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“Massive Gravity: Trouble with Metrics”
by Wayne Hu (invited)

[JGRG25(2015)112]



Massive Gravity:
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Massive Gravity:
Trouble with Metrics

NASA's metric confusion
caused Mars orbiter loss

September 30, 1999
Web posted at: 1:46 p.m. EDT (1746 GMT)

(CNN) -- NASA lost a $125
million Mars orbiter because one
engineering team used metric units
while another used English units
for a key spacecraft operation,
according to a review finding.

JGRG, December 2015
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Massive Gravity

A generic theory of massive gravity propagates 6 polarization
states: 5 for a massive spin-2 and 1ghost
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New Degrees
Scalar of Freedom




Massive Gravity

A generic theory of massive gravity propagates 6 polarization
states: 5 for a massive spin-2 and 1ghost

Tensor

Vector

Fierz & Pauli (1939):
Scalar Ghost free linearized theory

m? (hh* — h?)

vDVZ Discontinuity

Scalar mode coupled to matter changes space curvature
per unit dynamical mass violating solar system lensing
even as m — 0

van Dam & Veltman (1970)
Zakharov (1970)




Vainshtein Mechanism

Around massive sources, nonlinear interactions suppress
scalar force

GR,|Vainshtein

Vainshtein (1972)

Boulware-Deser Ghost

But a generic nonlinear completion restores the 6th
ghostly polarization

GR,|Vainshtein
Bad trade!

Boulware & Deser (1972)




Massive Gravity

de Rham, Gabadadze, Tolley (ARGT 2011) provided nonlinear
completion to Fierz-Pauli that evades the Boulware-Deser ghost

S:%/d‘lX /=g R_W_Qiﬁ_nF( /g—1n)
2 2 Z—nl™"

where 7) 1s a fiducial metric, taken to be non-dynamical flat
ds; = gupdX*dX°, ds} = nudX"dX® = —dT* + dX;

Massive Gravity

de Rham, Gabadadze, Tolley (dRGT 2011) provided nonlinear
completion to Fierz-Pauli that evades the Boulware-Deser ghost

My [ 4 m? ¢~ B
S=—F [d'Xy=g|R- > “1F(V/g 'n)
2 2 ~ n!
where 7) 1s a fiducial metric, taken to be non-dynamical flat

ds; = gudX*dX®, ds} = npdX*dX" = —dT? + dX;

Presence of fiducial metric breaks diffeomorphism invariance: a

preferred unitary gauge where metric is standard Minkowski

Diffeomorphism invariance can be restored by transforming from
these preferred coordinates

g n— gO‘“GMXa&,Xb??ab =g fu
Jacobian transformation represents fiducial metric covariantly f,,,

Unitary gauge coordinates become 4 scalar Stiickelberg fields




Spacetime Evolves from Minkowski

Using Minkowski coordinates to chart the expanding
spacetime

Minkowski Space FRW Space

Spacetime Evolves from Minkowski

Using Minkowski coordinates to chart the expanding
spacetime

Minkowski Space FRW Space

In spatially flat Minkowski
coordinates the spacetime
metric is superficially
inhomogeneous but isotropic
(H2R? terms; static/physical
vs comoving coordinates)




Homogeneity and Isotropy

Coordinate problems take on geometric significance with
two metrics

Spatially flat slicing of Minkowski incompatible with
homogeneous and isotropic FRW slicing of spacetime
“no spatially flat FRW cosmologies” d'Amico et al (2011)

= no single coordinates where both the spacetime and
fiducial metric are simultaneously homogeneous and isotropic

Open slicing of Minkowski (Milne) compatible with
homogeneous and isotropic slicing of an open FRW spacetime

Gumrukcuoglu, Lin, Mukohyama (2011)

...but these are generally are generally unstable
Gumrukcuoglu, Lin, Mukohyama (2011); DeFelice, Gumrukcuoglu, Mukohyama (2012)

Note: this does not preclude homogeneous and isotropic FRW
spacetimes of any curvature or address their stability

Massive Multiverse

Alternatives

Large Scale Inhomogeneities

Open solutions
No spatially-flat
FLRW solutions /\
with Minkowski
Reference metric
dS or FRLW reference metric Break Break
(problem with Higuchi ghost) Lorentz Translation

Additional degrees of freedom

(Extended) Quasi-dilaton
Mass-Varying Bi-Gravity, Multi-Gravity
f(R)
i New coupling

de Rham (2015)




Massive Multiverse

explore issues with 2 metrics
relatively simply; common to
‘2 ), many generalizations

Alternatives

Open solutions
(unstable)

No spatially-flat
FLRW solutions
with Minkowski

Reference metric
dS or FRLW reference metric Break Break
(problem with Higuchi ghost) Lorentz Translation

Additional degrees of freedom

(Extended) Quasi-dilaton
Mass-Varying Bi-Gravity, Multi-Gravity
f(R)
= New coupling

de Rham (2015)

Self-Accelerating Solutions

Allow the Minkowski coordinates 7, R or Stuckelberg field
to be inhomogeneous in isotropic FRW coordinates

Minkowski Space FRW Space

a(?)

R=xya(t)r

X constant
determined by
MG Parameters




Self-Accelerating Solutions

Allow the Minkowski coordinates 7, R or Stuckelberg field
to be inhomogeneous in isotropic FRW coordinates

Minkowski Space FRW Space

a(t)

All such constructions
lead to an effective

stress energy of a
cosmological constant
leaving remaining freedom
in choosing Minkowski
time 7(¢,r)

R=xqa(t)r

X, constant
determined by
MG Parameters

Self-Accelerating Solutions

Allow the Minkowski coordinates 7, R or Stuckelberg field
to be inhomogeneous in isotropic FRW coordinates

Minkowski Space FRW Space

a(t)

applies to any isotropic
distribution of matter and
unifies the description of

all self-accelerating solutions
Gratia, Hu, Wyman (2012)

R=xya(t)r

X( constant
generalizes Koyama, Niz, Tasinato (2011); det el
d’Amico et al (2012); Gumrukcouglu SN o
et al (2012); Berezhiani et al (2011);... MG Parameters




Determinant Singularities

Minkowski coordinates may not uniquely chart the whole
spacetime - Jacobian between Minkowski and spacetime
coordinates singular

Fiducial metric has a determinant singularity where the
spacetime metric does not or vice versa - ratio of determinants
1s a diffeomorphism invariant spacetime scalar

Example: evolution to a det singularity

T(t)"“d(t) [open GLM11]

N,

double
valued

4 Gratia, Hu, Wyman (2013)

Determinant Singularities

No curvature singularity in the spacetime, normal matter
sees only spacetime metric

But requires ad hoc rules for smoothly joining charts for the
massive gravity degrees of freedom; evolves into a singularity

Occurs in more general bi-gravity models Gratia, Hu, Wyman (2014);
Lagos & Ferreira (2014); Johnson & Terrana (2015) and extended quasi dilaton
model (where smooth continuation fails) Motohashi & Hu (2014)

[ Gratia, Hu, Wyman (2013)




DeSitter Solutions

Conformal diagram of de Sitter self-accelerating solutions

Det=0 singularity when coordinates double valued

dt

4 fOld Symmetﬂc Motloch, Hu, Joyce, Motohashi (2015)

DeSitter Solutions

Conformal diagram of de Sitter self-accelerating solutions

Det=0 singularity when coordinates double valued

s

4 fOld Symmetﬂc Motloch, Hu, Joyce, Motohashi (2015)




DeSitter Solutions

Conformal diagram of de Sitter self-accelerating solutions

Det=+co singularity where continuation flips signature

R

4 fOId Symmetﬂc Motloch, Hu, Joyce, Motohashi (2015)

Perturbations

Inhomogeneous Stuckelberg background complicates analysis

Isotropic mode (scalar) not sourced by matter, carries stress
energy, obeys first order equation of motion wWyman, Hu, Gratia (2011)

simple system, analytic solutions

Decoupling limit expectations for the helicity O and +1

modes not obeyed, kinetic terms only at order curvature
d’Amico (2011); Motloch & Hu (2014)

In general 5 degrees of freedom (including open GLM
solution, but 3 parabolic not hyperbolic)

Fully covariant Stuckelberg-metric quadratic Lagrangian
Motloch & Hu (2014)
Specialize to vacuum unitary perturbation gauge: metric

perts only Regge-Wheeler analysis of gw polarizations
Motloch, Hu, Motohashi (2015)




Characteristics

Characteristic curves of new degrees of freedom
Example: “open FRW” solution of GLM11

0

~ —

P

characteristics
run tangent to
determinant

singularities -

Motloch, Hu, Joyce, Motohashi (2015)
Motloch, Hu, Motohashi (2015)

see also: Deser, Waldron, etal (2012-15); Izumi & Ong (2013)

Characteristics

Characteristic curves of new degrees of freedom
Example: “open FRW” solution of GLM11

0

Constant Open Time
Motloch, Hu, Joyce, Motohashi (2015)

s
2

Characteristics coincide with constant open time slices
[no dynamics in open frame]

~ —

Superluminal characteristics

For monopole & dipole mode first order system: characterstics
give all smooth and discontinuous front solutions

Superluminal front and group velocity




Characteristics

Characteristic curves of new degrees of freedom
Example: “open FRW” solution of GLM11

0

No Spacelike Cauchy Surface:
Spatial Boundary Conditions

Motloch, Hu, Joyce, Motohashi (2015)

_z
& 2

No spacelike surface intersect all characteristics

For 1sotropic & dipole modes, second order system decouples
into two first order systems, where a conditions on a single
spatial boundary defines unique solution

Characteristics

Characteristic curves of new degrees of freedom
Example: “open FRW” solution of GLM11

0

Lightcone degenerates:
parabolic equation for

anisotropic modes
Motloch, Hu, Motohashi (2015)

s
2

Anisotropic /=2 odd modes are second order and
parabolic, not hyperbolic

~ —

No wavelike solutions, similar to heat equation

Requires two spatial boundary conditions to define unique
solution




Characteristics

Example: “SdS” solution of KNT11: characteristic curves
run tangent to det singularities - information doesn’t cross

Spacelike surface do 0
intersect characteristics
defining initial value

problem for isotropic &
dipole modes

Special case with
luminal characteristics

But /=2 odd parity

modes are still parabolic,
requiring two boundary
conditions: true of all self

accelerating solutions Motloch, Hu, Joyce, Motohashi (2015)
Motloch, Hu, Motohashi (2015)

T

Summary: Trouble with Metrics

Self-accelerating dRGT massive gravity provides a
relatively simple arena where Cauchy breakdown

occurs at linear order in cosmological perturbations

(det singularities, parabolic/elliptic equations, no joint spacelike surface)
In other cases where modes propagate on a separate metric
similar problems occur on nonlinear backgrounds




Summary: Trouble with Metrics

Self-accelerating dARGT massive gravity provides a
relatively simple arena where Cauchy breakdown
occurs at linear order in cosmological perturbations

(det singularities, parabolic/elliptic equations, no joint spacelike surface)
In other cases where modes propagate on a separate metric
similar problems occur on nonlinear backgrounds

Cosmological voids with cubic galileon Barreira et al 2013);
Winther & Ferreira (2015) [hyperbolic turns to elhptlc]

Spherical collapse far from quasistatic approximation
with DGP griwetal 2014) [no joint spacelike Cauchy surface]

Can be viewed as a strong coupling problem which may be
solved by a UV completion of effective theory but

occurs at relatively low densities and large scales

from non pathological initial conditions

Summary: Don’t Mess with Einstein!

- Happy 100th Birthday
- A GR

—
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“Global existence theorem for Gowdy symmetric spacetimes in
supergravity theory”
by Makoto Narita

[JGRG25(2015)8al]
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Global existence theorem for Gowdy
symmetric spacetimes in supergravity theory

Makoto Narita

National Institute of Technology, Okinawa College

1 Introduction: Inflationary universe

It is believed that our universe has started from initial singularity, which is the Hot Big
Bang model. However, there are problems (horizon problem, flatness problem, etc) in this
model. These basic questions about the early universe can find a suitable and natural
answer if the universe has an inflationary era, a period of accelerated expansion. Recently
this constitutes the standard model of cosmology.

According the current observations, the degree of anisotropy at cosmological scales is very
small (but NOT ZERO). Therefore, the accelerated expansion during inflation should be
isotropic. Then the following conjecture was proposed:

Conjecture 1 (Gibbons-Hawking)  The late-time behaviour of any accelerating universe
is an isotropic universe.

This is the cosmic no-hair conjecture, which is an unsolved and important problem in
General Relativity.
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1 Introduction: Cosmic No-Hair Theorems 1

The following theorem supports the validity of cosmic no-hair conjecture:

Theorem 1 (Wald)  The Bianchi models (except type IX) with the total
energy-momentum tensor of the form

Tm/ = _AO.Q/U/ + 7711/,

and with a constant Ay > 0 (cosmological constant) and 7, satisfying the dominant and

strong energy conditions, approach de Sitter space exponentially fast, within a few Hubble
3

A—O.

In the case of spatially inhomogeneous setting, Ringstrom has shown the following

times H™ ! =

theorem:

Theorem 2 Consider a Gowdy symmetric solution the the Einstein-Vlasov system with a
positive cosmological constant. Then, the solution is future asymptotically de Sitter.

To prove the above theorem, one needs to show

1. global existence,
2. future completeness,
3. cosmic no-hair (asymptotic behaviour).

1 Introduction: Cosmic No Hair Theorems 2

However, our universe is not de Sitter space. In addition, the recent observations suggest
small anisotropy. Motivated by these, the next theorem has been shown:

Theorem 3 (Maleknejad-Sheikh-Jabbari)  For general inflationary systems of all Bianchi
type with the total energy-momentum tensor of the form

Ty = =AM guw + Tows

where A(t) is a cosmological term which decreases by time ¢ and 7, satisfies the
dominant and strong energy conditions, anisotropy may grow nonetheless there is an upper
bound on the growth of anisotropy.

To get anisotropic accelerated expansion of the universe, it is known that non-trivial
coupling between scalar and gauge fields is important.

Such non-trivial coupling is suggested by some fundamental field theories.

Thus, we will consider the Einstein-Maxwell-Scalar system arising in supergravity theory,
which is one candidate for the Unified Theory. .
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1 Introduction: Supergravity Action and
Einstein-Maxwell-Scalar equations

Four dimensional reduced action of the supergravity theory is of the form

S = /d4x\/_ {——R%— V'V, 0+ V(o) + f (P)Fu FM |

where g,,,, is a Lorentzian metric on (3 + 1)-dimensional spacetime manifold M,

R = g""R,,, is the Ricci scalar of g, ¢ is a scalar field, F,, = 9,A, —0,A, is the field
strength for a gauge field A4, V(¢) > 0 is a potential of the scalar field and f(¢) is a
gauge kinetic function.

Varying the action with respect to g,,, A, and ¢, we have the Einstein-Maxwell-Scalar
equations as follows (SUGRA EMS system):

1
RW/ -2 [8“¢>8y¢ + V( )gﬂl/] 2f2(¢> FJF,,,Y - ZFaﬁFaﬁguu = Oa

V. F" +2F"9,¢ f—1<¢)%(f) =0,

v(e)
96 2

9f(¢)

aB _
8¢FF =0.

970005 — T00t — f(cb)

1 Introduction: Hyperbolic reduction of SUGRA EMS system

To consider initial value problem for the system, we reduce this to a hyperbolic system.

1 (6%
b _59 *0 0. G +VuFu) +9 69 (Lanpul'sov + Tayul'gus + Tarnlpus)

1
-2 [8u¢8,,¢ + V((b)g,uu] - 2f2(¢) FJFV’Y - Z aﬁFQBg,LW = 07

o g°P0,05A\ — ON(F"AL) + (0rg")0, A,
0
—9°"T05(05 A5 — 0xAs) — g“ﬁF%waAa — 05 Aa) + 25,07 0f () 20D —

9¢

where F, is a gauge source function.

— L FsF* =0,

We can show existence of maximal globally hyperbolic developments:

Theorem 4 (Chquet-Bruhat-Geroch)  Given initial data for the vacuum Einstein
equations, there is a maximal globally hyperbolic development (MGHD) of the data which
is unique up to isometry.

Remark 1 The above theorem can be generalized to the SUGRA EMS system.
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1 Introduction: Anisotropic Inflation

Theorem 5 (Watanabe-Kanno-Soda (WKS))  Assume that all functions depend only on
time t and V = Vpe?? and f = fyeP? where ), p are constants. Suppose
A2 4 2p\ — 4 > 0. Then, the following is a solution to the SUGRA EMS system:

ds* = —dt* + ** [e"*da® + e**(dy® + d2?)] ,
dA,

a ="
6= logt,
where a = klogt, b = (logt, kK = X —l-:f();\—:_l;pp; - 8’ ¢ = )‘;;(')\2:)_)‘2;)4 and
v = 47p —w —4C¢.

This spacetime is an axially symmetric Bianchi type | (homogeneous and anisotropic) one
and has accelerating expansion.

Note that anisotropy grows during inflation in contrast to cosmic no-hair conjecture in this
solution.

Next setting: spatially inhomogeneous case

2 Gowdy symmetric spacetimes: Metric and Gauge Potential

Assume that spatial topology is T2 and there are two spacelike Killing vectors generated
by 0, and 9,. Note that 6, z,y are coordinates on T and translation in the = and y
directions defines a smooth action of 72. Also note that the area of the symmetry orbits is
propotional to time t. The areal metric is given by

ds® = -2 (adt? + do*) + €*Y (dz? + Wdy)? + e 2V t?dy>.

This spacetime is an inhomogeneous generalization of the axially symmetric Bianchi type |
spacetimes.

Due to symmetry, only A, = w and A, = x are non-vanishing functions for A,,.
Note that all functions @ > 0,7, U, W, w, x, ¢ depend only on time ¢ and 6.

To get wave map form, the following transformation is used:

VaWy = —te™% (¢ + 2wEy), Wi = —vate™ (g + 2wép)
200 = W) = t/ae™2V¢p, 2Va(xo — Wwy) = te V¢,

and we put o = 2w for convenience.
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2 Gowdy symmetric spacetimes: Einstein constraint equations

—4U

4

% = U} + aUj + ‘ (W + &) + a(p + 0&0)?] + 67 + agh + a1~V

1 e 1 f? _au g
— =2UUg + P19 + (i + 0&) (Vg + &) + e =" (o109 + o) — )
t 2 2 2ta
ap = —4ta?e21=0y,
0
where n, = 5 and ng = a—z

2 Gowdy symmetric spacetimes: Einstein evolution equations

1 U, apU, e 4V
Un + 7Us = Usg = 2t + 2020 4 S (01 + 060)% = (W + 060)?)
«a 2 2
2
1
+ {—66_2[](03 —aoh + & — akf) — §a€2(n_U)V =0,
1 Q «
Yy + ;wt — gy — Qt;pt + 921% — AUy — aUgthg) — 20 (Us&r — alp&p)

+(1—4f20% ) (018 — aopl) — Af 2oe 2 (a1hy — aogibe)

- 2702_({5(@& - a¢9£9) =0.

These equations describe time-evolution of gravitational waves.
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2 Gowdy symmetric spacetimes: Maxwell equations

et + %ﬁt — &0 — O;t—f; + a;&) — 2(Us&s — alUp&p) + ;g_i;(ﬁbtét — adelp)

+4f 7%V (o — aoothp) + Af Poe Y (o4& — aogép) = 0,

1 Q0 (6 7:Yeox] 20
Ot + F0t = 000 ;at 5 + ?8—£(¢t0t — apyop)

—4f eV [ (Y + 0&) — a(vg + 0&)] = 0.

— 2(Utat — OéUgO'g)

These equations describe time-evolution of electromagnetic waves.

2 Gowdy symmetric spacetimes: Scalar field equation

1 a0 Qo 1 _ of oV
b 71— b~ Gt 1 30022 O (g2 1 7 — (€ + o)) + et TE o,

In summary, the SUGRA EMS Gowdy system consist of five semi-linear wave equations
with three constraint equations.



2 Gowdy symmetric spacetimes: Wave Map

1174

We can find that five evolution equations for the SUGRA Gowdy system are described by
the following wave map u : (M2, 8) s (N?, 1), where M?*! is a base manifold with
Lorentzian metric (3,

B = —dt* + éd@Z + t2do?,
and N is a target manifold with Riemannian metric 7,
7 =4dU? + e (dy + 0d€)? + dp* + if%‘w(dﬁ + do?).
The action for this wave map is given by
S = /S dtddy/=B (B‘MVTABQ“UA&,UB + 2020~V v) .
Note that only evolution equations are obtained from the action.

The energy-momentum tensor can be defined from the action and then we can define the
energy of this system.

2 Gowdy symmetric spacetimes: Global Eexistence

Theorem 6 Let (M, g) be the MGHD of C* initial data for the SUGRA EMS Gowdy
system. Then, for ty > 0, M can be covered by compact Cauchy surfaces T2 of constant
areal time ¢ with each value in the range (tg, c0).

The method of the proof is the standard energy estimate (/ight cone estimate).
Remark 2 We can show a existence theorem in the past direction ¢ € (0, tp).

Remark 3 Asymptotically velocity terms dominated solutions can be constructed near
initial singularity ¢t = 0.
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3 Summary

1. As inhomogeneous generalization, Gowdy symmetric spacetimes in supergravity theory
were analyzed.
2. A global existence theorem of solutions to SUGRA Gowdy system was shown.
3. Next questions:
(a) Are solutions to SUGRA Gowdy system future complete?
(b) Is generalized cosmic no-hair conjecture true in the case of the SUGRA Gowdy system?
(c) Are solutions to SUGRA Gowdy system stable?

Thank you for your attention.
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]
Motivation

Inflation is the leading paradigm for early Universe and structure formations.

Basics predictions of inflation: The CMB perturbations are

@ Nearly scale-invariant

o Nearly Gaussian

@ Nearly adiabatic

These predictions are in good agreement with the Planck data.

8

© Planck+WP
O Planck+WP-+highL
g3 Planck+WP-+BAO
£ Natural Inflation
';% 21 Power law inflation
€ Low Scale SSB SUSY
§ S R? Inﬂafion
sof V x ¢?/3
§ Vxd
vap

=] | | N,=50

c 0.94 0.96 0.98 100 | ® N.=60

Primordial Tilt (ns) Planck 2013
anc
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A Fundamental Question: Is the Universe isotropic?

@ Planck has reported anisotropies on CMB map

Hemispherical Power Asymmetry Pr = Pg)(l + 2Ah.p)
e Planck : A =0.07 £ 0.02 for 2 < ¢ < 64 with (I, b) = (227°, —21°)

A=0 Seljebotn, 2010 A=0.3

Statistical Anisotropy

Pr(k) = 7’7@ (1 + ZgLM YLM('A()>

LM

quadrupole anisotropy: L =2, m =20

Pr(k) = PO (1 + g (p.k)%)

Observational bounds from Planck |g.| < 1072

Hanson & Lewis, 2009 — K

Anisotropic Inflation from Gauge Field Dynamics

The model contains a U(1) gauge field minimally coupled to gravity

M2 1 f2
S= /d4x\/—_g lTPR — 53@6% — #FMF’“’ - V(¢)

Here 1/f(¢) is the time-dependent gauge kinetic coupling.

We turn on the background gauge field A, = (0, A«(t),0,0)
The background metric is

ds? = —d? 4 &2 <e—4cr(t)dX2+eZU(t)(dy2+dz2))

= —dt? + a(t)%dx? + b(t)?(dy? + dz?)

In this view H = & is the average Hubble expansion rate and

I
ol o

Ha 5 Hb

Il
vl o

The anisotropy in the system is measured by
Hb — H;
H

The background equations are too complicated to be solved !

T|o
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It is instructive to look at the ratio of gauge field energy density to total energy density

oA AQ f(¢)26—2N P/%\ f_2 _4N Watanabe, Kanno, Soda, 09
_——— = — e
% 2V 2V

In the absence of conformal coupling f($) R decays like a—%. il ".

R =

. . . 2 |
Consider the chaotic potential V = ’%gf)? If one chooses 10°

C¢2 a —2c f :
f = _— = —_— 1 B | c=6
(@)= e <2M;23 ) ( ar ) (e>1) o0 w ® « % &

e-folding number a

enoo
|l

the system reaches the attractor regime:

rRele =<t i -
2 c | I

M—2ﬁ~_ﬁ c-1Ve H |
P = : '
dN %4 c V

and

and therefore P

82008

¢ — p2 = 4MAN(L — 1) -

ON in anisotropic background AA.Abolhasani, R. Emami, }. Taghizadeh, H. F, 2013

6N is a powerful method applicable to all order in perturbations.

We only need to solve the number of e-folds N as
a function of background fields ¢, A.

The revenant equations are

¢* — ¢7 = 4MEN(1 — 1)

and
R Af(¢)?e 2V éf—ze—w _ 1.
2V 2V
We obtain
& SA
ON=——=96 21 N—
2M32 ot A

This is our result to first order in perturbations in §¢ and §A.

All we need to know is that at the time of horizon crossing

5A Z . V3H
_— = €N .
A S TNV21ek3
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uncorrelated so (§¢dA)|. = 0. As a results

k3 5A, (k1) 8A,(k
Ap = Kpepe (k1) 6Ax(k2)
7'('2 Ax AX
k3 61H?
= L N? sin? 0 = 24 IN?*Pq sin? 0
272 erf

in which the angle 8 is defined via cos = f.k. Now comparing this with the
anisotropy factor g, defined via

Pr(K) = Po (1+g-(k2)?) .
we obtained

gv = —24IN?

Bispectrum A.A.Abolhasani, R. Emami, ].Taghizadeh,H.F, 2013
The second oder N is

. N, Ny, . .
ON = Nydo + NjdA + =22067 + —LAGA + N, 6054

in which to leading order in /

2
b 2fy  2fgp . F° | 4 fg
Np~——— | Ngpo~ 2242224 4 — 8
2M2 £2 f ML M2 f
and
2IN 2IN 4IN f,
Na=— » Na=—5 » Nga=—-7%

The leading contribution in bispectrum comes from N, ; term and

(C(k1)C(k2)¢(k3))
3
~ 4I3N(k1)N(k2)N(k3)/ (‘;T‘)g<5AX(/‘<‘1)5AX(E2)5A,-(,3)5A,-(E3 — B)) + 2perm.

The bispectrum is

(C(k1)C(ka)C(Ks)) = 288Ny, Ny, Ny, (C(El, ko) Po(k1)Po(k2) + 2perm.) (2r)? 53(2 ki)

in which Lo N N N N .
Oy, ko) = (1 — (B1.7)? — (k2.7)? + (k1.7) (Ro.70) (k:l.kz)>

Our result is in exact agreement with the results obtained from in-in formalism!

To calculate the anisotropic power spectrum we note that §¢ and SA are mutually

Now we can calculate the power spectrum A.A.Abolhasani, R. Emami, |. Taghizadeh, H.F, 2013
SA
R =6N = —%5¢+2//\/ =

2M?2 A

The isotropic and the anisotropic parts are Pr = Py + AP in which
H2
Po=—5——.
812 Mzen
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In the squeezed limit we get

fuu = 240IN(ki)N(k2)?C(ki, k2) (k1 < ky ~ k3)
~ 10N |g.| C(k1, ko)

Similarly, calculating the trispectrum <CI?1 CE2CE3<E4> we obtain
(Ci Ce,CiCr,) = 3456/Nk Ny Nig N, (D(Fs, ke, k1 + k3)P (k)P (k) P(|ky + ks))
+ 11perm.) (27r)3 53 (El + ko + k3 + /?4) ,
in which
D(ks, ks, ki + k3) = 1 — (ka.7)? — (k3.7)2 — (k1 + k3.7)? + (ks.7) (ka.7) (k3. ks)

+(ka ) (kL + k3. 7) (ki + ks.ka) + (ks.7) (ki + ks.7) (k1 + ks.ks)
—(ks.7) (ka.7) (k1 + k3.ks)(ki + k3.ka) .

In the collapsed limit El + E3 = Eg + E4 =0

L (ki, k2, k3, ka) =~ 3456IN(k3)?N(ks)?D(k3, ks, k1 + k3) .

Our result is in exact agreement with the results obtained from in-in formalism!

Shiriashi, Komatsu, Peloso, Barnaby 20123

|
Statistical Anisotropy: The Effective Field Theory Approach

o Effective Field Theory (EFT) provides a model-independent view of inflation. It
helps to classify various inflationary models based on their predictions for power
spectrum and bispectrum.

@ Our goal is to study anisotropic inflation model-independently and capture the
general predictions.

o In isotropic models based on a single field model, the evolution of ¢(t) breaks the
time diffeomorphism spontatnously. However, one still has the spatial
diffeomorphism invariance

£ =g +()

@ In the presence of the gauge field, we also have to take into account the internal
U(1) gauge symmetry:
AP — AF + VHF

@ The choice of Unitary Gauge

S¢p=0 , A*=(0,AY¢),0,0).

A.A.Abolhasani, M. Akhshik, R.Emami, H.F. , 1511.03218
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Challenge: Under a U(1) gauge transformation we can always undo the unitary gauge
and turn on JA*.

Under a combined spatial and U(1) transofrmation we have
SAH s SAR L A OiEH + ghod, F.
Suppose

Eh=VHE + & = gh0ab+ &, Vugh =0
Then

SAE 5 SAF 4 ADiEl 4 g 0nF + A0 (€M Dakl),
— — -1 —
= AN gy + A (018"%) Daks + A £"0016, + 8" 00 (A'O1EL + F)
The remnant symmetry:
—1

b =&ty 2), (0181%) 0L = ?g”‘o@l&, (remnant symmetry)

Now our building blocks are metric perturbations g, 3 and their derivatives subject
to the above remnant symmetries.

The Quadratic action in Unitary gauge A.A.Abolhasani, M. Akhshik, R.Emami, H.F. , 1511.03218

S = /d4x\/_—g A+ apg® + 2 (5g%)% — %Mﬂs (Gaﬁ GQB) - %Mgé (Gaﬂ Gaﬁ>2

o
4

— %M35 (Gaﬁéa5> — %M46 <Gaﬁéaﬁ)2 + %AldgoofS (GO‘BGQB>

+ %)\gégo% (6°9Gag) + ..

in which .
Al 0 0
Gap = 0agp1 — 0p8a1 + = (5ag31 - 55ga1) :
2

Example: Anisotropic inflation in Maxwell theory: Lyjaxwell = —#FMVF/“’. Then
we find Fy, = A1G,,, and

—\2

M1:f2(A1) xa2  My=Ms=Ms=X =X =co=0.

co: non-trivial sound speed c¢s for inflaton
Ms: Parity violating interactions
A1: non-trivial interaction between gauge field and inflaton: L = f(X)F,., F*".

Ms: The photon four interaction (Euler-Heisenberg model).
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The Goldstone Bosons:

The Goldstone bosons are x* — xH' = xH 4 7 .

As usual 70 reprtesents the inflaton fluctuations which captures the curavture
perturbations. In addition we have 3 Goldstone bosons 7'.

Upon restoring the Goldstone bosons we have
SAT = A" = AT 4 9y AL = SAT + X AL

To fix the U(1) gauge, we impose the Coulomb-radiation gauge A° = 9;A’ = 0. This
yields 8,'5X,' =0.

Decompose 6X; into the transverse and the longitudinal parts:
OX; = 0;0 X, + 66Xt , 0i6X7i =0
Then from the condition 9;6X; = 0 we obtain V25X, = 0.

In conclusion we have left with the two transverse degrees 6 X1 .

In total, we have 3 physical Goldstone bosons: one associayted with §¢, the other 2
associated with dA, transverse fluctuations.

Anisotropic Power Spectrum

After canonically normalizing the fields, we obtain three types of interactions

L, = & [2%(,1 +2)(n— 1)H3} 705 X7

N 2 2 Vi 0’/
L = —a[4A1H (2 + n) + 2H2(2 + n)Ml}ﬂ 5X71,
Ly = —4XiH(2+ n)n%6X),.

The anisotropic power specrum is:
Te T1
5= [ dn [ dn( [Lin) [Ln) 7 (r)n% ()] ] )
— o0 — 00
We define the anisotrpy as: Pr (k) = ng) (1 + g«(n- /l;)2)

Case M2 = M3 = M4 =0:

_ — 2
M c3 )
g = 7225 <1+61) N2

e/\/l',% My

Example: cs =1, A1 =0

g« = 241 N?, | = (Maxwell theory) .
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Case My, My # 0:

The coupling M> does not appear in interactions. However, it changes the

wavefunction of 6 Xt. It affects one of the linear polarizations, X(l)c

X0 / . ey2 1 8MyH?(2 + n)?sin (1)cy\ 2
52 d'x [ ( X ) 232 (1 + My — 8W2H2(2 + n)2> (6XT’j ) ]

This corresponds to a non-trivial speed of light for photons:

8MyH?(2 2
2, q 4 M2 (+”)

c, ~ 2.
v Ml
This is like the birefringence effect in optics.
_ 6>\1
—_— = N<sin< 0
P_o eM,% c3(1— < 1) =
v sin2 0

In simple case if we further assume ¢cs = 1,21 =0

oP 36H>M,

— 24IN?sin2 0 [
1

(1 — 3cos? 6’)} .

0

We have both ¢ =2 and £ = 4 anisotropies.

Conclusion

o Primordial asymmetries and anisotropies are interesting both theoretically and
observationally. There are evidences for hemispherical asymmetry on CMB maps.

e JN approach can be extended to anisotropic backgrounds. One can calculate the
power spectrum, bispectrum, trispectrum etc which are in exact agreements with
the results obtained from alternative in-in formalism.

e EFT provides a good platform to study various aspects of primordial statistical
anisotropies model-independently. Our EFT approaches reproduces the know
results. We also found new types of interactions.

o It will be very interesting to perform the bispectrum (non-Gaussianity) analysis in
our EFT approach.
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More data: 48/29 months of LFI/HFI observations, enabling
further checks
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Improved foreground model: larger sky-fraction used for
analysis

More robust to systematics: based on half-mission cross
power spectra
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analysis
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* m Planck TT: Planck TT for 2 < £ < 2500.

m lowP: low-/ Planck polarization, 2 < £ < 30. (For 2013
results, this will indicate low-¢ WMAP polarization, WP)

m Planck TE, EE: Planck TE & EE at high-£, 30 < ¢ < 2000.

m Lensing: Planck lensing potential at 40 < ¢ < 400 from
4-point correlation function (i.e. conservative)

m External datasets:

m BAO (6dFGS, SDSS-MGS, BOSS-LOWZ, CMASS DR11)
m JLA: Type la Supernovae (SNLS+SDSS+low z Sne)

m HO: Hubble constant (Reanalysis by Efstathiou 2014 of Riess et al. 2011)
m BKP: BICEP2/Keck x Planck joint likelihood

m Whenever not specified, we assume N 4 = 3.046,
> .m,=0.06eV (1 massive, two massless).
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m Asin 2013, base ACDM continues to be a good fit to the
Planck data, including polarization.

m Polarization has a degeneracy lifting capability often
comparable to BAO.

m No convincing evidence for any simple extensions.

m Some tensions with astrophysical data that measure the
amplitude of matter fluctuations.

m Planck constraints on r remain as in 2013 (r <0.11 @ 95%
CL), reminding that this constraint is model dependent.

m Scalar fluctuations consistent with pure adiabatic modes with
a featureless tilted spectrum.

@esa ligi | &

2015 papers and data are released!

+ more to come...
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Spontaneous scalarization-induced dark matter and
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Teruaki Suyama
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Dawn of a new era of gravitational physics

(] e ricoais
VIRCUGP o IGONg |
KAGRA  LiGO(L) |

Experimental tests of GR in strong gravity regime become
possible soon.

Stringent solar-system constraints do not mean GR is correct.

Is there any model where large deviation from GR
oceurs only in strong gravity regime? )
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D&]]lOlll"ESpOSitO_FareSB(DEF) model (Damour&Esposito-Farese, 1993)

Simplest class of the ST theory

1 2
5= / Tav= (167(“7\, 59" o0 - L2 ) f P =GLm (3. m).

G = AQ(@)QW is the Jordan-frame metric.

2501
06 — Vet = 0. Vr(0) = 5-0% — 74" 0)T,
—¢lnA(¢) measures the amount of deviation from GR (environment dependent).

4ﬂGN

(Brans—Dicke : u = 0, A(¢p) = exp( = $) (wgp = 5% 10%)

DEF model : u =0, A(¢p) = exp(2rGyBP?)

Effective potential in the DEF model

IS

Even if the asymptotic value of ¢ satisfies the solar-system
constraints, it is possible that significant deviation from GR
appears at the vicinity and inside of the neutron star.

¢ = 0 is GR.

Many papers on this model.
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Cosmology of the DEF model (eg. Sampson et al, 2014)

GR limit corresponds to ¢ = 0.

In the early Universe, the non-relativistic
matter pushes ¢ away from the origin.

GR is not the cosmological attractor in the DEF model and fine-tuning of
the initial value of ¢ is required to be consistent with the solar-system
experiments.

Can we have a viable model?

Our new scalar-tensor model

Two modifications

« Massive ¢ (u = 0) A($)

* Decreasing function for A(¢)

2

A2 (@) =1—¢c+ e

0<e< 1.

To derive quantitative results,
we use this form.

Our new model does not suffer from the issue present in the
DEF model. Furthermore, ¢ becomes a natural candidate of

dark matter. ;
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Spontaneous scalarization

ppr = 2u*M? /¢ is the critical density.

If p is above ppr, spontaneous scalarization occurs and stable value ¢
is given by

b -1
QZ = 0 _ 2 den
oz~ S pen/p), f(y-ﬂ):1—£( 1+ . 1)

Apart from the logarithmic factor, ¢ ~ M.

Symmetric phase (¢p = 0)

, R 1, . 2 . —
S = /dJ‘m\/—g ( — 59‘”’0#@)0,,@— %@2) —|—/d4:[r\/—g£m(g,f¢:m),

167 GN

There is no difference between the Jordan-frame and the Einstein-frame metrics.

2
Interaction at the leading order is given by ~ %T. For our case of interest, M is

much larger than TeV scale. We do not expect detectable signal of the existence
of the ¢ field from the terrestrial experiments.

i 1 - 2, o 1
G = S7GN [ — (59“"0#@0;/0 + %@2) G + 000,06 + AX(H)T,,

G,uu = 31Gy j}w

Laws of gravity are just GR.
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Spontaneous scalarization phase

In the spontaneous scalarization phase, field eqs for gravity are modified.

] 1 o e 2 o e 9,
G,tti/ = 81G N |: - (59'{”} d,u 0y + %@2> Juv + dp: POy + Az(@) %

Assuming no-excitation of the ¢ field,

G,[w + Aeﬂ'g,uu = ST (el T;U,r/-,

Emergence of the effective Variation of the gravitational constant
cosmological constant (contrary

to the Higgs mechanism)

g obeys the Einstein equations with the effective C.C. given by A, > 0 and
with the gravitational constant given by G.rr < Gy.

g —1
At = AnGyp?0* A™2(d) = AnrGnepprIn f(e. ppr/p) (1 —c+ %)
f(e.ppr/p)

G = A2(D)G) _(1—g+;~)a.
i (9)Cn f(e.ppr/p) N ’

Spontaneous scalarization phase

For p > ppr, we have

ppr In ((1—5) P )-, Geff 7 (1 —2)GN.
PPT

&

&

x&eﬁ' ~ 4:]’TGJ\] 1

— £
<

We find that A.¢¢ is only logarithmically enhanced compared to ppy.

Thus, the effective cosmological constant does not play a significant role
in deep scalarization phase.

The gravitational constant is reduced from the one measured in the laboratory
by the factor .

In the deep scalarization phase, the scalar force is suppressed and the
dominant modification is the weakening of gravity while keeping the structure
of GR.

10
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Spontaneous scalarization

What is the value of pp;?

It is a free parameter of the model.

Interesting case is ppr < pys = 3 X 1073GeV*. Then, spontaneous
scalarization occurs inside the compact objects such as the neutron stars.

It is possible that ¢ field constitutes the whole DM for such case.

11

i
-1 — 2 -1
H ‘m (To=sep

If SS occurs in compact stars, gravity becomes weaker
inside the star.

Increase of NS mass?

12
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We dubbed ¢ as asymmetron.

Spontaneous scalarization:| asymmetron|as dark matter

la,b,e d.e

Pisin Chen , Teruaki Suyama® and Jun’ichi Yokoyama®
® Research Center for the Early Universe (RESCEU), Graduate School of Science,
The University of Tokyo, Tokyo 113-0033, Japan
b Department of Physics and Graduate Institute of Astrophysics € Leung Center for Cosmology
and Particle Astrophysics, National Taiwan University, Taipei, Taiwan 10617
¢ Kavli Institute for Particle Astrophysics and Cosmology,
SLAC National Accelerator Laboratory, Stanford University, Stanford, CA 94505, U.S.A.
@ Department of Physics, Graduate School of Science,
The University of Tokyo, Tokyo 113-0033, Japan
¢ Kavli Institute for the Physics and Mathematics of the Universe, WPI, TODIAS,
The University of Tokyo, Kashiwa, Chiba 277-8568. Japan

Abstract

We propose a new scalar-tensor model which induces significant deviation from general
relativity inside dense objects like neutron stars, while passing solar-system and terrestrial
experiments, extending a model proposed by Damour and Esposito-Farese. Unlike their
model, we employ a massive scalar field dubbed asymmetron so that it not only realizes proper
cosmic evolution but also can account for the cold dark matter. In our model, asymmetron
undergoes spontaneous scalarization inside dense objects, which results in reduction of the
gravitational constant by a factor of order unity. This suggests that observational tests of
constancy of the gravitational constant in high density phase are the effective ways to look
into the asymmetron model.

Disappearance of “asymmetron” in the title!

PHYSICAL REVIEW D 92, 124016 (2015)

Spontaneous-scalarization-induced dark matter
and variation of the gravitational constant
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Pisin Chen, "™ Teruaki Suyama,1 and Jun’ichi Yokoyamal'
'Research C enter for the Early Universe (RESCEU), Graduate School of Science, The University of Tokyo,
Tokyo 113-0033, Japan
2DE]Jartnmr1t of Physics and Graduate Institute of Astrophysics & Leung Center for Cosmology
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SKavli Institute for Particle Astrophysics and Cosmology, SLAC National Accelerator Laboratory,
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SKavli Institute Jfor the Physics and Mathematics of the Universe,
WPI, UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8568, Japan
(Received 11 August 2015; published 8 December 2015)

We propose a new scalar-tensor model which induces significant deviation from general relativity inside
dense objects like neutron stars, while passing the Solar System and terrestrial experiments, extending a
model proposed by Damour and Esposito-Farese. Unlike their model, we employ a massive scalar field,
dubbed the “asymmetron.” that not only realizes proper cosmic evolution but can also account for the cold
dark matter. In our model, the asymmetron undergoes spontaneous scalarization inside dense objects,
which results in the reduction of the gravitational constant by a factor of order unity. This suggests that
observational tests of the constancy of the gravitational constant in the high-density phase are effective
ways to study the asymmetron model.

DOI: 10.1103/PhysRevD.92.124016 PACS numbers: 04.50.Kd, 95.35.+d, 98.80.-k
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Symmetron Fields: Screening Long-Range Forces Through Local Symmetry
Restoration

Kurt Hinterbichler and Justin Khoury
Center for Particle Cosmology, University of Pennsylvania, Philadelphia, PA 19104

We present a screening mechanism that allows a scalar field to mediate a long range (~Mpc)
force of gravitational strength in the cosmos while satisfying local tests of gravity. The mechanism
hinges on local symmetry restoration in the presence of matter. In regions of sufficiently high matter
density, the field is drawn towards ¢ = 0 where its coupling to matter vanishes and the ¢ = —o
symmetry is restored. In regions of low density, however, the symmetry is spontaneously broken, and

the field coupl
in the solar s;

to matter with gravitational strength. We predict deviations from general relativity
em that are within reach of next-generation experiments, as well as astrophysically

observable violations of the equivalence principle. The model can be distinguished experimentally

from Brans-Dicke grav

Scalar fields are the simplest of fields. Light, gravita-
tionally coupled scalars are generically predicted to exist
by many theories of high energy physics. These scalars
may play a crucial role in dark energy as quintessence
fields, and generically arise in infrared-modified grav-
ity theories [1-7]. Despite their apparent theoretical
ubiquity, no sign of such a fundamental scalar field has
ever been seen, despite many experimental tests designed
to detect solar system effects or fifth forces that would
naively be expected if such scalars existed [8, 9].

Several broad classes of theoretical mechanisms have
been developed to explain why such light scalars, if
they exist, may not be visible to experiments performed
near the Earth. One such class, the chameleon mech-
anism [5, 6], operates whenever the scalars are non-
minimally coupled to matter in such a way that their
effective mass depends on the local matter density. Deep
in space, where the local mass density is low, the scalars
would be light and would display their effects, but near
the Earth, where experiments are performed, and where
the local mass density is high, they would acquire a mass,
making their effects short range and unobservable.

Another such mechanism, the Vainshtein mecha-
nism [10], operates when the scalar has derivative self-
couplings which become important near matter sourc
such as the Earth. The strong coupling near sources
cranks up the kinetic terms, which means, after

ty, chameleon theories and brane-world modifications of gravity.

but is decoupled and screened in regions of high density.

This is achieved through the interplay of a symmet
breaking potential, V (¢) = —pu?¢?/24+A¢* /4, and univer-
sal coupling to matter, ¢?p/2M?2. In vacuum, the scalar
acquires a VEV ¢p = ,u/\/X. which spontaneously breaks
the Zs symmetry ¢ — —¢. In the presence of sufficiently
high ambient density, however, the field is confined near
¢ = 0, and the symmetry is restored. In turn, d¢ fluc-
tuations couple to matter as (¢yvgy /M?)d¢ p, and so are
weakly coupled in high density backgrounds and strongly
coupled in low density backgrounds. Since the screening
mechanism relies on the local restoration of a symmetry,
we refer to the scalar as a symmetron field.

The model predicts a host of observational signatures.
The solar light-deflection and time-delay deviations from
general relativity (GR) are just below currents bound
and within reach of next-generation experiments. Mean-
while, the expected signal from binary pulsars is much
weaker, because neutron stars and their companions are
screened.  This is unlike standard Brans-Dicke (BD)
theories, where solar system and binary pulsar signals
are comparable. The symmetron observables are simi-
larly distinguishable from standard chameleon and Vain-
shtein predictions. The symmetron also results in appar-
ent violations of the equivalence principle between large
(screened) galaxies and small (unscreened) galaxies [11].

There are key differences with [12, 13], with crucial

- o e Danas b

i analand el N v

Disappearance of “symmetron” in the title!

PHYSICAL REVIEW LETTERS

week ending
11 JUNE 2010

Screening Long-Range Forces through Local Symmetry Restoration

Kurt Hinterbichler and Justin Khoury

Center for Particle Cosmology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
(Received 19 February 2010; published 10 June 2010)

We present a screening mechanism that allows a scalar field to mediate a long-range ( ~ Mpc) force of
gravitational strength in the cosmos while satisfying local tests of gravity. The mechanism hinges on local
symmetry restoration in the presence of matter. In regions of sufficiently high matter density, the field is
drawn towards ¢ = 0 where its coupling to matter vanishes and the ¢ — —¢ symmetry is restored. In
regions of low density, however, the symmetry is spontaneously broken, and the field couples to matter
with gravitational strength. We predict deviations from general relativity in the solar system that are within
reach of next-generation experiments, as well as astrophysically observable violations of the equivalence
principle. The model can be distinguished experimentally from Brans-Dicke gravity, chameleon theories

and brane-world modifications of gravity.

DOI: 10.1103/PhysRevLett.104.231301

Scalar fields are the simplest of fields. Light, gravita-

tionally coupled scalars are generically predicted to exist
by many theories of high energy physics. These scalars
may play a crucial role in dark energy as quintessence
fields, and generically arise in infrared-modified gravity
theories [1-7]. Despite their apparent theoretical ubiquity,
no sign of such a fundamental scalar field has ever been
seen, despite many experimental tests designed to detect
solar system effects or fifth forces that would naively be
expected if such scalars existed [8,9].

Several broad classes of theoretical mechanisms have
been developed to explain why such light scalars, if they
exist, may not be visible to experiments performed near the
Earth. One such class, the chameleon mechanism [5,6],
operates whenever the scalars are nonminimally coupled to
matter in such a way that their effective mass depends on
the local matter density. Deep in space, where the local
mass density is low, the scalars would be light and would

display their effects, but nearEargh ]ere experiments are

performed, and where the 1fe: 11
would acquire a mass, mak hdi

PACS numbers: 98.80.Cq

mass density, becoming large in regions of low mass
density, and small in regions of high mass density. In
addition, the coupling of the scalar to matter is proportional
to the VEV, so that the scalar couples with gravitational
strength in regions of low density, but is decoupled and
screened in regions of high density.

This is achieved through the interplay of a symmetry-
breaking potential, V(¢) = —u’¢?/2 + A¢p* /4, and uni-
versal coupling to matter, ¢>p/2M?>. In vacuum, the scalar
acquires a VEV ¢ = /.L/\/X which spontaneously breaks
the Z, symmetry ¢ — — ¢. In the presence of sufficiently
high ambient density, however, the field is confined near
¢ = 0, and the symmetry is restored. In turn, §¢ fluctua-
tions couple to matter as (¢ypy/M?)Spp, and so are
weakly coupled in high density backgrounds and strongly
coupled in low density backgrounds. Since the screening
mechanism relies on the local restoration of a symmetry,
we refer to the scalar as a symmetron field.
bservational signatures.

The mqdel pregicfs a hostgo
x Y ,;hre gﬁiﬂt—dﬁ' e-delay deviations from
j sBorgfangeln ity S§| - w currents bound and

1218

15

16



1219

Asymmetron as dark matter

I show that asymmetron can behave as cold dark matter.

17

Asymmetron as dark matter

DM is known to exist in the Universe.

Inflation is known to have happened in the early Universe.

In the present model, DM is “seeded” during inflation.

18
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Asymmetron as dark matter

In our model, the ¢ field universally couples to all the rest of the fields
including the inflaton.

\iuring inflation

During inflation, SS occurs by (large) inflaton energy density.

19

Asymmetron as dark matter

During radiation domination

¢2 e a—3
Since ¢ asymptotically approaches zero, GR is a cosmological

attractor.

¢ field behaves as non-relativistic matter.

¢ field satisfies all the properties required for dark matter.
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Asymmetron as dark matter

e Non-trivial two constraints

1. Non-observation of the CDM isocurvature perturbation in the CMB.

2. Non—observation of the fifth force.

21

Asymmetron as dark matter

1. Non-observation of the CDM isocurvature perturbation in the CMB.

Asymmetron DM contains uncorrelated CDM isocurvature perturbation.

Components: dark matter, baryons, radiations

Adiabatic perturbations: perturbations of all the components are the same

Isocurvature perturbations: perturbation of each components is independent

WMAP 9yr constraint

Pcpm « RS
— < . v < 0.047 (95% C'L
Pr T a < 7 (95% )

22



1222

Asymmetron as dark matter

2. Non—observation of the fifth force.

Since ¢ field is still oscillating today, its has non-vanishing < ¢2 >.

1 2 2
E“ <@ >= PDM,local

Since ¢ field has non-vanishing amplitude, it mediates fifth-force.
In particular, the strength of the fifth-force changes periodically in time.

27 ' f A I —1

Gravity + fifth force

23

Asymmetron as dark matter

2. Non-observation of the fifth force.

Mg
r
\ B 2G‘.,T_._‘I1_[q
% goo = —1+ \ ~F(r)
#—2 PDM
F(r)=1+|——% 5—e
L_L?L'GNE PPT

3

Correction due 1o the fifth-force

24
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ot /4=10"5 GeV

107"
107°
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| Hsth
1078 ¢
10—17 I L L | |
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Fifth-force from the asymmetron dark matter is much smaller than
the upper limit set by the experiments.

However, constraint from the non-observation of CDM isocurvature
perturbation is strong. Asymmetron as dark matter is inconsistent
with inflation models with energy scale as large as 101>GeV.

25

o 74=10" GeV

107" — ; ; ;
107°
S ol Hom
® 10°r S T <4 _
a3 L pISO
o Hsth
10—13
10°17 L. . . .
1071 1074 107° 107
per [GeV)

Asymmetron as dark matter is consistent with inflation models
with energy scale 10%3GeV.

Low energy inflation is consistent with asymmetron being DM. 2
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Summary

We have proposed a new scalar-tensor model in which the scalar field
undergoes the spontaneous scalarization above the critical density.

The scalar field can be the DM. Spontaneous scalarization also provides the
mechanism to generate the initial abundance of DM. (additional production
mechanism is not needed)

The scalar field is only very weakly interacting with our matter (in the
symmetric phase) and detecting such a field on the Earth is quite hard.

In the spontaneous scalarization phase, the gravitational constant gets
weakened compared to the one measured in the laboratory. This may happen
inside the compact objects.

Opening of GW observations will enable us to test this scenario and first
“detection” of DM may come from such observations.

27

[ssues to be investigated

Astrophysics of the spontaneous scalarization

» How is the structure of neutron star changed?
» What happens when scalarized object collapses into a BH?

e Dynamiecs of spontaneous scalarization. Process to reach into the stable state.

« What kind of observations are the most effective to test this model?

28
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“The Einstein-Struble Correspondence and Lorentz Invariance”
by Marcus Christian Werner

[JGRG25(2015)8a35]
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The Einstein-Struble Correspondence

and Lorentz Invariance

Marcus C. Werner, Kyoto University

11th December 2015
JGRG25 at Kyoto

Introduction

e 2015 marks the centennial of general relativity, and has been
designated the International Year of Light by UNESCO.

m &

ucati
Cultural Organiz:

e | present hitherto unpublished correspondence of Einstein,
Chandrasekhar and others with Struble, about an optical test
of Lorentz invariance.

e This may be of scientific as well as historical relevance, given
the recent renewed interest in Lorentz-violating theories, such
as Horava-Lifshitz gravity.
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e Physical perspective: electromagnetism and Lorentz
invariance, possible modifications.

e Historical perspective: special relativity versus emission theory,
binary star test.

e The Struble effect, and correspondence with Chandrasekhar
and Einstein.

| orentz invariance from Maxwell

Consider (M, g) with arbitrary signature and test matter defined by
vacuum Maxwell theory,

1

= 4 /wg g'g" FagFuv,

with volume form w, = /| det g|d*x. Then the principal
polynomial is quadratic,

P(x,p) = g ' (x)*’paps, pE T*M,

and is hyperbolic iff g is Lorentzian.
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Possible modifications

Now consider non-vacuum Maxwell theory with constitutive tensor
G defining the medium,

1
S= _5/% GPVF,5F. s,

then the corresponding principal polynomial is quartic,
P(x,p) = G(x)*" " papspyps, pE T*M,

with the Fresnel tensor

gaﬁ’75 - _ i

24

(wg),{AW(wG)pgm G"Q‘P(a Gmﬂgh’ G5)1/T'U.

In the standard theory, we assume G = G(g) in vacuum.

Possible modifications

e However, G instead of g may be taken as fundamental:
premetric electromagnetism (eg. Hehl, Obukhov, Rubilar 2002, Itin 2000) and

area metric theory (e.g. Schuller, Witte, Wohlfarth 2010, Ritzel, Rivera, Schuller 2011).

e The hyperbolicity property is more complicated than in metric
geometry, allowing, for instance, birefringence. Potentially
interesting in cosmology as effective theory (eg. Wermer in prep.).

e Lorentz invariance is well established. Pulsar timing provides
some of the best current evidence, i.e. absence of preferred

fra me eﬂ:eCtS. (e.g. Shao, Caballero, Kramer, Wex, Champion, Jessner 2013).
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Prehistory of special relativity

Discovery of the aberration of

Interferometer experiment of
star light by James Bradley, 1727:  Albert Michelson and Edward
Morley at Cleveland, 1887
A ~ 2Vorb 41"
(o o - p— eord
: 9 "" ;":‘::.:_ i-\‘.“‘é road o
l' vorb h i

— Supposed aether stationary No diurnal variation observed —
with respect to the Sun contradiction with aether theory

Two competitors

Albert Einstein (1879-1955): Walter Ritz (1878-1909):
special relativity, 1905 emission theory, 1908

—> —>
v

v

+v

Explains negative the result of Explains the negative result of
the Michelson-Morley experiment

the Michelson-Morley experiment
as well!
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Emission theory versus special relativity

e Interferometry experiment requires moving mirrors (Michelson
1913) or emitters (Tolman 1912), e.g. stars

e Negative result of the Michelson-Morley experiment using star
light was achieved by Tomaschek, 1924

e Using binary star systems to test emission theory:
Comstock (1910), de Sitter (1913), Freundlich (1913)

Emission theory versus special relativity

Letter by Einstein to Freundlich, 26 August 1913, mainly about
gravitational lensing and its observability during solar eclipses:

[...] I am also very curious about the results of your
investigations concerning the binary stars. If the speed of
light depends on the speed of the light source even only
in the slightest, then my entire theory of relativity,
including the theory of gravity, is wrong.



1231

Binary star test

Binary star system L, S with circular orbit of radius a and orbital
speed v = wa, observed by O from distance d > a:

Observation time t as a function of emission time ty, at orbital
position 0(ty) = wty, assuming emission theory:

d + asinwty
t =1ty +

C — aw Cos Wty

Binary star test: no ghost stars

a A
°
s @ ! . 0
5
g °
£ B
Q
5
[ ] [ ] . ---------------------------- ® -3
B C A

Emission time [years]
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Revisiting emission theory

e Raimond Struble (1924-2013),
mathematician at North Carolina
State University, Raleigh

e Correspondence with Einstein and
Chandrasekhar in 1947, as a
student at Notre Dame University.
Adviser: Karl Menger at lllinois
Institute of Technology.

e Hitherto unpublished
correspondence in private archive
of the Struble Estate (PO Box
31346, Raleigh, NC 27622, USA)

Acceleration Doppler effect

Struble found an acceleration Doppler effect hitherto overlooked in
emission theory, providing a strong test of Lorentz invariance:

During Aty = % we have Ac = Atpaw? sinf, and thus

AN d duw?
2A A = I

3 - 2 sin 6.
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Struble and Chandrasekhar

i 4
i
The University of Ghicago |

Teshes Gbsecsitory

1947, March 28

¢. Raimond A. Struble
56 River Avemue

outh Bend 6, Indiana

= ur. Struble,

I am sorry to be so long over your letter of February 14,
ut T heve been avey from Yerkee for part of the time and inaccessible
o my correspondence.

I have not had the chence to scrutinize your paper as care-

ully as T would like to, but it does seem that no one has taought of

he effect of acceleration on the velocity of light on classical lines.
ut T feel somevhat uneasy about the details of your argument. You
re essentially discussing the analogue of phase velocity. But,

der the group velocity?

hould you not, under the circumstances, cons
1 am sorzy to be so indefinite, but one's interest is some-
hat dimmed by the consideration that the effect is not present any-
ay.
Yours sincersly,

S. Chasdrasclbna.

S. Chandrasekhar

The Struble Estate

Struble wrote to Chandrasekhar at Yerkes
Observatory, who noted that
no one has thought of the effect
of acceleration on the velocity of
light on classical lines,

but pointed out the issue of phase versus
group velocity, as well as de Sitter’s work.

A first attempt to publish in Phys. Rev.
failed. Then Menger tried to intercede on

behalf of his student.

Menger and Phys. Rev.

THE PHYSICAL REVIEW
REVIEWS OF MODERN PHYSICS
Conducted by
THE AMERICAN PHYSICAL SOCIETY.
JOBIN T. TATE, Mevag; Biior

Daiversity of Minnesota, Mianeapolia 14, Miaa,, U. 5. A.

August 11, 1947

Professor Karl Memger
Department of Mathomatiocs
Illinois Institute of Technology
Chicago 16, Illinmois

K. Menger -2 . August 11, ‘1947

olassical electrodynamics there remains a serious question of
the influence of the acceleration of the source,

On reading Mr, Struble's note I have the fesling that the
difficulty is that the evidence which it provides is of a neg-
ative character, and shows the failure of the Ritz theory by
the absence of the suggested phonomenon. On the obher hand,
is it quite certain that i} does not itself contain questiomable
elements? I refer particularly to the argument that "successive
waves would be separated by an additional distance aw™d Asin "

=z

Dear Professor Menger: obes Weuld the wava-lemgih at oarth them b -
(1 + 2%.% 5in 8)A as snggested, or would the emergy be spread
In Professor Tate's extended absence on vacabion your ° .
letter relative to Mr. Struble's note on "An Observebly out over the spectrum between}(theése wave-lengthe? I do mot see .
Conseguencoe of the Ballistic Hypothesis of Light" has bsen that Mr. Struble’s amalysis iS based on & olear enough comcapt ¢
brought to my attention, While I am afraid that T cannob of the nature of ‘light to let us be certain of which %o expect.
really speak for Professor Tate in this matter, I have looked y -
ab Mr. Strublels manuscript which I find is still in our files I shall be interested o know your reaction to Ghese re-
and &s I find myself in agreement with Professor Tate's lebber merks. It is nob their purpose to inject a controversial mote
to him, I shall try to give you the best reply I cen at this into the discussion but rether to bring to light the basis for
the present belief in the correctness of the curreat theory, If

time, according to my own undersbanding of the mabter,

you still feel that Mr, Struble's analysis presents a valuable
contribution, I am sure that the Board of Editors would be glad

In the first plsce, I suppose the principal question is
whebher et thé present time Ritz' theory requires a final %o reconsider the matbter.. I should like to suggest, however,
coup de grice, or whether it is already sufficiently defunct, ‘that 1t be rewritten in such a menner that its function as a
like numerous other %rial theories of its period, to have rebuttal of the ballistic theory is ovident frou the beginning,
oarned a decent oblivion. You emphasize that the direct evi- even in the title. In its present form thefe is too much of
@ence is perhaps not particulerly oxteusive, and would be tho impression of setting up & “straw man® simply so that it

can be demolished. For this reason I am sending %he famuscript

strongly buttressed by kr. Struble's argument.

to you herewith for your consideration.  If Mr. Struble will

I think that I would be exprossing +he ‘situskion fairly roturn 1t to this office im smemded form I shell be-glad bo
in saying that the type of verification which we have im bhy bring it to the attention of our Board of Bditors.
maltitudinous applications of the Mexwell field equations amd : :
the special theory of relabivity far owtweigh in importance . Simeerely yours,
eny pre-relativistic theories. I would not imply by this Lhat
the difficulties in the guantum theory of radistion are bo
be minimized, but in so far as questions imvolving the effect 2’{_1 y
of tho volooity of the source is comcerned, we seem to be on E ol o
pretty good ground; even second order effests have been B, Lo Hill. .
measured (Ives and Stilwell, Journ. Opt. Soc. Am. 28, 215 (1938)). BLE; 08 Assistent Baitar - e

If I may inject & note on a problem of considerabl

e imporbance

%o me, it might be pointed out thet even within the limits of

The Struble Estate



THE INSTITUTE FOR ADVANCED STUDY
SCHOOL OF MATHEMATICS
PRINCETON, NEW JERSEY

November 5,1947

r,Raimond A.Struble
556 River Ave.
South Bend 6,Indiana
Dear Sir:
Your result is essentially right. I was not able to

grasp your calculation. I have dome it as follows: L«
Be A,  the time on the emitting body then the time of
arrival on the earth is (with sufficient precision)s

reprds
or again with sufficient precision

Perbel) L Lo
The constent time interval & is without influence.

One has therefore 4 gt

tagedtr (v mﬂw{fll;))

A= “J‘C_{}mz/ln) <)

The spectral oscillation is given by ¢ = asc?;
(CageroporSoned:
At the earth this function expresses(the corresponding oscillation
if one substitutes for / its expression inZ according to (1).
" 6

The frequency on earth is y%e- Z&t " We have

4.
dy odh A 2
RV, TR
Lo r\ate |, Jo 4% ) .
de:‘fe)'/e B e S
e
K 2
_ % k) e .= )
= d/{g_jﬁ} YTl W/

1234

Finally, turning to Einstein

THE INSTITUTE FOR ADVANCED STUDY
SCHOOL OF MATHEMATICS
PRINCETON, NEW JERSEY

-2

The second term in the last formula is negligible relative

to the first. It is therefore
I :;‘fxd,f‘ 27472
== [ ) .y
TL::«/ e

-y 4N
vEN

or

According to (1) is 2
_aud) 4
= gy~ 4Vl 06 ) 045
therefore
1
7- 440 %al8;)
G

v=1

Here 4 has to be expressed as'a function of 2%
This is in ;ccnrds.nce with your remarks. The effect is,
o anaoal esiss
of course, musbdy (TMuUch greater $han the ordinary Doppler-
effect and without doubt incompatible with the experimental
@
facts. /W—% ‘i“.:_{_) <1)

1 should be quite astonished if De Sitter would not
have made this little calculation. In any case, you should
carefully look into his paper before publishing something about
it.

Sincerely yours,

Albert Einstein.

The Struble Estate

Conclusions

e Einstein deemed Struble's effect essentially right, but also
pointed out the possible priority of de Sitter, as mentioned

above.

e Struble’'s effect was not discussed by de Sitter, but Struble did
not publish and the effect is neglected in later critiques of

emission theory (e.g. Fox 1965).

Now given the renewed interest in Lorentz-violating theories,

can we usefully apply Struble’s effect in contemporary physics?
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. ABSTRACT
‘We show that all algebraic Type-O, Type-N and Type-D and some Kundt-Type
solutions of Topologically Massive Gravity are inherited by its holographically
well-defined deformation, that is the recently found Minimal Massive Gravity.
This construction provides a large class of constant scalar curvature solutions to

the theory. We also study the consistency of the field equations both in the

| source-free and matter-coupled cases of the field equations.

y
' INTRODUCTION
In the current work we shall consider two aspects of the MMG theory:The first
being the consistency of both the vacuum and matter-coupled MMG equations
and the second being the systematic construction of new solutions to the vacuum
fiels equations that are inherited from the TMG.We shall upgrade all the

algebraic Types O,N,D and some Kundt-Type solutions of TMG to be the

solutions of MMG with simple modifications of the parameters.

1)CONSISTENCY OF FIELD EQUATIONS OF MMG

The matter-free field equation of the theory is defined as [1]

2 Vv

— — 1 y
£, =0G,, + Aog,,, +;CW + J,., =0

with dimensionless parameters 6 , y and dimensionful ones p and Ao. The Cotton
tensor is given in terms of the Schouten tensor and the new ingredient is the J-
tensor defined in terms of the products of two Schouten tensors as

— B
Cou =1V oSp, e = R =7 84

1 1 o
S, =R —7gVR‘ ‘JW=577,‘”775"S@S,W

The matter coupled field equations [2]

1
‘ NG+ Cro + : e = O, (T ‘

where the source term reads

0, =27, + By v B ey 7 o
v ny 123

b v
205" T, T

A)SOURCE FREE CASE

Consistency of the field equations requires that the first divergence vanishes but
from direct substitution it doesn’t . Which means the MMG field equations does not
obey the Bianchi Identity and therefore cannot be obtained from an action with the
metric being the only variable [1,3]. But the covariant divergence vanishes for
metrics that are solutions to the full MMG equations. (Therefore, one has an “on-
shell Bianchi Identity™.) This is necessary condition for the consistency of the
classical field equations but not a sufficient condition, since the rank-two tensor
equations are susceptible to double-divergence. We show that for the source-free
case the double-divergence of the field equations vanish for the solutions of the
field equation.

V" =SiC, =0 | ‘ V.V, " ="V ,Cop +17°C,,V Sk =0

B)MATTER COUPLED CASE

For the consistency of the matter-coupled MMG, one should require the covariant
divergence of the left-hand side and the right-hand side to be equal to each other
when the field equations are used which was worked out to be the case in [2]. Once
again, this is necessary but not sufficient and one should also check the double
divergence.

vue"'(r)ﬁvghnws;@ﬂ(n —

V,V,0"(T)= %nmsjvved(r)%c"‘ed(r)

This shows that the double divergence of the left hand-side and the right hand-side
of the field equations are equal to each other on shell hence the equations are
consistent.

or using the

and a traceless part.

2) CONSTANT SCALAR CURVATURE SOLUTIONS

In three dimensions, classification of space-times can be done either using the
Cotton-tensor (analogous to the four dimensional Petrov classification)

Traceless Ricci tensor (analogous to the four dimensional Segre classification).
To search for solutions, let us rewrite the source-free field equations as a trace part

— Lihane

B B
LR2+‘“—6R—6”—AD=O
24 b4 4

The trace part of TMG equations
traceless part

The trace part of MMG equations —

R,R" —

tracelesspart [ [ 1. L om .Y 5 _g
2o G+ TR+ 25T,

A)TYPE-N

For Type-N space-times traceless Ricci tensor can be written as [4] R = P55,
where p is a scalar function and &u is a null vector(éuép = 0 ) From the trace part
of the MMG field equations, Ricci scalar is constant with two possible values and
the traceless part of the field equation is:
1 — YR
—C,, +(O —
w0 S == e
which is nothing but the field equations of TMG with the simple replacement of the
parameters as

IR, =0

¥R
122¢

" — uS —

B) TYPE -D

Type-D solutions split into two as Type-Dt and Type-Ds and both types have
the traceless Ricci tensor as [5] R, = p(g,, —EE,EV) , where &uéu=+1, and p is
a scalar function. Again we have constant curVature scalar with two possible
solutions. Reducing the MMG equation to the TMG equation as,

1 — R 5
—Cp+ (- (L p+-DR
“ “

12K =0 ‘

which means all Type-D solutions of TMG solve MMG once the following
replacement is made

_ _ 7 R
0 — uo——(p+—
‘ iz 1z ”(p 12) ‘

Finally, let us note that the following restricted version of the general Kundt
solution of TMG [6] also solves MMG.

‘ ds® = 2dudv+(%R —%,uzc_lz)vzduz +(dp+§,uc7vdu)2 +du?

C) TYPE-O

For Types O, N, III one has R;Rf =I~€;I~i[‘1‘1~if =0. Let us first consider all the
solutions of MMG that satisfy j» = o ,which boils down to all the solutions of
TMG that has this property. Clearly Type-O solutions of TMG for which the
canonical form of the traceless-Ricci and traceless-J tensor vanish, hence all such
solutions of TMG, which are locally Einstein spaces, also solve MMG.
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Abstract

We study the evolution of scalar perturbations in inflationary epoch with a single Lifshitz scalar in the context of the
BPSH theory, which generalizes the original non-projectable Horava Lifshitz gravity. In the previous studies, power
spectrum of the curvature in the fixed de-Sitter background, the evolution in the IR regime and the evolution the
isocurvature mode in the Einstein Aether theory have been obtained. In our study, we consistently solve the evolution of
the coupled scalar graviton and the inflaton fluctuation. We will derive the curvature power spectrum and discuss the
observational constraints on the Lorentz violation scale.

ﬁ.lntroduction N
Horava Lifshitz gravity (HL gravity) is the one of the modified theory of gravity Pu rposes of our study

which is power-counting renormalizable in the UV regime(P.Horava 2009).
ﬂ[;‘fl g M;i o y , * Investigate consistent growth of the scalar graviton and the
2 /d gt — o / d*z{(0h)" + h(@h)" + -} inflaton fluctuation in the Lifshitz regime.

dimh =1
M2 . . . .
Syp = Tpl / AP IN{(KyKY — AK?) + RO + 1) Derive the curvature perturbation and isocurvature

HL gravity ’ perturbation.

GR Sen =

anisotropic scaling (3 )/2 _
oo bt xo i) = b B9 20 o o , ;
St x o bx ve ! + Compare the curvature & isocurvature power spectra with
But the anisotropic scaling law violates the local Lorentz symmetry in the UV current CMB observation to constrain to LV scale and
regime. Then a new scalar degree of freedom appears called “scalar graviton” modulations of higher derivatives.
or “khronon’.

/
~

/2.Formu|ation

We introduce the general action of the BPSH theory including the Then we take the metric ansatz of perturbation
transition energy scale M- where the local Lorentz symmetry is broken. Metric ansatz
; M2[1 1 1 N — % N — — 7 R;
Sup = /dt,d"mN\F, > {fl(,jl('ﬂ - K2+ R+ alaﬂ (N=Ni=0By=a )
Gravity a a2 as
sector L [RyRY R* RViai a,Ad ‘R : scalar graviton (0 : inflaton fluctuation
I L momentum & ener
5 = Nyl + N+ ) 2 { b1 + B2 B3 B constraints yParame’(er hierarchy(set up)
VilN; = v;Ni) . . . P
PR 1 [(ViBip)? | (ViR)? ARVial  q;A%l : :
Ry 3-dimensional Ricci tensor - 2]‘[3 " + Yo - 73 - "4 M = ay M

A 3-dimensional Laplacian

a1 —az=2ma=0(3)  GRImt @=0

. L ; z=1)  aj/az=1
Inflaton 1 3o (® - PAD PAD DPA3P ar/ag >0 1/as
Sp =5 Nyg | SR ok : _vil
sector 0= 2,2 / HEXN Vg veo Py TRy Ry V(@) w125 = O(1) m=1
Inflaton is a single Lifshitz scalar field and thus higher derivative terms SO e o L PR

kappear in the UV regime. o /

/ 3.Results

. 1
3.1 WKB phase: X > wa P . 3.3 At large scale: X < 1

2z 9
(%> = na)
“\a _ [™Q inwizisa | 7' N EH 32 (1) 1+e 2ax | Large scale fluctuations decouple
L= (HMY)1/* e VI nep O (H(zfl)s‘ a; ) into a conserved mode and an

isocurvature mode

s ™ 3/ 1+4¢e
L — gin(v/2-3/4) —e)H(—n)*?HY [ ———L VX
p=e \/4{: Ty AT (z TG-Da ) ¢ = const.
A & e (a —(3—22+2¢1)/2
3.2 Intermediate phase: O(z;) < X < 1 p=—ggCtAme T VT <?)

(VErs +9-) o= —ty + e
ho(n) > e 2 1/4)2,/72(: (2 1);|}”""2/\+“””’/5(1 _ gl)uﬂrlgz("’l)
£

\ Fig1. Evolution of the sound horizon Vo (1) = (200) T (1= ey H (=) {~(1 - E\)Hn}"/z/“‘X"

z = 3 —exponentially grow !

H(—n)*?X"%

J

4.Summary & Future works

We have obtained the solutions of the scalar graviton and inflaton fluctuation. But our analysis has yet to complete among the regime
where the curvature fluctuation conserves. Therefore we will have to calculate the perturbations in the whole regimes and obtain the
curvature power spectrum. Then we will obtain constraints of the LV scale and modulations of higher derivatives by using the
PLANCK data.
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Abstract:We study perturbations of Kasner-de Sitter (KdS) spacetimes without axisymmetry to explore observational signatures
of the isotropization process of inflation.We discuss directional dependences of the growth factor of
gravitational waves relative to the axes of anisotropic expansion

1 Introduction

The early universe is thought to have begin in neither spatially homogeneous nor isotropic
state. Kasner-de Sitter (KdS) spacetime, belonging to Bianchi type I, is a simple inflation
model in which the early anisotropic expansion isotropizes due to a positive cosmologi-
cal constant A. A gauge-invariant formulation for the perturbations of Bianchi I universe
was constructed by Pereira et al. [1]. Time evolution of gravitational waves in axisym-
metric Kasner-like expansion case was studied by Giimriik¢iioglu et al. [2]. We discuss
directional dependences of the growth factor of gravitational waves relative to the axes of
anisotropic expansion.

2 Gauge-invariant formalism for the perturbations of

Bianchi I spacetimes by Pereira et al. [1]

General form of Bianchi I background metric
3
ds? = 0 [—dp? +yidxidy), vy = ew'(’”d,-,, Z'B‘ =0.
i=1

e®: scale factor, y;;: spatial metric.
Shear tensor

Loy
iy = 500) =By
Polarization basis
X

ke wavevector, k; = const, k' = 7’jk,, K =kk, k= *

Because y"/ depends on the time, k' (= y"/k;) does so as well.

Kis orthogonal to é,.

L D) — (2 e 4 (Dl )
€= Ve ks V2 o
Api_ Aii_ A _ Aii_ ol
€k =" =€, =0, €6 =6,

\|

Y \ i, )

¢, (a = (1),(2)) : vector basis, sfl’ (A =+ : plus mode, X : cross mode) : tensor basis

Based on the above construction, we can decompose the shear tensor into the scalar,
vector and tensor components: (07, Oya, Or)-

3. 1 " )
o= 3 (k,k, - g'y,j) o + 2k Z ej’,(TW, + IZ 6,1‘,0'“.
A=

a=(1.2)
Perturbed metric in the “conformal Newtonian gauge”

(8uv + 6gu0)dX"dx" = & |-(1 +20)di + 20dx'dn + (y;j + hij)dxidx! | R
7 ’
hij = 2E;; = 20y + )Y, Ty = ﬁ H=a

(0,9 = Eyyjy = E'; = E'; = 0.)

(D, ¥, @y, E;j) are the gauge-invariant variables.
Perturbed eoms for E,

Ej= ) Ey

A=+x

§G*, = 0. (" GR + no matter)

Eventually, after eliminating @, ¥ and ®;, the eoms for gravitational waves are obtained
as

E} +2HE} + KEy - 2maa-00+1- Z M- En

I
12H? - 207 — 22’2"(92"0'”)/
tOog————— E,

o QH=-op? Z,,: egmom
2¢-2

o DU o) + (o) Tl Ey = ¢ (e o Ey =0,

m
i = 640y = Oaxbays (1= =+if A=x or x if 1=+

3 Gravitational waves in KdS without axisymmetry

KdS metric

3
2 g2 12 2 (SHE i2 _ ,_ 2
ds” = —df +sinh (3Ht);lanh " ()@, Zq, =0, Zq, =3
*zeinfi n *zsinﬁ' dn *zsinH
‘7173‘ 3 vlh*}» 3 vq3*3‘ >

1 3Ht A
¢” =sinh3(3H1), ;= tanh®* (7)51/. H= 3

Shear tensor

tanh?% (%)
sinh* (3H1)
Other quantities

oij = 3qiH

o o (3HI o coshGHD  3H Silaitanh™ ()]
©=kk = Z [anh 0 (S5 )k?| 4 = Hsinh%am)' %= 2 '

34 T [artanh ™ (2 Y | 31 X [astanh ™ (o |
Ty = s Ov) = X s

o k )=
- % 3 [ad@ly ) - @ 1], o= é—’:’ 3 et

Wy =| cosysina +cosacosBsiny cosycosa — sinacosBsiny

cosycosBcosa — sinasiny —cosycosBsina — cosasiny
. ’ wu, = . .
—cosasinf sina sinf

(a, B,y) are the Euler angles [3].

We integrate E, and E, numerically substituting these quantities into the perturbed
eoms for E,.
Results (g1 = —1/V3, g2 = 1/V3, g3 = 0)

Time evolutions of E., Ex for some wavevectors are shown below.

N =0

Directional dependences of the growth of E, on the wavevector (k;, ka, k3) rela-
tive to the axes of anisotropic expansion. The color a exhibits relative growth factor
|Ex(c0)/Ex(0)| (red: high, blue: low).

10

10770 10710 10710

4 Conclusion/Discussion

‘We could confirm that KdS spacetime without axisymmetry is stable, because ampli-
tudes freeze in any direction.

‘We need to consider initial conditions of eom for E, [3, 4].

We might be able to probe anisotropy of the early universe if we can observe direc-
tional variation of the amplitude of gravitational waves over the whole sky.

Application to Weyl gravity.
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Abstract

We study the effects of a class of features of the potential of slow-
roll inflationary models corresponding to a step symmetrically dumped
by an even power negative exponential factor. As a consequence, this
type of features only affects the spectrum and bispectrum in a narrow
range of scales which leave the horizon during the time interval corre-
sponding to the modification of the potential.

We also compute the effects of the features on the CMB tempera-
ture spectrum. Due to the local nature of their effects, the features of
this type could be used to model local glitches of the power spectrum
without affecting other scales.

Introduction

An approximately scale invariant spectrum of curvature pertur-
bation provides a good fit of CMB data. But recent analyses of
the WMAP and Planck data have shown evidence of a feature
around the scale & = 0.002 Mpc ™! in the power spectrum of
primordial scalar fluctuations [1], that correspond to a dip in the
CMB temperature spectrum at [ =~ 20. These features of the
curvature perturbations spectrum provide an important observa-
tional motivation to find theoretical models able to explain it.

In this paper [2] we will consider the effects of local fea-
tures (LF) which only modify the potential locally in field space,
while leaving it unaffected sufficiently far from the feature. The
important consequence is that also the effects of LF on the spec-
trum and bispectrum are local.

Inflation and the features

We consider inflationary models with a single scalar field gov-
erned by the action

' 1 1
S = / d'zy/—g {—)Alf,,lf——)(//’”O,,wr')“cb— Vig), (1)

where ds? = —dt? + a?(t)d7? and the potential is given by [3]
@
3)

where V) is the featureless potential, and we call this type of
modification of potential local features (LF). In this paper we
will consider the case of power law inflation (PLI) to model the
featureless behaviour Vj(¢) o exp (—¢/Mpy). While PLI is not
in good agreement with CMB data due to high value of the pre-
dicted tensor-to-scalar ratio r, it can be used as good toy model
to show qualitatively the general type of effects produced by LF.
Future works may be devoted to test different potentials V;(¢),
for direct comparison with data. The definitions we use for the
slow-roll parameters are

n=— )

Curvature perturbations

The linear equation of motion for the curvature perturbation ¢ in
Fourier space is given by [4]

o
G+ 2¢ + kG =0, 6)

Ve, k is the comoving wave number, and primes
denote derivatives with respect to the conformal time dr = dt /a.
For the power spectrum of scalar perturbations we adopt the def-
inition

©6)

Bispectrum of curvature perturbations
To study the non gaussianity we define a convenient quantity [5]

10 (kikoks)® Be
T8 13+ 13 P2
IRy Ry + Ry P

Fyp(ky, ko ks) = )

where . is the pivot scale at which the power spectrum is nor-
malized, i.e. P (k+) & 2.2 x 107" and By is given by [5]

Be(ky, ko, k3) = 2(

K )
/ drnea(j,

13 ()G (7 ®
.

Gyt = MGG

¥
S}
S

where 2p means the two other permutations of ki, ky, and k.
Our definition of Fy 7, reduces to the non linear parameter fy,
in the equilateral limit if the spectrum is approximately scale
invariant. In this paper we study the equilateral limit of the bis-
pectrum.

Effects of the parameter n

The parameter 7 is related to the dumping of the feature, and
larger values are associated to a steeper change of the potential.
As shown in fig.(1) ¢,n, P, and Fyf, show oscillations around
the scale ky = —1/7 with an amplitude which increases for
larger n.

Figure 1: From left to right and top to bottom the numerically computed
e,1. P, and Fy;, are plotted for A = 107", & = 0.05 and n = 1 (blue) and
1 =2 (red). The dashed black lines correspond to the featureless behavior.

Effects of the parameter o

The parameter o determines the size of the range of field values
where the potential is affected by the feature. As shownin fig.(2)
€1, P, and Fyyp, have oscillations around ko, whose amplitude
is larger for smaller o, because in this case the potential changes
faster.

Figure 2: From left to right and top to bottom the numerically computed
.1, P, and Fy are plotted for A = 107", ¢ = 0.05 (blue) o = 0.1 (red)
and 1 = 1. The dashed black lines correspond to the featureless behavior.

Effects of the parameter \

The parameter A controls the magnitude of the potential modi-
fication. The sign of A produce opposite and symmetric effects,
since it implies an opposite sign for the derivative of the poten-
tial with respect to the field. As shown in figs.(3) and (4), larger
absolute values of \ produce oscillations with larger amplitudes
of €1, P, and Fyy, around k.

— Rl

Figure 3: From left to right and top to bottom the numerically computed
€1, P, and Fyg are plotted for A = 107 (blue) and —\ = 101 (red),
o = 0.05and n = 1. The dashed black lines correspond to the featureless
behavior.
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Figure 4: From left to right and top to bottom the numerically computed
€.1. P, and Fy;, are plotted for A = 107'" (blue) and A = 107" (red),
0 = 0.05and n = 1. The dashed black lines correspond to the featureless
behavior.

Effects on the CMB temperature and po-
larization spectrum

To study how the feature impacts on the CMB spectra we mod-
ified CAMB to use the modified primordial power spectrum in-
stead of the usual power-law expression Py(k) = Ag (k/k )™
In fig.(5) we show the CMB spectra obtained with different com-
binations of the parameters \, o and n: Feature A= 10", 5 =
0.05 and n = 1; Feature B= 101, o = 0.05 and n = 2; Feature
C=-10"",0 = 0.05and n = 1; Feature D=10""1, o = 0.1 and
n = 1: and Feature E= 10712, 0 = 0.05 and n = 1. We show the
spectra in terms of the quantity Dy = (({ + 1)Cy/(27).

From the plot it is possible to see how the feature can change
the predicted CMB spectra. In the TT spectrum the relative dif-
ferences of the order of 10 — 15% are visible. Choosing the val-
ues listed above for the parameters describing the feature, and
kog=75- 1["‘Mpc’1, Ay =2.2-107% and ng = 0.967 we can
see from fig.(5) that the effects of some feature can partially re-
produce the dip at ¢ ~ 20 in the TT spectrum.

Figure 5: We plot the D] = ¢(¢ + 1)C77 /(2x) spectra in units of .k
with respect to the multipole /. and the relative difference with respect to
the featureless behavior. The solid black lines correspond to the featureless
behavior.

Conclusions

e Local features only modify V" in a limited range of the scalar
field values, and consequently only affect 7 and B in a nar-
row range of scales.

© The P and B are affected by the feature, showing modulated
oscillations which are dumped for scales larger or smaller
than k.

o The effects of the features are larger when the potential mod-
ification is steeper, since in this case there is a stronger viola-
tion of the slow-roll conditions.

e We have shown that an appropriate choice of parameters can
produce effects in qualitative agreement with the observa-
tional CMB data.

e Due to this local type effect these features could be used
to model phenomenologically local glitches of the spectrum,
without affecting other scales.

Forthcoming Research

Further studies involving data fitting can determine more accu-
rately the values of the parameters which provide the best expla-
nation of the observed deviation of the power spectrum from the
power law form.
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PO7 Large scale suppression with

Ultra Slow-Roll inflation scenario

Rikkyo Univ. Shinichi Hirano (M1) collaborators Tsutomu Kobayashi (Rikkyo)
In preparation Shuichiro Yokoyama (Rikkyo)

§ Introduction § Multi-stage and non-causal fluctuation

Ci of temperature fluctuation and Large scale suppression P.Chen, etal.(2015) <—— they consider multi-stage inflation with canonical Lagrangian

P4 A-CDM * good prediction for almost observation date Multi-stage inflation which can explain the suppression « * *
Z:E::;::;n Bing-Bang But in C) of CMB temperature fluctuation, it seems * kinetic era (pre-inflation) + slow-roll era
P(inﬂztion) theory to be a suppression at large scale.One don’t explain o 5 Kinetic era
this suppression with standard inflation + A-CDM I R R B B
o Il
: « — 6000 ) . )
It is called “Large scale suppression o Planck collaboration 2015 decelerating expansion universe
¢4 :obs g’ in canonical Lagrangian case
. Lo , . £ [suppression

Models which explain this suppressi - :prediction £ [ SuPP!

A4

chaotic inflation, PBH remnants (

5 / ) scale-inv

logical def lid inflati non-causal fluctuation ...
topologic defeats, solid inflation W0 50 1000 150 2000 250 \ & we don’t solve three problems naturally
hybrid inflation, ... Vulivole moment 1 DT Is .

= o8 ke
- How to explain the suppression What is model for having an suppression and causal fluctuation ?
curvature perturb.ation ! (PR) is suppressed » Ultra Slow-Roll inflation  Inoue,Yokoyama (2002), Kinny (2005)
R ~ Ho C
@/|9| ¢l large + inflaton potential is flat = Lagrangian has an shift symmetry w.r.t \phi
Adding some era * re-inflation 1 I _
. - Y = o(€) + const
before inflationary era ° slow-roll parameter 7 = o(c)

ex: kinetic term dominat era; A
( ) — constant term makes kinetic era and slow-roll era !

* k- and G-inflation * k-inflation case (G = 0) Powor spectrum in super-horizon scale
M2 1 2 2 32
i _ My S L s (HN [ L) 1P ek 59
scalar-tensor theory Our Lagrangian  £=—FR+ X+ X V:H P~ 2A‘Ig|EH2 =) lrem) ar) - o1t
)
GR + scalar field (canonical a e 4)} =0 .3 n+2
( ) w1, Era @: v~ T o

XtV 2 Plosd )12 /.y 30—

T et (H\N 05 L) (ek)mr
second-order EoM A = ¢ 2MZen \ 27 T(3/2) aH blue-tilted
non-canonical terms N N -

inflation theory Slow-roll parameters s - — -
" Era@: v~ 5 gm similar behavior
k-essence, Galieon term — k- and G- inflation R R o » 1 HNR R\ i as kinetic era
inflaton C.A-Picon, et al. (1999) n 2 S e (ﬂ) (ﬁ) scale-inv +
= =2y -6 -}
T. Kobayashi, et al. (2010) K il slow-roll era
A p L we can induce the suppression !!
Twoera (D X< X" = gy =2 — —0 ~
* USR k-inflation and G-inflation formalism mg -1 -1
) e @ X> =Xt = =2 =6, =1 + USR Gr-inflation driven by potential
Lagrangian L= T"R —Vo+ K(X) - G(X)Do DO desi 2
- ion ! . / .
' ) , (&) eras are quasi-de Sitter. * causal fluctuation !! Our Lagrangian £= 2R XV, X"
Field equations  3M2H? =V, — K +2XF o 1 o Al gy 2 N
P L i it S =< [ drd T (o N N 3 : d 6n.
MAH = -XF+ XGxd Quadratic action 5" =3 / s [‘ o] Field equations  F =1+ 5o HoX™! 2 [at (i gimx)| <o
Fi=Ky +3GyHo, %(a‘"oﬁ) -0 Muhanov-Sasaki eq  u{ + (r%k‘z - )ue=o, MR~ Vy+ X 4 ”57:4 HX"$
. . . 2 1 71 7 7 1 I .
now consider potential driven case V; > [K|, [XF = {(2 —en+ %) (1 + #) + o] = T+ MEH = =X - g HOX™ + 3= X6

§ Summary & future direction

L3 n—4n)
Era(: ve -+ ey

: : 2 1 . 2 Summar;
Quadratic action s = / drds 2 [ - 2007 o 2 i g, ( v

5 € P~ oap— (*)2’ ] (L) .

&= qi 76 = ay[2M2q, 2Mien A2 4/ blue-tilted We consider USR k- and G-inflation driven by potential.

s 1= 0px + 20pxx + 60y + 6dcxx Era@: v 24 Loy In zfertain Le?grangian cases, we can construct the models

€5 1= 0px + 40y . 2,3 (H)z ( " )ﬁmscale o which explain large scale suppression of C .

: 0| =) (=% -inv
Slow-roll variables  sxx ¢ aMZey \2r) \aH
s So we can also induce the suppression !! { Future direction)
. - .
Usual slow-roll para ¢y := 7% =dpx +30ex , N = I;l: By using “Class” of Boltzmann code, we sketch C; . . Blue tensor
H

Condition for avoiding ghost and Laplacian instability ¢ > 0 Pl rioned g In USR k- and G-inflation driven by kinetic term, we

our model (n=5/4)

. 1 2 i i
Two eras (D) &< e HXT o e < ox, en = dex - aurmodel1>1) cons@er the phase ﬁllghtly away from attractori
: ’ Then it may be possible for us to take € < 0 without

. 1 2 5 ~
@ 6> ——=HX" 2 ~1, dkx>dax,en ~30ax having ghost and Laplacian instability.

Mt

Muhanov-Sasaki eq "+ (nzkf -
y N N | | + Large scale oscillation in C
26 _ (um)? |:2A%+W#*2£H*;SHTIH =T+ { NN i
“ - . 11 Cschanges at transition. So it may be possible to explain
This equation is same form as k-inflation case. WS ) this oscillation in power spectrum by numerical calculations.
In both cases , we can take a solution by using success of suppression !
k-inflation solution. o

b M
multipole ¢
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An Alternative Approach to Black Hole Thermodynamics:
Rényi Entropy and Phase Transition

(based on arXiv:1511.06963/Phys. Lett. B752, 306-310 (2016))

Viktor G. Czinner ( Nihon University)

Hideo Iguchi  (Nihon University)

We study the thermodynamic stability problem of Schwarzschild black holes
described by the Rényi formula which is an equilibrium compatible entropy
function. It is shown that Schwarzschild black holes can be in stable
equilibrium with thermal radiation at fixed temperature within this approach.
This implies that the canonical ensemble exists just like in AdS space, and
nonextensive effects can stabilize the black holes in a very similar way as it is
done by the gravitational potential of an AdS space. It is also shown that a
Hawking--Page-like black hole phase transition occurs at a critical
temperature.

T. S. Bir6 and P. Véan, PRE83, 061147(2011)
Zeroth law (extensive)

Energy (extensive) 1l 2

E,(E, E))=E +E, S, E, S, E,

Entropy (extensive)

Siz( By Ey)=S;(E)+S,(E))

Equilibrium - Maximum entropy principle (+ energy conservation)

oS 0S. T
dSlZ(El,EZ):a_E’ldE1+a_E’2dE2:(Sl_SZ)dEl:O
1 2
> S (E1 ):Slz(Ez) (factorize)

——» temperature 1_ S ’( E)



1251

T. S. Bir6 and P. Véan, PRES3, 061147(2011)

Zeroth law (non-extensive)

Composition rule EOS

EIZZEIZ(EI,EZ) 5122512(51’52) Sl(El)’SZ(EZ)

Maximum entropy principle

dS;,= 865;2 S 'dE+ %%2 S, 'dE,=0 — o, GSIZS ,_6E1285125 |
dElgz(;i}f dE1+%i322 dE,=0 3E, 05, ' " 9E, 385,
Formal logarithm
Lyy(Eyy)=Ly (B )+ Ly( By - E,=®(L+L,)
Ly Si2)=Ly(S))+ Ly(S) S1p=W(Ly+Ly)

S

aLl(Sl) aLZ 2
0L\(E) 0Ly(E,

(factorize)

oL(S)
(E)

oL
~oL(E)

) 1
) m=)  temperature T

Abe formula and formal logarithm

Abe formula (the most general non-additive entropy composition rule)
S. Abe, PRE63, 061105 (2001)

H,(S,,)=H,(S,)+H,(S,)+ H,(S,) H,(S,)

Formal logarithm — zeroth law compatible entropy function

T. S. Bir6 and P. Van, PRE83, 061147(2011)

L(S)=+In(1+1H,(S))

1
A
Origin of parameter A

- Finite size reservoir corrections in the canonical approach

T. S. Biré, Physica A 392, 3132 — 3139 (2013)
T. S. Biré et. al., Eur. Phys. J. A 49, 110 (2013)

- Quantum corrections to micro black holes

T. Biro and V. G. Czinner, Phys. Lett. B 726, 861-865 (2013)
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i ANvi T. S. Bir6 and P. Van, PRE83, 061147(2011
Tsallis and Rényi entropy Ir0 an an (2011)

Non-additive compaosition rule (Tsallis) H,(S)=S (leading order of A)

So=S+S,+0MS, S,

Formal logarithm

1+ Sp=(1+1.S)(1+AS,) — »  L(S)=3In(1+1S)

> =

Tsallis entropy

ST:%Q Z (p?_pi) =%(Z p}_x_pf)

where A=1-—q

i Formal logarithm Rényi entropy

L(Sy)=3In(1+2.S7)= In(X bl =72 In(X pf)=S;

T. Biro and V. G. Czinner, Phys. Lett. B726 861-865 (2013)

Entropy Szé:é} Y — Non-additive — Tsallis composition law

S=S,
Energy EF=M ————»  additive
gc?rnrzglelrggr:]%%hm of ;) SR:%IH( L+2 ST):%IH (1+4n XMZ)
Temperature LR:S’R(M :% 0 %ISTCM
Heat capacity Co= TS:?E((Z\AJJ)) _ 4n8}\n]\1\4f_ 1 20 e gl

(Standard Boltzmann)
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Thermodynamic property

Entropy v.s. Energy Temperature v.s. Energy
30 ¢ Sch.-Boltzmann 0.5 :
20 i Sch.-Rényi
hRémvi 0.3 !
S Sch.-Rényi - 3

* Minimum temperature
» Similarity (correspondence?) with AdS BH

Ao %
ml
Heat capacity
AdS-Boltzmann___ _ | M< M 0 CR< 0
N Lower mass Negative heat capacity
Sch.-Rényi
M> M, Cr>0
" Sch.~Boltzmann Higher mass Positive heat capacity

1.8 2.5
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0. Kaburaki, I. Okamoto and J. Katz, PRD47, 2234(1993)

Turnig point (Poincaré) method

Stability curve

dz,
dy

No stability change

Stability curves

microcanonical

Massieu function S
Control parameter M
0S
Conjugate variable M)=—=
jug B(M) i

0 Mo 1 15 2

M

Isolated BH is stable.

Massieu function Z(y)
Control parameter y
Conjugate variable dz,
dy
\ Less stable
Stability change
/ More stable
y
canonical
S—BM=—BF
B
—M(p)

~<o

~~e

~~e

-1

-15

0 5 lb 1‘5
B
Stability change occurs.

Small mass — unstable
Large mass — stable

20



Phase transition

Free energy v.s. Temperature

0.2
G o1 1 e
........ small, unstable BHs
radiation
\ large , stable BHs
-0.05
0 To 0.3 0.5
T
T<T,, Pure radiation
T>T,, Large and stable black hole configuration
Summary

We investigated thermodynamics of black hole in the parametric extended Rényi
entropy formula

. T has a minimum

Hawking-Page-like Phase transition
Stability change — stable equilibrium with thermal radiation
Similarity with AdS BH

Future work

Kerr black hole

» Another composition rule
* Non-extensive energy

» Higher dimensional BH
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Introduction

+ The domain wall is one of the topological defect.

+ It might exit in early universe, and become the
Primordial BH by gravitational collapse.

+ In this study, we research the property of domain
wall collapse.

+ Furthermore, by detailed numerical simulation, we will
discuss whether the critical behavior is found.

1257

Spherical symmetric domain wall

collapse by numerical simulation

O Taishi lkeda
Chulmoon Yoo (Nagoya Univ.)

+ As in the case of massive scalar field, there may be

rich behavior. B
+ Critical behavior of gravitational collapse N
- type 1:

M~ M, #0

Tog ()

- type 2: oo
ol 8 phase diagram In the case
M |p p*l of massive scalar[1]

+ As suggested in ref[1], we consider the following
metric and extrinsic curvature:
ds® = —a2dt® + 1/14mjdzidmj
1
Kij = 30" K
where 17);; is the Minkowski 3-metric in spherical
coordinate.

+ Then, from the Einstein equation, we can get the
following equations :

) = %mpk

0 Ao 2,01 o 2

K= T ﬁw o + gaK +4ra(20° - 2V(®))
b = —all

11 = allK — %Ad} - C% - zi;w’@’ +aV'(®)
Ay K?

w—f -t o{II? + ¢~ 4@ + 2V (®)} = 0

%K’ +8rll®’ =0

2 A
V(@) = —“7@2 + 50T

Numerical simulation
A =

where

g —

rni

pst
]

0 50 100 150 200 250
T

A =10.0,4% = 0.01 Mppy =127
o = 30

no apparent horizon

+ We solve the above equations by numerical calculation.
- spatial derivative : 4th order accurate
- integration in time : 4th order Runge-Kutta scheme
+ Initial data :
K(r,t =0)=0, II(r,t =0) =0, a(r,t =0) =1 (momentary static)

b(r,t=0) :atanh(%)

To : position of domain wall

[ : width of domain wall

_[6u? A1 1
07”7 17(2) o

+ Boundary condition : asymptotically Schwarzschild
space time

initial profile

Conclusion and discussion

+ We calculate the time evolution of domain wall
collapse.

+ We showed the example of disperse of scalar
filed.

+ The above metirc is approximate ansatz.
+ In general, we must use the following ansatz :
ds? = —a?dt? + ¢ {y 2 (dr + rBdt)? + yr?dQ?)}
+ Furthermore, traceless part of extrinsic curvature
does not vanish.
i i 1 i
A= Kj - 3K& #0

+ We will calculate the time evolution under these
ansatz.

Reference

[1] H. Okawa et al Phys.Rev. D89 (2014) 041502,
Phys.Rev. D90 (2014) 104032
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(1 Introduction )

[Motivation]

Bending angle of light in an asymptotically flat spacetime is well-known.But, there
are no established method for calculating bending angle in a non-asymptotically flat
spacetime. The main reason is that source and receiver must not be at the null infinity.

Lens object(L)

Receiver(R) Source(S)

p) | b) ?
Cosmological Cosmological
horizon horizon
Figure 1: Previous works
[Setting in this poster]

o G = 1

o 7 = r(¢)(Circumference radius), r, =2M

e ¢:azimuth at the lens, f:angle of tangent, b:impact parameter, A:cosmological con-
stant and a:bending angle of light

[Proposal for an alternative method]

Cosmological Cosmological

horizon horizon

Figure 2: This study

{z:rsingﬁ 1 du
== ==,
Y =rcoso T

<

d;
v tan ¢ — @ = tan.
i dz

For simplicity, ¢o = 5 and 6 = 0.

du) sings — us cos g5

tanfs = ('“5)57‘ (1)
(%)s €08 g5 + ug sin gg

a = 2(6 —0s) = —20s. (2)

% Eq.(1) is symmetric under ¢-rotation and hence it may be invariant.

_ B+ Atan(¢r — ¢s) :
tan(fr —0s) = mx (3)

A = upuls + upug, B = uRuly —ugus
a = Ogp—0s—m. (4)
2 Example 1
[The Schwarzschild metric]

q -1

Abstract: We propose a new method for calculations of the bending angle of light in a non-asymptotically flat black hole.
Moreover, we carry out the calculation of the bending angle for some black hole spacetimes.

[Orbit equation and Weak field approx.]

du\? 1
(%) :bi—uz-%—rgug‘ rgLrg <r<rs. (6)
Tterative calculations give
_ 1. Ty 2 4 o s
us = EsmoerW(lJrcos bs) + ) (7)
bug)? 72
sings = bur%[k@] +o(17;), (8)

w, . 2
cosds = +/1— (bug)?+ 7“43[1—7(@;;)2 +0 (bl) s (9)

(&) = LGP0 (10)
d)s ~ b § 9y 1= (bus)? )

Therefore,
tanfs = 7Wﬁ [1 = %(bus)z - %(bus)‘l} +0 <Z*§> . (1)
a« = ﬁ [1- Jom - Jous] +0 (;) : (12)
Lbus <1
a 2'79 +0 (;—g (bu5)4> . (13)

This recovers previous study.
3 Example 2
[The Schwarzschild-de Sitter metric]
2 g A, 2 rg A, ! 2,2 (102 | 2 2
ds” = — 177757' dt* + 1777574 dr® +r (dG +sin® 0d¢?) . (14)

[Orbit equation and Weak field approx.]

du\? 1 A 3
_ 2 4 a3 . . "
(%) =@ v +Tgu +§‘ 7g<<7nSr§7,s<<\/». (15)
Therefore, bending angle of light is
2r, 1 2 1 1]
a = ————=|1- -(bus)® — s (bus
s 1= 30 = 50m)
ryAb [ B 2, 3 4 U]
— 1 — —(bug)” + =(bu — (bus
3= (bug)?}E 5 (bus)® + 5 (bus)* — (bus)
2
rg
+ 0 (bT.rgAth) . (16)
1 1 A
YEEEYS
2rg 1 2 1 4 rg?
@ m [1 =5 (Bus)” — 3 (Bus)"| +0 5 ) (17)

This bending angle of light recovered eq.(12).

4 Conclusion

e We take account of the finiteness of the source and observer distance to obtain the
bending angle of light. Therefore, our result can treat even a non-asymptotically flat
spacetime.

e Future work:Application to astronomical observations.
Application to other spacetimes.
More rigorous definition of our “ 6 7.

References
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York, 2006), 2nd ed..

[2] M.Ishak and W.Rindler,Gen.Relativ.Gravit. 42,2247(2010)
[3] H.Arakida,M.Kasai(2012) PRD 85,023006
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Orbital Evolution of Stars Around Shrinking Massive Black Hole Binaries

abstract

M .Iwasa(Kyoto) , N.Seto(Kyoto)

contexts.

Based on a simple geometrical approach, we analyze the evolution of the Kozai-Lidov mechanism for star around shrinking massive black hole binary.
We find that, due to a peculiar bifurcation pattern induced by the general relativistic effects and the Newtonian potential of stellar clusters,
the orbit of star could become highly eccentric. Our approach would be also useful for studying the Kozai-Lidov mechanism in various astrophysical

1.Introduction

Massive Black Hole (MBH) binary : strong source of gravitational waves
to be detected by eLISA .

suppress

* The infall rate of stars to MBH could be enhanced significantly

associated with shrinkage of MBH binary. ——

KL mechanism : for hierarchical triple systems,
oscillation of inner eccentricity and inclination
due to the exchange of the inner and outer angular momenta

general relativistic effects, stellar potential, etc

apsidal precession

)
mey 3
9

( my

shrinking due to
gravitational radiation,
dynamical friction or gas drag.

In this poster
+ Stars infalling to MBHs must have an eccentricity unity

We study the evolution of the KL h

that is initially

by the inner apsidal precession (due to general relativistic effects, stellar potential, etc)

Kozai-Lidoy (KL) mechanism could play an important role.

but later works efficiently along with the adiabatic contraction of the outer body.

2. KL mechanism for Post-Newtonian Systems

+ Numerical Experiments

We first examine the evolution of relativistic hierarchical triple systems,
only including gravitational interaction with the Post-Newtonian approximation at 2.5PN order.

Initial Condition

€1(2) : inner (outer) eccentricity

@1(2) : inner (outer) semi-major axis 91(2): inner (outer) argument of perienter

s-L: (e1.a2, e2) = (0.001,6300,0.0001)
s-I1 : (€1, a2, e2) = (0.001, 6300, 0.3)

a1 =400 7= /1= cFeosi = 0150

s-IIL: (€1, az, e2) = (0.3,5700,0.0001)

g2=0
(c=G=mo+mi+ms=1)

mo:my:ma =03:03x107°: 0.7 g =m/2

FIG. 1
Evolution of the inner orbital elements
as a function of the outer semi-major axis.|

red and green points
sresult of direct three body calculation

blue points
sresult of analytical model

5000

3000 4000 5000
a3 a3

O Inner eccentricity suddenly starts to increase.

2000 60002000 3000 4000

O Inner argument of pericenter turns from circulation to libration.

‘We explain this interesting behaviors to use the double averaged Hamiltonian
with respect to the inner and outer orbital periods.

* Averaged Hamiltonian
Averaged Hamiltonian Hr 1pn = Hap + Hipn

3

. 202 15 y JE . _ .3
Hop = —3G7 — 15 = 15(1 - G3) (1 - é) cos 291 Hipy = s

mgag e
7 : representing the superiority

maa .
“"1 between outer orbital effect and 1PN effect.

J—
1-e2)

2) : canonical variable =16

(1,61 =/

* Geometrical Approach

Structure of phase space

The points G, = J;, 1 are fixed points
(P1)For 7 > 12 - 20J7 = 7 (Fig. 2A)
There are only circulating trajectories.
(P2) Aty =7 (between Fig. 2A and 2B)
The fixed points ; = 1 transits from stable point
to an unstable point (pitchfork bifurcation).

Adiabatic invariant

The Hamiltonian #r.ipx is not conserved
because y decreases.
How do we trace the evolution of the phase space?

Let us consider a periodic motion described
by a Hamiltonian #(q, p; A) including a parameter

1f & changes more slowly than the period of motion,
the area surrounded by the periodic trajectory

(P3) For 7 < % (Fig. 2B and 2C) 5= ¢ pdg
There are circulating and librating trajectories, is conserved. ’
segregated by separatrixes

FIG. 2

Evolution of the phase space.

circles
: stable fixed points

blue triangles
< results of
direct calculation
colored regions

08 . : adiabatic invariants
red dashed curve
3 3 T =  separatrix
-r £ 0 L mm - 0 L mrm
2 2 2 2 arrows.
é é : direction of flow
4.Summary

* We consider the evolution of a star around a shrinking massive black hole binary

* We find that the orbit of a star becomes highly eccentric, due to the Non-Keplerian potential.

References
1. Iwasa, M & Seto, N, arxiv : 1508.05762

2.Kozai,Y.1962,A7,67,591, Lidov M.L,1962, Planet .Space Sci.,9,719

How does the inner orbit evolve’

mq, m2: MBH
71 : stellar mass component

3.KL mechanism for Newtonian Potential of Stellar Cluster

We apply geometrical approach to the evolution of individual stars in a stellar cluster around MBH
with an outer infalling tertiary MBH (we assume that the infalling rate is sufficiently small).

-8B
r
The local density profile of the stellar cluster: p = p; ( )
ap

* Averaged Hamiltonian

Averaged Hamiltonian Hr.sp = Hqp + Hsp

Hsp = ne? [1 +B(-1+p8) (%Jrom))}

* Numerical Experiments

including all the information of the cluster and decreasing

‘We calculate the Hamiltonian equations
with )= ~107%, 3 = 3/2

suddenly ing:

0.8
0615 3A
g >

1— reaching value

FIG.3
Evolution of the inner orbital elements

s-V'| as a function of 7

0 50 100 150
n

200 0
transiting to libtation
* Geometrical Approach

Structure of pl

(P1")For 1) > —18 + 30/J7 = 1.1 (Fig. 4A)
There are only circulating trajectories.

(P2") For 7 = nje1 (between Fig 4A and 4B)
Pitchfork bifurcation similar to (P2) occurs.

The fixed point G = J; turns from a stable point
to an unstable point.

The new stable fixed point is generated at g1 = 7/2 .
(P3’) For 7)c2 = 12 < 1) < 17c1 (Fig. 4B)
There are circulating and librating trajectories.

The area surrounded by the separatrix
increases with time.

(P4”) For 1) = 7c2 (Fig. 4C)
There are only librating trajectories.
The fixed points exist on the vertical lines g, = 0,7 .

(P5") For nes = 18+ 30J% <7 <7 (Fig. 4D)

The stability of the two points G; = .J;,1 interchanges.

50 100 150 200
n

FIG. 4
Evolution of the phase space
blue triangle : result of the numerical experiments of s-IV
ereen square : results of the numerical experiments of s-V
(We plot the absolute value of g1.)

colored regions : adiabatic invariants

* For the initial distribution of the cluster biased to small eccentricity,

reaching the maximum eccentricity during (P3’) could help to refill the loss cone.

3.Naoz ,S., Farr, W. M., Lithwick, Y., Rasio, F., & Teyssandier , J. 2013 MNRAS , 4312155

4. P.B. Ivanov, A. G. Polnarev & P. Saha, 2005, MNRAS, 358, 1361
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Detection of circular polarization in stochastic gravitational wave background

with Pulsar Timing Arrays
Ryo Kato and Jiro Soda, Particle Theory and Cosmology Group, Kobe University.
Introduction
We generalize the overlap reduction function (ORF) so that we can detect circular polarized stochastic gravitational wave background
(SGWB) with Pulsar Timing Arrays (PTAs). In this poster presentation, I explain the ORF for circular polarization, which describe the
angular sensitivity of PTAs.

!
The signal ™ Pulsarl
The pulsar red shift integrated over @i (the signal) is given by Pulsar2 GW directi
i 1 1rection
oL opip . . <
2(t 1) = 5 g (e B) — his(te D)) SR R
. ) .
~
hij(te, 1) : asingle GW at the Earth, (t,%.) = (¢,0). N b
p3 9 Y
hij(tp,f) : asingle GW at a pulsar, (t,,x,) = (t — L, Lp). ;g{ n Y
‘/""/ Earth
Formulation \
In the TT gauge, metric perturbation %i;(t, X) with a given propagation ' . /’\\
direction /i can be expanded as . 0 / \
05 / \
hij (£, %) Z / df / 42h hA (f.0) e “(ﬁ) e 2mif(t—h-x) : o1 / \
A=-+,x : A /
. \ ! — 0
ha(f,1): the Fourier amplitudes : 21 /
A( n) : the polarization tensors 04 \ /
. . “os \J//
*Assumpnons for SGWB: stationary, Gaussian, 1%c un%ed : ro2irzoiririnos ERESEE T
. &lrad] & [rad]
: ¢ le (1=0 b) dipole (I=1
The ensemble average of the two Fourier amplitudes can be written as (a) monopole (1=0) () dipole (1=1)
(Ba(f )b (f,0) = 8(f = £)6° (0, ) St (f, 1), : SN
where ST “
SA(f) = ( 1(£,0) +Q(f,n) U(f n)—iV(f,n) ) ' . 02 /»' Y o 5
U(f,n)+iV(f,n) I(f,0)—Q(f,h) . I ol ‘\\\ C; T &\47*4\?—* ——ad)
Using the spherical harmonics Y;,,, and the spin-weighted harmonics +4Y7m, -« \\\ P - ‘\\ // o)
we can expand the Stokes parameters: . : o1 ’\\// AW
IR =INY Y chaYim(h), : g ! e
l:(? m:lfl - Elraa) Y Nt
V(f,n) = V(f) Z & Vi (), (c) quadrupole (1=2) (d) octupole (1=3)
1=0 m=—1 .
o 1 . Fig.1 Plots of the circular polarization of the generalized ORFs
@Q+iU)(f, 1) = PT(H)D D et aVim(h), as a function of the angular separation between the two pulsars.
=4 m=—1 L I I R I I R LI I A A
1 H . . .
. _ N . . The functions '/ and T"V called the generalized ORF. TV describes
—iU)(f,h) = P crr —4Yim : ) S
@~ i) 8) ! ; m;l Cim ~4Yim (B) . the angular sensitivity of the circular polarization in the SGWB.
For simplicity, we consider the case of [ = 0,1,2,3. Integrating T’V , we obtain the following form:
: o =0,
The correlation of the signals is calculated as follows: : rl‘)/o o
" B iy . 10 =Y
a0 = [ / 4F' (1 ()2 )20 I0) : S Lot (. €
: Thi=- 3 sin& [1+3<1+cos5)10g(sm§)]’
-/ 6 S (T, + el V(T erre ), Y, =1,
- 1=0 m=—1 : v
Ty =
where : 20 (1/7
: , 30 sing X €
. vo_  cos o8 o (in &
P = [ RS ) (G ) ) T = Y g [ - ) {“%“61‘)" CHIE
s im . v o —rv
=3 : 2—-1 — *21»
rv(f) = 71/ di k(f, 1) Y el Yim (0) {FyH (R) ) (R) — Fy ™ (A)Fy (d)}. - v __V30m _ —cos L€
52 - : Ty, = 6 (1 —cos&) |2 —cos&+6 1T cost log | sin 2
R(f, 7)) = (e~ 2T LUFD) 1) (2mifLO+RD2) _ 1) 2ty : Iy, =-Tk.
FA(fl) = 1 ﬁil:}. _c(h). . Fig.1 shows these generalized ORFs.
\ 214+n-p ¥ /
Conclusion

We show the angular sensitivity of the PTAs for circular polarization. As you can see by looking at the Fig.1, in isotropic (1=0) case,
we cannot detect the circular polarized SGWB with PTAs. On the other hand, when we consider anisotropic (1 # 0) ORF, it is worth that
we take into account polarization, otherwise it might be behave like a noise.

C. M. F. Mingarelli, T. Sidery, I. Mandel and A. Vecchio, Phys. Rev. D 88, 062005 (2013).
N. Seto and A. Taruya, Phys. Rev. D 77, 103001 (2008).
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Possible orbiting gyroscope precession
by a Chern-Simons modification to gravity

Daiki Kikuchi

Hirosaki University, Japan
with K. Yamada, and H. Asada (Hirosaki)

JGRG25 in Kyoto Dec. 7 - 11, 2015
Abstract: Alexander and Yunes [1] discussed a possible constraint on a Chern-Simons modified gravity theory by using Gravity Probe B experiment [2].
We will reexamine the constraint in more details.

1 Motivation

The Chern-Simons (CS) correction is one of the most interesting modified gravity models.
Then it leads to some effects distinct from general relativity (GR) .

e The CS modification motivated by both string theory and quantum gravity and
introduces the parity violation into the gravity theory.

o K. Konno et al.[3] investigated the CS correction of the spacetime of a slowly rotating
black hole and explained the flatness of rotation curves without the existence of the
dark matter.

e A possible constraint by interferometers [4, 5], or Gravity Probe B (GPB) experi-
ment [1, 6] has recently been studied.

We investigate the gyroscopic spin precession in CS modified gravity using the solution
by Alexander and Yunes (AY) [1]. Then, We reexamine the constraint on a CS gravity
toward data fitting of the GPB experiment in more detail.

2 Spin precession analogies in GR

(OThe spin drift rate ds, /dt and the spin precession 55, /S per a certain time (¢ = p)

s . = - B B
§:Q><S = %:%/O Qdtx S. S :spin vector (1)
(OThe angular velocity a
~ 1. G
Qer = VX G0, G0t = (901: 902+ 903) - 2
~ G [+ (s 7 irri g
= Qup = @ [JE — 3y (ny . JL>] . < Lense—Thirring (LT) effect > (3)
g
= 3. = (Gmpg
fap = 57, x ¥ ( o )
3Gmp , _ .
= qu x Uy. < Geodetic (GE) effect > (4)

Ji + spin angular momentum of Earth, 4, : velocity of the gyroscope
rg ¢ distance to the gyroscope, 7ig(= 7y/ry) : unit vector pointing to the gyroscope
mpg : mass of Earth

3 Chern-Simons gravity

(OThe action of CS gravity theory

ot " f 1
_ = 12 |R+<*RR|, R= Rups, "R= —€*PHvR? 5
S 167TG‘/ g/d z[ + 1 } Raprs, 3¢ R, (5)

f : scalar field ([f] = L?), €®Pr¥(= 21 /,/=g) : Levi-Civita tensor density
(OThe CS correction to the metric as the weak-field solution
Considering Sun-Earth system in the standard PPN approximation, the CS correction
to go; is given by [1]
gnfs = Joi — gﬂf:R

. G " " 1 3, /., =
= QfW mpgry (Vg X ) — 5];.; + 5ila (ng . JE)} s (6)

v : velocity of the Earth, f : CS coupling parameter ( * stands for time derivative )
where we neglect both the velocity and the spin angular momentum of the sun.

(OThe CS angular velocity Qos

= 1= _cs ;Gm
ch:—§ngQf’5 =fy

3 [0g — 3ity (U - iy)] . < Chern—Simons (CS) effect >
9

4 GPB experiment

(OGPB mission final result [2]
* Lense-Thiring effect : —37.2 + 7.2[mas/yr]
(GR prediction —39.2[mas/yr])
* Geodetic effect : —6601.8 4 18.3[mas/yr]
(GR prediction —6606.1[mas/yr])

* GPB coordinate system
S : the direction of the guide star (IM Pegasi) at first
WE : East-West direction
NS : North-South direction

5 Gyro precession

1000

X-POL ——
0 z-POL ——
-1000
E E‘ -2000
‘ g .
g o /ﬁ linear
& -4000
[mas] s
-6000
7000 — -6600 [mas/yr]
0 0.25 05 0.75 1
tiyear]
5 x-POL ——
o 2POL ——
5
- -10
LT © .
- linear
< /
[mas] 3
-35
5 025 05 075 1 - -3 [mas/yr]
’ tlyear]
15 xPOL ——
2-POL ——
1
CS -
[mas] 05 (0 [mas/yr])
Rl
[ 0.25 05 0.75 1
tlyear]

6 Possible constraint on f by GPB

The gyro drift rate per a year given by taking the average by the orbital period of gyro
(O NS direction < by GE effect

<(d§l)itcs >P ~ 6.7 x 10° (%) < 18.3[mas/year] = (%) <27x107%).  (8)

(O WE direction <« by LT effect

<(’1§#>P ~1.5%10° (é) < 7.2[mas/year] = ({) S48 x107%s. (9)

9

These bounds are better than the AY’s estimation (% < 1073[s]) [1] or Smith et al’s
estimation (mcs™! < 10%km]) [6].

7 Conclusion
We investigated the gyroscopic precession in CS gravity.

e The spin precessions caused by CS gravity periodically oscillates at one year period,
although that of LT effects or GE effect increases linearly.

e The CS parameter bound may be improved by considering in more details.

= We wish to make data fitting for testing CS separately taking statistics , for example,
every four months out of all data table.
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D3/D7 system

Karch, Katz (2002), Grana, Polchinski (2002), Bertolini et al. (2002)

* Holographic dual to & = 2 SQCD
- Inlarge N, limit, a probe D 7-brane is embedded in

AdS: x S° geometry

- Fluctuations of the D7-brane = “meson” excitations

+ Phase transition by applying electric fields
- Dielectric breakdown due to Schwinger effect

current o,
(Jo) /"]

Schwinger limit

FEeris/m? =~ 0.58

E, E |
(X)) ® O |

stable

unstable 1

Electric field E,/m?

| Minkowskiembedding Black hole embedding

« @

Karch, O’Bannon (2007)
Erdmenger, Meyer, Shock (2007)
Albash, Filev, Johnson, Kundu (2007)
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Critical embedding in
the D3/D7 system

+ A phase boundary between the Minkowski
embeddings and the BH embeddings

- Two series of the solutions merge
- The shape of the D7-brane is conical

Minkowski embedding Critical embedding Black hole embedding

Ve e

|| Electric field increases >

Taylor cone

+ A hydrodynamic phenomena, which are used in
electrospray in material/industrial science

+ As an electric field increases the surface of a
conductive liquid is sharpening, and at a critical
electric field a cone is formed

- Beyond the critical value, the liguid sprays
Taylor cone

Electric field increases

Ref. R.Krpoun “Micromachined Electrospray Thrusters for Spacecraft Propulsion” (2009)
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+ The first theoretical model of this phenomena is
given by Taylor (1964)

G.Taylor Proc. R. Soc. Lond. A 280, 383 (1964)

- He assumed the liguid was a perfect conductor and the
cone was formed when the surface tension and the
electrostatic stress equilibrated on the liquid surface

- Repulsive forces between the induced charges cancel
surface tension forces

+ A half-cone angle 49.29° predicted by Taylor is
very close to experimental results

- This angle is determined by a zero of the Legendre
polynomial

Can we find something like universal properties for conic D-branes?

RR flux background

« D2-brane in a constant Ramond-Ramond (RR)
flux background in flat spacetime
- The d-dim. bulk spacetime
gudrtde” = —dt* + (dz')? + (d2®)* + dyf_5s ¥
- Embedding function
y = é(p) p=/(z')? + (22)? r
- RR field
Cpdx! = Codt = cydt (c = const.)
+ The action is a DB| action with a coupling to the
RR field .
S=—Ts / dax®dztdx? \/— det(ap + 270’ Fap + 0g 0y )

_L
2

xl uniform RR flux

/ dxldxtdx? 27l FopCle®®
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Conic solution

« The equations of motion are
06 ,dCo[¢]
V1+ (21 Fia)? + (019)? + (820)2 de
27ra’F12
\/1 + (271'()/F12)2 + (81¢)2 + ((92(25)2

Fi; =0,

+ 27«

i

i

} - 81'00[‘1’] =0

1+ (9:i9)?
1 - (Colg])?”

The second equation can be integrated 2w/ Fiy = Co[¢)]

0;¢

ACofg) 007 _,
T+ (0,07 |

d¢ 1-(Colg)?
This equation is singular when Cy[¢] = cdp(p) = +1

- If we expand ¢(p) around this point, we have a

critical (conical) solution
1 1 Half-cone angle
Bp) =~ =pt o

\/§ Iecone = arctan \/§|

The apex of the cone is located at p = 0

i 1—(Colp))?| +

Col¢]

Other examples

* NSNS flux background
- Dp-brane in a constant NSNS flux

topology of the cone: R x SP~2
pcone = arctan \/Q(p — 2)‘

- D3/D7

- Probe D 7-brane with worldvolume
gauge fields in AdSs—Schwarzschild x S°>
topology of the cone: R} X S3

Lgcone = arctan \/6‘

The cone angle is unique independent of three parameters (E;, B;, 1},)




Universal formula”?

+ We have three conical D-brane solutions for
different external forces and couplings
- RR flux, NSNS flux, gravitational field (AdS curvature)

. |t is expected that the half-cone angle is
determined as

Pcone = arctan \/ 2(deone — 1)‘

topology of the cone: R, x Gdoone—1

- What mechanism determines the angle of conic D-branes?

« Where is the factor of 2 in the square root coming from?

Force balance in Newtonian
mechanics

+ We have two force balance conditions:
- Normal direction (extrinsic dynamics)

- Radial direction (intrinsic dynamics) Extomal
1
Fle_T. — ~ |
[Pl **rtan Oeope
Young-Lapl .
oung-Laplace eq ‘Fn’ _ |F7.| tan econe

Hydrodynamic (elastic) equilibrium

\ J
Y d

Tss = (tan 6 2r—

88 ( cone) d’f‘

T?"?"
Assuming that the tension is isotropic and its distribution behaves as
Tos =Trr ~ Ar® (’I" ~ 0)

Ocone = arctan 4/ —
o
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Eauations of motion for
generic membranes

« Extrinsic and intrinsic dynamics
TWK!,, =— Fh, External force

DT =F, 7= Ta A
Induced metric: hay = G0 XM 0p X"
Extrinsic curvature: — K* , =(g"y — h*\)he"V, hp?
=D Dy X" +T*,5D, X*Dp X7,
Embedding functions: z* = X" (y%)

Nambu-Goto brane
T — _5pab (0 = const.) TrK* =0 Extremal surface

In general, the energy density is not equal to the tension (negative pressure).

Force balance in curved
spacetimes

+ A membrane in an “axisymmetric” spacetime
Bulk metric: 9uvda*dz” =Ai;(p,Q)dy'dy’ + B(p,¢)(dp” + d¢?) + C(p, €)dQ7_,
+ Dui(p, ¢)dw* dw!

Induced metric on the memebrane: Embedding functions

havdy"dy’ =As;(p. 6(p))dy dy? ¢ =0(p), w' = const.
+[1+¢'(0)’IB(p, 6(p))dp* + Clp, d(p))d_,
Topology of the cone R4 x gd-1
We assume the membrane has an isotropic tension on the cone
stress-energy tensor Tup = Tap — 0(TaTb + Sab)

tension induced metric on the cone

K 0 = = Ff sing d
DT =F, V—AB dp

If the external force is along the axis of the cone, we can combine two equations.

1
(V=Acsin6) — o cos nd,, log(VBC1~D/2) 4 ﬁT”@pAij =0
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 If we assume that the bulk spacetime is regular
at the membrane (the membrane does not touch
event horizons or some singularities) and the
tension ¢ plays a dominant role, then we have

o do
dp

- If the tension behaves as o ~ p* near the apex of
the cone p ~ 0, the angle of the cone becomes

d—1
Ocone = arctan \/ —_—
Q

20

(sin Bcone) ~ (d — 1)(cos Bcone) ;

+ The dimension of the spherical part of the cone
+ The power of the stress distribution

Stress—-energy tensor of the
various D-branes
« D2-brane in the RR flux

isotropic tension

1
To% = ———e, | T% =T", = —/1— (Colg])> | Ry xS
o=~ I=GEF Gy} R
* Dp-brane in the NSNS flux isotropic tension
T% =T" = - 1 1 2¢2’ [TTr:_V1_02¢2, Iy =—vy 1_02¢26m"]
—C
R, x §P~2
- D7-brane in AdSs x S5
1. B 11 . . 11,
T = - ;(1 + ?)» T = ;gQ—hEijkE]Bk, T = _;?EJkEjBky
i 1 :E2 i 1 — i %
=~ |:(17‘927h)5.7+g72(h 'E'E; + B Bj)} :
[T’"r =—0g, TM,= foémn] isotropic tension R, x 3

1 1 A pd g\ 2 1 4 4/4
[02 =1- ﬁ(h’lE2 -B?) - th(E ‘B)?, h(u) = (“ "/ ) . ogw) = WA/ }

ut+ri/4 T 2ra’R? w2
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Mechanism for the conic D-
branes

« When the isotropic tension vanishes, a cone is
formed.

+ The angle of the cone is universally determined
by the dimension of the cone and the power of
the distribution of the tension.

- For the conic D-branes, the power is + independent of
the background fields, which comes from the square
root of the DBl action

]econe = arctan \/ 2(deone — 1)\

topology of the cone: R x Gdcone—1

Summary

+ We found various conic D-brane solutions,
whose cone angles obey an universal formula

- The cone is formed at a critical point where the
brane tension is canceled

* In general, the cone angles are determined by
simply the local force balance

- |t is expected that many conic D-branes other than
our limited examples exist and our formula is valid

« Beyond the critical value, what happens”?
- Spray solution? Funnel solution?
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Born-Infeld Gravity and Black Hole Formation

Meguru. KOMADA & Shin’ichi. NOJIRI
arXiv: 1409.1663
Nagoya University QG lab

Palatini Formalism

Usually, a gravitation theory has only metric degrees of freedom.

But, there is an another formalism which adopts connection as
independent degrees of freedom.

Take the variation of the Einstein-Hilbert action in this formalism.Then
1
Ryw = 5 B9 = gy =0 Y

Val(=9)"g =0 @

The connection which satisfies the second equation is Levi-Civita connection
Itself (that is a rewriting of the definition of the Levi-Civita connection).
So, metric and Palatini formalism are equivalent to each other.

but

This property does not hold except the Einstein gravity. In general gravity theories,

metric and Palatini formalism describe different theories.

Black hole formation by collapse of dust

Now we assume that the collapsing dust is uniform and spherical
symmetric and Outside of the dust ball spacetime is Schwarzschild
spacetime.

Let R? be the initial radius(large enough) of the dust ball its e-
folding is N = No.
Then the total mass is given by

A v
M= ?’R‘gpoe*”” (15)

The condition is obtained by comparing the bouncing radius and
Schwarzschild radius. If the bouncing radius is smaller than Schwarzschild
radius, then black hole horizon can appear. By using(I3) and (14), the
condition is

(i) o0 > 1 (i) bi2po <1

M? > 182b1 (1) M? > 2T

Palatini Born-Infeld Gravity

The Born-Infeld gravity in the Palatini formalism is also a theory different
from the Born-Infeld gravity in the metric formalism [1] [2] [3].

The Palatini Born Infeld gravity can avoid the ghost with simplest action.

s=— [aw 1 bR, 1 S,
S= hll;/’ o9/ ldet (g + DR )| = \/|det (g )] p + Smatter @)

b : constant

Take the variation and derive equation of motion. Then

Nays (P")’”' g = KT

@

VA([=P)A(PT)") = 0) ®)
where

Puy = guw + bRy

After BH formation

The black hole which has a regular
core and coincide with usual black hole
asymptotically is considered(Fig.2) [4].

It appears from the collapse of the
star with the quantum effect (This star
bounces too. ) [5][6].

Futhermore the remnant object
“Planck star” appears after the collapse.

There might be potentiality that the same
mechanism work in black hole formation of
the Palatini Born-Infeld gravity
(classical remnant?).

Fig2 Quotation from Hayward[4].
Formation and evaporation of Regular BH

FLRW universe with dust
Consider the shrinking FLRW dust universe by using this theory.
ds? = —d +a(t)® Y (do')?

i=1,2,3 (6)
I, = A(t) Il = a(t)’B(t)sij @)
I, =T, = o) ®

Substituting these above assumptions to EoM (4) and (5).
bi2p {\ 0 (B4 .um)}f {1 +3b ((" +20? —(‘u)}’f -1 ©)
0 {1+h(u+.wu)}{‘{1+.();(("+2("7(‘//)}f71 (10)

—(‘+11:%%{m{\+'u‘((‘+zt'—>—('11)}} )

p={1+3(C+20?-cn) }” 0: density of dust

x {2+ {sHB+ 618 + 3118 + B} } (12)

By solving above equations, we obtain the behavior of shrinking dust universe.
The behavior is very different from the case of the general relativity.
The universe does not collapse to a point, but bounces back and switches to

expand at finite size.
N

VR %

o [ dust < dust >
universe universe

shrinking 7 j ‘\ bounce . expanding
Fig.| bouncing universe |,
We calculated the size of scale factor when the universe bounce at. 150
>
(i) bspu > 1 (i) br?po < 1

p=poa=?

a=e

3, N9,
gr»“,u, (13) ‘e‘\~ﬂbnwu‘ (14)

Summary & Future outlook

I The Palatini Born-Infeld gravity has a characteristic action and is different
from the metric Born-Infeld gravity(Palatini Born-Infeld action is simpler).

2. By the combination of bounce FLRW dust universe and Schwarzschild
spacetime, we obtained the condition black hole can be formed.

3. The new kind remnant object(like the Planck star?) might appear after
the formation and the evaporation of black hole in the Palatini Born-
Infeld gravity.

4. To obtain a more correct estimation of condition that black hole can be
formed, we should treat the junction condition directly in the Palatini
Born-Infeld gravity and should derive the formula correspond to (I5).
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Slowly rotating dilatonic black holes with

exponential form of nonlinear electrodynamics

Ken Matsuno
S.H. Hendi, A. Sheykhi, M. Sepehri Rad

Gen. Relativ. Gravit. 47, 117 (2015)

|
" Introduction

» Born-Infeld nonlinear electrodynamics:
Removing divergence of electric field at the origin
in classical Maxwell theory

AR

v Other models of nonlinear electrodynamics:
[ Power-law Maxwell |
< Logarithmic form > can modify electric field
\ Exponential form

J

We add small angular momentum to 4D exact
charged static dilaton black hole solutions with
exponential form of nonlinear electrodynamics

- /
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: . .
Models of nonlinear electrodynamics

e Born-Infeld nonlinear electrodynamics (F = Fy,, F*")

LBI:452<1— 1+2—‘;2>

e Logarithmic form of nonlinear electrodynamics

F

Lin = —4821n (1 + 4—52>

e Exponential form of nonlinear electrodynamics

F
v B—o0 limit:

R F2
Lgt=Lin = Len = —Ft 25+ 0 (57°)

k standard linear Maxwell field J

" Four-dimensional Einstein-dilaton system with N
exponential form of nonlinear electrodynamics

e Action

1
S =1 /d4x\/—g (R — 29" 8,08, — V() + L(F, D))
V(D) = 2Age260® 4 2N P two Liouville-type dilaton potentials

> Exponential nonlinear electrodynamics with dilaton field

6—4()4\’19}'
exp (_452 ) - 1]

_ Fe 2a® : Maxwell-dilaton system

L(F,®) = 45229

[ B—o0
—
L(F,P)A

-

—F
ﬂ) 452 [exp <—> — 1] : exponential nonlinear
electrodynamics -
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s . I
Field equations
Gy =2 (V,P) (V) — ((Vcb)2 + @ + n) G
2 F OL(Y)
-2 (B = o) S5y
i oL
aﬂ (\/_—ge—QadD#FuV) — 0
v2¢ = 1V (P) +
4 dod
_ 5p2 200 OLY)
N =282 lzy - L(Y)]
—4ad
LY)=e¢Y -1, y=°¢ %2?

\ )
/ . . . N
Ansatz of slowly rotating charged dilatonic BHs

e Metric R
2 _ >, dr 2 -
ds?2 = — F(r)dt?2 + 5O + r2R2(r) (d92 + sin? 9d¢2)

+ 2aG(r) sin? Odtde
» Gauge potential
Aydat = h(r)dt + agC(r) sin? 0d¢
» Dilaton field
® = d(r)

v Slowly rotating solution:
Solving field equations up to linear order of
Y angular momentum parameter a )
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" Electric field A
[ 20P 1
B(ry = ) _9& 3t ]
| dr r2R2(r)
2
_ q : -
Ly = LambertW (62r4R4(r)) : Lambert W function

LambertW (z) exp [LambertW (z)] = =
LambertW (z) =z — 2° + 323/2 — 8z%/3 + ... for |z| < 1
v B—oo limit:

Sou -~ 3 5
~o2aP qa "~ q q
E(r) ~e +0O (54T10310(r))]

~~ -

same as dilatonic Reissner—Nordstrom black holes

- /

4 4D slowly rotating dilatonic black holes with )
exponential form of nonlinear electrodynamics

2
ds? = — F(r)dt? + % + r°R3(r) (oze? + sin? 9d¢2) + 2aG(r) sin? Odtde
T

Apdat = h(r)dt + aqC(r)sin20dp, d(r) = - f In (9)

a2 r

a?-1

—202
re?¥1,  R(r) = ¢*®™)

F(r) = [(1 + a?) f’rﬂTﬂH(fr)dr —m

20 2cx 242
b\ aZat b —:—E_ b\ o241
Mo ) A (D) e (1)

1
H) = 445 (\/m_ "LW) -
2 —2&2
GOy = F(r) - 7255 (2) P+

— T

2a

_ r2(1 4 a?)(dG/dr) — 2rG [b\ a2
dr, U= 842(1 + a?) ( )

b /qezo‘cb exp (=Lw/2)
r2R2(r) T

2

. <A°:<a'2al>b?’ w=i c=o) y,
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/Limits A

e a—0 : Charged static dilaton black holes with
exponential form of nonlinear electrodynamics

e o—0 : Slowly rotating nonlinearly charged black holes
without dilaton field
e —oo : Slowly rotating Einstein-Maxwell-dilaton black holes
—2a? 2 202
(140?20 40D\ (b\Trez 221 (142 A2 D
roy = (T + 2008) () et R ()
(1 + (,1:2)2(]4 _6a2

b\ 1402 _
B 232r6(a? + 5) (;) +0 (5 4)

e o—0, p—w : Slowly rotating Kerr-Newman-AdS black holes

m 2 7“2 4
F(T)zl_?"'zr% _A3 _1022r6+0(ﬁ_4)
\_ J
/Behaviors of electric fields D

Exponential nonlinear
Born-Infeld-dilaton

electrodynamics-dilaton
30 7 30
i P
! 1o
1 1o
25 1 — 0=0,p=3 28 o 0=0, B=3
1 - — — - 0=04,B=3 o — — — - 0=04,p=3
'l —_————— a=0.8, =3 \ i — 0=0.8, p=3
20} 200,
\
\

. . 0 0.3 0.6 0.9 1.2
r r

In both cases, electric fields are finite near the origin but
\_ diverge exactly at r=0, due to presence of dilaton field )
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~

a i ;
Physical properties
e r=0 : Curvature singularity (R,,,,RH"Po—00)
e Neither asymptotically flat nor (A)dS, because of dilaton field

e r=r,(>0) : Two horizons ( g"=F(r.)=0)

202 —22-
whlta? 7’_1|_+O‘

4

e Entropy : S = (w: area of unit S2)

e Hawking temperature :

2 21 _:22(111 202 2(1-a? _ 242
& a = W+
q2
Ly 4 = LambertW m
L ( T,=0 < r =r.: extremal black holes ) )
. : . ™
Physical quantities
B 2a2
whbl+a?m
— : Mass
8m(1 + a2)
2a2
3 — a?)bl+a?
J = w( ) me . Angular momentum
. 2471(1 4+ a2)
w .
Q = wd : Electric charge
41
wqa . .
p= = Qa : Magnetic dipole moment
Up to linear order of angular momentum parameter
effect of nonlinear electrodynamics specified by 8

\_ does not appear in physical quantities )
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/Gyromagnetic ratio (g-factor) g A

e Interaction between magnetic dipole moment of H
electron g and external magnetic field B

Hint = —p- B ()
e
v Compared with Dirac equation = # = —S

m

e g-factor: Ratio of gyromagnetic ratio u/S
to Bohr magneton Ug
eS /

N—gﬂsg =g~

B
N\

» Analogy: Electron & Charged rotating black holes (Carter, 1968)

i = gﬂ (u=Qa : “Magnetic dipole moment”)
\_ 2M

/
/Gyromagnetic ratios of rotating black holes

e 4D Kerr-Newman black hole (Carter, 1968)
g =2

e n-dim. slowly rotating Einstein-Maxwell black hole

(Aliev, 2006)
g=n-—2

e 4D slowly rotating dilatonic black hole with
exponential form of nonlinear electrodynamics

_ 2uM 6
=707 T 3_a2
Only dilaton field modifies

9 gyromagnetic ratio of rotating black holes

/
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~

-
Summary

We construct 4D slowly rotating black hole solutions
in Einstein-dilaton system with

exponential form of nonlinear electrodynamics
{two Liouville-type dilaton potentials

e Asymptotic structure: neither flat nor (A)dS
("." presence of dilaton field)

e Mass, Angular momentum, Gyromagnetic ratio:
No modification by nonlinear electrodynamics
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Behavior of the New Cylindrically Symmetric
Gravitational Solitonic Waves

T. Mishima (Nihon Univ.)
& S. Tomizawa (Tokyo Univ. of Tech.)

This contribution is based on the works: [1] Phys. Rev. D90, 044036 (2014),
[2] Phys. Rev. D91, 124058 (2015).

I. Introduction

[ In the previous works[1,2], we showed new gravitational wave solitons
can be constructed by the inverse scattering method equipped with the
procedure introduced by Pomeranski [°05]. |

['We demonstrate some characteristic nonlinear behavior of the new solutions,

especially two-soliton solutions presented in the work|2] ]

The solitonic waves treated here :

®  Cylindrically symmetric and regular packet-like waves Z
m  Having nonlinearly interacting two modes: (+) and ( X)

®  Coming into the symmetric axis and reflecting off

I ¢
/N
JJ ‘,

¢
|
|
v
i)
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< Purpose >

[ We clarify the peculiar nonlinearity of the new
solution, compared with the soliton previously
Future null infinity UV — OO

constructed by Economou and Tsoubelis [’88] ,

with the original Belinski-Zakharov IST ¢
(we call this ET-soliton). ]| /
) t=0
[ ' We focus our concern on the following
two points |
An observer’s line

1. Comparison of in-going and out-going -
waves near null infinites : Past null infinity U = — 00
1.1 shape changing
1.2 mode conversion PR

I' Schematic spacetime diagram
(z=const. , ¢ = const.) |

2 Difference of non-linearity between

new sol. And ET-sol. ( A] ( /\]

(in-going) (out-going) 3

< Preparation—1: metric, amplitudes and basic equations >
Following Piran, Safier and Stark[‘85]

( Kompaneets — Jordan_Ehlers metric for cylindrically symmetric spacetimes )

ds? = E"gﬁ:(!’]:’ =} ;urfr:.-'}}g = ﬂ;z{__g-;_.-'_-rk_}g + {:2(«1.-'—1.-'1](”1[}2 == H’fg)
( The metric depends only on p and t)

(Amplitudes used in the rest )
A4_|_ = r B_|_ = 23,':‘_11_ 44_>< =

p ,r)'
1 1
— /A2 +42 B=,/B2+B? [u:§(t—p); v:§(t+p)]

( Basic equations for the amplitudes: deduced from vacuum Einstein equation )

A _B ST T N A - B " __________ N

Ay = g‘HAxBx s By = g"’:AxBx :
2p | | P | :

Ay +Bx | | Ay + By | '

Ax:u x - Ox _:\AJer Y By,w=— P _iAxB+ ,:

2p N / ’ 2p N .
\( nonlinear term )/
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< Preparation—2: C-energy based energy density and fluxes >

dEC = YVop dp
m (—energy: Thorne[*65]

, o’ dp
Ec(p)) :/ Y,p dp |
0

&

( Energy density and fluxes )

. P a2 2 . A2 2 _ _Pip2 p2y
W= g (J._l_i_ 4 B+ - flx |- Bx) You = 4<B+ +B><) : outward null flux
P42 2 42 i P2 2 :
1 = g (4‘44_ E= B+ = :lx = B;() Yo = Z(A+ + Ax) : inward null flux
1
- 2(7:“' —|_ ,‘)/7”)

I1. Construction of new solutions and the metric form

< Procedure to generate new type of gravitational solitons >
Pomeranski [’05]

(1) Choose Minkowski spacetime as a seed solution.
(2) Remove two solitons with trivial Belinski-Zakharov
parameter (1,0)at { = =£3
(3) Adding back the same solitons with non-trivial BZ-
parameter set (1, a)and (1, a) (a = a, + a;1 = ket? )
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< New Solution >

Introducing pseud-spheroidal coordinates : t = 2y, p = \/ (22 +1)(y%2 — 1)
(co>x>—-00, y>1)

( metric)

ds?® = f-'gﬁ’(ff: + u,‘rff__i-‘))g -+ J(JQ.‘-_Q'E"'J(_}'}Q + r:"?(”"'_ﬁj)(rfpg = rh‘g)

2V = % , W= %
(x - Hy? — D)%y + D* + 128k (y + 1)% (2 + ¢°)® + 4096(2? + %)
+128k%(y + 1)*[ (2° — 2*(6y® — 8y + 1) + 2%y (y* — 8y +6) — y* ) cos 20
—2z(z* — y® +2y)(2*(2y — 1) + y*) sin 20|
Y o= Ky -1+ 128Ky — 1)(2® + y*)° + 4096(2 + ?)*
< +128k% (2 + 1) (y* — 1) [ (2* — 62%y® + y*) cos 20 — day(2® — y*) sin 20 ]
Z = 32k(y+1){ (64(2® + y)(a® + y*)*
—k2(y* = 1)(y + 1)*[2" = 32%y(y — 1) — y” | cos ¥
9 —x(y — 1)[64(2? + )’ — K*(y + 1)*(2*(3y — 1) — y*(y — 3) ) | sinf }

® Regular and packet-like solitonic waves

< ET solution : Economou —Tsoubelis[’88] >

® Regular and packet-like wave soliton
® Generated by using original Belinski-Zakharov ISM

{Addlng two complex conjugate solitons toJ [pure 2-soliton ]

Minkowski seed simply
( metric)
X = 16(y— D>+ E*(y+ 1)* 4 8k*(2* + ?) + 8k*[(2* — 1) cos 20 + 2z sin 0]
Y o= k16 +8k%2% + (K +4)%y* + 8k* (2 4+ 1) cos 20

Z = Sk[(k*+ 42+ (K —4)(z® + Dy + (k* + 4| cos 0 — 8k(k* + 4)x(y* — 1) sin b

B New solution may be interpreted two ways ...?

{ 2-soliton + anti 2-soliton = 4-soliton

2-soliton - 2-soliton = ()-soliton
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II1. Comparison of the behavior of two solitons

1.1 Comparison of the shapes of in-going and out-going waves
near null infinites

t = oQ
Incident wave : [ /\ . blue] \
(tn-gOlng) Future null infinity UV = 0O
Reflecting wave : [/\ : red ] /\>
(out-going) u=0/"
t=0 K p=rco
Graphs in the next slide : A
\ N
Vertical axes : total amplitude An observer’s line
[Atr:dl:\/A3-+A%<+B-2i-+B?< ] p=0
< > Past null infinity W — —0OO
Horizontal axes : retarded and advanced null coordinates
g [’U and U] y t=—00
9
n
<eg. k=2, 0:Z7r >
Atotal Atotal
New sol. 1o r
n = 70 D.B; n — 1 U'B._
<~ phase advanced ' merger
Phase delayed (n=2) split (n=3)

{'u v
-6 -4 -2 2 4 6|lU -6 -4 -2 2 4 6 |U

B New solutions have noticeable behaviors: phase shift, merger, split, ... 10
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1.2 Comparison of the ratios of mode conversion from the in-going
wave soliton to the out-going wave soliton

B Calculate the following total fluxes for out-going

+ and X modes and ingoing + and X modes =
respectively.
\ Liture wull infinity © = 00
e e e />‘
I, = [—A } dv [, = [_AQ] w=07
* /;oo 4 + U=—00 ! b % /;oo 4 % U=—00 d/U
oo t=0

O+:f B du ,OX_] [gBi] du
o V=00 — 00 V=00

Next slides show the ratios of 7, (0, ) to total Flux
and also (O, /I, for some values of the BZ-parameter’s
modulus: k=1, 6, 14.

11
(New sol. )
{ 100 x I /Total Flux : Blue }
100 x O4 /Total Flux : red
100 100 100
(k=1) (k=6) (k=14)
80 80 ' v 80
@ Overlapped and small @ o 8 1 [ a ot TTEUETLTL L ETTTETR
40 E 10 . | ® 2| . a0
20 i o 0
(6=nx/30) n n
{100x 0, /1.}
(k=1) = (k=6) (k=14)
. No conversion ? " b
1004 o o 4 4 o a s s o o o o @ \-I/ ............ LR SR 107 et T 1] . 100
0 50 0
0 5 10 15 20 25 30 0 s 10 15 20 25 7‘(/{}/ 0 s 10 15 20 25 ?/ii

B For small k, the mode conversion between+ and X seems not to occur.
12



(ETT sol.)

{ 100 x I /Total Flux : Blue }
100 x O /Total Flux : red

100
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(k=1) (k (k=14)
9 = nw/30 n n n
{ 100X O, /I+}
250 (k_l) 0 (k:ﬁ) o (k:14)
( 10 1 0 ﬁ ( 10 1 {] ?KLJL 0 5 10 15 20 25 %EL
® Simpler behavior of mode conversion are seen thorough all .
13
/< Does the mode mixing occur for k =1 in the new solution? > N
Ratio of + mode at t = 0, when the soliton exists near axis.
war "I null infinity (k=1
801 ( k=1 ) “
Al - )
40t E; 0 “.:‘.”1:.”.1”.“0 ....... 0
1 a ,,,o,!,',:,.,:,:;, ,,,, A o e
0 * 5I 10 1I5 Zb 2I5 * 3.0 p =
0 = nmn/30
=0 —
B The + mode is enhanced when the soliton comes
close to the axis !
\_ (p=0)

14
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2. Different non-linear behavior of new sol. and ET-sol.

[ To specify the region where the nonlinearity of the waves cannot be neglected,
we plot the following ‘ratios’ of (the nonlinear term”2) to ( linear term”2 +
nonlinear term” 2 ) of the basic equations in the cases of new solution and

ET solution, respectively. |

(AxBx)? (AxB)?
R_|_ = RX =
A, —B,\? Ay +By \2
( +2,0 +) +(A><B><)2 ( sz x) +(AxB+)2
A_|. - B+ ST N A+ B+ S \
A-l-au: 2P +EAXB>< E: B-}-av: 2p +:‘AXB>< i
A, + By, | 5 A, +B, | :
Agy= X% A Bt Byy= ——X1T7X 4B,
o 2p S ek 2p X
\( nonlinear term )/
15
(eg.: 0=mn/4,k=1)
(New sol. ) (ETT sol.)
R
. S soliton 1?2%% soliton
' t =50 S t =50 A
0 N G EEE L P LR P PR R PR EE T TP
03 Wave tail = Wave tail
0.6 A 0.6 A
—)
- N\ - N\ =
0.4 0.4
02, Residual non%—J J 02! No residual nonlinearity
0 10 0 30 40 50 60 L 10 = o0 a0 0 60
p p
Ry Ry
12 soliton 12 soliton
0 ~ ~
L0 e e 10 b o e
0.8 0.8
. Wave tail o Wave tail
' A ' A
osf A 04l [~ A
o2 INo residual nonlinearity 02/ No residual nonlinearity J
0 10 20 30 40 50 60 0 10 20 30 40 5‘0 60

16
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B For the new solution, nonlinearity of + mode seems to be nonlocal
while nonlinearity of the ET solution is localized. These tendencies cause
the difference of the asymptotic behavior of the solitons near time-like

infinities.
new Solution ET Solution
k? cos? 6 2 tan 0 B
A-|- =~ B-|- =~ T + O(t_4) A-I— = B+ = +2 + O(t 3)
kcos 0 (k* —4)secf 5
Ay ~ —By ~ -3 Ay ~ —By ~ — Ot~
« e O x x 5% 2 ()
cf. Einstein-Rosen waves have the same asymptotic behavior as ET solutions.
+ mode only,
[ basic equations are linear : A, , = Ay — By , Bigy= At = BJFJ
2p 2p
17
IV. Summary
Characteristics of the new gravitational solitonic waves
v" Clear Sign of phase shifts ( both advanced and delayed)
v Large and complicated mode-conversion
between + and X modes as time passes /
v Non-local nonlinearity in wave tail [E]
? time
As further investigations, “’“’K
I
[ Systematic analysis of scattering and collision of (Self-interaction)
cylindrically symmetric higher multi-solitonic waves |
[%] time
[ Deep understanding of the nonlinearity of gravity ] . /\

(2-body interaction)
18
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“Vacuum excitation by sudden (dis-)appearance of a Dirichlet wall in a
cavity”
by Umpei Miyamoto

[JGRG25(2015)P19]
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Vacuum excitation by sudden
(dis-)appearance of a Dirichlet
wall in a cavity

Umpei Miyamoto (Akita Prefectural U.)
with
Tomohiro Harada (Rikkyo U.)
Shunichiro Kinoshita (Chuo U.)

Abstract

* We investigate the vacuum excitation of a test scalar field by the
sudden INSERTION (appearance) and REMOVAL (disappearance) of a
both-sided Dirichlet wall in a 1D cavity.

* These systems can serve as toy models of a bifurcating spacetime and
merging spacetime (see below)

Spacetime merging

time

Spacetime bifurcation
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System (1): Sudden INSERTION of a Dirichlet wall

Massless scalar field in a 1D cavity

t
fo o
= (0B + 02)o(t.) = 0.
z=0 7 =0 Dirichlet BCs at both ends
-L2] 7 L2

E : .
O X o(t,£—=) =0, —oo <t < o0,
TN 20

\—/ gm:even

A Dirichlet wall is INSERTED at (t,x)=(0,0)

o(t.0) =0, t>0,

Quantization of scalar field

The quantum field is expanded by two sets of mode functions
(related by a Bogoliubov transformation each other)

QS - Z (bmgm + b;l-n_g?n Z Z (P\) (ﬁ\ + a('\}T f('-\)*)
m=1 y=1n=1
The quantum field is in the vacuum defined by
b,,[0,) =0, Vm € N.
Calculate the Vacuum expectation value of EM tensor
P 2 . .
Tj:j: = (():I:Qb) , 24 = t 4 .

\Double null coordinates
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Result: Thunderbolt (explosive flux) _shifted Casimir energy

™

gz D ™ (me=tL L€ Z)}
1 — 1 = - . m=2
<Og|Tii|09>t>O - ; Z E Z C)(Zi — EL)Q -+ - nggvpn .
' 12 Z m (otherwise) }

ambient Casimir energy
|

cf

Anderson-DeWitt, Found.Phys.1986

Ishibashi-Hosoya, Phys.Rev.D2002

¥ 05" The backreaction of thunderbolts will
(0g[(T-—+T'14)[0g) 10 prevent the spacetime from bifurcating

“thunderbolt”

System (2): Sudden REMOVAL of a Dirichlet wall

Ly Dirichlet wall is REMOVED at (t,x)=(0,0)
\/ gm:even ) .
H(t.0) =0, t<0.
1| 270 e,
\f% X The quantum field is in the vacuum defined by
£y a\05) = 0.

vy e {1,2}, ¥neN.

6
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Result: finite flux only to shift the Casimir energy

shifted Casimir energy

8

2+ =FfL, ¢ c Zﬂ
f_ (othe mjs(ﬂ

i
W

ambient Casimir energy

Iu

The backreaction of weak flux will NOT
prevent the spacetime from merging

Summary and future directions

* Particle creation by the sudden INSERTION of a wall is EXPLOSIVE.
=>» Spacetime bifurcation will be prevented by the backreaction.

* Particle creation by the sudden REMOVAL of a wall is WEAK.
=>» Spacetime merging will be not prevented by the backreaction.

* Future directions:
* Smooth INSERTION/REMOVAL
* Various BCs (e.g. Robin-type: ¢p’=ad)
* Proposal of Lab. Experiments (cf: Wilson et al. Nature 2011)
e ...and many
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“Halo/Galaxy Bispectrum with Equilateral-type Primordial Trispectrum”
by Shuntaro Mizuno

[JGRG25(2015)P20]
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25th JGRG @ Yukawa Institute
7 ~ 11 December 2015

Halo/Galaxy bispectrum

with Equilateral-type
Primordial Trispectrum

Shuntaro Mizuno (Waseda)

With Shuichiro Yokoyama (Rikkyo)
Phys. Rev. D 91, 123521 (arXiv: 1504.05505 [astro-ph.CO] )

Primordial non-Gaussianity P¢ I S(ki ko, ka)
(C(k1)C(K2)¢ (kg)) = (2m)°6% (ky + ko + ka)|Be (k1. ko, k3)
Local and equilateral shapes

o = L:;g /k'.l
Tra = ;ﬁg ,/.I{’.l

kg < ko < kq

To To
ko + k3 > ky
I3 I3
Local-type Equilateral-type
Planck constraint local _ quil _
NE=08+5.0 = —4+43

(68% CL)
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Constraints on local-type NG from LSS

Dalal et al '08

Constraints on bispectrum

Giannatonio et al 13

(k) [(h"'Mpc)’]

—36 < fir™ < 45 (95% cL)

P
hm

Future constraints:

b(k,fw)/b(k,0)
-0~ W

:::'$‘:':':':'}}Z—;-%;-}-}-}-}-}-}}g’i-i-‘—:—"nﬁh———ﬂ—_ Yamauchi et al 14

, SKA (Square Km Array) .
K /Mpo [y <0.12

1.6 X 10°My, <M <32 % 10°M,

Constraints on trispectrum _ 9 local -3
Desjacques and Seljak 10 C(x) CG(JT) t 259NL_G($)

3.5 x 10° < gor*! < 8.2 x 10° (95% CL)

How about equilateral-type NG ?

" JEE
Integrated Perturbation Theory (iPT)

Matsubara 12, "13, Bernardeau et al "08

- Multi-point propagator of biased objects

575 (k)

= (2m)3 375 (ky + ko + - + ko )T (k1 ko, -+ L K
<55L(k1)55L(k2)---55L(kn)> (2m) oo+ tlally tode k)

Gravitational evolution

dx :number density field of the biased objects

Lagrangian bias, ....
01, : linear density field which is related with
primordial curvature perturbation ( through

2 D) T
- 3 D(Z*)(l + Z*) H(%Qm()

D(a) : growth factor T(k) : transfer function

mm)  spectra of biased objects (Halo/Galaxy) systematically !!
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" JEE

Multi-point propagators on large scales
Matsubara 12

I (k) ~ 1+ ck(k)

k; - ko
kY

k, -k
Fg?)(klakZ) ~ F2<k1,k2)+ (1+ ! 2)011_1(1(1)—}— (1+

i ) (k) + ek (ky, ko)
kQ

10 (ke ki \ki-koe 4[(k -k’
Fo(ky ko) = 2 4 (2240 -
2l k) = +<k1+k2> ik +7< klkg)

L : : : . .
C,, - renormalized bias function defined in Lagrangian space

5715L (k) B s
<55L(k1)55L(k§) 001 ((kyn) > = (27375 (ky + ko 4+ - + Kk, )k (ki ko, -+ k)

The other parts include the information of displacement field
in Lagrangian perturbation theory

"
Renormalized bias function

For the mass function, we adopted Sheth-Tormen model given by

frlv) = A<p>\/§ 1+ ()] ave ™
p=10.3,¢q =0.707

Alp) = 1 +T(1/2 = p)/(v/m2P)]
m=) ik, .. k) = bE(M) (k| —0)

| 2p
bLM———[ 2—1+—]
(M) 5 qv 1+ (q12)?

1 2p2qv* +2p—1)
b%(M):pl:qzVé‘_?’qu*' I+ (g2 ]

no scale-dependence on large scales
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"
Effects on Halo/galaxy power spectrum

-Diagrams for the power spectrum of the biased objects

P ng (k) P, (k) Fgg) (—k) 1al‘ge;€cal<e<limit -
o - Xm — L typical scale of

\/ the biased objects

: x M(k)E™* oc k™! for BEe
enhancement

. _ 1
large scale limit X M(k)k? 1 x k for ngul

no enhancement

"
Effects on Halo/galaxy bispectrum

Yokoyama, Matsubara, Taruya 13
-Diagrams for the bispectrum of the biased objects

lggrav

><> == o M(k)! P (k) o &
e — — large scale limit b=k =y = ks < p
T (k) Pr (k)T (ko) Pr (ko) T (=i —ko)
Bbis:
AN
/><— — =) o M(E)PP(R)? o K

_— large scale limit i
g for ngml

T (k)0 (ko) Br(ky . ko, ka)TY (ks)
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"

. . equil
Halo/galaxy bispectrum with f
10! E T T T T T T
Fz2=1.0 i
[ 13 -1 f :iml: 80
FM=50x10%h "M g -
= 10l il -7 TS 1
= equi - ~.
= Byis ___/_:/ \\\
§ 10°F Phe . ~— R <
= - ™
é /,’/ Bgrav
& 1% o7 3
) N\
10 0.001 0.002 0.005 0.01 0.02 0.05 0.1
k [h Mpc™']

Af™ <20 by future surveys !

Sefusatti and Komatsu 07

"
Primordial trispectrum in general k-inflation
Arroja, SM, Koyama, Tanaka "09, Chen et al '09, (Smith, Senatore, Zaldarriaga "15)

1
_ 4 — 2
S = 5 jd X4/ g[MPlR + ZP(X, gb)] X = —(1/2)g‘“’”8#(}58,,¢
¢ ¢ (Q8(0, k)840, k,)80(0, k3)8(0, k)| Q)
=i [* dnoOI5#/(0.k)56/(0.k;)36,(0. k)
X 86,0, ky), H (1]|0),

g e HY (n) = f EAB18] + BS54, + B3(386,)°],
contact interaction

C C (Q186(0, k)8 H(0, k) 8(0, k3)5b(0, ky)|Q2)5F
—= [ an [" an0l156,0.k)581(0.k2)

X 8¢b1(0, k3)8,(0, kq), HY ()] HP (7)]10),

¢ HY() = [ (A0 + Badd(354,]

¢

scalar-exchange interaction

4(60‘)2 -2(80_)4

&4 52 (00)? (90)* | e & &
Te(ki ko ks ky) =17 +T¢ +T. I+ +1;
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" JE
Trispectra from contact interactions
-Concrete expressions

T 221184 9%
(2m2Pc) 25 (30 ko) ki kokaky
ng((f)cr)? 27648 +2(9 )2 kaQ(kg k4) (kg 4 k4) k3k4
a o 12 3 £ : }
(2m2P,)? = " 395 INL lm (1 3 ST + 12(Z k«i)g) +permb.]
o 4
Téa ) _ 165888 (9ot (k1 - ko)(ks - ky) + perms.]
(272D, ) 9575 INL S kallk,

2icy kik; 11E; 3 Ik,
(1 S P o )

X

These trispectra also appear in effective field theory of inflation !!
- Constraints from CMB (95 % CL)  Smith, Senatore, Zaldarriaga 15

(—9.38 x 10°9) < g% < (2.98 x 109)[(=2.34 x 10%) < g% < (0.19 x 105)

" JE
Effects on Halo/galaxy bispectrum
-Diagrams for the bispectrum of the biased objects

lggrav

— — ><
—~ ) o M(k) Pe(k)? oc K
— o ——
e — _— >< large s(,g;:ale limit k=ky =ky=ks < p
equilateral config. typical scale of
B tri the biased objects

\Xf\

U

ng(kl)rg)(kQ)TL(kla ko, p, ks — p)FE?)(p, ks — p)
) o M(K)?k™? oc k? for 95\’1

1 le limit
arge scale limi 52(80)2 (50)4 equil

& 271.—4 0 f
equilateral config. X M(k) k ok~ for INL , YN1,, (sameas J/NL )




" )
Halo/galaxy bispectrum with ¢’

Adopting maximum allowed values by CMB observations

1011 .

z=10 ¢ 0" 2 2.0 % 107
M=50x10%h "M gy o

— i

Bx (k.k.k) [(h ™" Mpc)®)]

107 | | . |

10"+ - T~ 3

0.001 0.002 0.005 0.01 0.02 0.05 0.1

k [h Mpc™!]

"
. . (80’)4 equil
Contributions from gx1.° and  fxi,
- Shape-dependence of Halo/galaxy bispectrum

i ks/ky

1308

So far, we have limited the equilateral configuration ( ky = ko = ks =k ) A

But the folded configuration ( k1/2 =keo = ks =k )
is also helpful to distinguish B(aa)4 with eaul

tris bis
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" JE
. . o4 equi
Halo/galaxy bispectrum with o and S

isosceles configuration givenby k' = ky = ko = aks

5%10°
(Ocr)?

= 2x10°F .
)
o
= 1x10°F 1
- ]
_: _ 4
= 5x10°F z=10 k=0.003hMpc ' -
:‘:t equil M=50x10"h 'M Sun
A .
& 2x10% C 7 ]
< X gt = 2.0 x 10
= equil

1x10° - N =80 .

0.5 0.6 0.7 0.8 0.9 1.
Folded Equilateral

o

" JE
Conclusions and Discussions

» Halo/galaxy bispectrum was shown to be useful tool to
distinguish equilateral-type NG from gravitational nonlinearity.

Bgray o k2, By oc 10 mmh A il < 9

* We can also constrain primordial trispectrum generated
by general k-inflation based on halo/galaxy bispectrum.

c 27 e 2 I 4 -2 c 2 - 4
Bg‘iéda) . (00) ~ k() :> AQIC\TIL(OJ) . (00) _ 0(10(3) 2
 Constraints on more general class of inflation models

which give equilateral-type bispectrum

k-inflation (scalar-exchange interaction)

Ghost inflation, Lifshitz scalar, Galileon inflation,....
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“Two Dimensional Black Hole in Bigravity”
by Taisaku Mori

[JGRG25(2015)P21]
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Two Dimensional Black Hole in Bigravity

Taisaku Mori(QG-Lab. Nagoya University)

In collaboration with S.Nojiri,

Abstract

Two dimensionally reduced gravity theory is investigated as an effective theory of four
dimensional gravity, which may describe the behavior of four dimensional black hole and
its evaporation. Especially we consider the model in bigravity and study the classical
solutions and their stability.
The bigravity model may
the bigravity includes r

ve predictions different from those in general relativity because
e spin-2 mode besides usual massless graviton.

Bigravity
Bigravity theory (Hassan-Rosen) incudes two independent metric tensor fields, g and f . The
action of the bigravity is given by
. 4
Stigeavity = M7 / dte/=TT@IR() + M} [ d'a /=T DIR() - 2m3 My / d'e\/=det(9) 3 Bnen (Vo' F)
azo
- Two dynamical metrics: g, and f.,
1 1

+

) ( g“f)“p ( g“f): =" fou
My~ M, M,

- Planck mass scales:
. Free parameters: 8,, Mass of spin-2 field (massive graviton) : m®
1 -
X=X eoX®) =1, eX)=[X], eaX) =3 (X" -[X), es(X)=g(X]"-3X|X*] +2[X) ,
ea(X) = zid (IX]* — 6[X]2[X2] + 3[X?]? + 8[X][X?] — 6[X*] = det(X), ex(X)=0 for k>4
When we regard the bigravity as an alternative theory of gravity, it is interesting to apply this
theory to the two dimensional model coupled with dilaton.

CGHS Model

In general relativity, imposing spherical symmetry on the four dimensional space-time
corresponds to the two dimensional gravity theory coupled with dilaton. This model is
called CGHS (Callan-Giddings—-Harvey—Strominger) model. The degrees of freedom in
this model is simplified. In our work, we focus on the black hole solution.

g datda” = gapda®da® + Sapda’da®
Sapdz?da® = \"2e"2Q pdadz?

dilaton : ¢ = ¢(z°, ')

Qapde?dz? = d6* + sin® 0dp*

A = const, dim\ = [L7}]

The action of CGHS model is given by,
Scens = % / V=ge2(R® +4V,6V"p + 42?) — %ﬂ / &a\/—gVafVef
- matter field : f - 2D Ricci scalar : R®
In vacuum (f=0) ,
. E.oM for 8gas : VaVsd + gas [(wa)2 1V — A] =0
. E.o.M for 6¢p: R® 4422 4 4V2%¢p — 4(V¢)® =0
There are three components in the two dimensional metric. Two of those are gauge
freedom followed by covariance. For simplicity, we consider the conformal gauge and light
cone coordinate.

. Conformal gauge : go1 = g10 =0, goo = g1z = 2(="=")

- Light cone coordinate : z* =2° + 2!, 2~ =a°—a!

1
- Line element : ds® = ——e*’dztdz~, - Ricciscalar: R® =8¢ 279,8_p

In this gauge and coordinate, E.0.M becomes,

p—o=fr(z7) + f-(aF

2

0,0_ (- p) = 040_c 2% 4 A2

940_e7 = —\?

f+=0, p=¢ e

em2o = Maom _ yap,
X
g — __ Mapm o
" Mapar/A— XNatz~ ——— Ithas singularity at
Dilaton field corresponds to the surface area of sphere in 4D. So the event horizons can be
expressed as
8t (e72?) =

= a*

o

T.Katsuragawa and H. Suenobu

Black hole solution in CGHS model

< +un -

CGHS Model in Bigravity

‘We consider the CGHS model in bigravity. This motivation is that if the massive spin-2
graviton which is predicted by string theory run up to the planck scale, we can see the
evaporation of the black hole as an effective theory of massive spin-2 field.

In order to study the dynamics of two-dimensional reduced bigravity, we introduce the
following two metrics in conformal gauge

g datdz” = gapda®da® + S% pdatdz®
FDdatda” = fada®da® + S pdatda® .
Topology : S' x S', a,b=0,1, A,B=0,9, gab= gas(z®,2'), fap = fap(z®,z")

S4B derda® = N2 e 2450 Qapdetda®,  Qapdedz® = d6* + sin® 0di?
Dilaton : ¢y(s) = dqn (@ @), Agesy = const, dimgegy = [L7']

Simplified action inspired by CGHS model. (vacuum)
4w M? P
o= [ #ev=detlare > [Ry +2 (Vapat)” +23362%0]
A M? P
+ T}f / /AP [Ry 42 (Vigat)” + 2X562%/]

—m2 47;’:13 /d’z V/—det(g)e~2%s [3 — Atr (vﬁ) — 2Xef + A%edet (Vﬁ)]
z

>

2
My =My, A= €= — 0y

- Minimal model : fo = 3, fi=~1, B2=0, B3=0, B =1
In this Similarly, in conformal gauge and light cone coordinate,

1 1
- Line clement :  gada®da = —~evda*da”,  fuda®da® = —¢*da*da™

- Ricciscalar : R(? =8e™20,8_p,, Ry =8¢ 10,0_ps

E.o.M after coordinate transformation

1
1 _Ze2baqztdi—
gusdatda® = —eHrdatda™ ) e ditd

< p5 =209 — @5

3m2
. 8+8_e_2""? = _,\;+ ﬂ

(1 = )\es)

=

m3 How to solve it ?
© 040_ (99— 05) = 7?")\252(2%—-»;)

Lo 2p,—0f mg (Gg+bs)
© 010 (b — b5) = S T e

Since this equations are very complicated, we cannot find general solution...
For simply, consider the special case
2

Fuw = C®Gpws C:

const

But this proportional relation leads to usual CGHS model...
If we assume m, to be very small, it also corresponds to the CGHS model that we
performed.

Summary and Discussion

We search the black hole solution of this model, but it is very difficult to solve these
equation. There are two way both simple and not to be a trivial solution.

- First, since we use the same coordinate transformation as we perform the usual CGHS
model, this difficulty might be able to removed by taking the proper coordinate
transformation.

Second, we consider the case where the two metric tensors are proportional to each other
and we find it becomes trivial solution, there may be a possibility of another simple relation
between these metrics.

We consider the simplified action motivated by CGHS model. Bigravity theory is,
however, constructed not to exist ghost mode, it might be suffer from ghost in CGHS
formalism. We confirm that this action do not exist ghost mode.

This model cannot be solved analytically. But we find that the difference of this model and
usual CGHS model are the overall factor of mass of massive spin-2. So we conclude that
the dynamics of the simple two- dimensional system is modified by the non trivial mode.
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“Multi-field effects on Non-Gaussianity in Starobinsky inflation™
by Taro Mori

[JGRG25(2015)P22]
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Multi-field effects on Non-Gaussianity in Starobinsky inflation

SOKENDAI/KEK

Taro Mori

Introduction

* Recent CMB observation strongly suports
inflationary cosmology

« In particular, Starobinsky inflation model lies
deep inside of allowed region '

Ns and T are
related to 2-point fct.
of curvature perturbation :

But fv. is also important to evalué“tév inflation
models. This is related to 3-point fct.

(i) Ciea) Ckes) ) fles ~ 0(1072)

5 =0.8£5.0~ O

Planck collaboration, 2015

Theory

Observation  ***

Almost all single field inflation

predict tiny fv.

The formula of /~vz

Using §N- formalism

5 NAN-BNyp

fno is given by 2
6 NIN,

v =—

N : e-folding

But if kinetic terms in Lagrangian are
NOT canonically normalized, such as---

mzl 1 I J .
TpR - gg((ﬁ)ua;ﬂ) Oud” =V (9)

S = /d/1.l'\/*(]

Then the field-space has

non-trivial geometry Line element of field sp. :

do? = G(¢)rsdotde”’

So we have to modify the formula
with replacing derivatives to covariant derivatives

5 NANPD,DEN

fvr = 5 (N,IN’I)Z

where--
DyA = 9;A7 + T AX
constructed
by field space metric G,

L X
initial condition

Multi-field model

% Supergravity or Superstring theory
may provide many scalar fields
so let us concern Multi-field inflation model

M Kaisel"’s mOdel (Example) D Kaiser et al, arXiv:1210.7487
Jordan frame

Sy = /,1‘ el [/(“’)R - %g, 10" 0,0 9,07 — V(o/}:|
non-minimal coupling fct: (o, x) = 5[mj + &6 + &x°)

Vibx) = g +amiyt e %,\ + L|> + Llw
Einstein frame

,s}.:/m.v\ﬁ{”fT"‘ff 179,00, Wu’)}

7 m, (zm%(# +2m2x® + 20677 + Aot + Ay \4>
6.x) =
1

- 7
[m;“ FE 6 \2]

In Multi-field case

the trajectory of inflation is NOT unique

there can be various trajectories
corresponding with various initial conditions.

Trajectories on field space

1. (6, x) = (3.1,1.1 x 107%)

I~z could be enhanced
2. (6,x) = (3.1,1.1 x 1073)

by Multi-field effects??

2 2
e R*+ x“ model c.eBruck and L E. Paduraru arXiv:1505.01727
Jordan frame

Sy = /41‘ . \/—7[# + %Rz] + /dﬁvfy[ - %(/’”’(),, YOy — %m‘; 2
Just a combination of
Starobinsky-type action and quadratic potential

Einstein frame

g = ”’i’fi o5 3 1 2095 5 4 1
M,/mv,\ 7,/{7{2 =B 000 - g 0NN V] T e L e
[ 2

) 2R 1
2o _q 4 2

B0
iy Vg

Summary:

* The formula to compute f~z should be modified
if Lagrangian contains non-canonical kinetic terms.

« In Multi-field inflation inflaton can goes along various
trajectories in field space.

« fnr could be enhanced by such Multi-field effects.
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“Possible golden events for ringdown gravitational waves -- total mass
dependence --”
by Hiroyuki Nakano

[JGRG25(2015)P23]



POSSIBLE GOLDEN EVENTS FOR

RINGDOWN GRAVITATIONAL WAVES
-- TOTAL MASS DEPENDENCE --

Hiroyuki Nakano (Kyoto University)

Ref.) H. Nakano, T. Tanaka and T. Nakamura,
Phys. Rev. D92, 064003 (2015), [arXiv:1506.00560]

JGRG25,YITP, Kyoto University

MOTIVATION

= Black hole (BH) singularities appear unavoidably in GR.
= Unphysical!?

= The allowance of the presence of singularities will not
be acceptable even though they are hidden behind the
event horizon.

= Various possibilities of the singularity avoidance have

been discussed.
GR or not?

= Approach: calculate parameter estimation errors
by using Fisher information matrix.
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POP III BBHS
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= Kinugawa, Inayoshi, Hotokezaka, Nakauchi
and Nakamura, MNRAS 442, 2963 (2014)

[arXiv:1402.6672].

= Kinugawa, Miyamoto, Kanda and Nakamura,

arXiv:1505.06962.

= Total mass: 60M_sun, equal mass is characteristic one.

= (restrict to nonspinning BBHs in this poster)

Cosmological Redshift : z

®

GWS FROM POP III BBHS

10 LCGT detection range (VRSE-D)
| ) for CBC for BH ONM
i @ — SNR=3 SNR=3
q § = SNR=8 SNR=8
1 % ~— SNR=100 SNR=100
| 1 :
1
1 8 o
13 2
3 8-
] > o}
0.1 3‘/ 2>
4 Q
3 <]
7 £
] \ E
5=
-
\
0.01 4 8
3 H
i by
1 %
1l 2 7 [y
1 /4 ! | H
/4 ; A
, ¢ here %) i\
0.001 L ‘ e T e y
10° 10' 10° 10° 10*
mass of one star [Mgoja]
(BH mass =2M)

10Gpc 100Gpc

100Mpc 1Gpc

10Mpc

30VI_sun-30VMI_sun

Similar SNR for
the inspiral and
ringdown phases

T

T

10Gyr 13Gyr

Look Back Time

Kanda,
the LCGT collaboration,
arXiv:1112.3092

T T T T T T

KAGRA noise curve |

—— VRSE®D) | -
=== 65e-161"| ]

6e-20 7 |

< 1 3
TT7 1Se-26f | ]
= Fitting E

1\ MR EAC )

1l TR
10 100 1000

- ‘ll(;()()()
f [Hz] D




RANGE FOR TOTAL MASS OF BBHS

tstal moss 40~ 30Mo

10 LCGT detection range (VRSE-D) 4 s
8 f CBC f BH ONM (0] (0]
& SNR= =4 @
§ - SNR= =
s SNR= -
g { = I- =]
R A e
2 N sl g E
D - i 2o =
o - ', 8| v x
g 014 ¢ 2 8l =
2 Yy g [
3 £l g ¢
5 i 5L 1
8 ¢ L7 S
001 4 4 ‘
H
5
Wl g
U=
/& d KL S
0.001 r A :
10° 10’ 10° 10° 10* 8
mass of one star [My,,] -2
(BH mass = 2M) B
z
5
=
el
4
. ©
Previous study:
.

30M_sun-30M_sun
This poster:

Total mass from 40M_sun to 80M sun

1074
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From 40M_sun to 80M_sun

f
3 )
]
i
g

iml

’i’OTQQ moss

35

40~

60 80
BH-BH chirp mass [Mg,]

30Me

- — - )
under100 (optimistic core merger) e |

over100 (optimistic core merger)

140 (optimistic core merger) s

under100 (conservative core merger) s |

100 120

over100 (conservative core merger)
140 (conservative core merger) s+
W
™)
N
.9

BBH INSPIRAL, MERGER AND RINGDOWN

= Use the inspiral and ringdown data analysis.

= Treat the merger phase as a black box.

Inspiral

Merger
Ringdown

0 500

t/M

1000

|
1500
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INSPIRAL (POST NEWTONIAN)

= TaylorF2 waveform (L=2, m=2) in frequency domain
3

T
Ay _"}(I) -
| Fdi c _|_ -~ =
4  128nwv?

3

[1+0(?)] ,

[}

4‘1}.22 — 44.22

= Parameters in the inspiral phase: {]\[ s 1, tc-. (I)C.}

= Summary of the formulation:
Ajith et al., arXiv:0709.0093

= Terminate at the ISCO frequency

MERGER (BLACK BOX, NUMERICAL RELATIVITY)

= Much progress in NR.

= The whole GW waveforms are also well modeled
in the effective-one-body approach.

Taracchini, Buonanno et al., Phys. Rev. D 89, 061502 (2014)
[arXiv:1311.2544].

= Simply use the phenomenological fitting formulas
for the remnant mass and spin:

inurrcm 2 - - - - s 3 - N
T (4n)° (;Uo + Kogom? + Ky mr'rJ‘) + {1 + n(Eisco + ll)} omS .
’—qrem c N H N
Qpem = "Ué = (4n)? (Lo + Log om? + Lyy mn4) + nJiscodm?® .

renm

Healy, Lousto and Zlochower, Phys. Rev. D 90, 104004 (2014)
[arXiv:1406.7295].

®
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RINGDOWN (BLACK HOLE PERTURBATION)

= Ringdown waveform:

T fe (t—fo)

e” T cos(2mf.(t —tg) — o) for t>tg,

/ cy . to, @pr t) =
(fer @ To. 907 1) {O for t<tg.

= The dominant (L=2, m=2), least-damped (n=0) mode:
1

fe = 537 [1.5251 — 1.1568(1 — tryern ) 2%
. MO\ B 0.1292
= 538.4 GOnT [1.5251 — 1.1568(1 — (tyem ) %] [Hz] .

Q = 0.7000 4+ 1.4187(1 — vpem) 49

= Parameters for the ringdown phase: {fc; Q . t(); Cb()]’

Berti, Cardoso and Will, Phys. Rev. D 73, 064030 (2006)
[gr-gc/0512160].

®

RINGDOWN (REAL AND IMAGINARY FREQ,)

120

I l I I ' T ! . . .
Prohibited region f1] Schwarzschild limit
100 - — ~0.236 4
=< /R _
80— \‘ _
S 11
40
1*80 ‘ a = 0.998
L | L L L
2(|)0 400 6(|)0 8(I)O 1000
f, [Hz]

Real and imaginary parts of ringdown frequency

_ _ e
fR_fC: fI—_QQg @
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ONLY RINGDOWN

Prohibited region

NEW PHYSICS

|£_1] [He]

(T =/ 1001

1 —3.7x107°
o 300 4 % 50
f R [Hz] il

= SNR = 50 (200Mpc) | |
for the typical Pop III BBH Rt 300

= SNR = 50 (200Mpc), Schwarzschild case

(:Ur = GUJIO , = ]./—1) — (ﬂ[rem — 37[}9:\[(3 s ¥pam — (]686?)
fr=209.5Hz, f; = —46.34Hz ., (f. = 299.5Hz, Q = 3.232) €

ONLY RINGDOWN
w40 | S0 | 60 70 | 80

SNR 18.74 32.86 50 (fix) 68.53  86.68

1 On the Schwarzschild limit

T .
TR [Hed .
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CONSISTENCY ANALYSIS WITH I/R

= By combining the data analysis
for the (I)nspiral and (R)ingdown GWs.

= We use the PN waveform for the inspiral phase
to extract the binary parameters.

{M,n, t., .}

= The remnant formulas are applied to obtain the GR
prediction for the parameters of the remnant BH.

{fC- Qv th ¢0}

= We find the expected parameter region of the QNM
for given inspiral parameters.

®

CONSISTENCY ANALYSIS WITH I/R

I, [Hz]

107°

T NEW PHYSICS ]

1 | 1 | 1 | 1
800 250 300 350 400
f, [Hz]

= SNR = 50 for both the inspiral and ringdown phases

(M = 6{]J[j s 1= 1;4;4) — (Myrem = 37[}9;\[\] ; Oremn = 0.6867)
fr = 209.5Hz, f = —46.31Hz. (f, — 20050z, Q — 3.232) @
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CONSISTENCY ANALYSIS WITH I/R

140~ -
= 40M_sun
100 200 300 400 500 600
. [Hz]
Total mass [Mg)] 40 50 60 70 80
SNRinsp 47.60308136 43.45077593 35 (fix) 24.76985161 18.94621580
SNRRing 13.56269312 23.70717338 35 (fix) 42.85387322 45.72790073

Fixed SNR = V352 + 352 @

DISCUSSION

= Kinugawa, Miyamoto, Kanda and Nakamura,
arXiv:1505.06962.

The event rate (inspiral+ringdown) with SNR > 35
3.2 events yr~!(SFR,/(10~2% Mg yr=! Mpc=2)) - ([fb/(1 + £,)]/0.33) - Errgys

= Great chance to confirm GR in the strong gravity
by observing the expected QNMs!

= Although lower Q ringdown waves are difficult in DA,
there may be a new physics!

= Next, mass ratio and spin dependence!
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“Can we remove the systematic error due to isotropic inhomogeneities?”
by Hiroyuki Negishi

[JGRG25(2015)P24]
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Can we remove the systematic error
due to isotropic inhomogeneities?

Hiroyuki Negishi

Osaka City University, Japan

i JGRG25@Kyoto(YITP)
In cosmology

- We assume that our universe is homogeneous and isotropic.

- Our universe is filled with non-relativistic matter and dark energy.

In this poster

- We assume that our universe is inhomogeneous and isotropic.

- Our universe is filled with non-relativistic matter and positive cosmological constant.

- There are large-scale isotropic inhomogeneities.

We compare these two cosmological model.
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Usually modern cosmology adopt

Cosmic microwave background (CMB)
Copernican principle

we do not live in the
privileged domain in the universe Sl The observed high isotropy of the CMB

+ The high homogeneity and isotropy of our universe in the globally averaged sense.
v

- The Copernican principle can not be directory confirmed by observations.

reason

- We can't move to the other clusters of galaxies.
- Our observations are confined on a past light cone.

¥

There are possibility of non-negligible large-scale isotropic inhomogeneities in our universe.

What is happen, if there are isotropic inhomogeneities in our universe?

¥

The existence of isotropic inhomogeneities around us affects the determination of the
cosmological parameters.

We consider two universe model.

+ FLRW universe model filled with dust and dark energy (w # —1).
+ Inhomogeneous isotropic universe model filled with dust and cosmological constant.

s density fluctuation

From only the distance-redshift relation, we can't distinguish the  w—-105
inhomogeneous isotropic universe from the homogeneous isotropic =« P wo = ~1.03]

i S wy = —1.01
one. = ¢
< / T wo=-089
; v wo = —0.97
o/ T = —005

Isotropic inhomogeneities affect the determination of the cosmo- —
logical parameters. z

\ There is systematic error due to isotropic inhomogeneities )
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We want to know exact the equation of state of dark energy.

¥

We want to remove a systematic error due to isotropic inhomogeneities.
t

Why is there a systematic error?

X
Our observations are confined on a past light \dA(z)
cone, and we use only one observable. \
In this poster, we use multiple observables.
LSS
o > T

We study whether we can distinguish the inhomogeneous isotropic universe model from the
FLRW universe model and remove the systematic error due to isotropic inhomogeneities, if
we use multiple observables.

*In particular, we focus on the equation of state of dark energy.

equation of state of dark energy

2 2 2 i 1
m=0
ELRW) wo # —1 or wy #0
Cold dark matter 08 imui

o (FLRW) Wy, =0 (m>2)
b

Baryon

Derkenergy Q™
k

Ms(FLRW)
PrrLrw) = Ro(FLRW) <k_0>

HéFLRW) = 70 km/s/Mpc

QULEW) — 0,95

We fix Q}(DFLRW) — 005

ns(FLRW) = 0.96
Ry=22x10""
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FLRW universe + inhomogeneous isotropic perturbation
ds® = —dt* + a®(t) [(1 + A(t,7))d:; + 0;0; B(t,7)] da*da’

1
= —dt? +a? {(1 + A+ 82B)dr? + (1 + A+ ;&B) r2d92] :

Do (t) = H (H(a) / a mdb)

Baryon
- Cosmological constant A

We fix the gauge
A=—-h(r) B= —@D.,_
° ,
Cold dark matter PCDMO Ty = ﬁ(t)(l 4 A(t, r))uuuy
Pbo 1 LD+aiaih P(k) = Ry (%)n

SH?

A(to,?")

We assume that our universe model is flat FLRW
universe where faraway from the observer.
There are three parameters pcomo, proand A and one arbitrary

function n(r) in the inhomogeneous isotropic universe model.

inhomogeneous FLRW

We derive the null geodesic equations.

Assumption
+ The observer stays at the symmetry center r = 0

‘ Both k% and k¥ should vanish.

Trajectory
t =t(z) + t(z) r=7(z)+ or(z)

Background
a1 dr 1
dz (1+2)H dz H

H = Ho\/Qu(1 +2)3 4+ Qp

Perturbation
dot 1 [
E_—(l—i—z)Hz(E H)‘”*m—dz 2 @ dz
dor h D, _d’h  dH dh dot
E‘ﬁJrz_Hg(H?JFEE)_&_(HZ)E

1 dD+<_d2h deh)

Boundary condition
t(0) = to

/
I /

7(0) = 6t(0) = 6r(0) =0
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Observables

We use three observables

- Angular diameter distance-redshift relation da(z) 0< z <2

- Baryon acoustic oscillation(BAO) scale d,(z) 2=0.2,0.35
- CMB angular power spectrum C, I>1
t
N
N da(z)
dy(2)
C
o > T
Observables in inho 10

Angular diameter distance-redshift relation

t=t(z), r=r(z)

~ a(f)T + a(t) [67" - (%h(f) + D*—(aarh(r) - Fm) F]

27 HZ

dn(z) =a[1 + 5A+ 5 -0,B]r]

We use angular diameter distance-redshift relation in the range 0 < z < 2

Solving the geodesic equations determine ¢, 7, 5t and or.
Angular diameter distance-redshift relation depends on two parameters py,0, A

and one arbitrary function h(r) (0 < z < 2),
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Observables in inhomogeneous isotropic universe

t

- For simplicity, we ignore the Integrated Sachs-Wolfe effect. Observer
’ We discard low multipoles in our analysis.
- We regard spacetime faraway from observer as homogeneous and isotropic.
We assume that the linearly anisotropy perturbed FLRW universe with
inhomogeneous

Standard Model particle physics and cold dark matter is fulfilled in

decoupling epoch..

decoupling
o
CMB angular power spectrum

C) — g2 C(EdS) {CMB angular power spectrum of Einstein de Sitter (EdS) Universe
L= :whlch has the same values of pcpm(tdec) Pb(taec) and P(k) in inhomogeneous :
tropic universe model
dA (zdec) "I'S'o """"""""""""""""""""""""""""""""""""""""""" U

5= d(EdS) (2dec) g .. .......................

A dec 'Angular diameter distance of EdS universe

*We choose the photon temperature today To = 2.725K and ng = 0.96.

CMB angular power spectrum depends on pcom (taec)  ob(tdec) s da(zdaec) and Ry .

<V

Baryon acoustic oscillation scale

Az 1/3
(e) = (Athao 222
Azpaois the redshift interval the BAO scale Afpaois the angle that observer seen
engraved in line-of-sight direction. the BAO scale in the transverse direction.
Lgao(t(2),7(2))
Azpao(t(2) / = ar Abpao(t(z),7(z)) = —BAC N (z)’

In our universe model

Leao(de) (1 o 13 2 1 HD, dh
d,(z) = — V4 254 =5 Ly
(2) = =) \E 21122 TR R TR T s as

1 dD4 o d*h  _ dH dh ¢
—— (a+»==E+D, ) (H 7 g 4
6H§<(+Z)dz+ +>< PR dzdz)} ¥ Observer
.

We approximate that isotropic density fluctuation -

is very small at decoupling epoch.

W L5ao(dec) = const

The BAO scale depends on PCDMO0, Pb0 , A, h(r) and a(tdec).
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Our purpose is to study whether the observational data in FLRW universe model can also be explained
by the inhomogeneous isotropic universe model.

We try to construct the inhomogeneous isotropic universe model whose distance-redshift
relation, temperature fluctuation of CMBR and BAO scale are identical with those of the FLRW
universe model with dark energy of w # —1.

da(z) = darFLrw)(2) (0<2<2)
dz(z) = dz(FLRW) (Z) (Z =0.2, 035)

Ci = CyrLrW) (I>1)

With these conditions, null geodesic should be regarded as the system of differential equations to
determine the inhomogeneous isotropic universe model.

¥

If there is a solution in null geodesic equations we can’t distinguish inhomogeneous isotropic
universe model from FLRW universe model, otherwise we can.

¥

It is mean that, we can remove the systematic error due to isotropic
inhomogeneities, if adopt appropriate observables.

Why are there no solutions? t

L . . ob
- da(z) restrict isotropic inhomogeneity at the

range( < z < 2. AN
N\ da(?)
- Cyrestrict the BAO scale at decoupling epoch. ' : \
|
([
- There is no degree of freedom to fit the BAO | d,(2)
scale on the light cone. I
([
|| Cl
Inhomogeneous isotropic universe model has
. . i decoupling
one arbitrary function, but it is not enough. 5 >
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- We compare two universe model which is inhomogeneous isotropic
universe model and FLRW model.

- We use three observables which is distance-redshift relation,
BAO scale and CMB angular power spectrum.

+ Observables in FLRW universe model and inhomogeneous
isotropic universe model are not coincided.

¥

- We can’t construct the inhomogeneous isotropic universe model
whose distance-redshift relation, temperature fluctuation of CMBR
and BAO are identical with those of the FLRW universe model with
dark energy of w # —1.
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“Cosmic string shielding of electric field of line charge”
by Tatsuya Ogawa

[JGRG25(2015)P25]
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Cosmic string shielding of electric field of line charge

Tatsuya Ogawa and Hideki Ishihara

Department of Mathematics and Physics, Graduate School of Science, Osaka City University

We consider a system consists of a complex scalar field with a potential which causes spontaneous symmetry

breaking and U(1) gauge field. It is well known that there exist the Nielsen-Olsen string solutions in this system.
‘We put a line charge in this field. In the symmetric phase , electric field appears whose strength is in proportion to 1/r.
In a broken phase, on the other hand, we show that a cosmic string is possibly formed along the line charge, where the
electric field is shiclded by rotating phase of the complex scalar field. The energy density of scalar field and
electromagnetic field is localized in a finite thickness of the string, then the surface integral of energy density on a
surface 7 = const.,z = const. plane is finite. We discuss physical properties of the phase rotating string in

K comparison to the Nielsen-Olsen string. )

4.Solution of phase rotating string

If there is a line charge in a complex scalar field coupled to U(1) gauge field in the The charge density Peyx(r) is assumed as the Gaussian function ,
symmetric phase , a long-range potential of U(1) field appears. On the other hand , -~ —(r/ry)?
if there is a line charge in the broken phase , what kind of the field configuration is Pex(r) = poe o
allowed ? In this poster , we introduce a new cosmic string solution which we call If we require boundary conditions (1) and
phase rotating string , and explain the physical differences from the dq(r)
kNielsen-Olsen string solution. j “ar =0:r—=0 , g(r) > 0:r—oo,

We find cosmic string solutions which we call phase rotating strings. The string solution screen out the electric
field of the line charge as shown in fig.3.

i

We consider the Lagrangian
£ =" (DuF)(Du) ~ 3 Fn™ —V(0,6),
Fuv = by =iy, V(6.6) = % (G0 ),

where D, is the covariant derivative operator and jv is the conserved current density:,
Dub = (Bu—ieAw)d | J¥ = ~2elm[p(3" — ieA”)d]

The potential V(q),(ﬁ) causes spontaneous symmetry breaking. & 2 i G j B 2 ) 0 g i
We assume static and axisymmetric fields

0(r,0) =¢"f(r) , Au(r)=(0,0,n44(r),0) ,

where we put e = 1 for simplicity, and n is winding number of the complex scalar
field. If we require boundary conditions

+
o(r)=2m / J'(#')r'dr'| Fig.3. Upper left panel: The phase rotating string solution
40 for the external charge density Pex(r) .

(J'(r) = =212 + pex(r)) Upper right panel: The phase rotation of the scalar

f(r)=0:r—=0 , f(r)=n:ir— o, ) dq field induces the charge density —2f2q .

i . i . - E(r)|=-=2 Lower panel: The charge Q(r)within radius 7 ,

Ao(r) 2 0:r >0 Ao(r) > Lir—yeo 00 dr_| and the amplitude of the electric field E(r).
We find a solution called Nielsen-Olsen string , (see fig.1). o F r G 0 0

The energy-momentum tensor is given by

Tyy = (DMP)(Dv(Z’) - %guv{gaﬁ (Da¢)(DB¢) + X(‘M’ - 71')'} + % {g’mFuvao - lgqupoFPG},

4
and averaged line energy density , i.e. the integral of energy density on a surface £ = const.,z = const.

Fig.1. The Nielsen-Olsen string solution plane , becomes

inthecase n=A4 =1n=1. e ] N ar\* n?, . 2 1([(dg\*> n?(dAg\?
8:27:/ PP (2 ) 5@ DS+ () 552 ) |
[3{re+ (5) +Ga- e fir-mr b (50) + 5 (4
The first term is the kinetic energy part and the fifth term is the electric field part.
j Tension of the phase rotating string is given by

3.Basic equations T

LN AN 20 Ao a0l 1 dg\* n?(dAg)’
27:/0 [E{—fq +(E> +r—2(A9—l)f +Z(f -n°) o la) Tl rdr,

Since the terms related to g(r) exist unlike the Nielsen-Olsen string solution ,the phase rotating string solution

(A)Symmetric phase have tension which is different from the averaged line energy density.

In the case 112 =( , we have the symmetric vacuum (()MSMO) =0- The phase rotating string solution have angular momentum around the symmetric axis which is given by

If we put a line charge as an external field, - " -

: soluti _ B - n= (d dA
we have a solution ¢ = 0,4,(r) =< log(r) - . /\ Lg(r):—Zilq(Ag—l)fz—T(—q>< 9)
r? \ dr dr ).

(B) Broken phase _ . e \

In the case with non-vanishing V.E.V., (0[9¢|0) =1~ £0 . Lo(r) Fig.4. The angular momentum around the symmetric axis

‘We assume stationary and axisymmetric fields o of the phase rotating string.

9(1,r,0) =AY (r) = (Ai(1),0,nA6(r),0)
The complex scalar field configuration is expected to be the one which . 1
is illustrated in fig.2. K o 2 . , s 10 j

- We found the phase rotating string solution which is screening of electric field of line charge, and analyzed the
" differences from the Nielsen-Olsen string solution. The analysis results are summarized in table, and the inner
structure of the phase rotating string is illustrated in fig.5.

Fig.2. The complex scalar field configuration

" and the external line charge density Pex(r)
7 Wh“:_h is placed at origin in two-dimensional =2 _ The Nielsen-Olsen string | The phase rotating string
e e SrloyopIcsen o=0 Electric field Not exist Exist(localized)
e amplitude and phase of the complex scalar field. Feo
The field equations become Charge density Not exist Screened
d*f a ldf n® f(Ao— 12+ fa? A (PR —m2)2 =0 Angular momentum Not exist Exist(localized)
arr Trdr - 2000 T = =t Relation between tension .
B . d deis Equal Different
d*Ag  1dAg 22 Ay —1) =0 and energy
— o o—1)=
dr? r dr ; Table. The differences of the phase rotating string solution
a2 q from the Nielsen-Olsen string solution.
2
dr Fig.5. The inner structure of the phase rotating string.
where g(r) = A;(r) — @ , and Pex(r) is the external charge density.

g J
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“Causality and shock formation in general scalar-tensor theories”
by Seiju Ohashi
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Formation in General
Scalar-Tensor Theories

Seiju Ohashi(KEK)
Collaboration with
Norihiro Tanahashi(DAMTP)

1.1 Motivation

O General scalar(s)-tensor theory

-Modified gravity theories.

-Frequently discussed to study inflation, dark energy, dark matter
* Horndeski(1974)

* The generalized multi-Galileon theory(2013) ...

* The most general bi-scalar-tensor theories(2015)

O They have non-canonical Kkinetic terms

-Non-canonical kinetic terms may imply superluminal motion
and shock formation

1335
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1.2 Motivation

O Reveal the peculiarities of the theories
-Superluminal motion

* Gauss-Bonnet gravity, K.Izumi(2014)
* Lovelock gravity, H.Real, N.Tanahashi & B.Way(2014)
* Special class of general scalar-tensor theory, Minamitsuji(2015)

-Shock formation

* Gauss-Bonnet & Lovelock gravity, H.Real, N.Tanahashi & B.Way
(2014)

What about general scalar-tensor theories ???

1.3 Motivation

O Focusing on peculiarities in the most general bi-scalar-tensor theory
S.O, N.Tanahashi, T.Kobayashi & M.Yamaguchi(2015)

I|d
le

G = AS§ + [-2F 1 — 4W 1+ 2 (Dyk1 + 8J5k,1)) XK SEJKLMIXJKXLM] Spd®
+ (—2F 15— Wrg+ A+ 2Dk X5 — 16 B pyn st X5EXMN — 160 5r 17,0 X 5E) ¢(I|a¢i?

le Tle

K Mlh 1
+ Drudigg o™ o + Brxivongiole™ ol oM o " + (5” W) 06 Ree ¥ + F 105501087

Lih
lg

I|d
le

I|d K|h

2 i
e, + SK1sidpfon'ol o

K
+ TG a0t Ry + 2015 k155t 067 0 oL + Krogets :

-A,D,E.F,J K are arbitrary functions of ¢’ and X7 where ol =Val, XU= féd){adﬂ‘“
* Superluminality ?

» Killing Horizon (BH horizon) ?
* Shock formation ?
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[
2.1 Speed of Propagation

O Is propagation speed faster (or slower) than light ?

A

O Is Killing horizon the causal edge (characteristic surface) ?

2.2 Speed of Propagation

O Canonical scalar field case

9BV AVEo+V(p) =0 ‘ gBkakpgr =0
fourier transform

* Speed of the fastest mode is speed of light

O Non-canonical scalar field case

(948 + aVAYVEY) VaVpe + V(4) =0 ’ (972 + aVAyVPe) kakpdy = 0
fourier transform

* Speed of the fastest mode is not speed of light

O Coefficients of second-order term determine the speed of fastest mode




1338

2.3 Characteristic surfaces

-Causality is determined by the characteristic surface

0

-3D surfaces where fastest mode propagates. £

* Assuming quasi-linear EoM

E; (g,09,0%g) =0

Initial data= g7 and 9,91
2 E;

2 e e e —
o)
939, is uniquely determined if P is invertible
0F;
J e A P e e N 0
P(z,8)” = 8(8u8,,gJ)§“§” where & =dx

* Surface ¥ is characteristic if and only if P is not invertible

det Plz 5 =10

2.4. General Scalar(s)-Tensor Theories

O Characteristic equation, assuming »; is null

A9H g1 00 + BY 100 = 0

BY gii00 + Cryds00 = 0

& 1 S e
Where Az],kl Li0) <§]: G W> gp(zégsl(fkgl)fQOm P 2JIJgP(lJé?in(i(;gl)fg()m¢llc¢l]|d

i 5J)c0(k I|d
— 2K g g oy,

R e i <7)c0 i oj)ced
BY =B1g"ia]°¢"™ + Dyxcrg 6] g oo M1 + Excrarg'Copeg oo gk oMU
i cJ d i cJ L
+ 2159 S g S + 401,119 8] e g 1™ g
A ng“"él’;l?jf eER QKI,JKgl(illefcf,? gomd)‘ﬁ%f: I,

C_{1J} are extremely complicated
O Not degenerate in general. Characteristic surfaces in general

scalar-tensor theory are not null in general.
O Speed of graviton & scalar field(s) are taster (or slower) than light
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2.5 Killing horizon in Scalar(s)-Tensor Theories

O Can Killing horizon be the causal edge ?

* If not, some information can escape from black holes
-Killing condition

digi—0 (9%g¢j =1 and 010kgi; =0
-Characteristic equations are still invertible in general

-Killing horizon can not be the characteristic surface

-We need additional condition on scalar fields in order for KH
to be characteristic

Opr =0, 82¢;=0, 010,61=0

3.1 General description
-Propagation of discontinuity

O Consider solution smooth everywhere except across
* continuous 91, 0,91, 0:0,91

+ discontinuous  92g,.,
-EoM  E; (g,09,0%g) =0

’ A15(8i5, 80, i 8, 7)(9.7)oo + b1(Loi> 8ij» 8o, Gir 8, 7) =0
-Discontinuity across X . [f] is discontinuity of f across ¥

Apy059s] =0

 [02gs] is kernel of Aj;

« WedefineIl,r Iand1l Ias [(97)oo] = Ilry

LAy = Ary —1
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3.2 General description
-Evolution of discontinuity

-To derive the evolution, take the time derivative of characteristic equation
I+ NI+ MII =0

-General solutions of transport equation
=1

I1(s) = T(0)e*® (1 +10) [ N(s')e—%/)ds') where ()= [ M(s)as

-IT diverges if 1 + I1(0) / N (s)e ®ds' — 0
0
* Non-linear effect, this happens if N#0

-We can find whether or not shock forms by checking the value of N.

3.3 N in General Scalar(s)-Tensor theories

-EoM
5.kl ij =
AP g 00 + B dr,00 =0
.
BY gij.00 + Cryds00 =0
-N
- HAUHL - OB - oBY Py
= e L Ul e ol ns el k] i G
“Boman = 00 Agrio dels

-N does not vanish in general

-Shock generically forms in general scalar(s)-tensor theories
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[
4. Summary

O We study the causal structures in general scalar(s)-tensor theories

v" Propagation speed is not speed of light
v' Killing horizon can not be causal edge in general

v' If scalar fields have Killing symmetry, KH is causal edge
O We show that the shock forms generally in general scalar(s)-tensor theories

v" Shock forms in general

v We should clarify in which background shock forms
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Sturm’s theorem to marginal stable circular orbits

Toshiaki Ono

Hirosaki University, Japan
with T.Suzuki, N. Fushimi, K. Yamada', and H. Asada
Hirosaki University, 'Kyoto University

JGRG25 in Kyoto Dec. 7 - 11, 2015
Abstract: Based on our recent work (Ono et al. EPL, 111, 30008, 2015), in terms of Sturm’s theorem, we reexamine a marginal stable circular
orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static spacetime. Strum’s
theorem is explicitly applied to the Kottler spacetime. Moreover, we analyze MSCOs for an exact solution in Weyl conformal gravity.

1 Introduction

In general relativity, the orbital radius has a lower bound that is called innermost
stable circular orbit (ISCO).
ISCOs may play key roles in astrophysics as well as in gravity theory.

o In gravitational-waves astronomy, ISCOs are thought to be the location at the
transition from the inspiralling phase to the merging one, especially when a
compact object is orbiting around a massive black hole probably located at a
galactic center [2].

e In high-energy astrophysics, ISCOs are related to the existence for the inner
edge of an accretion disk around a black hole [3].

Outermost stable circular orbit (OSCO) of a test body is possible in the Kottler
(often called the Schwarzschild-de Sitter) spacetime [5].

The ISCO and OSCO are a boundary between a stable region and an unstable
one. Hereafter, we call it a marginal stable circular orbit (MSCO).

Throughout this poster, we use the unit of G = ¢ = 1.

2 Equation for a location of a MSCO
A general form of the metric for spherically symmetric and static spacetimes :
ds® =

—A(r)dt* + B(r)dr® 4+ C(r)(d6? + sin® 0dp?), (1)

where we consider g = —A(r) <0, g = B(r) >0, ggg = C(r) > 0.
A ne ry condition for the existence of a MSCO is expressed as [4]

i (A;w) = (c?») i (cb)) & (Aé») =0 @

Hereafter, we call eq. (2) MSCO equation.
Given a root for eq. (2), E*(E: specific energy) and L?(L: specific angular mo-

mentum) :
2= i (ew) P=za(aw): ®
az| 7 oo o) ‘ @

a
# () —#
ar \ A ar

A sufficient condition as 0 < E? < 0o

and 0 < L? < co.

3 Sturm’s theorem

p(r) denote a polynomial. Applying Euclid’ s algorithm to p(r) and its derivative,
Sturm’s sequence

po(r) = p(r),
() =p/(r),
pa(r) = p1(r)ao(r) — po(r),

Pna(r), (5)

where ¢;(r) is the quotient of p;(r) by pi41(r).

V(a) denote the number of the sign changing (ignoring zeros) in Sturm’s sequence
at r = a.

V(a)—V(b) gives the number of distinct roots of p(r) between a and b, where a < b.

0= pa(r)gn-1(r) —

4 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetimel[5]:
5 A 2 2
ds?=—(1-12 2,2 dt2+#+
r 3 1—7— 32

where 7, = Schwarzschild radius and A = the cosmological constant.
spacetime, Egs.(2) and (3) become

r2(d6? + sin® 0d¢?), (6)

For this

7'2(r$ —2Ar%)
r2(2r — 3ry) ?
(7)

.3 2 L p3)2
S\rt 1N p b3 =0, B2= S TN
’ r2r(2r — 3ry) ’

where z = 7/ry and A = Arz/d
Sturm’s theorem (as necessary condition) and the positive E? and L? (as sufficient
condition) tell us that there are four cases:

Casel: A = 0 (Schwarzschild case). Single MSCO.it’s corresponding to the ISCO.

Case2: 0 < A < 16/16875. Two MSCOs, where one is corresponding to the ISCO
and the other is the OSCO.

Case3: 16/16875 < A. No MSCO (after the ISCO and the OSCO merge at
A =16/16875).

Cased: A < 0 (anti-de Sitter case). Single MSCO.

5  Spherically symmetric, static and vacuum
solution in Weyl conformal gravity

the metric [6]:

ds? = —B(r)dt* +

dr? + r?(d6? + sin® 0d¢?),

1
B(r)
2 .
B(r) = \/1—6my — $+~/r—kr{ (8)

where m = black hole mass, v and k are the integration constants to the vacuum
equation in Weyl conformal gravity. We focus on k& = 0, # 0 in this poster.
For this spacetime, Egs.(2) and (3) become

3')’\/1— 57 4 6772 — /1 —33F +3 =0, (9)
5 Am2r? (372 + 1)

T AP 2/ T-3r -3

Sturm’s theorem and the positive E? and L? tell us that there are four cases:
Casel: 0 <5 < 1/3. Single MSCO.it’s corresponding to the ISCO.
Case2: (45 — 32/2)23 < 5 < 0. Two MSCOs, where one is corresponding to the
ISCO and the other is the OSCO.
Case3: (45 — 32v/2)23 = 4. The ISCO and the OSCO merge.
Cased: —1 < 7 < (45 — 32¢/2)23. No MSCO.

(10)

; o0
Horizon

004

~006]

“008

i

MSCO equation —
Horizon -+

=

Figure 1: 4-dependence of the MSCO radius.The horizontal axis denotes the MSCO
radius. The vertical axis denotes the 4 parameter.The shaded parts denote the
prohibited regions where £2 < 0, L? < 0,5 < —1 or 5 > 1/3. Left: 5 € [-1.2,0.5].
Right:y € [-0.1,0]

6 Conclusion

We reexamined, in terms of Sturm’s theorem, MSCOs of a time-like geodesic in
Kottler and spherically symmetric, static and vacuum black-hole solution in Weyl
conformal gravity.

Sturm s theorem is applicable for classifying MSCOs for some spacetime, if the
MSCO eq. is a polynomial.

Extension to axisymmetric spacetime is in progress (Suzuki’s poster).
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P29

§ = fy e s R + o)+

where £ = RY - IR,

 Fied equation

b+ w1,

where H,. R,

 has GR correction terms from String Theory

« has two solution branches (GR/non-GR).

« is expected to have singularity avoidance feature.
(but has never been demonstrated.)

emuch attentions in WH community
H Maeda & M Nozawa, PRD 78 (2008) 024005
P Kant, B Kishaus &) Kunz, PRL 107 (2011 271101
P Kant B Kishaus &) Kune, PRD B (2012) 044007

enew topic in numerical relativity.
s

F lzauriets & € Rodrgues, 1207.1496.

.

Field Egs.
p

Formulation for evolution [dual null]

Metric - dimensionl, dual nul cocxinate, 2 ) decomposition

Variabls Parametrs

a-1 Confrml acor  dimension
& comature

9. (- 2.r expanson
h A cosmolgical constant

Iapse function

vemauf iy shif)

For simpiicy, we deine

sclar i (nomal)
sclar momentum

W
sclar ek (ghost) .
“rdo sl momentum ST
)
matter variables
[ ————

evolution equations (1)

Eauations for +* direction

( )
[ Motivation
D: ics in G B. gravity?

« Acton

_ /

z ~  Black Hole, Expanding Universe,

i %4

4 igi and Gravitational Wave
i
gg‘,"f --- 100 years of General Relativity
I3

& ¥

H.Shinkai (2015 Kobunsha)

[Korean ver. (2016 Kachi Pub.)]

Outline & Summary

We numerically investigated how the dynamics depend on the dimensionality and how the higher-order curvature terms

affect to singularity formation in two models:

(i) colliding scalar pulses in planar space-time, and (ii) perturbed wormhole in spherical symmetric space-time.

Our numerical code uses dual-null formulation, and we compare the dynamics in 5, 6 and 7-dimensional General Relativity

and Gauss-Bonnet (GB) gravity.

(1) For scalar wave collisions, we observe that curvarure evolutions (Kretschmann invariant) are milder in the presence of
GB term and/or in higher-dimensional space-time.

(2) For wormhole dynamics, we observe that the perturbed throat will be easily enhance in the presence of GB term.

Both suggest that the thresholds for the singularity formation become higher in higher dimension and/or in presence of

GB terms, although it is not evitable.

Colliding Scalar Waves
( )

GR 5d: small amplitude waves

ol gt

GR 5d: large amplitude waves

it background, normal scalar fold

oo

1 = Ry

v 190 = Ry

o (R RN
maximum o Kreahmann invariant

L

1 at origin

-

Wormhole Evolutions
p

‘Why Wormhole? BH & WH initial data

S.A. Hayward, In. 3. Mod. Phys. D 8 (1999) 373

« Static condition

(@100 =0 = 0,40 =0

or aternative gravity theories, brane-world modes etc. Surfaces and can be defined by trapping horizons (TH)

it iers,whether T ; : )
Surtaces and can be defined by trapping horizons (TH). evolv npus/ minus densiy which i ivn loaly. ] T S

-)4

Wormhole = Hypersurface follated by marginally trapped surfaces Black Hole Wormhole » Solve * and & equations with the starting condition at the throat
=
=
et
oseton]
e
e
P
S

« 344 perubaton

Ple* =27 =0) = p. oltion) + acxpl 100 ~ 0.5

conformal factor scalar field

positive energy input > BH formation

in GB

negative energy input -> throat inflates

agp <0

BH formation

throat inflates

S Ao ]

whers G = R < R R+ o

J

J

http://www.oit.ac.jp/is/~shinkai/

@JGRG25, YITP Kyoto, 2015/12/7-11
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Conditions on Scalar Potentials in
Geometric Scalar Gravity

K yoshi Shirai shi (Yanaguchi U )
arXiv:1508.02827 [gr-gc] (with Nahomi Kan (NIT, Gifu))

The 25th JGRG (Kyoto), Dec. 2015

2

We discuss a generic form of the scalar
potential in
Geometric Scalar Gravity
(M. Novello et al., JCAP1306:014)

Q. Is it difficult to describe Gravity by the single scalar
field?
A. It could be considered as an exercise for Modified
Gravities (TeVeS, Mimetic, *+ *).

The 25th JGRG (Kyoto), Dec. 2015
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§ 1. Old scalar gravity

Theory of Nordstrom (1912) g =e n

(o)
dynamical equation: Je =0 (in vacuum)

GM

a solution: 98°= 1_r— (dtz—drz—r2dQ?)

[} A
coupling to matter: Oe ocT  T=T )

2
- Newton limit: V. ®=4nGp, (0: energy density) OK

- Deflection of light; conflicts with observation NG

The 25th JGRG (Kyoto), Dec. 2015
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The 25th JGRG (Kyoto), Dec. 2015
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§ 2. Review of Geometric Scalar Gravity

M. Novello, E. Bittencourt, U. Moschella, E. Goulart, J. M. Salim and J. D. Toniato,
"Geometric scalar theory of gravity",
JCAP 1306 (2013) 014; JCAP 1401 (2014) 01, EO1. arXiv:1212.0770 [gr-acl.

E. Bittencourt, U. Moschella, M. Novello and J. D. Toniato,
"Cosmology in geometric scalar gravity", Phys. Rev. D90 (2014) 123540.
arXiv:1412.4227 [gr-oc].

E. Bittencourt, M. Novello, U. Moschella, E. Goulart, J. M. Salim and J. D. Toniato,
"Geometric Scalar Gravity", Nonlinear Phenomena in Complex Systems 17 (2014) 349.

J. D. Toniato, "A teoria geometrica-escalar da gravitacao e sua aplicacao a cosmologia“,
Tese de Doutorado (Rio de Janeiro, 2014).

[. C. Jardim and R. R. Landim,
"About the cosmological constant in geometric scalar theory of gravity",
ArXiv: 1508.02665 [gr-ac]

The 25th JGRG (Kyoto), Dec. 2015

Dynamic metric:

AV (D) - 10,00,
G = ez@ T — = ; ((r ) Gl
e 12V (D) w

w=n"0,20,0

n :flat metric

mv

V(®): scalar potential

e V(D) — 1

. prr =20 | LA T ) T, g
inverse: ¢ =€ [?? + nrn 6ptI>6J<I>]

60
e =
W/determinant . /—q = +/—detq, = ——\/—7
: v V i N ,—V (<I>) v

The 25th JGRG (Kyoto), Dec. 2015



1 ,
action for Scalar: Se = - / V=gV (®)g" 9,00, dd*x

2 ,
variation: 05 = —E/\/—Q\/V[@))(Dé)ﬁédix

Note:
1 1 v od
Od = \/—__qaﬁ(\/—_qq‘”’a,,(b) — e V(D) L/—__na#(\/—_nnwa,,@) + %% InV(®)
The 25th JGRG (Kyoto), Dec. 2015
8
action for matter: Sm = /\/—qﬁmﬂﬁﬂr
. 1 . 2 O/—qL
0S5, = ——= S —a T"§ yd4 T, = m
2/ q qﬁ- {1’, ZC_T o \/__g agﬁv

expressed as the variation of the scalar field,

TM6q,, = [2T + (4 — %%) E] 80 — 2070\6D

_T0,00,8 ety
- 0 T O

O = ¢"0,00,® = e *®Vw, thus

58, = _] [T+ (2 . _——) E +vkc*] 5d\/—qdia

ZCT T = T#Vq,r.w ? E (TAV — Eq*”)@,,@

The 25th JGRG (Kyoto), Dec. 2015
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action for gravity+matter system:
equation of motionderived from 5 =S, + S, :

VTR0 =y,

where

1 1 dV
——— 2 R YA
X ng-l—(d ZVd(I))E-I—VAC]

Newtonian Approximation :

Too = p, Goo = 2P 21+ 20y
K

7 25, _ F S pYe.
VVI(® )V = =p  where NGO

) _, - the value of the scalar at an infinite distance from the origin

The 25th JGRG (Kyoto), Dec. 2015

Novello et al. adopted the following as V (®):
V(®) = Va(®) = (1 - 36

(This produces an exact Schwarzschild spacetime)

What geometry from generic forms of the scalar
potential ?

The 25th JGRG (Kyoto), Dec. 2015



§ 3. Weak Gravity Limit (post-Newtonian)

spherical, static spacetime
non-dynamical flat metric: 7, dz"dz” = dT? — dR* — R*dO)?
ansatz: =90 (R)

eﬁ@

ds® = g, drt'da” = *dT? — ——dR? — ** R*dO)?
V()
new variables : t = e®>T r=e®R
Sandard Form : ds* = B(r)dt* — A(r)dr® — r*dQ?

B(r)= A8 Px)
. 2
with _ e _ae
A(r) = VD) (1 Td?“

The 25th JGRG (Kyoto), Dec. 2015

Asymptotic Flathess>
lim ®&(r) = &, lim rd'(r) =0, e *P=V(d,)=1

expand gravitational potential from the asymptotically
flat spacetime: (g is a constant)
GM G2 M?

(EN = (I) — (E-x- — q >
T r

L O((GM/r)?)

expand the scalar potential: (k is a constant)
6_4¢)V(‘I)j =14+ 4kdy + O((I)g\)

The 25th JGRG (Kyoto), Dec. 2015
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Using the parameters, the line element can be written as

2GM 21 — g)G2M?
- L A=) +0
r T
2 -
22k - NGM

r

B(r) =1 (GM[r)?),

Alr)=1+ ((GM/r)?).

PPN (leading) (see texts by Weinberg, Hartle,...)

G2 M2
B(ry=1- 20 20T oy,

r r2
2vGM
T

Alr)=1+ + O((GM/r)?),

by comparison, we get g =2k—g, v =2k—1

The 25th JGRG (Kyoto), Dec. 2015

_ MNa —k 2‘;2
B(r) 2d® _ 0 29— K)GPM?

Ar) " dr r

O(GM(GM /r)?)

From this e.o.m. of scalar in vacuum -> g=k

+also, From observation, (upto6digits) B=yr=1=>k=1
in conclusion,
e V(D) = 1+ 4Dy + O(D3,)
or
1 dV(d)
V(®) dd
is the condition for weak gravity in post-Newtonian App. OK

=8 atd=2>

The 25th JGRG (Kyoto), Dec. 2015
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§ 4. Strong Gravity (horizon)

—_—

1354

[b(r) ,dd 1 1 2 db(r) o
rom e.o.m. in vacuum | ro—m— —= — T pm (?LJIIE’ > 0
From e.0.m. \VA(r) dr 2 /A()b(r)  dr

where b(r) = €20, gy = B(r) = b(r)e "=

o () [26(r) — rb(r)

bir)

S APV (Dl / VD) /b(r) .
VIV oY) _ VRN oy oo
2

If >0 and\/V(®(r))/b(r) is finite everywhere, then
b'(r)
b(r)

singularity at r=0, no horizon

— 0o as r—0

The 25th JGRG (Kyoto), Dec. 2015

A horizonat r=r ,can exists if

=22V (d) < oo,

0 < limA(r)b(r) <o or 0< lim RV /

r—Tg P—— o

also, atr=r 0>r iy 2b—rb'=0 holds, then

V(®(rg)) = 0 is necessary.
From these, if a horizon exists, b(r) should satisfy

—1
o) () Ve VRm) S
5 b(?‘) - (1 7 G M e®= for rg <T <Tp,
—1
r(r) Ve OV (D(r)) |
350 (1 e for r > 1y,

The 25th JGRG (Kyoto), Dec. 2015



Moreover, if we require b(r)at r =r be a smoothfunction,
the scalar potential should be written as
e V(@) = [F(b)]

then, from the condition for Asymptotic Infinity,
GM P

r

= |[F(0)] = Fy

g

T in general, r #2GM

The 25th JGRG (Kyoto), Dec. 2015

Example. the Linear function
F(b) = Fy (1 — fib)

3
Fl=—
0 Af;
3 4P o0
V((I)) _ 4_f182'1> (1 _ f162@)2 _ € ; 22— Poc) [l _ 362@_@%)}2

f o =02 V(®) = Vi(®) = (1 — 362

This is one that Novello et al. adopted.
The exact Schwarzschild spacetime is obtained.

The 25th JGRG (Kyoto), Dec. 2015
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Example2. the Case easily solved
F(b)y = I, (1 — f,b")

this leads to the spacetime solution

ds? = (1 _ E)”p d? — (1 _ T—g)_mm + 262

r r

but singularity at r=r g!

To get horizonat r=r , F (b)y=F (1—F(b))
where f(b) must be (prop. to) b +0(b?)

The 25th JGRG (Kyoto), Dec. 2015
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* Inverse Problem %

Q. What scalar potential leads to the metric:
2GM | 4.(2GM)*

r 3 73

b= e?? = P> [1 —

?

A. (using the new parameters below,)
: (1 + 2h)°

2o 3 (102 s Ot
f 3 4 (1+h)?

g :e@"“ :1—|—§h ngi(l—l—h)2

2GM  2F, 1+h ' " 4Af 1+2h

The 25th JGRG (Kyoto), Dec. 2015
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F(b) = Fo(1 = feo(b),
b)=Y(b 2/
where [#(0) =Y (b) + 3[1 4+ h(2Y(b) — Y (b)2)] »

2v/14+h 1 3Vh(1+2h
Y(b)=1- +?sin!§arcsin{ \/_?( 5 )(1 / b)}] for h > 0

2(1 + h)3/2 34+2h

Vh

4 Unfortunately, very small
difference between two cases
with

h=0(solid) and h=co(broken).

b

02 0.4 06 0.8 1
A Schematic view of the S. P.

The 25th JGRG (Kyoto), Dec. 2015
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§ 5. Summary

In Geometric Scalar Gravity,
we found physical conditions on the scalar potential V
by considering Weak Gravity and Strong Gravity

future subjects
- rotating BHs
- Gravitational waves
- Cosmology

The 25th JGRG (Kyoto), Dec. 2015
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§ 6. Charged solution

L

_ T
E.E-'.-’U — 167 F,H.VF
1 . .
I”V - E (Fluzu - szq;u/)
VP =0 Fy=2/BEAWD
o _ 1 Q2 A
T =0, E_Sﬁ-r—i’ C* =0
Ia" V(d(r)) 1 d Ja" B('f‘)rz-d‘I’('F) _w(, lav Q2
\ A(r)B(r)r2dr \f Ar) dr | 167\~ 2V dd )

The 25th JGRG (Kyoto), Dec. 2015
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=8 at & =&, asymptotically

Voo 1 d [ (B adb)] |«
\A(r)B(r)r2dr |\ Ar)" Tdr | T T 8x

| 20M O

, S +0(GM/r)?)

solutionis, B(r)=
RN black hole with wrong sign in front of O(r)!

The 25th JGRG (Kyoto), Dec. 2015
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§ 7. Spherical Star

e.m.tensor for a perfect fluid : T,, = (p + p)u,u, — pgu
Gut'u” =1

T=p—3p, E=—-p. C*=0

\Fmora [ A

B ‘Lr’({[)) \;’W’-"Q‘F f K i - 1 dVv _
T r2e3 |l — rd| | P —rd| | 2 plr) = (5= 2V dd p(r)

The 25th JGRG (Kyoto), Dec. 2015
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. s 1 [ e v pT
eq. of conservation : V1" = T_-qd:(V-@’ ")+ T, TP =0
1
where F:G — aq{”“('c)ﬁq,\g + Oorp — NMGpo)

p'(r) + [p(r) + p(r)]@'(r) = 0

* Inverse problem % de Sitter like interior metric

. 2 ,
b(r) = b.(r) =b,(r,) — M (1 — 'r_) =20 forr<or,

2 2

°0GM 45 (2GM)?
- _I_ - .

r 3 r3

b(r) = e*®") = b (r)=1—

forr > r,

The 25th JGRG (Kyoto), Dec. 2015
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energy density and pressure for this metric

£60-(7) 1 F{p(?‘) ! _ _2€3<I).. (r) \,_.fl,r(tl)*(r)){[)i(r) \/"'/ L.f((:[,*(._,.))erI);(r) !
VV(D.(r)) r2(1 —rd!(r)) e®- (1 —rd’ (1))

h=0

10kr3p, &rap

The 25th JGRG (Kyoto), Dec. 2015
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§ 8. Appendix

w i ‘fj L0 AT -
Inverse of Metric: ¢ = an" + E??‘ P17 0,20, ©
where w =1"0,20,®

1 o]
e — v —C){{[ a{/ il
then, 4 {.“t?r‘ ala+ Fw ! ot

Note that ¢, ® = (o + B)n 0, ®

The 25th JGRG (Kyoto), Dec. 2015
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1 - 1 -
——0, (v —qq" 0,®) = —=0,,(vV—q(a + )0,
Ve L (V—qq ) Ve L (V=al ) )

oy e @ w dv/—q(a+ 3)
@t [am KOUAVE TS T
e e 1y wdnfamP (a4 3)]
= (a+5) lﬁﬂ(??‘ %,®)+ 5 P ]

Here, we have used

1 dy—q 1, dg., 1 dgv

1
==q" = ——Qu——=—= (D -1
vV—q do SR SXAATS 2 ( )

— 1
—q
and vV —4 VaP1(a+3)

1 do 1 dla+3)
addb a4+ 3 db

The 25th JGRG (Kyoto), Dec. 2015
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Assume: L = V(®)y"9,00, = V(P)w
wd

) dP

]

Equation of Motion: 9.(7""9,®) + nV =0

1 ‘ Iy :
This is equivalent to ﬁdn(\-/—_QQ‘ d,®) =0

provided that a+ 3 =a"” 'V

— 1
(V=1 o )
aP-2V —
Eliminating B, ¢ = an” + aannwapq)agqa
Q.D—QL," 1
w — Y —_— 'C}I(I@!,tl)
and gF (1” &'D_]'l" w L

The 25th JGRG (Kyoto), Dec. 2015

1361



1362

“Marginal stable circular orbits for stationary and axially symmetric
spacetimes”
by Tomohito Suzuki

[JGRG25(2015)P31]



Marginal stable circular orbits

for stationary and axially symmetric spacetimes
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/\

Tomohito Suzuki

Hirosaki University, Japan
with T. Ono!, K. Yamada®?, and H. Asada’
'Hirosaki University, 2Kyoto University

JGRG25 in YITP, Kyoto Dec. 7 - 11, 2015

Abstract: Continuing the earlier work[1], in this poster, we extend our formulations for a marginal stable circular orbit(MSCO) of a test particle to stationary and

axially symmetric spacetimes.

1 Motivation

The earlier work[1](spherically symmetric and static spacetimes)

— this poster(stationary and axially symmetric spacetimes: ex. Kerr metric)

In Kerr-like metric, the locations of the innermost stable circular orbit change significantly from
the Kerr metric[2].

2 Timelike geodesic
in stationary and axially symmetric spacetimes

A general form (G =c=1)

ds® = —A(y*,y*)dt* — 2H(y%,y*)dtde + B(y®.y*)(dy*)?
+C(y%,y°)(dy*)? + D(y*, y)de® m

where 0 < ¢ < 2.

This spacetimes contain quasi-cylindrical Weyl-Papapetrou coordinates[3] in y> = p, y* =

z, B(p,z) = C(p, z), Boyer-Lindquist coordinates in y* = r, y* = 0.

‘We assume a symmetry at y3 = y?,

2)
The Lagrangian
— ;2 . L2\2 22 _d
L = —At* —2Htp + B(y°)* + D¢*, =g 3)
Two constants of motion
e=—-Al—Hy, {=—Hi+Dgp. )
3 MSCO conditions
Radial MSCO condition is well known as [3]
[7/112 4 D+ 21'{54 =1, 5)
vP=v
[~ 426+ D e + 211 (] o =0 ©)
oot Doy + 2 ppet] =0, 0]
Y2 f : —
where
. A ~ D - H
A= , D= , H= s
AD + H? AD + H?’ AD + H?’
Ao = dA/dy>.
By Eqs.(6,7), we obtain MSCO equation
~ ~ ~ ~ 2
(Dap Ay — Ay D‘yqyz)uww
yi=yd

=4 [(A-sﬂ ﬁ-yzy? - ﬁ»ﬁ"iy%ﬂ) (fj-yT ﬁ-ﬁzﬂ - ﬁ-y’ f)-y?yz)} ®

Y=yl

Eq.(8) corresponds to previous work[3] of Eq.(40).
By Eqs.(5.6),

A=Al ) (A 5[+ D

©
[A Do +2H,. (H F A2+ A D, )}

[-442 (4D, — A2D) +2( Ayt — Aflye) (Hoe ¥\ /12 + 42D,
(10)

Axial stable condition

(Duope® = Aoyl + 2B et) >0,
Y=yl

an

The radius of the MSCO must satisfy not only the root of MSCO equation Eq.(8) but also
0<e? <ooand0 < ¢? < oo and Eq.(11).

7

HIROSAKI
UNIVERSITY

4 Examples

4.1

Boyer-Lindquist coordinates

2MrY ., 4aMrsin?6
ds? = — (1 - T’) a? — %dt{lp

Kerr spacetime

) 202 Mrsin? 0
+ Zdr? 4 xd6? + (T2+a2+7a T )dﬂ, 12)
A ]
Y =r?4a’cos’0, A=r>—2Mr+a*. (13)
MSCO equation
127 — 627 + 367 — 28a%7 + 9at =0, (14)

where 7 = /M, a=a/M.
4.2 Majumdar-Papapetrou(MP) solution

Two charged point particles(Q = M) in z axis[4]

ds® = —Q72dt? + Q*(dr® + r2d0” + r? sin® 0dp?) ,

15

0=14— M + M .

r2+ L2 —2Lrcos0 72+ L2 + 2Lr cos 0
MSCO equation

8 — 6(M/r2 + L2 — L*)r* + L2 (10M /72 + L2 + 9L?)r?
+16L M /12 + L2 + 4LY(L? + 4M?) = 0.

(16)

L

Figure 1: Kerr spacetime

Blue curve:Roots of the MSCO equation
Dashed curve:the horizon

Shaded region:¢? and £ are the complex num-
ber

Figure 2: MP solution

Blue curve:Roots of the MSCO equation
Magenta Shaded region:(? < 0, €2 < 0

Blue Shaded region:not satisfied axial condi-
tion

5 Conclusion

We studied a MSCO of a timelike geodesic in stationary and axially symmetric spacetimes.
‘We consider not only radial stability, but also axial stability.

)} Future work: Axial condition should be studied.
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MHD Wave Propagation
in a Black Hole Magnetosphere

Masaaki Takahashi, Sho Izumaru
Aichi University of Education

a=099m a=099m |
Light Rays { Wave Fronts
e SN\ e
/ AR y / -\
‘= / (( \ b\'l
Black W\ { Black (L))
- ) \ , \_/
Ergosphere / Ergospha:re‘ }\

(r/m) cos ¢

Light Wave Propagation around Kerr BH

Abstract

The focusing effects of the energy and momentum by
magnetohydrodynamical(MHD) wave is studied in a black hole
magnetosphere. By using a canonical type formulation for the
propagation of MHD disturbances in magnetized accretion disk,
the basic properties of MHD wave propagation and the numerical
calculations of motion of the locus of simultaneous fronts of wave
packets are presented. We define the *'magnetosonic metric' for
the propagation of MHD wave, and then we can discuss the
““magnetosonic horizon", which corresponds to the magnetosonic
critical point, and “magnetosonic ergoregion'. The collimation
mechanism of the relativistic jet by MHD wave which is emitted

from the magnetosphere's plasma is also discussed.
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BH magnetosphere

) e [

Magnetic Field Lines | : _
Outflows = RIS Caen, &

Accretion Disk

M87 jet

Energy Flux

MHD accretion with
Jet formation

3
4
[)
[y}
jo)
Q
[
=

Magnetic
Field
Lines

Accretion

Disk powered by BZ process !?

Maeda et al (2014)
Energy/Plasma supply to the Jet
Jet Magnetohydrodynamical phenomena

Magnetosphere
e Mass ejection / Flare ?

Y/\/\ \ """ Analogy of the sun surface
<

Magnetized torus

Overabundance o/f energy
Disturbance

- ) SUN: coronal mass ejection (2012.4.)

Energy transport by MHD waves is discussed.

Jet

Is the energy transportation to the inside domain possible?
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How to calculate the wave fronts

geometric optic approximation

The approximation that a wavelength considers smaller enough
than characteristic length of the physical quantity of the system

Wave equation —~5 Eikonal equation —> Canonical form
Lichnerowicz (1967)

Eikonal equation gives
the characteristic curve
of the wave

Woave fronts

IFXEFR
: OH (z°, pa)
zY(\) =
(A) o
OH (2%, pa
Pa(A) = — E-;I;np )

z(A) S(A)

’ S(1) = const) :hypersurface

B8 MEMELD A ICH-T  a%ERDH3
WA AAbRREESET 8 (2D hERAND
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* Wave propagation is discussed under|the Eikonal approximation.

e n : the proper particle number density notations & definitions

ik [ =(P+e+n)/n]: the specific enthalpy

k: (=1/4r for cgs units)

h|2 = —hoh® > 0
9

hoe = %TIQBWJUBFWJ : the magnetic field 4-vector in fluid’s comoving flame
° e, = Faguﬂ : electric field / We require infinite conductivity e, = Fagu‘g =0.

e u® : the fluid’s 4-velocity

hn : the magnetic field in spatial direction of propagation of the waves

— (haw,a)2
(gaﬁ — ueub )"p,a"f),ﬁ

h,? =

V : the wave velocity
V_2 _ —(uY,0)”
C2 N (ga’B - uauﬁ)¢|a¢vﬂ

First, we describe the hypersurface ¥ by the equation z(, where the index ‘0’ denotes
time coordinate, (We can chose it without any loss of generality). Next, we will change
the coordinate system such that the equation for ¥ is 7 = constant to another coordinate

system z°, where the hypersurface is given by z° = ¢/(2%) = constant.

(1) the continuity equation :
The particle number conservation is

( Va(nu®) =0, )

where n is the number density of the plasma and u# is the fluid 4-velocity. Using the
thermodynamical relation TdS = du — dP/n, we find the relation'n = n(u, S). For the

adiabatic flow dS = 0, we have 3071 = (dn/ dp)Bop. Then, the continuity equation can
be expressed as lve ocity 4 enthalpy

7 "
( = naouo + uoj—aou = Fi(u®,p, g*°) )
where the value of Fj is knT)wn from the Cauchy data on the hyper surface ¥ [see,
Takahashi+(1990), p.877].

(1990), p877] initial value problem

(2) the equation of stream line :
The ideal MHD condition is u”F,, = 0, where F},, is the electromagnetic tensor.

coordinate transformation : CEO()\) = Iﬁ(xa()\)) = constant
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(3) the equation of stream line :
( VoT* =0, )

1
Tas = (s -+ klh[)uaus — (5 + SHIRIZ) gas — Khahs

where

By using the relations,

WPV, T% = 0,
Va(u®h? —uPh®) = 0 the Maxwell egs. ,

hPug = 0  the ideal MHD (0 = 00) ,
velocity

we obtain the followin&relations from equation (80),

1
= npu®dou’ — 9% — (u)’Indop — kg™ Bo|h|* = Fa(u®, p, )
= pdoh® + h%8p = F3(u®, 1, g*°)

Futhermore, from the Ma.xwellsis., we obtain

magnetic field enthalpy
1
é(uo)zc"olhl2 + |h|2uf8yu’ — h°8yh® = Fy(u®, u, g*°) .

Then, equation (85) can be reduce to

= [np(u®)?+k|h[*g)u8u’ — (u®)2[g% — (u°)?|ndop — kg®h%dh° = F5(u®, u, g*°) .

From equations (79), (86), (88) , we have

np(u®)? + k|h[?g®)u® —(u®)?[g% — («°)?] —(1/p)kg®h° Bou’ Fs
n (u®/n)(dn/dp) 0 ndop |=| B
0 (ho/n) 1 pBoh® F3

If the determinant of above matrix is zero; that is,

(nua(u®)? + k|R[2gPN®  —(u0)?[g% — (u°)?] —(1/m)kg™h®

1 (u®/n)(dn/dp) 0
0 (ho/m) 1
dn 1dn 1
[ _ (ua . n) (W) + (n+ k|hl2ﬁ@) g ()2 — ;kgoo(h0)2 =,\0 , ]

we cannot determine the value of u° and y on the hypersurface. That is, this ¢ondition
descrit@s a singular hypersurface, which is tangent to the elementary cone. ]

Discontinuous condition

The wave fronts satisfy the condition.

10
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Changing the coordinate systeni to another coordinate system z“, equation is

€ essed as

Hyw (2#,p,) = PM70\18,08,40,% =0 ,

ere

!
prwve — (un' — n)u)‘u“u"u" + (n + k|h|2%) g(A“u"u") -k (i) g()‘“h”h,")

Such a characteristic surface can be built up from a family of elements (characteristic
strips), which d¢ nds only on one parameter A and is characterized by its loaction z%(\)
and its normal | {tor p, = 9,%(z*(A)). The strip shows the null-geodesic of the metric
(i.e.., rays of wa 8), and is obtained from ordinary differential equations

() = OH (2% pa)
Opa '
. 0H (z%pa)
Pa(A) = _T’“ .
factorization
11
wave velocity speed of magnetosonic wave

—(u*pa)” _ Vitw _
(928 — u*uP)papg cz | ’

fast magnetosonic wave slow magnetosonic wave

[ [ —(u®pa)® _
(62 — wouP)paps

Then, Hamiltonians for the fast and slow magnetosonic waves are given by

N
2
c
Hpm = My pupy [g‘“’ - (1 - %) u“u"] pupy =0
and 4 2
Hsym = ME pupy F |97 — (1 - %) U“U"] pupy =0,

respectively, where Vi = (VAgly )+ is the fast magnetosonic wave speed and Vgy =
(Varw)— is the slow magnetosoiic wave speed. We will call the functions M{y;(z®) and
MLy (%) to the “fast-magnetosonic metric” hnd “slow-magnetosonic metric” , respec-
tively. For a weak magnetic field limit (h® = 0), we see Y = (a2/¢?) (9*% — u®u®) and
X875 — 0, and then we have My, = S* for the fast magnetosonic wave (i.e., the fast
magnetosonic wave speed Vry becomes the sound wave speed a;) .
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Eikonal eq. & Effetive Potential

General expression Canonical form
o _ Aaf o P
H(ZU 7pOé) _A pOépﬂ _O —_—> :i,a()\):w
AP metric Pa : wave’s momentum P o
. _ H(CI,' 7p0)
Pa(A) = B e
Light wave (Kerr BH metric)
A8 — g*P
Sound wave (sound metric) Qg :sound velocity
Aaﬂ — saﬂ - gaﬂ o (1 . i) uauﬂ ag = ('7 - h
a2 Ue - fluid’s 4-velocity
MHD wave (magnetosonic metric) New

AP — (MeP — gaﬁ _ (1 _ 21 ) w®u?  Vaw @ MHD wave velocity
VMW
We define the effective potential for waves.
‘/1/2 _ £ _ + A% \/(‘41-45)2 — Att Ado
7L Al
We can discuss the rough spread direction of the wave.

the speeds of the magnetosonic waves & the Alfven wave

1 e ——— k|h|?
2 _ 2 _ A2V 2 =(1-a%) | ——___ 2 2
Vl\‘lW = 2 (Z + Z 4a‘sVAW> , Z = (1 as) |:7l}1+ k|h|2 +CS(1 +VAW)

2 kh

—_ "M% . the magnetic field in spatial direction
VAVV 7lh+k|h|2 hn . g p

of propagation of the waves

2 (h*p,)* direction dependence !
I, == 3 .
(9°F = uru)paps
\11 Average turbulencé ¥\
. ;
h, = —|h
n = T5lhl

N )

| check the spread direction of the wave o 1o =20 30 40

R R R c® }(;\l)
depending on magnetic field strength. C. McKinney and F. Gammie2004
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—ﬂrx"ﬁﬁ%ﬁﬂ’ﬂﬁﬂ%gﬁgﬁ?ﬁ (Blandford & Znajek 1977)

Paraboloidali%i% Split-monopolef#i%
N7 MURTY 2w N7 NURTYY v
As = _C;[r(l —cos0) +2M(1 + cos 0)(1 — In(1 + cos 0))] Ay = —Ccosl
C=£0M C=70M
3| /// ]
- o7 45 2 _ p2 2
WsREs?  |BP =B+ B WBRERNT  |B|® =B, + B
- - oy |
§ = 0.00015 7]
Ry " -
2 3) -
; 1

_ETX%E ﬁ%ﬁmi}lb'f$§3\¥ﬁ (Fishbone 1977)

< stationary and axisymmetric perfect fluid torus

€& angular momentum per baryon = constant

energy = constant a—=0.8M,ry, =2.85M,0 = 3.0

B o
o 8l
Fluid distribution ( enthalpy distribution) \ o e
h o [(w—wo)zez"—e_w]'ﬂ :: ”nnm
,:2 a v —2q 1/2 2rf am
me [(w - w())2C2 —¢ 2b]rin,ﬂ'/2 %3 = 0 12 200
rsin6
e® =YA/A e =sin?0A/Y a=0.8M,ry, =2.8M,(=3.06M
A= (r? +a®? - a®Asin’ 60 e J g g

Y =72+ a%cos? 6

A =72 —2Mr+ d®

w=2Mar/A

wp = wo(lyTin, 7/2) = [£{(C2 + ¢ 24)1/2} 4 ) E—

o jﬂ 100 N 1‘53 200
) . rsinB
\ Tin :inner-edge radius /




Effective Potential and Wave Propagation (L>0)

fluid’s parameters @ = 0.8M,{ = 3.0M,ry, = 2.85M,y = 4/3

C=0.0M
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Blue : paths

sound wave ﬂ r

Paraboloidal ﬂ | Split-monopole

C=6.0M

ﬁy\ . 180 T T T

RD

33993 |
cooon
L

8
®

120

Effective Potential for MHD wave (L<0)

fluid’s parameters a=08M,0=3.0M,r;, =28 M,y=4/3
C=6.0M
Paraboloidal magnetic field 1180 % " k003
o 160+ 2:002 ]
§uof o0l T
o = (5/0.008
Negative E.nergy = o ]
Ergoregion --........ ol
: or
sound wave C=0.0M 40 .
180 - T 20 J-.
o rio0s 1 |
8 wof o 00002 1 200
= 120f (o 00031 1
100} {o--00082 1
a0l ©=-002 | .
i strength of magnetic field
6o} J . ]
a0t E — E
"’A/ v/ 1 C=20M
o 100 rsing ' 200 © 180 ] 180.: [

Split-monopole magnetic field
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MHD wave propagation (L<0) Blue : paths
fluid’s parameters a=08M,0=3.0M,r, =28M,v=4/3
C=2.0M C=6.0M
50 50

Paraboloidal magnetic field

rcos@

]

D

3

@ )
£

sound wave C=0.0M @ .
50 =
& ~ sy w50 S —
c rsin® rsin@ 50
oy
1 B strength of magnetic field >—

funne

rcosf
5

C=20M C=60M
60 40
eno© o0 o R [o)
8. 3 g0 &
v c
Q 0
Split-monopole magnetic field » h ’
' -30 0 10 2 30 40 0
0 10 20 :Sinew 50 60 rsine 60

BHMRT v I)LERDERE (IEGME L>0)

AR OECKE —
TEDING A= - a =0.8M,( =3.06M,r;, = 2.85M,~y =4/3

/—Paraboloidal ﬂ/_Split-monopole _\

rsin@ 200

180 C=6.0M C=100M
B3 ol ' Toram ] 1180 o

o, | | oy Fi |

:: ol B @ o :: i 1

ol ol 0 3) )

g0 -

.,L/ -

20f ° P A

o ‘\l o / \

RD




Effective Potential for MHD wave (L<0)
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fluid’s parameters

a=0.8M,0=306M
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4 Energy/Plasma supply to the Jet
Jet Magnetohydrodynamical phenomena
Magnetosphere Eikonal approximation :

* MHD metric

* Effective Potential for MHD wave
* MHD Ergoretion (E<0)

* MHD Horizon

Magnetized torus

Counter-rotating wave can
R transport its energy toward

Overabufidance the BH or disk’s funnel region.
energy

We can expect Mass ejection / Flare !
jE!t Analogy of the sun surface

—» Jet’s plasma source (injection surface)
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(1+3+6)-dimensional space-times”
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Cosmological entropy production,
perturbations and CMB fluctuations
in (1+3+6)-dimensional space-times

Kenji Tomita *

Cosmologsical evolution of the 10-dimensional
space-times is considered in which the 3-dim.
Inflating space section evolves to the Friedmann
universe, after the 6-dim. Space section collapses
to within the Planck length and decouple. It is
shown that significant entropy production and
CMB fluctuation may be possible to the
observational levels.

* Prof. Emer. YITP, Kyoto Univ., ketomita@ybb.ne.jp

$1. 10-dim. background model

It is assumed that our universe was born as the (1+3+6)-dim space-time
and evolved to the Friedmann universe after the decoupling.

d d
ds2=—dt2-|—r2(t)gij(xk)dxidxj+R2(t)gab(Xc)dX"de
r(t) : scale-factor in 3-dim outer space
R(t) : scale-factor in 6-dim inner space

at the initial epoch, r(t)=R(t) : isotropic
at the final epoch, r(t)=r,(t,~1)" R(1)=R,(t,~1)"
. highly anisotropic (7, is the epoch of the singular point)

at the decoupling epoch (near the final epoch),
the radius of the inner space (= R) is smaller than the Planck length
and lose its Interaction with the outer space (decoupling)

after the decoupling epoch, the outer space behaves as
the space section of the Friedmann universe.
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the ratio = (physical size of perturbations with constant wave- number k )
/ (the Hubble length 1/H) in the outer space and the Friedmann model



\
|
|
| Friedmann
|
r(t) |
outer |
space \ \
| outer |
| space |
Rt) # |
Inner space | evolve |
| A =
Y4 t, the ratio L
decouple dec <1 |
|
time —» |
|
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the ratio = length/(Hubble length)

Friedmann
model

the ratio
> 1

fluctuations

decoupling time

$2. Entropy production  (see ref(1))

1. non-viscous case
10-dim. total entropy is conserved

6-dim entropy — 3-dim entropy
(collapsing section) (inflating section)
decrease increase

2.viscous case — total entropy increases
Viscosity due to 10-dim gravitational waves (see ref(5))
More 3-dim entropy

3-dim entropy within the horizon l of the 3-dim outer space
_ 3
S,=5,(1,)

where §; is 3-dim entropy density

Panckfongh (n tho our w208l Cal ol ()L

where G is 10-dim gravitational constant.



Near the singularity (R = 0), we can find that there exists an epoch {
when the following two conditions A and B are satisfied at the same tinféec

Condition A: (S3)dec - 1088 (entropy in Guth level)

Condition B: R(l‘dec):rpl (decoupling in Planck length)

Unitsc=h=k=1

This 10-dim model is supported by the present super-string theory
in a matrix model (4).

$3. Perturbations

(in the non-viscous case, see ref (2))

3 modes of perturbations

scalar mode SS
vector mode SV, VS, VWV
tensor mode ST, TS

ST means (Scalar and Tensor in the outer and inner spaces)
under-bars mean main perturbations
1. Scalar mode SS
two md&oendent gauge-invariant curvature perturbations

P, and which are caused by perturbations of curvatures in the outer and
inner spaces, respectivel _
x=k,.r/r(t5 Y Rit) (=t 1] . »
outside the horizon [ x<<1 andy<<1] @,ocx D, ocx

inside the horizons [x >>1 and y >>1] : wayy behavior
plx=[(kp/R () (k,/7r(t))]

ul/x<<1 -> wavesinthe outer space
u/x>>1 -> wavesinthe inner space : disappear after decoupling

So we pay attention to the case u/x<<1
2. Tensor mode TS
single gauge-invariant perturbation 7

forx <<1, h,=a+blnT (a, b : const)

forx>>1, 1y is wavy (Bessel function)
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$4. Fluctuations of CMB appearing in the
outer SPAcCe (in the non-viscous case, see ref(3))

Quantum fluctuations (before the decoupling) which are caused inside
the horizon in the outer space under the condition
x>>1,y>1 and u/x<xl
(other fluctuations are disturbed or erased at the decoupling epoch)
Quantization procedure in the Weinberg formalism (Ref. (5))
two curvatur(i perturbations are expressed as

¢H=—§Tl4/9 k' exp(ix)+oat "k, 7" (4r,13) exp(ix/3)
&,=1v"" k" *exp (ix)+ot "k, (4r,/3) exp (ix/3)

(. arbitrary)
two conserved quantities (which are constant outside horizons in the outer space)

Rh=(T/Tdec)8/3¢h RH=(T/Tdec)4/3 ¢H

combination of Rh and Ry ->
single quantity R,y (with 1 freedom)

2
Rio=Ry[Ag+A R,/ Ry+2A,(R,/Ry)|
comparison with the CMB observation -> adjustment of the free parameter

$5. Comparison with other
inflationary theories

1. Inflationary models due 4-dim Einstein theory of gravitation
with a curvature perturbation as the conserved quantity :
slow-roll parameters, e-fold number and coupling parameter are
adjusted so as to be consistent with CMB observation

2. 4-dim inflationary models due to 4-dim modeified theory of
gravitation with R + R*2 as the action
with a curvature perturbation as the conserved quantity :
e-fold number is adjusted

H. Nariai and K. Tomita (1971), A.A. Starobinsky,, (1980)

3. (Present) inflationary model due to 10-dim Einstein theory
with two independent curvature perturbations as the conserved
quantities (Ref (1), Ref(2), Ref (3)) : one of curvature perturbations
1s adjusted.
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“Gravitational reheating after multi-field inflation

JonathanWhite KEK, Tsukuba, Japan .

Based on Phys. Rev. D 92, 023504 (2015) with Yuki Watanabe NIT, Gunma ]ap;an

, e.g. R?, Higgs, a-attractors

Sy = [d g f(R) = [a'xyg(@r+.)
\(fD:dj/dR)

S = [d' =5 |}(M“,1 +EW )R+ }

These models are easiest to analyse in the so-
- - called Einstein frame, which we reach by making
a conformal transformation

_ M ;
G = P =  S= /zz*.w/?/ (T“’H - %,(;)(em-’ - V) V=v/o

The potential for the canonically normalised field in the Einstein H\ e (o))’
frame takes a common form for large field values and is ideal for |
inflation (see figure to the right), and [

N I

|
12 |
r= N? |
* Kallosh & Linde '13 [2]
where N, is the number of e-folds before the end of inflation that =iy

the observable scales left the horizon.

Despite having the same predictions for n, and r in terms of N, , the predictions of a given model depend
on the value of N.. This means that

k 1 V2
67—t (——) 4 2 (——
’ "(u(,Hn) i (ﬂ[,',,p“m)

en

1. Effective cquation of state
We need: 2. Duration => we need to determine the
inflaton decay rate T

,1
+ (3w, — 1) fﬁlnm

1

In addition to affecting N.,

2012 2 4
T2Mg) = 359+(Tn) T

Morcover, in the context of unifying theorics it is natural to expect the presence of multiple fields during
inflation. the curvature perturbation € is not conserved on super-horizon scales, so

Inlight of the above, we consider reheating in the context of multi-field inflation models with non-minimal
coupling, with the general form of action given as:

5= [ av=a {1OR G 0,00, =V} + S (o)

To determine the background dynamics of the inflaton fields during rehcating we work in the Einstein frame,
where the ficlds are minimally coupled:

2
S= / dix/Tf [“QJ}% - %sm““ea,,om.,o" - V(&)] + S (—
y

(v

3fuft

My

1'() at the end of inflation and decompose
" = ¢l 0"

Expanding the Einstein frame action to second order in 0% introducing the mass cigen-basis o = ae?,
considering an FLRW background and H?, dH

& " 9., i N ad
; (a‘/'n*) + [u.g— (4—112 ; )} (a‘/w‘) 0 = ot u.,"’,z

1 da?\? (ad)?m?, SH
H = —r (7) +m?(at)? A (1
GATE, ; [ di A Z; Fa*

cos[matf + d4]

3 nllx(2(r!x4[+tl4)]+U(H‘Z,/mz,1))
A

We thus
H H/ma

Under the conformal transformation we have: (02 = f(¢)/M})

= Q% (=dt* + a*(t)d;;dx'da’)

_ . ; s 1 Q
= a=0a Qdt, di =de' and H = H(H+ )

117, and expanding:

a A0B 005 —
o faot 1 fapata
[7:”»,(1‘# =E "t — "
ot 0.04
&
. . 2 00
i 1 gt ma P El
H~H <1+ 7 ;sz,l 27 sin (m,‘wm)) 2 0
So 001
0 10 2 3 a0 s e 7

Due to the non-minimal gravitational coupling, we
between & and matter, ic. S = Sy (g Xn)

Let us consider matter in the form of a scalar field, with

cons ' " L
the action in the Jordan frame given as: 9" 00X Im}

o <
In quantising the ficld we use conformal time adn) = dt and defin the canonically normalised field u = ax
sl [, 2 200 0" o
Su= [ dnd*es [u? = (Vu)? — (a®m2 - L) u
2 a

If we take [3]:

oo [ aan]
. vV

uf -+ wiug =0

5 a”’ .
wi = k? +Ha’m3 =) a?(H +2H?)

Furtt the | il is di 1t

1, with By = wi.(1/2 + [Be(1)[?) , so we

where faa/(2ME) <1, Bi(n) <1 and ag(n) —1 < 1 we can
evaluate B (n) using the stationary phase approsimation. Given that we have # oscillating fields, there are #
stationary points corresponding to when

| 4m?
@h 2 T =

Using our result for f(n) in the continuity om (
equation for py we determine:

Since k/d corresponds to the momentum of the produced
particle, this agrees with what we expect from kinematics

It is almost trivial to see that

buti=Qaand Y =y/Q = d=u

As such, whichever frame we stat in, ultimately we need to solve u + wlug = 0. However,

Jordan Frame:

P
Kt atm2 -2
a

We have performed a similar analysis

of wy due to oscillatory H

time-dependence of wy. due to explicit
interaction terms: S, = Sy (M1 / (@), Xon)

Einstein Frame:  j

As a simple single-ficld example, let us consider Starobinsky’s R? inflation model, which can be expressed as a
scalar-tensor theos

oo Mi [ 1 i £ 2y
S = d'z/=g R+ =4 1+_U2 R—\¢7
My
, ) R ) )
To sce the equivalence: Fom gives ¢ = 5 . Substiute back into action and take
“The relevant quantities are then:
3¢2
) e fe =0
My 23 (1+ %)
509, o e
olves e o=\ 3Me

Assuming daughter paticles to be light, the dominant decay channel is into scalas:

Compare this with Higgs inflation, where Ty, ~ 101GeV

= T ~10°GeV duc to non-gravitational coupling [6], i.c.

which
could have important consequences

The number of e-folds before the end of inflation that observable scales left the Horizon is also affected [6]:

Higgs-inflation: n, = 0.967, = 0.0032,
R-inflation: n, = 0.965, r=0.0036.

The differences are not
currendy obscrvable.

N =57.66, Npa=5437. =

CMB data is now so precise that in order to constrain inflationary models we need to correctly determine how
long before the end of inflation observable scales left the horizon. This in turn requires us to know about the
post-inflationary evolution of the universe, including reheating

Inflation models with non-minimal gravitational coupling are well motivated and observationally favoured, so it is
important to study reheating in this class of models. Interestingly, cven in the absence of direct couplings,
reheating can take place in this class of models due to so-called gravitational particle production.

* We have developed a lation of multi-field gravitational particle prod using the B approach.
‘The analysis can be performed in cither the Jordon or Einstein frame, and whilst ultimately equivalent, the
interpretation in the Jordan- and Einstein-frames are different:

Jordan Frame - There are no direct couplings between the inflaton and ordinary matter, but the
i i highly oscillatory and gives rise to particle production.

Einstein Frame - The gravitational background evolution is that of a matter-dominated universe and can
essentially be neglected. However, explicit interaction terms provide the decay channels.

The curvature perturbation s not conserved on super-horizon scales in the presence of multiple fields, so we
need to use our results to investigate how ¢ evolves through reheating and until an adiabatic limit is reached.

References:
1. Planck collaboration, arXiv:1502.02114 (2015). 5. Y. Zeldovich & A. A. Starobinsky, Sov.Phys JETP 34, 1159 (1972).
2. R. Kallosh ez af, JCAP 1307 (2013) 002. 6. F. Bezrukov & D. Gorbunov, Phys.Lett. B713 (2012) 365.
3. Planck collaboration, Astron. Astrophys. 571 (2014) A22.  Orion Nebula image credit: Subaru Gallery
4. G. Leung et al,, JCAP 09 (2012) 008. : .
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Unruh radiation produced by a uniformly
accelerating charged particle coupled to
vacuum fluctuations -

Naritaka Oshita!, Kazuhiro Yamamoto?, Sen Zhang?

L Graduate School of Science, The University of Tokyo, Tokyo, Japan
2 Graduate School of Science, Hiroshima University, Higashi-Hiroshima, Japan
3 Okayama Institute for Quantum Physics, Okayama, Japan

Abstract

A particle in a uniformly accelerated motion exhibits Brownian
random motions around the classical trajectory due to the coupling to
the field vacuum fluctuations. Previous works show that the Brownian
random motions satisfy the energy equipartition relation. Because this
thermal property is understood as the consequence of the Unruh effect,
this quantum radiation is termed Unruh radiation. We investigate the
properties of Unruh radiation produced by a uniformly accelerating
particle undergoing thermal random motions, which originate from
the coupling to the vacuum fluctuations of a massless scalar field as
well as an electromagnetic field. The energy flux of Unruh radiation
is negative and smaller than that of Larmor radiation by one order in
a/m, where a is the constant acceleration and m is the mass of the
particle. Thus, the Unruh radiation appears to be a suppression of the
classical Larmor radiation. The result is consistent with the previous
studies on the quantum effect on the Larmor radiation.

*This presentation is based on the works reported in Phys. Rev. D 92 045027 (2015)
and arXiv:1509.03038 by N. Oshita, K. Yamamoto, S. Zhang.



1 Introduction

Phenomena related to quantum fields associated with an event horizon are
one of the central problems of theoretical physics. The Hawking effect pre-
dicts radiation with a thermal spectrum from a black hole, for which the
existence of the event horizon is responsible. The Unruh effect is the theo-
retical prediction that an accelerating observer sees the Minkowski vacuum as
a thermally excited state with the Unruh temperature Ty = a/2w as the nat-
ural unit, where a is the acceleration. The accelerating observer will perceive
a horizon, which is linked to the prediction of the Unruh effect. Therefore,
both the Unruh effect and the Hawking effect are rooted in the same physical
phenomenon associated with the horizon.

Although direct experimental verification of the Hawking effect seems to
be difficult, that of the Unruh effect might be possible. One such argument
is initiated the work by Chen and Tajima [1], who proposed a possible de-
tectable signal in the radiation from a charged particle in an accelerated mo-
tion, which can be realized in an intense laser field. These studies suggested
that the Unruh effect may give rise to Unruh radiation from an accelerating
charged particle. However, the problem is not entirely straightforward; it
has been argued that the naively expected Unruh radiation from the detec-
tor models cancels out due to the interference effect. It has been pointed out
that such a cancellation partially occurs in the Unruh radiation produced by
a uniformly accelerating particle coupled to vacuum fluctuations [2].

In the present work, we re-investigated the quantum radiation from a
uniformly accelerating charged particle coupled to vacuum fluctuations. We
investigate two models: One model is consisting of a particle and a massless
scalar field and the other model is consisting of a charged particle and an
electromagnetic field. It has been shown that random motions of a particle
in the transverse direction, perpendicular to the direction of the acceleration,
satisfies the energy equipartition relation [2, 3]. Then the quantum radiation

from the random motions of particle can be termed Unruh radiation. We
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verified that although the naively expected Unruh radiation cancels out, but
the remaining interference terms may give rise to a unique signature of the

Unruh effect contained in the energy flux.

2 Basic Formulas

We first consider the theoretical model consisting of a particle and a massless

scalar field [2, 3]. The action of which is given by
S = SP(Z) + S¢(¢) + Sint(z7 ¢)7

where Sp(z) and S,(¢) are the action for the free particle and field, and

Sint (2, @) describes the interaction,

Sp(z) = —m/dﬁ/nlwé”z",
5.(0) = [ d'a;0%00,0,

Sint(z,0) =€ / drd*z\/ g (x)i#v(2)8* (z — 2(1)),

where e is the charge of the particle. Note that x* = z#(7) denotes the

trajectory of a particle, which obeys

mit = e (Z#¢ 4 2#2(1% — nlta%>

F*
oxe Ox© T

r=2(T)

where F'* is a force for a uniformly accelerated motion, while the equation

of motion for the scalar field is

0"0,0(z) = e/dn/nwé*‘z‘”ﬁ(az —2(7)).

The field equation has the solution,

(b(/l") = ¢h(7") + ¢inh(-r)7
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where ¢, and ¢y, are the homogeneous solution and the inhomogeneous
solution, respectively. The homogeneous solution satisfies 9*9,¢n = 0, which
we regard as the quantized vacuum field, while the inhomogeneous solution

is written as

G () = /d4x'GR(x,x')e/dT'\/W54(x’—z(r'))
= e/TdT/GR(Z',Z(T,))7

where Gg(z,y) denotes the retarded Green function satistying 0*9,Gr(z) =

5*(z). The term of the inhomogeneous solution ¢, gives rise to a radiation

reaction force, and we have the stochastic equation of motion,
2

L SRR - za 0P 00
mat = 7r<z T (Z)>+e(z Ot e T e

a=z(7)

We consider a particle in an accelerated motion with a uniform acceleration
a in the absence of the coupling to the quantum field. The equation of
motion for random motions around the classical motion is solved by using
the following perturbative method. Assuming that the trajectory of a particle

is written as
M =ZF 4 02H,

where z# = (a~!sinhar,a™!coshar,0,0) describes the classical trajectory
with a uniformly acceleration, and dz# does the random motion due to the
coupling to the quantum field.

Since the transverse motions satisfy the energy equipartition relation,
then we consider the perturbative equation of motion for the transverse fluc-
tuations [2],

2

méz = 162—71_(52Z —a’6) +e

Ifn
ox? r=2z(T) .

The thermal property of the random motions, which are obtained as solutions

of this equation, has been demonstrated in Ref. [2, 3]. In the present work,

4

+ B,
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for simplicity, we drop the third-order time derivative term of the radiation
reaction force. The contribution of this term to the solution of 6z is small,

which is suppressed by the order of O((a/m)?). Now we have

o
oz’

62a

2
12762 +e

moz' = —

x=2z(T)
The solution of the above equation is written as
) 0:0(w )
521(7_) — /dw ZQD( ) 67“‘”—,
ao — iw

where we defined

Op(w) = /&-Qﬁh(z(T))ei”dT.

We can demonstrate that the solution satisfies the energy equipartition

relation with the Unruh temperature Ty = a/27 [2],

S (02(1)65 (7)) = %% (1 o (:;»

by using the Weightman function

1 1
_R(xo — 0 —ie)? — (x —y)?

(dn(@)on(y)) =

Thus the random motions of a particle exhibit the thermal property that the
transverse motions satisfy the energy equipartition relation. Therefore, we
expect that the quantum radiation from the random motions of a particle
can be investigated if it existed.

Using the expression of the retarded Green function for the massless scalar
field, Ggr(z —y) = 0(2° —y°)dp((x — y)*) /27, where dp(z) denotes the Dirac

delta function, we have

~ dmp(z)

Pinn(x) = e/dTGR(x —z(1))

)
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with

p(r) = 2u(72) (2" = 2(r2)),
where 77 is the solution of (z — 2(7%))? = 0. Up to the first order of pertur-

bations, z#* = z" + 62", the inhomogeneous solution is given by

o) (1 242

- 4mpo() po()

where we defined
po(x) = Z(12) - (x — 2(12)),  dp(x) = 04(12) - (x — Z(72)),

“ is redefined to satisfy (z — z(7%))? = 0. Here, we also introduced

where 77
77, which satisfies (z — z(77))? = 0. The meaning of 7* and 77 is explained

in Figure 1.

3 Energy Momentum Tensor

It is straightforward to evaluate the two-point function;
(o(z)o(y)) — (Pu(x)on(y))
= <¢inh($)¢h(y)> + <¢h(x)¢inh(y)> + <¢7inh(l')¢inh(y)>,

the explicit expression for the symmetrized two-point function with respect

to x and y is

(¢(x)(y)) — (dn(x)on(y))]s =

e? 1 —tae T

(@) po(@)poly) | 2m(4n)2 R3() 3 (x)

2 i

e (1y(0,1) = B(e,) + Do) + (5 o y)
—2 (I3(z,y) — I (x —I(z T
200(%') 3\, Y 1\, Yy CL2 Y Y),
where we defined
i ey N N
Li(z,y) = 5 + ;log(l + el 4 ;a(ﬂ —7)0(t! — 1) + O(0),
a 1
I =+ 0
2($7y) T ea(Ting) + 1 + (U)a
— _L i _ —alr? =17 i Yy _ . x vy _ .z
Iy{e,y) = 5+ Tlog(1 - ) - Lar? - )Y - 1) + O(o),

6
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F-region

x!

Figure 1: The hyperbolic curve in the R-region is the trajectory of a uniformly
accelerating particle. The hyperbolic curve in the L-region is the hypothetical
trajectory obtained by an analytic continuation of the true trajectory. For
an observer at point z* in the R-region, 7 is defined by the proper time
of the particle’s trajectory intersecting with the past light cone, while 7{ is
similarly defined with the future light cone when z* is in the R-region. For an
observer in the F-region, 7{ is the proper time of the hypothetical trajectory
in the L-region intersecting with the past light cone.

up to the order of O(c), for the F-region z° > |z!| (figure 1).

The energy flux can be computed as follows. Assuming that the energy
flux is observed far from the particle, i.e., r > 2*(7%) > 1/a, at the leading
order of 1/r? and o, we have
lim i 0
y—z 0x0 Oy
= T + Ty,

Toi() [(o(2)o(y)) — (Dn(x)¢n(v))]s

where T and Tgf are the classical part and the quantum part, respectively.
The energy flux in the laboratory frame is related to the energy momentum
tensor by f = —Tymn® with n' = 2'/r. Here we consider the energy flux in

the F-region. The energy flux for the classical part and the quantum part

1392



are given by

1 a?¢? G(q) .
P emig )
1 2a%¢* F(q)
r2 (47)3m sin* 0

£ =

o= O(t — xt),

respectively, where G(q) and F(q) are defined as

2

q
G(q) = m7

1 {_ 4g(2¢2 — 1)

F(q) = {log ag — log(l + 67“‘7*7”‘)

1+ ¢2)3 Tt q23
2(8¢% — 1) 1
—a(r- —m)0(r- — T+)} - 1+ @)(eslr—) + 1) 14 o
g 2 L4 5 1 1 tanh(a(ry —7-)/2) ]
V1+g2(ae)? 1+ q22cosh®(a(ry —7.)/2)  2cosh®(a(ry —7)/2)

with
a 1 a

t7 ,9:7, (t* — )N N t— )

alt,m,9) sin 0 " 2a2r smH( )

—q++/1+¢

+q¢+ /14 ¢

for the F-region. Note that f@ is smaller than the classical part f€ by the

order of a/m and f@ includes the divergent terms in the coincidence limit

a(ty — 1) = log

)

e — 0. We may understand that this divergence comes from the short-
distance motion of a particle, originated from our formulation based on the
point particle. The divergence coming from the short-distance motion of the
particle could be removed by taking a finite size effect of the particle into
account. Here, we simply omit the divergent terms.

The left panel of figure 2 shows the angular distribution of the classical
energy flux and the quantum energy flux with fixing 7% = 0. The blue dotted

curve is sin~* G (q(7%, 0)), while the black solid curve (red dashed curve) is

1393



positive (negative) values of sin=* @ F (7%, #). This polar plot shows the energy
flux emitted in the direction of @ from the particle at the proper time 7 = 0.

The classical energy flux has the radiation power in the direction of ac-
celeration, which is the consequence of the scalar field model. The quantum
energy flux is negative in almost direction, which is described by the red
curve. But it does not mean that one should observe a negative energy flux
from an accelerated particle. Only the sum of the classical and the quantum

flux is observed. The total energy flux is positive as long as a/m < 1.

4 Model of a particle and electromagnetic field

We have repeated the same investigation for the model consisting a particle

and an electromagnetic field, the action of which is given by
S = Sp(z) + Sem(A) + Sint(z, A),

where Sgy(A) and Sine(z, A) are defined by

4
Sint(2, ¢) = —e/d7/d4x5§ (x — 2(1)) (1) Au(x),

and F, (= 0,4, — 0,A,) is the field strength. We found the similar results

to the case of the scalar field model. The expression of the energy flux is

1
SEM(A) = —= /d4IF‘WFH,,,

given by replacing the function G(q) and F(q) with

1
Tl
_ 1 GQ(q271) og ac — lo efa|‘r,7‘r+\
F(q) (1+q2)3[ ,71+q23{1g5 log(1 + )

—a(r - )0 — u)} P

(a2)* \/T+ ¢
(3 _ ea(r+77:))(2 _ ea(T+7T7)(9 _ ea(T+7T7)))
(1 + ea(7'+77:))3 '

+2

9
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As in the case of the massless scalar field, the quantum part f¢ is smaller
than the classical counterpart f¢ by one order in a/m. The right panel of
figure 2 shows the angular distribution of the classical energy flux and the
quantum energy flux with fixing 7 = 0. The classical energy flux f¢ of
the Larmor radiation is dominantly emitted perpendicular to the direction
of acceleration. The Unruh radiation flux is almost entirely negative. The
emission directions in the dominant regions are similar to those of the classical
radiation. This is understood as the suppression of the Larmor radiation due
to the quantum effect, which is consistent with the predictions of the model

based on a particle and a massless scalar field.
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Figure 2: Angular distribution of the classical radiation sin™* 0G(72, ) (blue
dotted curve) and the Unruh radiation sin™* 0 F (7, 6) (black solid: positive
values; red dashed curve: negative values) at a7® = 0. The coordinates z and
y are xt and /(22)2 + (23)2, respectively. The left panel is the massless
scalar field model, while the right panel is the electromagnetic field
model.
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5 Conclusions

We have scrutinized the theoretical features of the energy flux of the quantum
fields coupled to the random thermal motions of an accelerated particle,
where we focused on transverse motions in the direction perpendicular to
the acceleration of the particle, which are demonstrated to exhibit the energy
equipartition relation. Within our model, the energy flux of the radiation is
obtained as the sum of the classical part and the quantum part. The quantum
part can be considered as the quantum radiation coming from the random
thermal motions around a uniformly accelerated motion. The energy flux
of the quantum part is smaller than the classical part by the order of a/m,
and the angular distribution can be a unique signature of the Unruh effect.
However, the sign of the energy flux of the quantum part is almost negative.
The results can be understood as a suppression of the total radiation flux by
the quantum effect. These results are the common features for the scalar field
model and the electromagnetic field model. This conclusion is consistent with
the previous works [6, 7], which demonstrated that the quantum correction

to the Larmor radiation suppresses the total radiation.
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INTRODUCTION

To explain the current expansion of the universe without cosmological constant, we
can consider non-minimal extensions of the general relativity.

The de Rham-Gabadadze-Tolley (dRGT) massive gravity is one of such extensions
and ghost-free theories with interacting massive spin-2 field.

If we regard the dRGT massive gravity as an alternative theory of gravity, it is
interesting that we apply this theory to not only the accelerated expansion of the
universe but also astrophysical phenomena.

Then it is significant to study the both of cosmological and astrophysical models and
compare them with observational data.

In particular, it is very difficult to construct the general framework which quantifies
the deviations from the prediction of the general relativity in strong-gravity field
because the non-perturbative effects depends on the detail of each theories and
parametric treatment is not suitable.

Therefore it is indispensable to study the compact objects in the dRGT massive
gravity for a theoretical test of the modified gravity in strong-gravity regime.

de Rham-Gabadadze-Tolley (dRGT) MASSIVE GRAVITY

The action and equations of motion of the dRGT massive gravity are given as follows :

+ Smatter

4
Sanar = 57 [ dey/=det(g) [R —203 " fuea (Vo)
n=0

— Gy +mi Ly = KT, V,I" =0

® Guv; fuv : dynamical and reference metrics
o k% =87G : gravitational coupling
o [3,, mp(graviton mass) : free parameters

e ¢,(X) : some polynomials of the eigenvalues of X

We set mg = A so that the model could explain the expansion of the universe and
has the compatibility of astrophysical and cosmological applications.

And for convenience, we choose a minimal model for other free parameters and
reference metric is taken as the Minkowski spacetime.

Of cource we use static and spherical dynamical metric ansatz for considering
compact stars.

MODIFIED TOV EQUATIONS

For numerical analysis, we use the dimensionless variables.
And we obtain modified TOV equations and constraints :

19 =GMeg, 7 — 11y, 12 , il

M = mMo, mo — aM, Vuw =g (1- 2T (10
Hiion ) =7 Chen . v 20(r) + (1)

p— p(Mo/r3), P — p(Mg/r})

?(r)
p(r) +p(r)’

—il
m'(r) = dmp(r)r® + %02 (rgMo)* 12 [1 - (1 = %q(r)r) ] ,

3
smp(rya(r* (1= 3a0r)
3
= atr (1= 3a0r) (= 24000) ~ o) (1= 5at0)r)
3 3
+a? (rgMo)2 q(r)r® (1 - %q(r)r) + 8mp! (r)r® (1 - %q(r)r)

+2 (1= Jatr)r) 0= 200000 = (@ 0+ (1) (1 = 2000

Yor (1 - %q(r)r) (@) +q(r) — 2 (1 . %q(r)r)s

Our numerical caluculation methods are as follows :
1. Impose an equation of state: p(r) = p(p(r)) = q(r) = q(p(r)).
P(p(rmax)) = 0
2. Solve the last equation as f(r)’s 2nd order ODE
from the center of stars r =0
to the surface of stars © = rmax 8.t. p(p(Tmax)) = 0.

w

. Choose the initial value p”(r = 0) so that
the radius of star becomes identical with that in the GR.

'y

. Integrate the m(r)’s 1st order ODE using the solution of j(r).

NUMERICAL ANALYSIS
© Quark star cases (MIT bag model)

e c: It depends on chosen mass of strange quark. We used ¢ = 0.28.
P(p(r)) = c(p(r) — 4B)
e B : bag constant. We use B = 60MeV /fm?.

Density profiles " Differences of the density profiles { GR case ~ MG case)

-Blue lines : GR case
-Orange lines : MG case

s 0 T2 T4 75 i 55 £ 5 o 5 o il

The results are similar to the case in the general relativity, but the density profiles
and total mass are smaller than those in the general relativity.

© Neutron star cases (SLy EoS)

Differences of the density profiles ( GR case ~ MG case)

SLy equation of state o
loaP @ em?)
107 008
o i
e o]
107 om0l
e o

egplgon™
o1 0000 o o o PO gl
mass-cenral density relation mass-radius reation
M) M)
20| 20|
13| 15
19 10
o3} o] *Blue lines : GR case
+Orange lines : MG case
Te e 10 Bz 14 e 1ma0eT O g iz 0 i o'

We can see that the density becomes higher than that in the general relativity for
small central density and lower for larger central density.

The region of total mass becomes narrow compared with that in the general

relativity.
SUMMARY AND DISCUSSION

We have concluded that the TOV equation is corrected by the term which is
proportional to the graviton mass results from the potential term of massive graviton
in the action, and one constraint equation appears if we assume the conservation of
energy-momentum tensor. The correction is very small if we consider the light
graviton mass against massive object.
From the numerical simulation, we found these.
« The basic properties are almost same as those in the general relativity

but slightly different.
» Mass-Radius relation is more constrained rather than that in the general relativity.
« For quark star, the maximal mass gets smaller than that in the general relativity.
« For neutron star, the maximal mass gets smaller and the minimal mass gets

larger than that in the general relativity.
Therefore, the massive neutron star can be no more explained in the dRGT massive
gravity than it is in the general relativity.

However, our work does not result in that the dRGT massive gravity could be excluded
by the observation because we

« assumed the standard equations of state and
« used the minimal model of the other parameters and referece metric.
Thus, the massive neutron star could be possible if we choose these suitably.
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" Initial Motivation for Nonlocal Gravity e Case of Gravitation )
Nonlocal Gravity was initially proposed by N. Arkani- Consider a linear case of nonlocal gravity
Hamed et. al to relieve the Cosmological Constant . )
Problem by changing the Newtonian Constant Sni = / d'z\/~g(2)R(z) (OF'R) [z]
e.g. Gur = G (/3){ K1, for f>1 = small scale; In a homogeneous background, we can express the
L+A(5) >1, for f<1 = large scale. nonlocal operator explicitly'
A simple choice is A(B) < 7", B =10, so the Ricci scalar 1 e m
can be found as (OR'0) 1] = /— ) dt (") —g(t")
R=- dov R - 4oy < ey Then this part causes problem
MZ(1+ A(B)) MZ (14 A(0)) M} 5 (O3'R) [1]
4 /
i.e. provided that A(0) is large enough, we can obtain a large o/ —g(@)R(x)—5 Sgnv ()
curvature radius while keeping the value of py predicted by ) o o
quantum field theory. so that the EOM via variation principle is expressed as
i ; ; T~ VT Ry = R = V. ) (0714 03 7]+ 277 g
Acausality Problem with Scalar Field b wr = g9t Vule J LR+ Ha n
+oo t
Juw ey ’ N m "

Up to now, most of the researches were done in the scalar-tensor T 2/g /, ' =g () Bt [ ~ dt g R
presentation. Extra degrees of freedom appear in this method,
which may cause either ghost instabilites or structure formation As expected, advanced Green’s function appears.
problem. We hope to do in its original form. Moreover, another new “troublesome” term appears...
However, acausality problem arises. .. . . . .

Implications (or possible solutions?)

A simple example: S, = [ d'z\/—g(z)é(z) (O7'¢) [z] 1. Let us assume FLRW background and power-law scale
factor H(t) = s/t, then
Since Gr(x,2") <+ Ga(2', ), a naive variation principle will
result in the advanced Green’s function in EOM: N 6s(2s — 1) { 1 [( t )1_35 1} n ( ¢ ) }
ta

O,'R =
A 1—3s

60 3s—1
| eyt (07 50 b
Y {s (") A possible implication can be that s=1/2. or s=0 a.fter some
f / d'z d'a'/—g(@)/—g (@) p(x) G (=, ") 3 cutoff time t4 ~ Teut , so the future of universe will go back
¢(J) to radiation dominated or Minkowskian?

ta

= [/ d'z’ dae/—g(a")/—g(x)d(x") G (', x) 5¢E!/;
— 2. The effective Newtonian Constant
= [ @y =@t - y) [ da'=ganoteGute, ) .
Geﬁ T e ——
= [ oy =@t - ) [ dia'Vg@0l)Gata, ) L+ O R+ R
Since (O;'R)[t] < 0, in order to have a weakened
= f d'zy/—g(z)d(z — y) (04'¢) [2]. gravitational force on large scales, ;"' R should not only
cancel the retarded Green’s function, but also contribute a
i.e. the variation principle symmetrizes the properties of Green’s positive value. This can be possible if s >1/2 .
function, so that
62? "’) =v—g(y) (Ox'6 +03'0) [4] In this sense, the advanced Green’s function can play a
Y

positive role? We do not know...Problems still remain...

Conclusion: Advanced Green’s function always appears in EOM




