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Preface
The Nobel Prize for Physics 2017 was awarded to the researchers from the Laser Inter-
ferometer Gravitational-Wave Observatory (LIGO) Group for their decisive contributions
to the LIGO detector and the observation of gravitational waves. In August 2017, the
Advanced LIGO detector and Advanced Virgo gravitational-wave detectors first observed
a binary neutron star merger event. This merger event was observed not only with the
gravitational wave but also electromagnetically at frequencies from radio to gamma rays.
These events initiated the breaking dawn of the new era of gravitational wave physics in
multi-messenger astronomy. In such a memorable year, we had arranged the 27th Work-
shop on General Relativity and Gravitation in Japan (JGRG) at Higashi Hiroshima Arts
& Culture Hall Kurara in Saijo, Higashi-Hiroshima from November 27 to December 1,
hosted by the theoretical astrophysics group of Hiroshima University.

We invited outstanding lecturers, who are very active in the theoretical and observa-
tional research fields, such asVladimir Karas (Astronomical Institute, Czech Academy of
Sciences), Kenji Toma (Tohoku University, Japan), Diego Blas (CERN TH, Switzerland),
Patric Brady (University of Wisconsin-Milwaukee, USA), Takashi Nakamura(Kyoto Uni-
versity, Japan), Koji Kawabata (Hiroshima University, Japan), Nicola Bartolo (Padova
University, INFN, Italy), Hideyuki Tagoshi (ICRR, University of Tokyo, Japan), Yasu-
fumi Kojima (Hiroshima University, Japan), Robert R. Caldwell (Dartmouth University,
USA), Masaki Shigemori (Queen Mary London, YITP), and Carlos Herdeiro (Aveiro Uni-
versity, Portugal). In addition to the 12 invited speakers, 82 contribution talks were given
along with 40 poster presentations. The total number of participants was 184, including
22 participants from 11 overseas countries.

The workshop was supported by MEXT Grant-in-Aid for Scientific Research on Inno-
vative Areas ”Gravitational wave physics and astronomy: Genesis” (PI: Takahiro Tanaka),
A02 “New developments of gravity theory research in gravitational wave physics” (PI:
Shinji Mukohyama), MEXT Grant-in-Aid for Scientific Research on Innovative Areas
”Cosmic Acceleration” (PI: Hitoshi Murayama), C01 ” Cosmic Acceleration from Ultimate
Theory” (PI: Hiroshi Ooguri), a subsidy for the promotion of science by Higashi-hiroshima
city, and Hiroshima University under the ”Program for Promoting the Enhancement of
Research Universities.” We would like to thank all the participants for their generous
assistance during JGRG27.

Kazuhiro Yamamoto
(on behalf of JGRG27 LOC)
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Presentation Award
The JGRG presentation award program was established at the occasion of JGRG22 in
2012. This year, we are pleased to announce the following five winners of the Outstand-
ing Presentation Award for their excellent presentations at JGRG27. The winners were
selected by the selection committee consisting of the JGRG26 SOC based on ballots of
the participants.

Hayato Motohashi (YITP, Kyoto University)
”Healthy degenerate theories with arbitrary higher-order derivatives”(Oral)

Shun Arai (Nagoya University)
”Constraints on Horndeski theory with Gravitational Waves observations”(Oral)

Keisuke Inomata (ICRR, The University of Tokyo)
”O(10)Msolar primordial black holes and string axion dark matter”(Oral)

Emi Masaki (Kobe University)
”Can gravitons be converted into dark photons?”(Oral)

Kota Ogasawara (Rikkyo University)
”Collision of two shells with a high center-of-mass energy in the Banados-
Teitelboim-Zanelli spacetime”(Oral)

Eliska Polaskova (Charles University)
”Quasilocal horizons in inhomogenenous cosmological models”(Poster)

Yosuke Misonoh (Waseda University)
”Imitating equation of motion with deep learning”(Poster)
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Monday 27th November

Registration 9:30–10:30

Opening 10:30–10:45
Kazuhiro Yamamoto (Hiroshima University)
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Invited lecture 10:45–11:45
[Chair: Yasusada Nambu]

Vladimir Karas (Astronomical Institute, Czech
Academy of Sciences),

“Structure of relativistic fluid tori near black holes:
effects of self-gravity and electric charge“ (50+10)

[JGRG27 (2017) 112701]
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Self-gravitating fluid tori with charge

V. Karas1

J. Ková̌r2, P. Slaný2, A.Trova3

1Astronomical Institute, Czech Academy of Sciences, Prague, Czech Republic

2Faculty of Philosophy and Science, Silesian University in Opava, Czech Republic

3ZARM – Centre of Applied Space Technology and Microgravity,
University of Bremen, Germany

The 27th Workshop on General Relativity and Gravitation, Saijo, Higashi-Hiroshima
27 Nov–1 Dec 2017

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

1 Motivation and the model
Components of active galactic nuclei
Self-gravity is important in AGN accretion disks
Role of large-scale magnetic fields
Newtonian vs. GR approach
Filaments as tracers of ordered magnetic fields near SMBH

2 Electrically charged matter near BH
Electrically charged particles: off-equatorial trajectories
Shapes of tori in equilibrium

3 A scheme to find analytical solutions
Conditions for the existence of solutions
Examples of solutions

4 Summary
The role of charge distribution within BH accretion tori
Discussion

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Components of active galactic nuclei

Collin & Hure, A&A (2001)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Components of active galactic nuclei

Nuclei of galaxies: dusty tori
and a central SMBH

(M ∼ 106–109M⊙).

At distance of a few ×103Rg

self-gravity starts operating
(Collin & Hure 2001; Karas et al. 2004).

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Newtonian vs. GR approach

Compact Object

axis of compact object-magnetic field symmetry

(Compact object polar axis) Forces

Gravity of the central mass

Internal pressure and electric
charge of the fluid

External magnetic and
induced electric field

Centrifugal force

Self-gravity of the torus

∇βT
αβ
mat = Tαβ

extJβ → dh = dp/(p + ϵ) → fluid surface: h = 0.

Ková̌r, Kopáček, Karas, & Kojima, CQG (2013)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Filaments as tracers of ordered magnetic fields near SMBH

Black hole embedded
in an external magnetic field

LaRosa (2000, 2004)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Electrically charged particles: off-equatorial trajectories

Howard et al. PRL (1999); Ková̌r et al., CQG (2010)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Electrically charged particles: off-equatorial trajectories

Symmetries: (i) axial, (ii) mid-plane, (iii) stationarity.

Equation of state: incompressible or polytropic fluid

The integrability condition of the Euler equation → two
unknown functions: the orbital velocity v ≡ vϕ(R,Z ), and the
specific charge profile q ≡ q(R,Z ).

The fluid is embedded in an external magnetic field

The torus is self-gravitating,

∇P = −ρmΦ− ρm∇Ψ−ρm∇ΨSg − ρm∇M (1)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Shapes of tori in equilibrium

Rotating magnetized torus –
with a central body, with charge density of the fluid

Euler’s equation

ρm(∂tvi + v j∇jvi ) = −∇iP − ρm∇iΨ+ ρe(Ei + ϵijkv
jBk), (2)

Slaný et al (2013)
V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Shapes of tori in equilibrium

Euler’s equation

∇P = −ρm∇Φ− ρm∇Ψ− ρm∇M (3)

Integrability conditions → constraints on the spatial distribution of
charge, and the corresponding angular momentum profile

Orbital velocity: a power law of the radius

Different distribution of the specific charge density

Equilibrium solution → maxima for the pressure function →
angular momentum distribution, strength of the magnetic field.

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017

Self-gravitating fluid tori with charge
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Conditions for the existence of solutions

Equilibrium equation

aH + dtΨSg +Ψ+ bΦ+ eM = const, (4)

Contraints given by the integrability conditions

Solutions exist if H-function has a maximum → conditions on the
magnetic field (value of e) and rotation (value of b). We have to
choose a configuration:

constant angular momentum vs. rigid rotation

specific charge distribution within the torus

strength of self-gravity (value of dt ≡ m/M)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Examples of solutions

Maps of enthalpy → H-function

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Examples of solutions

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

The role of charge distribution within BH accretion tori

Strong gravity near a black hole combines with electromagnetic effects
due to large-scale magnetic field; acts on electrically charged fluid. The
toroidal configuration represents and idealized system that can be
explored analytically. Our set-up has allowed us to study the mutual
interaction between effects that are expected to occur in astrophysically
realistic circumstances.

In active galactic nuclei, accretion of matter from the inner accretion
disk leads to intense emission of X-rays. The emerging energetic
radiation then irradiates the outer torus, where temperature drops below
the critical value for dust sublimation. Dust grains acquire electric charge
due to photoelectric effect and the complex plasma environment.

At the same time, the continued accretion events cause the black hole
to spin up on a long (cosmological) time-scales. Therefore, the effects of
fluid charging and rotation of the central black hole need to be taken into
account together. Note that the equilibrium electric charge on the black
hole itself is likely to converge to an very small value.

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

The role of charge distribution within BH accretion tori

The condition of existence of the tori changes with the
strength of self-gravity.

We find the toroidal configuration, the closed isobars with
cusps, and the off-equatorial structures.

The maximum of pressure rises with self-gravity parameter.

The closed analytical form provides a way to set constraints
on the existence of different configurations.

References: Trova A. et al. (2016), ApJSS, 226, id. 12
Ková̌r et al. (2016), Phys. Rev D, 93, id. 124055

Thank you!

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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Motivation and the model Electrically charged matter near BH A scheme to find analytical solutions Summary

Discussion

Neukirch A&A (1993); Slaný et al. ApJSS (2016)

V. Karas J. Ková̌r, P. Slaný, A.Trova JGRG27, Higashi Hiroshima Arts and Culture Hall, Kurara, 2017
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1a1. Hajime Sotani (NAOJ),
“Gravitational waves from protoneutron stars and

asteroseismology“ (10+5)
[JGRG27 (2017) 112702]
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Gravitational waves from protoneutron 
stars and asteroseismology 
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Dawn of GW astronomy era 
•  First detection of GWs from BH-BH merger (GW150914) 

 

 

–  36M⊙-29M⊙ binary BH merger (410Mpc) 

•  GW151226 (Abbott et al. 16) : 14M⊙-7.5M⊙ BBH (440Mpc) 

•  GW170104 (Abbott et al. 17) : 31M⊙-19M⊙ BBH (880Mpc) 
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Dawn of GW astronomy era 
•  First detection of GWs from NS-NS merger (GW170817) 

–  first BNS + EM counter part  

–  total mass = 2.74M⊙ (40Mpc) 

•  promising GW sources; 

–  BH-BH, BH-NS, and NS-NS mergers 

–  supernovae 
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ApJL 848 L12 (2017) 

The 90% credible intervals(Veitch et al. 2015; Abbott et al.
2017e) for the component masses (in the m m1 2. convention)
are m M1.36, 2.261 Î :( ) and m M0.86, 1.362 Î :( ) , with total
mass M2.82 0.09

0.47
-
+

:, when considering dimensionless spins with

magnitudes up to 0.89 (high-spin prior, hereafter). When the
dimensionless spin prior is restricted to 0.05- (low-spin prior,
hereafter), the measured component masses are m 1.36,1 Î (

M1.60 :) and m M1.17, 1.362 Î :( ) , and the total mass is

Figure 2. Joint, multi-messenger detection of GW170817 and GRB170817A. Top: the summed GBM lightcurve for sodium iodide (NaI) detectors 1, 2, and 5 for
GRB170817A between 10 and 50 keV, matching the 100 ms time bins of the SPI-ACS data. The background estimate from Goldstein et al. (2016) is overlaid in red.
Second: the same as the top panel but in the 50–300 keV energy range. Third: the SPI-ACS lightcurve with the energy range starting approximately at 100 keV and
with a high energy limit of least 80 MeV. Bottom: the time-frequency map of GW170817 was obtained by coherently combining LIGO-Hanford and LIGO-
Livingston data. All times here are referenced to the GW170817 trigger time T0

GW.

3

The Astrophysical Journal Letters, 848:L13 (27pp), 2017 October 20 Abbott et al.

ApJL 848 L13 (2017) 
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GW from SN? 

•  Numerical simulations 
tell us the GW spectra. 

•  difficult  
–  to extract physics of 

PNS and/or SN 
mechanism 

–  to make a long-term 
numerical calculations 

•  We adopt the 
perturbation approach 
to determine the freq. 
from PNS. 

Nov. 27/2017 

A NEW GRAVITATIONAL-WAVE SIGNATURE OF SASI ACTIVITIES 3

Fig. 1.— In each set of panels, we plot, top; gravitational wave amplitude of plus mode A+ [cm], bottom; the characteristic wave strain
in frequency-time domain h̃ in a logarithmic scale which is over plotted by the expected peak frequency Fpeak (black line denoted by “A”).
“B” indicates the low frequency component. The component “A” is originated from the PNS g-mode oscillation (Marek & Janka 2009;
Müller et al. 2013). The component “B” is considered to be associated with the SASI activities (see Sec. 3). Left and right panels are for
TM1 and SFHx, respectively. We mention that SFHx (left) and TM1 (right) are softer and stiffer EoS models, respectively.

Fig. 2.— Snapshots of the entropy distribution (kB baryon−1) for models SFHx and TM1 (top left; Tpb = 150 ms of SFHx, top right;
Tpb = 237 ms of SFHx, bottom left; Tpb = 358 ms of SFHx, bottom right; Tpb = 358 ms of TM1). The contours on the cross sections in
the x = 0 (back right), y = 0 (back left), and z = 0 (bottom) planes are, respectively projected on the sidewalls of the graphs. The 90◦

wedge on the near side is excised to see the internal structure. Note that to see the entropy structure clearly in each dynamical phase, we
change the maximum entropy in the colour bar as smax = 16, 20 and 22 kB baryon−1 for Tpb = 150, 237 and 358 ms, respectively.
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Cold NS & EOS 
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.

Received 7 July; accepted 1 September 2010.

1. Lattimer, J. M. & Prakash, M. The physics of neutron stars. Science 304, 536–542
(2004).

2. Lattimer, J. M. & Prakash, M. Neutron star observations: prognosis for equation of
state constraints. Phys. Rep. 442, 109–165 (2007).

3. Glendenning, N. K. & Schaffner-Bielich, J. Kaon condensation and dynamical
nucleons in neutron stars. Phys. Rev. Lett. 81, 4564–4567 (1998).

4. Lackey, B. D., Nayyar, M. & Owen, B. J. Observational constraints on hyperons in
neutron stars. Phys. Rev. D 73, 024021 (2006).

5. Schulze, H., Polls, A., Ramos, A. & Vidaña, I. Maximum mass of neutron stars. Phys.
Rev. C 73, 058801 (2006).

6. Kurkela, A., Romatschke, P. & Vuorinen, A. Cold quark matter. Phys. Rev. D 81,
105021 (2010).

7. Shapiro, I. I. Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964).
8. Jacoby, B.A., Hotan, A., Bailes,M., Ord, S. & Kulkarni, S.R. The massof a millisecond

pulsar. Astrophys. J. 629, L113–L116 (2005).
9. Verbiest, J. P. W. et al. Precision timing of PSR J0437–4715: an accurate pulsar

distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational
constant. Astrophys. J. 679, 675–680 (2008).

10. Hessels, J.et al. inBinaryRadio Pulsars (eds Rasio, F. A.& Stairs, I. H.)395 (ASP Conf.
Ser. 328, Astronomical Society of the Pacific, 2005).

11. Crawford, F. et al. A survey of 56 midlatitude EGRET error boxes for radio pulsars.
Astrophys. J. 652, 1499–1507 (2006).
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Fig. 1. Neutron star properties. The stellar models are constructed from various unified EOSs with different
sets of (L , K0). We plot the relations between the mass and radius (a) and between the gravitational redshift
and radiation radius (b). The mark and end on each line denote the stellar models with ρc = 1.5ρ0 and 2.0ρ0,
respectively. In (a), the labels on the lines denote the values of the nuclear matter parameter η. To distinguish
between the OI-EOSs, we add the values of K0 to the OI-EOS labels; for example, we use “OI 180” for the two
OI-EOSs with K0 = 180 MeV (left, smaller L; right, larger L). The shaded region corresponds to the allowed
region from the observed radiation radius of the neutron star in ω Cen (see text for details).

interactions are different in the sense that BSk19, BSk20, and BSk21 are fitted to the EOSs of neu-
tron matter derived by [18], [31], and [32], respectively. This difference is expected to play a role
in estimating the effect of uncertainties in three-neutron interactions on the stellar properties, as we
shall see. In describing neutron star matter, a compressible liquid-drop approach was used for FPS
and SLy4, while an extended Thomas–Fermi model was used for BSk19, BSk20, and BSk21. To
calculate the neutron star models in the present study, we adopt the analytical expressions for FPS
and SLy4 given by [33], and for BSk19, BSk20, and BSk21 given by [34].

3. Neutron star models Now, we construct nonrotating neutron stars by integrating the Tolman–
Oppenheimer–Volkoff equations from the stellar center of density ρc outward up to the position
where the pressure vanishes. It is not clear up to what density the adopted unified EOSs are applica-
ble. Nonetheless, one can expect that non-nucleonic components such as hyperons and quarks do not
occur below ∼ 2ρ0 [1] and that the uncertainty from three-neutron interactions in the EOS of pure
neutron matter becomes relevant above ∼ 2ρ0, as suggested by quantum Monte Carlo (QMC) calcu-
lations [35]. We thus examine the stellar models for ρc ≤ 2ρ0, where ρ0 is set to 2.68 × 1014 g cm−3,
and the resultant M–R relations are plotted in Fig. 1(a).

To systematically describe various stellar models, we introduce a new auxiliary parameter η defined
as η = (K0L2)1/3. The values of η are shown in Table 1. Remarkably, the M–R relation changes
almost smoothly with η. Note that the OI-EOSs [20] with L ! 10 MeV are too soft to keep the pres-
sure positive and thus not used here. This implies the lower limit of η of order 30 MeV. Meanwhile,
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Asteroseismology on Cold NSs 

Andersson & Kokkotas (1998) 

•  via the observations of GW frequencies, one might be able to see 
the properties of NSs 
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common feature of models that include the appearance of ‘exotic’
hadronic matter such as hyperons4,5 or kaon condensates3 at densities
of a few times the nuclear saturation density (ns), for example models
GS1 and GM3 in Fig. 3. Almost all such EOSs are ruled out by our
results. Our mass measurement does not rule out condensed quark
matter as a component of the neutron star interior6,21, but it strongly
constrains quark matter model parameters12. For the range of allowed
EOS lines presented in Fig. 3, typical values for the physical parameters
of J1614-2230 are a central baryon density of between 2ns and 5ns and a
radius of between 11 and 15 km, which is only 2–3 times the
Schwarzschild radius for a 1.97M[ star. It has been proposed that
the Tolman VII EOS-independent analytic solution of Einstein’s
equations marks an upper limit on the ultimate density of observable
cold matter22. If this argument is correct, it follows that our mass mea-
surement sets an upper limit on this maximum density of
(3.74 6 0.15) 3 1015 g cm23, or ,10ns.

Evolutionary models resulting in companion masses .0.4M[ gen-
erally predict that the neutron star accretes only a few hundredths of a
solar mass of material, and result in a mildly recycled pulsar23, that is
one with a spin period .8 ms. A few models resulting in orbital para-
meters similar to those of J1614-223023,24 predict that the neutron star
could accrete up to 0.2M[, which is still significantly less than the
>0.6M[ needed to bring a neutron star formed at 1.4M[ up to the
observed mass of J1614-2230. A possible explanation is that some
neutron stars are formed massive (,1.9M[). Alternatively, the trans-
fer of mass from the companion may be more efficient than current
models predict. This suggests that systems with shorter initial orbital
periods and lower companion masses—those that produce the vast
majority of the fully recycled millisecond pulsar population23—may
experience even greater amounts of mass transfer. In either case, our
mass measurement for J1614-2230 suggests that many other milli-
second pulsars may also have masses much greater than 1.4M[.
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1. Lattimer, J. M. & Prakash, M. The physics of neutron stars. Science 304, 536–542
(2004).

2. Lattimer, J. M. & Prakash, M. Neutron star observations: prognosis for equation of
state constraints. Phys. Rep. 442, 109–165 (2007).

3. Glendenning, N. K. & Schaffner-Bielich, J. Kaon condensation and dynamical
nucleons in neutron stars. Phys. Rev. Lett. 81, 4564–4567 (1998).

4. Lackey, B. D., Nayyar, M. & Owen, B. J. Observational constraints on hyperons in
neutron stars. Phys. Rev. D 73, 024021 (2006).

5. Schulze, H., Polls, A., Ramos, A. & Vidaña, I. Maximum mass of neutron stars. Phys.
Rev. C 73, 058801 (2006).

6. Kurkela, A., Romatschke, P. & Vuorinen, A. Cold quark matter. Phys. Rev. D 81,
105021 (2010).

7. Shapiro, I. I. Fourth test of general relativity. Phys. Rev. Lett. 13, 789–791 (1964).
8. Jacoby, B.A., Hotan, A., Bailes,M., Ord, S. & Kulkarni, S.R. The massof a millisecond

pulsar. Astrophys. J. 629, L113–L116 (2005).
9. Verbiest, J. P. W. et al. Precision timing of PSR J0437–4715: an accurate pulsar

distance, a high pulsar mass, and a limit on the variation of Newton’s gravitational
constant. Astrophys. J. 679, 675–680 (2008).

10. Hessels, J.et al. inBinaryRadio Pulsars (eds Rasio, F. A.& Stairs, I. H.)395 (ASP Conf.
Ser. 328, Astronomical Society of the Pacific, 2005).

11. Crawford, F. et al. A survey of 56 midlatitude EGRET error boxes for radio pulsars.
Astrophys. J. 652, 1499–1507 (2006).
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Figure 3 | Neutron star mass–radius diagram. The plot shows non-rotating
mass versus physical radius for several typical EOSs27: blue, nucleons; pink,
nucleons plus exotic matter; green, strange quark matter. The horizontal bands
show the observational constraint from our J1614-2230 mass measurement of
(1.97 6 0.04)M[, similar measurements for two other millisecond pulsars8,28

and the range of observed masses for double neutron star binaries2. Any EOS
line that does not intersect the J1614-2230 band is ruled out by this
measurement. In particular, most EOS curves involving exotic matter, such as
kaon condensates or hyperons, tend to predict maximum masses well below
2.0M[ and are therefore ruled out. Including the effect of neutron star rotation
increases the maximum possible mass for each EOS. For a 3.15-ms spin period,
this is a =2% correction29 and does not significantly alter our conclusions. The
grey regions show parameter space that is ruled out by other theoretical or
observational constraints2. GR, general relativity; P, spin period.
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Protoneutron stars (PNSs) 
•  Unlike cold neutron stars, to construct the PNS models, one has 

to prepare the profiles of Ye and s. 

–  for example,  
with LS220 and s =1.5 (kB/baryon), but Ye =0.01, 0.1, 0.2, and 0.3 
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PNS models 
•  we adopt the results of 3D-GR simulations of core-collapse 

supernovae (Kuroda et al. 2016)  

–  progenitor mass = 15M⊙ 

–  EOS : SFHx (2.13M⊙) & TM1 (2.21M⊙) 

–  RPNS is defined withρs = 1010 g/cm3 

–  using the radial profiles as a background PNS model, the eigen-
frequencies are determined. 
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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Mass & Radius 

•  MPNS is increasing by mass accretion 

•  RPNS is decreasing due to the cooling 
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(Tpb ¼ 48 ms), the early (Tpb ¼ 148 ms) and late
(Tpb ¼ 248 ms) nonlinear phase covered in the simulation,
respectively (see also Fig. 2 in [12]). The maximum density
for SFHx (left panel, ρ≳ 2 × 1014 g cm−3) is a few 10%
higher compared to TM1 (right panel). This is because
SFHx is softer than TM1 as mentioned above. In fact, Fig. 2
shows that the PNS radius (left panel) is more compact for
SFHx. Here the surface of the PNS is defined at a fiducial
rest-mass density of ρs ¼ 1010 g cm−3, which is relatively
lower in the literature (e.g., [56]), but necessary in order to
include the nascent PNS from the three-dimensional GR
models with limited simulation time after bounce. In right
panel, we plot gravitational mass of the PNS MPNS (evalu-
ated by Eq. (A1) in Appendix A) for given spherically
averaged hydro and metric datas. We shortly mention the
accuracy of MPNS which is used later in our analysis.
Although the baryon mass conservation is strictly satisfied
because of our conservative formula, the gravitational mass
is not conserved with the same accuracy in general (the
energy loss by gravitational waves is negligible for CCSNe)
in the BSSN formalism. The violation can be ∼1% in our
code [47]. It is also not straightforward to estimate the
gravitational mass of the PNS with taking into account
the non-negligible energy loss by neutrinos. Furthermorewe
first take spherically average with a simple zeroth order

spacial interpolation from three-dimensional Cartesian to
one-dimensional spherical coordinates, and afterward we
evaluate MPNS. Therefore, the gravitational mass of the
PNS can differ from its true value of the order of
∼1%ð∼0.01M⊙Þ. In Appendix A, we discuss impact of
numerical accuracy in MPNS for our results.
The left panel of Fig. 3 shows the evolution of the

“compactness” of the PNS that is defined by MPNS=RPNS
for SFHx (red line) and TM1 (blue line). As one would
imagine, the compactness of the PNS is higher for SFHx
compared to TM1 even after we consider the inaccuracy of
∼1% in MPNS. The right panel of Fig. 3 depicts the time
evolution ofMPNS as a function of RPNS. The PNS with the
softer EOS (SFHx) evolves from larger to smaller PNS
radius with bigger to smaller enclosed mass compared to
the stiffer EOS (TM1). Depending on the stiffness of
the EOSs, one can see that the evolution track in the
MPNS − RPNS plane differs significantly.
To extract the metric from the background models in a

suitable form, we perform the following coordinate trans-
formation. In the background models obtained by numeri-
cal relativity simulation (e.g., [12]), the line element is
given as

ds2 ¼ −α2dt2 þ γijðdxi þ βidtÞðdxj þ βjdtÞ; ð1Þ

FIG. 1. (Spherically-averaged) radial profiles of the rest-mass density at 48, 148, and 248 ms after core bounce. The left and right panel
corresponds to SFHx and TM1, respectively.

FIG. 2. Time evolution of the PNS radius (left panel) and its gravitational mass (right panel) as a function of the postbounce time. The
circles and diamonds corresponds to SFHx and TM1, respectively. The surface of the PNS is defined at a fiducial rest-mass density of
ρs ¼ 1010 g cm−3.
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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evolution of w1-modes 
•  frequencies depend on the EOS. 

–  increasing with time 

–  can be characterized well by M/R 

•  as for cold NS, we can get the fitting formula, almost independent 
from EOS 
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X00 þ ðΦ0 − Λ0ÞX0

þ e2Λ
!
ω2e−2Φ −

lðlþ 1Þ
r2

þ 6m
r3

− 4πðε − pÞ
"
X ¼ 0:

ð7Þ

By imposing appropriate boundary conditions, the problem
to solve becomes the eigenvalue problem. The boundary
conditions are the regularity condition at the stellar center
and the outgoing wave condition at spatial infinity.
The eigenvalue ω becomes a complex number, because

GWs carry out the oscillation energy, where the real and
imaginary parts of ω correspond to the oscillation fre-
quency (f ¼ ReðωÞ=2π) and damping rate (1=τ ¼ ImðωÞ),
respectively, where τ corresponds to the damping time of
each mode. To determine such a complex frequency, we
adopt the continuous fractional method proposed by
Leaver [59].

IV. ASTEROSEISMOLOGY WITH w MODES

The spacetime modes (w modes) have two families, i.e.,
wII and “ordinary” w modes [44,45]. As shown in
Appendix B, for cold NSs, a few wII modes are excited,
whose damping rate [ImðωÞ] is larger than its oscillation
frequency (ReðωÞ). On the other hand, infinite number of w
modes can exist, which are referred to as w1; w2; % % % ; wn

modes in order from the lowest oscillation frequency. So, in
the similar way to cold NSs, we identify the spacetime
modes with ReðωÞ larger than ImðωÞ as the “ordinary” w
modes for PNSs. Hereafter, the “ordinary” w modes are
called just as the w modes.
In Fig. 4, we show the frequency and damping rate of the

axial spacetime modes for the PNS models at the two
postbounce times of Tpb ¼ 108 ms (circles) and 248 ms
(diamonds), where the left and right panels correspond to
the results with SFHx and TM1 (EOS). In this figure, the
open marks denote the wII modes, while the solid marks
denote the w modes. Thus, the leftmost solid marks
correspond to the w1 mode (fundamental w mode) for
each PNS model. From this figure, one can observe that the
damping rate of wn mode is almost constant independently
of the index n, which is different behavior from the case of
cold NSs as shown in Fig. 10. In fact, the damping rate of
wn modes increase with the index n for cold NSs. With
respect to the w1 mode (Fig. 5), we show the time evolution
of the frequency (fw1

) and damping time (τw1
) as a function

of postbounce time for SFHx and TM1, respectively. We
remark that the damping time is the time with which the
GW amplitude reduces by 1=e. In the early phase of
w1-mode oscillations of PNSs, the frequency is only a
few kHz, which is significantly smaller than that for cold
NSs, while the damping time is around 0.1 ms, which is
much larger than that for cold NSs. This is good news from

FIG. 4. Frequency and damping rate of the axial spacetime modes for PNSs. The left and right panels correspond to the results for
SFHx and TM1 EOSs, respectively, where the circles and diamonds are shown for the PNS models at 108 and 248 ms after core bounce.
The open and solid marks correspond to the wII and “ordinary” w modes.

FIG. 5. Evolutions of frequency ðfw1
Þ and damping time ðτw1

Þ for the w1 mode. The circles and diamonds correspond to SFHx and
TM1, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as
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from the previous one because the surface density of the
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respectively. The dotted line is a fitting formula given by Eq. (10).

SOTANI, KURODA, TAKIWAKI, and KOTAKE PHYSICAL REVIEW D 96, 063005 (2017)

063005-6

the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
MPNS

1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð11Þ

fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602

"
MPNS

1.4 M⊙

#
1=2

"
RPNS

10 km

#−3=2
;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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determination of EOS 

•  with f- & w1-modes GW observations, one can get two 
independent properties at each time after core bounce,  
which are combination of MPNS & RPNS 

•  one can determine (MPNS, RPNS) at each time after core bounce 
  à determination of the EOS 

•  unlike cold NS cases, in principle one can determine the EOS even 
with ONE GW event ! 
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where α, βi, and γij are the lapse, shift vector, and
three metric, respectively. If one assumes that the hydro-
dynamical background is static and spherically symmetric,
the spacetime in the isotropic coordinates can also be
written as

ds2 ¼ −
ð1 − M

2r̂Þ
2

ð1þ M
2r̂Þ

2
dt2

þ
!
1þM

2r̂

"
4

ðdr̂2 þ r̂2dθ2 þ r̂2sin2θdϕ2Þ; ð2Þ

where r̂ and M denote the isotropic radius r̂ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2 þ z2

p
and the enclosed gravitational mass,

respectively. From Eqs. (1) and (2), one can easily check
the validity of our static and spherically symmetric back-
ground assumption by comparing γr̂ r̂ and ð1þM=2r̂Þ4
(see Appendix A for detail).
Next, we perform coordinate transformation from the

isotropic, i.e., Eqs. (1) or (2), to the following spherically
symmetric spacetime,

ds2 ¼ −e2Φdt2 þ e2Λdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð3Þ

where Φ and Λ are functions of only r. This metric is
similar to the Schwarzschild metric and we apply the well-
known conversion relation r ¼ r̂ð1þM=2r̂Þ2. In addition,
Λ is associated with the mass functionM in such a way that
e−2Λ ¼ 1–2M=r. With this metric form, the four-velocity
of fluid element is given by uμ ¼ ðe−Φ; 0; 0; 0Þ.

III. PERTURBATION EQUATIONS FOR
AXIAL w-MODE GRAVITATIONAL WAVES

On the PNS models mentioned in the previous section,
we examine the oscillations and their spectra with the linear
perturbation approach. In particular, when one focuses on
axial type oscillations, the metric perturbation, hμν, with the
Regge-Wheeler gauge can be decomposed as

hμν ¼
X∞

l¼2

Xl

m¼−l

0

BBBB@

0 0 −h0;lmsin−1θ∂ϕ h0;lm sin θ∂θ

% 0 −h1;lmsin−1θ∂ϕ h1;lm sin θ∂θ

% % 0 0

% % 0 0

1

CCCCA

× Ylm; ð4Þ

where Ylm is the spherical harmonics with the angular
indexes l and m, noting that h0;lm and h1;lm are functions
of t and r [22]. Additionally, the perturbation of the four-
velocity is given by

δuμ ¼
X∞

l¼2

Xl

m¼−l

!
0; 0;−

δulm
r2 sin θ

∂ϕYlm;
δulm
r2 sin θ

∂θYlm

"
;

ð5Þ

while the perturbations of pressure and energy density
should be zero for axial type oscillations.
The perturbation equation governing the axial type of

GWs on the spherically symmetric background can be
expressed as a single wave equation [57,58], such as

−
∂2Xlm

∂t2 þ∂2Xlm

∂r2%
−e2Φ

$
lðlþ1Þ

r2
−
6m
r3

þ4πðε−pÞ
%
Xlm

¼ 0; ð6Þ

where Xlm is related to the metric perturbation, h1;lm, via
rXlm ¼ eΦ−Λh1;lm, while r% is the tortoise coordinate
defined as r%¼rþ2Mlnðr=2M−1Þ. That is, ∂r¼eΛ−Φ∂r% .
The remaining variables, h0;lm and δulm, can be computed
with h1;lm from the relations ∂th0;lm¼ eΦ−ΛXlmþ r∂r%Xlm

and δulm ¼ −e−Φh0;lm. We remark that Eq. (6) outside the
star reduces to the well-known Regge-Wheeler equation.
Hereafter, we omit the index of ðl; mÞ for simplicity.
In fact, by solving this system one can obtain the specific

oscillation spectra of GWs, i.e., the so-called w modes
[44,45]. Replacing Xlm in Eq. (6) with Xlmðt; rÞ ¼
XðrÞ expðiωtÞ, one gets the perturbation equation with
respect to the eigenvalue ω,

FIG. 3. Left: Same as Fig. 2, but for the time evolution of the stellar compactness after bounce. Right: Sequences of the masses and
radii of PNSs for SFHx and TM1. Note that the points at the left (smaller PNS radius) correspond to late postbounce phase, whereas the
points at the right correspond to early phase (larger PNS radius).
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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PNS models adopted in this paper is different from that in
[39]. In practice, these linear fits are also shown in the
middle and right panels of Fig. 7 with solid lines. We
remark that the frequencies of the f and p1 modes are the
same dependence on the properties of PNSs; i.e., one can
get only the information about the average density of PNS
even if one will simultaneously detect the f and p1 modes.
Consequently, one can obtain the information of two

different properties, which are combinations of MPNS and
RPNS, via Eqs. (10) and (11) [or via Eqs. (10) and (12)], if
one would simultaneously detect the f and w1 modes (or
the p1 and w1 modes) in GWs from PNSs, which enables us
to know the values of MPNS and RPNS. Furthermore, unlike
the GWasteroseismology for cold NSs, for PNSs one might
get the sequence in MPNS − RPNS plain as shown in Fig. 3
with the time evolution of the GW spectra from the PNS
produced by just one supernova explosion, because MPNS
and RPNS changes with time. Namely, in principle one
would find the EOS via the detection of the GWs from just
one supernova explosion.
Finally, we discuss the detectability of GWs from PNSs.

In Refs. [30,31], the effective amplitude of f and w1 modes
in GWs radiating from cold NSs are estimated, where the
background stellar model should be static at least during the
damping time. Since the damping time of the w1 mode from
PNSs is typically τw1

∼ 0.1 ms as shown in Fig. 5, which is
shorter than the typical timescale of change of PNS
properties, one might possible to adopt the estimation of
effective amplitude for the w1 mode derived in [30,31] even
for PNSs. On the other hand, if one estimates the damping
time of the f mode for PNSs in the same way as for cold
NSs, such as τf ∼ R4

PNS=M
3
PNS [31], τf becomes ∼1–50

second, which is much larger than the typical timescale of
change of PNS properties. Thus, it must be inappropriate to
adopt the estimation of effective amplitude for the f mode
derived in [30,31] in the case of PNSs. Thus, here we only
consider the detectability of the w1 mode in gravitational
waves. Even so, we may deduce that the upper limit of the
effective amplitude of the f mode in gravitational waves
from PNSs would be around h ∼ 10−21, assuming that the
f-mode oscillations can be also captured as well as the

other excited modes in the previous numerical simulations
of core-collapse supernovae [11,12,14].
For PNSs, we choose that the energy of the w1 mode in

the gravitational waves, Ew1
, for each time step, and

estimate the effective amplitude of such gravitational waves
with the same formula as in [30,31]. Thus, the effective
amplitude is given by

hðw1Þ
eff ∼7.7×10−23

!
Ew1

10−10 M⊙

"
1=2

!
4 kHz
fw1

"
1=2

!
10 kpc
D

"
;

ð13Þ

where D denotes the distance between the source and the
Earth. We remark that the effective amplitude depends on
the frequencies of the w1 mode, which change with time.
Assuming the total radiation energy with w1 mode in the
gravitational waves from PNS (Eðw1Þ

T ), the energy for each
time step (Ew1

) can be estimated as Eðw1Þ
T ≈ Ew1

Tw1
=τw1

,
where Tw1

denotes the duration time of the w1 mode. In this
paper, we simply assume that Tw1

¼ 250 ms and
τw1

¼ 0.1 ms. Since the total energy of the w1 mode in
gravitational waves is also unknown, we consider

FIG. 7. Evolutions of f and p1 modes in GWs from PNSs after core bounce are shown in the left panes. The solid and open marks
correspond to the f and p1 modes, while the circles and diamonds are, respectively, the results for SFHx and TM1. The middle and right
panels shows respectively the frequencies of the f and p1 modes as a function of average density of PNSs. The solid line denotes the
linear fitting given by Eqs. (11) and (12).

FIG. 8. The effective amplitude of w1 modes in gravitational
waves radiated from the PNSs with SFHx EOS are shown
together with the sensitivity curves of KAGRA, advanced LIGO
(aLIGO), Einstein Telescope (ET), and Cosmic Explorer (CE).
The circles, squares, diamonds, triangles, and upside-down
triangles correspond to the results with Eðw1Þ

T ¼ 10−4 M⊙,
10−5 M⊙, 10−6 M⊙, 10−7 M⊙, and 10−8 M⊙, respectively.
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conclusion 
•  We examine the frequencies of gravitational waves radiating 

from PNS after bounce. 

•  in principle, even with ONE GW event from supernova, one could 
determine the EOS for high density region. 
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as

fðNSÞw1
ðkHzÞ ≈

!
20.92 − 9.14

"
M

1.4 M⊙

#"
R

10 km

#−1$

×
"

R
10 km

#−1
: ð8Þ

This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
"

M
1.4 M⊙

#
1=2

"
R

10 km

#−3=2
:

ð9Þ

This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
ðkHzÞ ≈

!
27.99 − 12.02

"
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1.4 M⊙

#"
RPNS

10 km

#−1$

×
"

RPNS

10 km

#−1
: ð10Þ

We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as

fðPNSÞf ðHzÞ ≈ 14.48þ 4859
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;
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fðPNSÞp1
ðHzÞ ≈ 43.29þ 8602
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#
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"
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10 km
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;

ð12Þ

where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as
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from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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the observational point of view. The direct detection of such
a frequencies with the future (or even current) GW
detectors might be possible, depending on the radiation
energy of w1 mode and the distance to a source object.
It is known that the frequency of w1 mode for cold NSs

can be characterized by the stellar compactness. That is,
Andersson and Kokkotas have shown that for cold NSs the
w1-mode frequencies multiplied by the stellar radius are
characterized by the stellar compactness independently of
the EOS of neutron star matter [31], such as
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This behavior comes from that the wmodes are oscillations
of spacetime itself, which is almost independent from the
matter oscillations. In the same way, the additional uni-
versal relation between the frequency of the f mode and
stellar average density for cold NSs has also been derived
[31], such as

fðNSÞf ðkHzÞ ≈ 0.78þ 1.635
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This means that, via the simultaneous observations of the
frequencies of f and w1 modes, one can get two different
pieces of information about the compact object, which
enables us to constrain the mass and radius of the source
object. This is an original idea proposed by [31] to adopt
the GWasteroseismology to the cold NSs. In this work, we
revisit this in the context of the PNS; i.e., we will consider
the possibility for obtaining the mass and radius of PNSs
via the observations of the f- and w1-mode GWs.
We find that the similar universal relation for w1 mode

can be held even for the PNSs. In Fig. 6, we show the
w1-mode frequencies multiplied by the radius as a function
of the compactness, where the circles and diamonds
correspond to the results for SFHx and TM1, respectively.
As shown in Fig. 3, since the compactness increases
with time, the left side in Fig. 6 corresponds to the early
phase of PNSs. From this figure, we derive the fitting
formula such as

fðPNSÞw1
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We remark that the w1-mode frequencies for PNSs
expected from this fitting formula are significantly different
from those for cold NSs expected from Eq. (8), because the

radius and mass of PNSs are different from those for cold
NSs. We also remark that the scaling law for PNSs with
using the mass and radius is the same as that for cold NSs,
but the coefficients in the law are different. So, the
coefficients in the scaling law would vary with time and
eventually approach the values for cold NSs. This would
suggest that long-term GW astroseismology and the GW
detection could potentially bridge the gap of the two
formulae evolving from a PNS phase into a cold NS phase.
With respect to the f mode on PNSs, we have derived the

universal relation between the f-mode frequency and the
average density of PNS independently of the progenitor
models [39]. However, in order to consistently discuss the
f-mode oscillations with the results of the w1 mode, we
recalculate by using the PNS models adopted in this paper
with the same procedure as in [39], i.e., with Cowling
approximation neglecting the variation of entropy. Then,
we get the time evolutions of f and p1 modes for SFHx and
TM1 as shown in the left panel of Fig. 7. It should be
noticed that even p1-mode frequency might be possible to
observe because the frequencies in the early phase of PNS
are only a few hundred Hz. In the same way as shown in
[39], we also confirm that the frequencies of f modes can
be expressed as a linear function of the average density of
PNS independently of the adopted EOS (see the right panel
of Fig. 7), such as
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where the coefficients in the linear fits are modified a little
from the previous one because the surface density of the

FIG. 6. The w1-mode frequencies multiplied by the normalized
radius fw1

ðR=10 kmÞ are shown as a function of normalized
compactness ðMPNS=1.4 M⊙ÞðRPNS=10 kmÞ−1, where the circles
and diamonds denote the results for SFHx and TM1 EOSs,
respectively. The dotted line is a fitting formula given by Eq. (10).
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(MPNS, RPNS) at each time after core bounce 
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Black hole ringdown analysis of 
two-mode signal

Nami Uchikata (ICRR, University of Tokyo),

Hideyuki Tagoshi (ICRR, University of Tokyo),

Tatsuya Narikawa (ICRR, University of Tokyo)

Black hole ringdown waveform
• Final part of the gravitational waveform of a binary black hole merger.

• It is dominated by the black hole quasinormal modes.

https://losc.ligo.org/s/events/GW150914/P150914/fig2-unfiltered-waveform-H.txt /



Black hole quasinormal modes (QNM)
• Characteristic oscillations (damping oscillations) of black holes.

(frequency 𝑓, quality factor 𝑄)

• Determined by black hole mass 𝑀 and spin 𝑎	only.

• Analysis of QNM gives the spin and mass of the final black hole.

(𝑓, 𝑄) → (𝑎,𝑀)

• Based on general relativity, all multipolar modes (𝑙,𝑚) give the same 
mass and spin. → test of general relativity

Ex) Ideal case.

𝑓,,, 𝑄,, → 𝑎,𝑀 , 	 (𝑓--, 𝑄--) → (𝑎,𝑀), … 

Effect of higher multipolar modes
• Waveform is consisted of several multipolar modes. (Dominant mode 
𝑙, 𝑚 = (2,2))

• To test general relativity, we have to get the information of each mode.

• How to extract a single mode from several multipolar modes?



Effect of higher multipolar modes
• Berti et al. (2007)

Matched filter the 2 modes damped sinusoidal signals by single mode 
templates and evaluate the event loss without assuming noise. Signal to 
noise ratio can be lost by more than 3%. 

• Bayesian analysis (test of no hair theorem)
Gossan et al. (2012), Meidam et al. (2014)

Estimate parameters from 2 modes damped sinusoidal signals slightly 
deviated from general relativity.

Constraints for non GR gravity.

Outline of the analysis
• Use waveforms from the numerical simulation as a signal. We consider a 

waveform includes two modes.

• Windowed the signal before the merger.

• Analyze the dominant mode by matched filtering.

• Cut off the frequency lower than the estimated dominant mode.

• Analyze the subdominant mode.

• Evaluate the accuracy of parameter estimations.



Matched filtering
• Signal-to-noise ratio

𝑆1(𝑓): noise power spectrum 

(aLIGO zero detuned high power )

𝑠 𝑡 : signal (numerical waveform)

𝑛 𝑡 :	Gaussian noise

𝑠6(𝑡):	template,	(𝑠6, 𝑠6) ≡ 1

Signal
• waveform from numerical simulation

(Simulating eXtreme Spacetime) (https://www.black-holes.org)

SXS0293
Initial conditions :mass ratio 3:1, initial spin 0.85
Estimated parameters : ratio of final mass to total mass 0.9362, final spin 
0.9124

Combine 𝑙, 𝑚 = (2,2) and (3,3) modes.



2 mode signal

We assume the inclination angle is 90o, so that the relative amplitude of  33 mode 
becomes large.

（Berti et al. PRD 76 104044 (2007)）

𝑓
⇩

𝑓/𝑄
⇩

amplitude
⇩

Antenna
pattern
⇩

Initial
phase
⇩

Template

We change the starting time 𝑡;.
We look for (𝑓6, 𝑄6) that gives the maximum SNR for each 𝑡;.
SNR is maximized against the initial phase 𝜙; (Nakano et al. 2004) for 
each 𝑡;. 



Results
Waveform SXS0293 : total mass 180M⦿, z = 0.05                         Tukey window is used.

Combined at 𝜃 = >
,⁄

Window

𝑙, 𝑚 = (2,2)

𝑙, 𝑚 = (3,3)

Results
Extraction of  22 mode. (Estimated values from SXS, 𝑓~126Hz, 𝑄~5.3 or ~169𝑀⨀, F

G
~0.91)

• In the presence of noise (140 times Gaussian noise)

Average value (𝑡; ≳ 5.52	): 𝑓6 = 125.293J-.,KL-M,.KN,,, 𝑄6 = 5.2606JO.OK-,MO.P-QQ

(F
G
~0.904J;.;KM;.;L,, M~174𝑀⊙)



Results
Extraction of  33 mode. Lower cuttoff frequency is 130 Hz.

• In the presence of noise (140 times Gaussian noise)   (Estimated 𝑓~196Hz, 𝑄~8.5)

Average value (𝑡; ≳ 5.52	): 𝑓6 = 191.2225JP.KPN-ML.KO,-, 𝑄6 = 9.6531J-.OO-WMP.P-N-

(F
G
~0.936J;.;QNM;.;LO, M~188𝑀⊙)

Summary
• Analyzed a numerical waveform composed of 2 modes by single mode 

templates under Gaussian noise.

• Though the subdominant mode is less accurate, we can estimate 2 
modes separately by matched filtering.

• Application to the constraints for QNM parameters of modified gravity 
or exotic objects.
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Synergy between ground and 
space based interferometers

Remya Nair 
JSPS Post-Doctoral Fellow 

Kyoto University

with Prof. Takahiro Tanaka

JGRG 2017

Combining measurements of binary inspiral 
signals, obtained from ground and space 

based GW interferometers, gives us better 
estimates of the source parameters 

TAKE HOME



Why?

Era of GW Astronomy  

6 inspiral signals detection already 
This includes an EM counterpart event 

Success of LISA pathfinder

 Better estimates on binary coalescence parameters 
Inspiral - Merger - Ringdown (Uchikata-san, Yamamoto-san) 

 Possible evidence for GR corrections 

 Formation mechanism 

What we hope to learn from coalescence signals



What we did

Studied 30 + 40 Solar mass BH-BH binary to get error 
estimates on the parameters 

Parameters: 
 No spin case:  

Spin case (no precession):  

M, ⌫, tc,�c + 4 angles

M, ⌫, tc,�c,+spin correction

parameters + 4 angles

How we did it

GW waveform 

Overall amplitude Phase 
M, ⌫, f, tc,�cM, DL

Polarization amplitude 

F+, F⇥, 4 angles

h↵(f) / Af�7/6ei (f)

⇢
5

4
A↵(t(f))

�
e�i('p,↵(t(f))+'D(t(f)))

Restricted post Newtonion (PN) 

+

�,�, �, ⇠, ⇣spin corrections



Construct the Fisher matrices 

The noise weighted inner product for two signals (or a signal 
and a template waveform) 

How we did it

(h1, h2) = 2

Z 1

0

h̃⇤
1(f)h̃2(f) + h̃⇤

2(f)h̃1(f)

Sn(f)
df

P (s|✓) / e�(s�h(✓),s�h(✓))/2

How we did it

For large SNR parameter estimates follow a  
Gaussian distribution

P (�✓i) / e��ij�✓i�✓j/2

�ij ⌘
✓
@h

@✓i
,
@h

@✓j

◆

C = ��1

p
h(�✓i)2i =

p
Cii

Fisher Matrix

Covariance Matrix

Root mean square error
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GW interferometers: Noise curves

Focus on DECIGO + ET 

Also consider pre-DECIGO missions Sn(f)
scaled = KSn(f)

DECIGO

Combined estimates ‘Synergy’ : Non-spinning case
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Spinning case
Five spin corrections

� spin-spin correction   2 PN

� spin-orbit correction   1.5 PN

� spin-orbit correction   2.5 PN

⇠ spin-orbit correction   3 PN

⇣ spin-orbit correction   3.5 PN

spin-orbit corrections written in terms of two auxiliary 
parameters — total parameters 11

Combined estimates ‘Synergy’ : Spinning case



Spinning case: Synergy
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Complementarity between Space and ground 
based GW detectors 

K. Yagi (2011)



Summary

Reported a range of sensitivities for a DECIGO like mission where 
joint measurements with ET give better error estimates 

There is scientific gain in having a space based interferometer 
observing in the low frequency region, even when we haven’t 
reached design sensitivity!

Ongoing work Analyzing precessing systems

Thank you 
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The loop representation of Quantum

Gravity as a Deformation

Quantization

Jasel Berra

in collaboration with A. Molgado

Universidad Autónoma de San Luis Potosí (UASLP)

The 27th Workshop on General Relativity and

Gravitation in Japan

Saijo, Higashi-Hiroshima

27 November-1 December 2017

Deformation quantization

De�nition (Quantization)

Quantization of a classical system (M, { , }) is a one to one mapping

Q~ : A → A from the set of classical observables C∞(M), to the set A of

quantum observables, the set of self adjoint operators on a Hilbert space H.
The map Q~ satis�es

lim
~→0

1

2
Q−1~ (Q~(f1)Q~(f2) +Q~(f2)Q~(f1)) = f1f2

lim
~→0

Q−1~ ({Q~(f1),Q~(f2)}) = {f1, f2}

- There are different structures in quantum mechanics and

classical mechanics, so that the correspondence f 7→ Q~(f ) is

not an isomorphism between Lie algebras.



Groenewold-van Hove theorem

- In general there is no invertible map from classical observables

to self adjoint operators in a Hilbert space, such that the

Poisson structure is preserved, as Dirac’s (functor) heuristics

(Groenewold-van Hove theorem).

- A counterexample is given by{
x3, p3

}
+

1

12

{{
p2, x3

}
,
{
x2, p3

}}
= 0

- It is the Moyal bracket, instead of the Poisson bracket, which

maps invertibly to the quantum commutator.

- In the case of the simplest classical system with one degree of

freedom, the Heisenberg commutation relations

[Q,P] = i~, [Q,Q] = [P,P] = 0

- Then, this implies that ‖Q‖, ‖P‖ cannot be both finite.

Weyl map

- In order to solve this difficulty we introduce the unitary

operators

U(u) = e−iuP , V (v) = e−ivQ , U(u)V (v) = e i~uvV (v)U(u)

Theorem (Von Neumann)

Every regular, irreducible unitary representation of the Weyl relations is unitarly

equivalent to the Schrödinger representation.

- Define a linear map W : L1(R2)→ L(H), called the Weyl

transform, by
(
S(u, v) = e−i~uv/2U(u)V (v)

)
W (f ) =

1

2π

∫
R2

f (u, v)S(u, v)dudv

- The integral is understood in the weak sense, for every

ψ1, ψ2 ∈ H

〈W (f )ψ1, ψ2〉 =
1

2π

∫
R2

f (u, v) 〈S(u, v)ψ1, ψ2〉 dudv



Properties of the Weyl transform

For all f , f1, f2 ∈ L1(R2),

1. W (f )∗ = W (f ∗).

2. kerW = 0.

3. W (f1)W (f2) = W (f1 ?~ f2), where

(f1 ?~ g2)(u, v) =
1

2π

∫
R2

e
i~
2
(uv′−u′v)f1(u− u′, v − v′)f2(u′, v′)du′dv′.

- We have f1 ?~ f2 ∈ L1(R2) and defines a new associative product

on L1(R2),
f1 ?~ (f2 ?~ f3) = (f1 ?~ f2) ?~ f3

- When ~ = 0, the product ?~ becomes the usual convolution

product.

Weyl Quantization

- The Weyl transform defines a quantization of classical

systems with canonical symplectic form ω = dp ∧ dq

Φ = W ◦ F−1 : S(R2)→ L(H)

Theorem
The mapping S(R2) 3 f → Φ(f ) is a quantization, i.e., it satis�es

lim
~→0

1

2
Φ−1 (Φ(f1)Φ(f2) + Φ(f2)Φ(f1)) = f1f2

lim
~→0

Φ−1 ({Φ(f1),Φ(f2)}) = {f1, f2}

- The Weyl quantization defines a bilinear operator

f1 ?~ f2 = Φ−1 (Φ(f1)Φ(f2)) = f1 exp

(
i~
2

(←−
∂ q

−→
∂p −

←−
∂p
−→
∂q
))

f2.



Polymer representation

- LQG techniques applied to finite dimensional systems.

- Starting with the Hilbert space, L2(R, dµd ), where the measure

is given by (Corichi et al)

dµd =
1

d
√
π
e
− q2

d2 dq.

- Let φα(q) = V (α)φ0(q) = e−
i
~αq ∈ L2(R, dµd ), then

lim
1/d→0

〈φα, φλ〉d = δαλ

- In this limit, the operators V (α) become discontinuous (von

Neumann uniqueness does not apply here). Then, the position

operator is not defined.

- In this limit, the momentum operator P = −i~∂q is well defined.

The Weyl transform of the polymer representation

Theorem

The Fourier transform of φ(q) ∈ L2(R, dµd ) is given by∫
R
φ

(√
2q − i

~
pd2

)
dµd

Theorem

The Weyl transform in the polymer representation is the linear

map

Wpoly (f )φ(q) = lim
1/d→0

1

2π~

∫
R2

f (q − q′, v)e
−iv
2~ (q+q′)e

1

2d2
(q2−q′2)φ(q′)dq′dv.

where the integral is understood in the weak sense, i.e., for all

φ1, φ2 ∈ Hpoly

〈Wpoly (f )φ1, φ2〉poly = lim
1/d→0

〈Wd (f )φ1, φ2〉d .



The Weyl transform of the polymer representation

- If f = Id , the Weyl transform provides the inner product

〈Wpoly (Id)φα, φλ〉poly = lim
1/d→0

〈Wd (Id)φα, φλ〉d = δα,λ.

- Let us analize the position and momentum operator

- Wpoly (q)φ(q) is not well defined, then the operator V (v) is not

continuous.

- Wpoly (p)φ(q) = −i~∂qφ(q), then the operator U(u) is continuous.

- The star product is given by

〈Wpoly (f1 ? f2)φ1, φ2〉poly

= lim
1/d→0

1

2π~

∫
R2

(f1 ?~ f2)(q − q′, v)e
−iv
2~ (q+q′)K(φ1(q′))K(φ2(q))dqdq′dv

Wigner function of the polymer representation

- The Moyal bracket gives the desire quantum representation

of the Poisson bracket

{V (v), p} = −ivV (v).

- The Wigner function in the polymer representation,

f (p, x) = W−1 (|φ〉 〈φ|), reads

f = lim
1/d→0

1√
2π~

∫
R
e
− i

~ z(p−i~ q
d2

)φ(q + z/2)φ∗(q − z/2)
1√
πd

e
− (q−z/2)2

d2 dz

- If the system is described in a pure state∫
R
f (p, q)dp = 〈φ(q), φ(q)〉poly∫
R
f (p, q)dq = |(̃Kφ)(p)|2



Free particle

- Taking the d → 0 limit, we obtain (Fewster, Sahlmann)

f (µ, c) =

∫
φ∗(c − z/2)e−

i
~ zµφ(c + z/2)dz ,

where φ(c) are the cylindrical functions of c ∈ Rb , and µ ∈ R̂b.

- The *-genvalue equation for the free particle is given by

Hfree ? f = E ? f

sin
µp

~

[
f (q +

µ

2
, p)− f (q − µ

2
, p)
]

= 0,(
2− 2m

µ2

~2
E

)
f (q, p) = cos

µp

~

[
f (q +

µ

2
, p)− f (q − µ

2
, p)
]
.

- The polymer Wigner function is given by

f (q, p) = δ(p − pE ), pE =
~
µ
arccos

(
1− mµ2

~2
E

)
.

Uncertainty relation

Lemma

〈g∗ ? g〉 =

∫
dqdp (g∗ ? g)f ≥ 0

- For a, b, c ∈ C, and g = a + bq + c ~
µ
sin µp

~ , we have

∆q∆p ≥ ~
2

(
1 +

1

2
µ2∆p2

)
+ O(µ4)

- Generalized uncertainty principle (Hossain, Husain, Seahra).



Perspectives

- Relations of the star product with noncommutativity.

- Examples (Mechanical systems, loop quantum cosmology,

inflation, unruh effect . . . ).

- Geometric operators, Bekenstein-Hawking entropy.

- Field theory (theories of connections).

- Semiclassical limits.

- "Loop quantum information" (background invariant quantum

information), EPR, gravity and quantum entanglement of

vacuum.

Thank you for your attention
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Scalar-tensor theories

Ostrogradsky Ghost

Healthy theories with 

2nd-order derivatives

Horndeski theory

Healthy theories with 

arbitrary higher-order derivatives

Inflation

Dark energy

DHOST / EST
Extended Galileon

GLPV

𝑓 𝜙, 𝑋 𝑅

𝐺𝜇𝜈𝛻𝜇𝛻𝜈𝜙

Brans-Dicke

𝐾(𝜙, 𝑋)

𝑓(𝑅)

DGP



Ostrogradsky theorem for 𝐿( ሷ𝜙𝑎, ሶ𝜙𝑎 , 𝜙𝑎)

• 𝐿 = 𝐿( ሷ𝜙𝑎, ሶ𝜙𝑎 , 𝜙𝑎)

• 𝜙𝑎 = 𝜙𝑎 𝑡 and 𝑎 = 1,⋯𝑛

• 𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏
(kinetic matrix)

Woodard, 1506.02210 

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

• Hamiltonian analysis

𝐿𝑒𝑞 = 𝐿 ሶ𝑄𝑎, 𝑄𝑎, 𝜙𝑎 + 𝜆𝑎(𝑄
𝑎 − ሶ𝜙𝑎)

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

𝑸𝒂, 𝝓𝒂, 𝝀𝒂

𝑷𝒂, 𝝅𝒂, 𝝆
𝒂

ሶ𝜙𝑎

=

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

ሷ𝜙𝑛 ሶ𝜙𝑛

==



• Hamiltonian analysis

𝐿𝑒𝑞 = 𝐿 ሶ𝑄𝑎, 𝑄𝑎, 𝜙𝑎 + 𝜆𝑎(𝑄
𝑎 − ሶ𝜙𝑎)

Canonical momenta

𝑃𝑎 =
𝜕𝐿

𝜕 ሶ𝑄𝑎

𝜋𝑎 = −𝜆𝑎
𝜌𝑎 = 0

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

det
𝜕𝑃𝑎

𝜕 ሶ𝑄𝑏
≠ 0

⟹ ሶ𝑄𝑎 = ሶ𝑄𝑎(𝑃, 𝑄, 𝜙)

Primary constraints (C1)

𝑸𝒂, 𝝓𝒂, 𝜆𝑎

𝑷𝒂, 𝝅𝒂, 𝜌
𝑎

ሶ𝜙𝑎
=

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

• Hamiltonian analysis

𝐿𝑒𝑞 = 𝐿 ሶ𝑄𝑎, 𝑄𝑎, 𝜙𝑎 + 𝜆𝑎(𝑄
𝑎 − ሶ𝜙𝑎)

Canonical momenta

𝑃𝑎 =
𝜕𝐿

𝜕 ሶ𝑄𝑎

𝜋𝑎 = −𝜆𝑎
𝜌𝑎 = 0

𝜋𝑎 + 𝜆𝑎 , 𝜌
𝑏 = 𝛿𝑎

𝑏

⟹ Second class.  No secondary constraints (C2)

⟹ 𝑛 healthy + 𝑛 ghost DOFs

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

det
𝜕𝑃𝑎

𝜕 ሶ𝑄𝑏
≠ 0

⟹ ሶ𝑄𝑎 = ሶ𝑄𝑎(𝑃, 𝑄, 𝜙)

Primary constraints (C1)

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

𝑸𝒂, 𝝓𝒂, 𝜆𝑎

𝑷𝒂, 𝝅𝒂, 𝜌
𝑎

ሶ𝜙𝑎

=



• Hamiltonian analysis

𝐿𝑒𝑞 = 𝐿 ሶ𝑄𝑎, 𝑄𝑎, 𝜙𝑎 + 𝜆𝑎(𝑄
𝑎 − ሶ𝜙𝑎)

Canonical momenta

𝑃𝑎 =
𝜕𝐿

𝜕 ሶ𝑄𝑎

𝜋𝑎 = −𝜆𝑎
𝜌𝑎 = 0

Hamiltonian

𝐻 = 𝐻0 𝑃, 𝑄, 𝜙 + 𝜋𝑎𝑄
𝑎

𝜋𝑎 shows up only linearly. 𝐻 is unbounded.

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

det
𝜕𝑃𝑎

𝜕 ሶ𝑄𝑏
≠ 0

⟹ ሶ𝑄𝑎 = ሶ𝑄𝑎(𝑃, 𝑄, 𝜙)

Primary constraints (C1)

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

𝑸𝒂, 𝝓𝒂, 𝜆𝑎

𝑷𝒂, 𝝅𝒂, 𝜌
𝑎

ሶ𝜙𝑎
=

? No-ghost condition

𝐾𝑎𝑏 = 0 ⟹ 𝐻 is bounded
?

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded



𝐾𝑎𝑏 = 0 ⟸ 𝐻 is bounded

⟺

? No-ghost condition

𝐾𝑎𝑏 = 0 ⟹ 𝐻 is bounded
?

Different

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

... though it is a part of no-ghost conditions

“1st degeneracy condition” (DC1)

𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎 , 𝜙𝑎)

𝐻 = 𝐻0 + 𝜋𝑎𝑄
𝑎

• DC1:

⟹ Additional C1:  Ψ𝑎 ≡ 𝑃𝑎 − 𝐹𝑎(𝑄, 𝜙) = 0

Still 𝜋𝑎 is not fixed.

𝑸𝒂, 𝝓𝒂, 𝜆𝑎

𝑃𝑎, 𝝅𝒂, 𝜌
𝑎

ሶ𝜙𝑎

=HM, Suyama, 1411.3721

𝐾𝑎𝑏 = 0

 Fixed 



𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎 , 𝜙𝑎)

𝐻 = 𝐻0 + 𝜋𝑎𝑄
𝑎

• DC1: 

⟹ Additional C1:  Ψ𝑎 ≡ 𝑃𝑎 − 𝐹𝑎(𝑄, 𝜙) = 0

• DC2:

⟹ C2:  Υ𝑛 ≡ 𝜋𝑎 − 𝐺𝑎(𝑄, 𝜙) = 0

 We eliminated all the ghosts. 𝐻 is bounded.

 The most general Lagrangian: 𝐿 ∼ 𝐺 ሶ𝜙𝑎, 𝜙𝑎

 Fixed 

 Fixed 

𝑸𝒂, 𝝓𝒂, 𝜆𝑎

𝑃𝑎, 𝜋𝑎, 𝜌
𝑎

ሶ𝜙𝑎

=HM, Suyama, 1411.3721

𝐾𝑎𝑏 = 0

𝑀𝑎𝑏 ≡ {Ψ𝑎 , Ψ𝑏} = 0

No-ghost condition (DC1 & DC2)

𝐾𝑎𝑏 = 0 & 𝑀𝑎𝑏 = 0 ⟹ 𝐻 is bounded

Ostrogradsky theorem

det 𝐾 ≠ 0 ⟹ 𝐻 is unbounded

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

𝑀𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሶ𝜙𝑏
−

𝜕2𝐿

𝜕 ሷ𝜙𝑏𝜕 ሶ𝜙𝑎



No-ghost condition (DC1 & DC2)

𝐾𝑎𝑏 = 0 & 𝑀𝑎𝑏 = 0 ⟹ 𝐻 is bounded

Ostrogradsky theorem updated

det 𝐾 ≠ 0 ⟹ 𝐻 is unboundedor det𝑀 ≠ 0

𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሷ𝜙𝑏

𝑀𝑎𝑏 ≡
𝜕2𝐿

𝜕 ሷ𝜙𝑎𝜕 ሶ𝜙𝑏
−

𝜕2𝐿

𝜕 ሷ𝜙𝑏𝜕 ሶ𝜙𝑎

 EL eq

𝐾𝑎𝑏ሹ𝜙
𝑏 + ሶ𝐾𝑎𝑏 +𝑀𝑎𝑏

ሸ𝜙𝑏 = terms up to ሷ𝜙𝑎

⟹ 2nd-order system

No-ghost condition (DC1 & DC2)

𝐾𝑎𝑏 = 0 & 𝑀𝑎𝑏 = 0 ⟹ 𝐻 is bounded

Ostrogradsky theorem updated

det 𝐾 ≠ 0 ⟹ 𝐻 is unboundedor det𝑀 ≠ 0

Highest Next-highest



Arbitrary higher-order derivatives

• 𝐿 = 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

• 𝜙𝑎 = 𝜙𝑎 𝑡 and 𝑎 = 1,⋯𝑛

• 𝐾𝑎𝑏 ≡
𝜕2𝐿

𝜕𝜙𝑎 𝑑 𝜕𝜙𝑏 𝑑 , 𝑀𝑎𝑏 ≡
𝜕2𝐿

𝜕𝜙𝑎 𝑑 𝜕𝜙𝑏 𝑑−1 −
𝜕2𝐿

𝜕𝜙𝑏 𝑑 𝜕𝜙𝑎 𝑑−1

Ostrogradsky theorem updated

det 𝐾 ≠ 0 ⟹ 𝐻 is unboundedor det𝑀 ≠ 0

• Still remain ghosts from lower (> 2) derivatives.

HM, Suyama, 1411.3721

 𝜙𝑎(2𝑑) from EL eq Highest

 𝜙𝑎(2𝑑−1) from EL eq Next-highest

𝐾𝑎𝑏 = 0

𝑀𝑎𝑏 = 0

Eliminating Ostrogradsky ghost

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙) ⟹ 𝐿( ሶ𝜙, 𝜙)

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎) ⟹ 𝐿( ሶ𝜙𝑎, 𝜙𝑎)

• 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

HM, Suyama, 1411.3721



Eliminating Ostrogradsky ghost

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙) ⟹ 𝐿( ሶ𝜙, 𝜙)

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎) ⟹ 𝐿( ሶ𝜙𝑎, 𝜙𝑎)

• 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

• 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞, 𝑞)

• 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙 + 𝑔𝜇𝜈

• 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙𝑎 + 𝑔𝜇𝜈

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

HM, Suyama, 1411.3721

𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎 , 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖)

• Hamiltonian analysis

𝐿𝑒𝑞 = 𝐿 ሶ𝑄𝑎, 𝑄𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖 + 𝜆𝑎(𝑄
𝑎 − ሶ𝜙𝑎)

Canonical momenta

𝑃𝑎 = 𝐿 ሶ𝑄𝑎

𝑝𝑖 = 𝐿 ሶ𝑞𝑖

𝜋𝑎 = −𝜆𝑎
𝜌𝑎 = 0

Hamiltonian
𝐻 = 𝐻0(𝑃, 𝑄, 𝜙, 𝑝, 𝑞) + 𝜋𝑎𝑄

𝑎

𝜋𝑎 shows up only linearly.  𝐻 is unbounded.

𝑸𝒂, 𝝓𝒂, 𝒒𝒊, 𝜆𝑎

𝑷𝒂, 𝝅𝒂, 𝒑𝒊, 𝜌
𝑎

ሶ𝜙𝑎

=

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

Primary constraints (C1)



𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎 , 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖)

𝐻 = 𝐻0 + 𝜋𝑎𝑄
𝑎

• DC1: 

⟹ Additional C1:  Ψ𝑎 ≡ 𝑃𝑎 − 𝐹𝑎(𝑄, 𝜙, 𝑝, 𝑞) = 0

• DC2:

⟹ C2:  Υ𝑛 ≡ 𝜋𝑎 − 𝐺𝑎(𝑄, 𝜙, 𝑝, 𝑞) = 0

 We eliminated all the ghosts. 𝐻 is bounded.

 EL eqs ⟹ 2nd-order system

 Applies for a wide class of theories

 Fixed 

 Fixed 

𝑸𝒂, 𝝓𝒂, 𝒒𝒊, 𝜆𝑎

𝑃𝑎, 𝜋𝑎, 𝒑𝒊, 𝜌
𝑎

ሶ𝜙𝑎

=

𝑀𝑎𝑏 ≡ {Ψ𝑎 , Ψ𝑏} = 0

𝐿 ሶ𝑄𝑎 ሶ𝑄𝑏 − 𝐿 ሶ𝑞𝑖 ሶ𝑄𝑎𝐿 ሶ𝑞𝑖 ሶ𝑞𝑗
−1 𝐿 ሶ𝑞𝑗 ሶ𝑄𝑏 = 0

det 𝐿 ሶ𝑞𝑖 ሶ𝑞𝑗 ≠ 0

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

Applications

 Field theory in flat spacetime

 SU(2) 

 Boson-Fermion

 Scalar-tensor theories

 Vector-tensor theories

 Tensor theories
Crisostomi, Noui, Charmousis, Langlois, 1710.04531

Kimura, Sakakihara, Yamaguchi, 1704.02717

Kimura, Naruko, Yoshida, 1608.07066

Allys, Peter, Rodriguez, 1609.05870

Crisostomi, Klein, Roest, 1703.01623

Langlois, Noui, 1510.06930, 1512.06820

Crisostomi, Koyama, Tasinato, 1602.03119

Achour, Langlois, Noui, 1602.08398

Achour, Crisostomi, Koyama, Langlois, Noui, Tasinato, 1608.08135



Eliminating Ostrogradsky ghost

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙) ⟹ 𝐿( ሶ𝜙, 𝜙)

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎) ⟹ 𝐿( ሶ𝜙𝑎, 𝜙𝑎)

• 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞, 𝑞)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙 + 𝑔𝜇𝜈

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙𝑎 + 𝑔𝜇𝜈

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

HM, Suyama, 1411.3721

Eliminating Ostrogradsky ghost

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙) ⟹ 𝐿( ሶ𝜙, 𝜙)

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎) ⟹ 𝐿( ሶ𝜙𝑎, 𝜙𝑎)

• 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞, 𝑞)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙 + 𝑔𝜇𝜈

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙𝑎 + 𝑔𝜇𝜈

• 𝐿( ሸ𝜓, ሷ𝜓, ሶ𝜓, 𝜓; ሶ𝑞𝑖 , 𝑞𝑖)

• 𝐿( ሸ𝜓𝑛, ሷ𝜓𝑛, ሶ𝜓𝑛, 𝜓𝑛; ሷ𝜙𝑎, ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖)

• 𝐿(𝜙𝑖𝑑 𝑑+1 , … ; 𝜙𝑖𝑑−1 𝑑 , … ;… ; ሶ𝜙𝑖0 , 𝜙𝑖0)

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

HM, Suyama, 1411.3721

HM, Suyama, Yamaguchi, 1711.08125; in prep.



Quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

𝐿 =
1

2
𝑎𝑛𝑚 ሸ𝜓𝑛 ሸ𝜓𝑚 +

1

2
𝑏𝑛𝑚 ሷ𝜓𝑛 ሷ𝜓𝑚 +

1

2
𝑐𝑛𝑚 ሶ𝜓𝑛 ሶ𝜓𝑚

+
1

2
𝑑𝑛𝑚𝜓

𝑛𝜓𝑚 + 𝑒𝑛𝑚 ሸ𝜓𝑛 ሷ𝜓𝑚 + 𝑓𝑛𝑚 ሷ𝜓𝑛 ሶ𝜓𝑚

+
1

2
𝐴𝑖𝑗 ሶ𝑞

𝑖 ሶ𝑞𝑗 +
1

2
𝐵𝑖𝑗𝑞

𝑖𝑞𝑗 + 𝐶𝑖𝑗 ሶ𝑞
𝑖𝑞𝑗 + 𝛼𝑛𝑖 ሸ𝜓

𝑛 ሶ𝑞𝑖

Equivalent form

𝐿𝑒𝑞 = 𝐿 ሶ𝑄,𝑄, 𝑅, 𝜓, ሶ𝑞, 𝑞 + 𝜉𝑛 ሶ𝜓𝑛 − 𝑅𝑛 + 𝜆𝑛( ሶ𝑅𝑛 − 𝑄𝑛)

Canonical momenta

𝑃𝑄𝑛 = 𝑎𝑛𝑚 ሶ𝑄𝑚 + 𝛼𝑛𝑖 ሶ𝑞
𝑖 + 𝑒𝑛𝑚𝑄

𝑚

𝑝𝑖 = 𝛼𝑛𝑖 ሶ𝑄
𝑛 + 𝐴𝑖𝑗 ሶ𝑞

𝑗 + 𝐶𝑖𝑗𝑞
𝑗

𝑃𝑅𝑛 = 𝜆𝑛, 𝜋𝜓𝑛 = 𝜉𝑛
𝜌𝜆𝑛 = 0, 𝜌𝜉𝑛 = 0

Primary 

constraints (C1)

ሷ𝜓𝑛 ሶ𝜓𝑛

===

ሸ𝜓𝑛

HM, Suyama, Yamaguchi, 1711.08125
det 𝐴𝑖𝑗 ≠ 0

det 𝑐𝑛𝑚 ≠ 0

𝜓𝑛 𝑡
𝑞𝑖(𝑡)

Quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

𝐻 = 𝐻0 + 𝑃𝑅𝑛𝑄
𝑛 + 𝜋𝜓𝑛𝑅𝑛

• DC1:

⟹ Additional C1:  Ψ𝑛 ≡ 𝑃𝑄𝑛 −⋯ = 0

• DC2:

⟹ C2:  Υ𝑛 ≡ 𝑃𝑅𝑛 −⋯ = 0

• DC3:

⟹ C3:  Λ𝑛 ≡ 𝜋𝜓𝑛 −⋯ = 0

We eliminated all the ghosts?  

𝑸𝒏, 𝑹𝒏, 𝝍𝒏, 𝒒𝒊, 𝜆𝑛, 𝜉𝑛

𝑃𝑄𝑛 , 𝑃𝑅𝑛 , 𝜋𝜓𝑛 , 𝒑𝒊, 𝜌𝜆𝑛 , 𝜌𝜉𝑛

ሷ𝜓𝑛 ሶ𝜓𝑛

==

 Fixed 

 Fixed 

 Fixed 

HM, Suyama, Yamaguchi, 1711.08125

No! 

𝑎𝑛𝑚 − 𝛼𝑛𝑖𝐴
𝑖𝑗𝛼𝑗𝑚 = 0

{Ψ𝑛, Ψ𝑚} = −2 𝑒𝑛𝑚 −⋯ = 0

{Υ𝑛, Ψ𝑚} = −𝑏𝑛𝑚 −⋯ = 0



Quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

𝐻 = 𝐻0 + 𝑃𝑅𝑛𝑄
𝑛 + 𝜋𝜓𝑛𝑅𝑛

All DCs and Cs

𝐻: linear in 𝑄𝑛 ⟹ Hidden ghosts appeared

𝑄𝑛, 𝑹𝒏, 𝝍𝒏, 𝒒𝒊, 𝜆𝑛, 𝜉𝑛

𝑃𝑄𝑛 , 𝑃𝑅𝑛 , 𝜋𝜓𝑛 , 𝒑𝒊, 𝜌𝜆𝑛 , 𝜌𝜉𝑛

ሷ𝜓𝑛 ሶ𝜓𝑛

==

HM, Suyama, Yamaguchi, 1711.08125

𝐻

Quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

𝐻 = 𝐻0 + 𝑃𝑅𝑛𝑄
𝑛 + 𝜋𝜓𝑛𝑅𝑛

All DCs and Cs

𝐻: linear in 𝑄𝑛 ⟹ Hidden ghosts appeared

• DC4:

⟹ C4:  Ω𝑛 ≡ 𝑐𝑛𝑚𝑄
𝑚 −⋯ = 0

• Condition to complete Dirac procedure:

det 𝑍𝑛𝑚 ≡ det{Ω𝑛, Ψ𝑚} ≠ 0

 We eliminated all the ghosts.  𝐻 is bounded.

𝑄𝑛, 𝑹𝒏, 𝝍𝒏, 𝒒𝒊, 𝜆𝑛, 𝜉𝑛

𝑃𝑄𝑛 , 𝑃𝑅𝑛 , 𝜋𝜓𝑛 , 𝒑𝒊, 𝜌𝜆𝑛 , 𝜌𝜉𝑛

ሷ𝜓𝑛 ሶ𝜓𝑛

==

 Fixed

HM, Suyama, Yamaguchi, 1711.08125

{Λ𝑛, Ψ𝑚} = 2(𝑓𝑛𝑚 −⋯) = 0



Quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

• Dirac matrix

det 𝑍𝑛𝑚 ≠ 0

⟹ det𝐷 ≠ 0 ; All constraints are second class

⟹ Healthy 2(𝑁 + 𝐼) DOFs

HM, Suyama, Yamaguchi, 1711.08125

𝐷 =

C1
C2 C3C4

Eliminating Ostrogradsky ghost

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙) ⟹ 𝐿( ሶ𝜙, 𝜙)

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎) ⟹ 𝐿( ሶ𝜙𝑎, 𝜙𝑎)

 𝐿(𝜙𝑎 𝑑 , 𝜙𝑎 𝑑−1 , … , 𝜙𝑎)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞, 𝑞)

 𝐿( ሷ𝜙, ሶ𝜙, 𝜙; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙 + 𝑔𝜇𝜈

 𝐿( ሷ𝜙𝑎 , ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖) ∼ 𝜙𝑎 + 𝑔𝜇𝜈

 𝐿( ሸ𝜓, ሷ𝜓, ሶ𝜓, 𝜓; ሶ𝑞𝑖 , 𝑞𝑖)

 𝐿( ሸ𝜓𝑛, ሷ𝜓𝑛, ሶ𝜓𝑛, 𝜓𝑛; ሷ𝜙𝑎, ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖)

 𝐿(𝜙𝑖𝑑 𝑑+1 , … ; 𝜙𝑖𝑑−1 𝑑 , … ;… ; ሶ𝜙𝑖0 , 𝜙𝑖0)

HM, Noui, Suyama, Yamaguchi, Langlois, 1603.09355

HM, Suyama, 1411.3721

HM, Suyama, Yamaguchi, 1711.08125; in prep.



Summary

Ostrogradsky ghosts appear as

• 𝐿 ∋ 2nd-order time derivatives ⟹𝐻: linear in 𝑃

which can be removed by degeneracy conditions.

The analysis of 𝐿( ሷ𝜙𝑎, ሶ𝜙𝑎, 𝜙𝑎; ሶ𝑞𝑖 , 𝑞𝑖) applies for a wide 

class of model buildings.

We found that for quadratic model with ሸ𝜓𝑛, ሶ𝑞𝑖

• 𝐿 ∋ 3rd-order time derivatives  ⟹𝐻: linear in 𝑃, 𝑄

We constructed the first ghost-free model with 3rd-

order time derivatives in 𝐿.

The analyses of general 𝐿 and field theory are work 

in progress.
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Aya Iyonaga（Rikkyo Univ.）
collaborator: 
 Tsutomu Kobayashi（Rikkyo Univ.）

Motivation
Ostrogradsky stable scalar-tensor theories

(single field)
L = L(rµr⌫�,rµ�,�; @⇢@�gµ⌫ , @⇢gµ⌫ , gµ⌫)

Can we construct some degenerate 
multi-scalar-tensor theories?

(EOMs are at most �̈ )

generally, EOMs are higher derivatives

“trivially degenerate” :

“nontrivially degenerate” :

EOMs⇠ rr�
e.g.) Horndeski [Horndeski 1970]

[Kobayashi, et al. 2011]

EOMs are higher
e.g.) GLPV [Gleyzes, et al. 2014]

DHOST [Langlois, Noui 2015]
{ , but at most �̈

degenerate theoryBut some theories’ EOMs ⇠ �̈ :

classify degenerate theories into 2 types:

�

…we have been talking about single-scalar theories.



Setup

rr�I , (rr�I)2, (rr�I)3, …

L = L(rµr⌫�
I ,rµ�

I ,�I ; @⇢@�gµ⌫ , @⇢gµ⌫ , gµ⌫)

L =
p
�g

 (4)R

2
�A(IJ)K(�L, XMN )rµ�

Ir⌫�Jr⌫rµ�K

�

EOMs ⇠ rrr�I

(find degeneracy conditions)

(I = 1, ..., N)

fields’ number

after that, we see how these conditions

we consider Lagrangians which contain

are appeared in the EOMs

the most general Lagrangian(+ Einstein-Hilbert term) is:

restrict and make EOMs degenerateA(IJ)K

A(IJ)K = A(JI)Karbitrary function:
XIJ := �1

2
gµ⌫rµ�

Ir⌫�
Jkinetic term:

[Crisostomi, et al. 2017]For multi-scalar theories

Degeneracy conditions

L(�̈I , �̇I ,�I , q̇↵, q↵) = L(ȦI , AI ,�I , q̇↵, q↵) + �I(�̇
I �AI)

in our case,

where
can be removed(degenerate) S[IJ] = 0

...
�I

S[IJ] = 2(A(KJ)I �A(KI)J)A
K
⇤ +

✓
@A(KL)I

@XMJ
�

@A(KL)J

@XMI

◆
AK

⇤ AL
⇤A

M
⇤

A(KJ)I = A(KI)J ,
@A(KL)I

@XMJ
=

@A(KL)J

@XMI

degeneracy conditions:

(Si)[IJ] := @iL@iAIȦJ + V ↵
I @iL@iq↵ȦJ + @iL@iAI q̇�V

�
J + V ↵

I @iL@iq↵q̇�V
�
J

+@iV
�
J

⇣
L@iAI q̇� + LȦI@iq̇�

+ 2V ↵
I Lq̇(↵@iq�)

⌘

+(LȦIAJ � LAIȦJ ) + V ↵
I

⇣
Lq̇↵AJ � Lq↵ȦJ

⌘

+
⇣
LȦIq� � LAI q̇�

⌘
V �
J + V ↵

I

�
Lq̇↵q� � Lq↵q̇�

�
V �
J

S[IJ]

✓
LȦIȦJ :=

@L

@ȦI@ȦJ
, V ↵

I := �LȦI q̇�
L�1
q̇� q̇↵

◆

is arbitrary)AI
⇤ $ �̇I(

For single-scalar theories: det(kinetic matrix) = 0

= 0



EOMs
�L
��I contains…p

�gr��
J
⇥�
2A(IJ)K �A(JK)I

�
rµr�rµ�K �A(JK)Ir�rµrµ�K

⇤
・

@A(MN)I

@XKJ
=

@A(MN)K

@XIJIf

・
p
�grµ�

Mr��
Nr��

J


@A(MN)I

@XKJ
r�r�rµ�K �

@A(MN)K

@XIJ
r�r�rµ�K

�

⇠ rr�I
There are no “nontrivially degenerate” case 
in linear order of 

@A(MN)I

@XKJ
Rµ

⇢
��r⇢�K

“trivially degenerate”

all are removedrrr�Idegeneracy conditions
(EOMs ⇠ rr�I )

A(JK)I A(IJ)K = A(JK)I(for )
=

p
�gr��

JA(JK)I (rµr� �r�rµ)rµ�K

=
p
�gr��

JA(JK)IR⇢
�r⇢�K

Quadratic order?

… difficult to calculateS[IJ] 3
�
Kij,kl

��1

rr�I , (rr�I)2, (rr�I)3, …

L = L(rµr⌫�
I ,rµ�

I ,�I ; @⇢@�gµ⌫ , @⇢gµ⌫ , gµ⌫)

Kij,kl =
1

2
(�ik�jl � �ij�kl)

+A(IJ)(KL)

h

�

AI
mAm

J �AI
⇤A

J
⇤
�

n

AK
⇤ AL

⇤

⇣

�ij�kl � �i(k�l)j
⌘

+Aj
KA(k

L �l)i +Ai
KA(k

L �l)j
o

+
n⇣

2AI
⇤A

(i
JA

j)
KAL

⇤ �
kl �A(i

I A
j)
J AK

⇤ AL
⇤ �

kl
⌘

+ (ij) $ (kl)
o

+
1

2

⇣

AI
⇤A

J
⇤A

j
KA(l

L�
k)i + (i $ j)

⌘

+
1

2

⇣

AK
⇤ AL

⇤A
j
IA

(l
J �

k)i + (i $ j)
⌘

�
⇣

AJ
⇤A

L
⇤A

j
IA

(l
K�k)i + (i $ j)

⌘

� 2Ai
IA

k
JA

j
KAl

I

i

( (
= N

p
�
h
2CijKij + 2F ij

I V I
⇤ Kij +Kij,klKijKkl + 2CIV I

⇤ � U
i
+ �I(�̇

I �NAI
⇤ �N iDi�

I)

= N
p
�
h
2CijKij + 2F ij

I V I
⇤ Kij +Kij,klKijKkl + 2CIV I

⇤ � U
i
+ �I(�̇

I �NAI
⇤ �N iDi�

I)

L =
p
�g

 (4)R

2
+A(IJ)(KL)(�

P , XMN )�µ1µ2µ3
⌫1⌫2⌫3

rµ1�
Ir⌫1�Jrµ2r⌫2�Krµ3r⌫3�L

�

As the next case, we focus on:

ADM form

degeneracy condition:

�µ1µ2µ3
⌫1⌫2⌫3

= 3!�[µ1
⌫1

�µ2
⌫2
�µ3]
⌫3

A(IJ)(KL) = A(KL)(IJ)

we are now trying another approach

AI
⇤ ⇠ �̇I , V I

⇤ ⇠ ȦI
⇤



Quadratic order?
cosmological perturbation  (work in progress)

L =
p
�g

h
f (4)R+ Cµ⌫⇢�

IJ rµr⌫�
Ir⇢r��

J
i

where

scalar perturbations

Cµ⌫⇢�
IJ =

1

2
↵1,IJ (gµ⇢g⌫� + gµ�g⌫⇢) + ↵2,IJg

µ⌫g⇢� +
1

2
↵3,IJKL

�
rµ�Kr⌫�Lg⇢� +r⇢�Kr��Lgµ⌫

�

+
1

8
↵4,IJKL

�
rµ�Kr⇢�Lg⌫� +r⌫�Kr⇢�Lgµ� +rµ�Kr��Lg⌫⇢ +r⌫�Kr��Lgµ⇢

+(K $ L)) +
1

6
↵5,IJKLMN

�
rµ�Kr⌫�Lr⇢�Mr��N +rµ�Kr⌫�Mr⇢�Lr��N

+rµ�Kr⌫�Nr⇢�Mr��L +rµ�Mr⌫�Nr⇢�Kr��L +rµ�Lr⌫�Nr⇢�Kr��M

+rµ�Mr⌫�Lr⇢�Kr��N
�

↵ = ↵(�I , XJK)

some restrictions  
on -s?↵

spatially flat gauge: N = 1 + �N, �ij = a2�ijNi = @i�,

scalar fields: �I(t,x) = �̄I(t) +QI(t,x)

in the same way to the quadratic DHOST,

Summary

A(IJ)K = A(JK)I ,
@A(MN)I

@XKJ
=

@A(MN)K

@XIJwith

(rr�I)1 the most general degenerate Lagrangian is

(rr�I)2 difficult to calculate
cosmological perturbation 
(work in progress)

⇠ rr�I
There are no “nontrivially degenerate” case 
in linear order of 

Can we construct some degenerate 
multi-scalar-tensor theories?

L =
p
�g

 (4)R

2
�A(IJ)K(�L, XMN )rµ�

Ir⌫�Jr⌫rµ�K

�

(EOMs ⇠ rr�I )

S[IJ] = 0
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Theoretical	and	Observational	Studies	
on	Relativistic	Jets	Driven	by	Black	Holes			

Kenji	TOMA	
(Tohoku	U,	Japan)	

The	27th	Workshop	on	General	Relativity	and	Gravitation	in	Japan	
@	Kurara	Hall,	Higashi-Hiroshima;	Nov	27	–	Dec	1,	2017	

Outline	

1.  Introduction	on	relativistic	jets	& Blandford-
Znajek	(BZ)	process	

2.  Essential	points	of	BZ	process	
3.  Observational	tests	
4.  Summary	



Relativistic	Jets	
Active	Galactic	Nucleus	(AGN)	jets	 Gamma-ray	bursts	(GRBs)	

Lj � LEdd

� > 100

MBH & 3 M�

Lj . LEdd ' 1046M8 ergs�1

MBH ⇠ 107 � 109 M�

� =
1p

1� (v/c)2
= 10� 100

Long	GRBs	=	Peculiar	supernovae	
Short	GRBs	=	NS-NS	or	NS-BH	mergers	(?)	

Artist	view	Cygnus	A	©NRAO	

Radio	loud	AGNs	=	Elliptical	galaxies	
Radio	quiet	AGNs	=	Spiral	galaxies	

Black	Hole	–	Accretion	Flow	

Fig. 3.—Initial (left) and final (right) distribution of A!. Level surfaces coincide with magnetic field lines, and field line density corresponds to poloidal field
strength. In the initial state field lines follow density contours if "0 > 0 :2 "0 ; max .

(McKinney	&	Gammie	2004)	

•  MHD	simulations	show	that	jets	can	be	driven	electromagnetically		

Initial	fluid	torus	



Jet	from	black	hole	

Accre%on	Disk�

Black	Hole�

Disk	wind�

Rela%vis%c	
Jet�

B	field�

External	
medium�

e+�e-�

Photon�

•  MHD	simulations	in	fixed	Kerr	space-time	(e.g.	Komissarov	01;	Koide+	02;	
McKinney	&	Gammie	04;	Barkov	&	Komissarov	08;	Tchekhovskoy+	11)	

Electromagnetically-dominated	energy	flux	(jet)	in	the	polar	low-density	region,	
which	is	collimated	by	the	dense	disk	wind	

Poynting	flux	
Matter	

Lj = �Ṁjc
2

Blandford	&	Znajek	(1977)	

•  Slowly	rotating	Kerr	BH	

	
•  Steady,	axisymmetric	
•  Split-monopole	B	field	
•  Force-free	
approximation	
(Electromagnetically	
dominated)	

a =
J

Mrgc
⌧ 1

E

Jp Sp =
E⇥H'

4⇡

H' = �2⇡⌦FB
rp

� sin ✓Flat-space	solution	

H' = 2⇡(⌦F � ⌦H)B
rp

� sin ✓ Regularity	at	horizon	

This	can	be	enough	for	observed	jets	
dE

dt
⇠ a2B2

H
r2
H
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Figure 3. Escape of the split-monopole magnetic field from a Schwarzschild blackhole. Left panel: Magnetic flux surfaces of the split-monopole solution,
which was used as an initial solution in these numerical simulations. Right panel: Magnetic flux surfaces of the numerical solution at t = 5.
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Figure 4 . Magnetospheric Wald problem. Left panel: The angular velocityof magnetic field lines. There are 15 contours equallyspaced between 0 and 0.67.
The angular velocityfirst graduallyincreased towards the axis but then reaches a maximum and goes slightlydown. The thicklines show the ergosphere (outer
line) and the inner light surface (inner line). Middle panel: The magnetic flux surfaces. Right panel: The distribution of (B2 − D2)/ max(B2, D2). There are 15
contours equallyspaced between −0.12 and 1.0. This quantitymonotonicallydecreases towards the current sheet in the equatorial plane within the ergosphere.
The thickline shows the ergosphere.

C⃝ 2004 RAS, MNRAS 350, 427–448

Field	line	

a = 0.9

Analytical	studies	with	more	general	plasma	physics	may	check	
assumptions	of	numerical	studies	

Breakdown	of	
force-free/ideal	
MHD	condition	

Resistive	force-free	simulation	(Komissarov	2004)	

Fµ⌫F
µ⌫

Issue	on	BZ	process	[1]	

Electrodynamics of black hole magnetospheres 435
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Figure 2 . Monopole field solution for a = 0.1 and B 0 = 1 at time t = 50.
(a) The angular velocity of magnetic field lines at r = 3. The perturbative
solution of Blandford and Znajek gives ! = 0.5 !h, where !h is the angular
velocity of the black hole. (b) H φ of the numerical solution (crosses) and of
the perturbative solution (continuous line) at r = 3. (c) Ě·B̌ along θ = 1 and
θ = π − 1. The small unscreened component Ě∥ of the electric field drives
the conductivity current towards the black hole in the upper hemisphere and
away from it in the lower hemisphere.

reason it has been playing a key role in the development of black
hole electrodynamics. One important property of this solution is that
all magnetic field lines penetrate the black hole horizon. Macdonald
(1984) attempted to construct numerical steady-state solutions for
a more reasonable configuration of the magnetic field where only
a fraction of the magnetic field lines originate from the black hole
itself. The remaining magnetic flux splits between field lines orig-
inating from the accretion disc and field lines passing through the
gap between the hole and the disc. In general, the angular velocity of
magnetic field lines in steady-state force-free magnetospheres has
to be prescribed, so one faces the task of setting physically sensible
boundary conditions for all these three different types of magnetic
field lines. In the case of the field lines originating from the accre-
tion disc, the solution is obvious. Their angular velocity is given by
the angular velocity of the disc at the footpoints. As for the other
two kinds of magnetic field lines, this task is less trivial. In their
solution, Macdonald & Thorne (1982) and later Macdonald (1984)
appealed to the existing analogy between the black hole horizon and
a rotating conducting sphere. They concluded that only field lines
penetrating the event horizon rotate, whereas in the gap, ! = 0.

A somewhat simpler problem is the magnetospheric (plasma-
filled) version of the Wald (1974) problem for a rotating black hole
(see also Section 5.1). In this problem, just like in the problem
considered by Macdonald (1984), only a small fraction of the mag-
netic field lines penetrate the black hole horizon. If the analysis of
Macdonald & Thorne (1982) was correct, then only these field lines
would be forced to rotate. Komissarov (2002b) tried to find a steady-
state force-free solution to this problem by means of time-dependent
numerical simulations, but failed. The numerical solution invariably
evolved towards the state where B2 − D2 turned negative inside the
ergosphere. In fact, the solution seemed to indicate the development
of a current sheet in the equatorial plane within the ergosphere with
all magnetic field lines penetrating the current sheet being forced
to rotate in the same sense as the black hole. If this conclusion is
correct, a critical revision of the current perception of the role of the
event horizon in the black hole electrodynamics, as well as of the
virtues of the membrane paradigm, is required. Thus, the magne-
tospheric Wald problem is an ultimate ‘Rosetta Stone’ for research
into black hole electrodynamics.

To achieve high resolution within the ergosphere, these simula-
tions were carried out using the multigrid technique. We start with
a relatively low-resolution grid and continue simulations until the
solution becomes more or less steady within r = 4. Then the resolu-
tion is increased by a factor of 2 and the simulations are continued
until a new approximately steady-state solution is reached, and so
on. During the grid refinement the numerical solution on the finer
grid is found via interpolation. The final grid has 800 cells in the
θ -direction (θ ∈ [0, π]) and 1000 cells in the r-direction (r ∈ [0.9r +,
110]). The initial solution is described by the same B as in the vac-
uum solution of (Wald 1974, equation 101) and has E = 0, which
implies a non-rotating magnetosphere.

Fig. 4 shows the final solution, at t = 126, for a Kerr black hole
with a = 0.9. As suggested in Komissarov (2002b), a current sheet
is formed in the equatorial plane within the black hole ergosphere.
This is clearly seen in the right panel of Fig. 4, which shows the
distribution of (B2 − D2)/ max(B2, D2). Near the equator the pre-
dominantly radial electric field is larger than the magnetic field
and drives the electric current across the poloidal magnetic field
lines. Both the radial component (the middle panel of Fig.4) of the
magnetic field and its azimuthal component exhibit a break in the
equatorial plane on the scale of the current sheet. The most im-
portant result is shown in the left panel of Fig. 4: all the magnetic

C⃝ 2004 RAS, MNRAS 350, 427–448

Small	deviation	from	
force-free/ideal	MHD	in	
monopole	solution	

⇤Fµ⌫F
µ⌫ 6= 0

a = 0.1

Issue	on	BZ	process	[2]	

＋	 ＋	

＋	 ＋	
ー	ー	

J
V E

B

E = �V ⇥B

B'

r · S = �E · J > 0

r · S = �E · J < 0

r · S = 0S

(Faraday	1832;	Goldreich	&	Julian	1969)	

Crab	Nebula	
in	X-rays	

•  Membrane	paradigm	(Thorne	et	al.	1986)	
Ø  BZ	process	=	unipolar	induction	

But	horizon	is	causally	disconnected,	
and	there	is	no	matter-dominant	
region	



•  Force-free	or	ideal	MHD	condition	is	valid?	
•  How	is	the	electric	current	driven?	
•  Is	the	ergosphere	important?	
•  Negative	energy	inflow?	

E

Jp Sp =
E⇥H'

4⇡

H' = �2⇡⌦FB
rp

� sin ✓Flat-space	solution	

H' = 2⇡(⌦F � ⌦H)B
rp

� sin ✓ Regularity	at	horizon	

(Punsly	&	Coroniti	89;	Takahashi+	90;	Beskin	&	
Kusnetsova	00;	Okamoto	06;	Komissarov	09;	
Lasota+	14;	Koide	&	Baba	14;	Kojima	15)	

Consensus	achieved	
at	Workshop	『不惑BZ77』,	8/28-30/2017	

http://www.phyas.aichi-edu.ac.jp/~takahasi/BZ77_WS2017/	

Kojima	
Takahara	Ishihara	

Nakao	

Nambu	
Saida	

Takahashi	
Koide	

Okamoto	
Yoshida	

Nitta	

Fukuyama	



Kerr	space-time	

Boyer-Lindquist	coordinates	

Event	
horizon	

Ergosphere	

2858 K. Toma and F. Takahara

3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdx µdx ν = −α2dt2 + γij (β idt + dx i)(βj dt + dx j ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).
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is described by the coordinate four-velocity
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inertial, but it can be used as a convenient orthonormal basis to
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Appendix A), FIDOs rotate with the coordinate angular velocity
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which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +
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The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +
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At infinity, this space–time asymptotes to the flat one. The shapes
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The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗
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of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as
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[
1
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]
+ ∇ ·
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= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as
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]
+ ∇ · 1
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−(E · m)D − (H · m)B

+1
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(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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The event horizon, where grr = 0, is located at rH = 1 +
√

1 − a2. The ergosphere is the region
r < res = 1 +

√
1 − a2 cos2 θ , where the Killing vector ξµ is space-like, ξ2 = gtt = −α2 +β2 > 0.

At infinity, this space-time asymptotes to the flat one.
The local fiducial observer (FIDO) [23,29], whose world line is perpendicular to the absolute

space, is described by the coordinate four-velocity

n µ =
(

1
α

,
−β i

α

)
, n µ = gµν n ν = (−α, 0, 0, 0). (3)

The AM of this observer is n ϕ = 0, and thus FIDO is also a zero AM observer (ZAMO) [23]. Note
that the FIDO frame is not inertial, but it can be used as a convenient orthonormal basis to investigate
the local physics [23,43,44]. It should also be confirmed that FIDOs are time-like, physical observers
(i.e., n µn µ = −1).

In the BL coordinates, one has the following nonzero metric components:

α =
√

ϱ2(

)
, βϕ = −2ar

)
,

γϕϕ = )

ϱ2 sin2 θ , γrr = ϱ2

(
, γθθ = ϱ2, (4)

where

ϱ2 = r2 + a2 cos2 θ , ( = r2 + a2 − 2r, ) = (r2 + a2)2 − a2( sin2 θ . (5)

BL FIDOs rotate in the same direction as the BH with the coordinate angular velocity

+ ≡ dϕ

dt
= −βϕ = 2ar

)
. (6)

The BL coordinates have a well-known coordinate singularity (α = 0 and γrr = ∞, where ( = 0)
at the horizon. The BL FIDOs are physical observers only outside the horizon.

The KS coordinates have no coordinate singularity at the event horizon. The coordinates t and ϕ

are different from those in the BL coordinates. The nonzero metric components in this coordinate
system are:

α = 1√
1 + z

, βr = z
1 + z

, γrϕ = −a(1 + z) sin2 θ ,

γϕϕ = )

ϱ2 sin2 θ , γrr = 1 + z, γθθ = ϱ2, (7)

where z = 2r/ϱ2 [K04,37]. The KS spatial coordinates are no longer orthogonal (γrϕ ̸= 0). From
the space-time symmetries,

gµνξ
µξν = gtt = −α2 + β2,

gµνξ
µχν = gtϕ = γϕjβ

j = βϕ ,

gµνχ
µχν = gϕϕ = γϕϕ (8)

are the same in the BL and KS coordinates. We should note that the KS FIDOs are different from
the BL FIDOs (K04).
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3+1	Electrodynamics	

2858 K. Toma and F. Takahara

3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdx µdx ν = −α2dt2 + γij (β idt + dx i)(βj dt + dx j ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,

MNRAS 442, 2855–2866 (2014)
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Poynting	flux	

(Landau	&	Lifshitz	1975;	Komissarov	2004)	

Fields	in	the	coordinate	basis		

Fields	as	measured	by	FIDOs	

Energy	density	

Energy	equation	

E
µ = �

µ⌫
F⌫↵⇠

↵
, H

µ = ��
µ⌫⇤

F⌫↵⇠
↵

Dµ = Fµ⌫n⌫ , Bµ = �⇤Fµ⌫n⌫

Particle	EOM	in	FIDO’s	
orthonormal	basis		

Dûi

dt̂
=

q

m
(D̂i + ✏ijkv̂

jB̂k)

General	conditions	of	magnetosphere	

•  Kerr	spacetime	with	fixed	
arbitrary	spin	a	

•  Axisymmetric	
•  Poloidal	B	field	threading	
the	ergosphere	(with	
arbitrary	shape)		

•  Plasma	with	sufficient	
number	density	

D ·B = 0

E

Bp

Event	horizon	

Ergosphere	

(E ·B = 0)

This	includes	force-free/ideal	
MHD	condition	



Steady	axisymmetric	field	

2.3. Kerr BH magnetosphere

2.3.1. Electromagnetic fields. We study the axisymmetric electromagnetic field in Kerr

space-time which is filled with a plasma. (The steadiness of the field is partly discarded

in Section 5.) We put the additional assumptions similarly to TT14: (1) The poloidal B

field produced by the external currents (whose distribution is symmetric with respect to the

equatorial plane) is threading the ergosphere. We call the field lines threading the ergosphere

‘ergospheric field lines’. (2) The plasma in the BH magnetosphere is dilute and collisionless,

but its number density is high enough to screen the electric field along the B field lines, i.e.

D ·B = 0. (20)

The energy density of the particles is much smaller than that of the electromagnetic fields.

(3) The gravitational force is negligible compared with the Lorentz force. (The gravitational

force overwhelms the Lorentz force in a region very close to the event horizon [44], but the

physical condition in that region hardly affects its exterior.)

The condition D ·B = 0 and equation (11) lead to E ·B = 0. In the steady state, we have

∇×E = 0, which means that E is a potential field, and the axisymmetry leads to Eϕ = 0.

Then one can write

E = −ω ×B, ω = ΩFm. (21)

Substituting this equation into ∇×E = 0, one obtains

Bi∂iΩF = 0. (22)

That is, ΩF is constant along each B field line. The E field is also described by Ei = −ΩF∂iΨ

in terms of the magnetic flux function Ψ, so that each B field line is equipotential and ΩF

corresponds to the potential difference between the field lines.

In the steady, axisymmetric state, the equations (14) and (15) are reduced to

∇ ·
(
−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −(Jp ×Bp) ·m, (23)

∇ ·
(
ΩF

−Hϕ

4π
Bp

)
= Bi∂i

(
ΩF

−Hϕ

4π

)
= −E · Jp, (24)

where the subscript p denotes the poloidal component. Here one sees that the poloidal AM

and Poynting fluxes are described by

Lp =
−Hϕ

4π
Bp, Sp = ΩF

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξµχν and ΩF = −Ftθ/Fϕθ are the same in

the BL and KS coordinates (K04).

TT14 shows that the condition ΩF > 0 is inevitable for the ergospheric field lines in the

steady, axisymmetric state (see also K04; K09). Furthermore, for the ergospheric field lines

crossing the outer light surface (see Section 2.3.2), the condition

ΩF > 0, Hϕ ̸= 0 (26)

has to be maintained, i.e. the poloidal AM and Poynting fluxes are steadily non-zero (TT14).

The following discussion in this paper focuses on how their values are causally determined
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Bp
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= Bi∂i
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−Hϕ

4π
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and Poynting fluxes are described by

Lp =
−Hϕ

4π
Bp, Sp = ΩF

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξµχν and ΩF = −Ftθ/Fϕθ are the same in

the BL and KS coordinates (K04).

TT14 shows that the condition ΩF > 0 is inevitable for the ergospheric field lines in the

steady, axisymmetric state (see also K04; K09). Furthermore, for the ergospheric field lines

crossing the outer light surface (see Section 2.3.2), the condition

ΩF > 0, Hϕ ̸= 0 (26)

has to be maintained, i.e. the poloidal AM and Poynting fluxes are steadily non-zero (TT14).

The following discussion in this paper focuses on how their values are causally determined

and the role of the negative energies as measured in the coordinate basis.

6/27

2.3. Kerr BH magnetosphere

2.3.1. Electromagnetic fields. We study the axisymmetric electromagnetic field in Kerr

space-time which is filled with a plasma. (The steadiness of the field is partly discarded

in Section 5.) We put the additional assumptions similarly to TT14: (1) The poloidal B

field produced by the external currents (whose distribution is symmetric with respect to the

equatorial plane) is threading the ergosphere. We call the field lines threading the ergosphere

‘ergospheric field lines’. (2) The plasma in the BH magnetosphere is dilute and collisionless,

but its number density is high enough to screen the electric field along the B field lines, i.e.

D ·B = 0. (20)

The energy density of the particles is much smaller than that of the electromagnetic fields.

(3) The gravitational force is negligible compared with the Lorentz force. (The gravitational

force overwhelms the Lorentz force in a region very close to the event horizon [44], but the

physical condition in that region hardly affects its exterior.)

The condition D ·B = 0 and equation (11) lead to E ·B = 0. In the steady state, we have

∇×E = 0, which means that E is a potential field, and the axisymmetry leads to Eϕ = 0.

Then one can write

E = −ω ×B, ω = ΩFm. (21)

Substituting this equation into ∇×E = 0, one obtains

Bi∂iΩF = 0. (22)

That is, ΩF is constant along each B field line. The E field is also described by Ei = −ΩF∂iΨ

in terms of the magnetic flux function Ψ, so that each B field line is equipotential and ΩF

corresponds to the potential difference between the field lines.

In the steady, axisymmetric state, the equations (14) and (15) are reduced to

∇ ·
(
−Hϕ

4π
Bp

)
= Bi∂i

(
−Hϕ

4π

)
= −(Jp ×Bp) ·m, (23)

∇ ·
(
ΩF

−Hϕ

4π
Bp

)
= Bi∂i

(
ΩF

−Hϕ

4π

)
= −E · Jp, (24)

where the subscript p denotes the poloidal component. Here one sees that the poloidal AM

and Poynting fluxes are described by

Lp =
−Hϕ

4π
Bp, Sp = ΩF

−Hϕ

4π
Bp, (25)

respectively. It should be noted that Hϕ = ∗Fµνξµχν and ΩF = −Ftθ/Fϕθ are the same in

the BL and KS coordinates (K04).

TT14 shows that the condition ΩF > 0 is inevitable for the ergospheric field lines in the

steady, axisymmetric state (see also K04; K09). Furthermore, for the ergospheric field lines

crossing the outer light surface (see Section 2.3.2), the condition

ΩF > 0, Hϕ ̸= 0 (26)

has to be maintained, i.e. the poloidal AM and Poynting fluxes are steadily non-zero (TT14).

The following discussion in this paper focuses on how their values are causally determined

and the role of the negative energies as measured in the coordinate basis.

6/27

E ·B = 0

m = @'

Angular	momentum	equation	

Energy	equation	

Poynting	flux	

Origin	of	electric	potential	

2858 K. Toma and F. Takahara

3.1 The 3+1 decomposition of space–time

The space–time metric can be generally written as

ds2 = gµνdx µdx ν = −α2dt2 + γij (β idt + dx i)(βj dt + dx j ),

(12)

where α is called the lapse function, β i the shift vector and γ ij the
three-dimensional metric tensor of the space-like hypersurfaces.
The hypersurfaces are regarded as the absolute space at differ-
ent instants of time t (cf. Thorne et al. 1986). For Kerr space–
time, ∂t gµν = ∂ϕgµν = 0. These correspond to the existences of
the Killing vector fields ξµ and χµ. In the coordinates (t, ϕ, r, θ ),
ξµ = (1, 0, 0, 0) and χµ = (0, 1, 0, 0).

The local fiducial observer (FIDO; Bardeen et al. 1972; Thorne
et al. 1986), whose world line is perpendicular to the absolute space,
is described by the coordinate four-velocity

nµ =
(

1
α

,
−β i

α

)
, nµ = gµνn

ν = (−α, 0, 0, 0). (13)

The angular momentum of this observer is n · χ = gµνnµχν =
nϕ = 0, and thus FIDO is also a zero angular momentum observer
(ZAMO; Thorne et al. 1986). Note that the FIDO frame is not
inertial, but it can be used as a convenient orthonormal basis to
investigate the local physics (Thorne et al. 1986; Punsly & Coroniti
1990; Punsly 2008).

In the Boyer–Lindquist (BL) coordinates (t, ϕ, r, θ ) (see
Appendix A), FIDOs rotate with the coordinate angular velocity

) ≡ dϕFIDO

dt
= −βϕ > 0, (14)

which is in the same direction as the BH. The BL coordinates
have the well-known coordinate singularity (grr = ∞) at the event
horizon. The radius of the event horizon is rH = 1 +

√
1 − a2.

The Killing vector ξµ is space-like in the ergosphere, where
ξ 2 = gtt = −α2 + β2 > 0. The radius of the outer boundary of the
ergosphere (i.e. the stationary limit) is res = 1 +

√
1 − a2 cos2 θ .

At infinity, this space–time asymptotes to the flat one. The shapes
of the event horizon and the ergosphere are shown in Fig. 1 .

The Kerr–Schild (KS) coordinates have no coordinate singular-
ity at the event horizon. However, the KS spatial coordinates are no
longer orthogonal (γ rϕ ̸= 0; see Appendix A), and then one should
be cautious for examining the spatial structure of the electromag-
netic field by using the KS coordinates.

3.2 The 3+1 electrodynamics

In order to study the test electromagnetic field in Kerr space–time,
we adopt the 3+1 electrodynamics of the version which was de-
veloped by (Komissarov 2004a, see also Landau & Lifshitz 1975;
Komissarov 2009, and references therein).2 The covariant Maxwell
equations ∇∗

ν Fµν = 0 and ∇νF
µν = 4πIµ are reduced to

∇ · B = 0, ∂t B + ∇ × E = 0, (15)

∇ · D = 4πρ, −∂t D + ∇ × H = 4π J, (16)

where ∇ · C and ∇ × C denote (1/
√

γ )∂i(
√

γCi) and eijk∂jCk , re-
spectively, and eijk = (1/

√
γ )ϵijk is the Levi-Civita pseudo-tensor

2 Thorne & MacDonald (1982) and Thorne et al. (1986) developed the 3+1
electrodynamics of the version without introducing E or H , and showed
some of the expressions in this paper, such as equations (22) and (29).

Figure 1. The event horizon (inner thick line) and the outer boundary of
the ergosphere (outer thick line) of Kerr space–time. The thin lines represent
) − α/

√
γϕϕ = 0.2, 0.1,−0.1,−0.14,−0.17,−0.2 in the BL coordinates

in the order of increasing r. The line of ) − α/
√

γϕϕ = 0 is identical to the
outer thick line. The spin parameter is set to be a = 0.9.

of the absolute space. The condition of zero electric and magnetic
susceptibilities for general fully ionized plasmas leads to following
constitutive equations:

E = α D + β × B, (17)

H = αB − β × D, (18)

where C × F denotes eijkCjFk . At infinity, α = 1 and β = 0,
so that E = D and H = B. Here, D, B and ρ are the electric
field, magnetic field and charge density as measured by FIDOs,
respectively (see Appendix A for more details). The current J is
related to the current as measured by FIDOs, j , as

J = α j − ρβ. (19)

The covariant energy–momentum equation of the electromag-
netic field ∇νT

ν
µ = −FµνI

ν gives us the energy equation as

∂t

[
1

8π
(E · D + B · H)

]
+ ∇ ·

(
1

4π
E × H

)
= −E · J, (20)

where C · F denotes CiFi, and the angular momentum equation as

∂t

[
1

4π
(D × B) · m

]
+ ∇ · 1

4π

[
−(E · m)D − (H · m)B

+1
2

(E · D + B · H)m
]

= −(ρ E + J × B) · m, (21)

where m = ∂ϕ . From these equations, one can find the energy den-
sity, energy flux, angular momentum density and angular momen-
tum flux.

3.3 Steady axisymmetric electromagnetic field in the vacuum

Before investigating the plasma-filled magnetosphere in Kerr
space–time, the properties of the electromagnetic field in the vac-
uum (i.e. no plasma) are summarized. Wald (1974) derived the
solution of a steady, axisymmetric, vacuum test electromagnetic
field in Kerr space–time for which the magnetic field is uniform,
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Figure 1. Motion of the positively (negatively) charged particle
near the equatorial plane in the BL coordinates. This schematic
picture is applicable both in the BL coordinate basis and in the
BL FIDO orthonormal basis.

the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as

dûi

dt̂
=

q
m

(D̂i + ϵijkv̂
jB̂k), (30)

where Ĉi denotes the vector component in respect of the
FIDO’s orthonormal basis (Thorne, Price & Macdonald
1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special
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Figure 2. Velocity components v̂r (upper three lines with pos-
itive values) and v̂ϕ (lower three lines with negative values) of
the posively charged particle in the fixed BL FIDO’s orthonor-
mal basis as functions of time normalized by gyration time scale
τgy = m/q|B̂|. The solid, dashed, and dot-dashed lines are cal-
culation results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, respectively. The
initial conditions are v̂r = v̂ϕ = 0.

relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.

c⃝ RAS, MNRAS 000, 1–14
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the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as

dûi

dt̂
=

q
m

(D̂i + ϵijkv̂
jB̂k), (30)

where Ĉi denotes the vector component in respect of the
FIDO’s orthonormal basis (Thorne, Price & Macdonald
1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special
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relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.
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the field lines. (Note that B2 −D2 = FµνF
µν/2 is a scalar,

so that one has D2 > B2 also in the KS coordinates.) This
leads to Hϕ ̸= 0 above the current crossing region. The value
of ΩF will be regulated so that the current crossing region
is finite (see Figure 4 of TT14), and thus it is expected to
depend on the microphysics in the ergosphere. The values
of ΩF and Hϕ will be determined by the conditions around
the equatorial plane and at infinity.

In the current crossing region, D is in the opposite di-
rection of E, i.e. D · E < 0, as seen in the BL coordinates
(see Figure 3 of TT14). This leads to (Jp×Bp) ·m < 0 and
E ·Jp < 0, which generate the poloidal electromagnetic AM
and Poynting fluxes (see equations 23 and 24). (We confirm
that D ·E < 0 also in the KS coordinates in Appendix B.)

All the ergospheric field lines crossing the outer light
surface have ΩF > 0 and Hϕ < 0 for the northern hemi-
sphere (Hϕ > 0 for the southern hemisphere), while ‘the
last ergospheric field line’, which passes the equatorial plane
at r = res, has ΩF = Hϕ = 0, along which the return current
flows upward (downward) in the northern (southern) hemi-
sphere (see Figure 3 below). Correspondingly, the current
crossing region extends over rH < r < res.

3.2 Production of particle negative energy

Equations (23) and (24) imply that the particles in the cur-
rent crossing region lose their AMs and energies by the feed-
back, +(Jp ×Bp) ·m and +E · Jp, from the production of
the electromagnetic AM and Poynting fluxes. We find that
this feedback can make the particles have negative energy
as measured in the coordinate basis.

The production of the particle negative energy can be
explained by showing the particle motions in the local or-
thonormal basis carried with the BL FIDOs, in which the
equation of a particle motion with four-velocity u, three-
velocity v, charge q, and mass m is written as
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where Ĉi denotes the vector component in respect of the
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1986, TT14). In this basis one can investigate local, instan-
taneous particle motions under the Lorentz force as special
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τgy = m/q|B̂|. The solid, dashed, and dot-dashed lines are cal-
culation results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, respectively. The
initial conditions are v̂r = v̂ϕ = 0.

relativistic dynamics. The AM and energy per mass of a
particle as measured in the coordinate basis are

lp = uµχ
µ = γϕϕ(v

ϕ − Ω)ut

=
√
γϕϕv̂

ϕût, (31)

ep = −uµξ
µ = [α2 + γϕϕΩ(v

ϕ − Ω)]ut

= (α+
√
γϕϕΩv̂

ϕ)ût, (32)

where we have used v̂ϕ = (
√
γϕϕ/α)(v

ϕ − Ω) (cf. Punsly
2008).

Near the equatorial plane, the B̂ field is approximately
perpendicular to that plane, because Bϕ = Hϕ/α = 0 at
that plane, and then the D̂ field is radial in that plane
(see Figure 1). The motion of a test particle can be eas-
ily solved in such fields (Landau & Lifshitz 1975). For the
case of D2 ! B2 which we focus on, the positively (nega-
tively) charged particles are accelerated in the directions of
D̂ (−D̂) and D̂ × B̂. In Figure 2, we show the calculation
results for |D̂|/|B̂| = 1.0, 1.1, and 1.3, where we fix the basis
and assume that the electromagnetic fields are uniform. For
D2 = B2 (i.e. |D̂|/|B̂| = 1.0) in particular, the particles are
strongly accelerated in the direction of D̂×B̂, and then one
obtains

v̂ϕ ≈ −1 (33)

in several tens of gyro radius scale ℓgy = m/q|B̂| (not nor-
malized by the gravitational radius). As a consequence, from
equations (31) and (32), one has

lp ≈ −√
γϕϕû

t < 0, (34)

ep ≈ (α−
√

β2)ût < 0, (35)

in the ergosphere, where α2 < β2 = γϕϕΩ
2. ForD2 > B2, v̂ϕ

does not approach −1, so that ep > 0 near the boundary of
the ergosphere where α2 = β2. However, α → 0 for r → rH
implies that ep < 0 can be realized near the horizon. Here
we emphasize that lp and ep are scalars, and thus lp < 0
and ep < 0 also in the KS coordinates.
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Fig. 6 Space-time diagram of the inner and outer boundaries of the force-free region in

the BL and KS coordinates. In each diagram the left and right long arrows correspond to

the motions of the inner and outer boundaries, respectively, while the small arrows to the

propagation of light.

propagate towards the horizon, r → rH for t → ∞. In the KS coordinates, the inflow can pass

the horizon in a finite time of t = tH. In both of the coordinates, when the inner boundary

approaches the horizon, the outward signal from it becomes slower and slower and it can

hardly affect the force-free region. This will lead to the steady state.5

Although such a time-dependent state should be analyzed numerically, we use a toy

model to qualitatively illustrate the process of building the poloidal current

structure. This model assumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magnetosphere is separated into the force-

free region and the vacuum by geometrically thin boundaries moving radially. For further

simplicity, (3) we assume that the force-free region and the vacuum have their steady-state

structures, but the values of the physical quantities, particularly ΩF and Hϕ, keep updated

as determined by the varying conditions of the inner and outer boundaries.

Some of these assumptions would be violated in realistic experiments. Nevertheless we

consider that our toy model is useful to suggest the key points for resolving the issue

on the causality in the coordinate basis (Section 5.1.4), which also allows us to understand

how the steady state is maintained (Section 5.3).

5.1. Analysis in the BL coordinates

5.1.1. The force-free and vacuum regions. The electromagnetic quantities in the force-free

region are given as follows. The condition D ·B = 0 and ∇×E = 0 lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −√

γΩFB
r, (56)

5 In some MHD simulations, a static plasma (not a vacuum) is initially given and then a central
star starts rotating [54] or a BH starts rotating [55]. They show that a switching-on wave propagates
outward and that the outflow region settles down to the steady state after it passes the outer fast
magnetosonic point [22].

16/27
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Figure 5. Schematic picture of a time-dependent process evolv-
ing towards the steady state. The plasma particles keep injected
between the inner and outer light surfaces, and the vacuum is
being filled with those plasma. This picture focuses on the inflow.
The inner boundary of the force-free region propagates towards
the event horizon, producing the steady poloidal current structure
and the outward AM and Poynting fluxes.

agate into the vacuum, i.e. the radius of the outer bound-
ary r → ∞ for t → ∞. In the BL coordinates, the inflow
also continues to propagate towards the horizon, r → rH
for t → ∞. In the KS coordinates, the inflow can pass the
horizon in a finite time of t = tH. In both of the coordi-
nates, when the inner boundary approaches the horizon, the
outward signal from it becomes slower and slower and it
can hardly affect the force-free region. This will lead to the
steady state.5

Although such a time-dependent state should be ana-
lyzed numerically, we try to illustrate essential physics and
concept analytically by using a toy model. This model as-
sumes that (1) Bp is fixed to be split-monopole

∂r(
√
γBr) = 0, Bθ = 0 (55)

in the whole region, and that (2) the Kerr BH magneto-
sphere is separated into the force-free region and the vac-
uum by geometrically thin boundaries moving radially. For
further simplicity, (3) we assume that the force-free region
and the vacuum have their steady-state structures, but the
values of the physical quantities, particularly ΩF and Hϕ,
keep updated as determined by the varying conditions of
the inner and outer boundaries.

Some of these assumptions would be violated in realistic
experiments. Nevertheless we consider that our toy model
is sufficient to show the concept for resolving the issue on
the causality in the coordinate basis, which also allows us
to understand how the steady state is maintained, and to

5 In some MHD simulations, a static plasma (not a vacuum) is
initially given and then a central star starts rotating (Bogovalov
& Tsinganos 1999) or a BH starts rotating (Komissarov 2004b).
They show that a switching-on wave propagates outward and that
the outflow region settles down to the steady state after it passes
the outer fast magnetosonic point (Beskin 2010).

propose a framework for studies on more detailed plasma
physics.

5.1 Analysis in the BL coordinates

5.1.1 The force-free and vacuum regions

The electromagnetic quantities in the force-free region are
given as follows. The condition D · B = 0 and ∇ × E = 0
lead to

Eff
ϕ = Eff

r = 0, Eff
θ = −√

γΩFB
r, (56)

where

∂rΩF = 0. (57)

Hereafter we will put the subscript and superscript ‘ff’ on
the quantities in the force-free region. Equations (11) and
(12) give us

Dff
ϕ = Dff

r = 0, Dff
θ =

√
γ

α
(Ω− ΩF)B

r, (58)

Hff
ϕ = αBff

ϕ , Hff
r = αBr −

√
γΩDθ

ff , Hff
θ = 0. (59)

Equation ∇×H = 4πJ and the force-free condition lead to

∂rH
ff
ϕ = −4π

√
γJθ

ff = 0, (60)

∂θH
ff
ϕ = 4π

√
γJr

ff , (61)

These twe equations imply that ∂r(
√
γJr

ff) = 0. We focus on
the northern hemisphere, where Jr

ff < 0 and Hff
ϕ < 0. The

return current Jr
ff > 0 is assumed to be concentrated on the

equatorial plane. The poloidal AM and Poynting fluxes are

Lr
ff =

−Hff
ϕ

4π
Br, Sr

ff = ΩF
−Hff

ϕ

4π
Br, (62)

which satisfy ∂r(
√
γLr

ff) = 0 and ∂r(
√
γSr

ff) = 0.
In the vacuum region, one has ρ = J = 0. Equations

∇×E = 0 and ∇×H = 0 lead to

Evac
ϕ = 0, Hvac

ϕ = Bvac
ϕ = 0, (63)

which indicates

Lr
vac = Sr

vac = 0. (64)

Hereafter we will put the subscript and superscript ‘vac’ on
the quantities in the vacuum region.

5.1.2 The inner boundary of the force-free region

Let us focus on the inner boundary of the force-free (in-
flow) region, and derive the conditions on the boundary,
i.e. the junction conditions between the force-free and vac-
uum regions. The similar analysis can be done for the outer
boundary. For equation

−∂tD
r +

1
√
γ
∂θHϕ = 4πJr, (65)

we substitute

Dr = Dr
vacH(−R), (66)

Hϕ = Hff
ϕH(R), (67)

Jr = Jr
ffH(R) + ηrδ(R), (68)

where H(R) and δ(R) are the Heaviside step function and
the Dirac delta function, respectively, and
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where
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Hereafter we will put the subscript and superscript ‘ff’ on the quantities in the force-free

region. Equations (11) and (12) give us
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γ

α
(Ω− ΩF)B

r, (58)

Hff
ϕ = αBff

ϕ , Hff
r = αBr −

√
γΩDθ

ff , Hff
θ = 0. (59)

Equation ∇×H = 4πJ and the force-free condition lead to

∂rH
ff
ϕ = −4π

√
γJθ

ff = 0, (60)

∂θH
ff
ϕ = 4π

√
γJr

ff , (61)

These two equations imply that ∂r(
√
γJr

ff) = 0. We focus on the northern hemisphere, where

Jr
ff < 0 and Hff

ϕ < 0. The current flowing outward Jr
ff > 0, which prevents the BH from

charging up, is assumed to be concentrated on the equatorial plane. The poloidal AM and

Poynting fluxes are

Lr
ff =

−Hff
ϕ

4π
Br, Sr

ff = ΩF
−Hff

ϕ

4π
Br, (62)

which satisfy ∂r(
√
γLr

ff) = 0 and ∂r(
√
γSr

ff) = 0.

In the vacuum region, one has ρ = J = 0. Equations ∇×E = 0 and ∇×H = 0 lead to

Evac
ϕ = 0, Hvac

ϕ = Bvac
ϕ = 0, (63)

which indicates

Lr
vac = Sr

vac = 0. (64)

Hereafter we will put the subscript and superscript ‘vac’ on the quantities in the vacuum

region.

5.1.2. The inner boundary of the force-free region. Let us focus on the inner boundary of

the force-free (inflow) region, and derive the conditions on the boundary, i.e. the junction

conditions between the force-free and vacuum regions. The similar analysis can be done for

the outer boundary. For equation

−∂tD
r +

1
√
γ
∂θHϕ = 4πJr, (65)

we substitute

Dr = Dr
vacH(−R), (66)

Hϕ = Hff
ϕH(R), (67)

Jr = Jr
ffH(R) + ηrδ(R), (68)

where H(R) and δ(R) are the Heaviside step function and the Dirac delta function,

respectively, and

R = r − ri −
∫ t

0
V dt, (69)

where ri and V are the initial radius and the velocity of the boundary. The location of the

boundary is represented by R = 0. We have introduced ηr in equation (68), i.e. possible
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contribution to Jr from moving surface charges at the boundary. The assumption (3) stated

in the first part of this section implies that the timescale for the quantities in the force-free

and vacuum regions becoming adjusted for steady-state structure is much smaller than the

timescale of the boundary propagation. We focus on the latter timescale, considering that

only R = R(t) depends on t in equation (65). Then we have

−Dr
vacV δ(R) +

1
√
γ
(∂θH

ff
ϕ )H(R) = 4πJr

ffH(R) + 4πηrδ(R). (70)

Taking account of equation (61), we obtain

ηr =
−Dr

vac

4π

∣∣∣∣
R=0

V, (71)

which implies that the surface charge density on the boundary σ = −Dr
vac|R=0/4π. This can

be confirmed by integrating ∇ ·D = 4πρ over the infinitesimally thin (in the r direction)

region enclosing the small area on the boundary and taking account of Dr
ff = 0.

For equation

−∂tD
θ − 1

√
γ
∂rHϕ = 4πJθ, (72)

we substitute

Dθ = Dθ
vacH(−R) +Dθ

ffH(R), (73)

Jθ = ηθδ(R), (74)

and equation (67). We have introduced ηθ, possible contribution to Jθ from the surface

current flowing on the boundary. Then we have

−Dθ
vacV δ(R) +Dθ

ffV δ(R)− 1
√
γ
Hff

ϕδ(R) = 4πηθδ(R), (75)

which leads to

V =
1
√
γ

Hff
ϕ + 4π

√
γηθ

Dθ
ff −Dθ

vac

∣∣∣∣∣
R=0

. (76)

The last one of Maxwell equations nontrivial for the present problem is

∂tB
ϕ +

1
√
γ
(∂rEθ − ∂θEr) = 0, (77)

for which we substitute

Bϕ = Bϕ
ffH(R), (78)

Eθ = Evac
θ H(−R) + Eff

θ H(R), (79)

Er = Evac
r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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r H(−R). (80)

Then we have

−Bϕ
ffV δ(R) +

1
√
γ

[
−Evac

θ δ(R) + Eff
θ δ(R)− (∂θE

vac
r )H(−R)

]
= 0. (81)

Integrating equation (81) over −ϵ < R < ϵ and take a limit of ϵ → 0, the last term vanishes,

and we obtain

V =
1
√
γ

Eff
θ − Evac

θ

Bϕ
ff

∣∣∣∣
R=0

,

=
α
√
γ

Dff
θ −Dvac

θ

Bϕ
ff

∣∣∣∣
R=0

, (82)
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where we have used equation (11) for the last equality. EliminatingDθ
ff −Dθ

vac from equations

(76) and (82) leads to

V =
±α
√
γrr

√

1 +
4π

√
γηθ

Hff
ϕ

. (83)

Here we take the minus sign, since we have assumed that the inner boundary keeps mov-

ing inward. In Section 5.1.3, we will confirm that this assumption is consistent with the

electromagnetic structure which we found.

Let us consider the case of ηθ = 0. Then we have

V =
−α
√
γrr

, (84)

and

Hff
ϕ = −α

√
γϕϕ
γθθ

(Dff
θ −Dvac

θ )

∣∣∣∣
R=0

= −
√

γϕϕ
γθθ

[(Ω− ΩF)
√
γBr − αDvac

θ ]

∣∣∣∣
R=0

. (85)

Substituting dr = V dt for equation (1), we find

ds2 = γϕϕ(dϕ− Ωdt)2 + γθθdθ
2 ≥ 0, (86)

which has to be ds2 = 0. This means that the four-velocity of the boundary is null. In reality,

however, the particles at the boundary cannot propagate with this speed, and thus one can

conclude

ηθ > 0, (87)

i.e., the cross-field current must flow on the boundary. Note that equation (85) with αDvac
θ →

0 becomes equivalent to the regularity condition at the horizon (equation 38).

5.1.3. Consistency check. In our toy model of the time-dependent state, we have not

taken into account equations of the particle motions, using the force-free approximation for

the force-free region, but we have assumed that the inner boundary keeps moving inward,

i.e. V < 0. Here we examine the direction of the Lorentz force exerted on the particles at the

boundary, and confirm that it is consistent with the assumption of V < 0. It is reasonable

that the force-free approximation is not applicable for the boundary between the force-free

and vacuum regions, and indeed we have seen that the cross-field current flows there, ηθ > 0.

We have analyzed the structure of the electromagnetic quantities by using

the functions δ(R) and H(R). These functions were introduced because the per-

fect force-free plasma and the perfect vacuum are simply connected in our toy

model. In reality, however, the electromagnetic quantities must be continuously

distributed over a ‘boundary layer’ with a finite thickness. Let us consider the

equation of motion of the particles in this boundary layer. (Note that the mass den-

sity of the particles is not necessarily concentrated in the same boundary layer

as the electromagnetic quantities. Probably it is not so concentrated near the

boundary, and σ and ηθ are just produced by a large difference of the positive

and negative charge densities and their velocity difference. Therefore we do not

describe the mass density by using δ(R) in the same manner as σ.)
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the functions δ(R) and H(R). These functions were introduced because the per-
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model. In reality, however, the electromagnetic quantities must be continuously

distributed over a ‘boundary layer’ with a finite thickness. Let us consider the
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Same	conclusion	in	KS	coordinates	

Current	crosses	
field	lines	!	

ds2 = �↵2dt2 + �rrdr
2 If	ηθ =	0,	it	

would	be	null	

Negative	energy	inflow?	
Conserved	energy	flux	(in	force-free	approximation)	

Sr = �↵T r
0 = �↵T r

µ⇠
µ
(t) = (E⇥H')

r

(E⇥H')
r = ↵

2(D⇥B)r + ⌦(�H')B
r

Poynting	flux	measured	
by	FIDOs	(inward	near	
horizon)	

Torque	due	to	outward	
angular	momentum	flux	

dM =


8⇡
dA+ ⌦HdJ (McDonald	&	Thorne	84;	

Okamoto	06)	

= "V r (" < 0)?



•  Force-free	or	ideal	MHD	condition	is	valid?	
–  Can	be	valid	for	field	lines	threading	horizon	
–  They	can	break	for	very	low	density	case		

•  How	is	the	electric	current	driven?	
–  Current	can	be	regulated	at	time-dependent	state	

•  Is	the	ergosphere	important?	
– Origin	of	electric	potential	
–  Steady	solutions	not	determined	by	horizon	

•  Negative	energy	inflow?	
–  Essential	is	the	outward	angular	momentum	flux	

	

Short	summary	

(cf.	two-fluid	analysis	in	Kojima	2017)	
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FIG. 11.— Distribution of the jet radius R as a function of the jet axial distance z (de-projected with M = 6.2⇥ 109M� and ✓v = 14�) from the SMBH in
units of rg (cf. Asada & Nakamura 2012; Nakamura & Asada 2013; Hada et al. 2013, hereafter AN12, NA13, and H13, respectively). Additional data points
are taken from Doeleman et al. (2012); Akiyama et al. (2015); Hada et al. (2016) (hereafter D12, A15, and H16, respectively). The (vertical) dashed-dotted
line denotes the Bondi radius rB, located at ' 6.9 ⇥ 105 rg and the HST-1 complex is around 106 rg. Filled black region denotes the black hole (inside the
event horizon), while the hatched area represents the ergosphere for the spin parameter a = 0.99. The light gray area denotes the approximate solution of the
FFE genuine parabolic jet (BZ77: z / R2 at R/rg � 1), while the dark gray area is the case of the parabolic jet (BP82: z / R1.6 at R/rg � 1) (NMF07,
TMN08), respectively. In both streamlines, a variation from a = 0.5 (upper edge) to a = 0.99 (lower edge) is represented as a shaded area.

the parabolic jet sheath in M87 is presumably powered by the
spinning black hole.

4.2. Jet Kinematics
Figure 12 overviews the jet kinematics by compiling the

data in the literature (see the caption for references). Multi-
wavelength VLBI and optical observations reveal both sub-
luminal and superluminal features in proper motion, which
provide a global distribution of the jet velocity field V in M87.
We display the 4-velocity �� (in order to deal with a wider
speed range in units of c; both non-relativistic and relativistic
regimes simultaneously) in Figure 12 by using simple alge-
braic formulas with the bulk Lorentz factor � ⌘ (1��

2)�1/2

and � = �app/(�app cos ✓v + sin ✓v), where � = V/c and
�app as an apparent speed of the moving component in units
of c, respectively. The value of �� approaches � in the non-
relativistic regime (� ! 1), while it represents � in the fully
relativistic regime (� ! 1).

Superluminal motions (�app > 1) have been frequently ob-

served at relatively large distances beyond rB. Furthermore,
superluminal components seem to originate at the location
HST-1 (Biretta et al. 1999; Cheung et al. 2007; Giroletti
et al. 2012). On the other hand, no prominent superluminal
features inside rB have been confirmed in VLBI observations
over decades (Reid et al. 1989; Kellermann et al. 2004; Ly
et al. 2007). Instead, sub-luminal features are considered as
non-bulk motions, such as growing instability patterns and/or
standing shocks (e.g. Kovalev et al. 2007). Thus, this discrep-
ancy (a gap between sub-luminal and superluminal motions
along the jet axial distance) has been commonly recognized.
Asada et al. (2014) discovered a series of superluminal com-
ponents upstream of HST-1 (z/rg ⇠ 105–106), providing the
missing link in the jet kinematics of M87.

Very recently, superluminal motions on the scale of z/rg '
103–104 are finally discovered by Mertens et al. (2016); Hada
et al. (2017). These observations give a diversity of the ve-
locity field, whereas there is a hypothesis that the systematic
bulk acceleration is taking place if observed proper motions

In Fig. 3 the upstream end of the jet corresponding to the dashed line
in Fig. 2 is overlaid on the 43-GHz intensity image as the shaded area. By
specifying the position angle of the M87 jet, we can also evaluate the
amount of the core shift in declination. On the basis of the 43-GHz image
of M87 in previous work that discusses the large direction uncertainty of
the inner jet region3, we set the allowed range of the jet position angle
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Figure 3 | VLBA image of M87 at 43 GHz
superimposed on the measured core-shift
positions. a, Global view of the radio jet on a
subparsec scale. b, Close-up view of the region
enclosed by the rectangle in a. The synthesized beam
of the VLBA is 0.22 mas3 0.46 mas at 25u (bottom
right in the upper image). The peak brightness and
1s noise level are 724 mJy and 1.1 mJy per beam,
respectively. Contours are (21, 1, 2, 2.8 and
4)3 3.3 mJy per beam and thereafter increase by
factors of 21/2. Two broken red lines represent the
maximum possible range of the inner jet direction
centred on the 43.2-GHz core. A solid red arrow
represents the larger-scale jet direction. Red circles
indicate the core positions at 2.3, 5.0, 8.4, 15.2, 23.8
and 43.2 GHz relative to the 43.2-GHz core (the
higher the frequency of the core, the closer it
approaches the central engine). Core positions at
each frequency are averaged over two epochs. We
assume that the core shift occurs along the larger-
scale jet direction. The positional uncertainties in
declination are due to uncertainties in the direction
of the inner jet, which are shown by the vertical
broken arrows threading each core position. The
shaded area at the east of the 43.2-GHz core
represents the upstream end of the jet derived from
the core-shift measurements. This area is enclosed
by the 1s error in the core-shift value in RA, and the
direction of the inner jet defines uncertainties in
declination. A black circle (top left in b) shows the
diameter 6Rs of the innermost stable orbit around a
non-rotating black hole. Inset in a, a 15-GHz Very-
Large-Array image showing kiloparsec-scale
structure. (Copyright National Radio Astronomy
Observatory/Associated Universities, Inc./National
Science Foundation).

Figure 2 | Plot of the core-shift measurements in right ascension for M87 as
a function of observing frequency. The data sets of filled and open circles are
results for 8 and 18 April, respectively. Both observations were made at 2.3, 5.0,
8.4, 15.4, 23.8 and 43.2 GHz. The origin of the vertical axis is referenced to the
weighted-mean position of the 43.2-GHz core over the two epochs. This plot
shows that the measured core positions for the two epochs are consistent within
1s error bars, indicating that the systematic errors are effectively cancelled out
through the quasi-simultaneous multifrequency observations (see also
Supplementary Information for details of the data analysis and error
estimations). The solid curve represents the best-fit solution, with rRA(n) 5
A2a 1 B (a 5 0.94 6 0.09, A 5 1.40 6 0.16 and B 5 20.041 6 0.012), which is
derived from the weighted least-square method to the entire data set. The dashed
horizontal line represents the asymptotic line of the solid curve, which is located
at 41mas eastwards from the 43.2-GHz core in RA. At the distance of M87 of
16.7 Mpc and the mass of the black hole of 6.0 3 109 solar masses, 1 mas
corresponds to a length of 0.08 pc or 140Rs projected on the plane of the sky.
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(Hada	et	al.	2011)	

(M.	Nakamura,	Asada,	Hada	et	al.	in	prep.)	

•  M87:	second	largest	BH	size	in	the	sky	
•  Strong	B	field	
•  Jet	from	BH?	

(Kino	et	al.	2015)	
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acceleration of winds is also of our interest, but it is unclear
in our numerical results (see, Yuan et al. 2015, for their be-
haviors at r/rg & 100).

Under the assumption that observed moving component
(�app) represents an underlying bulk flow (e.g. Lister et al.
2009), we compare observations with steady axisymmetric
FFE jet solutions in Figure 12. �� with Equation (11) is dis-
played with different black hole spins (a = 0.5–0.99). Our
numerical simulations reveal that b2/⇢ ' 0.5-1 is sustained at
the edge of the funnel along outermost BP82-type parabolic
streamlines of z / R

1.6. Therefore, it may not allow us
to consider an increase of � in the sense of a weak magne-
tization (� � 1). Instead, an inner part of the funnel (the
jet sheath/limb), where the high magnetization would be ex-
pected, is an appropriated region to apply the FFE jet solu-
tion. Parabolic streamlines of z / R

1.8 (a = 0.5–0.99) with
✓fp = ⇡/3 are chosen as our reference solutions, by taking
into account that a peak of � lies asymptotically between two
outermost streamlines (z / R

2 and z / R
1.6 in Figure 9).

A linear acceleration of highly magnetized MHD/FFE out-
flows can be expected at the moderately relativistic regime
(� & 2) with �� / R / z

0.56 (� ! 1) as is shown in Fig-
ure 12. Similar results are obtained by Beskin & Nokhrina
(2006); McKinney & Narayan (2007b); Pu et al. (2015).
Maximum values of �� (' 0.8–2.6) in our GRMHD sim-
ulations (a = 0.5–0.99) are qualitatively consistent with
expected values on the power-law slope of the FFE jet at
z/rg = 100. We, however, consider this would be by co-
incidence as we can not find any smooth increase of � well
beyond ⇠ 2 within r/rg = 100 in Figure 9. FFE jet solutions
with the parabolic shape of z / R

1.8 indicate �� ⇠ 4–30
around the scale of z/rg ⇠ 103–104 (a � 0.5). This veloc-
ity range corresponds to �app ⇡ 4–8 with ✓v = 14� in M87.
There is a clear discrepancy between observed proper motions
and theoretical expectations.

In reality, AGN jets in VLBI scale may not be exactly
described as a FFE system. An agreement between the
GRMHD results and FFE models is found to be good as far
as R/rg ⇠ 103; beyond this scale the matter inertia becomes
non-negligible (� & 10) in GRMHD simulations (McKinney
& Narayan 2007a). As a consequence, a slower evolution
than �� / R may presumably take place. Nonetheless, a
departure from � ⇠ 2 at z/rg & 100 could be expected in
a GRMHD simulation if b2/⇢ is sufficiently large (� 1) at
the jet stagnation. To be fair enough, �� . 7 is achieved at
z/rg ' 700 in McKinney (2006)8, which is quantitatively
consistent with the FFE jet with a = 0.9–0.99 (see Figure
12). On the other hand, for a moderate case of b2/⇢ . 100,
maximum values of �� ' 3–4 are reported at z/rg ' 1000
with a = 0.7–0.98 (Penna et al. 2013), indicating that a
slower evolution than highly magnetized GRMHD/FFE out-
flows (see also Figure 12).

As is mentioned above, a detection of faster proper motions
�app & 4 (⇠ 15 mas/yr) and some promising feature of their
accelerations at z/rg ⇠ 103–104, where the jet sheath main-
tains a parabolic shape, will be a key to confirm our hypothe-
sis of the GRMHD parabolic jet from the spinning black hole
in M87. A VLBI program with 15/22/43 GHz towards M87

8 McKinney (2006) uses a = 0.9375 (the fiducial value), but a modified
floor model is adopted; factors 10�7 in both power-law forms of ⇢min and
umin as well as a steep gradient of r�2.7 in both cases. This ensures a huge
value of b2/⇢ . 107 near the black hole in the PFD funnel.

with a high-cadence monitoring less than a week (conducting
each observation per few days during a few weeks) may be
feasible to find such a faster motion & 0.3 mas/week.

5. DISCUSSIONS

Topical issues are discussed for applying our results to other
AGN jets and highlighting future study on the M87 jet.

5.1. Comparison with NGC 6251; What Does a Similarity
with M87 Tell Us?

Tseng et al. (2016, hereafter T16) analyzed multi-
frequency data (VLBA, EVN, and VLA) to investigate the
jet structure in NGC 6251 and detect a structural transition
of the jet radius from a parabolic to a conical shape at (2–4)
⇥105 rg, which is close to rSOI ' 106 rg in this source. This
is remarkably similar result with M87 (AN12); one may con-
sider the virial equilibrium at the center of the cooling core in
the giant elliptical as a thermodynamically stable state, which
gives rB ⇡ rSOI. Furthermore, the jet radii (in units of 2rg)
before/after the transition are quantitatively overlapped with
M87 as is shown in Figure 3 (T16). Obviously, this implies
a tight correlation between the jet sheath and the outermost
BP82-type parabolic streamline of the FFE jet solution as is
seen in M87 (Figure 11). Figure 13 confirms this at a quanti-
tative level in NGC 6251.

T16 performed the broken power-law fitting and obtained
z / R

2.0 at . 4.2 ⇥ 105 rg and z / R
0.94 far beyond. We

here suggest the inner jet could be the BP82-type parabolic
geometry, which is similar to M87 (Figure 13), if a position
offset of VLBI cores from the SMBH ' 8⇥ 103 rg in T16 is
taken into account. Note that the radius of the EVN core at
1.6 GHz is almost identical to the radii of the VLBA jet at 15
GHz, as is shown in Figure 13 so we also confirm the VLBI
core can be identified as the innermost jet emission given at
frequencies, which is also similar to M87 (Nakamura & Asada
2013; Hada et al. 2013). By comparing Figure 11 and Fig-
ure 13, we realize that data points of M87 (inside rB) are
distributed across many orders of magnitude than NGC 6251
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FIG. 13.— Distribution of the jet radius R in NGC6251 as a function of the
jet axial distance z (de-projected with M = 6 ⇥ 108M� and ✓v = 19�)
from the SMBH in units of rg (T16, and references therein). This is similar
to Figure 11; the vertical and horizontal scales and other components, which
are shown in this figure, are identical.

NGC6251	
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FIG. 11.— Distribution of the jet radius R as a function of the jet axial distance z (de-projected with M = 6.2⇥ 109M� and ✓v = 14�) from the SMBH in
units of rg (cf. Asada & Nakamura 2012; Nakamura & Asada 2013; Hada et al. 2013, hereafter AN12, NA13, and H13, respectively). Additional data points
are taken from Doeleman et al. (2012); Akiyama et al. (2015); Hada et al. (2016) (hereafter D12, A15, and H16, respectively). The (vertical) dashed-dotted
line denotes the Bondi radius rB, located at ' 6.9 ⇥ 105 rg and the HST-1 complex is around 106 rg. Filled black region denotes the black hole (inside the
event horizon), while the hatched area represents the ergosphere for the spin parameter a = 0.99. The light gray area denotes the approximate solution of the
FFE genuine parabolic jet (BZ77: z / R2 at R/rg � 1), while the dark gray area is the case of the parabolic jet (BP82: z / R1.6 at R/rg � 1) (NMF07,
TMN08), respectively. In both streamlines, a variation from a = 0.5 (upper edge) to a = 0.99 (lower edge) is represented as a shaded area.

the parabolic jet sheath in M87 is presumably powered by the
spinning black hole.

4.2. Jet Kinematics
Figure 12 overviews the jet kinematics by compiling the

data in the literature (see the caption for references). Multi-
wavelength VLBI and optical observations reveal both sub-
luminal and superluminal features in proper motion, which
provide a global distribution of the jet velocity field V in M87.
We display the 4-velocity �� (in order to deal with a wider
speed range in units of c; both non-relativistic and relativistic
regimes simultaneously) in Figure 12 by using simple alge-
braic formulas with the bulk Lorentz factor � ⌘ (1��

2)�1/2

and � = �app/(�app cos ✓v + sin ✓v), where � = V/c and
�app as an apparent speed of the moving component in units
of c, respectively. The value of �� approaches � in the non-
relativistic regime (� ! 1), while it represents � in the fully
relativistic regime (� ! 1).

Superluminal motions (�app > 1) have been frequently ob-

served at relatively large distances beyond rB. Furthermore,
superluminal components seem to originate at the location
HST-1 (Biretta et al. 1999; Cheung et al. 2007; Giroletti
et al. 2012). On the other hand, no prominent superluminal
features inside rB have been confirmed in VLBI observations
over decades (Reid et al. 1989; Kellermann et al. 2004; Ly
et al. 2007). Instead, sub-luminal features are considered as
non-bulk motions, such as growing instability patterns and/or
standing shocks (e.g. Kovalev et al. 2007). Thus, this discrep-
ancy (a gap between sub-luminal and superluminal motions
along the jet axial distance) has been commonly recognized.
Asada et al. (2014) discovered a series of superluminal com-
ponents upstream of HST-1 (z/rg ⇠ 105–106), providing the
missing link in the jet kinematics of M87.

Very recently, superluminal motions on the scale of z/rg '
103–104 are finally discovered by Mertens et al. (2016); Hada
et al. (2017). These observations give a diversity of the ve-
locity field, whereas there is a hypothesis that the systematic
bulk acceleration is taking place if observed proper motions



4 Nakamura et al.

0 2 4 6 8 10
0

2

4

6

8

10

R (r
g
)

z 
( r

g
)

FIG. 1.— Outermost streamlines of the steady axisymmetric FFE jet
(NMF07, TMN08), which are anchored to the event horizon (r = rH) with
the maximum angle ✓ = ⇡/2. A typical value of a = 0.9375 (in GRMHD
simulations; Gammie et al. 2004; McKinney & Gammie 2004; McKin-
ney 2006) is specified as a reference. The dotted line show the genuine
paraboloidal streamline with  = 1.0 (z / R2 at R � rg; e.g. Blandford
& Znajek 1977), while the solid line show the paraboloidal streamline with
 = 0.75 (z / R1.6 at R � rg; e.g. Blandford & Payne 1982). The black
hole and the ergosphere are represented as the filled and the hatched areas.

plane near the black hole is observed around the non-spinning
black hole (Igumenshchev 2008). This feature becomes more
prominent in the case of spinning black holes as is shown in
GRMHD simulations of the ergospheric disk with a vertical
magnetic flux (the Wald vacuum solution; Wald 1974) by
Komissarov (2005); during the mass accretion onto the black
hole with the advected poloidal magnetic flux, all magnetic
lines threading the ergospheric disk have a turning point in the
equatorial plane and the azimuthal current sheet is formed.

Due to a strong dragging of the inertial frame inside the er-
gosphere, all plasma entering this region is forced to rotate
in the same sense as the black hole. Thus, the poloidal field
lines around the equatorial plane are strongly twisted along
the azimuthal direction and the equatorial current sheet de-
velops further due to the vertical compression of the poloidal
field lines caused by the Lorenz force acting toward the equa-
torial direction at both upper (z > 0) and lower (z < 0) direc-
tions. Magnetic reconnection (although numerical diffusion
is responsible for activating the event in an ideal MHD simu-
lation) will change the field topology; all poloidal field lines
entering the ergosphere penetrate the event horizon.

Similar result is obtained in GRFFE simulations (Komis-
sarov & McKinney 2007). We speculate that the situation is
qualitatively unchanged if the weakly magnetized RIAF ex-
ists in the system. Strong poloidal fields in the ergosphere
compress the innermost black hole accretion flow vertically
and reduce the disk thickness down to H/R ' 0.05, while
H/R & 0.3 (H: the vertical scale height) is the refer-
ence value of the disk body outside the plunging region(e.g.
Tchekhovskoy 2015).

Based on the physical picture above, we assume no poloidal
magnetic flux, which penetrates the equatorial plane at R >

rH, in the quasi-steady state of the system and the outermost

field line, which is anchored to the event horizon, can be de-
fined as

 (rH,⇡/2) = 1 (3)

in Equation (2). Figure 1 shows outermost streamlines of
 (r, ✓) = 1 with different  ( = 1: BZ77 or  = 0.75:
BP82) with a fiducial black hole spin (a = 0.9375: McKin-
ney & Gammie 2004; McKinney 2006). Let us compare the
outermost streamline of the funnel jet in GRMHD simulations
with Equation (3).

2.2. GRMHD Simulations
The public version of the two-dimensional (2D) axisym-

metric GRMHD code HARM (Gammie et al. 2003; Noble
et al. 2006) is used in our examinations. The code adopts
dimensionless units GM = c = 1. We, however, occasion-
ally reintroduce factors of c for clarity. Lengths and times are
given in units of rg ⌘ GM/c

2 and tg ⌘ GM/c
3, respec-

tively. We absorb a factor of
p
4⇡ in our definition of the

magnetic field. HARM implements so-called modified Kerr-
Schild coordinates: x0, x1, x2, x3, where x0 = t, x3 = �

are the same as in Kerr-Schild coordinates, but the radial
r(x1) and colatitude ✓(x2) coordinates are modified (McK-
inney & Gammie 2004). The computational domain is ax-
isymmetric, expanding in the r-direction from rin = 0.98 rH
to rout = 40 rg and the ✓-direction from ✓ = 0 to ✓ = ⇡.

Typical 2D axisymmetric GRMHD simulations (e.g. Gam-
mie et al. 2003; McKinney & Gammie 2004; McKinney
2006) adopt a dense “Polish Doughnut”-type torus (Fishbone
& Moncrief 1976; Abramowicz et al. 1978), which is in a hy-
drodynamic equilibrium supported by the centrifugal and gas
pressure (p) gradient forces. The torus is surrounded by an in-
substantial, but dynamic, accreting spherical atmosphere [the
rest-mass density ⇢ and the internal energy density u are pre-
scribed in power-law forms as ⇢min = 10�4(r/rin)�3/2 and
umin = 10�6(r/rin)�5/2] that interacts with the torus. This is
so-called “floor model” that forces a minimum on these quan-
tities in the computational domain to avoid a vacuum. The
initial reset-mass density ⇢0 in the system is normalized by
the maximum value of the initial torus ⇢0,max on the equator.

A poloidal magnetic loop, which is described by the
toroidal component of a vector potential A� as a function of
the density: A� / max (⇢0/⇢0,max � 0.2, 0), is embedded
in the torus. The field strength is normalized with the ratio
of gas to magnetic pressure [the so-called plasma-�, hereafter
�p ⌘ 2(� � 1)u/b2, which is measured in the fluid frame].
The inner edge of the torus is fixed at (r, ✓) = (6 rg, ⇡/2) and
the pressure maximum is located at (r, ✓) = (rmax, ⇡/2),
where rmax = 12 rg is adopted. �p0,min = 100, where
�p0,min denotes the minimum plasma-� at t = 0, is cho-
sen5 for our fiducial run. An ideal gas equation of state
p = (� � 1)u is used and the ratio of specific heats � is as-
sumed to be 4/3. A value of a = 0.9375 is chosen (McKinney
2006). For further computational details, readers can refer to
Gammie et al. (2003); McKinney & Gammie (2004) which
adopt default parameters in HARM.

Given small perturbations in the velocity field, the initial
state of a weakly magnetized torus with a minimum value

5 Note that �p0 is defined by finding each maximum value throughout
the computational domain in HARM. They are surely inside the torus, but not
on the same grid point as one can imagine the pressure maximum on the
magnetic “O-point” in the equatorial plane.
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of �p0,min & 50 is unstable against the magneto-rotational
instability (MRI; Balbus & Hawley 1991) so that a trans-
port of angular momentum by the MRI causes magnetized
material to plunge from the inner edge of the torus into the
black hole. Turbulent regions gradually expand outward (both
the wind/corona and RIAF body). The inner edge of the
torus forms a relatively thin disk with the “Keplerian” pro-
file on the equator in both cases of non-spinning (Igumen-
shchev 2008) and spinning (McKinney & Gammie 2004)
black holes. The turbulent inflow of the RIAF body becomes
laminar at the plunging region inside the innermost stable
circular orbit (ISCO) (e.g. Krolik & Hawley 2002; De Vil-
liers et al. 2003; McKinney & Gammie 2004; Reynolds
& Fabian 2008), whereas there is no other specific signa-
ture in the flow dynamics across the ISCO (Tchekhovskoy &
McKinney 2012). During the time evolution of the system,
PFD (highly magnetized, low-density) funnel jets are formed
at around polar axes (✓ ' 0 and ⇡).

3. RESULTS

3.1. Fiducial Run
Our goal of GRMHD simulations is to examine the quasi-

steady structure of the boundary between the low-density fun-
nel (PFD jet) interior and the high density funnel wall in the
coronal region outside the RIAF body. It can be directly com-
pared with an outermost streamline of the semi-analytical FFE
jet solution, which is anchored to the horizon (Figure 1), when
the system enters a long, quasi-steady phase. We first exam-
ine a high-resolution fiducial model in McKinney & Gammie
(2004); default parameters in HARM (as introduced above) are
adopted with a fine grid assignment Nx1 ⇥Nx2 = 456⇥ 456.
In McKinney & Gammie (2004), the simulation is terminated
at t/tg = 2000, or about 7.6 orbital periods at the initial pres-
sure maximum on the equator.

The MRI turbulence in the RIAF body is not sustained at
t/tg & 3000 due to the axisymmetric system as suggested by
the anti-dynamo theorem (Cowling 1934), however, the de-
cay of the turbulence does not affect the evolution of the PFD
funnel jet (McKinney 2006). Thus, we executed the time
evolution up to t/tg = 9000 in order to examine whether the
quasi-steady state of the PFD funnel jet is obtained or not.
This enables us to perform a direct comparison between the
steady solution and numerical simulation of the axisymmet-
ric GRMHD outflow. Constraining physical quantities at the
funnel edge is important for understanding observations.

Figure 2 shows the time sequential distribution of the rela-
tive densities of magnetic and rest-mass energy b

2
/⇢ for our

fiducial run. This figure provides a quantitative sense for the
spatial distribution of the PFD funnel jet, wind/corona, and
RIAF body (see also Figures 4 and 5 for details). Follow-
ing some previous work (e.g. McKinney 2006; Dexter et al.
2012), we confirmed that the funnel jet-wind/corona bound-
ary can be identified to be where b2/⇢ ' 1. At the early stage
t/tg = 1000 (top panel), the PFD funnel region (b2/⇢ � 1,
where red color is assigned) is tightly confined around the po-
lar axis (z). This is much narrower compared with radii of
outermost streamlines shown in Figure 1. The MRI is on the
way of growing. At the middle stage t/tg = 3000 (middle
panel), the MRI is well developed and thus the magnetized
material in the RIAF body is swallowed by the black hole.
A certain amount of the poloidal flux, which falls into the
ergosphere, is twisted along the azimuthal direction and pow-
erful PFD jets are formed toward the polar directions. Conse-

FIG. 2.— Time evolution of the fiducial run (a = 0.9375); from top to
bottom, t/tg = 1000, 3000, and 9000, respectively. A color filled contour
shows the magnetic energy per unit particle b2/⇢, which is measured in the
fluid frame. The black hole, the ergosphere (“not hatched”), and two out-
ermost streamlines (genuine parabolic/parabolic), which are anchored to the
event horizon, are displayed in the same manner as Figure 1.

Comparison	to	force-free	&	
MHD	solutions	

(M.	Nakamura,	Asada,	Hada	et	al.	in	prep.;	
Narayan+07;	McKinney	&	Gammie	04)	

b2/⇢

 = 1

 = 0.75z / R2

z / R1.6
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(gas + magnetic) corona squeezing material against an inner
centrifugal wall, implying that the magneto-centrifugal mech-
anism (Blandford & Payne 1982, hereafter BP82) does play a
minor role. Hawley & Krolik (2006) suggest that the precise
shape and collimation of the entire outflow (PFD jet + funnel-
wall jet + coronal wind) is uncertain; i) the outer boundary of
the matter-dominated funnel-wall jet is somewhat indistinct
and ii) there is a smooth transition as a function of polar an-
gle between mildly relativistic unbound matter and slightly
slower but bound coronal matter. On the other hand, the
boundary between the low-density PFD funnel jet interior and
the high-density funnel-wall jet is sharp and clear. Properties
of the coronal wind are investigated in GRMHD simulation
with various black hole spins and different magnetic configu-
rations (e.g. Narayan et al. 2012; Sadowski et al. 2013; Yuan
et al. 2015), but there is no unique way to discriminate the
boundary (Sadowski et al. 2013).

Comparisons of GRMHD simulations with steady solu-
tions of the axisymmetric force-free disk wind (McKinney &
Narayan 2007a) provide a fundamental similarity of the PFD
funnel jet. In the fiducial GRMHD simulation, the vertically
(height) integrated toroidal current, which is enclosed inside
a radius, follows a remarkably similar power-law profile with
the parabolic solution (✏ = 1.6) of the disk wind (BP82),
whereas the split-monopole (✏ = 1) or genuine paraboloidal
(✏ = 2) solutions are well-known (Blandford & Znajek 1977,
hereafter BZ77). This scaling is found to be maintained in
a time-averaged sense, but also at each instant of time. It is
also independent of the black hole spin. As a consequence,
the poloidal magnetic field of the PFD jet in the GRMHD
simulation agrees well with the force-free solution for a non-
rotating thin disk, having the parabolic geometry. McKinney
& Narayan (2007b) performed the general relativistic FFE
(GRFFE) simulations of the disk wind. The magnetosphere
of the GRFFE simulation with the parabolic geometry also
matches remarkably well to the PFD funnel jet in the fiducial
GRMHD simulation, but no better than with the non-rotating
force-free thin disk solution with the BP82-type parabolic ge-
ometry. It suggests that a rotation of the magnetic field leads
to negligible self-collimation.

Notable agreement of the BP82-type parabolic shape of the
PFD funnel jet between GRMHD simulations and force-free
(steady/time-dependent and/or non-rotating/rotating) models
indicate that gas plus magnetic pressure of the wind/corona in
GRMHD simulations is similar to the magnetic pressure out-
side the funnel region in force-free models. Note that above
authors consider only the portion of i) the steady solution of
the axisymmetric force-free disk wind (McKinney & Narayan
2007a) and ii) the GRFFE simulation of the disk wind (both
winds are in the parabolic shape) that overlap the funnel jet
region in the GRMHD simulation. So far, the boundary con-
dition and the shape of the funnel edge are poorly constrained.
It is also unclear where the footpoint of the outermost stream-
line of the PFD funnel jet will be anchored in the quasi-steady
state in GRMHD simulations.

The collimation of the PFD funnel jet is still the issue.
GRMHD simulations in the literature exhibit the jet collima-
tion ceases at ⇠ 50 rg (Hawley & Krolik 2006). The longest
domain simulations to date, extending up to r = 104 rg
(McKinney 2006), show �1 . 10 as a saturation level
beyond ⇠ a few of 100 rg (despite � � 1), where the jet
collimation terminates, following a conical expansion in the
downstream. Global SRMHD or (GR)FFE simulations with a

“fixed” curvilinear boundary wall (i.e., parabolic; Komissarov
et al. 2007, 2009; Tchekhovskoy et al. 2008, 2010) pro-
vides a bulk acceleration up to �1 ⇠ 101–103, whereas it is
still unclear how such a highly relativistic flow can be stably
confined in a realistic environment. Recent semi-analytical
model shows that the collimation of PFD jets may take place
by the wind in RIAFs, if the total wind power Pwind exceeds
about 10% of the jet power Pjet (Globus & Levinson 2016),
while Pwind/Ṁc

2 ⇡ 10�3 (where Ṁ denotes the mass accre-
tion rate at the horizon) is obtained by a GRMHD simulation
around a Schwarzschild black hole (Yuan et al. 2015).

In this paper, we examine the structure of the PFD funnel jet
with GRMHD simulations. The funnel edge is compared with
steady self-similar solutions of the axisymmetric FFE jet and
we derive the physical conditions of the boundary between the
funnel jet and outside (wind/corona). Results are compared
with the M87 jet sheath in VLBI observations. Methods and
results for examining a parabolic jet streamline are presented
in Sections 2 and 3. Comparison with VLBI observations is
given in Section 4. Based on our results, section 5 assigns
topical discussions and prospects for exploring the origin of
the M87 jet with mm/sub-mm VLBI observations in the near
future. Conclusions are provided in Section 6.

2. METHODS

We conduct a direct comparison between the observed
jet geometry in M87 and theoretical/numerical model. The
present paper investigates especially for the part of parabolic
streams inside the sphere of influence by the SMBH. A for-
mation of a quasi-steady black hole ergosphere-driven jet is
self-consistently managed by performing GRMHD simula-
tions and its connection to mm/cm VLBI images is examined
by utilizing the steady axisymmetric FFE jet solution.

2.1. Outer Boundary of the PFD Funnel Jet
According to a steady self-similar solution of the axisym-

metric FFE jet (Narayan et al. 2007; Tchekhovskoy et
al. 2008, hereafter NMF07, TMN08), we here consider
an approximate formula of the magnetic stream function
 (r, ✓) in polar (r, ✓) coordinates in the Boyer-Lindquist
frame (Tchekhovskoy et al. 2010):

 (r, ✓) =

✓
r

rH

◆

(1� cos ✓), (2)

where rH = rg(1 +
p
1� a2) is the radius of the black hole

horizon and the dimensionless Kerr parameter a = J/Jmax,
which describes the black hole spin. J is the black hole angu-
lar momentum and its maximum value is given by Jmax =
rgMc = GM

2
/c, where G is the gravitational constant.

0    1.25 and 0  ✓  ⇡/2 are adopted in TMN08.
 is conserved along each field (stream-) line in a steady so-
lution of the axisymmetric MHD outflow4. If  = 0 is cho-
sen, the asymptotic streamline has a split-monopole (radial)
shape z / R (where, R = r sin ✓ and z = r cos ✓), whereas
if  = 1 is chosen, the streamline has a (genuine) parabolic
shape z / R

2 at R � rg (BZ77).  = 0.75 is the case of the
parabolic shape z / R

1.6 (BP82).
In the magnetized RIAF simulations, the “hourglass” shape

that has a very little vertical flux penetrating the equatorial

4 An asymptotic flow (r/rH � 1) follows z / R✏, where ✏ = 2/(2�),
that consists of both conical and parabolic shapes (1  ✏  2.67).
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et al. 2013), in which the coherent poloidal magnetic flux
is presumably arrested on the equatorial plane at R > rH
(Tchekhovskoy 2015).

With standard parameters in HARM, our GRMHD simula-
tions provide several interesting results, which does not de-
pend on the black hole spin at a = 0.5-0.99. We, however,
need further investigations to find features such as a linear
acceleration of the underlying flow with an extended compu-
tational domain (rmax/rg > 100). Also, one of the important
issues is to investigate whether an unbound wind could surely
exist on large scales. If so, it indicate that Be ' 0 (�ut ' 1)
will not hold at the jet/wind boundary. How the BP82-type
parabolic funnel jet could be maintained by an unbound wind
and/or other external medium? How the equipartition condi-
tions b2/⇢ ' 0.5–1 and �p ' 1 are maintained (or modified)?
These questions will be addressed in a forthcoming paper.

3.2.1. Structure of the Jet Stagnation Surface

We present Figure 10 to examine the jet stagnation surface
and the local magnetization, with respect to the black hole
spin (a). As is also shown in Figure 8, the jet stagnation sur-
face (ur = 0 inside the funnel) shifts toward the black hole if
a increases (see, e.g. Pu et al. 2015, for an analytical exam-
ination in the Kerr space-time) due to the increase of ⌦ (the
outflow can be initiated at the inner side), but qualitatively
similar structures of the surface are obtained (a = 0.5–0.99)
as is clearly seen in Figure 10.

Coherent poloidal magnetic field lines are regularly dis-
tributed inside the funnel edge along the outermost parabolic
streamline (BP82: z / r

1.6), which is anchored to the event
horizon. As the black hole spin increases, the density of con-
tours becomes high, indicating that the poloidal field strength
B

p goes up. As is examined in Figure 3, the local enhance-
ment of Bp around the polar axis (z) in the very vicinity of
the event horizon (r/rg . a few) becomes strong as a ! 1.
The closest part (to the black hole) of the jet stagnation is lo-
cated at around the funnel edge for each black hole spin with
a = 0.5–0.99. During the quasi-steady state, the jet stagna-
tion surface is almost stationary in our GRMHD simulations.

Contours of b2/⇢ with selected values are also displayed on
each panel of Figure 10 in order to identify where a large mag-
netization is obtained along the jet stagnation surface. In the
vicinity of the black hole at r/rg . 20, the value of b2/⇢ de-
creases monotonically (approximately independent on the co-
latitude angle ✓ inside the funnel) as r increases. Again, this
is interpreted as a consequence of no visible (but very weak)
bunching of poloidal magnetic flux as well as no significant
concentration of the mass density toward the polar axis at a
few . r/rg . 20 as examined with our fiducial run in Sec-
tion 3.1 (see also Figures 2 and 3). Depending on the black
hole spin (a = 0.5, 0.7, 0.9 and 0.99), b2/⇢ ' 2, 5, 10 and
20 are identified at around the closest part (near the funnel
edge) on the jet stagnation surface. This is located between
two outermost streamlines (z / r

2 and z / r
1.6) of the semi-

analytical solution of the FFE jet. Within r/rg ' 25, values
of b2/⇢ decrease to their half level in each case along the jet
stagnation surface towards the polar axis. This is one of the
notable findings in this paper.

As is seen in Figure 9, a high value of � is distributed at
relatively outer layer of the funnel between two outermost
streamlines (z / R

2 and z / R
1.6), which are anchored

to the event horizon. Having a high value of the magnetiza-
tion � (⇡ b

2
/⇢) at the jet launching point has a great poten-

tial for the bulk acceleration toward a relativistic regime as

seen in Equation (1) although this is a necessary, but not suffi-
cient condition (as is well-known, the magnetic nozzle effect
is needed, which can be triggered by a differential bunching of
poloidal flux toward the polar axis). As is suggested in Taka-
hashi et al. (1990); Pu et al. (2015), the location of the jet
stagnation surface is independent of the flow property, such as
the mass loading, because it is solely determined by a and ⌦
(Equation 12). This is quantitatively confirmed by comparing
FFE simulations with GRMHD simulations (Tchekhovskoy
et al. 2010). We point out that a departure of the jet stagna-
tion surface from the black hole at a higher colatitude (✓ ! 0)
gives a prospective reason for the lateral stratification of � at
large distances (where the sufficient condition for the bulk ac-
celeration may be applied).

The above issue could be associated with the so-called

	

a = 0.5 a = 0.7

a = 0.9 a = 0.99

FIG. 10.— Similar to Figure 7, but the magnified view is shown for dis-
playing the poloidal magnetic field line in the vicinity of the black hole with
the computational domain 0  R/rg  20 and �15  z/rg  25.
The jet stagnation surface: ur = 0 is drawn with a navy solid line on
each panel (from upper-left to lower-right; different black hole spins of
a = 0.5, 0.7, 0.9 and 0.99, respectively). Orange solid lines in each panel
show i) b2/⇢ = 2, 5, 10, and 20 (inner pairs), and ii) their half values (1, 2.5,
5, and 10) (outer pairs), respectively. Note that outer lines at z < 0 are not
drawn in upper panels.

•  Approaching	counter-jet	emission	
•  Constraint	on	spin	parameter	
•  But	non-thermal	electron	

distribution	is	quite	uncertain	

(M.	Nakamura,	Asada,	Hada	et	al.	in	prep.)	

What	can	be	seen	with	Event	
Horizon	Telescope?	 A&A 586, A38 (2016)

Fig. 8. Intensity maps of model RH100 for i = 20◦ (upper left panel) and i = 160◦ (lower left panel) at λ = 1.3 mm (ν = 230 GHz). The total
fluxes (at 1.3 mm) in these models are 1 Jansky. The position angle of the black hole spin is set to PA = 290◦ E of N for all models. The image size
is 40 × 40 GMBH/c2 in the plane of the black hole, which at a distance of D = 16.7 Mpc, corresponds to an angular size of about 140 × 140 µas.
Middle panels: the corresponding visibility amplitude on a u − v plane in units of Jy. Right panels: the visibility phase map in degrees. The arrows
in the left and middle panels indicate the orientation of our coordinate system.

The visibility phase and, in particular, the so-called closure
phase, which contains information on the source structure, can
also constrain the model. The closure phase is the sum of visi-
bility phases for a triangle of interferometric baselines:

φclosure = φSMT−CARMA + φCARMA−H + φH−SMT. (3)

For a symmetrical Gaussian intensity distributions on the sky,
the visibility phase is expected to be zero and so is the closure
phase. Any deviation from a zero closure phase will indicate the
source deviation from a Gaussian or point-like structure, and this
observable can in principle be used to compare the model and
observed emission shape without reconstructing the radio maps.

We have calculated the theoretical visibility closure phases.
For the model with i = 20◦, which shows the crescent on the
N side of the BH (see Fig. 8), the closure phases are positive;
φclosure = 11◦,19◦,11◦,11◦, where the four values correspond to
different time moments of the observation. The φclosure evolution
is caused by the rotation of the Earth, and it is probing slightly
different u − v values. A typical observation duration is two to
three hours. This is about three times shorter than the dynamical
time scale of the source (8.5 h) with its BH mass, 6.2 × 109 M⊙ .
For i = 160◦, for which the crescent is on the S side of the BH
(Fig. 8), the closure phases are negative: φclosure = −21◦, −21◦,
−12◦, −9.5◦. In both cases, the values are consistent with the
observed value: φclosure ≈ ±20◦ (Akiyama, priv. comm.).

In summary, for the fiducial model RH100 (for both viewing
angles of i = 20◦ and 160◦), visibility amplitudes and closure

phases are roughly consistent with the preliminary observations
of the M 87 core obtained by the EHT (visibility amplitudes and
closure phases on a single VLBI triangle).

4. Discussions
Deriving the appearance of a jet in the direct vicinity of a SMBH
is not straightforward. The jet formation mechanism, as well as
particle acceleration in jets, is generally not understood well.
Moreover, one has to take spacetime curvature into account,
which affects the plasma dynamics and light propagation. Using
GRMHD simulations of a weakly magnetized accretion flow,
a jet appears naturally, and we calculate the appearance of the
M 87 jet base at radio and millimeter wavelengths. For the elec-
tron heating, we assume that the electrons are weakly coupled
to protons in the accretion disk and strongly coupled in the jet
– a simple, but crucial concept that we have already used suc-
cessfully to explain the appearance of the SMBH in the center
of the Milky Way. Below we discuss our results in a context of
observational constraints. We also discuss the model limitations.

4.1. Mass-accretion rate

The accretion rate onto M 87 is estimated by fitting the GRMHD
model SED to the observed data points. The resulting best fit
Ṁ will vary depending upon the underlying electron distribu-
tion functions in the accretion disk and jet. They typically vary
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Edge-brightening	image	of	M87	

Steady	axisymmetric	
force-free	model	
(Broderick	&	Loeb	09)	

A&A 586, A38 (2016)

Fig. 5. Evolution of the intensity profile across (left panel) and along (right panel) the jet at λ = 7 mm (ν = 43 GHz). Color lines represent intensity
at various times spaced by 20M ≡ 7 days.

Fig. 6. Contour maps of the model images (RH100) at λ = 7 mm (ν = 43 GHz) for viewing angles of i = 20◦ (left panel) and i = 160◦ (right
panel) convolved with the telescope beam to simulate observations by Hada et al. (2011). The contour levels were chosen to match those from
observations (contours decrease by a factor of 21/2 from the maximum intensity). The image size here is 480 × 480GMBH/c2 ≡ 1.8 × 1.8 mas,
which is about twice the size used in Fig. 4 (images at λ = 7 mm).

brightness assymetry is due to Doppler boosting. In both cases
shown in Fig. 4, the emission from the counter-jet is strongly
suppressed.

The edge-brightening of the jet images is illustrated in Fig. 5
(left panel), which shows the radiation intensity profile across
the jet axis at a distance of 25GMBH/c2 away from the SMBH.
Figure 5 (left panel) shows how the intensity profile evolves in
time. Lines with different colors indicate the intensity profile at
various times. The time span between the black and magenta
lines corresponds to about 28 d. The ratio of the intensity of the
two rims is about two and is roughly constant in time. Figure 5
(right panel) also shows the evolution of intensity profile along
the jet. The profile along the jet shows two intensity enhance-
ments that apparently move upstream of the jet (“knots” located
at x ∼ 45 and 65GMBH/c2). We find that these two intensity
“knots” have subluminal apparent speeds of v/c = 0.13 and 0.4,
which indicate jet acceleration.

A robust comparison of Fig. 4 to observations of the source
at 7 mm is presented in Hada et al. (2011). In Fig. 6, we convolve
our theoretical intensity maps (Fig. 4) with the telescope beam
size (FWHMbeam = 0.3 and 0.14 mas, see Hada et al. 2011) and
contour them in the same fashion as Fig. 3b in Hada et al. (2011).
There is overall good qualitative agreement, but also some re-
maining differences. Our jet model is somewhat more compact
in the direction along the jet axis to account for the extended
low-surface brightness jet features observed at 7 mm. Also our
jet model does not display the characteristic two rims when con-
volved with the telescope beam, even though the underlying the-
oretical model is clearly edge-brightened. An even better agree-
ment between our model and observations could probably be
achieved (1) by using GRMHD models with a higher spatial res-
olution that resolves the jet boundary better; (2) by increasing the
size of the computational domain since we are only simulating
the innermost parts of the jet at 43 GHz; and (3) by including
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3D	GR	MHD	simulation	&	
radiative	transfer	
(Moscibrodzka+16)	

B v 

EM fields： 

Particle velocity fields： 

Steady axisymmetric force-free model 

Magnetic flux function (approx.) 

Paraboloidal	jet	with	
helical	fields	

Kazuya	Takahashi	

(Takahashi,	KT,	Kino,	Nakamura	&	Hada	in	prep.	)	



BP	type:	B	fields	threading	disk	 BZ	type:	B	fields	threading	BH	

Non-thermal	
electron	distribution	

BP	type:	B	fields	threading	disk	 BZ	type:	B	fields	threading	BH	

•  Non-thermal	electrons	around	edge	
•  Symmetric	images	need	high	spin	



Summary	

•  MHD	simulations	show	jets	are	
electromagnetically	driven	by	rotating	BHs	
(via	Blandford-Znajek	process)	

•  BZ	process	is	ascribed	to	the	ergosphere	
•  VLBI	observations	have	been	much	improved	

–  Jet	from	BH?	->	Existence	of	ergosphere	
– Constraint	on	spin	parameter	
– Edge-brightening	structure	



Diego T. Blas (CERN TH),
“Testing gravitation with gravitational waves“

(50+10)
[JGRG27 (2017) 112711]

103



Testing gravity 
with gravitational waves

w/ Cornish, Nardini, Barausse, Yagi, Yunes

Diego Blas

Gravitation in 2017

Gµ⌫ = 8⇡GTµ⌫

Massless, spin-2, 4D,  
unitary, Lorentz Invariant

standard model fields

beautiful and well tested, but can not accommodate

• quantum gravity 

• dark matter 

• dark energy 

• strong CP and hierarchy problem, 

…and there are phenomena that may still hide surprises
• strong gravity, propagating gravity,

…

m⌫



Tests of gravity

1=BH-BH systems with aLIGO/aVirgo/KAGRA 

2=NS-NS systems with aLIGO/aVirgo/KAGRA,  

3=BH-BH with eLISA,  

4=BH- BH with PTAs

Baker et al ‘14 Barausse talks 17

weak field and 
non-relativistic

strong field  
and/or relativistic

Testing General Relativity 15

Higher dimensionsHigher dimensions

Lovelock
theorem

Lovelock
theorem

WEP violationsWEP violations

Diff-invar. violationsDiff-invar. violationsExtra fieldsExtra fields

Nondynamical fieldsNondynamical fields Lorentz-violationsLorentz-violations

Einstein-Aether
Horava-Lifshitz

n-DBI

Palatini f(R)
Eddington-Born-Infeld

dRGT theory
Massive bimetric 

gravity

Scalars

Scalar-tensor, Metric f(R)
Horndeski, galileons

Quadratic gravity, n-DBI

Vectors

Einstein-Aether
Horava-Lifshitz

Tensors

TeVeS
Bimetric gravity

Dynamical fields
(SEP violations)

Dynamical fields
(SEP violations) Massive gravityMassive gravity

Figure 2.1. This diagram illustrates how Lovelock’s theorem serves as a guide to classify modified
theories of gravity. Each of the yellow boxes connected to the circle represents a class of modified
theories of gravity that arises from violating one of the assumptions underlying the theorem. A theory
can, in general, belong to multiple classes. See Table 1 for a more precise classification.

2. Extensions of general relativity: motivation and overview

2.1. A compass to navigate the modified-gravity atlas

There are countless inequivalent ways to modify GR, many of them leading to theories
that can be designed to agree with current observations. Cosmological observations
and fundamental physics considerations suggest that GR must be modified at very
low and/or very high energies. Experimental searches for beyond-GR physics are a
particularly active and well motivated area of research, so it is natural to look for a
guiding principle: if we were to find experimental hints of modifications of GR, which
of the assumptions underlying Einstein’s theory should be abandoned?

Such a guiding principle can be found by examining the building blocks of
Einstein’s theory. Lovelock’s theorem [191, 192] (the generalization of a theorem
due to Cartan [193]) is particularly useful in this context. In simple terms, the theorem
states that GR emerges as the unique theory of gravity under specific assumptions.
More precisely, it can be articulated as follows:

In four spacetime dimensions the only divergence-free symmetric rank-2
tensor constructed solely from the metric gµ⌫ and its derivatives up to second
differential order, and preserving diffeomorphism invariance, is the Einstein
tensor plus a cosmological term.

Beyond GR roadmaps

Berti et al 15

Massless, spin-2, 4D,  
unitary, Lorentz Invariant

(not exclusive arrows)

light
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How could Einstein be wrong?

Auxilary fields

Eddington-inspired Born-Infeld

[adapted from Clifton, Ferreira, Padilla, Skordis, Phys. Rep. 2011]

Beyond GR roadmaps

Clifton et al 11

Massless, spin-2, 4D,  
unitary, Lorentz Invariant

see also Yagi, Yunes Pretorius 16
Yunes Siemens 13

Gair et al 12

• Keep unitarity, stability of Minkowski and falsiability/predictivity (!)

• learning something fundamental about gravity/Nature
        e.g. the symmetries of the Lagrangian, # of dimensions…

• Improve the short distance properties of GR (QG, BH)

• Connection to dark energy/dark matter

• Connection to BSM, e.g. strong CP problem or other axions,..

• Interesting (testable) phenomenology

Theoretical input

some (biased) examples: 

Horava gravity: 
Horava 09

abandoning Lorentz Invariance 
may provide UV complete gravity

Ultra-light scalars: 
Wilczek, 78

can fix the sCP 
may be ubiquotous in strings

CS Gravity
…



Building new theories

gravity and X sector matter sector

L(gµ⌫ , X)

new light degrees of freedom or 
rigid strucutures

L(SM, gµ⌫ , X)

weak-equivalence principle 
implies

uµ

e.g. a preferred frame (LI)

dynamical:

rigid:

strong equivalence principle 
generically violated 

(at least locally)

L(SM,Xgµ⌫)

ūµ = �µ0

uµu
µ = 1,

(model independent parametrizations are also useful)

Different tests

emission propagation detection

Walter Del Pozzo

Motivation

• GR signal well understood  

• inspiral 

• merger 

• ringdown

4

PN orbits 
modified quadrupolar 

dipolar radiation 
scalar hair 

no-hair Kerr/I-L-Q 
ECOs 

mass of GWs 
speed of GWs 

polarizations (w/PTAs) 
Shapiro delay

speed of GWs 
polarizations

i m r



SEP violation at emission

In strongly gravitating bodies, gravitational binding energy gives large 
contribution to total mass, but binding energy coupled to extra fields!  

⌦

L = M2
PR+ c1(rµu⌫)

2 + ...+ �(uµuµ � 1)

e.g. Einstein-aether theory

ūµ = �µ0

@2uuhh
gravitons feel an extra field!

(SEP)⌦

NS1 NS2

SEP violation at emission

In strongly gravitating bodies, gravitational binding energy gives large 
contribution to total mass, but binding energy depends on extra fields!  

⌦

Extra emission

Orbital change

Orbital change

Sm =
X

n

Z
dsmn(u

µVµ)
V µ
n rµ(mnV

⌫) ⇠ O(sn)

sn ⌘ @ logmn

@(uµVµ)

treated from ‘far away’ two ‘charged point particles! (even if                        )Lm( m, gµ⌫)

No longer geodesic motion!

eff

sn ⇠ f(Gmn/R)



SEP violation at emission

no longer conserved!P i =
X

mnv
i
n

h ⇠ G

c3
P

r
dipolar radition ~ s1 � s2

Ėb = �LGW � Ldip

LGW ⇠
⇣v
c

⌘10

Ldip ⇠
⇣v
c

⌘8

dipolar radiation forces to inspiral faster and GWs to chirp faster

(there is momentum exchanged with       ) uµ

No longer geodesic motion!

SEP violation at emission

sensitivities are hard to compute (simulation of NS)

they may also be  (non-perturbatively)  enhanced: scalarization

Yagi, DB, Barausse and Yunes 14

Damour, Esposito-Farese 95

YunesExtreme Gravity 9

Inducing Strong Field Corrections

[Damour & Esposito-Farese ’92 - ’98]

Matching the interior and exterior 
solutions at the surface

'outside = '1 + ↵sc
m

r

'inside =
'1

cos(KR)

sin(Kr)

Kr

related to

S =

Z
d4x

p
�g

2
[R� 2@µ'@

µ'] + Sm

�
 m, A2(')gµ⌫

�

↵ = @ lnA/@'
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↵SS
0 < 10�3
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Solar System constrain

⇠ GM/R



From binary pulsars
Yagi, DB, Barausse and Yunes 14

N. Wex talk 17

for Einstein-aether

for BD theories

Hulse-Taylor

12

0PN 0.5PN 1PN 1.5PN 2PN 2.5PN 3PN 3.5PN
PN order

10�2

10�1

100

101
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103

|�
'̂
|

GW150914
J0737-3039

FIG. 6. 90% upper bounds on the fractional variations of the known
PN coe�cients with respect to their GR values. The orange squares
are the 90% upper bounds obtained from the single-parameter analy-
sis of GW150914. As a comparison, the blue triangles show the 90%
upper bounds extrapolated exclusively from the measured orbital-
period derivative Ṗorb of the double pulsar J0737-3039 [12, 88], here
too allowing for possible GR violations at di↵erent powers of fre-
quency, one at a time. The GW phase deduced from an almost con-
stant Ṗorb cannot provide significant information as the PN order is
increased, so we show the bounds for the latter only up to 1PN order.
We do not report on the deviation of the 2.5PN coe�cient, which is
unmeasurable because it is degenerate with the reference phase. We
also do not report on the deviations of the logarithmic terms in the
PN series at 2.5PN and 3PN order, which can be found in Table I and
in Fig. 7.

{�↵̂2, �↵̂3, �↵̂4}. We do not consider parameters that are de-
generate with either the reference time or the reference phase.
For our analysis, we explore two scenarios: single-parameter
analysis, in which only one of the testing parameters is al-
lowed to vary freely (in addition to masses, spins, ...) while
the remaining ones are fixed to their GR value, that is zero,
and multiple-parameter analysis in which all the parameters
in one of the three sets enumerated above are allowed to vary
simultaneously.

The rationale behind our choices of single- and multiple-
parameter analyses comes from the following considerations.
In most known alternative theories of gravity [13, 14, 89], the
corrections to GR extend to all PN orders even if in most cases
they have been computed only at leading PN order. Consid-
ering that GW150914 is an inspiral–merger–ringdown signal
sweeping through the detector between 20 Hz and 300 Hz,
we expect to see signal deviations from GR at all PN orders.
The single-parameter analysis corresponds to minimally ex-
tended models that can capture deviations from GR that occur
predominantly, but not only, at a specific PN order. Neverthe-

We also include the 0.5PN parameter �'̂1; since '1 is zero in GR, we define
�'̂1 to be an absolute shift rather than a fractional deformation.

less, should a deviation be measurably present at multiple PN
orders, we expect the single-parameter analyses to also cap-
ture these. In the multiple-parameter analysis, the correlations
among the parameters are very significant. In other words, a
shift in one of the testing parameters can always be compen-
sated by a change of the opposite sign in another parameter,
and still return the same overall GW phase. Thus, it is not sur-
prising that the multiple-parameter case provides a much more
conservative statement on the agreement between GW150914
and GR. We defer to future studies the identification of op-
timally determined directions in the � p̂i space by performing
a singular value decomposition along the lines suggested in
Ref. [90].

For each set of testing parameters, we perform a separate
LALInference analysis, where in concert with the full set of
GR parameters [3] we also explore the posterior distributions
for the specified set of testing parameters. Since our testing
parameters are purely phenomenological (except the parame-
ters that govern the PN early-inspiral stage), we choose their
prior probability distributions to be uniform and wide enough
to encompass the full posterior probability density function in
the single-parameter case. In particular we set �'̂i 2 [�20, 20];
��̂i 2 [�3, 3]; �↵̂i 2 [�5, 5]. In all cases we obtain estimates
of the physical parameters – e.g., masses and spins – that are
in agreement with those reported in Ref. [3].

In Fig. 6 we show the 90% upper bounds on deviations in
the (known) PN parameters, �'̂i with i = 0, . . . , 7 (except for
i = 5, which is degenerate with the reference phase), when
varying the testing parameters one at the time, keeping the
other parameters fixed to the GR value. As an illustration, fol-
lowing Ref. [88], we also show in Fig. 6 the bounds obtained
from the measured orbital-period derivative Ṗorb of the double
pulsar J0737-3039 [12]. Also for the latter, bounds are com-
puted by allowing for possible violations of GR at di↵erent
powers of frequency, one at a time. Not surprisingly, since in
binary pulsars the orbital period changes at essentially a con-
stant rate, the corresponding bounds quickly become rather
loose as the PN order is increased. As a consequence, the
double-pulsar bounds are significantly less informative than
GW150914, except at 0PN order, where the double-pulsar
bound is better thanks to the long observation time (⇠ 10 years
against ⇠ 0.4 s for GW150914).6 Thus, GW150914 allows us
for the first time to constrain the coe�cients in the PN series
of the phasing up to 3.5PN order.

Furthermore, in Table I and Fig. 7 we summarize the
constraints on each testing parameter �'̂i for the single and
multiple-parameter analyses. In particular, in the 6th and 7th

columns of Table I we list the quantile at which the GR value
of zero is found within the marginalized one-dimensional pos-
terior (i.e., the integral of the posterior from the lower bound

6 We note that when computing the upper bounds with the binary-pulsar ob-
servations, we include the e↵ect of eccentricity only in the 0PN parameter.
For the higher PN parameters, the e↵ect is not essential considering that
the bounds are not very tight.

No scalarization and sensitivities harder to compute (+ no hair)

BH binaries

One can always test the PN physics from the waveforms

Walter Del Pozzo

• The inspiral waveform in the post-Newtonian 
approximation 

!

!

• The        (post-Newtonian coefficients) encode the 
physical predictions from the theory of gravity 

h(t) = A(t) cos(�(t))

�(t) = v(t)�5
7X

n=0

(�n + �l
n log(v(t)))v

n(t)

�n

Inspiral waveform

5

PN in corrections

Abbott et al 16

+�'̂n

PN is also constraint in SS



Prospects Dipolar emission

B ⇠ (s1 � s2)
2 . 10�9

Barausse, Yunes, Chamberlain 16

also Croon et al 17, Hooke, Huang17

(from pulsars)

ĖGW = ĖGR


1 +B

⇣v
c

⌘�2
�

Merger and ringdown
Merger requires NR: hard to explore 

still, some results are known
e.g. earlier plunge of some scalar tensor theories Barausse, et al 14

Ringdown allows to test the NSs properties (ILQ) and BHs no-hair!
Berti, Cardoso, Starinets 09 

Abbott et al 16

!lm = !GR
lm (M,J)(1 + �!lm)

not there yet! (more SNR needed)

Berti, et al 16 

see also  Okounkova et al 17, Cayuso et al 17



Figure 45: Pictorial description of a bosonic cloud around a spinning BH in a realistic
astrophysical environment. The BH loses energy ES and angular momentum LS through
superradiant extraction of scalar waves and emission of GWs, while accreting gas from the
disk, which transports energy EACC and angular momentum LACC. Notice that accreting
material is basically in free fall after it reaches the innermost stable circular orbit. A scalar
cloud would be localized at a distance ⇠ 1/Mµ

2
S
> 2M .

venturing in the astrophysical implications of superradiant instabilities, we need to assess
whether or not the linearized analysis previously presented is reliable. Indeed, essentially all
previous works on superradiant instabilities were based on a linearized analysis, neglecting
backreaction and other competitive e↵ects – such as GW emission and gas accretion – which
can have an impact on the development of the process.

6.3.1 Scalar clouds around spinning black holes

This issue was recently addressed by performing a quasi-adiabatic, fully-relativistic evolution
of the superradiant instability of a Kerr BH triggered by a massive scalar field, including the
e↵ect of GW emission and of gas accretion [344]. The starting point of the analysis is the
action (4.1) with vanishing gauge field, so that the model describes a (generically complex)
massive scalar field minimally coupled to gravity.

Following the development of the instability in a fully nonlinear evolution is extremely
challenging because of the time scales involved: ⌧BH ⇠ M is the light-crossing time, ⌧S ⇠ 1/µS

is the typical oscillation period of the scalar cloud and ⌧ ⇠ M/(MµS)9 is the instability time
scale in the small-MµS limit. As previously discussed, in the most favorable case for the
instability, ⌧ ⇠ 106⌧S is the minimum evolution time scale required for the superradiant
e↵ects to become noticeable. Thus, current nonlinear evolutions (which typically last at
most ⇠ 103⌧S [103]) have not yet probed the development of the instability, nor the impact
of GW emission. However, in such configuration the system is suitable for a quasi-adiabatic
approximation: over the dynamical time scale of the BH the scalar field can be considered
almost stationary and its backreaction on the geometry can be neglected as long as the scalar
energy is small compared to the BH mass [344].

At leading order, the geometry is described by the Kerr spacetime and the scalar evolves

136

Light scalar fields

Isolated spinning BH + light massive fields (       ~      )  
are unstable under superradiance 

rS

Brito, Cardoso, Pani 16

carries away J emits monochromatic GWs
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Dark matter tests with eLISA

Dark photons

Hidden U(1) sector

Massive photon

Massive spin-2

Massive graviton

Observations of highly-spinning BHs → bounds on ultralight particles

String axiverse

QCD axion

Axion-like particles

[R. Brito, V. Cardoso, P. Pani; “Superradiance” - Springer (2015)]
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Arvanitaki et al 10

Brito et al 17
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light fields are ubiquitous in BSM (moduli, dilatons, QCD axion)

Do we observe BHs?

Cardoso, Franzin, Pani, PRL116:171101 (2016)

iv. GW signal: Echoes

echoes of the signal 

what if we are observing objects more compact than NSs but not BHs?

3

FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.

FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧echo ⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).
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FIG. 1. Schematic classification of dark compact objects. Their compactness is expressed as the di↵erence between the object
radius r0 and the Schwarzschild radius rg. Objects in the same category have similar dynamical properties on a timescale
⌧ ⇠ rg

c | log ✏|. The upper axis refers to the time, as measured by distant observers, that light from the photosphere takes to
reach the surface r0. Numbers refer to an object of 60M� and scale linearly with it mass.
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FIG. 2. Ringdown waveforms from black holes (black line)
and ClePhOs (red line). We consider objects of 60M�. For
ClePhOs, there is a reflective surface at r0 = rg(1 + ✏), ✏ =
10�11. The amplitude of the GW signal (proportional to the
relative strain of the interferometer’s arm induced by the GW)
is normalized to its peak value. The initial data describes a
quadrupolar Gaussian wavepacket of axial GWs. The inset
shows a zoom-in version of the waveform at late times. Note
that each subsequent echo has a smaller frequency content.

These are the (quasi)normal modes of the system. The
structure of GW signals at late times is therefore ex-
pected to be relatively simple. This is shown in Fig. 2,
which refers to the scattering of a Gaussian pulse o↵ a

BH. The pulse crosses the photosphere, and excites its
modes. The ringdown signal, a fraction of which trav-
els to outside observers, is to a very good level described
by its lowest modes, Eq. (4). The fraction of the GWs
that leaks from the barrier inwards travels down to the
horizon and that’s the last one hears of it.
Contrast the previous description with the dynamical

response of a ClePhO. The initial evolution of the pho-
tosphere modes still holds, by causality. Thus, up to
timescales of the order ⇠ rg

c | log ✏| (the roundtrip time of
radiation between the photosphere and the surface) the
signal is identical to that of BHs [10, 11]. At later times,
however, the pulse traveling inwards is bound to interact
with the object. This pulse is semi-trapped between the
object and the photosphere. Upon each interaction, a
fraction exits to outside observers, giving rise to a series
of echoes of ever-decreasing amplitude. Repeated reflec-
tions occur in a characteristic echo delay time [10, 11],

⌧echo ⇠ 2rg
c

| log ✏| . (5)

This logarithmic dependence is crucial to make echoes
observable even with only Planckian corrections near the
horizon, when ✏ ⇠ 10�40. Although, at very late times,
the fundamental modes of a ClePhO have low frequen-
cies, the main burst is typically generated at the pho-
tosphere and has therefore a frequency content of the
same order as the BH modes (4). The initial signal is
of high frequency and a substantial component is able to
cross the potential barrier. Thus, observers see a series
of echoes whose amplitude is getting smaller and whose
frequency content is also going down (see Fig. 2).

Abedi, Dykaar, Afshordi 16  (3 σ claim!) 

Cardoso, Pani 17

Cardoso, Franzin, Pani, PRL116:171101 (2016)

iv. GW signal: Echoes

Cardoso, Franzin, Pani, PRL116:171101 (2016)

iv. GW signal: Echoes

Cardoso, Franzin, Pani, PRL116:171101 (2016)

iv. GW signal: Echoes



Effects in propagation
Once the GW is emitted it propagates freely*

!2 = m2 + c2GW k2 +
X

n

↵n

⇤2n
k2n

massive gravity could help in DE 
theories with anisotropic stress (e.g. a four-vector)

higher order corrections (e.g. QG)

dispersive contributions: no need of counterpart

m  7.7⇥ 10�23 eV
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alignment) [129, 150–152]. Current gravitational-wave
measurements cluster around �e↵ ⇠ 0 (|�e↵ | < 0.35 at
the 90% credible level for all events; see Fig. 10 in the
Supplemental Material [11]) [5]. Assuming that binary
black hole spins are not typically small (. 0.2), our obser-
vations hint towards the astrophysical population favor-
ing a distribution of misaligned spins rather than near
orbit-aligned spins [153]; further detections will test if
this is the case, and enable us to distinguish di↵erent
spin magnitude and orientation distributions [154–159].

VIII. TESTS OF GENERAL RELATIVITY

To check the consistency of the observed signals with
the predictions of GR for binary black holes in quasi-
circular orbit, we employ a phenomenological approach
that probes how gravitational-wave generation or propa-
gation could be modified in an alternative theory of grav-
ity. Testing for these characteristic modifications in the
waveform can quantify the degree to which departures
from GR can be tolerated given the data. First, we con-
sider the possibility of a modified gravitational-wave dis-
persion relation, and place bounds on the magnitude of
potential deviations from GR. Second, we perform null
tests to quantify generic deviations from GR: without as-
suming a specific alternative theory of gravity, we verify
if the detected signal is compatible with GR. For these
tests we use the three confident detections (GW150914,
GW151226 and GW170104); we do not use the marginal
event LVT151012, as its low SNR means that it con-
tributes insignificantly to all the tests [5].

A. Modified dispersion

In GR, gravitational waves are nondispersive. We con-
sider a modified dispersion relation of the form E

2 =
p
2
c
2+Ap

↵
c
↵, ↵ � 0, that leads to dephasing of the waves

relative to the phase evolution in GR. Here E and p are
the energy and momentum of gravitational radiation, and
A is the amplitude of the dispersion [160, 161]. Modifi-
cations to the dispersion relation can arise in theories
that include violations of local Lorentz invariance [162].
Lorentz invariance is a cornerstone of modern physics
but its violation is expected in certain quantum grav-
ity frameworks [162, 163]. Several modified theories of
gravity predict specific values of ↵, including massive-
graviton theories (↵ = 0, A > 0) [163], multifrac-
tal spacetime [164] (↵ = 2.5), doubly special relativ-
ity [165] (↵ = 3), and Hořava–Lifshitz [166] and extra-
dimensional [167] theories (↵ = 4). For our analysis, we
assume that the only e↵ect of these alternative theories
is to modify the dispersion relation.

To leading order in AE
↵�2, the group velocity of

gravitational waves is modified as vg/c = 1 + (↵ �
1)AE

↵�2
/2 [161]; both superluminal and subluminal

propagation velocities are possible, depending on the sign

FIG. 5. 90% credible upper bounds on |A|, the magnitude of
dispersion, obtained combining the posteriors of GW170104
with those of GW150914 and GW151226. We use picoelec-
tronvolts as a convenient unit because the corresponding fre-
quency scale is around where GW170104 has greatest ampli-
tude (1 peV ' h ⇥ 250 Hz, where h is the Planck constant).
General relativity corresponds to A = 0. Markers filled at the
top (bottom) correspond to values of |A| and ↵ for which grav-
itational waves travel with superluminal (subluminal) speed.

of A and the value of ↵. A change in the dispersion rela-
tion leads to an extra term � (A, ↵) in the evolution of
the gravitational-wave phase [160]. We introduce such a
term in the e↵ective-precession waveform model [38] to
constrain dispersion for various values of ↵. To this end,
we assume flat priors on A. In Fig. 5 we show 90% credi-
ble upper bounds on |A| derived from the three confident
detections. We do not show results for ↵ = 2 since in this
case the modification of the gravitational-wave phase is
degenerate with the arrival time of the signal.

There exist constraints on Lorentz invariance violat-
ing dispersion relations from other observational sectors
(e.g., photon or neutrino observations) for certain val-
ues of ↵, and our results are weaker by several orders
of magnitude. However, there are frameworks in which
Lorentz invariance is only broken in one sector [168, 169],
implying that each sector provides complementary infor-
mation on potential modifications to GR. Our results are
the first bounds derived from gravitational-wave observa-
tions, and the first tests of superluminal propagation in
the gravitational sector.

The result for A > 0 and ↵ = 0 can be reparametrized
to derive a lower bound on the graviton Compton wave-
length �g, assuming that gravitons disperse in vacuum
in the same way as massive particles [5, 7, 170]. In
this case, no violation of Lorentz invariance is assumed.
Using a flat prior for the graviton mass, we obtain
�g > 1.5 ⇥ 1013 km, which improves on the bound of
1.0 ⇥ 1013 km from previous gravitational-wave observa-
tions [5, 7]. The combined bound using the three confi-
dent detections is �g > 1.6 ⇥ 1013 km, or for the graviton
mass mg  7.7 ⇥ 10�23 eV/c

2.

7

!2 = m2 + c2GW k2 +
X

n

Ank
2n

(does this totally rule out m? see Bellazzini et al 17)

* up to Shapiro

Effects in propagation

non-dispersive contribution
before GW170817…

Cornish, DB, Nardini 17
2

(a)

d

GW front

l?

(b)

d

GW front

H1 H1L1 L1

FIG. 1. (a) incidence of GW from a generic direction. (b)
orientation giving the maximal time delay.

of cosmological gravitational waves with future CMB in-
struments.

III. UPPER BOUNDS FROM GW150914

There is clearly an interest in setting an upper bound
on cgw. Let us recall that in [1, 2] this was not done
since it was assumed that cgw = 1 and the di↵erence in
the time of arrival of the signal to the di↵erent interfer-
ometers of LIGO was used to localize the event.

One can also take a di↵erent view. We use the fact
that the two LIGO sites at Livingston (L1) and Han-
ford (H1) separated by the distance of d = 10 ms light
travel time have detected the signal with the time shift
of �t = 6.9+0.5

�0.4 ms [1]. This time delay is equal to the
projection l? of the intersite distance d on the direction
perpendicular to the gravitational wavefront (see Fig. 1),
divided by cgw,

�t = l?/cgw . (3)

Independently of the arrival direction of the GW, l? can-

not be larger than the intersite distance d itself which
gives the bound

cgw�t  d . (4)

Substituting conservatively the minimal value of �t
within two-sigma deviation from the mean, we get,

cgw < 1.7 . (5)

IV. DISCUSSION

We have shown how our very naive reinterpretation of
the analysis of the detection of GW150914 sets the first
direct bound on the speed of propagation of GWs, eq. (5).
This bound complements the lower bound coming from
observations of high-energy cosmic rays (2).
Our constraint is already interesting and yet very con-

servative. We believe it can be improved by considering
other features of the event, such as orientations of the
detectors and the resulting antenna patterns, the ampli-
tudes of the waveforms measured at the two sites or more
information about the position of the source in the sky.
We have made the assumption that the change in the

emission process as a result of a modification of gravity
would not a↵ect the measurement of the time delay be-
tween the two waveforms significantly, even if it would
a↵ect the determination of the source parameters. One
can envisage two approaches to relax this assumption.
The first is to develop complete numerical simulations of
compact binary coalescence in existing theories predict-
ing deviations of cgw from 1. Alternatively, one can focus
just on the propagation of the GW and implement a data
analysis that would disentangle the measurement of the
time delay from the model of the GW emission.

We believe that the results obtained by pursuing both
these directions will be of great value to fundamental
physics.
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c  cgw  1.42c

no gravitational Cerenkov

after GW170817: light and GWs from 40 Mpc! LVC 17

�3⇥ 10�15c  cgw � c  7⇥ 10�16c

suddenly some gravitational parameters constrained at unprecedented level
(recall PPN           )10�7

(also Shapiro)



Consequence for modified gravity

DE after GW170817 (Ezquiaga, MZ ’17)

General Relativity quartic/quintic Galileons

quintessence/k-essence Fab Four

Brans-Dicke/f(R) de Sitter Horndeski

Kinetic Gravity Braiding Purely Kinetic Coupled Gravity

Kinetic Conformal GR quartic/quintic GLPV

Disformal Tuning (EST with A1 = 0) EST with A1 6= 0

H
or
nd

es
ki

bH
or
nd

es
ki

Viable after GW170817 Not viable after GW170817

Ths. conformally related to GR:
⌥
⌃

⌅
⇧gµ⌫ ! ⌦(X, �)2gµ⌫

? G4(�) (Brans-Dicke & f(R), Chameleons...)
? First theory beyond Horndeski (MZ&Garcia-Bellido ’13)

Compensating quartic Horndeski G4 and beyond F4

? c
2
g =

G4

G4 � 2X(G4,X � XF4)
= 1 , F4 =

G4,X

X

(see also Creminelli & Vernizzi ’17)

Miguel Zumalacárregui Dark Energy after GW170817

alternatives to cosmological constant are possible in  
generalized scalar-tensor theories (Horndeski) 

Ezequiaga, Zumalacarregui 17

Viable Galileons a↵ect GWs!

ḧij + (1 + ↵T )| {z }
c2g , GW

k
2
hij + 3H(1 + ↵M )ḣij = 0 (tensors)

Miguel Zumalacárregui Dark Energy after GW170817

cosmological tests 
without Λ 

homeopathic  
Horndeski…

Finally, polarizations

we already saw that extra light d.o.f.s affect the emission

GW170814: LIGO/VIRGO: evidence of spin-2 vs spin-0 or spin-1 only

the space metric allows 6-polarizations (2 in GR)

a network of detectors can detect them



PTAs and polarizations

Lee, Jenet & Price (2008) 

the GR and breathing modes, the GW-induced correlation func-
tions can be calculated analytically. For the shear and longitudinal
polarizations, modes that are not purely transverse, the correlation
function must be computed with Monte Carlo simulations.

We consider a distribution of plane GWs in a general metric
theory of gravity. The function hP( f ; êz)df d! denotes the distri-
bution of GWs of polarization P, in the frequency interval df and
in the solid angle d! around the propagation direction êz, such
that the GWmetric perturbation, at a given spacetime point (t; r) is

hab(t; r)

¼
X

P¼þ; ; ;b;sn;se;l

Z 1

#1
df

Z
d! hP f ; êzð Þe2!if (t#r = êz=c)P

ab êzð Þ:

ð1Þ

The polarization index P indicates any of the polarization states
þ, ; , b, sn, se, and l; the ‘‘þ’’ and ‘‘ ; ’’ denote the two different
GR spin-2 transverse traceless polarization modes; the ‘‘sn’’ and
‘‘se’’ denote the two spin-1 shear modes; the ‘‘l’’ and ‘‘b’’ denote
the spin-0 longitudinal mode and the spin-0 breathing mode,
respectively.

In this paper, we apply equation (1) to a stochastic background
of GWs. This stochastic background is a superposition of mono-
chromatic plane wave components with a frequency chosen at ran-
dom from a predetermined spectrum, for our purposes always a
power-law spectrum. The propagation direction of each plane
wave component is chosen at random from an isotropic distri-
bution. For a given planewave component, the polarization tensor
"Pab for the polarization state P depends on the direction of prop-
agation (e.g., it is parallel to the propagation direction for the

TABLE 1

Expansion Coefficients of the Normalized Cross-Correlation Function, #($) ¼ C($)/C(0)

% c0 c1 c2 c3 c4 c5

ck for C sn;se($)

0........................................ 0.0378 #0.0871 0.1928 #0.1086 0.0239 #0.0073

#2/3 ................................. 0.0317 #0.0739 0.1603 #0.0955 0.0289 #0.0121

#1 .................................... 0.0298 #0.0700 0.1511 #0.0917 0.0302 #0.0135

ck for Cl($)

0........................................ 0.0584 #0.1206 0.1386 #0.0908 0.0409 #0.0147

#2/3 ................................. 0.0512 #0.1057 0.1220 #0.0805 0.0373 #0.0156

#1 .................................... 0.0470 #0.0987 0.1148 #0.0785 0.0388 #0.0175

Notes.—We obtain this table using Legendre polynomials, i.e., #($) ¼
PN

k¼0 ckPk (2$/!# 1) with 0 & $ & !. Note
that these expansions are not applicable when $ ¼ 0. The % column indicates the power index of the GW background. By
using these normalized cross-correlation functions, #($), and by calculating C(0) from eq. (A37), the cross-correlation
functions C($) can be found.

Fig. 1.—Normalized pulsar timing residual correlation coefficient, #P ¼ CP($)/CP(0). Here, $ is the angular separation between two pulsars. ‘‘GR’’ stands for the two
transverse traceless modes, ‘‘+’’ and ‘‘;.’’ For the shear and longitudinal modes, the plots are the curves fitted with the expansion coefficients in Table 1, for five years of
observation. Results are given for several values of% , the power-law index of theGWspectrum. The change in # sn;se;l is on the order of 10#2 for a change in% from0 to#1.
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C(✓)

C(✓)

C(✓)

Jansen et al (SKA) 15 

waiting for LISA…

GR is not complete, SM is not complete (DM, DE, sCP,…) 

Both cases may have consequences for GWs (also probe new regime) 

MGR/BSM can affect emission/propagation/detection of GWs 

Emission:
 universal SEP, modification of orbits, new decay channels
ringdown, merger: we need more SNR.
scalar of small masses already constrained!

Propagation:
mass of graviton/speed of GWs well constrained
Many theories no longer interesting
PTA are sensitive to polarizations

Detection:
Polarizations

many aspects not covered (ULDM, EMRIs, Kerr tests,…)

Conclusions



big jay mcneely

Projections for future

20Samajdar, KGA, 2017 (Also,  Chamberline and Yunes 2017)

Samajdar, Arun 17

Prospects on propagation



Scalarization

scalar field develops instability inside dense media

Esposito-Farese 04
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A new slicing condition for axisymmetric
gravitational wave collapse

Anton Khirnov Tomáš Ledvinka

Institute of Theoretical Physics, Charles University in Prague

JGRG27

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Critical collapse in general relativity

• critical behaviour discovered by Choptuik in 1993 for scalar field in
spherical symmetry

• analogous results by Abrahams and Evans in 1993 for gravitational waves
in axial symmetry (“Teukolsky waves”)

• several attempts to find critical behaviour for “Brill waves”, so far no
reproducible success

Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Evolution method

• 3+1 splitting à la ADM — spacetime foliated by a sequence of spacelike
surfaces labelled by the time parameter t

• evolved variables — spatial 3-metric 𝛾ij and extrinsic curvature Kij

• Einstein equations split into a set of evolution equations and a set of
constraints

• solve the constraints to construct initial data
• evolve {𝛾ij ,Kij} forward in time using the evolution equations (free
evolution)

• coordinate choice — determined by the lapse 𝛼 and shift 𝛽 i

Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Initial data

• Brill waves — a family of axially symmetric vacuum initial data at the
moment of time symmetry

• parametrized by an “amplitude parameter” A
• A = 0 is flat space
• |A| → A big is a black hole
• critical point — smallest value of A when a black hole is formed, for our
initial data A∗ ≈ 4.69

Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Coordinate choice

• time coordinate encoded in the lapse 𝛼(t , x i)
• spatial coordinates determined by the shift vector 𝛽 i(t , x j)
• {𝛼, 𝛽 i} freely specifiable functions
• typically chosen dynamically as solutions to hyperbolic or elliptic
equations

• common slicings
• maximal: K i

i ≡ K = 0 ⇒ D2𝛼 − KijK ij𝛼 = 0
• 1+log: �̇� = −2𝛼K

Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

1+log slicing for near-critical (A = 5) Brill waves
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Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

1+log slicing vs maximal slicing for A = 5

Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Quasi-maximal slicing I

• 1+log slicing is simple and fast, but breaks down
• maximal slicing is well-behaved, but slow and hard to implement
• try to combine them to get the best of both world
• extract just the “core / lowest-order” information from maximal slicing
and plug it into 1+log

Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Quasi-maximal slicing II

• take the time derivative of the maximal slicing condition

0 = (𝜕t − ℒ𝛽) [D2𝛼 − KijK ij𝛼]

• define a new function W = (𝜕t − ℒ𝛽)𝛼
• get an elliptic equation for W

D2W − KijK ijW = − 2𝛼K ijDiDj𝛼 + 𝛾 ij (𝜕tΓk
ij) 𝜕k𝛼

− (𝛾 ijDiDj𝛽k)Dk𝛼 − 𝛽 jRi
jDi𝛼

+ 𝛼 (2 ̇KijK ij + 4𝛼K i
jK

k
i K

j
k)

• compute a low-order solution for W and add it as an extra term in 1+log
slicing

(𝜕t − ℒ𝛽)𝛼 = −2𝛼K + W

Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Invariants

• Kretschmann scalar 𝒦 = R𝜇𝜈𝛼𝛽R𝜇𝜈𝛼𝛽

• axial symmetry — angular Killing vector 𝜂𝜇

• circumferential radius ̄𝜌2 = 𝜂𝜇𝜂𝜇

• 4 ̄𝜌′2 = |∇𝜌2|
2

• dimensionless quantity 𝜒 = ̄𝜌′2

̄𝜌2

• for Schwarzschild 𝜒 = 1 − 2M
R
sin2 𝜃

Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Conformal diagrams for A = {4, 4.65, 4.8, 5}
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Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Event horizon evolution for A = 5
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Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Summary

• 1+log slicing is pathological for near-critical Brill waves
• we have extended it by adding a source function derived from the
maximal slicing

• this “quasi-maximal” slicing allows us to get closer to the critical point
• for supercritical initial data we are able to follow the collapse as an
apparent horizon forms and the geometry settles down to a Schwarzschild
black hole

• we discover non-regular shape of the event horizon for weakly
supercritical data

Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Evolution of 𝜒 for A = 4.6 and A = 5.5
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Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Conformal diagram for A = 4
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Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Conformal diagram for A = 4.65
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Quasi-maximal slicing Anton Khirnov



Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Conformal diagram for A = 4.8
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Quasi-maximal slicing Anton Khirnov

Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Conformal diagram for A = 5
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Numerical collapse of axisymmetric gravitational waves Slicing Simulation results

Mass estimates for A = 5.5
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Dynamics of relativistic r-mode instability 
in rotating relativistic stars
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1. Introduction

2

Gravitational wave driven (CFS) instability 

Eigenmode 

Aj
i@

2
t ⇠
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Master equation in nonaxisymmetric perturbation

• f-mode(fundermental mode：corresponds to stellar radius)

• p-mode(pressure mode： 
pressure gradient as restoring force)

• g-mode(gravity mode：buoyancy )

• r-mode(rosby mode：Coriolis force) 

Unstablise when the 
background is almost Keplarian

Unstablise even in small 
rotation in inviscid fluid

(Chandrasekhar 70, Friedman & Schutz 78)
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•Saturation amplitude of o(1) 
•Imposing large amplitude of radiation reaction potential in 

the system to control secular timescale with dynamics
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Dynamics of r-mode instability in Newtonian gravity

(Lindblom et al. 00)
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Relativistic gravitation

• Neutron stars contain large compactness  
(M/R~0.15: relativistic star)

• Newtonian picture may change in relativistic case  
(e.g. perturbative approach requires both parities)  
(Lockitch et al. 00)

• No dynamical approach for this instability has been 
studied in relativistic gravitation  
(c.f. mass multipole radiation reaction in binary 
neutron star merger)
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Separate two different timescales

Purpose

• Separate relativistic hydrodynamics (dynamical timescale) 
and gravitational radiation (secular timescale) to control 
two timescales• Control amplification factor in gravitational radiation

• Formulate relativistic hydrodynamics with gravitational 
radiation reaction force• Reproduce characteristic frequency and growth rate of 
relativistic r-mode instability through dynamics• Explore dynamical picture of relativistic r-mode instability
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Radiation reaction force in post-Newtonian gravity

2. Relativistic hydrodynamics with 
radiation reaction force

(Blanchet 97)
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Only consider muss-current 
multipole term (3.5pN)  

to focus on r-mode instability
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Extension to conformally flat gravitation

: lapse : shift : conformal factor

Conformally flat spacetime
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Schematic picture

Extension from pN gravity

Replace them by conformally flat gravitataion
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Modifying shift is sufficient for introducing 
gravitational radiation reaction force in 
relativistic hydrodynamics!

Basic equations for relativistic hydrodynamics 
with radiation reaction force

Continuity equation

Energy equation

Relativistic Euler’s equation

�j = �j
CF + 8�
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Sij(1) is computed from the relativistic Euler’s equation  
(excluding radiation reaction term)
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Z
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Some approximations for numerics

Vector spherical 
harmonics expansion

Characteristic 
frequency

Time derivative

Mass-current 
multipole moment
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Z
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• Adjust timescales
• Eliminate time derivative as 

possible
• Coincide in Newtonian limit

Amplification 
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3. Newtonian r-mode instability

10

Initial condition

•Uniformly rotating neutron star 
(n=1, polytropic EOS)

rp/re T/W
slow 0.97 0.008
rapid 0.55 0.103

Constructing rotating 
equilibrium stars

Perturb velocity in the r-mode eigenfunction

�vi = ↵⌦R
⇣ r

R
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Diagnostics
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According to perturbation theory, 1/3 of the rotational energy 
loss due to r-mode is pumped into the mode

Kokkotas & Schwenzer 16

1. r-mode grows exponentially
2. breaking waves develop strong shocks
3. energy conversion from kinetic to thermal 

Lindblom et al. 02
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3. Relativistic r-mode instability

12

Initial condition

•Uniformly rapidly rotating 
neutron star (n=1, polytropic 
EOS)

rp/re M/R T/W
I 0.55 0.106 0.099
II 0.55 0.066 0.100
III 0.55 0.016 0.102
IV 0.55 0.002 0.103

Constructing rotating 
equilibrium stars

Perturb 3-velocity in the r-mode eigenfunction
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Successfully reproduced characteristic frequency and 
growth rate of the instability
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Diagnostics

According to perturbation theory, about 1/3 of the rotational 
energy loss due to r-mode is pumped into the mode

Kokkotas & Schwenzer 16

In contrast to the Newtonian case, r-mode seems to 
saturate in the early stage and remain its amplitude
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Discussion
Comparison between mass quadrupole, mass octupole, and 
mass-current quadrupole moments on gravitational waves
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should hold to assume radiation reaction force composed 
of only mass-current quadrupole moment 
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• Different saturation mechanism in relativistic gravitation
• May require mass quadrupole radiation reaction force

Newtonian Case Relativistic case
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throughout the evolution
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Breaks the condition around the 
saturation

Parity interaction may 
take place

o
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4. Summary and Issues

• We have succeeded in formulating relativistic 
hydrodynamics with mass-current radiation reaction force

• Successfully recover characteristic frequency and growth 
rate of relativistic r-mode instability in relativistic 
hydrodynamics

• Saturation of relativistic r-mode instability may have a 
different mechanism.  Requires at least radiation reaction 
force of mass quadrupole and mass-current quadrupole 
moment for full understanding

16

We study relativistic r-mode instability by means of 3D 
relativistic hydrodynamics with radiation reaction force 
composed of mass-current quadrupole moment
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Linear Perturbation of Gravitational Systems

Linear perturbation of equations of motion

S =
1

16πG

∫
M
dDx
√
−g (R− 2Λ), gab = gBGab + hab

D = 4 Petrov Type D solutions:
Teukolsky master equations for spin s = 0, 12 , 1,

3
2 , 2

The master equations are separable for Λ-vacuum Type D solutions

For higher-dimensions and spherical topology, separable for
Kerr-NUT-(A)dS black holes (Frolov and Kubzniak ’07)

Fábio Novaes (IIP-UFRN) Seminar - JGRG27 November 28, 2017 2 / 12



Kerr-de Sitter Black Hole

ds2 = − ∆r(r)

r2 + p2
(dt+ p2dϕ)2 +

∆p(p)

r2 + p2
(dt− r2dϕ)2

+
r2 + p2

∆r(r)
dr2 +

r2 + p2

∆p(p)
dp2

∆p(p) = − Λ

3
p4 −

(
1− Λa2

3

)
p2 + a2, p = a cos θ

∆r(r) = − Λ

3
r4 +

(
1− Λa2

3

)
r2 − 2Mr + a2

Horizons: (rC , r+, r−,−r− − r+ − rC)
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Scalar Field Perturbation

Conformally coupled massless scalar field φ(x)

(∇2 + 1
6R)φ(x) = 0, ∇2φ ≡ 1√

−g
∂a(
√
−ggab∂bφ)

Separable solutions: φ(t, r, θ, ϕ) = e−iωteimϕSω`m(θ)Rω`m(r)

Radial and Angular equations

∂r(∆r(r)∂rRω`m)− Vr(r)Rω`m = 0

∂θ(∆θ(θ)∂θSω`m)− Vθ(θ)Sω`m = 0

Angular eigenvalues from angular equation

Fábio Novaes (IIP-UFRN) Seminar - JGRG27 November 28, 2017 4 / 12



Heun Equation in the Conformally Coupled Case

Perturbation equations reduce to Heun equations

y′′ +

(
1− 2θ0

z
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1− 2θ1
z − 1

+
1− 2θx
z − x

)
y′+

+
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Monodromy and Accessory parameter for Kerr-dS

θk = ± i
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)
, k = 0, 1, x,∞,
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Scattering Amplitudes and Connection Matrix

Local Frobenius solutions: y±i (z) ∼ (z − zi)±θi(1 +O(z − zi))

Path-multiplicative solutions: y±σij ∼ z
1
2
±σij ∑

n∈Z cnz
n

Ingoing and Outgoing solutions:

y+0 =
1

T
y+x +

R
T
y−x , |R|2 + |T |2 = 1

Transmission amplitude in terms of monodromies

|T |2 =
sin 2πθ0 sin 2πθx

cos 2π(θ0 − θx) + cos 2πσ0x

(Castro et al 1304.3781, Carneiro da Cunha and FN 1404.5188)
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Quasinormal Modes of Rotating Nariai Limit

Quasinormal mode = Pole of Transmission Amplitude

σ0x = θ0 − θx +N + 1
2 , N ∈ Z

Rotating Nariai limit rC ≈ r+ (small x) and ω = mΩH + βω̄x

2ω̄
(±)
N`m

η
= −i

(
N +

1

2

)
−mk ±

√
λ̄`m +m2k2 − 1

4

with λ̄`m being the normalized angular eigenvalue and
η = (rC − r+)/rC the extremality parameter (Anninos and Anous ’10)

k =
2ar2C

β(r2C + a2)
, β =

rC(rC − r−)(3rC + r−)

(L2 + a2)(r2C + a2)
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Isomonodromic System and Apparent Singularity

Deformed Heun equation with one apparent singularity (Jimbo, Miwa
and Ueno ’81)

∂2zy +

(
1− 2θ0

z
+

1− 2θ1
z − 1

+
1− 2θt
z − t

− 1

z − λ

)
∂zy

+

(
κ

z(z − 1)
− t(t− 1)K

z(z − 1)(z − t)
+

λ(λ− 1)µ

z(z − 1)(z − λ)

)
y = 0

z = λ is an apparent singularity if

K(λ, µ, t; {θk}) =
1

t(t− 1)
[λ(λ− 1)(λ− t)µ2 − {2θ0(λ− 1)(λ− t)

+ 2θ1λ(λ− t) + (2θt − 1)λ(λ− 1)}µ+ κ(λ− t)]
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Isomonodromic System and Painlevé VI

Hamiltonian System

dλ

dt
=
∂K

∂µ
,

dµ

dt
= −∂K

∂λ

generates isomonodromic flow (λ(t), µ(t))

Second-order equation for λ(t) = Painlevé VI (PVI)

Set the initial conditions

λ(x) = x, θt = θx − 1
2 ,

µ(x) = −Kx

2θt
, ϑ∞ = θ∞ + 1

2 ,

to recover Heun equation (Carneiro da Cunha and FN ’14)
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Painlevé VI τ -function via AGT Correspondence

Painlevé VI τ -function expansion (Gamayun, Iorgov and Lisovyi ’12)

τVI(t) =∑
n∈Z
CVI (θ0, θt, θ1, θ∞, σ + n) sn

VI
t(σ+n)

2−θ20−θ2tBVI (θ0, θt, θ1, θ∞, σ + n; t)

The initial conditions become

Kx =
d

dt
log[t−2θ0θt(1− t)−2θ1θtτ(t; θ0, θ1, θt, ϑ∞, σ, s)]

∣∣∣
t=x

,

x = λ(x)
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We obtain an expansion of QNMs around the Nariai limit (order x5)
(Casals, Lencsés and FN, to appear)
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Conclusions

Isomonodromic τ -function determines the accessory parameter of
Heun equation

Allows to calculate black hole quasinormal modes as an expansion
around extremality

Spin 2 quasinormal modes and flat space limit with Painlevé V

Higher-dimensions can be tackled using generalization of τ -function

Thank you!

Fábio Novaes (IIP-UFRN) Seminar - JGRG27 November 28, 2017 12 / 12
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1. A Brief Introduction to LQC
Loop quantum gravity (LQG):
A background independent, nonperturbative quantization
of GR by using the Ashtekar variables 1.

Loop quantum cosmology (LQC):
Symmetry reduced quantization of cosmology by
mimicking the constructions used in LQG 2.

LQC has not yet been rigorously derived from LQG, but an
attempt to use LQG-like methods in cosmology.

1C. Rovelli and F. Vidotto, Covariant Loop Quantum Gravity: An

Elementary Introduction to Quantum Gravity and Spinfoam Theory

(Cambridge Monographs on Mathematical Physics, Cambridge, 2015).

2M. Bojowald, Rep. Prog. Phys. 78 (2015) 023901;

I. Agullo and P. Singh, arXiv:1612.01236.



1. A Brief Introduction to LQC
One can naturally define self-adjoint operators
representing geometric observables. In particular, there is
a smallest nonzero eigenvalue ∆ of the area operator,
which represents the fundamental area gap and sets an
energy scale,

ρB ≡
18π

∆3
m4pl,

(
∆ = 4

√
3πγ

)
,

γ: Barbero-Immirzi parameter.
Using black hole thermodynamics, one finds γ ≃ 0.2375 3,
for which we obtain

ρB ≃ 0.41ρpl.

3K.A. Meissner, CQG21 (2004) 5245.

1. A Brief Introduction to LQC (Cont.)
In GR, the Friedmann equation

H2 =
8πG

3
ρ

always leads to a singularity 4.
In LQC, the matter density is bounded above 5

ρ ≤ ρB

In every physical state Ψo, the expectation value of ρ
achieves a maximum value ρmax ≲ ρB.

4A. Borde and A. Vilenkin, PRL72 (1994) 3305; A. Borde, A. H.

Guth, and A. Vilenkin, PRL90 (2003) 151301.

5A. Ashtekar, T. Pawlowski and P. Singh, PRL96 (2006) 141301.



1. A Brief Introduction to LQC (Cont.)
States Ψo are sharply peaked on trajectories for ρmax ≃ ρB,
and the effective Friedmann and Klein-Gordon equations
are modified to,

H2 =
8πG

3
ρ

(
1− ρ

ρB

)
, (1)

ϕ̈+ 3Hϕ̇+ V′(ϕ) = 0. (2)

— A quantum bounce
naturally happens at
ρ ≃ ρB.

[V ∝ a3. Ashtekar & Barrau,
CQG32 (2015) 234001]

1. A Brief Introduction to LQC (Cont.)
It was found that: the probability for the desired — i.e. in
agreement with CMB measurements — slow roll inflation
not to occur in an LQC solution is less than about one part
in a million 6,

≲ 1.2× 10−6

— Slow-roll inflation is an attractor in LQC!

6P. Singh, K. Vandersloot and G. V. Vereshchagin,

PRD74 (2006) 043510;

X. Zhang and Y. Ling, JCAP08 (2007) 012;

A. Ashtekar A and D. Sloan, GRG43 (2011) 3619;

A. Corichi and A. Karami PRD83 (2011) 104006;

L. Linsefors and A. Barrau, PRD87 (2013) 123509;

L. Chen and J.-Y. Zhu, PRD92 (2015) 084063.



1. A Brief Introduction to LQC (Cont.)
By now, a large number of cosmological models have been
studied in detail in LQC 7, including

f(R) universe
the closed FLRW model
FLRW models with Λ with any sings
the Bianchi models
the Gowdy model, which incorporates the simplest types of
inhomogeneities in full GR

In ALL cases, the singularity is resolved!

7A. Ashtekar and P. Singh, CQG 28 (2011) 213001;

I. Agullo and A. Corichi, arXiv:1302.3833.
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2. Background Evolution
In the framework of LQC, the background evolution can be
divided into two classes:

Initially the evolution is dominated by the kinetic energy of
the inflaton:

1

2
ϕ̇2(tB) > V(ϕ(tB))

Initially it is dominated by the potential energy:

1

2
ϕ̇2(tB) < V(ϕ(tB))

However, a potential dominated bounce is either not able
to produce the desired slow-roll inflation or leads to a large
amount of e-folds of expansion 8.

8A. Ashtekar and A. Barrau, CQG32 (2015) 234001

2. Background Evolution (Cont.)

In the kinetic-energy-initailly dominated case, the evolution
of the background can be generically divided into three
different phases 9:

(a) Bouncing, (b) transition, (c) slow-roll inflation

w(ϕ) ≡ ϕ̇2 − 2V(ϕ)

ϕ̇2 + 2V(ϕ)
=


+1, bouncing
− < w(ϕ) < +1, transition
−1, slow-roll inflation

The transition phase is short,
during which the kinetic energy
decreases dramatically:

ϕ̇2/2 ≃ ρB → 10−12ρB ≤ V(ϕ)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5
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9Zhu, AW, Cleaver, Kirsten, Sheng, PLB773 (2017) 196; PRD96 (2017)

083520; Shahalam, Sharma, Wu, AW, arXiv:1710.09845.



2. Background Evolution (Cont.)

The three-phase division is universal:
• Quadratic Potential V(ϕ) = λ0ϕ

2:
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2. Background Evolution (Cont.)

• Power-law Potential V(ϕ) = λ0ϕ
1/2:
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2. Background Evolution (Cont.)

• Starobinsky Potential

V(ϕ) = 3
32πM

2m2Pl ×
(
1− e

−
√

16π
3

ϕ
mPl

)2

ϕ�=-��� ���

ϕ�= ��� ���
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���

���

���
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2. Background Evolution (Cont.)
• During the bouncing phase, the evolution of a(t) is
independent of :
(a) the initial conditions (ϕB, ϕ̇B)

(b) the inflationary potentials
(c) given analytically by

a(t) = aB

(
1 + γB

t2

t2Pl

)1/6

, (1) (3)

γB ≡ 24πρB/m
4
Pl: a

dimensionless
constant.

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical

tB 1 100 104 106
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2. Background Evolution (Cont.)

• Evolution of a(t) for different potentials:

ϕ�=�����
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2. Background Evolution (Cont.)

• Evolution of a(t) for the Starobinsky Potential:
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2. Background Evolution (Cont.)

The main reason is that

1

2
ϕ̇2
B ≫ V(ϕB) ⇒ 1

2
ϕ̇2 ≫ V(ϕ),

holds in the whole bouncing phase, once it holds at the
bounce t = tB.
Notice the
vertical scales.

��������� ������ �(ϕ)

������� ������ ϕ
 �
/�

������ ������� ρ(�)

�� ��� ���

��-��

��-��

��-�

��

�/���

2. Background Evolution (Cont.)

The evolution during the transition phase is given by,

ϕ(t) = ϕc + tcϕ̇c ln
t

tc
, a(t) = ac

(
1 + tcHc ln

t

tc

)
, (4)

Hc, ac, ϕc: integration constants
During the slow-roll inflation, we have

a(t) = aie
Hinf.t, ϕ ≃ ϕ0 (5)

Power-law n=2,ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky,ϕB=5
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3. Universality of Perturbations
The scalar and tensor perturbations are given by 10,

µ′′
k +

(
k2 − a′′

a
+ U(η)

)
µk = 0 (6)

where

U(η) =

{
a2

(
f2V(ϕ) + 2fV,ϕ(ϕ) + V,ϕϕ(ϕ)

)
, scalar

0, tensor

f ≡
√
24πGϕ̇/

√
ρ.

Both of the scalar and tensor perturbations are universal
and independent of the slow-roll inflationary models during
the bouncing phase

10A. Ashtekar and A. Barrau, CQG32 (2015) 234001



3. Universality of Perturbations (Cont.)

This is because the potential U(η) is very small in
comparing with a′′/a, so we have

Ω2
k = k2 − a′′

a
+ U(η) ≃ k2 − a′′

a

during the whole bouncing phase.
Since a(t) is universal during this phase, clearly the mode
functions µ

(s,t)
k ,

µ
(s,t)
k

′′
+Ω2

kµ
(s,t)
k = 0

are also universal. ���������

�����-��� ���� �=�/�

�����������

|���/�|

|�(η)|

-�� -� � � ��

��-�
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3. Universality of Perturbations (Cont.)

More interestingly, the term a′′/a can be replaced by a
Pöschl-Teller (PT) potential,

VPT(η) =
V0

cosh2 α(η − ηB)
, V0 = k2B =

α2

6
,

V(η) ≡ a′′

a

VPT (η)

V(η)

-2 -1 0 1 2

0

2

4

6

8

10

η-ηB



3. Universality of Perturbations (Cont.)

Then, the mode function has the analytical solution,

µ
(PT)
k (η) = akx

ik/(2α)(1− x)−ik/(2α)

× 2F1(a1 − a3 + 1, a2 − a3 + 1, 2− a3, x)

+bk[x(1− x)]−ik/(2α)
2F1(a1, a2, a3, x).

ak, bk: integration constants, to be determined by initial
conditions. 2F1(a, b, c, x): the hypergeometric function

a1 ≡ 1

2

(
1 +

1√
3

)
− ik√

6 kB
,

a2 ≡ 1

2

(
1− 1√

3

)
− ik√

6 kB
,

a3 ≡ 1− ik√
6 kB

.

Solution with PT potential

Numerical solution

-1 0 1 2

0.26

0.27

0.28

0.29

0.30

0.31

0.32

0.33
-1.51 0 1.51 3.95

Conformal time η-ηB

|μ
k
(η
)|

Cosmic time t

3. Universality of Perturbations (Cont.)

In the transition phase, the mode functions are given by,

µk(η) =
1√
2k

(
α̃ke

−ikη + β̃ke
ikη

)
α̃k, β̃k: integration constants
In the slow-roll inflation phase, the mode functions are
given by the standard forms,

µ
(s,t)
k (η) ≃

√
−πη

2

[
αkH

(1)
νs,t

(−kη) + βkH
(2)
νs,t

(−kη)
]
,

αk, βk: integration constants.



3. Universality of Perturbations (Cont.)

Matching them together, we find that the Bogoliubov
coefficients, αk, βk, are given by

αk√
2k

=

[
ak

Γ(2− a3)Γ(a1 + a2 − a3)

Γ(a1 − a3 + 1)Γ(a2 − a3 + 1)

+ bk
Γ(a3)Γ(a1 + a2 − a3)

Γ(a1)Γ(a2)

]
eikηB ,

βk√
2k

=

[
ak

Γ(2− a3)Γ(a3 − a1 − a2)

Γ(1− a1)Γ(1− a2)

+ bk
Γ(a3)Γ(a3 − a1 − a2)

Γ(a3 − a1)Γ(a3 − a2)

]
e−ikηB .

Since ai = ai(k/kB), so αk, βk are in general
scale-dependent.

3. Universality of Perturbations (Cont.)

In general |βk|2 ̸= 0, so particles are generically created at
the onset of inflation.
In GR, we normally impose the BD vacuum at the onset of
the inflation,

αGR
k = 1, βGR

k = 0



3. Universality of Perturbations (Cont.)

Then, the scalar and tensor power spectra are given by,

PR(k) = |αk + βk|2PGR
R (k),

Ph(k) = |αk + βk|2 PGR
h (k),

with

PGR
R (k) ≡ k2

4π3

(
H

aϕ̇

)2

Γ2(νs)

(
−kη

2

)1−2νs

,

PGR
h (k) ≡ k2

π3M2Pl

1

a2
Γ2(νt)

(
−kη

2

)1−2νt

3. Universality of Perturbations (Cont.)

Note that, as mentioned above, αk, βk are usually
k-dependent, so the quantities PR(k) and Ph(k) now also
become k-dependent.

This provides an excellent opportunity to test LQC.

Clearly, such dependence cannot be strong. Otherwise, it
will not be consistent with current observations, which
show that the power spectra are almost scale-invariant 11.

To fix (αk, βk) or (ak, bk), one needs to impose the initial
conditions.

11P. Collaboration et al., Planck 2015. XX. Constraints on

inflation, arXiv:1502.02114.
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4. Conclusions
We study pre-inflationary dynamics in the framework of
LQC, and for initially kinetic energy dominated models we
find:

• The evolution of the universe is always divided into three
different phases:

(1) Bouncing (2) transition (3) slow-roll inflation
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4. Conclusions (Cont.)
• The evolution of the expansion factor is universal during the
bouncing phase:

a(t) = aB

(
1 + γB

t2

t2Pl

)1/6

, (7)

Power-law n=2, ϕB=1.2

Power-law n=1/3, ϕB=25

Starobinsky ϕB=5

Anaytical

tB 1 100 104 106
0.1
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10
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a
(t
)

4. Conclusions (Cont.)
• During the pre-inflationary phase, the evolutions of the scalar
and tensor perturbations are all universal and independent of
the slow-roll inflationary models.
• In this phase the potentials of the scalar and tensor
perturbations can be well approximated by an effective PT
potential, for which analytic solutions of the mode functions are
known.

• The Bogoliubov coefficients at the onset of the slow-roll
inflation are generically non-zero,

βk ̸= 0,

in contrast to GR where the initial conditions are normally
taken as the BD vacuum,

βGR
k = 0.



Thank You!
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Extended mimetic gravity:
Hamiltonian analysis and 
gradient instabilities

Based on

Kazufumi Takahashi (JSPS fellow)

RESCEU, The University of Tokyo

• KT, H. Motohashi, T. Suyama, and T. Kobayashi
Phys. Rev. D 95, 084053 (2017), “General invertible transformation and physical degrees of freedom”

• KT and T. Kobayashi
JCAP 1711, 038 (2017), “Extended mimetic gravity: Hamiltonian analysis and gradient instabilities”

 Degenerate scalar-tensor theories
Scalar-tensor theories (inflation, late-time acceleration, …)

Higher derivatives ⋯ Ostrogradsky ghost

“Any nondegenerate higher derivative theory contains extra ghost-like DOFs”

Degenerate scalar-tensor theories w/ 3 DOFs

Horndeski/generalized Galileons

GLPV theories

quadratic/cubic DHOST theories [known broadest class]

Specify all the degenerate theories up to cubic order in 𝛻𝜇𝛻𝜈𝜙

𝑆q/c = න𝑑4𝑥 −𝑔 𝑓2ℛ + 𝑎𝜇𝜈𝜆𝜎𝜙𝜇𝜈𝜙𝜆𝜎 + 𝑓3𝒢
𝜇𝜈𝜙𝜇𝜈 + 𝑏𝜇𝜈𝜆𝜎𝛼𝛽𝜙𝜇𝜈𝜙𝜆𝜎𝜙𝛼𝛽

2017/11/28 JGRG27

Degenerate Higher-Order Scalar-Tensor

e.g. det
𝜕2𝐿

𝜕 ሷ𝑞𝑖𝜕 ሷ𝑞𝑗
≠ 0 for 𝐿 𝑞𝑖 , ሶ𝑞𝑖 , ሷ𝑞𝑖 Need degeneracy!

Chosen so that the Lagrangian is degenerate
𝑋 ≡ 𝑔𝜇𝜈𝜙𝜇𝜙𝜈

ℛ: 4D Ricci scalar
𝒢𝜇𝜈: 4D Einstein tensor

constructed from 𝜙 and 𝜙𝜇
𝐹0 + 𝐹1□𝜙 could 
further be included

quadratic cubic

2/16



degenerate (≤ 3 DOFs)

GR (2 DOFs)

Horndeski
2nd-order EL eqs.

higher-order EL eqs.

???
𝛻𝛻𝜙 4?
𝛻𝛻𝛻𝜙?

 Problem in the known theories

2017/11/28 JGRG27

nondegenerate (Ostrogradsky ghost)

cannot be mapped to Horndeski

quadratic/cubic DHOST

𝑐𝑆
2

𝑐𝑇
2 < 0 → gradient instabilities! (Langlois+ 2017)

disformal transformation
𝑔𝜇𝜈 = 𝐴 𝜙, 𝑋 𝑔𝜇𝜈 + 𝐵 𝜙, 𝑋 𝜕𝜇𝜙𝜕𝜈𝜙

(except for those w/ nondynamical tensor modes)

3/16

 Possible extension

2017/11/28 JGRG27

nondegenerate (Ostrogradsky ghost)

degenerate (≤ 3 DOFs)
quadratic/cubic DHOST

GR (2 DOFs)

2nd-order EL eqs.

higher-order EL eqs.
Horndeski

?

disformal transformation
𝑔𝜇𝜈 = 𝐴 𝜙, 𝑋 𝑔𝜇𝜈 + 𝐵 𝜙, 𝑋 𝜕𝜇𝜙𝜕𝜈𝜙

???

?

𝛻𝛻𝜙 4?
𝛻𝛻𝛻𝜙?

4/16

up to 𝛻𝛻𝜙 3



 Way out
How can we go outside the quadratic/cubic DHOST class?

Let’s start from nondegenerate theories!

If the transformation is invertible, the resultant theory is also nondegenerate

(∵ DOFs are invariant under invertible trnsf.)

Let’s consider noninvertible transformations!

Noninvertible conformal transformation

𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈

Mimetic gravity

 mimetic = “Copying the behaviour or appearance of sb/sth else”

Mimetic gravity can mimic dark matter (Chamseddine, Mukhanov, 2013)

2017/11/28 JGRG27

ሚ𝑆 𝑔𝜇𝜈, 𝜙 𝑆 𝑔𝜇𝜈, 𝜙

“seed” ST theory “mimetic theory”

𝑋 ≡ 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙

conformal sym. 

KT, Motohashi, Suyama, Kobayashi, 2017

𝑋 → Ω−2𝑋 under 𝑔𝜇𝜈 → Ω2𝑔𝜇𝜈

⇒ 𝑔𝜇𝜈: invariant

invertible: 𝑔𝜇𝜈 ↔ 𝑔𝜇𝜈 one-to-one

5/16

 Mimetic theories

2017/11/28 JGRG27

nondegenerate (Ostrogradsky ghost)

degenerate (≤ 3 DOFs)
quadratic/cubic DHOST

GR (2 DOFs)

2nd-order EL eqs.

higher-order EL eqs.
Horndeski

disformal transformation
𝑔𝜇𝜈 = 𝐴 𝜙, 𝑋 𝑔𝜇𝜈 + 𝐵 𝜙, 𝑋 𝜕𝜇𝜙𝜕𝜈𝜙

“extended mimetic gravity” KT, Kobayashi, 2017

𝑆 = න𝑑4𝑥 −𝑔 𝑓2ℛ + 𝑓3𝒢
𝜇𝜈𝛻𝜇𝛻𝜈𝜙 + 𝐹 𝑔𝜇𝜈, 𝜙, 𝛻𝜇𝜙, 𝛻𝜇𝛻𝜈𝜙

original mimetic gravity
𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈

???

6/16



 Seed theory
Start from a “seed” action

𝑆seed[𝑔𝜇𝜈, 𝜙] = න𝑑4𝑥 −𝑔 𝑓2 𝜙, 𝑋 ℛ + 𝑓3 𝜙, 𝑋 𝒢𝜇𝜈𝛻𝜇𝛻𝜈𝜙 + 𝐹 𝑔𝜇𝜈, 𝜙, 𝛻𝜇𝜙, 𝛻𝜇𝛻𝜈𝜙

Known healthy theories amount to specific 𝑓2, 𝑓3, 𝐹:

Horndeski: ∀𝑓2, 𝑓3 functions of 𝜙, 𝑋

𝐹 = −2𝑓2𝑋 □𝜙 2 − 𝛻𝜇𝛻𝜈𝜙
2
+
1

3
𝑓3𝑋 □𝜙 3 − 3□𝜙 𝛻𝜇𝛻𝜈𝜙

2
+ 2 𝛻𝜇𝛻𝜈𝜙

3

However, for generic choices of 𝑓2, 𝑓3, and 𝐹, the theory has 4 DOFs.

Hamiltonian analysis 1+3 decomposition

First write the seed action in the ADM language and then move to the mimetic theory

2017/11/28 JGRG27

arbitrary functions 

7/16

 1+3 decomposition
ADM variables

𝑑𝑠2 = −𝑁2𝑑𝑡2 + 𝛾𝑖𝑗 𝑑𝑥
𝑖 + 𝑁𝑖𝑑𝑡 𝑑𝑥𝑗 + 𝑁𝑗𝑑𝑡

For 𝜙, we define

Derivatives of 𝜙 are decomposed as

𝐹 𝑔𝜇𝜈, 𝜙, 𝛻𝜇𝜙, 𝛻𝜇𝛻𝜈𝜙 contains 𝛾𝑖𝑗 , 𝜙, 𝐴∗, 𝐾𝑖𝑗 , 𝑉∗, and 𝐷𝑖

2017/11/28 JGRG27

𝑛𝜇 ≡ −𝑁𝛿𝜇
0

ℎ𝜇𝜈 ≡ 𝑔𝜇𝜈 + 𝑛𝜇𝑛𝜈

𝐾𝑖𝑗 ≡
1

2𝑁
ሶ𝛾𝑖𝑗 − 2𝐷(𝑖𝑁𝑗)

𝐷𝑖: 3D covariant derivative

canonical variable 𝐴∗ ≡ 𝑛𝜇𝛻𝜇𝜙 =
ሶ𝜙 − 𝑁𝑖𝐷𝑖𝜙

𝑁

𝑉∗ ≡ 𝑛𝜇𝑛𝜈𝛻𝜇𝛻𝜈𝜙 =
ሶ𝐴∗ − 𝐷𝑘𝜙𝐷𝑘𝑁 − 𝑁𝑘𝐷𝑘𝐴∗

𝑁
velocity of 𝐴∗

𝛻𝜇𝜙 = ℎ𝜇
𝑖 𝐷𝑖𝜙 − 𝑛𝜇𝐴∗

𝛻𝜇𝛻𝜈𝜙 = ℎ(𝜇
𝑖 ℎ𝜈)

𝑗
𝐷𝑖𝐷𝑗𝜙 − 𝐴∗𝐾𝑖𝑗 − 2ℎ(𝜇

𝑖 𝑛𝜈) 𝐷𝑖𝐴∗ − 𝐾𝑖𝑗𝐷
𝑗𝜙 + 𝑛𝜇𝑛𝜈𝑉∗

8/16



 1+3 decomposition (cont’d)
Terms with the curvature tensors:

with

𝑓⊥ ≡ 𝑛𝜇𝛻𝜇𝑓 = 𝑓𝜙𝐴∗ − 2𝑓𝑋 𝐾𝑖𝑗𝐷
𝑖𝜙𝐷𝑗𝜙 + 𝐴∗𝑉∗ − 𝐷𝑖𝜙𝐷𝑖𝐴∗

Combined with the term 𝐹 𝑔𝜇𝜈, 𝜙, 𝛻𝜇𝜙, 𝛻𝜇𝛻𝜈𝜙 , we obtain

𝑆seed[𝑔𝜇𝜈, 𝜙] = න𝑑𝑡𝑑3𝑥 𝑁 𝛾𝐿0 𝛾𝑖𝑗 , 𝑅𝑖𝑗 , 𝜙, 𝐴∗; 𝐾𝑖𝑗 , 𝑉∗; 𝐷𝑖 + Λ 𝑁𝐴∗ +𝑁𝑖𝐷𝑖𝜙 − ሶ𝜙

Perform 𝑔𝜇𝜈 → 𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈

2017/11/28 JGRG27

න𝑑4𝑥 −𝑔 𝑓2ℛ + 𝑓3𝒢
𝜇𝜈𝛻𝜇𝛻𝜈𝜙

= න𝑑𝑡𝑑3𝑥𝑁 𝛾 ቄ𝑓2 𝑅 + 𝐾𝑖𝑗
2 − 𝐾2 − 2𝐾𝑓2⊥ − 2𝐷𝑖𝐷

𝑖𝑓2 −
1

2
𝑅 − 𝐾𝑖𝑗

2 + 𝐾2 𝐴∗𝑓3⊥

− 𝑅𝑖𝑗 −
1

2
𝑅 + 𝐾𝑘𝑙

2 − 𝐾2 𝛾𝑖𝑗 𝐷𝑖𝜙𝐷𝑗𝑓3 + 𝐷𝑖𝐷𝑗 𝐷
𝑖𝜙𝐷𝑗𝑓3 − 𝐷𝑖𝐷

𝑖 𝐷𝑗𝜙𝐷
𝑗𝑓3

ൟ+ 𝐾𝛾𝑖𝑗 − 𝐾𝑖𝑗 2𝐾𝑖
𝑘𝐷𝑘𝜙𝐷𝑗𝑓3 + 𝑓3⊥𝐷𝑖𝐷𝑗𝜙 + 𝐴∗𝐷𝑖𝐷𝑗𝑓3 + Λ 𝑁𝐴∗ +𝑁𝑖𝐷𝑖𝜙 − ሶ𝜙

Fixes 𝐴∗ ∼ ሶ𝜙
ሶ𝛾𝑖𝑗 ሶ𝐴∗

velocities

𝐾𝑖𝑗 ∼ ሶ𝛾𝑖𝑗 , 𝑉∗ ∼ ሶ𝐴∗
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 Extended mimetic gravity
Under 𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈,

while the velocities are transformed as

Degenerate kinetic matrix → additional primary constraint

The additional constraint should be of first class

2017/11/28 JGRG27

෩𝑁 = −𝑋𝑁, ෩𝑁𝑖 = 𝑁𝑖 , 𝛾𝑖𝑗 = −𝑋𝛾𝑖𝑗 , ሚ𝐴∗ =
1

−𝑋
𝐴∗,

෨𝑅𝑖𝑗 = 𝑅𝑖𝑗 +
3

4𝑋2
𝐷𝑖𝑋𝐷𝑗𝑋 −

1

2𝑋
𝐷𝑖𝐷𝑗𝑋 + 𝛾𝑖𝑗

1

4𝑋2
𝐷𝑘𝑋𝐷

𝑘𝑋 −
1

2𝑋
𝐷𝑘𝐷

𝑘𝑋 ,

෩𝐾𝑖𝑗 = −𝑋 𝛿𝑖
𝑘𝛿𝑗

𝑙 −
𝐷𝑘𝜙𝐷𝑙𝜙

𝑋
𝛾𝑖𝑗 𝑉𝑘𝑙 +

𝐷𝑘𝜙𝐷𝑘𝐴∗
𝑋

𝛾𝑖𝑗 ,

෨𝑉∗ = −
1

𝑋2
𝐷𝑖𝜙𝐷𝑗𝜙 𝐴∗𝑉𝑖𝑗 − 𝐷𝑖𝐷𝑗𝜙 , Only in the combination of

𝑉𝑖𝑗 ≡ 𝐾𝑖𝑗 +
𝑉∗
𝐴∗
𝛾𝑖𝑗

𝑆mim[𝑔𝜇𝜈, 𝜙] = න𝑑𝑡𝑑3𝑥 𝑁 𝛾𝐿M 𝛾𝑖𝑗 , 𝑅𝑖𝑗 , 𝜙, 𝐴∗; 𝑉𝑖𝑗; 𝐷𝑖 + Λ 𝑁𝐴∗ + 𝑁𝑖𝐷𝑖𝜙 − ሶ𝜙

“extended mimetic gravity”

conformal sym.
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𝐴∗ ∼ ሶ𝜙

𝐾𝑖𝑗 ∼ ሶ𝛾𝑖𝑗

𝑉∗ ∼ ሷ𝜙 ∼ ሶ𝐴∗



 Hamiltonian analysis
𝑆[𝑔𝜇𝜈 , 𝜙] = න𝑑𝑡𝑑3𝑥 𝑁 𝛾𝐿M 𝛾𝑖𝑗 , 𝑅𝑖𝑗 , 𝜙, 𝐴∗; 𝐵𝑖𝑗; 𝐷𝑖 + Λ 𝑁𝐴∗ + 𝑁𝑖𝐷𝑖𝜙 − ሶ𝜙 + 𝑁𝜆𝑖𝑗 𝐵𝑖𝑗 − 𝑉𝑖𝑗

Canonical variables ⋯ 50-dim. phase space

𝑁 𝑁𝑖 𝛾𝑖𝑗 𝜙 𝐴∗ 𝐵𝑖𝑗 Λ 𝜆𝑖𝑗

𝜋𝑁 𝜋𝑖 𝜋𝑖𝑗 𝑝𝜙 𝑝∗ 𝑝𝑖𝑗 𝑃 𝑃𝑖𝑗
Primary constraints

𝜋𝑁 ≈ 0, 𝜋𝑖 ≈ 0, 𝑝𝑖𝑗 ≈ 0, 𝑃 ≈ 0, 𝑃𝑖𝑗 ≈ 0

ത𝜋𝑖𝑗 ≡ 𝜋𝑖𝑗 +
1

2
𝜆𝑖𝑗 ≈ 0, ҧ𝑝𝜙 ≡ 𝑝𝜙 + Λ ≈ 0

and

Redefine 𝒞 for a technical reason:
ҧ𝒞 ≡ 𝒞 + 2𝜆𝑖𝑗𝑃𝑖𝑗

2017/11/28 JGRG27

auxiliary field 𝐵𝑖𝑗 = 𝑉𝑖𝑗

𝑉𝑖𝑗 =
1

2𝑁
ሶ𝛾𝑖𝑗 + 2

ሶ𝐴∗
𝐴∗
𝛾𝑖𝑗 +⋯

generates conformal transformation of 𝐴∗, 𝛾𝑖𝑗

𝒞 ≡ 𝐴∗𝑝∗ − 2𝛾𝑖𝑗𝜋
𝑖𝑗 ≈ 0
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 Hamiltonian analysis (cont’d)
Total Hamiltonian

𝐻𝑇 = න𝑑3𝑥 𝑁ℋ + 𝑁𝑖ℋ𝑖 + 𝜇𝑁𝜋𝑁 + 𝜇𝑖𝜋𝑖 + 𝜇𝑖𝑗 ത𝜋
𝑖𝑗 + 𝑢𝜙 ҧ𝑝𝜙 + 𝑢∗ ҧ𝒞 + 𝑢𝑖𝑗𝑝

𝑖𝑗 + 𝑈𝑃 + 𝑈𝑖𝑗𝑃𝑖𝑗

with

Secondary constraints
ሶ𝜋𝑁 ≈ 0 → ℋ ≈ 0
ሶ𝜋𝑖 ≈ 0 → ℋ𝑖 ≈ 0

ሶ𝑝𝑖𝑗 ≈ 0 → 𝜑𝑖𝑗 ≡ 𝛾
𝜕𝐿M
𝜕𝐵𝑖𝑗

− 2𝜋𝑖𝑗 ≈ 0

No tertiary constraint if det
𝜕2𝐿M

𝜕𝐵𝑖𝑗𝜕𝐵𝑘𝑙
≠ 0

2017/11/28 JGRG27

ℋ ≡ − 𝛾𝐿M 𝛾𝑖𝑗 , 𝑅𝑖𝑗 , 𝜙, 𝐴∗; 𝐵𝑖𝑗; 𝐷𝑖 + 2𝜋𝑖𝑗𝐵𝑖𝑗 + 𝑝𝜙𝐴∗ − 𝛾𝐷𝑖
𝑝∗
𝛾
𝐷𝑖𝜙

ℋ𝑖 ≡ −2 𝛾𝐷𝑗
𝜋𝑖𝑗

𝛾
+ 𝑝𝜙𝐷𝑖𝜙 + 𝑝∗𝐷𝑖𝐴∗ + 𝑝𝑗𝑘𝐷𝑖𝐵𝑗𝑘 − 2 𝛾𝐷𝑗

𝑝𝑗𝑘

𝛾
𝐵𝑖𝑘

Primary constraints

generate spatial diffeo. of 𝛾𝑖𝑗 , 𝜙, 𝐴∗, 𝐵𝑖𝑗
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 DOF counting
First-class constraints ⋯ 9 in total

𝜋𝑁, 𝜋𝑖 , ℋ, ℋ𝑖 , ҧ𝒞

Second-class constraints ⋯ 26 in total

ത𝜋𝑖𝑗 , ҧ𝑝𝜙, 𝑝𝑖𝑗 , 𝑃, 𝑃𝑖𝑗 , 𝜑𝑖𝑗

The number of physical DOFs

1

2
50 − 9 × 2 − 26 = 3

If there are tertiary constraints, the number of DOFs can become even smaller.

2017/11/9 THURSDAY SEMINAR

4D diffeo. conformalEM conservation

phase-space dim. # of first-class # of second-class

No extra DOF!
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peculiar to 
mimetic gravity!

new!

 Relation to the known classes

2017/11/28 JGRG27

nondegenerate (Ostrogradsky ghost)

degenerate (≤ 3 DOFs)

???

quadratic/cubic DHOST

GR (2 DOFs)

2nd-order EL eqs.

higher-order EL eqs.
Horndeski

disformal transformation
𝑔𝜇𝜈 = 𝐴 𝜙, 𝑋 𝑔𝜇𝜈 + 𝐵 𝜙, 𝑋 𝜕𝜇𝜙𝜕𝜈𝜙

extended mimetic gravity

𝑆 = න𝑑4𝑥 − 𝑔 𝑓2 ෨ℛ + 𝑓3 ሚ𝒢
𝜇𝜈 ෨𝛻𝜇 ෨𝛻𝜈𝜙 + 𝐹 𝑔𝜇𝜈, 𝜙, ෨𝛻𝜇𝜙, ෨𝛻𝜇 ෨𝛻𝜈𝜙𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈

cosmological perturbations?
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𝛻𝛻𝜙 4, 𝛻𝛻𝜙 5,⋯

up to 𝛻𝛻𝜙 3



 Cosmological perturbations
Gauge fixing: 𝜙 = 𝑡 and 𝑋 = −1 → 𝑁 = 1

Metric ansatz (flat FLRW background + perturbations)

𝑁 = 1, 𝑁𝑖 = 𝜕𝑖𝜒, 𝛾𝑖𝑗 = 𝑎2 𝑡 𝑒2𝜁 𝛿𝑖𝑗 + ℎ𝑖𝑗 +
1

2
ℎ𝑖𝑘ℎ𝑘𝑗

Tensor quadratic action

𝑆T
2
= න𝑑𝑡𝑑3𝑥

𝑎3

4
ℬ ሶℎ𝑖𝑗

2 − ℰ
𝜕𝑘ℎ𝑖𝑗

2

𝑎2

Scalar quadratic action

𝑆S
2
= 2න𝑑𝑡𝑑3𝑥𝑎3

3𝒜 + 2ℬ

𝒜 + 2ℬ
ℬ ሶ𝜁2 + ℰ

𝜕𝑘𝜁
2

𝑎2

Here,

𝒜 ≡ 

𝑚=1

ℓ



𝑛=1

ℓ

𝑚𝑛𝐻𝑚+𝑛−2ℱ𝑚𝑛 , ℬ ≡ 

𝑛=2

ℓ
𝑛 𝑛 − 1

2
𝐻𝑛−2ℱ𝑛 , ℰ ≡ 𝑓2 −

1

2
ሶ𝑓3

2017/11/28 JGRG27

𝑆mim = න𝑑𝑡𝑑3𝑥 𝛾 𝑓2 −
1

2
ሶ𝑓3 𝑅 + ℱ 𝑡, 𝐾,𝒦2, 𝒦3, ⋯ ,𝒦ℓ , 𝒦𝑛 ≡ 𝐾𝑖2

𝑖1𝐾𝑖3
𝑖2⋯𝐾𝑖1

𝑖𝑛

scalar pert. TT tensor pert.

𝒦1 ≡ 𝐾

ℱ𝑛 ≡
𝜕ℱ

𝜕𝒦𝑛
ℱ𝑚𝑛 ≡

𝜕2ℱ

𝜕𝒦𝑚𝜕𝒦𝑛
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gradient
instabilities!

 Conclusions
How can we go beyond quadratic/cubic DHOST theories via disformal transformation?

Consider noninvertible transformation of nondegenerate theories!

(∵ Invertible transformations cannot change the DOFs)

“Extended mimetic gravity”  KT, Kobayashi, 2017

Perform 𝑔𝜇𝜈 = −𝑋𝑔𝜇𝜈 on theories with 4 DOFs:

ሚ𝑆seed[ 𝑔𝜇𝜈, 𝜙] = න𝑑4𝑥 − 𝑔 𝑓2 ෨ℛ + 𝑓3 ሚ𝒢
𝜇𝜈 ෨𝛻𝜇 ෨𝛻𝜈𝜙 + 𝐹 𝑔𝜇𝜈, 𝜙, ෨𝛻𝜇𝜙, ෨𝛻𝜇 ෨𝛻𝜈𝜙

The resultant theory 𝑆[𝑔𝜇𝜈, 𝜙] has only 3 DOFs due to conformal sym.

Cosmological perturbations suffer from gradient instabilities

Similar extension? Phenomenology?

2017/11/28 JGRG27

෨𝑋 ≡ 𝑔𝜇𝜈𝜕𝜇𝜙𝜕𝜈𝜙functions of 𝜙, ෨𝑋

KT, Motohashi, 
Suyama, Kobayashi, 2017
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Are redshift-space distortions 
actually a probe of  

growth of structure

Rampei Kimura 
Tokyo Institute of Technology

JGRG27 at Hiroshima       11/28/2017

          Based on   arXiv : 1709.09371  
Collaborators : Teruaki Suyama, Masahide Yamaguchi,  
                            Daisuke Yamauchi, Shuichiro Yokoyama

Standard Cosmology I

Mapping to redshift space

galaxy density contrast 
in redshift space

galaxy density contrast in real space

�g,s = �g �
1

aH
rzvg,z

line of sight component of 
galaxy peculiar velocity

�g = bg�m

vg = vm = �a
2
H

k2
fm�m

Galaxy vs. matter distribution
(linear bias)

real space redshift space

overdensity overdensity

line of sight

Kaiser effect



Standard Cosmology II
• Newtonian gauge

2

where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .

• Basic equations  (sub-horizon approximation)

�̇m +
k2

a2
vm = 0 v̇m � � = 0

k2

a2
 =

k2

a2
� = �4⇡G⇢m�m (Poisson equation)

(continuity & Euler equation)

�̈m + 2H �̇m � 4⇡G⇢m�m = 0 (Evolution of δm)

�m(t,k) = Dm(t) �0(k) δ0 : Initial density contrast

fm(t) ⌘
d lnDm

d ln a
• Linear growth rate  fm

• Growth factor Dm

vg = vm = �a
2
H

k2
fm�m

Standard Cosmology III

Growth rate can directly measured by RSD  
(bias can be fixed by cross-correlation of LSS & weak lensing)

the cosine of the angle between the 
line of sight & Fourier momentum

Power spectrum in redshift space matter power spectrum

� ⌘ fm
bg

Kaiser formula
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Fig. 17. Constraints on the growth rate f(z)σ8(z) as a function of redshift at 0 < z < 1.55. The constraint obtained from our FastSound sample at 1.19 <

z < 1.55 is plotted as the big red point. The previous results include the 6dFGS, 2dFGRS, SDSS main galaxies, SDSS LRG, BOSS LOWZ , WiggleZ, BOSS
CMASS, VVDS, and VIPERS surveys at z < 1. A theoretical prediction for fσ8 from ΛCDM and general relativity with the amplitude determined by minimizing
χ2 is shown as the red solid line. The data points used for the χ2 minimization are denoted as the filled-symbol points while those which are not used are
denoted as the open-symbol points. The predictions for fσ8 from modified gravity theories with the amplitude determined in the same way are shown as the
thin lines with different line types; f(R) gravity model (dot-short-dashed), the covariant Galileon model (dashed), the extended Galileon model (dotted), DGP
model (dot-dashed), and the early, time varying gravitational constant model (black solid).

modification of gravity manifests itself in the observations of
RSD. Provided that the stability condition 0 < Rf,RR/f,R ≤ 1

(where f,R=df/dR) is satisfied, the solution finally approaches
a de Sitter solution characterized by Rf,R = 2f (Amendola
et al. 2007). In this case the the effective gravitational coupling
in f(R) gravity is given by (Tsujikawa 2007; de Felice et al.
2011b)

Geff =
G0

f,R

1+4r/3
1+ r

, r =

(

k
amφ

)2

. (26)

where m2
φ ≃ f,R/(3f,RR) and we have that the f(R) model

(25) exhibits the gravitational interaction stronger than that in
the ΛCDM model at low redshifts.
As an example, we choose n=2 and λ= 2 and compute the

χ2 statistics by changing the normalization of fσ8 as we have
done for GR above. The resulting fσ8 as a function of z with the
best fitting amplitude at the scale k−1 = 30 h−1 Mpc is shown
as the dot-dashed line in figure 17. Because the f(R) gravity
model exhibits stronger gravity than GR, fitting the f(R)model
to the RSD measurements gives fσ8 smaller than the ΛCDM
model at higher redshift.

6.2.2 Dvali-Gabadadze-Porrati braneworld
An alternative model we consider is the Dvali-Gabadadze-
Porrati (DGP) braneworld (Dvali et al. 2000), in which a 3-
brane is embedded in a 5-dimensional (5D) Minkowski bulk
spacetime with an infinitely large extra dimension. In the ef-
fective 4-dimensional (4D) picture, the Friedmann equation on
the flat FLRW brane is given byH2− ϵH/rc = κ2

4ρm/3, where
ϵ = ±1 and rc = κ2

(5)/(2κ
2
(4)) is a length scale determined by

the ratio of 5D and 4D gravitational constants κ(5) and κ(4). For
the branch ϵ=+1, there is a de Sitter solution characterized by
the Hubble parameter HdS = 1/rc. We include this model be-
cause it realizes (as we shall see) Geff < G; unfortunately it
is associated with the existence of ghosts (Nicolis & Rattazzi
2004).
On the scale of surveys we have that the effective Newton’s

constant satisfies (Lue et al. 2004, Koyama & Maartens 2006):

Geff =

[

1+
1

3β(t)

]

G0 , β(t)≡1−2Hrc

(

1+
Ḣ
3H2

)

.(27)

SinceHrc≫1 and Ḣ/H2≃−3/2 in the deep matter era, it fol-
lows that |β|≫1 and henceGeff ≃G. As the background trajec-
tory approaches the de Sitter solution characterized byHrc = 1

and Ḣ = 0, we have that β = −1 and Geff = 2G/3. The DGP
model gives rise to weaker gravity due to the gravitational leak-
age to the extra dimension.
Since the DGP model predicts a weaker gravitational in-

teraction on cosmological scales, fitting the amplitude of
f(z)σ8(z) to RSD measurements without using the bound of
σ8(0) from CMB measurements gives rise to f(z)σ8(z) larger
than that of the ΛCDM model at high redshifts (z > 1). The
best-fit curve of the DGP model is plotted as the dot-long-
dashed line in Fig. 17, which exhibits a notable deviation from
the ΛCDM model and f(R) gravity at the redshift associated
with the FastSound measurement.

6.2.3 Galileons
Another class of models that modify gravity are based around a
scalar field, φ that satisfies a Galilean shift symmetry: ∂µφ →
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√

−g
δSI
δgµν and T (φ)

µν =

− 2√
−g

δ(
√
−gLφ)
δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)

µν + T (c)
µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
√
−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl

(
Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .

• Energy-momentum conservation

rµ
⇣
T (c)
µ⌫ + T (�)

µ⌫

⌘
= 0

S =

Z
d4x

p
�g


M2

Pl

2
R[g] + L�[g,�]

�
+ Sb + Sc

Baryon :  sensitive to solar-system experiments        →    minimal coupling
   CDM :  insensitive to solar system experiments     →    non-minimal coupling

(conformal  &  disformal coupling)

• Matter = (standard) baryon + non-minimally coupled cold dark matter 

gµ⌫ = A(�, X)gµ⌫ +B(�, X)@µ�@⌫�

Sb =

Z
d4x

p
�gLb[gµ⌫ , b]

Sc =

Z
d4x

p
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x
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−g

[
M2
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2
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]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x
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−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
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)
. (4)
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The combination of the energy-momentum tensor for to-
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µν := T (b)
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T (φ)
µν is conserved as ∇µ(T (m)
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momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as

Q ≡ − 1√
−g

δ(
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−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +
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}
T(c)

+

{
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}
Tµν
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]
, (7)
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1
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(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)

where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
energy-momentum tensor for the baryon, the dark mat-
ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)

]
, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
ρc + ρb + Λ+

1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1
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(
Λ− 1
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φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =

∫
d4x

√
−g

[
M2

Pl

2
(R[g]− 2Λ) + Lφ[g,φ]

]
+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
−ḡLc[gµν ,ψc]

]
,(3)

where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,

Gµν + Λgµν =
1

M2
Pl

(
T (b)
µν + T (c)

µν + T (φ)
µν

)
. (4)

Here and hereafter, T (I)
µν = − 2√
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δSI
δgµν and T (φ)
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δgµν . The superscript I represents b, c or m

for baryon, dark matter and total matter, respectively.
The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)
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µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)
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µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
and the scalar field, is defined as
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where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian
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ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
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ter and the total matter as

T 0
(I)0 = −ρI(t)
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1 + δI(t,x)
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and (otherwise)= 0 1. Based on these equations, we can
find relations as

δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =
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where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by
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=

∫
d4x

[√
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√
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where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to

the Einstein equations as usual,
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it rather takes the following form, ∇µT (c)
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−ḡLc)

δφ
= ∇µW

µ − Z , (6)

with

Z =
1

2A

[{
Aφ +

AXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
T(c)

+

{
Bφ +

BXX(Aφ − 2BφX)

A−AXX + 2BXX2

}
Tµν
(c)∂µφ∂νφ

]
, (7)

Wµ =
1

2A

[
2B Tµν

(c)∂νφ− A− 2BX

A−AXX + 2BXX2

×
(
AXT(c) +BXTαβ

(c) ∂αφ∂βφ
)
∂µφ

]
, (8)
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by

S =
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+ Sm ,(2)

where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
sector, we assume that the baryon is minimally coupled
for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
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[√
−gLb[gµν ,ψb] +
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−ḡLc[gµν ,ψc]
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where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
The variation with respect to the metric gµν leads to
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The combination of the energy-momentum tensor for to-

tal matter T (m)
µν := T (b)
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µν and the scalar sector
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µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-

iar form, ∇µT (b)
µν = 0. On the other hand, the energy-

momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
µν = −∇µT (φ)

µν .
The scalar equation is given by

✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
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the use of Eq. (5), the energy-momentum conservation
for CDM and total matter can be recast as

∇µT (c)
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µν = −Q ∂νφ . (9)
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gauge,
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1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
−gLc)/δgµν .

• Basic equations

(Einstein equation)

(Conservation equation for baryon)

(Conservation equation for DM & DE)

(scalar field equation)

2
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through the barred metric ḡµν defined in (1). The total
matter action is thus given by

Sm = Sb + Sc

=

∫
d4x

[√
−gLb[gµν ,ψb] +

√
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B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
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where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
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where Sb and Sc represent the actions for baryon and
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✷φ− Vφ = Q , (5)

where Q, which characterizes the coupling between CDM
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where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
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for CDM and total matter can be recast as
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ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by
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(R[g]− 2Λ) + Lφ[g,φ]
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where Lφ represents a Lagrangian for scalar field and Sm

a total matter action. For simplicity, we consider the
canonical scalar field: Lφ = − 1
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2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
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for simplicity while the CDM couples with the scalar field
through the barred metric ḡµν defined in (1). The total
matter action is thus given by
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=
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where Sb and Sc represent the actions for baryon and
CDM, respectively. Due to the non-minimal coupling
between the dark matter and the scalar field, baryonic
matter and dark matter do not move in the same way.
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where gµν is the original frame metric, and A(φ, X) and
B(φ, X) are respectively called conformal and disformal
factors, which are functions of the scalar field φ and its
kinetic term X ≡ −gµν∂µφ∂νφ/2. Here and hereafter, φ
is a generic scalar field, and we do not specify it though
the case with φ being responsible for dark energy is the
most interesting. The action is given by
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where Lφ represents a Lagrangian for scalar field and Sm
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canonical scalar field: Lφ = − 1

2 (∂φ)
2−V (φ) and assume

the scalar field does not modify the gravitational sector,
i.e., the absence of kinetic braiding [16]. As for the matter
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CDM, respectively. Due to the non-minimal coupling
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µν and the scalar sector

T (φ)
µν is conserved as ∇µ(T (m)

µν + T (φ)
µν ) = 0 . The energy-

momentum conservation for baryon also takes the famil-
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momentum tensors for the scalar field and dark matter
no longer satisfy the conservation law individually, and

it rather takes the following form, ∇µT (c)
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The scalar equation is given by
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where Q, which characterizes the coupling between CDM
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where Uφ = ∂U/∂φ , UX = ∂U/∂X for U = A ,B . By
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for CDM and total matter can be recast as

∇µT (c)
µν = ∇µT (m)

µν = −Q ∂νφ . (9)

Basic equations.
We work on a spatially flat FLRWmetric in Newtonian

gauge,

ds2 = −[1 + 2Φ(t,x)]dt2 + a2(t)[1− 2Ψ(t,x)]dx2 , (10)

and define the background and perturbations of the
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ter and the total matter as

T 0
(I)0 = −ρI(t)

[
1 + δI(t,x)
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, (11)

T 0
(I)i = −ρI(t) ∂ivI(t,x) , (12)

and (otherwise)= 0 1. Based on these equations, we can
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δm = ωcδc + ωbδb , (13)

vm = ωcvc + ωbvb , (14)

where ωI = ρI/ρm. We also split the scalar field as
φ(t,x) → φ(t) + δφ(t,x). The background part of the
Einstein equation gives

H2 =
1

3M2
Pl

(
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1

2
φ̇2 + V

)
, (15)

3H2 + 2Ḣ =
1

M2
Pl
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Λ− 1

2
φ̇2 + V

)
. (16)

The background equation of motion for φ (5) yields

φ̈+ 3Hφ̇+ Vφ = −Q0 , (17)

1 Note that the pressureless feature of the CDM is ro-
bust at least at first order of perturbations even if
we take other definitions of energy momentum tensor

such as T
(c)
µν = −(2/

√
−g)δ(

√
−gLc)/δgµν and T̃

(c)
µν =

−(2/
√
−g)δ(

√
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Modified Kaiser Formula

• Einstein equations and baryon’s equations are the same 

(sub-horizon + quasi-static approximation)

• Evolution of density contrast of CDM

�̈c + 2He↵ �̇c � 4⇡Ge↵ ⇢m�m = 0

Growth rate also deviates from the standard cosmology

• Continuity & Euler equations for CDM are modified !!

v̇c � � = �1 vc + �2 �̇c + �3 �c

vc depends on time-derivative of 
density contrast and density contrast 
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Modified Kaiser formula

• Total matter = baryon + CDM    (                                     )
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=
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• Velocity of the total matter is modified due to modification of CDM equation
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• RSD measures the effective growth rate f e↵
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Modified Kaiser formula

Non-minimally coupled CDM

Minimally coupled CDM (standard scenario)

5

This is a generalization of the Kaiser formula. In fact,
in the minimal coupling case, we have Dm = Dc = Db

and f eff
m = fm = f eff

c = fc = fb, and hence Eq. (39)
is reduced to the standard Kaiser formula. However, we
found that in the presence of the coupling between the
CDM and the scalar sector we have no longer the relation
f eff
m = fm as we have discussed, and it means that the
RSDs are not trustable probes of growth of structure. It
is notable that the RSDs cannot provide the true value of
the growth rate fm even in the simple case where the con-
formal and disformal factors depend only on φ. Since in
this case, the deviation from the standard formula is pro-
portional to Q0, this effect is suppressed when the back-
ground evolution of the dark matter is almost same as the
one of the baryon. On the other hand, there is a wider
room for sizable modification of the standard Kaiser for-
mula in our general setup; even when either Q0 or the
baryonic contamination is negligibly small, f eff

m can differ
from fm by O(1). To see this clearly, let us expand the
formula (40) in terms of the baryon-CDM ratio to neglect
the ambiguity from the baryon contribution. The leading
term gives βeff ≈ f eff

c /bg = fc/bg+∆fc/bg. This immedi-
ately shows the single-redshift RSDs measurements can
not give a constraint on the linear growth rate fc unless
the contributions from the couplings ∆fc is fixed by us-
ing other observables 3. This fact demonstrates that one
has to keep this new effect in mind when testing beyond
ΛCDM theories by the RSDs measurements. Even if the
growth index γ ≈ 0.55 is obtained from RSDs in future
galaxy survey, it is still possible that the true theory is
different from the standard ΛCDM model. One way to
obtain the actual growth rate of large-scale structure is
to directly observe the time-evolution of structure by e.g.
multiple redshift observations of galaxy power spectrum.
In fact, we have a strong degeneracy between the growth
of large scale structure and the redshift-dependence of
the linear bias. Thus, to measure fm by multiple red-
shift observations, we need to fix the bias for each red-
shift by using other observations, i.e., cross-correlation
between the clustering of galaxies and weak lensing (see,
e.g., [13]). After evaluating the actual growth rate, one
can compare the actual and effective growth rates to con-
strain the couplings between the CDM and scalar field.

Conclusion.

We have shown that the additional interaction me-
diated by the scalar field that operates only between
dark matter through conformal and disformal couplings

3 The model considered in Ref. [18] is described by two parame-
ters, the equation of state w and the (background) energy trans-
fer parameter ξ (δQ in our analysis is neglected in [18]). Once
the constraints on background dynamics from the observations
such as type Ia supernovae and CMB are taken into account,
only ξ characterizes both the actual growth rate fc/bg and the
deviation ∆fc/bg. Thus in such a model, it is enough to measure
the single-redshift RSDs, however, this does not hold in a general
setup.

changes the continuity and Euler equations for cosmo-
logical perturbations in a non-trivial manner and inves-
tigated its impact on RSDs measurements in galaxy sur-
vey. We found that the effects of such modifications
appear even at sub-horizon scales in the presence of φ
and X(= −gµν∂µφ∂νφ/2)-dependence of the conformal
and/or disformal couplings. The effective linear growth
rate, which is inferred from measurements of the pecu-
liar velocities of the distributed galaxies, no longer corre-
sponds to the logarithmic time derivative of the density
perturbation and is rather characterized by both the den-
sity perturbations and their derivatives for each species
in general situation. In other words, the information of
the coupling is encoded in the peculiar velocity fields and
the true value of the growth rate of large-scale structure
cannot necessarily be constrained by the single-redshift
RSDs measurements. It can be extracted by using mul-
tiple power spectra of the galaxy distribution at different
redshift. This fact will play a vital role of measuring the
linear growth rate fm by the RSDs measurement, and
it will provide us a rich information of dark matter and
dark energy.
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Kaiser formula

• Multiple-redshift RSD observations can separate the actual growth rate and 
DM-DE coupling

• Measured         is not the actual growth rate        and it contains information of 
DM-DE coupling 

f e↵
m fm

f e↵
m = fm+�fm

• Single-redshift RSD observations can not determine the actual growth rate 
and DM-DE coupling

• DM-DE interaction modifies continuity and Euler equations in a 
cosmological setup. 

• Even in DM-DE direct coupling (not though conformal or disformal metric) 
we reach the same conclusion

• Multiple-redshift RSD measurements provide us information of both the 
actual growth rate and DM-DE coupling

Summary

Growth rate obtained from RSD  

         =  actual growth rate + DM-DE coupling effect



Modification of Gravity
• Gravitational equations are modified as

k2

a2
 = �4⇡G⇢m�m+  � � =

extra contribution due to modification of gravity anisotropic stress

• Continuity and Euler equations remain the same

�̇m +
k2

a2
vm = 0 v̇m � � = 0

• Evolution of matter density contrast follows

�̈m + 2H �̇m � 4⇡Ge↵⇢m�m = 0

The growth rate is different from the standard cosmology,  
but the growth rate can directly obtained by RSDs  

(because Kaiser formula remain the same)
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Outline in this talk

・Gravitational Waves (GW) observations for testing gravity :  

    cosmological effects on GW during propagation

・Summary  

・Model classification of Horndeski theory in a  
  numerical way; set-up and its procedure 

・Constraints on Horndeski theory from GW170817&GRB170817A

1/13



I. D. Saltas et. al PRL 2014

Modification of GW propagation 

h00
ij + (2 + ⌫)Hh0

ij + (cT
2k2 + a2µ2)hij = a2��ij

⌫

cT

µ

�

time variation of the 

effective Planck mass

propagation speed of GW 

graviton mass

additional sources of GW

Lorentz symmetry/Equivalence principle

time dependent gravitational coupling

massive gravity (Shinji-Mukohyama’s talk)

Non-minimal coupling with other fields

GW observations for testing gravity :  
             cosmological effects on GW during propagation

A.Nishizawa arXiv:1710.04825 

2/13

Solution of modified GW propagation 
at cosmological scale

A.Nishizawa arXiv:1710.04825 

h = CMGhGR

D ⌘
1

2

Z ⌧

d⌧ 0⌫H

�T ⌘
Z ⌧

d⌧ 0
⇢
(1� cT )�

a2µ2

2k2

�

� = 0
solutions that alters in cosmological time scale:  

: conformal time ⌧

Source-less system

amplitude

phase

CMG ⌘ e�De�ik�T

arrival time difference

e.g. GW associating with 

      EM wave emission

luminosity distance

GW observations for testing gravity :  
             cosmological effects on GW during propagation 3/13



 Horndeski theory  

SHorn =

Z
d4x

p
�g

5X

i=2

Li

・The most generic theory containing only up to 

    2nd order spacetime derivatives. 

G. Horndeski, 1974

X ⌘ ��;µ�;µ/2

T. Kobayashi, M. Yamaguchi, and J. Yokoyama 2011

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 

L2 = G2(�, X),

・Phenomenologically it can explains cosmic 

    accelerating expansion.

4/13

α-parameterization 
E.Bellini and I.Sawicky JCAP 2014

↵M

↵K

↵B

↵T

Kinetic term of a scalar 

“Braiding” between scalar and tensor

phase velocity of tensor

N.B.Taking the unitary gauge

↵M ⌘ 1

HM2

dM
2

dt

R :3d Ricci scalar

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 

D.Langlois et. al. 2017
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ν & cT in Horndeski theory 

・GW properties are only involved with G4 and G5 

dt = ad⌧

Ȧ ⌘ dA

dt
H = H/a

E.Bellini & I.Sawicky JCAP 2014

M
2
⇤ (t) ⌘ 2(G4 � 2XG4X +XG5� � �̇HXG5X)

⌫ ⌘ d lnM2
⇤

d ln a
= ↵M (t)

cT
2 � 1 ⌘ ↵T (t) =

2X

M2
⇤

⇣
2G4X � 2G5� � (�̈� �̇H)G5X

⌘

・Searching the whole parameter space independent  
    with specific models

Numerical simulation

・Degeneracies of these parameters should be considered 

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 6/13

Procedure of the model classification
SA and A.Nishizawa. arXiv:1711.03776 

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 7/13



Numerical parameterization 

�(t) =
p

MplH0

n
a0 + a1H0tLB +

a2

2
(H0tLB)

2
o

tLB ⌘
Z z

0

dz
0

H⇤CDM(z0) · (1 + z0)
H⇤CDM(z) = H0

�
⌦m0(1 + z)3 + 1� ⌦m0

 1/2

・approximation of the Horndeski G functions

G(app)
i � �, X,�X,�2, X2(i = 2, 3, 4, 5)

gi⇢, gi⇢�(⇢,� = � or X)

・time-dependence of        at low redshifts�(t)

・Jordan-frame with minimally-coupled dust

SA and A.Nishizawa. arXiv:1711.03776 

H0 = 67.8 km · s�1Mpc�1 ⌦m0 = 0.3080Planck 2015 best-fit :
P.Ade. Planck2015 

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 8/13

a0 ⌘ 0

Criteria for model classification

1. Consistency

2. Stability
Avoiding ghost and gradient instabilities. i.e.  

S(2) =

Z
dtd3x

X

�=scalar,tensor

�
Q��̇

2 � c2�(@�)
2
 

Q� > 0, c2� > 0

for a quadratic action as

|1�H/H⇤CDM | < �Hobs/Hobs

�Hobs

Hobs
⌘ 20%

SA and A.Nishizawa. arXiv:1711.03776 

N.B. Currently without any experimental 
prior (e.g. Planck 2015) but still reasonable 

 Simon et al. (2005)  Moresco et al. (2012) 
Zhang et al. (2012) 

c.f.

Simulation size : 1,000,000 distanctive models are provided 

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 9/13



Model classification
SA and A.Nishizawa. arXiv:1711.03776 

 Larger αM and αT are favored  L.Lombriser and A.Taylor JCAP 03 031 2016 

Model classification of Horndeski theory in a  
  numerical way; simulation set-up and its procedure 10/13

Observables in GW propagation at low redshifts
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SA and A.Nishizawa. arXiv:1711.03776 
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Observational bounds from GW170817&GRB170817A

�75.3  ⌫0  78.4 �4.7⇥ 10�16  �g0  2.2⇥ 10�15

SA and A.Nishizawa. arXiv:1711.03776 

・Application for another GW detection is easy on these panel 

Constraints on Horndeski theory 
from GW170817&GRB170817A 12/13

Summary of my talk

Summary

・We initiated a concrete study how α-parameters correlate each 

   other in a model-independent point of view ; Monte Carlo simulation.

・Applying our method for model classification in the Horndeski  
   theory, we obtain the distributions of the models in αT-αM plane.

・Considering the current observation of GW170817 and  

   GRB170817A, the models with G4 and G5 functions hardly account 
   for cosmic accelerating universe and GW observation at the same  
   time.

・We can test gravity with GW propagation since waveform of a GW

    is significantly deviate from that of GR at cosmological scale.  

・Multiple GW observations are necessary to make the current  
    constraints much stronger enough to verify GR at cosmological scale.

c.f. J.M.Ezquiaga and M.Zumalacarregui  2017

c.f. E. Linder JCAP 1605 053 2016
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Back Up

Different expansion histories 
SA and A.Nishizawa. arXiv:1711.03776 



Observational constraints on cosmic expansion histories
O.Farooq et al.  Astrophys. J. 835 (2017) 

 Simon et al. (2005) 
 Moresco et al. (2012) 

Zhang et al. (2012) 

@z ⇠ 0.1

�Hobs

Hobs
' 17%

GW observations : current situations 

・Observables : amplitude/phase 

C. Will  Living Rev. 2006 

standard siren

arrival time difference 

・Event rate of GW O(100 - 1000) yr−1 

D. E.Holz and S.A.Hughes, PRL 2005 

GW is a powerful way to explore MG

possibly reaching to 1000 yr−1 with HLVK network
HLVK : Hanford/Livingston/VIRGO/KAGRA

・Direct measurement of gravity sector



Self Acceleration 
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Spins of primordial black holes formed in the
matter-dominated era

Tomohiro Harada (Rikkyo U)

28/11/2017, JGRG27 @ Higashihiroshima

This talk is based on

Harada, Yoo (Nagoya U), Kohri (KEK), Nakao (OCU) & Jhingan (YGU), 1609.01588

Harada, Yoo, Kohri, & Nakao, 1707.03595

T. Harada (Rikkyo U) Spins of PBHs in the MD era JGRG27 1 / 12

Introduction

Primordial black hole (PBH)

PBH = Black hole formed in the early Universe
Probe into the early Universe, high-energy physics, and quantum gravity through
Hawking radiation, dark matter, and gravitational waves (Carr et al. (2010), Carr
et al. (2016))
LIGO BBH events may be sourced by PBHs. (Sasaki et al. (2016), Bird et al.
(2016), Clesse & Garcia-Bellido (2017))
The observation of spins of BHs attracts great attention. (Abbott et al. (2017),
Pani & Loeb (2013), McClintock (2011))

(a) Carr et al. (2016) (b) Sasaki et al. (2016)
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PBH formation in the matter-dominated era

PBH formation in the matter-dominated (MD) era

Pioneered by Khlopov & Polnarev (1980). Recently motivated by early MD
phase scenarios such as inflaton oscillations, phase transitions, and
superheavy metastable particles.
If pressure is negligible, nonspherical effects play crucial roles.

The triaxial collapse of dust leads to a “pancake” singularity. (Lin, Mestel & Shu
1965, Zeldovich 1969)

The effect of angular momentum may halt gravitational collapse or spin the
formed PBHs.

We here rely on the Newtonian approximation to deal with nonspherical
dynamics analytically.

T. Harada (Rikkyo U) Spins of PBHs in the MD era JGRG27 3 / 12

PBH formation in the matter-dominated era Anisotropic effect

Zeldovich approximation

Zeldovich approximation (ZA) (1969)
Extrapolate the Lagrangian perturbation theory in the linear order in
Newtonian gravity to the nonlinear regime.

ri = a(t)qi + b(t)pi(q j),

where b(t) ∝ a2(t) denotes a linear growing mode.

We can take the coordinates in which

∂pi

∂q j
= diag(−α,−β,−γ),

where we can assume∞ > α ≥ β ≥ γ > −∞.

We assume that α, β and γ are constant over the smoothing scale.

We normalise b so that (b/a)(t i) = 1 at horizon entry t = t i.
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PBH formation in the matter-dominated era Anisotropic effect

Application of the hoop conjecture to the pancake collapse

Hoop conjecture (Thorne 1972): The collapse results in a BH if and only if
C . 4πGM/c2, where C is the circumference of the pancake singularity.
Then, we obtain a BH criterion:

h(α, β, γ) :=
C

4πGm/c2
=

2
π

α − γ
α2

E


√

1 −
(
α − β
α − γ

)2
 . 1,

where E(e) is the complete elliptic integral of the second kind.
If h & 1? : It does not immediately collapse to a BH.
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PBH formation in the matter-dominated era Spins of PBHs

Spin angular momentum within the region to collapse

Region V: to collapse in the future

Angular momentum within V with respect to the COM in the Eulerian
coordinates

L = ρ0a4
(∫

V
x × ud3x +

∫
V

xδ × ud3x − 1
V

∫
V

xδd3x ×
∫

V
ud3x

)
,

where x := r/a, u := aDx/Dt, δ := (ρ − ρ0)/ρ0, and ψ := Ψ − Ψ0.
Linearly growing mode of perturbation

δ1 =
∑

k

δ̂1,k(t)eik·x, ψ1 =
∑

k

ψ̂1,k(t)eik·x, u1 =
∑

k

û1,k(t)eik·x,

where δ̂1,k = Ak t2/3, ψ̂1,k = −
2
3

a2
0

k2
Ak, û1,k = ia0

k
k2

2
3

Ak t1/3.
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PBH formation in the matter-dominated era Spins of PBHs

1st-order effect

L = ρ0a4
(∫

V
x × ud3x +

∫
V

xδ × ud3x − 1
V

∫
V

xδd3x ×
∫

V
ud3x

)

If ∂V is not a sphere, the 1st term
contribution grows as ∝ a · u ∝ t.
If we assume V is a triaxial ellipsoid with
axes (A1, A2, A3), we find

⟨L2
(1)⟩

1/2 ≃ 2

5
√

15
q

MR2

t
⟨δ2⟩1/2,

where r0 := (A1 A2 A3)1/3, R := a(t)r0 and

q :=
√

Qi jQi j

3
(

1
5 Mr2

0

)2 is a nondimensional

reduced quadrupole moment of V. (Cf.
Catelan & Theuns 1996)

Figure: The 1st-order effect can
grow if ∂V is not a sphere.
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PBH formation in the matter-dominated era Spins of PBHs

2nd-order effect

L = ρ0a4
(∫

V
x × ud3x +

∫
V

xδ × ud3x − 1
V

∫
V

xδd3x ×
∫

V
ud3x

)

Even if ∂V is a sphere, the remaining
contribution grows as 1st order × 1st order
∝ a · δ · u ∝ t5/3.

⟨L2
(2)⟩

1/2 =
2

15
I MR2

t
⟨δ2⟩,

where δ hereafter is the density perturbation
averaged over V. R := a(t)r0. We assume
I = O(1). (Cf. Peebles 1969)

Figure: The 2nd-order effect can
grow due to the mode coupling.
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PBH formation in the matter-dominated era Spins of PBHs

The application of the Kerr bound to the PBH formation

Time evolution of V and angular momentum
Horizon entry (t = tH): ar0 = cH−1, δH := δ(tH), σH := ⟨δ2

H
⟩1/2

Maximum expansion (t = tm): δ(tm) = 1, typically tm = tHσ
−3/2
H

a∗ := L/(GM2/c) at t = tm

⟨a2
∗(1)⟩

1/2 =
2
5

√
3
5

qσ−1/2
H

, ⟨a2
∗(2)⟩

1/2 =
2
5
Iσ−1/2

H
, a∗ ≃ max

(
⟨a2
∗(1)⟩, ⟨a

2
∗(2)⟩

)
For t > tm, the evolution of V decouples from the cosmological expansion and
hence a∗ is kept almost constant.

Consequences
Supercritical angular momentum: typically ⟨a2

∗⟩1/2 & 1 if σH . 0.1
Most of the PBHs have a∗ ≃ 1. This contrasts with small spins (a∗ . 0.4) of
PBHs formed in the RD era. (Chiba & Yokoyama (2017))
Suppression: The Kerr bound implies that a∗ is typically too large for direct
collapse to a BH.
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PBH formation in the matter-dominated era Spins of PBHs

Spin distribution

Spin distribution of PBHs formed in the MD era
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(a) 1st-order effect
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(b) 2nd-order effect

Figure: The distribution function normalised by the peak value. We assume a
Gaussian distribution for the density perturbation. Each curve is labelled with the
value of σH.

The region with smaller δH has larger a∗. This implies that there appears a
threshold δth below which the angular momentum halts the collapse to a
black hole due to the Kerr bound.
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PBH formation in the matter-dominated era Spins of PBHs

Numerical calculation of PBH production rate

Triple integral for β0 (θ(x) is a step function.)

β0 ≃
∫ ∞

0
dα

∫ α

−∞
dβ

∫ β

−∞
dγθ[δH(α, β, γ) − δth]θ[1 − h(α, β, γ)]w(α, β, γ),

where we use w(α, β, γ) given by Doroshkevich (1970).

Figure: The red lines are due to both angular momentum and anisotropy. The
1st-order effect depends on q. The black solid line is solely due to anisotropy.

We have also derived semianalytic formulae for β0.
T. Harada (Rikkyo U) Spins of PBHs in the MD era JGRG27 11 / 12

Summary

Summary

PBHs may form in the RD era as well as in the (early) MD era by primordial
cosmological fluctuations.

In the MD era, the effect of anisotropy gives β0 ≃ 0.05556σ5
H

, while the effect
of angular momentum gives further suppression for the smaller values of σH.

PBHs formed in the MD era mostly have large spins (a∗ ≃ 1) in contrast to
the small spins (a∗ . 0.4) of PBHs formed in the RD era.

T. Harada (Rikkyo U) Spins of PBHs in the MD era JGRG27 12 / 12



Anisotropic collapse in the ZA

The triaxial ellipsoid of a Lagrangian ball (assumption)
r1 = (a − αb)q
r2 = (a − βb)q
r3 = (a − γb)q

Evolution of the collapsing region:
Horizon entry (t = t i): a(t i)q = cH−1(t i) = rg := 2Gm/c2.
Maximum expansion (t = t f ): ṙ1(t f ) = 0 giving r f := r1(t f ) = rg/(4α).
Pancake singularity (t = tc): r1(tc) = 0 giving a(tc)q = 4r f = rg/α.

T. Harada (Rikkyo U) Spins of PBHs in the MD era JGRG27 13 / 12

Application of the Kerr bound to the rotating collapse

Technical assumption

|L(1)| ≃
2

5
√

15
q

MR2

t
δ, |L(2)| ≃

2
15
I MR2

t
⟨δ2⟩1/2δ.

The above assumption implies

a∗(1) =
2
5

√
3
5

qδ−1/2
H

, a∗(2) =
2
5
IσHδ

−3/2
H

, a∗ = max(a∗(1), a∗(2)).

The Kerr bound a∗ ≤ 1 gives a threshold δth for δH, where

δth = max(δth(1), δth(2)), δth(1) :=
3 · 22

53
q2, δth(2) :=

(
2
5
IσH

)2/3

.
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Discussion of PBH production

Semianalytic estimate (black dashed line and blue dashed line)

β0 ≃



2 × 10−6 fq(qc)I 6σ2
H

exp

−0.15
I 4/3

σ2/3
H

 (2nd-order effect)

3 × 10−14 q18

σ4
H

exp

−0.0046
q4

σ2
H

 (1st-order effect)

0.05556σ5
H

(anisotropic effect)

,

where fq(qc): the ratio of regions with q < qc = O(σ1/3
H

).
σH in terms of Pζ :

σ2
H ≃

(
2
5

)2

Pζ(kBH).
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Iron Kα line of Kerr BHs 
with Proca hair

Presented by: Menglei Zhou

Co-workers: C. Bambi, C. Herdeiro & E. Radu

Fudan University

Shanghai, China

0.1. A brief introduction of 
Iron Line Method

2

★



0.2. A brief introduction of 
Iron Line Method

3

★

Outline

• Brief Introduction of Kerr BHs with Proca hair 
(KBHsPH)

• The computation of X-ray reflection spectrum

• Simulations with XIS/Suzaku and LAD/eXTP

• Conclusions

4



1. Introduction of Kerr BHs with Proca hair

5

• Kerr solution is a vacuum solution.

• We want a solution in the presence of matter.

• KBHsPH have a matter field synchronously rotating, 

matching the angular velocity of the horizon. These 
series of solution will not violate the energy condition 
and provide us the stationary BHs’ description.

1. Introduction of Kerr BHs with Proca hair

6



2. The computation of 
X-ray reflection spectrum

7

𝑔𝜇𝜈 𝑟, 𝜃 ≈ 𝑔𝜇𝜈 𝑟𝑖 , 𝜃𝑗 +

𝑔𝜇𝜈 𝑟𝑖+1, 𝜃𝑗 − 𝑔𝜇𝜈 𝑟𝑖 , 𝜃𝑗

𝑟𝑖+1 − 𝑟𝑖
𝑟 − 𝑟𝑖 +

𝑔𝜇𝜈 𝑟𝑖 , 𝜃𝑗+1 − 𝑔𝜇𝜈 𝑟𝑖 , 𝜃𝑗

𝜃𝑗+1 − 𝜃𝑗
𝜃 − 𝜃𝑗

Mostly used approximation: 𝑟𝑖

𝑟𝑖+1

𝜃𝑗+1

𝜃𝑗

2.1. Intensity Profiles

𝐼 ∝ ൗℎ (𝑟2 + ℎ2)3/2

𝐼 ∝ ൗ1 𝑟3

★

8



2.2. Iron Line Profiles of KBHsPH

9

𝐼 ∝ ൗℎ (𝑟2 + ℎ2)3/2𝐼 ∝ ൗ1 𝑟3

With ℎ = 2

3. Simulation

• Data: powerlaw + iron line

• Model: powerlaw + RELLINE

10

★



3.1. Simulations with XIS/Suzaku

11

3.1. Simulations with XIS/Suzaku

12



3.2. Simulations with LAD/eXTP

13

3.2. Simulations with LAD/eXTP

14



4. Conclusions

• We presented the iron Kα line profiles for the 
configurations of III, IV ,V of KBHsPH;

• We cannot distinguish KBHsPH from Kerr BHs by 
current X-ray mission (XIS/Suzaku);

• Future X-ray mission (LAD/eXTP) can detect the 
presence of Proca hair.

15

References:

• About iron line method (★): 

C. Bambi, Black Holes: A Laboratory for Testing Strong Gravity, DOI 10.1007/978-981-10-
4524-0_4

• About KBHsPH: 

C. Herdeiro, E. Radu and H. Runarsson, Class. Quant. Grav. 33, no. 15, 154001 (2016) 
[arXiv:1603.02687 [gr-qc]].

• About X-Ray Missions:

http://heasarc.gsfc.nasa.gov/docs/suzaku/

http://www.isdc.unige.ch/extp/

• About model RELLINE: 

http://www.sternwarte.uni-erlangen.de/~dauser/research/relxill/
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Cross-correlating GW and 
galaxies to identify the host 
galaxies of binary black holes

Atsushi Nishizawa (KMI, Nagoya U) 

Nov. 27 - Dec.1, 2017,  27th JGRG 
@ Kurara Hall, Saijo, Higashi-Hiroshima  

with Atsushi J. Nishizawa (IAR, Nagoya U)
Sachiko Kuroyanagi (IAR, Nagoya U)

l GWs from 5 BBH and 1 BNS have been detected. 

l BBH merger rate (from the first three events)

l aLIGO & aVIRGO are expected to detect more events

Gravitational Waves

12� 213 Gpc�3yr�1

LIGO Scientific 
Collaboration 2016 ‒ 2017

⇠ 100� 1000 yr�1 z ⇠ 1out to



Astrophysical origin of BBH
l isolated field binaries

(pop II, pop III, homogeneous 
chemical evolution etc.)

l dense stellar cluster
(globular cluster, 
galactic nuclei etc.)

Rodriguez
et al. 2016

Belczynski
et al. 2016

Discriminating the formation channels
l distance (redshift) distribution of BBH

l binary parameter distribution

Nakamura et al. 2016

Chatterjee et al. 2016; Rodriguez et al. 2016; 
Breivik et al. 2016, AN et al. 2016

shape of distribution, maximum redshift 

Namikawa, AN, Taruya, 2016a, 2016b; Raccanelli et al. 2016

l BBH location and its galaxy association
clustering properties of BBH & galaxies

mass, spin, orbital eccentricity



Discriminating the formation channels
l distance (redshift) distribution of BBH

l binary parameter distribution

Nakamura et al. 2016

Chatterjee et al. 2016; Rodriguez et al. 2016; 
Breivik et al. 2016, AN et al. 2016

shape of distribution, maximum redshift 

Namikawa, AN, Taruya, 2016a, 2016b; Raccanelli et al. 2016

l BBH location and its galaxy association
clustering properties of BBH & galaxies

mass, spin, orbital eccentricity

galaxy properties (color, SFR, age, morphology, etc.)

Naive expectation

old, less star-forming, massive, 
more clustered, red

at the time of BBH formation

at the time of BBH merger

~several Gyr
young, star-forming, less massive, 
less clustered, blue

galaxy evolution

GW sources seem to be associated with red galaxies.

the case of isolated field binaries



cross-correlating sky maps

galaxy survey
(2MASS redshift survey)GW events

X

l How strongly are GW events correlated with galaxies?

l What properties of galaxies are associated with BBH?

No need to identify an electromagnetic counterpart for each BBH

LIGO/Caltech/MIT/Leo Singer

galaxy catalog
SDSS DR7 photo-z sample

l Each galaxy is classified based on the best-fit SED into 
subgroups of galaxy colors (red/blue).

l They are classified further by other galaxy properties 
such as star formation rate, AGN activity, etc.



GW source mock catalog

l constant merger rate
5M� < m1,m2 < 100M� M < 100M�

l Salpiter-type mass function (                  ) with
and

l ~15000 nonspinning binaries with S/N > 8 out to z=0.3 
for each galaxy population (red/blue/random)

l sky position: associated with a real galaxy, 
weighted by its luminosity in red or blue

l orbital inclination: uniformly random

l phenomenological IMR GW waveform [Khan et al. 2016 ]

l detector network:  aLIGOx2 + aVIRGO

/ m�2.35

l Observational errors (distance, angular resolution, etc.) are 
estimated with a Fisher information matrix

/
X

j

Z

|��✓j |=⇥

X

i

exp


�1

2

(�� ✓i)Cov
�1
i (�� ✓i) d2�

angular cross-correlation
wcross(⇥) = h�

GW

(✓
0

)�
gal

(✓
0

+⇥)i

GW source density field
summed over 
all galaxies

assumption:
GW error region
has 3σ Gaussian
profile.



effects of errors on 
the correlation function

suppressed
by positional
error of GW

sample
variance
limited

well-measured

small scale large scale

Assume that GW sources are associated with red galaxies.
Use 1000 GW sources observed by 3 GW detectors.

Number of GW events 
to distinguish galaxy colors

�2
null =

X

i

✓
w(✓i)� 0

�i

◆2
significance of detecting the clustering

a few 100 sources
for red galaxies

1000 sources
for blue galaxies

To reject the null 
hypothesis of the
clustering, we need

no clustering of GW



Summary

l Given BBHs are associated with some particular types of 
galaxies, GWs and galaxies may be correlated differently.

l By cross-correlating BBH and galaxies, we can obtain info 
about how strongly BBH trace the matter distribution.

l With GW mock data and SDSS galaxy catalog, we estimated
that red/blue galaxy associations can be detected with 
a few 100/1000 BBHs.

l GWs from BBHs have been detected and are expected much 
more in the future observation.

l However, the origin of BBH is not yet understood well.
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Constraining bimetric gravity 
by GW events from CBCs

Tatsuya Narikawa

JGRG27@Hiroshima, 2017/11/27-12/1

H. Tagoshi, T. Tanaka, T. Nakamura,  
J. Veitch, W. Del Pozzo, A. Vecchio

3a4
1

I graduated 
from 

Hiroshima U.

• GW events have put a constraint on the deviation from GR. 

• Recently, the cosmological viable models of bimetric gravity  
as an alternative to dark energy, motivated by discovery of 
the cosmic acceleration, have been proposed. 

• In bimetric gravity, two kinds of graviton can oscillate like 
neutrino oscillations during propagation of gravitational 
waves. <-- called "graviton oscillations" 

• It is difficult to cover graviton oscillations by simple 
parameterization, such as parameterized post Einsteinian 
(ppE) or gIMR frameworks. 

• We constrain the bimetric gravity by GW events.

2

Abstract



3
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The detection of GWs opened new window of testing gravity in the 
strong field, dynamical regime.
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FIG. 7. The 90% credible upper bounds on deviations in the PN
coefficients, from GW150914 and GW151226. Also shown are
joint upper bounds from the two detections; the main contributor
is GW151226, which had many more inspiral cycles in band than
GW150914. At 1 PN order and higher the joint bounds are slightly
looser than the ones from GW151226 alone; this is due to the large
offsets in the posteriors for GW150914.

[41]. For convenience we list them again: (i) {d ĵ0, . . . ,d ĵ7}6

and {d ĵ5l ,d ĵ6l} for the PN coefficients (where the last two
multiply a term of the form f g log f ), (ii) intermediate-regime
parameters {d b̂2,d b̂3}, and (iii) merger-ringdown parameters
{d â2,d â3,d â4}.7

In our analyses we let each one of the d p̂i in turn vary
freely while all others are fixed to their general relativity val-
ues, d p̂ j = 0 for j 6= i. These tests model general relativ-
ity violations that would occur predominantly at a particu-
lar PN order (or in the case of the intermediate and merger-
ringdown parameters, a specific power of frequency in the rel-
evant regime), although together they can capture deviations
that are measurably present at more than one order.8

Given more than one detection of BBH mergers, posterior
distributions for the d p̂i can be combined to yield stronger
constraints. In Fig. 6 we show the posteriors from GW150914,
generated with final instrumental calibration, and GW151226
by themselves, as well as joint posteriors from the two events
together. We do not present similar results for the candidate
LVT151012 since it is not as confident a detection as the oth-
ers; furthermore, its smaller detection SNR means that its con-
tribution to the overall posteriors is insignificant.

6 This includes a 0.5PN testing parameter d ĵ1; since j1 is identically zero in
general relativity, we let d ĵ1 be an absolute rather than a relative deviation.

7 We do not consider parameters that are degenerate with the reference time
or the reference phase, nor the late-inspiral parameters d ŝi (for which the
uncertainty on the calibration can be almost as large as the measurement
uncertainty).

8 In [41], for completeness we had also shown results from analyses where
the parameters in each of the regimes (i)-(iii) are allowed to vary simulta-
neously; however, these tests return wide and uninformative posteriors.

For GW150914, the testing parameters for the PN coeffi-
cients, d ĵi and d ĵil , showed moderately significant (2–2.5s )
deviations from their general relativity values of zero [41]. By
contrast, the posteriors of GW151226 tend to be centered on
the general relativity value. As a result, the offsets of the com-
bined posteriors are smaller. Moreover, the joint posteriors
are considerably tighter, with a 1-s spread as small as 0.07
for deviations in the 1.5PN parameter j3, which encapsulates
the leading-order effects of the dynamical self-interaction of
spacetime geometry (the “tail” effect) [137] as well as spin-
orbit interaction [66, 138, 139].

In Fig. 7, we show the 90% credible upper bounds on
the magnitude of the fractional deviations in PN coefficients,
|d ĵi|, which are affected by both the offsets and widths of
the posterior density functions for the d ĵi. We show bounds
for GW150914 and GW151226 individually, as well as the
joint upper bounds resulting from the combined posterior den-
sity functions of the two events. Not surprisingly, the quality
of the joint bounds is mainly due to GW151226, because of
the larger number of inspiral cycles in the detectors’ sensitive
frequency band. Note how at high PN order the combined
bounds are slightly looser than the ones from GW151226
alone; this is because of the large offsets in the posteriors from
GW150914.

Next we consider the intermediate-regime coefficients d b̂i,
which pertain to the transition between inspiral and merger–
ringdown. For GW151226, this stage is well inside the sensi-
tive part of the detectors’ frequency band. Returning to Fig. 6,
we see that the measurements for GW151226 are of compa-
rable quality to GW150914, and the combined posteriors im-
prove on the ones from either detection by itself.

Last, we look at the merger-ringdown parameters d âi. For
GW150914, this regime corresponded to frequencies of f 2
[130,300] Hz, while for GW151226 it occurred at f & 400 Hz.
As expected, the posteriors from GW151226 are not very in-
formative for these parameters, and the combined posteriors
are essentially determined by those of GW150914.

In summary, GW151226 makes its most important contri-
bution to the combined posteriors in the PN inspiral regime,
where both offsets and statistical uncertainties have signif-
icantly decreased over the ones from GW150914, in some
cases to the ⇠ 10% level.

An inspiral-merger-ringdown consistency test as performed
on GW150914 in [41] is not meaningful for GW151226, since
very little of the signal is observed in the post-merger phase.
Likewise, the SNR of GW151226 is too low to allow for an
analysis of residuals after subtraction of the most probable
waveform. Finally, in [41], GW150914 was used to place a
lower bound on the graviton Compton wavelength of 1013 km.
Combining information from the two signals does not signif-
icantly improve on this; an updated bound must await further
observations.

VI. BINARY BLACK HOLE MERGER RATES

The observations reported here enable us to constrain the
rate of BBH coalescences in the local Universe more precisely

Parametrized tests of General Relativity with LIGO events

Post-Newtonian constraints for δφ show no evidence for 
violations of GR.

Walter Del Pozzo GWPAW 2017, Annecy, France

Parametrised tests of GR
• GW waveforms are expressed in terms of effective series, 

for the Phenom family: 

• Modified theories of gravity change the series (e.g. PPE: 
Yunes & Pretorius, arXiv:0909.3328, Cornish+,arXiv:
1105.2088) 

• Perturb the GW phase around GR (Li+,arXiv:1110.0530, 
Agathos+,arXiv:1311.0420) 

• Bound violations by computing posterior distributions for 
the        in concert with the physical parameters of the 
system
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Gravitational wave waveform in bimetric gravity

h(f) = A(f)ei�(f)
h
B1e

i��1(f) +B2e
i��2(f)

iGR Bimetric modulation

hGR δhBimetric

5

It is difficult to cover graviton oscillations' waveform by 
simple parameterization, such as ppE or gIMR.

De Felice, Nakamura, Tanaka (DFNT), PTEP 2014. 
TN et al., PRD 91, 062007 (2015).

e.g., effective precession 
(IMRPhenomPv2)

Summation of two modes 
describes graviton oscillations
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Key features & parameters of graviton oscillations

Key parameters 
・effective graviton mass: μ 
・modification to gravitational constants: κξc2

B1 = cos ✓g(cos ✓g +
p
⇠c sin ✓g)

B2 = sin ✓g(sin ✓g �
p
⇠c cos ✓g)

Amplitude corrections: Bi(f ; ✓g(µ,⇠
2
c ), ⇢gal)

Key features

Degrees of mixing
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Bimetric gravity's GW waveforms
Key features 
・Phase corrections 
・Amplitude corrections

Key parameters 
・effective graviton 
mass: μ 
・modification to 
gravitational 
constants: κξc2
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TN et al., PRD 91, 
062007 (2015).

Prediction: detectability of graviton oscillations

modification 
 to 

gravitational  
constant

effective graviton mass

We have predicted ``Advanced GW interferometer can detect 
graviton oscillations by using CBC observations.'' before 
detections by LIGO-VIRGO.



Bayesian parameter estimation of GWs

Bayes' theorem

H: hypothesis (signal embedded in data), {d}: data set, θ: parameters

Posterior

Prior

V. STATISITICS

Matched filter

ρ = (s, ĥ) = 2

∫ ∞

−∞
df

s̃(f)ĥ∗(f)

Sn(f)
(10)

O ≡ P (MG|s)
P (GR|s) =

P (MG)

P (GR)

P (s|MG)

P (s|GR)
, (11)

Bayes’ theorem

p(ϑ⃗|d⃗) ∝ L(d⃗|ϑ⃗)p(ϑ⃗) (12)

p(θ⃗|{d}, H) =
p(θ⃗|H)p({d}|θ⃗, H)

P ({d}|H)
(13)

O ∝ eSNR2(1−FF) (14)

data=noise+measured strain

dk(t) = nk(t) + hM
k (t; ϑ⃗) (15)

model the effect of calibration uncertainty

h̃M
k (f ; ϑ⃗) = h̃k(f ; ϑ⃗)

[
1 + δAk(f ; ϑ⃗)

]
exp

[
iδφk(f ; ϑ⃗)

]
(16)

VI. SKY LOCALIZATION

|Ω∂θτ | ≤ |∂θ logF+,×| (17)

VII. MODE-DECOMPOSING MATCHED-FILTERING SEARCH

(s|h) → (s+|h+) + (s×|h×) + (sb|hb) + (sl|hl) + (ssn|hsn) + (sse|hse) (18)

VIII. OPTIMAL SNR

Optimal SNR which Yuzurin calculated:

ρopt = Gc−3/2M
5/6

dπ2/3

(
5η

6

)1/2
[∫ fmax

fmin

df
f−7/3

Sn(f)

]1/2
(19)

Likelihood

as well as more stringent tests of the underlying source
dynamics [28,29].

Most of these studies use theoretical estimates of
parameter uncertainty based on the Cramer-Rao bound
[30], which should be valid in the limit of high signal-to-
noise ratio (SNR). Initial detections may be too weak for
this bound to provide useful guidance. Therefore, a com-
plete Bayesian analysis like the one described below must
be used to quantify parameter uncertainties. Other studies
have relied on injections into synthetic data. In this paper,
we will use injections into real data, which introduces a
new set of challenges, including non-Gaussianity and
nonstationarity.

The fact that gravitational waveforms used in the analy-
sis are an approximation to the actual radiation produced by
astrophysical sources and that the measured strain is af-
fected by the uncertainties in the instrument calibration
[31–33] represent additional challenges for making robust
inferences on the underlying physics. To study parameter
estimation in this regime, we have analyzed several artifi-
cial compact binary coalescence (CBC) signals added to
real detector data, including the ‘‘blind’’ injection
described above, added both in hardware and software to
the data collected by the two LIGO instruments (Hanford
and Livingston) and the Virgo detector during the most
recent joint science run, S6/VSR2-3. The use of injections
has been, and continues to be, an essential means to
validate the detection process, and as we report here, has
been naturally extended to the source-characterization
stage of the analysis. Here we exemplify the ability to
extract information about the source physics on a selected
number of injections that cover the neutron-star and black-
hole parameter space over the component mass range
1M!–25M! and the full range of spin parameters. We
consider a spectrum of realistic signal strengths, from
candidates observed close to the detection threshold to
high-SNR events, and various relative strengths across the
instruments of the network. We analyze the signals using a
range of waveform models that demonstrate the interplay
between (some) systematic bias and statistical uncertainty.
To help validate our results, we carry out the analysis with
several independent techniques; these are implemented
within a specially developed software package part of the
LSC Algorithm Library, LALINFERENCE [34].

The paper is organized as follows. In Sec. II we give a
brief overview of the analysis method. While no detections
were claimed in Ref. [7], simulated signals (‘‘injections’’)
were added to the data, both at a hardware level as the data
was being taken and in software afterwards. The hardware
injections were performed to validate the end-to-end
analysis, including parameter estimation on detection
candidates, whereas the injections in software serve as a
useful comparison, free of any calibration error in the
detectors. Here we report on the analysis using six hard-
ware and software injections, including waveform models

for binary neutron star (BNS), neutron star–black hole
binary (NSBH) and binary black-hole BBH) simulations,
described in Sec. III. One of these hardware injections was
performed without the knowledge of the data analysis
teams as part of the ‘‘blind injection challenge’’; it was
successfully detected, as reported in Ref. [7]. We use these
injections to illustrate the possible implications for GW
astronomy in Sec. IV, and we conclude in Sec. V.

II. ANALYSIS

A. Bayesian inference

Each data segment containing an injected signal was
analyzed using a Bayesian parameter estimation pipeline
to calculate the probability density function (PDF) of
the unknown parameters of the waveform model. We will

call ~! the vector containing these parameters. The actual

content and dimension of ~!, i.e. the dimensionality of the
parameter space, depend on the waveform model used for
the analysis (see Sec. II B).

The posterior distribution of ~! given a model H is given
by Bayes’ theorem,

pð ~!jfdg; HÞ ¼ pð ~!jHÞpðfdgj ~!; HÞ
PðfdgjHÞ ; (1)

where pð ~!jHÞ is the prior distribution of ~!, describing
knowledge about the parameters within a model H before

the data is analyzed, and pðfdgj ~!; HÞ is the likelihood
function, denoting the probability under model H of

obtaining the data set fdg for a given parameter set ~!.
The likelihood is a function of the noise-weighted resid-
uals after subtracting the model from the data, and is
thus a direct measure of the goodness of fit of the model
to the data.
The optimal network SNR is defined as

SNR ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

det

Z fHigh

fLow

jsdetðf; ~!Þj2
SdetðfÞ

df

s
; (2)

where the sum is taken over each detector det with sdet the
signal in that detector and SdetðfÞ its noise power spectral
density (PSD).
Our model for the likelihood function is based on the

assumption that the noise is stationary and Gaussian, and
uncorrelated in different frequency bins. Although we do
not expect this assumption to be precisely true for real
detector noise, limited investigations suggest that this is
an acceptable approximation when the data is of good
quality [35].
The denominator of Eq. (1), PðfdgjHÞ % ZH, is the

evidence for the model H. As it is a normalization
constant, the evidence does not affect the estimation of
the parameters for a particular model H, but it does
allow us to compare the ability of different models to
describe the data. The Bayes factor between two models,

J. AASI et al. PHYSICAL REVIEW D 88, 062001 (2013)

062001-6

Evidence for the model H
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Why Bayesian statistics and stochastic sampling 
・A lot of parameters 
・Parameter estimation (PE) 
・Model selection

We calculate posterior and evidence with Markov chain Monte Carlo method, 
Nested sampling, or MultiNest/BAMBI 

(LSC Algorithm Library (LAL), LALInference)

L(d|~✓) / exp

 
�2

Z 1

0

| ˜d(f)� h(~✓, f)|2

Sn(f)
df

!

Bayesian model selection
Which model better describes the data?

The Bayes factor is the ratio of evidences of hypotheses.

“confidence” levels of BXY

position in the parameter space ~y. This new position is
determined by drawing from some proposal distribution
q! ~xj ~y". The choice of whether or not to adopt the new
position ~y is made by calculating the Hastings ratio (tran-
sition probability)

 ! # min
!
1;
p! ~y"p!sj ~y"q! ~yj ~x"
p! ~x"p!sj ~x"q! ~xj ~y"

"
(9)

and comparing ! to a random number " taken from a
uniform draw in the interval [0:1]. If ! exceeds " then the
chain adopts ~y as the new position. This process is repeated
until some convergence criterion is satisfied. The MCMC
differs from a Metropolis extremization by forbidding
proposal distributions that depend on the past history of
the chain. This ensures that the progress of the chain is
Markovian and therefore statistically unbiased. Once the
chain has stabilized in the neighborhood of the best fit
parameters all previous steps of the chain are excluded
from the statistical analysis (these early steps are referred
to as the ‘‘burn in’’ phase of the chain) and henceforth the
number of iterations the chain spends at different parame-
ter values can be used to infer the PDF.

The power of the MCMC is twofold: Because the algo-
rithm has a finite probability of moving away from a
favorable location in the parameter space it can avoid
getting trapped by local features of the likelihood surface.
Meanwhile, the absence of any ‘‘memory’’ within the
chain of past parameter values allows the algorithm to
blindly, statistically, explore the region in the neighbor-
hood of the global maximum. It is then rigorously proven
that an MCMC will (eventually) perfectly map out the
PDF, completely removing the need for user input to
determine parameter uncertainties or thresholds.

The parameter vector that maximizes the posterior dis-
tribution is stored as the maximum a posteriori (MAP)
value and is considered to be the best estimate of the source
parameters. Note that because of the prior weighting in the
definition of the PDF this is not necessarily the ~# that
yields the greatest likelihood. Upon obtaining the MAP
value for a particular model X the PDF, now written as
p!#; ~Xjs", can be employed to solve the model selection
problem.

II. BAYES FACTOR ESTIMATES

The Bayes factor BXY [15] is a comparison of the
evidence for two competing models, X and Y, where

 pX!s" #
Z

d ~#p! ~#; Xjs" (10)

is the marginal likelihood, or evidence, for model X. The
Bayes factor can then be calculated by

 BXY!s" #
pX!s"
pY!s"

: (11)

The Bayes factor has been described as the holy grail of
model selection: It is a powerful entity that is very difficult
to find. The quantity BXY can be thought of as the odds ratio
for a preference of model X over model Y (see Table I).
Apart from carefully concocted toy problems, direct cal-
culation of the evidence, and therefore BXY , is impractical.
To determine BXY the integral required to compute pX
cannot generally be solved analytically and for high di-
mension models Monte-Carlo integration proves to be
inefficient. To employ this powerful statistical tool various
estimates for the Bayes factor have been developed that
have different levels of accuracy and computational cost
[1,2]. We have chosen to focus on four such methods:
reverse jump Markov chain Monte Carlo and Savage-
Dickie density ratios, which directly estimate the Bayes
factor, and the Schwarz-Bayes information criterion (BIC)
and Laplace approximations of the model evidence.

A. RJMCMC

Reverse jump Markov chain Monte Carlo (RJMCMC)
algorithms are a class of MCMC algorithms which admit
‘‘transdimensional’’ moves between models of different
dimension [3,16,17]. For the transdimensional implemen-
tation applicable to the LISA data analysis problem the
choice of model parameters becomes one of the search
parameters. The algorithm proposes parameter ‘‘birth’’ or
‘‘death’’ moves [proposing to include or discard the ‘‘ex-
tra’’ parameter(s)] while holding all other parameters fixed.
The priors in the RJMCMC Hastings ratio

 ! # min
!
1;
p! ~#Y"p!sj ~#Y"g! ~uY"
p! ~#X"p!sj ~#X"g! ~uX"

jJj
"

(12)

automatically penalizes the posterior density of the higher
dimensional model, which compensates for its generically
higher likelihood, serving as a built-in ‘‘Occam Factor.’’
The g! ~u" which appears in (12) is the distribution from
which the random numbers ~u are drawn and jJj is the
Jacobian

 jJj $
########
@! ~#Y; ~uY"
@! ~#X; ~uX"

########: (13)

The chain will tend to spend more iterations using the
model most appropriately describing the data, making the

TABLE I. BXY ‘‘confidence’’ levels taken from [1].

BXY 2 logBXY Evidence for model X
 < 1 <0 Negative (supports model Y)

1 to 3 0 to 2 Not worth more than a bare mention
3 to 12 2 to 5 Positive
12 to 150 5 to 10 Strong
>150 >10 Very Strong

TESTS OF BAYESIAN MODEL SELECTION TECHNIQUES . . . PHYSICAL REVIEW D 76, 083006 (2007)

083006-3

The Bayes factor can be used for model selection.
BMG,GR =

ZMG

ZGR

A larger Bayes factor indicates a stronger preference for the 
model. Or a smaller BF indicates a stronger disfavor for model.
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Summary and Conclusion

➢ GW events have put a constraint on the deviation from GR. 
➢ It is difficult to cover graviton oscillations by simple 
parameterizations, such as ppE or gIMR frameworks. 

➢ We have predicted ``Advanced GW interferometer can 
detect graviton oscillations by using CBC observations.'' 
before detections by LIGO-VIRGO in 2015. 

➢ We constrained the bimetric gravity by GW events.  
➢ 3 GW events prefer GR to the bimetric gravity whole 
parameter region. 

➢ Future loud GW events must be completely ruled out the 
graviton oscillations. ==> feedback to cosmology
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A simple strong deflection limit analysis in a general
asymptotically flat, static, spherically symmetric

spacetime

Naoki Tsukamoto
Huazhong University of Science and Technology

27th November - 1st December 2017, JGRG27 @ Saijyo,

Higashi-hiroshima

N. T., Phys. Rev. D 95, 064035 (2017).

N. T. and Yungui Gong, Phys. Rev. D 95, 064034 (2017).

1

Photon sphere.
Circular orbit of a light called photon sphere in a Schwarzschild space-
time was pointed out by Hilbert in 1917.

Chandrasekhar 1983

Strong deflection limit (SDL) is a

limit that a light passes infinity

near the photons sphere.

Bozza 2010
Deflection angle α of a light with a impact parameter b is given by

α(b) = − log
(
b

bc
− 1

)
+ log[216(7− 4

√
3)]− π+O((b− bc) log(b− bc)).

2



Deflection angle in SDL was obtained by Charles G. Darwin.

Proc.R.Soc.,A249,180 (1959) was

submitted when he was 70.

He was a grandson of C. R. Darwin.

Images near a photon sphere were also considered by Hagihara (1931), Luminet (1979),

Ohanian (1987), Nemiroff (1993), Frittelli (2000), Virbhadra and Ellis (2000),

Bozza et al. (2001), Bozza (2002), Eiroa et al. (2002), Bozza and Mancini

(2004),,,,.

3

Gravitational Lensing by a photon sphere.

1. Obtain a deflection angle α in SDL

α(b) = −ā log
(
b

bc
− 1

)
+ b̄+O(b− bc).

2. Insert α into a lens equation

γ = α(b)− θ − θ̄.

3. Obtain the solutions as

θ =
b

DOL

(
1+ exp

b̄− γ

ā

)
.

4. Get the separations and magnifica-

tions of images.

Bozza and Mancini (2004)

4



Deflection angle in SDL. Bozza (2002)

ds2 = −A(r)dt2 +B(r)dr2 + C(r)dΩ2.

α(r0) = I(r0)− π, r0 is the closest distance.

I(r0) ≡ 2
∫ ∞

r0

√√√√ B(
A0C
AC0

− 1
)
C
dr = ID(r0) + IR(r0),

ID(r0) ≡ 2
∫ 1

0

1√
β0z + κ0z

2
dz =

4
√
κ0

log

(√
κ0 +

√
β0 + κ0√
β0

)
.

z ≡
A(r)−A0

1−A0
, β0 ≡

1−A0

C0A
′
0
(C′

0A0 − C0A
′
0),

κ0 ≡
(1−A0)

2

2C2
0A

′3
0

[
2C0C

′
0A

′2
0 + (C0C

”
0 − 2C

′2
0 )A0A

′
0 − C0C

′
0A0A”0

]
,

where β0 → 0 in SDL and X0 denotes X(r0).
If we can integrate IR, we get α in SDL analytically.

5

Motivation of modification of SDL analysis

1. Bozza’s method has been applied for dozens spacetimes. How-

ever, b̄ can be obtained analytically only in the Schwarzschild

spacetime.

α(b) = −ā log
(
b

bc
− 1

)
+ b̄+O((b− bc)log(b− bc)).

ā = 1, b̄ = log[216(7− 4
√
3)]− π. Darwin (1959), Bozza (2002)

−5
√
3/162(b− bc) log(b− bc). Iyer and Petters (2007).

2. The order of the error term O(b − bc) contradicts with Iyer and

Petters’ result in the Schwarzschild spacetime.

3. Bozza’s formalism does not work in ultrastatic spacetimes with a

time translational Killing vector which has a constant norm such

as an Ellis wormhole spacetime.

6



The variable z makes integral IR difficult.

• Bozza defined z as

z ≡
A(r)−A0

1−A0

= 1−
r0
r

for the Schwarzschild spacetime

= 1−
r20(2Mr −Q2)

r2(2Mr0 −Q2)
for the Reissner −Nordström spacetime

= indeterminated for the Ellis wormhole spacetime.

• ds2 = −dt+ dr2 + (r2 + a2)dΩ2 for the Ellis spacetime.

• If z is defined as z ≡ 1− r0/r, we can calculate IR,
ā, and b̄ analogically in the three cases.

7

Deflection angle in the strong deflection limit b → bc
or r0(closest distance) → rm(radius of the photon sphere)

ds2 = −A(r)dt2 +B(r)dr2 + C(r)dΩ2,

α(b) = −ā log
(
b

bc
− 1

)
+ b̄+O((b− bc) log(b− bc))

ā =

√
2BmAm

C
′′
mAm − CmA

′′
m

b̄ = ā log

r2m
C

′′
m

Cm
−

A
′′
m

Am

+ IR(rm)− π,

I obtained ā and b̄ of RN BH.

8



Comparing our result with Bozza (2002).

ā =
rm√

3Mrm − 4Q2
, rm =

3M +
√
9M2 − 8Q2

2
.

b̄ = 2ā log
2
3
2(3Mrm − 4Q2)

3
2

(
2
√
Mrm −Q2 −

√
3Mrm − 4Q2

)
Mrm(Mrm −Q2)

− π,

Bozza (2002). q ≡ Q/(2M)

Q/M 0 0.2 0.4 0.6 0.8
b̄ −0.4002 −0.39935 −0.3972 −0.3965 −0.4136

b̄Bozza −0.4002 −0.3993 −0.3972 −0.3965 −0.4136

9

Comparing our result with Eiroa et al. (2002)
Eiroa et al. numerically obtained the deflection angle in SDL r0 → rm.

lim
r0→rm

(
α+ F log

[
G(r0 − rm)

2M

]
+ π

)
= 0.

Q/M 0 0.1 0.25 0.5 0.75 1
F 2.00000 2.00224 2.01444 2.06586 2.19737 2.82843

FEiroa 2.00000 2.00224 2.01444 2.06586 2.19737 2.82843
G 0.207336 0.207977 0.211467 0.225996 0.262083 0.426777

GEiroa 0.207338 0.207979 0.21147 0.225997 0.262085 0.426782

We analytically derive F and G as

F ≡ 2ā

G ≡
M

ā

√
2

Mrm −Q2
exp

(
−
b̄+ π

2ā

)
.

We have confirmed our results.

10



Ellis wormhole (often called the Morris-Thorne wormhole).

ds2 = −dt2 + dr2 + [(r − p)2 + a2]dΩ2.

• We cannot define the variable z suggested in Bozza (2002) as

zBozza ≡ (gtt(r)− gtt(r0))/(1− gtt(r0)).

• The same problem occurs any ultrastatic spacetime.

• We can calculate deflection angle in SDL directly

α = 2K
(
a

b

)
− π,

= − log
(
b

bc
− 1

)
+3 log2− π +O((b− bc) log(b− bc)). (1)

where K(k) is the complete elliptic integral of the first kind.

• By using z ≡ 1− r0/r, we obtain the same α as Eq. (1).

11

Conclusion

• Observables of gravitational lensing reflected by a photon sphere

is characterizes by ā and b̄ in SDL.

• We have investigated a simpler SDL calculation than Bozza (2002)

and obtained ā and b̄ analytically in some spacetimes.

• It can be apply ultrastatic spacetime like an Ellis wormhole space-

time.

• Our analytical result confirms a numerical method in Eiroa et al.

(2002).

• The choice of the variable z is as important as the choice of the

coordinates.

• If you choose a proper variable z by yourself for a given

spacetime, you may obtain ā and b̄ analytically.
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2

Primordial BHs 
◎Remnant of primordial non-linear inhomogeneity

◎Several aspects

◎May provide a fraction of dark matter and BH binaries

◎Trace the inhomogeneity in the early universe

-Inflationary models which provide a large number of PBHs

-Threshold of PBH formation

-Observational constraints on PBH abundance

-Spin distribution of PBHs



JGRG27@Hiroshima Chulmoon Yoo

3

Estimation of Abundance 
◎Simplest conventional estimation

- Assumption 1:threshold is given by the amplitude of 𝜻

- Assumption 2:Gaussian distribution of 𝜻 at each peak of 𝜻

- Production probability 𝜷𝟎

𝜷𝟎 = 𝟐 𝟐𝝅𝝈𝟐
𝟏/𝟐

|𝜻𝐭𝐡|
∞

𝐞𝐱𝐩 −
𝜻𝟐

𝟐𝝈𝟐
𝒅|𝜻| = 𝐞𝐫𝐟𝐜

|𝜻th|

𝟐𝝈

◎Questions

- Is giving the threshold by 𝜻 appropriate?

- Is Gaussian distribution of 𝜻 at each peak of 𝜻 valid?

JGRG27@Hiroshima Chulmoon Yoo

4

Threshold of Formation  
◎Density perturbation 𝜹 VS Curvature perturbation 𝜻

◎Ambiguity from super-horizon modes[Young et. al.(2014)]

◎Statistics of 𝜻 is often well known

⇒over estimate by many orders of magnitude 

◎Threshold for 𝜹 seems better
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Newtonian Analogy 
◎𝜻 ∼ 𝝓:Newton potential, 𝜹 ∼ 𝝆: density

◎Case 1: homogeneous sphere with radius 𝒂, mass 𝑴

𝑴,𝒂

𝝓(𝒓) = −
𝑮𝑴

𝒓
for 𝒓 ≥ 𝒂

𝝓(𝒓) = −
𝟑𝑮𝑴

𝟐𝒂
+

𝑮𝑴

𝟐𝒂𝟑
𝒓𝟐 for 𝒓 < 𝒂

⇒ 𝝓(𝟎) = −
𝟑𝑮𝑴

𝟐𝒂

◎Case 2: sphere + shell with radius 𝟐𝒂, mass 𝒎

𝝓(𝒓) = −
𝟐𝑮𝑴

𝒓
for 𝒓 ≥ 𝟐𝒂

⇒ 𝝓(𝟎) = −
𝟐𝑮𝑴

𝒂

𝑴,𝟐𝒂

𝝓 𝒓 = −
𝟐𝑮𝑴

𝒂
+

𝑮𝑴

𝟐𝒂𝟑
𝒓𝟐 for 𝒓 < 𝒂

different

◎The potential(𝝓 ∼ 𝜻) depends on environments

𝑴,𝒂

JGRG27@Hiroshima Chulmoon Yoo

6

𝜹𝐭𝐡 and Statistics of 𝜻
◎Threshold should be set by 𝜹

◎Statistical properties are well known for 𝜻

◎What we have to do

- Statistics of 𝜻 ⇒ probability of 𝜹 ⇒ PBH formation prob.

- w/ long-wavelength approx. and w/ linear approx. as a first step

◎Relation between 𝜻 and 𝜹 w/ long-wavelength approx.

𝜹 = −
𝟒 𝟏 + 𝒘

𝟑𝒘 + 𝟓

𝟏

𝒂𝟐𝑯𝟐
𝒆𝟓/𝟐𝜻𝚫𝐞−𝜻/𝟐

comoving slicing, 𝒑 = 𝒘𝝆
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Relation at an Extremum
◎Spatial metric

◎Taylor expansion of 𝜻

◎Linear relation

𝐝𝒍𝟐 = 𝒂𝟐𝐞−𝟐𝜻𝜸𝒊𝒋𝐝𝒙
𝒊𝐝𝒙𝒋

𝜻 = 𝜻𝟎 + 𝜻𝟏
𝒊 𝒙𝒊 +

𝟏

𝟐
𝜻𝟐
𝒊𝒋
𝒙𝒊𝒙𝒋 + 𝑶(𝒙𝟑)

◎Density perturbation at an extremum(𝜻𝟏
𝒊 = 𝟎)

𝜹𝐞𝐱𝐭 =
𝟐 𝟏+𝒘

𝟑𝒘+𝟓

𝟏

𝒂𝟐𝑯𝟐 𝒆
𝟐𝜻𝟎𝜻𝟐 where 𝜻𝟐 = 𝜻𝟐

𝟏𝟏 + 𝜻𝟐
𝟐𝟐 + 𝜻𝟐

𝟑𝟑

𝜹𝐞𝐱𝐭 ≃
𝟐 𝟏+𝒘

𝟑𝒘+𝟓

𝟏

𝒂𝟐𝑯𝟐 𝜻𝟐

JGRG27@Hiroshima Chulmoon Yoo
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Horizon Entry 
◎Scale of the perturbation:𝟏/𝒌∗

𝒌∗
𝟐: = −𝜻𝟐/𝜻𝟎

- cf. single Fourier mode 𝜻𝟎𝒄𝒐𝒔 𝒌∗𝒙 ≃ 𝜻𝟎 −
𝟏

𝟐
𝒌∗
𝟐𝒙𝟐

- cf. Gaussian 𝜻𝟎𝐞𝐱𝐩(−
𝟏

𝟐
𝒌∗
𝟐𝒙𝟐) ≃ 𝜻𝟎 −

𝟏

𝟐
𝒌∗
𝟐𝒙𝟐

𝜻 = 𝜻𝟎 + 𝜻𝟏
𝒊 𝒙𝒊 +

𝟏

𝟐
𝜻𝟐
𝒊𝒋
𝒙𝒊𝒙𝒋 +𝑶(𝒙𝟑)

◎Horizon entry condition

𝒌∗ = 𝒒𝒂𝑯 with 𝒒 = 𝐎 𝟏 : uncertainty of horizon entry

◎Density perturbation at horizon entry

𝜹𝐞𝐱𝐭 =
𝟐 𝟏+𝒘

𝟑𝒘+𝟓

𝟏

𝒂𝟐𝑯𝟐 𝜻𝟐 ⇒ 𝜹𝐇 =
𝟐 𝟏+𝒘

𝟑𝒘+𝟓

𝝁

𝒒
with  𝝁:= −𝜻𝟎

◎Condition for PBH formation: 𝜹𝐇 < 𝜹𝐭𝐡 ⇒ 𝝁𝐭𝐡 ≔
𝟑𝐰+𝟓

𝟐 𝟏+𝐰
𝒒𝜹𝐭𝐡
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Gaussian Dist. of 𝜻
◎Probability distribution of linear combinations of 𝜻(𝒙𝒊)

𝒫 𝑽𝑰 𝐝
𝒏𝑽 = 𝟐𝝅 −𝒏/𝟐 𝐝𝐞𝐭ℳ −𝟏/𝟐𝐞𝐱𝐩 −

𝟏

𝟐
𝑽𝑰 ℳ

−𝟏 𝑰𝑱
𝑽𝑱 𝐝𝒏𝑽

correlation matrix: ℳ𝑰𝑱 = 
𝒅𝒌

𝟐𝝅 𝟑

𝒅𝒌′

𝟐𝝅 𝟑 < ෩𝑽𝑰 𝒌 ෩𝑽𝑱 𝒌′ >

෩𝑽𝑰 𝒌 = 𝒅𝟑𝒙𝑽𝑰 𝒙 𝒆𝒊𝒌𝒙

◎Non-zero correlations in pairs of 𝜻𝟎, 𝜻𝟏
𝒊 , 𝜻𝟐

𝒊𝒋

𝝈𝟎
𝟐 ≔ 

𝒅𝒌

𝒌
𝑷 𝒌 =< 𝜻𝟎𝜻𝟎 >

𝝈𝟏
𝟐 ≔ 

𝒅𝒌

𝒌
𝒌𝟐𝑷 𝒌 = −𝟑 < 𝜻𝟎𝜻𝟐

𝒊𝒊 >= 𝟑 < 𝜻𝟏
𝒊 𝜻𝟏

𝒊 >

[Bardeen et. al.(1986)]

𝝈𝟐
𝟐 ≔ 

𝒅𝒌

𝒌
𝒌𝟒𝑷 𝒌 = 𝟓 < 𝜻𝟐

𝒊𝒊𝜻𝟐
𝒊𝒊 >= 𝟏𝟓 < 𝜻𝟐

𝒊𝒊𝜻𝟐
𝒋𝒋
> with 𝒊 ≠ 𝒋

Chulmoon Yoo
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Variable Transformations

◎Changing variables and integrating w.r.t. some of them

⇒7variables

JGRG27@Hiroshima

◎All 10 variables:𝑽𝑰 = (𝜻𝟎, 𝜻𝟏
𝟏, 𝜻𝟏

𝟐, 𝜻𝟏
𝟑, 𝜻𝟐

𝟏𝟏, 𝜻𝟐
𝟐𝟐, 𝜻𝟐

𝟑𝟑, 𝜻𝟐
𝟏𝟐, 𝜻𝟐

𝟐𝟑, 𝜻𝟐
𝟑𝟏)

𝒫 𝑽𝑰 𝐝
𝒏𝑽 = 𝟐𝝅 −𝒏/𝟐 𝐝𝐞𝐭ℳ −𝟏/𝟐𝐞𝐱𝐩 −

𝟏

𝟐
𝑽𝑰 ℳ

−𝟏 𝑰𝑱
𝑽𝑱 𝐝𝒏𝑽

◎Imposing the horizon entry condition

⇒conditional pdf for 6 variables

𝒫 𝝃, 𝜼 𝐝𝝃𝐝𝜼 =
𝟓𝟓/𝟐𝟑𝟕/𝟐

𝟐 𝟐𝝅 𝟐 𝝃𝟏 𝝃𝟐 𝝃𝟐
𝟐 − 𝝃𝟑

𝟐

𝐞𝐱𝐩 −
𝟏

𝟐
𝝃𝟏
𝟐 + 𝟏𝟓𝝃𝟐

𝟐 + 𝟓𝝃𝟑
𝟐 + 𝟑 𝜼 𝟐 𝐝𝝃𝐝𝜼

◎Note: 𝜼𝒊 ∼ 𝜻𝟏(1st derivative), 𝝃𝒊 ∼ 𝜻𝟐(2nd derivative)



Chulmoon Yoo

11

Peak Number Density

JGRG27@Hiroshima

◎Number density distribution of extrema in (𝒙, 𝝃)

⇒ 𝒏𝐞𝐱𝐭 𝒙, 𝝃 𝒅𝒙𝒅𝝃 = σ𝒑𝜹 𝒙 − 𝒙𝒑 𝜹 𝝃 − 𝝃𝒑 𝒅𝒙𝒅𝝃

𝒏𝐞𝐱𝐭 𝒙, 𝝃 𝚫𝐱𝚫𝝃 ≔number of extrema in 𝚫𝐱𝚫𝝃

where 𝒙𝒑: extremum position

𝝃𝒑:the value of 𝝃 at the extremum

◎Extremum 𝜻𝟏
𝒊 = 𝟎 ⇒ 𝜼𝒊 = 𝟎 ⇒ 𝜹 𝒙 − 𝒙𝒑 = 𝝈𝟏

−𝟑|𝝀𝟏𝝀𝟐𝝀𝟑|𝜹(𝜼)

with 𝝀𝟏𝝀𝟐𝝀𝟑 =
𝟏

𝟐𝟕
𝝃𝟏 + 𝝃𝟑

𝟐 − 𝟗𝝃𝟐
𝟐 𝝃𝟏 − 𝟐𝝃𝟑 𝝈𝟐

𝟑

cf.𝒫 𝝃𝟏, 𝝃𝟐, 𝝃𝟑, 𝜼𝟏, 𝜼𝟐, 𝜼𝟑 𝒅𝝃𝒅𝜼

◎Averaged peak number density 𝒏𝐩𝐤(𝝃)

𝒏𝐩𝐤 𝝃 𝒅𝝃 ≔< 𝒏𝐞𝐱𝐭𝚯 𝝀𝟑 > 𝒅𝝃

= 𝝈𝟏
−𝟑 𝒅𝝃𝒑𝒅𝜼 𝒫 𝜼, 𝝃𝒑 𝝀𝟏𝝀𝟐𝝀𝟑 𝜹 𝜼 𝜹 𝝃 − 𝝃𝒑 𝚯 𝝀𝟑 𝐝𝝃

[Bardeen et. al.(1986)]

Chulmoon Yoo
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PBH Number Density

JGRG27@Hiroshima

◎Peak number density(3 variables)

𝒏𝐩𝐤 𝝃 𝒅𝝃 ≔< 𝒏𝒆𝒙𝒕𝚯 𝝀𝟑 > 𝒅𝝃

= 𝝈𝟏
−𝟑 𝒅𝝃𝒑𝒅𝜼 𝒫 𝜼, 𝝃𝒑 𝝀𝟏𝝀𝟐𝝀𝟑 𝜹 𝜼 𝜹 𝝃 − 𝝃𝒑 𝚯 𝝀𝟑 𝐝𝝃

=
𝟓𝟓/𝟐𝟑𝟏/𝟐

𝟐 𝟐𝝅 𝟐

𝝈𝟐
𝝈𝟏

𝟑

𝝃𝟏 𝝃𝟐 𝝃𝟐
𝟐 − 𝝃𝟑

𝟐 𝝃𝟏 + 𝝃𝟑
𝟐 − 𝟗𝝃𝟐

𝟐 𝝃𝟏 − 𝟐𝝃𝟑

𝐞𝐱𝐩 −
𝟏

𝟐
𝝃𝟏
𝟐 + 𝟏𝟓𝝃𝟐

𝟐 + 𝟓𝝃𝟑
𝟐 𝚯 𝝃𝟏 − 𝟑𝝃𝟐 + 𝝃𝟑 𝒅𝝃

◎PBH number density

𝒩𝐁𝐇 =  𝒏𝐩𝐤 𝝃 𝚯 𝝃𝟏 − 𝜿𝝁𝐭𝐡 𝒅𝝃

=
𝟑𝟑/𝟐

𝟐 𝟐𝝅 𝟑/𝟐

𝝈𝟐

𝝈𝟏

𝟑

𝜿𝝁𝒕𝒉
∞

𝒇 𝒖 𝒖𝐞𝐱𝐩 −
𝟏

𝟐
𝒖𝟐 𝐝𝒖

𝒇 𝒖 =
𝟏

𝟐
𝒖 𝒖𝟐 − 𝟑 𝐞𝐫𝐟

𝟏

𝟐

𝟓

𝟐
𝒖 + 𝐞𝐫𝐟

𝟓

𝟐
𝒖 +

𝟐

𝟓𝝅
[
𝟖

𝟓
+

𝟑𝟏

𝟒
𝒖𝟐 𝐞𝐱𝐩 −

𝟓

𝟖
𝒖𝟐 + −

𝟖

𝟓
+

𝟏

𝟐
𝒖𝟐 𝐞𝐱𝐩 −

𝟓

𝟐
𝒖𝟐 ]
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PBH Fraction
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◎PBH number density

◎PBH fraction

𝒩𝐁𝐇 =
𝟑𝟑/𝟐

𝟐 𝟐𝝅 𝟑/𝟐

𝝈𝟐

𝝈𝟏

𝟑

𝜿𝝁𝒕𝒉
∞

𝒇 𝒖 𝒖𝐞𝐱𝐩 −
𝟏

𝟐
𝒖𝟐 𝐝𝒖

≃
𝟑𝟑/𝟐

𝟐 𝟐𝝅 𝟑/𝟐

𝝈𝟐

𝝈𝟏

𝟑

𝜿𝟑𝝁𝐭𝐡
𝟑 𝒆𝒙𝒑(−

𝟏

𝟐
𝜿𝟐𝝁𝐭𝐡

𝟐 ) for large 𝜿 = 𝒌∗
𝟐/𝝈𝟐

𝜷𝟎 =
𝒩𝐁𝐇𝑴𝐁𝐇

𝝆𝒂𝟑
= 𝒩𝐁𝐇

𝟒

𝟑
𝝅𝜶 𝒂𝑯 −𝟑

with 𝜶 = 𝒪(𝟏):uncertainty of 𝑴𝐁𝐇

Chulmoon Yoo
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Moments

JGRG27@Hiroshima

◎Window functions

𝑷 𝒌 → 𝑷 𝒌 𝑾 𝒌/𝒌∗
𝟐

with 𝑾𝑪𝑶 𝒌𝑹 = 𝚯 𝟏 − 𝐤𝐑

𝑾𝑮 𝒌𝑹 = 𝐞𝐱𝐩 −
𝟏

𝟐
𝒌𝟐𝑹𝟐

◎Flat spectrum

𝑷 𝒌 = 𝝈𝟐 = 𝐜𝐨𝐧𝐬𝐭.

◎Moments

𝝈𝟏
𝟐 = 𝟎

∞
𝐝𝒌𝒌 𝑾 𝒌𝑹

𝟐
𝝈𝟐 =

𝝈𝟐

𝟐𝑹𝟐

𝝈𝟐
𝟐 = 𝟎

∞
𝐝𝒌𝒌𝟑 𝑾 𝒌𝑹

𝟐
𝝈𝟐 =

𝝈𝟐

𝜺𝟐𝑹𝟒

𝜺 = 𝟐 for the simple cut-off 

𝜺 = 𝟐 for the Gaussian 
◎𝑹 = 𝟏/𝒌∗
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PBH Fraction

JGRG27@Hiroshima

◎PBH fraction

𝜷𝟎 =
𝟐 𝟔

𝟐𝝅
𝜶𝒒𝟑𝜺−𝟑 𝜿𝝁𝐭𝐡

∞
𝒇 𝒖 𝒖𝐞𝐱𝐩 −

𝟏

𝟐
𝒖 𝐝𝒖

≃
𝟐 𝟔

𝟐𝝅
𝜶𝒒𝟔

𝝁𝐭𝐡

𝝈

𝟑
𝐞𝐱𝐩 −

𝟏

𝟐𝝈𝟐
𝜺𝟐𝒒𝟐𝝁𝐭𝐡

𝟐

where 𝝁𝐭𝐡 = 𝒒𝝁𝐭𝐡 = 𝒒
𝟑𝐰+𝟓

𝟐 𝟏+𝐰
𝜹𝐭𝐡

𝜿 =
𝒌∗
𝟐

𝝈𝟐
= 𝜺/𝝈

◎Threshold value[Harada et.al.(2013)]

𝜹𝐭𝐡 =
𝟑 𝟏+𝒘

𝟓+𝟑𝒘
𝐬𝐢𝐧𝟐

𝝅 𝒘

𝟏+𝟑𝒘
= 𝟎. 𝟒𝟏𝟑𝟓 for 𝒘 = 𝟏/𝟑

⇒ 𝝁𝐭𝐡 = 𝟎. 𝟗𝟑𝟎𝟓

Chulmoon Yoo
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Result

JGRG27@Hiroshima

smaller than the conventional one small 𝝈

𝑷𝜻 𝒌 = 𝝈𝟐 = 𝐜𝐨𝐧𝐬𝐭.

𝒒 = 𝟏, 𝜶 = 𝟎. 𝟒



Chulmoon Yoo

17

Discussion
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◎Ambiguity-1: Horizon entry(𝒒)

◎Ambiguity-2: Window function(𝜺)

◎Possible(?) extension: Non-Gaussian

◎Caveat: linear approximation cannot be justified

𝜷𝟎 ∼ exp −
𝟏

𝟐𝝈𝟐
𝜺𝟐𝒒𝟐𝝁𝐭𝐡

𝟐

Chulmoon Yoo
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Significance of the Factor
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𝒒 = 𝟏, 𝜶 = 𝟎. 𝟒
◎How one may get an “optimistically” large abundance

◎Optimistic order of estimate 1:𝝈𝜹 ∼ 𝝈 = 𝑷 𝜻 ⇒ 𝝁𝐭𝐡 = 𝜹𝐭𝐡

◎Optimistic order of estimate 2:𝜹𝐭𝐡 = 𝟏/𝟑

𝑷𝜻 𝒌 = 𝝈𝟐
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Discussion

JGRG27@Hiroshima

◎Ambiguity-1: Horizon entry(𝒒)

◎Ambiguity-2: Window function(𝜺)

◎Possible(?) extension: Non-Gaussian

◎Caveat: linear approximation cannot be justified

𝜷𝟎 ≃
𝟐 𝟔

𝟐𝝅
𝜶𝒒𝟔

𝝁𝐭𝐡
𝝈

𝟑

exp −
𝟏

𝟐𝝈𝟐
𝜺𝟐𝒒𝟐𝝁𝐭𝐡

𝟐

JGRG27@Hiroshima Chulmoon Yoo
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Thank you 

for your attention! 
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BHs detected by LIGO�

In usual metallicity (Z~Z¤), stellar BHs may not be as heavy as 30M¤ because of 
the mass loss by the stellar wind. (Belczynski et al. 2010, Spera et al. 2015)	

PBH is one of the candidates of 30M¤ BHs.�
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In usual metallicity (Z~Z¤), stellar BHs may not be as heavy as 30M¤ because of 
the mass loss by the stellar wind. (Belczynski et al. 2010, Spera et al. 2015)	

PBH is one of the candidates of 30M¤ BHs.�

4/19 



Keisuke Inomata� O(10) solar mass PBHs and string axion DM �

What is PBH ?�

Black hole formed by gravitational collapse in very 
early universe �

Primordial Black Hole(PBH)�

		
cf. Black hole formed 
 through supernova�

� � � � �̄

�̄

�c

�

Perturbations of energy density�

Space�

�c � 1

3
Threshold of PBH 
formation�

(Carr 1975)�

PBH is formed by 
self-gravitational collapse�

0

Density Perturbations 
(inflation origin)�

Threshold�

cf. � � O(10�5) (k < 1Mpc�1)

We assume the large perturbations 
originate from quantum fluctuation 
during inflation�

5/19 
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The timing of PBH formation�
PBHs form when over-dense regions enter the horizon. 

The size of perturbation corresponds 
to PBH mass one by one.�

Image in comoving �
Size of Horizon(1/aH) �

Time�
PBH forms !�At first, the size of perturbation  

is larger than Horizon�
Then, the size of perturbations 
become equal to Horizon.�

At this moment�

PBH mass 
≈ Horizon mass at that time �

Density Perturbation 

MPBH(k) � M�

�
T

176MeV

��2
�����
k=aH

� M�

�
k

3.1 � 105Mpc�1

��2

PBH�

(MPBH = �MH|k=aH)

(γ≈0.2 Carr 1975)�

6/19 
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1016 1021 1026 1031 1036

10-8

10-5

10-2

MPBH [g]

Ω
P
B
H
/Ω
D
M

Can 30 Solar mass BHs be DM ?�

H
aw

ki
ng

�

Femto�
HSC 

(Subaru Hyper Supreme Cam)�

Kepler�

EROS/MACHO/OGLE�

Excluded region�

There are a constraints on the 
abundance of 30M¤ BHs.�

30M¤ BHs are not likely to be DM.�
Aside from 30M¤ BHs,  

we must consider other DM candidate.�

8/19 
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Is WIMP DM ?�

corresponds to 30M¤ � Allowed region�

small scale�large scale�

With the assumption that 
DM is WIMP�

If DM is WIMP, the perturbations corresponding to 30M¤ PBHs 
are severely constrained by UCMH.� NO 30M¤ PBHs�

Bringmann, Scott, Akrami, Phys.Rev. D85 (2012) 125027 �

CMB & LSS�
Ultra Compact 
Mini Halo 
(UCMH)�

PBH�
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30M¤ PBHs and DM�
What DM is consistent with 30M¤ PBHs?  �

•  30M¤ PBHs 
•  WIMP 
•  10-13M¤ PBHs 
•  axion  
•  … 

we show the concrete inflation model in which 30M¤ 
PBHs and axion DM can coexist.�

In the following,�

(Inomata et al. arXiv:1711.06129)�

(What this talk is about)�

10/19 
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String axion�

String axion is the axion predicted in String 
Theory, whose decay constant fa~O(1016GeV).  �

� = |�|eia/fa

a : axion� V (�)

fa phase direction = axion�String axion may provide the platform to 
discuss the quality of U(1)PQ symmetry in the 
low energy theory. �

(Conlon 2006, Svrcek and Witten 2006, Choi and Jeong 2006)�

In general, axion can solve the strong CP problem and explain DM by its 
coherent behavior.�

U(1)PQ symmetry can be explicitly broken 
by the Planck suppressed operators aside 
from QCD anomaly.�

We need to control Planck-scale physics.�
(Barr and Seckel 1992, Kamionkowski and March-Russell 
1992, Holman et al. 1992)�

(Choi et al. 2011, Honecker et al. 2014)� flat due to U(1)PQ symmetry�

However�

In string theory, after string compactification, 
axions with fa~O(1016GeV) appear.  �

12/19 
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Constraints from axion �

Hinf < 9.6 � 108GeV

�
fa

1016GeV

�0.41

If DM is string axion, its perturbations produced by inflation become 
isocurvature perturbations, which are severely constrained by the CMB 
observations. �

If string axion is DM, the U(1)PQ symmetry is spontaneously broken 
before/during inflation because of fa~O(1016GeV). 

(Lyth 1992)�

a

V (a)

x

x

�

�
axion DM�

photon�

axion DM�

photon�
curvature 
perturbations�

isocurvature 
perturbations�

c.f.�

S =
Hinf

��fa
�iso =

PR
PR + PS

< 0.038 (Planck 2015)�

c.f. �Hinf � 1014GeV (chaotic)�

(after QCD phase transition)�

13/19 
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String axion and Inflation model�

Hilltop inflation is appropriate.�

If string axion is DM, the inflation energy 
scale must be low.�

Hilltop inflation has initial condition problem.�

One solution is stabilizing the inflaton at 
origin by the dynamics of the pre-inflation. 
(e.g. Hubble-induced mass terms ~Hpre

2φ2) �

The universe could possibly experience multiple inflationary phases.�
We assume that our observable universe is related to last two inflations. �

We adopt double inflation scenario (hilltop + hilltop). �

However�

Hubble-induced 
mass�

During pre-inf�

After pre-inf�

14/19 
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First hilltop inflation�
� small scale perturbations�

This term stabilizes φ at origin 
during first new inflation  �

large scale perturbations�
Second hilltop inflation�

�

produce PBHs�

�1 = �, �2 = �

Double Inflation Model�
Inflaton:�
Lagrangian:�

Potential:�

�, �

L = �1

2
(1 � ckin

2M2
Pl

�2)�µ��µ� � 1

2
�µ��µ� � V (�, �)

(MPl = 1)

(Kawasaki et al 1998)�

V (�, �) = Vhill,1(�) + Vhill,2(�) + Vstb(�, �)

Vhill,i(�i) = v4
i

�

�� �i

�l,i
� �2

i

�2
q,i

+

�
1 � �3

i

�3
min,i

�2
�

�

Vstb(�, �) = cpot
Vnew,1(�)

2
�2
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The results for appropriate parameters�

����
����
��������
���

��-�� ��-�� ��-� ��-� ��-� ��-� ��-�
��-��

��-��

��-��

��-�

��-�

��-�

�[��]

Ω
�
�
��

μ-����������

���

������ �����������

��� ������ ��� ���� ���� ����

��-�

��-�

��-�

�[���-�]

�
ℛ

Curvature perturbations� GWs from curvature perturbations�

We have checked that the spectrums�

PBH mass spectrum�

1.  avoid the isocurvature constraints 
(Hinf=109GeV) 

2.  predict the sizable amount of PBHs   
(ΩPBH/ΩDM=O(10-3) (Sasaki et al. 2016)) 

3.  avoid the constraints from mu-
distortion and pulsar timing array (PTA) 

4.  be consistent with CMB observation on 
large scale (As,ns,r)�

16/19 



Keisuke Inomata� O(10) solar mass PBHs and string axion DM �

The results for appropriate parameters�

����
����
��������
���

��-�� ��-�� ��-� ��-� ��-� ��-� ��-�
��-��

��-��

��-��

��-�

��-�

��-�

�[��]

Ω
�
�
��

μ-����������

���

������ �����������

��� ������ ��� ���� ���� ����

��-�

��-�

��-�

�[���-�]

�
ℛ

Curvature perturbations� GWs from curvature perturbations�

We have checked that the spectrums�

PBH mass spectrum�

1.  avoid the isocurvature constraints 
(Hinf=109GeV) 

2.  predict the sizable amount of PBHs   
(ΩPBH/ΩDM=O(10-3) (Sasaki et al. 2016)) 

3.  avoid the constraints from mu-
distortion and pulsar timing array (PTA) 

4.  be consistent with CMB observation on 
large scale (As,ns,r)�

2.�

3.�
3.�

4.�
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Summary�

Future prospects�

We have discussed DM in the presence of O(10)M¤ PBHs. 
In particular, we have focused on string axion DM. 

Although the parameter region is severely limited, 30M¤ 
PBHs are consistent with axion DM in “double inflation 
model”. 

What we did�

In the double inflation model, O(10)M¤ PBHs and string 
axion DM can coexist.�
We have also checked that the result is consistent with 
observational constraints, which come from CMB 
anisotropy, mu-distortion and pulsar timing array.�

Conclusion�

19/19 
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Introduction: GW era has come!

Direct detection of Gravitational Wave (GW)
: New test of gravitational theories
o in the strong-field regime

opropagated on cosmological scale

Important to study theoretical consistency of a 
model which predicts different phenomena from GR

A theory of massive spin-2 field is interesting
o Theory construction is nontrivial

oDifferent GW waveform
could be detected 2de Rham, Gabadadze, Tolley (2010)

van Dam, Veltman (1970), Zakharov (1970)

Fierz, Pauli (1939)

Vainshtein (1972), Boulware, Deser (1972)
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Bigravity

Ghost-free theory of massive spin-2 field with FLRW sol.

oOne massless tensor, one massive tensor
→ “graviton oscillation” analogous to 𝜈 oscillation

oCosmological constant is included in 𝑆int 3

𝑇𝑛 = Tr 𝑠𝑛 ,

𝑈4 =
1

24
𝑇1
4 − 6𝑇1

2𝑇2 + 3𝑇2
2 + 8𝑇1𝑇3 − 6𝑇4 ,

𝑈3 =
1

6
𝑇1
3 − 3𝑇1

2 + 2𝑇3 ,

𝑆int = 𝑀𝑔
2𝑚2∫ 𝑑4𝑥 −𝑔Σ𝑖=0

4 𝛽𝑖𝑈𝑖

𝑆 𝑔𝜇𝜈 , 𝑓𝜇𝜈 = 𝑆EH,𝑔 + 𝑆EH,𝑓 + 𝑆int + 𝑆mat

𝑆EH,𝑔 =
𝑀𝑔

2

2
∫ 𝑑4𝑥 −𝑔𝑅[𝑔]

𝑆EH,𝑓 =
𝜅𝑀𝑔

2

2
∫ 𝑑4𝑥 −𝑓𝑅[𝑓]

𝑈0 = 1,

𝑠 = 𝑔−1𝑓
𝛽𝑖: constant

𝑈1 = 𝑇1, 𝑈2 =
1

2
𝑇1
2 − 𝑇2 ,

Hassan, Rosen 1109.3515

DeFelice, Nakamura, Tanaka 1304.3920
Narikawa, Ueno, Tagoshi, Tanaka, Kanda, Nakamura 1412.8074

/12

Chameleon bigravity

Original bigravity is valid

Chameleon extension

4

1) for (Energy scale) ≲ 𝑀𝑔𝑚
2 1/3

2) for 𝐻2 ≲ 𝑚Tensor
2

: 𝑚 must be large, but then phenomena are almost
the same as GR, not interesting

: cannot be applied to early universe

3) with fine-tuning to pass solar-system tests (Vainshtein screening)
keeping 𝑚 small

i) Introduce scalar 𝜙
ii) 𝛽𝑖 → 𝛽𝑖(𝜙)

iii) Couple matter to  𝑔𝜇𝜈 = 𝐴2 𝜙 𝑔𝜇𝜈

Potential minimum of 𝜙
depends on matter density 𝜌

𝑚Tensor
2 (𝛽𝑖) ∝ 𝜌

DeFelice, Mukohyama, Uzan 1702.04490

DeFelice, Nakamura, Tanaka 1304.3920

Khoury, Weltman 0309300, 0309411
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Outline of our work

Stability condition of chameleon bigravity was 
studied only around de Sitter

Our work:

 derive stability conditions
1) of rad/ mat era under homogeneous perturbations

2) of inhomogeneous perturbations around FLRW

 3) numerical realization of stable cosmology
(not compared with obs. data)

5

DeFelice, Mukohyama, Uzan 1702.04490

DeFelice, Mukohyama, Oliosi, YW 1711.04655
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(1/3) Stability of rad/mat era

Rad/mat era must last long enough.
Scaling solution of each era

: every term in background EoM has the same
time dependence for 𝑎 𝑡 ~𝑡2/𝑛

6

EoM

ln ℎ = ln ℎ0 −
𝑛

2
𝑁𝑒 + 𝜖 ℎ(1)

𝜑 =
𝑛

𝜆
𝑁𝑒(1 + 𝜖 𝜑(1))

𝜉 =  𝜉(1 + 𝜖 𝜉(1))

𝑐 = 𝑐(0)(1 + 𝜖 𝑐(1))

𝑑𝑠𝑔
2 = −𝑑𝑡2 + 𝑎2𝑑𝒙2

𝑛 =  
4 rad
3 (mat)

𝑑𝑠𝑓
2 = 𝜉2(−𝑐2𝑑𝑡2 + 𝑎2𝑑𝒙2)

𝑁𝑒 = ln 𝑎,
′
= 𝑑/𝑑𝑁𝑒

 𝜉, 𝑐(0): constants𝒪(𝜖): perturbations

𝜑 1 ′′
+ 1 +

2

𝑁𝑒
𝜑 1 ′

+𝒜𝑟𝜑
1 = 0 (rad)

𝜑 1 ′′
+

3

2
+

2

𝑁𝑒
𝜑 1 ′

+𝒜𝑚𝜑 1 = 0 (mat)

Stability conditions

𝒜𝑟 > 0,𝒜𝑚 > 0

ℎ = 𝐻/𝑚, 𝜑 = 𝜙/𝑀𝑔,



/12

(2/3) Stability of inhomo. pert.

Flat FLRW + inhomogeneous perturbation

Tensor sector

7

𝑑𝑠𝑔
2 = −𝒩2𝑑𝑡2 + 𝛾𝑖𝑗(𝒩

𝑖𝑑𝑡 + 𝑑𝑥𝑖)(𝒩𝑗𝑑𝑡 + 𝑑𝑥𝑗)

𝑑𝑠𝑓
2 = −  𝒩2𝑑𝑡2 +  𝛾𝑖𝑗(  𝒩

𝑖𝑑𝑡 + 𝑑𝑥𝑖)(  𝒩𝑗𝑑𝑡 + 𝑑𝑥𝑗)

𝒩 = 𝑁 1 + Φ

𝛾𝑖𝑗 = 𝑎2𝛿𝑖𝑗 + 𝛿𝛾𝑖𝑗

 𝒩 = 𝑁𝜉𝑐 1 +  Φ

 𝛾𝑖𝑗 = 𝜉2𝑎2𝛿𝑖𝑗 + 𝛿  𝛾𝑖𝑗

𝜙 =  𝜙 + 𝛿𝜙 𝜓rad/mat. =  𝜓rad/mat + 𝛿𝜓rad/mat

𝛿𝛾𝑖𝑗 = ℎ𝑖𝑗,    𝛿  𝛾𝑖𝑗 =  ℎ𝑖𝑗: Transverse traceless

ℒ𝑇
(2)

=
𝑀𝑔

2𝑁𝑎3

8

 ℎ𝑖𝑗  ℎ𝑖𝑗

𝑁2 −
𝑘2

𝑎2 ℎ
𝑖𝑗ℎ𝑖𝑗 +

𝜅𝜉2

𝑐

  ℎ𝑖𝑗   ℎ𝑖𝑗

𝑁2 − 𝑐2
𝑘2

𝑎2
 ℎ𝑖𝑗  ℎ𝑖𝑗 −𝑚2Γ ℎ −  ℎ

𝑖𝑗
ℎ −  ℎ

𝑖𝑗

Γ = −[𝛽1𝜉 + 1 + 𝑐 𝛽2𝜉
2 + 𝑐𝛽3𝜉

3]

No-ghost condition for  ℎ𝑖𝑗 → 𝑐 > 0 𝑚𝑇
2 =

𝑐+𝜅𝜉2

𝜅𝜉2
𝑚2Γ

/12

(2/3) Stability of inhomo. pert.

Vector sector

8

𝛿  𝛾𝑖𝑗 =
1

2
𝜕𝑖  𝐸𝑗 + 𝜕𝑗  𝐸𝑖 , 𝒩𝑖 =  𝐵𝑖 ,

𝒩𝑖 = 𝐵𝑖 , 𝛿𝛾𝑖𝑗 =
1

2
𝜕𝑖𝐸𝑗 + 𝜕𝑗𝐸𝑖 ,

: Transverse modes

ℒ𝑉
(2)

=
𝑀𝑔

2𝑁𝑎3

8
A

 ℰ𝑖  ℰ𝑖
𝑁2 − 𝑐𝑉

2
𝑘2

𝑎2 +𝑚𝑉
2 ℰ𝑖ℰ𝑖

ℰ𝑖 = 𝐸𝑖 −  𝐸𝑖

Integrate out non-dynamical modes 𝐵𝑖 ,  𝐵𝑖

𝑚𝑉
2 = 𝑚𝑇

2

𝑐𝑉
2 =

𝑐 + 1 Γ

2𝜉𝐽
A =

𝑚2𝜅𝜉2𝐽𝑘2

𝑐 + 1 𝜅𝜉𝑘2/𝑎2 + 2𝑚2 𝑐 + 𝜅𝜉2 𝐽

𝐽 = −[𝛽1 + 2𝛽2𝜉 + 𝛽3𝜉
2]

No-ghost condition  → 𝐽 > 0

No-gradient-instability condition→ Γ > 0
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(2/3) Stability of inhomo. pert.

Scalar sector

9

 𝒩𝑖 = 𝜕𝑖  𝐵,

𝒩𝑖 = 𝜕𝑖𝐵, 𝛿𝛾𝑖𝑗 = 2Ψ𝛿𝑖𝑗 + 𝜕𝑖𝜕𝑗 −
Δ

3
𝛿𝑖𝑗 𝐸,Φ,

 Φ, 𝛿  𝛾𝑖𝑗 = 2 Ψ𝛿𝑖𝑗 + 𝜕𝑖𝜕𝑗 −
Δ

3
𝛿𝑖𝑗  𝐸,

Integrate out non-dynamical modes Φ,  Φ, 𝐵,  𝐵,  Ψ

Gauge Ψ = 𝐸 = 0

ℒ𝑆
(2)

=
𝑁𝑎3

2

 𝒴𝑇

𝑁
𝒦

 𝒴

𝑁
+

 𝒴𝑇

𝑁
ℱ𝒴 − 𝒴𝑇ℱ

 𝒴

𝑁
− 𝒴𝑇ℳ𝒴 , 𝒴 = (  𝐸 𝛿𝜙 𝜓rad 𝜓mat)

𝑇

o No-ghost condition: Eigenvalues of 𝒦 >0 in high 𝑘 limit

→ Null-Energy Condition for fluids & one nontrivial condition

o No-grad-instability condition:

det 𝑐𝑠
2
𝑘2

𝑎2𝒦 +ℳ
high 𝑘

= 0 𝑐𝑠
2 > 0

/12

(3/3) Numerical realization

Simple couplings

Example parameters

Constraints 𝒞1, 𝒞2

10

𝛽𝑖 𝜙 = −𝑐𝑖e
−𝜆𝜑, 𝐴 𝜙 = e𝛽𝜑 𝑐𝑖 , 𝜆, 𝛽: constants

Approximate scaling solution for mat. dom.→ 𝛽 ≈ 0

𝑐ini = 1.01, 𝑐𝑉
2 = 1, 𝑐1𝑐3 − 𝑐2

2 = 1, 𝑐1 + 2𝑐2 + 𝑐3 = 1,

ΩΛ,ini = 10−30, Ωm,ini = 10−5, Ω𝜑kin,ini =
3

200
, ΩGravPot,ini =

1

200
,

𝛽 = 10−2, 𝜆 = 40/3,

𝒞1 =
1 − Σ𝑖Ω𝑖

1 + Σ𝑖|Ω𝑖|
:Normalized Friedmann eq for 𝑔𝜇𝜈

Similarly define 𝒞2 for 𝑓𝜇𝜈

(The other parameters are determined by EoM)
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(3/3) Numerical realization

11

𝑚𝑇
2

𝐻2 > 𝒪(1)

is well satisfied

/12

Summary

Bigravity: nontrivial theory of a massive spin-2 field
But not valid at early universe/solar system

keeping mass small w/o fine-tuning

Chameleon bigravity: introduce 𝜙,
its potential minimum depends on environment

→ Graviton mass depends on environment

Derived stability conditions
1) of rad/mat era under homogeneous perturbation
2) of inhomogeneous perturbation around FLRW

Numerically realize stable cosmology

12
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Minimal theory of 
quasidilaton massive 

gravity

JGRG 27, 17.11.28

M. Oliosi (YITP)

1

/16

arXiv 1701.01581

arXiv 1709.03108

Minimal theory of quasidilaton 

massive gravity

Horndeski extension of the minimal 

theory of quasidilaton massive gravity

Based on 2



/16Minimal quasidilaton 3

 A theory of massive gravity + scalar field

 Free of Boulware-Deser ghost

 Breaks Lorentz invariance (LI) to propagate 

2 tensor and 1 scalar modes, instead of 6 

d.o.f.

 Has the quasidilatation global symmetry

 Modifies gravity at cosmological scales

/16Construction

i. Start from dRGT massive gravity 

ii. Break LI and add the quasidilaton. 

iii. Switch to Hamiltonian and analyse “à la 

Dirac”

iv. Add constraints so that the final number of 

degrees of freedom is 3 “à la MTMG”. 

v. This defines the minimal theory.

4



/16dRGT theory (arXiv:1011.1232) 

Thanks to the special form of the potential, no 

Boulware-Deser ghost. 

Propagates 5 d.o.f.

5

de Rham, 

Gabadadze, 

Tolley

Contract the physical metric

with a new fiducial metric 𝑓𝜇𝜈

/16LI breaking form 6

With ADM decomposition

…as in MTMG (De Felice & Mukohyama, arXiv 1506.01594)



/16Quasidilaton (arXiv 1206.4253)

The Stückelberg sector is shift- and SO(3) symmetric.

Add an additional global symmetry in the action. It 

acts on the Stückelberg fields as

quasidilaton scalar!

7

The Stückelberg fields 𝜙𝑎 can be introduced to recover 

covariance

LI breaking

/16Precursor action
Defining a precursor 

action is the first step in 

constructing the 

minimal theory.

𝔛 = −
1

2
𝑔𝜇𝜈𝜕𝜇𝜎𝜕𝜈𝜎

𝐹 𝑋, 𝑆 = 𝑃 𝑋 − 𝐺 𝑋 𝑆

We can include

a cubic

Horndeski

structure !

8



/16
Degrees of freedom in the precursor theory

11 d.o.f.

(22 phase space d.o.f.) 

(8 phase space d.o.f.)

4 d.o.f.

1 first-class and 12 second-class

constraints

𝛾𝑖𝑗 𝜎 𝜃 𝜒 𝑋 𝑆

9

/16Minimal theory: new constraints

(8 phase space d.o.f.)

4 d.o.f.

2 second-class

constraints

(6 phase space d.o.f.)

3 d.o.f.

[In practice, 2 tensor modes and the quasidilaton 𝜎 ]

We replace 2 

precursor constraints

by 4 new constraints

10



/16Minimal theory, action

There are still some Lagrange multipliers 𝜆, 𝜆𝑇

Luckily there is a unique mini-superspace solution:    𝜆 = 𝜆𝑇 = 0

11

/16

de Sitter attractor

The equation from 𝜆 is rewritten in a nice form.

where 𝑎 is the scale factor. This implies that there exists a de Sitter 
attractor where either 

𝒳 is constant (α = −4) or 𝐽 𝒳 = 0 (α ≠ −4). 

Stability of de Sitter

Study the quadratic action for linear perturbations, and obtain the no-ghost 

conditions.

It is nice and stable ! ☺

Mini-superspace solutions 12



/16Gravitational modes in the 

minimal quasidilaton

The minimal theory of quasidilaton massive 
gravity successfully passes the tests of both 
GW and multimessenger detections. 

- The sound speed of the tensor modes in the 

subhorizon limit coincides with the speed of 

light.

- Small graviton mass of order 𝐻0~10
−33 𝑒𝑉. 

13

GW 150914
GW170817/GRB170817A

/16

Advantages of the minimal quasidilaton

I. From the point of view of quasidilaton theories, there is a 
smaller number of degrees of freedom, and thus is more 
tractable.

II. In contrast to the MTMG, the minimal quasidilaton theory
allows to use a Minkowski fiducial metric

Disadvantages of the minimal quasidilaton

I. More parameters than dRGT or even MTMG, not to be said than
the simple cosmological constant.

II. LI violation

III. No solution of the “old cosmological constant problem” (no 
degravitation).

Why the minimal quasidilaton?



/16Future prospects

Small scale behaviour. 

Vainshtein screening? 

Cosmology with 

matter and general 

FLRW.

Minimal… other 

theories

Technical naturalness

…keep in touch! ☺

15

/16

Thank you for 

your attention !

all rights to 東広島市

16
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Polysymplectic formalism
MacDowell-Mansouri gravity

MacDowell-Mansouri gravity model from a
covariant polysymplectic perspective

Alberto Molgado
(in collaboration with J. Berra-Montiel)

Facultad de Ciencias

JGRG27
Saijo, Higashi-Hiroshima

27 November–1 December, 2017

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 1 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

Motivation

Our main goal is to study Field theories from the
multisymplectic perspective at both, classical and quantum
levels!

In particular, we want to test the polysymplectic formalism for
the MacDowell-Mansouri gravity model

It is relevant to notice the way in which this formalism confronts
the symmetry breaking

(Based in J. Berra-Montiel, AM and D. Serrano-Blanco, CQG 34 (2017) 235002,

arXiv:1703.09755 [gr-qc])

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 2 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

Consider a field theory given by1

δ

∫
L(ya, ∂iya, x i)ṽol = 0 ,

{ya},1 ≤ a ≤ m := Field variables
{x i},1 ≤ i ≤ n := Spacetime variables

ṽol := dx i ∧ ... ∧ dxn := Volume form on the spacetime
manifold.

∂i

(
∂L
∂∂iya

)
−
(
∂L
∂ya

)
= 0

1det(g) = 1
Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 3 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

De Donder-Weyl Theory

Introduce a new set of variables:

pi
a :=

∂L
∂(∂iya)

Polymomenta

and
HDW (ya,pi

a, x
i) := pi

a∂iya − L

which are defined in a completely space-time symmetric
manner.

HDW is the De Donder-Weyl Hamiltonian
Canonical form of field equations within the DW theory:

∂ipi
a = − ∂H

∂ya , ∂iya =
∂H
∂pi

a

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 4 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

De Donder-Weyl Theory

Extended polymomentum phase space (1st order jet
bundle):
Finite dimensional analogue of phase space

zM := (ya,pj
b, x

i), 1 ≤ M ≤ m + mn + n

Poincaré-Cartan form

ΘDW = pi
a ∧ dya ∧ ∂i ṽol − HDW ṽol

Canonical (n + 1)-form (obtained by taking the exterior
differential of ΘDW ) is

ΩDW = dpi
a ∧ dya ∧ ∂i ṽol − dHDW ∧ ṽol

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 5 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

Graded Poisson bracket

A generalized Lie derivative of any form Φ with respect to

the vertical multivector field
p
X of degree p is given by

L p
X

Φ :=
p
X dV Φ− (−1)p dV (

p
X Φ)

Given the polysymplectic (n + 1)-form Ω, we define the set

of locally Hamiltonian multivector fields
p
X , 1 ≤ p ≤ n,

which satisfy the condition

L p
X

Ω = 0

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 6 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

Graded Poisson bracket

The polysymplectic form ΩDW associates horizontal

p-forms
p
F with (n − p)-multivectors

n−p
X , by the relation:

n−p
X ΩDW = dV

p
F

Then we may induce a Gerstenhaber bracket of horizontal
forms representing the dynamical variables

{[
p
F 1,

q
F 2]} := (−1)n−p

n−p
X 1

n−q
X 2 ΩDW

This bracket results a Poisson bracket

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 7 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

The Poisson-Gerstenhaber bracket of a p-form with a
q-form results a form of degree (p + q − n + 1)

Thus, the subspace of (n − 1)-forms constitutes a Lie
subalgebra in the Gerstenhaber algebra of Hamiltonian
(vertical)-forms.

Canonical brackets are taken as (ωµ := ∂µ ṽol)

{[pµaωµ, ybων ]} = δb
aων

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 8 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

De Donder-Weyl Theory
Graded Poisson brackets

In particular, (n− 1)-forms may be associated to the notion
of observables (Zapata, Forger)
By integrating (n − 1)-forms over (n − 1)-hypesurfaces we
may obtain a relation of the Poisson-Gerstenhaber bracket
with Peierls bracket

{[
n−1
F 1,

n−1
F 2]} 7→ {f1(x), f2(x ′)} = G(x , x ′)

One may try to quantize this bracket under Schwinger
quantization scheme

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 9 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

Yang-Mills theory

(Further details in J. Berra-Montiel, E. Del Rı́o and AM, IJMPA 32 2017 1750101,

arXiv:1702.03076v2 [hep-th])

LYM = −1
4

F a
µνFµν

a

The components of the field strength F a
µν are

F a
µν = ∂µAa

ν − ∂νAa
µ + gf a

bcAb
µAc

ν

Aa
µ stands for the gauge field

g is the coupling constant
fabc are the structure constants associated to the gauge
symmetry

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 10 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

YM theory

Polymomenta

πµνa =
∂LYM

∂(∂µAa
ν)

= −Fµν
a

De Donder-Weyl Hamiltonian

HYM
DW(A, π, x) = π

[µν]
a ∂[µAa

ν] − LYM

= −1
4
πa
[µν]π

[µν]
a − g

2
f bc
a AµbAνcπ

a
[µν]

Canonical pair of (n − 1) forms

Aµνa := Aµaω
ν ,

πµa := πµνa ων

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 11 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

YM theory

De Donder-Weyl equations

dV Aµνa = − {[ H̃YM
DW ,A

µν
a ]}

= −1
2
π
[µν]
a − g

2
f bc
a AµbAνc + λµνa ,

dVπµa = − {[ H̃YM
DW , π

µ
a ]}

= gf bc
a π

[µν]
b Acν

These equations contain all the information of the model
Lagrangian field equation

DνFµν = 0

Gauge content of the theory

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 12 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

(Further details in J. Berra-Montiel, AM and D. Serrano-Blanco, CQG 34 (2017)

235002, arXiv:1703.09755 [gr-qc])

Yang-Mills-type gauge theory with gauge group SO(4,1).
The relevance of the MM model relies in the fact that after
the symmetry breaking

SO(4,1)→ SO(3,1)

the action describing the gauge theory turns out to be
classically equivalent to the standard Palatini action of
General Relativity.

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 13 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

The equivalence is made possible by the fact that the
internal Lie algebra admits the orthogonal splitting

so(4,1) ' so(3,1)⊕ R3,1

This decomposition splits the gauge field A into an
SO(3,1)-connection ω and a coframe field e, such that

A =

(
ω 1

l e
−1

l e 0

)
,

where l is a constant chosen with units of length
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Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

The associated gauge curvature

R = dAA := dA + A ∧ A

also splits into an so(3,1)-valued 2-form

F = dωω −
1
l2

e ∧ e

and the R3,1-valued 2-form

dωe

such that

R =

(
F dωe
−dωe 0

)
Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 15 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

The general MacDowell-Mansouri action with local gauge
group SO(4,1) reads

S[A] =

∫
C

tr (R ∧ ?R)

The MacDowell-Mansouri model of gravity is obtained by
considering the projection of the curvature R into the
subalgebra so(3,1), resulting in the action

SMM[ω,e] =

∫
C

tr (F ∧ ?F )

By taking the projection of R, we have broken the SO(4,1)
symmetry down to SO(3,1).
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Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

De Donder-Weyl equations reduce to the Lagrangian field
equations

dAR = 0

Considering the decomposition of the SO(4,1) symmetry
(without breaking it) we find the field equations

dωF ab =
1
l2

ea ∧ (dωe)b ,

dω(dωe)a = −eb ∧ F a
b

The SO(4,1)-symmetry breaking in this formalism is
achieved by requiring that pµνa = 0, thus

dωF ab = 0 ,
eb ∧ F a

b = 0

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 17 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

MM gravity

At the Lagrangian level the variational process does not
commute with the symmetry breaking SO(4,1)→ SO(3,1),
resulting in two inequivalent sets of field equations
Within the polysymplectic approach we noticed that the
symmetry breaking process leaves invariant the emerging
De Donder-Weyl equations that follow from the
Poisson-Gerstenhaber bracket
The symmetry breaking at the polysymplectic level
includes variations with respect to all the polymomenta,
and these polymomenta precisely include spacetime
derivatives of the fields in each of the sectors in which the
gauge algebra so(4,1) is decomposed

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 18 / 20



Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

Work in progress

Higher order systems
Momentum maps
Canonical transformations
Quantum aspects (deformation? Schwinger?)
Application of the formalism to physical models

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 19 / 20

Polysymplectic formalism
MacDowell-Mansouri gravity

YM theory
MM model

Thank you!

Alberto Molgado (FC–UASLP) Polysymplectic formalism 28 Nov, 2017 20 / 20



3b4. Mai Yashiki (Yamaguchi U.),
“Observational test of the unified model in inflation

and dark energy in f(R) gravity” (10+5)
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Cosmological	evolution of
the	unified	model	in	
inflation	and	dark	energy
in	𝑓 𝑅 gravity
Mai	Yashiki,	Nobuyuki	Sakai
Yamaguchi	Univ.

The	27th	workshop	on	JGRG	@	Higashi-hiroshima,		2017.	11.	28

Purpose

⇒ ・ They	used	the	BICEP2	data	(not	be	reliable)

・ They	did	not	check	the	existence	of	radiation-dominated	era

Unified	model	in	inflation	and	dark	energy	:	
𝒇 𝑹 = 𝑹 + 𝜶𝑹𝒏 − 𝜷𝑹𝟐,𝒏

Artimowski &	Lalak (2014)

Reevaluate	the	condition	for	𝑛	by	using	Planck	data	

Check	the	cosmological	evolution	in	this	model
・Whether	radiation-dominated	era	&	matter-dominated	era	exist

This	work
and	matter-dominated era



Outline
l Introduction:	the	model	we	use

l The	condition	for	inflation

l Can	𝑓 𝑅 model	exist	each	dominated	era?

l Cosmological	evolution

l Conclusion	&	Future	work

Intro:	the	model	we	use
l 𝑓 𝑅 gravity	:	𝑆 = 0

1 ∫ 𝑑
4𝑥 −𝑔� 𝑓 𝑅�

� (𝑓(𝑅)=	non-linear	function	of	𝑅)

l Starobinsky	model:		𝑓 𝑅 = 𝑅 + 𝛼𝑅1 	(𝛼 > 0)

𝑓 𝑅 = 𝑅 + 𝛼𝑅= − 𝛽𝑅1,= model			

The	second	term	(𝛼𝑅=)	 → inflation

The	third	term	(𝛽𝑅1,=) → the	late-time	acceleration

Artimowski &	Lalak (2014)

Starobinsky	(1980),	Tomita	&	Nariai (1971)

(1 < 𝑛 ≤ 2, 𝛼 ≫ 1, 0 < 𝛽 ≪ 1, 𝛼𝛽 ≪ 1)



The	condition	for	inflation
l Friedmann	eq.	:	3𝐹𝐻1 = IJ,K

1
− 3𝐻�̇� ,	where	𝐹 ≡ NK J

NJ

l During	inflation,	𝑅 is	sufficiently	large

𝑓 𝑅 = 𝑅 + 𝛼𝑅=

l From 𝐹 ∼ 𝛼𝑛𝑅=,0 and	Friedmann	eq.,

the	slow-roll	parameter	:	𝜖 ≡ − Q
QR
̇ = 1,=

=,0 1=,0

The	condition	𝜖 < 1 ⇒ 𝑛 > 0
1
1 + 3�

(𝛼𝑅= ≫ 𝛽𝑅1,= for	𝑛 > 1	)

Hwang	&	Noh	(2001)

l The	tensor-to-scalar	ratio	𝑟 and	the	spectral	index	𝑛T are

𝑟 ≃ 48𝜖1, 			 𝑛X ≃ 1 − 6𝜖 − 2𝜂 ,	where	𝜂 ≡ Ï
Qİ
	 , dot = N

N_

1
−
𝑛 T
`a
,1
−
𝑛 T
ba

𝑟
a,
𝑟 b
a

𝑛𝑛

The	condition	for	inflation

Fig.1	： 𝑟	and	𝑛T for	each	𝑛 in	𝑓 𝑅 = 𝑅 +𝛼𝑅=model		(Artymowski &	Lalak (2014))

This	research	:	𝑛 > 1.985		(𝑁 = 50)

Artimowski &	Lalak :	1.805 < 𝑛 < 1.845

BICEP2	(2014)

Planck	(2016)



Does	each	dominated	era	exist?
l The	effective	equation	of	state

𝑤hii ≡ −1 − 1Q̇
jQR

l The	viability	conditions	were	derived	by	Amendola et	al.	(2007)

whether	each	dominated	era	exists	or	not

⇒ All	eras	exist	in	this	model	under	the	condition	for	n

radiation-dominated	era:	 𝑤hii =
0
j

matter-dominated	era:							𝑤hii = 0
the	late-time	acceleration:	𝑤hii ∼ −1

(𝑛 > 1.985)

MY,	Phys.	Rev.	D	96,	103518	(2017)

Cosmological	evolution
l Check	the	evolutions	of		Ωl,mno,pq and		𝑤hii

l Friedmann eq.		:			3𝐹𝐻1 = −3𝐻�̇� + 0
1
𝐹𝑅 − 𝑓 + 𝜅1 𝜌t + 𝜌uvN

⇔ 1 = − İ
QI
− K

bIQR
+ J

bQR
+ wRxyz{

jIQR
+ wRx|

jIQR

・ Ωl = 1 − 𝑥0 − 𝑥1 − 𝑥j − 𝑥4, 	 Ωpq = 𝑥0 + 𝑥1 + 𝑥j, 	 Ωmno = 𝑥4

・ 𝑤hii = − 0
j
(2𝑥j − 1)

𝑥0 𝑥1 𝑥j 𝑥4



Cosmological	evolution
l Evolution	of	Equation:

N}~
N�

= −1 + 𝑥01 − 𝑥0𝑥j − 3𝑥1 − 𝑥j + 𝑥4
N}R
N�

= }~}�
t

− 𝑥1(2𝑥j − 4 − 𝑥0)
N}�
N�

= − }~}�
t

− 2𝑥j 𝑥j − 2
N}�
N�

= −2𝑥j𝑥4 + 𝑥0𝑥4 , where	𝑁 = ln 𝑎

𝑚 ≡ JI�
I
, 𝐹J ≡

NI
NJ

l Use	4th	order	Runge-Kutta method

The	density	parameters

Ω

1

0.8

0.6

0.4

0

0.2

Ωl
Ωmno

Ωpq

log0a|1 + 𝑧|
-2 0 2 4 8 106

Ωla ∼ 0.35
Ωpqa ∼ 0.65 @	𝑧 = 0
Ωmnoa ∼ 2.8×10,b



The	effective	equation	of	state
𝑤

log0a|1 + 𝑧|
-2 0 2 4 8 10

0.4

0.2

-0.2

-0.6

-1

-0.8

-0.4

-0.6

0

𝑤hii

6

𝑤hii	a ∼ −0.65 @	𝑧 = 0

Conclusion	&	Future	work
In	𝑓 𝑅 = 𝑅 + 𝛼𝑅= − 𝛽𝑅1,= (Artimowski &	Lalak)	model,

lWe	get	the	lower	limit	of	n		𝑛 > 1.985	 by	using	Planck	data

lWe	show	the	existence	of	each	dominated	era

l This	model	can	reproduce	the	standard	cosmological	evolution

Future	work

Ø Analyze	this	result	more	detailed
• Dependence	of	the	initial	conditions	in	this	model
• Compare	with	the	observational	data		…



3b5. Shuntaro Mizuno (YITP Kyoto U.),
“Primordial perturbations from hyperinflation”

(10+5)
[JGRG27 (2017) 112825]
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JGRG27 @ Hiroshima

2017/11/27 - 2017/12/1   

Primordial perturbations 

from hyperinflation

Shuntaro Mizuno (YITP, Kyoto)

with Shinji Mukohyama (YITP, Kyoto)

arXiv: 1707.05125 [hep-th] 

(Physical Review D 96, 103533) 

Inflation 

- Solving problems of  big-bang cosmology                           

- Providing origin of the structures in the Universe                            

supported by current observations (CMB, LSS)                            

(Flatness problem, Horizon problem, Unwanted relics,… )

almost scale invariant, adiabatic and Gaussian perturbations                           

• Phenomenological success

• Theoretical challenge

Still nontrivial to embed the single-field slow-roll inflation into 

more fundamental theory                            (Review, Baumann & McAllister, `14)                   

- Difficult to obtain a flat potential                           

- Scalar fields are ubiquitous in fundamental theories                          



Multi-field inflation with a non-trivial field-space 

• Formulation to analyze perturbations 

Sasaki & Stewart, `96, Gong & Tanaka, `11, Elliston et al, `12

• Examples (without significant effect on perturbation) 

• Examples (with significant effect on perturbation) 

- Alpha-attractor scenario                          Kallosh, Linde, Roest, `13

- Geometrical destabilization                          Renaux-Petel & Turzynski, `15

- Hyperinflation                          Brown,  arXiv:1705.03023 [hep-th]

- Inflation with large extra-dimension                          Kaloper et al, `00

Model  

• Action

: radial direction                    : angular direction                    

(for                   )                    

• Potential

cf. ``spinflation”                    

Easson et al,  `07                    

: integration constant                    

hyperbolic                    

Brown `17



Background dynamics of scalar-fields  

• Basic equations  

with                    

for ``slow-roll”                    

• Inflationary attractors  

standard inflation                    hyperinflation                    

with                    

parametrizing 

angular velocity                    

Power-law hyperinflation 

• Potential  

• Slow-roll parameter  

(often appears in higher-dimensional theory)                    

(constant)                    

cf.                           for standard power-law inflation                                                 

• Condition for hyperinflaion

Lucchin & Matarrese,  `85,  Kitada & Maeda, `93                    

Under this condition,  inflation from steeper potentials than usual!!                    

is required for inflation                   

SM, Mukohyama `17



Basic equations for linear perturbations 

• Perturbation ( spatially-flat gauge,                            )                    

• Canonical variables

with                    

• Equations of motion

Coupling depending on h                    

( conformal time                            )                    

Brown `17

Behavior of perturbations in asymptotic regions 

• Asymptotic solutions on subhorizon scales

• Asymptotic solutions on superhorizon scales

(Adiabatic mode, constant shift in      , two heavy modes)                   

Bunch-Davies vacuum                   

For the concrete value of          , we need numerical calculations !!                   



Time evolution of (amplitude of) perturbations 

horizon

crossing                  

at late-time                   

Instability starts at                   

from top to bottom                   

Curvature perturbation 

Gordon, Wands, Bassett, Maartens `01

・Super-Hubble evolution of       in multi-field inflation      

adiabatic

entropic

・Curvature perturbation             

For hyperinflation                    

SM, Mukohyama `17



Observational constraints 

・Power spectrum             

・Spectrum index             

・Tensor-to-scalar ratio             

cf. Planck constraint                    

Deviation from exponential potential is severely constrained !!                    

GW detection will reject hyperinflation with large h !!                   

Exponential enhancemet in h !!                    

Summary 

• We have confirmed and extended the analysis of hyperinflation 

Brown, 1705.03023

• We have quantified the deviation from de Sitter spacetime

Inflation from potentials steeper than usual  for                    !!                    

• We have calculated the power spectrum of 

Potentials deviating from exponential are strongly constrained !!                    



Thank you very much !!



3b6. Vincenzo Vitagliano (Keio U.),
“Covariantly Quantum Field Theory” (10+5)

[JGRG27 (2017) 112826]
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Covariantly Quantum Field Theory
– the case of Galileons –

Vincenzo Vitagliano
Keio University

based on
Saltas & VV PRD17
Saltas & VV JCAP17

A gauge independent effective action

Two main problems in the quantization of gauge theories:
gauge vs gauge condition invariance

Modification of the background field method to ensure at start gauge
independence: Vilkovisky-DeWitt effective action

...VDW at work...

Some recent examples:
Quantum corrections to scalar and vector fields, [DJToms (2008, 2010)]

Higgs inflation [P Burda, R Gregory, I Moss (2015)]

Vincenzo Vitagliano Covariantly Quantum Field Theory



Galileon thories in a nutshell

4d Mink [Nicolis et al (2009)] =⇒ 5 galilean-invariant Lagrangians

LGalileon ∼ c1φ+ c2X + c3X ·B + c4X · [B2− (∂µ∂νφ)2] +
+c5X · [B3−3B · (∂µ∂νφ)2 + 2(∂µ∂νφ)3]

X ≡ Kin term, and B ≡ 2φ

+ invariance under Galilean transformations φ(x)→ φ(x) + bµxµ+ c
+ 2nd order field EOM
+ Screening mechanism

Curved spacetime [Deffayet et al (2009)] ⇒ Extra-couplings for 2nd order
Acceleration after radiation and matter domination.[De Felice & Tsujikawa (2010)]

Vincenzo Vitagliano Covariantly Quantum Field Theory

Understanding the quantum corrections

(Non-) Renormalisation theorems
[de Rham (2014), de Rham & Ribeiro (2014), Goon et al (2016)]

Quantum corrections including graviton loops?
[Saltas and VV PRD2017, JCAP2017]

Our choice: the Cubic Galileon theory

SCubic =
∫

d4x√g
[
− 2
κ2 R + X

(
1 + B

M3

)
+ 4Λ
κ2

]

Vincenzo Vitagliano Covariantly Quantum Field Theory



Geometrical considerations Parker and Toms (2009)

Action S[Φi = {gµν ,φ}] with local symmetries

S[Φi ] = S[Φi
ε], δΦi ≡ Φi

ε−Φi = K i
α[Φj ]δεα

Vincenzo Vitagliano Covariantly Quantum Field Theory

Field space metric

Define a metric in the field space ds2 = gijdΦidΦj , then

S gauge-invariant =⇒ gij,kK k
α + 2K k

α,(igj)k = 0

Two further ingredients: ultralocal+diagonal [DeWitt (1987)]

ggµν (x)gρσ(x ′) = 1
κ2

√
g(x) ·

(
gµ(ρgσ)ν + c

2 gµνgρσ
)
δ(x ,x ′)

gφ(x)φ(x ′) =
√

g(x)δ(x ,x ′)

Is the choice really unique? [Fradkin and Tseytlin (1984), Odintsov (1991)]

Vincenzo Vitagliano Covariantly Quantum Field Theory



The Gospel according to De Witt...

Covariant Vilkovisky-De Witt effective action [Vilko (1984); DeWitt (1987)]

Γ =− ln
∫

[dη] ·Exp
[
− 1

2 lim
α→0

ηiηj(∇i∇jS + 1
2αKβ

i Kjβ︸ ︷︷ ︸
gauge-fixing

)]

Gαβγδ(p) =
δαγδβδ + δαδδβγ − 2

n−2δαβδγδ

2(p2−2λ) +

+ (α−1)
δαγpβpδ + δαδpβpγ + pαpγδβδ + pαpδδβγ

2(p2−2λ)(p2−2ακ2λ)

G(p) = 1
p2 + m2

Λ

with λ≡ Λ +γΛ
(

n−4
4−2n

)
and m2

Λ = γ · nΛ
2−n

Vincenzo Vitagliano Covariantly Quantum Field Theory

1–loop effective action

Γ1–loop α→0= aL ·
∫

d4x

{
− 1

16M6 φ2
(4)φ +

5m2
Λ

8M6 φ2
(3)φ+

+φ2(2)φ

[
κ2

4 ·
(
ακ2γ+ 3γ2

4 − 3γ
2 − ακ2γ2

4 −ω− γω

2

)
−

15m4
Λ

8M6

]
+

+∂µφ∂
µφ · κ

2

2 ·
[
γm2

Λ
8 −λω2 −ωm2

Λ + 2ακ2λω+
ακ2m2

Λ
2 −α2κ4λ

]}

Vincenzo Vitagliano Covariantly Quantum Field Theory



1–loop effective action

Γ1–loop α→0= aL ·
∫

d4x

{
− 1

16M6 φ2
(4)φ +

5m2
Λ

8M6 φ2
(3)φ+

+φ2(2)φ

[
κ2

4 ·
(
ακ2γ+ 3γ2

4 − 3γ
2 − ακ2γ2

4 −ω− γω

2

)
−

15m4
Λ

8M6

]
+

+∂µφ∂
µφ · κ

2

2 ·
[
γm2

Λ
8 −λω2 −ωm2

Λ + 2ακ2λω+
ακ2m2

Λ
2 −α2κ4λ

]}

Vincenzo Vitagliano Covariantly Quantum Field Theory

What to pack and bring home
The Vilkovisky-DeWitt method ensures background- and gauge- independence

and unveils potentially hidden quantum corrections

Galileon case: new interactions at 1-loop

Extra purely quantum-gravitational contributions

The new operators correspond to higher-derivative interactions for the Galileon
∼ Λ

M6 φ2
(3)φ, ∼ − Λ2

M6 φ2
(2)φ

Vincenzo Vitagliano Covariantly Quantum Field Theory



.

Example: gen coord transf. xµ→ x̃µ = xµ+ δεµ(x)

δgcoor
µν (x) =

∫
dnx ′K gµν(x)

λ(x ,x ′)δελ(x ′)

δφcoor(x) =
∫

dnx ′Kφ(x)
λ(x ,x ′)δελ(x ′)

symmetry generators

K gµν(x)
λ(x ,x ′) = −gµν,λ(x)δ(x ,x ′)−2gλ(ν(x)∂µ)δ(x ,x ′)

Kφ(x)
λ(x ,x ′) = −∂λφ(x)δ(x ,x ′)

Vincenzo Vitagliano Covariantly Quantum Field Theory



Field displacements

δΦi = δ||Φi + δ⊥Φi = K i
αdεα+ δ⊥Φi

A gauge-fixing condition, χα[Φi ] = 0, introduces in the fields space a
gauge surface S and a set of gauge orbits parametrised by {χ[Φ]A, ξ[Φ]A}

Vincenzo Vitagliano Covariantly Quantum Field Theory

Background field expansion Φi = Φ̄i +ηi

gµν(x) = ḡµν +κhµν , φ(x) = φ̄+ψ

Pick up a gauge: e.g. Landau-DeWitt (aka background-field)

χα = Kα
i [φ̄]ηi = 0

Vincenzo Vitagliano Covariantly Quantum Field Theory



∇i∇jS = ∂i∂jS−γΓk
ij∂kS

(e.g. Γφ(x)
φ(x ′)gµν(x ′′) = 1

4gµν(x)δ(x ,x ′)δ(x ′′,x ′))

Vincenzo Vitagliano Covariantly Quantum Field Theory

Γ'− ln
∫

[dη]e−S0
(
1− δS + 1

2δS
2)' 〈S2(x ,x)〉− 1

2 〈S1(x)S1(y)〉

Vincenzo Vitagliano Covariantly Quantum Field Theory



Invited lecture 16:45–17:45
[Chair: Kentaro Takami]
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Takashi Nakamura (Kyoto Univ.),
“ New development in astrophysics through

multimessenger observations of gravitational waves
from 2012 to 2017” (25+5)

[JGRG27 (2017) 122828]
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H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

�
２０１２.５.16 at Ministry of Education�

�
Principal Investigator�

Dept. Physics Kyoto University�
Takashi Nakamura�

JGRG has been partly supported by this 
innovative area etc�

�
�

1

Second application (first one was rejected �
because KAGRA was included)�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Distorted space-times�

Image of �
gravitational wave �

What is gravitational wave？�

2

According to general relativity the matter 
distorts the space-time around it�

If the matter is accelerated, distortion 
of the space-time propagates with the 
light velocity as wave. �

This is gravitational wave �

It has not been detected directory！！�

Gravitational wave  will be directly 
detected around 2016 　　　　　　　　　　　　
almost definitely�

Flat space-times�

Why？　　　Gravity is the weakest force （two 
protons gravity/electric force=10-36)�

⇒both generation and detection are difficult。　�

However �



H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Why definite？　Answer①：Big interferometers are 
constructed and developed�

3

　　　�
　　　�
� （旧称　LCGT)�

Laser interferometer�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

4

1.   Number of events increases in 
proportion to the third power �

     of sensitivity�

sensitivity∝ detectable distance	
 number of event ∝ detectable 

volume　∝distance３ ∝ 
sensitivity3�
�

2. Characteristic of gravitational wave�

Gravitational interaction is the weakest 	
so that gravitational wave passes through  
any matter and reach long way.	
	

　weak point changes best point	
　	
	

Event number　∝ distance３	

�
10 time increase of 
sensitivity yields 1000 
times number of events！�

Why definite？　Answer②：number of events can be predicted�

Around 2016 10 times increase 
of the sensitivity is 
expected！�



H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

5

昨年度領域名「天体からの重⼒波検出で開く物理学のフロンティア」�

昨年度�
今年度　領域名「重力波天体の多様な観測による�
　　　　　　　　　　　　宇宙物理学の新展開」�

重力波検出の基礎実験に�
関する計画研究2つ�

重力波イベント速報の計画研究１つ�

電磁波・ν対応事象の計画研究１つ�

理論の計画研究１つ�

　廃止（KAGRA（旧称LCGT）に移行）�

継続�

①ガンマ線・X線、②光・赤外線・電波�
③ニュートリノ観測の計画研究３つに強化�

①重力波天体の電磁波・ニュートリノ対応事象の研究のみに絞った提案�
②KAGRA計画とは独立で重力波の実験は含まずに他分野の研究者と理論・データ解析�
　　の研究者のみからなる研究提案�
�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Purpose and necessity of this innovative area�

6

2016　will be the start year of detections of gravitational  wave�
�
　　　　　 However only from gravitational waves the location can be restricted only �
           about 20 degree square error region�
　　　　　　　　　　（inside this error region、about 105 stars and 103 galaxies exist）�
�
　　　　　　　Using other methods、we need to identify which star or galaxy is the source of �
               gravitational wave�
�
　strong gravity⇒large acceleration⇒high density⇒high temperature⇒neutrino・EM will be emitted�
�
�
　　 purpose of this area is detection of                  direction & distance to the sources�
                             EM・ν            　　　　　　�
�
　　　　　　　　　　       KAGRA・LIGO・Virgo         　　　　　Information of central region of GW sources�
�
�
　�
　　　　　　　 Both activity  are needed to confirm general relativity �
                in the strong field region and to develop fundamental physics�
�
　　　　　　　Both activity are needed to open a new window in astronomy�
�
�
This area and KAGRA are complementary　　　　budget and organization are independent from  KAGRA                                                                                                                       �
�
�
�
�
�

 �
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A01�
A02�

A03�

A04� A05�
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Expected results and expansion of this region to other fields�

8

１．Confirmation of GR�
・generation and propagation of GW�
・higher dimensional gravity�
   theory�
２．Sources of GW�
・supernovae�
・SGRB�
・coalescence of compact stars�
�
３．Fundamental physics�
・EOS of high density matter�
・neutrino physics�

�
Expected results�

Cosmology�
Distance calibrator・�
Origin of Big Bang etc�

Particle physics�
Neutrino・topological �
     defect etc�

Theory of gravity�
BH, scalar tensor theory�
High dimensional theory�
            etc�

Nuclear theory�
EOS of high density matter�
       QCD etc�

astronomy�
X-ray star・radio pulsar�
Gamma ray burst etc�

Astrophysics�
Supernova・neutron�
Star・black hole etc�
�
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Example 1�
①How our project treats�
    coalescence of binary neutron stars�  	Error region by GW	

9

Step 1 A04 allerts the position of GW with several degree.�

Step 2 A01 observes  GW position with 0.1°accuracy by X-ray �

Step 3 A02 perform optical observation to determine the position 
with arc sec accuracy�
                                           　A03 will checkνemission �
Step 4 A02 identify host galaxy to determine the distance and　�
　　　　compare that from GW　If two are the same GR is OK.　�
　　　　　　　　　　　　　　　　　　　　　If not, biggest discovery.　　�

Step 5 A01 and A02 with radio obs. check property of GRB.　�

Step 6 All group including theory group A05 check if the 
prediction by Einstein 100 years ago is correct or not ?               �

γ & X-ray 
0.1°〜a minute�

Optical  obs〜1″�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Example 2�
②When supernova occurs three thousand light year from the earth.�

10

Step 1 From detected ν A03 allert position with several degree accuracy�

Step 2 A04 check if GW is emitted�
               yes　⇒　SN was non spherical explosion�
　　　　　　   no　 ⇒　counter example against standard theory�

Step 3 A01&A02 perform X-ray and optical observations�
　　　　　　　　　　　　　　　　　　　　　　　Check property of Super Nova�

Step 4 A03&A04 Analysis of correlation of νand GW 　　　　　　　　　　　　　　　　　　　　　　　　　�

Step 5 All group including theory group A05�
　　　　　　　Check how all the atom in earth and mankind formed �
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Schedule of each group and correlation	

 装置の改良、
速報体制�

2012 2013 2014 2015 2016 2017

A01
重力波天体からのX線・γ線

放射の探索	

WF-MAXI: 試作品開発

MAXI、すざく、Swift等の衛星を用いて、 
GRB、中性子連星、ブラックホールの研究	

WF-MAXI: 搭載品開発	
	
	
観測装置・ソフトウエア、観測計画に反映	

重力波観測フォロー
アップ

A02
天体重力波の光学赤外線

対応現象の探索

岡山赤外カメラ自動
観測化	
木曽シュミット望遠
鏡整備	

GRBフォローアップ
システムの整備、
京大面分光装置開
発	

中国に広視野望遠
鏡、
木曾シュミット6度カ
メラインストール	

重力波観測フォロー
アップの試験観測

重力波観測フォロー
アップ開始

A03
超新星爆発によるニュートリ
ノ信号と重力波信号の相関

の研究	

200t R&D データ収
集系アップグレード、
超新星ニュートリノ
検出器の計画	

検出器更正
長期観測への準備	

他の観測との正確
な時刻同期	

観測
遠い超新星についてもより良い感度をもつ
ためのオンライン計算の継続的な改良	

A04
多様な観測に連携する重力
波探索データ解析の研究	

探索解析システムの開発
GRID環境の構築

本機導入	
解析ソフトウエア実
装	

観測データ転送、	
重力波探索

パイプライン解析の
調整、
速報システム整備

A05
重力波天体の多様な観測に

向けた理論的研究
	

幅広い理論研究の連携の強化。最適な同
時観測、データ解析の体制の改善に向けた
理論的知見の発展	
と整理。重力波波形予測の整備。	

重力波観測とその他のプローブによる同時観測に向けた更なる理
論的研究の推進。幅広い理論研究の	
連携の強化。	

KAGRA計画	 建設	
常温観測
iKAGRA	

低温化へ
bKAGRA	

海外の重力波検出実験	
advanced LIGO 
advanced Virgo

インストール	 装置調整	 観測開始	

開発・観測準備�

国際共同観測
網への参画�

iKAGRA�
共同観測�
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What each group　recommends：�

１. This area use GW、ν、gamma ray、X ray、optical・infra red、
radio. Full Multi Messenger Astrophysics by a single group�

�
２．A01 world wide activity on research of GRBs�
�
３．A02 world wide Japanese telescopes �
�
４．A03 the first neutrino detectors in the world using Gd to�
              identify anti-neutrino in the detection of supernova 

nutrino�
�
５．A04 data analysis power fromTAMA300 over 10 years.�
�
６．A05 Various world wide results on post-newtonian GW 

form, numerical relativity, supernova and so on.�

12
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　　　　　　　How to bring up students �
      and outreach general people in Japan�

13

　Gravitational wave is the field in science with big development in this 
century so that it is the very important field　�
�
①　We will bring up necessary young students�
　　　　・Take place the seminars for wide field young students�
　　　　・Hire active young researchers�
�
②　How to teach scientific results to general people in Japan�
　　　　・Home Page�
　　　　・Write articles in general scientific magazines�
　　　　・Public lectures to  high school and university          
students  as well as citizens.�
　　　　・Consider the possibility that  citizens join to data 
analysis.�
　　　　�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

　　　　　　　　　　　　　　Conclusion�

14

New window by gravitational wave will be opened in 2016�
　�
Simultaneous observations by gamma, X ray, optical・infrared, 
radio and neutrino are indispensable�
�
Construct the follow-up system using full power of Japan as 
soon as possible.�
We will answer to questions like�
Prediction by Einstein 100y ago is correct or not?�
How the atom like gold and platinum was formed？ etc�
�
We promote development of cosmology, particle physics, nuclear 
physics and so on.�
�
Open the new window to the universe !!　�
See the new world of science!!�
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�

２０１7.9.8 at Ministry of Education�
�

Principal Investigator�
Dept. Physics Kyoto University�

Takashi Nakamura�

�
�
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Results after five years �
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Organization of this innovative area�

Principal Investigator�
Takashi Nakamura（Kyoto Univ.) Total budget 1.24x107yen~11M$�
�
Strategic research�
•  A01「Search for X & gamma ray from GW sources」�
PI：Nobuyuki Kawai（Tokyo Inst. Tech.）�
�
•  A02「Search for optical & infrared radiation from GW sources」�
PI：Michitoshi Yoshida（Hiroshima Univ.）�
�
•  A03「Research of correlation of GW and neutrino signal from SN」�
PI：Mark Vagins（Tokyo Univ. IPMU）�
�
•  A04「Data analysis of GW signal related to various observations 」�
PI：Nobuyuki Kanda（Osaka City Unv.）�
�
•  A05「Theoretical research for various observations of GW sources」�
PI：Takahiro Tanaka（Kyoto Univ）�
�
Headquarter�
•  X00「New development in Astrophysics through multi messenger 

observation of gravitational waves」�
PI：Takashi Nakamura（Kyoto-Univ.）�

16
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A01�
A02�

A03�

A04� A05�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Operating status of GW detectors�

1) aLIGO     �
 O1 (Observing run 1 )  2015/9-2016/1�

•  Sensitivity：〜1/3 of the final one�
•  Results：two Binary BH events�
•  A01 and A02 performed follow-up observation based on MOU�

2) aLIGO& aVirgo �
O2 2016/12-2017/8�

•  Sensitivity：~1/6-1/2 of the final one�
•  Results：2017.1.4 30ー20Msun BBH. There is announce of 

detections without details. A01 and A02 performed follow-up 
observations based on MOU up to 2017.8.25�

•  Rumors suggest the big discovery�
3) KAGRA performed room temperature observations from 

2016.3 to 2016.4�
•  A04 succeeded to transfer the data and performed the data 

analysis�

18
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We predicted the first directly observed GW event 
GW150914 in 2014�

30-30 solar mass binary BH from the first stars in the universe�
•  PI and Kinugawa + 3 graduate students predicted in 2014�
•  In the summary of GWPAW2015 held June 2015, “30Msun BBH will be 

detected in September!!! “  �
•  In the LIGO paper, “30Msun BBH   predicted by Kinugawa et al. (2014) 

astonishingly agree with GW150914 ”�
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phase that is dynamically unstable leading to inspiral in a
common envelope (in which the first BH potentially grows
slightly in mass; O’Shaughnessy et al. 2005a), (iv) the second
core-collapse event leading to BBH formation, and (v) inspiral
due to GW emission and merger. Dominik et al. (2012) found
that the vast majority of BBH mergers follow this evolutionary
path: 99% at solar metallicity and 90% at 0.1 Z:. Alternative
formation pathways, avoiding mass transfer and common
envelope, may be possible if massive stars remain rapidly
rotating, stay chemically homogeneous through their lifetimes,
remain compact, and do not become giant stars (see de Mink
et al. 2009; Mandel & de Mink 2016; Marchant et al. 2016).

Most studies indicate that model predictions, in particular
merger rates, but also probability distributions of BBH properties,
are affected by a considerable number of physical factors and
associated parameters, albeit at different levels of sensitivity: (i)
initial binary properties (masses, mass ratios, and orbital periods),
(ii) stellar evolution models including metallicity-dependent wind-
driven mass loss, (iii) mass and associated angular momentum
transfer between binary components and loss from the systems,
(iv) treatment of tidal evolution, (v) treatment of common-
envelope evolution, and (vi) BH natal kicks. The significance of
(v) and (vi) has been discussed recently for the StarTrack(Belc-
zynski et al. 2008a) models by Dominik et al. (2012) and
Belczynski et al. (2015). Recently, de Mink & Belczynski (2015)
concluded that the current uncertainties in initial binary properties
(i) do not dramatically change the rates. The other factors, i.e.,
(ii)–(vi), have been consistently identified as important, not just
for rate predictions, but also for predictions of BH mass spectra in
merging BBHs.

As we have discussed, the GW150914 masses favor the newer,
weaker stellar winds and metallicities below Z:. Quantitative
models for BH and BBH formation considering such conditions
have appeared only in the past five years, starting with Belczynski
et al. (2010b), and in numerous follow-up studies(Dominik et al.
2012, 2013, 2015; Belczynski et al. 2015; Spera et al. 2015).
Dominik et al. (2013) fold in cosmological effects, accounting for
redshift evolution of the formation rate and metallicity (down to
Z 10 4� � ). With the extension to such low metallicities, the
strong dependence on the common-envelope treatment found
earlier (Dominik et al. 2012) is weakened in the case of formation
of BHs more massive than 20 M:. In fact, it is striking that, once
full metallicity evolution is included, BBH systems that merge
within the age of the universe and have total masses as high as
∼100 M: are rather generically formed regardless of other model
assumptions; still, predicted detectable samples seem to be
dominated by less massive BBH systems(Belczynski et al.
2014; Dominik et al. 2015).

On the extreme low-metallicity end, it has been proposed
that BBH formation is also possible in the case of stellar
binaries at zero metallicity (Population III [PopIII] stars; see
Belczynski et al. 2004; Kinugawa et al. 2014). The predictions
from these studies are even more uncertain, since we have no
observational constraints on the properties of first-generation
stellar binaries (e.g., mass function, mass ratios, orbital
separations). However, if one assumes that the properties of
PopIII massive binaries are not very different from binary
populations in the local universe (admittedly a considerable
extrapolation), then recently predicted BBH total masses agree
astonishingly well with GW150914 and can have sufficiently
long merger times to occur in the nearby universe(Kinugawa
et al. 2014). This is in contrast to the predicted mass properties

of low (as opposed to zero) metallicity populations, which
show broader distributions(Belczynski et al. 2015).
We conclude that predictions from a broad range of models

for BBH formation from isolated binaries are consistent with
the GW150914 masses provided that newer, weaker massive-
star winds and extrapolations to metallicities of 1/2 Z: or
lower are adopted. More calculations of massive binary
evolution with updated wind prescriptions and taking cosmo-
logical evolution into account are needed to fully exploit the
new information that would be provided by additional GW
detections.

3.4. BBH Masses from Dense Stellar Environments

Over the last few decades our understanding of the evolution
of BHs in dense stellar clusters has evolved considerably.
Based on early analyses(Kulkarni et al. 1993; Sigurdsson &
Hernquist 1993) BHs form in clusters from massive stars and
quickly mass segregate to the center through dynamical friction
(on a timescale shorter than the overall relaxation time by a
factor that is the ratio of the mass of the typical BH to the
mass of an average background star). In these high-density
conditions, BHs dynamically interact, forming binaries, and
often are ejected from the cluster. Such dynamical interactions
preferentially keep the heaviest objects in binaries and eject the
lightest, producing heavier binaries and driving mass ratios
closer to unity(Heggie 1975). Portegies Zwart & McMillan
(2000) presented the first significant N-body simulation of
equal-mass BHs in a dense cluster, and they found that the
ejected BBH systems are sufficiently eccentric that they will
merge within the age of the universe at a rate important for
LIGO/Virgo observations. Since then, studies of varying levels
of detail have examined BBH formation in clusters and have
identified the importance of three-body interactions for hard-
ening binaries to the point they can merge in a Hubble time,
pointing out that these interactions are also responsible for
dynamical ejections(Gültekin et al. 2004, 2006; Kocsis et al.
2006; Banerjee et al. 2010; Bae et al. 2014) as well as in
galactic centers (Miller & Lauburg 2009; O’Leary et al. 2009;
Kocsis & Levin 2012; Tsang 2013). GW kicks(Zlochower &
Lousto 2015 and references therein) can also eject post-merger,
single BHs from their host clusters. Throughout these studies
BHs are assumed to be of a single fixed mass (typically 10 M:).
Therefore, although their results are relevant for understanding
the effects of stellar dynamics on BBH formation and evolution
and the expected merger rates (Section 6), they cannot be used
to determine the expected masses of BBH mergers formed in
dynamical environments.
O’Leary et al. (2006, 2007) and Sadowski et al. (2008)

presented the first BBH population predictions from dense
clusters with a BH mass spectrum. Their treatment of the
effects of stellar dynamics was based on simple cross sections
and a static density background. Nevertheless, their results
generically produced BBH mergers in the local universe with
BH masses of several tens of solar masses.
The first simulations to account in detail for both binary

evolution and stellar dynamics with a BH mass spectrum and
with realistic numbers of particles were by Downing et al.
(2010, 2011) and by Morscher et al. (2013, 2015). Morscher
et al. (2015) and Rodriguez et al. (2016) further accounted for a
population of globular clusters with varying cluster properties
(mass, density, and metallicity). Examination of these results
indicates, very much like the models of isolated binary
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Osaka&20.6.2015

30%+%30%solar%mass%BHs
Interes1ng&target&for&three&

reasons: 
 
Inspiral&and&ringdown&phases&

have&roughly&equal&SNRs,&so&

provides&good&test&of&GR 
 
If&popula1on&III&stars&(formed&at&

redshios&5\10)&exist,&these&

might&be&a&substan1al&frac1on.&

Perhaps&we&will&detect&several&

of&them&in&the&first&aLIGO&data&

run&O1,&this&September!
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y Kanda, the LCGT collaboration, arXiv:1112.3092

30M_sun-30M_sun

Similar SNR for the inspiral and ringdown phases

Nakano%Talk

  This is one of the slides in the 
summary talk by Bruce Allen at 
GWPAW2015 held 20th June 2015 �
�
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Mass of BH with solar mass unit�

Detectable �
distance�

First star in the universe�

30+30 solar mass is best to 
detect both chirp and ring 
down GW�
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質問事項２�

2015年6⽉に30太陽質量のブラックホール連星の合体の可能性がA05により
指摘された。これを受けて、A01-A04において重⼒波発⾒に先⽴った新たな
研究を模索する動きはあったのか説明していただきたい。�
�
回答�

１）GW150914のような30-30太陽質量のブラックホール連星合体では、合体
前、合体中、合体後の３つの重⼒波の解析が重要であるが、合体後の減衰振
動は重⼒が最も強いところでの性質の情報を持って来るので、アインシュタ
イン理論の正否を決定すると期待されていた。A04では減衰振動の解析法の
検討を始めて、Hilbert-Huang変換を⽤いて、合体中と合体後の区別をする
⽅法を提案した。その結果、aLIGOの解析より精度の良い結果を出せるよう
になった。しかし、アインシュタイン理論の正否を結論づけるのには
GW150914より、もっとSNの⼤きいイベントが必要であることがわかった。�
�

２）電磁波とニュートリノ放出はブラックホール合体では期待薄であるが、⾃
然は⼈類を超越している可能性もあるので、A01,A02, A03では、
GW150914等の４つの連星ブラックホール合体の追観測を実施した。A05は
合体後に星間物質がブラックホールに落下して太陽光度の1000万倍くらいの
電磁波が出る可能性も指摘していたが、これは追観測の⼠気を上げた。�

�
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 A01 Search for X & gamma ray from GW sources�

Target １: Design & trial manufacture of WF-MAXI�
•  Soft X-ray Large solid angle Camera (SLC) �
  development of CCD and estimate �
of ability à done�
development of camera and circuit �
for signal à Thermal design for ISS and �
  rapid read out are done�
�
•  Hard X-ray Monitor(HXM) �
detector(GAGG scinti+APD ）�
Data analysis using  ASIC�
à Done with two revisions�
�
•  Apply to small scale mission of �
  ISAS(Japanese counter part of NASA )�
2014: 4SLC+HXM (cost~40M$)�
Not adopted. ISAS comment was�
“The probability  of detecting GW is not high. �
Estimate of cost performance is needed”�
àThis is completely wrong.�
�
2015: 1SLC (~10M$)�
�
Not adopted（ISAS）�
because「ASTROSAT（launched 2015 ）�
can do the observations by WF-MAXI�
�
�

�
�

�
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                              MAXI and WF-MAXI�

�
�
 �
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WF(Wide Field)-MAXI covers 20% of sky in X-ray band while MAXI does 
1%.�

MAXI� JEM EF�

Direction �
of Motion�
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A01 Search for X & gamma ray from GW sources�

Obs. of GW150914 by MAXI �
•  Sky map after 92min and 1 day�

and the direction to GW by a LIGO�

1 scan (≤ 92 min)�

1 day�

▲

●

●
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•  Upper limit by MAXI(▼） & 
Expected sGRB X-ray 
intensity in aLIGO error 
circle (●)�
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質問事項 1�

�X 線・ガンマ線での広視野モニター観測の将来計画は結局どのように⾒直すこ
とにしたのか。また、X線観測装置の今後をどのように考えているのか、将来
像を説明いただきたい。�

�
•  ISAS「⼩規模計画」での実現は困難�
（質問事項3への回答を参照） �
�
•  ⽅針：国内外の他ミッションへの協⼒を通じて実現�

• “HiZ-GUNDAM” （⽇本：GRB・GW対応天体追跡観測）�
JAXA⼩型衛星に再応募予定 (⽬標: 2018採択、2022〜打上)�
Ｘ線広視野モニター（本領域公募研究で開発）を搭載�
�

• “Einstein Probe” （中国：軟Ｘ線広視野モニター衛星）�
 2022打上を⽬指して概念設計・試作実施中�
 本研究メンバーに検出器開発協⼒要請�
�

• 他の提案にも参加�
• “THESEUS”  ESA 中型衛星提案(2016)に参加、本年末に採否決定�
• “eXTP” 中国-欧州ミッション、Ｘ線広視野モニターチームに参加�

Einstein Probe 試作品�
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質問事項 3�

�WF-MAXI に関して、プロトモデルの開発などをしたものの、採択には⾄ら
なかったことは残念である。その後、規模を縮⼩しての提案になっている
が、現状での⾒通しはどうか説明いただきたい。�

�
• 計画研究予算による実施⽬標は達成�
搭載装置の開発・試作・評価を実施�
ミッションの予備設計実施・ISAS公募にISS搭載を2回提案�
�
• 今後のISAS「⼩規模計画」への応募は断念�

ー公募予算規模の縮⼩ (総額数⼗億円以下è総額2億円未満）�
-  2015年提案（当初の1/4 縮⼩~10億円）でも実現不可能�
-  ⼀⽅、競合ミッションの進⾏、新技術の出現�

-  (Lobster Eye光学系、CMOS撮像素⼦、超⼩型衛星バス、...） �

• 対応1：他ミッションへの協⼒ (à質問事項1）�
• 対応2：超⼩型衛星による科学⽬標の実現�
“Hibari” 50 kg級超⼩型衛星による紫外線突発天体探索�

�2016衛星設計コンテスト⼤賞・2017より基盤A+若⼿Aで開発�
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A02 Search for optical & infrared radiation from GW sources�

Construction of J-GEM and folow-up obserbation�
•  J-GEM(Japanese collaboration for Gravitational-wave Electro-

Magnetic follow-up)�

• GW151226�
Subau-HSC performed�
The deepest observation�
è 60〜100degree2�

and proved ability of �
 detection of possible�
 darkest signals in the�
 world�

�
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iPTF,�
panSTARRS�

DECam�

J-GEMʼs observation of GW151226�
Subaru HSC performed the deepest follow-up observation。�

dark�

bright�

theory�

theory�

theory�

Observation by 
small telescope�
With negative 
results�

8m class large�
telescope�

Observation time in day�

HSC�
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IRSF (Nagoya Univ.) 
@ South Africa�

•  1m Kiso Schmidt telescope�
6 deg2 camera è 36 deg2�

•  1.5m Kanata telescope �
•  2m Nayuta telescope�
•  50cm MITSuME�
•  91cm OAO-WFC of NAOJ�
•  Yamaguchi 32m radio telescope�

★	
★	

miniTAO (Tokyo Univ.) �
ASTE (NAOJ) @ Chile�

50cm telescope 
(Hiroshima Univ. 

2016)�

J-GEM (Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up) 

HSC, Subaru @Hawaii�

★	

Extension of A02 project of the innovative area 
“Multi-messenger Observations of GW sources”  

3.8m telescope 
(Kyoto Univ. 2017)�

Main features:�
 5 deg2 opt. imaging w/ 1m�
   1 deg2 NIR imaging w/ 1m�
   opt-NIR spectroscopy w/ 1–8m�
   opt-NIR polarimetry�

MOA-II, B&C (Nagoya 
Univ.) @ New Zeeland�

★	

★	

TAO 6.5m 
(Tokyo Univ. 

2018)�
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質問事項 4�

チベットに仮設置した望遠鏡の本格設置は、政治的要因で遅れているようだが、
現在も⼊境許可が 出ていない状況の中、今後の⾒通しについて説明いただきたい。
また、開発したハードウェアーによる これまでの成果について説明していただき
たい。�
�
中国チベット・50㎝望遠鏡の状況と今後�
•  現在（2017/8）の状況�

・2016年9⽉9⽇にチベット現地に望遠鏡・観測装置⼀式を中国所有ドームの中に仮設置し、試験
観測を実施した。�

・試験観測の結果、望遠鏡＋観測装置の光学性能が設計通りであることを確認した。�
また、チベットサイトのシーイングが1秒⾓を切っていることを確認、⼤気透過率と合わせて、
50㎝望遠鏡の限界等級が⽇本国内の1m望遠鏡に相当することが分かった。科学観測はまだ⾏っ
ていない。�

・2016年10⽉以降、ドーム設置と望遠鏡の本格設置・定常運⽤開始を⽬指してチベット⼊境を試
みているが、当局の許可が得られていない。�

�
•  今後の⾒通しと⽅策�

・2017年9⽉後半〜10⽉にチベット⼊境が許可される⾒通し è 約3週間の滞在でドーム・望遠
鏡設置を⾏う。�

・中国・紫⾦⼭天⽂台から博⼠留学⽣が広島⼤学に来ており、研究の⼀部として本50㎝望遠鏡に関
する開発も⾏っている。今後も⽇本⼈のチベット⼊境が困難なことが予想されるが、本留学⽣
（紫⾦⼭天⽂台職員）が帰国後に望遠鏡調整・運⽤の中⼼となってプロジェクトを継続していく
ことを計画している。新しい新学術（⽥中代表）での活躍を期待できる。�
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A03: Research of correlation of GW and neutrino signal 
from SN�

30

200t water  cherenkov detector near 
Super Kamiokande under 1000m �

•  Possible to identify anti-
neutrino from neutrino�

•  Possible to detect arrival 
direction�

•  8000 events from SN of 
Betelegeuse due to increase 
by new circuit�

Performed continuous observation for two �
years！�
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Super-Kamiokande decided introduction of Gd  ！�

31

•  Similar to pure water transparency�
•  From this success Super-K team decided to add Gd�
•  Neutrino from far SN can be detected in future�

 check  transparency of  water using of EGAD�

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

A04 Data analysis of GW signal related to various 
observations�
Success of real time transfer of GW data of KAGRA to Osaka city univ.�
•  KAGRA at Kamoka mine → Cluster computers at Osaka city univ        

Average delay time was 3 second !!�
We ourselves made software of data transfer�
Safe operation more than one and half year�
VPN(Virtual Private Network) is safely  operated�

Mile stone for low delay time data transfer �
was achieved！�

32

KAGRA site�
（underground tunnel)�
Gife Pref. kamioka mine�

Osaka	city	Univ.	

ICRR（kashiwa)	

Internet	
+VPN	

Data	transfer	time	KAGRA→Osaka	

red：all data	
	
Blue、green、yellow：subset 
of data	
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iKAGRA data

1
5

total'time[s] total'time'
[day]

percentage
[%]

all'data 547200 6.33 100

locked'
data 366976 4.25 67.1
analyzed
data 47904 0.55 8.76

� 1st0run0(March0data)

� 2nd0run0(April0data)

total'time[s] total'time'
[day]

percentage
[%]

all'data 1238400 14.33 100
locked'
data 1066240 12.34 86.1
analyzed
data 895552 10.36 72.3

9664[s]0~02.7[h]

66144[s]0~018.4[h]0

Locked'data':''more'than'32'second'lock'
Only'data'which'is'longer'than' 4096 sec are'analyzed

A04 data analysis of GW signal related to various 
observations�
 Analysis of real data was done �

Data analysis of test operation of KAGRA 
data in 2016 was performed�

•  Search for compact binary merger�
•  Burst wave from supernova�
•  Continuous wave from�
   pulsar�
•  Analysis of noise from KAGRA�
�
�
Analysis of GW150914�
•  Use open data of aLIGO�
�
Construction of data analysis group in 

Japan including young researcher was�
 done by PI of A05 and team members.�

33

Histogram	of	lock	time	of	operation	
of	KAGRA	2016	April	

18.4hours continuous �
 stability�
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A05 Theoretical research for various observations of GW 
sources�
Density perturbation in the early universe can make 30 solar 

mass binary BH at its high amplitude region. This can be the 
origin  of dark matter. �

•  Primordial black hole scenario for the gravitational wave event 
GW150914 (M. Sasaki, T. Suyama, T. Tanaka, S. Yokoyama)�

•  Phys. Rev. Lett. Editorsʼ Suggestion 

34

•  Based on the natural scenario of 
primordial BH formation, we computed 
the formation rate of 30 solar mass 
binary and found that it is compatible 
with that of GW150914 as well as 
observation of the deviation of CMB.�

The nearer two BHs 
make binary by the 
third body and merges 
at the age of Universe�

Third bodyʼs tidal 
force can make 
binary.�
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Various activity and Development of young researchers�

We developed many young researchers�
1.  We use English in every meetings and 

symposium. We made special sessions 
for young researchers at the 
symposium�

2.  22 young researchers got research 
posts. Others got another post doctoral 
jobs and are continuing the research.  �
�

3.  We host 13 international conference in 
Japan and 3 in the abroad.�
Many graduate students and posdocs 
made oral and poster presentations in 
English.�
�

4.  The total number of refereed  papers is 
472.�

5.  16 awards and 3 promotion to professor 
or associated professor.�
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	GWPAW(Gravitational	Wave	
Physics	and	Astrophysics	
workshop)	2015,	in	Osaka	
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Outreach, magazines, newspapers and TV�

The first direct detection of �
 GW.�
•  LIGOʼs press conference�
  2016 Feb. 11�

Answer to questions from�
Reporters of news papers �
and TV.�

•  Many Public lectures.�
•  Many Public writings�
�
Public lectures for high school students 

and citizens�
•  Public lectures for 100 anniversary of 

general theory of relativity were held at�
   15 places in Japan with 2500 participants�
�
•  Free electric book for high school 

students at HP of this innovative area�
Written by Nakamura(PI) “The last one 

second” (75pages)�
2868 down loads (at 2017/9/4)�

�
36

Mainichi	
news	paper	
web	site	
Explain	
LIGO’s	
press	
release	by	
member	of	
A04	
	

Poster	of	
Public	
lectures	100	
anniversary	
of	general	

theory	of	
relativity	
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Conclusion�
A01�

•  Brought one year advance of X-ray follow-up of GW events detected  by aLIGO using MAXI and CALET for three 
years expecting fine results in  O2.�

•  For WF-MAXI which covers 20% of the sky, we succeeded in preliminary design and construction of the apparatus.�

A02�
•  Brought one year advance of optical・infrared follow-up observation  of GW events detected  by aLIGO for three 

years. Organized J-GEM (Japanese collaboration for Gravitational-wave Electro-Magnetic follow-up) which has high evaluation 
in the world.�

•  In aLIGO O2, A02 might have big results.�

A03�
•  Operated 200t water Cerenkov detector which can distinguish anti-neutrino first in the world for  two and half years,�
•  From  this good result,  SK decided to include Gd next year�

A04�
•  Succeeded in fast and stable transfer of GW data from KAGRA and analysis of the data. A02 is now ready for 

operation of KAGRA detector.�
•  Found new data analysis methods using open data of aLIGO.�

A05�
•  Predicted 30Msun BH binary from the first star in the universe which is detected by aLIGO.�
•  Also predicted 30Msun BH binary from the density perturbation in the early universe.�
•  To identify which is the case, it is needed to construct 0.1Hz band cosmic detector called DECIGO.�
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This innovative area performed many themes appropriate at the 
time of the first direct detection of the gravitational wave.�
These results are fine for the development of new world of 

gravitational wave and related physics and astronomy.�
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B-DECIGO(DECi hertz laser Interferometer Gravitational 
wave Observatory) �
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Announce of GW170817/SGRB170817A was Oct.16th�

Therefore we could not argue this important 
event at the final hearing although follow-up 
observations by A01 and A02 had been done.�

Next speaker Kawabata will talk on the activity 
by J-GEM and MAXI in details.�

�
Moreover A05 wrote  papers on GW170817 

such as�
�
1)Ioka, K. Nakamura,T.  Can an Off-axis Gamma-Ray Burst Jet in GW170817 Explain All the 

Electromagnetic Counterparts? arXiv:1710.05905�
�
2)Kisaka, S., Ioka, K.,Kashiyama, K., Nakamura,T. ��Scattered Short Gamma-Ray Bursts as 

Electromagnetic Counterparts to Gravitational Waves and Implications of GW170817  arXiv:1711.00243�

3) ����Yamazaki, R.  Ioka, K. Nakamura, T.   Prompt emission from the counter jet of a short gamma-ray burst 

arXiv:17011.06856 ����
4)Shibata, M., Fujibayashi, S., Hotokezaka, K., Kiuchi, K., Kyutoku, K., Sekiguchi, Y., Tanaka, M., �

�GW170817: Modeling based on numerical relativity and its implications arXiv:1710.07579 ����
�����

�
 �
�
�
 �

39

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

補⾜資料�
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A01 重⼒波天体からのX線・γ線放射の探索�

SLC (軟Ｘ線⼤⽴体⾓カメラ)�
��

�
�

�
�

l  質量	~25kg		(w/o	compressor)	
l  試作品を科研費で開発、	

カメラ＋冷凍機試作試験中	
l  符合化マスク：　位置決定性能シ

ミュレーション、パターン試作	
l  CCDピクセルとマスクの平行確保	
l  熱設計	(24C°流体による冷却ー冷

凍機ーCCD		–100	C	(TBD)）	
l  冷凍機を使わない 

放射冷却も検討	
l  専用CCD　(ASTRO-H	SXI技術継承）	

380mm	

mechanical	cooler	

CCD	
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A01 重⼒波天体からのX線・γ線放射の探索�

⽬標2: 重⼒波対応天体の観測�
• MAXI - LIGO/VirgoチームとMOU締結�
GW150914, GW151226 重⼒波源誤差領域全域の追跡観測

をＸ線領域で唯⼀実施、上限値測定�
•  将来の中性⼦星合体重⼒波に対しての価値を実証�
•  予想よりも早く実現�
•  LIGO-O2 (2016/11〜2017/8)に年度繰越で参加�

• MAXIによる重⼒波関連天体の観測�
GRB および 短時間Ｘ線トランジェントの観測�
新ブラックホールの発⾒�

ほぼ1年に⼀個の割合で発⾒�
銀河系のブラックホールの数の推定へ �

Ｘ線連星のアウトバースト、状態遷移の観測�
中性⼦星やブラックホールへの降着過程の解明�
中性⼦星の回転の変化à質量と半径への制限�
ブラックホールの質量推定�

��
�

�
�

�
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A02 天体重⼒波の光学⾚外線対応現象の探索�

設定⽬的の達成度�
•  光学⾚外線追跡観測ネットワークの構築�
4つの装置開発の達成度：80％�
⽊曽超広視野カメラTomoe 80％�
岡⼭広視野⾚外線カメラ OAO-WFC 90％�
京⼤3.8m⽤⾯分光システム 100％�
中国50㎝望遠鏡 70％�
�
•  望遠鏡ネットワークを⽤いた重⼒波源の追跡観測�

LIGO/Virgo国際共同研究の電磁波フォローアップコン
ソーシアムに参加èJ-GEM⽴ち上げ（15機関・10望遠
鏡が参加）�
J-GEMによりLIGOが検出した重⼒波源の追跡観測に成
功è当初計画以上の成果 達成度：100％以上�

GW150914 24平⽅度サーベイ＋銀河観測�
GW151226 1000平⽅度サーベイ＋銀河観測�
çすばる望遠鏡HSCにより世界⼀の深さ�
 （24等級）で追跡観測に成功�
�
 �
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Tomoeプロトタイプ�

J-GEMのサーベイ領域�
緑:⽊曽、⾚:すばるHSC、⻩:MOA�

青はLIGOの重力波観測で推定する到来方向。
青の濃いところほど可能性が大きい。	

赤経	

赤
緯
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A02 天体重⼒波の光学⾚外線対応現象の探索�

主な研究成果�
•  LIGOによる重⼒波源の追跡観測�
GW150914：⼈類初の重⼒波直接検出�

Abbott, et al. ApJL, 826, L13 (2016); Abbot, et al. 2016, 
ApJS, 225, 8 (2016); Morokuma, et al. PASJ, 68, 9 (2016)�

GW151226：⼆番⽬の重⼒波検出�
Yoshida, et al. PASJ, 69, 9 (2017); Utsumi, et al. PASJ 
submitted (2017)�

•  重⼒波源追跡のための観測装置開発�
超広視野カメラTomoeのプロトタイプ完成・試験観測成功（2015）�
広視野⾚外カメラOAO-WFC完成・定常運⽤開始（2015）�
⾯分光システム完成・定常運⽤開始（2015）�
中国50㎝望遠鏡完成・チベット設置（2016）�

•  重⼒波源の光学対応天体に関連する理論的・観測的研究�
中性⼦星合体による電磁波放射の理論的研究（Tanaka, et al. 2014他）�
極超新星と超新星のミッシングリンク天体の発⾒（Takaki et al. 2013）�
超チャンドラセカール質量のIa型超新星発⾒（Yamanaka, et al. 2016）�
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A02 天体重⼒波の光学⾚外線対応現象の探索�

中国チベット・50㎝望遠鏡の状況と今後�
• 現在（2017/8）の状況�

・2016年9⽉9⽇にチベット現地に望遠鏡・観測装置⼀式を中国所有ドームの中
に仮設置し、試験観測を実施した。�

・試験観測の結果、望遠鏡＋観測装置の光学性能が設計通りであることを確認し
た。また、チベットサイトのシーイングが1秒⾓を切っていることを確認、⼤気
透過率と合わせて、50㎝望遠鏡の限界等級が⽇本国内の1m望遠鏡に相当する
ことが分かった。科学観測はまだ⾏っていない。�

・2016年10⽉以降、ドーム設置と望遠鏡の本格設置・定常運⽤開始を⽬指して
チベット⼊境を試みているが、当局の許可が得られていない。�

• 今後の⾒通しと⽅策�
・2017年9⽉後半〜10⽉にチベット⼊境が許可される⾒通し è 約3週間の滞

在でドーム・望遠鏡設置を⾏う。�
・中国・紫⾦⼭天⽂台から博⼠留学⽣が広島⼤学に来ており、研究の⼀部として

本50㎝望遠鏡に関する開発も⾏っている。今後も⽇本⼈のチベット⼊境が困難
なことが予想されるが、本留学⽣（紫⾦⼭天⽂台職員）が帰国後に望遠鏡調
整・運⽤の中⼼となってプロジェクトを継続していくことを計画している。�
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A02 天体重⼒波の光学⾚外線対応現象の探索�

• 50㎝望遠鏡のチベット・阿⾥サイトへ設置 (2016/9)�

46

チベット・阿⾥サイト�

設置された望遠鏡� 試験観測の様⼦�

望遠鏡を仮設置したドーム� 望遠鏡設置の様⼦�

試験観測で得られた⼟星の紫外線画像�
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計画研究 A03)�
超新星爆発における重⼒波信号とニュートリノ信号の相関�

47

コアの回転無し (0[rad/s])� コアの回転有り(pi[rad/s])�
重⼒波信号� 重⼒波信号�

ニュートリノ予測光度� ニュートリノ予測光度�

SK-Gdでの観測予測値� SK-Gdでの観測予測値�
電⼦ニュートリノ�
反電⼦ニュートリノ� 中性⼦化バースト信号�

ev
en

t/
m

se
c/

10
kp

c�

Time from core bounce [msec]�

er
g/

se
c�

h +
 a

t 
10

 k
pc

�

ニュートリノ信号と重⼒波信号からコアの回転の有無がわかる�

ApJ 811, 86 (2015)�
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GW150914とGW151226におけるSKでのニュートリノ探索�

信号はなかった�

• GW150914 < (1-6) x 1055 erg�
• GW151226 < (2-7) x 1055 erg�
�

48

最も探索感度の⾼い上向きミュー事象により⾒積もった
ニュートリノ放出エネルギー上限値�

GW150914�

GW151226�

ニュートリノ� 反ニュートリノ�

フルエンスの到来⽅向による
90%C.L.上限値（cm-2）�

ApJL 830, L11(6pp) (2016)�
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計画研究A04 �
多様な観測に連携する重⼒波観測データ解析の研究�
データ保管・解析⽤クラスターシステム�

計画研究の進⾏と重⼒波観測実験の状況
に沿って順次増強した。�

•  760コアのCPU�
•  総計304TBのデータ容量�

⽇本の重⼒波データ解析を⽀える重要
な計算機資源として活躍�

�
解析ソフトウエアライブラリ ”KAGALI” の
開発�
• KAGRA Algorithmic Library�

独⾃の解析⼿法の開発に連動�
して必要。�
ブラックボックスのない、完�
全に理解できる環境を開発。�
若⼿を含む多⼈数の解析環境の提供とし
ても役⽴っている。�
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大阪市大に設置した低遅延のイベ
ント探索用Linuxクラスタ計算機	
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計画研究A04 �
多様な観測に連携する重⼒波観測データ解析の研究�

• KAGRA解析スクール�
⼤学⽣、⼤学院⽣を対象に５回開催。�
A04メンバーが中⼼に講師や演習を担当。�
総括班からも補助。�
受講した学部⽣の中から、重⼒波分野へ進学者がいる。�
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H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

計画研究A04 �
多様な観測に連携する重⼒波観測データ解析の研究�

新しい解析⼿法の開発�
•  ヒルベルト-ファン変換(Hilbert-Huang Transform, HHT)�
•  ⾮調和解析(Non-Harmonic Analysis, NHA)�
時間ー周波数空間での新しい解析⼿法の応⽤�
画像解析（医療（がん診断）や⼯業製品検査など）でも⽤いられている新しい

⼿法�
HHT解析では、初観測イベントGW150914波形について、独⾃の⼿法
で波形後半のブラックホール準固有振動のパラメーター（質量、スピ
ン）を求めた。�

�
•  ⾮ガウス雑⾳モデルの新しい数学的取り扱い�
•  実データ分布を⽤いて⾮ガウス統計的評価�
•  ⾮線形相関解析�
⽶国LIGO実験のオープンデータを有効活⽤�
�
重⼒波のサイエンス�
•  世界初観測の重⼒波イベントに新しい解析⼿法を適⽤した（下図HHT,NHA)�
•  連星合体波形を⽤いた⼀般相対論を超えた重⼒理論の検証�
•  ブラックホール準固有振動解析の研究�
•  ⼤質量ブラックホール連星の起源を明らかにするための解析の研究(A05と共

同)�
•  超新星爆発の解明のための解析の研究(A03,A05と共同)�

51
初観測イベントGW150914波形について
のHHT解析。独自の手法で、波形後半の
ブラックホール準固有振動のパラメ
ター（質量、スピン）を求めている	
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計画研究A04 �
多様な観測に連携する重⼒波観測データ解析の研究�
• 統計数理学のデータ解析への応⽤�

⾮線形相関や⾮ガウス雑⾳の分析、定量化に応⽤。�
重要雑⾳の⾮ガウス性や⾮線形相関は、重⼒波のデー
タ解析では常に問題だが、定量的な扱いや適切なモデ
ル化が簡単ではない。�
統計数理学の協⼒を得て、新⼿法の導⼊やモデル評価
に成功�
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左図：LIGOの公開観測データに非ガウス
雑音モデルを適用して定量評価。	
経時変化を周波数ごとに調べ、色でガウ
ス性を示している。青いところはガウス
性が悪い。	

	
この図は、Physics	Review	D誌の掲載論
文のなかで優れて印象的な図を紹介する 
「Kaleidoscope(万華鏡)」という項目に
選ばれた。	

時間[秒]	

周
波
数
[
H
z
]
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計画研究A05 重⼒波天体の多様な観測に向けた理論的研究�

ブラックホールー中性⼦星合体からの質量放出は⾮等⽅的
になることを⽰した。⼀⽅、連星中性⼦星の合体では、
等⽅的で相対論的な質量放出を伴うことを⽰した。�

53

•  Anisotropic mass ejection from black 
hole-neutron star binaries: Diversity 
of electromagnetic counterparts �

    K. Kyutoku, K. Ioka, M. Shibata�
    Phys. Rev. D88 (2013)  041503�
•  X-ray-powered macronovae�
    S. Kisaka, K Ioka, E. Nakar �
•  ⾮等⽅的な質量放出は観測者の⾓度によ

る放射の多様性を⽣むことを⽰した。�
•  相対論的な質量放出が星間物質を掃く時

にできる衝撃波からの放射を電波からＸ
線にわたって求めた。�

密度分布�

密度分布�
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計画研究A05 重⼒波天体の多様な観測に向けた理論的研究�

様々な重⼒波源の探査と重⼒波波形の解明（担当：中村）: �
•  初代星起源の30太陽質量BH連星の存在を予⾔し、GW150914の起源を論

じたLIGO論⽂において、⾮常によく観測を説明すると述べられている。 �
•  BH合体からの準固有振動から、BH時空のホライズン近くを明らかにでき

ることをGW150914以前に指摘した。�
•  将来の宇宙重⼒波アンテナB-DECIGOにより、イベントの⾚⽅偏移分布が

もとまり、ブラックホール連星の起源を明⽩にできることを明らかにした。�
•  既存の観測と無⽭盾でGW150914を説明する原始BHシナリオを⽰した。�
•  ショートガンマ線バーストの観測からSGRBの10%がNS-BHならKAGRA等

の重⼒波検出器で年間70イベント程度観測される事を⽰した。�
超新星爆発の物理（担当：⼭⽥）: �
•  ニュートリノ輸送を記述するボルツマン⽅程式を近似なしに解き、爆発す

る軸対称モデルを発表した。�
•  核密度以下で統計平衡状態にある多核⼦が扱える現実的な状態⽅程式を独

⾃に構築し、電⼦捕獲率のより正確な計算を可能にした。�
•  ニュートリノ輸送を近似的に扱い３次元計算をおこない、⾼速⾃転するコ

アを持つ超新星爆発からの重⼒波の円偏向観測からコアの回転の証拠が得
られることを明らかにした。�
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H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

計画研究A05 重⼒波天体の多様な観測に向けた理論的研究�

電磁波等との同時観測から得られる物理 (担当：井岡) : �
•  BH・中性⼦星合体からの質量放出は⾮等⽅的になるのに対し、連星中性⼦

星の合体では、等⽅的で相対論的な質量放出をともなうことを⽰した。�
•  ガンマ線バーストのジェットが周囲の物質を突き抜けて、ジェットが周囲

の物質によって絞られる可能性があることを初めて指摘した。�
•  放出物質の中⼼天体へのフォールバックにより、ジェットが⻑期間持続可

能であることを⽰した。�
•  暗いガンマ線バーストが、⾼エネルギーニュートリノ源になる可能性を指

摘した。�
新しい重⼒波観測・データ解析法の提案（担当：瀬⼾）: �
•  楕円軌道コンパクト連星について、古在機構による進化過程を直接３体計

算で調べ、標準的な軌道平均法の問題点を明らかにした。その結果、地上
⼲渉計の重⼒波観測における残留離⼼率が⼤きくなる可能性を指摘した。�

•  電磁波対応天体探査に、楕円連星の重⼒波解析を⾏う利点を指摘した。�
宇宙論・修正重⼒理論の観点からの重⼒波研究（担当：⽥中）: �
•  ⾼階微分が存在する重⼒理論におけるコンパクト連星からの重⼒波波形の

進化を明らかにし、理論に制限がつけられることを⽰した。�
•  既存の観測と無⽭盾な双重⼒理論で、重⼒波振動が起こることを発⾒し、

観測可能なパラメータ領域の存在を明らかにした。�
55

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

Pre-DECIGO(DECi hertz laser Interferometer 
Gravitational wave Observatory) �
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H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

融合研究論⽂�

情報学と物理学�
•  ヒルベルト-ファン変換(Hilbert-Huang Transform, HHT)�
•  ⾮調和解析(Non-Harmonic Analysis, NHA)�
�

情報分野で提案された新しい解析技術を重⼒波に応⽤。これらの⼿法
は医療（撮像データからのガンの発⾒など）や⼯業製品検査などでも
使われている。�
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Phys.Rev.D93,123010(2016).	HHTによる、数値相対論重力波波形の比較解析。中性子星の状
態方程式の違いが、HHT解析によって重力波波形に見て取れる。	

H24年度 新学術領域研究(研究領域提案型)� 重⼒波天体の多様な観測による宇宙物理学の新展開�

融合研究論⽂�

天⽂学と精密光学�
•  ⽊曽超広視野⾼速カメラTomo-e Gozen の開発�

⼤⾯積・⾼性能のCMOS撮像素⼦（キヤノン）�
＋シュミット望遠鏡�
広視野かつ⾼速読出の可能な天体探索を可能に�

58

CMOS：　各画素ごとに
読み出し回路を備えた
イメージング検出器。読
み出し時に電荷転送を
伴うCCDに比べて迅速

な信号読み出しが可能。	
CMOSは消費電力の少
ない論理回路を実現で
きる。	
	
CMOSの使用により	

・　1秒以下の読み出し
が可能となり短時間の
変動現象を終えるように
なった。	

・　CMOSは常温で作動　
→　大規模な冷却装置
が不要。安価・軽量かつ
巨大なカメラを製作でき
るようになった。	



Koji Kawabata (Hiroshima Univ., HASC),
“J-GEM Follow-up Observations for gravitational

wave events and GW170817” (25+5)
[JGRG27 (2017) 112829]
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27th JGRG in Hiroshima (2017)

J-GEM Follow-up Observations for 
gravitational wave events and GW170817

Koji S. Kawabata (Hiroshima Univ.)
on behalf of J-GEM team

J-GEM
Japanese collaboration of Gravitational wave Electro-

Magnetic follow-up observations

2

Members
Hiroshima Univ: K. S. Kawabata, M. Uemura, H. Nagashima
Stanford Univ: Y. Utsumi (2017.11 HU → SU)
NAOJ: M. Yoshida (2017.4 HU → NAOJ), M. Tanaka, K. Yanagisawa, D. Kuroda, H. nagai, W. Aoki
Univ of Tokyo: K. Motohara, T. Morokuma, M. Doi, S. Sako, R. Ohsawa, M. Yamaguchi, N. Yasuda, T. 
Shigeyama, H. Tagoshi
TITECH: N. Kawai, Y. Saito, Y. Yatsu, R. Itoh, K. Murata
Nagoya Univ: F. Abe, Y. Tamura, H. Kaneda, (the late) Y. Asakura
Kyoto Univ: K. Ohta, K. Matsubayashi, T. Nakamura, T. Tanaka, N. Seto, K. Ioka
Konan Univ: N. Tominaga
Kagoshima Univ: T. Nagayama
Toho Univ: Y. Sekiguchi
Osaka City Univ: N. Kanda
University of Hyogo: Y. Itoh, T. Saito, B. Stefan, S. Honda
Yamaguchi Univ: K. Fujisawa

Founded for KAKENHI Grant-in-Aid for Scientific Research on Innovative Areas, 
2012-2016, 

“New development in astrophysics through multimessenger observations of 
gravitational wave sources” (PI: T. Nakamura@Kyoto Univ.)

A02 “Searching for Optical and Infrared Counterpart Source of Astronomical 
Gravitational Wave” (PI: M. Yoshida@Hiroshima Univ. → 2017.4 Subaru, NAOJ)

Yoshida Utsumi KSK Uemura

Group of specialists on opt/NIR observations 
and transient objects (theoretically & 
observationally) , cooperated with a few GW 
people.



1.4m IRSF@South Africa 
SAAO (Nagoya U)

• 1m Kiso Schmidt Tel （U Tokyo）
Very Wide Field Cam  36 deg2

• 1.5m Kanata Tel （Hiroshima U)
• 2m Nayuta Tel （U Hyogo)
• 50cm MITSuME Tel （NAOJ/TITECH）
• 0.91m NIR Wide Field Cam (NAOJ)
• 32m Radio Telescope （Yamaguchi U）

★
★

1m mini-TAO@Chile
Atakama (U Tokyo) 

0.5m Tel@Tibet/China 
(Hiroshima U)

Observing Facility in J-GEM

8.2m Subaru Tel
HSC  2 deg2

★
3.8m Kyoto-
Okayama Tel

(Kyoto U)

Principal Specification
36 deg2 opt. imaging w/ 1m
2 deg2 opt. imaging w/ 8m 
1 deg2 NIR imaging w/ 1m
opt-NIR spectroscopy w/ 1–8m
opt-NIR polarimetry w/ 1(&8)m

31.8m MOA-II & 0.61m B&C 
Tel@New Zealand (Nagoya U)

★

★

6.5m TAO Tel 
@Chile (U Tokyo)

Deepest & widest 
surveyor so far

4

Hiroshima U / Tibet 0.5m Telescope @ 5100m a.s.l.
construction was completed on 2017 Oct 6 ! 

Utsumi
内海 Liu Wei

劉偉
KSK
川端

At Ali Base @ 4300m   



Start of J-GEM Activity: MoU with LIGO/VIRGO

Sharing proprietary GW information under the MoU.
>70 teams have signed an MoU with LIGO/VIRGO.

5

Kilonova/Macronova model and obs. strategy

6

Tanaka+ 2014; Tanaka & Hotokezaka 2013

１．Gamma-ray burst
２．Kilonova/Macronova

If NS-NS or BH-NS merger occurs at 100Mpc, 
1m-class  telescope can detect within 1-2 days 
and 8m Subaru/HSC can follow through ~10 days 
with only 1min exposure.

Immediate galaxy-targeted obs. with 1m-class 
tel. & blank survey with wide-field cameras of 
Subaru/HSC and Kiso WFC (or Tomo-e Gozen)
（Only Subaru/HSC can perform blank survey with 8-10m tel’s.）

Merger of 
NS+BH
NS+NS



O1 observing run: 
2015 Sep 12 (18) – 2016 Jan 12

7

GW150914: The First detected GW event

8

Public on 2016 Feb 11
David Reitze@LIGO/Caltech/Caltech

S/N=24



9

>25 teams performed 
follow-up observations.
But, no possible 
candidate was found.

Abbott+ 2016

J-GEM Observed regions (Morokuma+ 2016)

Kiso 1m WFC (𝑖𝑖 < 18.9mag) 

GW150914: The First detected GW event

(e.g., Abbott+ 2016)

Morokuma

GW151226: Second GW event

10

David Reitze@LIGO/Caltech

Public on 2016 Jun 15
/Caltech

Public on 2016 Jun 15

S/N=13
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J-GEM performed wide-
field survey (including 
Subaru/HSC) and 
galaxy-targeted obs. 

GW151226: Second GW event
Yoshida+ 2017

Utsumi+ 2017
11

HSC covered 63.5deg2 (7% 
localization probability) at 
three epochs (+12, +18, +42 
days), and no kilo-nova like 
candidate brighter than 𝑖𝑖~23
(5𝜎𝜎) was found among 
detected 1744 variable objects.
(Utsumi+ 2017; Yoshida+ 2017)

Yoshida

Utsumi

In O1 run, 2+1 events are all likely BH+BH 
mergers.
No team successfully (or convincingly) 
detected EM counterpart of the GW events.

12

Most GW events are likely optically 
dark. It is risky to follow up all GW 
events with Subaru/HSC because of 
limited number of allocated nights, 
although Nakamura-san pointed that 
BH merger might be bright by 
unknown mechanism…

KSK

KSK



O2 observing run:
2016 Nov 30 – 2017 Aug 25

13

Updates: 
• New parameters “ProbHasNs” and “ProbHasRemnant” are 

filled out in CBC GW detection Alerts, ensuring 
electromagnetically bright (or not).  

• Probability sky map becomes 3D (including distance) in 
CBC alerts.

• After 2017 August 1 VIRGO GW detector joins.

14

Singer et al. 2014, ApJ, 795, 105

Prediction of detection rate of binary neutron star 
merger event in realistic cases

LIGO+VIRGO 6 month observation may detect  
roughly 1 or 2 NS-NS merger events.

Area of 90% localization probability may be still 
considerably large, ~200 deg2

It is likely to miss the EM counterpart 
in O2 run even with Subaru/HSC…KSK



17deg×13deg＝ 220deg2

15

Moon size （Diam. 0.5deg）

Covering by tiling with each 10 minute 
exposure takes ~45,000 min or ~1 month.

FoV of typical 1m telescope
(Diam. 0.25deg)

List of J-GEM follow-up observations

１．GW150914 No counterpart identified (Morokuma+ 2016)

16

２．GW151226 Subar/HSC was input for the first 
time, but no counterpart identified. (Yoshida+17; Utsumi+17)   

３．GW170104 ProbHasNs=0% and 
ProbHasRemnant=0%. → No counterpart. 

４．GW170814 Again, ProbHasNs=0% and 
ProbHasRemnant=0%, although the localization 
probability is considerably narrowed because of 
joining with VIRGO. → No counterpart. 

Morokuma+ 2016)

/HSC was input for the first 



Masses of compact binaries 
detected by GW events so far

17
LIGO/Caltech/Sonoma State (Aurore Simonnet)

M
as
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１
）

M
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n＝
１
）

Localization probability map 

18After Virgo joined, the area is well restricted.



J-GEM on 2017 Aug 17
• We were performing optical/NIR follow-up

observations of GW170814 event with Subaru/HSC, 
Kiso WFC, Akeno 0.5m, etc.

• I (probably) had little or no hope to detect the 
counterpart for GW170814, but just expecting to 
anchor a more reliable upper-limit because of larger 
coverage of localization probability area.

• I began to think that no more GW event would 
appear in O2 run finishing on Aug 25. 

1919KSK KSK

Alert of GW170817 !!

20

Probability of having NS --- 100%!
Probability of ejecta/remnant  100%!
Very close to us （~40Mpc）!

Very small False Alarm Rate
→ Convincing event

22:33 JST = 13:33 UT

22:33 JST = 13:33 UT

Immediately stimulated observing J-GEM members…

Utsumi

Morokuma



GW170817: Slow rising `chirp’ frequency

Taking ~2 order longer 
time than GW150914 
→
𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 ∼ 1.2𝑀𝑀⨀

NS+NS merger!

21
© LIGO-Virgo Consortium

EM obs. of GW170817

22

8/17 12:41:04 GW detected
8/17 12:41:06 Fermi GBM detected gamma-ray
0.5days SWOPE tel. (Chile) optically identified the 
candidate counterpart.（Coulter+ GCN 21529）

Unfortunately, the position is in southern hemisphere and 
close to the sun, and it was hard to be observed in northern 
hemisphere. 

0.7days Subaru 8.2m/HSC optical obs. began
1.2days Nagoya U/SAAO IRSF 1.4m NIR obs. began
1.8days Nagoya U/NZ MOA 1.8m/B&C 0.61m obs.
(2.9days Hiroshima U/Kanata 1.5m NIR obs.)
14.3days Suraru/MOIRCS NIR obs. began
…soon became too close to the sun and obs. finished.



23
Time from merger (sec)

GW Frequency

Fermi/GBM
(10-50 keV)

Fermi/GBM
(50-300 keV)

INTEGRAL
(>100 keV)

Abbott et al. (2017)

2D localization probability map 

24

2D localization probability map 
2017-08-17 12:48  (UT) Only H1 detector2017-08-17 12:48  (UT) Only H1 detector2017-08-17 14:27  (UT) Fermi/GBM (+IceCube)

2017-08-17 17:21  (UT) H+L+V
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小池（国立天文台）ほか

26

Subaru HSC 𝜆𝜆0.9μm、IRSF1.2μm, 2.2μm composite color image

2017.08.20 19:11JST
（17min after sunset, ℎ~10deg)

Hiroshima Kanata 1.5m/ 
HONIR𝜆𝜆1.6μm

Severe to photometry from Japan

Utsumi et al. 2017;
Tanaka et al. 2017;
Tominaga et al. 2017;

Nakaoka et al. 2017;
Utsumi et al. 2017

Decayed and 
reddened quickly

J-GEM obs. of the 
counterpart: 
SSS17a



Other candidate exist?

27

• Subaru 8.2m/HSC: 24 arcdeg2 (covering 67% credible region）
for 𝑧𝑧 ≤ 20.6mag, and detected 60 extragalactic variables.
→All (except for SSS17a) are excluded by distance, luminosity, 
color and their variations

• DECam (4m in Chile): 70 arcdeg2 (covering 93%) survey for 
𝑧𝑧 ≤ 21.3mag (1500 variables) gives similar result.

Tominaga+ 2017 

Tominaga

Soares-Santos+ 2017

Tominaga+ 2017; 

28

84 papers appeared just after the embargo (Oct 16)

Maria Drout, Stefano Valenti, and Iair Arcavi
(https://lco.global/~iarcavi/kilonovae.html)

J-GEM関連

Utsumi Tanaka Tominaga



追跡観測のとりまとめ論文

計 3674名計 3674名

経過時間

可視光

赤外線

MAXI

J-GEM

30

Photometry of 𝑧𝑧𝑧-band（𝜆𝜆 0.9μm） （●）

Kilonova model
(0.01M ejecta)
well explains the 
decay rate, but 
~1mag fainter.

Utsumi+ 2017

SN Ia

SN IIP
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Probing the properties of ejecta..

Electron fraction Ye (number of proton per nucleon) 
and product in r-process 

Tanaka et al. 2017; Wanajo et al. 2014

Lanthanide
(larger opacity)

32

Comp. w/ kilonova model: Opt/NIR LCs

Medium electron fraction (Ye=0.25) model well 
reproduces LCs after 3 days, requiring 
somewhat larger ejecta (~0.03M)

Tanaka et al. 2017
Tanaka



33

SED after 3 days is also 
consistent with medium 
Ye=0.25 model

Tanaka+ 2017

>3days

Comp. w/ kilonova model: Opt/NIR SED
Tanaka et al. 2017

Tanaka

MAXI/GSC and CALET obs. 
• At the LIGO detection, the high-volt. Of 

MAXI/GSC was off, unfortunately.
• At ~170 sec, it turned on, but, again 

unfortunately, the Fermi/GBM localization 
was near the pole of ISS orbital rotation 
and MAXI/GSC could not point the field.

• MAXI/GSC (2-10 keV) finally gives upper-
limits of < 1.65 × 1045, < 1.47 × 1046, 8.0 ×
1044 and 5.4 × 1044 erg/s at 0.19, 0.26, 
0.50 and 0.57 days, respectively. 

34

(Sugita+ 2017)

(Nakahira+ 2017)
• At the LIGO detection, CALET GBM was operated, but no on-board 

trigger occurred.
• CGBM/SGM (40keV-28MeV) was 71 deg off-axis from SSS17A and 

covered 99% GW localization probability in its FoV and gives 7𝜎𝜎 upper-
limit of 5.5 × 10−7erg/cm2/sec (10-1000 keV, 1sec exp.), being 
consistent with the peak flux observed by Fermi/GBM.
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中性子星 中性子星

直径 約10km
密度 約10億トン/cm3

衝突時に

On the prompt short GRB 
中性子星 中性子星

約10km
約10億トン/cm3

Much fainter than other GRBs intrinsically
→ Viewed from inclined direction from rotation/jet axis?

距離 距離
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Abbott+ 2017

Abbott+ 2017

36

Faint sGRB and following EW emissions can 
be explained by a model of

𝐸𝐸𝑐𝑐𝑖𝑖𝑖𝑖~1051 − 1052erg
Jet opening angle ~20°
Viewing angle ~30° (Ioka & Nakamura 2017)



Summary
• Japanese GW EM counterpart observation team, J-

GEM, gave contributions to optical/NIR follow-up 
observations of past GW events, even for GW170817 
which appeared at the location where the ground-
based telescopes in main-land of Japan could not 
see in the night sky.

37

• Collaboration with other teams in Japan (X-ray, 
gamma-ray, neutrino, etc.; theoretical groups) seems 
effectively working under the KAKENHI Grant-in-Aid 
for Scientific Research on Innovative Areas, 2012-
2016 (PI: Nakamura) and 2017-2021 (PI: Tanaka).
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