied in [131], and further studied in
refs. [128, 130, 132, 133].

Any set-up which breaks space-reparametrization leads to several distinctive signatures
also in the scalar sector, or in higher order interactions between scalar and tensor modes. In
the next subsections 5.1 and 5.2 we discuss properties of the tensor sector of possible interest
for LISA, and then study further testable predictions in subsection 5.3.

5.1 Properties of gravitational wave signals

We consider model independent features of tensor fluctuations in scenarios that break space-
reparametrization during inflation. We limit our attention to set-ups which preserve isotropy
and homogeneity of space time at the background level, considering only tensor fluctuations
hij around a FLRW background, as described in the Introduction.

Under our assumptions about the symmetry breaking pattern, we can write the most
general form for the second order action for tensor fluctuations [128]:

S(2) =
M2

Pl

8

Z
dt d3x a3(t)n(t)


ḣ2ij �

c2T (t)

a2
(@lhij)

2 �m2
h(t)h

2
ij

�
, (5.1)

where n, cT and mh are functions of t, determined by the model under consideration. and
a(t) is the scale factor of the Universe. We emphasize that in writing the previous quadratic
action, we did not intend to commit on specific scenarios, but instead included all terms
allowed by the symmetries. The graviton squared mass m2

h is the distinctive feature of
a set-up that breaks space-reparametrization. A tensor sound speed cT 6= 1 is normally
associated with scenarios with kinetic mixing among tensors and scalars, as in G-inflation,
or more generally in inflationary models in Horndeski scalar-tensor theories [134]. Notice
that a disformal transformation can be applied on the metric, so to set cT = 1 [135]. Such
transformation would also change the graviton mass, modifying the scale dependence of the
tensor spectrum and a↵ecting also the scalar sector. For this reason, we prefer not to consider
it here. Also the overall factor n(t), which can be thought as renormalizing the Planck mass,
has to be expected in scenarios with kinetic mixing among gravity and scalar fields.

Let us comment on the mass term: m2
h can be both positive and negative. The Higuchi

bound suggests m2
h < 0, since it states that tensor modes can not have a mass in the

interval 0 < m2
h  2H in pure de Sitter space, when considering theories that are Lorentz

invariant [136, 137]. However, inflation does not occur in a pure de Sitter space, so a small and
positivem2

h might be allowed in theories which preserve Lorentz symmetry at the fundamental
level, but spontaneously break de Sitter symmetry. Moreover, considering theories which
break Lorentz symmetry, e.g. Horava-Lifshitz scenarios [138], the Higuchi bound does not
necessarily apply. We refer the reader to ref. [139] for a formulation of Lorentz violating
massive gravity in cosmological backgrounds. In our case, we keep agnostic and allow also
for a positive m2

h.
In order to find the power spectrum of gravitational waves, we need to have information

about the time-dependence of the functions entering eq. (5.1). The computation of the tensor
spectrum normally requires a careful numerical analysis. Analytical considerations can be
carried out in a quasi de Sitter space, ✏ ⌧ 1 for cT and mh only mildly depending on time.
Focusing on the approximation of pure de Sitter, H = const., for cT and mh constants and
setting n = 1, we can follow the standard procedure of quantizing the tensor modes around
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de Sitter background.9 Tensor modes in Fourier space are indicated with h̃ij(t, ~k). Starting
from the equal-time two point function for tensor modes, which we expressed as

hh̃ij(~k) h̃kl(~k0)i = (2⇡)3 �(3)(~k + ~k0)Pij, kl , (5.2)

we define the primordial tensor power spectrum evaluated at comoving scale k, as

Ph =
k3

2⇡2
Pij, ij . (5.3)

In our set-up, this leads to

Ph =
H2

4⇡M2
Pl

✓
k3

k3⇤

◆ ���H(1)
⌫

✓
cT k

k⇤

◆ ���
2
, (5.4)

with H
(1)
⌫ (x) the Hankel function of first kind, k⇤ a reference scale, and

⌫ =
3

2

s

1� 4m2
h

9H2
. (5.5)

A simplification occurs in the limit of small graviton mass, |mh/H| ⌧ 1, for which the power
spectrum becomes a power law for su�ciently large scales:

Ph =
H2

2⇡2M2
Pl c

3
T

✓
k

k⇤

◆nT

, (5.6)

with (recall we are considering an approximation of pure de Sitter space)

nT =
2

3

m2
h

H2
. (5.7)

Notice that a blue spectrum, nT > 0, requires a positive m2
h. This is the case we are most

interested to, since it enhances the tensor spectrum at small scales, and can lead to a signal
detectable with LISA. We present our study in the next subsection. For simplicity, we use the
representative formulae of eq. (5.6) for the power spectrum and eq. (5.7) for the spectral tilt.

5.2 Parameter analysis based on the LISA sensitivity curves

Our framework is convenient for carrying out a model-independent analysis of the conse-
quences of breaking space-reparametrization symmetry during inflation, and connecting it
with a possible detection of the GW signal in the range of frequencies and energy densities
probed by LISA. The power spectrum of primordial tensor modes in (5.6) depends on the
energy scale of inflation H, on the tensor speed of sound cT that can varies in the interval
0  cT  1 (in unity of speed of light) and finally on the mass of the graviton mh.

In this section, we investigate the ability of the di↵erent LISA configurations, men-
tioned in section 2, in constraining the space of such parameters. In particular the Hubble
parameter H and the tensor sound speed cT control the amplitude of the power spectrum,
while the dimensionless combination mh/H characterizes the tensor spectral index nT . We

9As far as we are aware, more general analysis of dynamics and quantization of tensor modes with arbitrary
time dependence of tensor mass and sound speed during inflation have not been carried on so far in the
literature.
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Our framework is convenient for carrying out a model-independent analysis of the conse-
quences of breaking space-reparametrization symmetry during inflation, and connecting it
with a possible detection of the GW signal in the range of frequencies and energy densities
probed by LISA. The power spectrum of primordial tensor modes in (5.6) depends on the
energy scale of inflation H, on the tensor speed of sound cT that can varies in the interval
0  cT  1 (in unity of speed of light) and finally on the mass of the graviton mh.

In this section, we investigate the ability of the di↵erent LISA configurations, men-
tioned in section 2, in constraining the space of such parameters. In particular the Hubble
parameter H and the tensor sound speed cT control the amplitude of the power spectrum,
while the dimensionless combination mh/H characterizes the tensor spectral index nT . We
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Figure 12. Spectrum of GWs energy density h2⌦gw for di↵erent values of the e↵ective mass of
the graviton mh, Hubble rate during inflation H, and tensor sound speed cT , compared with the
sensitivity of LISA (grey curves) and LIGO (black curves) detectors. We use k⇤ = 0.05 Mpc�1 as a
pivot scale.

emphasize that, for simplicity, we use the representative eqs. (5.6) and (5.7) for investigating
the combined e↵ects of graviton mass and tensor sound speed during inflation. We fix the
pivot scale at k⇤ = 0.05 Mpc�1 and we use MPl = 2.4⇥ 1018 GeV for the (reduced) Planck
mass. For simplicity in our analysis we assume that both the tensor sound speed and the
graviton mass are time independent; their time dependence could be subject of a further
analysis, for example along the lines of the recent works [140, 141]. In figure 12 we plot the
GWs energy density for some representative values of the mass of the graviton and speed
of sound, for two di↵erent energy scales of inflation. The fractional GW energy density is
related to the power spectrum (5.6) by the transfer function, defined in (4.13). One can easily
notice that the e↵ect of the mass is an enhancement of the power on small scales. Then this
opens the possibility to extract limits on the (minimum) mass of the graviton during infla-
tion in order to have a signal detectable by LISA. We show the ability of the “best” (A5M5)
and the “worst” (A1M2) LISA configurations in putting a lower bound on the mass of the
graviton mh, fixing the Hubble parameter and the tensor speed of sound. From figure 12 we
see that a 6 links, 1 million km arm-length, 2 years of observation with LISA (A1M2) will
be able to probe the e↵ects of a graviton with mh ' 0.78H, for an energy scale of inflation
of H = 1013GeV and cT = 1, while the “best” LISA configuration (A5M5), still with 6 links,
but with 5 million km arm-length, 5 years of observation will put a smaller lower bound on
the mass, mh ' 0.68H for the same inflationary energy scale and speed of sound. Lowering
the energy scale of inflation to H = 1012GeV allows to probe higher valuer of the e↵ective
mass. In the same figure we also show the e↵ect of fixing the value of the graviton mass to
some representative values and plot the ability of LISA configurations to put bounds on the
tensor speed of sound cT . In particular we find that the best LISA configuration (A5M5) for
a mass of the graviton mh ' 7.8⇥1012GeV will be able to test speed of sound at the level of
20% of the speed of light, while lowering the energy scale of inflation allows to reach 1% level.
For completness we also draw the predicted energy density for a complete scale-invariant case
(mh = 0). For comparison we also plot the aLIGO sensitivities: in particular we see that
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Figure 14. Region of the (cT�(mh/H)) parameter space constrained by the LISA “best” (A5M5) and
“worst” configuration (A1M2) and the (a)LIGO detector, for two di↵erent Hubble rate: H = 1013GeV
on the left and H = 1011GeV on the right. In the figure are shown also the upper limits from a non-
detection of such GW signal by the LIGO detector and eventually by the future aLIGO/adVirgo one.

1012GeV. Of course a higher value of the spectral tilt, or a tensor sound speed lower than
the speed of light, would allow to reach lower inflationary energy scales. We have plotted
also the current Planck upper bound on the Hubble rate during inflation, extrapolated at
values cT  1 (yellow curve).

In future investigations, it will be interesting to extend the analysis of consequences of
inflationary gravitational mass and tensor sound speeds to richer scenarios, besides the ones
that can be parametrized by our equations (5.6) and (5.7).

5.3 Further constraints on GWs from other observables

Scenarios which break space-reparametrization symmetry during inflation can have several
other distinctive observational consequences, besides the small scale enhancement of tensor
modes. Such features are complementary to the ones discussed above, and make these sce-
narios distinguishable from other set ups with small scale enhancements of tensor modes, as
the ones discussed in the previous sections. The details of these observational consequences
are model-dependent, but we can list common features related to the fact that tensors have
a mass during inflation (while become massless after inflation ends).

• Inflationary tensor modes are not adiabatic; in general, this implies that inflation is
not an e�cient isotropic attractor, and large scale anisotropies can be produced [142–
144]. This is not necessarily a bad feature, since it can lead to distinctive consequences
associated with modulations of the scalar two point function [143, 144], a property that
can be (and is) constrained by CMB experiments as Planck [145, 146].

• Primordial non-Gaussianities can be enhanced (but not at a level to be excluded by cur-
rent constraints) and have distinctive features as an angular dependent squeezed limit
of bispectrum for the scalar three-point function [126, 130, 147]. Such properties can
be tested through CMB [83, 148] (although no dedicated templates have been imple-
mented so far for examining current CMB data); in the future, galaxy surveys can also
o↵er opportunities for testing the angular dependence of squeezed bispectra [149, 150].

• Tensor-scalar-scalar three-point functions can also be enhanced, to a level which can
be tested through B-modes searches of tensor non-Gaussianity [128, 151]. Such ef-
fects also enhance the scalar 4pt function, leading to a peculiar angular dependence
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Such power law behavior is characteristic of conformal field theories, where the �i

that occur are the (anomalous) dimensions of operators in the theory. Here we have the
same situation because the de-sitter isometries act on late time expectation values in the
same way as the conformal group in one less dimension. In inflation, these approximate
symmetries govern the behavior in the squeezed limit.

The actual values of �i that occur in (1.1) give us the desired information about the
spectrum of new particles. Namely, a single new particle of mass m > 3H

2

and spin s gives
rise to a pair of terms with [8]
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r
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H2
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A single particle gives rise to two dimensions, �±, which are complex conjugates of each
other, which is good, so that we can get a real answer for the correlator1. An interesting
fact is that there is an interesting calculable phase in the coe�cients w± = |w±|e±i�

that appear in (1.1). This phase, �(µ), depends only on the mass of the particle. The
oscillatory behavior as a function of the ratio of scales is a quantum e↵ect. It arises from
the quantum interference between two processes. One process is the ordinary gaussian
quantum evolution of the inflaton. The other is the creation of a pair of massive particles
that subsequently decay to inflaton modes. We know that we can assign a characteristic
time during inflation to a given momentum k. It is the time when this mode crossed the
horizon during inflation. The mode k

long

crossed the horizon earlier in than the mode k
short

.
The time measured in number of e-folds between these two events is N = log(k

short

/k
long

).
What we see in (1.3) is the behavior of the amplitude of the wavefunction of the massive
particle as a function of time, or N . The wavefunction oscillates as we expect for a
massive particle. In addition the 3/2 in (1.2) gives rise to the expected dilution factor
due to the expansion of the universe. Namely the square of the wavefunction should go
like e�3N ⇠ 1/Volume. The fact that we have e↵ects involving the amplitude of the
wavefunction of the massive particle as opposed to its square is due to the fact that this is
a quantum interference e↵ect. Another related fact is the dependence of the overall factor
in (1.3) on the mass. Keeping the coupling between the inflaton and the fields fixed, this
factor goes as e�⇡µ. This should be compared to the thermal factor going like e�2⇡µ. This
last factor is proportional to the probability for creating a pair of massive particles. The
fact that we get e�⇡µ is again due to the fact that we are seeing an interference e↵ect,
sensitive to the amplitude and containing phase information.

1 The correlator is real for the following reason. ⇣(~x) is real in position space. Therefore, in momentum
space it obeys ⇣

⇤
~k
= ⇣�~k. If we complex conjugate a correlator, we get the same answer as reversing the

sign of all momenta. For a two or three point function, we can relate the correlator with reversed mometa
to the original one by a two dimensional rotation, so that they should have the same value.
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perturbations, which can enhance the amplitude of single-exchange diagrams. Moreover,
the double- and, in particular, the triple-exchange diagrams can in principle have a large
amplitude as the coupling constants are not constrained to be small.

We will consider the following template for the bispectrum of primordial curvature
perturbations in the squeezed limit [18]:
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where �s is a phase uniquely fixed in terms of µs (see Appendix C of Ref. [18]), As is the am-
plitude of dimensionless primordial perturbations, �2

⇣(k) = As(k/k⇤)ns�1 = k3/(2⇡2)P⇣(k)
with k⇤ being the pivot point, and Cs are dimensionless parameters proportional to the
coupling constants of the extra fields to the Goldstone boson (see Ref. [18] for details).

We consider both of the cases considered in Ref. [18]: the case with speed of sound of
primordial perturbation equal to unity (c⇡ = 1) and the case with very small speed of sound
(c⇡ ⌧ 1). The mass-dependent amplitude is given by 1

f (s)(µs, c⇡) = abs[f̃ (s)(µs)] g(s)(µs, c⇡), (2.3)

where
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and

f̃ (s)(µs) =

8
>>>>>><

>>>>>>:

is⇡3s! p(s)(µs)

8(2s � 1)!!

(5 + 2s + 2iµs)

cosh⇡µs

�(�iµs)

�(1
2 � iµs)

s = 1, 2

⇡3

2

1 + i sinh⇡µ0

cosh⇡µ0

�(�iµ0)

�(1
2 � iµ0)

s = 0

(2.6)

1In the case of s = 0, the form of the leading cubic interaction vertex with curvature perturbations di↵ers
from that of particles with non-zero spin: there are no spatial derivatives acting on the extra spin-zero particle
since it is a scalar. This case is not presented in Ref. [18] and we thank Hayden Lee for providing it to us.
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of the spin of extra particles during inflation. For this purpose, we consider the squeezed
limit of the bispectrum presented in Ref. [18] as our template for primordial bispectrum due
to massive particles. We make forecast for two upcoming galaxy surveys, EUCLID (as an
example of a spectroscopic survey) and the Large Synoptic Survey Telescope (LSST) (as an
example of a photometric survey), and we use the galaxy power spectrum as our observable.
For our LSST forecasts, we show how we can improve upon these results by using the multi-
tracer technique, proposed initially in Refs. [49, 50].

The outline of the paper is as follows: in Section 2 we briefly review the primordial bis-
pectrum sourced by the presence of extra particles during inflation and derive the imprinted
scale-dependent galaxy bias. In Section 3 we describe the observable we use in our forecast,
i.e. the galaxy power spectrum. In Section 4 we discuss the forecasting methodology and
the survey specifications we used. We summarize our results in Section 5, and conclude in
Section 6.

2 Signature of massive particles with spin during inflation

Massive particles with spin s, present during inflation, leave an imprint in the squeezed-limit
bispectrum of curvature perturbations. Under weakly-broken conformal symmetry, Ref. [17]
obtains the squeezed-limit bispectrum of curvature perturbations due to a single exchange
of a massive particle. The authors show that the presence of massive particles with non-zero
spin results in a distinct angular-dependence of the squeezed-limit bispectrum,

lim
k
1

⌧k
2

,k
3

h⇣(k1)⇣(k2)⇣(k3)i0 / 1

(k1k3)3

✓
k1

k3

◆↵
+

+

✓
k1

k3

◆↵��
Ps(k̂1.k̂3), (2.1)

where ↵± = 3/2±iµs, with µs =
p

(ms/H)2 � (s � 1/2)2 for s 6= 0 and µ0 =
p

(m0/H)2 � 9/4
for s = 0. Within the assumptions of Ref. [17], the amplitude of this non-Gaussian signal is
suppressed exponentially as e�⇡µs . Therefore, unless the coupling between the extra field and
curvature perturbations is extremely large to compensate for this suppression, the amplitude
is bound to be very small.

When s = 0 in Eq. (2.1) , we recover the case studied by Refs. [16, 27, 28]. Particles
with m < (3/2)H produce a squeezed-limit bispectrum with a scaling that lies in between
the single-field inflation case (↵ = 2) and the multiple light fields case (↵ = 0). Particles
with m > (3/2)H give rise to an oscillatory behavior in the squeezed-limit bispectrum with
the frequency determined by its mass.

Recently, Ref. [18] extended the result of Ref. [17], within the framework of e↵ective field
theory of inflation, to account for interactions that strongly break conformal symmetry. By
constructing the leading interactions between the Goldstone boson of broken time translation
and the extra massive spinning fields they obtain the form of the bispectrum for a general
configuration and account for single-, double- and triple-exchange of the massive, higher-
spin particles. Strong-breaking of conformal symmetry has mainly two e↵ects. First, the
contribution from spin-odd particles to the bispectrum can be large. When the approximate
conformal invariance is valid as in Ref. [17], the contribution from the leading-order diagrams
due to the exchange of an odd-spin particle vanishes exactly. There are however non-zero
contributions from sub-leading diagrams. When the conformal symmetry is strongly broken,
the sub-leading contributions can be as large as the leading one, and hence spin-odd particles
can leave a sizable imprint on inflationary correlators (see Ref. [18]). Second, breaking
of special conformal symmetry induces non-trivial speed of propagation for the curvature
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OscillaMons	that	depend	on	the	mass	of	the		
new	parMcles	

Angular	dependence	which	depends	o	the	spin	
(already	shown	for	spin-1	see,	e.g.,	
Barnaby,	Namba,	Peloso		2012,	
N.	B.	,		Matarrese,	Peloso,	Ricciardone	2013	
Shiraishi,	Komatsu,	Peloso,	Barnaby	2013)	

Which specific non-gaussianities are a signature of new particles during inflation,
as opposed to signatures that arise due to inflaton self interactions.

Now, if we think about very massive particles, m � H, then we can integrate them
out and they produce new terms in the e↵ective lagrangian for the light fields. Since we do
not know the original lagrangian, it is clear that we are not going to discover them in this
way. For masses of order H, m ⇠ H, the situation is di↵erent, because we can produce
the particles giving rise to non-local e↵ects which cannot be mimicked by changing the
interaction lagrangian of the inflaton. The fact that this is an interesting question was
addressed in [4, 5, 6, 7, 8, 9].

k

k long

short

k

k long
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ζ ζ ζ

σ

φ
0

.

(b)   (c)(a)

short long

θ

Figure 1: (a) The three momenta of the three point function form a closed triangle. In
the squeezed limit, one of the sides, k

long

, is much smaller than the other two, k
short

. (b)
In this limit we can also define the angle � between the short and long mode momentum
vectors. (c) In position space we have two insertions at a short distance from each other,
associated to k

short

and one at a longer distance, k
long

. We are interested in considering
the e↵ects of massive fields, �, that can decay into pairs of inflatons. In an inflationary
background we can replace an inflaton fluctuation by the classical �̇

0

background, so that
we get a contribution to the three point function.

The large masses, this e↵ect is suppressed by e�⇡m/H , which is why it isn’t captured
by the e↵ective field theory which is an expansion in powers of (H/m).

The simplest non-gaussian observable is the three point function h⇣~k1⇣~k2⇣~k3i in Fourier
space. Translation invariance implies that the momenta form a closed triangle. The near
scale invariance of the fluctuations implies that this is a function of the shape of the
triangle. In particular we can form the ratio between the smallest side and the largest side
k
long

/k
short

. See figure 1(a). As a function of this ratio the three point function can display
interesting power law behavior for small values of this ratio. This is called the “squeezed”
limit. We find
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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g⇤ = 0.29 ± 0.031 [4]. The “privileged” direction V̂ lies
very close to the ecliptic poles. This strongly suggests a
systematical origin of the e↵ect, and it has been shown in
[3, 7] that the instrument beam asymmetry can account
for it. Fortunately, the Planck satellite will soon provide
an independent test of this with an expected sensitivity to
a quadrupolar anisotropy in the power spectrum as small
as 0.5% at 1� [8, 9]. On di↵erent scales (and marginaliz-
ing over the preferred direction V̂ ) Large-Scale Structure
data analysis constrain �0.41 < g⇤ < 0.38 at 95% C.L.
[10] (the amplitude of the anisotropy may in general be
scale dependent [6]).

Broken rotational invariance could be the result of
anisotropic inflation [11]. It is however nontrivial to
realize this, since anisotropic spaces typically rapidly
isotropize in presence of a cosmological constant [12]. 1

Vector fields may in principle support the anisotropy. In
this case, the problem of preserving the anisotropy trans-
lates into contrasting the quick decrease of the vector en-
ergy that takes place for a minimal LA = �F 2/4. To
our knowledge, four distinct classes of models have been
constructed to achieve this; the first three of them are
characterized by (i) a vector potential V

�

A2

�

[14], (ii)
a fixed vector vev due to a lagrange multiplier [6], and
(iii) a vector coupling A2R to the scalar curvature R
[15, 16]. This last mechanism was originally employed
for magnetogenesis in [17]. These three proposals break
the U(1) symmetry of the minimal action, and lead to
an additional degree of freedom, the longitudinal vector
polarization, that in all of these models turns out to be
a ghost [18].

The fourth class is instead U(1) invariant and free of
ghost instabilities. It is characterized by a function of a
scalar inflaton ' multiplying the vector kinetic term,

L = �I2 (')

4
Fµ⌫F

µ⌫ (2)

A suitably chosen evolution for hIi during inflation re-
sults in a (nearly) constant vector energy density, and
therefore in a prolonged anisotropic expansion [19]. 2

Also this mechanism was originally suggested for mag-
netogenesis [25] (this application is however problematic
[26], as we discuss below). For anisotropic expansion, a
homogeneous vector field pointing along a given direc-
tion corresponds to an “electric” component, and (2) en-
joys an “electric” $ “magnetic” duality under I2 $ 1

I2

[27]. A constant “electric” component is also produced
through (2) in the mechanism of [28], in which the vector

1 See [13] for the extension of the study of [12] to slow roll inflation
2 See [20] for models of anisotropic inflation that employ the idea of
[19]. Also, an interesting model of vector curvaton [21] employing
a varying mass m and kinetic function I has been proposed in
[22] and studied in [23, 24]. In particular, ref. [24] demonstrated
that treating I and m as functions of a quantum inflaton field
results in a di↵erent phenomenology than just treating them as
classical external functions.

field is coupled to the waterfall field � of hybrid infla-
tion through a �2A2 interaction. Due to this, the gauge
field provides a contribution to the mass of �, concurring
to determine the moment at which inflation ends, and
- thanks to this - contributing to the curvature pertur-
bation. The waterfall field acts as the medium through
which the anisotropy in Aµ is communicated to the in-
flation; however, as we shall see, the communication al-
ready occurs through the very same interaction (2) that
supports the vector field. This unavoidable e↵ect has
not been accounted for neither in [28], nor in the related
works [29–33].

The linearized theory of cosmological perturbations in
the anisotropic inflationary model of [19] was worked
out in [34–37]. The classical equations of motion of the
model admit an attractor solution, [19, 38] character-
ized by a non-vanishing “electric” component ~E(0). A
10% level anisotropy (|g⇤| = O (0.1)) is found for an en-
ergy | ~E(0)|2/2 which is about eight orders of magnitude
smaller than the inflaton potential [35–37]. Therefore,
the vector energy needs to be highly subdominant not
too produce a too strong anisotropy. The work [39] com-
puted instead the cosmological perturbations in the case
in which (2) provides scale invariant “magnetic” compo-
nents of the vector field, as in the magnetogenesis appli-
cation [25, 40]. Cosmological applications in this context
have also been studied in [41]. Studies of the cosmo-
logical perturbations in [25, 40] start from the point of
view that the statistics of the generated “magnetic” field
is isotropic, and therefore obtain statistical isotropic re-
sults. In shorts, in the magnetogenesis context [25, 40]
one does not have the analogous of the attractor solution
~E(0) of the classical equations of motion of the anisotropic
inflationary model [19] (the corresponding ~B(0) vanishes
in [25, 40]) and therefore it is simply assumed that g⇤ = 0
in this case.

However, in [19, 28] (respectively, in [25, 40]), the
CMB perturbations are a↵ected by a classical “elec-
tric” field ~E

classical

(respectively, classical “magnetic”
field ~B

classical

) which is in general di↵erent from the value
given by the classical equations of motion. Indeed, such
mechanisms are designed to result in a nearly scale in-
variant spectrum for the “electric” (respectively, “mag-
netic”) perturbations. Let us denote by N

tot

the number
of e-folds of inflation. The modes that left the horizon in
the first N

tot

� N e-folds of inflation add up as a classi-
cal background from the point of view of the modes that
leave the horizon in the final N e-folds. This is well appre-
ciated for scalar fields during inflation [42]. The modes
that leave the horizon add up in a “random walk” man-
ner to form a classical background that is experienced
as homogeneous by modes of smaller size. A homoge-
neous classical vector is a field that points in a given
direction (that, in a given realization of the model, is
determined by the random addition of the super-horizon
modes) that breaks isotropy. In the magnetogenesis ap-
plication, the e↵ects of this energy h ~B2i/2 on the back-

**	Among	others:	Ratra	1992;	Himmetoglu	2010;	Dulaney	&	Gresham	2010l;	Gumrukcuoglu,	Himmetoglu,		
						Peloso;	2010;	
						Watanabe,	Kanno,	Soda,	2010;	Hervik,	Mota,	Thorsurd,	2011;	Barnaby,	Namba,	Peloso	2012;			
						Bonvin,	Caprini,	Durrer		2012;	N.	B.	,		Matarrese,	Peloso,	Ricciardone	2013;	
						Biage�,	Kehagias	et	al	2013;	;	Naruko,	Komatsu,	Yamaguchi	2014	
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Ø 	One	can	generalize	these	arguments	to	higher	spin	fields	
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much larger than the Hubble radius during inflation)
along a given direction p̂, then the two-point correlator
of the curvature perturbation is modified as [13, 37–40]

D
⇣~k

1

⇣~k
2

E
= (2⇡)3�(3)(~k1 + ~k2)P̄⇣(k1)

�
1 + c1 sin

2 ✓k
�
,

(4)
where P̄⇣ is the isotropic part of the power spectrum,

✓k is the angle between the directions p̂ and k̂1, and the
amplitude of the anisotropic modulation c1 scales like
[Ē2/(✏H2M2

pl)]N
2
k , with H the Hubble rate during infla-

tion, ✏ = �Ḣ/H2 one of the slow-roll parameters, Nk the
number of e-folds till the end of inflation calculated from
the instant when the wavelength 1/k leaves the Hubble
radius, Mpl the reduced Planck mass.

This example emphasizes the importance of the pres-
ence of spinning extra degrees of freedom during infla-
tion. If minimally coupled to the spacetime background,
massive higher spin fields modify the squeezed limit of
the non-Gaussian correlation functions of the curvature
perturbation when intermediate higher spin fields are ex-
changed in internal lines [19, 20, 23]. The correction to
the non-Gaussian correlators depend on their masses and
spins thus carrying informations about these fundamen-
tal parameters. The fact that fields with spin s may play
a dynamical role only as virtual states is due to the fact
that the de Sitter isometries impose the so-called Higuchi
bound [41] on their masses

m2 > s(s� 1)H2. (5)

This implies that on super-Hubble scales the fluctuations
of the higher spin fields decay at least as e�Ht [19] and
their imprints onto the non-Gaussian correlators are sup-
pressed by powers of the exchanged momentum in the
squeezed configuration.

The example of the vector field teaches us however the
lesson that spinning degrees of freedom can be long-lived
on super-Hubble scales if suitably coupled to the inflaton
field. This has been recently investigated in Ref. [33]
where, through a bottom-up approach starting from the
equation of motion of the higher spin fields and requiring
the correct number of propagating degrees of freedom,
it has been shown that there exist couplings with the
inflaton field which allow the higher spin perturbations to
remain constant on scales larger than the Hubble radius.

Inflation may o↵er therefore a unique chance to test
the presence of spinning high energy states. One pos-
sible way is the following. Similarly to the case of the
vector field for which an infrared electric (or magnetic)
component can be generated during inflation through the
accumulation of the various perturbation modes exiting
the Hubble radius before the 60 or so e-folds to the end
of inflation [13], infrared modes of the higher spins can
be generated. Indeed, even if a zero mode for the zero-
mode of the higher spin field is not present at the begin-
ning of inflation, it will be generated with time with an
amplitude of the order of the square root of its variance,
h�̄i

1

···isi ⇠ H2N , with N the total number of e-folds [33].

This classical background breaks the isotropy. Indeed, if
the higher spin field couples to the inflaton through a
suitable interaction of the form

S � gsH
2

Z
d4x e3Ht exp(I(�))�i

1

···is�
i
1

···is , (6)

with gs a spin dependent coupling, it leads to an
anisotropic correction to the comoving curvature power
spectrum of the form [33]

D
⇣~k

1

⇣~k
2

E
= (2⇡)3�(3)(~k1 + ~k2)P̄⇣(k1)

�
1 + cs sin

2s ✓k
�
,

(7)
where cs scales as [g2sh�̄i2/(✏H2M2

pl)]N
2
k and we have in-

dicated by h�̄i the overall amplitude of the classical back-
ground h�̄i

1

···isi and again with ✓k the angle between the
directions k̂1 and p̂, the latter identifying the special di-
rection identified by h�̄i

1

···isi. In general we have that

h�̄i
1

···isi = h�̄si⌃i
1

···is , (8)
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i
, (9)

and Sym denotes complete symmetrization. For instance,
for s = 2, s = 3 and s = 4, we have

h�̄iji = h�̄2i
✓
p̂ip̂j � 1

3
�ij

◆
, (10)

h�̄ijki = h�̄3i
⇢
p̂ip̂j p̂k � 1

5
(p̂i�jk + 2 perm)

�
, (11)

h�̄ijkli = h�̄4i
⇢
p̂ip̂j p̂kp̂l � 1

7
(p̂ip̂j�kl + 5 perm)

+
1

35
(�ij�kl + 2 perm)

�
, (12)

and so on. The goal of the paper is to investigate the ca-
pability of current and future cosmological observations
to detect or put bounds on the anisotropic signatures
induced in the power spectrum of the curvature pertur-
bation.
For the following phenomenological analyses, we de-

compose the characteristic angular dependence in Eq. (7)
into the spherical harmonic basis according to Eq. (2). As

the amplitude parameter cs is constant in ~k1,2, we express
sin2s ✓k in terms of the Legendre polynomials LL(cos ✓k)
as

sin2s ✓k =
X

L�0

ALLL(cos ✓k)

= A0 +
X

L�1

ALLL(cos ✓k). (13)

In the last line the L = 0 mode and the others are writ-
ten separately. The Legendre coe�cients are computed
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much larger than the Hubble radius during inflation)
along a given direction p̂, then the two-point correlator
of the curvature perturbation is modified as [13, 37–40]
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where P̄⇣ is the isotropic part of the power spectrum,

✓k is the angle between the directions p̂ and k̂1, and the
amplitude of the anisotropic modulation c1 scales like
[Ē2/(✏H2M2
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k , with H the Hubble rate during infla-

tion, ✏ = �Ḣ/H2 one of the slow-roll parameters, Nk the
number of e-folds till the end of inflation calculated from
the instant when the wavelength 1/k leaves the Hubble
radius, Mpl the reduced Planck mass.

This example emphasizes the importance of the pres-
ence of spinning extra degrees of freedom during infla-
tion. If minimally coupled to the spacetime background,
massive higher spin fields modify the squeezed limit of
the non-Gaussian correlation functions of the curvature
perturbation when intermediate higher spin fields are ex-
changed in internal lines [19, 20, 23]. The correction to
the non-Gaussian correlators depend on their masses and
spins thus carrying informations about these fundamen-
tal parameters. The fact that fields with spin s may play
a dynamical role only as virtual states is due to the fact
that the de Sitter isometries impose the so-called Higuchi
bound [41] on their masses

m2 > s(s� 1)H2. (5)

This implies that on super-Hubble scales the fluctuations
of the higher spin fields decay at least as e�Ht [19] and
their imprints onto the non-Gaussian correlators are sup-
pressed by powers of the exchanged momentum in the
squeezed configuration.

The example of the vector field teaches us however the
lesson that spinning degrees of freedom can be long-lived
on super-Hubble scales if suitably coupled to the inflaton
field. This has been recently investigated in Ref. [33]
where, through a bottom-up approach starting from the
equation of motion of the higher spin fields and requiring
the correct number of propagating degrees of freedom,
it has been shown that there exist couplings with the
inflaton field which allow the higher spin perturbations to
remain constant on scales larger than the Hubble radius.

Inflation may o↵er therefore a unique chance to test
the presence of spinning high energy states. One pos-
sible way is the following. Similarly to the case of the
vector field for which an infrared electric (or magnetic)
component can be generated during inflation through the
accumulation of the various perturbation modes exiting
the Hubble radius before the 60 or so e-folds to the end
of inflation [13], infrared modes of the higher spins can
be generated. Indeed, even if a zero mode for the zero-
mode of the higher spin field is not present at the begin-
ning of inflation, it will be generated with time with an
amplitude of the order of the square root of its variance,
h�̄i

1

···isi ⇠ H2N , with N the total number of e-folds [33].

This classical background breaks the isotropy. Indeed, if
the higher spin field couples to the inflaton through a
suitable interaction of the form

S � gsH
2

Z
d4x e3Ht exp(I(�))�i

1

···is�
i
1

···is , (6)

with gs a spin dependent coupling, it leads to an
anisotropic correction to the comoving curvature power
spectrum of the form [33]
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E
= (2⇡)3�(3)(~k1 + ~k2)P̄⇣(k1)

�
1 + cs sin

2s ✓k
�
,

(7)
where cs scales as [g2sh�̄i2/(✏H2M2

pl)]N
2
k and we have in-

dicated by h�̄i the overall amplitude of the classical back-
ground h�̄i

1

···isi and again with ✓k the angle between the
directions k̂1 and p̂, the latter identifying the special di-
rection identified by h�̄i

1

···isi. In general we have that

h�̄i
1

···isi = h�̄si⌃i
1

···is , (8)

where

⌃i
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···is = Sym
h
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p̂i
2

· · · p̂is + �i
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i
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···is
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�Traces
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⌃i

1

···is

i
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and Sym denotes complete symmetrization. For instance,
for s = 2, s = 3 and s = 4, we have

h�̄iji = h�̄2i
✓
p̂ip̂j � 1

3
�ij

◆
, (10)

h�̄ijki = h�̄3i
⇢
p̂ip̂j p̂k � 1

5
(p̂i�jk + 2 perm)

�
, (11)

h�̄ijkli = h�̄4i
⇢
p̂ip̂j p̂kp̂l � 1

7
(p̂ip̂j�kl + 5 perm)

+
1

35
(�ij�kl + 2 perm)

�
, (12)

and so on. The goal of the paper is to investigate the ca-
pability of current and future cosmological observations
to detect or put bounds on the anisotropic signatures
induced in the power spectrum of the curvature pertur-
bation.
For the following phenomenological analyses, we de-

compose the characteristic angular dependence in Eq. (7)
into the spherical harmonic basis according to Eq. (2). As

the amplitude parameter cs is constant in ~k1,2, we express
sin2s ✓k in terms of the Legendre polynomials LL(cos ✓k)
as

sin2s ✓k =
X

L�0

ALLL(cos ✓k)

= A0 +
X

L�1

ALLL(cos ✓k). (13)

In the last line the L = 0 mode and the others are writ-
ten separately. The Legendre coe�cients are computed
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More recently the authors of Refs. [19, 20] showed how
primordial non-Gaussianity in the squeezed limit depends
in a specific way on the masses and spin of higher spin
particles present during inflation. They focused on the
case of massive (m � H) higher spin particles, in which
case, despite the fact that their fluctuations decay outside
the Hubble horizon, they leave specific signatures in the
correlators of the curvature perturbation ⇣, namely an os-
cillatory behavior that depend on the masses of the extra
particles and the angular structure of the primordial cor-
relators that depend on their spin. There has been also
an intense investigation of the e↵ects on CMB and large-
scale structure (LSS) of massive spin-zero particles and
forecasts for their detection [21–27], along with forecasts
on the angular dependence of Eq. (1) using various ob-
servables [14, 28–31], and corresponding constraints from
the Planck data [1, 2]. Only recently similar forecasts
have started to be investigated for the bispectrum gen-
erated by higher spin massive particles [32], to under-
stand the detectability level of the signatures predicted
in Refs. [19, 20].

On the other hand the results of Ref. [13] in the
case of vector spin-1 fields, showed that one may expect
an anisotropic background field and a large (statistical)
anisotropy of the perturbations to be a general outcome
of models that sustain higher than 0 spin fields during
inflation. One of the crucial ingredient is a coupling of
the vector field with the inflaton field to allow the spin-
1 fluctuations not to decay on super-horizon scales. In
this way a classical background vector field unavoidably
gets generated at large scales during inflation from the
infrared fluctuations produced during inflation. The re-
sulting cosmological perturbations ⇣ that arise from such
coupling by taking into account the classical vector field
is characterized then by a breaking of statistical isotropy
in the power-spectrum and in the higher-order correla-
tors.

Based on this result, another way through which higher
spin degrees of freedom can leave a distinct signatures in
the inflationary fluctuations ⇣ has been studied in details
in Ref. [33]. In particular the authors computed a general
form of the anisotropic power spectra that arise from a
generic spin-s state. Its form can be written as in the
expansion (see later for more details)

D
⇣~k
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⇣~k
2

E
= (2⇡)3�(3)(~k1 + ~k2)P⇣(k1)

⇥
2

41 +
X

L�1

X

M

gLMYLM (k̂1)

3

5 . (2)

Here, the reality condition and parity invariance of the
curvature power spectrum imposes gLM = (�1)Mg⇤L,�M
and gL=odd,M = 0. This is the case we are going to focus
on in this paper. One interesting feature is that, for a
given state of spin s the multipole coe�cients gLM run up
to g(2s)M . A detection of these coe�cients in the primor-
dial power spectrum could reveal the presence of higher
spin degrees of freedom during inflation. In particular we

have studied what is the e↵ect of these coe�cients in the
CMB and in the LSS galaxy power spectra. Our main
results are a forecast about the sensitivity of present and
future CMB missions and LSS surveys to the multipole
coe�cients gLM which set the level and the type of sta-
tistical anisotropy in the primordial power spectrum.
Following Ref. [33] and to the best of our knowledge, a

prediction for nonvanishing coe�cients gL�4,M is derived
for the first time in this paper where we also provide a
forecast on such coe�cients. As a concrete example we
have focused in particular on the case of a spin s = 2 field,
but our result can be easily generalized to higher spin
s > 2. Indeed another interesting result that we find is
the almost independence of our forecasts on L and hence
we expect that our results can be applied also to the case
of spinning state with spin s > 2. In fact the case s > 2
can be particularly relevant for models of inflation where
higher spin fields are implemented consistently. Indeed,
since the seminal work of Vasiliev [34], it is well-known
that massless higher spin field equations can be written
in de Sitter spacetime, at the expense of introducing an
infinite amount of spin states. As detailed below, we
find that, e.g., by exploiting Planck data and present
LSS surveys a sensitivity to g4M as low as 10�2 can be
achieved, and that an order of magnitude improvement
can be achieved for CMB and LSS ideal (cosmic variance
limited) surveys.
The paper is organized as follows. In Sec. II we briefly

recall and summarize the main features of the models
studied in Ref. [33], starting from the expression for the
statistical anisotropic power spectra, Eq. (7), which is
then expanded as in Eq. (2). In Sec. III we derive the ex-
pressions for CMB angular power spectra induced by the
anisotropic power spectra (7) and we derive our forecasts
for CMB experiments. In Sec. IV we instead provide our
results for the galaxy power spectra and the sensitivity of
present and future LSS surveys to the imprint of higher
spin states. Finally we comment on our results and we
conclude in Sec. V.

II. ANISOTROPIC PRIMORDIAL CURVATURE
POWER SPECTRA FROM HIGHER SPIN

FIELDS

As we have mentioned in the introduction, it is possi-
ble to generate anisotropic power spectra and bispectra
in the primordial perturbation of the comoving curvature
perturbation ⇣ by coupling vector spin-1 perturbations to
the inflaton field � in such a way that they remain con-
stant on super-Hubble scale. This is achieved by modify-
ing the kinetic term of the vector field through a kinetic
term of the form [13, 35, 36]

L = �1

4
I(�)Fµ⌫Fµ⌫ . (3)

If, for instance, a classical background for the electric
field Ēi components is generated (that is for wavelengths
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stand the detectability level of the signatures predicted
in Refs. [19, 20].

On the other hand the results of Ref. [13] in the
case of vector spin-1 fields, showed that one may expect
an anisotropic background field and a large (statistical)
anisotropy of the perturbations to be a general outcome
of models that sustain higher than 0 spin fields during
inflation. One of the crucial ingredient is a coupling of
the vector field with the inflaton field to allow the spin-
1 fluctuations not to decay on super-horizon scales. In
this way a classical background vector field unavoidably
gets generated at large scales during inflation from the
infrared fluctuations produced during inflation. The re-
sulting cosmological perturbations ⇣ that arise from such
coupling by taking into account the classical vector field
is characterized then by a breaking of statistical isotropy
in the power-spectrum and in the higher-order correla-
tors.

Based on this result, another way through which higher
spin degrees of freedom can leave a distinct signatures in
the inflationary fluctuations ⇣ has been studied in details
in Ref. [33]. In particular the authors computed a general
form of the anisotropic power spectra that arise from a
generic spin-s state. Its form can be written as in the
expansion (see later for more details)
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Here, the reality condition and parity invariance of the
curvature power spectrum imposes gLM = (�1)Mg⇤L,�M
and gL=odd,M = 0. This is the case we are going to focus
on in this paper. One interesting feature is that, for a
given state of spin s the multipole coe�cients gLM run up
to g(2s)M . A detection of these coe�cients in the primor-
dial power spectrum could reveal the presence of higher
spin degrees of freedom during inflation. In particular we

have studied what is the e↵ect of these coe�cients in the
CMB and in the LSS galaxy power spectra. Our main
results are a forecast about the sensitivity of present and
future CMB missions and LSS surveys to the multipole
coe�cients gLM which set the level and the type of sta-
tistical anisotropy in the primordial power spectrum.
Following Ref. [33] and to the best of our knowledge, a

prediction for nonvanishing coe�cients gL�4,M is derived
for the first time in this paper where we also provide a
forecast on such coe�cients. As a concrete example we
have focused in particular on the case of a spin s = 2 field,
but our result can be easily generalized to higher spin
s > 2. Indeed another interesting result that we find is
the almost independence of our forecasts on L and hence
we expect that our results can be applied also to the case
of spinning state with spin s > 2. In fact the case s > 2
can be particularly relevant for models of inflation where
higher spin fields are implemented consistently. Indeed,
since the seminal work of Vasiliev [34], it is well-known
that massless higher spin field equations can be written
in de Sitter spacetime, at the expense of introducing an
infinite amount of spin states. As detailed below, we
find that, e.g., by exploiting Planck data and present
LSS surveys a sensitivity to g4M as low as 10�2 can be
achieved, and that an order of magnitude improvement
can be achieved for CMB and LSS ideal (cosmic variance
limited) surveys.
The paper is organized as follows. In Sec. II we briefly

recall and summarize the main features of the models
studied in Ref. [33], starting from the expression for the
statistical anisotropic power spectra, Eq. (7), which is
then expanded as in Eq. (2). In Sec. III we derive the ex-
pressions for CMB angular power spectra induced by the
anisotropic power spectra (7) and we derive our forecasts
for CMB experiments. In Sec. IV we instead provide our
results for the galaxy power spectra and the sensitivity of
present and future LSS surveys to the imprint of higher
spin states. Finally we comment on our results and we
conclude in Sec. V.

II. ANISOTROPIC PRIMORDIAL CURVATURE
POWER SPECTRA FROM HIGHER SPIN

FIELDS

As we have mentioned in the introduction, it is possi-
ble to generate anisotropic power spectra and bispectra
in the primordial perturbation of the comoving curvature
perturbation ⇣ by coupling vector spin-1 perturbations to
the inflaton field � in such a way that they remain con-
stant on super-Hubble scale. This is achieved by modify-
ing the kinetic term of the vector field through a kinetic
term of the form [13, 35, 36]

L = �1

4
I(�)Fµ⌫Fµ⌫ . (3)

If, for instance, a classical background for the electric
field Ēi components is generated (that is for wavelengths

Ø 	If	parMcle	of	spin	s	then	g_{LM}		runs	up	to	g_{2s,m}	

Spin	dependence	

Vector	fields:	

Generic	spin	s:	

N.B.,	A.	Keaghias,	M.Liguori,	A.	Rio`o,	M.	Shiraishi,	V.	Tansella,	arXiv:1711.08286	
N.	B.	,	Matarrese,	Peloso,	Ricciardone	Phys.Rev.	D87,	023504	(2013)	
	
	
	



DetecMng	higher	spin	fields	through	staMsMcal	anisotropy		
	 5

∆
g 2
M

lmax

T
E

T+E
10-3

10-2

10-1

100

 10  100  1000

∆
g 4
M

lmax

T
E

T+E
10-3

10-2

10-1

100

 10  100  1000

FIG. 1. Expected 1� errors on g2M (left panel) and g4M (right one) computed from temperature alone (purple line), E-mode
polarization alone (yellow one) and temperature and E-mode polarization jointly (blue one), by assuming a CMB noiseless
CVL-level survey with fsky = 1 (solid lines) and a Planck-like one with fsky = 0.7 (dashed ones). We here take `min = 2.
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We notice that the nonzero gLM ’s generate not only di-
agonal (`1 = `2) but also o↵-diagonal (`1 6= `2) modes
in CX

1

X
2

`
1

m
1

,`
2

m
2

(28). To be specific, nonvanishing modes
actually rely on the selection rules of h`

1

`
2

L; namely,
|`2 � L|  `1  |`2 + L| and `1 + `2 + L = even. If
g4M is nonzero, the modes obeying |`1� `2| = 2, 4 do not
vanish.1 In the same manner, g(2s)M induces the signal in
|`1� `2| = 2, 4, · · · , 2(s�1), 2s. This is indeed due to the
fact that statistical isotropy is broken in these models.
We are now interested in how accurately gLM could

be extracted from (future) CMB data. For this goal, we
therefore perform a Fisher matrix analysis. Under the di-
agonal covariance matrix approximation, the Fisher ma-
trix computed from the temperature and E-mode polar-
ization anisotropies is given as [57–59]
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where fsky is the fraction of the sky coverage and C�1 is
the inverse of the 2⇥ 2 power spectrum matrix:
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, (31)

1 This o↵-diagonal components may also be induced by galactic
foregrounds [56].

with NXX
` denoting the noise spectra of the temperature

and E-mode polarization. Plugging Eq. (28) into this
leads to
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The 1� errors can be computed by �gT+E
LM =

1/
q

FT+E
LM,LM .

The Fisher matrix coming from the temperature or E-
mode auto-correlation is given by a subset of this matrix,
reading
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where the 1� errors read �gXLM = 1/
q

FX
LM,LM . In

a noiseless cosmic-variance-limited (CVL) measurement

(i.e. CXX
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fied, so the Fisher matrix can be simplified to

F
X(CVL)
LM,LM ' fsky

2(2L+ 1)

`
maxX

`
1

,`
2

=`
min

h2
`
1

`
2

L ' fsky
8⇡

`2max,

(34)
where we have dropped the subdominant contributions
from `min by assuming `max � `min. This yields

�g
X(CVL)
LM '

s
8⇡

fsky
`�1
max . (35)

Notice that the latter result indicate a very weak depen-
dence of �gLM on L.

Ø  g_{LM}	can	be	probed	down	to	O(10-3)	through	CMB;	similar	conclusions	for	LSS	
					surveys			
	
Ø  	independence	of	forecasted	constraints	from	L.		

N.B.,	A.	Keaghias,	M.Liguori,	A.	Rio`o,	M.	Shiraishi,	V.	Tansella,	arXiv:1711.08286	

	
What	can	be	furhter	new	
observa#onal	avenues?	



New	observa%onal	strategies	

CMB	is	a	priviliged	laboratory	for	cosmic	inflaMon.	However	different		
observables	can	be	compeMMve,	and	in	the	future,	have	a	beUer		
sensiMvity	to,	e.g.,	primordial	non-Gaussianity	
	
	
Ø 	Large-Scale-Structure	Surveys		

Ø 	CMB	spectral	distorMons	

Ø 	Future	high-redshi�	large	radio	surveys	
	
	
Ø 	High-redshi�	21cm	fluctuaMons	
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Ø 	Future	high-redshi�	large	radio	surveys	
	
	
Ø 	High-redshi�	21cm	fluctuaMons	
	
					
						



CMB	spectral	distor%ons	
Ø 	We	know	there	must	be	Mny	deviaMons	from	a	perfect	black	body	of	the	CMB		
					spectrum	in	the	frequency	domain	
	
Ø 		Not	detected	yet	(apart	y-distorMons	from	Sunyaev-Zel’dovich	effect)	

Ø 		

	
							FROM	COBE/FIRAS		
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ΔIν
Iν

< 10−4 µ < 9×10−5 y < 1.5×10−5 (95% C.L)Current status: distortions 

M. Liguori – Primary CMB – New challenges in Cosmic Microwave Backgroud studies – ASI 30 March 2016   

No distortion detected  
(except y-distortions from  
SZ-effect, not primordial). 
 
Best limits essentially date back  
to COBE/FIRAS: 
 
ΔIν/Iν < 10-4 

µ < 9 x 10-5 

y < 1.5 x 10-5   (95% C.L.) 

Spectral distortions yet undetected. They are expected in  
standard Cosmology, from a variety of mechanisms. 
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Ø 		Energy	injecMon	from	dissipa#on	of	acous#c	waves	due	to	Silk	damping	
						The	relevant	redshit	range	is	5×104	=zf	<	z	<	zi=	2×106		
	
					à	relevant		scales	are	kD(zi)	=	12000	Mpc-1	and		kD(zf)	=	46	Mpc-1		
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CMB	spectral	distor%ons	
Ø  	Various	planned	and	proposed	satellite	missions	can	achieve	the	required	

sensiMvity	to	measure	the	(monopole)	primordial	μ	and	y	spectral	distorMons:	
these	are	predicted	to	be	<μ>≈1.9×10-9				and	<y>≈4.2×10-8		

SensiMve	to	a	minimum	<μ>min≈10-9		 SensiMve	to	a	minimum	<μ>min≈10-8		

Ø  Besides	being	a	probe	of	the	standard	ΛCDM	model	(including	inflaMon)	
					it	can	unveil	new	physics,	e.g.	about	
					-	decaying	and	annihilaMng		dark	maUer	parMcles	
					-	black	holes	and	cosmic	strings	
					and	it	can	allow	to	measure	a	whole	series	of	signals	like	y-distorMons	from		
					re-ionized	gas	
					

Primordial 
Inflation 
Explorer 
(PIXIE) 

Al Kogut 
Goddard Space 
Flight Center 

A	powerful	source	of	informa%on	

Ø 	CMB	spectral	distorMons	expected	in	the	standard	ΛCDM	modeL:	
					AN	ALMOST	UNEXPLOITED	OBSERVATIONAL	WINDOW		
					(see,	e.g.,	Kathri	and	Sunyaev	2013,	arXiv:	1303.7212;		
							Chluba	2016,	arXiv:	1603.02496)	
	
Ø 	In	par%cular	can	probe	very	small	scales	10−4	-	0.02	Mpc!	
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0). Finally for z . zµ,f even Compton scattering is not
e�cient enough to establish kinetic equilibrium between
matter and radiation. The distortion created after this
moment is known as y-type and is relevant e.g. for the
Sunyaev-Zel’dovich e↵ect [7]. Of course this is a simpli-
fied picture since there is no sharp transition between one
regime and the next. For the purpose of analytical esti-
mates we will take the period responsible for the creation
of µ-distortion to be zµ,f . z . zµ,i with the numerical
values given above. As we will see, due to a logarithmic
dependence on the size of this interval, changing these
values by factors of order unity will not alter the main
results. It should be clear though that for precise predic-
tions one needs to study the system numerically.
We will be interested in the energy injection coming

from the dissipation of acoustic waves of the adiabatic
mode (Silk damping) as these re-enter the horizon and
start oscillating. Other sources of distortion are present
(e.g. adiabatic cooling [2]) and the physics of the system
is very rich. Our working assumption here is that either
all other sources lead to a smaller and therefore negligi-
ble distortion, as it is the case if the primordial power
spectrum is not too red tilted, or that all other relevant
e↵ects are understood with a high enough precision to
be subtracted o↵ leaving the µ-distortion caused by Silk
damping as the only signal.

µ-DISTORTION

In this section, following [1–3], we derive a formula that
relates the late time µ-distortion to the primordial power
spectrum. Using the Bose-Einstein distribution plus the
fact that the total number of photons is constant, for
an amount of energy (density) released into the plasma
�E one finds that µ ' 1.4�E/E. Hence, let us estimate
the energy injection due to damping of acoustic waves.
The energy density of a density wave is given by[19] Q =
⇢h��(x)2ipc2s/(1 + c2s), with cs the sound speed, ⇢ the
density and � the dimensionless amplitude of oscillations
averaged over a period (indicated by hip to di↵erentiate
it from the quantum/ensemble average hi). Since at this
time the universe is dominated by radiation we take ⇢ =
⇢� and c2s ' 1/3. Then one has

�E

E
' �

Z z
µ,f

z
µ,i

d

dz

Q

⇢�
' 1

4
h��(x)2ip|zµ,i

z
µ,f

(1)

We can use the transfer function (see e.g. [9])

��(k) ' 3 cos (kr) e�k2/k2

D , (2)

where, using that R ⌘ 3⇢B/4⇢� ⌧ 1, the di↵usion damp-
ing scale is

kD ⌘
Z 1

z

dz
1 + z

6Hne�T (1 +R)

✓
R2

1 +R
+

16

15

◆��1/2

' (1 + z)3/2 4.1⇥ 10�6 Mpc�1 , (3)
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Figure 1: The figure shows the power spectrum with Silk
damping as function of log k. The dotted, dashed and dot-

dashed lines are �2
R

e

�2k2

/k

2

D at z

µ,i

= 2 ⇥ 106, z
µ,f

= 5 ⇥
104 and z

L

= 1100 respectively. The red area on the right
indicated by µ is the di↵erence of the power spectrum between
z

µ,i

and z

µ,f

. Once integrated over log k this gives the µ-
distortion. For comparison on the left we have highlighted
the scales probed by LSS and CMB anisotropies.

and

kr =

Z t

0

k dt

a
p
3(1 +R)

' 2kt

a
p
3
. (4)

We then have

h��(x)2ip = 1.45

Z
d3k

1

d3k
2

(2⇡)6
R(k

1

)R(k
2

) (5)

⇥h��(k1)��(k2)ipei(~k1

+

~k
2

)·~x ,

where R describes curvature perturbations. Finally to
account for the fact that µ arises from a thermalization
process, we use a top-hat filter in real space W (x), which
smears the dissipated energy over a volume of radius
k�1

s & k�1

D,f .
Summarizing, the deformation parameter µ is related

to primordial perturbations by

µ(x) ' 4.6

Z
d3k

1

d3k
2

(2⇡)6
R(~k

1

)R(~k
2

)ei
~k
+

·~xW

✓
k
+

ks

◆
(6)

⇥hcos (k
1

r) cos (k
2

r)ip
h
e�(k2

1

+k2

2

)/k2

D

iz
µ,i

z
µ,f

where W (k) ⌘ 3k�3 [sin(k)� k cos(k)] is the Fourier

transform of the top-hat filter W (x) and ~k± ⌘ ~k
1

±
~k
2

. The quantum/ensemble average of µ(x) gives the
log-integral of the primordial power spectrum from
kD(zµ,i) ' 1.1⇥ 104 Mpc�1 to kD(zµ,f ) ' 46Mpc�1

hµ(x)i ' 2.3

Z
d log k�2

R(k)
h
e�2k2/k2

D

ii
f
, (7)

(From	Pajer	&	Zaldarriaga	2012)	



	
Local	primordial	non-Gaussianity	correlates	short-	with	long-mode	perturbaMons,		
so	it	induces	a	correlaMon	between	the	dissipaMon	process	on	small	scales	
	
	
	
and	the	long-mode	fluctuaMons	in	the	CMB		
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(15) µ � �2
� � ⇥k1⇥k2

�T/T � ⇥k

(16) CµT
⇥ � ⇥⇥k1⇥k2⇥k3⇤

BRIEF ARTICLE 3

(15) µ � �2
� � ⇥k1⇥k2

�T/T � ⇥k

(16) CµT
⇥ � ⇥⇥k1⇥k2⇥k3⇤
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� � ⇥k1⇥k2

�T/T � ⇥k

(16) CµT
⇥ � ⇥⇥k1⇥k2⇥k3⇤

Ø 	Pajer	&	Zaldarriaga	(2012)	and		Ganc	&	Komatsu	(2012)	pointed	out	that	the		
				cross-correlaMon	between	CMB	μ-distorMon	and	CMB	temperature		fluctuaMons		
				can	be	a	diagnosMc	very	sensiMve	to	local-type	bispectra	peaking	in	the		squeezed		
				configuraMon:		a	cosmic	variance		limited	experiment	can	achieve	fNL~0.001		
	

CMB	spectral	distor%ons	and	NG		

A	simple	argument	in	real	space	

If	there	is	a	local	model	of	non-Gaussianity,	then	the	small	scale	power		
spectrum	of	curvature	perturbaMon	Δ2

ς(k,x)	will	be	modulated	from	
patch	to	patch,	by	the	long-wavelength	curvature	fluctuaMon			
and	correlated	to	it	



Looking at the inflationary trispectra  
(4-point correlation functions) 

Contact	interac%on:	e.g.	λ	(δφ)4	(intrinsic		
contribuMons	from	the	4-th	order	acMon)			

Scalar	exchange:		
comes	from	terms	in	the	3-oder	acMon,	
e.g.		(δφ)3			

gNL	τNL								f2NL	
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Looking	at	the	infla%onary	trispectra	
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1 Introduction

Measurements of primordial non-Gaussianity (NG) are a powerful way to understand the
physical processes which gave origin to primordial cosmological perturbations. They provide
information about such processes which is complementary to what can be extracted from
power spectrum alone. If we focus on inflationary scenarios, all relevant NG information is
generally contained in the bispectrum (three-point function in Fourier space) and trispectrum
(four-point function in Fourier space) of the primordial fluctuation field. Both the functional
form (“shape”) and strength of these signals are model dependent, therefore constraints on
different inflationary scenarios can be obtained by fitting their predicted bispectrum and
trispectrum shapes to the data, and extracting the corresponding amplitude parameters fNL
(for the bispectrum), gNL and ⌧NL (for the trispectrum).

The first inflation-motivated primordial NG model to be considered in the literature
[1, 2] was the so called “local model”, which is characterized by the following ansatz in real
space:

⇣(x) = ⇣

G

(x) +

3

5

fNL
�
⇣

G

(x)� ⌦
⇣

G

(x)

↵�
2

+

9

25

gNL
�
⇣

G

(x)

�
3

, (1.1)

where ⇣ is the primordial curvature perturbation field, ⇣G is its Gaussian (G) part and the
NG components are local functionals of the G part. One can also consider models in which ⇣

G

is modulated by a second, uncorrelated, Gaussian field �, giving rise to a “⌧NL trispectrum”
[3]:

⇣(x) = ⇣

G

(x) +

p
⌧NL�(x)⇣

G

(x) . (1.2)

As we just mentioned, different primordial models can generate a large variety of different
bispectrum and trispectrum shapes, and to each of them correspond different NG amplitudes.
The focus of this paper will however be specifically on local-type bispectra and trispectra,
which are produced by a primordial curvature perturbation field expressed in the form above. 1

1
Therefore, since there is no room for confusion, we will simply refer to our NG parameters as fNL and

gNL, omitting the label “local”.
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L (x)

�

(17) C3
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��C
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�⇢C
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↵�
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eCC2
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��
�⇢C

�⇢
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(17)

�h⇣2i
h⇣2i ' �µ

µ
' 12

5

fNL ⇣
G
L (x)

(17) ⇣(x) = ⇣G(x) +
3

5

fNL
�
⇣G(x)

�2
+

9

25

gNL
�
⇣G(x)

�3

Typically	arising	in	mulM-field	models	of	inflaMon	

Looking	at	the	infla%onary	trispectra	

e.g.	k_2	->		0	
corresponds	to	g_NL:		
a	modulaMon	of	the		
bispectrum		

e.g.	k_14	->		0	
corresponds	to	τ_NL:		
a	modulaMon	of		power	spectra		



Observa#onal	limits	set	by	Planck		

Planck Collaboration: Planck 2015 Results. Constraints on primordial NG

1. Starting from the data d, we compute (with uniform
pixel weighting) a best-fit monopole and dipole outside
the Galactic mask. We use the temperature “common
mask”, the union of the confidence masks for the SMICA,
SEVEM, NILC, and Commander component separation meth-
ods (Planck Collaboration IX 2016).

2. The mask defines a few “islands”, i.e., isolated groups of
pixels that are unmasked, but contained in a larger masked
region. We slightly enlarge the mask so that it removes the
islands.

3. We classify the components of the masked part of the sky
into “small” masked regions with  1000 pixels (at HEALPix
resolution Nside = 2048), and “large” regions with > 1000
pixels. Small regions usually correspond to point sources,
and large regions typically correspond to areas of di↵use
galactic emission. In small regions, we inpaint the CMB by
assigning the unique map that agrees with the data on bound-
ary pixels, and whose value in each interior pixel is the aver-
age of the neighboring pixels.

4. In large regions, we do not inpaint the CMB, but rather
apodize the boundary of the large region using cosine
apodization with 12’ radius.

5. We apply a spherical harmonic transform to the inpainted,
apodized CMB map to obtain a harmonic-space map a`m
with `max = 1600. We then take the final filtered map ã`m
to be

ã`m =
a`m

b`C` + b�1
` N`

(69)

where b` is the beam, C` is the fiducial CMB power spec-
trum, and N` is the sky-averaged noise power spectrum
(without beam deconvolution). To motivate this choice of `-
weighting, we note that for an ideal all-sky experiment with
isotropic noise, we have a`m = b`s`m+n`m where s`m, n`m are
signal and noise realizations. In this case, Eq. (69) weights
the signal as s`m/(C` + b�2

` N`), which is optimal.

In our pipeline, we apply this filter to the component-
separated SMICA maps (Planck Collaboration IX 2016), obtain-
ing a harmonic-space map ã`m. We apply the same filter to 1000
Monte Carlo simulations to obtain an ensemble of harmonic-
space maps. Our pipeline has the property that it always esti-
mates the trispectrum of the data in excess of the trispectrum
in the simulations. Since the simulations include lensing, this
means that lensing bias will automatically be subtracted from
our gNL estimates.

Now that the filter, data realization, and Monte Carlo simula-
tions have been fully specified, the details of the pipeline are de-
scribed in section IX.B of Smith et al. (2015). For each trispec-
trum, the pipeline outputs an estimate of gNL and an estimate of
the statistical error. Our basic results are:

glocal
NL = (�9.0 ± 7.7) ⇥ 104;

g�̇
4

NL = (�0.2 ± 1.7) ⇥ 106; (70)

g(@�)4

NL = (�0.1 ± 3.8) ⇥ 105.

No deviation from Gaussian statistics is seen. These results
significantly improve the previous best constraints on the
trispectrum from WMAP (Vielva & Sanz 2010; Smidt et al.
2010; Fergusson et al. 2010b; Hikage & Matsubara 2012;
Sekiguchi & Sugiyama 2013; Regan et al. 2013; Smith et al.
2015) and large-scale structure (Desjacques & Seljak 2010;
Giannantonio et al. 2014; Leistedt et al. 2014).

A constraint on glocal
NL from Planck 2013 data was recently

reported by Feng et al. (2015), who find glocal
NL = (�13±18)⇥104.

Our central value in Eq. (70) agrees well with this result, but the
statistical error is smaller by a factor of 2.3. This improvement
is partly due to the lower noise levels in Planck 2015 data, and
partly due to the use of a better estimator.

Each line in Eq. (70) is a “single-gNL” constraint; i.e., the
constraint on one gNL parameter with the other gNL-parameters
held fixed. For joint constraints, one needs to know the full co-
variance matrix. The correlation between glocal

NL and the other two
parameters is negligble, and the g�̇4

NL-g(@�)4

NL correlation is:

Corr(g�̇
4

NL, g
(@�)4

NL ) = 0.61. (71)

multi-field models of inflation will generally give a linear com-
bination of �̇4, �̇2(@i�)2, and (@i�)2(@ j�)2 trispectra. In this case
we proceed as follows. First, if the �̇2(@i�)2 coe�cient is non-
zero, we can use the near-degeneracy with a linear combination
of the other two operators to absorb it into the e↵ective values
of g�̇4

NL and g(@�)4

NL . A Fisher matrix analysis shows that the coe�-
cients of this linear combination are

(g�̇
4

NL)e↵ = 0.59 g�̇
2(@�)2

NL

(g(@�)4

NL )e↵ = 0.091 g�̇
2(@�)2

NL (72)

It is convenient to define the two-component parameter vector:

gi =

0

B

B

B

B

@

g�̇
4

NL
g(@�)4

NL

1

C

C

C

C

A

. (73)

We also compute a two-by-two Fisher matrix Fi j, whose diago-
nal is given by Fii = 1/�2

i , where �i is the single-gNL statistical
error in Eq. (70), and whose o↵-diagonal is F12 = rF1/2

11 F1/2
22 ,

where r is the correlation in Eq. (71). This procedure gives:

Fi j =

 

3.3 9.2
9.2 68.7

!

⇥ 10�13. (74)

For a given parameter vector gi, we can define a trispectrum-�2

by
�2(g) = [Fiiĝi � (Fg)i] F�1

i j [F j jĝ j � (Fg) j] (75)

where ĝi = (�0.21 ⇥ 106,�0.10 ⇥ 105) is the vector of best-fit
single-gNL values from Eq. (70). This definition of �2 follows
from the observation that (Fiiĝi) is an estimator with expectation
value (Fg)i and covariance matrix Cov(Fiiĝi, F j jĝ j) = Fi j.

The inflationary implications of these trispectrum constraints
are discussed in Sect. 11.5 below.

10. Minkowski functionals results

In this section, we present constraints on local NG at
first and second order ( f local

NL and glocal
NL ) obtained with

Minkowski functionals (MFs) on temperature and polarization
E maps. MFs (Mecke et al. 1994; Schmalzing & Buchert 1997;
Schmalzing & Gorski 1998; Winitzki & Kosowsky 1998) are a
measure of fields’ local morphology used to constrain their
stationarity, isotropy and Gaussianity. Mostly probing general
NG in a frequentist fashion in two-dimensions on CMB maps
(Eriksen et al. 2004; Komatsu et al. 2005; Modest et al. 2013;
Natoli et al. 2010; Curto et al. 2008) or three-dimensions on
LSS data (Park et al. 2005; Wiegand et al. 2014), they have
also been used to measure specific NG targets with Bayesian
methods, such as f local

NL (Hikage et al. 2006, 2008; Ducout et al.
2013; Planck Collaboration XXIV 2014), other bispectrum and

52
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		Also	From	LSS	
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(124) S4 ⌅M4
4 �̇4

(124) , c2 = �16fL=2
NL

(124) r ⇤ 0.15 95% CL

(124) �(x) = �(x)L + f loc
NL�2

L(x) + gloc
NL�3

L(x)

(124) ⇥NL ⇤ (6f loc
NL/5)2

(124) ⇥NL < 2800 95%CL

(124) k14/k1

(124) gNL = (1.6± 7.0)⇥ 105 68%CL

(124) �5.6⇥ 105 < gNL < 6.4⇥ 105 95%CL

(124) �4.5⇥ 105 < gNL < 1.6⇥ 105 95%CL 	(Giannantonio	et	al.	2013)	

A	simple	guide	argument		
	

	
					Why	TTμ	is	sensiMve	to	trispectrum	(g_NL)?		
						
					Tμ	is	a	bispectrum	and	T(Tμ)	is	a	modulaMon	of	a	bispectrum		
					(exactly	what	gNL	does).	
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Figure 2. Expected 1� errors on gNL (top panel) and ⇥NL (bottom panel) estimated from TTµ
(colored lines) and TTTT (black lines) in the cosmic-variance dominated case (i.e., Nµµ

⇥ = 0). Solid
and dashed lines are the full radiation transfer case (Eqs. (3.25) and (3.31) for TTµ) and the SW case
(Eqs. (3.26) and (3.34) for TTµ), respectively. In the TTµ cases, we consider several nonzero ⇥NL’s
with fNL = 0. For ⇥NL = 0, �gNL and �⇥NL obtained from TTµ scale like 1/ ln(⇤max/2) and 1/⇤max,
respectively (see Eqs. (4.4) and (4.7)). It is apparent that, if ⇥NL � 1000, for ⇤max � 1000, TTµ
always outperforms TTTT , because Cµµ,G

⇥ + Cµµ,�NL
⇥ ⇥ CTT

⇥ . At larger ⇤max, TTµ remains clearly
superior than TTTT for gNL measurements. For ⇥NL estimation the comparison is instead dependent
on the fiducial value of ⇥NL; see main text for further discussion
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Cosmic	variance		dominated	case	

TTTT	from	CMB	
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Figure 2. Expected 1� errors on gNL (top panel) and ⇥NL (bottom panel) estimated from TTµ
(colored lines) and TTTT (black lines) in the cosmic-variance dominated case (i.e., Nµµ

⇥ = 0). Solid
and dashed lines are the full radiation transfer case (Eqs. (3.25) and (3.31) for TTµ) and the SW case
(Eqs. (3.26) and (3.34) for TTµ), respectively. In the TTµ cases, we consider several nonzero ⇥NL’s
with fNL = 0. For ⇥NL = 0, �gNL and �⇥NL obtained from TTµ scale like 1/ ln(⇤max/2) and 1/⇤max,
respectively (see Eqs. (4.4) and (4.7)). It is apparent that, if ⇥NL � 1000, for ⇤max � 1000, TTµ
always outperforms TTTT , because Cµµ,G

⇥ + Cµµ,�NL
⇥ ⇥ CTT

⇥ . At larger ⇤max, TTµ remains clearly
superior than TTTT for gNL measurements. For ⇥NL estimation the comparison is instead dependent
on the fiducial value of ⇥NL; see main text for further discussion

– 19 –

You	can	reach	ΔgNL~0.4:		
5	orders	of	magnitude	improvement	w.r.t	to	current	constraints		

gNL	forecasts	for	experiments	
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Figure 3. Expected 1� errors on gNL computed from TTµ (colored lines) for noise-levels representa-
tive of Planck, PIXIE and CMBpol. For comparison, we also plot the errors computed from TTTT
(black lines) for a noiseless CMB survey, which are almost the same as the errors obtained in the
Planck temperature data analysis [5, 6]. Solid and dashed lines correspond to the results including
full CMB transfer function (Eqs. (3.25) and (3.31) for TTµ) and those in the SW limit (Eqs. (3.26)
and (3.34) for TTµ), respectively. We here assume fNL = ⇥NL = 0. For ⇤max � ⇤µ, the scalings agree
with expectations from Eqs. (4.1) and (4.4): �gNL � (Nµ/10�30)1/2[ln(⇤max/2)]�1. At larger ⇤, when
Nµ starts dominating, the TTµ sensitivity falls below TTTT .
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So	why	CMB	spectral	distor%ons	are	
interes%ng	in	this	context?		

Among	many	reasons:	
Ø  1.	Although	CMB	spectral	distorMon	constraints	on	primordial	NG	might	seem	

futurisMc,	the	amount	of	informaMon	is	so	high	that	it	is	worth	invesMgaMng	the	
various	issues	

	
2.	We	are	tesMng	the	predicMons	of	the	standard	cosmological	model:		
					ΛCDM+standard	models	of	inflaMon		
	
3.	StaMsMcal	esMmators	of	primordial	NG	built	from	spectral	distorMons	can	present		
					some	advantages:	e.g.,	our	TTμ	provides	an	unbiased		es%mator	for	the	local		
					trispectrum	gNL		
	
4.	The	specific	signal	in	Tμ,	TTμ	depends	on	the	specific	inflaMonary		
					models	considered	(e.g.	imprints	from	primordial	vector	fields,		
					non-Bunch	Davies	vacuum	states).		
					Also:	can	test	alternaMve	models	of	inflaMon,	like	ekpyroMc	models		
					which	predict	gNL	<-1700	a	or		-1000	<	gNL	<-100.		

4.	CMB	spectral	distor#ons	and	
constraints	on	infla#onary	models		

 5  10  15  20

CORE+, Opt. 
CORE+, Cons.

LiteCORE,  Opt. 
LiteCORE, Cons.

CORE, Opt. 
CORE, Cons.

LiteBIRD, Opt.
LiteBIRD, Cons.

 5  10  15  20

Figure 35: Signal-to-noise ratio of CµT

`

from a modified initial state as a function of `
max

for a fixed
occupation number N = 0.5. In our forecast we considered a ‘conservative’ and an ‘optimistic’ case. In
the optimistic case we computed the signal-to-noise ratio by coadding the 4 lowest noise combinations
of frequencies in the range [80, 200] GHz that can be obtained from the LiteCORE, COrE+ and CORE
configurations. For COrE+ we use �T = 9.1 µK arcmin, FWHM = 10.5 arcmin at 80 GHz and �T = 6.5
µK arcmin, FWHM = 9.3 arcmin at 90 GHz. All other channels and experimental configurations are shown
in the Tables of Section 3. In the conservative case we instead take only the best couple of frequencies
for each configuration. This choice is justified by the fact that the issues of component separation and
relative calibration of channels are not accounted for in this type of analysis. Therefore it is not obvious
that all the channels which are assumed clean for standard temperature analysis will also be available for
T -µ measurements. We see that the signal saturates in the first few multipoles. For each configuration
of the satellite are shown models with both ✓

k

= const (left) and ✓
k

⇡ k⌘
0

(right). LiteCORE-80 and
LiteCORE-120 perform essentially in the same way, due to the saturation of the signal after the first few
multipoles, and are described by a single line. S/N for Planck is a factor ⇡ 100 lower than for CORE.

all experimental configurations achieve a very high signal-to-noise. In all the considered cases
we obtain S/N > 500. By comparison, direct fNL measurements for these models, based on
bispectrum template fitting, achieve a sensitivity �fNL ⇡ 5, which would make the case plotted in
Fig. 35 undetectable. We also see that for this test, CORE outperforms the other configurations,
including COrE+, due to better sensitivity at 80 GHz. Fig. 36 shows how the signal-to-noise
changes when varying the occupation number N . Results are normalized to the values shown
in Fig. 35 for N = 0.5. Unless occupation numbers become very low, the signal should remain
detectable.

Interestingly, Planck is already expected to have a strong discriminating power for these models,
although with a signal-to-noise ratio a factor roughly 100 below CORE. On the other hand, we
have to stress that systematic sources of error are not taken into account here. The expected two
orders of magnitude improvement of CORE over Planck looks therefore even more important and
reassuring, for the purpose of retaining a high signal-to-noise after relative calibration error and
foreground subtraction are taken into account.
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DeviaMons	from	a	Bunch-Davies	vacuum	state	during	inflaMon	could	be		
already	detected	by	Planck	via	CMB	μ-spectral	distorMons;		
for	sure	at	reach	of	a	PIXIE	like	experiment	

arXiv:1612.08270	



Conclusions	
•  Simplest	models	of	inflaMon	are	successful,	completely	
in	agreement	with	data.		

•  However,	we	do	not	know	the	precise	mechanism	
behind	inflaMon.		

•  Look	for	new	signatures	from	inflaMon	and	alternaMve		
observaMons	to	probe	the	nature	of	inflaMon.		

•  Some	examples	that	have	been	focused	some	
aUenMon	recently:	tensor	non-Gaussianity,	signatures	
from	extra	higher	spin	parMcles	during	inflaMon.	

•  Look	for	synergies	between	CMB	and	interferometric	
measurements.				

•  A	potenMally	very	rewarding	avenue:	CMB	spectral	
distorMons	(some	models	can	be	already	tested	with	
present	data)		
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MOTIVATION

How could field strength and coupling constant be related? 

It would be natural that the gravitational constant has running.

iv/ ⇤
1

is an invariant scale, than can be associated with the strength of the gluon conden-
sate; in our case, in view of the dimensionless nature of the coupling, on dimensional
grounds we can set up the relationship ⇤

1

⇠ (F
µ⌫

Fµ⌫)1/4.

In general the relationship above can be written as

(renormalization point)↵1

(field strength invariant)↵2

= exp

✓
constant

coupling

◆
⇥ (coupling), (2.2)

where ↵
1

and ↵
2

are real numbers, the second one positive. As we will discuss later on, the
behavior of the right hand side of equation (2.2) can assure the existence of a lower bound
for the left hand side, i.e., there is an upper bound for the field strength invariant.

The above discussion can be in principle extended to any field theory, and we will discuss
a di↵erent context in the next subsection.

2.1 The gravity context

We will now analyze, in a general way, what could be the consequences of the discussion of
the previous section in the context of gravity. We will anticipate some specific results that
may arise for cosmological models (treated for simplicity in the first order formalism), which
are discussed in greater detail the next section.

Let us then consider as a starting point a generalization of the Einstein-Hilbert action,
in which an explicit dependence of the gravitational coupling from the Ricci scalar is allowed,
so that2

S
G

=
1

8⇡

Z

M
d4x

p
�g

R

G(R)
. (2.3)

We may assume, following the generic prescription of equation (2.2), that for some properly
chosen power p we have

⇣ µ

R1/2

⌘
1/p

= exp
⇣ c̄

G

⌘ G

c̄
. (2.4)

In writing the above relation we kept a dependence from a dimensionless quantity, G/c̄ in this
case. Thus c̄ has to be dimensional. This makes the right hand side of the above equation
a pure number. Then the left hand side has also to be a pure number, and the dimensions
of µ have to be compensated by a proper power of the only invariant constructed from the
fields and their derivatives that we are considering in our basic model, i.e. R. This requires
a term of the form3 R1/2. We point out that we do not deeply commit ourselves to the
form of the relationship written in (2.4), nor we are trying to imply any direct connection
with (2.1) at this stage. The exact functional form of (2.4) is, nevertheless, convenient to
exemplify some interesting properties, which are shared by a much larger class of alternative
choices. In particular (see figure 2), it is readily seen that the function exp(c̄/G)G/c̄ is
such that the exponential dominates at small positive G, where the function exponentially
diverges, whereas the second factor dominates at large G, where the function again diverges
(but linearly). We incidentally note that in this second case, i.e. the strongly coupled (large

2

In the most general case, other curvature invariants may appear in the action, so that G =

G(R,R↵�R
↵� , R�µ⌫⇢R

�µ⌫⇢, . . . ). These situations can be treated in a similar way as in the case of the more

trivial G = G(R) dependence, which we are assuming for simplicity.

3

We will throughout use units in which ~ = c ⌘ 1.
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Figure 1. Example of a petal-like Lagrangian density for a theory described by action (2.3), with
the running coupling satisfying (2.4). A theory with this Lagrangian density consists of what we call
two branches, the upper (weekly coupled) branch OQP , and the lower (strongly coupled) branch OP .
The tangent to the double-valued Lagrangian density has a slope s(G/c̄) where the function s can be
expressed for any p as s(x) = (2p�x�2px)/(2px(1�x)). The following properties of the sloped can be
readily obtained: i) limG/c̄!0+ s(G/c̄) = +1 (this correspond to move toward the origin O along the
weekly coupled branch), ii) limG/c̄!+1 s(G ! c̄) = 0� for �1/2  p < 0, iii) limG/c̄!+1 s(G c̄) = 0�

for p < �1/2 or p > 0; the last two results correspond to moving to the origin on the lower branch
(the strongly coupled one). These properties motivate the name conventions for the two branches.
In this work we restrict our attention to the case p > 0. The plot above is obtained for the value
p = 1/2.

L from the invariants constructed from the fields and their derivatives will not be the one
shown in figure 1. A crucial question is then if it is possible to set up some model in which
the dependence of the Lagrangian L from invariants constructed from the fields (say F for
concreteness) is not plugged in artificially or by hand. Or, which is the same, if it is possible
that a dependence as the one shown in figure 1 may arise due to some fundamental property
of the theory. The answer to this question is, in fact, a�rmative and we will briefly discuss
this point now. In particular, in this paper what will be crucial for our following discussion
is only the behavior of the plot of figure 1 in the proximity of the point P .

To provide a concrete example of the general situation presented above we will start
from a definite model, namely pure Yang–Mills theory with gauge group SU(N). Following
the discussion in [7], the running coupling constant is given by

µ = ⇤
1

exp

✓
8⇡2

g2�
0

◆
(g2�

0

)�1

/(2�

2

0

), (2.1)

where

i/ g2 is the coupling constant;

ii/ �
0

= 11N/3 and �
1

= 34N2/3 are related to the gauge group, SU(N);

iii/ µ is the renormalization point;
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e.g. Pure Yang-Mills Theory    
µ: energy scale 
g: coupling constant
β0, β1: (positive) constants  
Λ1: invariant mass scale 
       depending on field strength 

By integrating β function, we have

If we “mimic” this relation in gravity case,
G: gravitational constant 

Ref. Ryttov and Sannino, 2008 

R: Ricci scalar  
p: positive constant 
   : dimensional constant  
     or function of R 
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MOTIVATION

Petal-like shape

iv/ ⇤
1

is an invariant scale, than can be associated with the strength of the gluon conden-
sate; in our case, in view of the dimensionless nature of the coupling, on dimensional
grounds we can set up the relationship ⇤

1

⇠ (F
µ⌫

Fµ⌫)1/4.

In general the relationship above can be written as

(renormalization point)↵1

(field strength invariant)↵2

= exp

✓
constant

coupling

◆
⇥ (coupling), (2.2)

where ↵
1

and ↵
2

are real numbers, the second one positive. As we will discuss later on, the
behavior of the right hand side of equation (2.2) can assure the existence of a lower bound
for the left hand side, i.e., there is an upper bound for the field strength invariant.

The above discussion can be in principle extended to any field theory, and we will discuss
a di↵erent context in the next subsection.

2.1 The gravity context

We will now analyze, in a general way, what could be the consequences of the discussion of
the previous section in the context of gravity. We will anticipate some specific results that
may arise for cosmological models (treated for simplicity in the first order formalism), which
are discussed in greater detail the next section.

Let us then consider as a starting point a generalization of the Einstein-Hilbert action,
in which an explicit dependence of the gravitational coupling from the Ricci scalar is allowed,
so that2

S
G

=
1

8⇡

Z

M
d4x

p
�g

R

G(R)
. (2.3)

We may assume, following the generic prescription of equation (2.2), that for some properly
chosen power p we have

⇣ µ

R1/2

⌘
1/p

= exp
⇣ c̄

G

⌘ G

c̄
. (2.4)

In writing the above relation we kept a dependence from a dimensionless quantity, G/c̄ in this
case. Thus c̄ has to be dimensional. This makes the right hand side of the above equation
a pure number. Then the left hand side has also to be a pure number, and the dimensions
of µ have to be compensated by a proper power of the only invariant constructed from the
fields and their derivatives that we are considering in our basic model, i.e. R. This requires
a term of the form3 R1/2. We point out that we do not deeply commit ourselves to the
form of the relationship written in (2.4), nor we are trying to imply any direct connection
with (2.1) at this stage. The exact functional form of (2.4) is, nevertheless, convenient to
exemplify some interesting properties, which are shared by a much larger class of alternative
choices. In particular (see figure 2), it is readily seen that the function exp(c̄/G)G/c̄ is
such that the exponential dominates at small positive G, where the function exponentially
diverges, whereas the second factor dominates at large G, where the function again diverges
(but linearly). We incidentally note that in this second case, i.e. the strongly coupled (large

2

In the most general case, other curvature invariants may appear in the action, so that G =

G(R,R↵�R
↵� , R�µ⌫⇢R

�µ⌫⇢, . . . ). These situations can be treated in a similar way as in the case of the more

trivial G = G(R) dependence, which we are assuming for simplicity.

3

We will throughout use units in which ~ = c ⌘ 1.
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Figure 2. Plot of the relationship between the coupling and the curvature (p is an arbitrary positive
number, µ and c̄ are constant with appropriate dimensions such that G/c̄ and µ/R1/2 are dimen-
sionless). It is transparent that the renormalization group inspired relationship between G/c̄ and
µ/R1/2 realizes a maximum curvature scenario, where maximum curvature is realized at the point
P . The dashed part of the curve in the plot is what we call the weakly coupled branch, whereas the
solid part is the strongly coupled one. The function in the plot diverges (so, the curvature goes to
zero) exponentially in the limit G/c̄ ! 0. For G/c̄ ! +1 the curvature again goes to zero, as the
plot diverges linearly. It is, perhaps, instructive to read the plot as a function of µ/R1/2: two small
curvature limits exist, one at small coupling (µ/G ! 0) and one at large coupling (µ/G ! +1).
However as the system evolves to higher curvatures (i.e, towards the point P ) the coupling drifts to
the value G/c̄ = 1 preventing the curvature to further grow beyond the value attained at P .

G) phase, if we neglect the contribution of the exponential we obtain G(R) ⇠ R�1/(2p), so
that the Lagrangian density in this limit turns out to be

L
G

⇠ Rq, q = 1� 1

2p
:

for large p we then recover standard Einstein gravity. Moreover the properties of the function
as G ! 0+ and G ! +1 imply that it must have at least a local minimum in the interval
(0,+1) and it is, in fact, possible to see that it has exactly one local minimum, which is also
the absolute minimum. Thus the quantity (µ/R1/2)1/p has an absolute minimum for positive
couplings G: if p is positive, this implies that an upper bound for the scalar curvature R
naturally appears. Note, moreover, that for a given value of R smaller than the maximum
value, there are two branches of the theory that can be realized: a weakly coupled one, in
the branch of the curve where eventually the exponential dominates (i.e. on the left side of
the minimum point in figure 2), and a strongly coupled one, where the linear term eventually
dominates (i.e. on the left side of the minimum point). The two phases are unified at the
minimum P .

Discussing figure 2 we focused on the curvature versus coupling picture of the phenom-
ena discussed in the previous section. However the same conclusions can be drawn in the
Lagrangian density versus coupling plot of figure 1, as done in the pevious section. We can
paraphrase that analysis in this case. We then note that on the weakly coupled branch the
point Q corresponds to the slowest variation of the Lagrangian density as a function of the
curvature. If, starting from Q the curvature increases, correspondingly the theory becomes
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Figure 1. Example of a petal-like Lagrangian density for a theory described by action (2.3), with
the running coupling satisfying (2.4). A theory with this Lagrangian density consists of what we call
two branches, the upper (weekly coupled) branch OQP , and the lower (strongly coupled) branch OP .
The tangent to the double-valued Lagrangian density has a slope s(G/c̄) where the function s can be
expressed for any p as s(x) = (2p�x�2px)/(2px(1�x)). The following properties of the sloped can be
readily obtained: i) limG/c̄!0+ s(G/c̄) = +1 (this correspond to move toward the origin O along the
weekly coupled branch), ii) limG/c̄!+1 s(G ! c̄) = 0� for �1/2  p < 0, iii) limG/c̄!+1 s(G c̄) = 0�

for p < �1/2 or p > 0; the last two results correspond to moving to the origin on the lower branch
(the strongly coupled one). These properties motivate the name conventions for the two branches.
In this work we restrict our attention to the case p > 0. The plot above is obtained for the value
p = 1/2.

L from the invariants constructed from the fields and their derivatives will not be the one
shown in figure 1. A crucial question is then if it is possible to set up some model in which
the dependence of the Lagrangian L from invariants constructed from the fields (say F for
concreteness) is not plugged in artificially or by hand. Or, which is the same, if it is possible
that a dependence as the one shown in figure 1 may arise due to some fundamental property
of the theory. The answer to this question is, in fact, a�rmative and we will briefly discuss
this point now. In particular, in this paper what will be crucial for our following discussion
is only the behavior of the plot of figure 1 in the proximity of the point P .

To provide a concrete example of the general situation presented above we will start
from a definite model, namely pure Yang–Mills theory with gauge group SU(N). Following
the discussion in [7], the running coupling constant is given by

µ = ⇤
1

exp

✓
8⇡2

g2�
0

◆
(g2�

0

)�1

/(2�

2

0

), (2.1)

where

i/ g2 is the coupling constant;

ii/ �
0

= 11N/3 and �
1

= 34N2/3 are related to the gauge group, SU(N);

iii/ µ is the renormalization point;
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iv/ ⇤
1

is an invariant scale, than can be associated with the strength of the gluon conden-
sate; in our case, in view of the dimensionless nature of the coupling, on dimensional
grounds we can set up the relationship ⇤

1

⇠ (F
µ⌫

Fµ⌫)1/4.

In general the relationship above can be written as

(renormalization point)↵1

(field strength invariant)↵2

= exp

✓
constant

coupling

◆
⇥ (coupling), (2.2)

where ↵
1

and ↵
2

are real numbers, the second one positive. As we will discuss later on, the
behavior of the right hand side of equation (2.2) can assure the existence of a lower bound
for the left hand side, i.e., there is an upper bound for the field strength invariant.

The above discussion can be in principle extended to any field theory, and we will discuss
a di↵erent context in the next subsection.

2.1 The gravity context

We will now analyze, in a general way, what could be the consequences of the discussion of
the previous section in the context of gravity. We will anticipate some specific results that
may arise for cosmological models (treated for simplicity in the first order formalism), which
are discussed in greater detail the next section.

Let us then consider as a starting point a generalization of the Einstein-Hilbert action,
in which an explicit dependence of the gravitational coupling from the Ricci scalar is allowed,
so that2

S
G

=
1

8⇡

Z

M
d4x

p
�g

R

G(R)
. (2.3)

We may assume, following the generic prescription of equation (2.2), that for some properly
chosen power p we have

⇣ µ

R1/2

⌘
1/p

= exp
⇣ c̄

G

⌘ G

c̄
. (2.4)

In writing the above relation we kept a dependence from a dimensionless quantity, G/c̄ in this
case. Thus c̄ has to be dimensional. This makes the right hand side of the above equation
a pure number. Then the left hand side has also to be a pure number, and the dimensions
of µ have to be compensated by a proper power of the only invariant constructed from the
fields and their derivatives that we are considering in our basic model, i.e. R. This requires
a term of the form3 R1/2. We point out that we do not deeply commit ourselves to the
form of the relationship written in (2.4), nor we are trying to imply any direct connection
with (2.1) at this stage. The exact functional form of (2.4) is, nevertheless, convenient to
exemplify some interesting properties, which are shared by a much larger class of alternative
choices. In particular (see figure 2), it is readily seen that the function exp(c̄/G)G/c̄ is
such that the exponential dominates at small positive G, where the function exponentially
diverges, whereas the second factor dominates at large G, where the function again diverges
(but linearly). We incidentally note that in this second case, i.e. the strongly coupled (large

2

In the most general case, other curvature invariants may appear in the action, so that G =

G(R,R↵�R
↵� , R�µ⌫⇢R

�µ⌫⇢, . . . ). These situations can be treated in a similar way as in the case of the more

trivial G = G(R) dependence, which we are assuming for simplicity.

3

We will throughout use units in which ~ = c ⌘ 1.
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iv/ ⇤
1

is an invariant scale, than can be associated with the strength of the gluon conden-
sate; in our case, in view of the dimensionless nature of the coupling, on dimensional
grounds we can set up the relationship ⇤

1

⇠ (F
µ⌫

Fµ⌫)1/4.

In general the relationship above can be written as

(renormalization point)↵1

(field strength invariant)↵2

= exp

✓
constant

coupling

◆
⇥ (coupling), (2.2)

where ↵
1

and ↵
2

are real numbers, the second one positive. As we will discuss later on, the
behavior of the right hand side of equation (2.2) can assure the existence of a lower bound
for the left hand side, i.e., there is an upper bound for the field strength invariant.

The above discussion can be in principle extended to any field theory, and we will discuss
a di↵erent context in the next subsection.

2.1 The gravity context

We will now analyze, in a general way, what could be the consequences of the discussion of
the previous section in the context of gravity. We will anticipate some specific results that
may arise for cosmological models (treated for simplicity in the first order formalism), which
are discussed in greater detail the next section.

Let us then consider as a starting point a generalization of the Einstein-Hilbert action,
in which an explicit dependence of the gravitational coupling from the Ricci scalar is allowed,
so that2

S
G

=
1

8⇡

Z

M
d4x

p
�g

R

G(R)
. (2.3)

We may assume, following the generic prescription of equation (2.2), that for some properly
chosen power p we have

⇣ µ

R1/2

⌘
1/p

= exp
⇣ c̄

G

⌘ G

c̄
. (2.4)

In writing the above relation we kept a dependence from a dimensionless quantity, G/c̄ in this
case. Thus c̄ has to be dimensional. This makes the right hand side of the above equation
a pure number. Then the left hand side has also to be a pure number, and the dimensions
of µ have to be compensated by a proper power of the only invariant constructed from the
fields and their derivatives that we are considering in our basic model, i.e. R. This requires
a term of the form3 R1/2. We point out that we do not deeply commit ourselves to the
form of the relationship written in (2.4), nor we are trying to imply any direct connection
with (2.1) at this stage. The exact functional form of (2.4) is, nevertheless, convenient to
exemplify some interesting properties, which are shared by a much larger class of alternative
choices. In particular (see figure 2), it is readily seen that the function exp(c̄/G)G/c̄ is
such that the exponential dominates at small positive G, where the function exponentially
diverges, whereas the second factor dominates at large G, where the function again diverges
(but linearly). We incidentally note that in this second case, i.e. the strongly coupled (large
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Figure 1. Example of a petal-like Lagrangian density for a theory described by action (2.3), with
the running coupling satisfying (2.4). A theory with this Lagrangian density consists of what we call
two branches, the upper (weekly coupled) branch OQP , and the lower (strongly coupled) branch OP .
The tangent to the double-valued Lagrangian density has a slope s(G/c̄) where the function s can be
expressed for any p as s(x) = (2p�x�2px)/(2px(1�x)). The following properties of the sloped can be
readily obtained: i) limG/c̄!0+ s(G/c̄) = +1 (this correspond to move toward the origin O along the
weekly coupled branch), ii) limG/c̄!+1 s(G ! c̄) = 0� for �1/2  p < 0, iii) limG/c̄!+1 s(G c̄) = 0�

for p < �1/2 or p > 0; the last two results correspond to moving to the origin on the lower branch
(the strongly coupled one). These properties motivate the name conventions for the two branches.
In this work we restrict our attention to the case p > 0. The plot above is obtained for the value
p = 1/2.
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)�1

/(2�

2

0

), (2.1)

where

i/ g2 is the coupling constant;

ii/ �
0

= 11N/3 and �
1

= 34N2/3 are related to the gauge group, SU(N);

iii/ µ is the renormalization point;
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3. the derivative fR of f is divergent at Rl and Rr.

We will restrict our analysis to the situation in which no matter is present, ⇢m = pm = 0, because our analysis will
be mostly related to properties of f . In what follows we will, also, consider in detail

f(R) = Y ± �

r � (R�X)2
�1/2

, X � r  R  X + r

as an example, with suitably chosen constants X, Y , r.
To start with, it is first convenient to rewrite the relevant Friedmann equation, i.e. equation (4) with F0

0 as given
in (6), in the form of a closed system of first order ordinary di↵erential equations for the unknown functions R(t),
H(t), and a(t). This can be done complementing (4) with the relation between a and H, and with the definition of
R in terms of H, Ḣ, a and the constant K. By solving (4) for Ṙ, (2) for Ḣ, and combining the results with (3), we
obtain, in the vacuum case,

Ṙ =
1

fRRH
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6
(fRR� f)� fRH

2 � fR
K

a2

�

(8)

Ḣ =
R

6
� 2H2 � K

a2
(9)

ȧ = Ha . (10)

We comment that, if K = 0, we can first study the system composed by the first two equations only, and then use
the third one to solve for the evolution of the scale factor. In this case the above system reduces, practically, to

Ṙ = ⇢(R,H) (11)

Ḣ = ⌘(R,H) . (12)

where, for convenience, we define

⇢(R,H) =
1

fRRH
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(13)

⌘(R,H) =
R

6
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We note that (9) does not depend on f or derivatives of f . This allows for a classification of cases that might be
qualitatively di↵erent (the reason for this will be more clear below). As a firs example of this, in figure 1 we consider
the simpler case of positive scalar curvature R and vanishing spatial curvature K. We also assume fRR 6= 0 in (Rl, Rr)
(please, see section IIIA 4 and the examples in sections IVE and IVF for a discussion of what can happen if this
condition is relaxed). In general, if we consider the flow of the dynamical system above in the (R,H) plane, we see
that Ḣ = 0 is realized along the parabola R = 12H2, independently from the choice of f . The choice of f will,
however, be reflected in di↵erent values for Rl and Rr. This also gives a visual intuition of the possible location of
stationary points for di↵erent choices of the bounds on the curvature.

We consider now some limiting cases for the above system.

1. Large Hubble values

First, we can deal with the case of large |H|, assuming R to be somewhat away from Rl and Rr. Then, R, f , fR,
and fRR take all finite values, and for large |H| the system reduces to

Ṙ ⇡ � fR
fRR

H (15)

Ḣ ⇡ �2H2 . (16)

The equation for H separates, and can be integrated: H(t) ⇡ (2t + C1)�1, with C1 first integration constant. Note
that this equation does not depend on the sign of H. Then, the equation for R can be rewritten using

fRR

fR
Ṙ = ḟR ,

4

3. the derivative fR of f is divergent at Rl and Rr.

We will restrict our analysis to the situation in which no matter is present, ⇢m = pm = 0, because our analysis will
be mostly related to properties of f . In what follows we will, also, consider in detail

f(R) = Y ± �

r � (R�X)2
�1/2

, X � r  R  X + r

as an example, with suitably chosen constants X, Y , r.
To start with, it is first convenient to rewrite the relevant Friedmann equation, i.e. equation (4) with F0

0 as given
in (6), in the form of a closed system of first order ordinary di↵erential equations for the unknown functions R(t),
H(t), and a(t). This can be done complementing (4) with the relation between a and H, and with the definition of
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◆
(1)

R̄ (2)

fR(R̄)R̄� f(R̄) = 0 (3)

⇤
Email: y.sakaki”at”sci.osaka-cu.ac.jp

OCU-PHYS-, AP-GR-

Something to be added

Yuki Sakakihara1, ⇤

1Department of Mathematics and Physics, Osaka City University, Osaka 558-8585, Japan

I. EQUATIONS

J =

✓
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FATE OF THE SOLUTIONS
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CHANGING PARAMETERS
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When we change the center of the circle

The exact position of Rl, Rr, Re and　 changes 
The existence and the stability never change  
as long as the circle is placed in R>0 region  
X=1 (the circle is tangent to y-axis) case,  
should be treated independently.  
Rl, Re and 　 coincide with each other.
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SUMMARY

We discussed flat FLRW case.  If we move the circle to the left and  
consider negative R region, we should take into account spatial curvature. 
Perturbative stability 
Timescales of each step: 
 if the system could be applied to cosmological scenario.

Future Plan

We motivated bounded curvature models with divergence in fR  
at the boundary of f(R) by referring to the renormalization of  
the gravitational constant.  
As a simple model, we proposed a circular-type f(R). 
We examined flat-FLRW solutions in it. We showed the stability of 
stationary points and the structure of phase space (R, H). 
The qualitative features would apply to other bounded curvature models. 
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Tomohiro Fujita (Kyoto U)

Statistically Anisotropic Primordial 

Gravitational Waves from Gauge Field

Based on collaboration w/
I.Obata, T.Tanaka, S.Yokoyama

Main Message

② Spectator version is viable and interesting.

It has a new observational signature.

① Original anisotropic inflation is challenging.

It’s excluded with 99.999%.

Statistical Anisotropy of GW



1 page review on anisotropic inflation

Inflaton is coupled to U(1) gauge field

This model has slow-roll solution when the coupling function is

The attractor solution of Background 𝑬 = −𝑓  𝑨/𝑎

Statistical anisotropy of 𝒫𝜁 is predicted.

[Watanabe, Kanno, Soda (2009)]

𝜌𝐸 𝑡 =
𝜌𝐸
att

1 + Ω 𝑎−4(𝑐−1)

cos 𝜃 ≡  𝒌 ⋅  𝑬

Prediction and Observation

Model prediction is

≈ 0.01
𝑐 − 1

10−7
𝑁𝑘
60

2

Non-detection of 𝑔∗
by Planck constrains

𝑔∗ ≲ 0.01

Model parameter 𝑐 has to be

𝑐 − 1 ≲ 10−7



Really Attracted?

Attractor solution was assumed 𝜌𝐸 → 𝜌𝐸
att

We found 𝜌𝐸 → 𝜌𝐸
att due to Stochastic Effect

With stochastic effect, we expect

𝜌𝐸 ≃ 103𝜌𝐸
att 𝑔∗ ≃ 10

✕

𝜙

Scalar Field Analogy

𝑉 𝜙

𝜙att

Attractor, if 𝑉′′ 𝜙att > 𝐻2



𝜙

Scalar Field Analogy

𝑉 𝜙

𝜙att

Attractor, if 𝑉′′ 𝜙att > 𝐻2

Quantum fluctuation kicks 𝜙, 

𝛿𝜙 ≃ 𝐻, if 𝑉′′ 𝜙 < 𝐻2

|𝑬|

Electric field in Anisotropic inflation

𝑉eff 𝑬

𝐸att

Attractor, if 𝑉eff
′′ 𝐸att > 𝐻2

Quantum fluctuation kicks 𝑬, 

𝛿𝐸 ≃ 𝐻2, if 𝑉eff
′′ 𝑬 < 𝐻2

𝑉eff 𝑬 =
20𝜋2

𝐻2 𝒫𝜁𝑬
𝟐 𝑬𝟐 − 𝟐𝐸att

2



|𝑬|

Electric field in Anisotropic inflation

𝑉eff 𝑬

𝐸att

Attractor, if 𝑉eff
′′ 𝐸att > 𝐻2

Quantum fluctuation kicks 𝑬, 

𝛿𝐸 ≃ 𝐻2, if 𝑉eff
′′ 𝑬 < 𝐻2

𝑉eff 𝑬 =
20𝜋2

𝐻2 𝒫𝜁𝑬
𝟐 𝑬𝟐 − 𝟐𝐸att

2

𝑉eff
′′ 𝐸att = 20 𝑐 − 1 𝐻2 ≈ 10−6𝐻2

𝑬 does not go to the Attractor

Stochastic Formalism of scalar field

Fluctuations affecting background

EoM with random noise term (Langevin eq.)

𝜉𝜙 is a Gaussian noise

3𝐻  𝜙 + 𝑉′ 𝜙 = 𝜉𝜙

𝜉𝜙(𝑡) = 0,

Stochastic

Formalism

𝜉𝜙(𝑡)𝜉𝜙(𝑡′) =
𝐻3

2𝜋 2 𝛿(𝑡 − 𝑡′),

[Starobinsky&Yokoyama (1994)]



Stochastic Formalism of vector field

Fluctuations affecting background

EoM with random noise term (Langevin eq.)

𝝃𝐸 is a Gaussian noise only with diagonal part

5𝐻  𝑬 + 𝑉eff
′ 𝑬 = 𝝃𝐸

𝝃𝐸(𝑡) = 0,

Stochastic

Formalism

𝜉𝑖
𝐸 𝑡 𝜉𝑗

𝐸(𝑡′) =
𝐻5

2𝜋2
𝛿𝑖𝑗𝛿(𝑡 − 𝑡′),

Numerical sol of Langevin eq.

|𝑬| ≃ 30𝐸att, ⇒ 𝑔∗ ≃ 10,



Probability Distribution Function

Evolution of 𝑬 is now probabilistic

We obtain the PDF of |𝑬| by solving FP eq.

Probability Distribution Function

We obtain the PDF of |𝑬| by solving FP eq.

The static equilibrium solution is



Expected Values

The expected values in the equilibrium are

consistent with numerical sol. of Langevin eq.

Numerical sol of Langevin eq.

|𝑬| ≃ 30𝐸att, ⇒ 𝑔∗ ≃ 10,



Expected Values

The expected values in the equilibrium are

consistent with numerical sol. of Langevin eq.

It implies 𝑔∗ ≃ 10

The PDF of 𝑔∗

The electric field is assumed to be in the equilibrium 

Prob ≈ 1.3 × 10−5 at best



Summary of original Anisotropic Inf.

But, 𝑉eff
′′ 𝐸att = 20 𝑐 − 1 𝐻2.

One should take into account stochastic effect

𝑔∗ ≈ 0.01
𝑐 − 1

10−7
𝑁𝑘
60

2

, if 𝑬 = 𝐸att.

Attractor is not attractive…

Prob 𝑔∗ ≤ 0.01 ≤ 0.0013%, irrespective of 𝑐

End of story??

Main Message

② Spectator version is viable and interesting.

It has a new observational signature.

① Original anisotropic inflation is challenging.

It’s excluded with 99.999%.

Statistical Anisotropy of GW



Thank you！

Fin
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Exploring the string axiverse  
and parity violation in gravity 
with gravitational waves

Speaker : Daiske Yoshida 
Jiro Soda  
Kobe Univ.

4a5: JGRG27 2017 @ Kurara, Saijo, Higashi-hiroshima

Daiske Yoshida and Jiro Soda 
arXiv: 1708.09592

“Exploring the string axiverse and parity violation 
in gravity with gravitational waves”

Related articles
02/11

Daiske Yoshida and Jiro Soda 
arXiv: 1710.09198

“Electromagnetic waves propagating  
in the string axiverse”
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• String theory gives the massive pseudo-scalar fields (Axion). 

• Their mass is                        . Its range is the very wide.  
 
 
 
 
 

• Compactification of the extra dimensions →  

• It is indicated that the axion can behave as the cold dark matter. 

• To challenge the ultimate theory, we must detect them.

String axiverse and Axion dark matter
03/11

10�33 eV 10�28 eV 10�20 eV

10�18 eV

10�10 eV10�14 eV

CMB 
Polarization

Matter  
Power 
Spectrum BH Super-radiance

target!

10�33 ⇠ 10�10 eV

A. Arvanitaki, et al (2010), 
P. Svrcek and E. Witten (2006) 

4a5: JGRG27@Kurara, Saijo, Higashi-hiroshima, 11/2017

�F̃F, �R̃R

W. Hu, R. Barkana, and A. Gruzinov (2000)

Dynamical Chern-Simons gravity

• This theory contains the coupling of the gravitational field and the scalar 
field. 

• If we believe the string axiverse, this theory suggests the coupling with 
the gravitational field and axion. 

• Its interaction is given by  
 
 

• This theory generates the parity-violated GW for circular polarization,          　
　　　　.

04/11
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System
• Action 
 
 

• Equations of motion 
 
　→　Gravitational field： 
 
 
 
　→　Axion： 

S = 

Z

V
dx4p�g R+

1

4
↵

Z

V
dx4 p�g�R̃R

�1

2

Z

V
dx4p�g [gµ⌫(rµ�)(r⌫�) + 2V (�)]

Gµ⌫ +
↵


Cµ⌫ =

1

2
Tµ⌫

Cµ⌫ ⌘ (r↵�)✏
↵��(µr�R

⌫)
� + (r↵r��)R̃

�(µ⌫)↵

rµrµ�� dV (�)

d�
= �↵

4
R̃R

05/11
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Settings
• We set the spacetime as follows, 
 
　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　　. 

• We give some assumptions to solve this system. 
→ The axion has the time-dependence only. 
 
→ Its potential is given by                            . 
 
→ The expansion of Universe can be neglected in the scale of the time when the 
GWs through the core of Galaxy for 1 pc. 

• The EoM of GW 
 
 

06/11

ds2 ' a(⌘)2(�d⌘2 + �ijdx
idxj + hijdx

idxj)

�(xµ) = �(⌘)

V (�) =
1

2
m2�2

�(⌘) ' �0 cos(m⌘)!a(⌘) ' 1

h00
A +

✏A� cos(m⌘)

1 + ✏A
k
m� sin(m⌘)

k h0
A + k2hA = 0

� ⌘ ↵


m2�0

✏A ⌘
(
1 : A = R

�1 : A = L
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• The Swings 
 
 

• The EoM of parametric resonance  
 
The condition of parametric resonance  
　→         and           can have the dependence of time only.  
　→         and\or           are assumed to vary periodically, with the same period    . 

• The features of resonance frequency of parametric resonance 
 
　→ Resonance frequency has the width.  
　→ When GW satisfy the relation,                 , the resonance frequency  
       has the widest band at the frequency.  
 

Parametric resonance

d2x

dt2
+ �(t)

dx

dt
+ !2(t)x = 0

T

GW

axion

GW

,

07/11

�(t) !2(t)
�(t) !2(t)

k = m/2

k

m
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• Estimation of the resonance frequency  
 
　→　Resonance frequency 
 
 
　→　Band of the resonance frequency  

• Growth rate of the amplitude of GW 
 
 
 
 
 
 
 

Estimation of the Growth rate
08/11
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Numerical results: 1/2
09/11

• Plots of the growth of the amplitude of GW 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
→ In the circular polarization basis, each of the amplitudes grows  
    asymmetrically. 
→ In this situation,      becomes      times as large as      . 

0
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0
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` = 108 km, m = 10�10 eV, ⇢ = 0.3⇥ 106 GeV/cm3

� ' 0.02

hR hL104

Numerical results: 2/2
• The plot of the parity violation is below. 

•  
 
 
 

• The color indicates the level of the polarization. 
 → The strong polarization near the resonance frequency. 
 

10/11
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parity(⌘) =
|hR|2 � |hL|2

|hR|2 + |hL|2



Conclusion
11/11
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• String axiverse generates the axions which have the light mass, 
and they behave as the cold dark matter well. 

• The dCS gravity have the interaction of the gravitational field and the 
axion dark matter. 

• This effect may use to detect the counterpart of the GR.  
 → They might give the new constraint to the abundance of the  
     axion dark matter or the CS-coupling.
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Reconstruction of
primordial tensor power spectrum

from B-mode observations

Rikkyo University

Takashi Hiramatsu

Collaboration with Eiichiro Komatsu (MPA)
                               Masashi Hazumi (KEK)
                               Misao Sasaki (YITP)

27th JGRG, 27 Nov - 01 Dec, 2017 @ Hiroshima Univ.

Reconstruction of tensor power spectrum 2/16

Takashi Hiramatsu
Introduction : CMB B-mode observation

- A polarisation mode of photons
- Generated by gravitational waves (tensor perturbations)
- No detections so far, but possibly to be done in the (near) future
                                                                              (e.g. LiteBIRD)

E-mode

B-mode

Gives fruitful information on inflation and the early Universe.

B



Reconstruction of tensor power spectrum 3/16

Takashi Hiramatsu
Introduction : Reconstruction

How well can we distinguish primordial power spectra predicted
in various models from the fiducial one (inflation) ?

Fisher matrix

How well can we measure the primordial spectra under some
observational noises ?

Reconstruction of tensor power spectrum 4/16

Takashi Hiramatsu
Fisher Information Matrix for CMB

: characterising the primordial spectrum

“noise”



Reconstruction of tensor power spectrum 5/16

Takashi Hiramatsu
Building block 1/3 : Tensor B-mode

Angular power spectrum of B-mode fluctuations

Transfer function given by solving Boltzmann equations
with parameters from Planck 2015 results :

(   is an index of        )

Reconstruction of tensor power spectrum 6/16

Takashi Hiramatsu
Building block 2/3 : Lensing B-mode

B-mode induced by E→ B conversion of lensing
Smith et al., JCAP 1206 (2012) 014, arXiv:1010.0048

Lensing potential



Reconstruction of tensor power spectrum 7/16

Takashi Hiramatsu
Building block 3/3 : Detector noise

For simplicity, here we consider a white noise (independent to     )

(Planck, averaged over 3 bands)
Zaldarriaga et al. arXiv:0811.3918

(Future experiments)

Katayama & Komatsu, APJ 737 (2011) 78, arXiv:1101.5210

Reconstruction of tensor power spectrum 8/16

Takashi Hiramatsu
Modelling tensor power spectrum

bins

following the Planck 2015 results

e.g. Hlozek et al., APJ 749 (2012) 90 , arXiv:1105.4887



Reconstruction of tensor power spectrum 9/16

Takashi Hiramatsu
Fisher Information Matrix for CMB

Model parameter : 

Numerator : 

Denominator : 

Uncertainty to measure           :

Katayama & Komatsu, APJ 737 (2011) 78, arXiv:1101.5210

Reconstruction of tensor power spectrum 10/16

Takashi Hiramatsu
Results : 1-σ error of binned spectrum

(future mission)

cosmic var.

lensing

white noise

Contributions from the noise sources



Reconstruction of tensor power spectrum 11/16

Takashi Hiramatsu
Results : demonstration

SU(2)-axion
Massive gravity

Red-tilted (open inflation)

Yamauchi et al., PRD 84 (2011) 043513

Thorne et al., arXiv:1707.03240; Dimastrogiovanni et al., JCAP 01 (2017) 019

Sasaki, private communication; Domenech et al., JCAP 1705 (2017) 034

SU(2)-axion

Red-tilted

Massive gravity

(future mission)

Reconstruction of tensor power spectrum 12/16

Takashi Hiramatsu
Results : demonstration

More quantitatively, we should estimate      .

Probability to exceed (PTE) = Probability to confuse a model spectrum
                                                 with the fiducial one.



Reconstruction of tensor power spectrum 13/16

Takashi Hiramatsu
Results : demonstration

(future mission)

Distinguishable from fiducial spectrum with a high significance !

         PTE

SU(2)

Massive

Red

Reconstruction of tensor power spectrum 14/16

Takashi Hiramatsu
Results : demonstration

(PLANCK)

All models cannot be distinguished from the fiducial one.

        PTE

SU(2)

Massive

Red



Reconstruction of tensor power spectrum 15/16

Takashi Hiramatsu
Simulator is to be in public

- To be available on your web browser
- Compute from numerical data of spectrum as well as in built-in models

Reconstruction of tensor power spectrum 16/16

Takashi Hiramatsu
Summary

Computed the Fisher matrix for a primordial tensor power
spectrum parametrised as bandpowers within bins.
(but, with a simple detector noise model + no other foreground noises) 

If only a theoretical prediction of GW spectrum is prepared,
we can instantly know its detectability without running
a Boltzmann solver. (+ simulator is to be appeared)

How significantly can we distinguish theoretical models from
the fiducial power spectrum ?
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Curvature obstructions to 
the existence of isometries

　　Kentaro Tomoda (Kobe Univ.) 
with 

B. Kruglikov (Univ. of Tromso) 
V. Matveev (Univ. of Jena)

　　2017/11/29 JGRG　　　　

  Killing equation 

  QUESTIONS: 

  Are there any solutions for given metrics? 

  If yes, how many solutions are there? 

  How to determine the number of solutions? 

I will give partial answers the above Qs

r(aKb) = 0



I dR = 0 3 KVs

dR ^ d[(raR)(raR)] = 0
no KV

dR ^ d⇤R = 0 1 KV

yes

no

yes

no

yes

no

.

Rabcd = 1
2Rga[cgd]b

  Some history 
  In 2 dim. the questions were completely 
solved by G. Darboux (1887) 

  

  Some history 
  In 2 dim. the questions were completely 
solved by G. Darboux (1887) 

  In 4 dim. R. Kerr (1963) showed that       
the algorithm exists for Einstein spaces 

  (Any concrete algorithms are not known) 

  I show the algorithm for 3 dim. concretely 
as a first step towards higher dimensions 



I Rab / gab 6 KVs

raRbc = 0
4 KVs

dI1 ^ dI2 ^ dI3 = 0
no KV

dIi ^ dIj = 0
case 2

dIi = 0 case 1

case 0

yes

no

no

yes

no

yes

no

yes

no

yes

.

I1 = R

I2 = RabR
ab

I3 = RabR
bcRa

c

Rabcd = 4g[a|[cRd]|b]

� 1
2Rga[cgd]b

  Our result 

ab = r[aAb] = 0
no KV

1 KV

no

yes

.

dIi ^ dIj = 0
case 2

no

.

Ua / ✏abc(rbIi)(rcIj)

hab = gab � UaUb

ab = 1
2LUhab

Aa = U brbUa

  Case 2 (                ) 

    where



dIi = 0 case 1

no

.

Is raR a geodesic?

case 2

Is raR an eigenvecor of Rab?

⌧r = g = ̂g = 0

LN� = LB� = 0 case 2

3 KVs

...

...

2 KVs

no

yes

yes

no

yes

yes

no

no

.

  Case 1 (             ) 

 

SKIP

SKIP

dIi = 0 case 1

no

.

raR

Ba ! Ua

T a / raR

Na / T brbT
a

Ba = ✏abcTbNc

  Case 1 (             ) 
   Branch where       is NOT a geodesic 

   the Frenet-Serret frame: 

  

         Our analysis reduces to the case 2 

   with the identification at most 1KV

after some 
algebra 



dIi = 0 case 1

no

.

raR

Rab

{T a / raR,Na, Ba} Rab

T brb

0

@
T a

Na

Ba

1

A =

0

@
0 0 0
0 0 ⌧
0 �⌧ 0

1

A

0

@
T a

Na

Ba

1

A

  Case 1 (             ) 
   Branch where       is a geodesic and 

                           an eigenvec. of  

                            : the eigensystem of  

  Curve theoretic parameters:

dIi = 0 case 1

no

.

raR

Rab

{T a / raR,Na, Ba} Rab

N brb

0

@
T a

Na

Ba

1

A =

0

@
0 �g ⌧r
g 0 n

�⌧r �n 0

1

A

0

@
T a

Na

Ba

1

A

Bbrb

0

@
T a

Na

Ba

1

A =

0

@
0 ⌧r �̂g

�⌧r 0 �̂n

̂g ̂n 0

1

A

0

@
T a

Na

Ba

1

A

  Case 1 (             ) 
   Branch where       is a geodesic and 

                           an eigenvec. of  

                            : the eigensystem of  



dIi = 0 case 1

no

.

raR

Rab

{T a / raR,Na, Ba} Rab

⌧r = g = ̂g = 0
Rab

{0,�,�}

  Case 1 (             ) 
   Branch where       is a geodesic and 

                           an eigenvec. of  

                            : the eigensystem of  

   If 

   then       has Segre type {21} with eigenvalues 

dIi = 0 case 1

no

.

Is raR a geodesic?

case 2

Is raR an eigenvecor of Rab?

⌧r = g = ̂g = 0

LN� = LB� = 0 case 2

3 KVs

...

...

2 KVs

no

yes

yes

no

yes

yes

no

no

.

  Case 1 (             ) again 

 
SKIP

SKIP

Curve theoretic parameters 
regulate the number of KVs



dIi = 0 case 0
yes

.

Segre type of Rab is {21} ...

...

yes

no

.

at most 4KVs
at most 3KVs

Rab

  Case 0 (             ) 
   All eigenvalues of       are constants 

   Possible Segre types: {111}, {21}, {3} 

under construction

r(aKb) = 0

  Summary 

  PARTIAL ANSWERS: 

  Local curvature obstructions prevent the 
existence of Killing vector fields 

  The obstructions are given by the curve (or 
surface) theoretic parameters 

  Using our algorithm, we can determine the 
number of KVs without solving the Killing Eq.    
if dim. = 3



APPENDIX

I Rabcd / gc[agb]d 10 KVs

raRbcde = 0
8 KVs

dIi ^ dIj ^ dIk ^ dIl = 0
no KV

dIi ^ dIj ^ dIk = 0
case 3

dIi ^ dIj = 0
case 2

dIi = 0 case 1

case 0

yes

no

yes

yes

yes

yes

yes

no

no

no

no

yes

.

I1 = R

I2 = RabR
ab

I3 = RabR
bcRa

c

I4 = RabR
bcRcdR

ad

I5 = CabcdC
abcd

I6 = CabcdC
cdefCab

ef

I7 = CabcdC
cdefCefghC

abgh

I8 = CabcdC
cdefCefghC

ghijCab
ij

I9 = CabcdC
cdefCefghC

ghijCijklC
abel

  4 dim. case 



↵

�

⇥

⇥
� 6= 0

no KV

• 6 KVs

⇥ 4 KVs

0 1 2

1

.
↵

�

• •

⇥

⇥

� = 0

1 KV

0 1 2

1

.

ds

2 = 2dxdy + z

↵

dy

2 + e

�y+x

�

dz

2

(↵,�, �)

  Example 

   The existence of KVs depends on 
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Masashi Kimura

A simple test for stability of 
BH by    -deformation

29th Nov 2017

(IST, University of Lisbon)

Class.Quant.Grav. 34 (2017) 235007
[arXiv:1706.01447]

1/14

Linear gravitational perturbation on a 
highly symmetric BH usually reduces to

Linear gravitational perturbation

modeunstable mode →
(negative energy bound state)



2/14

implies non-existence of             mode

Sometimes,      contains negative regions

3/14

In general, it is hard to find an appropriate
analytically

S-deformation

We can say             if  

In that case, numerical approach 
(solving PDE) was used so far

[Kodama and Ishibashi 2003] 

For continuous and bounded     



4/14

Todayʼs talk
I want to propose a simple method for 
finding an appropriate S-deformation

There is an unsolved problem in 
our paper 10 years ago

My personal motivation:

5/14

Very easy new method

Just solve                           numerically 

As far as I checked, we can easily find 
continuous and bounded     
if spacetime is stable  

[Kimura 2017] 



6/14

Toy model

・continuity at  

・

・

7/14

typical case



8/14

Existence condition 

Condition for existence of regular 

Condition for non-existence of bound state

Regular    exists if and only if spacetime
is stable (i.e., no             mode case)

9/14

Finite size box case

Proposition. If the potential is in a finite 
size box, there exists an appropriate 
S-deformation for stable case

function of



10/14

Numerical calculation
We need to find a boundary condition so that

is continuous in   

Appropriate boundary 
conditions can be 
found by setting

in           region

11/14

10 Dim Schwarzschild BH

If we set S=0 in V>0 region, we obtain 
appropriate S-deformations



12/14

Squashed Kaluza-Klein BH (K=1)

Ansolved problem in 10 years ago 
is solved

13/14

If                               there exists an 
unstable mode

Black string

[Gregory and Laflamme, 1993]



14/14

We discussed a new method for finding 
S-deformation by solving 

Summary and discussion 

Surprisingly, this method works well

This is a good test for stability of BH
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On uniqueness of static spacetimes
with non-trivial conformal scalar field

Yoshimune Tomikawa

Faculty of Economics, Matsuyama University

JGRG27 11/27-12/1（2017）

based on

Y. Tomikawa, T. Shiromizu, K. Izumi, CQG 34, 155004 (2017)

Contents

1.  Introduction

2.  Set up and BBMB solution

4.  Summary and Future issues 

3.  Uniqueness of BBMB spacetime



1.  Introduction

・Stationary and asymptotically flat black hole solution of
vacuum Einstein equation is unique to the Kerr black hole.

Uniqueness of black hole

・Static and asymptotically flat black hole solution of vacuum 
Einstein equation is unique to the Schwarzschild black hole.

Israel (1967), Bunting, Masood-ul-Alam (1987)

Carter (1971, 1973), et al.

How does it change if there is the scalar field?



No-hair theorem

・There is a no-hair theorem that static and asymptotically 
flat black holes do not have regular scalar hair with non-
negative potential.

Bekenstein (1972), Saa (1996), et al.

→They are unique to the Schwarzschild black hole.

But, there is the Bocharova-Bronnikov-Melnikov-
Bekenstein (BBMB) solution in the Einstein-
conformal scalar field system.

Bocharova, Bronnikov, Melnikov (1970),
Bekenstein (1974, 1975)



BBMB black hole
Bocharova, Bronnikov, Melnikov (1970),
Bekenstein (1974, 1975)

The BBMB black hole is static, spherically symmetric and 
asymptotically flat solution with conformal scalar field.

The scalar field is singular at the event horizon.

The metric is the same as that of the extreme Reissner-
Nordström solution.

Question

Uniqueness of BBMB black hole holds?



Result

We will prove that the region outside “photon sphere” of 
static and asymptotically flat spacetime in the Einstein-
conformal scalar field system is unique to the BBMB
solution.

2.  Set up and BBMB solution



Asymptotically flat, static spacetime

event horizon :

asymptotic boundary conditions :

Field equations
・Einstein equation

・scalar field equation

→

→ The surface Sp where                                  holds is singular.

(0,0)

(i,j)

: Ricci tensor on Ω

: covariant derivative on Ω



BBMB black hole has photon sphere at                 .

BBMB solution Bocharova, Bronnikov, Melnikov (1970),
Bekenstein (1974, 1975)

metric :

event horizon : scalar field diverges at event horizon

scalar field :

: surface satisfying

→ →photon sphere

BH
event horizon

3. Uniqueness of BBMB spacetime



Uniqueness theorem outside Sp

The outside region of Sp of the static and asymptotically
flat spacetime in the Einstein-conformal scalar field system
is unique to the BBMB solution.

Theorem

: surface satisfying

Step of proof

1. We show the relation between φ and V.

2. Using the surgery and positive mass theorem, we show that 
static time slice Ω is conformally flat and V-1 is the harmonic 
function.

3. Electrostatic potential problem with spherical boundary tells us 
that Ω is spherically symmetric.



Relation between φ and V 

(0,0)-component of Einstein eq. and scalar field eq. 

→

integration over

at

Regularity at Sp

(totally umbilic)

,

: covariant derivative w.r.t. 

: extrinsic curvature of

: induced metric of

: lapse function



Step of proof

1. We show the relation between φ and V.

2. Using the surgery and positive mass theorem, we show that 
static time slice Ω is conformally flat and V-1 is the harmonic 
function.

3. Electrostatic potential problem with spherical boundary tells us 
that Ω is spherically symmetric.

Conformally flat

glue

positive mass 
theorem

(     is totally umbilic surface in the flat space)

flat

is conformally flat



Step of proof

1. We show the relation between φ and V.

2. Using the surgery and positive mass theorem, we show that 
static time slice Ω is conformally flat and V-1 is the harmonic 
function.

3. Electrostatic potential problem with spherical boundary tells us 
that Ω is spherically symmetric.

Spherically symmetric 

We can see that                       holds
in the flat space             , where       is the flat Laplacian.

is the totally umbilic surface in the flat space.

is the spherically symmetric surface in the Euclid space.

The electrostatic potential problem tells us that            is 
spherically symmetric.

Regular spherically symmetric solutions with conformal 
scalar field is unique to the BBMB solution.

Xanthopoulos, Zannias (1991)



4.  Summary and Future issues 

Summary

We proved that the region outside Sp of static and 
asymptotically flat spacetime in the Einstein-conformal 
scalar field system is unique to the BBMB solution.



・The uniqueness of the whole region (including the region 
between the event horizon and Sp)?

・Penrose-like inequality for photon sphere?

partially addressed in the another context 
⇒ loosely trapped surface, transversely trapping surface

Shiromizu, Tomikawa, Izumi, Yoshino (2017), 
Yoshino, Izumi, Shiromizu, Tomikawa (2017)

・・・

Future issues

BBMB

(event horizon)

(     )

?
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On the Cauchy problem for semi-linear

Klein-Gordon equations in de Sitter spacetime

Makoto NAKAMURA (Yamagata University)

1 Introduction
Let n ≥ 1, M > 0, H > 0, c > 0. Consider the Cauchy problem

(P )

 (∂2
t − c2e−2Ht∆+M2)u(t, x) + c2enHt/2f(e−nHt/2u(t, x)) = 0

for (t, x) ∈ [0, T )× Rn

u(0, ·) = u0(·) ∈ H1(Rn), ∂tu(0, ·) = u1(·) ∈ L2(Rn)

Known results:

1. D’Ancona (1995), D’Ancona-Giuseppe (2001): Global classical solutions for

(∂2
t − a(t)∆)u+ |u|p−1u = 0, a(t) ≥ 0, n = 1, 2, 3.

2. Yagdjian-Galstian (2009): Fundamental solutions, Lp − Lq estimates.

3. Yagdjian (2012): Small global solutions for f(u) = ±|u|p−1u, 1 < p < ∞,

(u0, u1) ∈ Hs(Rn)⊕Hs(Rn), s > n/2 ≥ 1.



Derivation of equations: Put x0 := t, x := (x1, · · · , xn).

ds2 = −c2dt2 + e2ct/Rdx2 : line element in de Sitter spacetime

c > 0 : speed of light, R > 0 : radius of the universe

H := c/R : Hubble constant, (gαβ)0≤α,β≤n := diag(−c2, e2Ht, · · · , e2Ht)

ds2 =
∑

0≤α,β≤n gαβdx
αdxβ , g := det(gαβ), (gαβ) := (gαβ)

−1.

Then the equation of motion of the scalar field v with mass m and the potential V

must satisfy

(
√
|g|)−1∂α(

√
|g|gαβ∂βv) = m2v + V ′(v),

i.e. (∂2
t + nH∂t − c2e−2Ht∆+m2c2)v + c2V ′(v) = 0.

By u = eµtv for µ ∈ R,{
∂2
t + (nH − 2µ)∂t − c2e−2Ht∆+m2c2 + µ(µ− nH)

}
u+c2eµtV ′(e−µtu) = 0.

Putting µ = nH/2, M2 := mc2 − (nH/2)
2 and f := V ′, we obtain

(∂2
t − c2e−2Ht∆+M2)u+ c2enHt/2f(e−nHt/2u) = 0.

Remark 1.1 µ ≤ nH/2 for energy estimates, µ ≥ nH/2 for contraction argument.

Example : f(u) = λ|u|p−1u or f(u) = λ|u|p for λ ∈ R.

For T > 0, let X(T ) := {u : ∥u∥X(T ) < ∞}, where

∥u∥X(T ) := max{M∥u∥L∞((0,T ),L2(Rn)), ∥∂tu∥L∞((0,T ),L2(Rn)),

c∥e−Ht∇u∥L∞((0,T ),L2(Rn)), c
√
H∥e−Ht∇u∥L2((0,T )×Rn))}.

Theorem 1.2 Let p satisfy

1 ≤ p

{
< ∞ if n = 1, 2
≤ 1 + 2

n−2 if n ≥ 3.

Then

(1) ∀u0 and ∀u1, ∃T = T (∥u0∥H1(Rn) + ∥u1∥L2(Rn)) > 0 and

∃!u ∈ C([0, T ), H1(Rn)) ∩ C1([0, T ), L2(Rn)) ∩X(T ) of (P).

(2) If ∥u0∥H1(Rn) + ∥u1∥L2(Rn) ≪ 1 and 1 + 4/n ≤ p, then u is global.



Lemma 1.3 [see Strichartz ’77] Let β > (8πe)−1/2. Then

∥u∥Lq(R2) ≤ βq1/2∥∇u∥1−2/q
L2(R2)∥u∥

2/q
L2(R2) for 2 ≤ ∃q0 ≤ ∀q < ∞.

Theorem 1.4 Let n = 2, λ ∈ R, α > 0, 0 < ν ≤ 2, j0 ≥ 2/ν. Let

f(u) = λu

eα|u|
ν

−
∑

0≤j<j0

αj

j!
|u|νj

 .

Let D := ∥u0∥H1(Rn) + ∥u1∥L2(Rn) ≪ 1.

Then ∃!u ∈ C([0,∞), H1(R2)) ∩ C1([0,∞), L2(R2)) ∩X(∞) : sol. of (P).

Remark 1.5

· ν ≤ 2 seems to be optimal.

· f(u) = λu(eα|u|
2 − 1) = λα|u|2u+ · · · when ν = 2. Note 1 + 4/n = 3.

Remark 1.6 N.-Ozawa (1998, 1999, 2001), N. (2011) for Schrödinger equations,

wave equations, Klein-Gordon equations, complex Ginzburg-Landau equations and

dissipative wave equations.

Theorem 1.7 (Continuous dependence and asymptotic)

(1) Let v be the solution of (P) for v0 ∈ H1(Rn) and v1 ∈ L2(Rn). Then

∥u− v∥X(T ) −→ 0 if ∥u0 − v0∥H1 + ∥u1 − v1∥L2 → 0.

(2) If u is global, then there exists a free solution v s.t.

lim
t→∞

{e−Ht∥u(t)− v(t)∥L2(Rn) + ∥∂tu(t)− ∂tv(t)∥H−1(Rn)} = 0.

Theorem 1.8 (Large global solutions) Let λ ≥ 0. Assume (1) or (2).

(1) f(u) = λ|u|p−1u with

1 ≤ p

{
< ∞ if n = 1, 2
≤ 1 + 2

n−2 if n ≥ 3.

(2) n = 2, 0 < α < ∞, 0 < ν ≤ 2, 0 ≤ j0 < ∞.

f(u) = λu(eα|u|
ν −

∑
0≤j<j0

αj

j! |u|
νj). When ν = 2, we assume∫

R2

c2|∇u0|2 +M2u2
0 + |u1|2 + c2λ

∑
j≥j0

αj

j!(νj + 2)
|u0|νj+2dx ≤ 2c2π

α
.

Then ∃!u ∈ C([0,∞), H1(Rn)) ∩ C1([0,∞), L2(Rn)) ∩X(∞): sol. of (P).



2 Estimates for linear terms{
(∂2

t − c2e−2Ht∆+M2)u(t, x) + h(t, x) = 0 for (t, x) ∈ [0, T )× Rn

u(0, ·) = u0(·), ∂tu(0, ·) = u1(·).

We put the energy density

e(u) := {(∂tu)2 +M2u2 + c2e−2Ht|∇u|2}/2.

Multiplying ∂tu to the equation,∫
Rn

e(u)(t)dx+Hc2∥e−Ht∇u∥2L2((0,t)×Rn)

+

∫∫
(0,t)×Rn

∂tu(s, x)h(s, x)dxds =

∫
Rn

e(u)(0)dx

for t ≥ 0. For T > 0,

∥∂tu∥L∞((0,T ),L2(Rn)) +M∥u∥L∞((0,T ),L2(Rn))

+ c∥e−Ht∇u∥L∞((0,T ),L2(Rn)) +
√
Hc∥e−Ht∇u∥L2((0,T )×Rn)

≲ ∥u1∥L2(Rn) +M∥u1∥L2(Rn) + c∥∇u0∥L2(Rn) + ∥h∥L1((0,T ),L2(Rn)).

Remark

(1) For the heat equation{
(∂t −∆)u(t, x) + h(t, x) = 0 for (t, x) ∈ [0, T )× Rn

u(0, ·) = u0(·),

the energy estimates show

∥u∥L∞((0,T ),L2(Rn)) + ∥∇xu∥L2((0,T )×Rn)

≤ C∥u0∥L2(Rn) + ∥h∥L1((0,T ),L2(Rn)). (2.1)

(2) For the dissipative wave equation{
(∂2

t −∆+ ∂t)u(t, x) + h(t, x) = 0 for (t, x) ∈ [0, T )× Rn

u(0, ·) = u0(·), ∂tu(0, ·) = u1(·),

the energy estimates show

∥u∥L∞((0,T ),H1(Rn)) + ∥∂tu∥L∞((0,T ),L2(Rn)) + ∥∇t,xu∥L2((0,T )×Rn)

≤ C∥u0∥H1(Rn) + C∥u1∥L2(Rn) + C∥h∥L1((0,T ),L2(Rn)). (2.2)



Integral equation :

(∂2
t + a(t))Fu+ Fh = 0, where a(t) := c2e−2Htξ2 +M2.

Let {ρj}j=0,1 be the solution of

( d2

dt2 + a(t))ρ0(t) = 0, ρ0(0) = 1, ∂tρ0(0) = 0

( d2

dt2 + a(t))ρ1(t) = 0, ρ1(0) = 0, ∂tρ1(0) = 1.

Put Kj(t) := F−1ρj(t)F for j = 0, 1, K(t, s) := K1(t)K0(s)−K0(t)K1(s). Then

u(t) = Φ(u)(t) := K0(t)u0 +K1(t)u1 +

∫ t

0

K(t, s)h(s)ds.

It is easy to show

∥K0(t)u0∥H1(Rn) ≲ eHt∥u0∥H1(Rn), ∥K1(t)u1∥H1(Rn) ≲ eHt∥u1∥L2(Rn)

∥
∫ t

0

K(t, s)h(s)ds∥H1(Rn) ≲ e2Ht∥h∥L1((0,t),L2(Rn))

and Φ(u) ∈ C([0, T ),H1) ∩ C1([0, T ), L2) if u0 ∈ H1, u1 ∈ L2, h ∈ L1((0, T ), L2).

3 Estimates for nonlinear terms

Lemma 3.1 Let p0 satisfy 1 ≤ p0 ≤ min{p, 1 + 4/n}. Then
(1) For f(u) = λ|u|p−1u,∥∥∥enHt/2f(e−nHt/2u)

∥∥∥
L1((0,T ),L2(Rn))

≤ CT 1−n(p0−1)/4∥e−Ht∇u∥n(p−p0)/2
L∞((0,T ),L2(Rn))

· ∥e−Ht∇u∥n(p0−1)/2
L2((0,T ),L2(Rn))∥u∥

p−n(p−1)/2
L∞((0,T ),L2(Rn))

≤ CT 1−n(p0−1)/4∥u∥pX

(2) For f(u) = λu(eα|u|
ν −

∑
0≤j<j0

αj

j! |u|
νj),∥∥∥enHt/2f(e−nHt/2u)

∥∥∥
L1((0,T ),L2(R2))

≤ CT 1−n(p0−1)/4
∑
j≥j0

a(j)

· ∥e−Ht∇u∥n(p(j)−p0)/2
L∞((0,T ),L2(Rn))∥e

−Ht∇u∥n(p0−1)/2
L2((0,T ),L2(Rn))∥u∥

p(j)−n(p(j)−1)/2
L∞((0,T ),L2(Rn))

≤ CT 1−n(p0−1)/4
∑
j≥j0

a(j)∥u∥p(j)X

Proof. (1) Due to ∥|u|p∥L2 ≤ C∥∇u∥apL2∥u∥(1−a)p
L2 by 0 ≤ a := n(p− 1)/2p ≤ 1.

(2) Due to Moser-Trudinger inequality. □



3.1 Proof of Theorem 1.8

Let n = 2, f(u) = λu(eα|u|
ν −

∑
0≤j<j0

αj

j! |u|
νj). Put V (u) :=

∫ u

0
f(v)dv. Then

V ′(u) = f(u). Multiplying ∂tu to

(∂2
t − c2e−2Ht∆+M2)u+ c2enHt/2V ′(e−nHt/2u) = 0,

we have

E(u)(t) + c2H∥e−H·∇u∥2L2((0,t)×Rn)

+c2nH

∫ t

0

∫
Rn

enHs
{
e−nHs/2uV ′(e−nHs/2u)/2− V (e−nHs/2u)

}
dxds = E(u)(0),

where

E(u)(t) :=
{
∥∂tu(t, ·)∥2L2(Rn) +M2∥u(t, ·)∥2L2(Rn) + c2∥e−Ht∇u(t, ·)∥2L2(Rn)

+c2enHt

∫
Rn

V (e−nHt/2u(t, x))dx

}
/2.

Since V satisfies vV ′(v)/2− V (v) ≥ 0 for v ∈ R, we have

E(u)(t) + c2H∥e−H·∇u∥2L2((0,t)×Rn) ≤ E(u)(0).

Lemma 3.2 Let n = ν = 2. Let uL be the free solution of

(∂2
t − c2e−2Ht∆+M2)uL = 0, uL(0, ·) = u0(·), ∂tuL(0, ·) = u1(·).

If ∥e−Ht∇uL∥2L∞((0,T0),L2(R2)) < 2π/α for some T0 > 0, then

0 < ∃T = T (∥u0∥H1 , ∥u1∥L2 , ∥e−Ht∇uL∥L∞((0,T0),L2(R2))) ≪ 1

∃!uN ∈ X(T ) with ∥uN∥X(T ) ≪ 1 and{
(∂2

t − c2e−2Ht∆+M2)uN + c2enHt/2V ′(e−nHt/2(uL + uN )) = 0
uN (0, ·) = 0, ∂tuN (0, ·) = 0.

Remark 3.3 u = uL + uN .

∥e−Ht∇uL∥2L∞L2 < 2π/α, ∥uN∥X(T ) ≪ 1

=⇒ ∥e−Ht∇(uL + uN )∥2L∞L2 < 2π/α

=⇒
∑
j≥j0

a(j)∥e−Ht∇(uL + uN )∥2j+1
L∞L2 < ∞

=⇒ ∥enHt/2V ′(e−nHt/2(uL + uN ))∥L1L2 < ∞,

where p(j) := νj + 1, a(j) := αjβp(j)(2p(j))p(j)/2/j!.



Proof of the theorem. Note u = uL + uN . Let T ∗ := sup{T : u ∈ X(T )} < ∞.

For 0 < ε ≪ 1, let u∗
L be the solution of{

(∂2
t − c2e−2Ht∆+M2)u∗

L = 0 for (t, x) ∈ [T ∗ − ε,∞)× R2

u∗
L(T

∗ − ε, ·) = u(T ∗ − ε, ·), ∂tu
∗
L(T

∗ − ε, ·) = ∂tu(T
∗ − ε, ·).

The energy estimate shows

E(u∗
L)(t) + c2H∥e−Hs∇u∗

L∥2L2((T∗−ε,t)×R2) ≤ E(u∗
L)(T

∗ − ε) for t ∈ [T ∗ − ε, T ∗)

E(u∗
L)(t) ≥ c2∥e−Ht∇u∗

L(t, ·)∥2L2/2 by Def. of E

E(u∗
L)(T

∗ − ε) ≤ E(u)(T ∗ − ε) ≤ E(u)(0)− c2H∥e−Hs∇u∥2L2((0,T∗−ε)×R2).

Since ∥e−Hs∇u∥2L2((0,T∗/2)×R2) ̸= 0, we have

c2∥e−Hs∇u∗
L∥2L∞((T∗−ε,T∗),L2)/2 ≤ E(u)(0)− c2H∥e−Hs∇u∥2L2((0,T∗/2)×R2)

< c2π/α.

Therefore, the lemma shows time local solutions beyond T ∗, a contraction.
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Gravitational collapse of 
massless scalar field and 

Maximal Power Hypothesis
Taishi Ikeda 

(Nagoya Univ.)

Collaborator 
Vitor Cardoso (IST) 
Chul-Moon Yoo  

   (Nagoya Univ.) 
Christopher Moore (IST)

Energy source in the universe

Human body

γ- ray burst

Sun

GW from BBH merger  
(Largest Power from observed event)

High-energy BH collision

Power (W)



Fundamental Question

• Question 
- How large power can be emitted from one isolated system ? 
- Is there upper bound of power from one isolated system ? 

• Planck Power 

- Planck power does not contain      . 
➡        characterizes the power from the classical gravity-

dominated process (not quantum).

Energy source in the universe

Human body

γ- ray burst

Sun

GW from BBH merger  
(Largest Power from observed event)

High-energy BH collision

Power (W) Planck Power:



Talk Plan

• Part 1 
- Power from the gravitational collapse in 

massless scalar field. 

• Part 2 
- Is there upper bound of power from a one-

isolated system ?

Talk Plan

• Part 1 
- Power from the gravitational collapse in 

massless scalar field. 

• Part 2 
- Is there upper bound of power from a one-

isolated system ?



What we want to do.

• What we want to do. 
- How large power can be emitted from gravitational collapse of 

massless scalar field in spherically symmetric spacetime. 

• When does power become large ? 
- The system needs to have sufficient energy. 
- The large power is emitted from a visible large curvature 

region. 
➡ It is expected that power 

becomes large in no BH 
spacetime round the 
threshold of BH 
formation.

• We performed numerical simulations. 
- Initial data : pure ingoing pulse of 

scalar field 

- Initial parameter :  
- Time evolution : G-BSSN formulation 
- Power is defined by using Kodama 

flux at far region.

What we want to do.
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Gravitational collapse in massless scalar field



Human body

γ- ray burst

Sun

GW from BBH merger  
(Largest Power from observed event)

High-energy BH collision

Power (W) Planck Power:
Gravitational collapse in massless scalar field

Energy source in the universe

Planck Power may give an upper bound 
for power from one-isolated system.

Talk Plan

• Part 1 
- Power from the gravitational collapse in 

massless scalar field. 

• Part 2 
- Is there upper bound for power from a one-

isolated system ?



Maximal Power Hypothesis

• Maximal Power Hypothesis (MPH) (K.Thorne, G.Gibbons et al) 

             is an upper bound for the power of any gravity 
dominated process (        : Planck Power ) 

• Intuitive understanding 
- spherically symmetric system 
‣ Assume that the flux propagates at speed of light. 
‣ To emit the flux, BH must not appear.

(Dyson bound)

Maximal Power Hypothesis

• Maximal Power Hypothesis (MPH) (K.Thorne, G.Gibbons et al) 

             is an upper bound for the power of any process in the 
universe. (        : Planck Power ) 

• Intuitive understanding 
- spherically symmetric system 
‣ Assume that the flux propagates at speed of light. 
‣ To emit the flux, BH must not appear.

(Dyson bound)

However, is this Hypothesis really correct ?



Counter examples

• Counter example 1 
- We can construct the outgoing 

initial data whose power is 
larger than              ,artificially. 

• Counter example 2 
- We can construct the solutions 

which have an arbitrary large 
power by cut and paste two 
spacetimes. 
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Counter examples

• Counter example 1 
- We can construct the outgoing 

initial data whose power is 
larger than Planck power 
artificially. 

• Counter example 2 
- We can construct the solutions 

which have an arbitrary large 
power by cut and paste two 
spacetimes. 
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It is necessary to add some conditions 
to the MPH. 



Candidate of Additional Condition (?)

• Additional condition1 
- In order that MPH is correct, the spacetime must not have 

visible singularity at past. 
- This condition excludes the counter example 1.

• Additional condition1 
- In order that MPH is correct, the spacetime must not have 

visible singularity at past. 
- This condition excludes the counter example 1.

Candidate of Additional Condition (?)



• Additional condition1 
- In order that MPH is correct, the spacetime must not have 

visible singularity at past. 
- This condition excludes the counter example 1.

Visible singularity at past

Candidate of Additional Condition (?)

• Additional condition 2 
- In order that MPH is correct, the length scale     of source 

must be smaller than the time scale        of the pulse. 
- This condition excludes the counter example 2. 

If :                , 
MPH can be incorrect. 

If :                , 
MPH is correct.

Candidate of Additional Condition (?)



• Additional condition 2 
- In order that MPH is correct, the length scale     of source 

must be smaller than the time scale        of the pulse. 
- This condition excludes the counter example 2. 

If :                , 
the power can become arbitrary 
 large. 

If :                , 
the power has an upper bound 
            .

Candidate of Additional Condition (?)

Anyway, further discussion of MPH is needed. 

Summary
• Our questions 

- How large power can be emitted from one isolated system ? 
- Is there upper bound of power from one isolated system ? 

• In Part I 
- I showed that the power which can be emitted from the 

gravitational collapse of massless scalar field is  

- This value is larger than the case of BBH merger. 
• In Part II 

• I discussed the validity of Maximal Power Hypothesis (MPH). 
• The further discussion of MPH is needed.
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Light ring stability in ultra-compact objects

Pedro Cunha

Physics Department of the University of Aveiro and CIDMA
IST - University of Lisbon, Portugal

1

arXiv:1708.04211, P. Cunha, E. Berti and C. Herdeiro,

accepted in Physical Review Letters

Pedro Cunha LR stability in UCOs

Could the LIGO events be sourced by BH-mimickers?

1

First LIGO detections:

consistent with a Black Hole (BH) merger.

signature of a perturbed Light Ring (LR) .

Alternative LIGO candidates:

Horizonless objects with a LR→ vibrate like a BH (initially).

Are these objects viable BH-mimickers?

Pedro Cunha LR stability in UCOs



Outline of the argument

1

=⇒ horizonless UCOs are not viable, within reasonable conditions.

Reasonable assumptions, e.g.smoothness, causality and axial symmetry.

LRs come in pairs→ one is stable (unless NEC is violated).

Stable LR traps radiation→ destabilizes object.

Pedro Cunha LR stability in UCOs

Assumptions for the spacetime

−→

' flat spacetime UCO

We assume:

dynamical formation from gravitational collapse.

initial flat spacetime and causality =⇒ topological triviality (Geroch).

UCO is stationary, axially-symmetric and asymptotically flat.

no event horizon; Z2 reflection symmetry not needed.

The metric is smooth.

Pedro Cunha LR stability in UCOs



Spacetime metric

We consider a metric:

4D, in quasi-isotropic coord. (t, r, θ, ϕ).

with Killing vectors ∂t (stationarity) and ∂ϕ (axial-symmetry).

with grθ = 0, grr > 0, gθθ > 0 (gauge freedom).

with gϕϕ > 0 (preserve causality).

until otherwise specified→ no assumptions on field equations.

Pedro Cunha LR stability in UCOs

Geodesic motion

The null geodesic flow:

determined by the HamiltonianH = 1
2g
µνpµ pν = 0.

2H = (gijpi pj) + (gabpa pb), i ∈ {r, θ}, a ∈ {t, ϕ}.
= K + V .

Killing vectors ∂t, ∂ϕ =⇒ E = −pt, L = pϕ (constants).

pr = pθ = 0 ⇐⇒ K = 0 ⇐⇒ V = 0 .

Pedro Cunha LR stability in UCOs



Light rings

Light ring (LR) ⇐⇒ circular photon orbit.

Tangent vector field is a linear combination of (only) ∂t, ∂ϕ.

Along trajectory pr = pθ = V = 0 and ṗµ = 0.

ṗµ = −
(
∂µg

rrp2r + ∂µg
θθp2θ + ∂µV

)
/2.

At a LR: =⇒ V = ∇V = 0

Pedro Cunha LR stability in UCOs

Effective potentials

Shortcoming of V → depending on parameters E,L.

Can be factorized as V = (L2gtt)(σ−H+)(σ−H−), σ ≡ E/L.

Explicitly H± =
(
−gtϕ ±

√
D
)
/gϕϕ, D ≡ g2tϕ − gttgϕϕ.

V = 0 ⇐⇒ (σ = H+ ∨ σ = H−)

At a LR: =⇒ ∇H± = 0 (critical point of H±)

Pedro Cunha LR stability in UCOs



∇H± as a map

(r, θ)

X

∂iH±

Y±

f

Consider ∇H± as a map f : X → Y±:

X is a compact, simply connected 2D region parametrized by (r, θ).

Y± is a 2D space parametrized by the components ∂iH±, i ∈ {r, θ}.

LR→ origin of Y±.

Pedro Cunha LR stability in UCOs

Brouwer degree (topology)

X

xn

Y

y0

f

Consider a smooth map f : X → Y

take a regular value y0 ∈ Y with finite solutions to f(xn) = y0.

the Jacobian Jn = det(∂f/∂xn) 6= 0 is computed at each xn.

The Brouwer degree of f is: w =
∑
n sign(Jn).

It is independent on the choice y0.

It is invariant under homotopies (continuous deformations of the map).

Pedro Cunha LR stability in UCOs



Brouwer degree (topology)

w = 0

−1

+1

Each critical point∇H± = 0:

is assigned a topological charge w.

sign w depends on the Jacobian Jn = |∂2H±/∂
2xn|.

Charge of a critical point:

maximum/minimum =⇒ w = +1.

saddle point =⇒ w = −1.

Pedro Cunha LR stability in UCOs

Illustration Brouwer degree w

Local maximum
Saddle pointNo critical points

Illustrative potential H(x, y) = x(x2 − a)− (1 + x2)y2.

Conservation of w under a smooth deformation of (x, y)→ ∇H .

a = −2→ no critical points→ w = 0 (Left).

a = 1→ two critical points, w = +1− 1 = 0 (Right).

Pedro Cunha LR stability in UCOs



Light Ring existence

−→

' flat spacetime UCO

w = 0 w = 0

Flat spacetime (start):
no LRs =⇒ ∇H± 6= 0 =⇒ total w = 0.

UCO (final):
UCO can be smoothly deformed into flat spacetime.

total w still zero.

LRs must be formed in pairs.

Pedro Cunha LR stability in UCOs

Light Ring types

w = +1w = −1 w = +1

Different types of LRs:

Saddle point of V → unstable LR (w = −1)→ GW signal.

Local minimum of V → stable LR (w = +1)→ spacetime instability.

Local maximum of V → unstable LR (w = +1)→ exotic LR.

Pedro Cunha LR stability in UCOs



Relation to NEC

Consider Einstein’s field equations:

Gµν = 8π Tµν .

At a LR:

Tµν pµ pν =
1

16π
∂i∂

iV.

If the LR is exotic (local maximum of V ):

∂i∂
iV < 0 =⇒ Tµνpµpν < 0.

Null Energy Condition (NEC) is violated for an exotic LR!

Enforcing NEC =⇒ UCO has a stable LR.

Pedro Cunha LR stability in UCOs

Conclusions

Under generic and reasonable physical conditions:

Light Rings are created in pairs.

If the Null Energy Condition is preserved, one of the LRs is stable.

BH mimickers are potentially unstable.

The first observations from LIGO should be really from BHs.

Pedro Cunha LR stability in UCOs
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Search for non-minimally coupled  
scalar field dark matter 

 with gravitational-wave observations 

Soichiro Morisaki
RESCEU 

Collaborate with Teruaki Suyama. 

1 

•  Dark matter may be ultralight scalar field.
Ø  Motivated by string theory     
Ø  As a resolution to small-scale problem [1] 

•  The scalar-wave background in the Galaxy?

Ultralight scalar field dark matter 2 

[2] A. Aoki and J. Soda, Int. J. Mod. Phys. D26 (2016).   

[1] W. Hu, R. Barkana, and A. Gruzinov, Phys. Rev. Lett. 85, 1158 (2000). 

Gravitational-wave detector 

•  Too weak to be detected except for PTA [2].



•  Scalar field can have                                
non-minimal coupling with Ricci scalar.

•  Some consistent cosmological scenarios with 
this type of dark matter [1] [2].

Non-minimal coupling 3 

[1] P. J. Steinhardt and C. M. Will, Phys. Rev. D 52, 628 (1995).
[2] P. Chen, T. Suyama, and J. Yokoyama, Phys. Rev. D 92,  124016 (2015). 

How can we probe 
non-minimally coupled scalar field dark matter 
with gravitational-wave observations?  

Model 4 

: scalar field : metric matter feels (Jordan metric)  
Non-minimal coupling 



Model 5 

: scalar field : metric matter feels (Jordan metric)  

: Einstein metric  
•        and     decouple.
•                              

Model 6 

ϕ

�(ϕ)

In the Solar system, 

can be detected by gravitational-wave detectors



Current constraints 7 

For linear case 

We studied current constraints on this model.
•  The fifth-force experiments
•  Shapiro delay measurement by Cassini. 

��-�� ��-�� ��-��
�ϕ [��]����

����

����

����

����

�[���]

Cassini 

Fifth-force 

Current constraints 8 

For quadratic case 
��-�� ��-�� ��-�� ��-��

�ϕ [��]�
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���

�[���]

Cassini 
Fifth-force 

We studied current constraints on this model.
•  The fifth-force experiments
•  Shapiro delay measurement by Cassini. 



The amplitude and the phase modulates due to
1.  the velocity dispersion of dark matter                         
2.  the motion of the detector

How is the signal 9 

: time scale of the detector’s motion 

Nearly monochromatic.

How to analyze data 10 

chunks with 
Decompose the data 
into small chunks, 
where the signal looks 
monochromatic. 

Apply               
incoherent method [1] for 
continuous-wave search  

[1] P. R. Brady and T. Creighton, Phys. Rev. D 61, 082001 (2000). 



Setup 11 

•  Maxwell-Boltzmann distribution for           
with

•   Assume the scalar waves can be detected if

•  Take into account
Ø  The motion of the Solar system
Ø  The variation of the detectors’ orientation  

Threshold with F. A. P. = 0.05 

Result (Linear case) 12 

��-�� ��-�� ��-��
�ϕ [��]����

����

����

����

����

�[���]
SKA 

PPTA LISA DECIGO 

ET 

LIGO 

Expected constraints 
Improved by a factor of 10 ~ 106 



Result (Quadratic case) 13 
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Conclusion 14 

•  We studied how we can probe                      
non-minimally coupled scalar field dark matter 
with gravitational-wave observations

•  We proposed a suitable method                      
to detect the scalar field dark matter.

•  The constraints will be improved.
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Non-minimally coupled 

Coleman-Weinberg inflation

Osamu Seto (Hokkaido Univ.)

With

Kunio Kaneta (IBS →Minnesota)

Ryo Takahashi (Tohoku)

Ref: 1708.06455 [hep-ph]

Inflation solves [Guth, Sato … (1981)]

• the flatness problem

• the horizon problem

• …

provides

• seeds of the density perturbation        

[Hawking, Starobinsky, Guth and Pi (1982)]

• gravitational wave background          g

[Starobinsky (1979), Rubakov et al (1982)]

§ Introduction





• Energy scale of inflation is not clear yet…

Large field model ~ high scale

Slow roll param.
Small field model ~ low scale

Amplitude

§ Slow roll inflation

§ Low scale inflation is attractive

For instance,

• To supress axion isocurvature perturbation

Hinf < 107 GeV [Planck Coll. (2017)]

• Baryon DM generation through Q-ball [Enqvist

and McDonald (1999)] 

TR ~ 100 GeV 

• Gravitino overproduction

TR < 105 GeV [Kawasaki et al (2008), Cybrut et al (2009)]

• Relaxion [Graham et al (2015)]

Hinf < ΛQCD



Q: What is the lowest scale with 
a specific potential (model)?

§Inflation 

by Coleman-Weinberg potential

• Number of e-folds

• Too red spectral index, 0.94 < ns < 0.95 
[Barenboim et al (2014)]

• Linear term by e.g., fermion condensation 
[Iso et al (2015)]



§Inflation 

by Coleman-Weinberg potential

• With Linear term

§Non-minimally Coleman-

Weinberg inflation

• A simple non-minimally coupled to gravity                   

does not work [Iso et al (2015)]

• Another form

with logarithmic correction [De Simone et al (2008)]



§Non-minimally Coleman-

Weinberg inflation

• Resultant scalar potential

• Slow roll parameters

§Non-minimally Coleman-

Weinberg inflation

• Scale of VEV    



§Non-minimally Coleman-

Weinberg inflation

• Scale of Hubble parameter    

§Non-minimally Coleman-

Weinberg inflation

• Maximal e-folds



§Summary

• Logarithmic non-miminal coupling to gravity

• Reduce the nergy scale of inflation 
significantly

• Nmax cannot be enormous.
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Boson Stars in a 
Generalized Proca Theory

Masato Minamitsuji
Phys. Rev. D96, 044017 (2017)

See also
Heisenberg, Kase, Minamitsuji, and Tsujikawa
JCAP 1708, 08 (2017), PRD 96, 084049 (2017) 

Compact Objects  in Modified Gravity

𝐺𝜇𝜈 𝑔 + 𝐻𝜇𝜈 𝑔𝜇𝜈, 𝜙, 𝐴𝜇 , 𝑓𝜇𝜈 ⋯ = 8𝜋𝐺𝑇𝜇𝜈

Black holes Neutron stars Boson stars

Hairy solutions EOS-independent 
relations 

Gravitationally bound
solitonic objects

𝜇 = 10−10𝑒𝑉 ⟹ 𝑀~𝑀⊙

𝜇2 𝜙 2

Observationally verified  ⟸ ⟹Not observationally verified

Kaup (68) 
Ruffini & Bonazzola (69) 
Jetzer (92)



Generalized Proca Theories

𝑆 =  𝑑4𝑥 −𝑔 𝐹 +  

𝑖=2

6

𝐿𝑖

𝐿2 = 𝐺2 𝑋, 𝐹, 𝑌 𝐿3 = −𝐺3 𝑋 𝛻𝜇𝐴
𝜇

𝐿4 = 𝐺4 𝑋 𝑅 + 𝐺4𝑋 𝑋 𝛻𝜇𝐴
𝜇 2

− 𝛻𝜇𝐴𝜈𝛻
𝜈𝐴𝜇

Tasinato (14) Heisenberg (14)
Allys, Peter, & Rodriguez (16) 
Beltran Jimenez, & Heisenberg (16)

𝐿5 = 𝐺5 𝑋 𝐺𝜇𝜈𝛻
𝜇𝐴𝜈 −

𝐺5𝑋 𝑋

6
𝛻𝜇𝐴

𝜇 3
− 3𝛻𝜇𝐴

𝜇𝛻𝜌𝐴𝜎𝛻
𝜎𝐴𝜌 + 2𝛻𝜌𝐴𝜎𝛻

𝛾𝐴𝜌𝛻𝜎𝐴𝛾

−𝑔5 𝑋  𝐹𝛼𝜇  𝐹 𝜇
𝛽

𝛻𝛼𝐴𝛽

𝐿6 =
1

4
𝐺6 𝑋 𝐿𝜇𝜈𝛼𝛽𝐹𝜇𝜈𝐹𝛼𝛽 +

1

2
𝐺6𝑋 𝑋  𝐹𝛼𝛽  𝐹𝜇𝜈𝛻𝛼𝐴𝜇𝛻𝛽𝐴𝜈

𝑋:= −
1

2
𝑔𝜇𝜈𝐴𝜇𝐴𝜈 𝐹:= −

1

4
𝐹𝜇𝜈𝐹𝜇𝜈

𝑌:= 𝐴𝜇𝐴𝜈𝐹𝜇𝛼𝐹𝜈
𝛼

𝐿𝜇𝜈𝛼𝛽: =
1

4
𝜀𝜇𝜈𝜌𝜎𝜀𝛼𝛽𝛾𝛿𝑅𝜌𝜎𝛾𝛿

Most general vector-tensor theories with 2nd order EOMs

Hairy Static Black Holes

𝑑𝑠2 = −𝑓 𝑟 𝑑𝑡2 +
𝑑𝑟2

ℎ 𝑟
+ 𝑟2𝑑Ω2 𝐴𝜇𝑑𝑥

𝜇 = 𝐴0 𝑟 𝑑𝑡 + 𝐴1 𝑟 𝑑𝑟

Charged stealth Schwarzschild solution (𝑋 =  𝑃2 2)

𝐿 =
𝑀𝑝𝑙

2

2
𝑅 −

1

4
𝐹𝜇𝜈𝐹𝜇𝜈 + 𝛽𝐺𝜇𝜈𝐴𝜇𝐴𝜈

↔ 𝐺4 𝑋 =
1

2
𝑀𝑝

2 + 𝛽𝑋

β =
1

4
: 𝑓 𝑟 = ℎ 𝑟 = 1 −

2𝑀

𝑟
𝐴0 𝑟 = 𝑃 +

𝑄

𝑟

𝐴1 𝑟 = ±
𝑄2 + 2𝑃𝑄𝑟 + 2𝑀𝑃2𝑟

𝑟

1

𝑓 𝑟

⇒ 𝐹𝑡𝑟 =
𝑄

𝑟2

Chagoya, Niz, & Tasinato (16)

- Analytic solutions for 𝑋 = 𝑐𝑜𝑛𝑠𝑡



𝐺𝑖 𝑋 , 𝑔𝑖 𝑋 ∝ 𝑋𝑛𝐿 =
𝑀𝑝𝑙

2

2
𝑅 −

1

4
𝐹𝜇𝜈𝐹𝜇𝜈 + 𝐿𝑖

𝐺3 𝑋 , 𝐺4 𝑋

1. Cubic vector Galileon coupling: 𝐺3 = 𝛽3𝑋

ℎ − 𝑓

𝑀,  𝑏2, 𝑃 are independent 

Heisenberg, Kase, Minamitsuji,  & Tsujikawa (17)

○ Constraints from GW170817 
and GRB170817A

𝐴1 = 0

3. No regular black hole for 𝐺5

𝑃 = 𝑃 𝑀,𝑄 𝐺2 = −𝑔4 𝑋 𝐹, 𝑔5 𝑋 , 𝐺6 𝑋
ℎ − 𝑓

2. Intrinsic vector-mode coupling:

× Constraints from GW170817 and GRB170817A

○ Constraints from GW170817 and GRB170817A



Boson Stars
- Gravitationally bound solitonic objects constituted by bosons

𝑀~  𝑀𝑝
2 𝜇 ≪ 𝑀𝑐ℎ ~  𝑀𝑝

3 𝜇2

𝜇 = 10−10𝑒𝑉 ⟹ 𝑀~𝑀⊙

𝑉 = 𝜇2 𝜙 2:

- Massive complex vector bosons can form a “mini” boson star   

Kaup (68), Ruffini, & Bonazzola (69) , Friedberg, Lee, & Pang (87)

𝑉 = 𝜇2 𝜙 2 + 𝜆 𝜙 4: 𝑀~ 𝜆  𝑀𝑝
3 𝜇2 ~𝑀𝑐ℎ

Colpi, Shapiro, & Wasserman (86)

𝐿 = 𝑀𝑝
2𝑅 − 𝐹𝜇𝜈  𝐹𝜇𝜈 − 𝜇2𝐴𝜇  𝐴𝜇: 𝑀~  𝑀𝑝

2 𝜇

- Boson stars in the presence of (healthy) higher-derivative interactions. 

“mini” boson stars

Brito, Cardoso, Herdeiro, & Radu (16)

𝜙 2𝑅𝐺𝐵
Baibhav & Maity (17)

𝐺𝜇𝜈𝜕𝜇𝜙𝜕𝜈
 𝜙

Brihaye, Cisterna, & Erices (16)

Boson Stars in a Generalized Proca Theory

Noether current :

Ansatz



ADM mass Noether charge

Binding energy gravitationally bound if 𝐵 < 0

: 𝜔 =
 𝜔

𝜎∞
⟹ ω ≤ 𝜇

𝜇 = 𝜅 = 𝜎0 = 1
⟹ 𝑓0, 𝛽

𝑟

𝑚𝑎0

𝑎1

𝑎0,1 ∝ 𝑒− 𝜇2−𝜔2𝑟

- 𝛽 > 0: no solution above 𝑓0 > 𝑓0,𝑚𝑎𝑥

𝑓0,𝑚𝑎𝑥 = 0.231𝑀𝑝 for 𝛽 = 0.2

Baibhav & Maity (17) Brihaye, Cisterna, & Erices (16)

A universal feature in higher-
derivative theories

- 𝛽 < 0: a single-valued function of 𝜔

𝛽 = 0.1

𝛽 = 0
𝛽 = −0.1

𝛽 = −0.2

𝛽 = 0.2

𝛽 = 0.1

𝛽 = 0
𝛽 = −0.1

𝛽 = −0.2

𝛽 = 0.2

𝛽 = 0.1

𝛽 = 0

𝛽 = −0.1

𝛽 = −0.2

𝛽 = 0.2



𝛽 = 0.2
𝛽 = 0

𝑀

𝜇𝑄

𝛽 = −0.2

- Maximal mass and charge with 𝐵 < 0. 

- 𝑓0 = 0 ⟹  𝜔 𝜇 = 1:
Minkowski solution 𝑀 = 𝑄 = 0

- 𝑀, 𝜇𝑄~  𝑀𝑝
2 𝜇

Compactness

𝛽 = 0.2𝛽 = 0

𝛽 = −0.2

- 𝛽 ≥ 0: multivalued function of 𝑅. 

- 𝛽 < 0: 𝐶~0.35 ⟹ Photospheres ? 

Jeter & van der Bij (89)

Unstable?



- Black holes and boson stars in generalized Proca theories. 

- Neutron stars in generalized Proca theories Kase, Minamitsuji, & Tsujikawa 1711.08713

Stability of black holes and neutron stars

Constraints from the speed of GWs in light of GW170817.

Summary

A bunch of hairy black hole solutions 

Sensitivity of boson stars to nonminimal couplings

- For further constraints 

No-hair properties for intrinsic vector mode couplings

𝑀 ≥ 2𝑀⊙ for  vector galileons

Thank you.
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Takayuki OHGAMI  and Nobuyuki SAKAI (Yamaguchi Univ.)

1

Optical Images of Gravastar 
Surrounded by Dust

Outline

✤ What’s Gravastar?

✤ Purpose.

✤ Motion of interstellar medium.

✤ Optical images of gravastar.

✤ Summary.
2



What’s Gravastar?

✤ One of the super compact objects as final state of gravitational 
collapse of stars (proposed by Mazur & Mottola, 2004).

✤ In this model, an interior de Sitter region and an exterior 
Schwarzschild background are connected by a shell.

event horizon

spherical shell

de Sitter space-time

Schwarzschild space-time

3

p = ⇢ (= 0)

p = �⇢ (< 0)

p = ⇢ ( 6= 0)

✤ Metric of outside shell and inside shell

- Outside : Schwarzschild space-time

- Inside : de Sitter space-time

✤ This idea does not have two fundamental problems of 
black holes.
‣ Singularity problem

‣ Information loss problem

A(r) = 1�
2GM

r

ds2 = �A(r)dt2 +A�1(r)dr2 + r2(d✓2+sin2✓ d'2)

A(r) = 1�H2r2

4



✤ Thin shell model (Visser & Wiltshire, 2004)

✤ Sakai, Saida, Tamaki found parameters when 
gravastars are stable for radial perturbation (2004).

0

1

2

3

4

5

6

0 0.1 0.2 0.3 0.4 0.5

Radius of 
unstable 
circular 

orbit

Our 
model

5

✤ Our model
- 2GMH = 0.4 

- Radius of shell ; R / 2GM ~ 1.3 

- This gravastar has an 
unstable circular orbit.

Relationship of parameters of 
stable gravastar.

2GMH

R
a
d
i
u
s
o
f
s
h
e
l
l
/
2
G
M

1.5

Purpose.

✤ We  propose a new method of detecting gravastar by 
electro-magnetic observations.

✤ We want to confirm whether it is possible to 
distinguish black holes from gravastars by optical 
images.

6



✤ Hydrodynamics equations in GR.
‣ Continuity equation

‣ Euler equations

✤ Assumption 
- Interstellar medium is dust (                            ).
- Stationary and spherical symmetry.

Motion of interstellar medium.

7

uµ
: four vector

n : number density

⇢ : energy density

P : pressure

m : mass of dust

(nuµ);µ = 0

(⇢+ P )uµ;⌫u
⌫ = �P,µ � uµP,⌫u

⌫

⇢ = nm, P = 0

✤ Hydrodynamics solution
‣ Inside of shell (de Sitter space-time)
- Because of expanding space-time solution, dust sticks to shell.

‣ Outside of shell (Schwarzschild space-time)
- Dust falls into shell.
- Density distribution

- Radial component of four vector

8

✤ Dust piles up shell.
- We consider some cases of 

density on shell            .⇢shell

density distribution

⇢shell

⇢

⇢Sch(R)

0

10�2rg

⇢Sch / r�
3
2

R r

⇢ / r�
3
2

ur / r�
1
2



Optical images of gravastar.

✤ How to calculate
✤ Ray tracing
- Compute null geodesic equations and radiative transfer equation.

- Trace path of light as pixels in an image plane.

9

Gravastar

Observer

Image plane

Path of light Impact 
parameter 

b

✤ Models
‣ Model 1 : Matter of shell does not interact with photons.
- Light rays pass through gravastar interior.

‣ Model 2 : Matter of shell interacts with photons.
- Light rays don’t pass through gravastar interior.

10
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Null geodesics on gravastar space-time
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✤ Results : Low density case

Model 1 Model 2

✤ When density on shell is low, model dependence is large.

- In model 2, we probably can’t distinguish gravastar from BHs.

11

Impact parameter b / rg Impact parameter b / rg
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BH
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⇢shell/⇢Sch(R) = 102

BH

✤ Results : High density case

 0

 5

 10

 15

 20

 25

 30
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α

Model 1
Model 2

BH

✤ When density on shell is high, intensity distributions are independent of 
models.

- Optical images isn’t dark and look like a bright sphere with a brighter ring.

Optical images
Model 1 Model 2

BH

12
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Summary.

✤ Set a situation that dust falls into shell and piles up stationary.

✤ Obtained optical images of thin shell gravastar model 
surrounded by optically thin dust by computing null geodesic 
eqs. and radiative transfer eq.

✤ If density on shell is high, we would observe gravastar as a 
extremely compact bright sphere with a brighter ring.

13
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Mathematical Theory of Rotating

Gaseous Stars

Tetu Makino (Prof Emer at Yamaguchi Univ.)

November 29, 2017 //

The 27th Workshop on Genaral Relativity and Gravitation in

Japan

1

Financially supprted by
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Einstein-Euler equations

Rµν − 1

2
gµν =

8πG

c4
Tµν , (1)

Tµν = (c2ρ+ P )UµUν − Pgµν (2)

for the metric ds2 = gµνdx
µdxν

3

Assumption (A):

P is a given function of ρ > 0 such that 0 < P, 0 < dP/dρ < c2 for

ρ > 0;

there exists a smooth function Λ which is analytic near 0, Λ(0) = 0,

and
P = Aργ(1 + Λ(Aργ−1/c2)) (3)

Here A, γ are positive cnstants, and

6/5 < γ < 3/2.

4



Result of [1]: Newtonian problem governed by the Euler-Poisson

equations:（c = +∞ ) admits axially and equatorialy symmetric

slowly rotating solutions with the density distribution

ρN(r, ζ) =
(γ − 1

Aγ

) 1
γ−1

max(uN(r, ζ), 0)
1

γ−1

with compact support, where r =
√

(x1)2 + (x2)2 + (x3)2, ζ = x3/r

for x = (x1, x2, x3) ∈ R3, and the velocity field

v⃗N = −Ωx2
∂

∂x1
+Ωx1

∂

∂x2

with sufficiently small constant angular velosity Ω.

5

Problem: Find a solution of the Einstein-Euler equations, which

tends to the solution ρN, v⃗N as c → ∞ of the form:

ds2 = e2F (cdt+Adϕ)2 − e−2F [e2K(dϖ2 + dz2) + Π2dϕ2] (4)

Here x1 = ϖ cosϕ, x2 = ϖ sinϕ, x3 = z.

6



Main Result:

When uO/c
2 is sufficiently small, we have a solution

F =
1

c2

(
ΦN − Ω2

2
ϖ2

)
+O(1/c4), K = − Ω2

2c2
ϖ2 +O(1/c4),

A = −ϖ2Ω

c
(1 +O(1/c2)), Π = ϖ(1 +O(1/c4)),

ρ =
(γ − 1

Aγ

) 1
γ−1

max(u, 0)
1

γ−1 (1 +O(1/c2)), u = uN +O(1/c2) (5)

Here ΦN is the ρN is the Newton potential generated by ρN, and

uO = uN(0, 0).

7

The equations to be solved reduce to

∂2F

∂ϖ2
+

∂2F

∂z2
+

1

Π

(∂F

∂ϖ

∂Π

∂ϖ
+

∂F

∂z

∂Π

∂z

)
+

e4F

2Π2

[( ∂A

∂ϖ

)2

+
(∂A
∂z

)2]
=

4πG

c4
e−2F+2K(ϵ+ 3P ), (6a)

∂

∂ϖ

(e4F
Π

∂A

∂ϖ

)
+

∂

∂z

(e4F
Π

∂A

∂z

)
= 0, (6b)

∂2Π

∂ϖ2
+

∂2Π

∂z2
=

16πG

c4
e−2F+2KPΠ, (6c)

∂Π

∂ϖ

∂K

∂ϖ
− ∂Π

∂z

∂K

∂z
=

1

2

( ∂2Π

∂ϖ2
− ∂2Π

∂z2

)
+Π

[(∂F

∂ϖ

)2

−
(∂F
∂z

)2]
+

− e4F

4Π

[( ∂A

∂ϖ

)2

−
(∂A
∂z

)2]
, (6d)

∂Π

∂z

∂K

∂ϖ
+

∂Π

∂ϖ

∂K

∂z
=

∂2Π

∂ϖ∂z
+ 2Π

∂F

∂ϖ

∂F

∂z
− e4F

2Π

∂A

∂ϖ

∂A

∂z
, (6e)

F = − u

c2
+Const.. (6f)

8



(6a),(6b),(6c) are elliptic equations on F,A,Π when K is given, and

(6d),(6e) are a first order system on K when F,A,Π are given.

[Point 1]: When P = 0, the integrability condition of (6d)(6e) is

guaranteed a priori, but when P ̸= 0, it is not the case and a divice is

needed.

Anyway we apply the fixed point theorem for contraction mappings

by setting appropriate functional sapces.

[Point 2]: Through this process, we need the crucial lemma of [1]

in order to prove the solvability of the elliptic equation on F .

9

[Point 1]:

(6d),(6e) ⇔ ∂K

∂ϖ
= K̃1,

∂K

∂z
= K̃3,

where

K̃1 =
[( ∂Π

∂ϖ

)2

+
(∂Π
∂z

)2]−1( ∂Π

∂ϖ
· RH(6d) + ∂Π

∂z
· RH(6e)

)
, (7a)

K̃3 =
[( ∂Π

∂ϖ

)2

+
(∂Π
∂z

)2]−1(
− ∂Π

∂z
· RH(6d) + ∂Π

∂ϖ
· RH(6e)

)
. (7b)

But

∂K̃1

∂z
− ∂K̃3

∂ϖ
=

8πG

c4
e−2F+2KPΠ

[( ∂Π

∂ϖ

)2

+
(∂Π
∂z

)2]−1

×

×
[(∂K

∂ϖ
− K̃1

)∂Π
∂z

−
(∂K
∂z

− K̃3

) ∂Π

∂ϖ

]
. (8)

10



Lemma 1 : Even if P ̸= 0, we have

K̃ = K ⇒ ∂K

∂ϖ
= K̃1,

∂K

∂z
= K̃3 ⇒ (6d), (6e),

where

K̃(ϖ, z) :=

∫ z

0

K̃3(0, z
′)dz′ +

∫ ϖ

0

K̃1(ϖ
′, z)dϖ′ (9)

11

[Point 2]

Post-Newtonian approximation:

F =
1

c2

(
ΦN − Ω2

2
ϖ2

)
− w

c4
, (10a)

A =
(
− Ω

c
+

Y

c3

)
ϖ2, (10b)

Π = ϖ
(
1 +

X

c4

)
, (10c)

K = − Ω2

2c2
ϖ2 +

V

c4
(10d)

u = uN +
w

c2
(10e)

⇒ ρ =
(γ − 1

Aγ

) 1
γ−1

max(u, 0)
1

γ−1 (1 + [u/c2]1)

12



[ ∂2

∂ϖ2
+

1

ϖ

∂

∂ϖ
+

∂2

∂z2
+

1

(γ − 1)a2
max

(uN

uO
, 0
) 1

γ−1−1]
w =

= 8
(
ΦN − Ω2

2
ϖ2

)
Ω2 − 2Ω

(
2Y +ϖ

∂Y

∂ϖ

)
+

− 4πG
(
− 2ΦNρN +

( γ

γ − 1
Λ1 + 3

)
PN

)
+Ra, (11a)[ ∂2

∂ϖ2
+

3

ϖ

∂

∂ϖ
+

∂2

∂z2

]
Y =

8

ϖ

∂

∂ϖ

[
ΦN − Ω2

2
ϖ2

]
Ω+Rb, (11b)[ ∂2

∂ϖ2
+

2

ϖ

∂

∂ϖ
+

∂2

∂z2

]
X = 16πGPN +Rc, (11c)

13

Lemma 2: Given axially and equatorially symmetric, compactly

supporeted function g, the integral equation

Q = K
[ 1

(γ − 1)
max

(uN

uO
, 0
) 1

γ−1−1

Q+ g
]

admits a unique axially and equatorially symmetric solution Q. Here

Kf(x) =
1

4π

∫
f(x′)

|x− x′|
dx′ − 1

4π

∫
f(x′)

|x′|
dx′.

Note that then[ ∂2

∂ϖ2
+

1

ϖ

∂

∂ϖ
+

∂2

∂z2
+

1

(γ − 1)
max

(uN

uO
, 0
) 1

γ−1−1]
Q+ g = 0,

Q(0, 0) = 0

14



Open problem :

The solution is constructed on a bounded domain which contains the

support of ρ. The mathching problem to the exterior vacuum metric

which is defind on the whole space and asymptotically flat at the space

infinity.

The preprint is available at arXiv [2].
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Status	  and	  prospect	  of	  KAGRA

Hideyuki	  Tagoshi (ICRR,	  Univ.	  Tokyo)
on	  behalf	  of	  the	  KAGRA	  collaboration	  

12017/11/29	  	  JGRG27@Higashi	  Hiroshima

6.8	  GW	  events	  observed	  by	  LIGO	  and	  Virgo

2

from 35 Hz to a peak amplitude at 450 Hz. The signal-to-
noise ratio (SNR) accumulates equally in the early inspiral
(∼45 cycles from 35 to 100 Hz) and late inspiral to merger
(∼10 cycles from 100 to 450 Hz). This is different from the
more massive GW150914 binary for which only the last 10
cycles, comprising inspiral and merger, dominated the
SNR. As a consequence, the parameters characterizing
GW151226 have different precision than those of
GW150914. The chirp mass [26,45], which controls the
binary’s evolution during the early inspiral, is determined
very precisely. The individual masses, which rely on
information from the late inspiral and merger, are measured
far less precisely.
Figure 1 illustrates that the amplitude of the signal is less

than the level of the detector noise,where themaximum strain
of the signal is 3.4þ0.7

−0.9 × 10−22 and 3.4þ0.8
−0.9 × 10−22 in LIGO

Hanford and Livingston, respectively. The time-frequency
representation of the detector data shows that the signal is not
easily visible. The signal is more apparent in LIGO Hanford
where the SNR is larger. The SNR difference is predomi-
nantly due to the different sensitivities of the detectors at the
time. Only with the accumulated SNR frommatched filtering
does the signal become apparent in both detectors.

III. DETECTORS

The LIGO detectors measure gravitational-wave strain
using two modified Michelson interferometers located in
Hanford, WA and Livingston, LA [2,3,46]. The two
orthogonal arms of each interferometer are 4 km in length,
each with an optical cavity formed by two mirrors acting as
test masses. A passing gravitational wave alters the

FIG. 1. GW151226 observed by the LIGO Hanford (left column) and Livingston (right column) detectors, where times are relative to
December 26, 2015 at 03:38:53.648 UTC. First row: Strain data from the two detectors, where the data are filtered with a 30–600-Hz
bandpass filter to suppress large fluctuations outside this range and band-reject filters to remove strong instrumental spectral lines [46].
Also shown (black) is the best-match template from a nonprecessing spin waveform model reconstructed using a Bayesian analysis [21]
with the same filtering applied. As a result, modulations in the waveform are present due to this conditioning and not due to precession
effects. The thickness of the line indicates the 90% credible region. See Fig. 5 for a reconstruction of the best-match template with no
filtering applied. Second row: The accumulated peak signal-to-noise ratio (SNRp) as a function of time when integrating from the start of
the best-match template, corresponding to a gravitational-wave frequency of 30 Hz, up to its merger time. The total accumulated SNRp

corresponds to the peak in the next row. Third row: Signal-to-noise ratio (SNR) time series produced by time shifting the best-match
template waveform and computing the integrated SNR at each point in time. The peak of the SNR time series gives the merger time of
the best-match template for which the highest overlap with the data is achieved. The single-detector SNRs in LIGO Hanford and
Livingston are 10.5 and 7.9, respectively, primarily because of the detectors’ differing sensitivities. Fourth row: Time-frequency
representation [47] of the strain data around the time of GW151226. In contrast to GW150914 [4], the signal is not easily visible.
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After the first observing run, both LIGO detectors under-
went commissioning to reduce instrumental noise, and to
improve duty factor and data quality (see Sec. I in the
Supplemental Material [11]). For the Hanford detector, a
high-power laser stage was introduced, and as the first step
the laser power was increased from 22 to 30 W to reduce
shot noise [10] at high frequencies. For the Livingston
detector, the laser power was unchanged, but there was a
significant improvement in low-frequency performance
mainly due to the mitigation of scattered light noise.
Calibration of the interferometers is performed by

inducing test-mass motion using photon pressure from
modulated calibration lasers [12,13]. The one-sigma

calibration uncertainties for strain data in both detectors
for the times used in this analysis are better than 5% in
amplitude and 3° in phase over the frequency range 20–
1024 Hz.
At the time of GW170104, both LIGO detectors were

operating with sensitivity typical of the observing run to
date and were in an observation-ready state. Investigations
similar to the detection validation procedures for previous
events [2,14] found no evidence that instrumental or
environmental disturbances contributed to GW170104.

III. SEARCHES

GW170104 was first identified by inspection of low-
latency triggers from Livingston data [15–17]. An auto-
mated notification was not generated as the Hanford
detector’s calibration state was temporarily set incorrectly
in the low-latency system. After it was manually deter-
mined that the calibration of both detectors was in a
nominal state, an alert with an initial source localization
[18,19] was distributed to collaborating astronomers [20]
for the purpose of searching for a transient counterpart.
About 30 groups of observers covered the parts of the sky
localization using ground- and space-based instruments,
spanning from γ ray to radio frequencies as well as high-
energy neutrinos [21].
Offline analyses are used to determine the significance of

candidate events. They benefit from improved calibration
and refined data quality information that is unavailable to
low-latency analyses [5,14]. The second observing run is
divided into periods of two-detector cumulative coincident
observing time with ≳5 days of data to measure the false
alarm rate of the search at the level where detections can be
confidently claimed. Two independently designed matched
filter analyses [16,22] used 5.5 days of coincident data
collected from January 4, 2017 to January 22, 2017.
These analyses search for binary coalescences over a range

of possible masses and by using discrete banks [23–28] of
waveform templates modeling binaries with component
spins aligned or antialigned with the orbital angular momen-
tum [29]. The searches can target binary black hole mergers
with detector-frame totalmasses2M⊙≤Mdet≲100–500M⊙,
and spin magnitudes up to∼0.99. The upper mass boundary
of the bank is determined by imposing a lower limit on the
duration of the template in the detectors’ sensitive frequency
band [30]. Candidate events must be found in both detectors
by the same templatewithin 15ms [4]. This 15-mswindow is
determined by the 10-ms intersite propagation time plus an
allowance for the uncertainty in identified signal arrival times
of weak signals. Candidate events are assigned a detection
statistic value ranking their relative likelihood of being a
gravitational-wave signal: the search uses an improved
detection statistic compared to the first observing run [31].
The significance of a candidate event is calculated by
comparing its detection statistic value to an estimate of
the background noise [4,16,17,22]. GW170104was detected

FIG. 1. Time–frequency representation [9] of strain data from
Hanford and Livingston detectors (top two panels) at the time of
GW170104. The data begin at 1167559936.5 GPS time. The
third panel from the top shows the time-series data from each
detector with a 30–350 Hz bandpass filter, and band-reject filters
to suppress strong instrumental spectral lines. The Livingston
data have been shifted back by 3 ms to account for the source’s
sky location, and the sign of its amplitude has been inverted to
account for the detectors’ different orientations. The maximum-
likelihood binary black hole waveform given by the full-pre-
cession model (see Sec. IV) is shown in black. The bottom panel
shows the residuals between each data stream and the maximum-
likelihood waveform.
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onto the three detectors. As an illustration, we perform a
test comparing the tensor-only mode with scalar-only and
vector-only modes. We find that purely tensor polarization
is strongly favored over purely scalar or vector polar-
izations. With this, and additional tests, we find that
GW170814 is consistent with GR.

II. DETECTORS

LIGOoperates two 4 km long detectors in the U.S., one in
Livingston, LA and one in Hanford, WA [14], while Virgo
consists of a single 3 km long detector near Pisa, Italy [15].
Together with GEO600 located near Hanover, Germany
[16], several science runs of the initial-era gravitational-
wave networkwere conducted through 2011. LIGO stopped
observing in 2010 for the Advanced LIGO upgrade [1]. The
Advanced LIGOdetectors have been operational since 2015
[17]. They underwent a series of upgrades between the first
and second observation runs [4], and began observing again
in November 2016.

Virgo stopped observing in 2011 for the Advanced Virgo
upgrade, during which many parts of the detector were
replaced or improved [6]. Among the main changes are an
increase of the finesse of the arm cavities, the use of heavier
test mass mirrors that have lower absorption and better
surface quality [18]. To reduce the impact of the coating
thermal noise [19], the size of the beam in the central part of
the detectorwas doubled,which requiredmodifications of the
vacuum system and the input-output optics [20,21]. The
recycling cavities are kept marginally stable as in the initial
Virgo configuration. The optical benches supporting themain
readout photodiodes have been suspended and put under
vacuum to reduce the impact of scattered light and acoustic
noise. Cryogenic traps have been installed to improve the
vacuum level. The vibration isolation and suspension system,
already compliant with the Advanced Virgo requirement
[22,23], has been further improved to allow for a more robust
control of the last-stage pendulum and the accommodation of
baffles to mitigate the effect of scattered light. The test mass

FIG. 1. The GWevent GW170814 observed by LIGO Hanford, LIGO Livingston, and Virgo. Times are shown from August 14, 2017,
10∶30:43 UTC. Top row: SNR time series produced in low latency and used by the low-latency localization pipeline on August 14, 2017.
The time series were produced by time shifting the best-match template from the online analysis and computing the integrated SNR at
each point in time. The single-detector SNRs in Hanford, Livingston, and Virgo are 7.3, 13.7, and 4.4, respectively. Second row: Time-
frequency representation of the strain data around the time of GW170814. Bottom row: Time-domain detector data (in color), and
90% confidence intervals for waveforms reconstructed from a morphology-independent wavelet analysis [13] (light gray) and BBH
models described in Sec. V (dark gray), whitened by each instrument’s noise amplitude spectral density between 20 Hz and 1024 Hz.
For this figure the data were also low passed with a 380 Hz cutoff to eliminate out-of-band noise. The whitening emphasizes different
frequency bands for each detector, which is why the reconstructed waveform amplitude evolution looks different in each column. The
left ordinate axes are normalized such that the physical strain of the wave form is accurate at 130 Hz. The right ordinate axes are in units
of whitened strain, divided by the square root of the effective bandwidth (360 Hz), resulting in units of noise standard deviations.
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∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.

PRL 119, 161101 (2017) P HY S I CA L R EV I EW LE T T ER S week ending
20 OCTOBER 2017

161101-2

(+	  LVT151012)



Gravitational	  Wave	  Astronomy	  

3

GW150914

Begining of	  GW	  Astronomy

GW170817∼100 s (calculated starting from 24 Hz) in the detectors’
sensitive band, the inspiral signal ended at 12∶41:04.4 UTC.
In addition, a γ-ray burst was observed 1.7 s after the
coalescence time [39–45]. The combination of data from
the LIGO and Virgo detectors allowed a precise sky
position localization to an area of 28 deg2. This measure-
ment enabled an electromagnetic follow-up campaign that
identified a counterpart near the galaxy NGC 4993, con-
sistent with the localization and distance inferred from
gravitational-wave data [46–50].
From the gravitational-wave signal, the best measured

combination of the masses is the chirp mass [51]
M ¼ 1.188þ0.004

−0.002M⊙. From the union of 90% credible
intervals obtained using different waveform models (see
Sec. IV for details), the total mass of the system is between
2.73 and 3.29 M⊙. The individual masses are in the broad
range of 0.86 to 2.26 M⊙, due to correlations between their
uncertainties. This suggests a BNS as the source of the
gravitational-wave signal, as the total masses of known
BNS systems are between 2.57 and 2.88 M⊙ with compo-
nents between 1.17 and ∼1.6 M⊙ [52]. Neutron stars in
general have precisely measured masses as large as 2.01#
0.04 M⊙ [53], whereas stellar-mass black holes found in
binaries in our galaxy have masses substantially greater
than the components of GW170817 [54–56].
Gravitational-wave observations alone are able to mea-

sure the masses of the two objects and set a lower limit on
their compactness, but the results presented here do not
exclude objects more compact than neutron stars such as
quark stars, black holes, or more exotic objects [57–61].
The detection of GRB 170817A and subsequent electro-
magnetic emission demonstrates the presence of matter.
Moreover, although a neutron star–black hole system is not
ruled out, the consistency of the mass estimates with the
dynamically measured masses of known neutron stars in
binaries, and their inconsistency with the masses of known
black holes in galactic binary systems, suggests the source
was composed of two neutron stars.

II. DATA

At the time of GW170817, the Advanced LIGO detec-
tors and the Advanced Virgo detector were in observing
mode. The maximum distances at which the LIGO-
Livingston and LIGO-Hanford detectors could detect a
BNS system (SNR ¼ 8), known as the detector horizon
[32,62,63], were 218 Mpc and 107 Mpc, while for Virgo
the horizon was 58 Mpc. The GEO600 detector [64] was
also operating at the time, but its sensitivity was insufficient
to contribute to the analysis of the inspiral. The configu-
ration of the detectors at the time of GW170817 is
summarized in [29].
A time-frequency representation [65] of the data from

all three detectors around the time of the signal is shown in
Fig 1. The signal is clearly visible in the LIGO-Hanford
and LIGO-Livingston data. The signal is not visible

in the Virgo data due to the lower BNS horizon and the
direction of the source with respect to the detector’s antenna
pattern.
Figure 1 illustrates the data as they were analyzed to

determine astrophysical source properties. After data col-
lection, several independently measured terrestrial contribu-
tions to the detector noise were subtracted from the LIGO
data usingWiener filtering [66], as described in [67–70]. This
subtraction removed calibration lines and 60 Hz ac power
mains harmonics from both LIGO data streams. The sensi-
tivity of the LIGO-Hanford detector was particularly
improved by the subtraction of laser pointing noise; several
broad peaks in the 150–800 Hz region were effectively
removed, increasing the BNS horizon of that detector
by 26%.

FIG. 1. Time-frequency representations [65] of data containing
the gravitational-wave event GW170817, observed by the LIGO-
Hanford (top), LIGO-Livingston (middle), and Virgo (bottom)
detectors. Times are shown relative to August 17, 2017 12∶41:04
UTC. The amplitude scale in each detector is normalized to that
detector’s noise amplitude spectral density. In the LIGO data,
independently observable noise sources and a glitch that occurred
in the LIGO-Livingston detector have been subtracted, as
described in the text. This noise mitigation is the same as that
used for the results presented in Sec. IV.
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• Data	  management,	  Data	  analysis
• Prospect	  of	  science	  by	  KAGRA	  and	  LIGO-‐Virgo

KAGRA	  
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Host	  Institute:	  ICRR,	  U	  Tokyo
Cooperative	  institutes:	  NAOJ,	  KEK,	  
and	  many	  universities.	  
(〜250	  people,	  〜80	  institutes)
• Kamioka mine,	  Hida City,	  Gifu
• 3km	  laser	  interferometer
• Underground	  site
• Cryogenic	  mirror
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aLIGO

aVirgo KAGRA

http://gwcenter.icrr.u-‐tokyo.ac.jp/en/researcher/parameter
Data	  for	  the	  KAGRA	  noise	  spectrum	  :	  
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Project start

Tunnel excuvation

iKAGRA

bKAGRA

Operation

iKAGRA run

adv.	  optical	  sysmtem

cryogenic	  sysmtem



Tunnel excavation 

9
photo	  by	  N.Kanda

1
0

at  Oct. 28, 2014
July	  6,	  2015	  
(from nearly same viewpoint of the previous slide) 

Photo : KAGRA tunnel, center corner

photo	  by	  N.Kanda



KAGRA	  Arm	  Tunnel	  and	  Corner	  Station

X  arm  tunnel  and  vacuum  tubes
Leak  check  was  completed.

Y  arm  tunnel  and  vacuum  tubes
Leak  check  was  completed.

Laser  House,  Input  Optics
Tanks,  Clean  booths

Signal  Recycling  Tanks
And  Clean  booths

~  250  ducts  (d80cm  x  L12m)  for  one  arm

KAGRA	  observatory:	  surface	  buildings

12

KAGRA

From	  〜April	  2018

Control
room



Control	  room	  in	  a	  surface	  building
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iKAGRA test	  run

14

Schedule�of�KAGRA
2010 2011 2012 2013 2014 2015 2016 2017 2018Calendar�year

Project�start
Tunnel�excavation
initialͲKAGRA

baselineͲKAGRA

Observation

iKAGRA obs.

Adv.�Optics�system�and�tests
Cryogenic�system

iKAGRA

z Michelson�interferometer�(changed)
z Room�temperature
z Simple�seismic�isolation�system

bKAGRA

z Resonant�sideband�extraction
z Cryogenic�temperature
z Advanced�seismic�isolation�system

22

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Project start

Tunnel excuvation

iKAGRA

bKAGRA

Operation

iKAGRA run

adv.7optical7sysmtem

cryogenic7sysmtem

1st	  run： March	  25	  -‐ 31,	  2016
2nd	  run： April	  	  	  	  12	  -‐ 25,	  2016

Room	  temperature	  mirrors

Mail	  purpose:	  Demonstration	  of	  3km	  interferometer	  operation
• 3km	  Michelson	  interferometer	  (partially	  in	  vaccum)
• Typical	  sensitivity

• 1st	  run:	  3	  x	  10-‐15 Hz-‐1/2 @	  100	  Hz
• 2nd	  run:	  6 x	  10-‐16 Hz-‐1/2 @	  100	  Hz

• Duty	  cycle	  (	  =	  (lock	  time)/(total	  time)	  )
• 1st	  run:	  85.2	  %
• 2nd	  run:	  90.4	  %
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Start	  of	  iKAGRA test	  run,	  March	  25th	  2016	  

Horizon	  distance	  of	  CBC	  by	  iKAGRA

16

NS-‐NS(1.4-‐1.4Msun)	  :
〜3.21[pc]@SNR=8

Equal	  mass,	  	  Optimal	  direction	  ,	  	  	  SNR	  =	  8
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JGW-G1605983

Lock duration of iKAGRA data
The status of the detector controlled well is called “locked”.
In this analysis, we analyze only the data that the lock continues longer than 4096[s].

8

total time[s] total time 
[day]

percentage
[%]

all data 547200 6.33 100
locked 
data 366976 4.25 67.1

analyzed
data 47904 0.55 8.76

■ 1st run (March data)

■ 2st run (April data)

total time[s] total time 
[day]

percentage
[%]

all data 1238400 14.33 100
locked 
data 1066240 12.34 86.1

analyzed
data 895552 10.36 72.3

9664[s] ~ 2.7[h]

66144[s] ~ 18.4[h] 

Used	  for	  
CBCd

Used	  for	  
CBCd

Signal	  Injection	  test	  @	  iKAGRA

18

This	  is	  often	  called	  "Hardware	  Injection	  test".
This	  is	  done	  by	  shaking	  mirrors.	  
(The	  signals	  injected	  are	  not	  real	  gravitational	  wave	  signals!)	  

Laser

Injected waveforms (Sine Gaussian)
○Sine Gaussian (test run)

Q = 20(constant), f0 = [30, 100, 300, 1000]Hz, A = various
XY differential, X/Y arm only(30,100Hz), 1count = 7.5e-13[strain]

h
count

= A exp

✓
� (t� t

0

)

2

⌧2

◆
cos(2⇡f

0

(t� t
0

)) ⌧ = Q/
p
2⇡f0

time[index]

count count

time[index]

100Hz SG33Hz SG

○Sine Gaussian (injection run)
Q = 20(constant), f0 = [33, 100, 333], A = 3000/f^2. 1500/f^2, XY differential

6

Injected waveforms (Supernova)
○Supernova waveform
Provided Y.Suwa(YTIP, Kyoto), 2D Newtonian numerical simulation (KAGRA original)
t=0 : Start time of gravity collapse 

Progenitor mass = 11.2M⊙, different core rotation, matter eject memory effect

0.0 π rad/s 0.2 π rad/s 0.5 π rad/s 1.0 π rad/s

No core rotation strong SASI motion(from entropy motion)

50M⊙ 80M⊙

6Models(2s) × 3 amplitude scale
18 waveforms injection

7

Injected waveforms (CBC)
○CBC waveform(prepare waveforms by H.Yuzurihara, H.Tagoshi)

1. Effective One Body (EOB) waveforms (generated by LAL)
     mass combination : 20-20, 25-25, 30-30, 36.3-28.6 and 50-50M⊙, no spin 
     3 amplitude(SNR) scales, low frequency cutoff : 10Hz
     To connect smoothly between 0 and waveform, we used 
     error function
2. NS-NS : Numerical Relativity simulation waveform+EOB waveform(by M.Shibata)
1.35-1.35 M⊙, 2 amplitude(Scales) (KAGRA original)

20-20M⊙

“GW150914”

1.35-1.35M⊙36.3-28.6M⊙

Total 17 waveforms are injected 8



Run1	  :	  reduced	  chi	  square	  =	  1.24	  (20262.9/16380)

fit	  param. expect measured

amp. 2.066E-‐12 2.065e-‐12±0.002e-‐12

t_0[s] 1.5 1.5005±small

Q	  value 20 19.5±0.02

f_0[Hz] 33 32.99±small

500	  μ sec	  delay	  was	  found	  which	  was	  not	  realized	  clearly	  before.	  
This	  can	  be	  explained	  by	  the	  delay	  caused	  during	  the	  signal	  processing
in	  the	  data	  aquisition system

Black	  :	  data
Red	  :	  Best	  fit

by	  Yokozawa

1
9

Signal	  Injection	  test

HW	  injection	  :	  Parameter	  estimation	  
study	  on	  injected	  CBC	  signals	  

20

An	  example	  of	  analysis	  by	  lalinference-‐mcmc
injected	  signal:	  EOB	  waveform,	  (20,20)Msun,	  SNR=8

chirp	  mass=17.4,	  eta=0.25,
template:	  IMRPhenom (freq.	  domain	  template)

by	  Narikawa

http://gwdoc.icrr.u-‐tokyo.ac.jp/cgi-‐bin/private/DocDB/ShowDocument?docid=5882

15

Results of Hardware injection: IMR FD

✔ Chirp mass measurement dominated by systematic errors 
✔ High Bayes factor

log Bayes factor (S/N) =174 recovered SNR=19.6

➢ Injected signals : BBH (20Msun+20Msun, SNR~8 for Inspiral) on 
iKAGRA  

➢ template : Inspiral-Merger-Ringdown FD (IMRPhenom)

Estimation of mass
injected
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HW	  injection	  :	  
Analysis	  with	  Hilbert-‐Huang	  transform	  

• Sine-‐Gaussian	  signal:	  
Time-‐Frequency	  map	  was	  recovered	  with	  HHT	  analysis

by	  Ueki	  et	  al.	  
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Hardware  injection

HHT

Time  - frequency  map

iKAGRA data	  analysis
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• Compact	  Binary	  Coalescense (CBC)	  Search
Method:	  	  Frequency	  domain,	  Matched	  filter	  -‐ Chi	  square	  analysis
Mass	  range:	  1-‐3Msun
Spin:	  no	  
Template:	  TaylorF2
Template	  bank:	  Hexagonal	  placement	  method
Code:	  Original	  code

• Continuous	  Wave
Method:	  F-‐statistic
Target: 62	  known	  pulsars
Frequency: 50	  – 1000	  Hz

• Burst
Method:	  Excess	  power
Event	  reconstruction	  :	  Clustering	  based	  on	  mathematical	  morphology
• All	  sky	  search
• Targeted	  search	  for	  GW	  associated	  with	  GRB	  events
Code: Original	  Code



bKAGRA
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bKAGRA =	  baseline	  KAGRA
Final	  goal	  :	  Operation	  of	  full	  configuration	  KAGRA	  with	  good	  
sensitivity

We	  proceed	  step-‐by-‐step:
We	  devide bKAGRA commissioning	  into	  3	  phases

Phase-‐1 :	  	  Construction	  of	  a	  3km	  cryogenic	  Michelson	  interferometer,	  
followed	  by	  a	  short	  operation	  (no	  sensitivity	  goal)

Phase-‐2 :	  	  Construction	  of	  KAGRA	  with	  full	  configuration,	  followed	  by	  
its	  operation	  (Cryogenic	  RSE,	  no	  sensititivity goal)	  

Phase-‐3 :	  	  Commissioning	  and	  observation

bKAGRA Phase-‐1

24

Schedule�of�KAGRA
2010 2011 2012 2013 2014 2015 2016 2017 2018Calendar�year

Project�start
Tunnel�excavation
initialͲKAGRA

baselineͲKAGRA

Observation

iKAGRA obs.

Adv.�Optics�system�and�tests
Cryogenic�system

iKAGRA

z Michelson�interferometer�(changed)
z Room�temperature
z Simple�seismic�isolation�system

bKAGRA

z Resonant�sideband�extraction
z Cryogenic�temperature
z Advanced�seismic�isolation�system

22

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Project start

Tunnel excuvation

iKAGRA

bKAGRA

Operation

iKAGRA run

adv.7optical7sysmtem

cryogenic7sysmtem

April	  2016	  – March	  2018:	  Construction
March	  – April	  2018	  :	  test	  run

Cryogenic	  mirrors

• Cryogenic	  Michelson	  interferometer
• No	  Fabry-‐Perot	  cavity
• No	  power	  recycling	  
• No	  signal	  recycling	  
• No	  target	  sensitivity

We	  are	  now	  in	  this	  phase



Suspension	  System	  Installation

Laser  in

25

VIS  Group

Suspension	  System	  Installation	  for	  phase-‐1

Laser  in

26

VIS  Group

spare	  mirror	  hanged
cooling	  test	  done

instalation finished

instalation
starts	  very	  soon

instalation
will	  be	  done



Schedule�of�KAGRA
2010 2011 2012 2013 2014 2015 2016 2017 2018Calendar�year

Project�start
Tunnel�excavation
initialͲKAGRA

baselineͲKAGRA

Observation

iKAGRA obs.

Adv.�Optics�system�and�tests
Cryogenic�system

iKAGRA

z Michelson�interferometer�(changed)
z Room�temperature
z Simple�seismic�isolation�system

bKAGRA

z Resonant�sideband�extraction
z Cryogenic�temperature
z Advanced�seismic�isolation�system
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bKAGRA Phase-‐2
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2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Project start

Tunnel excuvation

iKAGRA

bKAGRA

Operation

iKAGRA run

adv.7optical7sysmtem

cryogenic7sysmtem

May	  2018	  – March	  2019:	  Construction
March	  2019	  ?:	  test	  run

Cryogenic	  mirrors

• Fabry-‐Perot,	  Power	  recycling,	  RSE	  interferometer
• Full	  configuration	  interferometer
• No	  target	  sensitivity

useuse

Schedule�of�KAGRA
2010 2011 2012 2013 2014 2015 2016 2017 2018Calendar�year

Project�start
Tunnel�excavation
initialͲKAGRA

baselineͲKAGRA

Observation

iKAGRA obs.

Adv.�Optics�system�and�tests
Cryogenic�system

iKAGRA

z Michelson�interferometer�(changed)
z Room�temperature
z Simple�seismic�isolation�system

bKAGRA

z Resonant�sideband�extraction
z Cryogenic�temperature
z Advanced�seismic�isolation�system

22

bKAGRA Phase-‐3

28

2010 2011 2012 2013 2014 2015 2016 2017 2018 2019
Project start

Tunnel excuvation

iKAGRA

bKAGRA

Operation

iKAGRA run

adv.7optical7sysmtem

cryogenic7sysmtem

April	  2019	  -‐ ?	  :	  Commissioning	  
2020-‐ ?	  	  	  	  	  	  	  	  	  	  	  	  :	  Observation

• Fabry-‐Perot,	  Power	  recycling,	  RSE	  interferometer
• To	  achieve	  good	  sensitivity



Expected	  schedule	  of	  LIGO,	  Virgo,	  KAGRA
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arXiv:1304.0670	   (Updated	  on	  Sept.	  8,	  2017)Observing	  senario paper	  by	  LVK

Expected	  schedule	  of	  LIGO,	  Virgo,	  KAGRA

30

Phase I II III

arXiv:1304.0670	  	  (Updated	  on	  Sept.	  8,	  2017)	  (modified)



Expected	  schedule	  of	  LIGO,	  Virgo,	  KAGRA
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Phase I II III

arXiv:1304.0670	  	  (Updated	  on	  Sept.	  8,	  2017)	  (modified)

But	  the	  situation	  has	  been	  changed!

Case	  of	  Virgo

32

http://www.ligo.org/news.php

June	  17	  2017:	  
First	  Triple	  lock	  with	  LIGO

August	  1st	  2017:
Started	  observation	  and	  
joined	  O2	  

August	  14	  2017:
BBH	  detected!

August	  17	  2017:
BNS	  detected!



We	  should	  join	  O3
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LIGO-‐Livingston LIGO-‐Hanford Virgo

International	  network	  of	  ground	  based	  gravitational	  wave	  detectors

11th Asian-Pacific Regional IAU Meeting  /  Plenary Session C      N. Kanda     /     28-July-2011  

LCGT and the Global Network of Gravitational Wave Detectors

LCGT
 (Large-scale Cryogenic Gravitational wave Telescope)

Underground

• in Kamioka, Japan

Silent & Stable 
environment

Cryogenic Mirror

• 20K

• sapphire substrate

3km baseline

Plan

• 2010  : construction 
started

• 2014  : first run in normal 
temperature

• 2017- : observation with 
cryogenic mirror

26

© ICRR, university of Tokyo
LCGT

2011年7月24日日曜日

KAGRA

We	  should	  join	  O3
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LIGO-‐Livingston LIGO-‐Hanford Virgo

International	  network	  of	  ground	  based	  gravitational	  wave	  detectors

11th Asian-Pacific Regional IAU Meeting  /  Plenary Session C      N. Kanda     /     28-July-2011  

LCGT and the Global Network of Gravitational Wave Detectors

LCGT
 (Large-scale Cryogenic Gravitational wave Telescope)

Underground

• in Kamioka, Japan

Silent & Stable 
environment

Cryogenic Mirror

• 20K

• sapphire substrate

3km baseline

Plan

• 2010  : construction 
started

• 2014  : first run in normal 
temperature

• 2017- : observation with 
cryogenic mirror

26

© ICRR, university of Tokyo
LCGT

2011年7月24日日曜日

KAGRA

Although	  the	  schedule	  is	  so	  tight,	  
we	  should	  definitely	  join	  LIGO-‐Virgo	  
O3	  (Autum of	  2018	  〜 (1	  yr?)	  )	  if	  we	  can.	  

Any	  decision	  has	  not	  been	  made yet.	  
Discussion	  on	  how	  we	  can	  manage	  to	  join	  
O3	  started	  in	  the	  collaboration.



Data  Management
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Hardware in Kamioka surface building
@Kamioka surface 
building
200TiB lustre storage 
system (FEFS), 
separate MDT and 
OSS
1 data server
4 calculation nodes 
(8cores x 2CPUs) = 
64cores
2 job management 
servers

VPN switch

@Kashiwa (ICRR 
building 6th floor)
100 TiB lustre storage 
system (FEFS), single 
storage for MDT+OSS
2 login server
VPN switch

36

placed	  at	  computer	  area
beside	  the	  control	  room,
1st	  floor	  of	  analysis	  build.

200	  TiB	  ‘lustre’	  file	  system
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KAGRA face-to-face Meeting, 3/29/2017, Niigata Univ.

KAGRA data systems（iKAGRA & New main storge)

9

New main storage 
（System-A)

iKAGRA data 
storage

Current	  data	  storage	  

38

KAGRA face-to-face Meeting, 3/29/2017, Niigata Univ.

Current storages

3

Site Capacity Main Usage

Kamioka (surface) 200 TiB spool, On-site analysis

Kashiwa 100 TiB + 2.4 PiB iKAGRA data storeage

Osaka City Univ. 304 TiB
CBC, Burst, low latency

search

RESCEU 80 TiB CW

Niigata Univ. 77 TiB 　misc. analysis

Academia SINICA (Taiwan
Group)

220 TiB Tier-1 mirroring, etc.

KISTI-GSDC (Korea Group)
150TB (800TB in 2018 and

2019)
Tier-1, Detector
characterization

（total） ~ 3.5 PiB -

Also KAGRA is using follows:

Site Capacity Main Usage

ICRR computer for cooperative researches proc data, event analysis

KEK somputer center (not yet decided)

Summary at spring 2017

まとめ

summarized	  by	  N.Kanda



Computing	  resources
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• Osaka	  City	  Univ. (Orion,	  Gemini)
28	  nodes,	  760	  cores,	  
Memory	  :	  128GB/nodes	  
Storage	  :	  290TB	  

• RESCEU,	  Univ.	  Tokyo,	  	  (KAMBAI(寒梅))
540	  cores
Storage:	  100TB

• KAGRA	  Main	  storage
336	  cores

• KISTI(Korea) 〜 864	  core	  (shared)

• ICRR	  computing	  center	  〜1000	  core	  (shared)

low latency analysis
Real time event search during KAGRA operation

- coincidence analysis 
- provide the GW event alert for follow-up observations. 

＠Osaka City U.

- Linux Cluster 
- Continuous data 

transfer from KAGRA 
(latency ~ 3sec) 

- total 424 cores 
- 288 TiB storage  

(144 TiB x 2sets) 

We will add  
more 336 cores  
at winter 2016.

11

KAGRA	  Data	  Analysis	  Subsystem

40

Chief:	  H.Tagoshi
Sub-‐chiefs:	  Y.Itoh,	  H.Takahashi

CBC Burst CW Stochastic

Search Parameter
Estimation

Search Radio-‐
metry

...	  ...Search

Korea

Japan

Taiwan

Hong	  Kong

...	  ...

〜43	  people



413

Signal:-BHNS-(25,1.4),-100Mpc,-i=75deg

Template:-TaylorF2

SNR=27.2

694.6-deg2

DesignIHL
DesignIHLK

SNR=30.0

75.2-deg2
SNR=25.6

74.4-deg2

DesignIHLV DesignIHLVK

SNR=30.6

20.4-deg2

4	  detectors	  including
KAGRA

Slide	  by	  Narikawa
3 detectors	  including
KAGRA

c.f.	  arXiv:1705.04008	  

Sky	  localization	  accuracy

42

NS-‐NS	   @180Mpc
(1.4,1.4)Msun LHV LHVK

median	  of	  δΩ [Deg2] 30.25 9.5

L:LIGO-‐Livingston
H:LIGO-‐Hanford
V:	  Virgo
K:	  KAGRA
I:	  LIGO-‐India

direction，inclination，polarization	  angle
are	  given	  randomly

J.Veitch et	  al.,	  PRD85,	  104045	  (2012)
(Bayesian	  inference	  )
See	  also	  Rodriguez	  et	  al.	  	  1309.3273

(95%CI)

(10,1.4)Msun LHV LHVK LHVKI

median	  of	  δΩ [Deg2] 21.5 8.44 4.86

(Tagoshi,	  Mishra,	  Arun,	  Pai,	  PRD90,	  024053	  (2014)	  ,	  Fisher	  matrix)

BH-‐NS @200Mpc



CBC	  and	  SGRB
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The Astrophysical Journal, 746:48 (15pp), 2012 February 10 Metzger & Berger

with specific stellar populations). Because merger counterparts
are predicted to be faint, obtaining a spectroscopic redshift
is challenging (cf. Rowlinson et al. 2010), in which case
spectroscopy of the host galaxy is the most promising means
of obtaining the event redshift.

It is important to distinguish two general strategies for con-
necting EM and GW events. One approach is to search for a
GW signal following an EM trigger, either in real time or at
a post-processing stage (e.g., Finn et al. 1999; Mohanty et al.
2004). This is particularly promising for counterparts predicted
to occur in temporal coincidence with the GW chirp, such as
short-duration gamma-ray bursts (SGRBs). Unfortunately, most
other promising counterparts (none of which have yet been
independently identified) occur hours to months after coales-
cence.6 Thus, the predicted arrival time of the GW signal will
remain uncertain, in which case the additional sensitivity gained
from this information is significantly reduced. For instance, if
the time of merger is known only to within an uncertainty of
∼ hours (weeks), as we will show is the case for optical (radio)
counterparts, then the number of trial GW templates that must
be searched is larger by a factor ∼104–106 than if the merger
time is known to within seconds, as in the case of SGRBs.

A second approach, which is the primary focus of this paper,
is EM follow-up of GW triggers. A potential advantage in this
case is that counterpart searches are restricted to the nearby
universe, as determined by the ALIGO/Virgo sensitivity range
(redshift z ! 0.05–0.1). On the other hand, the large error
regions are a significant challenge, which are estimated to be
tens of square degrees even for optimistic configurations of GW
detectors (e.g., Gürsel & Tinto 1989; Fairhurst 2009; Wen &
Chen 2010; Nissanke et al. 2011). Although it has been argued
that this difficulty may be alleviated if the search is restricted
to galaxies within 200 Mpc (Nuttall & Sutton 2010), we stress
that the number of galaxies with L " 0.1 L∗ (typical of SGRB
host galaxies; Berger 2009, 2011) within an expected GW error
region is ∼400, large enough to negate this advantage for most
search strategies. In principle the number of candidate galaxies
could be reduced if the distance can be constrained from the
GW signal; however, distance estimates for individual events
are rather uncertain, especially at that low of S/Ns that will
characterize most detections (Nissanke et al. 2010). Moreover,
current galaxy catalogs are incomplete within the ALIGO/Virgo
volume, especially at lower luminosities. Finally, some mergers
may also occur outside of their host galaxies (Berger 2010;
Kelley et al. 2010). Although restricting counterpart searches to
nearby galaxies is unlikely to reduce the number of telescope
pointings necessary in follow-up searches, it nevertheless can
substantially reduce the effective sky region to be searched,
thereby allowing for more effective vetoes of false positive
events (Kulkarni & Kasliwal 2009).

At the present there are no optical or radio facilities that can
provide all-sky coverage at a cadence and depth matched to
the expected light curves of EM counterparts. As we show in
this paper, even the Large Synoptic Survey Telescope (LSST),
with a planned all-sky cadence of four days and a depth of
r ≈ 24.7 mag, is unlikely to effectively capture the range of
expected EM counterparts. Thus, targeted follow-up of GW

6 Predicted EM counterparts that may instead precede the GW signal include
emission powered by the magnetosphere of the NS (e.g., Hansen & Lyutikov
2001; McWilliams & Levin 2011; Lyutikov 2011a, 2011b), or cracking of the
NS crust due to tidal interactions (e.g., Troja et al. 2010; Tsang et al. 2011),
during the final inspiral. However, given the current uncertainties in these
models, we do not discuss them further.

BH

obs

j
Tidal Tail & Disk Wind

Ejecta ISM Shock

Merger Ejecta 

v ~ 0.1 0.3 c

Optical (hours days)

Kilonova
Optical (t ~ 1 day)

Jet ISM Shock (Afterglow)

GRB
(t ~ 0.1 1 s)

Radio (weeks years)

Radio (years)

Figure 1. Summary of potential electromagnetic counterparts of NS–NS/
NS–BH mergers discussed in this paper, as a function of the observer angle,
θobs. Following the merger a centrifugally supported disk (blue) remains around
the central compact object (usually a BH). Rapid accretion lasting !1 s
powers a collimated relativistic jet, which produces a short-duration gamma-
ray burst (Section 2). Due to relativistic beaming, the gamma-ray emission
is restricted to observers with θobs ! θj , the half-opening angle of the jet.
Non-thermal afterglow emission results from the interaction of the jet with
the surrounding circumburst medium (pink). Optical afterglow emission is
observable on timescales up to ∼ days–weeks by observers with viewing angles
of θobs ! 2θj (Section 3.1). Radio afterglow emission is observable from all
viewing angles (isotropic) once the jet decelerates to mildly relativistic speeds
on a timescale of weeks–months, and can also be produced on timescales of
years from sub-relativistic ejecta (Section 3.2). Short-lived isotropic optical
emission lasting ∼few days (kilonova; yellow) can also accompany the merger,
powered by the radioactive decay of heavy elements synthesized in the ejecta
(Section 4).
(A color version of this figure is available in the online journal.)

error regions is required, whether the aim is to detect optical
or radio counterparts. Even with this approach, the follow-
up observations will still require large field-of-view (FOV)
telescopes to cover tens of square degrees; targeted observations
of galaxies are unlikely to substantially reduce the large amount
of time to scan the full error region.

Our investigation of EM counterparts is organized as follows.
We begin by comparing various types of EM counterparts, each
illustrated by the schematic diagram in Figure 1. The first is an
SGRB, powered by accretion following the merger (Section 2).
Even if no SGRB is produced or detected, the merger may still
be accompanied by relativistic ejecta, which will power non-
thermal afterglow emission as it interacts with the surrounding
medium. In Section 3 we explore the properties of such “or-
phan afterglows” from bursts with jets nearly aligned toward
Earth (optical afterglows; Section 3.1) and for larger viewing
angles (late radio afterglows; Section 3.2). We constrain our
models using the existing observations of SGRB afterglows,
coupled with off-axis afterglow models. We also provide a re-
alistic assessment of the required observing time and achiev-
able depths in the optical and radio bands. In Section 4 we
consider isotropic optical transients powered by the radioac-
tive decay of heavy elements synthesized in the ejecta (referred
to here as “kilonovae,” since their peak luminosities are pre-
dicted to be roughly one thousand times brighter than those
of standard novae). In Section 5 we compare and contrast the
potential counterparts in the context of our four Cardinal Virtues.

2

Metzger,	  Berger	  ('12)

11th Asian-Pacific Regional IAU Meeting  /  Plenary Session C      N. Kanda     /     28-July-2011  

LCGT and the Global Network of Gravitational Wave Detectors

LCGT
 (Large-scale Cryogenic Gravitational wave Telescope)

Underground

• in Kamioka, Japan

Silent & Stable 
environment

Cryogenic Mirror

• 20K

• sapphire substrate

3km baseline

Plan

• 2010  : construction 
started

• 2014  : first run in normal 
temperature

• 2017- : observation with 
cryogenic mirror

26

© ICRR, university of Tokyo
LCGT

2011年7月24日日曜日

Gravitational
waves

Inclination	  angle	  accuracy
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all	  unknown direction	  known DL and direction	  known

LHV 9.3deg
(41.5deg)

8.3deg
(34.4deg)

3.3deg
(8.6deg)

LHVK 7.1deg
(24deg)

6.5deg
(21.0deg)

2.7deg
(6.4deg)

LHVKI 5.8deg
(15.5deg)

5.5deg
(14.3deg)

2.2deg
(5.1deg)

Median	  of	  	  	  	  	  	  	  	  	  	  	  [rad]	  �◆
(10,1.4)	  Msun @200Mpc
((1.4,1.4)Msun @200Mpc)

only	  SNRnetwork >8

Arun,	  Tagoshi,	  Pai,	  Mishra	  	  PRD90,	  024060	  (2014)
Tagoshi,	  Mishra,	  Pai,	  Arun PRD90,	  024053	  (2014)

Distance	  and	  inclination	  angle	  are	  correlated.
If	  we	  know	  distance,	  inclination	  angle	  can	  be	  determined	  
accurately.

Fisher	  matrix
Waveform:	  FWF

c.f.        GW170817  (1σ) :   ◆ 2 [144, 180] deg
◆ 2 [157, 177] deg
◆ 2 [148, 166] deg

With Planck H0 : 

With distance ladder H0 : 



Expected	  science	  from	  LHVK

45

• Binary	  black	  hole	  merger
Testing	  GR	  （QNM,	  No	  hair theorem,	  ．．．）
Testing	  modified	  theory	  of	  gravity

• BNS,	  BH-‐NS	  mergers
Relation	  to	  Gamma	  Ray	  burst
EOS	  and	  internal	  structure
Relation	  to	  r-‐process	  nucleosynthesis

• GW	  from	  Supernovae,	  Rotating	  neutron	  stars
• Test	  of	  GR	  (e.g.,	  polarization	  modes	  with	  4	  detectors)
……
Characteristic	  of	  Japan
• Collaboration	  with	  EM(J-‐GEM,MAXI,CALET,…)，

and	  Neutrino	  group
• Collaboration	  with	  theory	  people(Numerical	  Relativity,	  

Supernova	  explosion,	  …)



Yasufumi Kojima (Hiroshima Univ.),
“Slow rotation in GR ” (35+10)
[JGRG27 (2017) 112925]
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Slow rotation in GR

Yasufumi Kojima/Hiroshima Univ.

ＪＧＲＧ２７
Nov 27-Dec 1, 2017  Higashi-Hiroshima

Welcome to Hiroshima(Saijyo)

Banquet  6:00 P.M.

2nd floor



A year blessed with many events

The first pulsar was observed on November 28, 

1967, by  Bell Burnel ＆ Hewish



SN1987A 30th Anniversary

GW170817/GRB170817A

…..

+Rotation

+Magnetic

GW

BH

NS

Lense-Thirring effect  

Dragging by a 

spinning object

Week field gravity

Hans Thirring (1888 -1976)

Josef Lense 1890-1985

WikipediaPost-Newton
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Dragging by Earth rotation

• Geodetic precession <0.5%

• LT precession            <15%

in weak gravity  and slow spin regime

Confirmed by Gravity Probe B 

(GP-B) Experiment
Everitt et al. 2011

1010/ RM
310/  K

High spin? X-ray spectrum fitting, Line profile 

Extreme Gou, L+ 2014

Duro,R + 2016; Basak, R+ 2017

Kawano, T+ 2017 

Astronomical BH spin

e.g. CygX1

1/ Ma

8.0/ Ma

9.0/ Ma

Somewhat controversy

BH spin from GW? 

GW151226  14+7.5 Ms  (0.25+0.5  0.74)

GW170104 31+19 Ms  (-0.12+0.5  0.64)

GW170814  30+25 Ms  (   0+0.25  0.70)

Spin in a probable range

Brady’s talk



Cosmological spin evolution of BH

Berti + 2008

mergers only mergers + accretion         mergers + chaotic accretion

• Hydro-dynamical mechanism(accretion disk)

Material K.E.  Outward radiation

• + magnetic field 

MHD case is interesting/complicated 

‘BZ process’

EM field dominated case considered here

Effect of BH spin

Origin of  outward power in EM + GR system

 Extracting BH Rot. E.

 Producing EM power from Material K.E.



1 Extracting BH Rot. 
Axi-symmetric stationary FF  

 outward flux at horizon when

Event horizon is passive BC, determined by the 

exterior (behavior outside BH )

 Where is the origin?
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Comparison

BH spin drags poloidal magnetic field              ,so that  

toroidal field and electric field             are induced.

Poynting flux is generated

Ideal MHD

Where is origin of   or       ?

problem
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Toma’s talk



2 Producing EM power in two fluids treatment

Electromagnetic power induced from pair plasma falling into a 

rotating black hole I  arXiv:1509.04793  MNRAS,454(2015)3902

I                             II  arXiv: 1711.07628

Equator

Pole Radial inflow 
Magnetic field 

0 S

Radial magnetic field,

split-monopole

In spherically symmetric case,

radial accretion even for 

charged fluids

everywhere
0,0,0  ejE 
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2 Producing EM power in two fluids treatment

Equator

Pole Radial inflow 
Magnetic field 

0 S

Radial magnetic field,

split-monopole

In spherically symmetric case,

radial accretion even for 

charged fluids

everywhere

Taking into account B.H. 

spin (a) up to the first order

EM power is calculated

0,0,0  ejE 
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Straightforward calculation

Stationary axially symmetric EM and flows 
determined by four functions

Spherical case as background

-> Radial flow with no charge and current

Linear pert. w.r.t. spin parameter a*

Mode decomposition w.r.t. sym.     
-> a coupled ord. diff. eqs for

Large/small number        involved

-> WKB approximation

Many solutions, e.g.  Locally oscillating plasma

 Single out radiating mode relevant to EM power 

Results in next page

0G

 FFG ,,,

),(,   FFF 
,

))(exp( rWi

Large number between two scales

Two dimensionless number in cold pair plasma

A ratio            is moderate, but there is one  
large number at least.

Direct numerical integration is not easy.

Micro and Macro scales

mnecGM

meBcGM

pp

BB

/4,1)/(

/,1)/(
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Perturbation eqs. 

Leading order eqs

small                small source terms by BH spin

訂正版

Straightforward calculation

Stationary axially symmetric EM and flows 
determined by four functions

Spherical case as background

-> Radial flow with no charge and current

Linear pert. w.r.t. spin parameter a*

Mode decomposition w.r.t. sym.     
-> a coupled ord. diff. eqs for

Large/small number        involved

-> WKB approximation

Many solutions, e.g.  Locally oscillating plasma

 Single out radiating mode relevant to EM power 

Results in next page

0G

 FFG ,,,

),(,   FFF 
,

))(exp( rWi



Result

A coupled 2nd order diff eqs

Two types of solution in leading order 

without rotational effect

I oscillatory II exponential

‘Plasma wave’ Long wavelength ‘EM wave’

))(exp( rWi

*r

*r

Inward Outward

EM power
Solution with source term

Outward EM flux through a radius

Horizon

5.2/ Mr

r

)(rPEM

)( ,2
1

   SdPr

HrrBE  ,0, 

*a



EM generation

mechanism

Lorentz force

dragging by spin

 charge separation growth 

0,0,   BEjpe

)()( r

tEM

r

tMatter TT  

EM generation

mechanism

Lorentz force

 growth cancel  

0,  BE 0,  BE

)()( r

tEM

r

tMatter TT  



Summary

Canonical value

New 

Two-fluid effect is not so important in a 

realistic situation

2
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BZBZNew PPP  2 E field screened 

by plenty of 

plasma

For efficient  Radiation

• Low density region elsewhere

small 

Or

• More complicated configuration

Or

• Rapid rotation

No ergo-sphere in 1st order BH spin

EM field may grow inside ergo-sphere

)( n



Looking back on JGRG

• JGRG1  Dec. 4 - 6, 1991

“Perturbation of Black Space-time and 

Gravitational Wave”

• JGRG27 Nov.  27-Dec.1,  2017

“Electromagnetic power induced from pair 

plasma falling into a rotating black hole”

I greatly appreciate this meeting, and pray 

successful growth.

Party is ready in a moment

Banquet  6:00 P.M.

2nd floor

After group photo

Thank you very much
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Invited lecture 10:00–11:00
[Chair: Misao Sasaki]

Robert R. Caldwell (Dartmouth Univ.),
“A unique and observable prediction in a toy model

of axion gauge field inflation” (50+10)
[JGRG27 (2017) 113001]
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A	Unique	and	Observable	Imprint	of	Infla8on	

Robert	Caldwell	/	Dartmouth	College	

Dartmouth		
College	

Hanover,		
New	Hampshire	

students:	Chris	Devulder	
Nina	Maksimova	
Jannis	Bielefeld	



Peter	Adshead	
Evangelos	Sfakianakis	

Marco	Peloso	
Ema	Dimastrogiovanni	

Eiichiro	Komatsu	
Azadeh	Maleknejad	

Nordita	2017:	“InflaPon	and	the	CMB”	

+RC	

Cosmic	Gauge	Fields	and	Infla3on	

Novel	GravitaPonal	Behavior	

L = 1
2M

2
PR� 1

4
~Fµ⌫ · ~Fµ⌫

~Fµ⌫ = @µ ~A⌫ � @⌫ ~Aµ � g ~Aµ ⇥ ~A⌫ SU(2)

Aa
i = �(⌧)�ai flavor� space locked

� ~Aµ · ~e⌫ = a(⌧)yµ⌫

�gµ⌫ = a2(⌧)hµ⌫

Devulder,	Maksimova,	RC	2016,	2017	
Bielefeld,	RC	2015,	2016	
Gertsenshteyn	1961	



GW-GF	OscillaPons	

:	gravitaPonal	wave,	gauge	field	wave	N = 1

Generalize	to	SU(N)	

disjoint	SU(2)	subgroups	N  N/2

or,	direct	product	of								SU(2)’s	N



GW-GF	OscillaPons	

:	gravitaPonal	wave,	gauge	field	wave	N = 3

GravitaPonal	Waves	propagaPng	through	a		
Flavor-Space	Locked	gauge	field:	

	
1.	GravitaPonal	waves	acquire	an	effecPve	mass	
	
2.	GravitaPonal	wave	–	gauge	field	oscillaPons	
	
3.	Leg-	and	Right-circular	polarizaPons	propagate	differently	
	



inspiraPon:	Tadashi	Tokieda	
camera:	Ralph	Gibson	

Models	of	InflaPon	

Adshead	&	Wyman	2012;		
Maleknejad	&	Sheikh-Jabbari	2011;	

Dimastrogiovanni	&	Peloso	2013	

Chromo-Natural	InflaPon,	Gauge-FlaPon	
	

L = 1
2M

2
PR� 1

2 (@�)
2 � V (�)� 1

4F
a
µ⌫F

µ⌫
a + �

M F a
µ⌫

eFµ⌫
a

L = 1
2M

2
PR� 1

4F
a
µ⌫F

µ⌫
a + (F a

µ⌫
eFµ⌫
a )2

V = µ4
(1� cos�/f) ! 1

2m
2�2



Models	of	InflaPon	

ns = 0.9667± 0.0040 (1�)
r < 0.07 (95%C.L.)

Planck	2016	
BKP	2016	

CMB-S3	

New:	Toy	Model	of	InflaPon	

Devulder	&	RC	2017		

L = 1
2M

2
PR� 1

2 (@�)
2 � V (�)� 1

4F
a
µ⌫F

µ⌫
a + �

M F a
µ⌫

eFµ⌫
a

V = 1
nm

4(�/m)n

V = µ4
(1� cos�/f)n/2

m, M ⌧ MP

g ⌧ 1

Also,	see:	Dimastrogiovanni,	Fasiello,	Fujita	2017;	
Adshead,	MarPnec,	Sfakianakis,	Wyman	2016;	
Maleknejad	2016;	Agrawal,	Fujita,	Komatsu	2017	



New:	Toy	Model	of	InflaPon	

V	is	too	steep	to	inflate:	
	

But,	for	a	wide	range	of	iniPal	condiPons	the	

coupling	flalens	the	effecPve	potenPal	

	

	

	

InflaPon!	
	

@

@�

⇣
V � �

M
F eF

⌘
! 0

✏V � 1

New:	Toy	Model	of	InflaPon	



New:	Toy	Model	of	InflaPon	

Scalar	FluctuaPons:	δχ, δΑ 
three	dynamical	modes,	three	constraints	

Extra:	generalizaPon	from	SU(2)	to	SU(N)	

Tensor	modes:	h,	δΑ
	four	dynamical	modes	(2L,	2R)	

Dominant	mode	sound	speed:		c2s = 1� 2/�

Dispersion:	 !2
LR = k2 ⌥ �kH

New:	Toy	Model	of	InflaPon	

“accelera3ng	track”	picture	

red	curvature	perturbaPons	

blue,	chiral	gravitaPonal	waves	



New:	Toy	Model	of	InflaPon	

CMB-S3	

Red	curves:	family	of	potenPal	models	(n)	
LocaPon	along	curve:	vary	func(m,	M,	g)	with	fixed	Δζ, 		

New:	Toy	Model	of	InflaPon	

•  Model	does	not	obey	standard	slow	roll	relaPons	

•  Scalar	spectrum	amplitude	fixes	Hend,	N-efolds	

•  Gauge	field	dominates	at	end	of	inflaPon:		w=1/3	

|�A| ⌧ A

⌦GW ,⌦�A ⌧ 1

•  PerturbaPons	under	control:	

•  No	instability	backreacPon:	



Chiral	GravitaPonal	Waves	

TB	
BB	
EB	

�� ' 0.9

adapted	from		
Gluscevic	&	Kamionkowski	2010	

This	model	predicts		

An	addi8onal,	unique	observable!	

�� = (PL � PR)/(PL + PR)

r0.05 = 0.035

other	probes:	
Jeong	et	al	2012,	Masui	et	al	2017	

CMB	PolarizaPon	

origin	of	the	“B	mode”	palern	



Temperature	 B	PolarizaPon	

Exactly	what	are	we	looking	for?	
CMB	PolarizaPon	

T+ B+

TR BR



Chiral	GravitaPonal	Waves	

1o	
0.3o	
0.1o	

ContaminaPon	from	TE	
due	to	uncertainty	in	
absolute	polarizaPon		

TB	

See	Thorne	et	al,	2017;	
Shiraishi	et	al,	2016.	

BB	Lensing	
BB	

Noise*		

TB	

*	Instrument	noise,	
residual	foregrounds	
on	large	scales	

Look	for	curl	paBern	in	the	polariza3on.	
	

If	you	see	it	on	large	angular	scales,		
then	you	have	spoled	gravitaPonal	waves.	

	
Is	the	curl	palern	correlated	with	hot	or	cold	spots?		

	
If	no,	then	the	gravitaPonal	waves		
have	no	preferred	handedness.	

	
If	yes,	then	the	gravitaPonal	waves		
do	have	a	preferred	handedness.	

	
	



Leptogenesis	

Kimura	1969	
Delbourgo	&	Salam	1972	
Eguchi	&	Freund	1976	
Alvarez-Gaume	&	Wilen	1984	

rµJ
µ
A = NR�L

24(16⇡2)R
eR Axial	Current	via	GravitaPonal	Anomaly	

Gibbons	1979	

R eR / (�2
R ��2

L)

Leptogenesis	

leptons	created,		
with	asymmetry	

N`ep = NR�L

24(16⇡2)

R
d

4
x

p
�gR

e
R

Standard	Model	parPcles;	
chiral	biased	parPcle	producPon	

Create	the	maBer-an3maBer	asymmetry	
from	chiral	gravita3onal	waves	

+	ReheaPng:	Adshead,	Long,	Sfakianakis	2017	

j`ep =
X

i

⇣
jeiL + j⌫i

L
+ jeiR

⌘

GravitaPonal	Leptogenesis:	Alexander,	Peskin,	Sheikh-Jabbari	2006	



Leptogenesis	

Sakharov	CondiPons	

•  ViolaPon	of	baryon	number	
•  CP	violaPon	
•  Out	of	equilibrium	

…	saPsfied	

•  Lepton	number	violated	
•  Inflaton/gauge	field	are	parity-odd	
•  InflaPon	is	far	out	of	equilibrium	

Leptogenesis	

⌘ ⌘ nB
n�

' 1
7 ⇥ 28

79 ⇥ hn`i
s

⌘ ' 6.1(±0.04)⇥ 10�10

Planck	2016	

Convert	to	baryon	asymmetry	
by	SM	electroweak	processes	

CMB-S3	(3σ)	

An	observable	within	reach!	

Klebnikov	&	Shaposhnikov	1988	



Leptogenesis	

⌘ ⌘ nB
n�

' 1
7 ⇥ 28

79 ⇥ hn`i
s

⌘ ' 6.1(±0.04)⇥ 10�10

Planck	2016	

Convert	to	baryon	asymmetry	
by	SM	electroweak	processes	

CMB-S3	(3σ)	

An	observable	within	reach!	

Klebnikov	&	Shaposhnikov	1988	

	
Baryogenesis:	Chiral	gravitaPonal	waves	create	
lepton	asymmetry	via	gravitaPonal	anomaly	

	
To	match	the	observed	baryon	asymmetry,		
require	tensor-to-scalar	raPo	r	~	0.03-0.04	

	
If	reheaPng	thermalizaPon	is	delayed,		

more	parPcle	species	added,	or	asymmetry	erased,		
then	larger	r	required	to	match	η

	
	



Use	that	Chiral,	Blue-Tilted	Spectrum	

Lasky	et	al	2016	
RC	&	Devulder	2017	

L	
R	

LISA:		
Laser	Interferometer	Space	Antenna	

See	sci.esa.int/lisa	

L=8.3	cs	



BBO	2:		
Big	Bang	Observer2	

Seto	2006		
Seto	&	Taruya	2007	
Crowder	et	al	2013	
Kato	&	Soda	2015	
Smith	&	RC	2016	
Thorne	et	al	2017	

Uncorrelated	detectors	help	to	see	
primordial	gravitaPonal	waves.	
	
Need	two	planes	to	disPnguish	V	
polarizaPon.	

Chiral	GravitaPonal	Waves	

2

Lasky	et	al	2016	
RC	&	Devulder	2017	
In	preparaPon:	Smith	&	RC	2017	

L	
R	



Axion	Gauge-Field	Infla8on	

Viable	scalar	spectrum,	Observable	tensor	spectrum	

Unique	imprint:	circular	polarized	GW	background	

Leptogenesis	implies	a	lower	bound	for	B	modes	



Session6a 11:15–12:30
[Chair Kei-ichi Maeda]
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6a2. Seiga Sato (Waseda U.)
“Hybrid Higgs Inflation” (10+5)
[JGRG27 (2017) 113003]
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Hybrid Higgs Inflation

† Seiga Sato

17/11/30 JGRG27 @ Higashi Hiroshima, Kurara Hall

With †K.Maeda

†Waseda U.

Introduction

NASA(2006)

Wikimedia commons

the most of inflation models need 
a scalar field “inflaton” .

Scalar field＝Higgs field

Standard Model

Inflaton＝Higgs ?

𝑉 =
𝜆

4
ℎ2 − 𝑣2 2

𝐿 =
𝑀𝑝

2

2
𝑅 − 𝑔𝜇𝜈

𝜕𝜇ℎ 𝜕𝜈ℎ

2
− 𝑉(ℎ)

ℎ : Higgs

Higgs inflation



Problems of Higgs inflation

(Planck 2015 results)

𝜆 ≃ 10−13

Introduction

𝑆 = න𝑑𝑥4 − ҧ𝑔
𝑀𝑝

2

2
ത𝑅 − ҧ𝑔𝜇𝜈

𝜕𝜇𝜙 𝜕𝜈𝜙

2
− 𝑈 𝜙

𝑆 = න𝑑𝑥4 −𝑔
𝑀𝑝

2

2
− 𝜉

ℎ2

2
𝑅 − 𝑔𝜇𝜈

𝜕𝜇ℎ 𝜕𝜈ℎ

2
− 𝑉(ℎ)

𝑔𝜇𝜈 ≡ 1 − 𝜉
ℎ2

𝑀𝑝
2

−1

ҧ𝑔𝜇𝜈

𝑑𝜙

𝑑ℎ
≡

1

1 − 𝜉
ℎ2

𝑀𝑝
2

1 + (6𝜉 − 1)𝜉
ℎ2

𝑀𝑝
2

K.Maeda&T.Futamase(1989)

Conformal transformation：𝑔𝜇𝜈 → 𝑔𝜇𝜈

Introduction • B.L.Spokoiny(1984)
• F.Bezrukov, D.Gorbunov &M.Shaposhnikov(2008)Higgs Inflation



𝑆 = න𝑑𝑥4 − ҧ𝑔
𝑀𝑝

2

2
ത𝑅 − ҧ𝑔𝜇𝜈

𝜕𝜇𝜙 𝜕𝜈𝜙

2
− 𝑈 𝜙 +

ℎ𝑖𝑔ℎ𝑒𝑟
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
𝑡𝑒𝑟𝑚𝑠

𝑆 = න𝑑𝑥4 −𝑔
𝑀𝑝

2

2
𝑅 − 𝑔𝜇𝜈 −

𝐺𝜇𝜈

𝑀2

𝜕𝜇ℎ 𝜕𝜈ℎ

2
− 𝑉(ℎ)

𝑔𝜇𝜈 ≡ ҧ𝑔𝜇𝜈 +
𝜕𝜇ℎ 𝜕𝜈ℎ

2𝑀2𝑀𝑝
2

slow-roll𝑑𝜙

𝑑ℎ
≡ 1 +

𝜆

4𝑀2

ℎ4

𝑀𝑝
2

S.D.Vita&C.Germani(2016)

Disformal transformation： 𝑔𝜇𝜈 → 𝑔𝜇𝜈

Introduction

New Higgs Inflation

How long is this valid?

• C.Germani&A.Kehagias (2010)
• C.Germani, Y.Watanabe &N.Wintergerst(2014)

 when the observable quantities are estimated,  
Can the approximation be valid?

 Are there any other Higgs inflation models  
preferred by the CMB observations more ?

Introduction

motivations

The cosmological perturbations are invariant 
under the disformal trans.

• M.Minamitsuji (2014)
• S.Tsujikawa (2015)
• Y.Watanabe, A.Naruko & M.Sasaki(2015)
• H.Motohashi, J.White(2015)

𝑟 ≃ ൝
10−5 (Higgs inflation)

0.1 (New Higgs inflation)



𝑆 = න𝑑𝑥4 −𝑔
𝑀𝑝

2

2
ത𝑅 − ҧ𝑔𝜇𝜈

𝜕𝜇𝜙 𝜕𝜈𝜙

2
− 𝑈 𝜙 +

ℎ𝑖𝑔ℎ𝑒𝑟
𝑑𝑒𝑟𝑖𝑣𝑎𝑡𝑖𝑣𝑒
𝑡𝑒𝑟𝑚𝑠

Hybrid Higgs Inflation

𝑆 = න𝑑𝑥4 −𝑔
𝑀𝑝

2

2
− 𝜉

ℎ2

2
𝑅 − 𝑔𝜇𝜈 −

𝐺𝜇𝜈

𝑀2

𝜕𝜇ℎ 𝜕𝜈ℎ

2
− 𝑉(ℎ)

𝑔𝜇𝜈 ≡ 1 − 𝜉
ℎ2

𝑀𝑝
2

−1

ҧ𝑔𝜇𝜈 +
𝜕𝜇ℎ 𝜕𝜈ℎ

2𝑀2𝑀𝑝
2

slow-roll𝑑𝜙

𝑑ℎ
≡

1

1 − 𝜉
ℎ2

𝑀𝑝
2

1 + 6𝜉 − 1 𝜉
ℎ2

𝑀𝑝
2 +

𝜆

4𝑀2

ℎ4

𝑀𝑝
2

Disformal transformation： 𝑔𝜇𝜈 → 𝑔𝜇𝜈

R.Easther, K.Maeda, N.Musoke, S.S

𝑉 ℎ =
𝜆

4
ℎ2 − 𝑣2 2 ≅

𝜆

4
ℎ4 (𝜆 ≈ 0.1)

c
𝑼 𝝓 [𝑴𝒑

𝟒]

106

2×106

𝝓[𝑴𝒑]
5 10 15

𝝓[𝑴𝒑]

𝑼 𝝓 [𝑴𝒑
𝟒]

c

𝑀 = 10−8

𝜉 = −104

𝜉 = −104𝑀 = 10−8

New Higgs

Hybrid Higgs

~
𝜙

𝑐 + 𝜙

4

~𝜙
4
3

𝑼 𝝓 [𝑴𝒑
𝟒]

𝝓[𝑴𝒑]

5000

104

2×104

~ 1 − 𝑒−𝜙
2

Higgs



Hybrid Higgs Inflation

Basic equations

𝐻2 =
1

3 𝑀𝑃
2 − 𝜉ℎ2

1 +
9𝐻2

𝑀2

ሶℎ2

2
+ 6𝜉ℎ ሶℎ𝐻 + 𝑉

1 +
3𝐻2

𝑀2
ሷℎ + 3𝐻 1 +

3𝐻2 + 2 ሶ𝐻

𝑀2
ሶℎ + 6𝜉 ሶ𝐻 + 2𝐻2 ℎ +

𝑑𝑉

𝑑ℎ
= 0

3𝐻2 + 2 ሶ𝐻 𝑀𝑃
2 − 𝜉ℎ2 + 1 −

3𝐻2

𝑀2

ሶℎ2

2
− 𝑉 −

𝑑

𝑑𝑡

𝐻 ሶℎ2

𝑀2
+ 2𝜉ℎ ሶℎ − 2𝜉𝐻ℎ2 = 0

ഥ𝐻2 =
1

3𝑀𝑃
2

𝜙′2

2
+ 𝑈

𝜙′′ + 3ഥ𝐻𝜙′ +
𝑑𝑈

𝑑𝜙
= 0

3𝑀𝑃
2 ഥ𝐻2 + ഥ𝐻′ =

𝜙′2

2
− 𝑈

′ =
𝑑

𝑑 ҧ𝑡

𝑀 = 10−7

𝜉 = −104

60
100 0

Hubble parameter

𝑵

Explicit

Approx.

50

𝑯[𝑴𝒑]

2×10−5

4×10−5

𝑁 = 50~60

Hybrid Higgs Inflation
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𝒅𝒉

𝒅𝒕
[𝑴𝒑

𝟐]

0.03

Phase diagram

−10−8

−3×10−8

−5×10−8

𝒉[𝑴𝒑]

Approx.

Explicit

0.05

𝑁 = 50~60

Hybrid Higgs Inflation

cosmological perturbations

Constraint on the relation between 𝑀 and 𝜉

𝑃𝜁 ≃
1

24𝜋2𝑀𝑝
4

𝑈

𝜀
=
𝜆2ℎ10 + 4𝜆𝑀2𝜉 6𝜉 − 1 ℎ8 + 4𝜆𝑀2ℎ6

3072𝜋2𝑀𝑝
4 1 − 𝜉ℎ2 2

≈ 10−9

≃
1

𝑀𝑝
2න

𝜙𝑒𝑛𝑑

𝜙𝑁 𝑈

𝑈′
𝑑𝜙 ≃

≈ 60

𝑁
1

64𝑀𝑝
2𝑀2𝜉3

[𝜆𝜉2ℎ4

+ 8𝑀2𝜉3 6𝜉 − 1 + 2𝜆𝜉 ℎ2

+ 2 𝜆 + 24𝑀2𝜉3 ln[1 − 𝜉ℎ2]]

Hybrid Higgs Inflation

𝑛𝑠 ≃ 1 − 6𝜖 + 2𝜂 , 𝑟 ≡
𝑃𝑇
𝑃𝜁

≃ 16𝜖
𝜖 =

1

2

1

𝑈

𝑑𝑈

𝑑𝜙

2

, 𝜂 =
1

𝑈

𝑑2𝑈

𝑑𝜙2

slow-roll parameters Observavble quantities

𝑃𝜁 ≃
1

24𝜋2𝑀𝑝
4

𝑈

𝜀
≈ 10−9

Advantages of disformal truncation
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𝑝

Relation between 𝑀 and 𝜉

Hybrid Higgs Inflation

cosmological perturbations

Higgs

New Higgs

Hybrid Higgs Inflation

cosmological perturbations



𝑆 = න𝑑𝑥4 −𝑔
𝑀𝑝

2

2
− 𝜉

ℎ2

2
𝑅 − 𝑔𝜇𝜈 −

𝐺𝜇𝜈

𝑀2

𝜕𝜇ℎ 𝜕𝜈ℎ

2
− 𝑉(ℎ)

𝑉 ℎ =
𝜆

4
ℎ2 − 𝑣2 2 ≅

𝜆

4
ℎ4 (𝜆 ≈ 0.1)

ADM metric

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝛾𝑖𝑗 𝑑𝑥𝑖 + 𝑁𝑖𝑑𝑡 𝑑𝑥𝑗 + 𝑁𝑗𝑑𝑡

ℎ𝑖 ,𝑗
𝑗

= 0 = ℎ𝑖
𝑖

𝑁 = 1 + 𝛼,

𝑁𝑖 = 𝜕𝑖𝜓,

𝛾𝑖𝑗 = 𝑎 𝑡 𝑒2𝜁 𝛿𝑖𝑗 + ℎ𝑖𝑗 +
1

2
ℎ𝑖

𝑘ℎ𝑘𝑗

Scalar perturbations:

Tensor perturbation:

𝛼, 𝜓, 𝜁

ℎ𝑖𝑗

ADM decompositions

Hybrid Higgs inflation

𝑆𝑆
2
= න𝑑𝑥4𝑀𝑃

2𝑎3 3𝐺 +
Σ𝐺2

Θ2
ሶ𝜁2 −

𝛻𝑖𝜁
2

𝑎2
1

𝑎

𝑑

𝑑𝑡

𝑎𝐺2

Θ
− 𝐹

𝐹 = 1 −
𝜉ℎ2

𝑀𝑃
2 +

ሶℎ2

2𝑁𝑀2𝑀𝑃
2 ,

𝐺𝑆 𝐹𝑆

𝑆𝑆
2
= න𝑑𝑦𝑑𝑥3𝑀𝑃

2 𝑑𝑢

𝑑𝑦

2

− 𝛻𝑖𝑢
2 −

𝑑2𝑧

𝑑𝑦2
𝑢2

𝑧

𝑑𝑦 ≡
𝑐𝑠
𝑎
𝑑𝑡

𝑧 ≡ 2𝑎 𝐹𝑆𝐺𝑆
1
4

𝑢 ≡ 𝑧𝜁 Mukhanov-
Sasaki variable

𝐺 = 1 −
𝜉ℎ2

𝑀𝑃
2 −

ሶℎ2

2𝑁𝑀2𝑀𝑃
2 ,

Θ ≡ 𝐻 1 −
𝜉ℎ2

𝑀𝑃
2 −

3 ሶℎ2

2𝑁𝑀2𝑀𝑃
2 −

𝜉ℎ ሶℎ

𝑀𝑃
2 ,

Σ ≡ −3𝐻2 1 −
𝜉ℎ2

𝑀𝑃
2 + 9𝐻2 +

𝑀2

2

×
ሶℎ2

𝑁𝑀2𝑀𝑃
2 − 6𝐻

𝜉ℎ ሶℎ

𝑀𝑃
2 ,

K.Kamada, T.Kobayashi,
T.Takahashi,M.Yamaguchi & J.Yokoyama(2012)

ADM decompositions



𝑑2𝑢

𝑑𝑦2
+ 𝑘2 − 𝜈𝑆

2 −
1

4

1

𝑦2
𝑢 = 0

𝑢 =
𝜋

2
𝑒
𝜋
2
𝑖 𝜈𝑆+

1
2 −𝑦𝑆𝐻𝜈𝑆

1
−𝑘𝑦

𝐻𝜈
1

𝑥 : 1𝑠𝑡 𝑘𝑖𝑛𝑑 𝐻𝑎𝑛𝑘𝑒𝑙 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛

𝑃𝜁 𝑘 ≡
𝑘3

2𝜋2
𝜁 2 =

𝑘3

2𝜋2
𝑢

𝑧

2

=
1

2
22𝜈𝑠−3

Γ 𝜈𝑠
Γ Τ3 2

2

1 − 𝜖 −
𝑓

2
+
𝑔

2

2
𝐺𝑆

Τ1 2

𝐹𝑆
Τ3 2

𝐻2

4𝜋2

Power spectrum 

Spectrum index 

1 − 𝑛𝑆 = 2𝜈𝑆 − 3
Horizon-cross

𝑘~ − 1/𝑦𝑟 =
𝑃𝑇
𝑃𝜁

𝜈𝑠 ≡
3 − 𝜖𝐻 + 𝑔

2 − 2𝜖𝐻 − 𝑓 + 𝑔

𝑓𝑆 ≡
ሶ𝐹𝑆

𝐻𝐹𝑆
≃ 𝑐𝑜𝑛𝑠𝑡,

𝑔𝑆 ≡
ሶ𝐺𝑆

𝐻𝐺𝑆
≃ 𝑐𝑜𝑛𝑠𝑡,

ADM decompositions

Para
meter

Δ𝑛𝑠[%] Δ𝑟[%]

N=60 N=50 N=60 N=50

① 5.8 × 10−2 9.3 × 10−2 3.4 4.2
② 7.5 × 10−2 1.1 × 10−1 3.6 4.5
③ 7.6 × 10−2 1.1 × 10−1 3.6 4.6
④ 1.2 × 10−1 1.8 × 10−1 5.1 6.5
⑤ 3.6 × 10−1 9.3 × 10−2 3.5 4.4

Δ𝑟 ≡
𝑟 − 𝑟𝐴𝐷𝑀
𝑟𝐴𝐷𝑀

× 100

Δ𝑛𝑠 ≡
𝑛𝑠 − 𝑛𝑠𝐴𝐷𝑀
𝑛𝑠𝐴𝐷𝑀

× 100

①

②

③

④

⑤

c
ADM decompositions

Δ𝑛𝑠 < 0.4% Δ𝑟 < 6.6%



Summary & Discusions

 The disfomal truncation is very useful and valid during 
the inflation regime.

 “Hybrid Higgs inflation” is a good inflation model, 
which varies 𝑟 without varying the 𝑛𝑠.

 The gravitational wave can be enhanced by the 
𝐺𝜇𝜈𝛻𝜇ℎ𝛻𝜈ℎ .

 Any other models 
to apply?

Thank you for listening

THE END
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𝑘3

𝑘1

𝑘2 𝑘3 = 𝑘𝐿 ≪ 𝑘1, 𝑘2



𝐼𝑖𝑗

𝑇(𝑘) 𝐷(𝑧)





𝐴2 = 100

𝑔𝑖𝑗

𝛾

•

𝑗𝑙
𝜒

𝐶𝑙𝑚
(𝑠)

ℓ →



𝐴2 = 100

𝐴2 = 100

•

•
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1

Sakine Nishi （Rikkyo University）


in collaboration with

Tsutomu Kobayashi (Rikkyo), Hiroaki W. H. Tahara (RESCEU),

and Jun’ichi Yokoyama (RESCEU)


JGRG27 @Hiroshima

Anisotropic Inflation in Horndeski theory


Introduction

2

P(k) = P(k)[1 + g⇤ sin
2 ✓]

[]

[]



Introduction

○ Statistical isotropy 
 
 
 
 

○ Anisotropic inflation　→　introduce vector field 
 
ex.)

3[Kannno, Kimura , Soda ,S.Yokoyama 2013]

[Planck  2015]

P(k) = P(k)[1 + g⇤ sin
2 ✓]

�0.010 < g⇤ < 0.019

Motivation

Anisotropic inflation     →　introduce vector field 
 
 

Anisotropic inflation without vector field ? 
( in the Horndeski theory )

4



Outline

○ Introduction


○ Action (Horndeski theory)


○ Background


○ Attractor


○ Conclusions

5

Action

○ Horndeski theory


• the most general scalar-tensor theory which has up to  
2nd derivative


• The field eqs. have no 3rd and higher derivative terms

6

SHor =

Z
d4x

p
�g

⇢
G2(�, X)�G3(�, X)⇤�+G4(�, X)R

+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤
+G5(�, X)Gµ⌫rµr⌫�

�1

6
G5X

⇥
(⇤�)3 � 3⇤�(rµr⌫�)

2 + 2(rµr⌫�)
3
⇤�

X := �gµ⌫@µ�@⌫�/2

[G. W. Horndeski (1974)] 
[C. Deffayet, Xian Gao, D. A. Steer, and G. Zahariade (2011)] 

[T. Kobayashi, M. Yamaguchi and J. Yokoyama (2011)]



Action

○ In ADM formalism

7

L2 = A2(t,N)

L3 = A3(t,N)K

L4 = A4(t,N)(K2 �K2
ij) +B4(t,N)R(3)

L5 = A5(K
3 � 3KK2

ij + 2K3
ij)

+B5(t,N)Kij

✓
Rij �

1

2
gijR

(3)

◆

[J. Gleyzes, D. Langlois, F. Piazza, F. Vermizzi, 2014]

Horndeski condition

Background

○ Introduce anitosropy ( Bianchi type-I ) 
 

○ Action

8

ds2 = �N

2dt2 + a

2
h
e

�4�+dx2 + e

2�++2
p
3��dy2 + e

2�+�2
p
3��dz2

i

L2 = A2(t,N),

L3 =
3a0

aN
A3(t,N),

L4 =
6

N2
A4(t,N)

✓
a02

a2
� �02

� � �02
+

◆
,

L5 =
6

a3N3
A5(t,N)(a0 � 2a�0

+)(a
02 + 2aa0�0

+ + a2(�3�02
� + �02

+))

a(t), N(t), �̇±

Variation of



Background - Field equations

○ background

9

A2 � 6A4H
2 � 12A5H

3 � 1

N

d

dt
(A3 + 4A4H + 6A5H

2)

� 6

N2
A4(�̇

2
� + �̇2

+) +
18A5a

2

N2

✓
d

dt

�
�̇2
� + �̇2

+

�
+ 3�̇2

� � �̇2
+

◆
= 0

(A2N)0 + 3(A3N)0H + 6(A4N
�1)0

�
N2H2 � (�̇2

� + �̇2
+)

�

+6(A5N
�2)0(NH � 2�̇+)(N

2H2 � 2NH�̇+ � 3�̇2
� + �̇2

+) = 0

�̇±
H

⌧ 1

Background - Field equations

○ anisotropy


○ fixed point     (                  )

10

d

dt


a3

N2
{(3A5H +A4)N �̇� � 6A5�̇+�̇�}

�
= 0

d

dt


a3

N2

�
(3A5H +A4)N �̇+ + 3A5

�
�̇2
+ � �̇2

�
� �

= 0

b = �N(3A5H +A4)

3A5

a(t) ! 1
✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!



Background - Attractor

11

✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!
↓  Isotropic inflation

Background - Attractor

○ The solutions of anisotropic inflation needs       term

12

b = �N(3A5H +A4)

3A5

✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!

A5

↓  Anisotropic inflation



Background

○ ADM formalism

13

L2 = A2(t,N)

L3 = A3(t,N)K

L4 = A4(t,N)(K2 �K2
ij) +B4(t,N)R(3)

L5 = A5(K
3 � 3KK2

ij + 2K3
ij)

+B5(t,N)Kij

✓
Rij �

1

2
gijR

(3)

◆

[J. Gleyzes, D. Langlois, F. Piazza, F. Vermizzi, 2014]

�± 2 Kij�̇±

Background

○ conditions


• small anisotropy 

• Background

14

(NA2)
0 + 3A0

3H +

✓
A4

N

◆0
(6H2 � �2) +

✓
A5

N2

◆0
(6H3 + 3H�2 + 2�3)

�����
N=1

= 0

✓
A4

N

◆0
�����
N=1

&
✓
A5

N2

◆0
�����
N=1

� ⇠ b = �N(3A5H +A4)

3A5
⌧ 1

→ large

�̇±
H

⌧ 1
.



Background

○ ADM formalism

15

L2 = A2(t,N)

L3 = A3(t,N)K

L4 = A4(t,N)(K2 �K2
ij) +B4(t,N)R(3)

L5 = A5(K
3 � 3KK2

ij + 2K3
ij)

+B5(t,N)Kij

✓
Rij �

1

2
gijR

(3)

◆

[J. Gleyzes, D. Langlois, F. Piazza, F. Vermizzi, 2014]

de-Sitter inflation

Attractor

○ de-Sitter inflation +small anisotropy

16

✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!

H = const.

N = const.



○ de-Sitter inflation +small anisotropy

Attractor

17

✕

H = const.

N = const.

✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!

Attractor

○ de-Sitter inflation +small anisotropy

18

✕

H = const.

N = const.

✓
�̇�
b
,
�̇+

b

◆
= (0, 0), (0, 1) ,

 p
3

2
,�1

2

!
,

 
�
p
3

2
,�1

2

!



Conclusions

○ Generalized model of Anisotropic inflation 
without vector field in Horndeski theory


○ 　　 term generates anisotropy 

○ Perturbations　→　Next talk

19
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Toward dissipative and stochastic effects in the EFT of inflation
Cosmology group, Dept. phys., Kobe Univ. M2 Suro Kim

(based on [1] w/ Masaru Hongo@RIKEN, Toshifumi Noumi@Kobe Univ, Atsuhisa Ota@Tokyo Tech)   

Introduction
• Open systems play an important role among various scales: condensed matter physics, cosmology and active matters (e.g. flocks of birds!).
• In cosmology, for example, inflation has analogous features with open system: existence of cosmological horizon, hidden sectors coupled 

to inflaton, etc..
• Effective field theory of inflation is a powerful tool to deal with primordial density fluctuation, which is identified with the Nambu-Goldstone 

(NG) boson associated to the spontaneously broken time translation symmetry of de Sitter space.
• In this poster, we construct open system effective field theory for time translation symmetry breaking in flat space: as a first step to 

dissipation and stochastic effects in the EFT of inflation and for application to time crystal of condensed matter physics.

EFT of NG boson with dissipative and stochastic effects based on symmetry structure

Schwinger-Keldysh formalism and Doubled symmetry

Conclusion
• Dissipative and stochastic effects break one of the two time translation symmetries in Schwinger-Keldysh formalism. 
• We incorporate dissipative and stochastic effects into the EFT framework based on such a symmetry structure.
• We have in mind generalizing this flat space results to de-Sitter space, in other words inflation. 
• Constructing effective action in de-Sitter space is straightforward and identifying the KMS condition for de-Sitter space is in progress.

Reference
1. M. Hongo, S. Kim, T. Noumi and A. Ota, “Open system effective field theory for time translational symmetry breaking ” In progress.
2. C. Cheung, P. Creminelli, A. L. Fitzpatrick, J. Kaplan and L. Senatore “The Effective Field Theory of Inflation” JHEP 0803 (2008) 014 arXiv:0709.0293 [hep-th]. 
3. M. Crossley, P. Glorioso and H. Liu, “Effective field theory of dissipative fluids,” JHEP 1709 (2017) 095 arXiv:1511.03646 [hep-th].
4. Y. Minami and Y. Hidaka, “Spontaneous symmetry breaking and Nambu-Goldstone modes in dissipative systems,” arXiv:1509.05042 [cond-mat.stat-mech].

1. Schwinger-Keldysh formalism
Correlation function of operator is written as
⋯ = ∫𝐷𝑋&𝐷𝑋'

�
� 𝑒*+ ,-,	,0	 ⋯

𝑆[𝑋&, 𝑋'] = 4 𝑑6𝑥ℒ	(𝑋&, 𝑋')
;

1. Construction of effective action
The effective action for NG boson 𝜋± takes the form

𝑆>?? 𝜋&, 𝜋' = 4𝑑6𝑥 @ 𝜕B𝜋&
C − 𝜕B𝜋'

C
�

�

+ 𝛽 �̇�&C − �̇�'C

								+𝑖𝐴* 𝜋& − 𝜋' 𝟐 + 𝑖𝐴K 𝜕B 𝜋& − 𝜋'
C

																					+𝛾*𝜋'�̇�& + 𝛾K𝜕B𝜋'𝜕B�̇�& + 𝑂(𝜋N)O

This action is constructed based on the following criterions
• Criterion 1: Symmetry structure

• Criterion 2: Microscopic unitary condition (cf. [3])
𝑆P*QRS 𝜙& = 𝜙'; 𝜎& = 𝜎' = 0		 ⟹				 𝑆>?? 𝜋& = 𝜋' = 0

I𝑚𝑆>?? 𝜋&, 𝜋' ≥ 0 		⟹	 Noise	is	a	dumping	factor

2. KMS condition
At equilibrium, the action enjoys the KMS condition given by

𝑆 𝜋& 𝑡 , 𝜋' 𝑡 = 𝑆 𝜋& −𝑡 , 𝜋' −𝑡 − 𝑖𝛽

→ 	𝐴* =
2𝛾*
𝛽
	, 𝐴K =

2𝛾K
𝛽

Note that the first relation coincide with Fluctuation-Dissipation 
theorem.

Scale-independent noise

Kinetic term

Scale-dependent noise

Scale-independent dissipation

3. Dispersion relation of NG boson
Dispersion relation is determined by

𝑤C − 𝑐aC𝒌C + 𝑖𝑐aC𝛾𝑤 = 0 ,where 𝑐aC =
c

c&d

→ 𝑤 𝒌 = −
𝑖
2
𝑐aC𝛾 ±

𝑖
2

𝑐a6𝛾C − 4𝑐aC𝒌C
�

If 𝛾C ≫ 4𝒌C

𝑤 𝒌 ~ −
𝑖
𝑐aC𝛾

𝒌C				𝑎𝑛𝑑						 − 𝑖𝑐aC𝛾 +
𝑖
𝑐aC𝛾

𝒌C,

this modes are diffusive modes. (cf. [4])
If 𝛾C ≪ 4𝒌C, this mode is just a propagating mode, 𝑤 𝒌 = ±𝑐a 𝒌

2. Coarse graining and symmetry structure
Microscopic viewpoint
𝑆P*QRS 𝜙&, 𝜙'; 𝜎&, 𝜎' = 𝑆 𝜙&, ; 	𝜎&	 − 𝑆 𝜙', ; 	𝜎'	

Symmetry structure
𝜙& 𝑡, 𝒙

l-
𝜙& 𝑡 + 𝜖&, 𝒙 	𝑎𝑛𝑑	𝜙' 𝑡, 𝒙

l-
𝜙' 𝑡, 𝒙 ,

𝜙& 𝑡, 𝒙
l0
𝜙& 𝑡, 𝒙 	𝑎𝑛𝑑	𝜙' 𝑡, 𝒙

l0
𝜙' 𝑡 + 𝜖', 𝒙

Macroscopic viewpoint
𝑆PnQRS 𝜙&, 𝜙'	 = 𝑆o 𝜙&	 − 𝑆o 𝜙'	 + 𝑆P*p 𝜙&, 𝜙'

𝜙& 𝑡, 𝒙
lq
𝜙& 𝑡 + 𝜖r, 𝒙 	𝑎𝑛𝑑	𝜙' 𝑡, 𝒙

lq
𝜙' 𝑡 + 𝜖r, 𝒙

𝜙& 𝑡, 𝒙
ls
𝜙& 𝑡 + 𝜖t, 𝒙 	𝑎𝑛𝑑	𝜙' 𝑡, 𝒙

ls
𝜙' 𝑡 − 𝜖t, 𝒙

Coarse	graining
Integrate	out	𝜎

Modification of sound speed

t
C

𝑋&		𝜙&		𝜎&

𝑋'		𝜙'		𝜎'

𝑡* → −∞ 𝑡? → 	∞

𝜙& 𝜙'𝜎'𝜎&𝜙& 𝜙'

𝜙 : dynamical variable, 
𝜎	: environment

Scale-dependent dissipation

Broken	by	
𝜙&- 𝜙' mixing

𝛿r 𝛿t
Blue ✓ ✓ Operators in	EFT	of	inflation	(cf.	[2])

Orange ✓ Effects	of	noise	&	dissipation	
▲ Our	new results

⋯: possible operator insertions, 
𝑋 : dynamical fields denoted collectively

𝑐a: sound speed
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Kunihito Uzawa

(Kwansei Gakuin Univ.)

Phys. Rev. D96 (2017) 084053

[arXiv:1705.01496 [hep-th]]

with Kengo Maeda 

SUPERSYMMETRY BREAKING AND 
SINGULARITY IN DYNAMICAL 

BRANE BACKGROUNDS

[1] Introduction

♦ Dynamical branes in string theory 

・ brane collision
(Gibbons & Lu & Pope, Phys.Rev.Lett. 94 (2005) 131602)
(Maeda & Minamitsuji & Ohta & Uzawa, Phys. Rev. D82 (2010)046007)

(Uzawa, Phys.Rev. D90 (2014) 025024)

・ cosmic Big-Bang of our universe
(Chen, et al., Nucl.Phys. B732 (2006) 118-135)
(Minamitsuji & Ohta & Uzawa, Phys. Rev. D82 (2010)086002))

・ black hole in expanding universe
(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)
(Maeda & Nozawa, Phys.Rev. D81 (2010) 044017)



・ The cosmological scenario from the time dependent      
solution until the present have been much explored. 

・ However, the study of SUSY breaking in terms of 
dynamical solution is much less extensive.

・ One motivation for the present work is to improve 
this situation.

✍ The dynamical D3-brane solution preserves 
¼ SUSY in the conifold background.
(H. Kodama & K. Uzawa, JHEP 0507 061 (2005))

✰ Question

Do supersymmetries preserve in the dynamical 
M-brane background?



[3] Preserved supersymmetry (11d SUGRA)

The 11-dimensional action is invariant under
local SUSY transformations : 

eA
M : graviton     ΨM : gravitino, 

AMNP : 3-form gauge potential

★Supersymmetry in dynamical M2-brane

・ The only fermionic field is the gravitino ΨM ,
which vanishes classically.

・ Supersymmetric configuration is a nontrivial solution 
to the Killing spinor equation :  



☆ Ansatz for fields 

・ 11-dim metric
(1+2)-dim worldvolume spacetime

・ 4-form field strength & gravitino 

8-dim transverse space to brane

and we define

11-dimensional gamma matrices satisfying



✰ killing spinor equation

・If the function h(x, r) is included in the spinor 
ε=h-1/6 ε0 (ε0 : constant Killing spinor), we find …

・Solution for dynamical background

・Integrability condition [∇M, ∇N]ε=0
gives 



Dynamical M2-brane solution :
(1+2)-dim worldvolume spacetime

8-dim transverse space to brane

(3) M≠0, c0≠0, c1=0, c2=0 : Non SUSY 

(4) cμ=0, c=0 : Static, Maximal SUSY

(1) M≠0, cμcμ=0, c0≠0, c1≠0, c2
2=c0

2-c1
2 : 

¼ SUSY

(2) M=0 (or r→∞), cμcμ=0, c0≠0, c1≠0, 
c2

2=c0
2-c1

2 : ½ SUSY, plane wave 

Dynamical spacetime



Dynamical spacetime

r = 0 : 
Location of M2-brane

r → ∞

AdS4 × S7 Plane wave

Maximal SUSY

Static spacetime

Dynamical M2-brane background (cμ cμ =0)

¼ SUSY ½ SUSY

Enhancement Enhancement

Intermediate
region

Dynamical spacetime

r = 0 : 
Location of M2-brane

r → ∞

AdS4 × S7 Kasner

Maximal SUSY

Static spacetime

Dynamical M2-brane background (c1=c2=0)

Non SUSY Non SUSY

recovering nothing

Intermediate
Region



I  -

i+

i-

Null geodesic

h(t, r)=-t+r-6=0
naked singularity

[4] SUSY breaking and enhancement of SUSY

(1) SUSY solution:  h=h(τ, xi, r), τ/τ0=(ct)2/3

(2) As time increases (for                   ), 

(3) h (τ, xi, r) (SUSY) → h(τ, r) (Non SUSY)



Time evolution (But toy model !!)

Late time

・homogeneous 
M-brane

・Non SUSY

Early universe 

・inhomogeneous 
M-brane

・Preserved SUSY

As the time 
increases

Dynamical spacetime

r = 0 : 
Location of M2-brane

r → ∞

AdS4 × S7

Kasner

Maximal SUSY

Static spacetime

SUSY breaking

Non SUSY

As the time increases

c i τ
-3/2 →0

c i τ
-3/2≠0

Plane wave

½ SUSY

ci x i ≪ M/r 6

¼ SUSY

Non SUSY



[3] Summary and comments

(1) The dynamical M2-brane background preserved the
¼ supersymmetry. For vanishing M2-brane charge, 
we also find ½ SUSY solution.

(2) The solutions of field equations cannot give a    

homogeneous expansion at constant r unless 
supersymmetries are completely broken.

(3) Although the solution itself is by no means realistic, 
its interesting behavior suggests a possibility that
the Universe preserved originally SUSY and began to
evolve toward a Universe without SUSY.
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Non-linear perturbation of 
black branes at large D

Umpei Miyamoto
Akita Prefectural University

JHEP06(2017)033 [arXiv:1705.00486]

27th JGRG@Hiroshima 2017.11.30

Contents
1. Introduction

1. Higher-dim. BHs
2. Preceding work: Black branes at large D

2. My work
1. Non-linear pert. of black branes
2. GL instability
3. Riemann problem

3. Conclusion

U. Miyamoto Nonlinear Pert. of BBs@large-D 2



Background

• Higher-dim. BHs
• Instability & various phase structures
（e.g. Gregory-Laflamme inst.）

• Gauge/Gravity correspondence
（e.g. AdS/CFT, AdS/CMP, Fluid/Gravity）

• Large-D approach
(R. Emparan, R. Suzuki, K. Tanabe, and more)

• 1/D expansion of GR
• Horizons are Constant-Mean-Curvature hypersurfs.

U. Miyamoto Nonlinear Pert. of BBs@large-D 3

http://www2.yukawa.kyoto-
u.ac.jp/ws/2013/string13/Em
paran.pdf

Preceding works：Black branes at large D
（Emparan-Suzuki-Tanabe PRL2015）

• Leading-order EOMs of BBs in 1/D
（Asympt. flat & AdS）

• 1+1 diffusion eqs. for m(t,z) and p(t,z)
• GL-unstable BS converges to a non-uniform 

BS（Sorkin 2004）

• Related work (Herzog-Spillane-Yarom 2016)
• Holographic dual of Riemann problem
Non-Equilibrium Steady States (NESSs)

• Question: Can we say anything analytically 
using simplified EOMs? 

U. Miyamoto Nonlinear Pert. of BBs@large-D 4



My work：Non-linear pert. of 
large-D black branes（UM JHEP2017）

• Diffusion eqs. of m(t,z)and p(t,z)

• Expand them around a uniform brane

• Laplace＆Fourier tr. wrt t and z, resp.
• Solve algebraic eqs.
• Inverse tr.
• General solutions

U. Miyamoto Nonlinear Pert. of BBs@large-D 5

General form of solutions at O(ε^l)

U. Miyamoto Nonlinear Pert. of BBs@large-D 6

I have obtained the soln. at every order as the linear 
combinations of inverse Fourier tr. of initial spectra 
m_l(0,k) & p_l(0,k).



Applicat’n to GL inst.

• Superposit’n of sinusoidal waves as 
initial condition
Obtain solns. up to 2nd order

• A couple of GL-stable modes 
constitute a “beat”

• The beat grows if its size is greater 
than GL critical length

U. Miyamoto Nonlinear Pert. of BBs@large-D 7

Applicat’n to Riemann problem

• Step-funct’n as m1(t=0,z)
• 1st order soln. in terms of Gauss 

error fun.
• Semi-analytic descript’n of NESS

• Superposit’n of sinusoidal waves 
as m1(t=0,z)

• Obtain solutions up to 2nd order
• Reproduce details of NESS

U. Miyamoto Nonlinear Pert. of BBs@large-D 8



Conclusion
• Perturb BBs at large-D around the uniform 

soln. and obtain the general form of soln. at 
every order

• Write down the explicit form of solns. for 
several initial conditions.

• Property of GL inst. in non-linear regime
• Analytic description of NESS

• Future prospects
• 1/D corrections & BBs with charges
• Application to turbulence (Rozali et al. 2017) 

U. Miyamoto Nonlinear Pert. of BBs@large-D 9
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Vacuum Polarization Around a Charged Black
Hole in 5 Dimensions

Gonçalo M. Quinta
In collaboration with: Antonino Flachi, José P. S. Lemos
December 20, 2017

Instituto Superior Técnico - Multidisciplinary Center for Antrophysics (CENTRA)
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5) Numerical Results
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Introduction

• To introduce quantum effects into the Einstein equation, one may
take the semiclassical limit

Gµν = 8π 〈Tµν〉 .

• However, it’s a formidable task to compute the quantity 〈Tµν〉, even
numerically. It’s easier to compute the vacuum polaization 〈φ2〉,
which is related to 〈Tµν〉 and provides a good deal of information.

• Calculations are usually restricted to 4 dimensions. In this work, we
will present a way to calculate this quantity around a charged black
hole in 5 dimensions.

3

Vacuum polarization around a 5-dimensional black hole

Consider a massive non-minimally coupled quantum scalar field(
�− µ2 − ξR

)
φ(x) = 0 .

One may show that

〈φ2(x)〉 = lim
x ′→x

i G(x , x ′) = lim
x ′→x

GE (x , x ′) ,

where the Green function G(x , x ′) gives the probability amplitude for a
particle to go from spacetime point x to x ′. Using τ = −it,

(
�E − µ2 − ξR

)
GE (x , x ′) = −δ

(5)(x − x ′)
√g .

4



Vacuum polarization around a 5-dimensional black hole

The background geometry will be a 5-dimensional charged black hole

ds2
E = f (r)dτ 2 + 1

f (r) dr 2 + r 2dΩ2
3, f (r) = 1− 2m

r 2 + q2

r 4 .

Expand the Green function in hyperspherical harmonics

GE (x , x ′) = κ

4π3

∞∑
n=−∞

e inκ∆τ
∞∑

l=0
(l + 1)C (1)

l (cos γ)Gnl (r , r ′)

(κ = 2πT , ∆τ = τ ′ − τ , γ angular geodesic distance) and the differential
equations becomes

d2Gnl

dr 2 +
(

3
r + f ′

2f

)
dGnl

dr −
(

n2κ2

f 2 + l(l + 2)
fr 2 + m2 + ξR

f

)
Gnl = −δ(r − r ′)

r 3f .

5

Vacuum Polarization around a 5-dimensional black hole

A WKB ansatz turns the mode Green function into

Gnl (r , r) = 1
2 r N+1 W (r)

and the homogeneous differential equation into

W 2 = Φ + a1
W ′

W + a2
W ′2

W 2 + a3
W ′′

W

with
Φ = l (l + 2) f

r 2 + n2κ2 + M2(r)f ,

a1 = ff ′
2 , a2 = −3

4 f 2, a3 = f 2

2 ,

The problem is reduced to calculating the WKB function W (r).

6



Vacuum Polarization around a 5-dimensional black hole

Taking the partial concincidence limit x→ x′ with the WKB ansatz,

GE (x , x ′) = κ

8π3r 3

∞∑
n=−∞

e inκ∆τ
∞∑

l=0

(l + 1)2

W (r) .

We express the WKB solution iteratively as

1
W = 1

Φ1/2 (1 + δ1Φ + δ2Φ + · · · ) .

At first order

δ1Φ = −a1
4

Φ′
Φ2 +

(
a3 − a2

8

)
Φ′2
Φ3 −

a3
4

Φ′′
Φ2 .

7

Regularization of the l modes

〈φ2(x)〉 has two divergences: a (non-physical) divergence in the angular
modes l ; and a (physical) divergence in the energy modes n.

First we deal with the l modes. The divergent terms come from the large
l behavior, which can be written in the form

Tl = κ

8π3r 3

∑
n

e inκ∆τ
∑

l
Rl (r) .

Subtracting and taking ∆τ → 0, we get the regularized result in the
angular modes

〈φ2(x)〉 = κ

8π3r 3

∞∑
n=−∞

∞∑
l=0

{
(l + 1)2

W (r) − Tl

}
.

8



Regularization of the n modes

〈φ2(x)〉 ∼
∑

n

(
#n2 log n + # log n + # + #

n + #
n2 + . . .

)
Divergent terms in the n modes correspond to loop divergences. The
Schwinger-DeWitt expansion predicts that

〈φ2(x)〉div = lim
∆τ→0

1
16π2

√
f

{
π

∆τ

((
1
6 − ξ

)
R −m2 − f ′

4r + f ′2
16f

)
+ 2

f 2∆τ 3

}
We should compare the two results to see if they are the same. The
renormalized vacuum polarization will then be

〈φ2(x)〉ren =
[
〈φ2(x)〉WKB − 〈φ

2(x)〉div
]

+ δ 〈φ2(x)〉

9

Regularization of the n modes

To check explicit cancellation, define

〈φ2(x)〉 = κ

8π3r 3

∞∑
n=−∞

∞∑
l=0

{
(l + 1)2

W (r) − Tl

}
≡
∞∑

n=1

∞∑
l=0

g(l) .

The Abel-Plana sum formula can be used to perform the l summation

〈φ2(x)〉 =
∞∑

n=1

g(0)
2︸︷︷︸

P1

+
∫ ∞

0
g(x)dx︸ ︷︷ ︸
P2

+ i
∫ ∞

0

g(ix)− g(−ix)
e2πx − 1 dx︸ ︷︷ ︸

P3

 .

We will only need to consider WKB up to first order, i.e.

1
W = 1 + δΦ√

Φ
.

10



Regularization of the n modes

Evaluating each term separatly,

div [P1] =
∞∑
n=1

1
2nκ

div [P2] =
∞∑
n=1

{
−

1
3nκ

+
r3

8
√

f

[
4n2κ2

f
+

(
m2 − [a1] +

f ′

r
−

f
′2

4f
+

f
′′

3

)](
1 + ln

(
rnκ
2
√

f

))}
div [P3] =

∞∑
n=1

(
−

1
6nκ

)
leads to the total divergent piece

div [P1 + P2 + P3] =
∞∑
n=1

{
r3

8
√

f

[
4n2κ2

f
+

(
m2 − [a1] +

f ′

r
−

f
′2

4f
+

f
′′

3

)](
1 + ln

(
rnκ
2
√

f

))}
.

This must be compared which the Schwinger-De Witt result.

11

Regularization of the n modes

The trick is to use the formulas
∞∑

n=1
log (nκ) cos(nκ∆τ) = − π

2κ
1

∆τ + O(∆τ) ,

∞∑
n=1

n2κ2 log (nκ) cos(nκ∆τ) = π

2κ
1

∆τ 3 + O(∆τ) ,

in

〈φ2(x)〉div = lim
∆τ→0

1
16π2

√
f

{
π

∆τ

((
1
6 − ξ

)
R −m2 − f ′

4r + f ′2
16f

)
+ 2

f 2∆τ 3

}
.

This will give exactly the same divergent terms, so we may subtract them
to obtain a fully renormalized result.

12



Numerical Results

Figure 1: Profile for m = 30 and µ = 1. Figure 2: Profile for q = 0 and µ = 1.

Figure 3: Profile for m = 10 and q = 0. 13

Summary

• Although widely studied for D = 4, the vacuum polarization in higher
dimensional spacetimes doesn’t usually get much attention due to
the high complexity of the countertems involved in the regularization
procedure.

• We fully studied the case of a 5-dimensional charged black hole, and
obtained a renormalized quantity. The regularity of the result was
explicitly proven by direct calculation of the counterterms.

• Although quantum calculations with higher dimensional black holes
are increasing, there are still a lot of physical aspects to be understood.

14



Thank you for your attention!
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Gravitational waves 
from remnants of first stars

Tomoya Kinugawa
(ICRR, University of Tokyo)

• 36M+29M, circular orbit

GW150914



GW150914,GW170104

Low metal field binaries

©Nakamura

Why field binaries?

• There are many massive close binaries
Example
Milky way young open clusters

71 O stars   fbinary=69+/-9% (P<3200days) Sana et al. 2012
30 Doradus (Tarantula Nebula)

362 O stars fbinary=51+/-4%(P<3200days) Sana et al. 2013



Why low metal?

• If the progenitor of BH is Pop I (=Solar metal stars)

• The orbit become wide due to wind mass loss
Belczynski et al. 2010

Why low metal?

• If the progenitor is low metal,

• Pop II (Z<0.1Zsun)
Typical mass is same as Pop I
But, week wind mass loss

• Pop III (No metal)
Pop III stars are the first stars after the Big Bang.
Typical mass is more massive than Pop I, II
MpopIII~10-100Msun
No wind mass loss due to no metal.

Minitial: 8Msun<M<150Msun
Single stellar evolution 
with 2 stellar wind models.
(Belczynski et al.2010,
Abbot et al.2016)

New

Old



Typical total mass     
M～60 M

(30 M +30 M)
Kinugawa et al. 
2014, 2016

Z=0 (Pop III)

Z=1/200 Zsun
Z=1/20 Zsun

Z=Zsun

Total mass [Msun]

e.g. Pop I, Pop II   
(Z=0.02,0.001,0.0001)
IMF:Salpeter
(1Msun<M<140Msun)
Typical mass ～10 M

Total mass distribution of BH-BH 
which merge within the Hubble time

What do determine the BH-BH mass?

• Steller wind mass loss
• Binary interactions
(Mass transfer, Common envelope)

Common envelope
Mass transfer

Close binary      or          merge



Why Pop III binaries become 30Msun BH-BH
• M>50Msun red giant
➝Mass transfer is unstable
➝common envelope
➝1/3~1/2 of initial mass 

(~25-30Msun)

• M<50Msun blue giant
➝Mass transfer is stable
➝mass loss is not so effective
➝2/3~1 of initial mass (25-30Msun)

Large radius

Small 
radius

Z=Zsun(=0.02) Z=1/20Zsun(=0.001)

All star evolve via a red giant 
Almost all binaries evolve via a similar evolution pass



Z=0

Z=1/200Zsun
Z=1/20Zsun

Z=Zsun

Total mass [Msun]

These shapes have 
the influence of IMF
and the influence of 

stellar wind mass loss

This shape reflects 
the influence of 
Pop III stellar 
evolution

Total mass distribution of BBH 
which merge within the Hubble time

Pop III BBH remnants for gravitational wave

• Pop III  stars were born and died at z~10
• The typical merger time of compact binaries   

~108-10yr
• We might see Pop III BBH at the present day. 

time

Big Bang

mergermerger

Djorgovski et al.&Degital Media 
Center



Pop III BBH?
ApJL Abbot. et al 2016

Detection range of KAGRA and Adv. LIGO

Mass of one star [M]

Re
ds

hi
ft

 z

Luminocity distance
～1.5 Gpc

Redshift z～0.28

SNR=8
For inspiral

SNR=8
For QNM

MBH～30M

SNR=8

©Kanda



Detection rate of Pop III BH-BH
• Detection rate of Pop III BBH (GW150914 like BBH)
in our standard model

R～180 (
𝑺𝑺𝑺𝑺𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝟏𝟏𝟏𝟏−𝟐𝟐.𝟓𝟓 ) 𝒇𝒇𝒃𝒃/(𝟏𝟏+𝒇𝒇𝒃𝒃)

𝟏𝟏.𝟑𝟑𝟑𝟑
[yr-1 ](S/N>8)

• Typical mass   
M～30 M➝We can see the QNM of merged BBH  

We might detect (or detected?) the Pop III BBH by GW
1. We might see BH QNM from Pop III BBH

➝ We might check GR by Pop III BH QNM  

2. The mass distribution might distinguish Pop III from Pop I, Pop II
➝The evidence of Pop III star 15

Cumulative BBH merger rate 

Pop III BBH
Pop I and II BBH
(2 metallicity evolution models)

Saturated at z~10 Saturated at z≲5

Lo
g(

ev
en

ts
/y

r)

Redshift Redshift



future plan of GW observer :
pre-DECIGO and DECIGO

• DECIGO: Japanese space gravitational wave observatory project
• Pre-DECIGO: test version of DECIGO

• Pre-DECIGO : z~10 (30 Msun BH-BH)
~105 events/yr

• DECIGO can see Pop III BH-BHs 
when Pop III stars were born!
(Nakamura, Ando, Kinugawa et al. 2016)

©Nakamura

Summary 

• Pop III binaries tend to become 30Msun+30Msun BH-BH
• Pop III BBH detection rate of  aLIGO in our standard model

R～180 (
𝑺𝑺𝑺𝑺𝑺𝑺𝒑𝒑𝒑𝒑𝒑𝒑𝒑𝒑
𝟏𝟏𝟏𝟏−𝟐𝟐.𝟓𝟓 ) 𝒇𝒇𝒃𝒃/(𝟏𝟏+𝒇𝒇𝒃𝒃)

𝟏𝟏.𝟑𝟑𝟑𝟑
[yr-1 ](S/N>8)

• The mass distribution or the redshift dependence might distinguish 
Pop III from Pop I,II.

• DECIGO can see Pop III BH-BH merger when they were born
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Cosmological magnetic fields

In particular, Gamma ray burst observation infer existence  
of magnetic fields in void 

They imply that the seed of magnetic fields must be produced 
in the early universe

How can we produce?

Several observations imply there exist magnetic fields on 
galaxy and galaxy cluster scales 

10�16 Gs⇠>B
void

⇠B
galaxy Gs10�6 Bcluster ⇠ 10�5 Gs,



Magnetogenesis

Ratra suggested a mechanism of magnetogenesis during inflation (1992)

This coupling prevent dilution of the gauge field due to expansion

However, this mechanism suffers from 
the strong coupling problem during inflation, namely, f(�) < 1

On the other hand…

S =

Z
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4
x

p
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2
(@µ�)

2 � V (�)� 1

4
f(�)Fµ⌫F
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(a: scale factor,  n: positive constant)f(�) =

✓
a

aend

◆n

In cyclic universe models,  
there is no strong coupling problem during the contracting phase 

f(�) > 1

S =

Z
d

4
x

p
�g
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2
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2 � V (�)� 1

4
f(�)Fµ⌫F
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during contracting phasef(�) =

✓
a

aend

◆n

Magnetogenesis

Magnetogenesis in

Inflation vs cyclic universe
difficult succesfull

f(�)FF

(F. A. Memviela (2013) )



ekpyrotic scenario

As a explicit cyclic universe model, we consider an ekpyrotic scenario.

In 4-dim, it is described by a scalar field rolling on an effective potential.

�̇ > 0

�̇ < 0

expanding

contracting

S =

Z
d

4
x

p
�g


�1

2
(@µ�)

2 � V (�)

�

In the ekpyrotic scenario, 
quantum fluctuations are produced during a contracting phase

where � represents the size of a extra dimension.

PGWs in cyclic universe

Quantum fluctuations of GWs in the contracting 
phase is blue spectrum Ph(k) / k2

We can not observe PGWs in cyclic universe models

However, I will show that this is not true 
if magnetic field production occurs in cyclic universe! 

It is believed that detection of PGWs kills cyclic universe

This is common to other cyclic universe models!



Magnetogenesis in ekpyrotic

S =

Z
d

4
x

p
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(@µ�)

2 � V (�)

�

In the contracting phase for quantum fluctuations,  
the potential is given by

 �V0 and are negative constants( )

V (�) = V0e
� �

Mpl

We also consider a exponential type gauge kinetic function

expected from dimensional reduction
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We treat the electromagnetic field as a perturbation.
Then the background solution is given by

a(⌧) = aend(
�⌧

⌧end
)

2
�2�2

�

Mpl
= �0 �

2�

�2 � 2
ln(

�⌧

Mpl
)

,

Solving the perturbative equation, 
we get magnetic fields at the end of the contracting phase as

Bk(⌧) / k
1
2

�2�4⇢��2

�2�2 H2
end

Hend : Hubble at the end of  
  the contracting phase

Magnetogenesis in ekpyrotic



We assume scale invariant magnetic fields  
which might be favored by observations

1

2

�2 � 4⇢�� 2

�2 � 2
= �3

2

Bk(⌧) =
3
p
2

8k3/2
(�2 � 2)2H2

end

Hend ⇠ 10�5Mpl, |�| ⇠ 17 10�12 Gsex.

) This mechanism could explain observed magnetic fields!

(at present)

Bk(⌧) / k
1
2

�2�4⇢��2

�2�2 H2
end

Magnetogenesis in ekpyrotic
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PGWs from magnetic field production
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3d order perturbation
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hij : gravitational wave
Bi : physical magnetic field
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B

Magnetic field production induces primordial gravitational waves 
through a following diagram

h h
B

BB

B
Using in-in formalism,  
we can get the power spectrum of GW come from above diagram

Ps(k) '
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✓
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◆

nearly scale invariant (slightly blue)

To produce observed magnetic fields, we set

Hend ⇠ 10�5Mpl, |�| ⇠ 17 Ps(k) ' 10�11

It is comparable to PGWs from inflation

PGWs from magnetic field production

Pinf (k) '
✓
Hinf

⇡Mpl

◆2



Conclusion

Magnetic field production in cyclic universe models 
can induce abundant PGWs

Detection of PGWs can not kill cyclic universe

To distinguish cyclic universe and inflation we need to see

spectrum of PGWs using various observationsex.
non-gaussianity

As to the magnetic field production in 
cyclic universe is more favored than inflation

f(�)FF mechanism,

if PGWs are quantum origin or not

standard clock in non-gaussianity of scalar perturbation
( X.Chen, M.H.Namjoo, Y.Wang (2016) )
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Inflationary fluctuations with phase transitions
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RESearch Center for the Early Universe
The University of Tokyo

in collaboration with  
Jun’ichi Yokoyama (RESCEU), 

Yi Wang & Siyi Zhou  
(Hong Kong University of Science & Technology)
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hin|

based on [1704.05026]

What is inflation all about?

• The initial conditions of Big Bang cosmology. 

• The generation of primordial density fluctuations. 

• The small deviation from scale-invariant primordial power spectrum. 

• The existence of acoustic oscillation peaks. 

• Current status: nice report from Nicola Bartolo, Robert Caldwell 
and many speakers! 

1.4 Current Tests of Inflation 37

when they re-enter the horizon. All modes with the same wavenumber
k, but possibly distinct wavevectors k, therefore start their evolution
at the same time. This phase coherence allows for constructive in-
terference of the modes and yields acoustic oscillations in the CMB.
Alternative mechanisms for structure formation involving topological
defects (e.g. cosmic strings, see §4.5.2) source perturbations with in-
coherent phases, smearing out the peaks [105], and are therefore ruled
out by the CMB observations. Isocurvature fluctuations also destroy
some of the phase coherence5 and are hence significantly constrained
by the data (see below).

500 1000 1500 2000

0.4

0.2

0.0

-0.2

-0.4

Fig. 1.11. The cross-correlation of CMB temperature anisotropies and E-mode
polarization (figure adapted from [8]). The curve is not a fit, but a prediction! The
low-` peak is a signature of phase coherence of the initial conditions.

. Power law spectrum.—We have seen above that slow-roll inflation pre-
dicts a power law spectrum with a percent-level deviation from perfect
scale-invariance, which Planck has detected at high significance. At
second order in the slow-roll expansion, inflation predicts a small cor-
rection to the power law spectrum

�2
R(k) = As

✓

k

k?

◆ns�1+ 1

2

↵s ln(k/k?)

. (1.60)

The data is not yet precise enough to detect the expected running of
the spectrum, ↵s ⇠ (ns � 1)2, and a detection of running at a level

5 In contrived scenarios, causal evolution inside the horizon yields isocurvature perturba-
tions that lead to acoustic peaks [106] — see the review [107].
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Parameter Planck · · · + WMAP + ACT CMB + BAO

⌦bh
2 0.02207± 0.00067 0.02207± 0.00054 0.02214± 0.00048

⌦ch
2 0.1196± 0.0061 0.1198± 0.0052 0.1187± 0.0034

⌦
⇤

0.683± 0.040 0.685± 0.033 0.692± 0.021

⌧ 0.097± 0.080 0.091± 0.027 0.092± 0.026

109As 2.23± 0.32 2.20± 0.11 2.20± 0.11

ns 0.962± 0.019 0.959± 0.014 0.961± 0.011

Table 1.1. Parameters of the ⇤CDM baseline model (with 2� errors). The first
four parameters describe the composition of the universe, the last two its initial
conditions. The BAO data improves the constraint on ⌦

⇤

. The small-scale CMB
data hardly a↵ect the constraints but help with a characterization of foregrounds,
which becomes essential when going beyond the ⇤CDM model.

This result assumes that tensor fluctuations make a negligible contribution
to the temperature fluctuations. Allowing for tensors introduces a new
parameter, the tensor-to-scalar ratio r, cf. (1.36). With earlier datasets,
including r in the fit weakened the evidence for ns < 1, but with Planck
this result is now robust: see figure 1.10 and table 1.3.
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0 94 0 96 0 98

large-field
(chaotic)

Fig. 1.10. Planck+WMAP+BAO constraints on ns and r (figure adapted
from [9]).

a(t) ⇠ eHt



What is inflation all about?

old new

h�i = 0 h�i 6= 0

h�i = 0

chaotich�i 6= 0

h�i = 0

What is inflation all about?

old new

h�i = 0 h�i 6= 0

h�i = 0

chaotich�i 6= 0

h�i = 0

➤ The transition of vev plays a fundamental role in all inflation scenarios.



The single-field consistency relation

➤ The curvature perturbation in single-clock inflation is conserved. 
➤ The squeezed limit of bispectrum is suppressed by spacetime symmetry.

ds2 = �dt2 + a2(t)e2⇣S(x)+2⇣Ldx2

= �dt2 + a2(t)e2⇣S(x̃)dx̃2

h⇣(k1)⇣(k2)i⇣L = e�(ns�1)⇣Lh⇣(k̃1)⇣(k̃2)i0

Maldacena (2003)

The squeezed bispectrum lim
k3!0

h⇣(k1)⇣(k2)⇣(k3)i = �(ns � 1)h⇣(kS)⇣(kS)ih⇣(kL)⇣(kL)i

The dilatation transformation

de Putter et al. [1610.00785]
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1.0

1.0
equilateral

folded

squeezed

Fig. 1.12. Bispectrum of the local ansatz. The signal is peaked for squeezed
triangles.

122]. This leads to signals that peak in equilateral triangle configura-
tions, i.e. k1 ⇠ k2 ⇠ k3. To characterize this type of non-Gaussianity,
we return to the Goldstone action. At cubic order and to lowest order
in derivatives, we get [51] (see Appendix B for the derivation)

S(3)
⇡ =

Z

d4x
p
�g

M2
plḢ

c2s
(1� c2s)

 

⇡̇(@i⇡)
2

a2
+

A

c2s
⇡̇3

!

. (1.71)

We have two cubic operators, ⇡̇(@i⇡)
2 and ⇡̇3, but only one new param-

eter, A. This is a consequence of the nonlinearly-realized time trans-
lation symmetry, which relates the amplitude of the operator ⇡̇(@i⇡)

2

to the sound speed. In DBI inflation (see §5.3) one has A = �1 [40],
while more generally naturalness arguments suggest A ⇠ O(1) [113].
Both ⇡̇(@i⇡)

2 and ⇡̇3 produce bispectra that are well approximated by
the equilateral template (1.67) (see fig. 1.13).

. Orthogonal non-Gaussianity.—The two equilateral bispectra are not
identical, so one can find a linear combination of the two operators
⇡̇(@i⇡)

2 and ⇡̇3 that is orthogonal in a well-defined sense [123] to the
shape (1.67), and also to the local shape (1.66). This is the orthog-
onal template (1.68) [113]. In terms of the parameters of the La-
grangian (1.71), the signal is mostly of the orthogonal shape — specif-

Cosmological collider 
          — probing signals of massive fields during inflation

Which specific non-gaussianities are a signature of new particles during inflation,
as opposed to signatures that arise due to inflaton self interactions.

Now, if we think about very massive particles, m � H, then we can integrate them
out and they produce new terms in the e↵ective lagrangian for the light fields. Since we do
not know the original lagrangian, it is clear that we are not going to discover them in this
way. For masses of order H, m ⇠ H, the situation is di↵erent, because we can produce
the particles giving rise to non-local e↵ects which cannot be mimicked by changing the
interaction lagrangian of the inflaton. The fact that this is an interesting question was
addressed in [4, 5, 6, 7, 8, 9].
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Figure 1: (a) The three momenta of the three point function form a closed triangle. In
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In this limit we can also define the angle � between the short and long mode momentum
vectors. (c) In position space we have two insertions at a short distance from each other,
associated to k

short

and one at a longer distance, k
long

. We are interested in considering
the e↵ects of massive fields, �, that can decay into pairs of inflatons. In an inflationary
background we can replace an inflaton fluctuation by the classical �̇

0

background, so that
we get a contribution to the three point function.

The large masses, this e↵ect is suppressed by e�⇡m/H , which is why it isn’t captured
by the e↵ective field theory which is an expansion in powers of (H/m).

The simplest non-gaussian observable is the three point function h⇣~k1⇣~k2⇣~k3i in Fourier
space. Translation invariance implies that the momenta form a closed triangle. The near
scale invariance of the fluctuations implies that this is a function of the shape of the
triangle. In particular we can form the ratio between the smallest side and the largest side
k
long

/k
short

. See figure 1(a). As a function of this ratio the three point function can display
interesting power law behavior for small values of this ratio. This is called the “squeezed”
limit. We find
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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The large masses, this e↵ect is suppressed by e�⇡m/H , which is why it isn’t captured
by the e↵ective field theory which is an expansion in powers of (H/m).

The simplest non-gaussian observable is the three point function h⇣~k1⇣~k2⇣~k3i in Fourier
space. Translation invariance implies that the momenta form a closed triangle. The near
scale invariance of the fluctuations implies that this is a function of the shape of the
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interesting power law behavior for small values of this ratio. This is called the “squeezed”
limit. We find
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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The squeezed bispectrum
Assassi, Baumann & Green (2012)
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by the e↵ective field theory which is an expansion in powers of (H/m).
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where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.
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Assassi, Baumann & Green (2012)

Example: spin-zero particles with masses m > 3H/2
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Such power law behavior is characteristic of conformal field theories, where the �i

that occur are the (anomalous) dimensions of operators in the theory. Here we have the
same situation because the de-sitter isometries act on late time expectation values in the
same way as the conformal group in one less dimension. In inflation, these approximate
symmetries govern the behavior in the squeezed limit.

The actual values of �i that occur in (1.1) give us the desired information about the
spectrum of new particles. Namely, a single new particle of mass m > 3H

2

and spin s gives
rise to a pair of terms with [8]
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A single particle gives rise to two dimensions, �±, which are complex conjugates of each
other, which is good, so that we can get a real answer for the correlator1. An interesting
fact is that there is an interesting calculable phase in the coe�cients w± = |w±|e±i�

that appear in (1.1). This phase, �(µ), depends only on the mass of the particle. The
oscillatory behavior as a function of the ratio of scales is a quantum e↵ect. It arises from
the quantum interference between two processes. One process is the ordinary gaussian
quantum evolution of the inflaton. The other is the creation of a pair of massive particles
that subsequently decay to inflaton modes. We know that we can assign a characteristic
time during inflation to a given momentum k. It is the time when this mode crossed the
horizon during inflation. The mode k

long

crossed the horizon earlier in than the mode k
short

.
The time measured in number of e-folds between these two events is N = log(k

short

/k
long

).
What we see in (1.3) is the behavior of the amplitude of the wavefunction of the massive
particle as a function of time, or N . The wavefunction oscillates as we expect for a
massive particle. In addition the 3/2 in (1.2) gives rise to the expected dilution factor
due to the expansion of the universe. Namely the square of the wavefunction should go
like e�3N ⇠ 1/Volume. The fact that we have e↵ects involving the amplitude of the
wavefunction of the massive particle as opposed to its square is due to the fact that this is
a quantum interference e↵ect. Another related fact is the dependence of the overall factor
in (1.3) on the mass. Keeping the coupling between the inflaton and the fields fixed, this
factor goes as e�⇡µ. This should be compared to the thermal factor going like e�2⇡µ. This
last factor is proportional to the probability for creating a pair of massive particles. The
fact that we get e�⇡µ is again due to the fact that we are seeing an interference e↵ect,
sensitive to the amplitude and containing phase information.

1 The correlator is real for the following reason. ⇣(~x) is real in position space. Therefore, in momentum
space it obeys ⇣

⇤
~k
= ⇣�~k. If we complex conjugate a correlator, we get the same answer as reversing the

sign of all momenta. For a two or three point function, we can relate the correlator with reversed mometa
to the original one by a two dimensional rotation, so that they should have the same value.

3

Which specific non-gaussianities are a signature of new particles during inflation,
as opposed to signatures that arise due to inflaton self interactions.

Now, if we think about very massive particles, m � H, then we can integrate them
out and they produce new terms in the e↵ective lagrangian for the light fields. Since we do
not know the original lagrangian, it is clear that we are not going to discover them in this
way. For masses of order H, m ⇠ H, the situation is di↵erent, because we can produce
the particles giving rise to non-local e↵ects which cannot be mimicked by changing the
interaction lagrangian of the inflaton. The fact that this is an interesting question was
addressed in [4, 5, 6, 7, 8, 9].
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Figure 1: (a) The three momenta of the three point function form a closed triangle. In
the squeezed limit, one of the sides, k

long

, is much smaller than the other two, k
short

. (b)
In this limit we can also define the angle � between the short and long mode momentum
vectors. (c) In position space we have two insertions at a short distance from each other,
associated to k

short

and one at a longer distance, k
long

. We are interested in considering
the e↵ects of massive fields, �, that can decay into pairs of inflatons. In an inflationary
background we can replace an inflaton fluctuation by the classical �̇

0

background, so that
we get a contribution to the three point function.

The large masses, this e↵ect is suppressed by e�⇡m/H , which is why it isn’t captured
by the e↵ective field theory which is an expansion in powers of (H/m).

The simplest non-gaussian observable is the three point function h⇣~k1⇣~k2⇣~k3i in Fourier
space. Translation invariance implies that the momenta form a closed triangle. The near
scale invariance of the fluctuations implies that this is a function of the shape of the
triangle. In particular we can form the ratio between the smallest side and the largest side
k
long

/k
short

. See figure 1(a). As a function of this ratio the three point function can display
interesting power law behavior for small values of this ratio. This is called the “squeezed”
limit. We find

h⇣⇣⇣i
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long

⇠ ✏
X

i

wi

✓
k
long

k
short

◆
�

i

, for
k
long

k
short

⌧ 1 (1.1)

where �i can be real or complex, wi are some coe�cients and ✏ is a slow roll parameter
(see [4]). This form of the correlator is a consequence of the slightly broken conformal
symmetry of the late time wavefunction of the inflationary universe.

2

The squeezed bispectrum

See Bartolo et al. for higher spin particles [1709.05695]

Cosmological collider 
          — probing signals of massive fields during inflation

Steps towards new discovery:

1. To work out the background signals during inflation. 

2. To figure out how new particles enter the bispectrum.

Chen, Wang & Xianyu (2016,2017a,b)

✔



Inflation with massive fields

Chen & Wang (2009)

Example I. quasi-single field inflation

20

FIG. 11. In the squeezed limit, the three-point function logarithmically oscillates as a function of
c. This behavior is illustrated for µ = 2 and m = 0, 0.5H, H, 1.5H, and 2H. The solid lines show
the exact behavior as a function of c (i.e. using equation (6.9)) whereas the dotted lines show the
approximate behavior to quadratic order in c (i.e. using equation (6.10)).

= V 000
S H�4k3c�3Im

⇥
c↵���(µ,m) + c↵+�+(µ,m) + c2�2(µ,m)

⇤

(6.10)

where �� = ⇡(1)⇤
k (0)b(1)� + ⇡(2)⇤

k (0)b(2)� , �+ = ⇡(1)⇤
k (0)b(1)+ + ⇡(2)⇤

k (0)b(2)+ , �2 = ⇡(1)⇤
k (0)b(1)2 +

⇡(2)⇤
k (0)b(2)2 and

��(µ,m) = �2��

Z 0

�1

d⌘
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⇣
⇡(1)⇤
k (0)s(1)k (⌘) + ⇡(2)⇤
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⇡(1)⇤
k (0)s(1)k (⌘) + ⇡(2)⇤

k (0)s(2)k (⌘)
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(�⌘)2. (6.11)

We can compute ��, �+, and �2 by fitting the numerical mode functions s(i)k (⌘) to their

power series expansions at small �⌘ and extracting b(i)± , b(i)2 from the fits. The integrals in
(6.11) can be computed using the same Wick rotation technique used to compute Bequil

⇡ .
Then, rearranging (6.10) gives

Bsq
⇡ = V 000

S H�4k3c�3/2 (6.12)

⇥ �
Im [�+ + ��] cos (log(c)Im [↵+]) + Re [�+ � ��] sin (log(c)Im [↵+]) + c1/2Im [�2]

�

We plot Im [�+ + ��] in figure 10. The sine term is usually smaller and so we have not
displayed it in a figure. Equation (6.12) shows that the squeezed limit of the three-point
function oscillates logarithmically as a function of c. This behavior is illustrated in figure
11. Note that that the dependence of Im [↵+] =

p
m2/H2 + µ2/H2 � 9/4 on µ has an

important e↵ect on the oscillations. This impacts the two point function of biased objects,
see for example [30].

The oscillatory terms in eq. (6.12) are enhanced by a factor of c�1/2, but are suppressed
in the large µ limit.

An, McAneny, Ridgway & Wise [1706.09971]

➤ Signals of massive fields in the primordial spectrum

LI ⇠ µ

R
� (@�)2

Example II. hybrid inflation(s)

original smoothed shifted

➤ What are the signals with transition of vevs in iso-curvature direction(s)? 

Linde (1993) Lazarides & Panagiotakopoulos (1995) Jeannerot (2000)

Yamaguchi & Yokoyama (2004)

LI ⇠ 1

2
�2�2

Gong & Sasaki (2010)
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3.4 Summary of calculation with large ⇡̇3 self-interaction

The case where the inflaton has a large self-interaction of the form ⇡̇3 has allowed us to
calculate one-loop corrections to the inflaton two-point function. We have performed the
calculation using two di↵erent regularizations: a sharp cuto↵ in momentum and frequency
space and dimensional regularization. We have also performed the dim. reg. calculation
at finite time, and we have also shown the form of the logarithmic running by simply
making dimensionless the loop integrals. We have then performed the renormalization of
the correlation function by explicitly finding the relevant counterterms.

We have found that all the calculations agree. The result is:

h⇣~k
(t)⇣~k0(t)i1�loop, t!+1 = �(2⇡)3�(3)(~k + ~k0)

2
15⇡2

c2

3

H8M8

Ḣ4M8

Pl

1
k3

⇥ log
✓

H

µ

◆

. (3.53)

As we had anticipated the logarithm is log(H/µ). We find this to be a very sensible result.
First of all, contrary to the log(k/µ) found in the former literature, the real space version
of (3.53) is symmetric under the rescaling

a ! � a , x ! x/� , k ! � k , (3.54)

a symmetry of the problem. Second, it makes sense from a physical point of view: the
Hubble scale is cutting o↵ the infrared behavior that would otherwise be there in Minkowky
space. The resulting logarithm is of the form log(H/µ), which is similar to the form found
in scattering amplitudes: log(E/µ) where E is the center of mass energy and µ is the
renormalization scale. The energy probed by the interactions during inflation is of order H.

4 Gravitational interactions with N massless scalar fields

We now turn to the inflationary theory that Weinberg originally studied in [2]. This is a
theory where an inflaton with a standard kinetic term is rolling down a flat potential and
is interacting gravitationally with N massless scalar fields. The Lagrangian is of the form:

S =
Z

d4x
p�g

"

1
2
(@�)2 � V (�) +

N
X

n=1

1
2
gµ⌫@µ�n@⌫�n

#

. (4.1)

Though we are considering purely gravitational interactions, the contribution from the N

massless scalar fields running in the loops will be enhanced by a factor of N with respect
to the analogous interactions coming from the graviton and the inflaton running in the
loop. For this reason we can avoid the complication of letting those run in the loops and
concentrate on the � scalar fields.8

8The calculation done originally by Weinberg has a rather minor numerical mistake due to an inconsistent

implementation of the i ✏ prescription. This was noticed and fixed in [26]. Both [2, 26] performed their

calculations in dimensional regularization and did not include the contributions proportional to � from the

scale factors in the measure of integration and from the d-dimensional wavefunctions and therefore obtained

an incorrect logarithm of the form log(k/µ).
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Weinberg [hep/th 0506236]

Senatore & Zaldarriaga [0912.2734]

Adshead, Easther & Lim [0809.4008]
Loop corrections from massless fields
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Loop corrections from massive fields

�massive ! decaying on super horizon scales
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The massive wave function:

L± < 0 if M2 > 0

Conclusion: loops from massive fields are never large!

Weinberg [hep/th 0605244]

Tanaka & Urakawa [1510.05059]
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The massive wave function:

However L+ > 0 if M2 < 0

Loop corrections from tachyonic fields



- Methods -

• Cosmological in-in formalism:
• Perturbative interactions (gravitational or derivative couplings) 
• Standard initial states (the Bunch-Davies vacuum) 

• Effective field theory (equation-of-motion approach): 
• Non-perturbative regime 
• Mixed initial vacuum states 

Phase transition triggered by 
slow-rolling

The two approaches matched at tree level. 

A modified potential: 

Chen, Namjoo & Wang [1505.03955]
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Figure 4: The time dependence of the correction to power spectrum for the SC model. The
horizontal axis is number of efolds counted from the initial time. The parameters are similar to
ones in Fig.3. The mode crosses the horizon at n ' 6.4.

5.1 Density perturbations with strong coupling

As we mentioned at the end of Sec. 3, the validity of the EoM approach does not rely on the

perturbative condition. Therefore, solving the linearly coupled di↵erential equations in the

EoM approach produces the full tree-level non-perturbative two-point correlation function.

Formally in terms of the in-in formalism, this would correspond to a non-perturbative re-

summation of all the tree-level diagrams for the two-point correlation function.

We emphasize that this is of course not the full non-perturbative result because the loop

diagrams are not included; nonetheless it is an interesting subset. Another limitation is that

this procedure only applies to the tree-level two-point correlation functions due to the lin-

earity condition in the EoM approach assumed in the proof in Sec. 3. Possible generalization

would be very interesting.

To study this in an example, we note that, in the QSF inflation model, the coupling

between the inflaton and the massive field � is of order ✓̇/H. In the previous examples,

this coupling is taken to be small so the correction to the leading power spectrum is small.

For large ✓̇/H, the perturbative expansion in the in-in formalism breaks down, while the

numerical computation in the EoM approach is essentially unchanged. In Fig.5 we plot the

results for such a strong coupling case. We see large mismatch between the result from the

EoM approach and that from the first order term in the in-in approach. This shows that

the higher order corrections in the in-in formalism are non-negligible.

It would be interesting to see if the EoM may be solved analytically, or if all the tree-level

diagrams in the in-in formalism may be re-summed. We leave these for future investigation.

5.2 Correlated initial states

In this subsection we consider a more general initial condition in which the two fields are

correlated. As we already discussed, we only need to satisfy initial commutation relations
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Figure 3: The correction to the power spectrum for the SC model. The left (right) panel is the
results for the BD (a non-BD) initial conditions. For the non-BD case we have set D✓ = D� = 1/2
and hence C✓ = C� =

p
5/4. For other parameters we have set R = 2.7MP, m0 ' 0.7H and

m ' 0.1H, �f ' 0.05MP, V0 ' 2.7 ⇥ 10�9M4
P and the initial conditions for background fields are

tuned such that the transition occurs at n = 6.

and

(R + �0(⌧)) uk = 0 , vk = i
H⌧p
2k

�
C� e

�ik⌧ �D� e
ik⌧

�
. (4.28)

The procedure of solving the EoM, and the formula for the in-in formalism approach, are

the same as in Sec. 4.1.

In Fig.3 we plot the fractional correction to the power spectrum obtained by both ap-

proaches for the two cases of BD and non-BD initial conditions.4 In Fig.4, we show the

time-dependence of one of the modes in the BD case. We see that two approaches match

very well.5

5 Several extensions

The procedures in the two approaches reviewed in Sec. 2.1 and Sec. 2.2 are commonly used

in the literature. In this section, motivated by the explicit proof of the equivalence between

the two approaches presented in Sec. 3, we discuss several extensions of these procedures

that may be applied to new categories of models.

4The examples used here are di↵erent from the best-fit examples in [29]. Here we used the large field
examples where the e↵ect of the 2nd field is more important, although this cases does not fit the data. Our
purpose is to show the equivalence between the two approaches.

5We observe that even for a large correction the two approaches match pretty well. It seems even for
this seemingly non-perturbative case the higher order corrections in the in-in formalism are still negligible.
We currently do not understand why this is the case, but we expect generally this would not be true (see
Sec. 5.1).
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a
quasi de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial
conditions are � = �i and d�/dN = 0 at N = 0. Both V1 and � are shown in the unit
of Hi = 1 ⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and therefore
�i ⇡ 4.8⇥ 10

�7Mp.

the behavior of the � field can be described by the classical equation of motion (A.4), and
for � > 0 we have

d2�

dN2
+ (3� ✏H)

d�

dN
+


�

H2
(�2 � v2)

�
� = 0, (3.4)

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth
for |M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏i

is the value of ✏H evaluated at ⌘ = ⌘i, the solution of (3.4) is given by

� = �i exp


1

2✏i

�v2

3H2
i

⇣
e2✏i(N�Ni) � 1

⌘�
. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative

to positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by
taking ✏i ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a quasi
de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial conditions
satisfy � = 0 and d�/dN = g3/(3H2

i ) at N = 0. Both V1 and � are shown in the unit of
Hi = 1⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and g = 0.2Hi.

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth for
|M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏ is

a constant value of ✏H , the solution of (3.4) is given by

� = �i exp
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3H2
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⇣
e2✏(N�Ni) � 1
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. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative to

positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by taking
✏ ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)

The phase of slow roll ends at �f = v/
p
3 at N = Nf , where we define M2

i ⌘ �v2/H2
i and

�N = Nf �Ni =
3

M2
i

ln

✓
2⇡

3

p
3�

M3
i

◆
. (3.8)

The condition �N > 0 implies 4⇡2

27 M6
i > �. The result of (3.8) implies �N ! 0 as Mi ! 1,

given that in the large mass limit the rolling finishes immediately as similar to an event of a
first-order phase transition.
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a quasi
de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial conditions
satisfy � = 0 and d�/dN = g3/(3H2

i ) at N = 0. Both V1 and � are shown in the unit of
Hi = 1⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and g = 0.2Hi.

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth for
|M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes
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=
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�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏ is

a constant value of ✏H , the solution of (3.4) is given by
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The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v
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).

Once � reaches the value v/
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3, the mass square M2 starts to change from negative to

positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by taking
✏ ! 0, where (3.6) shows
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a
quasi de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial
conditions are � = �i and d�/dN = 0 at N = 0. Both V1 and � are shown in the unit
of Hi = 1 ⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and therefore
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the behavior of the � field can be described by the classical equation of motion (A.4), and
for � > 0 we have

d2�

dN2
+ (3� ✏H)
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+
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H2
(�2 � v2)

�
� = 0, (3.4)

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth
for |M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏i

is the value of ✏H evaluated at ⌘ = ⌘i, the solution of (3.4) is given by

� = �i exp


1

2✏i

�v2

3H2
i

⇣
e2✏i(N�Ni) � 1

⌘�
. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative

to positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by
taking ✏i ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)
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Figure 1: Evolution of the mass parameter M2 during the classical transition of � in a quasi
de Sitter expansion with a fixed slow-roll parameter ✏H = 0.001, where the initial conditions
satisfy � = 0 and d�/dN = g3/(3H2

i ) at N = 0. Both V1 and � are shown in the unit of
Hi = 1⇥ 10

�6Mp. The potential parameters are � = 0.01, v = 10Hi, and g = 0.2Hi.

where N ⌘ ln a is the e-folding number.
At some value � = �i > 0, the classical deviation ��c start to surpass the quantum

effect ��q and the field will start to roll down the plateau. Since the transition is smooth for
|M2| ⇠ O(1), we neglect the term d2�/dN2 so that (3.4) becomes

d�

dN
=

�v2

3H2
�, (3.5)

for � ⌧ v, where we can omit the correction from ✏H . Taking H ⇡ Hie
�✏i(N�Ni), where ✏ is

a constant value of ✏H , the solution of (3.4) is given by

� = �i exp


1

2✏

�v2

3H2
i

⇣
e2✏(N�Ni) � 1

⌘�
. (3.6)

The value of �i can be estimated by the classical deviation within one e-fold as ��c ⇠ �v2

3H2�,
and the condition ��c � H

2⇡ gives �i � 3H3
i /(2⇡�v

2
).

Once � reaches the value v/
p
3, the mass square M2 starts to change from negative to

positive. We can estimate the duration of the slow roll in a pure de Sitter expansion by taking
✏ ! 0, where (3.6) shows

� ! �i exp


�v2

3H2
i

(N �Ni)

�
. (3.7)

The phase of slow roll ends at �f = v/
p
3 at N = Nf , where we define M2

i ⌘ �v2/H2
i and

�N = Nf �Ni =
3

M2
i

ln

✓
2⇡

3

p
3�

M3
i

◆
. (3.8)

The condition �N > 0 implies 4⇡2

27 M6
i > �. The result of (3.8) implies �N ! 0 as Mi ! 1,

given that in the large mass limit the rolling finishes immediately as similar to an event of a
first-order phase transition.
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a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by

u00k +

✓
k2 � l2 � 1/4

⌘2

◆
uk = 0, l =

8
>><

>>:

3/2, ⌘  ⌘i,q
9/4 +M2

�, ⌘i < ⌘  ⌘f ,q
9/4�M2

+, ⌘ > ⌘f ,

(4.7)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.7) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i

reads

��k =

Hp
2k3

e�iz
(i� z), z  zi, (4.8)

=

Hp
k3

(�z)3/2[b1(k)Jl(�z) + i b2(k)Yl(�z)], zi < z  zf , (4.9)

=

Hp
k3

(�z)3/2[c1(k)Jl(�z) + i c2(k)Yl(�z)], z > zf , (4.10)

where zi ⌘ k⌘i and Jl(Yl) is the Bessel fuction of the first (second) kind.
Let us first focus on the time interval zi < z  zf . If M2

� ⌧ 1, the mode function ��k
with k < ki ⌘ �1/⌘i is nearly a constant by z = zi. In the limit z ! 0, ��k ! iH/

p
2k3

in (4.8) while Jl(�z) automatically drops out in (4.9), and one can match the solution at
z = zi to find that b2 = �⇡(�zi)

l�3/2/(
p
2 2

l
�(l)), where

��k = i
Hp
2k3

✓
z

zi

◆3/2�l

. (4.11)

On the other hand, ��k with k > ki leaves the horizon at some epoch ⌘k > ⌘i, where
⌘k & �1/k. Although b1, b2 can be solved by matching the value of ��k and ��0

k at z = zi,
in the limit zi � 1 we find that

b1 ⇡ b2 !
p
⇡

2

exp

h
i
⇣⇡
2

l +
⇡

4

⌘i
, (4.12)
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a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by
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where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.7) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
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reads

��k =

Hp
2k3

e�iz
(i� z), z  zi, (4.8)

=

Hp
k3

(�z)3/2[b1(k)Jl(�z) + i b2(k)Yl(�z)], zi < z  zf , (4.9)

=

Hp
k3

(�z)3/2[c1(k)Jl(�z) + i c2(k)Yl(�z)], z > zf , (4.10)

where zi ⌘ k⌘i and Jl(Yl) is the Bessel fuction of the first (second) kind.
Let us first focus on the time interval zi < z  zf . If M2

� ⌧ 1, the mode function ��k
with k < ki ⌘ �1/⌘i is nearly a constant by z = zi. In the limit z ! 0, ��k ! iH/

p
2k3

in (4.8) while Jl(�z) automatically drops out in (4.9), and one can match the solution at
z = zi to find that b2 = �⇡(�zi)

l�3/2/(
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�(l)), where

��k = i
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On the other hand, ��k with k > ki leaves the horizon at some epoch ⌘k > ⌘i, where
⌘k & �1/k. Although b1, b2 can be solved by matching the value of ��k and ��0

k at z = zi,
in the limit zi � 1 we find that

b1 ⇡ b2 !
p
⇡
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Figure 2: One-loop diagrams of the cut-in-the-middle (CIM) and the cut-in-the-side (CIS)
types. Solid (dotted) lines are external (internal), ⇣ and �� are free fields, arrows are
propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
turbations. In each diagram one dotted circle must correlates with one solid circle in order
to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

the time-integration is projected from |0i to |⌦i. Equation (4.1) is then interpreted as the
two-point correlation of ⇣I evolved from ⌘1 to ⌘ after projecting the free vacuum to the
interacting vacuum with the operator

UI(⌘, ⌘1) = ˆTe
�i

R ⌘
⌘1

d⌘̃ HI(⌘̃), (4.2)

that satisfies UI(⌘, ⌘1)U
†
I (⌘, ⌘1) = 1. The Taylor expansion of UI up to second order in HI

leads to [16]:

h⇣2i = h⇣2iCIM + h⇣2iCIS,1 + h⇣2iCIS,2 (4.3)

where CIM denotes the contribution from the cut-in-the-middle diagrams and CIS denotes
those from the cut-in-the-side diagrams. In particular, these one-loop diagrams are given
by the cubic interactions H

(3)
I and the quartic interactions H

(4)
I as

h⇣2iCIM = �
Z ⌘

d⌘1

Z ⌘

d⌘̃1

⌧h
H

(3)
I (⌘1), ⇣(⌘)

i ⇣h
H

(3)
I (⌘̃1), ⇣(⌘)

i⌘†
�
, (4.4)

h⇣2iCIS,1 = �2 Re

Z ⌘

d⌘2

Z ⌘

2
d⌘1

Dh
H

(3)
I (⌘1),

h
H

(3)
I (⌘2), ⇣(⌘)

ii
⇣(⌘)

E�
, (4.5)

h⇣2iCIS,2 = �2 Im

Z ⌘

d⌘1

Dh
H

(4)
I (⌘1), ⇣(⌘)

i
⇣(⌘)

E�
. (4.6)

As seen by (2.5), interactions with each one ↵ is suppressed by one factor ✏� ' ✏H , and
interactions involved with � are higher-order in the slow-roll parameters. To the leading
order in ✏�, H(3)

I derived from (2.14) comprises a ⇣ field and a pair of � fields, while H
(4)
I

includes a pair of ⇣ fields and a pair of � fields. In this case there is only one corresponding
CIM diagram, where two free � fields scatter to generate a propagating ⇣ at second order
and h⇣2iCIM is the correlation of two of these propagating ⇣ fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
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Figure 2: One-loop diagrams of the cut-in-the-middle (CIM) and the cut-in-the-side (CIS)
types. Solid (dotted) lines are external (internal), ⇣ and �� are free fields, arrows are
propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
turbations. In each diagram one dotted circle must correlates with one solid circle in order
to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by

u00k +

✓
k2 � l2 � 1/4

⌘2

◆
uk = 0, l =

8
>><

>>:

3/2, ⌘  ⌘i,q
9/4 +M2

�, ⌘i < ⌘  ⌘f ,q
9/4�M2

+, ⌘ > ⌘f ,

(4.8)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.8) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i

– 10 –

M2 = 0

Senatore & Zaldarriaga [0912.2734]

One-loop channels:

N
O
T
 
F
O
R
 
D
I
S
T
R
I
B
U
T
I
O
N
 
J
H
E
P
_
1
9
9
P
_
0
4
1
7
 
v
1

ζ 2) ζ 2)

δσ
δσ

δσ
δσ

(a) CIM

ζ

ζ

ζ 3)

Gσ

δσ
δσ

(b) CIS,1

ζ

ζ δσ
δσ

ζ (3)

(c) CIS,2
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propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
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to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

the time-integration is projected from |0i to |⌦i. Equation (4.1) is then interpreted as the
two-point correlation of ⇣I evolved from ⌘1 to ⌘ after projecting the free vacuum to the
interacting vacuum with the operator

UI(⌘, ⌘1) = ˆTe
�i

R ⌘
⌘1

d⌘̃ HI(⌘̃), (4.2)

that satisfies UI(⌘, ⌘1)U
†
I (⌘, ⌘1) = 1. The Taylor expansion of UI up to second order in HI

leads to [16]:

h⇣2i = h⇣2iCIM + h⇣2iCIS,1 + h⇣2iCIS,2 (4.3)

where CIM denotes the contribution from the cut-in-the-middle diagrams and CIS denotes
those from the cut-in-the-side diagrams. In particular, these one-loop diagrams are given
by the cubic interactions H

(3)
I and the quartic interactions H

(4)
I as

h⇣2iCIM = �
Z ⌘

d⌘1
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d⌘̃1

⌧h
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(3)
I (⌘1), ⇣(⌘)

i ⇣h
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�
, (4.4)

h⇣2iCIS,1 = �2 Re
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Z ⌘
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H
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I (⌘1),

h
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(3)
I (⌘2), ⇣(⌘)

ii
⇣(⌘)

E�
, (4.5)

h⇣2iCIS,2 = �2 Im
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(4)
I (⌘1), ⇣(⌘)
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. (4.6)

As seen by (2.5), interactions with each one ↵ is suppressed by one factor ✏� ' ✏H , and
interactions involved with � are higher-order in the slow-roll parameters. To the leading
order in ✏�, H(3)

I derived from (2.14) comprises a ⇣ field and a pair of � fields, while H
(4)
I

includes a pair of ⇣ fields and a pair of � fields. In this case there is only one corresponding
CIM diagram, where two free � fields scatter to generate a propagating ⇣ at second order
and h⇣2iCIM is the correlation of two of these propagating ⇣ fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
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propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
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There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by

u00k +
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(4.8)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.8) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i
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Figure 2: One-loop diagrams of the cut-in-the-middle (CIM) and the cut-in-the-side (CIS)
types. Solid (dotted) lines are external (internal), ⇣ and �� are free fields, arrows are
propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
turbations. In each diagram one dotted circle must correlates with one solid circle in order
to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

the time-integration is projected from |0i to |⌦i. Equation (4.1) is then interpreted as the
two-point correlation of ⇣I evolved from ⌘1 to ⌘ after projecting the free vacuum to the
interacting vacuum with the operator

UI(⌘, ⌘1) = ˆTe
�i

R ⌘
⌘1

d⌘̃ HI(⌘̃), (4.2)

that satisfies UI(⌘, ⌘1)U
†
I (⌘, ⌘1) = 1. The Taylor expansion of UI up to second order in HI

leads to [16]:

h⇣2i = h⇣2iCIM + h⇣2iCIS,1 + h⇣2iCIS,2 (4.3)

where CIM denotes the contribution from the cut-in-the-middle diagrams and CIS denotes
those from the cut-in-the-side diagrams. In particular, these one-loop diagrams are given
by the cubic interactions H

(3)
I and the quartic interactions H

(4)
I as

h⇣2iCIM = �
Z ⌘

d⌘1

Z ⌘

d⌘̃1

⌧h
H

(3)
I (⌘1), ⇣(⌘)

i ⇣h
H

(3)
I (⌘̃1), ⇣(⌘)

i⌘†
�
, (4.4)

h⇣2iCIS,1 = �2 Re

Z ⌘

d⌘2

Z ⌘

2
d⌘1

Dh
H

(3)
I (⌘1),

h
H

(3)
I (⌘2), ⇣(⌘)

ii
⇣(⌘)

E�
, (4.5)

h⇣2iCIS,2 = �2 Im

Z ⌘

d⌘1

Dh
H

(4)
I (⌘1), ⇣(⌘)

i
⇣(⌘)

E�
. (4.6)

As seen by (2.5), interactions with each one ↵ is suppressed by one factor ✏� ' ✏H , and
interactions involved with � are higher-order in the slow-roll parameters. To the leading
order in ✏�, H(3)

I derived from (2.14) comprises a ⇣ field and a pair of � fields, while H
(4)
I

includes a pair of ⇣ fields and a pair of � fields. In this case there is only one corresponding
CIM diagram, where two free � fields scatter to generate a propagating ⇣ at second order
and h⇣2iCIM is the correlation of two of these propagating ⇣ fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with

– 9 –

ζ 2) ζ 2)

δσ
δσ

δσ
δσ

(a) CIM

ζ

ζ

ζ 3)

Gσ

δσ
δσ

(b) CIS,1

ζ

ζ δσ
δσ

ζ (3)

(c) CIS,2

Figure 2: One-loop diagrams of the cut-in-the-middle (CIM) and the cut-in-the-side (CIS)
types. Solid (dotted) lines are external (internal), ⇣ and �� are free fields, arrows are
propagators, black dots are vertices, and ⇣(i) is a propagating ⇣ field at i-th order in per-
turbations. In each diagram one dotted circle must correlates with one solid circle in order
to get non-vanished contributions, and there is no correlation between ⇣ and �� fields.

There are two kinds of CIS diagrams. The first one is a propagating second-order �

field generated by a scattering of a free ⇣ with a free �. This propagating � scatters with
a free � field again and results in a propagating ⇣ at third order. h⇣2iCIS,1 is then the
correlation of a third-order ⇣ with a free ⇣ field. Similarly, h⇣2iCIS,2 is also a correlation of a
third-order ⇣ with a free ⇣ field, where the third-order ⇣ field is generated by the scattering
of a free ⇣ with a pair of free � fields through the interaction H

(4)
I .

4.1 Linear perturbations with phase transitions

We have seen that � can obtain a time-dependent mass square M2
= V��/H

2 during a
transition to another local minimum, and that M2 can become negative during phase tran-
sitions. To specify the discussion, we consider a transition driven by the type of potentials
as (3.2). We can solve the mode function uk = a��k with a simplified equation of motion
given by

u00k +

✓
k2 � l2 � 1/4

⌘2

◆
uk = 0, l =

8
>><

>>:

3/2, ⌘  ⌘i,q
9/4 +M2

�, ⌘i < ⌘  ⌘f ,q
9/4�M2

+, ⌘ > ⌘f ,

(4.8)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings,
where the time dependence in M is mild with a sufficently small ✏H . To reach a good
understanding on the behavior of uk, it is enough to consider a pure de Sitter expansion
by taking ✏H = 0, and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable
z = k⌘, the solution of (4.8) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i
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M2 < 0 ➤ The dominant decay channel changed!

YPW & Yokoyama [1704.05026]
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Figure 3: The value of the mass-dependence in the one-loop h⇣2iCIM correlation function
for k < ki given by Eq. (4.30) with respect to the mass parameter M� evaluated at ⌘ = ⌘f .

We put a conservative upper bound M�  2 to justify the assumption (4.11). The loga-
rithmic scale-dependence ln(k/k0) in (4.30) is subject to the projection effect between two
superhorizon modes, which should have no importance for cosmological observables [17].
The study of this issue is beyond the scope of the current paper.

Since ��k starts to decay after the mass square changes to be positive, the source
S⇣ has a maximum value around ⌘ = ⌘f . We may estimate the value of ⇧⇣(zf ) from
(3.8) in a pure de Sitter expansion by taking M2

� = M2
i . Suppose that the energy scale

of inflation is H2
i /M

2
p ⇠ ✏i ⇥ 10

�10, then the result in Figure 3 shows that the one-loop
correction h⇣2iCIM can have a value around ✏2iM

4
⇧⇣ ⇥ 10

�10 times smaller than the tree
expectation value h⇣2itree ⇠ H2

i /(✏iM
2
p ). With a self-coupling � ⇠ 10

�8 one may realize
h⇣2iCIM/h⇣2itree ⇠ O(1), where ✏ < 0.0068 according to [1]. This loop correction can be
much larger than the usual expectation from massless fields or massive spectator fields that
always live in some stable vacuum states [9, 16]. In Figure 3 the result of (3.8) is used
and we have checked that this result is nearly unchanged by using the result of (3.12) for
M� < 1. The condition �N > 0 indicates M� > 0.044 for � = 1 ⇥ 10

�8. Note that the
decay of ��k at ⌘ > ⌘f only makes S⇣ decay in (4.21) but the curvature perturbation is
always enhanced during the phase transitions. As S⇣ ! 0, ⇣ converges to a constant again
and the h⇣2iCIM correction enhanced by temporarily growing perturbations becomes nearly
frozen from ⌘ = ⌘f to the end of inflation.

For kf > k > ki, we have zi > 1 and the time integration is chosen to start at some
epoches zk & �1 where all internal modes p  k with the cutoff y = 1 have left the horizon.
In this case the correlation function (4.26) with the solution (4.13) is again dominated by
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Results of bilinear correlators

YPW & Yokoyama [1704.05026]

Loop corrections from spectator 
fields may be more important 
than the previous conclusion!

to all orders is schematically given by

h⇣2i ⇠ H2

✏M2
p

"
1 + c⇤

H2

✏M2
p

✏2M4
⇧⇣(a) +

✓
c⇤

H2

✏M2
p

✏2M4
⇧⇣(a)

◆2

+ . . .

#
, (5.1)

where c⇤ is a constant factor of O(1�10), and ⇧⇣(a) / a4l�6 for l 6= 3/2, as given by (4.31).
Since l = l(M), the time-dependent factor evaluated at a certain epoch ⇧⇣(a⇤) = ⇧⇣(M) is
in fact a function of the mass. In the case of a positive mass square (l < 3/2), higher-order
terms decay rapidly so that loop corrections have no effects on the physical observable.
With a phase of a smooth transition of the field expectation value, there can be a period of
M2 < 0 (l > 3/2) where loop corrections grow with time and the duration of the growing
phase is also mass-dependent. In the scenario (3.2) we always find a maximum correction
around

p
|M2| = 2 with a large enhancing factor M4

⇧⇣(M) that depends on the model
parameters. We can constrain the value of � from the condition M4

⇧⇣(M) < M2
p /(✏H

2
)

for the breakdown of perturbative expansion. For a large mass |M2| = 4 we find � >

7 ⇥ 10

�9 with ✏ = 0.0068 from (3.8). On the other hand, the condition �
4v

4 ⌧ 3M2
pH

2

that the massive field has a subdominant density during inflation gives a milder constraint
� � 4

3✏⇥ 10

�10 for an effective mass �v2 = 4H2.
Before closing the discussion, we briefly comment the consequence due to the self-

coupling of the massive field. For example, a self-interaction L ⇠ a4��4 as a part of the
potential may allow us to perform arbitrary 1PI insertion to any internal �-field line with the
introduction of two more free �� fields. In this case the breakdown of perturbative expansion
would request � < e�N(3�2l) ' 9⇥10

�7 with �N given by (3.8) at
p
|M2| = 2. However the

temporal divergence due to the self-coupling of a massive field is not specific for a negative
mass square and is also found in the case with a positive mass square [34]. We believe that
part of the temporal divergence should be removed by some renormalizations of the theory,
as the finding from a resummation of the perturbative masses [9]. A resummation of the
quartic self-corrections of a massive field to the propagator in the M2 ⌧ 1 limit has been
performed through the dynamical renormalization group method [47, 48], and the question
that how are the self-corrections behave after these treatments is left for future efforts.

6 Conclusions

The transition of vacuum expectation values of scalar fields may play an essential role in cos-
mic inflation. In this work we have studied loop corrections to primordial fluctuations from
a kind of phase transition during inflation that massless fields randomly found their global
minima purely triggered by quantum fluctuations. The transitional phase involves with a
classical evolution effectively driven by a negative mass term where field perturbations start
to grow on superhorizon scales.

At one-loop level, we found that important corrections are only generated by field
perturbations that have been frozen outside the horizon by the starting time of phase
transition. The dominant diagram at this level is pratically a classical process where a
second-order perturbation is created by the scattering of two linear perturbations. We also
found that the resulting loop corrections are only sensitive to those field masses comparable
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the contribution around the IR cutoff y0 as

h⇣
k

⇣
K

iCIM =

⇡4H4

k3
M4�(k+K)

Z 1

0

Z 1+y

1�y
dxdy

1

x2y2

⇥
✓
xy

y2i

◆3�2l

|F4(z)� F4(zk)|2, (4.33)

⇡ ⇡4H4

k3
M4�(k+K)

z6�4l
i

(l � 1)(3� 2l)
⇧⇣(z), (4.34)

for 3
2 < l  5

2 in the limit z ! 0. The factor z6�4l
i = (k/ki)

6�4l is introduced by the
scale-dependent cutoff z = zk, which suppressed the CIM contribution to modes that exit
the horizon during the period ⌘f < ⌘ < ⌘i.

4.3 Second-order gravitational waves

It is also interesting to ask how large the corrections to the tensor perturbation hij are
induced by the (temporarily) growing field perturbations �� during phase transitions. We
are in particular interested in the contribution from the CIM diagram, which is the dominant
effect from massive spectator fields. The tensor perturbation induced by the CIM diagram is
in fact a classical process that generates second-order gravitational waves through a pair of
scalar perturbations. Unlike the curvature perturbation, the tree-level tensor mode h does
not suppress by the slow-roll parameter ✏� and therefore to find the leading contributions
one can neglect any term involves with ↵, � or ��. For cubic terms the only interaction
that is not suppressed by the slow-roll parameter reads [33, 43–46] (see also appendix B)

Lh�� =

a2

2

hij@i��@j��. (4.35)

This interaction contributes to the tensor perturbation at second order according to the
equation of motion

h00ij + 2Hh0ij �r2hij = �4 ? lm
ij Slm, (4.36)

where ? lm
ij is the projection operator that extracts the transverse and traceless part of the

source generated by (4.35), that is

Sij(x, ⌘) = 2@i��(x, ⌘)@j��(x, ⌘). (4.37)

The Fourier transform of the tensor perturbation is defined as

hij(x, ⌘) =

Z
d3k

(2⇡)3/2
eik·x[h+

k

(⌘)e+ij(k) + h⇥
k

(⌘)e⇥ij(k)], (4.38)

where we introduce two unit vectors e

1, e

2 that form orthonormal basis together with
another unit vector k/k, and such that

e+ij(k) =
1p
2

[e1i (k)e
1
j (k)� e2i (k)e

2
j (k)], (4.39)

e⇥ij(k) =
1p
2

[e1i (k)e
2
j (k) + e2i (k)e

1
j (k)]. (4.40)
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Therefore the equation of motion for h+
k

or h⇥
k

takes the form

h00
k

+ 2Hh0
k

+ k2h
k

= Sh(k, ⌘), (4.41)

where the source term is led by

Sh(k, ⌘) = �42eij(k)

Z
d3pd3q

(2⇡)3
�(p+ q� k)��

p

(⌘)��
q

(⌘)piqj . (4.42)

Applying the same method as used for the curvature perturbation, we can compute the
tensor two-point function hh

k

h
K

i from the unequal-time correlation function

hSh(k, ⌘1)Sh(K, ⌘2)i = 164eij(k)elm(K)

Z
d3pd3qd3Pd3Q

(2⇡)6
piqjPlQm

⇥ �(p+ q� k)�(P+Q�K)h��
p

(⌘1)��q(⌘1)��P(⌘2)��Q(⌘2)i. (4.43)

In terms of the reparametrized wave numbers x = q/k, y = p/k, the projection eijpiqj =

�eijpipj is simply

eij(k)pipj =
k2y2p

2

"
1�

✓
1 + y2 � x2

2y

◆2
#
(cos

2 '� sin

2 '), (4.44)

where ' is the azimuthal angle of p on the (e1, e2) plane. The power spectrum for either
polarization (h+

k

or h⇥
k

) is given from the definition

hh
k

(⌘)h
K

(⌘)i = 2⇡2

k3
�(k+K)Ph(k, ⌘). (4.45)

For tensor modes that exit the horizon by ⌘ = ⌘i where zi = k/ki < 1, we find no IR
divergence at zero mode so that the integration can run from 0 to yi to give

hh
k

h
K

iCIM =

4⇡4H4

k3
�(k+K)

Z yi

0

Z 1+y

|1�y|
dxdy

y2

x2
(4.46)

⇥
"
1�

✓
1 + y2 � x2

2y

◆2
#2

|F2(z)� F2(zi)|2,

=

64⇡4H4

15k3
�(k+K)

✓
k

ki

◆3

⇧h(z), (4.47)

where Fn(z) has been given in (4.28) and the late-time approximation (4.29) is used for the
second equation. The integral factor is defined as

⇧h(z) ⇡
1

9(5� 2l)2
, if

3

2

 l <
5

2

, (4.48)

⇡ 1

9

ln

2
⇣zi
z

⌘
, if l =

5

2

. (4.49)

We find that the second-order tensor perturbation induced by superhorizon modes (��p
with p < ki) is dominated by the UV cutoff y = yi and is suppressed by a factor (k/ki)

3.
This is not only due to the scale-dependent cutoff yi but also due to the fact that the
leading interaction (4.35) is a derivative coupling with two spatial derivatives. We therefore
conclude that massive fields cannot contribute large corrections to the tensor perturbation
even if their perturbations are growing after horizon exit due to negative masses.
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where ✏̃� is evaluated at ⌘̃. To simplify the calculation, we assume that the slow-roll pa-
rameter is nearly a constant throughout the time of our interest. By using the symmetry
between the pairs of momentums (p,q) $ (P,Q) and the symmetry between time integra-
tions (⌘̃1 $ ⌘̃2), we can rearrange the integration as

h⇣
k

(⌘)⇣
K

(⌘)iCIM =

4M4

2

�(k+K)

Z
d3pd3q�(p+ q� k)

⇥
����
Z ⌘ d⌘̃

⌘̃2
a2(⌘̃)G⇣

k

(⌘; ⌘̃)��
p

(⌘̃)��
q

(⌘̃)

����
2

, (4.26)

where the pair of momentums (P,Q) have been integrated out. Note that the disconnected
diagram h⇣⇣idc ⌘ h⇣i2 has been excluded in (4.26) as it only contributes to the zero-mode
correlation k = K = 0. 2

It is useful to reparametrize the internal wave numbers with respect to the external
wave number as x = q/k, y = p/k. For k < ki (or zi < 1), we shall compute the time
from z = zi and put the cutoff yi ⌘ ki/k to the internal wave numbers so that the late-
time approximation (4.11) can be applied. After applying these cutoffs we extract only the
contribution from superhorizon modes since the start of the phase transition at ⌘ = ⌘i. As
we will see that the choice of the UV cutoff yi does not affect the results. The correlation
(4.26) is then

h⇣
k

⇣
K

iCIM =

⇡4H4

k3
M4�(k+K)

Z yi

y0

Z 1+y

|1�y|
dxdy

1

x2y2
|F4(z)� F4(zi)|2, (4.27)

where y0 = k0/k, and k0 is a suitable cutoff for the largest cosmological scale (see the
discussion in [13, 42]). Here, we define a useful function

Fn(z) ⌘
Z

dz̃

2z̃n
⇥(z � z̃)

h
ei(z�z̃)

(1� iz)(z̃ � i) + ei(z̃�z)
(1 + iz)(i+ z̃)

i✓ z̃

zi

◆3�2l

. (4.28)

In the limit |z|  |z̃| ⌧ 1, the time integration is simplified as

Fn(z) ⇡
Z

dz̃

3z̃n
⇥(z � z̃)

�
z3 � z̃3

�✓ z̃

zi

◆3�2l

. (4.29)

Taking the late-time approximation (4.29) into (4.27), we find that the dominant contribu-
tion comes from the IR cutoff y0, where

h⇣
k

⇣
K

iCIM =

3⇡4H4

k3
M4�(k+K) ln

✓
k

k0

◆
⇧⇣(z), (4.30)

and the integral factor in the limit z ! 0 reads

⇧⇣(z) ⇡
1

4l2(3� 2l)2

✓
z

zi

◆6�4l

, if

3

2

< l  5

2

, (4.31)

⇡ 1

9

ln

2
⇣zi
z

⌘
, if l =

3

2

. (4.32)

2
The disconnected diagram corresponds to the equal-time propagation of the source pairs in (4.24).
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The most important source interaction:

Conclusion: no important tensor-mode corrections from tachyonic phase transition

Results of primordial GWs
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Figure 4: Two-loop diagrams of the cut-in-the-middle (CIM) type. Solid (dotted) lines are
external (internal), ⇣ and �� are free fields, arrows are propagators, black dots are vertices,
and ⇣(i) is a propagating ⇣ field at i-th order in perturbations. In each diagram one dotted
circle must correlates with one solid circle in order to get non-vanished contributions, and
there is no correlation between ⇣ and �� fields.

For tensor modes that exit the horizon by ⌘ = ⌘i where zi = k/ki < 1, we find no IR
divergence at zero mode so that the integration can run from 0 to yi to give

hh
k

h
K

iCIM � 4⇡4H4

k3
�(k+K)

Z yi

0

Z 1+y

|1�y|
dxdy

y2

x2
(4.56)

⇥
"
1�

✓
1 + y2 � x2

2y

◆2
#2

|F2(zf )� F2(zi)|2,

=

64⇡4H4

15k3
�(k+K)

✓
k

ki

◆3

⇧h(zf ), (4.57)

where Fn(z) has been given in (4.29) and the late-time approximation (4.30) is used for the
second equation. Here we only pick up the I2 contribution in the correlator, and the integral
factor is defined as

⇧h(z) ⇡
1

9(5� 2l)2
, if

3

2

 l <
5

2

, (4.58)

⇡ 1

9

ln

2
⇣zi
z

⌘
, if l =

5

2

. (4.59)

We find that the second-order tensor perturbation induced by superhorizon modes (��p with
p < ki) is dominated by the UV cutoff y = yi and is suppressed by a factor (k/ki)

3. This
is not only due to the scale-dependent cutoff yi but also due to the fact that the leading
interaction (4.45) is a derivative coupling with two spatial derivatives. We therefore conclude
that massive fields cannot contribute large corrections to the tensor perturbation even if their
perturbations are growing after horizon exit due to negative masses.

5 Higher-order corrections

Since a negative mass leads to the growth of the field perturbations on superhorizon scales,
one may be curious about the contribution from higher-order corrections where more free
fields are running in loops. However, as long as a higher loop diagram is of the CIS type,
similar to Figure 2b or 2c where one of the external field is a free ⇣, the contribution from such
a diagram is suppressed in the late-time regime due to a rescaling of the local background
[17]. Therefore we only need to consider the non-CIS type diagrams.

– 19 –

To specify the discussion, we consider a transition driven by the type of potentials as (3.2).
We can solve the mode function uk = a��k with a simplified equation of motion given by

u00k +

✓
k2 � l2 � 1/4

⌘2

◆
uk = 0, l =

8
>><

>>:

3/2, ⌘  ⌘i,q
9/4 +M2

�, ⌘i < ⌘  ⌘f ,q
9/4�M2

+, ⌘ > ⌘f ,

(4.8)

where M2
� = |M2| is the phase that M2 < 0, and therefore l > 3/2 for ⌘i < ⌘  ⌘f and

0 < l < 3/2 for ⌘ > ⌘f . Without the loss of generality, � is assumed to be massless by ⌘i.
Given that � starts to roll down from very close to the origin, we may neglect the change

of � in (3.3) so that M2 ⇡ ��v2/H2 is a good approximation in the first few e-foldings, where
the time dependence in M is mild with a sufficently small ✏H . To reach a good understanding
on the behavior of uk, it is enough to consider a pure de Sitter expansion by taking ✏H = 0,
and thus H = Hi, ⌘ = �1/H = �1/(Hia). Using a new time variable z = k⌘, the solution of
(4.8) with a constant M2

� = �v2/H2
i and a constant M2

+ = 2�v2/H2
i reads

��k =

Hp
2k3

e�iz
(i� z), z  zi, (4.9)

=

Hp
k3

(�z)3/2[b1(k)Jl�(�z) + i b2(k)Yl�(�z)], zi < z  zf , (4.10)

=

Hp
k3

(�z)3/2[c1(k)Jl+(�z) + i c2(k)Yl+(�z)], z > zf , (4.11)

where zi ⌘ k⌘i, l± ⌘
q

9/4⌥M2
±, and Jl(Yl) is the Bessel fuction of the first (second) kind.

Let us first focus on the time interval zi < z  zf . If M2
� ⌧ 1, the mode function ��k

with k < ki ⌘ �1/⌘i is nearly a constant by z = zi. In the limit z ! 0, ��k ! iH/
p
2k3

in (4.9) while Jl(�z) automatically drops out in (4.10), and one can match the solution at
z = zi to find that b2 = �⇡(�zi)

l�3/2/(
p
2 2

l
�(l)), where

��k = i
Hp
2k3

✓
z

zi

◆3/2�l

. (4.12)

On the other hand, ��k with k > ki leaves the horizon at some epoch ⌘k > ⌘i, where
⌘k & �1/k. Although b1, b2 can be solved by matching the value of ��k and ��0

k at z = zi, in
the limit zi � 1 we find that

b1 ⇡ b2 !
p
⇡

2

exp

h
i
⇣⇡
2

l +
⇡

4

⌘i
, (4.13)

which are independent of zi. This implies that mode functions with k � ki cannot feel the
phase transition, and the vacuum state in the Minkowski regime ��k ⇡ �(H/

p
2k3) ⇥ ze�iz

is almost unchanged after zi. Therefore, for k > ki we shall match |��k| between the vacuum
state with the late-time growing mode Yl in (4.10) at z = zk ⌘ k⌘k, which leads to

��k = i
Hp
2k3

zk

✓
z

zk

◆3/2�l

. (4.14)

For |M2| > 1, the time evolution of ��k becomes important after the phase transition.
As a simple example, let us consider a special case l = 5/2 (that is M2

� = 4 ), where (4.10)

– 11 –

Messages (for this moment)

• Loop corrections from spectator fields are never large, if they 
always stay in one stable vacuum during inflation. 

• The transition of vacuum expectation values (vevs) of scalar 
fields play a fundamental role in all inflation scenarios. 

• Loop corrections (the IR modes) are enhanced by phase 
transition with a growing vev (a tachyonic phase). 

• Primordial signals of phase transitions in the cosmological 
collider ought to be clarified.
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OUTLINE
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MOTIVATION

Planck	Collaboration:	arXiv:1502.02114[astro-ph.CO]

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM
𝑅" inflation									+								Higgs	inflation

A.	A.	Starobinsky,	Phys.	Lett.	B	91,	99	(1980)	 F.	L.	Bezrukov,	M.	E.	Shaposhnikov,	 Phys.Lett.B659:703-706,2008

𝑅" term Non-minimal	coupling Higgs	potential

Y.	Ema,	arXiv:	1701.07665[hep-ph]
Y-C.	Wang,	T.	Wang,	arXiv:	1701.06636v2[gr-qc]



November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM
Define	a	new	field		

Conformal	transformation	
from	Jordan	frame	to	Einstein	
frame

K.	Maeda,	Phys.	Rev.	D	39,	3159

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

𝛘

𝛙

U

𝜆 = 0.01
𝜉 = 1000
𝑀 = 10,-

An	example
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𝛘
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𝜉 = 1000
𝑀 = 10,-

An	example

𝜓 decreases

0
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MODEL	AND	FORMALISM

𝛘

𝛙

U

𝜆 = 0.01
𝜉 = 1000
𝑀 = 10,-

An	example



November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

Pure	Higgs	



November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

𝜆 = 0.01
𝜉 = 100
𝑀 = 10,-

An	example

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

Rewrite	the	action	in	a	more	compactible	form	as	

We	will	set	𝑀/ = 1 below.	



November	30th 2017	@JGRG2017

M.	Sasaki,	E.	Stewart,	Prog.Theor.Phys.95:71-78,1996

MODEL	AND	FORMALISM
Equations	of	motion	for			

A.	Achucarro et	al,	Phys.Rev.D84:043502,2011

• Geodesic	equation	of	the	field	space	within	an	expanding	universe	
with	potential	𝑈(𝜓, 𝜒)

• Equations	of	geodesic	deviation.									

November	30th 2017	@JGRG2017

M.	Sasaki,	E.	Stewart,	Prog.Theor.Phys.95:71-78,1996

MODEL	AND	FORMALISM
Equations	of	motion	for			

• Geodesic	equation	of	the	field	space	within	an	expanding	universe	
with	potential	𝑈(𝜓, 𝜒)

• Equations	of	geodesic	deviation.									
A.	Achucarro et	al,	Phys.Rev.D84:043502,2011

• Not	rolling	in	the	local	minimum	
• Not	rolling	along	geodesics	



November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

A.	Achucarro et	al,	JCAP	1101:030,2011

• Mass	hierarchy,	slow-roll	regime	
• Decomposition	into	two	directions,	𝑇6 and	−�̇�𝑁6≡ 𝐷=𝑇6.

(Also	new	slow-roll	parameters.)	

𝛘

𝛙

U

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

A.	Achucarro et	al, Phys.	Rev.	D	86,	121301(R)	 (2012)

Effective	mass	including	 �̇� &	𝑈>> which	is	much	larger	than	the	𝐻".

• Integrating	out	the	high	energy	part
• Slow-roll	regime	where	the	heavy	direction	is	determined	by	the	light	

direction
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MODEL	AND	FORMALISM
Mukhanov-Sasaki	equation

Modified	speed	of	sound	
but	still	close	to	1	during	
slow-roll	regime

Mode	function

Power	spectrum	at	
large	scale
𝜖 has	contribution	
from	both	fields

November	30th 2017	@JGRG2017

MODEL	AND	FORMALISM

Scalar	index

Tensor-to-scalar	ratio

Second	slow-roll	parameter	
in	the	tangent	direction

Correction	from	speed	of	
sound



November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS

Fix	𝜆 = 0.01;	(Then	we	have	two	free	parameters,	𝜉 and	
M.	)
𝜓A = 5.7;	𝜒A=0.01;	𝜓AD = 0;	𝜒AD = 0;	
𝑐F ≈ 1;	
Requiring	the	amplitude	of	curvature	perturbations	to	be	
2×10,J.	

November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS
• Confined	amplitude	
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COMPARISON	WITH	EXPERIMENTS
• Relation	between	the	
two	paremeters
given	by	confined	
amplitude	

November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS
• Relation	between	the	
two	paremeters
given	by	confined	
amplitude	



November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS
• 𝜉 &	effective	mass	of	
Higgs	field	&	shape	
of	potential	

𝛘

𝛙

U

November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS
• Large	𝜓 suppresses	terms	with	higher	order	of	𝑒

, L
MN

Approximately

• Constant	term	completely	determined	by	M

• Determined	by	𝜉 and	M



November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS
e.g.	𝜉 = 1000;	𝑀 = 10,-.	

November	30th 2017	@JGRG2017

COMPARISON	WITH	EXPERIMENTS



November	30th 2017	@JGRG2017

FUTURE	WORK
• This	work	is	on	going.	Mass	hierarchy	is	considered	here	so	that	one	

of	the	fields	dominates	the	inflation.	The	final	goal	is	to	consider	the	
regime	where	both	fields	are	of	same	importance	to	see	whether	
there	are	more	interesting	features	appear	on	power	spectrum	and	
bispectrum,	isocurvature perturbations,	etc.	

• Find	out	different	behaviors	of	the	fields	and	predictions	in	different	
regions	of	parameter	space,	e.g.	the	correction	from	the	speed	of	
sound.	

• Also	it	is	worth	considering	the	links	with	primordial	black	holes,	
reheating,	etc.	

November	30th 2017	@JGRG2017

THANK	YOU	FOR	LISTENING!

Higgs-𝑅" Inflation

SPEAKER:				Minxi He	(RESCEU,	UTOKYO)
(mean	c	her)

COLLABORATOR:	Jun’ichi Yokoyama	
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“Hubble (non-)constant  
problem”　　　

Kiyomi Hasegawa, Masumi Kasai and Toshifumi Futamase

Hirosaki University        Kyoto Sangyo University

JGRG 27 (27 November - 1 December, 2017)

(1) (1) (2)

(1) (2)

The 
“Hubble(non-)constant 

problem”
(originally stated by K. Tomita (2017))



The 
“Hubble(non-)constant 

problem”
The Hubble constant is different  in  

the measurement of the CMB  
and  

the measurement of the SNe

(originally stated by K. Tomita (2017))

The measurement of the CMB

The measurement of the SNe
P.A.R.Ade et al.(2016).

 A. G. Riess et al.(2016). 

H0 = 67.8± 0.9 km s�1Mpc�1

H0 = 73.24± 1.74 km s�1Mpc�1



The measurement of CMB 

→Global
The measurement of SNe 

→Local

For the Hubble parameter, 
there is about 10% 
discrepancy in 

 the global domain  
and 

the local domain



The 
“Hubble(non-)constant 

problem”
K. Tomita (2017)

Previous works for the  
“Hubble (non-)constant problem”

decaying dark matter

second order perturbation

 Z. Berezhiani et al.(2015) .

 K. Tomita (2017) .
local void model

 K. Ichiki et al.(2016) .



Our policy
We would like to show  

the “Hubble (non-)constant problem”  
can be solved within the general framework of 

the linear perturbation theory of  
the general relativistic 

inhomogeneous universe 
without assuming  

unknown matters or specific toy models

　　　Part1.Fundamentals           

　　　Part2.Linear perturbation

　　　Part3.Spatial average

※  the light speed c=1



Part1. 
Fundamentals

matter: The irrotational dust
Tµ⌫ = ⇢uµu⌫

　: The density of the matter
: 4-velocity of the matter  uµ

⇢



coordinates:synchronous comoving

matter: The irrotational dust

ds

2 = �dt

2 + (3)
gijdx

i
dx

j

Tµ⌫ = ⇢uµu⌫

with uµ = (1, 0, 0, 0)

　: The density of the matter
: 4-velocity of the matter  uµ

⇢

background 
→The Einstein-de Sitter universe

(The following discussion is similarly established in the non-flat case. 
flat with Λ case → P24)



ds

2 = �dt

2 + a

2(t)�ijdx
i
dx

j

with uµ = (1, 0, 0, 0)

background 
→The Einstein-de Sitter universe

(The following discussion is similarly established in the non-flat case. 
flat with Λ case → P24)

ds

2 = �dt

2 + a

2(t)�ijdx
i
dx

j

with uµ = (1, 0, 0, 0)
uµT

µ⌫
;⌫ = 0

background 
→The Einstein-de Sitter universe

gives
⇢̇b + 3

ȧ

a
⇢b = 0

(The following discussion is similarly established in the non-flat case. 
flat with Λ case → P24)



ds

2 = �dt

2 + a

2(t)�ijdx
i
dx

j

with uµ = (1, 0, 0, 0)
uµT

µ⌫
;⌫ = 0

✓
ȧ

a

◆2

=
8⇡G

3
⇢b

G00 = 8⇡GT00

background 
→The Einstein-de Sitter universe

gives

gives the Friedmann equation

⇢̇b + 3
ȧ

a
⇢b = 0

(The following discussion is similarly established in the non-flat case. 
flat with Λ case → P24)

　:background density⇢b

ds

2 = �dt

2 + a

2(t)�ijdx
i
dx

j

with uµ = (1, 0, 0, 0)
uµT

µ⌫
;⌫ = 0

✓
ȧ

a

◆2

=
8⇡G

3
⇢b

G00 = 8⇡GT00

background 
→The Einstein-de Sitter universe

gives

gives the Friedmann equation

⇢̇b + 3
ȧ

a
⇢b = 0

(The following discussion is similarly established in the non-flat case. 
flat with Λ case → P24)



Part2. 
Linear perturbation

gµ⌫ =(b) gµ⌫ + hµ⌫

⇢ = ⇢b(1 + �)

　　　　　　　　　the density fluctuation

　　　　　　　　　　the metric of the background 
　　　　　　　　　　the perturbation component of the metric

(b)gµ⌫ :

hµ⌫ :

� :



>>
>>

the perturbation quantities  
are smaller enough than 
 the background quantities 

gµ⌫ =(b) gµ⌫ + hµ⌫

⇢ = ⇢b(1 + �)

　　　　　　　　　the density fluctuation

　　　　　　　　　　the metric of the background 
　　　　　　　　　　the perturbation component of the metric

(b)gµ⌫ :

hµ⌫ :

� :

gµ⌫ =(b) gµ⌫ + hµ⌫

⇢ = ⇢b(1 + �)

　　　　　　　　　the density fluctuation

　　　　　　　　　　the metric of the background 
　　　　　　　　　　the perturbation component of the metric

(b)gµ⌫ :

hµ⌫ :

� :

performing the gauge fix like 

 synchronous comoving, 
we solve the Einstein equation in  

the  linear approximation



ds2 = �dt2 + a2
✓
�ij �

4a

3H0
2�,ij �

10

3
��ij

◆
dxidxj

with uµ = (1, 0, 0, 0)

ds2 = �dt2 + a2
✓
�ij �

4a

3H0
2�,ij �

10

3
��ij

◆
dxidxj

with uµ = (1, 0, 0, 0)

�� = 4⇡G⇢ba
2�

the Poisson equation



ds2 = �dt2 + a2
✓
�ij �

4a

3H0
2�,ij �

10

3
��ij

◆
dxidxj

with uµ = (1, 0, 0, 0)

___ _

�� = 4⇡G⇢ba
2�

the Poisson equation

�� = 4⇡G⇢ba
2�

ds2 = �dt2 + a2
✓
�ij �

4a

3H0
2�,ij �

10

3
��ij

◆
dxidxj

with uµ = (1, 0, 0, 0)

___

___ ___

_

the Poisson equation



� = �(~x)

� / a(t)

�� = 4⇡G⇢ba
2�

ds2 = �dt2 + a2
✓
�ij �

4a

3H0
2�,ij �

10

3
��ij

◆
dxidxj

with uµ = (1, 0, 0, 0)

___

___ ___

_

the Poisson equation

Part3. 
Spatial average



what is  
the  

background density ssd 
　in the  

realistic inhomogeneous 
universe ?

⇢b

the background  
density 

in the realistic 
inhomogeneous universe is  

the spatial average  
density



the background  
density 

in the realistic 
inhomogeneous universe is  

the spatial average  
density

to express this phrase with the formula...

D

⌃t

　：finite domain included in
　：constant time hypersurface
D

⌃t

⌃t



V ⌘
Z

D

p
(3)
gd

3
x

・Volume
we define the following quantities in the domainD

(3)g = det((3)gij)

V ⌘
Z

D

p
(3)
gd

3
x

h⇢iD ⌘ 1

V

Z

D
⇢

p
(3)
gd

3
x

・Volume

・Spatial avarage density

we define the following quantities in the domainD

(3)g = det((3)gij)



　　:scale factor of the domainaD D

V ⌘
Z

D

p
(3)
gd

3
x

h⇢iD ⌘ 1

V

Z

D
⇢

p
(3)
gd

3
x

3
ȧD
aD

⌘ V̇

V

・Volume

・Spatial avarage density

・Volume expansion rate 

we define the following quantities in the domainD

(3)g = det((3)gij)

the definition  
of  

the background 
density



⌃t
D

⇢b ⌘ lim
D!⌃t

h⇢iD
= lim

D!⌃t

1
R
D

p
(3)
gd

3
x

Z

D
⇢

p
(3)
gd

3
x

M. Kasai (1993).
⌃t　：constant time hypersurface
　：finite domain included inD ⌃t

⌃t
D

when             ,D ! ⌃t

⇢b = h⇢iD

⇢b ⌘ lim
D!⌃t

h⇢iD
= lim

D!⌃t

1
R
D

p
(3)
gd

3
x

Z

D
⇢

p
(3)
gd

3
x

M. Kasai (1993).
⌃t　：constant time hypersurface
　：finite domain included inD ⌃t



⌃t
D

when             ,

generally, 

D ! ⌃t

⇢b = h⇢iD

⇢b 6= h⇢iD

⇢b ⌘ lim
D!⌃t

h⇢iD
= lim

D!⌃t

1
R
D

p
(3)
gd

3
x

Z

D
⇢

p
(3)
gd

3
x

M. Kasai (1993).
⌃t　：constant time hypersurface
　：finite domain included inD ⌃t

⇢b 6= h⇢iD
background  

density
spatial average  

density



By the way, 
reviewing  
Part.1,

the universe in which the volume 
expansion is driven by 

the  
background density

⇢b



the universe in which the volume 
expansion is driven by 

the  
background density

⇢b

the Einstein-de Sitter universe
↓

the universe in which the volume 
expansion is driven by 

the domain-dependent 
average density

↓
h⇢iD

?



to answer this question ,

the spatial average  
Einstein equation



huµT
µ⌫

;⌫iD = 0

d

dt
h⇢iD + 3

ȧD
aD

h⇢iD = 0 (exact)

gives

where h⇢iD = ⇢b (1 + h�iD)

hG00iD = 8⇡GhT00iD

huµT
µ⌫

;⌫iD = 0

✓
ȧD
aD

◆2

+
Ke↵
aD2

=
8⇡G

3
h⇢iD

d

dt
h⇢iD + 3

ȧD
aD

h⇢iD = 0 (exact)

gives

gives the Friedmann equation



where h⇢iD = ⇢b (1 + h�iD)

hG00iD = 8⇡GhT00iD

huµT
µ⌫

;⌫iD = 0

✓
ȧD
aD

◆2

+
Ke↵
aD2

=
8⇡G

3
h⇢iD

d

dt
h⇢iD + 3

ȧD
aD

h⇢iD = 0 (exact)

gives

gives the Friedmann equation

K
e↵

=

10

9

h��iD = const.

where h⇢iD = ⇢b (1 + h�iD)

hG00iD = 8⇡GhT00iD

huµT
µ⌫

;⌫iD = 0

✓
ȧD
aD

◆2

+
Ke↵
aD2

=
8⇡G

3
h⇢iD

domain 　behaves as the homogeneous 
and isotropic universe 
 with the curvature 　　Ke↵

D

d

dt
h⇢iD + 3

ȧD
aD

h⇢iD = 0 (exact)

gives

gives the Friedmann equation

K
e↵

=

10

9

h��iD = const.



Finally, 

Finally, 
we consider 

the 
“Hubble (non-)constant 

problem” 
with above discussion



we define  
the Hubble parameter  

of the domain 　　　　 D

H̃0 ⌘ ȧD
aD

����
t0

6= H0 ⌘ ȧ

a

����
t0

Hubble parameter of the domain D



H̃0 ⌘ ȧD
aD

����
t0

6= H0 ⌘ ȧ

a

����
t0

this is generally different from 
the Hubble parameter  
of the background aa

Hubble parameter of the domain D

H0

in the  
linear  

approximation...



H̃0 = H0

✓
1� 1

3
h�(t0)iD

◆

If h�(t0)iD = �0.3

H̃0 = H0

✓
1� 1

3
h�(t0)iD

◆

,



If
H̃0 = 1.1H0

h�(t0)iD = �0.3

H̃0 = H0

✓
1� 1

3
h�(t0)iD

◆

,

If
H̃0 = 1.1H0

h�(t0)iD = �0.3

the Hubble parameter value can 
 vary 10%  

depending on 
 the scale of the domain 

H̃0 = H0

✓
1� 1

3
h�(t0)iD

◆

,



the “Hubble (non-)constant problem”  
can be solved within the general framework of 

the linear perturbation theory of  
the general relativistic 

inhomogeneous universe 
without assuming  

unknown matters or specific toy models

the end



Session7b 14:00–15:45
[Chair: Tetsuya Shiromizu]

393



7b1. Alex Vano-Vinuales (Cardiff U.),
“Free hyperboloidal evolution in spherical

symmetry” (10+5)
[JGRG27 (2017) 113018]

394



1/ 14

Introduction Implementation Simulations Conclusions

Free hyperboloidal evolution in spherical
symmetry

Alex Vano-Vinuales

Cardiff University

JGRG27 - 30th November 2017

AVV, S. Husa & D. Hilditch, 2014, CQG 32 (2015) 175010, gr-qc/1412.3827.

AVV & S. Husa, gr-qc/1412.4801, gr-qc/1601.04079, gr-qc/1705.06298.
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Motivation and problem basics

Reaching future lightlike infinity
� +

� -

� �

 +

 -

����� ��
����� ���

Gravitational waves are only well defined at
future null infinity (I +), where observers
of astrophysical events are located.

The study of global properties also benefits
from including I +.

A possible approach: Penrose’s conformal
compactification of spacetime.
The physical metric g̃µν is rescaled

gµν ≡ Ω2g̃µν , (1)

with Ω|I + = 0 to keep gµν finite there.

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Spacetime slices
�+

�-

� �

 +

 -

� = �����

Standard slicing options for the initial
value formulation of the Einstein equations,
to solve them as an evolution in time:

Standard Cauchy slices

Null slices

Cauchy-Characteristic matching /
extraction

Hyperboloidal slices

Advantages of the hyperboloidal approach:

Extraction at I +, no approximations.

Slices spacelike & smooth everywhere.

More resolution for the central part.

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Schwarzschild trumpet data

i +

i -

i 0

J
+

J
-

R = 0

ÈKCMCÈ = 1

R0 = 1.91

t = const
r = const

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Review

Brief history of the numerical hyperboloidal IVP
Conformal Field Equations by Friedrich: generality maintained
and regularity manifestly shown.

Numerical implementations by Hübner (tested by Husa,
continuum instabilities found) and by Frauendiener.

Free evolution (generalized harmonic) and a fixed conformal
factor by Zenginoğlu: Schwarzschild in spherical symmetry.

Moncrief and Rinne’s constrained axisymmetric code.

Tetrad formalism by Bardeen, Sarbach and Buchman.

Wave equation tests in dual foliation formalism by Hilditch.

Main difficulties of the numerical implementation:

Extra formally divergent terms at I + appear in the equations:

Gµν = 8π Tµν −
2

Ω
(∇µ∇νΩ− gµν∇γ∇γΩ)− 3

Ω2
gµν(∇γΩ)∇γΩ. (2)

Non-trivial background (K̃ 6= 0), unlike with Cauchy slices.

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Implementation

Basic approach

Formulation:

Free evolution: BSSN, Z4

Time-independent

Ω = |KCMC | r
2

I −r2
6rI

Spherical symmetry

+ Massless scalar field

Hyperboloidal initial data:

Height function approach

Compactified slice

Minkowski spacetime

Schwarzschild trumpet

perturbed by a scalar field.

Hyperbolic gauge conditions:

Slicing (α): Bona-Massó
α̇ = β

r
α

′−f(α)α
2

(K −K0)+Lα0

Shift (βa): Gamma-driver
β̇
r

= β
r
β
r ′

+ λΛ
r − η β

r
+ Lβr0

Preferred conformal gauge

with scri-fixing condition.

Numerical implementation:

Method Of Lines

Finite differences
Runge-Kutta 4th order

Kreiss-Oliger dissipation
(Non-)staggered grid.

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Gridpoint on I+

Numerical grid at I +

Staggered grid:
simpler implementation; values on I + using extrapolation.

r = rI

Non-staggered grid:
requires regularity conditions at I + and calculating the limits of
the divergent terms in the equations; quantities given on I +.

r = rI

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Gridpoint on I+

Scalar field - convergence at I +

� � � � �
-��× ��-�

-��× ��-�

-��× ��-�

�

��× ��-�

�

�
��
��
��
�
��
�
Φ
�
��
�
��
��
�
��
=
�

����������� �� ��� �������� ������ �������� �� +

������� ���-����
�������(���-���)/����
����� ���-����
�����(���-���)/����

AVV and S. Husa, arXiv:1705.06298 [gr-qc]
Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Perturbed regular initial data

Scalar field

AVV, S. Husa and D. Hilditch, arXiv:1412.3827 [gr-qc]

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Perturbed regular initial data

Scalar field signal at I +

��� ��� ��� ��� ��� ��� ���

-�����

-�����

-�����

�����

�����

�����

�����

�

Φ

�������� ������ �������� �� + ��� ��������� ����� ����������

�����

����

���� α

� ����� β�

�� �

����� β�

�� / ����

� ����� β�

�+��� �

Γ-������

����

α � β�

���� ����

�����

�� � Γ

/ ���� ����

���� ���� ���� ����

-�����

�����

�����

�����

���� ���� ���� ���� ���� ����

-������

-������

-������

-������

-������

AVV and S. Husa, arXiv:1705.06298 [gr-qc]

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Collapse of the scalar field

Evolution: χ, K̃, α, βr,Φ/Ω

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Schwarzschild trumpet

Effect of slicing conditions (∂tα = ∂rα− f(α)K + L0, ∂tβ
r)

��� ��� ��� ��� ��� ���
����

����

����

����

����

����

����

-���

-���

���

���

���

���

���

�

α
� 

α� ���

α� �+���

α� ������

�

� ���

�

� �+���

�

� ������

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Schwarzschild trumpet

Stationary solution of the slicing condition (trumpet)

∂tα̃ = RHS(r̃, α̃, ∂r̃α̃, ...) = 0. (3)

��� ��� ��� ��� ��� ���

-����

-����

-����

����

����

����

����

-����

-����

-����

-����

-����

-����

-����

�

�
��
��
��
��
��
��
�

� 

α� ���

β�� ���

�

� ���

α� ������

β�� ������

�

� ������
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Summary

Hyperboloidal initial value problem:

promising and efficient approach for numerical simulations,

allows the study of global properties and extraction of signals.

To our knowledge, this is the first stable free evolution with a
standard formulation.

Getting ready for further work:

Simulations in AdS (I + is timelike → boundary conditions).

3-dimensional code and initial data → binary systems.

AVV, S. Husa & D. Hilditch, 2014, CQG 32 (2015) 175010, gr-qc/1412.3827.

AVV & S. Husa, gr-qc/1412.4801, gr-qc/1601.04079, gr-qc/1705.06298.

Free hyperboloidal evolution in spherical symmetry Alex Vano-Vinuales
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Example of Null Junction Conditions: 
Energy Emission from a Naked Singularity

Takafumi Kokubu (KEK) 
with 
Sanjay Jhingan (Yamanashi-Gakuin U.)  
Tomohiro Harada (Rikkyo U.) 

in preparation.

JGRG27@ Hiroshima

Our Aim
• Making a dynamical model to emit energy which is 
caused by an extremely high curvature region

Singularity

Relativistic jet, super nova, super-radiance, etc.

We want to see whether such model can be one of possible candidates 
describing high energy phenomena in Universe. 



Introduction
• Naked Singularities are solutions to Einstein eq. 
- over spinning Kerr solution 
- over charged RN solution 
- negative mass Schw. solution

(Q2 > m2)

(a2 > m2, ✓ = ⇡/2)

(m < 0)

Introduction
• The Cosmic-Censorship Hypothesis 
- naked singularity should not be formed by realistic initial 
data  

• Counterexamples  
- singularity can be naked 
- e.g. end states of collapsing matter 

dust,  massless scalar,  perfect fluid

Naked singularity is in actual existence ?

Penrose(1969)

Eardley-Smarr(1979) Roberts(1989) Ori-Piran(1987)



singularity formation 
during the collapse

. .

Cauchy surface expansion

.

Lemaitre-Tolman-Bondi（LTB）: Inhomogeneous dust collapse

Naked Singularity formation from a 
gravitational collapse

.

Matching

Outside: dust solution 
Inside: Undetermined

.



Matching

Outside: dust solution 
Inside:

Matching

Outside: dust solution 
Inside: dust solution with a singularity

..



. ..
Energy propagation along  

the null surface

Matching

A dynamical energy emission model from the singularity

As a result of matching..

(+) & (-): self-similar LTB

Dust:

R± = r±

✓
1� 3

p
2±
2

t±
r±

◆2/3

⇢± =
±

4⇡R2
±R

0
±

(+).
(-)

ds2± = A±(t±, r±)dt
2
± +B±(t±, r±)dr

2
± + C±(t±, r±)(d✓

2 + sin2 d'2)

A± = �1, B± = (R0
±)

2, C± = R2
±.

+

�

Shell’s whole energy: Eshell := 4⇡R2T↵�u�
↵u

�
�

���
⌃

which is proportional to the luminosity Lshell := 4⇡R2T↵�u
↵
�n

�
�

���
⌃

Model

Eshell / Lshell

r ! 1

Let’s construct a particular model



Eshell / R

Luminosity

a± / p
±

Interpretation of the result
- from the conservation law for null shell

p
d

d�
�S + [T↵�k

↵k� ]�S = 0

the energy absorbed into the shell  
from its surrounding dust

the work done by the shell's expansion

Energy supply to shell 
➡ infinite dust (SS-LTB) 
➡ luminosity divergence

.



r⇤

To make it more realistic
Self-Similar sol. with cut-off

Summary
• We proposed a model for energy emission from a naked 
singular region in a self-similar dust spacetime by gluing 
two self-similar dust solutions at the CH. 

• It is found that the energy increases in proportion to 
shell-radius. It is because of the self-similarity. 

• The null shell expands in collapsing dust region while 
absorbing the energy of the surrounding dust. 

• Self-similar sol. with an appropriate cut-off could make 
this sol. more realistic .
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Fuzzy Spacetime in 
Noncommutative Gravity 

Shinpei Kobayashi (Tokyo Gakugei University)

in collaboration with Tsuguhiko Asakawa  (Maebashi Inst. Tech.)

JGRG27 @ Kurara, Higashihiroshima
Nov.26 – Dec.1, 2017

Quantum geometry?
¡ string theory
¡ string field theory, matrix models,...

¡ loop quantum gravity

¡ (causal) dynamical triangulation

¡ noncommutative geometry
¡ κ-Minkowski space, twisted diffeomorphism,...

¡ anything universal?



Reduction of dimension 
¡ implication of lower-dimensional gravity [Carlip, 2017]

¡ string theory [Atick&Witten,1988, ...]

¡ causal dynamical triangulation [Ambjorn+,2005, ...]

¡ κ-Minkowski spacetime [Arzano & Kowalski-Glikman, 2017]

¡ minimal scale ⇄ "loose" relation exists

cf. QM                        ⇄[x, p] = i~ �x�p � ~
2

�x &
p
↵0, �x�y & ✓, �x�y�z & �, · · ·

Spacetime coordinates and 
noncommutativity
¡ a realization: noncommutative coordinates

: noncommutative parameter

¡ position (of a particle) → uncertain:

¡ spacetime coordinates are not completely independent

[x, y] = i✓, ✓

�x�y & ✓

x

y y

x
Δx

Δy



Round way: deformed 
product of functions

manifold

coordinate: 
commutative

Quantum Space

coordinate: 
noncommutative

commutative 
algebra of functions

noncommutative 
algebra of functions

noncommutative
deformation

quantization of
geometry?

f · g = g · f f ? g 6= g ? f

A realization of noncommutativity
¡ Noncommutativity between space coordinates

: constant parameter

¡ a realization: Wick-Voros product

[x, y] = i✓, ✓
✓
z =

x+ iyp
2✓

, z̄ =
x� iyp

2✓

◆

(f ? g)(z, z̄) = exp

✓
@

@z̄0
@

@z00

◆
f(z0, z̄0)g(z00, z̄00)

���
z0=z00=z

cf.) [a, a†] = 1

[z, z̄] = 1

[z, z̄]? = z ? z̄ � z̄ ? z = 1



Noncommutative product of  
functions

S =

Z
dtd2x

⇣
@z�@z̄�+

m

2
�2 + · · ·

⌘

S =

Z
dtd2x

⇣
@z� ? @z̄�+

m

2
� ? �+ · · ·

⌘

functions with ordinary product (commutative):

functions with noncommutative product:

algebraic structure of functions is changed 

Function ⇄ Operator
¡ working on function with noncommutative product: complicated 

→ switching to operator formalism (cf. wave function ⇄matrix)

N̂ |n i = n |n i

ẑ =
x̂+ iŷp

2✓
ẑ† =

x̂� iŷp
2✓

N̂ = ẑ†ẑ =
x̂2 + ŷ2

2✓

[x, p] = i~ [a, a†] = 1

[x, y] = i✓ [z, z†] = 1

same
structure

â =
x̂+ ip̂p

2~
â† =

x̂� ip̂p
2~

N̂ = â†â =
x̂2 + p̂2

2~

Ô =
1X

n=0

On|nihn|

QM

NCG

number

radius



Various fuzzy objects
¡ GMS soliton

fuzzy disc
fuzzy annulus

¡ angular NC soliton

¡ cosmological solution

[Lizzi+, 2003]
[SK and Asakawa, 2013]

[SK&Asakawa, 2013]

[Gopakumar+, 2000,  Kraus&Larsen 2000, ...]

[Asakawa&SK, 2010]

Toward BH in 
noncommutative gravity 
¡ sample: (commutative )(1+1)-D gravity with matter 

¡ BH solution [Mann+, 1991, 1999, Mureika-Nicolini, 2011 ]

S =
1

16⇡G

Z
d2x

p
�g

✓
 R+ ⇤+

1

2
(r )2

◆
+ Sm

ds2 = �↵(x)dt2 +
1

↵(x)
dx2

↵(x) = �1

2
⇤x2 + 2M |x|� C

↵00(x) + 2↵0(x)�(x) + ⇤ = 4M�(x)

"plane" symmetric

eom:

solution:



Each annulus has the area

N=4 case

2⇡✓

Number operator
= radius operator

p̂0 = | 0 i h 0 | p̂1 p̂2 p̂3

radius R ⇠
p
2N✓

 
* N̂ = â†â =

x̂2 + ŷ2

2✓
=

R̂2

2✓

!

total area                ,2⇡N✓

Noncommutative extension
¡ Euclidean 2D theory with 

¡ space coordinate           → operator

¡ ansatz:                    

↑
linear along x

¡ polar → Cartesian

[⌧, x] = i✓

⌧, x ⌧̂ , x̂

↵ = ↵(x)

cf.  (2+1)-D theory, circular symmetry
(eigenstates of the number operator) 



Polar to Cartesian
¡ coherent state: translation in NC plane

|⇣i = e⇣ẑ
†�⇣⇤ẑ|0i = e�|⇣|2/2

1X

n=0

⇣np
n!
|ni

= D̂(⇣)|0i

-2

0

2

-2

0

2

0.0

0.5

1.0

-2

0

2

-2

0

2

0.0

0.5

1.0

displacement operator

Polar to Cartesian
¡ squeezed state: realization of x-dependence

|⇠i = e
1
2 ⇠

⇤ẑ2� 1
2 ⇠ẑ

†2
|0i

= Ŝ(⇠)|0i
φ = 0 : squeezed in x-direction
φ = π : squeezed in τ-direction

-2

0

2

-2

0

2

0.0

0.5

1.0

(⇠ = Aei')



Composition of operator

¡ completeness:

¡ translation of center (coherent state):

¡ x-dependence (squeezed state):

1X

n=0

|nihn| = 1

1

⇡

Z
d2⇣|⇣, 0ih⇣, 0| = 1

1

⇡

Z
d2⇣|⇣, ⇠, 0ih⇣, ⇠, 0| = 1

Operator EOM
¡ anzatz:

¡ eom: 

¡ derivative:

¡ delta function (source):  

↵00(x) + 2↵0(x)�(x) + ⇤ = 4M�(x)

�(x) ! |0, 0, ⇠ih0, 0, ⇠|'=0

d

dx
=

1

i✓
[⌧, ·]

↵̂(x̂) =

Z
d2⇣↵(⇣)|⇣, ⇠, 0ih⇣, ⇠, 0|



Summary
¡ spacetimes with noncommutative space(time) coordinate

→ some cosmological and BH solutions.

¡ Various eigenstates (number, coherent, squeezed,...) in QM

→  useful to reflect spacetime symmetry
to apply to gravitational solutions

¡ (Though I did not talk about it today)
All operators are related to D-brane

→ we can describe spacetime by D-brane more directly

¡ Experiment using Gaussian beam → analog gravity 
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Expanding Polyhedral Universe

in Regge Calculus
Prog. Theor. Exp. Phys. 2017, 073E01

arXiv:1612.06536 [gr-qc]

Ren Tsuda (Ibaraki University)

In collaboration with

Takanori Fujiwara (Ibaraki University)

The 27th Workshop on General Relativity and Gravitation in Japan - JGRG27

27 November - 1 December, 2017 @Higashi Hiroshima Arts and Culture Hall, Kurara

Outline

1. Overview of Regge Calculus

2. Polyhedral Universe

3. Summary & Future Works

2



1. Overview of Regge Calculus

3

Polytopal decomposition

Regge Calculus · · · Lattice approach to Einstein’s general
relativity (T. Regge, Nuovo Cimento 19, 1961)

Key idea · · · Polytopal decomposition

Smooth manifold ⇒ Piecewise linear one

4



Regge calculus

An analog of the Einstein-Hilbert action is given by the Regge action

1

16π

∫
dDx

√
−g (R− 2Λ) → 1

8π

 ∑
i∈{hinges}

Aiεi − Λ
∑

i∈{blocks}

Vi


Ai : Volume of a hinge; hinge is a (D − 2)-dimensional face of the lattice,

in simple words, hinge is a boundary of a boundary

εi : Deficit angle around the hinge Ai

Vi : Volume of a unit cell of the lattice

Metric is replaced by lengths of edges of PL manifold

gµν → li

Regge calculus describes the gravity as lattice geometry
5

2. Polyhedral Universe

6



Schläfli symbols

The foregoing investigations are mainly restricted to regular polyhedra.

There are only five types of the regular polyhedra

specified by the Schläfli symbols.

(P. A. Collins and R. M. Williams, Phys. Rev. D 7, 1973)

tetrahedron icosahedron

{4, 3}
octahedron dodecahedron

{3, 3}
cube

{3, 4} {5, 3} {3, 5}

Schläfli Symbols for regular polyhedra {p, q}
· · · p: the number of the sides of a face

q: the number of the faces meeting at each vertex

7

Schläfli symbols

tetrahedron icosahedron

{4, 3}
octahedron dodecahedron

{3, 3}
cube

{3, 4} {5, 3} {3, 5}

By using Schläfli symbols,
we can treat all regular polyhedra in a unified way
and give a generic expression for the equation

8



Expanding regular polyhedral universe

Space: 2-dim. surface of the polyhedron {p, q}
with edge length l (t)

Time: Continuum for simplification

t
t t + dt

l (t) l (t + dt)

Expansion

A expanding regular polyhedron
as a 3-dimensional universe

9

Regge equations for regular polyhedral models

Hamiltonian constraint

2π − q arccos
l̇2 − 4 cos 2π

p

4 + l̇2
=

qΛ

2

l2 cos π
p√

4 sin2 π
p + l̇2

Evolution equation

l̈

4 + l̇2
=

Λ

4
l

1− ll̈(
sin2 π

p + l̇2
)


To compare with the continuum theory, we introduce a circumradius of the

polyhedron as an analogue of the scale factor

aR (t) =
sin π

q

2
√
sin2 π

p
− cos2 π

q

l (t) .

10



Behavior of the regular polyhedral models
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continuum

tetrahedron

cube

octahedron

dodecahedron

icosahedron

Sphere spends infinite time to expand to infinite size.

⇕
Polyhedron gets infinite size within finite time

11

Behavior of the regular polyhedral models

Expression of the time when polyhedral model gets infinite size

tp,q =

∫ p−2
p

π

0

dθ
2π − q (θ − sin θ)

2
√

2qΛ (2π − qθ) sin θ sin (p−2)π+pθ
2p

sin (p−2)π−pθ
2p

In fact, in the era of t ≃ tp,q, evolution equation is approximately given by

aR ≃ cp,q
Λ (tp,q − t)

where cp,q is defined by

cp,q =
2π

q

sec π
p
sin π

q√
sin2 π

p
cos2 π

q

12



Up till now, we have considered regular polyhedron.

However, if we cease to stick to regular polyhedron, we can ap-
proximate a sphere more precisely.

One way to put this into practice is to introduce
“Geodesic domes”.

13

Geodesic domes

Frequency ν · · · Degree of subdivision

each faces are subdivided into ν2 small triangles

frequency 1 frequency 2 frequency 3 frequency 4

Geodesic domes are produced by the projection of tessellated
icosahedron onto the circumshpere

14



Geodesic domes

Better approximates a sphere than the regular polyhedra

However, geodesic domes are not regular polyhedra.
So, we can not define the Schläfli symbols for geodesic domes
and need to introduce some extra parameters to specify the
shape of them.

15

Geodesic dome universe
ν = 2

1

5
ε1 +

1

2
ε2 = Λl2

 sin ξ cos ξ
2√

4 cos2 ξ
2
+ l̇2

+
sin2 ξ

2√
3 + 4l̇2 sin2 ξ

2


agd =

√
10 + 2

√
5

4
l

ξ = const.

ε1 = 2π − 5θ1,1 , ε2 = 2π − 4θ2,1 − 2θ2,2

θ1,1 = arccos
4 cos ξ + l̇2

4 + l̇2

θ2,1 = arccos

(
2 + l̇2

)
sin ξ

2√(
4 + l̇2

)(
1 + l̇2 sin2 ξ

2

)
θ2,2 = arccos

1 + 2l̇2 sin2 ξ
2

2
(
1 + l̇2 sin2 ξ

2

)
16



Geodesic dome universe
ν = 3
1

5
ε1 + ε2 +

1

3
ε3 = Λl

2

 sin ξ cos
ξ
2√

4 cos2
ξ
2

+ l̇2

+
2 sin2 ξ

2
cos2

η
2√

sin2 η
2

+ l̇2 sin2
ξ
2

+
sin2

ξ
2

csc
η
2

sin ζ cos ζ√
4 sin2 η

2
cos2

ζ
2

+ l̇2 sin2
ξ
2



agd =

√
10 + 2

√
5

4
l

ξ = const.

η = const.

ζ = const.

ε1 = 2π − 5θ1,1

ε2 = 2π − 4θ2,1 − 2
(
θ2,1 + θ2,2 + θ2,3

)
ε3 = 3

(
θ3,2 + θ3,3

)

θ1,1 = arccos
4 cos ξ + l̇2

4 + l̇2
, θ2,1 = arccos

(
2 + l̇2

)
sin

ξ
2√(

4 + l̇2
) (

1 + l̇2 sin2
ξ
2

)

θ2,2 = arccos
2 sin2 η

2
+ l̇2 sin2

ξ
2√(

1 + l̇2 sin2
ξ
2

) (
4 sin2 η

2
+ l̇2 sin2 ξ

2

) , θ2,3 = arccos

(
2 sin2 η

2
+ l̇2 sin2

ξ
2

)
sin

ξ
2√(

4 sin2 η
2

+ l̇2 sin2
ξ
2

) (
sin2

η
2

+ l̇2 sin2
ξ
2

sin2
ζ
2

)

θ3,2 = arccos
4 cos η sin2

η
2

+ l̇2 sin2
ξ
2

4 sin2 η
2

+ l̇2 sin2
ξ
2

, θ3,3 = arccos
4 cos ζ sin2

η
2

+ l̇2 sin2
ξ
2

4 sin2 η
2

+ l̇2 sin2
ξ
2

17

Geodesic dome universe

The number of the extra parameters is given by

# =

{
(ν+1)2

4
: (ν odd)

ν2+2ν
4

: (ν even)

• The higher the frequency, the more cumbersome equation becomes.

• In the limit ν → ∞, infinite number of extra parameters emerge.

To avoid the complexity of carrying out the Regge calculus for
the geodesic dome,
we regard it as a “pseudo-regular polyhedron”

18



Pseudo-regular polyhedron

How about the Schläfli symbols {p, q} for Pseudo-regular polydehdon ?

Since all the faces of the geodesic dome are triangles, we use p = 3.

As for q, we employ the average number of faces meeting at a vertex.

So, we may define “the fractional Schläfli symbols”

{p, q} =

{
3,

30ν2

5ν2 + 1

}
.

With this {p, q}, we can use the equation for regular poly-
hedron still hold true. It’s quite simple and unified form for any
frequency of pseudo-regular polyhedra.

19

Geodesic dome vs. Pseudo-regular polyhedron

agd : Geodesic Dome( 　　　 )

aR : Pseudo-regular polyhedron( 　　　)
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continuum
pseudo-regular polyhedrons

geodesic domes

As you can see, the pseudo-regular polyhedra are quite close to
the geodesic domes
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Deviation |(aR − agd) /agd|

10−7

10−6

10−5

10−4

10
−3

10−2

10−1

100

0 0.5 1 1.5 2 2.5 3 3.5

ν =
2

ν =
3

ν =
4

ν =
5

∣ ∣ ∣

a
R
−
a
gd

a
gd

∣ ∣ ∣

√

Λt

For ν ≥ 3, initial value of deviation∣∣∣∣aR − agd
agd

∣∣∣∣ < 0.0013.

in spite of that GD and PRP are essentially different objects.

21

Infinite frequency limit

In contrast to the case of GD,
PRP can be evaluated in the limit ν → ∞.

Taking the limit ν → ∞,

Schläfli symbols

{p, q} =

{
3,

30ν2

5ν2 + 1

}
→ {3, 6}

Initial value of the scale factor

aR (0) = 2

√√√√√ √
3π

(
2
q − 1

3

)
Λ
(
3− 4 cos2 π

q

) → 1√
Λ

It coincides with the initial value of the 3-dimensional FLRW
universe.

22



Infinite frequency limit

Taking the limit ν → ∞,

Time when PRP gets infinite size

t3,q =

∫ 1
3π

0

dθ
2π − q (θ − sin θ)

2
√

2qΛ (2π − qθ) sin θ sin π+3θ
6 sin π−3θ

6

→ ∞

Regge equation
l̈

4+l̇2
= Λ

4
l

[
1− ll̈

2(3+l̇2)

]
aR (t) = l(t)√

3
tan

(5ν2+1)π
30ν2

=⇒ äR = ΛaR (Friedmann eqs.)

Exactly coincides with Friedmann equation.
So, Regge calculus can recover General relativity in the
continuum limit.

23

3. Summary & Future Works

24



Summary
• We have investigated (2+1)-dim. polyhedral universe in Regge Calculus.

• By introducing the pseudo-regular polyhedral models,

– behavior of the geodesic dome universes is approximated well.

– the continuum solution can be reproduced in the infinite frequency

limit.

25

Future Works

We have considered vacuum closed compact universe in three dimensions.

• It is desired to extend our approach to four-dimensional polytopal uni-

verse.

• In three dimensions, investigating the non-compact hyperspherical uni-

verse with negative cosmological constant might be interesting.

• Inclusion of matter is also interesting.

26



This is all for my presentation.

Thank you for your kind attention.
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Masaki Shigemori

2

no horizon,
no singularity

horizon

singularity

?

Can we replace the black hole
with a smooth, horizonless spacetime?



3

` Uniqueness theorems?
` Why not collapse?
` Physical significance?

no horizon,
no singularity

horizon

singularity

?

BH microstate geometry program: 
Let’s explicitly construct them!

4

Plan
` Black hole microstates

` String theory and MGP

` Examples of microstate geometries

` Physical properties



Black Hole 
Microstates

Black holes

6

` Solution to Einstein equation

` Boundary of no return: horizon

` Ubiquitous in the universe

` Gravitational waves

Most extreme situations in the universe
Event 
horizon

Black 
hole



Two aspects of BH physics

7

` Well understood

` No conceptual problem

Classical / macroscopic physics

` Poorly understood

` Hawking radiation, information paradox…

` Quantum gravity is needed

Quantum / microscopic physics

BHs have entropy

8

Can define BH entropy by

𝑆area ≡
𝐴
4𝐺𝑁

Æ BH is a thermodynamic object

𝐴 ∼
1090
1077

(Milky Way center)

(solar mass)



Statistical mechanics

9

Thermodynamics is coarse-grained effective 
description of underlying microstates

Boltzmann:  entropy is (the log of) 
the number of microstates

𝑆 = log 𝑁micro

coarse-
grain

10

BH must represent a statistical mechanical 
ensemble of underlying microstates, and

𝑆area = log 𝑁micro

But where are these BH microstates?

` Uniqueness theorems

` Need quantum gravity?
only one solution…?



Summary:

Where are black hole  
microstates?

?

String Theory & the
Microstate Geometry Program



What is string theory?
Everything is made of the “string”!

` Different vibration modes = different matter

` Consistent theory of quantum gravity

` Various predictions

∼ 10−35 m

string …

… just like
guitar string!

13

Prediction 1: extra dimensions

14

But it looks like a 1D object on a large scale

What is compactification?

Tiny ants perceive a hose as a 2D object

` Spacetime is not 4 but 10-dimensional.
Extra 6 dimensions are compactified.



15

Likewise, 6 extra dimensions of our universe 
may be compactified and thus invisible

Extra 6D space: 
too small to be 
observed

We can perceive only 4D spacetime

16

` What are extra dimensions are good for?

Smooth space in higher D

Looks singular in lower D

Space abruptly 
terminates

Conversely,  singular spacetimes in lower D 
are allowed in higher D!

Room to store information about how a black hole 
was made, in higher dimensions.



Prediction 2: supersymmetry

17

Supersymmetry

supersymmetry 
partners

Symmetry of 
snow flakes

Particles have 
supersymmetry partners.

particle

18

𝑅𝜇𝜈 − 1
2𝑔𝜇𝜈𝑅 = 8𝜋𝐺N𝑇𝜇𝜈 + 2 𝑔𝜇𝜈𝛻

2Φ − 𝑔𝜇𝜈 𝛻Φ 2 − 𝛻𝜇𝛻𝜈Φ +⋯

𝑅 − 1
12𝐻3

2 = 4 𝛻Φ 2 − 4𝛻2Φ

𝑑𝐻3 = 0, 𝛻𝛼 𝑒−2Φ𝐻𝛼𝜇𝜈 = 1
2𝐺𝛼𝛽𝐺

𝛼𝛽𝜇𝜈 + ⋯

𝑑𝐺2 = 0, 𝛻𝛼𝐺𝛼𝜇 = 1
3!𝐻𝛼𝛽𝛾𝐺

𝜇𝛼𝛽𝛾

𝑑𝐺4 = 𝐻3 ∧ 𝐺2, 𝛻𝛼𝐺𝛼𝜇𝜈𝜌 = ⋯

graviton (metric)

gravitino

gauge particles

…

Gravity is extended to supergravity

Supergravity “Super” Einstein equations

𝑅𝜇𝜈 − 1
2 𝑔𝜇𝜈𝑅 = 8𝜋𝐺N𝑇𝜇𝜈Gravity Einstein equation

graviton

Richer physics.
More room to store information.



19

Higher-D supergravity

extra dimensions + supersymmetry

This theory allows for non-trivial 
solutions that have

` No horizon
` No Singularity
` Same asymptotic charges as BH

(No uniqueness 
theorem in higher D)

“microstate geometries”

Microstate Geometry Program

20

How much portion of black hole entropy
can be accounted for by

smooth, horizonless solutions of classical gravity?

Let’s explicitly construct them!

no horizon,
no singularity

horizon

singularity “microstate geometry”



Caveats

21

` Mostly focused on microstates of supersymmetric BHs

� Some non-supersymmetric examples

` No guarantee that all microstates are describable
within supergravity

� String theory contains
more fields than supergravity

� Cf.  “Fuzzball” conjecture

𝑟H

stringy 
“fuzz”

Examples of
Microstate Geometries



Bubbling geometries

23

ℝ3 𝒓1 𝒓2
𝒓3

𝑆2𝑆2
flux

[Bena, Warner 2006]
[Berglund, Gimon, Levi 2006]

` Supersymmetric solution of 5D supergravity

` Compact 𝑆1 is fibered over ℝ3

` 𝑆1 shrinks at points (“centers”) on ℝ3 Æ non-trivial 𝑆2

` Microstate geometries for 5D (and 4D) BHs

` Fluxes support horizon-scale structure

Scaling solution

24

` Arbitrarily deep throat
` Approximates BH with arbitrary precision
` Quantum effects cut off the throat at finite depth

AdS2
throat

[Denef] [Bena, Warner et al., 2006-07]



No solitons without topology (1)

25

𝑉𝜇 = 𝜕
𝜕𝑡

:  Killing

𝑀 ∼  
𝑆3
∗5 𝑑𝑉 ∼  

Σ4
∗5 (𝑉𝜇𝑅𝜇𝜈𝑑𝑥𝜈) ,

` Komar mass/Smarr formula in 5D

if there is no internal boundary.

Σ4

𝑆3

[Gibbons-Warner ’13]
[Haas ’14]

𝑡 = const
Æ

26

𝑑𝐹𝐼 = 0

EOMs / Bianchi:

𝑅𝜇𝜈 = 𝑄𝐼𝐽𝜕𝜇𝑋𝐼𝜕𝜈𝑋𝐽 + 𝑄𝐼𝐽𝐹𝜇𝜌𝐼 𝐹 𝜈
𝐽 𝜌 + 𝑄𝐼𝐽𝐺𝐼 𝜇𝜌𝜎𝐺𝐽 𝜈

𝜌𝜎 (*)

(ignoring numerical factors)

𝑑𝐺𝐼 = 0, 𝐺𝐼 ≡ ∗5 𝑄𝐼𝐽𝐹𝐽 + 𝐶𝐼𝐽𝐾𝐹𝐽 ∧ 𝐴𝐾

Assume time-independent config:
ℒ𝑉𝑋𝐼 = ℒ𝑉𝐹𝐼 = ℒ𝑉𝐺𝐼 = 0

Æ 𝑑 𝜄𝑉𝐹𝐼 = 𝑑 𝜄𝑉𝐺𝐼 = 0 (used ℒ𝑉 = 𝑑𝜄𝑉 + 𝜄𝑉𝑑)

Æ 𝜄𝑉𝐹𝐼 = 𝑓𝐼 + (exact),    𝜄𝑉𝐺𝐼 = 𝑔𝐼 + exact .

No solitons without topology (2)

Now contract (*) with 𝑉𝜇 , and plug it into Smarr formula

∈ 𝐻1(Σ4) ∈ 𝐻2(Σ4)



No solitons without topology (3)

27

𝑀 ∼  
Σ4
𝑓𝐼 ∧ 𝐺𝐼 + 𝑔𝐼 ∧ 𝐹𝐼

` 𝑀 can be topologically supported by 
fluxes in the cohomology 𝐻∗ Σ4 .

` No spatial topology Æ𝑀 = 0 Æ Spacetime is flat

This is the mechanism for bubbling solutions

But they are not enough /

28

[de Boer, El-Showk, Messamah, Van de Bleeken 2008]
[Bena, Bobev, Ruef, Warner 2008]

` Still too few to reproduce 𝑆area

` Parametrically more microstates needed!

` More general solutions?

𝑆geom ∼ 𝑄
5
4 ≪ 𝑆area ∼ 𝑄

3
2

…Some hints from string theory.  Go to 6D.
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Superstratum

` 6D;  More general than 
bubbling solution

` Microstates of 4,5,6D BH

` Smooth momentum waves 
on top of bubbling solution

` 𝐴𝑑𝑆2 throat can be made 
arbitrarily deep 

` CFT dual understood

[Bena, Giusto, Martinet, Russo, 
MS, Turton, Warner 2015-17]

𝐴𝑑𝑆3

flat space

smooth cap
momentum 
excitations

𝐴𝑑𝑆2 × 𝑆1
throat

𝑟 = 𝑎

𝑟 = 𝑏

Comments

30

Enough?

` No, still too few to reproduce BH entropy /
– they are not typical states

But

` Basis for more general microstates

` Demonstrates that solution space of higher-D gravity is vast;
need thorough exploration to understand grav physics

` They are completely new solutions anyway
Æ interesting to study their properties



Physics of
Microstate Geometries

32

Instability [Eperon, Reall, Santos 2016]

Claim:

“evanescent 
ergosurface”

` Null geodesics on “evanescent ergosurface”

` Particles trapped near it will strongly backreact

` Adding small energy to microstate geometry 
makes system explore (vast) solution space

` Subsequent time evolution may or may not 
be describable within supergravity

Microstate geometries are non-linearly unstable, 
even though supersymmetric
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Tidal force (1)

` Tidal tensor 𝒜 𝜈
𝜇 :  relative 

acceleration of timelike geodesics

` 𝒜 :  scale of tidal force per unit 
length, per unit mass𝑟 = 𝑎

[Tyukov, Walker, Warner 2017]

𝑟 = 𝑏

Superstratum solution

34

Tidal force (2)

` For radial geodesics, tidal force 
reaches Planck scale at 𝑟 ∼ 𝑎𝑏

` Point particle gets ripped into strings 
way before reaching the bottom

` Adding energy will make system 
explore the space of microstates

𝑟 = 𝑎

[Tyukov, Walker, Warner 2017]

𝑟 = 𝑏

𝑟 ∼ 𝑎𝑏
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Gravitational wave echoes (1)

` GW echoes allow us to probe the near-horizon 
structure of BHs

𝑟∗

𝑉
?

http://cerncourier.com/cws/article/cern/67457

36

Gravitational wave echoes (2)

` How do microstate geometries behave?
` Infalling particle will become part of fuzzball

` String theory is “soft” Æ no “hard” scattering back

𝑟∗

𝑉
?

http://cerncourier.com/cws/article/cern/67457

Absorption; indistinguishable from GR BH?



Conclusions

Conclusions

38

` String theory leads us to consider higher-D gravity
` BH microstate geometries

` Vast solution space

` Supports horizon-scale structure

` Microstate geometry program
` Many interesting solutions

` Still too few to account for BH entropy

` A lot of interesting physics to explore! -
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Invited lecture 9:30–10:30
[Chair: Tsutomu Kobayashi]

Carlos Herdeiro (Aveiro Univ.),
“Kerr black holes with bosonic hair: theory and

phenomenology” (50+10)
[JGRG27 (2017) 120101]
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Kerr black holes with bosonic hair: 
theory and phenomenology

C. Herdeiro
Departamento de Física da Universidade de Aveiro, Portugal

JGRG27 Meeting, Hiroshima, Japan
December 1st 2017

based on 
PRL112(2014)221101 
CQG32(2015)144001
PRL115(2015)211102
CQG33(2016)154001

with E. Radu (also P. Cunha)

Gravitational lensing of the Aveiro Campus by a Kerr black hole with scalar hair

C. Herdeiro
Departamento de Física da Universidade de Aveiro, Portugal

other references 
IJMPD23(2014)1442014               PRD89(2014)12; 124018               PLB739(2014)1               PRD90(2014)10, 104024          PLB739(2014)302 

IJMPD24(2015)1542014         PLB748(2015)30                     PLB752(2016)291                   PRD92(2015)084059                            PRL116(2016)141101
PLB760 (2016) 279-287            PRD94 (2016)084045             JCAP1607(2016)049       PRD94(2016)044061                 PLB761 (2016) 234 
JCAP1610(2016)003                PRD94(2016)104023              CQG34(2017)165001      PRD95(2017)124025                 JCAP1708(2017)014
PRD95(2017)104028                PRD95(2017)104035              PLB773(2017)129            1706.06597 (PRL in press)       JHEP1711(2017)037

with 
C. Bambi, C. Benone, Y. Brihaye, R. Brito, A. Cardenas-Avendano, Z. Cao, V. Cardoso, L. C. Crispino, J. C. Degollado, 

J. F. M. Delgado, , V. Ferrari, J. A. Font, N. Franchini, E. Gourgoulhon, J. Grover, L. Gualtieri, J. Kunz, A. Maselli, 
P. J. Montero, Y. Ni, P. Pani, H. Rúnarsson, N. Sanchis-Gual, T. Shen, B. Subagyo, F. Vincent, A. Wittig, M. Zhou

Gravitational lensing of the Aveiro Campus by a Kerr black hole with scalar hair

Kerr black holes with bosonic hair: 
theory and phenomenology



Plan:

1) Motivation (Astrophysics, Cosmology, HEP)

2) Kerr black holes with scalar/Proca hair
   a) Basic theory 
             i)Boson/Proca Stars
             ii) Scalar/Proca clouds around Kerr black holes
   b) Phenomenology
   c) Dynamics

3) Outlook

Motivation I
(astrophysics)

Over decades 
strong observational evidence 

has been gathered for
black holes.



GW170817

GW151226

GW170104

GW150914
GW170814

LVT151012

GW170608

Narayan and McClintock
 1312.6698

Artistic impression
of an accretion disk 

around a stellar mass BH-star binary

Electromagnetic channel:
X-ray band



78 4 Astrophysical Black Holes

Lu
m
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Energy

Jet

Radio/IR

Thermal Component

Opt/Soft X-ray

Power-Law Component

Reflected Component

Hard X-ray

Fig. 4.8 Sketch of the electromagnetic spectrum of a black hole. The thermal component of the
accretion disk is in the optical/UV bands for supermassive black holes and in the soft X-ray band in
the case of black hole binaries. The hard X-ray spectrum is dominated by the direct radiation from
a hot corona (power-law component) and the reflection spectrum of the disk (reflected component).
The radio/IR part of the spectrum is due to jets. See Fig. 4.11 and the text for more details.

tween different states was discovered in the early 1970s with Cygnus X-1, and then
studied in more details with stellar-mass black holes in transient X-ray sources. This
section provides a basic review on the topic, without entering the details and without
discussing the fast variability, which is also very important for the classification of
the spectral states but is beyond the scope of this introductory review. It should be
noted that the spectral state classification is still a work in progress, some spectral
states and their physical interpretation are not yet well understood, and different au-
thors may use a different nomenclature. More details on the topic can be found, for
instance, in [45, 7] and references therein.

4.5.1 Observations

Both transient and persistent X-ray sources exhibit different spectral states. Tran-
sient sources may stay in a quiescent state with a very low luminosity for several
months or even decades and then have an outburst. The latter typically lasts from
some days to a few months. However, exceptions are possible, and an example is
GRS1915+105, which started its current outburst in 1992.

Two major techniques:
- continuum fitting method;
- reflexion spectrum (or iron line method);
 From Bambi, Springer Book (2017)

Sketch of the electromagnetic spectrum of a black hole:

The iron line method:

8.1 Reflection process 159

 

 





Fig. 8.2 Disk reflection. The accretion disk around a black hole is illuminated by the radiation
from a hot corona. The spectrum of the incident radiation is described by a power-law E−Γ , where
Γ is the photon index. The reflection spectrum can be obtained from radiative transfer calculations
and presents some emission lines. See the text for more details. Adapted from [33].

de-excitation. Since the disk is optically thick, only the properties of its “skin” de-
termine the reflection spectrum.
The reflection spectrum can be obtained by solving numerically radiative transfer

equations describing the interaction of the X-ray photons with the gas on the surface
of the accretion disk. The resulting reflection spectrum is characterized by emission
lines in the 1-8 keV range and the so-called Compton hump around 20 keV (see top
right panel in Fig. 8.2).
In the case of neutral iron, photoelectric absorption of an X-ray photon can eject

one of the two electrons in the K-shell (principal quantum number n = 1). The ab-
sorption threshold is 7.1 keV. An L-shell electron (n= 2) moves to the K-shell and
releases 6.4 keV of energy: 34% of the times this energy is released with the emis-
sion of a photon (fluorescent line emission) and 66% of the times this energy is trans-

Propagation in strong gravity makes
the locally Dirac delta-like line...

... broad and skew
at the observation point...

Guainazzi, Ap&SS320(2009)129



The next decades promise to 
yield observational data of unprecedented 

precision to test the true nature of these objects:
dawn of the precision black hole (astro)physics era

Many further detection are expected

Gravitational wave emission from a 
black hole binary 

Caltech-Cornell group; 
 Scheel et al. PRD79(2009)024003 

The next decades promise to 
yield observational data of unprecedented 

precision to test the true nature of these objects:
precision black hole (astro)physics era



More accurate X-ray and interferometric data:

GRAVITY

It is therefore timely to study alternatives
to the General Relativity 

Kerr black hole paradigm
and their phenomenology

I will present a novel class of such
alternative black hole models,

within GR



Massive-complex-scalar-vacuum:

There are BH solutions:
- within GR (not alternative theories of gravity);

- with matter obeying all energy conditions;
- which can yield distinct phenomenology;

which are:
- asymptotically flat

- regular on and outside the horizon
- continuously connecting to the Kerr solution

- continuously connected to relativistic Bose-Einstein condensates (boson stars)
- with an independent scalar charge (primary hair)

- May form dynamically and be sufficiently long lived 

Kerr Black Holes with scalar hair
CH and Radu, PRL112(2014)221101 
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Reference example: Kerr black holes with scalar hair

also
Kleihaus, Kunz and Yazadjiev

PLB744(2015)406

Motivation II
(dark matter)

Ultra-light bosonic fields have been suggested as dark matter candidates (“fuzzy dark matter”);
they gravitationally clump into 

boson stars // Bose-Einstein condensates 
see e.g. recent discussion Hui, Ostriker, Tremaine, Witten, PRD95(2017)043541

First observed by Colpi, Shapiro, Wasserman PRL57(1986)2485, 
see e.g. for a discussion CH, Radu, Rúnarsson PRD92(2015)084059
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Motivation III
(high energy physics)

In some HEP models it is natural to have bosonic particles with very low mass
(QCD axion, Axiverse Arvanitaki, Dimopoulos, Dubovsky, Kaloper and March-Russell PRD81(2010)123530)

These could have astrophysical impact
and convert black holes into (new) particle detectors.

Arvanitaki and Dubovsky, PRD83(2011)044026

Motivation III
(high energy physics)

The existence of a scalar field that triggers the superradiant instability of a “bald” BH can grow 
hair around the BH that saturates due to non-linear phenomena and forms a “hairy” BH

In some HEP models it is natural to have bosonic particles with very low mass
(QCD axion, Axiverse Arvanitaki, Dimopoulos, Dubovsky, Kaloper and March-Russell PRD81(2010)123530)

These could have astrophysical impact
and convert black holes into (new) particle detectors.

Arvanitaki and Dubovsky, PRD83(2011)044026

Brito, Cardoso, Pani Lect.Notes.Phys.906(2015)1



1) Kerr black holes with scalar/Proca hair

Vacuum:
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D=4, asymptotically flat, regular (on and outside the event horizon) 
black hole (BH) solutions of Einstein’s gravity
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Electro-vacuum:

Kerr Kerr 1963

Uniqueness Israel 1967; Carter 1970; Hawking 1972

No (independent-multipolar) hair

Kerr-Newman Newman et al. 1965

Uniqueness Israel 1968; Robinson 1975, 1977

No (independent-multipolar) hair



Vacuum:

S =
1

16⇡

Z
d

4
x

p
�gR

S =
1

4⇡

Z
d

4
x

p
�g

✓
R

4
� 1

4
Fµ⌫F

µ⌫

◆

Electro-vacuum:

Scalar-vacuum:
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Kerr Kerr 1963

Uniqueness Israel 1967; Carter 1970; Hawking 1972

No (independent-multipolar) hair

Kerr-Newman Newman et al. 1965

Uniqueness Israel 1968; Robinson 1975, 1977

No (independent-multipolar) hair

No BHs
No (scalar) hair Chase 1970

D=4, asymptotically flat, regular (on and outside the event horizon) 
black hole (BH) solutions of Einstein’s gravity

Many no-scalar-hair theorems:
(only scalars, D=4, asymptotically flat)

May 1, 2015 0:21 WSPC/INSTRUCTION FILE reviewscalarhair

Asymptotically flat black holes with scalar hair: a review 29

Theory No-hair Known scalar hairy BHs with
Lagrangian density L theorem regular geometry on and outside H

(primary or secondary hair;
regularity)

Scalar-vacuum Chase22
1
4R − 1

2∇µΦ∇µΦ

Massive-scalar-vacuum Bekenstein11
1
4R− 1

2∇µΦ∇µΦ− 1
2µ

2Φ2

Massive-complex-scalar-vacuum Pena– Herdeiro–Radu136, 137
1
4R −∇µΦ∗∇µΦ− µ2Φ∗Φ –Sudarsky61 (primary, regular);

generalizations:159

Xanthopoulos– Bocharova–Bronnikov–Melnikov–
Conformal-scalar-vacuum –Zannias32 –Bekenstein (BBMB)16–18
1
4R− 1

2∇µΦ∇µΦ− 1
12RΦ

2 Zannias33 (secondary, diverges at H);
generalizations:87

V -scalar-vacuum Heusler46, 47, 50 Many, with non-positive
1
4R− 1

2∇µΦ∇µΦ− V (Φ) Bekenstein26 definite potentials:71–75, 78–80

Sudarsky51 (typically secondary, regular)

P -scalar-vacuum Graham–
1
4R+ P (Φ, X) –Jha62

Einstein-Skyrme Droz–Heusler–Straumann126
1
4R− 1

2∇µΦa∇µΦa (primary but topological; regular);
−κ|∇[µΦ

a∇ν]Φ
b|2 generalizations:129, 131

Hawking27

Scalar-tensor theories Saa34, 35

ϕR̂ − ω(ϕ)
ϕ ∇̂µϕ∇̂µϕ− U(ϕ) Sotiriou–

–Faraoni31

Sotiriou-Zhou43

Horndeski/Galileon theories Hui– (secondary; regular)
Full L in eq. (41) –Nicolis45 Babichev–Charmousis88, 90

(secondary88 or primary,90

diverges at H+ or H−);
generalizations:91–93

Table 1: Summary of no-scalar-hair theorems and asymptotically flat scalar-hairy BHs.

possible mechanisms to construct regular asymptotically flat BHs with scalar hair.
This, in particular, means that physical properties may vary substantially.

Nevertheless some patterns emerge. One pattern that can be observed from this
overview is that scalar field theories that, when minimally coupled to gravity, allow

CH, Radu,
IJMPD 24(2015)1542014



Two ingredients:

- Superradiant bound states of a massive scalar around Kerr

- Existence of a solitonic limit: (scalar) boson stars

Scalar case:

hairy BHs circumvent well known no-scalar-hair theorems 
CH, Radu, IJMPD24(2015)1542014

due to:
 

1) harmonic time-dependence with a critical frequency

2) Rotation of the background

Scalar -- Ingredient 1: Superradiance
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One solution is
Kerr solution + a vanishing scalar field

Consider linear scalar perturbations: 
to first order it amounts to considering a test scalar field on Kerr.



Linear analysis: Klein-Gordon equation in Kerr

⇤� = µ2� � = e�iwteim'S`m(✓)R`m(r)

Generically one obtains quasi-bound states:

! = !R + i!I
critical frequency

wc = m⌦H

Radial Teukolsky equation: Teukolsky (1972); Brill et al. (1972)
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! = !R + i!I
critical frequency

wc = m⌦H

wI < 0 if wR > wc decay

wI > 0 if wR < wc
grow

Press and Teukolsky 
Nature238(1972)211

wI = 0 if w = wc
true bound 
states: clouds

Degollado et. al., 
PRL 109 (2012) 081102

Degollado and CH 
PRD89(2014)063005

Degollado, CH, 
unpublished



Klein-Gordon (linear) stationary clouds around Kerr:
Damour, Deruelle and Ruffini (1976);  Zouros and Eardley (1979); Detweiler (1980); Hod 2012; 

(...); Yakov Shilapentokh-Rothman (2014)
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Clouds for Kerr: discrete set labelled by (n,l,m) subject to one 
                             quantization condition which yields BH mass,spin. 
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w

m
= ⌦H is a rotation synchronization condition

BH

scalar mode

Stability: stationary clouds     

Stability: stationary clouds     

w

m
< ⌦H

Superradiant regime
black hole decreases angular velocity

BH

scalar mode



w

m
< ⌦H

Superradiant regime
black hole decreases angular velocity

BH

scalar mode

Transfer of rotational 
energy from BH to 

scalar cloud

Stability: stationary clouds     

BH

scalar mode

w

m
> ⌦H

decaying regime
black hole increases angular velocity

Stability: stationary clouds     



w

m
< ⌦H

Superradiant regime
black hole decreases angular velocity

BH

scalar mode

Transfer of rotational 
energy from 

scalar cloud to BH

Stability: stationary clouds     

Suggests: 
clouds as dynamical attractors

Synchronization locking (cf. tidal locking for earth-moon)

BH

scalar mode

Benone, Crispino, CH and Radu, PRD90(2014)104024

Stability: stationary clouds     



Scalar -- Ingredient 2: Boson stars
Kaup, PR172(1968)1331; Ruffini and Bonazzola,  PR187(1969)1767; 

Reviews: Schunck and Mielke, CQG20(2003)R301 
Liebling and Palenzuela, LivingRev.Rel.15(2012)6 
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Solutions preserved 
by a single helicoidal 
Killing vector field:
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Rotating 
boson stars:
Yoshida, Eriguchi, PRD56(1997)762; 
Schunck, Mielke, PLA 249(1998)389
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Surfaces of constant scalar energy density



Boson stars phase space (nodeless):
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   For rotating boson stars: J = mQ
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Mixing the ingredients:

Using (scalar or vector) boson stars technology to compute
black holes surrounded by “heavy (scalar or vector) stationary clouds”



Einstein Klein-Gordon: non-linear setup

Ansatz:
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Kerr black holes with scalar hair 

Existence proof
Chodosh and Shlapentokh-Rothman, CMP356(2017)1155
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Hairy black holes phase space

 0

 0.5

 1

 0.6  0.7  0.8  0.9  1

M
µ

w/(mµ)

Boson Stars (q=1)

extremal HBHs

m=1

q=0.97

q=0.85

q=1

q=0

Kerr black holes

q ⌘ mQ

J

Family of solutions:
3 continuous parameters (M,J,q)

2 discrete parameters (m,n)

Same two ingredients exist for a vector field:

- Superradiant bound states of a massive vector around Kerr
(...)

Pani, Cardoso, Gualtieri, Berti, Ishibashi, PRL109(2012)131102; PRD86(2012)104017

- Existence of a solitonic limit: (vector) boson stars, a.k.a. Proca stars
Brito, Cardoso, CH, Radu, PLB752(2016)291

Can circumvent similar no-Proca-hair theorems 
Bekenstein, PRD5(1972)1239;  PRD5(1972)2403

CH, Radu, Rúnarsson, CQG33(2016)154001



Domain of existence:
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Scalar w/µ rH/µ µMADM µ2JADM µMH µ2JH µM ( ) µ2J ( )

I - Scalar boson star 0.85 0 1.25 1.30 0 0 1.25 1.30
II - Vacuum Kerr 1.1112 0.0663 0.415 0.172 0.415 0.172 0 0
III - KBHSH 0.975 0.2 0.415 0.172 0.393 0.150 0.022 0.022
IV - KBHSH 0.82 0.1 0.933 0.739 0.234 0.114 0.699 0.625
V - KBHSH 0.68 0.04 0.975 0.850 0.018 0.002 0.957 0.848
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Vector w/µ rH/µ µMADM µ2JADM µMH µ2JH µM (P) µ2J (P)

I - Proca star 0.9 0 1.456 1.45 0 0 1.456 1.45
II - Vacuum Kerr 1.0432 0.1945 0.365 0.128 0.365 0.128 0 0
III - KBHPH 0.9775 0.2475 0.365 0.128 0.354 0.117 0.011 0.011
IV - KBHPH 0.863 0.09 0.915 0.732 0.164 0.070 0.751 0.662
V - KBHPH 0.79 0.06 1.173 1.079 0.035 0.006 1.138 1.073

Data avaliable online at:
http://gravitation.web.ua.pt

2) Kerr black holes with scalar hair
iii) Phenomenology
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In this region, hairy black holes are entropically favoured

There is a region of non uniqueness
(different solutions for same M,J); but degeneracy raised with q

Can we distinguish by a local measurement degenerate configurations?



Black hole shadows

Shadow of a Kerr black hole:
(equatorial plane observation)

Cunha, M.Sc. Thesis



Technique: backwards ray-tracing 

camera

Cunha, M.Sc. Thesis

We have performed ray tracing to compute
lensing and shadows.

The full celestial
sphere

The “camera” 
opening angle

Following A. Bohn et al. CQG32(2015)065002



A Kerr-like hairy black hole
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A non-Kerr-like hairy black hole
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Figure 6: Configuration II images. Same as in Fig. 5. Left: Image of an accretion torus sur-
rounding the KBHSH of configuration II. Right: Same image for the comparable Kerr case.

Figure 7: Illustration of the various interesting regions in the image: the lensing ring is the outermost
ring, it is the outer boundary of the hyper-lensed region. The inner ring is the photon ring. It is both
the inner boundary of the hyper-lensed region and the outer boundary of the shadow.

12

“Academic
Setup”

Differences remain in an astrophysically more realistic setup
Vincent, Gourgoulhon, CH, Radu, PRD94(2016)084045

Similar story for other observables such as the: 
- iron Kα-line in the reflexion spectrum Ni, Zhou, Cardenas-Avendano, Bambi, CH, Radu, JCAP1610(2016)003

- QPOs Franchini, Pani, Maselli, Gualtieri, CH, Radu, Ferrari, PRD95(2017)124025

For our two solutions:
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ISCO radius, i.e. rin = rISCO, and the outer edge at rout = rISCO + 256. The lines indicated
by the numbers 1, 2, 3, 4, and 5 corresponds to the iron lines produced from annuli of the
accretion disk at increasing radii. Their inner and outer radii are as follows:

Annulus 1: rin = rISCO rout = rISCO + 1
Annulus 2: rin = rISCO + 1 rout = rISCO + 2
Annulus 3: rin = rISCO + 2 rout = rISCO + 4
Annulus 4: rin = rISCO + 4 rout = rISCO + 10
Annulus 5: rin = rISCO + 10 rout = rISCO + 25

(3.3)

Here and in the next section we employ a “small” accretion disk, so our constraints have to
be taken with caution (more as a proof of principle indeed).

The iron line of the KBHSH III is closer to that of a Kerr BH without scalar hair, see
Fig. 3. The contribution from the inner annulus (annulus 1) is relatively moderate: while the
emission of radiation at small radii is higher (the local spectrum scales as 1/r3), a significant
fraction of the photons is swallowed by the central BH. The peak of the photon flux at
high energies results from photons emitted at larger radii, where the gravitational redshift is
milder.

The iron line of the KBHSH V is substantially di⇥erent, see Fig. 5. The contribution
from the inner annulus is very important: the local spectrum still scales as 1/r3, but now
the photons emitted at small radii can more easily escape to infinity. Physically speaking,
this is because the horizon is smaller, as most of the mass is stored in the scalar hair rather
than the horizon, and thus the absorption cross section for light is also smaller. The two
peaks are produced by the Doppler redshift and blueshift, due to the rotation of the gas.
The presence of two peaks at low energy in the KBHSH V is a feature already found in a
large class of exotic compact stars without horizon [71] and in di⇥erent types of traversable
wormholes [60, 72]. It is typical of objects without horizon, where only a small fraction
of photons emitted near the inner edge of the disk is captured by the central object. The
absence of the peak at high energies is because we are plotting a normalized iron line profile,
so the number of high energy photons is simply much lower than that of low energy photons.
The iron line of the KBHSH IV in Fig. 4 is something between the two previous cases.

4 Simulations with Suzaku and eXTP

In the previous section, we have obtained the iron line profiles expected in the three space-
times named, respectively, configuration III, IV, and V. It is clear that, at least in some cases,
the iron line profile can be very di⇥erent from that expected in the reflection spectrum of
a Kerr BH. In this section, we want to be more quantitative and check whether present or
future observational facilities can constrain the hairiness of the BHs in this model.

Our strategy is as follows. We simulate the X-ray spectrum of a typical AGN and of
a typical binary. For the sake of simplicity, we model the spectrum of these sources with a
power law with photon index � = 2 (representing the spectrum of a hot corona) and a broad

6As in previous works on KBHsSH, see e.g. Section 3.3 in Ref. [40], distances are expressed in units of the
Compton wave length of the scalar field (rather than Schwarzschild radii). Thus, the radial coordinate is in
units of 1/µ = 1, where µ is the scalar field mass (as usual we use GN = c = � = 1). Moreover, the ADM
masses of the three configurations are reported at the end of Section 2, as well as the horizon mass that can
be much lower when the most of the ADM mass is in the scale field cloud. For example, for the case III we
have r = rISCO +M/0.415.
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Config 3
5% of M;  13% of J in scalar field
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Figure 2. Iron line profiles of an extremal Kerr BH and of the three KBHsSH discussed in the present
paper. The “wiggles” appearing in the shape of these lines, in particular for the configurations III
and IV, are due to resolution e�ects of the numerical metric.
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Figure 3. Iron line profile from the whole disk (red solid line) and contributions to the total iron line
profile from di�erent annuli (lines 1, 2, 3, 4, and 5) for the configuration III KBHSH. The annulus 1
has the inner edge at the ISCO and the outer edge at the radius r = rISCO + 1. The annulus 2 has
the inner edge at the same radius as the outer edge of the annulus 1 and the outer edge at the radius
r = rISCO+2. The annulus 3 has the inner edge at the same radius as the outer edge of the annulus 2
and the outer edge at the radius r = rISCO + 4. The annulus 4 has the inner edge at the same radius
as the outer edge of the annulus 3 and the outer edge at the radius r = rISCO + 10. The annulus 5
has the inner edge at the same radius as the outer edge of the annulus 4 and the outer edge at the
radius r = rISCO + 25, which corresponds to the outer edge of the disk.
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Config 4
75% of M;  85% of J in scalar field
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Figure 4. As in Fig. 3 for the configuration IV KBHSH.
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Figure 5. As in Fig. 3 for the configuration V KBHSH.

iron line (the reflection spectrum). � = 2 is quite a typical value of the photon index for
the continuum originated by inverse Compton scattering of thermal photons from the disk
o⇥ hot electrons in the corona, see, e.g., Ref. [73]. The iron lines used in these simulations
are the three iron lines presented in the previous section and obtained in the three KBHsSH
metrics assuming a viewing angle i = 45⇥ and an emissivity index � = 3.

In the case of the AGN, we assume that its energy flux in the 0.7-10 keV range is about
2 · 10�10 erg/s/cm2. In the case of the X-ray binary, we adopt the value 4 · 10�9 erg/s/cm2.
In both cases, we assume that the iron line has an equivalent width of about 200 eV. These
are quite typical parameters for sources suitable to reflection measurements.
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Iron Kα-line:

 Ni, Zhou, Cardenas-Avendano, Bambi, CH, Radu, JCAP1610(2016)003



Astrophys Space Sci (2009) 320: 129–134 131

Fig. 2 Examples of
relativistically broadened iron
Kα profiles in a small sample of
Galactic Black Holes (top
panel; Miller 2007) and in the
Seyfert 1 MCG-6-30-15 (bottom
panel; Miniutti et al. 2007). In
all panels the ratio between the
data and the best-fit continuum
is shown

yields a = 0.989±0.009
0.002 (Brenneman and Reynolds 2006).

Guainazzi et al. (2006) claim that loose constraints on the
value of the black hole spin can be obtained on 5 further
bright Seyfert 1s observed with XMM-Newton. The av-
erage spin in the sample is ⟨a⟩ = 0.6, with a dispersion
σa = 0.3.

Early XMM-Newton observations of MCG-6-30-15
yielded also the suggestion that the region of the accretion
disk responsible for the bulk of the relativistic iron line emis-
sion is very small and very close to the supermassive black
hole. This requires a radial dependency of the emissivity
which is too steep when compared to the expectations of
physically sensitive models of accretion disks. This has led
to the suggestion that an intrinsically relativistic phenom-
enon could enhance the contribution of the innermost region

of the accretion disk to the line emission. Two hypothesis
have been proposed:

• extraction of energy from a rotating black hole via a
purely electromagnetic mechanism (the so-called “Bland-
ford-Znajek effect”; Blandford and Znajek 1977)

• bending of light rays emitted in the strong gravitational
potential of a supermassive black hole (see later).

4 Accretion flow geometry

From what said in Sect. 3, it follows that prominent red
wings may allow us to constrain the location of the iron
line region. Such measurements yield values between 1.24
to 3 gravitational radii in GBH (Miller 2007, and references

4 galactic BHs

1 AGN
Seyfert 1 MCG-6-30-15

Guainazzi, Ap&SS320(2009)129
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Figure 3. Iron line profile from the whole disk (red solid line) and contributions to the total iron line
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the inner edge at the same radius as the outer edge of the annulus 1 and the outer edge at the radius
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Dynamics:

1) Formation from Kerr

In the presence of these ultra-light fields, 
vacuum Kerr black holes are unstable 

(against superradiance).

What is the endpoint of this instability?



Recent dynamical evidence shows the
process reaches an equilibrium state... 

East and Pretorius, PRL119(2017)041101

3

FIG. 1. The energy (top) and angular momentum (bot-
tom) in the Proca field as a function of time (solid lines),
along with the loss in mass (top) and angular momentum
(bottom) of the BH (dashed lines).

rates for the instability and also saturate with smaller
energy and angular momentum. Though the mass of
the BH is decreasing in each case, as required by BH
thermodynamics the irreducible mass Mirr is always
increasing, and smaller µ cases saturate with a larger
overall increase in Mirr.

The reason for the saturation of the superradiant
instability is illustrated in Fig. 2, where we plot both
the horizon frequency of the BH ⌦BH and the ratio of
Proca field energy to angular momentum flux through
the horizon Ė

H
/J̇

H . When ⌦BH > Ė

H
/J̇

H , the su-
perradiant condition is met and the Proca cloud will
extract rotational energy from the BH. However, as
shown in Fig. 2, eventually the BH’s horizon frequency
decreases to the point where ⌦BH ⇡ Ė

H
/J̇

H , and the

FIG. 2. The BH horizon frequency ⌦BH, as calculated
from the BH’s mass and angular momentum, and the ratio
of the flux of Proca field energy and angular momentum
ĖH/J̇H through the BH horizon, as a function of time.

instability saturates.

We can obtain simple estimates of the final state
properties of the black hole if we assume, as roughly
consistent with the simulations, that the instability
will extract energy and angular momentum in some
fixed proportion !(µ) = Ė

H
/J̇

H [where !(µ) ⇡
µ(1 � µ̃

2
/2) in the linear/small µ̃ limit [24, 25]] un-

til !(µ) = ⌦BH. We plot the results in Fig. 3, along
with the four end-state points from the full nonlinear
simulations, showing excellent agreement with the ap-
proximation. This indicates an e�cient extraction of
energy and angular momentum, with a negligible ad-
ditional increase in irreducible mass (equivalently, BH
entropy). This is likely due to the relatively slow evo-
lution of the instability compared to the light-crossing
time of the BH, even approaching saturation (similar
conclusions were reached using a “quasiadiabatic” ap-
proximation for the massive scalar field instability in
Refs. [26, 27]). We see that the energy lost by the BH
should be maximized at ��MBH/M0 ⇡ 0.093, near
the value ��MBH/M0 ⇡ 0.092 found for µ̃ = 0.25
here. For lower values of µ, less energy, but more
angular momentum will be extracted, with the insta-
bility just converting the Kerr BH into a nonspinning
BH of the same mass in the µ ! 0 limit.

After saturation, the resulting configuration con-
sists of a BH surrounded by a Proca cloud with
roughly stationary energy density, though the phase of
the complex field is oscillating at a constant frequency.
The energy and angular momentum density of the re-
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proximation. This indicates an e�cient extraction of
energy and angular momentum, with a negligible ad-
ditional increase in irreducible mass (equivalently, BH
entropy). This is likely due to the relatively slow evo-
lution of the instability compared to the light-crossing
time of the BH, even approaching saturation (similar
conclusions were reached using a “quasiadiabatic” ap-
proximation for the massive scalar field instability in
Refs. [26, 27]). We see that the energy lost by the BH
should be maximized at ��MBH/M0 ⇡ 0.093, near
the value ��MBH/M0 ⇡ 0.092 found for µ̃ = 0.25
here. For lower values of µ, less energy, but more
angular momentum will be extracted, with the insta-
bility just converting the Kerr BH into a nonspinning
BH of the same mass in the µ ! 0 limit.
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sists of a BH surrounded by a Proca cloud with
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Mass and angular
momentum in “hair”

Black hole spin down
and “synchronisation”
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FIG. 4: Normalised irreducible mass, horizon mass and angu-
lar momentum: numerical solutions (points) vs. the analytic
model (curves). Here we have taken j = 0.9 (in [1] the authors
took j = 0.99) to show the universality of the agreement.

ancemigrates a vacuum Kerr BH into a BH with synchro-
nised hair. This is exhibited in Fig. 5, for the examples
of the numerical evolutions in [1]. Under the assumption
used therein that a single superradiant mode is present
(the fastest growing mode), which implies that axisym-
metric is a good approximation during the evolution, ra-
diation is negligible [1] and the total mass and angular
momentum are preserved. The process is thus conserva-
tive. This implies that the migration in Fig. 5 – an ADM
mass vs. horizon angular velocity plot – occurs along a
horizontal line, ending at a hairy BH with the same j
as the initial Kerr solution. We have verified there is a
unique such solution – cf. the inset in Fig. 5. In partic-
ular this implies the equilibrium BH with synchronised
hair has j 6 1. Solutions with j 6 1 exist in a sub-strip
of the allowed strip p < 0.3. This explains our emphasis
in this region in Fig. 2. Using eq. (11) one shows, more-
over, that j 6 1 ) p . 0.0973, a stronger bound on the
hairiness that can form dynamically from superradiance.
Hairy BHs are entropically favoured. The (vac-
uum Kerr) ! (hairy BH) migration is conservative (in
the above description), but it is irreversible. Ther-
modynamics determines the arrow of time. To un-
derstand this, we resort to the qKH model, which al-
lows us to show that the hairy BH is always entrop-
ically favoured (as observed in [27] from the numeri-
cal data). Indeed, from the aH(j, p)-cubic equation:
a3H � 2(1 � p)a2H +

⇥
j2/4 + (1� p)2

⇤
aH = j2(1� p)2/4,

the solution for small p [up to O(p3)] reads

aH = a
(Kerr)
H +

"
(1 +

p
1� j2 � 1

2j
2)(1 +

p
1� j2)

j2
p
1� j2

#
p2 .

(13)
Thus for the same M,J , the hairy BH is entropically
favoured over the Kerr BH. In order words, the direction
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FIG. 5: (Main panel) Domain of existence of fundamental
states of KBHsPH (shaded blue region). Vacuum Kerr BHs
exist below the black solid line (corresponding to extremal
Kerr). The horizontal dotted lines show the migration trajec-
tories from vacuum Kerr BHs (black dots) to hairy BHs (red
triangles) of the evolutions in [1]. The inset shows constant j
lines for both vacuum Kerr (dashed) and hairy BHs (solid),
which always meet at the existence line, for any j < 1. Migra-
tion of a Kerr BH with spin j terminates when the horizontal
line (constant M) meets a hairy BH with that j value.

of the migration in Fig. 5 is determined by the second
law of thermodynamics.
Remarks. It was observed in [27] that there is a non-
uniqueness for Kerr BHs with synchronised scalar hair (as
there is in the Proca case). Near the Kerr limit, this de-
generacy is discrete and of degree two: fixing M,J there
exists a hairy BH and a vacuum Kerr BH. The numerical
simulations reported in [1], together with the qKH ana-
lytic model we have proposed and the fundamental states
of KBHsPH described in the Appendix, support the con-
clusion that these degenerate states correspond to the
initial (Kerr) and final (hairy) states of the superradiant
instability.
When more than one mode (and with di↵erent values

of m) becomes important during the superradiant evo-
lution, the axi-symmetry assumption in [1] may not be
accurate and less smooth evolutions may occur, cf. the
results reported in non-asymptotically flat setups [33–35].
In this case, BHs with synchronised hair and a quasi-Kerr
horizon may be transient equilibrium states. One may
imagine, for instance, that the equilibrium states dynam-
ically attained in [1], with !eq/m = ⌦eq

H , may be driven
to evolve by a lower frequency modes, !new/m < ⌦eq

H .
An evolution of ⌦eq

H towards synchronising it with !new

is, however, hampered by the existing !eq mode. Under-
standing this process is a relevant open issue [52].
Finally, it would be interesting to adapt the qKH

model for higher dimensional BHs with synchronised
hair [36, 37], including in AdS [38]. Another possible
application of this model is in a study of the thermody-
namics of BHs with synchronised hair.

... which is a hairy black hole
CH, Radu, 1706:06597 (PRL in press)
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ancemigrates a vacuum Kerr BH into a BH with synchro-
nised hair. This is exhibited in Fig. 5, for the examples
of the numerical evolutions in [1]. Under the assumption
used therein that a single superradiant mode is present
(the fastest growing mode), which implies that axisym-
metric is a good approximation during the evolution, ra-
diation is negligible [1] and the total mass and angular
momentum are preserved. The process is thus conserva-
tive. This implies that the migration in Fig. 5 – an ADM
mass vs. horizon angular velocity plot – occurs along a
horizontal line, ending at a hairy BH with the same j
as the initial Kerr solution. We have verified there is a
unique such solution – cf. the inset in Fig. 5. In partic-
ular this implies the equilibrium BH with synchronised
hair has j 6 1. Solutions with j 6 1 exist in a sub-strip
of the allowed strip p < 0.3. This explains our emphasis
in this region in Fig. 2. Using eq. (11) one shows, more-
over, that j 6 1 ) p . 0.0973, a stronger bound on the
hairiness that can form dynamically from superradiance.
Hairy BHs are entropically favoured. The (vac-
uum Kerr) ! (hairy BH) migration is conservative (in
the above description), but it is irreversible. Ther-
modynamics determines the arrow of time. To un-
derstand this, we resort to the qKH model, which al-
lows us to show that the hairy BH is always entrop-
ically favoured (as observed in [27] from the numeri-
cal data). Indeed, from the aH(j, p)-cubic equation:
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of the migration in Fig. 5 is determined by the second
law of thermodynamics.
Remarks. It was observed in [27] that there is a non-
uniqueness for Kerr BHs with synchronised scalar hair (as
there is in the Proca case). Near the Kerr limit, this de-
generacy is discrete and of degree two: fixing M,J there
exists a hairy BH and a vacuum Kerr BH. The numerical
simulations reported in [1], together with the qKH ana-
lytic model we have proposed and the fundamental states
of KBHsPH described in the Appendix, support the con-
clusion that these degenerate states correspond to the
initial (Kerr) and final (hairy) states of the superradiant
instability.
When more than one mode (and with di↵erent values

of m) becomes important during the superradiant evo-
lution, the axi-symmetry assumption in [1] may not be
accurate and less smooth evolutions may occur, cf. the
results reported in non-asymptotically flat setups [33–35].
In this case, BHs with synchronised hair and a quasi-Kerr
horizon may be transient equilibrium states. One may
imagine, for instance, that the equilibrium states dynam-
ically attained in [1], with !eq/m = ⌦eq

H , may be driven
to evolve by a lower frequency modes, !new/m < ⌦eq

H .
An evolution of ⌦eq

H towards synchronising it with !new

is, however, hampered by the existing !eq mode. Under-
standing this process is a relevant open issue [52].
Finally, it would be interesting to adapt the qKH

model for higher dimensional BHs with synchronised
hair [36, 37], including in AdS [38]. Another possible
application of this model is in a study of the thermody-
namics of BHs with synchronised hair.

... which is a hairy black hole
CH, Radu, 1706:06597 (PRL in press)

Dolan, Physics10(2017)83

3) Outlook



Mechanism:
A (hairless) BH which is afflicted by the superradiant instability of 

a given field for which the energy-momentum tensor is time-
independent, allows a hairy generalization with that field.

CH and Radu, PRL112(2014)221101; 
CH and Radu, IJMPD23(2014)1442014

Thank you for Your
Attention!

Gravitational lensing of the Aveiro Campus by a Kerr black hole with scalar hairKerr Comparable hairy Image:
P. Cunha
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Cosmological models with the energy 
density of random fluctuations 

and the Hubble-constant problem
Kenji Tomita*     

  The second-order density perturbations corresponding to 
cosmological random fluctuations are considered and it is 
found that their super-horizon non-vanishing spatial average 
is useful to solve the serious problem on the cosmological 
tension between direct measured Hubble constants at 
present and those at the early stage.

*Prof. Emer.    YITP,    Kyoto Univ.

  

1.   Hubble-constant　problem

  WMAP, Planck precise mesurements :  67.3 km /s/Mpc

 direct measurements ([m,z] relation, etc) at present: 
     73.8 km/s/Mpc    Riess et al (2011) 
     78.7 km/s/Mpc    Suyu et al  (2013)
     74.3 km/s/Mpc    Freedman et al (2012)
                                 Freedman (2017)     
The difference is about 10% and observationally serious.                         
  For explanations of this gap between two kinds of Hubble 
constants, models of 
   decaying dark matter,  local void model,  dark radiation, 
and so on   have been proposed so far.

  My standpoint is to consider a contribution of the energy 
density of random fluctuations to the dynamics of the 
universe, due to nonlinear perturbations.



  

2.  Non-linear perturbation theories
    a.  General-relativistic theories 
         Linear theory :  Lifshitz (1946, 1963)
               Gauge-invariant linear theory: Bardeen (1986)
          Second-order perturbation theories :  
                     Tomita (1967        , 2005         )
                     Russ et al, (1996)
             at the matter-dominant stage,   and so on ....

　

     

L0m= 110 h−1 for M = 0.22

    b.  Perturbations in Newtonian cosmology
      Newtonian condition is      L < 1/H ,        where
      L is the linear length and H is the Hubble parameter .

    The condition that L < 1/H  holds always in the matter-
          dominant stage after the epoch of  1+ z  = 1500 :
      
                 
     where      is the present length, and
     gives the horizon size at epoch 1+z = 1500.

=0

L0  L0m ≡ 200h−1 /15M 
1 /2

≠0
=0

L0

  

3.  Cosmological random fluctuations 

     Random fluctuations are caused by quantum fluctuation 
              at the very early stage 
      Their density perturbations          are
      observed as temperature perturbations (CMB)  : 
              precise measurements of  WMAP and  Planck
      spectrum (transfer function)  : studied by BBKS

   It is assumed that the spatial average of them as 
     the first-order density perturbations vanishes (                 ) .
   Then how is the mean energy density as the spatial
   average of second-order density  perturbations          ?         
   Does it  vanish or not ?

  a.  In the Newtonian case with  
       we have                    
       and                      also for n >2. 
       

2/

T /T

2/=0

/

1/=0

n /=0

L0  L0m



  

≠ 0

b.   In the super-horizon case with                     
        the linear length L  of perturbations 
                 is always larger than  1/H  or    cross it once . 
   ->     Treatment of general-relativistic second-order               
                    perturbations  is necessary
            In my recent first work (I), we used 

   the general-relativistic second-order perturbation theory
          Tomita (2005) for           in the synchronous and comoving gauge 
   and obtained the spatial average
   in the form of an integral with respect to wave-number  k .
The upper-limit of the wave-number k_max was specified  as

where the minimum length is

Therefore                           comes from only the super-horizon 
fluctuations, and                is interpreted to be the average 
fluctuation energy densiy.  By the way, 

         
     
          
    

2/ ≠ 0

Lmin≡ 2/kmax = 102/h Mpc for M = 0.22

L0  L0m

Lmin ≃ L0m

2 / ≠ 0

2
2/ ~ 1/ 2.

  

4.   Energy density of random fluctuations and the Hubble-   
constant problem 

  In paper (I), we derived the second-order perturbations 
corresponding to not only density perturbations, but also 
metric perturbations. Using them, we derived  the 
cosmologically renormalized quantities:

where               ,  and                  includes the second-order 
perturbation of the Hubble parameter H. 
  Here “renormalization”  means only the transformation such 
as

and so on.   It is not related to any “dynamical renormalization 
process”.  

                                               : 

rem=  2 , H rem =[H 22 H
2 ]1/2

rem =  [12/  ]−1 , M rem = 1 − rem
 =  2H

2

  rem , H rem  H rem ,   rem



  

As a result,    for the background model 
 
we obtain at present epoch 

On the other hand, the models at the early stage (z >>1) have 
the values  consistent with the background model.
                                          : consistent with Planck obs.

->   This result may solve  the Hubble-constant problem  !

M=0.22, =1−M , H 0=67.3km s
−1Mpc−1

M rem=0.305, rem=1−M rem , H 0rem=74.0 kms
−1Mpc−1

consistent with present direct obs.

  

    
       In my recent second paper (II), we expressed the
fluctuation energy                     as a function of      , and 
regarded it as one of the densities of  the constituent 
pressureless matter.   The total matter density is

A new cosmological model with 

was introduced.

 

                     

 f ≡ 2 

T =    f  

ds2 = g dx
dx = a2 [−d 2ij dx

idx j ]
u0 = 1/a , u i= 0

T 0
0 = −T , T i

0 = 0, T j
i = 0

The present ratio of                                is  0.552
     in the case of the background model parameter 0.22 

 ≡  f  / 



  

 
Einstein eq.:  
Energy-momentum conservation: 
     (a = 1  at the present epoch) 

Background model, on the other hand, is expressed 
using the quantities
   
Quantities in the new model and those in the background 
model are found to be related using the parameter 

In the case of                         for example, we obtain 
                                              :   consistent with present direct obs.
corresponding to  the background ones

At the early epoch with z >>1,  we have
                                                         : consistent with Planck obs.

This result also may explain the Hubble-constant problem.

T a
2 = 3a ' /a 2− a2

T a
3 = T t 0

ab , H b , b

/b 0

/b 0 = 1.181
M , H 0 = 0.341, 73.2

M
b , H b0 = 0.22, 67.3

M
b , H b = M ,H 

  

 ≡  f /  , 0    0 = 0.551
u ≡  / [3H 0

b2] , 0  1 / u 0.22−1
 ≡ H / H b

 / b0 = 1.181
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Constructive gravity

Standard approach to modified gravity theories:

Stipulate some modification of the Einstein-Hilbert action.
→ How to choose an action? Is the theory predictive?

However, a physical theory should be predictive:
→ Well-posed Cauchy problem, time-orientability

New approach discussed here:

Derive gravity action such that the theory is predictive.
→ ‘Constructive gravity’ program

Today: basic outline of the program, and recent results for
the first derived, predictive gravity theory beyond GR.



Predictive kinematics

Consider a spacetime (M,G ,F ) endowed with some tensorial
geometry field G and test matter field F , whose field equations
yield a principal polynomial P : T ∗M → R (cf. null cone).

For causality, the Cauchy problem needs to be well-posed,
requiring that P be hyperbolic.

For predictivity, time-orientability is also needed, such that the
dual principal polynomial P] : TM → R be hyperbolic as well.

Hence bihyperbolicity, i.e. the property that both P and P] be
hyperbolic, defines predictive spacetime kinematics in general.

From kinematics to dynamics

Geometrodynamical technique of the constructive gravity program:
bihyperbolic kinematics ⇒ gravitational dynamics.
[Cf. Hojman, Kuchǎr & Teitelboim (1976); Giesel, Schuller, Witte & Wohlfarth (2012); Schuller & Witte (2014)]

Basic idea:

• bihyperbolic spacetime structure ⇒ generalized ADM split;

• lapse and shift define the hypersurface deformation algebra;

• canonical dynamics so that evolution = deformation;

• supermomentum and superhamiltonian are derived;

• a PDE system for the gravity Lagrangian is obtained.



Deriving general relativity

One of those differential construction equations for the gravity
Lagrangian L[G ,K ) =

∑∞
k=0 C [G ]A1...Ak

KA1 . . .KAk reads thus,

0 =
∂C

∂
(

∂3GA

∂x i∂x j∂xk

) +
∂CA

∂
(

∂2GB

∂x(i∂x j|

)MB|k).

Now suppose that G = g , a Lorentzian metric, then MAi = 0 and
C can depend on at most second order derivatives of the metric.

The full analysis yields C = − 1
2κ

√
−g(R − 2Λ) with integration

constants κ and Λ, i.e. GR! Cf. also Lovelock’s theorem.

We will now apply this framework to seek predictive gravitational
dynamics for a spacetime with non-metric G .

Area metric geometry

An area metric is a smooth 4th
order tensor field G with
symmetries such that, for any
smooth vector fields X ,Y ,U,V ,

G (X ,Y ,U,V ) = G (U,V ,X ,Y ),

G (X ,Y ,U,V ) = −G (Y ,X ,U,V ),

G (X ,Y ,U,V ) = −G (X ,Y ,V ,U).

Are area metrics a useful differential geometry for string theory?
Note: the Nambu-Goto Lagrangian is ∝

√
−Gη(ẋ , x ′, ẋ , x ′).



Area metric spacetime

Consider a generalized vacuum EM in an area metric spacetime,

L = −1

8
χµνρσFµνFρσ with χµνρσ = ωGG

µνρσ,

where ω−1
G = 1

4!εµνρσG
µνρσ. The null cone is quartic,

P(x , p) = P(x)αβγδpαpβpγpδ = 0,

with momentum p, and

Pαβγδ ∝ εκλµνερστυGκλρ(αGβ|µσ|γG δ)ντυ,

which may or may not be bihyperbolic.

Perturbation about Minkowski

For small area metric perturbations about Minkowski spacetime,

Gµνρσ = ηµρηνσ − ηµσηνρ − εµνρσ + Hµνρσ

with H small, then the principal polynomial tensor and its dual

Pµν = ηµν + Hµν , P]µν = ηµν − Hµν ,

where Hµν = 1
2H

αµβνηαβ − 1
4!εαβγδH

αβγδηµν .

Hence, light rays are governed by P] and obey Lorentzian metric
geometry. But what about the gravitational dynamics?



Area metric gravity theory

The gravitational dynamics for area metric kinematics can, so far,
be derived perturbatively. For a point mass M, the solution is

G 0a0b ≡− γab + H0a0b = −γab + (2A− 1
2U + 1

2V )γab,

G 0bcd ≡εbcd + H0bcd = εbcd +
(

3
4U −

3
4V − A

)
εbcd ,

G abcd ≡γacγbd − γadγbc + Habcd = (1 + 2U − V )(γacγbd − γadγbc),

with Euclidean metric γab, Euclidean distance r of the unperturbed
background, Levi-Civita symbol εabc , and scalar perturbations

A = − M

4πr

(
κ− ληe−µr

)
, U = − M

4πr
ηe−µr , V =

M

4πr

(
κ− τηe−µr

)
,

where η, κ, λ, µ, τ are constants. [Alex, Möller & Schuller (2017), in prep.]

Modified Etherington

For this linearized area metric Schwarzschild solution, one can
derive a modified Etherington distance duality relation,

DL = (1 + z)2DA

(
1 +

3κM

8π

(
e−µrS

rS
− e−µrO

rO

)
+O(M2)

)
,

with Euclidean distances rO , rS between mass M and observer O,
light source S , respectively. [Schuller & Werner, Universe 3, 52 (2017), arXiv:1707.01261]

Of course, an area metric cosmological solution would be more
interesting for comparison with the classic result. This is currently
being pursued.



Conclusions

• The constructive gravity approach allows the derivation of
gravitational dynamics from bihyperbolic kinematics.

• Predictive spacetime kinematics can be implemented
mathematically with bihyperbolicity in general.

• Applying constructive gravity to area metric spacetimes,
a linearized Schwarzschild-like solution has been constructed.

• Investigating light propagation on this background, we find
a modified Etherington distance duality relation.

• This is observable, and the first astrophysical consequence
of a derived, predictive gravity theory beyond GR.
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