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“Massive Gravity: Trouble with Metrics”

by Wayne Hu (invited)

[JGRG25(2015)I12]
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Wayne Hu
JGRG, December 2015

Massive Gravity:
Trouble with Metrics 

metric imperial
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Massive Gravity:
Trouble with Metrics 

NASA's metric confusion
caused Mars orbiter loss
September 30, 1999
Web posted at: 1:46 p.m. EDT (1746 GMT)

(CNN) -- NASA lost a $125
million Mars orbiter because one
engineering team used metric units
while another used English units
for a key spacecraft operation,
according to a review finding.
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Massive Gravity
• A generic theory of massive gravity propagates 6 polarization
 states: 5 for a massive spin-2 and 1ghost
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Massive Gravity
• A generic theory of massive gravity propagates 6 polarization
 states: 5 for a massive spin-2 and 1ghost
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Fierz & Pauli (1939):
Ghost free linearized theory

vDVZ Discontinuity
• Scalar mode coupled to matter changes space curvature
 per unit dynamical mass violating solar system lensing 
 even as m     0

C

GR
Fierz-
Pauli

van Dam & Veltman (1970)
Zakharov (1970)
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Vainshtein Mechanism
• Around massive sources, nonlinear interactions suppress

scalar force

C

GR, Vainshtein 
Fierz-
Pauli

Vainshtein (1972)

Boulware-Deser Ghost
• But a generic nonlinear completion restores the 6th

ghostly polarization

C

GR, Vainshtein 
Fierz-
Pauli

Boulware & Deser (1972)
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y
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y

Bad trade!
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Massive Gravity
• de Rham, Gabadadze, Tolley (dRGT 2011) provided nonlinear

completion to Fierz-Pauli that evades the Boulware-Deser ghost

S =
Mp

2

Z
d4X
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where ⌘ is a fiducial metric, taken to be non-dynamical flat

ds2g = gabdX
adXb, ds2f = ⌘abdX

adXb = �dT 2 + dX2
i

Presence of fiducial metric breaks diffeomorphism invariance: a
preferred unitary gauge where metric is standard Minkowski

Diffeomorphism invariance can be restored by transforming from
these preferred coordinates

g�1⌘ ! g↵µ@µX
a@⌫X

b⌘ab = g↵µfµ⌫

Massive Gravity
• de Rham, Gabadadze, Tolley (dRGT 2011) provided nonlinear

completion to Fierz-Pauli that evades the Boulware-Deser ghost

S =
Mp

2

Z
d4X

p
�g

"
R� m2

2

4X

n=0

�n

n!
Fn(

p
g�1⌘)

#

where ⌘ is a fiducial metric, taken to be non-dynamical flat
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adXb, ds2f = ⌘abdX

adXb = �dT 2 + dX2
i

• Presence of fiducial metric breaks diffeomorphism invariance: a
preferred unitary gauge where metric is standard Minkowski

• Diffeomorphism invariance can be restored by transforming from
these preferred coordinates

g�1⌘ ! g↵µ@µX
a@⌫X

b⌘ab = g↵µfµ⌫

• Jacobian transformation represents fiducial metric covariantly fµ⌫

• Unitary gauge coordinates become 4 scalar Stückelberg fields
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Spacetime Evolves from Minkowski
• Using Minkowski coordinates to chart the expanding
 spacetime

FRW SpaceMinkowski Space

a(t)

Spacetime Evolves from Minkowski
• Using Minkowski coordinates to chart the expanding
 spacetime

FRW SpaceMinkowski Space

a(t)
In spatially flat Minkowski 
coordinates the spacetime 
metric is superficially
inhomogeneous but isotropic
(H2R2 terms; static/physical 
vs comoving coordinates)
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Homogeneity and Isotropy
• Coordinate problems take on geometric significance with
 two metrics
• Spatially flat slicing of Minkowski incompatible with 
 homogeneous and isotropic FRW slicing of spacetime
 “no spatially flat FRW cosmologies” d’Amico et al (2011)

 = no single coordinates where both the spacetime and 
 fiducial metric are simultaneously homogeneous and isotropic

• Open slicing of Minkowski (Milne) compatible with 
 homogeneous and isotropic slicing of an open FRW spacetime
 Gumrukcuoglu, Lin, Mukohyama (2011)

 ...but these are generally are generally unstable 
 Gumrukcuoglu, Lin, Mukohyama (2011); DeFelice, Gumrukcuoglu, Mukohyama (2012)

• Note: this does not preclude homogeneous and isotropic FRW
 spacetimes of any curvature or address their stability 

Massive Multiverse

de Rham (2015)
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Massive Multiverse

de Rham (2015)

Massive Multiverse
explore issues with 2 metrics
relatively simply; common to 
many generalizations

cosm
ology rover

Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates 

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 
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Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 

All such constructions 
lead to an effective 
stress energy of a 
cosmological constant
leaving remaining freedom
in choosing Minkowski 
time T(t,r)

Self-Accelerating Solutions
• Allow the Minkowski coordinates T, R or Stuckelberg field
 to be inhomogeneous in isotropic FRW coordinates 

FRW SpaceMinkowski Space

a(t)

R=x0a(t)r

x0 constant
determined by 
MG Parameters 

applies to any isotropic 
distribution of matter and 
unifies the description of
all self-accelerating solutions
Gratia, Hu, Wyman (2012)

generalizes Koyama, Niz, Tasinato (2011);
d’Amico et al (2012); Gumrukcouglu 
et al (2012); Berezhiani et al (2011);... 
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Determinant Singularities
• Minkowski coordinates may not uniquely chart the whole
 spacetime - Jacobian between Minkowski and spacetime
 coordinates singular
• Fiducial metric has a determinant singularity where the
 spacetime metric does not or vice versa - ratio of determinants
 is a diffeomorphism invariant spacetime scalar
• Example: evolution to a det singularity

t

a(
t)

T(t)~a(t) [open GLM11]

double
valued

Gratia, Hu, Wyman (2013)

Determinant Singularities
• No curvature singularity in the spacetime, normal matter
 sees only spacetime metric 
• But requires ad hoc rules for smoothly joining charts for the
 massive gravity degrees of freedom; evolves into a singularity
• Occurs in more general bi-gravity models Gratia, Hu, Wyman (2014);
 Lagos & Ferreira (2014); Johnson & Terrana (2015) and extended quasi dilaton
 model (where smooth continuation fails) Motohashi & Hu (2014)  

t

a(
t)

Gratia, Hu, Wyman (2013)

Determinant
Singularity
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DeSitter Solutions
• Conformal diagram of de Sitter self-accelerating solutions
• Det=0 singularity when coordinates double valued

Motloch, Hu, Joyce, Motohashi (2015)

GLM11

0 Π
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DeSitter Solutions
• Conformal diagram of de Sitter self-accelerating solutions
• Det=0 singularity when coordinates double valued

Motloch, Hu, Joyce, Motohashi (2015)
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KNT11
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DeSitter Solutions
• Conformal diagram of de Sitter self-accelerating solutions
• Det=±� singularity where continuation flips signature

Motloch, Hu, Joyce, Motohashi (2015)

0 Π
2 Π
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0 Π
2 Π

0

Π
2

Χ

4 fold symmetric

Perturbations
• Inhomogeneous Stuckelberg background complicates analysis
• Isotropic mode (scalar) not sourced by matter, carries stress 
 energy,  obeys first order equation of motion Wyman, Hu, Gratia (2011)

 simple system, analytic solutions
• Decoupling limit expectations for the helicity 0 and ±1 
 modes not obeyed, kinetic terms only at order curvature
 d’Amico (2011); Motloch & Hu (2014)

 In general 5 degrees of freedom (including open GLM 
 solution, but 3 parabolic not hyperbolic)
• Fully covariant Stuckelberg-metric quadratic Lagrangian 
 Motloch & Hu (2014)

• Specialize to vacuum unitary perturbation gauge: metric 
 perts only Regge-Wheeler analysis of gw polarizations 
 Motloch, Hu, Motohashi (2015)
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Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

Motloch, Hu, Joyce, Motohashi (2015)
Motloch, Hu, Motohashi (2015)

see also: Deser, Waldron, etal (2012-15); Izumi & Ong (2013)

0 Π
2

Π

0

"Π2

"Π

Χ

Η

characteristics
run tangent to
determinant
singularities

Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• Characteristics coincide with constant open time slices
 [no dynamics in open frame]
• Superluminal characteristics
• For monopole & dipole mode first order system: characterstics
 give all smooth and discontinuous front solutions
• Superluminal front and group velocity 

Motloch, Hu, Joyce, Motohashi (2015)

0

!Π2Η

Constant Open Time
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Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• No spacelike surface intersect all characteristics
• For isotropic & dipole modes, second order system decouples
 into two first order systems, where a conditions on a single
 spatial boundary defines unique solution

Motloch, Hu, Joyce, Motohashi (2015)

0

!Π2Η

No Spacelike Cauchy Surface:
Spatial Boundary Conditions

Characteristics
• Characteristic curves of new degrees of freedom 
• Example: “open FRW” solution of GLM11

• Anisotropic l�� odd PodeV are Vecond order and
 parabolic, not hyperbolic
• No wavelike solutions, similar to heat equation
• Requires two spatial boundary conditions to define unique
 solution
 

0otOocK� +X� 0otoKaVKi ������

�

!Π�Η

Lightcone degenerates:
parabolic equation for
anisotropic modes
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Characteristics
• Example: “SdS” solution of KNT11: characteristic curves  
 run tangent to det singularities - information doesn’t cross
• Spacelike surface do
 intersect characteristics
 defining initial value 
 problem for isotropic & 
 dipole modes
• Special case with 
 luminal characteristics
• But l�� odd Sarit\ 
 modes are still parabolic, 
 reTXiring two EoXndar\ 
 conditions: true of all self
 accelerating solutions

 

0otOocK� +X� -o\ce� 0otoKaVKi ������
0otOocK� +X� 0otoKaVKi ������

� Π
�

Π

�

"Π�

"Π

Χ

Η

Summary: Trouble with Metrics
• Self-accelerating dRGT massive gravity provides a 
 relatively simple arena where Cauchy breakdown 
 occurs at linear order in cosmological perturbations
 (det singularities, parabolic/elliptic equations, no joint spacelike surface)   
• In other cases where modes propagate on a separate metric 
 similar problems occur on nonlinear backgrounds 
 Cosmological voids with cubic galileon Barreira et al (2013); 

 Winther & Ferreira (2015) [hyperbolic turns to elliptic]

 Spherical collapse far from quasistatic approximation
 with DGP Brito et al  (2014) [no joint spacelike Cauchy surface]
• Can be viewed as a strong coupling problem which may be
 solved by a UV completion of effective theory but 
 occurs at relatively low densities and large scales 
 from non pathological initial conditions
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Summary: Trouble with Metrics
• Self-accelerating dRGT massive gravity provides a 
 relatively simple arena where Cauchy breakdown 
 occurs at linear order in cosmological perturbations
 (det singularities, parabolic/elliptic equations, no joint spacelike surface)   
• In other cases where modes propagate on a separate metric 
 similar problems occur on nonlinear backgrounds 
 Cosmological voids with cubic galileon Barreira et al (2013); 

 Winther & Ferreira (2015) [hyperbolic turns to elliptic]

 Spherical collapse far from quasistatic approximation
 with DGP Brito et al  (2014) [no joint spacelike Cauchy surface]
• Can be viewed as a strong coupling problem which may be
 solved by a UV completion of effective theory but 
 occurs at relatively low densities and large scales 
 from non pathological initial conditions

Summary: Don’t Mess with Einstein!

Happy 100th Birthday
GR

Summary: Don’t Mess with Einstein!
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“Global existence theorem for Gowdy symmetric spacetimes in 

supergravity theory”

by Makoto Narita

[JGRG25(2015)8a1]
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2015/Dec/11 @JGRG25, Kyoto

Global existence theorem for Gowdy

symmetric spacetimes in supergravity theory

Makoto Narita

National Institute of Technology, Okinawa College

1 Introduction: Inflationary universe
It is believed that our universe has started from initial singularity, which is the Hot Big
Bang model. However, there are problems (horizon problem, flatness problem, etc) in this
model. These basic questions about the early universe can find a suitable and natural
answer if the universe has an inflationary era, a period of accelerated expansion. Recently
this constitutes the standard model of cosmology.

According the current observations, the degree of anisotropy at cosmological scales is very
small (but NOT ZERO). Therefore, the accelerated expansion during inflation should be
isotropic. Then the following conjecture was proposed:

Conjecture 1ʢGibbons-Hawkingʣ The late-time behaviour of any accelerating universe
is an isotropic universe.

This is the cosmic no-hair conjecture, which is an unsolved and important problem in
General Relativity.
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1 Introduction: Cosmic No-Hair Theorems 1
The following theorem supports the validity of cosmic no-hair conjecture:

Theorem 1ʢWaldʣ The Bianchi models (except type IX) with the total
energy-momentum tensor of the form

Tµν = −Λ0gµν + Tµν ,

and with a constant Λ0 > 0 (cosmological constant) and Tµν satisfying the dominant and
strong energy conditions, approach de Sitter space exponentially fast, within a few Hubble

times H−1 =

√
3

Λ0
.

In the case of spatially inhomogeneous setting, Ringström has shown the following
theorem:

Theorem 2 Consider a Gowdy symmetric solution the the Einstein-Vlasov system with a
positive cosmological constant. Then, the solution is future asymptotically de Sitter.

To prove the above theorem, one needs to show

1. global existence,
2. future completeness,
3. cosmic no-hair (asymptotic behaviour).

1 Introduction: Cosmic No Hair Theorems 2
However, our universe is not de Sitter space. In addition, the recent observations suggest
small anisotropy. Motivated by these, the next theorem has been shown:

Theorem 3ʢMaleknejad-Sheikh-Jabbariʣ For general inflationary systems of all Bianchi
type with the total energy-momentum tensor of the form

Tµν = −Λ(t)gµν + Tµν ,

where Λ(t) is a cosmological term which decreases by time t and Tµν satisfies the
dominant and strong energy conditions, anisotropy may grow nonetheless there is an upper
bound on the growth of anisotropy.

To get anisotropic accelerated expansion of the universe, it is known that non-trivial
coupling between scalar and gauge fields is important.

Such non-trivial coupling is suggested by some fundamental field theories.

Thus, we will consider the Einstein-Maxwell-Scalar system arising in supergravity theory,
which is one candidate for the Unified Theory. .
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1 Introduction: Supergravity Action and

Einstein-Maxwell-Scalar equations
Four dimensional reduced action of the supergravity theory is of the form

S =

∫
d4x

√
−g

[
−1

2
R+

1

2
∇µφ∇µφ+ V (φ) +

1

4
f2(φ)FµνF

µν

]
,

where gµν is a Lorentzian metric on (3 + 1)-dimensional spacetime manifold M ,
R = gµνRµν is the Ricci scalar of g, φ is a scalar field, Fµν = ∂µAν − ∂νAµ is the field
strength for a gauge field Aµ, V (φ) > 0 is a potential of the scalar field and f(φ) is a
gauge kinetic function.

Varying the action with respect to gµν , Aµ and φ, we have the Einstein-Maxwell-Scalar
equations as follows (SUGRA EMS system):

Rµν − 2 [∂µφ∂νφ+ V (φ)gµν ]− 2f2(φ)

[
F γ
µFνγ − 1

4
FαβF

αβgµν

]
= 0,

∇µF
µν + 2Fµν∂µφf

−1(φ)
∂f(φ)

∂φ
= 0,

gαβ∂α∂βφ− Γα∂αφ− ∂V (φ)

∂φ
− 1

2
f(φ)

∂f(φ)

∂φ
FαβF

αβ = 0.

1 Introduction: Hyperbolic reduction of SUGRA EMS system
To consider initial value problem for the system, we reduce this to a hyperbolic system.

• −1

2
gαβ∂α∂βgµν +∇(µFν) + gαβgγδ(ΓαγµΓβδν + ΓαγµΓβνδ + ΓαγνΓβµδ)

−2 [∂µφ∂νφ+ V (φ)gµν ]− 2f2(φ)

[
F γ
µFνγ − 1

4
FαβF

αβgµν

]
= 0,

• gαβ∂α∂βAλ − ∂λ(FµAµ) + (∂λg
µν)∂µAν

−gαβΓδ
αβ(∂δAλ − ∂λAδ)− gαβΓδ

βλ(∂αAδ − ∂δAα) + 2Fλν∂
νφf−1(φ)

∂f(φ)

∂φ
= 0,

• gαβ∂α∂βφ− Γα∂αφ
∂V (φ)

∂φ
− 1

2
f(φ)

∂f(φ)

∂φ
FαβF

αβ = 0,

where Fµ is a gauge source function.

We can show existence of maximal globally hyperbolic developments:

Theorem 4ʢChquet-Bruhat-Gerochʣ Given initial data for the vacuum Einstein
equations, there is a maximal globally hyperbolic development (MGHD) of the data which
is unique up to isometry.

Remark 1 The above theorem can be generalized to the SUGRA EMS system.
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1 Introduction: Anisotropic Inflation
Theorem 5ʢWatanabe-Kanno-Soda (WKS)ʣ Assume that all functions depend only on
time t and V = V0eλφ and f = f0eρφ where λ, ρ are constants. Suppose
λ2 + 2ρλ− 4 > 0. Then, the following is a solution to the SUGRA EMS system:

ds2 = −dt2 + e2a
[
e−4bdx2 + e2b(dy2 + dz2)

]
,

dAx

dt
= Ctγ ,

φ = − 2

λ
log t,

where a = κ log t, b = ζ log t, κ =
λ2 + 8ρλ+ 12ρ2 + 8

6λ(λ+ 2ρ)
, ζ =

λ2 + 2ρλ− 4

3λ(λ+ 2ρ)
and

γ =
4ρ

λ
− ω − 4ζ.

This spacetime is an axially symmetric Bianchi type I (homogeneous and anisotropic) one
and has accelerating expansion.

Note that anisotropy grows during inflation in contrast to cosmic no-hair conjecture in this
solution.

Next setting: spatially inhomogeneous case

2 Gowdy symmetric spacetimes: Metric and Gauge Potential

Assume that spatial topology is T 3 and there are two spacelike Killing vectors generated
by ∂x and ∂y. Note that θ, x, y are coordinates on T 3 and translation in the x and y
directions defines a smooth action of T 2. Also note that the area of the symmetry orbits is
propotional to time t. The areal metric is given by

ds2 = −e2(η−U)(αdt2 + dθ2) + e2U (dx2 +Wdy)2 + e−2U t2dy2.

This spacetime is an inhomogeneous generalization of the axially symmetric Bianchi type I
spacetimes.

Due to symmetry, only Ax = ω and Ay = χ are non-vanishing functions for Aµ.

Note that all functions α > 0, η, U,W,ω,χ,φ depend only on time t and θ.

To get wave map form, the following transformation is used:

√
αWθ = −te−4U (ψt + 2ωξt), Wt = −

√
αte−4U (ψθ + 2ωξθ)

2(χt −Wωt) = t
√
αe−2Uξθ, 2

√
α(χθ −Wωθ) = te−2Uξt,

and we put σ = 2ω for convenience.
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2 Gowdy symmetric spacetimes: Einstein constraint equations

ηt
t

= U2
t + αU2

θ +
e−4U

4

[
(ψt + σξt)

2 + α(ψθ + σξθ)
2
]
+ φ2t + αφ2θ + αe2(η−U)V,

ηθ
t

= 2UtUθ + φtφθ +
e−4U

2
(ψt + σξt)(ψθ + σξθ) +

f2

2
e−2U (σtσθ + ξtξθ)−

αθ

2tα
,

αt = −4tα2e2(η−U)V,

where ηt =
∂η

∂t
and ηθ =

∂η

∂θ
.

2 Gowdy symmetric spacetimes: Einstein evolution equations

Utt +
1

t
Ut − Uθθ −

αtUt

2α
+
αθUθ

2
+

e−4U

2

[
(ψt + σξt)

2 − α(ψθ + σξθ)
2
]

+
f2

16
e−2U (σ2

t − ασ2
θ + ξ2t − αξ2θ)−

1

2
αe2(η−U)V = 0,

ψtt +
1

t
ψt − ψθθ −

αtψt

2α
+
αθψθ

2
− 4(Utψt − αUθψθ)− 2σ(Utξt − αUθξθ)

+ (1− 4f−2σ2e−2U )(σtξt − ασθξθ)− 4f−2σe−2U (σtψt − ασθψθ)

− 2σ

f

∂f

∂φ
(φtξt − αφθξθ) = 0.

These equations describe time-evolution of gravitational waves.
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2 Gowdy symmetric spacetimes: Maxwell equations

ξtt +
1

t
ξt − ξθθ −

αtξt
2α

+
αθξθ
2

− 2(Utξt − αUθξθ) +
2

f

∂f

∂φ
(φtξt − αφθξθ)

+ 4f−2e−2U (σtψt − ασθψθ) + 4f−2σe−2U (σtξt − ασθξθ) = 0,

σtt +
1

t
σt − σθθ −

αtσt
2α

+
αθσθ
2

− 2(Utσt − αUθσθ) +
2

f

∂f

∂φ
(φtσt − αφθσθ)

− 4f−2e−2U [ξt(ψt + σξt)− α(ψθ + σξθ)] = 0.

These equations describe time-evolution of electromagnetic waves.

2 Gowdy symmetric spacetimes: Scalar field equation

φtt +
1

t
φt − φθθ −

αtφt
2α

+
αθφθ
2

− 1

4
e−2Uf

∂f

∂φ

[
ξ2t + σ2

t − α(ξ2θ + σ2
θ)
]
+ αe2(η−U) ∂V

∂φ
= 0.

In summary, the SUGRA EMS Gowdy system consist of five semi-linear wave equations
with three constraint equations.
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2 Gowdy symmetric spacetimes: Wave Map
We can find that five evolution equations for the SUGRA Gowdy system are described by
the following wave map u : (M2+1,β) !→ (N 5, τ), where M2+1 is a base manifold with
Lorentzian metric β,

β = −dt2 +
1

α
dθ2 + t2dδ2,

and N 5 is a target manifold with Riemannian metric τ ,

τ = 4dU2 + e−4U (dψ + σdξ)2 + dφ2 +
1

4
f2e−2U (dξ2 + dσ2).

The action for this wave map is given by

SW =

∫

S1

dtdθ
√
−β

(
βµντAB∂µu

A∂νu
B + 2αe2(η−U)V

)
.

Note that only evolution equations are obtained from the action.

The energy-momentum tensor can be defined from the action and then we can define the
energy of this system.

2 Gowdy symmetric spacetimes: Global Eexistence
Theorem 6 Let (M, g) be the MGHD of C∞ initial data for the SUGRA EMS Gowdy
system. Then, for t0 > 0, M can be covered by compact Cauchy surfaces T 3 of constant
areal time t with each value in the range (t0,∞).

The method of the proof is the standard energy estimate (light cone estimate).

Remark 2 We can show a existence theorem in the past direction t ∈ (0, t0).

Remark 3 Asymptotically velocity terms dominated solutions can be constructed near
initial singularity t = 0.
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3 Summary
1. As inhomogeneous generalization, Gowdy symmetric spacetimes in supergravity theory

were analyzed.
2. A global existence theorem of solutions to SUGRA Gowdy system was shown.
3. Next questions:
ʢaʣAre solutions to SUGRA Gowdy system future complete?
ʢbʣIs generalized cosmic no-hair conjecture true in the case of the SUGRA Gowdy system?
ʢcʣAre solutions to SUGRA Gowdy system stable?

Thank you for your attention.
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Anisotropic and Asymmetric Primordial Universe

Hassan Firouzjahi

IPM , Tehran, Iran

JGRG25, YITP, Dec. 2015

PLANCK 2013
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Motivation

Inflation is the leading paradigm for early Universe and structure formations.

Basics predictions of inflation: The CMB perturbations are

Nearly scale-invariant

Nearly Gaussian

Nearly adiabatic

These predictions are in good agreement with the Planck data.

Planck 2013
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A Fundamental Question: Is the Universe isotropic?

Planck has reported anisotropies on CMB map

Hemispherical Power Asymmetry PR = P(0)
R (1 + 2A n̂.p̂)

Planck : A = 0.07± 0.02 for 2 ⌧ ` . 64 with (l , b) = (227�,�21�)

Statistical Anisotropy

PR(k) = P(0)
R

 
1 +

X

LM

gLMYLM(k̂)

!

quadrupole anisotropy: L = 2,m = 0

PR(k) = P(0)
R (1 + g⇤ (p̂.k̂)2)

Observational bounds from Planck |g⇤| < 10�2

A=0 Seljebotn, 2010 A=0.3

10

FIG. 8: Upper panel : QML reconstruction of the
g(n̂) primordial power quadrupole, for the WMAP V-band
foreground-reduced data to l

max

= 400. Also shown is the
preferred quadrupole direction of (l, b) = (130o, 10o) found by
Ref. [17] (‘⇥0), using incorrect il1�l

2 factor) and the eclip-
tic north pole at (l, b) = (96o, 30o) (‘⇧0). Lower two panels:
Isotropic and anisotropic components of a CMB simulation
with g

2m given by the QML reconstruction, smoothed with a
WMAP V-band beam. This gives an intuitive understanding
of the e↵ects induced by this form of anisotropy. The RMS
deviations of the isotropic and anisotropic components are
90µK and 1µK respectively.

contaminated by beam asymmetry e↵ects, which must be
corrected for to obtain true constraints on any primor-
dial modulation. That the signal strongly varies between
the D/As indicates either that the simulation of Ref. [41]
are not encapsulating all of the relevant beam e↵ects,
or that there is an additional unknown systematic. In
any case the significant variations between D/As at the
same frequency provide strong evidence that the signal is
systematic rather than primordial or foregrounds; in all
cases the preferred direction is close to the ecliptic.

A full analysis with beam asymmetries is beyond the
scope of this paper, however we note that in the QML
approach beam asymmetry e↵ects can simply be incorpo-
rated into the simulation pipeline. They will then appear
as a contribution to the “mean field” term, and be sub-
tracted from the reconstruction. In principle it is neces-
sary to include the correlation due to beam asymmetries
in the inverse variance filter, which is too computation-
ally expensive to perform in general. If the instrumental
noise can be approximated as white on the timescales
which separate pixel visits, however, then the fast algo-
rithm presented by Ref. [28] can be used for the forward
convolution operation, which should only slow the appli-
cation of the inverse variance filter by a constant factor
of O(20). Alternatively one could attempt to correct the
maps for the beam asymmetries, for example by estimat-
ing the anisotropic contribution by forward convolutions
of the observed sky, then iteratively subtracting o↵ the
part due to beam asymmetries.

C. Local primordial modulation

Finally, we consider the case where the primordial per-
turbations �

0

(x) are modulated in real space, so that the
primordial perturbation field is

�(x) = �
0

(x)[1 + �(x)]. (28)

The primordial Gaussian field �
0

is assumed to be sta-
tistically homogeneous. Similar modulations have been
considered before [19]. We consider the modulating field
�(x) to be fixed, so the aim is to reconstruct the large-
scale � field by looking at the induced modulation of
smaller-scale perturbations. To leading order in � the
primordial covariance is given by

h�(k)�(k0)i = (2⇡)3�(k+ k

0)P�(k)

+

Z
d3xe�i(k+k

0
)·x�(x) [P�(k) + P�(k

0)] . (29)

Note that the modulated field (with fixed �) is no longer
statistically homogeneous. Expanding the exponentials
using

eik·x = 4⇡
X

lm

iljl(kx)Ylm(x̂)Y ⇤
lm(k̂), (30)

and using Eq. (19) to relate the primordial perturbations
to the observed temperature multipoles, the covariance
is then

Cl
1

m
1

l
2

m
2

= �l
1

l
2

�m
1

m
2

Cl
1

+

Z
d3x�(x)↵l

1

(x)�l
2

(x)Y ⇤
l
1

m
1

(x̂)Yl
2

m
2

(x̂)

+

Z
d3x�(x)↵l

2

(x)�l
1

(x)Y ⇤
l
1

m
1

(x̂)Yl
2

m
2

(x̂), (31)

Hanson & Lewis, 2009

Anisotropic Inflation from Gauge Field Dynamics
The model contains a U(1) gauge field minimally coupled to gravity

S =

Z
d4x
⇤
�g

"
M2

P

2
R �

1

2
⌅µ⇤⌅µ⇤�

f 2(⇤)

4
Fµ⇥Fµ⇥ � V (⇤)

#

Here 1/f (⇤) is the time-dependent gauge kinetic coupling.

We turn on the background gauge field Aµ = (0, Ax (t), 0, 0)
The background metric is

ds2 = �dt2 + e2�(t)
“
e�4⇤(t)dx2 + e2⇤(t)(dy2 + dz2)

”

= �dt2 + a(t)2dx2 + b(t)2(dy2 + dz2)

In this view H ⇥ �̇ is the average Hubble expansion rate and

Ha ⇥
ȧ

a
, Hb ⇥

ḃ

b

The anisotropy in the system is measured by

⇥̇

H
⇥

Hb � Ha

H

The background equations are too complicated to be solved !

Wednesday, November 6, 2013
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It is instructive to look at the ratio of gauge field energy density to total energy density

R =
⇢A
V

=
Ȧ2f (�)2e�2N

2V
=

p2A
2V

f �2e�4N

In the absence of conformal coupling f (�) R decays like a�4.

Consider the chaotic potential V = m2

2 �2. If one chooses

f (�) = exp

 
c�2

2M2
P

!
=

✓
a

af

◆�2c

(c > 1)

the system reaches the attractor regime:

R =
I

2
✏ , I ⌘ c � 1

c

and

M�2
P

d�

dN
' �V�

V
+

c � 1

c

V�

V

and therefore

�2 � �2
e = 4M2

PN(1� I )

The attractor solution

With this choice of f (⇤) one makes sure that the energy density of
the gauge field is sub-dominant but non-decaying

⇤ The Attractor Solution

One can show that during the attractor solution

R =
c � 1

2c
⇥H =

1

2
I ⇥H , I ⇥

c � 1

c

Back-reaction of the gauge field:

M�2
P

d⇤

d�
⌅ �

V�

V
+

c � 1

c

V�

V
.

This means that the back-reactions of the gauge field
on the inflation field change the e�ective mass

of the inflaton m2
e� =

m2
e�
c .

The inflaton trajectory is given by

⇤2
e � ⇤2 = 4M2

P�(1� I )

Watanabe, Kanno, Soda, 09

Wednesday, November 6, 2013

Now we can calculate the power spectrum

R = �N = �
⇧

2M2
P

�⇧ + 2IN
�Ȧx

Ȧ
.

The isotropic and the anisotropic parts are PR ⇥ P0 + �P in which

P0 =
H2

8⌅2M2
P⇥H

.

To calculate the anisotropic power spectrum we note that �⇧ and �Ȧ are mutually
uncorrelated so ⇤�⇧�Ȧ⌅|� = 0. As a results

�P =
k3
1

2⌅2
4I 2N2

*
�Ȧx (k1)

Ax

�Ȧx (k2)

Ax

+

=
k3
1

2⌅2

6IH2

⇥Hk3
1

N2 sin2 ⇤ = 24 IN2P0 sin2 ⇤

in which the angle ⇤ is defined via cos ⇤ = n̂.k̂. Now comparing this with the
anisotropy factor g� defined via

PR(⌃k) = P0

“
1 + g�(k̂.n̂)2

”
.

we obtained

g� = �24IN2

A.A. Abolhasani, R. Emami,  J. Taghizadeh, H. F.,  2013 
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�N in anisotropic background

�N is a powerful method applicable to all order in perturbations.

We only need to solve the number of e-folds N as
a function of background fields �,A.

The revenant equations are

�2 � �2
e = 4M2

PN(1� I )

and

R =
Ȧ2f (�)2e�2N

2V
=

p2A
2V

f �2e�4N =
I

2
✏

We obtain

�N = � �

2M2
P

��+ 2I N
�Ȧ

Ȧ

This is our result to first order in perturbations in �� and �Ȧ.

All we need to know is that at the time of horizon crossing

�A

Ȧ
=

X

�

~✏�

p
3Hp

2I ✏k3
.

Separate Universe Approach:

It is assumed that inside each small patch the universe behaves like an FRW Universe
with

a(t, x) = a(t)e�(t,x)

⇥ = ⇥(t, x) , p = p(t, x)

In �N formalism R = �N.

To use this prescription the initial surface has to be the flat surface, ⇤ = 0. The final
surface has to be the surface of constant energy, �⇥ = 0.

ba

t
1

t
2

0
!

-1

cH

!

s
!

Wands et al, 2000.
Bazrafshan, 2011
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Now we can calculate the power spectrum

R = �N = �
⇧

2M2
P

�⇧ + 2IN
�Ȧx

Ȧ
.

The isotropic and the anisotropic parts are PR ⇥ P0 + �P in which

P0 =
H2

8⌅2M2
P⇥H

.

To calculate the anisotropic power spectrum we note that �⇧ and �Ȧ are mutually
uncorrelated so ⇤�⇧�Ȧ⌅|� = 0. As a results

�P =
k3
1

2⌅2
4I 2N2

*
�Ȧx (k1)

Ax

�Ȧx (k2)

Ax

+

=
k3
1

2⌅2

6IH2

⇥Hk3
1

N2 sin2 ⇤ = 24 IN2P0 sin2 ⇤

in which the angle ⇤ is defined via cos ⇤ = n̂.k̂. Now comparing this with the
anisotropy factor g� defined via

PR(⌃k) = P0

“
1 + g�(k̂.n̂)2

”
.

we obtained

g� = �24IN2

A.A. Abolhasani, R. Emami,  J. Taghizadeh, H. F.,  2013 
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13

in which to leading order in I

Nφ ≃ − φ

2M2
P

, Nφφ ≃
2f2

,φ

f2
+

2f,φφ
f

+
φ2

M4
P

+
4φ

M2
P

f,φ
f

(4.3)

and

N,Ȧ ≃ 2IN

Ȧ
, N,ȦȦ ≃ 2IN

Ȧ2
, N,φȦ ≃ 4IN

Ȧ

fφ
f

(4.4)

Having calculated δN to second order in Eq. (4.2), we can calculate the bispectrum Bζ(k⃗1, k⃗2, k⃗3) defined via

⟨ζ(k⃗1)ζ(k⃗2)ζ(k⃗3)⟩ ≡ (2π)3 δ3
(
k⃗1 + k⃗2 + k⃗3

)
Bζ(k⃗1, k⃗2, k⃗3) (4.5)

There are three contributions into bispectrum; (a): N,φφN,φN,φ⟨δφ4⟩, (b): N,ȦȦN,ȦN,Ȧ⟨δȦ4⟩ and (c):

N,φȦN,φN,Ȧ⟨δφ2δȦ2⟩. The term (a) is the one expected from scalar field theory and is very small. The term
(b) is purely from the gauge field while the term (c) is from the mixing of inflaton and the gauge field. One expects
that the contribution of term (c) to be sub-leading as compared to the contribution of the term (b). Indeed, a direct
analysis shows that the ratio of (b) to (c) is N so for N ∼ 60 one can safely neglect the contribution from the term
(c). In conclusion, the leading contribution to the bispectrum comes from ⟨δȦ4⟩ and

⟨ζ(k1)ζ(k2)ζ(k3)⟩ ≃ 1

2
N,ȦȦ(k1)N,Ȧ(k2)N,Ȧ(k3)

∫
d3p

(2π)3
⟨δȦx(k⃗1)δȦx(k⃗2)δȦi(p⃗)δȦi(k⃗3 − p⃗)⟩+ 2perm.

= 4I3N(k1)N(k2)N(k3)

∫
d3p

(2π)3
⟨δȦx(k⃗1)δȦx(k⃗2)δȦi(p⃗)δȦi(k⃗3 − p⃗)⟩+ 2perm. (4.6)

in which N(ki) represents the time when the mode ki leaves the horizon. Now in the Coulomb gauge A0 = 0, the
gauge field perturbations δAi(k⃗) are given by [48]

δ ⃗̇A

Ȧ
|tk =

∑

λ

ϵ⃗λ

√
3H√

2IϵHk3
(4.7)

Plugging these in Eq. (4.6) yields

⟨ζ(k1)ζ(k2)ζ(k3)⟩ ≃ 288IN(k1)N(k2)N(k3)

(
C(k⃗1, k⃗2)P0(k1)P0(k2) + 2perm.

)
(2π)3 δ3

(
k⃗1 + k⃗2 + k⃗3

)
, (4.8)

in which the momentum shape function C(k⃗1, k⃗2) is defined via

C(k⃗1, k⃗2) ≡
(
1− (k̂1.n̂)

2 − (k̂2.n̂)
2 + (k̂1.n̂) (k̂2.n̂) (k̂1.k̂2)

)
(4.9)

To obtain Eq. (4.8) we have used P0(k1) =
H2

4k3
1
ϵHM2

P

for the isotropic power spectrum and

⟨δȦi(k⃗1)

Ȧ

δȦj(k⃗2)

Ȧ
⟩ = 3H2

2IϵHk3M2
P

(
δij − k̂1ik̂1j

)
(2π)3 δ3

(
k⃗1 + k⃗2

)
(4.10)

Using Eq. (4.8), one can calculate the bispectrum as

Bζ(k⃗1, k⃗2, k⃗3) = 288IN(k1)N(k2)N(k3)
(
C(k⃗1, k⃗2)P0(k1)P0(k2) + 2perm.

)
(4.11)

This completes our results for the bispectrum. As expected, the shape of the bispectrum is anisotropic. Very
interestingly our formula Eq. (4.8) and Eq. (4.11) agree exactly with the result of [48] obtained using the standard
in-in formalism.
To calculate fNL we go to the squeezed limit k1 ≪ k2 ≃ k3 in which

fNL(k⃗1, k⃗2, k⃗3) = lim
k1→0

5

12

Bζ(k⃗1, k⃗2, k⃗3)

Pζ(k1)P(k2)
. (4.12)

Bispectrum
The second oder �N is

�N = N��⌅ + NȦ�Ȧ +
N��

2
�⌅2 +

NȦȦ

2
�Ȧ2 + N�Ȧ�⌅�Ȧx

in which to leading order in I

N� ⇤ �
⌅

2M2
P

, N�� ⇤
2f 2

,�

f 2
+

2f,��

f
+

⌅2

M4
P

+
4⌅

M2
P

f,�
f

and

N,Ȧ ⇤
2IN

Ȧ
, N,ȦȦ ⇤

2IN

Ȧ2
, N,�Ȧ ⇤

4IN

Ȧ

f�
f

The leading contribution in bispectrum comes from NȦȦ term and

⌅⇥(k1)⇥(k2)⇥(k3)⇧

⇤ 4I 3N(k1)N(k2)N(k3)

Z
d3p

(2⇤)3
⌅�Ȧx (⇧k1)�Ȧx (⇧k2)�Ȧi (⇧p)�Ȧi (⇧k3 � ⇧p)⇧+ 2perm.

The bispectrum is

⌅⇥(k1)⇥(k2)⇥(k3)⇧ ⇤ 288INk1Nk2Nk3

„
C(⇧k1,⇧k2)P0(k1)P0(k2) + 2perm.

«
(2⇤)3 �3(

X

i

⇧ki )

in which the momentum shape function C(⇧k1,⇧k2) is defined via

C(⇧k1,⇧k2) ⇥
„

1� (bk1.bn)2 � (bk2.bn)2 + (bk1.bn) (bk2.bn) (bk1.bk2)

«

Our result is in exact agreement with the results obtained from in-in formalism!

A.A. Abolhasani, R. Emami,  J. Taghizadeh, H. F.,  2013 

Bartolo, Matarrese, Peloso,  Ricciardone,  2012 

Wednesday, November 6, 2013

in which 

Bispectrum
The second oder �N is

�N = N��⌅ + NȦ�Ȧ +
N��

2
�⌅2 +

NȦȦ

2
�Ȧ2 + N�Ȧ�⌅�Ȧx

in which to leading order in I

N� ⇤ �
⌅

2M2
P

, N�� ⇤
2f 2

,�

f 2
+

2f,��

f
+

⌅2

M4
P

+
4⌅

M2
P

f,�
f

and

N,Ȧ ⇤
2IN

Ȧ
, N,ȦȦ ⇤

2IN

Ȧ2
, N,�Ȧ ⇤

4IN

Ȧ

f�
f

The leading contribution in bispectrum comes from NȦȦ term and

⌅⇥(k1)⇥(k2)⇥(k3)⇧

⇤ 4I 3N(k1)N(k2)N(k3)
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d3p
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X

i

⇧ki )

in which the momentum shape function C(⇧k1,⇧k2) is defined via

C(⇧k1,⇧k2) ⇥
„

1� (bk1.bn)2 � (bk2.bn)2 + (bk1.bn) (bk2.bn) (bk1.bk2)
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Our result is in exact agreement with the results obtained from in-in formalism!
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In the squeezed limit we get

fNL = 240IN(k1)N(k2)
2C(⇧k1,⇧k2) (k1 ⇥ k2 ⇤ k3)

⇤ 10N |g�| C(⇧k1,⇧k2)

Similarly, calculating the trispectrum ⌅⇥�k1
⇥�k2

⇥�k3
⇥�k4
⇧ we obtain

⌅⇥�k1
⇥�k2

⇥�k3
⇥�k4
⇧ ⇤ 3456INk1Nk2Nk3Nk4

„
D(⇧k3,⇧k4,⇧k1 + ⇧k3)P(k3)P(k4)P(|⇧k1 + ⇧k3|)

+ 11perm.

«
(2⇤)3 �3

“
⇧k1 + ⇧k2 + ⇧k3 + ⇧k4

”
,

in which

D(⇧k3,⇧k4,⇧k1 + ⇧k3) = 1� (bk4.bn)2 � (bk3.bn)2 � ( �k1 + k3.bn)2 + (bk3.bn)(bk4.n̂)(bk3.bk4)

+(bk4.bn)( �k1 + k3.bn)( �k1 + k3.bk4) + (bk3.bn)( �k1 + k3.bn)( �k1 + k3.bk3)

�(bk3.bn)(bk4.bn)( �k1 + k3.bk3)( �k1 + k3.bk4) .

In the collapsed limit ⇧k1 + ⇧k3 = ⇧k2 + ⇧k4 = 0

⌅NL(k1, k2, k3, k4) ⇤ 3456IN(k3)
2N(k4)

2D(⇧k3,⇧k4,⇧k1 + ⇧k3) .

Our result is in exact agreement with the results obtained from in-in formalism!

Shiriashi, Komatsu, Peloso, Barnaby  20123

Wednesday, November 6, 2013

Primordial

anisotro-

pies and

asymme-

tries and

cosmic

inflation

Statistical Anisotropy: The E↵ective Field Theory Approach

E↵ective Field Theory (EFT) provides a model-independent view of inflation. It
helps to classify various inflationary models based on their predictions for power
spectrum and bispectrum.

Our goal is to study anisotropic inflation model-independently and capture the
general predictions.

In isotropic models based on a single field model, the evolution of �(t) breaks the
time di↵eomorphism spontatnously. However, one still has the spatial
di↵eomorphism invariance

⇠i ! ⇠i + ⇠i (x⌫)

In the presence of the gauge field, we also have to take into account the internal
U(1) gauge symmetry:

Aµ ! Aµ +rµF

The choice of Unitary Gauge

�� = 0 , Aµ = (0,A1(t), 0, 0) .

A. A. Abolhasani, M. Akhshik,  R. Emami,  H. F.  , 1511.03218 
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Challenge: Under a U(1) gauge transformation we can always undo the unitary gauge
and turn on �Aµ.

Under a combined spatial and U(1) transofrmation we have

�Aµ ! �Aµ + A
1
@1⇠

µ + gµ↵@↵F .

Suppose

⇠µ = rµ⇠L + ⇠µT = gµ↵@↵⇠L + ⇠µT , rµ⇠
µ
T = 0

Then

�Aµ ! �Aµ + A
1
@1⇠

µ
T + gµ↵@↵F + A

1
@1 (g

µ↵@↵⇠L) ,

= �Aµ + A
1
@1⇠

µ
T + A

1
(@1g

µ↵) @↵⇠L + Ȧ
1
gµ0@1⇠L + gµ↵@↵

⇣
A
1
@1⇠L + F

⌘
.

The remnant symmetry:

⇠µT = ⇠µT (t, y , z), (@1g
µ↵) @↵⇠L =

˙
A
1

A
1 g

µ0@1⇠L, (remnant symmetry)

Now our building blocks are metric perturbations �g↵� and their derivatives subject
to the above remnant symmetries.

Anisotropic

and

Asym-

metric

Primor-

dial

Universe

The Quadratic action in Unitary gauge

S =

Z
d4x

p
�g

"
⇤+ ↵0g

00 +
c0

4

�
�g00�2 �

1

4
M1�

⇣
G↵�G↵�

⌘
�

1

4
M2�

⇣
G↵�G↵�

⌘2

�
1

4
M3�

⇣
G↵�G̃↵�

⌘
�

1

4
M4�

⇣
G↵�G̃↵�

⌘2
+

1

2
�1�g

00�
⇣
G↵�G↵�

⌘

+
1

2
�2�g

00�
⇣
G↵�G̃↵�

⌘
+ ...

#
.

in which

G↵� ⌘ @↵g�1 � @�g↵1 +
Ȧ1

A1

⇣
�0↵g�1 � �0�g↵1

⌘
.

Example: Anisotropic inflation in Maxwell theory: L
Maxwell

= � f (�)2

4 Fµ⌫Fµ⌫ . Then

we find Fµ⌫ = A1Gµ⌫ and

M1 = f 2
⇣
A1

⌘2
/ a�2, M2 = M3 = M4 = �1 = �2 = c0 = 0.

c0: non-trivial sound speed cs for inflaton

M3: Parity violating interactions

�1: non-trivial interaction between gauge field and inflaton: L = f (X )Fµ⌫Fµ⌫ .

M2: The photon four interaction (Euler-Heisenberg model).

A. A. Abolhasani, M. Akhshik,  R. Emami,  H. F.  , 1511.03218 
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The Goldstone Bosons:

The Goldstone bosons are xµ ! xµ0 = xµ + ⇡µ .

As usual ⇡0 reprtesents the inflaton fluctuations which captures the curavture
perturbations. In addition we have 3 Goldstone bosons ⇡i .

Upon restoring the Goldstone bosons we have

�Ai ! �Ai 0 = �Ai + @1⇡
i A1 = �Ai + �XiA

1 .

To fix the U(1) gauge, we impose the Coulomb-radiation gauge A0 = @i Ai = 0. This
yields @i�Xi = 0.

Decompose �Xi into the transverse and the longitudinal parts:

�Xi = @i�XL + �XTi , @i�XTi = 0

Then from the condition @i�Xi = 0 we obtain r2�XL = 0.

In conclusion we have left with the two transverse degrees �XT .

In total, we have 3 physical Goldstone bosons: one associayted with ��, the other 2
associated with �Aµ transverse fluctuations.

Primordial

anisotro-

pies and

asymme-

tries and

cosmic

inflation

Anisotropic Power Spectrum

After canonically normalizing the fields, we obtain three types of interactions

L1 = a2
h
2M1(n + 2)(n � 1)H3

i
⇡0�XT1

L2 = �a
h
4�1H

2n(2 + n) + 2H2(2 + n)M1

i
⇡00�XT1,

L3 = �4�1H(2 + n)⇡00�X 0
T1.

The anisotropic power specrum is:

�Pji = �
Z ⌧e

�1
d⌧1

Z ⌧1

�1
d⌧2
D h

Li (⌧2),
h
Lj (⌧1),⇡

0⇤(⌧e)⇡
0⇤(⌧e)

i i E
,

We define the anisotrpy as: PR(k) = P
(0)
R

⇣
1 + g⇤(bn · bk)2

⌘

Case M2 = M3 = M4 = 0:

g⇤ = 72
M1c5s
✏M2

P

 
1 +

6�1

M1

!2

N2 .

Example: cs = 1, �1 = 0

g⇤ = 24I N2 , I =
c � 1

c
(Maxwell theory) .
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Case M2,M4 6= 0:

The coupling M2 does not appear in interactions. However, it changes the

wavefunction of �XT . It a↵ects one of the linear polarizations, X (1)c
T :

S
X

(1)
T

2 =

Z
d4x

p�g
h1
2

�
�Ẋ

(1)c
T

�2 � 1

2a2

⇣
1 +

8M2H2(2 + n)2 sin2 ✓

M1 � 8M2H2(2 + n)2

⌘�
�X

(1)c
T ,j

�2i

This corresponds to a non-trivial speed of light for photons:

c2v ' 1 +
8M2H2(2 + n)2

M1
sin2 ✓.

This is like the birefringence e↵ect in optics.

�P

P⇡0
=

72M1

✏M2
P

(1 + 6�1
M1

)2c5s

c3v (1� c2v�1

sin2 ✓
)
N2 sin2 ✓

In simple case if we further assume cs = 1,�1 = 0

�P

P⇡0
= 24IN2 sin2 ✓

h
1� 36H2M2

M1
(1� 3 cos2 ✓)

i
.

We have both ` = 2 and ` = 4 anisotropies.

Anisotropic

and

Asym-

metric

Primor-

dial

Universe

Conclusion

Primordial asymmetries and anisotropies are interesting both theoretically and
observationally. There are evidences for hemispherical asymmetry on CMB maps.

�N approach can be extended to anisotropic backgrounds. One can calculate the
power spectrum, bispectrum, trispectrum etc which are in exact agreements with
the results obtained from alternative in-in formalism.

EFT provides a good platform to study various aspects of primordial statistical
anisotropies model-independently. Our EFT approaches reproduces the know
results. We also found new types of interactions.

It will be very interesting to perform the bispectrum (non-Gaussianity) analysis in
our EFT approach.
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1 Instrument and Mission Overview

2 Foregrounds and Component Separation

3 CMB Maps and Spectra

4 B-Modes and Dust

5 Implications for Inflation

6 Conclusions
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Planck before LaunchPlanck before Launch
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Planck Focal PlanePlanck Focal Plane

Planck Focal Plane SchematicsPlanck Focal Plane Schematics
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Planck 2015: What’s New?Planck 2015: What’s New?

More data: 48/29 months of LFI/HFI observations, enabling
further checks

Improved data processing: systematics removal,
calibration, beam reconstruction

Improved foreground model: larger sky-fraction used for
analysis

More robust to systematics: based on half-mission cross
power spectra

The 2015 analysis includes polarization

Planck 2015: What’s New?Planck 2015: What’s New?

More data: 48/29 months of LFI/HFI observations, enabling
further checks

Improved data processing: systematics removal,
calibration, beam reconstruction

Improved foreground model: larger sky-fraction used for
analysis

More robust to systematics: based on half-mission cross
power spectra

The 2015 analysis includes polarization
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CMB vs. Astrophysical ForegroundsCMB vs. Astrophysical Foregrounds
� Intensity � Polarization � Atmospheric Transmission �
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CMB vs. Astrophysical ForegroundsCMB vs. Astrophysical Foregrounds
� Intensity � Polarization � Atmospheric Transmission �
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Atmospheric Transmission with 0.5, 1.0, 2.0 and 4.0 mm PWV

Component Separation MethodsComponent Separation Methods

Like in 2013, three CMB cleaning methods (SMICA, SEVEM,
NILC) & 1 explicit Component Separation method (Commander).
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Temperature Component MapsTemperature Component Maps

Polarization Component MapsPolarization Component Maps

Two main foregrounds, synchrotron emission and thermal
dust

Amplitude of CMB polarization is less than foregrounds

Dust emission is highly polarized (polarization fraction is up
to 20%)
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Synchrotron Polarization AmplitudeSynchrotron Polarization Amplitude

P =
p

Q 2+U 2, at 30 GHz, smoothed to 40

0

Magnetic Field and Total IntensityMagnetic Field and Total Intensity

The colours represent intensity. The “drapery” pattern indicates
the orientation of magnetic field projected on the plane of the sky,
orthogonal to the observed polarization.
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Dust Polarization AmplitudeDust Polarization Amplitude

AP

d

0 20 200
µKRJ @ 353 GHz

P =
p

Q 2+U 2, at 353 GHz, smoothed to 10

0

Magnetic Field and Total IntensityMagnetic Field and Total Intensity

The colours represent intensity. The “drapery” pattern indicates
the orientation of magnetic field projected on the plane of the sky,
orthogonal to the observed polarization.
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CMB Intensity MapCMB Intensity Map

CMB Polarization MapsCMB Polarization Maps

AQ
cmb

�3 0 3
µK

AU
cmb

�3 0 3
µK

Smoothed to 1 degree resolution

High-pass filtered with l=20-40 cosine filter

Galactic plane replaced with constrained Gaussian realization
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Planck 2015: Stacking T & QrPlanck 2015: Stacking T & Qr
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WMAP-7: Stacking T & QrWMAP-7: Stacking T & Qr

Planck 2015 TT Power SpectrumPlanck 2015 TT Power Spectrum
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Planck 2015 TE Power SpectrumPlanck 2015 TE Power Spectrum
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Planck 2015 EE Power SpectrumPlanck 2015 EE Power Spectrum
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Planck View of BICEP2 FieldPlanck View of BICEP2 Field

Planck x BICEP2/Keck Cross-SpectraPlanck x BICEP2/Keck Cross-Spectra

0

2000

4000

6000

8000
150x150

TT
 l(

l+
1)

C l/2
π 

[µ
K2 ]

 

 
BKxBK
BxB
KxK

0

2000

4000

6000

8000
150x353

 

 
BKxP353
BxP353
KxP353

0

2000

4000

6000

8000
353half1x353half2

 

 
DS1xDS2
Y1xY2
HR1xHR2

−100

0

100

200

TE
 l(

l+
1)

C
l/2
π 

[µ
K2 ]

−100

0

100

200

 

 
BKExP353T
BKTxP353E

−100

0

100

200

0

2

4

6

EE
 l(

l+
1)

C
l/2
π 

[µ
K2 ]

χ2=19.8, χ=3.2

0

2

4

6 χ2=23.7, χ=9.7

−20

0

20

40 χ2=39.2, χ=14.8

0 50 100 150 200 250 300

−0.02

0    

0.02 

     

BB
 l(

l+
1)

C
l/2
π 

[µ
K2 ]

χ2=150.9, χ=31.1

0 50 100 150 200 250 300

−0.6
−0.4
−0.2

0
0.2
0.4
0.6
0.8

−0.02

0    

0.02 

     

sc
al

ed

χ2=76.4, χ=17.5

0 50 100 150 200 250 300

−15
−10
−5

0
5

10
15
20

Multipole

−0.02

0    

0.02 

     

sc
al

ed

χ2=35.6, χ=8.1

                                                                                                                  1199



Cleaning Up Dust with PlanckCleaning Up Dust with Planck
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fitting BB auto- and cross-spectra taken between maps at 150
(BICEP2/Keck) and 217 and 353 GHz (Planck).
A Gaussian prior is placed on the dust frequency spectrum
parameter �d = 1.59±0.11.
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Datasets & ShorthandsDatasets & Shorthands

Planck TT: Planck TT for 2< `< 2500.

lowP: low-` Planck polarization, 2< `< 30. (For 2013
results, this will indicate low-`WMAP polarization, WP)

Planck TE, EE: Planck TE & EE at high-`, 30< `< 2000.

Lensing: Planck lensing potential at 40< `< 400 from
4-point correlation function (i.e. conservative)
External datasets:

BAO (6dFGS, SDSS-MGS, BOSS-LOWZ, CMASS DR11)
JLA: Type Ia Supernovae (SNLS+SDSS+low z Sne)
H0: Hubble constant (Reanalysis by Efstathiou 2014 of Riess et al. 2011)

BKP: BICEP2/Keck x Planck joint likelihood

Whenever not specified, we assume Neff = 3.046,P
m⌫ = 0.06eV (1 massive, two massless).

Planck 2015 Constraints on InflationPlanck 2015 Constraints on Inflation
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ConclusionsConclusions

A lot more and better processed and analyzed data.

As in 2013, base ⇤CDM continues to be a good fit to the
Planck data, including polarization.

Polarization has a degeneracy lifting capability often
comparable to BAO.

No convincing evidence for any simple extensions.

Some tensions with astrophysical data that measure the
amplitude of matter fluctuations.

Planck constraints on r remain as in 2013 (r < 0.11 @ 95%
CL), reminding that this constraint is model dependent.

Scalar fluctuations consistent with pure adiabatic modes with
a featureless tilted spectrum.

ConclusionsConclusions

2015 papers and data are released!

+more to come...
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“Spontaneous scalarization-induced dark matter and variation of the 

gravitational constant”

by Teruaki Suyama

[JGRG25(2015)8a4]
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Spontaneous scalarization-induced dark matter and 
variation of the gravitational constant 

Teruaki Suyama 
RESCEU, the University of Tokyo 

  
in collaboration with 

 

Pisin Chen (LeCosPA), Jun’ichi Yokoyama (RESCEU) 
 

 

References:  
P.Chen, TS&J.Yokoyama, arXiv:1508.01384 

2 

Dawn of a new era of gravitational physics 

LIGO(H) 

LIGO(L) KAGRA 

VIRGO 

Is there any model where large deviation from GR 
occurs only in strong gravity regime? 

Experimental tests of GR in strong gravity regime become 
possible soon. 

Stringent solar-system constraints do not mean GR is correct. 
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Damour-Esposito-Farese(DEF) model 

DEF model : 𝜇 = 0, 𝐴 𝜙 = exp(2𝜋𝐺𝑁𝛽𝜙2) 

is the Jordan-frame metric. 

3 

(Damour&Esposito-Farese, 1993) 

Simplest class of the ST theory 

(Brans-Dicke : 𝜇 = 0, 𝐴 𝜙 = exp ( 4𝜋𝐺𝑁
2𝜔𝐵𝐷+3

 𝜙)) (𝜔𝐵𝐷 ≳ 5 × 104) 

𝑑
𝑑𝜙

ln 𝐴(𝜙) measures the amount of deviation from GR (environment dependent). 

Effective potential in the DEF model 

Even if the asymptotic value of 𝜙 satisfies the solar-system 
constraints, it is possible that significant deviation from GR 
appears at the vicinity and inside of the neutron star. 

4 Many papers on this model. 

𝜙 = 0 is GR. 
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Cosmology of the DEF model 

In the early Universe, the non-relativistic 
matter pushes 𝜙 away from the origin. 

GR is not the cosmological attractor in the DEF model and fine-tuning of 
the initial value of 𝜙 is required to be consistent with the solar-system 

experiments. 

GR limit corresponds to 𝜙 = 0. 

5 

(e.g. Sampson et al, 2014) 

Can we have a viable model? 

Our new scalar-tensor model 

To derive quantitative results,  
we use this form. 

6 

  

𝐴(𝜙) 

𝑀 
𝜙 

Our new model does not suffer from the issue present in the 
DEF model. Furthermore, 𝜙 becomes a natural candidate of 
dark matter. 

Two modifications 

• Massive 𝜙 (𝜇 ≠ 0) 

• Decreasing function for 𝐴(𝜙)  
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Spontaneous scalarization 

𝜌𝑃𝑇 ≡ 2𝜇2𝑀2/𝜀 is the critical density. 

If 𝜌  is above 𝜌𝑃𝑇, spontaneous scalarization occurs and stable value 𝜙  
is given by 

Apart from the logarithmic factor, 𝜙  ∼ 𝑀.  
7 

Symmetric phase (𝝓 = 𝟎) 

Interaction at the leading order is given by ∼ 𝜙2

𝑀2 𝑇. For our case of interest, 𝑀 is 

much larger than TeV scale. We do not expect detectable signal of the existence 
of the 𝜙 field from the terrestrial experiments. 

There is no difference between the Jordan-frame and the Einstein-frame metrics. 

Laws of gravity are just GR. 

𝜙 = 0 

8 
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In the spontaneous scalarization phase, field eqs for gravity are modified. 

Emergence of the effective 
cosmological constant (contrary 
to the Higgs mechanism) 

Spontaneous scalarization phase 

Variation of the gravitational constant 

Assuming no-excitation of the 𝜙 field,  

𝑔𝜇𝜈  obeys the Einstein equations with the effective C.C. given by Λ𝑒𝑓𝑓 > 0 and 

with the gravitational constant given by 𝐺𝑒𝑓𝑓 < 𝐺𝑁. 

9 

Spontaneous scalarization phase 

For 𝜌 ≫ 𝜌𝑃𝑇, we have 

We find that Λ𝑒𝑓𝑓 is only logarithmically enhanced compared to 𝜌𝑃𝑇. 

Thus, the effective cosmological constant does not play a significant role 
in deep scalarization phase. 

The gravitational constant is reduced from the one measured in the laboratory 
by the factor 𝜀.  

In the deep scalarization phase, the scalar force is suppressed and the 
dominant modification is the weakening of gravity while keeping the structure 
of GR. 

10 
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Spontaneous scalarization 

What is the value of 𝜌𝑃𝑇? 

It is a free parameter of the model. 

Interesting case is 𝜌𝑃𝑇 <  𝜌𝑁𝑆 ≈ 3 × 10−3𝐺𝑒𝑉4. Then, spontaneous 
scalarization occurs inside the compact objects such as the neutron stars. 

It is possible that 𝜙 field constitutes the whole DM for such case. 

11 

12 

Neutron star 

𝐺𝑒𝑓𝑓 < 𝐺𝑁 

If SS occurs in compact stars, gravity becomes weaker 
inside the star. 

𝜌Λ ⋍ 𝜌𝑃𝑇 

Increase of NS mass? 

𝜇−1 = 2𝑐𝑚 (
𝜇

10−5𝑒𝑉
)−1 
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13 

We dubbed 𝜙 as asymmetron. 

14 

Disappearance of “asymmetron” in the title! 
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15 

16 History repeats itself. 

Disappearance of “symmetron” in the title! 
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Asymmetron as dark matter 

17 

I show that asymmetron can behave as cold dark matter. 

Asymmetron as dark matter 

CMB map by Planck 

In the present model, DM is “seeded” during inflation.  
18 

DM is known to exist in the Universe. 

Inflation is known to have happened in the early Universe. 
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Asymmetron as dark matter 

In our model, the 𝜙 field universally couples to all the rest of the fields 
including the inflaton. 

During inflation, SS occurs by (large) inflaton energy density. 
19 

during inflation 

Asymmetron as dark matter 

𝜙 field behaves as non-relativistic matter. 

Since 𝜙 asymptotically approaches zero, GR is a cosmological 
attractor. 

𝜙 field satisfies all the properties required for dark matter. 
20 

𝜙2  ∝  𝑎−3 
During radiation domination 
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Asymmetron as dark matter 

• Non-trivial two constraints 

1. Non-observation of the CDM isocurvature perturbation in the CMB. 

2. Non-observation of the fifth force. 

21 

Asymmetron as dark matter 

1. Non-observation of the CDM isocurvature perturbation in the CMB. 

Components: dark matter, baryons, radiations 

Adiabatic perturbations: perturbations of all the components are the same 

Isocurvature perturbations: perturbation of each components is independent 

Asymmetron DM contains uncorrelated CDM isocurvature perturbation. 

WMAP 9yr constraint 

22 
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Asymmetron as dark matter 

Since 𝜙 field is still oscillating today, its has non-vanishing < 𝜙2 >. 

2. Non-observation of the fifth force. 

1
2

𝜇2 < 𝜙2 > = 𝜌𝐷𝑀,𝑙𝑜𝑐𝑎𝑙 

Since 𝜙 field has non-vanishing amplitude, it mediates fifth-force.  
In particular, the strength of the fifth-force changes periodically in time. 

Gravity + fifth force 

23 

Asymmetron as dark matter 

2. Non-observation of the fifth force. 

𝑀𝑆 

𝑟 

Correction due to the fifth-force 
24 
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However, constraint from the non-observation of CDM isocurvature 
perturbation is strong. Asymmetron as dark matter is inconsistent 
with inflation models with energy scale as large as 1015𝐺𝑒𝑉.  

Fifth-force from the asymmetron dark matter is much smaller than 
the upper limit set by the experiments.  

25 

Asymmetron as dark matter is consistent with inflation models 
with energy scale 1013𝐺𝑒𝑉.  

Low energy inflation is consistent with asymmetron being DM. 26 
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We have proposed a new scalar-tensor model in which the scalar field 

undergoes the spontaneous scalarization above the critical density.  

Summary 

The scalar field can be the DM. Spontaneous scalarization also provides the 

mechanism to generate the initial abundance of DM. (additional production 

mechanism is not needed) 

In the spontaneous scalarization phase, the gravitational constant gets 

weakened compared to the one measured in the laboratory. This may happen 

inside the compact objects. 

Opening of GW observations will enable us to test this scenario and first 

“detection” of DM may come from such observations.  

The scalar field is only very weakly interacting with our matter (in the 

symmetric phase) and detecting such a field on the Earth is quite hard. 

27 

Issues to be investigated 

• How is the structure of neutron star changed? 

• What happens when scalarized object collapses into a BH? 

• What kind of observations are the most effective to test this model? 

• Dynamics of spontaneous scalarization. Process to reach into the stable state. 

Astrophysics of the spontaneous scalarization 

28 
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“The Einstein-Struble Correspondence and Lorentz Invariance”

by Marcus Christian Werner

[JGRG25(2015)8a5]
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. . . . . .

The Einstein-Struble Correspondence
and Lorentz Invariance

Marcus C. Werner, Kyoto University

JGRG25 at Kyoto

11th December 2015

. . . . . .

Introduction

• 2015 marks the centennial of general relativity, and has been
designated the International Year of Light by UNESCO.

• I present hitherto unpublished correspondence of Einstein,
Chandrasekhar and others with Struble, about an optical test
of Lorentz invariance.

• This may be of scientific as well as historical relevance, given
the recent renewed interest in Lorentz-violating theories, such
as Hǒrava-Lifshitz gravity.
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. . . . . .

Outline

• Physical perspective: electromagnetism and Lorentz
invariance, possible modifications.

• Historical perspective: special relativity versus emission theory,
binary star test.

• The Struble effect, and correspondence with Chandrasekhar
and Einstein.

. . . . . .

Lorentz invariance from Maxwell

Consider (M, g) with arbitrary signature and test matter defined by
vacuum Maxwell theory,

S = −1

4

∫
ωg gαµgβνFαβFµν ,

with volume form ωg =
√

| det g |d4x . Then the principal
polynomial is quadratic,

P(x , p) = g−1(x)αβpαpβ , p ∈ T ∗M,

and is hyperbolic iff g is Lorentzian.
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. . . . . .

Possible modifications

Now consider non-vacuum Maxwell theory with constitutive tensor
G defining the medium,

S = −1

8

∫
ωG GαβγδFαβFγδ,

then the corresponding principal polynomial is quartic,

P(x , p) = G(x)αβγδpαpβpγpδ, p ∈ T ∗M,

with the Fresnel tensor

Gαβγδ = − 1

24
(ωG )κλµν(ωG )ρστυG

κλρ(αGβ|µσ|γG δ)ντυ.

In the standard theory, we assume G = G (g) in vacuum.

. . . . . .

Possible modifications

• However, G instead of g may be taken as fundamental:
premetric electromagnetism (e.g. Hehl, Obukhov, Rubilar 2002, Itin 2009) and
area metric theory (e.g. Schuller, Witte, Wohlfarth 2010, Rätzel, Rivera, Schuller 2011).

• The hyperbolicity property is more complicated than in metric
geometry, allowing, for instance, birefringence. Potentially
interesting in cosmology as effective theory (e.g. Werner in prep.).

• Lorentz invariance is well established. Pulsar timing provides
some of the best current evidence, i.e. absence of preferred
frame effects. (e.g. Shao, Caballero, Kramer, Wex, Champion, Jessner 2013).
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. . . . . .

Prehistory of special relativity

Discovery of the aberration of
star light by James Bradley, 1727:

∆θ ≃ 2vorb
c

≃ 41′′

→ Supposed aether stationary
with respect to the Sun

Interferometer experiment of
Albert Michelson and Edward
Morley at Cleveland, 1887

No diurnal variation observed →
contradiction with aether theory

. . . . . .

Two competitors

Albert Einstein (1879-1955):
special relativity, 1905

Explains negative the result of
the Michelson-Morley experiment

Walter Ritz (1878-1909):
emission theory, 1908

Explains the negative result of
the Michelson-Morley experiment
as well!
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. . . . . .

Emission theory versus special relativity

• Interferometry experiment requires moving mirrors (Michelson
1913) or emitters (Tolman 1912), e.g. stars

• Negative result of the Michelson-Morley experiment using star
light was achieved by Tomaschek, 1924

• Using binary star systems to test emission theory:
Comstock (1910), de Sitter (1913), Freundlich (1913)

. . . . . .

Emission theory versus special relativity

Letter by Einstein to Freundlich, 26 August 1913, mainly about
gravitational lensing and its observability during solar eclipses:

[...] I am also very curious about the results of your
investigations concerning the binary stars. If the speed of
light depends on the speed of the light source even only
in the slightest, then my entire theory of relativity,
including the theory of gravity, is wrong.

                                                                                                                  1230



. . . . . .

Binary star test

Binary star system L, S with circular orbit of radius a and orbital
speed v = ωa, observed by O from distance d ≫ a:

Observation time t as a function of emission time t0, at orbital
position θ(t0) = ωt0, assuming emission theory:

t = t0 +
d + a sinωt0
c − aω cosωt0

. . . . . .

Binary star test: no ghost stars

                                                                                                                  1231



. . . . . .

Revisiting emission theory

• Raimond Struble (1924-2013),
mathematician at North Carolina
State University, Raleigh

• Correspondence with Einstein and
Chandrasekhar in 1947, as a
student at Notre Dame University.
Adviser: Karl Menger at Illinois
Institute of Technology.

• Hitherto unpublished
correspondence in private archive
of the Struble Estate (PO Box
31346, Raleigh, NC 27622, USA)

. . . . . .

Acceleration Doppler effect

Struble found an acceleration Doppler effect hitherto overlooked in
emission theory, providing a strong test of Lorentz invariance:

During ∆t0 =
λ0
c , we have ∆c = ∆t0aω2 sin θ, and thus

∆λ

λ
= −∆c

d

c
= −λ0

adω2

c2
sin θ.
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. . . . . .

Struble and Chandrasekhar

The Struble Estate

Struble wrote to Chandrasekhar at Yerkes
Observatory, who noted that

no one has thought of the effect
of acceleration on the velocity of
light on classical lines,

but pointed out the issue of phase versus
group velocity, as well as de Sitter’s work.

A first attempt to publish in Phys. Rev.
failed. Then Menger tried to intercede on
behalf of his student.

. . . . . .

Menger and Phys. Rev.

The Struble Estate
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. . . . . .

Finally, turning to Einstein

The Struble Estate

. . . . . .

Conclusions

• Einstein deemed Struble’s effect essentially right, but also
pointed out the possible priority of de Sitter, as mentioned
above.

• Struble’s effect was not discussed by de Sitter, but Struble did
not publish and the effect is neglected in later critiques of
emission theory (e.g. Fox 1965).

• Now given the renewed interest in Lorentz-violating theories,
can we usefully apply Struble’s effect in contemporary physics?
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 2) CONSTANT SCALAR CURVATURE SOLUTIONS 
      In three dimensions, classification of space-times can be done either using the  
      Cotton-tensor (analogous to the four dimensional Petrov classification) 
or using the  
      Traceless Ricci tensor (analogous to the four dimensional Segre classification). 
  To search for solutions, let us rewrite the source-free field equations as a trace part 
and a traceless part. 
                     The trace part of TMG equations  
                                                    traceless part 
 
 
       The trace part of  MMG equations  
                                            
                                         traceless part 
 
 
    A)TYPE-N 
    For Type-N space-times traceless Ricci tensor can be written as [4]  
where ρ is a scalar function and ξµ   is a null vector(ξµξµ = 0 ) From the trace part 
of the MMG field equations, Ricci scalar is constant with two possible values and 
the traceless part of the field equation is: 
 
 

which is nothing but the field equations of TMG with the simple replacement of the 
parameters as  
 
 
 

           B) TYPE –D 
          Type-D solutions split into two as Type-Dt and Type-Ds and both types have 
the traceless Ricci tensor as [5]                                       , where  ξµξµ=±1 ,  and p is 
a scalar function. Again we have constant curvature scalar with two possible 
solutions. Reducing the MMG equation to the TMG equation as,  
  
 
 
which means all Type-D solutions of TMG solve MMG once the following 
replacement is made  
 

 
 
 Finally, let us note that the following restricted version of the general Kundt 
solution of TMG [6] also solves MMG. 

 
     
    C) TYPE-O 
      For Types O, N, III one has                         . Let us first consider all the 
solutions of MMG that satisfy               ,which boils down to all the solutions of 
TMG that has this property. Clearly Type-O solutions of TMG for which the 
canonical form of the traceless-Ricci and traceless-J  tensor vanish, hence all such 
solutions of TMG, which are locally Einstein spaces, also solve MMG.  
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1)CONSISTENCY OF FIELD EQUATIONS OF MMG  
 The matter-free field equation of the theory is defined as [1] 
 
 
 

with dimensionless parameters σ , γ and dimensionful ones µ and Λ0. The Cotton 
tensor is given in terms of the Schouten tensor  and the new ingredient is the J-
tensor defined in terms of the products of two Schouten tensors as 
 
 
     
 The matter coupled field equations [2] 
 
                  
  
where the source term reads 
 
 
 
 

     A)SOURCE FREE CASE 
 Consistency of the field equations requires that the first divergence vanishes but 
from direct substitution it doesn’t .Which means the MMG field equations does not 
obey the Bianchi Identity and therefore cannot be obtained from an action with the 
metric being the only variable [1,3]. But the covariant divergence vanishes for 
metrics that are solutions to the full MMG equations. (Therefore, one has an ”on-
shell Bianchi Identity”.) This is necessary condition for the consistency of the 
classical field equations but not a sufficient condition, since the rank-two tensor 
equations are susceptible to double-divergence. We show that for the source-free 
case the double-divergence of the field equations vanish for the solutions of the 
field equation.  

   
 
   B)MATTER COUPLED CASE 
For the consistency of the matter-coupled MMG, one should require the covariant 
divergence of the left-hand side and the right-hand side to be equal to each other 
when the field equations are used which was worked out to be the case in [2]. Once 
again, this is necessary but not sufficient and one should also check the double 
divergence. 
 
  
 

This shows that the double divergence of the left hand-side and the right hand-side 
of the field equations are equal to each other on shell hence the equations are 
consistent.  
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ABSTRACT 
We show that all algebraic Type-O, Type-N and Type-D and some Kundt-Type 
solutions of Topologically Massive Gravity are inherited by its holographically 
well-defined deformation, that is the recently found Minimal Massive Gravity. 
This construction provides a large class of constant scalar curvature solutions to 
the theory. We also study the consistency of the field equations both in the 
source-free and matter-coupled cases of the field equations. 

INTRODUCTION 
In the current work we shall consider two aspects of the MMG theory:The first 
being the consistency of both the vacuum and matter-coupled  MMG equations 
and the second being the systematic construction  of new solutions to the vacuum 
fiels equations that are inherited from the TMG.We shall upgrade all the 
algebraic Types O,N,D and some Kundt-Type solutions of TMG to be the 
solutions of MMG with simple modifications of the parameters. 
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Inflationary perturbations in the Lifshitz regime 
of Horava gravity

Shun Arai (Nagoya University) arai.shun@a.mbox.nagoya-u.ac.jp 
collaborators: Sergey Sibiryakov (CERN, INR RAS), Yuko Urakawa(Nagoya University)

We study the evolution of scalar perturbations in inflationary epoch with a single Lifshitz scalar in the context of the 
BPSH theory, which generalizes the original non-projectable Horava Lifshitz gravity. In the previous studies, power 
spectrum of the curvature in the fixed de-Sitter background, the evolution in the IR regime and the evolution the 
isocurvature mode in the Einstein Aether theory have been obtained. In our study, we consistently solve the evolution of 
the coupled scalar graviton and the inflaton fluctuation. We will derive the curvature power spectrum and discuss the 
observational constraints on the Lorentz violation scale.

4.Summary & Future works
We have obtained the solutions of the scalar graviton and inflaton fluctuation. But our analysis has yet to complete among the regime 
where the curvature fluctuation conserves. Therefore we will have to calculate the perturbations in the whole regimes and obtain the 
curvature power spectrum. Then we will obtain constraints of the LV scale and modulations of higher derivatives by using the 
PLANCK data.

1.Introduction

・Investigate consistent growth of the scalar graviton and the
   inflaton fluctuation in the Lifshitz regime.

・Derive the curvature perturbation and isocurvature
    perturbation. 

・Compare the curvature & isocurvature power spectra with 
    current CMB observation to constrain to LV scale and
    modulations of higher derivatives.

Purposes of our studyHorava Lifshitz gravity (HL gravity) is the one of the modified theory of gravity 
which is power-counting renormalizable in the UV regime(P.Horava 2009).

 

But the anisotropic scaling law violates the local Lorentz symmetry in the UV 
regime. Then a new scalar degree of freedom appears called “scalar graviton” 
or “khronon”.
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Perturbations of Kasner-de Sitter spacetime
Yu Furuya, Yuki Niiyama, Yuuiti Sendouda (Hirosaki Univ.)

The 25th Workshop on General Relativity and Gravitation in Japan
Dec. 7-11, 2015 Yukawa Institute for Theoretical Physics, Kyoto University

Abstract:We study perturbations of Kasner-de Sitter (KdS) spacetimes without axisymmetry to explore observational signatures
of the isotropization process of inflation.We discuss directional dependences of the growth factor of

gravitational waves relative to the axes of anisotropic expansion

1 Introduction
The early universe is thought to have begin in neither spatially homogeneous nor isotropic
state. Kasner-de Sitter (KdS) spacetime, belonging to Bianchi type I, is a simple inflation
model in which the early anisotropic expansion isotropizes due to a positive cosmologi-
cal constant Λ. A gauge-invariant formulation for the perturbations of Bianchi I universe
was constructed by Pereira et al. [1]. Time evolution of gravitational waves in axisym-
metric Kasner-like expansion case was studied by Gümrükçüoğlu et al. [2]. We discuss
directional dependences of the growth factor of gravitational waves relative to the axes of
anisotropic expansion.

2 Gauge-invariant formalism for the perturbations of
Bianchi I spacetimes by Pereira et al. [1]

General form of Bianchi I background metric

ds2 = e2α(η)[−dη2 + γi jdxidx j], γi j ≡ e2βi(η)δi j,
3∑

i=1

βi = 0.

eα: scale factor, γi j: spatial metric.
Shear tensor

σi j ≡
1
2

(γi j)′ = β′iγi j.

Polarization basis

k⃗ : wavevector, ki = const, ki ≡ γi jk j, k2 ≡ kiki, k̂i ≡ ki

k

Because γi j depends on the time, ki (≡ γi jk j) does so as well.

k⃗ is orthogonal to e⃗a.

ϵλi j =
e(1)

i e(1)
j − e(2)

i e(2)
j√

2
δλ+ +

e(1)
i e(2)

j + e(2)
i e(1)

j√
2

δλ×,

ϵλi jk
i = ϵλi jγ

i j = ϵλ[i j] = 0, ϵλi jϵ
i j
µ = δ

λ
µ.

ei
a (a = (1), (2)) : vector basis, ϵ i j

λ (λ = + : plus mode,× : cross mode) : tensor basis

Based on the above construction, we can decompose the shear tensor into the scalar,
vector and tensor components: (σ∥,σVa,σTλ).

σi j =
3
2

(
k̂ik̂ j −

1
3
γi j

)
σ∥ + 2k̂(i

∑

a=(1),(2)

ea
j)σVa +

∑

λ=+,×
ϵλi jσTλ.

Perturbed metric in the “conformal Newtonian gauge”

(gµν + δgµν)dxµdxν = e2α
[
−(1 + 2Φ)dη2 + 2Φidxidη + (γi j + hi j)dxidx j

]
,

hi j = 2Ei j − 2(γi j + Σi j)Ψ, Σi j ≡
σi j

H , H ≡ α
′.

(∂iΦ
i = E[i j] = ∂iEi

j = Ei
i = 0.)

(Φ,Ψ,Φi, Ei j) are the gauge-invariant variables.
Perturbed eoms for Eλ

Ei j =
∑

λ=+,×
Eλϵλi j,

δGµν = 0. (∵ GR + no matter)

Eventually, after eliminating Φ, Ψ and Φi, the eoms for gravitational waves are obtained
as

E′′λ + 2HE′λ + k2Eλ − 2ηλ(1−λ)σT(1−λ)
∑

µ

ηµ(1−µ)σT(1−µ)Eµ

+ σTλ
12H2 − 2σ2 − 2e−2α(e2ασ∥)′

(2H − σ∥)2

∑

µ

σTµEµ

− 2e−2α

2H − σ∥
∑

µ

[(e2ασTλ)′ + (e2ασTµ)′σTλ]Eµ − e−2α(e2ασ∥)′Eλ = 0,

ηλµ ≡ δλ+δ×µ − δλ×δ+µ, (1 − λ) ≡ + if λ = × or × if λ = +.

3 Gravitational waves in KdS without axisymmetry
KdS metric

ds2 = −dt2 + sinh
2
3 (3Ht)

3∑

i=1

tanh2qi
(3Ht

2

)
(dxi)2,

∑

i

qi = 0,
∑

i

q2
i =

2
3
,

q1 =
2
3

sin
(
θ − 2π

3

)
, q2 =

2
3

sin
(
θ − 4π

3

)
, q3 =

2
3

sin θ,

eα = sinh
1
3 (3Ht), γi j = tanh2qi

(3Ht
2

)
δi j, H ≡

√
Λ

3
.

Shear tensor

σi j = 3qiH
tanh2qi

(
3Ht

2

)

sinh
2
3 (3Ht)

δi j.

Other quantities

k2 ≡ kiki =
∑

i

[
tanh−2qi

(3Ht
2

)
(ki)2

]
, H = H

cosh(3Ht)

sinh
2
3 (3Ht)

, σ∥ =
3H
e2α

∑
i
[
qi tanh−2qi

(
3Ht

2

)
(ki)2]

k2 ,

σV(1) =
3H
e2α

∑
i

[
qi tanh−qi

(
3Ht

2

)
kiωi

(1)

]

k
, σV(2) =

3H
e2α

∑
i

[
qi tanh−qi

(
3Ht

2

)
kiωi

(2)

]

k
,

σT+ =
3H√
2e2α

∑

i

[
qi[(ωi

(1))
2 − (ωi

(2))
2]
]
, σT× =

6H√
2e2α

∑

i

[
qi(ωi

(1)ω
i
(2))

]
,

ωi
(1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

cos γ cos β cosα − sinα sin γ
cos γ sinα + cosα cos β sin γ

− cosα sin β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ , ω

i
(2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

− cos γ cos β sinα − cosα sin γ
cos γ cosα − sinα cos β sin γ

sinα sin β

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠ .

(α, β, γ) are the Euler angles [3].
We integrate E+ and E× numerically substituting these quantities into the perturbed

eoms for Eλ.
Results (q1 = −1/

√
3, q2 = 1/

√
3, q3 = 0)

Time evolutions of E+, E× for some wavevectors are shown below.

1 2 3 4 5
H t

!1.0

!0.5

0.5

1.0
EΛ

!k1, k2, k3" # !10 H , 0, 0"

E$ E%

1 2 3 4 5
H t

!2.5

!2.0
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1.0
EΛ

!k1, k2, k3" # !1 H , 0, 0"

E$ E%

1 2 3 4 5
H t

10

20

30

40
EΛ

!k1, k2, k3" " !0, 0, 1 H "

E# E$

Directional dependences of the growth of E× on the wavevector (k1, k2, k3) rela-
tive to the axes of anisotropic expansion. The color a exhibits relative growth factor
|E×(∞)/E×(0)| (red: high, blue: low).

4 Conclusion/Discussion
• We could confirm that KdS spacetime without axisymmetry is stable, because ampli-

tudes freeze in any direction.

• We need to consider initial conditions of eom for Eλ [3, 4].

• We might be able to probe anisotropy of the early universe if we can observe direc-
tional variation of the amplitude of gravitational waves over the whole sky.

• Application to Weyl gravity.
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Abstract

We study the effects of a class of features of the potential of slow-
roll inflationary models corresponding to a step symmetrically dumped
by an even power negative exponential factor. As a consequence, this
type of features only affects the spectrum and bispectrum in a narrow
range of scales which leave the horizon during the time interval corre-
sponding to the modification of the potential.

We also compute the effects of the features on the CMB tempera-
ture spectrum. Due to the local nature of their effects, the features of
this type could be used to model local glitches of the power spectrum
without affecting other scales.

Introduction

An approximately scale invariant spectrum of curvature pertur-
bation provides a good fit of CMB data. But recent analyses of
the WMAP and Planck data have shown evidence of a feature
around the scale k = 0.002 Mpc�1 in the power spectrum of
primordial scalar fluctuations [1], that correspond to a dip in the
CMB temperature spectrum at l ' 20. These features of the
curvature perturbations spectrum provide an important observa-
tional motivation to find theoretical models able to explain it.

In this paper [2] we will consider the effects of local fea-
tures (LF) which only modify the potential locally in field space,
while leaving it unaffected sufficiently far from the feature. The
important consequence is that also the effects of LF on the spec-
trum and bispectrum are local.

Inflation and the features

We consider inflationary models with a single scalar field gov-
erned by the action

S =

Z
d4x

p
�g


1

2

M2

PlR� 1

2

gµ⌫@µ�@⌫�� V (�)

�
, (1)

where ds2 = �dt2 + a2(t)d~x2 and the potential is given by [3]

V (�) = V
0

(�) + VF (�) , (2)

VF (�) = �e�(

���0
� )

2n
, n > 0, (3)

where V
0

is the featureless potential, and we call this type of
modification of potential local features (LF). In this paper we
will consider the case of power law inflation (PLI) to model the
featureless behaviour V

0

(�) / exp (��/MPl). While PLI is not
in good agreement with CMB data due to high value of the pre-
dicted tensor-to-scalar ratio r, it can be used as good toy model
to show qualitatively the general type of effects produced by LF.
Future works may be devoted to test different potentials V

0

(�),
for direct comparison with data. The definitions we use for the
slow-roll parameters are

✏ ⌘ �
˙H

H2

, ⌘ ⌘ ✏̇

✏H
. (4)

Curvature perturbations

The linear equation of motion for the curvature perturbation ⇣ in
Fourier space is given by [4]

⇣ 00k + 2

z0

z
⇣ 0k + k2⇣k = 0, (5)

where z ⌘ a
p
2✏, k is the comoving wave number, and primes

denote derivatives with respect to the conformal time d⌧ ⌘ dt/a.
For the power spectrum of scalar perturbations we adopt the def-
inition

P⇣(k) ⌘
2k3

(2⇡)2
|⇣k|2 . (6)

Bispectrum of curvature perturbations

To study the non gaussianity we define a convenient quantity [5]

FNL(k1, k2, k3) ⌘
10

3(2⇡)4
(k

1

k
2

k
3

)

3

k3
1

+ k3
2

+ k3
3

B⇣

P 2

⇣

, (7)

where k⇤ is the pivot scale at which the power spectrum is nor-
malized, i.e. P⇣(k⇤) ⇡ 2.2⇥ 10

�9 and B⇣ is given by [5]

B⇣(k1, k2, k3) = 2(2⇡)3=
h
⇣k1(⌧e)⇣k2(⌧e)⇣k3(⌧e) (8)

Z ⌧e

⌧0
d⌧⌘✏a2⇣⇤k1(2⇣

0
k2
⇤⇣ 0k3

⇤ � k2
1

⇣⇤k2⇣
⇤
k3
) + 2p

i
,

where 2p means the two other permutations of k
1

, k
2

, and k
3

.
Our definition of FNL reduces to the non linear parameter fNL
in the equilateral limit if the spectrum is approximately scale
invariant. In this paper we study the equilateral limit of the bis-
pectrum.

Effects of the parameter n

The parameter n is related to the dumping of the feature, and
larger values are associated to a steeper change of the potential.
As shown in fig.(1) ✏, ⌘, P⇣ , and FNL show oscillations around
the scale k

0

= �1/⌧
0

with an amplitude which increases for
larger n.
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Figure 1: From left to right and top to bottom the numerically computed
✏, ⌘, P⇣, and FNL are plotted for � = 10

�11, � = 0.05 and n = 1 (blue) and
n = 2 (red). The dashed black lines correspond to the featureless behavior.

Effects of the parameter �

The parameter � determines the size of the range of field values
where the potential is affected by the feature. As shown in fig.(2)
✏, ⌘, P⇣ , and FNL have oscillations around k

0

, whose amplitude
is larger for smaller �, because in this case the potential changes
faster.
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Figure 2: From left to right and top to bottom the numerically computed
✏, ⌘, P⇣, and FNL are plotted for � = 10

�11, � = 0.05 (blue) � = 0.1 (red)
and n = 1. The dashed black lines correspond to the featureless behavior.

Effects of the parameter �

The parameter � controls the magnitude of the potential modi-
fication. The sign of � produce opposite and symmetric effects,
since it implies an opposite sign for the derivative of the poten-
tial with respect to the field. As shown in figs.(3) and (4), larger
absolute values of � produce oscillations with larger amplitudes
of ✏, ⌘, P⇣ , and FNL around k

0

.
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Figure 3: From left to right and top to bottom the numerically computed
✏, ⌘, P⇣, and FNL are plotted for � = 10

�11 (blue) and �� = 10

�11 (red),
� = 0.05 and n = 1. The dashed black lines correspond to the featureless
behavior.
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Figure 4: From left to right and top to bottom the numerically computed
✏, ⌘, P⇣, and FNL are plotted for � = 10

�11 (blue) and � = 10

�12 (red),
� = 0.05 and n = 1. The dashed black lines correspond to the featureless
behavior.

Effects on the CMB temperature and po-

larization spectrum

To study how the feature impacts on the CMB spectra we mod-
ified CAMB to use the modified primordial power spectrum in-
stead of the usual power-law expression Ps(k) = As (k/k⇤)ns�1.
In fig.(5) we show the CMB spectra obtained with different com-
binations of the parameters �, � and n: Feature A= 10

�11, � =

0.05 and n = 1; Feature B= 10

�11, � = 0.05 and n = 2; Feature
C= �10

�11, � = 0.05 and n = 1; Feature D= 10

�11, � = 0.1 and
n = 1; and Feature E= 10

�12, � = 0.05 and n = 1. We show the
spectra in terms of the quantity D` = `(` + 1)C`/(2⇡).

From the plot it is possible to see how the feature can change
the predicted CMB spectra. In the TT spectrum the relative dif-
ferences of the order of 10� 15% are visible. Choosing the val-
ues listed above for the parameters describing the feature, and
k
0

= 5 · 10�4 Mpc�1, As = 2.2 · 10�9 and ns = 0.967 we can
see from fig.(5) that the effects of some feature can partially re-
produce the dip at ` ' 20 in the TT spectrum.

Figure 5: We plot the DTT
l = `(` + 1)CTT

` /(2⇡) spectra in units of µK2

with respect to the multipole l, and the relative difference with respect to
the featureless behavior. The solid black lines correspond to the featureless
behavior.

Conclusions

• Local features only modify V in a limited range of the scalar
field values, and consequently only affect P⇣ and B⇣ in a nar-
row range of scales.

• The P⇣ and B⇣ are affected by the feature, showing modulated
oscillations which are dumped for scales larger or smaller
than k

0

.
• The effects of the features are larger when the potential mod-

ification is steeper, since in this case there is a stronger viola-
tion of the slow-roll conditions.

• We have shown that an appropriate choice of parameters can
produce effects in qualitative agreement with the observa-
tional CMB data.

• Due to this local type effect these features could be used
to model phenomenologically local glitches of the spectrum,
without affecting other scales.

Forthcoming Research

Further studies involving data fitting can determine more accu-
rately the values of the parameters which provide the best expla-
nation of the observed deviation of the power spectrum from the
power law form.
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・Blue tensor 

    In USR k- and G-inflation driven by kinetic term, we 
    consider the phase slightly away from attractor.
    Then it may be possible for us to take           without
    having ghost and Laplacian instability.    

✏ < 0

Large scale suppression with 
Ultra Slow-Roll inflation scenario

Rikkyo Univ. Shinichi Hirano (M1)　collaborators  Tsutomu Kobayashi (Rikkyo)

§ Introduction § Multi-stage and non-causal fluctuation

§ USR k- and G- inflation, large scale suppression

§ Summary & future direction

・k- and G-inflation

・How to explain the suppression

scalar-tensor theory

k- and G- inflation

P⇣ + Λ-CDM
curvature

 perturbation
(inflation)

Bing-Bang 
theory

good prediction for almost observation date

Models which explain this suppression

It is called “Large scale suppression” Planck collaboration 2015

・｜ : obs
- : prediction

chaotic inflation,  PBH remnants
topological defeats,  solid inflation
hybrid inflation,  …

curvature perturbation
R ⇠ H��/|�̇| |�̇| large

Adding some era 
before inflationary era

pre-inflation 
(ex: kinetic term dominat era)

PR is suppressed
(     )Cl

Multi-stage inflation which can explain the suppression・・・

kinetic era (pre-inflation) + slow-roll era

P. Chen, et al. (2015) they consider multi-stage inflation with canonical Lagrangian

kinetic era

decelerating expansion universe
in canonical Lagrangian case

||

non-causal fluctuation …
we don’t solve three problems naturally

blue-tilted

scale-inv

suppression

What is model for having an suppression and causal fluctuation ?

Ultra Slow-Roll inflation

・inflaton potential is flat  →  Lagrangian has an shift symmetry w.r.t \phi 

・slow-roll parameter

→ constant term makes kinetic era and slow-roll era !

GR + scalar field (canonical)

second-order EoM

k-essence, Galieon term 

non-canonical terms

inflaton

Inoue, Yokoyama (2002), Kinny (2005) 

・USR k-inflation and G-inflation formalism

Field equations

,

Lagrangian L =
M2

pl

2
R� V0 +K(X)�G(X)⇤�

F := KX + 3GXH�̇

3M2
plH

2 = V0 �K + 2XF

d

dt

⇣
a3�̇F

⌘
= 0

M2
plḢ = �XF +XGX �̈

now consider potential driven case V0 � |K|, |XF |

L =
M2

pl

2
R+X +

1

M4n�4
Xn � V0

F = 1 +
nXn�1

M4n�4

Our Lagrangian

,
3MplH

2 = X +
2n� 1

M4n�4
Xn + V0

M2
plḢ = �X � n

M4n�4
Xn

d

dt


a3�̇

✓
1 +

nXn�1

M4n�4

◆�
= 0

・k-inflation case (        )G = 0

Slow-roll parameters

✏H := � Ḣ

H2
=

3
�
X + n

M4n�4X
n
�

�
X + 2n�1

M4n�4Xn + V0

� ⌧ 1

⌘H :=
✏̇H
H✏H

= 2✏H � 6

"
1 + n2

M4n�4X
n�1

1 + n(2n�1)
M4n�4 Xn�1

#

Era ①: 

Powor spectrum in super-horizon scale

P⇣ ' 1

2M2
pl✏H

22⌫�3

✓
H

2⇡

◆2  �(⌫)

�(3/2)

�2 ✓
csk

aH

◆3�2⌫

, ⌫2 =
9

4
+ q

P⇣ ' 1

2M2
pl✏H

✓
H

2⇡

◆2

2�3(1� 1
2n�1 )

"
�( 3

2(2n�1) )

�(3/2)

#2 ✓
csk

aH

◆3(1� 1
2n�1 )�

2(5n+2)
3 ✏H

blue-tilted

Era②: ⌫ ' 3

2
� 7

3
✏H

⌫ ' 3

2(2n� 1)
� 5n+ 2

3
✏H

P⇣ ' 1

2M2
pl✏H

✓
H

2⇡

◆2 ✓
k
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So we can also induce the suppression !!

the sketch of C_l

・      of temperature fluctuation and Large scale suppressionCl

inflation theory

c2s ' 1

P⇣ ' 1

2M2
pl✏H

✓
H

2⇡

◆2 ✓
k

aH

◆� 8
3 ✏H

similar behavior 
as kinetic era 
         +
    slow-roll era

But in     of CMB temperature fluctuation, it seems
to be a suppression at large scale.One don’t explain
this suppression with standard inflation + Λ-CDM

Cl

⌘ = o(✏) + const

By using “Class” of Boltzmann code, we sketch      .Cl

success of suppression !

Shuichiro Yokoyama (Rikkyo)

We consider USR k- and G-inflation driven by potential.
In certain Lagrangian cases, we can construct the models
which explain large scale suppression of      . Cl

〈 Summary 〉

〈 Future direction〉

C.A-Picon, et al. (1999)
T. Kobayashi, et al. (2010)

・Large scale oscillation in

        changes at transition. So it may be possible to explain
    this oscillation in power spectrum  by numerical calculations.
cs

Cl

P07
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An Alternative Approach to Black Hole　Thermodynamics: 
Rényi Entropy and Phase Transition   
                             (based on arXiv:1511.06963/Phys. Lett. B752, 306-310 (2016))

Viktor G. Czinner ( Nihon University)

Hideo Iguchi　（Nihon University）

We study the thermodynamic stability problem of Schwarzschild black holes 
described by the Rényi formula which is an equilibrium compatible entropy 
function. It is shown that Schwarzschild black holes can be in stable 
equilibrium with thermal radiation at fixed temperature within this approach. 
This implies that the canonical ensemble exists just like in AdS space, and 
nonextensive effects can stabilize the black holes in a very similar way as it is 
done by the gravitational potential of an AdS space. It is also shown that a 
Hawking--Page-like black hole phase transition occurs at a critical 
temperature.

JGRG25     P08

  

Zeroth law (extensive)

1Energy (extensive)

E12(E1,E2)=E1+E2

Entropy (extensive)

S12(E1,E2)=S1(E1)+S2(E2)

T. S. Biró and P. Ván, PRE83, 061147(2011)

Equilibrium  →　Maximum entropy principle (+ energy conservation)

dS12(E1,E2)=
∂S1

∂E1

dE1+
∂S2

∂E2

dE2=(S'1−S'2)dE1=0

temperature 1
T

=S'(E)

S1,E1 S2,E2

S'1 (E1)=S'2(E2) (factorize)
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Zeroth law (non-extensive)

E12=E12(E1,E2) S12=S12(S1,S2)

dS12=
∂S12

∂S1

S1 'dE1+
∂S12

∂S2

S2'dE2=0

S1(E1), S2(E2)

dE12=
∂E12

∂E1

dE1+
∂E12

∂E2

dE2=0

∂E12

∂E2

∂S12

∂S1

S1'=
∂E12

∂E1

∂S12

∂S2

S2 '

L12(E12)=L1(E1)+L2(E2)

L̂12(S12)=L̂1(S1)+ L̂2(S2)

∂ L̂1 (S1)

∂L1(E1)
=

∂ L̂2(S2)

∂L2(E2)
1
T

=
∂ L̂ (S)
∂L (E)

T. S. Biró and P. Ván, PRE83, 061147(2011)

E12=Φ(L1+L2)

S12=Ψ(L̂1+L̂2)

Composition rule EOS

Maximum entropy principle

Formal logarithm

(factorize)

temperature

  

Abe formula and formal logarithm

Abe formula (the most general non-additive entropy composition rule)

S. Abe, PRE63, 061105 (2001)

Hλ (S12
)=H λ(S1

)+H λ(S2
)+λ Hλ (S1

)Hλ (S2
)

Formal logarithm – zeroth law compatible entropy function

T. S. Biró and P. Ván, PRE83, 061147(2011)

L (S)=1
λ ln(1+λHλ (S))

Origin of parameter λ

• Finite size reservoir corrections in the canonical approach

• Quantum corrections to micro black holes

T. S. Biró, Physica A 392, 3132 – 3139 (2013)

T. S. Biró et. al., Eur. Phys. J. A 49, 110 (2013)

T. Biro and V. G. Czinner, Phys. Lett. B 726,  861-865 (2013)
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Tsallis and Rényi entropy

S12=S1+S2+λS1 S2

1+λ S12=(1+λS1)(1+λS2) L̂ (S)=1
λ ln(1+λS)

ST=
1

1−q
∑

i

(pi
q−pi)=

1
λ (∑i

pi
1−λ−pi)

L̂ (ST)=
1
λ ln(1+λST)=

1
λ ln(∑

i

pi
1−λ)= 1

1−q
ln (∑

i

pi
q)=SR

T. S. Biró and P. Ván, PRE83, 061147(2011)

Non-additive composition rule (Tsallis)

Formal logarithm

Tsallis entropy

Rényi entropy

where λ=1−q

Formal logarithm

Hλ (S)=S ( leading order ofλ)

  

Schwarzschild Black Hole in Renyi model

Entropy S=A
4

=4 πM2

Energy E=M

Rényi entropy
(formal logarithm of       )

SR=
1
λ ln(1+λST )=

1
λ ln (1+4π λM2)

Temperature

T. Biro and V. G. Czinner, Phys. Lett. B726 861-865 (2013)

V. G. Czinner and HI, Phys. Lett. B752, 306-310(2016) 

1
TR

=S 'R (M)= 8πM
1+4 πλ M2

Heat capacity CR=
−S 'R

2 (M)
S' 'R (M)

= 8π M2

4πλ M2−1

1
T

=8πM

C=−8πM2

S=ST

λ→0

λ→0

ST

additive

Non-additive – Tsallis composition law

(Standard Boltzmann)
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Entropy  v.s. Energy Temperature  v.s. Energy

● Minimum temperature
● Similarity (correspondence?) with AdS BH

λ⇔ 3
π l2

Thermodynamic property

  

Heat capacity

M<M0 CR<0

M>M0
CR>0

Positive heat capacity

Lower mass Negative heat capacity

Higher mass
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Turnig point (Poincaré) method

d Ze

dy

y

Stability change

Less stable

More stable

O. Kaburaki, I. Okamoto and J. Katz, PRD47, 2234(1993)

No stability change

Massieu function Ze (y)

Control parameter y

Conjugate variable
d Ze

dy

Stability curve

  

microcanonical canonical

Stability curves

Massieu function

Control parameter

Conjugate variable

S

M

β(M)= ∂S
∂M

S−βM=−βF

β

−M(β)

Stability change occurs.

 Small mass – unstable
 Large mass – stable

Isolated BH is stable.
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Phase transition

Free energy v.s. Temperature

T<T
HP

T>T
HP

Pure radiation

Large and stable black hole configuration

  

Summary

● T
R
 has a minimum

● Hawking-Page-like Phase transition
● Stability change  – stable equilibrium with thermal radiation
● Similarity with AdS BH

Future work

● Kerr black hole
● Another composition rule
● Non-extensive energy
● Higher dimensional BH

We investigated thermodynamics of black hole in the parametric extended Rényi
entropy formula
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Spherical symmetric domain wall 
collapse by numerical simulation

Introduction

Set up

Taishi Ikeda 
Chulmoon Yoo (Nagoya Univ.)

P09
The domain wall is one of the topological defect.  
It might exit in early universe, and become the 
Primordial BH by gravitational collapse. 
In this study, we research the property of domain 
wall collapse. 
Furthermore, by detailed numerical simulation, we will 
discuss whether the critical behavior is found.  

As in the case of massive scalar field, there may be 
rich behavior. 
Critical behavior of gravitational collapse 
• type 1 :  

• type 2 :

As suggested in ref[1], we consider the following 
metric and extrinsic curvature:  

where        is the Minkowski 3-metric in spherical 
coordinate. 
Then, from the Einstein equation, we can get the 
following equations : 

where 

We solve the above equations by numerical calculation. 
• spatial derivative : 4th order accurate 
• integration in time : 4th order Runge-Kutta scheme 

Initial data : 

Boundary condition : asymptotically Schwarzschild 
space time

Conclusion and discussion

Reference
[1]  H. Okawa et al Phys.Rev. D89 (2014) 041502,  
Phys.Rev. D90 (2014) 104032

phase diagram In the case 
of massive scalar[1] 

The above metirc is approximate ansatz. 
In general, we must use the following ansatz : 

Furthermore, traceless part of extrinsic curvature 
does not vanish. 

We will calculate the time evolution under these 
ansatz.

We calculate the time evolution of domain wall 
collapse. 
We showed the example of disperse of scalar 
filed.

Future work

: position of domain wall
: width of domain wall

Numerical simulation

(momentary static)

initial profile

no apparent horizon

                                                                                                                  1257



“Bending angle of light in a non-asymptotically flat black hole”

by Asahi Ishihara

[JGRG25(2015)P10]

                                                                                                                  1258



Bending angle of light in a non-asymptotically flat black hole

Asahi Ishihara

Hirosaki University, Japan
with Y. Suzuki, T. Ono, T. Kitamura and H. Asada (Hirosaki)

JGRG25 in Kyoto Dec. 7 - 11, 2015
Abstract: We propose a new method for calculations of the bending angle of light in a non-asymptotically flat black hole.

Moreover, we carry out the calculation of the bending angle for some black hole spacetimes.

1 Introduction

[Motivation]
Bending angle of light in an asymptotically flat spacetime is well-known.But, there

are no established method for calculating bending angle in a non-asymptotically flat
spacetime. The main reason is that source and receiver must not be at the null infinity.

Figure 1: Previous works

[Setting in this poster]

• G = c = 1

• r = r(φ)(Circumference radius), rg ≡ 2M

• φ:azimuth at the lens, θ:angle of tangent, b:impact parameter, Λ:cosmological con-
stant and α:bending angle of light

[Proposal for an alternative method]

Figure 2: This study

{
x = r sinφ
y = r cosφ

, u ≡ 1

r
,

du

dφ
≡ u′.

y

x
= tanφ −→ dy

dx
= tan θ.

For simplicity, φ0 = π
2 and θ0 = 0.

tan θS =

(
du
dφ

)

S
sinφS − uS cosφS

(
du
dφ

)

S
cosφS + uS sinφS

, (1)

α = 2(θ0 − θS) = −2θS . (2)

※ Eq.(1) is symmetric under φ-rotation and hence it may be invariant.

tan(θR − θS) =
B +A tan(φR − φS)

A−B tan(φR − φS)
, (3)

A ≡ u′
Ru

′
S + uRuS , B ≡ u′

Ru
′
S − uRuS

α = θR − θS − π. (4)

2 Example 1

[The Schwarzschild metric]

ds2 = −
(
1− rg

r

)
dt2 +

(
1− rg

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
. (5)

[Orbit equation and Weak field approx.]

(
du

dφ

)2

=
1

b2
− u2 + rgu

3, rg ≪ r0 ≤ r ≤ rS . (6)

Iterative calculations give

uS =
1

b
sinφS +

rg
2b2

(1 + cos2 φS) +O

(
r2g
b3

)
, (7)

sinφS = buS − rg
b

[
1− (buS)2

2

]
+O

(
r2g
b2

)
, (8)

cosφS =
√
1− (buS)2 + rg

uS

[
1− (buS)2

2

]

√
1− (buS)2

+O

(
r2g
b2

)
, (9)

(
du

dφ

)

S

=
1

b

√
1− (buS)2 + rg

1

2

bu3
S√

1− (buS)2
+O

(
r2g
b3

)
. (10)

Therefore,

tan θS = − rg

b
√

1− (buS)2

[
1− 1

2
(buS)

2 − 1

2
(buS)

4

]
+O

(
r2g
b2

)
, (11)

α =
2rg

b
√

1− (buS)2

[
1− 1

2
(buS)

2 − 1

2
(buS)

4

]
+O

(
r2g
b2

)
. (12)

↓ buS ≪ 1

α =
2rg
b

+O

(
r2g
b2

, (buS)
4

)
. (13)

This recovers previous study.

3 Example 2

[The Schwarzschild-de Sitter metric]

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

(
1− rg

r
− Λ

3
r2
)−1

dr2 + r2
(
dθ2 + sin2 θdφ2

)
. (14)

[Orbit equation and Weak field approx.]

(
du

dφ

)2

=
1

b2
− u2 + rgu

3 +
Λ

3
, rg ≪ r0 ≤ r ≤ rS ≪

√
3

Λ
. (15)

Therefore, bending angle of light is

α =
2rg

b
√
1− (buS)2

[
1− 1

2
(buS)

2 − 1

2
(buS)

4

]

+
rgΛb

3{1− (buS)2}
3
2

[
1− 3

2
(buS)

2 +
3

2
(buS)

4 − (buS)
6

]

+ O

(
rg2

b2
, rgΛ2b3

)
. (16)

↓ 1

B2
≡ 1

b2
+

Λ

3

α =
2rg

B
√
1−B2u2

s

[
1− 1

2
(Bus)

2 − 1

2
(Bus)

4
]
+O

(
rg2

B2

)
. (17)

This bending angle of light recovered eq.(12).

4 Conclusion

• We take account of the finiteness of the source and observer distance to obtain the
bending angle of light. Therefore, our result can treat even a non-asymptotically flat
spacetime.

• Future work:Application to astronomical observations.
Application to other spacetimes.
More rigorous definition of our “ θ ”.

References

[1] W. Rindler, Relativity: Special, General, and Cosmological (Oxford Univ.Press, New
York, 2006), 2nd ed..

[2] M.Ishak and W.Rindler,Gen.Relativ.Gravit. 42,2247(2010)

[3] H.Arakida,M.Kasai(2012) PRD 85,023006
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M.Iwasa(Kyoto) , N.Seto(Kyoto)
abstract

2.KL mechanism for Post-Newtonian Systems

1.Introduction

References

2. Kozai,Y.1962,AJ,67,591, Lidov M.L,1962, Planet .Space Sci.,9,719 4. P. B. Ivanov, A. G. Polnarev & P. Saha, 2005, MNRAS, 358, 1361

3. Naoz ,S. , Farr, W. M., Lithwick, Y., Rasio, F., & Teyssandier , J. ,2013,MNRAS , 431,2155

4.Summary

 We first examine the evolution of relativistic hierarchical triple systems, 
only including gravitational interaction with the Post-Newtonian approximation at 2.5PN order.

Orbital Evolution of Stars Around Shrinking Massive Black Hole Binaries

Kozai-Lidov (KL) mechanism could play an important role.

for hierarchical triple systems, 
oscillation of inner eccentricity and inclination 
due to the exchange of the inner and outer angular momenta

Based on a simple geometrical approach, we analyze the evolution of the Kozai-Lidov mechanism for star around shrinking massive black hole binary.
 We find that, due to a peculiar bifurcation pattern induced by the general relativistic effects and the Newtonian potential of stellar clusters,  
the orbit of star could become highly eccentric. Our approach would be also useful for studying the Kozai-Lidov mechanism in various astrophysical 
contexts.
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・Numerical Experiments

Initial Condition

3.KL mechanism for Newtonian Potential of Stellar Cluster

・Averaged Hamiltonian 

◯ Inner argument of pericenter turns from circulation to libration.

Structure of phase space Adiabatic invariant

� = 16
m2

0a
3
2

m2a41

We explain this interesting behaviors to use the double averaged Hamiltonian 
with respect to the inner and outer orbital periods.

: representing the superiority
  between outer orbital effect and 1PN effect.

(g1, G1 =
q
1� e21) : canonical variable

� > 12� 20J2
1 ⌘ �c(P1)For 

There are only circulating trajectories.

If λ changes more slowly than the period of motion, 
the area surrounded by the periodic trajectory 

is conserved.

S =

I
pdq

Let us consider a periodic motion described
by a Hamiltonian                 including a parameter  H(q, p;�)� = �c(P2) At 

The fixed points              transits from stable point 
to an unstable point (pitchfork bifurcation).

G1 = 1

G1 = J1, 1The points are fixed points

� < �c(P3) For
There are circulating and librating trajectories, 
segregated by separatrixes

(Fig. 2A)

(Fig. 2B and 2C)

red dashed curve 
  : separatrix

colored regions 
  : adiabatic invariants

circles 
  : stable fixed points

Averaged Hamiltonian

We apply geometrical approach to the evolution of individual stars in a stellar cluster around MBH 
with an outer infalling tertiary MBH (we assume that the infalling rate is sufficiently small).

The local density profile of the stellar cluster : ⇢ = ⇢1
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There are only circulating trajectories.

Pitchfork bifurcation similar to (P2) occurs. 

There are circulating and librating trajectories.
The area surrounded by the separatrix 
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There are only librating trajectories.

Averaged Hamiltonian

: including all the information of the cluster and decreasing

Structure of phase space
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to an unstable point.
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reaching maximum value

blue triangles
  : results of
    direct calculation

green square : results of the numerical experiments of s-Ⅴ
blue triangle : result of the numerical experiments of s-Ⅳ

colored regions : adiabatic invariants

FIG. 1
Evolution of the inner orbital elements
as a function of the outer semi-major axis.

 red and green points
 :result of direct three body calculation 

blue points
 :result of analytical model

Initial Condition at ⌘ = 200

(g1, G1, e2) = (0, 0.95, 0)s-Ⅳ : 
(g1, G1, e2) = (0, 0.6, 0)s-Ⅴ : 

J1 = 0.5

・We consider the evolution of a star around a shrinking massive black hole binary

・We find that the orbit of a star becomes highly eccentric, due to the Non-Keplerian potential.

・For the initial distribution of the cluster biased to small eccentricity,

    reaching the maximum eccentricity during (P3’) could help to refill the loss cone.

1. Iwasa, M & Seto, N, arxiv : 1508.05762

FIG. 2
Evolution of the phase space.

FIG. 3
Evolution of the inner orbital elements 
as a function of ⌘

FIG. 4
Evolution of the phase space

m0

m1

m2

shrinking due to
 gravitational radiation,
dynamical friction or gas drag.

・The infall rate of stars to MBH could be enhanced significantly 

    associated with shrinkage of MBH binary.

・Stars infalling to MBHs must have an eccentricity unity  

KL mechanism : 

emitting gravitational waves and
electromagnetic waves

We study the evolution of the KL mechanism that is initially suppressed 
by the inner apsidal precession (due to general relativistic effects, stellar potential, etc)
but later works efficiently along with the adiabatic contraction of the outer body.

apsidal precession

◯ Inner eccentricity suddenly starts to increase.

・Geometrical Approach

・Geometrical Approach

(e1, a2, e2) = (0.001, 6300, 0.0001)

J1 =

q
1� e21 cos i = 0.150a1 = 400

(e1, a2, e2) = (0.001, 6300, 0.3)

(e1, a2, e2) = (0.3, 5700, 0.0001)s-Ⅰ : 
s-Ⅱ : 

(c = G = m0 +m1 +m2 = 1)

s-Ⅲ : 

a1(2)e1(2) g1(2)

g1 = ⇡/2 g2 = 0

: inner (outer) eccentricity : inner (outer) semi-major axis : inner (outer) argument of perienter

m0 : m1 : m2 = 0.3 : 0.3⇥ 10�6 : 0.7

suppress

general relativistic effects, stellar potential, etc

In this poster

We calculate the Hamiltonian equations
with ⌘̇ = �10�3, � = 3/2

(Fig. 4A)

(between Fig 4A and 4B)

(Fig. 4B)

(Fig. 4C)

(Fig. 4D)

(between Fig. 2A and 2B)

arrows
 : direction of flow 

⌘

suddenly increasing

(We plot the absolute value of     .)g1

How does the inner orbit evolve?

: stellar mass componentm1

     ,       : MBHm0 m2

The Hamiltonian             is not conserved
 because γ decreases.
How do we trace the evolution of the phase space?

HT,1PN
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  In the TT gauge, metric perturbation                 with a given propagation
direction     can be expanded as

Assumptions for SGWB: stationary, Gaussian, isotropic, unpolarized

: a single GW at a pulsar,                                       .

z

Detection of circular polarization in stochastic gravitational wave background  
with Pulsar Timing Arrays

Ryo Kato and Jiro Soda, Particle Theory and Cosmology Group, Kobe University.

 We generalize the overlap reduction function (ORF) so that we can detect circular polarized stochastic gravitational wave background
(SGWB) with Pulsar Timing Arrays (PTAs). In this poster presentation, I explain the ORF for circular polarization, which describe the
 angular sensitivity of PTAs.

Introduction

C. M. F. Mingarelli, T. Sidery, I. Mandel and A. Vecchio, Phys. Rev. D 88, 062005 (2013).
N. Seto and A. Taruya, Phys. Rev. D 77, 103001 (2008).

The signal
  The pulsar red shift integrated over      (the signal) is given by

Formulation

(a) monopole (l=0) (b) dipole (l=1)

(d) octupole (l=3)(c) quadrupole (l=2)

Fig.1  Plots of the circular polarization of the generalized ORFs 
         as a function of the angular separation between the two pulsars.

Conclusion

hij(t,x)

n̂

n̂

Earth

Pulsar1
Pulsar2

Pulse

z

x

y
p̂1

p̂2

⇠

GW direction

n̂

hh̃⇤
A(f, n̂)h̃A0(f 0, n̂0)i = �(f � f 0)�2(n̂, n̂0)SAA0

h (f, n̂),

where

SAA0

h (f, n̂) =

✓
I(f, n̂) +Q(f, n̂) U(f, n̂)� iV (f, n̂)
U(f, n̂) + iV (f, n̂) I(f, n̂)�Q(f, n̂)

◆
.

For simplicity, we consider the case of                      .l = 0, 1, 2, 3

  The correlation of the signals is calculated as follows: 

hij(te, n̂)

hij(tp, n̂) (tp,xp) = (t� L,Lp̂)

where

hz1(t)z2(t0)i =
Z 1

�1
df

Z 1

�1
df 0hz̃⇤1(f)z̃2(f 0)iei2⇡(ft�f 0t0)

=

Z 1

�1
df

3X

l=0

lX

m=�l

⇥
cIlmI(f)�I

lm + cVlmV (f)�V
lm

⇤
ei2⇡f(t�t0),

The functions       and        called the generalized ORF.        describes
the angular sensitivity of the circular polarization in the SGWB. 
  Integrating       , we obtain the following form:

: a single GW at the Earth,                            .(te,xe) = (t, 0)

eAij(n̂) : the polarization tensors
h̃A(f, n̂) : the Fourier amplitudes

The ensemble average of the two Fourier amplitudes can be written as

Using the spherical harmonics        and the spin-weighted harmonics           ,
we can expand the Stokes parameters:

Ylm ±4Ylm

hij(t,x) =
X

A=+,⇥

Z 1

�1
df

Z

S2

d2n̂ h̃A(f, n̂) e
A
ij(n̂) e

�2⇡if(t�n̂·x).

z(t, n̂) =
1

2

p̂ip̂j

1 + n̂ · p̂ [hij(tp, n̂)� hij(te, n̂)].

I(f, n̂) = I(f)
1X

l=0

lX

m=�l

cIlmYlm(n̂),

V (f, n̂) = V (f)
1X

l=0

lX

m=�l

cVlmYlm(n̂),

(Q+ iU)(f, n̂) = P+(f)
1X

l=4

lX

m=�l

cP+
lm 4Ylm(n̂),

(Q� iU)(f, n̂) = P�(f)
1X

l=4

lX

m=�l

cP�
lm �4Ylm(n̂).
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Fig.1 shows these generalized ORFs. 

We show the angular sensitivity of the PTAs for circular polarization. As you can see by looking at the Fig.1, in isotropic (l=0) case, 
we cannot detect the circular polarized SGWB with PTAs. On the other hand, when we consider anisotropic (l ≠ 0) ORF, it is worth that
we take into account polarization, otherwise it might be behave like a noise. 
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→  -39 [mas/yr]

( 0 [mas/yr] )

Possible orbiting gyroscope precession
by a Chern-Simons modification to gravity

Daiki Kikuchi

Hirosaki University, Japan
with K. Yamada, and H. Asada (Hirosaki)

JGRG25 in Kyoto Dec. 7 - 11, 2015
Abstract: Alexander and Yunes [1] discussed a possible constraint on a Chern-Simons modified gravity theory by using Gravity Probe B experiment [2].

We will reexamine the constraint in more details.

1 Motivation

The Chern-Simons (CS) correction is one of the most interesting modified gravity models.
Then it leads to some effects distinct from general relativity (GR) .

• The CS modification motivated by both string theory and quantum gravity and
introduces the parity violation into the gravity theory.

• K. Konno et al.[3] investigated the CS correction of the spacetime of a slowly rotating
black hole and explained the flatness of rotation curves without the existence of the
dark matter.

• A possible constraint by interferometers [4, 5], or Gravity Probe B (GPB) experi-
ment [1, 6] has recently been studied.

We investigate the gyroscopic spin precession in CS modified gravity using the solution
by Alexander and Yunes (AY) [1]. Then, We reexamine the constraint on a CS gravity
toward data fitting of the GPB experiment in more detail.

2 Spin precession analogies in GR

⃝The spin drift rate dS⃗/dt and the spin precession δS⃗/S per a certain time (t = p)

dS⃗

dt
= Ω⃗× S⃗ ⇒ δpS⃗

S
=

1

S

∫ p

0
Ω⃗ dt× S⃗. S⃗ : spin vector (1)

⃝The angular velocity Ω⃗

Ω⃗GR =
1

2
∇⃗ × g⃗ GR

0i , g⃗ GR
0i = (g01, g02, g03) . (2)

⇒ Ω⃗LT = − G

c2rg3

[
J⃗E − 3n⃗g

(
n⃗g · J⃗E

)]
. < Lense−Thirring (LT) effect > (3)

Ω⃗GE =
3

2
v⃗g × ∇⃗

(
GmE

c2rg

)

=
3GmE

2c2rg2
n⃗g × v⃗g. < Geodetic (GE) effect > (4)

J⃗E : spin angular momentum of Earth, v⃗g : velocity of the gyroscope
rg : distance to the gyroscope, n⃗g(= r⃗g/rg) : unit vector pointing to the gyroscope
mE : mass of Earth

3 Chern-Simons gravity

⃝The action of CS gravity theory

S =
c4

16πG

√
−g

∫
d4x

[
R+

f

4
⋆RR

]
, R = Rαβγδ,

⋆R =
1

2
ϵαβµνRγδ

µν . (5)

f : scalar field ([f ] = L2), ϵαβµν(= ϵαβµν/
√
−g) : Levi-Civita tensor density

⃝The CS correction to the metric as the weak-field solution
Considering Sun-Earth system in the standard PPN approximation, the CS correction

to g0i is given by [1]

g⃗ CS
0i = g⃗0i − g⃗ GR

0i

= 2ḟ
G

c3r3g

[
mErg (v⃗E × n⃗g)−

1

2
J⃗E +

3

2
n⃗g

(
n⃗g · J⃗E

)]
, (6)

v⃗E : velocity of the Earth, ḟ : CS coupling parameter ( · stands for time derivative )
where we neglect both the velocity and the spin angular momentum of the sun.

⃝The CS angular velocity Ω⃗CS

Ω⃗CS = −1

2
∇⃗ × g⃗ CS

0i = ḟ
GmE

c3r3g
[v⃗E − 3n⃗g (v⃗E · n⃗g)] . < Chern−Simons (CS) effect >

(7)

4 GPB experiment

⃝GPB mission final result [2]
・Lense-Thiring effect : −37.2± 7.2[mas/yr]
(GR prediction −39.2[mas/yr])
・Geodetic effect : −6601.8± 18.3[mas/yr]
(GR prediction −6606.1[mas/yr])

⋆ GPB coordinate system
S⃗ : the direction of the guide star (IM Pegasi) at first
WE : East-West direction
NS : North-South direction

5 Gyro precession
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6 Possible constraint on ḟ by GPB

The gyro drift rate per a year given by taking the average by the orbital period of gyro
⃝ NS direction ⇐ by GE effect

〈
(dS⃗)CS

Sdt

〉

Pg

∼ 6.7× 105
(
ḟ

c

)
! 18.3[mas/year] ⇒

(
ḟ

c

)
! 2.7× 10−5[s]. (8)

⃝ WE direction ⇐ by LT effect
〈
(dS⃗)CS

Sdt

〉

Pg

∼ 1.5× 105
(
ḟ

c

)
! 7.2[mas/year] ⇒

(
ḟ

c

)
! 4.8× 10−5[s]. (9)

These bounds are better than the AY’s estimation ( ḟc ! 10−3[s]) [1] or Smith et al.’s
estimation (mCS

−1 ! 103[km]) [6].

7 Conclusion

We investigated the gyroscopic precession in CS gravity.

• The spin precessions caused by CS gravity periodically oscillates at one year period,
although that of LT effects or GE effect increases linearly.

• The CS parameter bound may be improved by considering in more details.

⇒ We wish to make data fitting for testing CS separately taking statistics , for example,
every four months out of all data table.
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Conic D-branes

Shunichiro Kinoshita

(Chuo University)
K. Hashimoto (Osaka), K. Murata (Keio)

Based on PTEP 2015 (2015) 8, 083B04
(arXiv:1505.04506)

D3/D7 system

•Holographic dual to ! " 2 SQCD
– In large $% limit, a probe D7-brane is embedded in 
AdS) * +) geometry

– Fluctuations of the D7-brane = “meson” excitations

•Phase transition by applying electric fields
– Dielectric breakdown due to Schwinger effect

Karch, Katz (2002), Grana, Polchinski (2002), Bertolini et al. (2002)

current

Electric field

stable unstable

Schwinger limit

Karch, O’Bannon (2007)
Erdmenger, Meyer, Shock (2007)

Albash, Filev, Johnson, Kundu (2007)

Black hole embeddingMinkowski embedding
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Critical embedding in 
the D3/D7 system

•A phase boundary between the Minkowski
embeddings and the BH embeddings
– Two series of the solutions merge

– The shape of the D7-brane is conical

Black hole embedding

Electric field increases

Minkowski embedding Critical embedding

Taylor cone

•A hydrodynamic phenomena, which are used in 
electrospray in material/industrial science

•As an electric field increases the surface of a 
conductive liquid is sharpening, and at a critical 
electric field a cone is formed
– Beyond the critical value, the liquid sprays

Taylor cone

Electric field increases

Ref. R.Krpoun “Micromachined Electrospray Thrusters for Spacecraft Propulsion” (2009)

!
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•The first theoretical model of this phenomena is 
given by Taylor (1964)

– He assumed the liquid was a perfect conductor and the 
cone was formed when the surface tension and the 
electrostatic stress equilibrated on the liquid surface

– Repulsive forces between the induced charges cancel 
surface tension forces

•A half-cone angle 49.29° predicted by Taylor is 
very close to experimental results
– This angle is determined by a zero of the Legendre 

polynomial

G.Taylor Proc. R. Soc. Lond. A 280, 383 (1964)

Can we find something like universal properties for conic D-branes?

RR flux background

•D2-brane in a constant Ramond-Ramond (RR) 
flux background in flat spacetime
– The !-dim. bulk spacetime

– Embedding function

– RR field

•The action is a DBI action with a coupling to the 
RR field 

uniform RR flux
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Conic solution

•The equations of motion are 

•If we expand !"#$ around this point, we have a 
critical (conical) solution

The second equation can be integrated 

This equation is singular when %& ! ' (! # ' )1

Half-cone angle 

The apex of the cone is located at # ' 0

Other examples

•NSNS flux background
– D -brane in a constant NSNS flux

•D3/D7

– Probe D7-brane with worldvolume
gauge fields in ! !

topology of the cone:

topology of the cone:

The cone angle is unique independent of three parameters ("#, %#, &h)
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Universal formula?

•We have three conical D-brane solutions for 
different external forces and couplings
– RR flux, NSNS flux, gravitational field (AdS curvature)

•It is expected that the half-cone angle is 
determined as  

topology of the cone:

• What mechanism determines the angle of conic D-branes?

• Where is the factor of 2 in the square root coming from?

Force balance in Newtonian 
mechanics

•We have two force balance conditions: 
– Normal direction (extrinsic dynamics)

– Radial direction (intrinsic dynamics)

Young-Laplace eq.

Hydrodynamic (elastic) equilibrium

Assuming that the tension is isotropic and its distribution behaves as
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Equations of motion for 
generic membranes

•Extrinsic and intrinsic dynamics

Nambu-Goto brane
Extremal surface

External force

Induced metric:

Extrinsic curvature:

Embedding functions:

In general, the energy density is not equal to the tension (negative pressure).

Force balance in curved 
spacetimes

•A membrane in an “axisymmetric” spacetime
Bulk metric:

Induced metric on the memebrane:

We assume the membrane has an isotropic tension on the cone

Embedding functions

tension
stress-energy tensor

Topology of the cone

If the external force is along the axis of the cone, we can combine two equations.

induced metric on the cone
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•If we assume that the bulk spacetime is regular 
at the membrane (the membrane does not touch 
event horizons or some singularities) and the 
tension ! plays a dominant role, then we have

•If the tension behaves as ! ∼ ## near the apex of 
the cone # ∼ 0, the angle of the cone becomes 

• The dimension of the spherical part of the cone
• The power of the stress distribution

Stress-energy tensor of the 
various D-branes

•D2-brane in the RR flux

•D$-brane in the NSNS flux

•D7-brane in AdS% & '%

isotropic tension

isotropic tension

isotropic tension
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Mechanism for the conic D-
branes

•When the isotropic tension vanishes, a cone is 
formed.

•The angle of the cone is universally determined 
by the dimension of the cone and the power of 
the distribution of the tension.
– For the conic D-branes, the power is ½ independent of 

the background fields, which comes from the square 
root of the DBI action 

topology of the cone:

Summary

•We found various conic D-brane solutions, 
whose cone angles obey an universal formula
– The cone is formed at a critical point where the 

brane tension is canceled

•In general, the cone angles are determined by 
simply the local force balance
– It is expected that many conic D-branes other than 

our limited examples exist and our formula is valid

•Beyond the critical value, what happens?
– Spray solution? Funnel solution?
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After BH formation

The black hole which has a regular
core and coincide with usual black hole  
asymptotically is considered(Fig.2) [4].

It appears from the collapse of the 
star with the quantum effect (This star 
bounces too. ) [5][6]. 
Futhermore the remnant object  

“Planck star” appears after the collapse.

Fig.2 Quotation from Hayward[4].  
Formation and evaporation  of Regular BH

There might be potentiality that the same 
mechanism work in black hole formation of 
the Palatini Born-Infeld gravity
(classical remnant?).

Palatini Born-Infeld Gravity

The Born-Infeld gravity in the Palatini formalism is also a theory different 
from the Born-Infeld gravity in the metric formalism [1] [2] [3].  

The Palatini Born Infeld gravity can avoid the ghost with simplest action. 

where

(3)

(4)

(5)

Take the variation and derive equation of motion.  Then

FLRW universe with dust
Consider the shrinking FLRW dust universe by using this theory. 

Substituting these above assumptions to EoM (4) and (5).

(6)

(9)

(10)

ρ: density of dust

(8)

(7)

(12)

(11)

Black hole formation by collapse of dust 
Now we assume that the collapsing dust is uniform and spherical 

symmetric and Outside of the dust ball  spacetime is Schwarzschild 
spacetime.

Let      be  the initial radius(large enough) of the dust ball its e-
folding is              .
Then the total mass is given by

The condition is obtained by comparing the bouncing radius and 
Schwarzschild radius. If the bouncing radius is smaller than Schwarzschild 
radius,  then  black hole horizon can appear.  By using(13) and (14),  the 
condition is  

(15)

(16)

(i) (ii)

(17)

Palatini Formalism

Usually,  a gravitation theory has only metric degrees of freedom. 
But,  there is an another formalism which adopts connection as

independent degrees of freedom. 

Take the variation of the Einstein-Hilbert action in this formalism. Then

The connection which satisfies the second equation is Levi-Civita connection 
Itself (that is a rewriting of the definition of the Levi-Civita connection).  
So, metric and Palatini formalism are equivalent to each other.

This property does not hold except the Einstein gravity.  In general gravity theories, 
metric and Palatini formalism describe different theories.

but

(1)

(2)

Summary & Future outlook
1. The Palatini Born-Infeld gravity has a characteristic action and is different 

from the metric Born-Infeld gravity(Palatini Born-Infeld action is simpler).

2. By the combination of bounce FLRW dust universe and Schwarzschild 
spacetime, we obtained the condition black hole can be formed.

3. The new kind remnant object(like the Planck star?) might appear after 
the formation and the evaporation of black hole in the Palatini Born-
Infeld gravity. 

4. To obtain a more correct estimation of condition that black hole can be 
formed,  we should treat the junction condition directly in the Palatini
Born-Infeld gravity and should derive the formula correspond to (15).
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By solving above equations, we obtain the behavior of shrinking dust universe. 
The behavior is very different from the case of the general relativity.

The universe does not collapse to a point, but bounces back and switches to 
expand at finite size.

dust
universe

dust
universe

bounceshrinking expanding

We calculated the size of scale factor when the universe bounce at. 
(i) (ii)

(13) (14)

b>0

Fig.1 bouncing universe
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Ken Matsuno 
 

S.H. Hendi, A. Sheykhi, M. Sepehri Rad 
 

 Gen. Relativ. Gravit. 47, 117 (2015) 

Slowly rotating dilatonic black holes with 
exponential form of nonlinear electrodynamics 

Introduction 
y Born-Infeld nonlinear electrodynamics: 
 Removing divergence of electric field at the origin 
 in classical Maxwell theory 
 

9Other models of nonlinear electrodynamics: 
  Power-law Maxwell 
  Logarithmic form       can modify electric field 
  Exponential form 
 
 We add small angular momentum to 4D exact 
 charged static dilaton black hole solutions with 
 exponential form of nonlinear electrodynamics 
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Models of nonlinear electrodynamics 
z Born-Infeld nonlinear electrodynamics 

z Logarithmic form of nonlinear electrodynamics 

z Exponential form of nonlinear electrodynamics 

9 β→∞ limit:  

standard linear Maxwell field  

Four-dimensional Einstein-dilaton system with 
exponential form of nonlinear electrodynamics 

y Action 

: two Liouville-type dilaton potentials 

: Maxwell-dilaton system 

: exponential nonlinear 
  electrodynamics 

¾ Exponential nonlinear electrodynamics with dilaton field 
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Field equations 

Ansatz of slowly rotating charged dilatonic BHs 
y Metric 

y Gauge potential 

y Dilaton field 

9  Slowly rotating solution: 
  Solving field equations up to linear order of 
  angular momentum parameter 
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Electric field 

same as dilatonic Reissner–Nordström black holes 

9 β→∞ limit:  

: Lambert W function 

4D slowly rotating dilatonic black holes with 
exponential form of nonlinear electrodynamics 
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Limits 

z β→∞ : Slowly rotating Einstein-Maxwell-dilaton black holes   

z α→0 : Slowly rotating nonlinearly charged black holes 
      without dilaton field 

z  a→0 : Charged static dilaton black holes with 
      exponential form of nonlinear electrodynamics   

z α→0, β→∞ : Slowly rotating Kerr-Newman-AdS black holes 

Behaviors of electric fields 

In both cases, electric fields are finite near the origin but 
diverge exactly at r=0, due to presence of dilaton field 

Born-Infeld-dilaton 
Exponential nonlinear 

electrodynamics-dilaton 
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Physical properties 

z r=r±(>0) : Two horizons ( grr=F(r±)=0 ) 

z Neither asymptotically flat nor (A)dS, because of dilaton field 

z r=0 : Curvature singularity (RμνρσRμνρσ→∞) 

z Entropy : (ω: area of unit S2) 

z Hawking temperature : 

( T+=0 ⇔ r+=r- : extremal black holes ) 

Physical quantities 

: Electric charge 

: Angular momentum 

: Mass 

: Magnetic dipole moment 

Up to linear order of angular momentum parameter 
effect of nonlinear electrodynamics specified by β 

does not appear in physical quantities 
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Gyromagnetic ratio (g-factor) g 
z Interaction between magnetic dipole moment of 

electron μ and external magnetic field B  

9 Compared with Dirac equation ⇒ 

z g-factor: Ratio of gyromagnetic ratio μ/S 
         to Bohr magneton μB 

¾ Analogy: Electron ⇔ Charged rotating black holes (Carter, 1968) 

(μ=Qa : “Magnetic dipole moment”) 

μ B 

Gyromagnetic ratios of rotating black holes 

z  4D Kerr-Newman black hole (Carter, 1968) 

z  n-dim. slowly rotating Einstein-Maxwell black hole 
(Aliev, 2006) 

z  4D slowly rotating dilatonic black hole with 
  exponential form of nonlinear electrodynamics 

Only dilaton field modifies 
gyromagnetic ratio of rotating black holes 
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Summary 
We construct 4D slowly rotating black hole solutions 
in Einstein-dilaton system with  
 exponential form of nonlinear electrodynamics 
 two Liouville-type dilaton potentials 
 
zAsymptotic structure: neither flat nor (A)dS 
       (∵ presence of dilaton field) 
 

zMass, Angular momentum, Gyromagnetic ratio: 
  No modification by nonlinear electrodynamics  
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1 

Behavior of the New Cylindrically Symmetric  
Gravitational Solitonic Waves 

Dec. 2015  /  JGRG25 at Kyoto Univ. 

    T. Mishima (Nihon Univ.)  
& S. Tomizawa (Tokyo Univ. of Tech.)   

This contribution is based on the works:  [1] Phys. Rev. D90, 044036 (2014),                                
                                                                                              [2] Phys. Rev. D91, 124058 (2015). 

 「 In the previous works[1,2], we showed  new gravitational wave solitons  
    can be constructed by  the inverse scattering method equipped with the  
    procedure introduced by Pomeranski [’05]. 」 

 I.  Introduction 

2 

「We demonstrate some characteristic nonlinear behavior of the new solutions,  
    especially two-soliton solutions presented in the work[2] 」  

� Cylindrically symmetric and regular packet-like waves  

The solitonic waves treated here :  

� Having nonlinearly interacting two modes: (＋) and (×)  
� Coming into the symmetric axis and reflecting off    
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3 

「 Schematic spacetime diagram  
  (z = const. , φ = const.) 」 

 

 1. Comparison of in-going and out-going  
     waves near null infinites :   
     1.1  shape changing 
     1.2  mode conversion 

< Purpose >  

 2 Difference of non-linearity between  
     new sol. And ET-sol.  

(in-going)    (out-going)    

「 We clarify the peculiar nonlinearity of  the new  
     solution, compared with the soliton previously  
     constructed by Economou and Tsoubelis [’88] , 

     with the original Belinski-Zakharov IST 
     (we call this ET-soliton).  」 

「 We focus our concern on the following  
   two points 」  

4 

( Kompaneets – Jordan_Ehlers metric for cylindrically symmetric spacetimes )    

( The metric depends only on ρ and t ) 

 < Preparation－1：metric, amplitudes and basic equations >    

( nonlinear term )  

( Amplitudes used in the rest  )    

( Basic equations for the amplitudes: deduced from vacuum Einstein equation  )    

Following Piran, Safier and Stark[‘85]  
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5 

� C-energy:  

 < Preparation－2：C-energy based energy density and fluxes >    

Thorne[‘65]  

：outward  null  flux 

( Energy density and fluxes  )    

：inward  null  flux 

 II. Construction of new solutions and the metric form 

6 

< Procedure to generate new type of gravitational solitons > 

（１） Choose Minkowski spacetime as a seed solution. 
（２） Remove two solitons with trivial Belinski-Zakharov   
          parameter  (1, 0) at         
（３） Adding back the same solitons with non-trivial BZ-

parameter  set            and              

Pomeranski [’05]  
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7 

< New Solution > 
Introducing pseud-spheroidal coordinates : 

� Regular and packet-like solitonic waves   

( metric )    

8 

＜ ET solution : Economou –Tsoubelis[’88] ＞ 

� Regular and packet-like wave soliton  
� Generated by using original Belinski-Zakharov ISM 
      Adding two complex conjugate solitons to 

Minkowski seed simply 
pure 2-soliton 

�  New solution may be interpreted two ways …?   

 2-soliton + anti 2-soliton = 4-soliton 

 2-soliton - 2-soliton = 0-soliton 

( metric )    
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Horizontal axes : retarded and advanced null coordinates   
                                                                                and       

9 

Incident wave :        : blue 

 III. Comparison of the behavior of  two solitons      

Vertical axes : total amplitude  
 

 1.1  Comparison of the shapes of in-going and out-going waves  
       near null infinites   

Reflecting wave : 

(in-going) 

(out-going) 

Graphs in the next slide : 

       : red    

10 

phase advanced    

＜e.g.         ＞ 

�6 �4 �2 2 4 6

0.2

0.4

0.6

0.8

�6 �4 �2 2 4 6

0.2
0.4
0.6
0.8
1.0
1.2
1.4

New sol.    

ET sol.    

�  New solutions have noticeable behaviors: phase shift, merger, split, …  

merger    

split (n=3)    Phase delayed (n=2)    
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11 

�  Calculate the following total fluxes for  out-going  
     ＋ and × modes and ingoing  ＋ and × modes  
     respectively. 

 1.2  Comparison of the ratios of mode conversion from the in-going  
        wave soliton to the out-going wave soliton 

Next slides show the ratios of    (    ) to total Flux  
and also               for some values of the BZ-parameter’s 
modulus: k = 1, 6, 14.   

, 

, 

12 

(New sol. ) 
：Blue    

：red    

� For small k, the mode conversion between＋ and × seems not to occur. 

100× 

Overlapped and small 

No conversion ? 
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13 

(ETT sol. ) 

�  Simpler behavior of mode conversion are seen thorough all k. 

< Does  the mode mixing occur for k = 1 in the new solution? > 

null infinity 

14 

Ratio of + mode at t = 0 , when the soliton exists near axis. 

  t = 0 

� The + mode is enhanced when the soliton comes 
    close to the axis ! 

                                                                                                                  1293



15 

「 To specify the region where the nonlinearity of the waves cannot be neglected,  
we plot the following ‘ratios’ of (the nonlinear term^2) to ( linear term^2 +  
nonlinear term^2 ) of the basic equations in the cases of new solution and  
ET solution, respectively. 」 

 2. Different non-linear behavior of new sol. and ET-sol. 

( nonlinear term )  

16 

(New sol. ) (ETT sol. ) 

( e.g.：θ= π/4, k=1 )   

Residual nonlinearity No residual nonlinearity 

 Wave tail   Wave tail  

 soliton  

No residual nonlinearity No residual nonlinearity 

 Wave tail   Wave tail  

 soliton  

 soliton   soliton  
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17 

�  For the new solution, nonlinearity of + mode seems to be nonlocal   
     while nonlinearity of  the ET solution is localized. These tendencies cause  
     the difference of the asymptotic behavior of the solitons near time-like  
     infinities.  
    

cf. Einstein-Rosen waves have the same asymptotic behavior as ET solutions.  
    

+ mode only,  
basic equations are linear : 
 

new Solution  ET Solution  

18 

 IV.  Summary 

Characteristics of the new gravitational solitonic waves  

time 

9 Clear Sign of phase shifts ( both advanced and delayed)  
9 Large and complicated mode-conversion  
       between ＋ and ×modes as time passes  
9 Non-local nonlinearity in wave tail  

As further investigations,  

(2-body interaction） 

「 Systematic analysis of scattering and collision of  
     cylindrically symmetric higher multi-solitonic waves 」  
       

Deep understanding of the nonlinearity of gravity  

time 

(Self-interaction） 

axis 

axis 
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Vacuum excitation by sudden
(dis-)appearance of a Dirichlet

wall in a cavity
Umpei Miyamoto (Akita Prefectural U.)

with
Tomohiro Harada (Rikkyo U.)

Shunichiro Kinoshita (Chuo U.)
1

Abstract
• We investigate the vacuum excitation of a test scalar field by the 

sudden INSERTION (appearance) and REMOVAL (disappearance) of a 
both-sided Dirichlet wall in a 1D cavity.

• These systems can serve as toy models of a bifurcating spacetime and 
merging spacetime (see below)  

Spacetime bifurcation
Spacetime merging

2
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System (1): Sudden INSERTION of a Dirichlet wall

Massless scalar field in a 1D cavity

Dirichlet BCs at both ends

A Dirichlet wall is INSERTED at (t,x)=(0,0)

3

Quantization of scalar field

The quantum field is expanded by two sets of mode functions
(related by a Bogoliubov transformation each other)

The quantum field is in the vacuum defined by

Calculate the Vacuum expectation value of EM tensor

Double null coordinates4
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Result: Thunderbolt (explosive flux)

“thunderbolt” ambient Casimir energy

shifted Casimir energy

The backreaction of thunderbolts will
prevent the spacetime from bifurcating

Cf
Anderson-DeWitt, Found.Phys.1986
Ishibashi-Hosoya, Phys.Rev.D2002

5

System (2): Sudden REMOVAL of a Dirichlet wall

Dirichlet wall is REMOVED at (t,x)=(0,0)

The quantum field is in the vacuum defined by

6
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Result: finite flux only to shift the Casimir energy

ambient Casimir energy

shifted Casimir energy

The backreaction of weak flux will NOT
prevent the spacetime from merging7

Summary and future directions
• Particle creation by the sudden INSERTION of a wall is EXPLOSIVE.
Î Spacetime bifurcation will be prevented by the backreaction.

• Particle creation by the sudden REMOVAL of a wall is WEAK.
Î Spacetime merging will be not prevented by the backreaction.

• Future directions:
• Smooth INSERTION/REMOVAL
• Various BCs (e.g. Robin-type: φ’=aφ)
• Proposal of Lab. Experiments (cf: Wilson et al. Nature 2011)
• … and many

8
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25th JGRG @ Yukawa Institute
7 ~ 11 December 2015  

Halo/Galaxy bispectrum
with Equilateral-type 
Primordial Trispectrum

Shuntaro Mizuno (Waseda)
With  Shuichiro Yokoyama (Rikkyo)

Phys. Rev. D 91, 123521 (arXiv: 1504.05505 [astro-ph.CO] )

Primordial non-Gaussianity

Local and equilateral shapes

Local-type Equilateral-type

Planck constraint
(68% CL)
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Constraints on local-type NG from LSS    

How about equilateral-type NG ?

Dalal et al `08
Constraints on bispectrum

Giannatonio et al  `13                           

(95% CL)

Constraints on trispectrum
Desjacques and Seljak `10                           

(95% CL)

Future constraints:                           

Yamauchi et al  `14                           

Integrated Perturbation Theory (iPT)    
Matsubara `12, `13, Bernardeau et al `08                            

・Multi-point propagator of biased objects

Gravitational evolution

Lagrangian bias, ….number density field of the biased objects

linear density field which is related with
primordial curvature perturbation         through 

: transfer function : growth factor 

spectra of biased objects (Halo/Galaxy) systematically !! 

                                                                                                                  1303



Multi-point propagators on large scales
Matsubara `12                            

renormalized bias function defined in Lagrangian space 

The other parts include the information of displacement field 
in Lagrangian perturbation theory 

Renormalized bias function
For the mass function, we adopted Sheth-Tormen model given by  

no scale-dependence on large scales 
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Effects on Halo/galaxy power spectrum    
・Diagrams for the power spectrum of the biased objects

large scale limit

large scale limit

for 

for 

no enhancement 

typical scale of 
the biased objects 

enhancement 

Effects on Halo/galaxy bispectrum
Yokoyama, Matsubara, Taruya `13                            

・Diagrams for the bispectrum of the biased objects

large scale limit

large scale limit
for
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Halo/galaxy bispectrum with    

Primordial trispectrum in general k-inflation    
Arroja, SM, Koyama, Tanaka  `09,  Chen et al `09,     (Smith, Senatore, Zaldarriaga `15)                            

contact interaction

scalar-exchange interaction
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Trispectra from contact interactions    
・Concrete expressions

These trispectra also appear in effective field theory of inflation !!
・Constraints from CMB (95 % CL) Smith, Senatore, Zaldarriaga `15                           

Effects on Halo/galaxy bispectrum
・Diagrams for the bispectrum of the biased objects

large scale limit

for

for                 ,            ,

typical scale of 
the biased objects 

equilateral config.
&

large scale limit

equilateral config.
& (same as                )
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Halo/galaxy bispectrum with    
Adopting maximum allowed values by CMB observations

Contributions from          and    
・Shape-dependence of Halo/galaxy bispectrum

So far, we have limited the equilateral configuration  (                                    )

But the folded configuration  (                                         ) 
is also helpful to distinguish                      with                
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Halo/galaxy bispectrum with          and     
isosceles configuration given by

Folded Equilateral

Conclusions and Discussions

• Halo/galaxy  bispectrum was shown to be useful tool to 
distinguish equilateral-type NG from gravitational nonlinearity. 

• We can also constrain primordial  trispectrum generated 
by general k-inflation based on halo/galaxy bispectrum.

• Constraints on more general class of inflation models 
which give equilateral-type bispectrum

Ghost inflation, Lifshitz scalar, Galileon inflation,….

k-inflation (scalar-exchange interaction)
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Two dimensionally reduced gravity theory is investigated as an effective theory of four 
dimensional gravity, which may describe the behavior of four dimensional black hole and 
its evaporation. Especially we consider the model in bigravity and study the classical 
solutions and their stability.  
The bigravity model may give predictions different from those in general relativity because 
the bigravity includes massive spin-2 mode besides usual massless graviton. 

Abstract(

CGHS(Model(

CGHS(Model(in(Bigravity(

We consider the CGHS model in bigravity. This motivation is that if the massive spin-2 
graviton which is predicted by string theory  run up to the planck scale,  we can  see the 
evaporation of the black hole as an effective theory  of massive spin-2 field. 
In order to study the dynamics of two-dimensional reduced bigravity, we introduce the 
following two metrics in conformal gauge 

Simplified action inspired by CGHS model. (vacuum)  

In this Similarly, in conformal gauge and light cone coordinate, 

E.o.M  after coordinate transformation 

                                                                                                               How to solve it ? 

Since this equations are very complicated, we cannot find general solution… 
For simply, consider the special case 

But this proportional relation leads to usual CGHS model… 
If we assume m0 to be very small, it also corresponds to the CGHS model that we 
performed. 

Summary(and(Discussion(

We search the black hole solution of this model, but it is very difficult to solve these 
equation.  There are two way both simple and not to be a trivial solution.  
�First, since we use the same coordinate transformation as we perform the usual CGHS 
model, this difficulty might be able to removed by taking the proper coordinate 
transformation. 
�Second,  we consider the case where the two metric tensors are proportional to each other 
and we find it becomes trivial solution, there may be a possibility of another simple relation 
between these metrics. 
We consider the simplified action  motivated by CGHS model.  Bigravity theory is, 
however, constructed not to exist ghost mode,  it might be suffer from ghost in CGHS 
formalism. We confirm that this action do not exist ghost mode. 
This model cannot be solved analytically. But we find that the difference of this model and 
usual CGHS model are the overall factor of mass of massive spin-2. So we conclude that 
the dynamics of the simple two- dimensional system is modified by the non trivial mode.   

In general relativity, imposing spherical symmetry on the four dimensional space-time 
corresponds to the two dimensional gravity theory coupled with dilaton. This model is 
called CGHS (Callan–Giddings–Harvey–Strominger) model. The degrees of freedom in 
this model is simplified. In our work, we focus on the black hole solution. 

The action of CGHS model is given by, 

In vacuum (f = 0) ,  

There are three components in the two dimensional metric.  Two of those are gauge 
freedom followed by covariance. For simplicity, we consider the conformal gauge and light 
cone coordinate.   

In this gauge and coordinate, E.o.M becomes, 

                                                             coordinate transformation 

                                                                                   It has singularity at 

Dilaton field corresponds to the surface area of sphere in 4D. So the event horizons can be 
expressed as    

In&collabora/on&with&S.Nojiri,&T.Katsuragawa&and&H.&Suenobu&

Taisaku&Mori(QGHLab.&Nagoya&University)&

Two(Dimensional(Black(Hole(in(Bigravity(

Bigravity�
Bigravity theory (Hassan-Rosen)  incudes two independent metric tensor fields, g"and f"". The 
action of the bigravity is given by     

When we regard the bigravity as an alternative theory of gravity, it is interesting to apply this  
theory to the two dimensional model coupled with dilaton.�

Black hole solution in CGHS model�
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Multi-field effects on Non-Gaussianity in Starobinsky inflation
SOKENDAI/KEK       Taro Mori

Introduction
・Recent CMB observation strongly suports 
   inflationary cosmology 
・In particular, Starobinsky inflation model lies  
   deep inside of allowed region

ns r    and     are  
 related to 2-point fct. 
 of curvature perturbation

But        is also important to evaluate inflation  
models.  This is related to 3-point fct.

fNL

Almost all single field inflation 
predict tiny fNL

The formula of fNL

h⇣(k1)⇣(k2)⇣(k3)i f loc

NL

⇠ O(10�2)Theory　…
f loc

NL

= 0.8± 5.0 ⇠ O(1)Observation　…
Planck collaboration, 2015

Multi-field model

�N - formalismUsing
is given by…fNL fNL = �5

6

N ,AN ,BNAB

N ,IN,I

N : e-folding

But if kinetic terms in Lagrangian are  
       NOT canonically normalized, such as…

S =

Z
d

4
x

p
�g

"
m

2
pl

2
R� 1

2
G(�)IJ@µ�I

@µ�
J � V (�)

#

Then the field-space has  
         non-trivial geometry

d�2 = G(�)IJd�Id�J

Line element of field sp. :

So we have to modify the formula 
  with replacing derivatives to covariant derivatives

28

The quantity of most interest to us is not the three-point function for the field fluctua-

tions but the bispectrum for the gauge-invariant curvature perturbation, ⇣, which may be

parameterized as

h⇣(k
1

)⇣(k
2

)⇣(k
3

)i ⌘ (2⇡)3�(3) (k
1

+ k

2

+ k

3

)B⇣(k1

,k
2

,k
3

). (88)

Recall that the two gauge-invariant curvature perturbations, Rc and ⇣, coincide in the long-

wavelength limit when working to first order in metric perturbations [11, 12]. In terms of

QI , the �N expansion [53–56] for ⇣ on super-Hubble scales becomes [37]

⇣(xµ) = (DIN)QI(xµ) +
1

2
(DIDJN)QI(xµ)QJ(xµ) + ... (89)

where N = ln |a(t
end

)H(t
end

)/k⇤| is the number of efolds after a given scale k⇤ first crossed

the Hubble radius until the end of inflation. At t⇤, Eqs. (86) and (89) yield
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3
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)QK(k
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⇥
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d3q
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hQI(k

1

� q)QK(k
2

)i⇤hQJ(q)QL(k
3

)i⇤ + cyclic perms.

(90)

The bottom two lines on the righthand side give rise to the usual form of fNL, made suit-

ably covariant to reflect GIJ 6= �IJ . Adopting the conventional normalization, this term

contributes [12–16]:

h⇣(k
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)⇣(k
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)⇣(k
3

)ifNL = (2⇡)3�(3) (k
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2
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⇤ (91)

where

fNL = �5

6

N ,AN ,BDADBN

(N,IN ,I)2
. (92)

The term on the first line of Eq. (90), proportional to the nonzero three-point function for

the field fluctuations, yields new contributions to the bispectrum. However, the three-point

function hQIQJQKi⇤ is contracted with the symmetric object, N,IN,JN,K . Hence we must

consider each term within AIJK with care.

In general, the field-space indices, I, J,K, and the momentum-space indices, ki, must

be permuted as pairs: (I,k
1

), (J,k
2

), (K,k
3

). This is because the combinations arise

DJA
I ⌘ @JA

I + �I
JKAK

where…

constructed  
   by field space metric GIJ

Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied
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FIG. 11: The non-Gaussianity parameter, |fNL|, for the three trajectories of Fig. 2: trajectory 1
(orange dotted line); trajectory 2 (solid red line); and trajectory 3 (black dashed line). Changing
the fields’ initial conditions by a small amount leads to dramatic changes in the magnitude of the

primordial bispectrum.

around the time t⇤; if they did not, as we saw in Section IV, then the predictions for the

spectral index, ns(t⇤) would no longer match observations. We therefore do not consider

separate variations of the field velocities at the time t⇤, since in the vicinity of t⇤ they are

related to the field values. Because the second derivatives of N are very sensitive to the step

sizes �� and ��, we work with 32-digit accuracy, for which our numerical results converge

for finite step-sizes in the range ��,�� = {10�6, 10�5}.
For the three trajectories of Fig. 2, we find the middle case, trajectory 2, yields a value

of fNL of particular interest: |fNL| = 43.3 for fiducial scales k⇤ that first crossed the Hubble

radius N⇤ = 60 efolds before the end of inflation. Note the strong sensitivity of fNL to the

fields’ initial conditions: varying the initial value of �(⌧
0

) by just |��(⌧
0

)| = 10�3 changes

the fields’ evolution substantially — either causing the fields to roll o↵ the hill too early

(trajectory 1) or not to turn substantially in field space at all (trajectory 3) — both of

which lead to negligible values for fNL. See Fig. 11.

VI. CONCLUSIONS

We have demonstrated that multifield models with nonminimal couplings generically

produce the conditions required to generate primordial bispectra of observable magnitudes.

Under Construction

Einstein frame

D.Kaiser et al, arXiv:1210.7487

10

FIG. 2: Parametric plot of the fields’ evolution superimposed on the Einstein-frame potential.
Trajectories for the fields � and � that begin near the top of a ridge will diverge. In this case, the
couplings of the potential are ⇠� = 10, ⇠� = 10.02, ��/�� = 0.5, g/�� = 1, and m� = m� = 0.
(We use a dimensionless time variable, ⌧ ⌘ p

�� M
pl

t, so that the Jordan-frame couplings are
measured in units of ��.) The trajectories shown here each have the initial condition �(⌧

0

) = 3.1
(in units of M

pl

) and di↵erent values of �(⌧
0

): �(⌧
0

) = 1.1⇥ 10�2 (“trajectory 1,” yellow dotted
line); �(⌧

0

) = 1.1⇥ 10�3 (“trajectory 2,” red solid line); and �(⌧
0

) = 1.1⇥ 10�4 (“trajectory 3,”
black dashed line).

FIG. 3: The evolution of the Hubble parameter (black dashed line) and the background fields,
�(⌧) (red solid line) and �(⌧) (blue dotted line), for trajectory 2 of Fig. 2. (We use the same

units as in Fig. 2, and have plotted 100H so its scale is commensurate with the magnitude of the
fields.) For these couplings and initial conditions the fields fall o↵ the ridge in the potential at

⌧ = 2373 or N = 66.6 efolds, after which the system inflates for another 4.9 efolds until
⌧
end

= 2676, yielding N
total

= 71.5 efolds.

Trajectories on field space

1. (�,�) = (3.1, 1.1⇥ 10�4)

2. (�,�) = (3.1, 1.1⇥ 10�3)

3. (�,�) = (3.1, 1.1⇥ 10�2)

initial condition

In Multi-field case  
the trajectory of inflation is NOT unique 
there can be various trajectories  
              corresponding with various initial conditions.
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�

could be enhanced  
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C.de Bruck and L.E. Paduraru arXiv:1505.01727
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Summary:
・The formula to compute   　   should be modified 
    if Lagrangian contains non-canonical kinetic terms. 
・In Multi-field inflation inflaton can goes along various 
   trajectories in field space. 
・        could be enhanced by such Multi-field effects.

fNL

fNL
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“Possible golden events for ringdown gravitational waves -- total mass 

dependence --”

by Hiroyuki Nakano

[JGRG25(2015)P23]
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Hiroyuki Nakano (Kyoto University)

JGRG25, YITP, Kyoto University

Ref.) H. Nakano, T. Tanaka and T. Nakamura,
Phys. Rev. D92, 064003 (2015), [arXiv:1506.00560]

� Black hole (BH) singularities appear unavoidably in GR.

� Unphysical!?

� The allowance of the presence of singularities will not 
be acceptable even though they are hidden behind the 
event horizon.

� Various possibilities of the singularity avoidance have 
been discussed.

� Approach: calculate parameter estimation errors 
by using Fisher information matrix.

GR or not?
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�Kinugawa, Inayoshi, Hotokezaka, Nakauchi
and Nakamura, MNRAS 442, 2963 (2014) 
[arXiv:1402.6672].

�Kinugawa, Miyamoto, Kanda and Nakamura,
arXiv:1505.06962.

� Total mass: 60M_sun, equal mass is characteristic one.

� (restrict to nonspinning BBHs in this poster)

Pop III binary black holes (BBHs):
Typical chirp mass ～30M_sun
Typical total mass ～60M_sun

Kanda,

the LCGT collaboration,

arXiv:1112.3092

30M_sun-30M_sun

Similar SNR for
the inspiral and
ringdown phases

KAGRA noise curve
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From 40M_sun to 80M_sun

Previous study:
30M_sun-30M_sun

This poster:
Total mass from 40M_sun to 80M_sun

� Use the inspiral and ringdown data analysis.

� Treat the merger phase as a black box.
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� TaylorF2 waveform (L=2, m=2) in frequency domain

� Parameters in the inspiral phase:

� Summary of the formulation:
Ajith et al., arXiv:0709.0093

� Terminate at the ISCO frequency

� Much progress in NR.

� The whole GW waveforms are also well modeled 
in the effective-one-body approach.

Taracchini, Buonanno et al., Phys. Rev. D 89, 061502 (2014) 
[arXiv:1311.2544].

� Simply use the phenomenological fitting formulas 
for the remnant mass and spin:

Healy, Lousto and Zlochower, Phys. Rev. D 90, 104004 (2014) 
[arXiv:1406.7295].
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� Ringdown waveform:

� The dominant (L=2, m=2), least-damped (n=0) mode:

� Parameters for the ringdown phase:
Berti, Cardoso and Will, Phys. Rev. D 73, 064030 (2006)
[gr-qc/0512160].

Prohibited region

Real and imaginary parts of ringdown frequency

Schwarzschild limit

Spin
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� SNR = 50 (200Mpc) 
for the typical Pop III BBH

� SNR = 50 (200Mpc), Schwarzschild case

Prohibited region

NEW PHYSICS

Mass 
(M_sun) 40 50 60 70 80

SNR 18.74 32.86 50 (fix) 68.53 86.68

On the Schwarzschild limit
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� By combining the data analysis 
for the (I)nspiral and (R)ingdown GWs. 

� We use the PN waveform for the inspiral phase 
to extract the binary parameters.

� The remnant formulas are applied to obtain the GR 
prediction for the parameters of the remnant BH. 

� We find the expected parameter region of the QNM
for given inspiral parameters.

� SNR = 50 for both the inspiral and ringdown phases

NEW PHYSICS

Ringdown parameters should
be inside.
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M_tot = 40M_sun

M_tot = 80M_sun

Fixed 𝑆𝑁𝑅 = 352 + 352

� Kinugawa, Miyamoto, Kanda and Nakamura,
arXiv:1505.06962.

The event rate (inspiral+ringdown) with SNR > 35

� Great chance to confirm GR in the strong gravity 
by observing the expected QNMs!

� Although lower Q ringdown waves are difficult in DA,
there may be a new physics!

� Next, mass ratio and spin dependence!
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“Can we remove the systematic error due to isotropic inhomogeneities?”

by Hiroyuki Negishi

[JGRG25(2015)P24]
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1

Can we remove the systematic error 
due to isotropic inhomogeneities?

Osaka City University, Japan

Hiroyuki Negishi

JGRG25@Kyoto(YITP)

  Topics

・We assume that our universe is homogeneous and isotropic.

・Our universe is filled with non-relativistic matter and dark energy.

・We assume that our universe is inhomogeneous and isotropic.
・Our universe is filled with non-relativistic matter and positive cosmological constant.
・There are large-scale isotropic inhomogeneities.

Usually

In this poster

In cosmology

We compare these two cosmological model.

2

                                                                                                                  1324



  Introduction 3

Usually modern cosmology adopt

・The high homogeneity and isotropy of our universe in the globally averaged sense.

Copernican principle

There are possibility of non-negligible large-scale isotropic inhomogeneities in our universe. 

Cosmic microwave background (CMB)

The observed high isotropy of the CMB
we do not live in the 

privileged domain in the universe

But

・We can't move to the other clusters of galaxies.
・Our observations are confined on a past light cone.

・The Copernican principle can not be directory confirmed by observations.
Universereason

  Introduction 4

What is happen, if there are isotropic inhomogeneities in our universe?

The existence of isotropic inhomogeneities around us affects the determination of the 
cosmological parameters.

Example

From only the distance-redshift relation,  we can't distinguish the 
inhomogeneous isotropic universe from the homogeneous isotropic 
one.

We consider two universe model.

・Inhomogeneous isotropic universe model filled with dust and cosmological constant.

Isotropic inhomogeneities affect the determination of the cosmo- 
logical parameters.

density fluctuation

・FLRW universe model filled with dust and dark energy             . (w 6= �1)

There is systematic error due to isotropic inhomogeneities
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  Introduction 5

We want to remove a systematic error due to isotropic inhomogeneities. 

※In particular, we focus on the equation of state of dark energy.

Our purpose
We study whether we can distinguish the inhomogeneous isotropic universe model from the 
FLRW universe model and remove the systematic error due to isotropic inhomogeneities, if 
we use multiple observables.

Why is there a systematic error?
Our observations are confined on a past light 
cone, and we use only one observable.

In this poster, we use multiple observables.
LSS

t

ro

dA(z)

Light cone

Observer

We want to know exact the equation of state of dark energy.

FLRW universe model 6

Power spectrum

We fix

Metric
ds

2 = �dt

2 + a

2
(FLRW)(t)�ijdx

i
dx

j

Matter
Cold dark matter

Dark energy
Baryon ⌦(FLRW)

b

⌦(FLRW)
d

⌦(FLRW)
CDM

P(FLRW) = R0(FLRW)

✓
k

k0

◆ns(FLRW)

ns(FLRW) = 0.96

equation of state of dark energy

w =
X

m=0

wm(1� a)m

w0 6= �1 w1 6= 0

wm = 0 (m > 2)

or

H
(FLRW)
0 = 70 km/s/Mpc

⌦(FLRW)
CDM = 0.25

⌦(FLRW)
b = 0.05

R0 = 2.2⇥ 10�9
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 Inhomogeneous isotropic universe model 7

Metric

ds

2 = �dt

2 + a

2(t) [(1 +A(t, r))�ij + @i@jB(t, r)] dxi
dx

j

= �dt2 + a2

(1 +A+ @2

rB)dr2 +

✓
1 +A+

1

r
@rB

◆
r2d⌦2

�
,

A = �h(r) B = �h(r)

H2
0

D+ D+(t) := H2
0

✓
H(a)

Z a 1

b3H3(b)
db

◆
We fix the gauge

arbitrary function 

FLRW universe + inhomogeneous isotropic perturbation 

⇢CDM0

⇢b0

Matter
Cold dark matter

Cosmological constant
Baryon

⇤ � =
1

2H2
0

D+@i@
ih

Tµ⌫ = ⇢̄(t)(1 +�(t, r))uµu⌫

Stress energy tensor

�(t0, r)

r

We assume that our universe model is flat  FLRW  
universe where faraway from the observer.

inhomogeneous FLRW

There are three parameters         ,     and    and one arbitrary

function      in the inhomogeneous isotropic universe model. 

⇢CDM0 ⇢b0 ⇤

h(r)

Power spectrum

P (k) = R0

✓
k

k0

◆ns

Geodesic equation 8

We derive the null geodesic equations.

Trajectory
r = r̄(z) + �r(z)t = t̄(z) + �t(z)

dt̄

dz
= � 1

(1 + z)H̄

dr̄

dz
=

1

H̄

H̄ = H0

p
⌦m(1 + z)3 + ⌦⇤

Background

d�t

dz
=

1

(1 + z)H̄2

✓
¨̄a

ā
� H̄2

◆
�t+

1

2H2
0

dD+

dz

✓
H̄

d2h

dz2
+

dH̄

dz

dh

dz

◆

d�r

dz
=

h

2H̄
+

D+

2H2
0

✓
H̄

d2h

dz2
+

dH̄

dz

dh

dz

◆
� �t� (1 + z)

d�t

dz

Perturbation

t̄(0) = t0 r̄(0) = �t(0) = �r(0) = 0

Boundary condition

・The observer stays at the symmetry center r = 0 

Both    and     should vanish. k✓ k'

Assumption
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Observables 9

We use three observables

dA(z)

dz(z)

Cl

0 < z < 2

z = 0.2, 0.35

・Angular diameter distance-redshift relation 

・CMB angular power spectrum

・Baryon acoustic oscillation(BAO) scale

t

ro

Observer

decoupling 

dA(z)

Cl

dz(z)

l � 1

Observables in inhomogeneous isotropic universe 10

Solving the geodesic equations determine ̄t, r̄, �t and �r

Angular diameter distance-redshift relation depends on two parameters    

 and one arbitrary function
⇢̄m0,⇤

h(r) (0 < z < 2)

Angular diameter distance-redshift relation 

dA(z) = a
h
1 +

1

2
A+

1

2r
@rB

i
r
���
t=t(z), r=r(z)

⇡ a(t̄)r̄ + a(t̄)


�r �

✓
1

2
h(r̄) +

D+(t̄)

2r̄H̄2
0

@rh(r̄)� H̄�t

◆
r̄

�

We use angular diameter distance-redshift relation in the range                     0 < z < 2

Areal radius

.

.
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Observables in inhomogeneous isotropic universe 11

・For simplicity, we ignore the Integrated Sachs-Wolfe effect.

・We regard spacetime faraway from observer as homogeneous and isotropic.

We discard low multipoles in our analysis.

We assume that the linearly anisotropy perturbed FLRW universe with  

Standard Model particle physics and cold dark matter is fulfilled in  

decoupling epoch..

Assumption t

ro

Observer

inhomogeneous

decoupling 

FLRW

Cl = S�2C(EdS)
S�1l

S =
dA(zdec)

d(EdS)
A (zdec)

※We choose the photon temperature today T0 = 2.725K and ns = 0.96.

CMB angular power spectrum of Einstein de Sitter (EdS) Universe

which has the same values of 　　　　　　　　　　and P(k) in inhomogeneous

isotropic universe model

⇢̄CDM(tdec) ⇢̄b(tdec)

CMB angular power spectrum

Angular diameter distance of EdS universe

CEdS
l

d(EdS)
A (z)

CMB angular power spectrum depends on                ,           ,             anddA(zdec)⇢̄CDM(tdec) ⇢̄b(tdec) R0 .

Observables in inhomogeneous isotropic universe 12

dz(z) =
LBAO(dec)

a(tdec)

✓
1

d2A

H̄

z(1 + z)2

◆1/3 
1 +

2

3
H̄�t+

1

3H̄

ä

a
�t� 1

2
h� H̄D+

3r̄H2
0

dh

dz

� 1

6H2
0

✓
(1 + z)

dD+

dz
+D+

◆✓
H̄2 d

2h

dz2
+ H̄

dH̄

dz

dh

dz

◆�

In our universe model

We approximate that isotropic density fluctuation

is very small at decoupling epoch.

LBAO(dec) = const

Baryon acoustic oscillation scale
dz(z) =

✓
�✓2BAO

�zBAO

z

◆1/3

�zBAO(t(z), r(z)) =

Z
dz

dr
dr �✓BAO(t(z), r(z)) =

LT
BAO(t(z), r(z))

dA(z)

         is the angle that observer seen  

the BAO scale in the transverse direction. 

�zBAO         is the redshift interval the BAO scale 

engraved in line-of-sight direction.

�✓BAO

t

ro

Observer

decoupling 

Assumption

The BAO scale depends on           ,      ,   ,⇢CDM0 ⇢b0 ⇤ h(r) and a(tdec) .
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Fitting Observations 13

Our purpose is to study whether the observational data in FLRW universe model can also be explained 
by the inhomogeneous isotropic universe model.

If there is a solution in null geodesic equations we can’t distinguish inhomogeneous isotropic 
universe model from FLRW universe model, otherwise we can.

With these conditions, null geodesic should be regarded as the system of differential equations to 
determine the inhomogeneous isotropic universe model.

Conditions
dA(z) = dA(FLRW)(z)

Cl = Cl(FLRW)

dz(z) = dz(FLRW)(z)

(0 < z < 2)

(l � 1)

(z = 0.2, 0.35)

We try to construct the inhomogeneous isotropic universe model whose distance-redshift 
relation, temperature fluctuation of CMBR and BAO scale are identical with those of the FLRW 
universe model with dark energy of 　  　　　. w 6= �1

Why are there no solutions?

Result

Result 14

We find that there are no solutions.

It is mean that, we can remove the systematic error due to isotropic 
inhomogeneities, if adopt appropriate observables.

Inhomogeneous isotropic universe model has 
one arbitrary function, but it is not enough.

dA(z) restrict isotropic inhomogeneity at the 

Cl

0 < z < 2

restrict the BAO scale at decoupling epoch. 

There is no degree of freedom to fit the BAO  
scale on the light cone.

range                .
・

・

・

t

ro

Observer

decoupling 

dA(z)

Cl

dz(z)
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Summary 15

・Observables in FLRW universe model and inhomogeneous 
isotropic universe model are not coincided.

・We compare two universe model which is inhomogeneous isotropic 
universe model and FLRW model.

・We use three observables which is distance-redshift relation, 
BAO scale and CMB angular power spectrum.

・We can’t construct the inhomogeneous isotropic universe model 
whose distance-redshift relation, temperature fluctuation of CMBR 
and BAO are identical with those of the FLRW universe model with 
dark energy of                . w 6= �1
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“Cosmic string shielding of electric field of line charge”

by Tatsuya Ogawa

[JGRG25(2015)P25]
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Cosmic string shielding of electric field of line charge 

      We consider a system consists of a complex scalar field with a potential which causes spontaneous symmetry 
breaking and U(1) gauge field. It is well known that there exist the Nielsen-Olsen string solutions in this system.  
We put a line charge in this field. In the symmetric phase , electric field appears whose strength is in proportion to 1/r. 
In a broken phase, on the other hand, we show that a cosmic string is possibly formed along the line charge, where the 
electric field is shielded by rotating phase of the complex scalar field. The energy density of scalar field and 
electromagnetic field is localized in a finite thickness of the string, then the surface integral of energy density on a 
surface                                        plane is finite. We discuss physical properties of the phase rotating string in 
comparison to the Nielsen-Olsen string.  

Department of Mathematics and Physics, Graduate School of Science, Osaka City University  

We consider the Lagrangian 

The potential                causes spontaneous symmetry breaking.  
We assume static and axisymmetric fields  
  

where        is the covariant derivative operator  and      is the conserved current density:   

We find a solution called Nielsen-Olsen string , (see fig.1).   

     
where we put             for simplicity,  and      is winding number of the complex scalar  
field. If we require boundary conditions 
 
 
                                                                                           .   

 
(B) Broken phase 
      In the case with non-vanishing V.E.V. ,                                     . 
      We assume stationary and axisymmetric fields 

The complex scalar field configuration is expected to be the one which  
is illustrated in fig.2.   

Fig.2.  The complex scalar field configuration 
            and the external line charge density       
            which is placed at origin in two-dimensional  
            physical space. Each arrow represents  
            amplitude and phase of the complex scalar field. 

The charge density             is assumed as the Gaussian function ,  

If we require boundary conditions (1) and 

We find cosmic string solutions which we call phase rotating strings. The string solution screen out the electric 
field of the line charge as shown in fig.3.  

The first term is the kinetic energy part and the fifth term is the electric field part.  
Tension of the phase rotating string  is given by    

We found the phase rotating string solution which is screening of electric field of line charge, and analyzed the 
differences from the Nielsen-Olsen string solution. The analysis results are summarized in table, and the inner 
structure of the phase rotating string is illustrated in fig.5.   

The Nielsen-Olsen string The phase rotating string 
Electric field Not exist  Exist(localized) 

Charge density Not exist Screened 
Angular momentum Not exist Exist(localized) 

Relation between tension 
and energy density Equal Different 

Table. The differences of the phase rotating string solution  
           from the Nielsen-Olsen string solution.     

Fig.5. The inner structure of the phase rotating string. 

Tatsuya Ogawa and Hideki Ishihara 

Fig.3.  Upper left panel: The phase rotating string solution  
            for the external charge density              .  
            Upper right panel: The phase rotation of the scalar  
            field induces the charge density                .     
            Lower panel: The charge          within radius     ,  
            and the amplitude of the electric field          .  

If there is a line charge in a complex scalar field coupled to U(1) gauge field in the  
symmetric phase , a long-range potential of U(1) field appears. On the other hand ,  
if there is a line charge in the broken phase , what kind of the field configuration is  
allowed ?  In this poster , we introduce a new cosmic string solution which we call  
phase rotating string , and explain the physical differences from the  
Nielsen-Olsen string solution.   

The energy-momentum tensor  is given by  

and averaged line energy density , i.e. the integral of energy density on a surface                                         
plane , becomes  Fig.1.  The Nielsen-Olsen string solution  

            in the case 

The field equations become 

Abstract 

1.Introduction 

2.Nielsen-Olsen string ; brief review   

3.Basic equations  

5.Conclusion 

Fig.4. The angular momentum around  the symmetric axis  
          of the phase rotating string.  

 
(A)Symmetric phase 
      In the case                , we have the symmetric vacuum                         . 
      If we put a line charge as an external field, 
      we have a solution                                        . 
       

where                                 , and             is the external charge density.  

4.Solution of phase rotating string 

Since the terms related to          exist unlike the Nielsen-Olsen string solution ,the phase rotating string solution  
have tension which is different from the averaged line energy density. 
The phase rotating string solution have angular momentum around the symmetric axis which is given by   
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“Causality and shock formation in general scalar-tensor theories”

by Seiju Ohashi
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Causality and Shock 
Formation in General 
Scalar-Tensor Theories�
Seiju Ohashi(KEK)  
Collaboration with  
Norihiro Tanahashi(DAMTP) 

1.1 Motivation�

! General  scalar(s)-tensor theory �

-Frequently discussed to study inflation, dark energy, dark matter�

-Modified gravity theories.�

•  Horndeski(1974)�

•  The most general bi-scalar-tensor theories(2015)�

•  The generalized multi-Galileon theory(2013) …�

!  They have non-canonical kinetic terms�

-Non-canonical kinetic terms may imply superluminal motion 
 and shock formation�
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!  Reveal the peculiarities of the theories �

1.2 Motivation�

-Superluminal motion�

-Shock formation�

•  Gauss-Bonnet gravity, K.Izumi(2014) 
•  Lovelock gravity, H.Real, N.Tanahashi & B.Way(2014)� 
•  Special class of general scalar-tensor theory, Minamitsuji(2015)�

•  Gauss-Bonnet & Lovelock gravity, H.Real, N.Tanahashi & B.Way 
    (2014)�

What about general scalar-tensor theories ??? �

!  Focusing on peculiarities in the most general bi-scalar-tensor theory 
      S.O, N.Tanahashi, T.Kobayashi & M.Yamaguchi(2015) �

The conditions ζI[JK] = ωIJK = λ(IJ)KLLM − λ(I|LM |J)K = 0 in Eq. (2.37) imply

DI[JK] = −4JI[J,K] + 8ELMI[JK]X
LM , (2.49)

DI(JK) =
1

2
CJ,IK +GJK,I +

(
−DLMJ,IK + 4H[I|LJK,|M ]

)
XLM

+ 8E(J |ILM |K)X
LM + 4ELMNOJ,IKXLMXNO, (2.50)

0 =
1

2
DIJK,LM − 1

2
D(I|LM,|J)K +HIJKM,L −H(I|LMK,|J)

− 2
(
EML(IJ)K − EK(IJ)LM

)
− 4

(
ENO(IJ)K,LM − ENO(I|LM,|J)K

)
XNO, (2.51)

and Eq. (2.38) implies

GI[J,K]L = 0, (2.52)

HIJK[L,M ]N = 0, (2.53)

G(IJ,KL) = 3HL(IJK) + 2HLM(IJ,KN)X
MN − 2K(I,JK),L . (2.54)

Equation (2.52) is nothing but the integrability condition which guarantees F,IJ,KL =

F,KL,IJ , and hence the integral (2.48) indeed exists.

2.4 The most general second-order equation of motion

Now we are at the final stage of deriving the most general second-order field equations

of the bi-scalar-tensor theory. Substituting Eqs. (2.39)–(2.47) into Eq. (2.25), we at last

obtain

Ga
b = Aδab +

[
−2F,I − 4W,I + 2

(
DJKI + 8JJ [K,I]

)
XJK − 8EJKLMIX

JKXLM
]
δacbdφ

I|d
|c

+
(
−2F,I,J − 4W,I,J +A,IJ + 2DIKJ,LX

KL − 16EKIMNJ,LX
KLXMN − 16JK[I,L],JX

KL
)
φ(I|aφJ)

|b

+DIJKδacebdf φ
I
|cφ

J |dφK|f
|e + EIJKLMδacegbdfhφ

I
|cφ

J |dφK
|eφ

L|fφM |h
|g +

(
1

2
F +W

)
δacebdf R

df
ce + F,IJδ

ace
bdf φ

I|d
|c φJ |f

|e

+ JIJδ
aceg
bdfhφ

I
|cφ

J |dR fh
eg + 2JIJ,KLδ

aceg
bdfhφ

I
|cφ

J |dφK|f
|e φL|h

|g +KIδ
aceg
bdfhφ

I|d
|c R fh

eg +
2

3
KI,JKδacegbdfhφ

I|d
|c φJ |f

|e φK|h
|g .

(2.55)

This is the main result of this paper. The most general field equations for the single-

scalar case [9] are reproduced as should be if one restricts the number of the scalar fields in

Eq. (2.55) to one. Note that one can eliminateW(φI) from the above equation by redefining

F → F̂(φI , XJK) = F + 2W. We can see that Eqs. (2.50)–(2.54) do not reduce the

number of the arbitrary functions because these are the relations between derivatives of the

functions. In other words, these do not affect the structure of the field equations (2.55). As

we will comment in the final section, these may, however, help us to check the integrability

conditions for the field equations.

From the relation (2.5), the scalar-field equations of motion are found to be

EI = 2QI + δceglbdhm

(
−γJIKLφ

K|bφJ
|cφ

L|d
|e R hm

gl +
2

3
σJIKLMNφJ

|cφ
M |bφK|d

|e φL|h
|g φN |m

|l

)
.

(2.56)

– 11 –

•  Superluminality ? 
•  Killing Horizon (BH horizon) ? 
•  Shock formation ?�

1.3 Motivation�

-A,D,E,F,J,K are arbitrary functions of                       where �

JHEP07(2015)008

where ξabcdef and ξab are functions of gab, gab,c,φI ,φI
,a, and φI

,ab. Note that we have used

the identity

ξ̃abcdefgcd,ef =
2

3
ξ̃abcdefRecdf + ξ̄ab (2.19)

at the second equality of eq. (2.18), where ξ̄ab are functions of gab, gab,c,φI ,φI
,a, and φI

,ab.

It can be seen that ξabcdef and ξab have property S. Substituting eq. (2.18) into eq. (2.16)

and integrating it, we obtain

G̃ab = ξabcdefghI Rcdefφ
I
|gh + ξabcdefRcdef + ξab, (2.20)

where ξabcdefgh and ξabcdefghI are functions of gab, gab,c,φI , and φI
,a, while ξab are functions

of gab, gab,c, φI , φI
,a, and φI

,ab. Here again it can be seen that ξabcdefgh, ξabcdefghI , and ξab

have property S. Repeating the same procedure and integrating eq. (2.17) give

G̃ab = ξabcdefghI Rcdefφ
I
|gh + ξabcdefghIJK φI

|cdφ
J
|efφ

K
|gh + ξabcdefRcdef

+ ξabcdefIJ φI
|cdφ

J
|ef + ξabcdI φI

|cd + ξab, (2.21)

where all of the above ξ tensors are composed of gab, gab,c,φI , and φI
,a, and have property

S. Although our final goal is to determine the most general equations of motion for the

bi-scalar-tensor theory, the equations given up to this point hold irrespective of the number

of the scalar fields.

Our remaining task in this subsection is to construct explicitly all the possible ξ tensors

that have property S and are composed of gab, gab,c,φI , and φI
,a. For this purpose, we can

use φI|a, gab, and the totally antisymmetric tensor εabcd as building blocks, from which

the ξ tensors are built by taking their products and linear combinations appropriately.

There is no elegant way, and what we will do is to exhaust all the possible combinations

of those building blocks yielding the ξ tensors. Let us begin with the simplest one, ξab. It

is not difficult to find that the following one is the most general symmetric rank-2 tensor

composed of φI ,φI
|a, g

ab, and gab,c:

ξab = a(φI , XJK)gab + bIJ(φ
I , XJK)φI|aφJ |b, (2.22)

where a(φI , XJK) and bIJ(φI , XJK) are arbitrary functions of φI andXJK , and bIJ has the

symmetric property bIJ = bJI .2 Here, we have used, for the first time in this derivation,

the assumption that the number of the scalar fields is two, which greatly simplifies the

expressions of ξ tensors and the following procedure. Without this restriction we would

have for example the term such as cIJKL

(
εacdeφI

|cφ
J
|dφ

K
|eφ

L|b + εbcdeφI
|cφ

J
|dφ

K
|eφ

L|a
)
in ξab,

where cIJKL is arbitrary functions of φI and XIJ , and totally anti-symmetric in I, J and

2One might consider other rank-2 tensors such as εabcdφI
|cφ

J
|d, but this tensor is excluded because it is

not symmetric in a, b.

– 6 –

J
H
E
P
0
7
(
2
0
1
5
)
0
0
8

respectively. We denote the covariant derivative of φI with respect to gab and its scalar

product respectively as

φI
|a ≡ ∇aφ

I , XIJ ≡ −
1

2
φI
|aφ

J |a, (1.2)

whereXIJ is symmetric in I and J . We use a strike “ | ” also as a separator in (anti-)symme-

trization. For example, [I|JK,L|M ] stands for anti-symmetrization of I and M . Partial

derivatives of a function Aa...b(g, ∂g, ∂2g,φI , ∂φI , ∂2φI) are expressed as

Aa...b;cd ≡
∂Aa...b

∂gcd
, Aa...b;cd,e ≡

∂Aa...b

∂gcd,e
, Aa...b;cd,ef ≡

∂Aa...b

∂gcd,ef
,

Aa...b;
I ≡

∂Aa...b

∂φI
, Aa...b;c

I ≡
∂Aa...b

∂φI
,c

, Aa...b;cd
I ≡

∂Aa...b

∂φI
,cd

, (1.3)

and partial derivatives of a function A(φI , XJK) are expressed as

A,I ≡
∂A

∂φI
, A,IJ ≡

1

2

(
∂A

∂XIJ
+

∂A

∂XJI

)
. (1.4)

In the equations of motion and the Lagrangian, we use the generalized Kronecker delta

defined by

δi1...inj1...jn
≡ n! δi1[j1 . . . δ

in
jn]

, δIKJL ≡ 2δI[Jδ
K
L]. (1.5)

Repeated indices are summed over a = 0, 1, 2, 3 and I = 1, 2.

2 Construction of the most general equations of motion

The first step of the construction of the most general scalar-tensor theory of ref. [11] is to

work out the most general equations of motion that are of second order in derivatives and

compatible with the general covariance. In this section, we generalize this construction to

the case with two scalar fields.

2.1 Assumptions

The assumptions imposed on the theory we are going to construct are summarized as

follows.

1. The theory has a Lagrangian scalar density, L.

2. The Lagrangian scalar density, L, is composed of a metric, two scalar fields, and their

derivatives up to arbitrary order:

L = L
(
gab, gab,c, gab,cd, . . . ;φ

I ,φI
,a,φ

I
,ab, . . .

)
, (2.1)

where I = 1, 2.

– 3 –
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!  Is propagation speed faster (or slower) than light ?�

!  Is Killing horizon the causal edge (characteristic surface) ?  �

2.1 Speed of Propagation�

2.2 Speed of Propagation�

2

on [46–50].
It is well known that Gauss-Bonnet gravity theory involves superluminal propagation of gravitons; this was noted

in early works [2, 3] and also in recent works in the context of the AdS/CFT correspondence [4, 5]. However, the
concrete analysis on general manifolds has not been done. The purpose of this paper is that, with less assumptions, we
show generic properties of causal structures. We basically consider two cases: one is the locally stationary spacetime,
and the other is spacetime with (D � 2)-dimensional maximal symmetry.

The organization of this paper is as follows. In Sec. II, we show the origin of superluminality with an example of
a scalar field. We also explain the relation between superluminality and acausality. In Sec. III, we briefly review the
method of characteristics. In Sec. IV, we define Gauss-Bonnet gravity which we analyze. In Sec. V, we derive the
characteristic equations of Gauss-Bonnet gravity. We give the contributions stemming from the Einstein-Hilbert and
the Gauss-Bonnet terms in Sec. VB1 and in Sec. VB2, respectively. In Sec. VB1, we also show that, in general
relativity, the characteristic hypersurface for gravitons always becomes null. In Sec. VIA, we analyze the causal
structures in stationary cases, while in Sec. VIB we consider cases with (D � 2)-dimensional maximal symmetry.
Finally, we summarize our work with a discussion in Sec. VII.

We use the following notation for indices. Large Latin letters {A,B, . . .} are the indices for the D-dimensional
spacetime, while Greek letters {µ, ⌫, . . .} are the indices for the (D�1)-dimensional hypersurface ⌃ that we concentrate
on. The index “0” means the direction which is not tangent to ⌃. We use the index “1” for the null direction on the
hypersurface ⌃ if it is null, or in Sec. VIB for the direction which is normal to Killing directions on the hypersurface
⌃ (roughly speaking, the radial direction in the spherically symmetric case). We denote the normal directions to the
0 and 1 directions by the small Latin letters {i, j, . . .}.

II. THEORY WITH SUPERLUMINAL MODES

In the standard theory, causal structures are discussed with null curves. Here, “the standard theory” means that
in the theory all the fields have canonical kinetic terms. In such a theory, the highest speeds are the same as that
of light, which propagates in null direction. The causally related region, i.e. the Cauchy development, is configured
with the fastest propagation, and thus, we can justify the causal structures based on null curves. However, if a theory
has superluminal modes, the situation becomes di↵erent. We must analyze causal structures based on the fastest
propagations.

Now, the question is: which theory has superluminal modes. One example is Gauss-Bonnet gravity, where the
propagations of gravitons can be superluminal on a nontrivial background. This was pointed out at the end of the
1980s [2, 3] and recently discussed in the AdS/CFT context [4, 5].

We show the reason why superluminal modes appear by using a scalar field example. We first consider a scalar
field theory with a canonical kinetic term, whose equation of motion is written as

gABr
A

r
B

�+ V (�) = 0. (1)

“Canonical kinetic term” means the coe�cient of the kinetic term (i.e. the second-order derivative term) is propor-
tional to the metric gµ⌫ . To see the maximum speed of a propagation for �, we take the high-energy limit, where we
can ignore the potential term. In the Fourier space, the equation becomes

gABk
A

k
B

�
k

= 0, (2)

where �
k

is a Fourier mode of � with momentum k
A

. This gives the solution that k
A

is null. However, if a theory
has a noncanonical kinetic term, the situation changes. For instance, we consider a scalar field �̃ with the following
equation:

�
gAB + ↵rA rB 

�
r

A

r
B

�̃+ V (�̃) = 0, (3)

where  is another scalar field and ↵ is a constant. The kinetic term has the coe�cient
�
gAB + ↵rA rB 

�
. Taking

the high frequency limit for �̃, we can again neglect the potential term and in the Fourier space for �̃ we have
�
gAB + ↵rA rB 

�
k̃
A

k̃
B

�̃
k̃

= 0. (4)

Then, k̃
A

is a null direction for the e↵ective metric
�
gAB + ↵rA rB 

�
, which is di↵erent from that for the real

metric gAB , i.e. k
A

. Therefore, with nonzero r
A

 the fastest mode does not follow a null trajectory and can be
spacelike or timelike depending on the value of ↵ and r

A

 . With some values of ↵ and r
A

 , the e↵ective metric can
be Euclidean, or from a Euclidean metric we can construct a Lorentzian e↵ective metric [51–53].

2
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It is well known that Gauss-Bonnet gravity theory involves superluminal propagation of gravitons; this was noted

in early works [2, 3] and also in recent works in the context of the AdS/CFT correspondence [4, 5]. However, the
concrete analysis on general manifolds has not been done. The purpose of this paper is that, with less assumptions, we
show generic properties of causal structures. We basically consider two cases: one is the locally stationary spacetime,
and the other is spacetime with (D � 2)-dimensional maximal symmetry.

The organization of this paper is as follows. In Sec. II, we show the origin of superluminality with an example of
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method of characteristics. In Sec. IV, we define Gauss-Bonnet gravity which we analyze. In Sec. V, we derive the
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structures in stationary cases, while in Sec. VIB we consider cases with (D � 2)-dimensional maximal symmetry.
Finally, we summarize our work with a discussion in Sec. VII.

We use the following notation for indices. Large Latin letters {A,B, . . .} are the indices for the D-dimensional
spacetime, while Greek letters {µ, ⌫, . . .} are the indices for the (D�1)-dimensional hypersurface ⌃ that we concentrate
on. The index “0” means the direction which is not tangent to ⌃. We use the index “1” for the null direction on the
hypersurface ⌃ if it is null, or in Sec. VIB for the direction which is normal to Killing directions on the hypersurface
⌃ (roughly speaking, the radial direction in the spherically symmetric case). We denote the normal directions to the
0 and 1 directions by the small Latin letters {i, j, . . .}.
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In the standard theory, causal structures are discussed with null curves. Here, “the standard theory” means that
in the theory all the fields have canonical kinetic terms. In such a theory, the highest speeds are the same as that
of light, which propagates in null direction. The causally related region, i.e. the Cauchy development, is configured
with the fastest propagation, and thus, we can justify the causal structures based on null curves. However, if a theory
has superluminal modes, the situation becomes di↵erent. We must analyze causal structures based on the fastest
propagations.

Now, the question is: which theory has superluminal modes. One example is Gauss-Bonnet gravity, where the
propagations of gravitons can be superluminal on a nontrivial background. This was pointed out at the end of the
1980s [2, 3] and recently discussed in the AdS/CFT context [4, 5].

We show the reason why superluminal modes appear by using a scalar field example. We first consider a scalar
field theory with a canonical kinetic term, whose equation of motion is written as
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2.3 Characteristic surfaces�

-Causality is determined by the characteristic surface�

-3D surfaces where fastest mode propagates. �

The generalisation of the Einstein equation is

Aab = 8⇡Tab . (2.4)

We will assume that k1 > 0 and choose units so that k1 = 1. The Lagrangian density for

Lovelock theory is [1]

L =
p
�g (R� 2⇤)�

p
�g

X

p�2

2kp�
c1...c2p
d1...d2p

Rc1c2
d1d2

. . . Rc2p�1c2p
d2p�1d2p

. (2.5)

If we retain only the p = 2 term above then we have Einstein-Gauss-Bonnet theory.

2.2 Characteristics

In this section we will review the definition and basic theory of characteristic hypersurfaces.

Consider a field theory in which the unknown fields form a column vector gI with equation

of motion

EI

�
g, @g, @

2
g

�
= 0 . (2.6)

(In a Lovelock theory gI will stand for the metric gµ⌫ .) The theory is quasilinear if EI is linear

in @

2
gJ . We will not assume this. However, Lovelock theories have the special property4

that, in any coordinate chart xµ, the equations of motion depend linearly on @

2
0gµ⌫ . So we

will assume that EI has this property. Hence in any chart the equation of motion takes the

form
@

2
EI

@(@2
0gJ)

@

2
0gJ + · · · = 0 . (2.7)

where the ellipsis denotes terms involving fewer than 2 derivatives with respect to x

0 and

the coe�cient of @2
0gJ does not depend on @

2
0gJ .

Now consider a hypersurface ⌃ and introduce adapted coordinates (x0
, x

i) so that ⌃ has

equation x

0 = 0. Assume that gI and @µgI are known on ⌃. By acting with @i we then

also know @i@µgI on ⌃. The only second derivatives that we don’t know are @2
0gI . These are

uniquely determined by the equation of motion (2.7) if, and only if, the matrix

@EI

@(@2
0gJ)

(2.8)

is invertible. If this is the case then ⌃ is said to be non-characteristic. If the matrix is not
4This was noticed in [2, 3] for coordinates adapted to a spacelike surface but it holds generally.
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invertible anywhere on ⌃ then ⌃ is characteristic. Let ⇠ = dx

0 be the normal to ⌃. We can

write the above matrix covariantly as

P (x, ⇠)I
J =

@EI

@(@µ@⌫gJ)
⇠µ⇠⌫ . (2.9)

This is called the principal symbol of the equation. The characteristic polynomial is

Q(x, ⇠) = detP (x, ⇠) . (2.10)

A surface with normal ⇠ is characteristic if, and only if, Q(x, ⇠) = 0 vanishes everywhere on

the surface. Q is a homogeneous polynomial in ⇠. The equation Q = 0 at a point p defines

the normal cone at p.

A surface �(x) = constant is characteristic if Q(x, d�) = 0. This is a first order PDE for

�. The theory of first order PDEs implies that such surfaces are generated by bicharacteristic

curves (xµ(t), ⇠⌫(t)) defined by [26]

ẋ

µ =
@Q

@⇠µ
, ⇠̇µ = � @Q

@x

µ
, (2.11)

with the initial values of ⇠µ chosen so that Q = 0 (this is preserved along the curves). The

ray cone at p is defined as the set of vectors of the form @Q/@⇠µ for ⇠ obeying Q = 0.

If Q factorizes (for arbitrary ⇠) into a product of polynomials of lower degree

Q = Q

p1
1 Q

p2
2 . . . , (2.12)

then we must use Qi instead of Q in defining bicharacteristics. This happens in GR: writing

the Einstein equation in harmonic coordinates givesQ = Q

d(d+1)/2
1 whereQ1 = �(1/2)gab⇠a⇠b.

In this case the curves x

µ(t) are the null geodesics of gab and a surface is characteristic if,

and only if, it is null.

To understand the role of characteristic hypersurfaces as wavefronts, consider a solution

which is smooth everywhere except across a hypersurface ⌃ on which the solution is C1 but

@

2
gI is discontinuous. In this case, the equation of motion cannot determine uniquely @

2
gI

on ⌃. Hence ⌃ must be a characteristic surface. So discontinuities in @

2
gI must propagate

along characteristic hypersurfaces.

By taking derivatives of the equation of motion one easily sees that discontinuities in @

k
gI ,

k � 3 also propagate along characteristic hypersurfaces, i.e., if a solution is smooth on either
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By taking derivatives of the equation of motion one easily sees that discontinuities in @
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gI ,

k � 3 also propagate along characteristic hypersurfaces, i.e., if a solution is smooth on either
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2
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0 and
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2
0gJ .
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i) so that ⌃ has
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also know @i@µgI on ⌃. The only second derivatives that we don’t know are @2
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@(@2
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is invertible. If this is the case then ⌃ is said to be non-characteristic. If the matrix is not
4This was noticed in [2, 3] for coordinates adapted to a spacelike surface but it holds generally.
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invertible anywhere on ⌃ then ⌃ is characteristic. Let ⇠ = dx

0 be the normal to ⌃. We can

write the above matrix covariantly as

P (x, ⇠)I
J =

@EI

@(@µ@⌫gJ)
⇠µ⇠⌫ . (2.9)

This is called the principal symbol of the equation. The characteristic polynomial is

Q(x, ⇠) = detP (x, ⇠) . (2.10)

A surface with normal ⇠ is characteristic if, and only if, Q(x, ⇠) = 0 vanishes everywhere on

the surface. Q is a homogeneous polynomial in ⇠. The equation Q = 0 at a point p defines

the normal cone at p.

A surface �(x) = constant is characteristic if Q(x, d�) = 0. This is a first order PDE for

�. The theory of first order PDEs implies that such surfaces are generated by bicharacteristic

curves (xµ(t), ⇠⌫(t)) defined by [26]

ẋ

µ =
@Q

@⇠µ
, ⇠̇µ = � @Q

@x

µ
, (2.11)

with the initial values of ⇠µ chosen so that Q = 0 (this is preserved along the curves). The

ray cone at p is defined as the set of vectors of the form @Q/@⇠µ for ⇠ obeying Q = 0.

If Q factorizes (for arbitrary ⇠) into a product of polynomials of lower degree

Q = Q

p1
1 Q

p2
2 . . . , (2.12)

then we must use Qi instead of Q in defining bicharacteristics. This happens in GR: writing

the Einstein equation in harmonic coordinates givesQ = Q

d(d+1)/2
1 whereQ1 = �(1/2)gab⇠a⇠b.

In this case the curves x

µ(t) are the null geodesics of gab and a surface is characteristic if,

and only if, it is null.

To understand the role of characteristic hypersurfaces as wavefronts, consider a solution

which is smooth everywhere except across a hypersurface ⌃ on which the solution is C1 but

@

2
gI is discontinuous. In this case, the equation of motion cannot determine uniquely @

2
gI

on ⌃. Hence ⌃ must be a characteristic surface. So discontinuities in @

2
gI must propagate

along characteristic hypersurfaces.

By taking derivatives of the equation of motion one easily sees that discontinuities in @

k
gI ,

k � 3 also propagate along characteristic hypersurfaces, i.e., if a solution is smooth on either

6

invertible anywhere on ⌃ then ⌃ is characteristic. Let ⇠ = dx

0 be the normal to ⌃. We can

write the above matrix covariantly as

P (x, ⇠)I
J =

@EI

@(@µ@⌫gJ)
⇠µ⇠⌫ . (2.9)

This is called the principal symbol of the equation. The characteristic polynomial is

Q(x, ⇠) = detP (x, ⇠) . (2.10)

A surface with normal ⇠ is characteristic if, and only if, Q(x, ⇠) = 0 vanishes everywhere on

the surface. Q is a homogeneous polynomial in ⇠. The equation Q = 0 at a point p defines

the normal cone at p.

A surface �(x) = constant is characteristic if Q(x, d�) = 0. This is a first order PDE for

�. The theory of first order PDEs implies that such surfaces are generated by bicharacteristic

curves (xµ(t), ⇠⌫(t)) defined by [26]

ẋ
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Assume that

t00 = t0i = 0 . (3.22)

Recall that t1⌫ is pure gauge and so does not contribute to (3.20). Let µ 6= 0. Then for the

Kronecker deltas in (3.20) to be non-zero we need one of the upper ⇢ indices to be 0. But

then the conditions (3.21) and (3.22) imply that this expression must vanish. Since (R· t)µ⌫
is symmetric, it follows that the only non-vanishing component is the µ = ⌫ = 1 component.

So (3.18a), (3.18b) and (3.18c) are all satisfied and (3.18d) is the only non-trivial equation.

So any tµ⌫ satisfying the d � 1 conditions (3.22) and the single condition (3.18d) gives a

solution. These are d conditions in total. Vphysical has dimension d(d� 1)/2. Hence the size

of the kernel is d(d� 1)/2� d = d(d� 3)/2 as claimed.7

3.5 Hyperbolicity

We can now discuss hyperbolicity. The idea that we want to capture is that, given a suitable

“initial” hypersurface ⌃, for any (d � 2)-dimensional surface S within ⌃ there are d(d � 3)

physical characteristic hypersurfaces through S. These correspond roughly to “ingoing” and

“outgoing” wavefronts for each of the d(d � 3)/2 physical polarizations of the graviton. In

the PDE literature, such a surface ⌃ is referred to as spacelike [26] but, since we already

have a notion of spacelike arising from the metric, we will refer to it as “Lovelock-spacelike”.

More precisely, consider a basis of 1-forms {f (µ)
a } for the cotangent space at p such that

f

(0) is normal to ⌃. We can expand ⇠ = ⇠µf
(µ) = ⇠0f

(0) + ⇠if
(i). We will say that ⌃

is “Lovelock-spacelike” at p if, for every ⇠i 6= 0 the equation Q(xi
, ⇠0, ⇠i) = 0 has exactly

d(d� 3) distinct real roots ⇠0. If a Lovelock-spacelike hypersurface exists through a point p

then the theory is hyperbolic at p. Note that it is possible that the theory could be hyperbolic

in some region of spacetime but non-hyperbolic in another region. We will see an example

of this below.

This definition can be extended to permit degeneracy of the roots ⇠0. If ⇠0 has degeneracy

k then we require that there should be k modes propagating along the corresponding charac-

teristic surface. We do this by requiring that there exist k linearly independent tab 2 Vphysical

that belong to the kernel of P (x, ⇠).

For some spacetimes (e.g. those with appropriate symmetries) the characteristic polyno-

7We have not excluded the possibility that the kernel is bigger than this, i.e., that there may exist
solutions of the system (3.18a) to (3.18d) that do not satisfy (3.22). But the above analysis shows that
(3.18a), (3.18b) and (3.18c) depend only on t00 and t0i hence they form an overdetermined system for these
quantities. Therefore it seems likely that all solutions must satisfy (3.22).
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= Aδab +
2∑

I,J=1

(
− 2

∂2F
∂φI∂φJ

− 4
∂2W
∂φI∂φJ

− 2
∂A

∂φIJ
+ 2

2∑

K,L=1

∂CIKJ

∂φL
XKL

+ 16
2∑

K,L,M,N=1

∂DKIMNJ

∂φL
XKLXMN − 8

2∑

K,L=1

(
∂2JIK
∂φL∂φJ

− ∂2JKL

∂φI∂φJ

)
XKL

)
φI

|aφJ |b

+
2∑

I=1

(
− 2

∂F
∂φI

− 4
∂W
∂φI

+ 2
2∑

J,K=1

(
CJKI − 4

∂JIJ
∂φK

+ 4
∂JJK
∂φI

)
XJK − 8

2∑

J,K,L,M=1

DJKLMIXJKXLM

)
δacbdφI

|d
|c

+
2∑

I,J,K=1

CIJKδ
ace
bdf φI |cφJ

|dφK
|f
|e +

2∑

I,J,K,L,M=1

DIJKLMδ
aceg
bdfhφI |cφJ

|dφK |eφL
|fφM

|h
|g

+

(
1

2
F +W

)
δacebdf R

df
ce +

2∑

I,J=1

∂F
∂XIJ

δacebdf φI
|d
|cφJ

|f
|e

+
2∑

I,J=1

JIJδ
aceg
bdfhφI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

∂JIJ
∂XKL

δacegbdfhφI |cφJ
|dφK

|f
|eφL

|h
|g

+
2∑

I=1

KIδ
aceg
bdfhφI

|d
|cR

fh
eg +

2

3

2∑

I,J,K=1

∂KI

∂XJK
δacegbdfhφI

|d
|cφJ

|f
|eφK

|h
|g

Eab(L) =
2∑

I,J=1

XIJg
l(aδb)cegldfh φI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

δI(KδL)Jg
l(aδb)cegldfh φI |cφJ

|dφK
|f
|eφL

|h
|g . (143)

A = δIJXIJ − V (φK) (144)

Eab = A(φ, X)gab (145)

∇aE
ab =

∂A

∂φ
∇aφ− ∂A

∂X
∇a∇bφ∇bφ (146)

∂A

∂X
= 0 (147)

A = A(φ) (148)

Gab = Rab −
1

2
gabR = 0 (149)

Aij,klgkl,00 + Bij
I φI ,00 = 0 (150)

Bij
I gij,00 + CIJφJ,00 = 0 (151)

(152)
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In the Sec. III, we study the properties of characteristic surfaces in the most general bi-scalar-

tensor theory. We examine the causal structure of dynamical space-time in these theory, in Sec.

IV. Finally we give summary and discussion of our result in Sec. V.

II. REVIEW OF CHARACTERISTICS

In this section, we give a short review on characteristics. Let us introduce a three dimensional

space like or null hyper surface, Σ, and coordinate system (x0, xi) (i = 1, 2, 3) where x0 is not

tangent to Σ, and xi lies on Σ.

III. CHARACTERISTICS IN BI-HORNDESKI THEORY

In this section, we study the causal structure of the most general bi-scalar-tensor theory [3].

The field equations for the theory are shown in the Appendix.

A. Gravitation part

(00) and (0i) components of gravitational equations of motion do not contain second time

derivatives. Only (ij) components contain second time derivatives. (ij) components of EoM are

given as

Eij(L) = Aij,klgkl,00 + Bij
I φI ,00 + Cij (1)

where Aij,kl,Bij
I and Cij are defined as

Aij,kl =− 2

(
1

2
F +W

)
gp(iδj)0(kpmf gl)fg0m − 2JIJg

p(iδj)c0(kpdmf g
l)fg0mφI

|cφ
J |d

− 2KIg
p(iδj)c0(kpdmf g

l)fg0mφI|d
|c , (2)

and

Bij
I =B̃Ig

l(iδj)0lm g0m +DJKIg
l(iδj)c0ldmg0mφJ

|cφ
K|d + EJKLMIg

l(iδj)ce0ldfm g0mφJ
|cφ

K|dφL
|eφ

M |f

+ 2F,IJg
l(iδj)c0ldmg0mφJ |d

|c + 4JJK,LIg
l(iδj)ce0ldfm g0mφJ

|cφ
K|dφL|f

|e

+KIg
l(iδj)0celmdf g

0mRce
df + 2KI,JKgl(iδj)ce0ldfm g0mφJ |d

|c φK|f
|e . (3)

Here we define

B̃I ≡
[
− 2F,I −W,I + 2

(
DJKI + 8JJ [K,I]

)
XJK − 8EJKLMIX

JKXLM
]
, (4)

Cij = Cij (gab, gab,0, gab,k0, gab,kl,φI ,φI ,0,φI ,0k,φI ,kl) . (5)
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where�

C_{IJ} are extremely complicated�

! Not degenerate in general. Characteristic surfaces in general  
     scalar-tensor theory are not null in general. 
!  Speed of graviton & scalar field(s) are faster (or slower) than light�

Assume that

t00 = t0i = 0 . (3.22)

Recall that t1⌫ is pure gauge and so does not contribute to (3.20). Let µ 6= 0. Then for the

Kronecker deltas in (3.20) to be non-zero we need one of the upper ⇢ indices to be 0. But

then the conditions (3.21) and (3.22) imply that this expression must vanish. Since (R· t)µ⌫
is symmetric, it follows that the only non-vanishing component is the µ = ⌫ = 1 component.

So (3.18a), (3.18b) and (3.18c) are all satisfied and (3.18d) is the only non-trivial equation.

So any tµ⌫ satisfying the d � 1 conditions (3.22) and the single condition (3.18d) gives a

solution. These are d conditions in total. Vphysical has dimension d(d� 1)/2. Hence the size

of the kernel is d(d� 1)/2� d = d(d� 3)/2 as claimed.7

3.5 Hyperbolicity

We can now discuss hyperbolicity. The idea that we want to capture is that, given a suitable

“initial” hypersurface ⌃, for any (d � 2)-dimensional surface S within ⌃ there are d(d � 3)

physical characteristic hypersurfaces through S. These correspond roughly to “ingoing” and

“outgoing” wavefronts for each of the d(d � 3)/2 physical polarizations of the graviton. In

the PDE literature, such a surface ⌃ is referred to as spacelike [26] but, since we already

have a notion of spacelike arising from the metric, we will refer to it as “Lovelock-spacelike”.

More precisely, consider a basis of 1-forms {f (µ)
a } for the cotangent space at p such that

f

(0) is normal to ⌃. We can expand ⇠ = ⇠µf
(µ) = ⇠0f

(0) + ⇠if
(i). We will say that ⌃

is “Lovelock-spacelike” at p if, for every ⇠i 6= 0 the equation Q(xi
, ⇠0, ⇠i) = 0 has exactly

d(d� 3) distinct real roots ⇠0. If a Lovelock-spacelike hypersurface exists through a point p

then the theory is hyperbolic at p. Note that it is possible that the theory could be hyperbolic

in some region of spacetime but non-hyperbolic in another region. We will see an example

of this below.

This definition can be extended to permit degeneracy of the roots ⇠0. If ⇠0 has degeneracy

k then we require that there should be k modes propagating along the corresponding charac-

teristic surface. We do this by requiring that there exist k linearly independent tab 2 Vphysical

that belong to the kernel of P (x, ⇠).

For some spacetimes (e.g. those with appropriate symmetries) the characteristic polyno-

7We have not excluded the possibility that the kernel is bigger than this, i.e., that there may exist
solutions of the system (3.18a) to (3.18d) that do not satisfy (3.22). But the above analysis shows that
(3.18a), (3.18b) and (3.18c) depend only on t00 and t0i hence they form an overdetermined system for these
quantities. Therefore it seems likely that all solutions must satisfy (3.22).
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2.5 Killing horizon in Scalar(s)-Tensor Theories�

!  Can Killing horizon be the causal edge ? �

•  If not, some information can escape from black holes�

-Killing condition�

8

VI. CAUSAL STRUCTURES

Now we have the characteristic equation of Gauss-Bonnet gravity. Using it, we can analyze the causal structures.
Firstly, we consider stationary solutions and find that Killing horizons express the causal edges, i.e. a black hole
horizon in the sense of causality. Secondly, we consider (D�2)-dimensionally maximally symmetric solutions without
the stationary assumption. We show that, if the geometrical null energy condition is satisfied, the speeds of gravitons
must be less than or equal to that of light. On the other hand, on evaporating black holes where the geometrical null
energy condition is expected to be broken, gravitons can propagate faster than light.

A. Locally stationary cases

In Sec.VB, we saw that if on a null hypersurface the conditions R1ijk = 0 and R1i1j = 0 are satisfied, the
hypersurface is characteristic for all degrees of freedom of gravitons. We shall see a su�cient condition for this.

Here, we consider the case where the hypersurface ⌃ is null. We denote the direction normal to ⌃ by the label 1;
i.e. with the normal null vector nA we have V1 := nAV

A

. The normal vector nA lies on the hypersurface ⌃. The
Latin indices (i, j, . . .) label the other spacelike directions normal to nA on the hypersurface ⌃. Since all of vectors
lying on the hypersurface ⌃ must be normal to nA, we have g11 = 0 and g1i = 0 on the hypersurface ⌃. Therefore,
their higher-order derivatives with respect to @1 and @

i

, i.e. @
µ

. . . @
⌫

g11 and @
µ

. . . @
⌫

g1i, must be zero. Furthermore,
the conditions g11 = 0 and g1i = 0 lead to g00 = 0 and g0i = 0. Imposing the additional conditions

@1gij = 0, @2
1gij = 0 and @1@kgij = 0, (35)

together with the above conditions we can obtain R1ijk = 0 and R1i1j = 0 by direct calculation. Thus, a combination
of Eqs.(35) is a su�cient condition for the null hypersurface ⌃ to be characteristic.

On a Killing horizon, the normal null vector nA is the Killing vector, which results in nA@
A

g
µ⌫

= @1gµ⌫ = 0.
Combined with the fact that the label “k” is the index for the tangent direction to hypersurface ⌃, we can find that
Eqs.(35) are always satisfied on Killing horizon. Therefore, on a stationary solution such that the Killing horizon is
coincident with the event horizon defined by null curves, i.e. the event horizon is exactly the causal edge for gravitons.
Classical gravitons never come out from inside of stationary black holes.

B. (D � 2)-dimensionally maximally symmetric cases

On a generic spacetime, Eqs.(35) are not satisfied. Then, it is important to see how the characteristic hypersurface
is modified, i.e. whether it becomes spacelike or timelike. A spacelike characteristic results in the existence of a
superluminal mode, which breaks the discussion of causal structures based on null curves. Here, for simplicity, we
consider cases with a maximally symmetric D � 2 dimensional space, where the metric can be generically written as

ds2 = �2f(u, v)dudv + [R(u, v)]2 d⌦2
D�2 . (36)

We choose both UA := (@/@u)A and V A := (@/@v)A to be future pointing null vectors; i.e. f(u, v) is positive. d⌦2
D�2

is the D � 2 dimensional metric that is maximally symmetric, constant and spacelike. The metric component for
d⌦2

D�2 is defined as

d⌦2
D�2 := �

ij

dxidxj . (37)

f(u, v) and R(u, v) are functions of u and v. We consider a maximally symmetric D � 2 dimensional hypersurface ⌃,
on which v̄ := v+ ✏u is constant. It is convenient to use new coordinate variables ū := u and v̄, with which the metric
(36) is written in

ds2 = �2fdūdv̄ + 2✏fdū2 +R2d⌦2
D�2. (38)

ŪA := (@/@ū)A lies on the hypersurface ⌃ and V̄ A := (@/@v̄)A(= V A) is a null vector that is never tangent to ⌃. For
✏ > 0, ✏ < 0 or ✏ = 0, the hypersurface ⌃ is spacelike, timelike or null, respectively.

First of all, we show that, if R
AB

UAUB = 0, the hypersurface for v =const is characteristic. Seeing Eq.(33), we
know that for R

AiBj

UAUB = 0 all degeneracies are never resolved. Because of the symmetry, R
AiBj

UAUB must be
proportional to g

ij

, i.e. R
AiBj

UAUB = Cg
ij

. Since the directions labeled with (i, j, . . .) are normal to two null vector
UA and V A, we have

R
AB

UAUB = R
iAjB

UAUBgij = (D � 2)C. (39)

-Characteristic equations are still invertible in general�

-Killing horizon can not be the characteristic surface�

-We need additional condition on scalar fields in order for KH 
  to be characteristic�
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3. Additional condition

If we impose following additional symmetry on the scalar fields, we can see that the Killing

horizon is causal edge.

∂1φI = 0, ∂2
1φI = 0, ∂1∂aφI = 0. (38)

A11,11 = A11,1a = A1a,11 = A1a,bc = Abc,1a = Aab,cd = 0 (39)

A11,ab = Aab,11 = 2

(
1

2
F +W

)(
g01

)2
gab − 2JIJ

(
g01

)2 (
2XIJgab + φI |aφJ |b

)

+ 2KI
(
g01

)2 (
φI|l
|l g

ab − φI|ab
)
̸= 0 (40)

A1a,1b = −
(
1

2
F +W

)(
g01

)2
gab + JIJ

(
g01

)2 (
φI |aφJ |b + 2XIJgab

)

+KI
(
g01

)2 (
φI|ab − gabφK|l

l

)
̸= 0 (41)

(42)

B11
I = −B̃I

(
g01

)2
+ 2DJKIX

JK − 8EJKLMI
(
g01

)2
XJ [KXM ]L

− 2F,IJ
(
g01

)2
φJ |c
|c + 4JJK,LI

(
g01

)2
δcedfφ

J
|cφ

K|dφL|f
|e

− 2KI,JK
(
g01

)2
δcedfφ

J |d
|c φK|f

|e (43)

B1a
I = 0 (44)

Bab
I = 0 (45)

G11
I = 2ELJKIM

(
g01

)2
δcedfφ

L
|cφ

J |dφK
|eφ

M |f − 8ELJKIMXLM
(
g01

)2
δedφ

J |dφK
|e

+ 4I,I
(
g01

)2

+ 8JJ [K,I]

(
g01

)2
δcdφ

J
|cφ

K|d + 4JIJ,KL
(
g01

)2
δcbφ

K
|l φ

L|lbφJ |c − 4JIJ
(
g01

)2
δcbφ

J |b
|c

+ 4KJ,I
(
g01

)2
δcbφ

J |b
|c − 2KJ,IK

(
g01

)2
δcedfφ

J |d
|c φK|f

|e

− 2γJIKL
(
g01

)2
δcebdφ

J
|cφ

K|bφL|d
|e (46)

G1a
I = 0 (47)

Gab
I = 0 (48)

HIJ = 0 (49)

weak high frequency waves) and a shock forms before the caustic.

It is natural to ask whether our results have any implications for cosmic censorship, or

for the stability of Minkowski spacetime, in Lovelock theories. We will discuss these issues

at the end of this paper. This paper concerns the formation of shocks in Lovelock theories.

It is an interesting question whether there is any sense in which a solution can be extended

beyond shock formation. In particular, can one develop a theory of the evolution of shocks?

This will also be discussed at the end of this paper.

This paper is organised as follows. In the following section, we discuss in general terms

characteristic hypersurfaces and the transport of discontinuities and high frequency waves.

In section 3, we focus on Lovelock theories and demonstrate that the transport equations

are generically nonlinear. We then give a number of examples and finish with a discussion.

2 Transport equations in 2nd order theories

2.1 Characteristic hypersurfaces and bicharacteristic curves

In this section we will review the definitions of characteristic hypersurfaces and bicharacter-

istic curves [23]. Consider a field theory in d spacetime dimensions, in which the unknown

fields form a column vector g
I

, I = 1, . . . , N , with equation of motion

E
I

�
g, @g, @2g

�
= 0 . (2.1)

(In a Lovelock theory g
I

will stand for the dynamical components of the metric.) The theory

is quasilinear if E
I

is linear in @2g
J

. We will not assume this. However, as we will show in

section 3, in any coordinate chart xµ, the Lovelock equations of motion depend linearly on

@2
0gµ⌫ [2]. So we will assume that E

I

has this property. Hence in any chart the equation of

motion takes the form

A
IJ

@2
0gJ + · · · = 0 , (2.2)

where the ellipsis denotes terms involving fewer than 2 derivatives with respect to x0 and

A
IJ

does not depend on @2
0gJ .

Now consider a hypersurface ⌃ and introduce adapted coordinates (x0, xi) so that ⌃ has

equation x0 = 0. Assume that g
I

and @
µ

g
I

are known on ⌃. By acting with @
i

we then

also know @
i

@
µ

g
I

on ⌃. The only second derivatives that we don’t know are @2
0gI . These

are uniquely determined by the equation of motion (2.2) if, and only if, the matrix A
IJ

is

6

Taking the discontinuity in the equation of motion across ⌃ gives

A
IJ

[@2
0gJ ] = 0 , (2.7)

where square brackets denote the discontinuity. Hence [@2
0gJ ] is an eigenvector of A

IJ

with

eigenvalue 0, i.e., it is an element of the kernel of A. Write this element as r
J

and let ⇠ = dx0

be the normal to hypersurface. Written covariantly we have

[@
µ

@
⌫

g
I

] = ⇠
µ

⇠
⌫

r
I

, (2.8)

where r
I

is an element of the kernel of P (x, ⇠).

Now consider initial data specified on a non-characteristic hypersurface, such that the

data has a discontinuity in @2g
I

across a (d � 2) dimensional surface S within this hyper-

surface. In the resulting solution, any discontinuity must propagate along a characteristic

hypersurface. In a general second order hyperbolic theory with N degrees of freedom, there

will be 2N characteristic surfaces emanating from S: an “outgoing” and an “ingoing” char-

acteristic surface for each degree of freedom (see Fig.1). In GR, the outgoing surfaces are

all coincident and the ingoing surfaces are all coincident because all gravitational degrees of

freedom propagate at the speed of light (surfaces are characteristic if and only if they are

null). However, as discussed in the Introduction, this is not true in Lovelock theories.

In general, the discontinuity in the initial data at S will lead to discontinuities propa-

gating along each of the characteristic surfaces through S. A particularly interesting case is

when S divides the initial data surface into two regions and the initial data on one side of

S corresponds to a known explicit solution, which we will call the “background” solution.

We will refer to this side of S as the “outside” and the other side as the “inside” with a

corresponding division of the characteristic surfaces into “outgoing” and “ingoing”. Every-

where outside the outermost outgoing characteristic surface, the solution will coincide with

the background solution. Inside this characteristic surface, the solution will depend on the

initial data inside S. Hence this characteristic surface is a wavefront “invading” the region

of spacetime described by the background solution. We will focus on the amplitude of the

discontinuity propagating along this outermost outgoing characteristic surface since, as we

will show, it satisfies a transport equation that can be determined from the form of the

background solution.

A useful reference for the propagation of discontinuities is Ref. [11]. What follows is an

application of the methods described there to the class of theories described above.
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Introduce coordinates (x0, xi) adapted to the outermost outgoing characteristic hypersur-

face ⌃ with x0 < 0 corresponding to the “background” where the solution is known explicitly.

We assume the equation of motion takes the form

A
IJ

(g
ij

,g0,gi

,g, x)(g
J

)00 + b
I

(g0i,gij

,g0,gi

,g, x) = 0 . (2.9)

Here subscripts 0, i denote partial derivatives w.r.t x0, xi and g(x) is a vector with compo-

nents g
I

. Note that we are now assuming that A
IJ

does not depend on g0i, which was not

assumed above but is true for Lovelock theories, as we will show in section 3.

The characteristic condition for our surface ⌃ with equation x0 = 0 is detA = 0, which

implies that A admits left and right eigenvectors l
I

and r
J

with eigenvalue 0:

l
I

A
IJ

= A
IJ

r
J

= 0 (x0 = 0) . (2.10)

We will assume that the eigenvalue 0 is non-degenerate so that l
I

, r
I

are unique up to scaling.

In Lovelock theories, we showed that this is true for a generic Ricci flat type N spacetime

[5] and we believe it to be true generically.

We now allow for a discontinuity in second derivatives across ⌃. As explained above, the

discontinuous components are (g
I

)00 and these must be proportional to r
I

:

[(g
I

)00] = ⇧r
I

(2.11)

for some scalar ⇧(xi) defined on ⌃. Here we assume that r
I

has been normalized in some

way so that ⇧ gives a measure of the size of the discontinuity.

To obtain an evolution equation for ⇧ we take a x0-derivative of (2.9), evaluate at x0 = 0,

and contract with l
I

to eliminate 3rd derivatives w.r.t. x0. This gives

l
I

{(A
IJ

)0(gJ)00 + (b
I

)0} = 0 (x0 = 0) . (2.12)

Now we use the chain rule:

(A
IJ

)0 =
@A

IJ

@(g
K

)
ij

(g
K

)0ij +
@A

IJ

@(g
K

)0
(g

K

)00 +
@A

IJ

@(g
K

)
i

(g
K

)0i +
@A

IJ

@(g
K

)
(g

K

)0 +
@A

IJ

@x0
(2.13)

(b
I

)0 =
@b

I

@(g
J

)0i
(g

J

)00i +
@b

I

@(g
J

)0
(g

J

)00 +
@b

I

@(g
J

)
ij

(g
J

)0ij +
@b

I

@(g
J

)
i

(g
J

)0i +
@b

I

@(g
J

)
(g

J

)0 +
@b

I

@x0
,

(2.14)
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3.1 General description 
    -Propagation of discontinuity�

!  Consider solution smooth everywhere except across   �
•  continuous�

•  discontinuous�

-EoM�

-Discontinuity across      . [f] is discontinuity of f across  �

•            is kernel of �

Assume that

t00 = t0i = 0 . (3.22)

Recall that t1⌫ is pure gauge and so does not contribute to (3.20). Let µ 6= 0. Then for the

Kronecker deltas in (3.20) to be non-zero we need one of the upper ⇢ indices to be 0. But

then the conditions (3.21) and (3.22) imply that this expression must vanish. Since (R· t)µ⌫
is symmetric, it follows that the only non-vanishing component is the µ = ⌫ = 1 component.

So (3.18a), (3.18b) and (3.18c) are all satisfied and (3.18d) is the only non-trivial equation.

So any tµ⌫ satisfying the d � 1 conditions (3.22) and the single condition (3.18d) gives a

solution. These are d conditions in total. Vphysical has dimension d(d� 1)/2. Hence the size

of the kernel is d(d� 1)/2� d = d(d� 3)/2 as claimed.7

3.5 Hyperbolicity

We can now discuss hyperbolicity. The idea that we want to capture is that, given a suitable

“initial” hypersurface ⌃, for any (d � 2)-dimensional surface S within ⌃ there are d(d � 3)

physical characteristic hypersurfaces through S. These correspond roughly to “ingoing” and

“outgoing” wavefronts for each of the d(d � 3)/2 physical polarizations of the graviton. In

the PDE literature, such a surface ⌃ is referred to as spacelike [26] but, since we already

have a notion of spacelike arising from the metric, we will refer to it as “Lovelock-spacelike”.

More precisely, consider a basis of 1-forms {f (µ)
a } for the cotangent space at p such that

f

(0) is normal to ⌃. We can expand ⇠ = ⇠µf
(µ) = ⇠0f

(0) + ⇠if
(i). We will say that ⌃

is “Lovelock-spacelike” at p if, for every ⇠i 6= 0 the equation Q(xi
, ⇠0, ⇠i) = 0 has exactly

d(d� 3) distinct real roots ⇠0. If a Lovelock-spacelike hypersurface exists through a point p

then the theory is hyperbolic at p. Note that it is possible that the theory could be hyperbolic

in some region of spacetime but non-hyperbolic in another region. We will see an example

of this below.

This definition can be extended to permit degeneracy of the roots ⇠0. If ⇠0 has degeneracy

k then we require that there should be k modes propagating along the corresponding charac-

teristic surface. We do this by requiring that there exist k linearly independent tab 2 Vphysical

that belong to the kernel of P (x, ⇠).

For some spacetimes (e.g. those with appropriate symmetries) the characteristic polyno-

7We have not excluded the possibility that the kernel is bigger than this, i.e., that there may exist
solutions of the system (3.18a) to (3.18d) that do not satisfy (3.22). But the above analysis shows that
(3.18a), (3.18b) and (3.18c) depend only on t00 and t0i hence they form an overdetermined system for these
quantities. Therefore it seems likely that all solutions must satisfy (3.22).
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Taking the discontinuity in the equation of motion across ⌃ gives

A
IJ

[@2
0gJ ] = 0 , (2.7)

where square brackets denote the discontinuity. Hence [@2
0gJ ] is an eigenvector of A

IJ

with

eigenvalue 0, i.e., it is an element of the kernel of A. Write this element as r
J

and let ⇠ = dx0

be the normal to hypersurface. Written covariantly we have

[@
µ

@
⌫

g
I

] = ⇠
µ

⇠
⌫

r
I

, (2.8)

where r
I

is an element of the kernel of P (x, ⇠).

Now consider initial data specified on a non-characteristic hypersurface, such that the

data has a discontinuity in @2g
I

across a (d � 2) dimensional surface S within this hyper-

surface. In the resulting solution, any discontinuity must propagate along a characteristic

hypersurface. In a general second order hyperbolic theory with N degrees of freedom, there

will be 2N characteristic surfaces emanating from S: an “outgoing” and an “ingoing” char-

acteristic surface for each degree of freedom (see Fig.1). In GR, the outgoing surfaces are

all coincident and the ingoing surfaces are all coincident because all gravitational degrees of

freedom propagate at the speed of light (surfaces are characteristic if and only if they are

null). However, as discussed in the Introduction, this is not true in Lovelock theories.

In general, the discontinuity in the initial data at S will lead to discontinuities propa-

gating along each of the characteristic surfaces through S. A particularly interesting case is

when S divides the initial data surface into two regions and the initial data on one side of

S corresponds to a known explicit solution, which we will call the “background” solution.

We will refer to this side of S as the “outside” and the other side as the “inside” with a

corresponding division of the characteristic surfaces into “outgoing” and “ingoing”. Every-

where outside the outermost outgoing characteristic surface, the solution will coincide with

the background solution. Inside this characteristic surface, the solution will depend on the

initial data inside S. Hence this characteristic surface is a wavefront “invading” the region

of spacetime described by the background solution. We will focus on the amplitude of the

discontinuity propagating along this outermost outgoing characteristic surface since, as we

will show, it satisfies a transport equation that can be determined from the form of the

background solution.

A useful reference for the propagation of discontinuities is Ref. [11]. What follows is an

application of the methods described there to the class of theories described above.
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It is natural to ask whether our results have any implications for cosmic censorship, or

for the stability of Minkowski spacetime, in Lovelock theories. We will discuss these issues

at the end of this paper. This paper concerns the formation of shocks in Lovelock theories.

It is an interesting question whether there is any sense in which a solution can be extended

beyond shock formation. In particular, can one develop a theory of the evolution of shocks?

This will also be discussed at the end of this paper.

This paper is organised as follows. In the following section, we discuss in general terms

characteristic hypersurfaces and the transport of discontinuities and high frequency waves.

In section 3, we focus on Lovelock theories and demonstrate that the transport equations

are generically nonlinear. We then give a number of examples and finish with a discussion.

2 Transport equations in 2nd order theories

2.1 Characteristic hypersurfaces and bicharacteristic curves

In this section we will review the definitions of characteristic hypersurfaces and bicharacter-

istic curves [23]. Consider a field theory in d spacetime dimensions, in which the unknown

fields form a column vector g
I

, I = 1, . . . , N , with equation of motion

E
I

�
g, @g, @2g

�
= 0 . (2.1)

(In a Lovelock theory g
I

will stand for the dynamical components of the metric.) The theory

is quasilinear if E
I

is linear in @2g
J

. We will not assume this. However, as we will show in

section 3, in any coordinate chart xµ, the Lovelock equations of motion depend linearly on

@2
0gµ⌫ [2]. So we will assume that E

I

has this property. Hence in any chart the equation of

motion takes the form

A
IJ

@2
0gJ + · · · = 0 , (2.2)

where the ellipsis denotes terms involving fewer than 2 derivatives with respect to x0 and

A
IJ

does not depend on @2
0gJ .

Now consider a hypersurface ⌃ and introduce adapted coordinates (x0, xi) so that ⌃ has

equation x0 = 0. Assume that g
I

and @
µ

g
I

are known on ⌃. By acting with @
i

we then

also know @
i

@
µ

g
I

on ⌃. The only second derivatives that we don’t know are @2
0gI . These

are uniquely determined by the equation of motion (2.2) if, and only if, the matrix A
IJ

is

6

•  We define Π, r_I and l_I as�

Introduce coordinates (x0, xi) adapted to the outermost outgoing characteristic hypersur-

face ⌃ with x0 < 0 corresponding to the “background” where the solution is known explicitly.

We assume the equation of motion takes the form

A
IJ

(g
ij

,g0,gi

,g, x)(g
J

)00 + b
I

(g0i,gij

,g0,gi

,g, x) = 0 . (2.9)

Here subscripts 0, i denote partial derivatives w.r.t x0, xi and g(x) is a vector with compo-

nents g
I

. Note that we are now assuming that A
IJ

does not depend on g0i, which was not

assumed above but is true for Lovelock theories, as we will show in section 3.

The characteristic condition for our surface ⌃ with equation x0 = 0 is detA = 0, which

implies that A admits left and right eigenvectors l
I

and r
J

with eigenvalue 0:

l
I

A
IJ

= A
IJ

r
J

= 0 (x0 = 0) . (2.10)

We will assume that the eigenvalue 0 is non-degenerate so that l
I

, r
I

are unique up to scaling.

In Lovelock theories, we showed that this is true for a generic Ricci flat type N spacetime

[5] and we believe it to be true generically.

We now allow for a discontinuity in second derivatives across ⌃. As explained above, the

discontinuous components are (g
I

)00 and these must be proportional to r
I

:

[(g
I

)00] = ⇧r
I

(2.11)

for some scalar ⇧(xi) defined on ⌃. Here we assume that r
I

has been normalized in some

way so that ⇧ gives a measure of the size of the discontinuity.

To obtain an evolution equation for ⇧ we take a x0-derivative of (2.9), evaluate at x0 = 0,

and contract with l
I

to eliminate 3rd derivatives w.r.t. x0. This gives

l
I

{(A
IJ

)0(gJ)00 + (b
I

)0} = 0 (x0 = 0) . (2.12)

Now we use the chain rule:

(A
IJ

)0 =
@A

IJ

@(g
K

)
ij

(g
K

)0ij +
@A

IJ

@(g
K

)0
(g

K

)00 +
@A

IJ

@(g
K

)
i

(g
K

)0i +
@A

IJ

@(g
K

)
(g

K

)0 +
@A

IJ

@x0
(2.13)

(b
I

)0 =
@b

I

@(g
J

)0i
(g

J

)00i +
@b

I

@(g
J

)0
(g

J

)00 +
@b

I

@(g
J

)
ij

(g
J

)0ij +
@b

I

@(g
J

)
i

(g
J

)0i +
@b

I

@(g
J

)
(g

J

)0 +
@b

I

@x0
,

(2.14)
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12

= Aδab +
2∑

I,J=1

(
− 2

∂2F
∂φI∂φJ

− 4
∂2W
∂φI∂φJ

− 2
∂A

∂φIJ
+ 2

2∑

K,L=1

∂CIKJ

∂φL
XKL

+ 16
2∑

K,L,M,N=1

∂DKIMNJ

∂φL
XKLXMN − 8

2∑

K,L=1

(
∂2JIK
∂φL∂φJ

− ∂2JKL

∂φI∂φJ

)
XKL

)
φI

|aφJ |b

+
2∑

I=1

(
− 2

∂F
∂φI

− 4
∂W
∂φI

+ 2
2∑

J,K=1

(
CJKI − 4

∂JIJ
∂φK

+ 4
∂JJK
∂φI

)
XJK − 8

2∑

J,K,L,M=1

DJKLMIXJKXLM

)
δacbdφI

|d
|c

+
2∑

I,J,K=1

CIJKδ
ace
bdf φI |cφJ

|dφK
|f
|e +

2∑

I,J,K,L,M=1

DIJKLMδ
aceg
bdfhφI |cφJ

|dφK |eφL
|fφM

|h
|g

+

(
1

2
F +W

)
δacebdf R

df
ce +

2∑

I,J=1

∂F
∂XIJ

δacebdf φI
|d
|cφJ

|f
|e

+
2∑

I,J=1

JIJδ
aceg
bdfhφI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

∂JIJ
∂XKL

δacegbdfhφI |cφJ
|dφK

|f
|eφL

|h
|g

+
2∑

I=1

KIδ
aceg
bdfhφI

|d
|cR

fh
eg +

2

3

2∑

I,J,K=1

∂KI

∂XJK
δacegbdfhφI

|d
|cφJ

|f
|eφK

|h
|g

Eab(L) =
2∑

I,J=1

XIJg
l(aδb)cegldfh φI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

δI(KδL)Jg
l(aδb)cegldfh φI |cφJ

|dφK
|f
|eφL

|h
|g . (143)

A = δIJXIJ − V (φK) (144)

Eab = A(φ, X)gab (145)

∇aE
ab =

∂A

∂φ
∇aφ− ∂A

∂X
∇a∇bφ∇bφ (146)

∂A

∂X
= 0 (147)

A = A(φ) (148)

Gab = Rab −
1

2
gabR = 0 (149)

Aij,klgkl,00 + Bij
I φI ,00 = 0 (150)

Bij
I gij,00 + CIJφJ,00 = 0 (151)

gI , ∂µgI , ∂i∂µgI (152)

(153)

N = rij
∂Aij,kl

∂gmn,0
rklrmn + rij

∂Bij
I

∂φJ,0
rIrJ + rI

∂Bij
I

∂gkl,0
rijrkl + rI

∂CIJ
∂φK,0

rJrK . (154)

Assume that

t00 = t0i = 0 . (3.22)

Recall that t1⌫ is pure gauge and so does not contribute to (3.20). Let µ 6= 0. Then for the

Kronecker deltas in (3.20) to be non-zero we need one of the upper ⇢ indices to be 0. But

then the conditions (3.21) and (3.22) imply that this expression must vanish. Since (R· t)µ⌫
is symmetric, it follows that the only non-vanishing component is the µ = ⌫ = 1 component.

So (3.18a), (3.18b) and (3.18c) are all satisfied and (3.18d) is the only non-trivial equation.

So any tµ⌫ satisfying the d � 1 conditions (3.22) and the single condition (3.18d) gives a

solution. These are d conditions in total. Vphysical has dimension d(d� 1)/2. Hence the size

of the kernel is d(d� 1)/2� d = d(d� 3)/2 as claimed.7

3.5 Hyperbolicity

We can now discuss hyperbolicity. The idea that we want to capture is that, given a suitable

“initial” hypersurface ⌃, for any (d � 2)-dimensional surface S within ⌃ there are d(d � 3)

physical characteristic hypersurfaces through S. These correspond roughly to “ingoing” and

“outgoing” wavefronts for each of the d(d � 3)/2 physical polarizations of the graviton. In

the PDE literature, such a surface ⌃ is referred to as spacelike [26] but, since we already

have a notion of spacelike arising from the metric, we will refer to it as “Lovelock-spacelike”.

More precisely, consider a basis of 1-forms {f (µ)
a } for the cotangent space at p such that

f

(0) is normal to ⌃. We can expand ⇠ = ⇠µf
(µ) = ⇠0f

(0) + ⇠if
(i). We will say that ⌃

is “Lovelock-spacelike” at p if, for every ⇠i 6= 0 the equation Q(xi
, ⇠0, ⇠i) = 0 has exactly

d(d� 3) distinct real roots ⇠0. If a Lovelock-spacelike hypersurface exists through a point p

then the theory is hyperbolic at p. Note that it is possible that the theory could be hyperbolic

in some region of spacetime but non-hyperbolic in another region. We will see an example

of this below.

This definition can be extended to permit degeneracy of the roots ⇠0. If ⇠0 has degeneracy

k then we require that there should be k modes propagating along the corresponding charac-

teristic surface. We do this by requiring that there exist k linearly independent tab 2 Vphysical

that belong to the kernel of P (x, ⇠).

For some spacetimes (e.g. those with appropriate symmetries) the characteristic polyno-

7We have not excluded the possibility that the kernel is bigger than this, i.e., that there may exist
solutions of the system (3.18a) to (3.18d) that do not satisfy (3.22). But the above analysis shows that
(3.18a), (3.18b) and (3.18c) depend only on t00 and t0i hence they form an overdetermined system for these
quantities. Therefore it seems likely that all solutions must satisfy (3.22).
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where a dot denotes a derivative w.r.t. s. Note that N and M can be determined by the

limiting behaviour of the background solution as x0 ! 0�. Hence the transport equation

(2.23) for the discontinuity depends only on the form of this background solution.

We will now show that the curves xi(s) are the bicharacteristic curves which generate ⌃.

The principal symbol of (2.9) is

P (x, ⇠)
IJ

= A
IJ

(⇠0)
2 + 2

@b
I

@(g
J

)0i
⇠0⇠i +

✓
@A

IK

@(g
J

)
ij

(g
K

)00 +
@b

I

@(g
J

)
ij

◆
⇠
i

⇠
j

. (2.24)

Bicharacteristic curves (xµ(s), ⇠
µ

(s)) are determined by (2.6). For the bicharacteristic gen-

erators of ⌃ we have x0 = 0, ⇠
i

= 0, ⇠0 6= 0. To evaluate the derivative of Q in (2.6) we

use
@Q

@⇠
µ

= (adjP )
IJ

@P
JI

@⇠
µ

, (2.25)

where adjP is the adjugate matrix of P (the transpose of the cofactor matrix). Hence

evaluating at x0 = 0 gives

ẋi = 2adj(⇠20A)IJ⇠0
@b

J

@(g
I

)0i
. (2.26)

At x0 = 0 we know that A has left and right eigenvectors l
I

and r
J

with eigenvalue 0. This

implies that (adjA)
IJ

/ l
I

r
J

and hence

ẋi / l
I

@b
J

@(g
I

)0i
r
J

= Ki . (2.27)

We can make this expression an equality by an appropriate choice of the parameter s along

the bicharacteristic curves. Hence solutions of (2.22) (with x0 = 0) are indeed the bicharac-

teristic curves which generate ⌃.

Equation (2.23) is our transport equation, an ODE governing the propagation of the

discontinuity along the bicharacteristic curves of ⌃. In general, N 6= 0 so this equation

is nonlinear. However, some theories have the special property that N vanishes for any

background solution. Such theories are referred to as “exceptional” or “linearly degenerate”.4

If N is generically non-zero then the theory is called “genuinely nonlinear”.

Along any bicharacteristic curve, equation (2.23) has the general solution [11]

⇧(s) = ⇧(0)e��(s)

✓
1 + ⇧(0)

Z
s

0

N(s0)e��(s0)ds0
◆�1

, (2.28)

4An equivalent definition states that the derivatives of Q(x, ⇠) w.r.t. x

µ should be continuous across a
characteristic surface along which a discontinuity propagates [24].
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where � is defined by

�(s) =

Z
s

0

M(s0)ds0 . (2.29)

Now we can ask whether ⇧(s) can blow up at finite s. In an exceptional theory (N = 0), the

only way that this can happen is if e��(s) blows up at finite s. Since � is determined entirely

by the background solution, this can happen only if the background solution is not smooth,

or the characteristic surface ⌃ is not smooth. Assuming that the background is smooth and

that S is smooth, the only way that ⌃ can fail to be smooth is if nearby bicharacteristic

curves within ⌃ intersect, i.e., ⌃ forms a caustic. If S is chosen so that ⌃ is free of caustics

then ⇧(s) will not blow up. Note that this statement is independent of the initial amplitude

⇧(0) because (2.23) is linear in an exceptional theory.

In a genuinely nonlinear theory, ⇧(s) will diverge if

1 + ⇧(0)

Z
s

0

N(s0)e��(s0)ds0 ! 0 . (2.30)

This is a nonlinear e↵ect. It corresponds to the formation of a shock. Shock formation can be

understood heuristically as follows. On the initial data surface, consider foliating the interior

of S with surfaces di↵eomorphic to S. Denote this foliation by S
r

, r � 0 where S0 = S. From

each S
r

, let ⌃
r

denote the outermost outgoing characteristic surface, so ⌃0 = ⌃. A shock

forms when, for infinitesimal r, ⌃
r

intersects ⌃0. See Fig. 2. The shock forms because the

Figure 2: Foliation by S

r

and the outermost outgoing characteristic surfaces ⌃
r

. If ⌃
r

intersects
⌃0 for infinitesimal r, a shock forms at the intersection (green dot-dashed curve).

disturbance behind the wavefront travels faster than the front itself. This heuristic picture

is supported more rigorously by studies of genuinely nonlinear first order systems in 1 + 1

12
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each S
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, let ⌃
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forms when, for infinitesimal r, ⌃
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is supported more rigorously by studies of genuinely nonlinear first order systems in 1 + 1
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where the final term of these equations arises from the explicit x0 dependence of A
IJ

and b
I

,

if present. Substituting this into (2.12) and taking the discontinuity gives

l
I

⇢
@b

I

@(g
J

)0i
[(g

J

)00i] +
@A

IJ

@(g
K

)0
[(g

K

)00(gJ)00] + B
IJ

[(g
J

)00]

�
= 0 , (2.15)

where

B
IJ

=
@A

IJ

@(g
K

)
ij

(g
K

)0ij +
@A

IJ

@(g
K

)
i

(g
K

)0i +
@A

IJ

@(g
K

)
(g

K

)0 +
@A

IJ

@x0
+

@b
I

@(g
J

)0
. (2.16)

Let (g
I

)�00 = lim
x

0!0�(gI)00. Then we have

[(g
I

)00(gJ)00] = [(g
I

)00][(gJ)00] + [(g
I

)00](gJ)
�
00 + (g

I

)�00[(gJ)00] . (2.17)

Using this, and (2.11), equation (2.15) becomes

Ki⇧
i

+N⇧2 +M⇧ = 0 , (2.18)

where

Ki = l
I

@b
I

@(g
J

)0i
r
J

, (2.19)

N = l
I

@A
IJ

@(g
K

)0
r
J

r
K

, (2.20)

and

M = l
I

⇢
@b

I

@(g
J

)0i
(r

J

)
i

+

✓
@A

IJ

@(g
K

)
ij

(g
K

)0ij +
@A

IJ

@(g
K

)
i

(g
K

)0i +
@A

IJ

@(g
K

)
(g

K

)0 +
@A

IJ

@x0
+

@b
I

@(g
J

)0

◆
r
J

+
@A

IJ

@(g
K

)0

�
(g

K

)�00rJ + (g
J

)�00rK
��

. (2.21)

Equation (2.18) is an ODE along the integral curves of Ki, which lie within ⌃ (x0 = 0). Let

s be a parameter along such a curve, i.e.,

dxi

ds
= Ki(xj) , (2.22)

then (2.18) becomes

⇧̇+N⇧2 +M⇧ = 0 , (2.23)
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3.3 N in General Scalar(s)-Tensor theories�

12

= Aδab +
2∑

I,J=1

(
− 2

∂2F
∂φI∂φJ

− 4
∂2W
∂φI∂φJ

− 2
∂A

∂φIJ
+ 2

2∑

K,L=1

∂CIKJ

∂φL
XKL

+ 16
2∑

K,L,M,N=1

∂DKIMNJ

∂φL
XKLXMN − 8

2∑

K,L=1

(
∂2JIK
∂φL∂φJ

− ∂2JKL

∂φI∂φJ

)
XKL

)
φI

|aφJ |b

+
2∑

I=1

(
− 2

∂F
∂φI

− 4
∂W
∂φI

+ 2
2∑

J,K=1

(
CJKI − 4

∂JIJ
∂φK

+ 4
∂JJK
∂φI

)
XJK − 8

2∑

J,K,L,M=1

DJKLMIXJKXLM

)
δacbdφI

|d
|c

+
2∑

I,J,K=1

CIJKδ
ace
bdf φI |cφJ

|dφK
|f
|e +

2∑

I,J,K,L,M=1

DIJKLMδ
aceg
bdfhφI |cφJ

|dφK |eφL
|fφM

|h
|g

+

(
1

2
F +W

)
δacebdf R

df
ce +

2∑

I,J=1

∂F
∂XIJ

δacebdf φI
|d
|cφJ

|f
|e

+
2∑

I,J=1

JIJδ
aceg
bdfhφI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

∂JIJ
∂XKL

δacegbdfhφI |cφJ
|dφK

|f
|eφL

|h
|g

+
2∑

I=1

KIδ
aceg
bdfhφI

|d
|cR

fh
eg +

2

3

2∑

I,J,K=1

∂KI

∂XJK
δacegbdfhφI

|d
|cφJ

|f
|eφK

|h
|g

Eab(L) =
2∑

I,J=1

XIJg
l(aδb)cegldfh φI |cφJ

|dRfh
eg + 2

2∑

I,J,K,L=1

δI(KδL)Jg
l(aδb)cegldfh φI |cφJ

|dφK
|f
|eφL

|h
|g . (143)

A = δIJXIJ − V (φK) (144)

Eab = A(φ, X)gab (145)

∇aE
ab =

∂A

∂φ
∇aφ− ∂A

∂X
∇a∇bφ∇bφ (146)

∂A

∂X
= 0 (147)

A = A(φ) (148)

Gab = Rab −
1

2
gabR = 0 (149)

Aij,klgkl,00 + Bij
I φI ,00 = 0 (150)

Bij
I gij,00 + CIJφJ,00 = 0 (151)

(152)

-EoM�

-N�
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A = δIJXIJ − V (φK) (144)

Eab = A(φ, X)gab (145)

∇aE
ab =

∂A

∂φ
∇aφ− ∂A

∂X
∇a∇bφ∇bφ (146)

∂A

∂X
= 0 (147)

A = A(φ) (148)

Gab = Rab −
1

2
gabR = 0 (149)

Aij,klgkl,00 + Bij
I φI ,00 = 0 (150)

Bij
I gij,00 + CIJφJ,00 = 0 (151)

(152)
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∂Aij,kl

∂gmn,0
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∂Bij
I

∂φJ,0
rIrJ + rI

∂Bij
I

∂gkl,0
rijrkl + rI

∂CIJ
∂φK,0

rJrK . (153)

-N does not vanish in general�

-Shock generically forms in general scalar(s)-tensor theories�
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! We study the causal structures in general scalar(s)-tensor theories �

!  We show that the shock forms generally in general scalar(s)-tensor theories�

"  Propagation speed is not speed of light�

"  Killing horizon can not be causal edge in general�

"  If scalar fields have Killing symmetry, KH is causal edge�

"  Shock forms in general�

"  We should clarify in which background shock forms�

4. Summary�
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orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. Strum’s
theorem is explicitly applied to the Kottler spacetime. Moreover, we analyze MSCOs for a spherically symmetric, static and vacuum solution in

Weyl conformal gravity.

1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is known as [4]

d

dr

(
1

A(r)

)
d2

dr2

(
1

C(r)

)
− d

dr

(
1

C(r)

)
d2

dr2

(
1

A(r)

)
= 0. (2)

Hereafter, we call eq. (2) MSCO equation.
Given a root for eq. (2), E2(E: specific energy) and L2(L: specific angular mo-
mentum) :

E2 = − 1

∆

d

dr

(
1

C(r)

)
, L2 = − 1

∆

d

dr

(
1

A(r)

)
, (3)

∆ ≡

∣∣∣∣∣

1
A(r) − 1

C(r)

d
dr

(
1

A(r)

)
− d

dr

(
1

C(r)

)
∣∣∣∣∣ . (4)

A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)

where rg: Schwarzschild radius and Λ: The cosmological constant. For this space-
time, Eq.(2) and Eqs.(3)become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)

2

r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m: Black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eq.(2) and Eqs.(3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)

E2 =
2(γ̄r̄2 +

√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)

, L2 =
4m2r̄2(γ̄r̄2 + 1)

γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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Figure 1: γ̄-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the γ̄ parameter.The shaded parts denote the
prohibited regions where E2 < 0, L2 < 0, γ̄ < −1 or γ̄ > 1/3. Left: γ̄ ∈ [−1.2, 0.5].
Right:γ̄ ∈ [−0.1, 0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is widely applicable for classifying MSCOs for some spacetime,
when the MSCO eq. is a polynomial.

Expansion to axisymmetric spacetime is studying (Suzuki’s poster)
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where m: Black hole mass, γ and k are the integration constants to the vacuum
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For this spacetime, Eq.(2) and Eqs.(3) become
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1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is known as [4]
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)
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(
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A(r)

)
= 0. (2)

Hereafter, we call eq. (2) MSCO equation.
Given a root for eq. (2), E2(E: specific energy) and L2(L: specific angular mo-
mentum) :
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∆
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)
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∆

d
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(
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)
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d
dr
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)
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C(r)

)
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)

where rg: Schwarzschild radius and Λ: The cosmological constant. For this space-
time, Eq.(2) and Eqs.(3)become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)

2

r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m: Black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eq.(2) and Eqs.(3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)

E2 =
2(γ̄r̄2 +

√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)

, L2 =
4m2r̄2(γ̄r̄2 + 1)

γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is known as [4]
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),
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where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
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,
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where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m: Black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eq.(2) and Eqs.(3) become
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Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.
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1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where we consider gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is expressed as [4]
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)
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where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1
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dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m = black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eqs.(2) and (3) become
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Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
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6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
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2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where we consider gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is expressed as [4]
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Hereafter, we call eq. (2) MSCO equation.
Given a root for eq. (2), E2(E: specific energy) and L2(L: specific angular mo-
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)

where rg = Schwarzschild radius and Λ = the cosmological constant. For this
spacetime, Eqs.(2) and (3) become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)

2

r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m = black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eqs.(2) and (3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)

E2 =
2(γ̄r̄2 +

√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)

, L2 =
4m2r̄2(γ̄r̄2 + 1)

γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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Figure 1: γ̄-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the γ̄ parameter.The shaded parts denote the
prohibited regions where E2 < 0, L2 < 0, γ̄ < −1 or γ̄ > 1/3. Left: γ̄ ∈ [−1.2, 0.5].
Right:γ̄ ∈ [−0.1, 0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where we consider gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is expressed as [4]
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
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+ r2(dθ2 + sin2 θdφ2), (6)

where rg = Schwarzschild radius and Λ = the cosmological constant. For this
spacetime, Eqs.(2) and (3) become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)
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r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m = black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eqs.(2) and (3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)
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√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)
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1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is known as [4]
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
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where rg: Schwarzschild radius and Λ: The cosmological constant. For this space-
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r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m: Black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eq.(2) and Eqs.(3) become

−γ̄2r̄4 − 3γ
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Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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Figure 1: γ̄-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the γ̄ parameter.The shaded parts denote the
prohibited regions where E2 < 0, L2 < 0, γ̄ < −1 or γ̄ > 1/3. Left: γ̄ ∈ [−1.2, 0.5].
Right:γ̄ ∈ [−0.1, 0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is widely applicable for classifying MSCOs for some spacetime,
when the MSCO eq. is a polynomial.

Expansion to axisymmetric spacetime is studying (Suzuki’s poster)
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1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where we consider gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is expressed as [4]
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A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)

where rg = Schwarzschild radius and Λ = the cosmological constant. For this
spacetime, Eqs.(2) and (3) become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)

2

r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m = black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eqs.(2) and (3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)

E2 =
2(γ̄r̄2 +

√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)

, L2 =
4m2r̄2(γ̄r̄2 + 1)

γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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Figure 1: γ̄-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the γ̄ parameter.The shaded parts denote the
prohibited regions where E2 < 0, L2 < 0, γ̄ < −1 or γ̄ > 1/3. Left: γ̄ ∈ [−1.2, 0.5].
Right:γ̄ ∈ [−0.1, 0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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Abstract: Based on our recent work (Ono et al. EPL, 111, 30008, 2015), in terms of Sturm’s theorem, we reexamine a marginal stable circular

orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. Strum’s
theorem is explicitly applied to the Kottler spacetime. Moreover, we analyze MSCOs for an exact solution in Weyl conformal gravity.

1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

• In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

• In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].
The ISCO and OSCO are a boundary between a stable region and an unstable

one. Hereafter, we call it a marginal stable circular orbit (MSCO).
Throughout this poster, we use the unit of G = c = 1.

2 Equation for a location of a MSCO.

A general form of the metric for spherically symmetric and static spacetimes :

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2), (1)

where we consider gtt ≡ −A(r) < 0, grr ≡ B(r) > 0, gθθ ≡ C(r) > 0.
A necessary condition for the existence of a MSCO is expressed as [4]

d

dr

(
1

A(r)

)
d2

dr2

(
1

C(r)

)
− d

dr

(
1

C(r)

)
d2

dr2

(
1

A(r)

)
= 0. (2)

Hereafter, we call eq. (2) MSCO equation.
Given a root for eq. (2), E2(E: specific energy) and L2(L: specific angular mo-
mentum) :

E2 = − 1

∆

d

dr

(
1

C(r)

)
, L2 = − 1

∆

d

dr

(
1

A(r)

)
, (3)

∆ ≡

∣∣∣∣∣

1
A(r) − 1

C(r)

d
dr

(
1

A(r)

)
− d

dr

(
1

C(r)

)
∣∣∣∣∣ . (4)

A sufficient condition as 0 ≤ E2 ≤ ∞ and 0 ≤ L2 ≤ ∞.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’s algorithm to p(r) and its derivative,
Sturm’s sequence

p0(r) ≡ p(r),

p1(r) ≡ p′(r),

p2(r) ≡ p1(r)q0(r)− p0(r),

...

0 = pn(r)qn−1(r)− pn−1(r), (5)

where qi(r) is the quotient of pi(r) by pi+1(r).
V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.
V(a)−V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[5]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (6)

where rg = Schwarzschild radius and Λ = the cosmological constant. For this
spacetime, Eqs.(2) and (3) become

8λx4 − 15λx3 − x+ 3 = 0, E2 =
2(λr3 − r2gr + r3g)

2

r2gr(2r − 3rg)
, L2 =

r2(r3g − 2λr3)

r2g(2r − 3rg)
,

(7)

where x ≡ r/rg and λ ≡ Λr2g/3.
Sturm’s theorem (as necessary condition) and the positive E2 and L2 (as sufficient
condition) tell us that there are four cases:

Case1: λ = 0 (Schwarzschild case). Single MSCO,it’s corresponding to the ISCO.
Case2: 0 < λ < 16/16875. Two MSCOs, where one is corresponding to the ISCO

and the other is the OSCO.
Case3: 16/16875 ≤ λ. No MSCO (after the ISCO and the OSCO merge at

λ = 16/16875).
Case4: λ < 0 (anti-de Sitter case). Single MSCO.

5 Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds2 = −B(r)dt2 +
1

B(r)
dr2 + r2(dθ2 + sin2 θdφ2),

B(r) =
√
1− 6mγ − 2m

r
+ γr − kr2, (8)

where m = black hole mass, γ and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k = 0, γ ̸= 0 in this poster.

For this spacetime, Eqs.(2) and (3) become

−γ̄2r̄4 − 3γ
√

1− 3γ̄r̄3 + 6γ̄r̄2 −
√

1− 3γ̄r̄ + 3 = 0, (9)

E2 =
2(γ̄r̄2 +

√
1− 3γ̄r̄ − 1)2

r̄(γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3)

, L2 =
4m2r̄2(γ̄r̄2 + 1)

γ̄r̄2 + 2
√
1− 3γ̄r̄ − 3

, (10)

Sturm’s theorem and the positive E2 and L2 tell us that there are four cases:
Case1: 0 ≤ γ̄ < 1/3. Single MSCO,it’s corresponding to the ISCO.
Case2: (45− 32

√
2)23 < γ̄ < 0. Two MSCOs, where one is corresponding to the

ISCO and the other is the OSCO.
Case3: (45− 32

√
2)23 = γ̄. The ISCO and the OSCO merge.

Case4: −1 < γ̄ < (45− 32
√
2)23. No MSCO.
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Figure 1: γ̄-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the γ̄ parameter.The shaded parts denote the
prohibited regions where E2 < 0, L2 < 0, γ̄ < −1 or γ̄ > 1/3. Left: γ̄ ∈ [−1.2, 0.5].
Right:γ̄ ∈ [−0.1, 0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm’s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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Singularity Formation 
                          in n-dim Gauss-Bonnet gravity 
          

@JGRG25, YITP Kyoto, 2015/12/7-11http://www.oit.ac.jp/is/~shinkai/

Wormhole Evolutions

Hisa-aki Shinkai  & Takashi Torii 

(Osaka Inst. Technology, Japan)

We numerically investigated how the dynamics depend on the dimensionality and how the higher-order curvature terms 
affect to singularity formation in two models:
(i) colliding scalar pulses in planar space-time, and (ii) perturbed wormhole in spherical symmetric space-time.
Our numerical code uses dual-null formulation, and we compare the dynamics in 5, 6 and 7-dimensional General Relativity 
and Gauss-Bonnet (GB) gravity. 
(1) For scalar wave collisions, we observe that curvarure evolutions (Kretschmann invariant) are milder in the presence of 
     GB term and/or in higher-dimensional space-time. 
(2) For wormhole dynamics, we observe that the perturbed throat will be easily enhance in the presence of GB term.  
Both suggest that the thresholds for the singularity formation become higher in higher dimension and/or in presence of
GB terms, although it is not evitable. 
     

Outline & Summary

Field Eqs. 

in GB

in GR

Colliding Scalar Waves  

P29

真貝寿明，鳥居隆（大阪工業大）

Black Hole, Expanding Universe, 

and Gravitational Wave

--- 100 years of General Relativity

H.Shinkai (2015 Kobunsha)

[Korean ver. (2016 Kachi Pub.)]
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Conditions on Scalar Potentials in 
Geometric Scalar Gravity

Ki yoshi  Shi rai shi  ( Yamaguchi  U. )
arXiv:1508.02827 [gr-qc]  (with Nahomi Kan (NIT, Gifu))

　

1

The 25th JGRG (Kyoto), Dec. 2015

We discuss a generic form of the scalar 
potential in 

Geometric Scalar Gravity
(M. Novello et al. ,  JCAP1306:014)

FAQ
Q. Is it difficult to describe Gravity by the single scalar 

field?
A. It could be considered as an exercise for Modified 

Gravit ies (TeVeS , Mimet ic, ・・) .

2
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§1. Old scalar gravity
　　Theory of Nordstro m (1912)　 g

μν
＝e

2Φ
η

μν

dynamical equation:  □e
Φ

＝0  ( in vacuum)

a solution:  ds2＝ 1−
GM 
r 

2

(dt2−dr2−r2dΩ2)

coupling to matter:   □e
Φ

∝T ,  T≡T 
λ

λ

・Newton limit : ∇
2

Φ＝4πGρ ,  (ρ :  energy density)  OK
・Deflection of light;  conflicts with observation       NG

3

The 25th JGRG (Kyoto), Dec. 2015
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R.  Kraichman,  " Special-relat ivist ic derivat ion of covariant gravitat ion 
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P.  G.  O.  Freund and Y.  Nambu,  " Scalar fields coupled to the trace of the 
energy-momentum tensor" ,  Phys.  Rev.  174 (1968)  1741.

S.  Deser and L.  Halpern,  " Self-coupled scalar gravitat ion" ,  Gen.  Rel.  Grav.  1 
(1970)  131.

S.  L.  Shapiro and S.  A.  Teukolsky,  " Scalar gravitat ion:  A laboratory for 
numerical relativity" ,  Phys.  Rev.  D47 (1993)  1529.
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§2.  Review of Geometric Scalar Gravity

M. Novello, E. Bittencourt, U. Moschella, E. Goulart, J. M. Salim and J. D. Toniato, 
"Geometric scalar theory of gravity",

JCAP 1306 (2013) 014; JCAP 1401 (2014) 01, E01. arXiv:1212.0770 [gr-qc].
E. Bittencourt, U. Moschella, M. Novello and J. D. Toniato, 

"Cosmology in geometric scalar gravity", Phys. Rev. D90 (2014) 123540.
arXiv:1412.4227 [gr-qc].

E. Bittencourt, M. Novello, U. Moschella, E. Goulart, J. M. Salim and J. D. Toniato, 
"Geometric Scalar Gravity", Nonlinear Phenomena in Complex Systems 17 (2014) 349.

J. D. Toniato,  "A teoria geometrica-escalar da gravitacao e sua aplicacao a cosmologia", 
Tese de Doutorado (Rio de Janeiro, 2014).

I. C. Jardim and R. R. Landim, 
"About the cosmological constant in geometric scalar theory of gravity", 

ArXiv:1508.02665 [gr-qc]

5
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Dynamic metric:

η
μν

: flat metric

V(Φ): scalar potential

inverse: 

determinant :       

6
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  action for Scalar: 

variation: 

Note:

 

7

The 25th JGRG (Kyoto), Dec. 2015

action for matter: 

, ここで 

expressed as the variation of the scalar field,

ここで

，thus

8
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action for gravity+matter system: 

equation of motionderived from ：

,
where

Newtonian Approximation：
，     

, where   

Φ
∞

: the value of the scalar at an infinite distance from the origin

9

The 25th JGRG (Kyoto), Dec. 2015

Novello et al. adopted the following as V (Φ) :

(This produces an exact Schwarzschild spacetime)

What geometry from generic forms of the scalar 
potential？

10
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§3. Weak Gravity Limit (post-Newtonian)
spherical,  static spacetime

non-dynamical flat metric:

ansatz: Φ＝Φ(R)

new variables：   

Sandard Form： 

with　 

11

The 25th JGRG (Kyoto), Dec. 2015

Asymptotic Flatness⇄

expand gravitational potential from the asymptotically 
flat spacetime: (g is a constant)

expand the scalar potential:  (k is a constant)

12

The 25th JGRG (Kyoto), Dec. 2015

                                                                                                                  1352



Using the parameters,  the line element can be written as

PPN ( leading)  (see texts by Weinberg, Hartle,...)

by comparison, we get　β＝2k－g , γ＝2k－1

13

The 25th JGRG (Kyoto), Dec. 2015

From this e.o.m. of scalar in vacuum ->  g＝k

＋also, From observation,  (up to 6 digits)　β＝γ＝1 ⇨ k＝1
in conclusion,

or

is the condition for weak gravity in post-Newtonian App.　OK

14
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§4. Strong Gravity (horizon)
From e. o.m.  in vacuum 

where ， .

If  and  is finite everywhere, then

singularity at r=0, no horizon

15
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A horizon at r ＝r 
g

can exists if

  or .

also，at r ＝r 
0
＞r 

g
, 2b−rb'＝0 holds，then

 is necessary.

From these，if a horizon exists, b(r) should satisfy

16
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Moreover, if we require b(r)at r ＝r 
0

be a smoothfunction，

the scalar potential should be written as

then, from the condition for Asymptotic Infinity, 

17

The 25th JGRG (Kyoto), Dec. 2015

⬆ in general, rg≠2GM

Example.  the Linear function

If : 

This is one that Novello et al. adopted.
The exact Schwarzschild spacetime is obtained.

18
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Example2.　the Case easily solved

this leads to the spacetime solution

but  singularity at r＝r 
g

!

To get horizon at r ＝r 
g

, F (b)＝F 
0
(1−f (b))

where f(b)must be (prop. to) b +O(b2)

19
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＊Inverse Problem＊
Q. What scalar potential leads to the metric:

？

A. (using the new parameters below,)

20
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,

where ,

  

21
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⬅ Unfortunately, very small 
difference between two cases 
with
h=0(solid) and h=∞(broken)．

A Schematic view of the S. P.

§5. Summary
In Geometric Scalar Gravity,

we found physical conditions on the scalar potential V
by considering Weak Gravity and Strong Gravity

future subjects
・rotating BHs            
・Gravitational waves
・Cosmology              

22
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§6. Charged solution
23

The 25th JGRG (Kyoto), Dec. 2015

Using , asymptotically

solution is，

RN black hole with wrong sign in front of O(r-2)!

24
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§7. Spherical Star
e.m.tensor for a perfect fluid：

25
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eq. of conservation：

where　

＊Inverse problem＊ de Sitter l ike interior metric

26
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energy density and pressure for this metric

h＝0

h＝∞

27
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§8. Appendix

Inverse of Metric: 

where 

then, 

Note that 

28
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Here, we have used

and 

29
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Assume: 

Equation of Motion: 

This is equivalent to 

provided that 

( )

Eliminating β , 

and 

30
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Marginal stable circular orbits
for stationary and axially symmetric spacetimes
Tomohito Suzuki
Hirosaki University, Japan
with T. Ono1, K. Yamada2, and H. Asada1
1Hirosaki University, 2Kyoto University

JGRG25 in YITP, Kyoto Dec. 7 - 11, 2015
Abstract: Continuing the earlier work[1], in this poster, we extend our formulations for a marginal stable circular orbit(MSCO) of a test particle to stationary and
axially symmetric spacetimes.

1 Motivation
The earlier work[1](spherically symmetric and static spacetimes)
→ this poster(stationary and axially symmetric spacetimes: ex. Kerr metric)
In Kerr-like metric, the locations of the innermost stable circular orbit change significantly from
the Kerr metric[2].

2 Timelike geodesic
in stationary and axially symmetric spacetimes

A general form (G = c = 1)

ds2 = −A(y2, y3)dt2 − 2H(y2, y3)dtdϕ+B(y2, y3)(dy2)2

+C(y2, y3)(dy3)2 +D(y2, y3)dϕ2 , (1)

where 0 < ϕ < 2π.
This spacetimes contain quasi-cylindrical Weyl-Papapetrou coordinates[3] in y2 = ρ , y3 =
z , B(ρ, z) = C(ρ, z), Boyer-Lindquist coordinates in y2 = r , y3 = θ.
We assume a symmetry at y3 = y3C

∂gµν
∂y3

∣∣∣∣
y3=y3

c

= 0 . (2)

The Lagrangian

L ≡ −Aṫ2 − 2Hṫϕ̇+B(ẏ2)2 +Dϕ̇2 , ˙≡ d

dτ
. (3)

Two constants of motion

ε ≡ −Aṫ−Hϕ̇ , ℓ ≡ −Hṫ+Dϕ̇ . (4)

3 MSCO conditions
Radial MSCO condition is well known as [3]

[
−Ãℓ2 + D̃ε2 + 2H̃εℓ

]

y3=y3
C

=1 , (5)
[
−Ã,y2ℓ2 + D̃,y2ε2 + 2H̃,y2εℓ

]

y3=y3
C

=0 , (6)
[
−Ã,y2y2ℓ2 + D̃,y2y2ε2 + 2H̃,y2y2εℓ

]

y3=y3
C

=0 . (7)

where

Ã =
A

AD +H2
, D̃ =

D

AD +H2
, H̃ =

H

AD +H2
,

Ã,y2 = dÃ/dy2.
By Eqs.(6,7), we obtain MSCO equation

(
D̃,y2Ã,y2y2 − Ã,y2D̃,y2y2

)2

y3=y3
C

=4
[(

Ã,y2H̃,y2y2 − H̃,y2Ã,y2y2

)(
D̃,y2H̃,y2y2 − H̃,y2D̃,y2y2

)]

y3=y3
C

. (8)

Eq.(8) corresponds to previous work[3] of Eq.(40).
By Eqs.(5,6),

ε2 =
Ã2

,y2

[
− Ã,y2

(
ÃD̃,y2 − Ã,y2D̃

)
+ 2

(
Ã,y2H̃ − ÃH̃,y2

)(
H̃,y2 ∓

√
H̃2

,y2 + Ã,y2D̃,y2

)]

(9)

ℓ2 =

[
Ã,y2D̃,y2 + 2H̃,y2

(
H̃,y2 ∓

√
H̃2

,y2 + Ã,y2D̃,y2

)]

[
−Ã,y2

(
ÃD̃,y2 − Ã,y2D̃

)
+ 2

(
Ã,y2H − ÃH̃,y2

)(
H̃,y2 ∓

√
H̃2

,y2 + Ã,y2D̃,y2

)] .

(10)

Axial stable condition
(
D̃,y3y3ε2 − Ã,y3y3ℓ2 + 2H̃,y3y3εℓ

)

y3=y3
C

> 0 . (11)

The radius of the MSCO must satisfy not only the root of MSCO equation Eq.(8) but also
0 ≤ ε2 < ∞ and 0 ≤ ℓ2 < ∞ and Eq.(11).

4 Examples
4.1 Kerr spacetime
Boyer-Lindquist coordinates

ds2 =−
(
1− 2Mr

Σ

)
dt2 − 4aMr sin2 θ

Σ
dtdϕ

+
Σ

∆
dr2 + Σdθ2 +

(
r2 + a2 +

2a2Mr sin2 θ

Σ

)
dϕ2 , (12)

Σ = r2 + a2 cos2 θ , ∆ = r2 − 2Mr + a2 . (13)

MSCO equation

r̄4 − 12r̄3 − 6ā2r̄2 + 36r̄2 − 28ā2r̄ + 9ā4 = 0 , (14)

where r̄ = r/M , ā = a/M .

4.2 Majumdar-Papapetrou(MP) solution

Two charged point particles(Q = M ) in z axis[4]

ds2 = −Ω−2dt2 + Ω2(dr2 + r2dθ2 + r2 sin2 θdϕ2) ,

(15)

Ω = 1 +
M√

r2 + L2 − 2Lr cos θ
+

M√
r2 + L2 + 2Lr cos θ

.

MSCO equation

r6 − 6(M
√
r2 + L2 − L2)r4 + L2(10M

√
r2 + L2 + 9L2)r2

+16L4M
√
r2 + L2 + 4L4(L2 + 4M2) = 0 .

(16)

L
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M
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Figure 1: Kerr spacetime
Blue curve:Roots of the MSCO equation
Dashed curve:the horizon
Shaded region:ℓ2 and ε2 are the complex num-
ber
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3

4

5

L

r

Figure 2: MP solution
Blue curve:Roots of the MSCO equation
Magenta Shaded region:ℓ2 < 0, ε2 < 0
Blue Shaded region:not satisfied axial condi-
tion

5 Conclusion
We studied a MSCO of a timelike geodesic in stationary and axially symmetric spacetimes.
We consider not only radial stability, but also axial stability.
Future work: Axial condition should be studied.
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Masaaki Takahashi, Sho Izumaru 
Aichi University of Education

MHD Wave Propagation  
in a Black Hole Magnetosphere

The 25th workshop on General Relativity and Gravitation���

Black Hole 

Ergosphere

1

2

0

wave front

1 2 3

a = 0.99 m ,    r  = 1.7m0

(r
/m

) s
in
q

(r/m) cos q

Light Wave Propagation around Kerr BH 

Abstract :  	
The focusing effects of the energy and momentum by 
magnetohydrodynamical(MHD) wave is studied in a black hole 
magnetosphere. By using a canonical type formulation for the 	
propagation of MHD disturbances in magnetized accretion disk, 	
the basic properties of MHD wave propagation and the numerical 
calculations of motion of the locus of simultaneous fronts of wave 	
packets are presented. We define the ``magnetosonic metric'' for 	
the propagation of MHD wave, and then we can discuss the 	
``magnetosonic horizon'', which corresponds to the magnetosonic 	
critical point, and ``magnetosonic ergoregion''. The collimation 	
mechanism of the relativistic jet by MHD wave which is emitted 	
from the magnetosphere's plasma is also discussed.    
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BH magnetosphere

BH

Magnetic Field Lines

Accretion Disk

MHD Shock
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Inflows

M87 jet

MHD accretion with 
Jet formation 
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Maeda et al (2014)

Magnetohydrodynamical phenomena

Mass	ejection	/	Flare	?	
Analogy	of	the	sun	surface	

SUN:	coronal	mass	ejection (2012.4.)

Energy/Plasma	supply	to	the	Jet

Energy	transport	by	MHD	waves	is	discussed.

Jet

Jet

Magnetized torus

Disturbance

Magnetosphere

Overabundance of energy

Is the energy transportation to the inside domain possible?
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Wave	equation Eikonal	equation	 Canonical form

How	to	calculate	the	wave	fronts

wave front
x

0
(�) =  (x

↵
(�)) = constant

Eikonal equation gives 
the characteristic curve  
of the wave

Time=constant surface   
       Wave fronts

geometric optic approximation
The approximation that a wavelength considers smaller enough 
than characteristic length of the physical quantity of the system

Lichnerowicz (1967)

正準形式

hypersurface

射線

射線：初期値より　　に沿って　　 を求める

波面：何本も射線を走らせて　位相　　　　の分布を調べる

射線の求め方
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7

the wave velocity

the magnetic field in spatial direction of propagation of the waves

notations & definitions

8
x

0
(�) =  (x

↵
(�)) = constant

coordinate	transformation：

initial	value	problem

enthalpyvelocity
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9

magnetic	field enthalpy

velocity

10

Discontinuous	condition	

The	wave	fronts	satisfy	the	condition.
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11

factorization

is

12

wave	velocity speed	of	magnetosonic	wave

fast	magnetosonic	wave slow	magnetosonic	wave
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metric wave’s momentum

Eikonal eq.  &  Effetive Potential

Light wave (Kerr	BH	metric)

Sound wave (sound	metric)

MHD	wave		(magnetosonic	metric)

sound	velocity

fluid’s	4-velocity

MHD	wave	velocity

We	define	the	effective	potential	for	waves.

New	

H(x↵, p↵) = A↵�p↵p� = 0

General expression Canonical form

We can discuss the rough spread direction of the wave.

the	speeds	of	the	magnetosonic	waves	&	the	Alfven	wave

Average

	C.	McKinney		and		F.	Gammie2004

the magnetic field in spatial direction  
of propagation of the waves

direction dependence !

turbulence

I check the spread direction of the wave !
depending on magnetic field strength.
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一般相対論的磁場強度分布 （Blandford	&	Znajek	1977）

			Paraboloidal磁場

磁場強度分布　

			Split-monopole磁場

磁場強度分布　

ベクトルポテンシャル ベクトルポテンシャル

C=2.0M C=70M

一般相対論的流体分布（Fishbone		1977）

✿ angular momentum per baryon = constant!
    energy = constant

✿ stationary and axisymmetric perfect fluid torus

Fluid	distribution	(	enthalpy	distribution)

：inner-edge radius 
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Effective Potential and Wave Propagation（ L	>	0	）

Paraboloidal Split-monopole

有効ポテンシャル

波の伝播

sound wave

C=0.0M C=6.0M C=100M

H L
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Blue : paths　!
Yellow : wave fronts

fluid’s parameters

C=1.0M C=6.0M

C=20M

sound wave C=0.0M

C=3.0M
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180 180

180 180
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H

L
H
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H
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H
L

H

L

Paraboloidal	magnetic	field

Split-monopole	magnetic	field

fluid’s parameters

strength of magnetic field

Effective Potential for MHD wave（ L	<	0	）

Negative Energy 
Ergoregion
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C=20M C=60M

C=6.0MC=2.0M
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MHD wave propagation（ L	<	0	）
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流体のパラメータ：

有効ポテンシャル

波の伝播

青：射線　橙：波面　　　

C=6.0MC=0.0M C=100M
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音波
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Paraboloidal Split-monopole
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H
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有効ポテンシャルと波の伝播（ 順方向：L	>	0	）
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C=2.0M C=6.0M

C=70m C=110m
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Magnetohydrodynamical phenomena
Energy/Plasma	supply	to	the	Jet

Counter-rotating	wave	can		
transport	its	energy	toward		
the	BH	or	disk’s	funnel	region.	

Jet

Jet

Magnetized torus

Disturbance

Magnetosphere

Overabundance  
of energy

We	can	expect	Mass	ejection	/	Flare	!	
Analogy	of	the	sun	surface	

Eikonal approximation : 
* MHD metric 
* Effective Potential for MHD wave 
* MHD Ergoretion (E<0) 
* MHD Horizon 

Jet’s plasma source (injection surface) 
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Cosmological  entropy production, 
perturbations and CMB fluctuations 
in (1+3+6)-dimensional space-times

Kenji Tomita *

Cosmologsical evolution of the 10-dimensional 
space-times is considered in which the 3-dim. 
Inflating space section evolves to the Friedmann 
universe, after the 6-dim. Space section collapses 
to within the Planck length and decouple. It is 
shown that significant entropy production and 
CMB fluctuation may be possible to the 
observational levels. 

* Prof. Emer.   YITP,   Kyoto Univ.,    ketomita@ybb.ne.jp 

  

$1.  10-dim. background model
It is assumed that our universe was born as the (1+3+6)-dim space-time 
 and  evolved  to the Friedmann universe after the decoupling.   

r(t)  : scale-factor in 3-dim outer space
R(t) : scale-factor in 6-dim inner space
 

at the initial epoch,                    : isotropic
 at the final epoch,             
           : highly anisotropic  (    is the epoch of the singular point)

 at the decoupling epoch (near the final epoch), 
    the radius of the inner space  (≈ R)  is smaller than  the Planck length
    and  lose its Interaction with  the outer space       (decoupling)                    
   
after the decoupling epoch, the outer space behaves as 
                  the space section of the Friedmann universe.

the ratio  =  (physical size of perturbations with constant wave- number k )  
         / (the Hubble length 1/H)  in the outer space and the Friedmann model   
 

ds2=−dt 2r2t  g
d

ij x
k dxi dx jR2t  g

d

abX
cdX a dX b

r t =r0t A−t 
−1 /3
,Rt =R0t A−t 

1/3
r t =Rt 

列
 

1

列
 

2

列
 

3

t A
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Friedmann 

R(t)

r(t)

outer 
space 

0

time
  

decoupling time

Friedmann
    model

outer 
space

the ratio 
   > 1

1
the ratio 
< 1

Inner space

decouple

evolve fluctuations 

the ratio = length/(Hubble length)

t dec t A

  

$2. Entropy production      (see ref(1))

1. non-viscous case
10-dim. total entropy is conserved

  6-dim entropy          →   3-dim entropy
  (collapsing section)        (inflating section)
      decrease                          increase

2. viscous case    →     total  entropy  increases
  Viscosity due to 10-dim gravitational waves  (see ref(5))
          More   3-dim entropy
---------------------------------------------------------------------------
3-dim entropy within the horizon       of the 3-dim  outer space

 where         is 3-dim entropy density　

Planck length (in the outer space) 
                                     is defined by

                                    where G is 10-dim gravitational constant.

S3=s3l h
3
l h

G=[Rt ]6[r pl ]
2

r pl

s3
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Near the singularity (R = 0),  we can find that there exists an epoch           
when the following two conditions A and B are satisfied at the same time

Condition A:                                        (entropy in Guth level)

Condition B:                                        (decoupling in Planck length)

Units c = h = k = 1

-------------------------------------------------------------------------------------
 This 10-dim model is supported by the present super-string theory
  in a matrix model (4). 

Rt dec =r pl

t dec

S 3dec=10
88

  

$3. Perturbations
(in the non-viscous case, see ref (2))

3 modes of perturbations
      scalar mode               SS
      vector mode               SV, VS, VV
      tensor mode               ST, TS
 ST means (Scalar and Tensor in the outer and inner spaces) 
         under-bars mean main perturbations
1. Scalar mode  SS
   two independent gauge-invariant curvature perturbations 
       and          which are caused by perturbations of curvatures in the outer and  
inner spaces, respectively

outside the horizon  [  x << 1  and y <<1 ]      
inside the horizons [x >>1 and y >>1]  :  wavy behavior

                      ->   waves in the outer space
                      ->   waves in the inner space  :  disappear after decoupling 
    So we pay attention to the case 
2. Tensor mode  TS
 single gauge-invariant perturbation   
    for x  << 1,                                               (a, b : const)
      for x >> 1,            is   wavy (Bessel  function)    

h H

x=k r/r t 
H x

−1
h x

−2
y=kR/Rt  =t A−t 

/ x≡[kR /R t / k r /r t ]
2

/ x≫1
/ x≪1

hT
hT=ab ln
hT

/ x≪1
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$4. Fluctuations of CMB appearing in the 
outer space  (in the non-viscous case, see ref(3))

Quantum fluctuations (before the decoupling) which are caused inside 
        the horizon in the outer space under the condition
    x >> 1,  y >> 1   and       
            (other fluctuations are disturbed or erased at the decoupling epoch)
 Quantization procedure in the Weinberg formalism   (Ref. (5))
 two curvature perturbations are expressed as

two conserved quantities (which are constant outside horizons in the outer space)

combination of           and          ->
         single quantity                 (with  1  freedom)

comparison with the CMB observation     ->    adjustment of the free parameter

h=14 /9 k r
1 /2
exp ix−10/9 k r

−3 /24r0/3
2
exp ix /3

H=−
1

3
14/9 kr

1/2
expix −10 /9

k r
−3 /24r0 /3

2
expix /3

: arbitrary

Rh=/dec
8/3h

RH=/dec
4 /3H

Rh RH
R10

R10=RH [01Rh/RH2Rh/RH 
2]

/ x≪1

  

$5. Comparison with other 
inflationary theories

1. Inflationary models due 4-dim Einstein theory of gravitation

       with a curvature perturbation  as the conserved quantity :   

     slow-roll parameters, e-fold number and coupling parameter are  

     adjusted so as to be consistent with CMB observation

2. 4-dim inflationary models due to 4-dim modeified theory of 

   gravitation with R + R^2 as the action

       with a curvature perturbation  as the conserved quantity : 

        e-fold number is adjusted

    

    H. Nariai and K. Tomita  (1971),     A.A. Starobinsky,, (1980)

3.  (Present) inflationary model due to 10-dim Einstein theory

   with two independent curvature perturbations  as the conserved  

   quantities  (Ref (1), Ref(2), Ref (3)) : one of curvature perturbations  

   is adjusted. 
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PTEP = Prog. Theor. Exp. Phys.

  

Appendix

De Sitter type solution in the modified gravity 
theory with   R + R^2    was first derived by

(1)  H. Nariai and K. Tomita 
  Prog. Theor. Phys. 46, 776 (1971)

and derived 9 years later similarly again by 
(2)  A.A. Starobinsky
  Phys. Lett. 91B, 99 (1980).

We hope (1) will be cited together with (2).
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Compare this with Higgs inflation, where                                   
due to non-gravitational coupling [6], i.e. the reheating  
temperatures differ by four orders of  magnitude, which 
could have important consequences

• CMB data is now so precise that in order to constrain inflationary models we need to correctly determine how 
long before the end of  inflation observable scales left the horizon.  This in turn requires us to know about the 
post-inflationary evolution of  the universe, including reheating. 

• Let us consider matter in the form of  a scalar field, with  
the action in the Jordan frame given as:

Expanding the Einstein frame action to second order in     , introducing the mass eigen-basis                    , 
considering an FLRW background and assuming  

The potential for the canonically normalised field in the Einstein 
frame takes a common form for large field values and is ideal for 
inflation (see figure to the right), and this large class of  models 
make the same observational predictions in terms of        :

Gravitational reheating after multi-field inflation 
Jonathan White KEK, Tsukuba, Japan   

 Introduction

Background dynamics

R2 and Higgs inflation

Summary & Conclusions

Based on Phys. Rev. D 92, 023504 (2015) with Yuki Watanabe NIT, Gunma, Japan  
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Orion Nebula image credit:  Subaru Gallery                 
http://subarutelescope.org/  

• Current CMB data is very precise, allowing us to constrain inflation models: Planck Collaboration: Constraints on inflation 55

Fig. 54. Marginalized joint 68 % and 95 % CL regions for ns and r0.002 from Planck alone and in combination with its cross-
correlation with BICEP2/Keck Array and/or BAO data compared with the theoretical predictions of selected inflationary models.

further improving on the upper limits obtained from the different
data combinations presented in Sect. 5.

By directly constraining the tensor mode, the BKP likeli-
hood removes degeneracies between the tensor-to-scalar ratio
and other parameters. Adding tensors and running, we obtain

r0.002 < 0.10 (95 % CL, Planck TT+lowP+BKP) , (168)

which constitutes almost a 50 % improvement over the Planck
TT+lowP constraint quoted in Eq. (28). These limits on tensor
modes are more robust than the limits using the shape of the
CTT
` spectrum alone owing to the fact that scalar perturbations

cannot generate B modes irrespective of the shape of the scalar
spectrum.

13.1. Implications of BKP on selected inflationary models

Using the BKP likelihood further strengthens the constraints
on the inflationary parameters and models discussed in Sect. 6,
as seen in Fig. 54. If we set ✏3 = 0, the first slow-roll pa-
rameter is constrained to ✏1 < 0.0055 at 95 % CL by Planck
TT+lowP+BKP. With the same data combination, concave po-
tentials are preferred over convex potentials with log B = 3.8,
which improves on log B = 2 obtained from the Planck data
alone.

Combining with the BKP likelihood strengthens the con-
straints on the selected inflationary models studied in Sect. 6.
Using the same methodology as in Sect. 6 and adding the BKP
likelihood gives a Bayes factor preferring R2 over chaotic in-
flation with monomial quadratic potential and natural inflation
by odds of 403:1 and 270:1, respectively, under the assumption
of a dust equation of state during the entropy generation stage.
The combination with the BKP likelihood further penalizes the
double-well model compared to R2 inflation. However, adding

Table 17. Results of inflationary model comparison using the
cross-correlation between BICEP2/Keck Array and Planck. This
table is the analogue to Table 6, which did not use the BKP like-
lihood.

Inflationary Model ln B0X

wint = 0 wint , 0

R + R2/6M2 . . . +0.3
n = 2 �6.0 �5.6
Natural �5.6 �5.0
Hilltop (p = 2) �0.7 �0.4
Hilltop (p = 4) �0.6 �0.9
Double well �4.3 �4.2
Brane inflation (p = 2) +0.2 0.0
Brane inflation (p = 4) +0.1 �0.1
Exponential inflation �0.1 0.0
SB SUSY �1.8 �1.5
Supersymmetric ↵-model �1.1 +0.1
Superconformal (m = 1) �1.9 �1.4

BKP reduces the Bayes factor of the hilltop models compared
to R2, because these models can predict a value of the tensor-to-
scalar ratio that better fits the statistically insignificant peak at
r ⇡ 0.05. See Table 17 for the Bayes factors of other inflationary
models with the same two cases of post-inflationary evolution
studied in Sect. 6.

13.2. Implications of BKP on scalar power spectrum

The presence of tensors would, at least to some degree, require
an enhanced suppression of the scalar power spectrum on large
scales to account for the low-` deficit in the CTT

` spectrum. We
therefore repeat the analysis of an exponential cut-off studied

• A large class of  models with non-minimal 
gravity sectors are in good agreement 
with observations, e.g. R2, Higgs, α-attractors 

Image:  Planck 2015 [1]

1. Effective equation of  state
2. Duration        we need to determine the  

                       inflaton decay rate
)

�

These models are easiest to analyse in the so-
called Einstein frame, which we reach by making 
a conformal transformation
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• Inflation models with non-minimal gravitational coupling are well motivated and observationally favoured, so it is 
important to study reheating in this class of  models.  Interestingly, even in the absence of  direct couplings, 
reheating can take place in this class of  models due to so-called gravitational particle production.

• We have developed a formulation of  multi-field gravitational particle production using the Bogoliubov approach.  
The analysis can be performed in either the Jordon or Einstein frame, and whilst ultimately equivalent, the 
interpretation in the Jordan- and Einstein-frames are different:

Jordan Frame  -  There are no direct couplings between the inflaton and ordinary matter, but the   
                           gravitational background is highly oscillatory and gives rise to particle production.

Einstein Frame  -  The gravitational background evolution is that of  a matter-dominated universe and can 
                             essentially be neglected.  However, explicit interaction terms provide the decay channels. 

• As a simple single-field example, let us consider Starobinsky’s R2 inflation model, which can be expressed as a 
scalar-tensor theory:
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The relevant quantities are then:

• Assuming daughter particles to be light, the dominant decay channel is into scalars:

• The number of  e-folds before the end of  inflation that observable scales left the Horizon is also affected [6]:
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Figure 2: Models of conformal inflation based on generalizations of the Starobinsky model, with

F (�/�) ⇠ �2n

�2n�2
(�+�)2

, n = 1, 2, 3, 4.

4 Universality of conformal inflation

In this section we will describe the roots of the universality of predictions of conformal inflation in

a more general way. But first of all, we will consider some instructive examples, which will help to

explain the main idea of our approach.
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Figure 3: Flattening of the sinusoidal potential V (�) near the boundary of the moduli space � =
p
6

by boost in the moduli space, V (�) ! V (
p
6 tanh 'p

6

). Inflationary plateau of the function V (�)

appears because of the exponential stretching of the last growing part of the sinusoidal function V (�).

Consider a sinusoidal function F (�/�) ⇠ sin(a + b�) and check what will happen to it after the

boost V (�) ! V (
p
6 tanh 'p

6

). As we see from the Fig. 3, the main part of the stretch of the potential

occurs very close to the boundary of moduli space, near � =
p
6. The rising segment of the sinusoidal

function bends and forms a plateau, which has an ideal form for the slow-roll inflation. However, if the

last segment of the sinusoidal function were falling down, its stretching would produce an exponentially

decreasing curve rapidly approaching dS space. This possibility does not lead to slow roll inflation
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Einstein Frame:

Jordan Frame:

• It is almost trivial to see that the calculation is the same if  we start in the Einstein frame as the canonically 
normalised fields are the same:
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As such, whichever frame we start in, ultimately we need to solve                           .  However, the interpretation 
in the Jordan and Einstein frames are different:
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where        is the number of  e-folds before the end of  inflation that 
the observable scales left the horizon.

N⇤

• Despite having the same predictions for      and     in terms of        ,  the predictions of  a given model depend 
on the value of       .  This means that in order to constrain individual inflation models we need to 
know how the universe evolves after inflation, including during the reheating epoch [3]:        
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• In addition to affecting      , the temperature of  the Universe after 
reheating may also vary from model to model, depending on    :  �

N⇤

• Moreover, in the context of  unifying theories it is natural to expect the presence of  multiple fields during 
inflation.  In multi-field inflation the curvature perturbation     is not conserved on super-horizon scales, so 
we must follow the evolution of      through reheating and until an adiabatic limit is reached [4]. 
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• Due to the non-minimal gravitational coupling, we get reheating even in the absence of  direct couplings 
between     and matter, i.e.~� Sm = Sm (gµ⌫ , Xm)

• In light of  the above, we consider reheating in the context of  multi-field inflation models with non-minimal 
coupling, with the general form of  action given as:
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Gravitational reheating after multi-field inflation

I. ACTIONS AND INTERACTIONS

The type of action that we consider takes the form
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We thus find that the Hubble rate in the Einstein frame evolves like that of  a matter-dominated Universe  
i.e.                , and the oscillatory component of        is sub-leading order in
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• To determine the background dynamics of  the inflaton fields during reheating we work in the Einstein frame, 
where the fields are minimally coupled:
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So on average, evolution of  H in the Jordan frame is like 
that of  a matter-dominated universe, but there is an 
oscillatory component that is not suppressed
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• The curvature perturbation is not conserved on super-horizon scales in the presence of  multiple fields, so we 
need to use our results to investigate how     evolves through reheating and until an adiabatic limit is reached.
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The differences are not  
currently observable.

0 10 20 30 40 50 60 70

0.01

0.02

0.03

0.04

0.05

t

H
ub
bl
e
ra
te

H̃
H

�

N⇤ ⇡ 67� ln

✓
k

a0H0

◆
+

1

4
ln

✓
V 2
⇤

M4
Pl⇢end

◆

+
�Nrh

4
(3wrh � 1) � 1

12
ln grh

,

                                                                                                                  1384



“Unruh radiation produced by a uniformly accelerating charged particle 
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Unruh radiation produced by a uniformly
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vacuum fluctuations ∗
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Abstract

A particle in a uniformly accelerated motion exhibits Brownian
random motions around the classical trajectory due to the coupling to
the field vacuum fluctuations. Previous works show that the Brownian
random motions satisfy the energy equipartition relation. Because this
thermal property is understood as the consequence of the Unruh effect,
this quantum radiation is termed Unruh radiation. We investigate the
properties of Unruh radiation produced by a uniformly accelerating
particle undergoing thermal random motions, which originate from
the coupling to the vacuum fluctuations of a massless scalar field as
well as an electromagnetic field. The energy flux of Unruh radiation
is negative and smaller than that of Larmor radiation by one order in
a/m, where a is the constant acceleration and m is the mass of the
particle. Thus, the Unruh radiation appears to be a suppression of the
classical Larmor radiation. The result is consistent with the previous
studies on the quantum effect on the Larmor radiation.

∗This presentation is based on the works reported in Phys. Rev. D 92 045027 (2015)
and arXiv:1509.03038 by N. Oshita, K. Yamamoto, S. Zhang.
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1 Introduction

Phenomena related to quantum fields associated with an event horizon are

one of the central problems of theoretical physics. The Hawking effect pre-

dicts radiation with a thermal spectrum from a black hole, for which the

existence of the event horizon is responsible. The Unruh effect is the theo-

retical prediction that an accelerating observer sees the Minkowski vacuum as

a thermally excited state with the Unruh temperature TU = a/2π as the nat-

ural unit, where a is the acceleration. The accelerating observer will perceive

a horizon, which is linked to the prediction of the Unruh effect. Therefore,

both the Unruh effect and the Hawking effect are rooted in the same physical

phenomenon associated with the horizon.

Although direct experimental verification of the Hawking effect seems to

be difficult, that of the Unruh effect might be possible. One such argument

is initiated the work by Chen and Tajima [1], who proposed a possible de-

tectable signal in the radiation from a charged particle in an accelerated mo-

tion, which can be realized in an intense laser field. These studies suggested

that the Unruh effect may give rise to Unruh radiation from an accelerating

charged particle. However, the problem is not entirely straightforward; it

has been argued that the naively expected Unruh radiation from the detec-

tor models cancels out due to the interference effect. It has been pointed out

that such a cancellation partially occurs in the Unruh radiation produced by

a uniformly accelerating particle coupled to vacuum fluctuations [2].

In the present work, we re-investigated the quantum radiation from a

uniformly accelerating charged particle coupled to vacuum fluctuations. We

investigate two models: One model is consisting of a particle and a massless

scalar field and the other model is consisting of a charged particle and an

electromagnetic field. It has been shown that random motions of a particle

in the transverse direction, perpendicular to the direction of the acceleration,

satisfies the energy equipartition relation [2, 3]. Then the quantum radiation

from the random motions of particle can be termed Unruh radiation. We

2
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verified that although the naively expected Unruh radiation cancels out, but

the remaining interference terms may give rise to a unique signature of the

Unruh effect contained in the energy flux.

2 Basic Formulas

We first consider the theoretical model consisting of a particle and a massless

scalar field [2, 3]. The action of which is given by

S = SP(z) + Sφ(φ) + Sint(z, φ),

where SP(z) and Sφ(φ) are the action for the free particle and field, and

Sint(z, φ) describes the interaction,

SP(z) = −m

∫
dτ

√
ηµν żµżν ,

Sφ(φ) =

∫
d4x

1

2
∂µφ∂µφ,

Sint(z, φ) = e

∫
dτd4x

√
gµν(x)żµżνφ(x)δ4 (x − z(τ)) ,

where e is the charge of the particle. Note that xµ = zµ(τ) denotes the

trajectory of a particle, which obeys

mz̈µ = e

(
z̈µφ + żµżα ∂φ

∂xα
− ηµα ∂φ

∂xα

) ∣∣∣∣
x=z(τ)

+ F µ,

where F µ is a force for a uniformly accelerated motion, while the equation

of motion for the scalar field is

∂µ∂µφ(x) = e

∫
dτ

√
ηµν żµżνδ4(x − z(τ)).

The field equation has the solution,

φ(x) = φh(x) + φinh(x),
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where φh and φinh are the homogeneous solution and the inhomogeneous

solution, respectively. The homogeneous solution satisfies ∂µ∂µφh = 0, which

we regard as the quantized vacuum field, while the inhomogeneous solution

is written as

φinh(x) =

∫
d4x′GR(x, x′)e

∫
dτ ′√ηµν żµżνδ4(x′ − z(τ ′))

= e

∫ τ

dτ ′GR(x, z(τ ′)),

where GR(x, y) denotes the retarded Green function satisfying ∂µ∂µGR(x) =

δ4(x). The term of the inhomogeneous solution φinh gives rise to a radiation

reaction force, and we have the stochastic equation of motion,

mz̈µ =
e2

12π

(
...
z µ + żµ

(
z̈
)2

)
+ e

(
z̈µφh + żµżα ∂φh

∂xα
− ηµα ∂φh

∂xα

) ∣∣∣∣
x=z(τ)

+ F µ.

We consider a particle in an accelerated motion with a uniform acceleration

a in the absence of the coupling to the quantum field. The equation of

motion for random motions around the classical motion is solved by using

the following perturbative method. Assuming that the trajectory of a particle

is written as

zµ = z̄µ + δzµ,

where z̄µ = (a−1 sinh aτ, a−1 cosh aτ, 0, 0) describes the classical trajectory

with a uniformly acceleration, and δzµ does the random motion due to the

coupling to the quantum field.

Since the transverse motions satisfy the energy equipartition relation,

then we consider the perturbative equation of motion for the transverse fluc-

tuations [2],

mδz̈i =
e2

12π
(
...
δz

i
− a2δżi) + e

∂φh

∂xi

∣∣∣
x=z(τ)

.

The thermal property of the random motions, which are obtained as solutions

of this equation, has been demonstrated in Ref. [2, 3]. In the present work,
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for simplicity, we drop the third-order time derivative term of the radiation

reaction force. The contribution of this term to the solution of δzi is small,

which is suppressed by the order of O
(
(a/m)2

)
. Now we have

mδz̈i = −e2a2

12π
δżi + e

∂φh

∂xi

∣∣∣∣
x=z(τ)

.

The solution of the above equation is written as

δżi(τ) =

∫
dω

∂iϕ(ω)

aσ − iω
e−iωτ ,

where we defined

σ =
e2a

12πm
,

∂iϕ(ω) =

∫
∂iφh(z(τ))eiωτdτ.

We can demonstrate that the solution satisfies the energy equipartition

relation with the Unruh temperature TU = a/2π [2],

m

2

〈
δżi(τ)δżj(τ)

〉
=

δij

2

a

2π

(
1 + O

(
a2

m2

))

by using the Weightman function

〈
φh(x)φh(y)

〉
= − 1

4π2

1

(x0 − y0 − iϵ)2 − (x − y)2
.

Thus the random motions of a particle exhibit the thermal property that the

transverse motions satisfy the energy equipartition relation. Therefore, we

expect that the quantum radiation from the random motions of a particle

can be investigated if it existed.

Using the expression of the retarded Green function for the massless scalar

field, GR(x− y) = θ(x0 − y0)δD((x− y)2)/2π, where δD(z) denotes the Dirac

delta function, we have

φinh(x) = e

∫
dτGR(x − z(τ)) =

e

4πρ(x)
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with

ρ(x) = żµ(τx
−)(xµ − zµ(τx

−)),

where τx
− is the solution of (x − z(τx

−))2 = 0. Up to the first order of pertur-

bations, zµ = z̄µ + δzµ, the inhomogeneous solution is given by

φinh(x) ≃ e

4πρ0(x)

(
1 − δρ(x)

ρ0(x)

)
.

where we defined

ρ0(x) = ˙̄z(τx
−) · (x − z̄(τx

−)), δρ(x) ≃ δż(τx
−) · (x − z̄(τx

−)),

where τx
− is redefined to satisfy (x − z̄(τx

−))2 = 0. Here, we also introduced

τx
+, which satisfies (x − z̄(τx

+))2 = 0. The meaning of τx
− and τx

+ is explained

in Figure 1.

3 Energy Momentum Tensor

It is straightforward to evaluate the two-point function;

⟨φ(x)φ(y)⟩ − ⟨φh(x)φh(y)⟩

= ⟨φinh(x)φh(y)⟩ + ⟨φh(x)φinh(y)⟩ + ⟨φinh(x)φinh(y)⟩,

the explicit expression for the symmetrized two-point function with respect

to x and y is

[⟨φ(x)φ(y)⟩ − ⟨φh(x)φh(y)⟩]S =
e2

(4π)2

1

ρ0(x)ρ0(y)
+

−iae2

2m(4π)2

xi

ρ2
0(x)

yi

ρ2
0(x)

×
[

aL2
x

2ρ0(x)
(I3(x, y) − I1(x, y)) +

i

a
I2(x, y)

]
+ (x ↔ y),

where we defined

I1(x, y) = − i

2πσ
+

i

π
log(1 + e−a|τy

−−τx
+|) +

i

π
a(τ y

− − τx
+)θ(τ y

− − τx
+) + O(σ),

I2(x, y) = −a

π

1

ea(τx
+−τy

−) + 1
+ O(σ),

I3(x, y) = − i

2πσ
+

i

π
log(1 − e−a|τy

−−τx
−|) +

i

π
a(τ y

− − τx
−)θ(τ y

− − τx
−) + O(σ),
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τ＋

τー
x1 

R-region

F-region

L-region

x
µ

τ＋
x
µ

x

x

x

x0

Figure 1: The hyperbolic curve in the R-region is the trajectory of a uniformly
accelerating particle. The hyperbolic curve in the L-region is the hypothetical
trajectory obtained by an analytic continuation of the true trajectory. For
an observer at point xµ in the R-region, τx

− is defined by the proper time
of the particle’s trajectory intersecting with the past light cone, while τx

+ is
similarly defined with the future light cone when xµ is in the R-region. For an
observer in the F-region, τx

+ is the proper time of the hypothetical trajectory
in the L-region intersecting with the past light cone.

up to the order of O(σ), for the F-region x0 > |x1| (figure 1).

The energy flux can be computed as follows. Assuming that the energy

flux is observed far from the particle, i.e., r ≫ z1(τx
−) > 1/a, at the leading

order of 1/r2 and σ, we have

T0i(x) = lim
y→x

∂

∂x0

∂

∂yi
[⟨φ(x)φ(y)⟩ − ⟨φh(x)φh(y)⟩]S

= TC
0i + TQ

0i ,

where TC
0i and TQ

0i are the classical part and the quantum part, respectively.

The energy flux in the laboratory frame is related to the energy momentum

tensor by f = −T0ini with ni = xi/r. Here we consider the energy flux in

the F-region. The energy flux for the classical part and the quantum part
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are given by

fC =
1

r2

a2e2

(4π)2

G(q)

sin4 θ
θ(t − x1),

fQ =
1

r2

2a3e2

(4π)3m

F (q)

sin4 θ
θ(t − x1),

respectively, where G(q) and F (q) are defined as

G(q) =
q2

(1 + q2)3
,

F (q) =
1

(1 + q2)3

[
−4q(2q2 − 1)

√
1 + q2

3

{
log aε − log

(
1 + e−a|τ−−τ+|

)

− a(τ− − τ+)θ(τ− − τ+)

}
− 2(8q2 − 1)

(1 + q2)(ea(τ+−τ−) + 1)
− 1

1 + q2

− q√
1 + q2

2

(aε)2
+

q√
1 + q2

5

2

1

cosh2(a(τ+ − τ−)/2)
− 1

2

tanh(a(τ+ − τ−)/2)

cosh2(a(τ+ − τ−)/2)

]

with

q(t, r, θ) =
a

sin θ

(
t − r − 1

2a2r

)
∼ a

sin θ
(t − r) ,

a(τ+ − τ−) = log

[
−q +

√
1 + q2

+q +
√

1 + q2

]
,

for the F-region. Note that fQ is smaller than the classical part fC by the

order of a/m and fQ includes the divergent terms in the coincidence limit

ε → 0. We may understand that this divergence comes from the short-

distance motion of a particle, originated from our formulation based on the

point particle. The divergence coming from the short-distance motion of the

particle could be removed by taking a finite size effect of the particle into

account. Here, we simply omit the divergent terms.

The left panel of figure 2 shows the angular distribution of the classical

energy flux and the quantum energy flux with fixing τx
− = 0. The blue dotted

curve is sin−4 θG(q(τx
−, θ)), while the black solid curve (red dashed curve) is
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positive (negative) values of sin−4 θF (τx
−, θ). This polar plot shows the energy

flux emitted in the direction of θ from the particle at the proper time τ = 0.

The classical energy flux has the radiation power in the direction of ac-

celeration, which is the consequence of the scalar field model. The quantum

energy flux is negative in almost direction, which is described by the red

curve. But it does not mean that one should observe a negative energy flux

from an accelerated particle. Only the sum of the classical and the quantum

flux is observed. The total energy flux is positive as long as a/m ≪ 1.

4 Model of a particle and electromagnetic field

We have repeated the same investigation for the model consisting a particle

and an electromagnetic field, the action of which is given by

S = SP(z) + SEM(A) + Sint(z, A),

where SEM(A) and Sint(z, A) are defined by

SEM(A) = −1

4

∫
d4xF µνFµν ,

Sint(z,φ) = −e

∫
dτ

∫
d4xδ4

D (x − z(τ)) żµ(τ)Aµ(x),

and Fµν(= ∂µAν − ∂νAµ) is the field strength. We found the similar results

to the case of the scalar field model. The expression of the energy flux is

given by replacing the function G(q) and F (q) with

G(q) =
1

(1 + q2)3
,

F (q) =
1

(1 + q2)3

[
6q(q2 − 1)
√

1 + q2
3

{
log aε − log(1 + e−a|τ−−τ+|)

− a(τ− − τ+)θ(τ− − τ+)

}
+

2

(aε)2

q√
1 + q2

+ 2
(3 − ea(τ+−τ−))(2 − ea(τ+−τ−)(9 − ea(τ+−τ−)))

(1 + ea(τ+−τ−))3

]
.
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As in the case of the massless scalar field, the quantum part fQ is smaller

than the classical counterpart fC by one order in a/m. The right panel of

figure 2 shows the angular distribution of the classical energy flux and the

quantum energy flux with fixing τ = 0. The classical energy flux fC of

the Larmor radiation is dominantly emitted perpendicular to the direction

of acceleration. The Unruh radiation flux is almost entirely negative. The

emission directions in the dominant regions are similar to those of the classical

radiation. This is understood as the suppression of the Larmor radiation due

to the quantum effect, which is consistent with the predictions of the model

based on a particle and a massless scalar field.

!1.5 !1.0 !0.5 0.5 1.0 1.5
x

!1.5

!1.0

!0.5

0.5

1.0

1.5

y

!3 !2 !1 1 2 3
x

!3

!2

!1

1

2

3

y

Figure 2: Angular distribution of the classical radiation sin−4 θG(τx
−, θ) (blue

dotted curve) and the Unruh radiation sin−4 θF (τx
−, θ) (black solid: positive

values; red dashed curve: negative values) at aτx
− = 0. The coordinates x and

y are x1 and
√

(x2)2 + (x3)2, respectively. The left panel is the massless
scalar field model, while the right panel is the electromagnetic field
model.
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5 Conclusions

We have scrutinized the theoretical features of the energy flux of the quantum

fields coupled to the random thermal motions of an accelerated particle,

where we focused on transverse motions in the direction perpendicular to

the acceleration of the particle, which are demonstrated to exhibit the energy

equipartition relation. Within our model, the energy flux of the radiation is

obtained as the sum of the classical part and the quantum part. The quantum

part can be considered as the quantum radiation coming from the random

thermal motions around a uniformly accelerated motion. The energy flux

of the quantum part is smaller than the classical part by the order of a/m,

and the angular distribution can be a unique signature of the Unruh effect.

However, the sign of the energy flux of the quantum part is almost negative.

The results can be understood as a suppression of the total radiation flux by

the quantum effect. These results are the common features for the scalar field

model and the electromagnetic field model. This conclusion is consistent with

the previous works [6, 7], which demonstrated that the quantum correction

to the Larmor radiation suppresses the total radiation.
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in the action, and one constraint equation appears if we assume the conservation of 
energy-momentum tensor. The correction is very small if we consider the light 
graviton mass against massive object.  
From the numerical simulation, we found these. 
•  The basic properties are almost same as those in the general relativity  

but slightly different. 
•  Mass-Radius relation is more constrained rather than that in the general relativity. 
•  For quark star, the maximal mass gets smaller than that in the general relativity. 
•  For neutron star, the maximal mass gets smaller and the minimal mass gets 

larger than that in the general relativity. 
Therefore, the massive neutron star can be no more explained in the dRGT massive 
gravity than it is in the general relativity.  
However, our work does not result in that the dRGT massive gravity could be excluded 
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•  assumed the standard equations of state and 
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The action and equations of motion of the dRGT massive gravity are given as follows : 
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� Neutron star cases (SLy EoS) 

The results are similar to the case in the general relativity, but the density profiles 
and total mass are smaller than those in the general relativity. 
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�
1 � 1

2
q(r)r

�3

p(�̃(rmax)) = 0

�̃(r = 0) = �̃c

We can see that the density becomes higher than that in the general relativity for 
small central density and lower for larger central density.  
The region of total mass becomes narrow compared with that in the general 
relativity. 

P (�(r)) = c(�(r) � 4B)

Our numerical caluculation methods are as follows : 

m2
0 = �

arXiv:1512.00660v1(
[gr@qc]�

• c : It depends on chosen mass of strange quark. We used c = 0.28.

• B : bag constant. We use B = 60MeV/fm3.

1. Impose an equation of state: p(r) = p(�̃(r)) � q(r) = q(�̃(r)).

2. Solve the last equation as �̃(r)’s 2nd order ODE
from the center of stars r = 0
to the surface of stars r = rmax s.t. p(�̃(rmax)) = 0.

3. Choose the initial value p��(r = 0) so that
the radius of star becomes identical with that in the GR.

4. Integrate the m(r)’s 1st order ODE using the solution of �̃(r).
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quantum field theory. 
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Acausality Problem with Scalar Field 
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As expected, advanced Green’s function appears. 
Moreover, another new “troublesome” term appears… 
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A possible implication can be that s=1/2 or s=0 after some 
cutoff time               , so the future of universe will go back 
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2. The effective Newtonian Constant 
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cancel the retarded Green’s function, but also contribute a 
positive value. This can be possible if               . 
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Conclusion: Advanced Green’s function always appears in EOM 
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