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! “Localizing solutions of the Einstein equations”
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Localizing solutions of the Einstein equations

Richard Schoen

UC, Irvine and Stanford University

-
The 25th Workshop on General Relativity

and Gravitation in Japan
-

December 10, 2015

Plan of Lecture

The lecture will have four parts:

Part 1: Introduction

Part 2: Main theorem on localization of initial data

Part 3: Connections to the geometry of initial data sets

Part 4: Some features of the proof

Main results are joint with A. Carlotto and appear in paper at
arXiv:1407.4766.
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Plan of Lecture

The lecture will have four parts:

Part 1: Introduction

Part 2: Main theorem on localization of initial data

Part 3: Connections to the geometry of initial data sets

Part 4: Some features of the proof

Main results are joint with A. Carlotto and appear in paper at
arXiv:1407.4766.

Part 1: Introduction

On a spacetime Sn+1, the Einstein equations couple the
gravitational field g (a Lorentz metric on S) with the matter fields
via their stress-energy tensor T

Ric(g)� 1

2
R g = T

where Ric denotes the Ricci curvature and R = Trg (Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equation.
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Part 1: Introduction

On a spacetime Sn+1, the Einstein equations couple the
gravitational field g (a Lorentz metric on S) with the matter fields
via their stress-energy tensor T

Ric(g)� 1

2
R g = T

where Ric denotes the Ricci curvature and R = Trg (Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equation.

Initial Data

The solution is determined by initial data given on a spacelike
hypersurface Mn in S.

The initial data for g are the induced (Riemannian) metric, also
denoted g , and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g , p).
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Initial Data

The solution is determined by initial data given on a spacelike
hypersurface Mn in S.

The initial data for g are the induced (Riemannian) metric, also
denoted g , and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g , p).

The constraint equations for vacuum solutions

It turns out that n + 1 of the (n + 1)(n + 2)/2 Einstein equations
can be expressed entirely in terms of the initial data and so are not
dynamical. These come from the Gauss and Codazzi equations of
di↵erential geometry.

In case there is no matter present, the vacuum constraint
equations become

RM + Trg (p)
2 � kpk2 = 0
nX

j=1

rj⇡ij = 0

for i = 1, 2, . . . , n where RM is the scalar curvature of M and
⇡ij = pij � Trg (p)gij .
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The constraint equations with matter present

Using the Einstein equations with matter fields encoded in the
stress-energy tensor T together with the Gauss and Codazzi
equations, the constraint equations are

µ =
1

2
(RM + Trg (p)

2 � kpk2)

Ji =
3X

j=1

rj⇡ij

for i = 1, 2, . . . , n where ⇡ij = pij � Trg (p)gij . Here the quantity µ
is the observed energy density of the matter fields and J is the
observed momentum density.

Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition. For an initial
data set this implies the inequality µ � kJk.

In the time symmetric case (p = 0) the dominant energy condition
is equivalent to the inequality RM � 0.
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Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition. For an initial
data set this implies the inequality µ � kJk.

In the time symmetric case (p = 0) the dominant energy condition
is equivalent to the inequality RM � 0.

The initial value problem

Given an initial data set (M, g , p) satisfying the vacuum constraint
equations, there is a unique local spacetime which evolves from
that data. This result involves the local solvability of a system of
nonlinear wave equations.
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Asymptotic Flatness

We will consider asymptotically flat solutions. The requirement is
that the initial manifold M outside a compact set be di↵eomorphic
to the exterior of a ball in Rn and that there be coordinates x in
which g and p have appropriate fallo↵.

Asymptotic Flatness

We will consider asymptotically flat solutions. The requirement is
that the initial manifold M outside a compact set be di↵eomorphic
to the exterior of a ball in Rn and that there be coordinates x in
which g and p have appropriate fallo↵.
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Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is Rn+1 with the flat metric
g = �dx2

0

+
Pn

i=1

dx2i . It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with
p = 0 and

gij = (1 +
E

2|x |n�2

)
4

n�2 �ij

for |x | > 0. It is a vacuum solution describing a static black hole
with mass E . It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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ADM Energy

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy which is computed in terms of the asymptotic
behavior of g . For this definition we fix asymptotically flat
coordinates x .

E = 1

2(n�1)!n�1

lim
r!1

Z

|x |=r

nX

i ,j=1

(gij ,i � gii ,j)⌫
j
0

d�
0

The limit exists under quite general asymptotic decay conditions.
There is an analogous expression for the linear momentum in terms
the asymptotic behavior of p.

ADM Energy

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy which is computed in terms of the asymptotic
behavior of g . For this definition we fix asymptotically flat
coordinates x .

E = 1

2(n�1)!n�1

lim
r!1

Z

|x |=r

nX

i ,j=1

(gij ,i � gii ,j)⌫
j
0

d�
0

The limit exists under quite general asymptotic decay conditions.
There is an analogous expression for the linear momentum in terms
the asymptotic behavior of p.

                                                                                                                    870



The positive energy theorem

The positive energy theorem says that E � 0 whenever the
dominant energy condition holds, and that E = 0 only if (M, g , p)
can be isometrically embedded into the (n + 1)-dimensional
Minkowski space with p as its second fundamental form. In case
p = 0, the assumption is Rg � 0, and equality implies that (M, g)
is isometric to Rn.

The problem can be posed in any dimension, and it can be proven
in various cases using mean curvature ideas (S & Yau) or using the
Dirac operator approach developed by E. Witten. In three
dimensions there is a third approach (for p = 0) which is the
inverse mean curvature flow proposed by R. Geroch and made
rigorous by G. Huisken and T. Ilmanen.

The positive energy theorem

The positive energy theorem says that E � 0 whenever the
dominant energy condition holds, and that E = 0 only if (M, g , p)
can be isometrically embedded into the (n + 1)-dimensional
Minkowski space with p as its second fundamental form. In case
p = 0, the assumption is Rg � 0, and equality implies that (M, g)
is isometric to Rn.

The problem can be posed in any dimension, and it can be proven
in various cases using mean curvature ideas (S & Yau) or using the
Dirac operator approach developed by E. Witten. In three
dimensions there is a third approach (for p = 0) which is the
inverse mean curvature flow proposed by R. Geroch and made
rigorous by G. Huisken and T. Ilmanen.
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Part 2: Main theorem on localization of initial data

The Einstein equations lie somewhere between the wave equation
and Newtonian gravity (or the stationary Einstein equations). For
the wave equation one can localize initial data and reduce many
questions to the study of compactly supported solutions.

For Newtonian gravity the asymptotic behavior of the Newtonian
potential is determined by the Poisson equation, and the
asymptotic terms include the total mass and center of mass. The
asymptotic form of the potential is rigidly determined and cannot
be changed. It is similarly true for the Einstein equations that the
asymptotic terms contain physical information such as energy,
momentum, and center of mass. While this limits the asymptotic
forms which are possible, it does not determine the form uniquely.

Part 2: Main theorem on localization of initial data

The Einstein equations lie somewhere between the wave equation
and Newtonian gravity (or the stationary Einstein equations). For
the wave equation one can localize initial data and reduce many
questions to the study of compactly supported solutions.

For Newtonian gravity the asymptotic behavior of the Newtonian
potential is determined by the Poisson equation, and the
asymptotic terms include the total mass and center of mass. The
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momentum, and center of mass. While this limits the asymptotic
forms which are possible, it does not determine the form uniquely.

                                                                                                                    872



Asymptotic behavior

The energy and linear momentum can be shown to exist the under
rather weak asymptotic decay

gij = �ij + O
2

(|x |�q), pij = O
1

(|x |�q�1)

for any q > (n � 2)/2.

Clearly the positive energy theorem implies that there are no
solutions of the constraint equations with compact support.

Asymptotic behavior

The energy and linear momentum can be shown to exist the under
rather weak asymptotic decay

gij = �ij + O
2

(|x |�q), pij = O
1

(|x |�q�1)

for any q > (n � 2)/2.

Clearly the positive energy theorem implies that there are no
solutions of the constraint equations with compact support.
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A further consequence of positive energy

If we let U denote the open subset of M consisting of those points
at which the Ricci curvature of g is nonzero, then we have the
following. It shows that under reasonable decay conditions the set
U must include a positive ‘angle’ at infinity.

Proposition Assume that (M, g , p) satisfies the decay conditions

gij = �ij + O
3

(|x |2�n), pij = O
2

(|x |1�n).

Unless the initial data is trivial, we have

lim inf
�!1

�1�nVol(U \ @B�) > 0.

Proof of proposition

The energy can be written in terms of the Ricci curvature

E = �cn lim
�!1

�

Z

S�

Ric(⌫, ⌫) da

for a positive constant cn.

If our initial data is nontrivial, then we have E > 0, and so for any
� su�ciently large we have

E/2 < cn�

Z

S�

|Ric(⌫, ⌫)| da  c�1�nVol(U \ @B�)

where the second inequality follows from the decay assumption.
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Proof of proposition

The energy can be written in terms of the Ricci curvature

E = �cn lim
�!1

�

Z

S�

Ric(⌫, ⌫) da

for a positive constant cn.

If our initial data is nontrivial, then we have E > 0, and so for any
� su�ciently large we have

E/2 < cn�

Z

S�

|Ric(⌫, ⌫)| da  c�1�nVol(U \ @B�)

where the second inequality follows from the decay assumption.

Energy in terms of Ricci curvature

The energy formula used in the proposition is based on the identity

div(Ric(·,X )#) =
1

2
hRic ,D(X )i+ 1

n
Rdiv(X ) +

1

2
hrR ,X i

where D is the conformal Killing operator

D(X ) = LXg � 2

n
div(X )g .

Note that under the decay assumption gij = �ij + O
3

(|x |�q) for
q > (n � 2)/2 and R = O

1

(|x |�r ) for r > n, the righthand side is
integrable with X =

P
x i@xi , so the limit exists

lim
�!1

Z

S�

Ric(X , ⌫) da = lim
�!1

�

Z

S�

Ric(⌫, ⌫) da.
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Energy in terms of Ricci curvature

The energy formula used in the proposition is based on the identity

div(Ric(·,X )#) =
1

2
hRic ,D(X )i+ 1

n
Rdiv(X ) +

1

2
hrR ,X i

where D is the conformal Killing operator

D(X ) = LXg � 2

n
div(X )g .

Note that under the decay assumption gij = �ij + O
3

(|x |�q) for
q > (n � 2)/2 and R = O

1

(|x |�r ) for r > n, the righthand side is
integrable with X =

P
x i@xi , so the limit exists

lim
�!1

Z

S�

Ric(X , ⌫) da = lim
�!1

�

Z

S�

Ric(⌫, ⌫) da.

To evaluate the limit we can do it in three steps.

Step 1: Compute it for the Schwarzschild metric

gij = (1 +
E

2|x |n�2

)
4

n�2 �ij

with X =
P

i x
i @
@xi

. Since X satisfies D(X ) = 0 and R = 0 we see
that the righthand side vanishes and the flux integral

Z

⌃

Ric(⌫,X ) da

is the same over any hypersurface ⌃ which is homologous to the
horizon S which is the |x | = (E/2)1/(n�2) sphere. An easy
calculation on the horizon shows that the value is �cnE where
cn = (n � 1)(n � 2)24/(n�2)�n�1

where �n�1

= Vol(Sn�1). Note
that c

3

= 128⇡.
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Step 2: The same formula now follows for any initial data set for
which g is Schwarzschild to leading order; that is,

gij = (1 +
E

2|x |n�2

)
4

n�2 �ij + O
3

(|x |1�n).

Step 3: For the general asymptotic conditions

gij = �ij + O
3

(|x |�q), R = O
1

(|x |�r )

with q > (n � 2)/2 and r > n, we can now appeal to a density
theorem which asserts that initial data with leading order
Schwarzschild asymptotics is dense in those with general decay
conditions in a norm in which the energy is continuous.
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(|x |�r )
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What are good asymptotic forms?

Since it is possible to achieve any chosen pair E ,P by a suitably
boosted slice in the Schwarzschild, people have assumed that this
would be a natural asymptotic form for an asymptotically flat
solution of the vacuum constraint equations.

It was shown by J. Corvino (p = 0) and by Corvino and S. (also
Chruściel and Delay) that the set of initial data which are identical
to a boosted slice of the Kerr (generalization of Schwarzschild)
spacetime are dense in a natural topology in the space of all data
with reasonable decay.

What are good asymptotic forms?

Since it is possible to achieve any chosen pair E ,P by a suitably
boosted slice in the Schwarzschild, people have assumed that this
would be a natural asymptotic form for an asymptotically flat
solution of the vacuum constraint equations.

It was shown by J. Corvino (p = 0) and by Corvino and S. (also
Chruściel and Delay) that the set of initial data which are identical
to a boosted slice of the Kerr (generalization of Schwarzschild)
spacetime are dense in a natural topology in the space of all data
with reasonable decay.
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Localizing in a cone

Let us consider an asymptotically flat manifold (M, ǧ) with Rǧ = 0
and with decay

ǧij = �ij + O(|x |�q̌)

where (n � 2)/2 < q̌  n � 2.

In joint work with A. Carlotto we have shown that there is a metric
g which satisfies Rg = 0 with g = ǧ inside a cone based at a point
far out in the asymptotic region while g = � outside a cone with
slightly larger angle. Moreover g is close to ǧ in a topology in
which the energy is continuous, so E is arbitrarily close to Ě . The
metric g satisfies

gij = �ij + O(|x |�q)

with q < q̌.

Localizing in a cone

Let us consider an asymptotically flat manifold (M, ǧ) with Rǧ = 0
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(M, ǧ , p̌)

•a
✓
2 ✓

1

⌦I

⌦
⌦O

Where is the energy?

Since there is very little contribution to the energy inside the
region where ḡ = g and none in the euclidean region, most of the
energy resides on the transition region. This shows that one
cannot impose too much decay on this region and makes the
weakened decay plausible.
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Construction of non-interacting solutions

Another interesting application of the construction is that it gives
a method of ‘adding together’ initial data. If we have localized
solutions we can super-impose them by putting them in disjoint
cones. When we do this the energies and linear momenta add up.
Since we can approximate a general solution on an arbitrarily large
set and in a suitable topology, we can construct n-body initial data
with bodies which are far separated.

The constructions allows us to superimpose solutions in such a way
that they do not interact at all for a fixed time period.

Construction of non-interacting solutions

Another interesting application of the construction is that it gives
a method of ‘adding together’ initial data. If we have localized
solutions we can super-impose them by putting them in disjoint
cones. When we do this the energies and linear momenta add up.
Since we can approximate a general solution on an arbitrarily large
set and in a suitable topology, we can construct n-body initial data
with bodies which are far separated.

The constructions allows us to superimpose solutions in such a way
that they do not interact at all for a fixed time period.
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(M, g , p)

•O

Part 3: Connections to the geometry of initial data sets

Certain geometric aspects of the initial data have important
consequences for the spacetime. For example, the Penrose
singularity theorem shows that if the initial data has an outer
trapped surface then the spacetime cannot be null geodesically
complete.

The mean curvature proof of the positive energy theorem relies on
the geometric theorem that an initial data set with strictly positive
energy density cannot have an asymptotically planar stable
minimal surface. The constructions we have made show that this is
not true for nontrivial vacuum initial data sets (e.g. planes in the
euclidean region are stable).
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singularity theorem shows that if the initial data has an outer
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complete.

The mean curvature proof of the positive energy theorem relies on
the geometric theorem that an initial data set with strictly positive
energy density cannot have an asymptotically planar stable
minimal surface. The constructions we have made show that this is
not true for nontrivial vacuum initial data sets (e.g. planes in the
euclidean region are stable).

Minimal surfaces and MOTS
The notion of trapping naturally leads to the notion of a
marginally outer trapped surface (MOTS). Such a surface would
satisfy H + Tr

⌃

(p) = 0, and if it is the boundary between surfaces
that are outer trapped and untrapped, it satisfies a stability
condition. For p = 0 this is the ordinary variational stability of the
area functional (second variation nonnegative for all variations).

For example the Schwarzschild horizon is a stable minimal surface.
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(p) = 0, and if it is the boundary between surfaces
that are outer trapped and untrapped, it satisfies a stability
condition. For p = 0 this is the ordinary variational stability of the
area functional (second variation nonnegative for all variations).

For example the Schwarzschild horizon is a stable minimal surface.

A question coming from the proof of PMT

A key ingredient of the mean curvature proof of the PET is the
statement that for n = 3 there can be no complete asymptotically
planar stable minimal surface (p = 0) or stable MOTS (general
case) provided the dominant energy condition holds strictly. For
n � 4 there is a corresponding statement for strongly stable
MOTS.

Question: Can there be a stable asymptotically planar minimal
surface (or MOTS) in a nontrivial initial data set?

Our localization construction shows that this same property is not
true without the strictness of the energy conditions.
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A positive result

The following theorem was proven by A. Carlotto
(arXiv:1310.5118).

Theorem. If (M3, g , p) is nontrivial, satisfies the dominant energy
condition, and is asymptotic to leading order to a slice in the
Schwarzschild spacetime, then there is no complete non-compact
stable MOTS.

The construction we have made is limited in the decay which can
be arranged, so the question is still open with |x |2�n decay. Some
evidence for this was given by the result of A. Carlotto.
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Isoperimetric properties of spheres in the euclidean region

Spheres in euclidean space are isoperimetric surfaces in that they
have least area for their enclosed volume. If we consider a sphere
in the euclidean region of a localized solution, it is natural to ask if
it is an isoperimetric surface for the initial data set.

We have observed that this is not the case for su�ciently large
euclidean spheres. This is based on work of Fan, Miao, Shi, and
Tam who gave a formula for the ADM energy in terms of a deficit
in the isoperimetric profile for surfaces enclosing a large volume
(an idea proposed by Huisken).
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Area minimizing surfaces

The planes in the euclidean region are clearly stable, so it is natural
to ask if they can be area minimizing in a nontrivial initial data set.
The result for isoperimetric spheres suggests that they may not be.
This was shown very recently by O. Chodosh and M. Eichmair who
proved that a nontrivial time symmetric initial data set cannot
contain a complete noncompact area minimizing surface.

The mean curvature proof of the positive energy theorem shows
that any asymptotically flat metric with negative mass does
contain an area minimizing surface which is asymptotically planar.
(The scalar curvature must be negative somewhere.)
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Part 4: Some features of the proof

(M, ǧ , p̌)

•a✓
2 ✓

1

⌦I

⌦
⌦O

Outline of proof I

We first construct a metric g̃ of the form

g̃ = �ǧ + (1� �)�

where �(�) is a smooth cuto↵ function which is 1 in ⌦I of smaller
angle and zero in ⌦O . Here � is the angle function on the cone
outside the unit ball extended so that it is constant on each
component of @⌦.

We then seek a solution of the form g = g̃ + h with R(g) = 0
where h is supported in ⌦. The equation can be written

R(g) = R(g̃) + L̃h + Q(h) = 0

where L̃ is the linearization of the scalar curvature map at g̃ . Note
that R(g̃) = 0 outside the transition region ⌦.
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g̃ = �ǧ + (1� �)�

where �(�) is a smooth cuto↵ function which is 1 in ⌦I of smaller
angle and zero in ⌦O . Here � is the angle function on the cone
outside the unit ball extended so that it is constant on each
component of @⌦.

We then seek a solution of the form g = g̃ + h with R(g) = 0
where h is supported in ⌦. The equation can be written

R(g) = R(g̃) + L̃h + Q(h) = 0

where L̃ is the linearization of the scalar curvature map at g̃ . Note
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Outline of proof II

We have the formula for the operator

L̃h = ��h ��g̃ (Tr(h))� hh,Ric(g̃)i

where computations are with respect to g̃ . The adjoint operator is
then

L̃⇤u = Hessg̃ (u)��g̃ (u)g̃ � uRic(g̃).

The composition is given by

L̃(L̃⇤u) = (n � 1)�(�u) + 1/2(�R̃)u + 3/2hrR̃ ,rui
+ 2R̃(�u)� hHess(u),Ric(g̃)i
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Outline of proof III

We solve the equation

L̃h + Q(h) = f

using a Picard iteration scheme in spaces which impose decay of
|x |�q at infinity and rapid decay near @⌦. The proof involves first
showing that L̃ is surjective in such spaces.

The basic estimate which enables us to impose rapid decay near
@⌦ is

kuk
2,�s,⌦  ckL̃⇤uk

0,�s�2,⌦

for any s > 0 where these are norms in L2 Sobolev norms and no
boundary condition is imposed on u.
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Why do we need q < n � 2?

We need to show surjectivity of L̃, and this follows from injectivity
of L̃⇤. The domain of L̃⇤ is the dual space of the range of L̃, that is
the dual of H

0,�2�q. This dual space is H
0,2+q�n since we have

|
Z

M
f
1

f
2

dµ|  (

Z

M
|f
1

|2|x |�n+2(q+2))1/2(

Z

M
|f
2

|2|x |n�2(q+2))1/2,

and the right hand side is kf
1

k
0,�q�2

kf
2

kq+2�n.

Since q < n � 2 implies that s = n � 2� q > 0, we can apply the
basic estimate to get the injectivity estimate

kuk
2,2+q�n  ckL̃⇤uk

0,q�n.

This bound is no longer true if q � n � 2.

Why do we need q < n � 2?

We need to show surjectivity of L̃, and this follows from injectivity
of L̃⇤. The domain of L̃⇤ is the dual space of the range of L̃, that is
the dual of H

0,�2�q. This dual space is H
0,2+q�n since we have

|
Z

M
f
1

f
2

dµ|  (

Z

M
|f
1

|2|x |�n+2(q+2))1/2(

Z

M
|f
2

|2|x |n�2(q+2))1/2,

and the right hand side is kf
1

k
0,�q�2

kf
2

kq+2�n.

Since q < n � 2 implies that s = n � 2� q > 0, we can apply the
basic estimate to get the injectivity estimate

kuk
2,2+q�n  ckL̃⇤uk

0,q�n.

This bound is no longer true if q � n � 2.

                                                                                                                    892



Surjectivity of L

The injectivity of L⇤ implies surjectivity of L between dual spaces.
The L2 dual to the decay of |x |q�n corresponds to the decay of
order |x |�q at infinity. Since no decay is required near @U in the
basic estimate we can impose rapid decay near @U as the dual
condition. Thus we can construct solutions of L̃h = f in spaces
with such decay. Given su�ciently good estimates we can then
solve the nonlinear equation L̃h + Q(h) = f with the same decay.

Main technical issues

Some of the technical issues which need to be overcome to do this
construction are the following:

(1) The transition region is noncompact and this creates major
di�culties. We are able to exploit the homogeneity to help
overcome this di�culty. The noncompctness presents challenges
both for getting the basic injectivity estimate and for higher order
estimates. This is especially so for the general constraint equations
since they are more complicated than the p = 0 case; for example,
they are of mixed order.

(2) There are two di↵erent decay rates which must be imposed on
solutions. First the solutions must decay rapidly near the boundary
of U in order to make the patched solution smooth enough.
Secondly we must maintain the decay rate at infinity for the
solutions. These are handled by working in spaces with double
weights which impose the two decay conditions.
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Lagrange’s orbit due to  
GW Radiation Reaction
Kei Yamada (Kyoto U.)
with H. Asada (Hirosaki U.)

arXiv:1512.01087 [gr-qc]
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• Introduction

• GW radiation reaction force to Lagrange’s orbit
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Gravitational Wave Detectors

• Ground-based

• aLIGO (USA)

• aVIRGO (Italy, France)

• KAGRA (Japan)

• Space-borne

• eLISA (Europe)

• DECIGO (Japan) http://gwcenter.icrr.u-tokyo.ac.jp

Recent Works of Three-body Systems

• “A millisecond pulsar  
   in stellar triple system”  
   [Ranson et al., Nature (2014)]

• GW & three-body interactions  
[Wen, ApJ (2003); Seto, PRL (2013)]

• PN triangular solution and its stability  
[KY & Asada, PRD (2012); KY, Tsuchiya, & Asada, PRD (2015)]

expected values and error estimates directly from the parameter pos-
terior distributions. We plot the results in Fig. 1 and list best-fit para-
meters and several derived quantities in Table 1. Component masses
and relative inclinations are determined at the 0.1%–0.01% level,
which is one to two orders of magnitude more precisely than from
other MSP timing experiments, by a method that is effectively inde-
pendent of the gravitational theory used. A detailed description of the
three-body model and fitting procedure is under way (A.M.A. et al.,
manuscript in preparation).

Using an early radio position, we identified an object with unusually
blue colours in the Sloan Digital Sky Survey16 (SDSS; Fig. 3). The optical
and archival ultraviolet photometry, combined with new near- and mid-
infrared photometry, are consistent (Methods) with a single white dwarf
of temperature ,15,000 K, which optical spectroscopy confirmed is the
inner white dwarf in the system (D.L.K. et al., manuscript in prepara-
tion). When combined with the known white dwarf mass from timing
observations, white dwarf models provide a radius from which we infer
a photometric distance to the system of 1,300 6 80 pc. The photometry
and timing masses also exclude the possibility that the outer companion
is a main-sequence star.

The pulsar in this system seems to be a typical radio MSP, but it is
unique in having two white dwarf companions in hierarchical orbits.
Although more than 300 MSPs are known in the Galaxy and in globu-
lar clusters, J033711715 is the first MSP stellar triple system found.
Because there are no significant observational selection effects discrim-
inating against the discovery of pulsar triple (as opposed to binary)
systems, this implies that=1% of the MSP population resides in stellar
triples and that =100 such systems exist in the Galaxy.

Predictions for the population of MSP stellar triples have suggested
that most have highly eccentric outer orbits owing to dynamical inter-
actions between the stars during stellar evolution17. Such models could
also produce eccentric binaries such as MSP J190310327 (ref. 18), if
the inner white dwarf, which had previously recycled the pulsar (that is,
turned it into an MSP through the transfer of matter and angular
momentum), were destroyed or ejected from the system dynamically19.
In such situations, however, the coplanarity and circularity of the orbits
of J033711715 would be very surprising. Those orbital characteristics,
and their highly hierarchical nature (Pb,O/Pb,I < 200, where Pb,O and
Pb,I are the orbital periods for the outer and inner binaries, respect-
ively), imply that the current configuration is stable on long time-
scales20, greatly increasing the odds of observing a triple system such
as J033711715. Secular changes to the various orbital parameters will
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Figure 2 | Geometry of the PSR J033711715 system at the reference epoch.
a, Orbital shape and velocity of the outer white dwarf (red), and the orbital
shape and velocity of the centre of mass of the inner binary (grey). b, Orbital
shapes and velocities of the inner white dwarf (orange) and the pulsar (blue).
Dotted red and orange lines indicate the directions of periastron for the inner

and outer white dwarf orbits, respectively. The white dwarf positions when the
pulsar or inner orbit centre of mass crosses the ascending nodes are indicated.
Vertical lines show length scales in the system in astronomical units (AU; a) or
the Earth–Moon distance (dEM) and the Solar radius (R[; b). c, Inclination of
the basically coplanar orbits with respect to the Earth–pulsar direction.
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Figure 1 | Timing residuals and delays from the PSR J033711715 system.
a, b, Geometric light-travel time delays (that is, Rømer delays), in both time and
pulse periods, across the inner (a) and outer (b) orbits, and modified Julian
dates (MJD) of radio timing observations from the GBT, the WSRT and the
Arecibo telescope. Arrival time errors in these panels are approximately a
million times too small to see. c, Newtonian three-body perturbations
compared with the modified two-Keplerian-orbit model used for folding our
data at the observed pulse period. d, Post-fit timing residuals from our full
Markov chain Monte Carlo (MCMC)-derived three-body timing solution
described in Table 1. The weighted root mean squared value of the 26,280
residuals is 1.34ms.
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[Ranson et al., Nature (2014)]
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Lagrange’s orbit in Newton

Lagrange’s equilateral triangular orbit

Newtonian EoM for       isrI

✓
µI ⌘ (m2

J +mJmK +m2
K)3/2
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◆

r̈I = �µI
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rI .

In circular motion,  
the Kepler’s third like law
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r
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The Linear Stability of Lagrange’s orbit

This configuration is stable [Gascheau (1843)], if
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r! hþOctþC ¼ $ 1

4
m2

tot! sini
!
9ð1þ cos2iÞð33=2!1!2!3 cos3!tþ ð!1 $ !2Þð!2 $ !3Þð!3 $ !1Þ sin3!tÞ

$ ð5þ cos2iÞ
" ffiffiffi

3
p

2
!1f!2ð!2 $ !1Þ þ !3ð!3 $ !1Þg cos!t

$ 1

2
ð!2 $ !3Þfð!1 $ !2Þð!1 $ !3Þ $ 3!2!3g sin!t

$%
(30)

and

r! h!OctþC ¼ $ 1

4
m2

tot! sin2i
!
9ð33=2!1!2!3 sin3!t$ ð!1 $ !2Þð!2 $ !3Þð!3 $ !1Þ cos3!tÞ

$ 3
" ffiffiffi

3
p

2
!1f!2ð!2 $ !1Þ þ !3ð!3 $ !1Þg sin!tþ 1

2
ð!2 $ !3Þfð!1 $ !2Þð!1 $ !3Þ $ 3!2!3g cos!t

$%
: (31)

It is natural that one can recover the wave forms to a
binary system from Eqs. (30) and (31) when a third mass
vanishes, say, !3 ¼ 0.

Figure 2 shows wave forms due to mass quadrupole,
octupole, and current quadrupole parts that are expressed
above.

IV. PARAMETER DETERMINATIONS

The frequency ! can be directly determined as ! ¼
"fGW from measurements of the frequency of the mass

quadrupolar wave fGW. What we have to do is to determine
the remaining six quantities asmtot, !1, !2, !3, r, and i. We
have an identity !1 þ !2 þ !3 ¼ 1. Hence, we need to find
out five more relations for parameter determinations.
The frequency of mass quadrupolar waves is 2!,

whereas that for the combination of mass octupolar and
current quadrupolar ones is either ! or 3!. By using this
difference of frequency dependences, therefore, one can
pick up the quadrupolar waves from observed signals. By
comparing amplitudes of the þ and ! modes, we obtain

Ampðh!QÞ
AmpðhþQÞ

¼ 2 cosi

1þ cos2i
; (32)

where Amp denotes the amplitude of waves. This relation
is the same as the well-known one for binaries. The left-
hand side (lhs) of Eq. (32) can be determined by observa-
tions and thus the right-hand side (rhs) tells us the inclina-
tion angle i.
Through observing the frequency sweep of the mass

quadrupolar part [see Eq. (13)], one can determine the
chirp mass as

Mchirp ¼
"
5

96

1

"8=3

1

f11=3GW

dfGW
dt

$
3=5

; (33)

where fGW ¼ 2f for f ¼ !=2".
Next, let the amplitude of each wave component ob-

served separately. From Eq. (19), first, we obtain that for
the mass quadrupolar part as

r! AmpðhþQÞ ¼ 2m5=6
tot M

5=6
chirp!

2=3ð1þ cos2iÞ

!
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1!2 þ !2!3 þ !3!1

p
; (34)

which can be solved for the distance r as

r ¼
2m5=6

tot M
5=6
chirp!

2=3ð1þ cos2iÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!1!2 þ !2!3 þ !3!1

p

AmpðhþQÞ
:

(35)

For parameter determinations, however, it is useful to
rewrite this as
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FIG. 2 (color online). Gravitational waves for a three-body
system in Lagrange’s orbit. Long-dashed (blue), short-dashed
(red), and dotted (green) curves denote mass quadrupolar, octu-
polar, and current quadrupolar parts, respectively. The sold
(black) one denotes the total wave forms. The vertical axis is
in arbitrary units, and time in the horizontal axis is normalized
by the orbital period. For simplicity, the mass ratio is assumed as
m1:m2:m3 ¼ 1:2:3, though stability arguments prefer much
larger ratios [24]. In order to exaggerate differences between
each component of waves, we assume a mildly relativistic case
of a ¼ 100mtot, which corresponds to v=c' 0:1. The mass
octupolar part makes a relatively large contribution mostly
because of including a large numerical coefficient [as 27 in
Eq. (25)], whereas the current quadrupolar part is much smaller
and changes slowly with time because it has no 3! but only the
! part.

GRAVITATIONAL WAVE FORMS FOR A THREE-BODY . . . PHYSICAL REVIEW D 80, 064021 (2009)

064021-5

GWs from Lagrange’s orbit

• Gravitational-wave forms 
from Lagrange’s orbit  
[Torigoe et al., PRL (2009)]

• Parameter determinations  
[Asada, PRD (2009)]  
(based on  
energy balance argument)

[Asada, PRD (2009)]

Energy Balance Argument (EBA)

• In linearized theory,  
         and           come from the source.

• Binaries: # of DOF = # of constants of motion.  
 
 
 

• Triples: # of DOF > # of constants of motion.

LGW SGW

✓
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,
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Question

• Is Asada’s assumption wrong?

• Most 3-bodies orbits are chaotic.

• Study the evolution of Lagrange’s orbit  
in circular motion

➡ by directly treating radiation reaction force.

Contents

• Introduction

• GW radiation reaction force to Lagrange’s orbit

• Evolution of Lagrange’s Orbit

• Summary
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Gravitational radiation reaction

In the harmonic gauge, “reaction potential” is

where, for point-like particles, 

Gravitational radiation reaction force is

-
Ijk =

X

J

mJ

✓
x

J
j x

J
k � 1

3
�jkr

2
J

◆
.

F

(react)
j = �@�(react)

@xj
= �2

5

d

5 -
Ijk

dt

5
x

k
.

h

(react)
00 = �2�(react)

, �(react) =
1

5

d

5 -
Ijk

dt

5
x

j
x

k
,

Radiation reaction on Lagrange’s orbit

In the orbital plane (x,y), non-zero components are

d5 -I
xx

dt5
= �16!5

X

J

m
J

r2
J

sin(2✓
J

),

d5 -I
xy

dt5
= 16!5

X

J

m
J

r2
J

cos(2✓
J

) =

d5 -I
yx

dt5
,

d5 -I
yy

dt5
= 16!5

X

J

m
J

r2
J

sin(2✓
J

) = �d5 -I
xx

dt5
.

! : orbital frequency, ✓J : direction of Jth body.
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Radiation reaction on Lagrange’s orbit

d5 -I
xx

dt5
= �16!5

X

J

m
J

r2
J

sin(2✓
J

),

d5 -I
xy

dt5
= 16!5

X

J

m
J

r2
J

cos(2✓
J

) =

d5 -I
yx

dt5
,

d5 -I
yy

dt5
= 16!5

X

J

m
J

r2
J

sin(2✓
J

) = �d5 -I
xx

dt5
.

Also, 
X

F (react)
I = 0 : CoM is not moved.

➡ Need 4 perturbations in the orbital plane.

F

(react)
Iz / d

5 -
Izk

dt

5
x

k
I = 0 : Orbital plane does not change.

Radiation Reaction Force

GW radiation reaction force to        isrIJ

where                        ." ⌘ (M!)5/3

AIJ =
p
3(⌫I � ⌫J)⌫K , BIJ = ⌫I(⌫J � ⌫K) + ⌫J(⌫K � ⌫I).

⌫I ⌘ mI/M, nIJ ⌘ rIJ/`, n?IJ ⌘ vIJ/`!

F (react)
IJ =

16

5

M

`2
"(AIJnIJ �BIJn?IJ),

For convenience,  
we consider the relative position                          .rIJ = rI � rJ
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Contents

• Introduction

• GW radiation reaction force to Lagrange’s orbit

• Evolution of Lagrange’s Orbit

• Summary

Perturbations in Lagrange’s orbit

4 perturbations in the orbital plane: (�12,$, X, )

m1

m2

m3

⇡

3
+  

`(1 + �12 +X)
`(1 + �12)

!Nt+

Z
$dt
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m1

m2

m3

⇡

3
+  

`(1 + �12 +X)

`(1 + �12)

!Nt+

Z
$dt

Perturbations in Lagrange’s orbit

        : a scale transformation�12

     : a change of the orbital frequency$

➡ 
✓
d`

dt
,
dP

orbit

dt

◆

m1

m2

m3

⇡

3
+  

`(1 + �12 +X)

`(1 + �12)

!Nt+

Z
$dt

Perturbations in Lagrange’s orbit

        : a scale transformation�12

     : a change of the orbital frequency$

➡ 
✓
d`

dt
,
dP

orbit

dt

◆

         : a shape change from equilateral triangle.X, 

➡ Evolution of Lagrange’s orbit is chaotic 
 if          increase with time.X, 
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Perturbed Equations of Motion

Perturbed EoMs become

�̈12 � 3�12 � 2$ � 9

4
⌫3X � 3

p
3

4
⌫3 � 16

5
"A12 = 0,

2�̇12 + $̇ � 3
p
3

4
⌫3X +

9

4
⌫3 +

16

5
"B12 = 0,

�̈12 � 3�12 � 2$ + Ẍ �
✓
3� 9

4
⌫2

◆
X � 2 ̇ � 3

p
3

4
⌫2 � 16

5
"A31 = 0,

2�̇12 + $̇ + 2Ẋ � 3
p
3

4
⌫2X +  ̈ � 9

4
⌫2 +

16

5
"B31 = 0,

Solve in the Newtonian stable case:

Reaction force

⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1 <
1

27
.

Behavior of perturbations

We can solve EoMs and obtain

             increase with time.�12,$

          oscillate.X, 

where V ⌘ ⌫1⌫2 + ⌫2⌫3 + ⌫3⌫1.

�12 = � 32

5V
"
⇥
⌫21(⌫2 � ⌫3)

2
+ ⌫22(⌫3 � ⌫1)

2
+ ⌫3(⌫1 � ⌫2)

2
⇤
!t+ (oscillating terms),

$ =

48

5V
"
⇥
⌫21(⌫2 � ⌫3)

2
+ ⌫22(⌫3 � ⌫1)

2
+ ⌫3(⌫1 � ⌫2)

2
⇤
!t+ (oscillating terms),

X = �32

p
3

15V
"
⇥
⌫22(⌫3 � ⌫1)� ⌫23(⌫1 � ⌫2)

⇤
+ (oscillating terms),

 = � 32

15V
"(⌫2 � ⌫3)(2⌫1 � V ) + (oscillating terms),
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Evolution of Lagrange’s Orbit

➡ Lagrange’s orbit is adiabatically kept.

➡ Triangle shrinks with increasing orbital frequency.

Strikingly, the evolution is non-chaotic!

             increase with time.�12,$

          oscillate.X, 

�12 = � 32

5V
"
⇥
⌫21(⌫2 � ⌫3)

2
+ ⌫22(⌫3 � ⌫1)

2
+ ⌫3(⌫1 � ⌫2)

2
⇤
!t+ (oscillating terms),

$ =

48

5V
"
⇥
⌫21(⌫2 � ⌫3)

2
+ ⌫22(⌫3 � ⌫1)

2
+ ⌫3(⌫1 � ⌫2)

2
⇤
!t+ (oscillating terms),

X = �32

p
3

15V
"
⇥
⌫22(⌫3 � ⌫1)� ⌫23(⌫1 � ⌫2)

⇤
+ (oscillating terms),

 = � 32

15V
"(⌫2 � ⌫3)(2⌫1 � V ) + (oscillating terms),

Contents

• Introduction

• GW radiation reaction force to Lagrange’s orbit

• Evolution of Lagrange’s Orbit

• Summary
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Summary

• Evolution of Lagrange’s orbit  
by directly treating the reaction force.

• The orbit is adiabatically kept.

•It supports [Asada, (2009)].

➡ Possibility of parameter determinations.

• What about elliptic cases…?

THANK YOU FOR YOUR ATTENTION

                                                                                                                    907



“Disappearing inflaton potential”

by Naoya Kitajima

[JGRG25(2015)6a3]
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Disappearing Inflaton Potential

Naoya Kitajima

JGRG25, YITP Kyoto, Dec 7-11 2015

NK, F. Takahashi (Tohoku Univ.) arXiv:1509.01729

here

(Korea)

by heavy field dynamics after inflation

Primordial spectra

r =
At

As
= 8

✓
V 0

V

◆2

As =
V 3

2
p
3V 02

ns = 1 + 2
V 00

V
� 3

✓
V 0

V

◆2

Inflaton potential

P⇣ = As

✓
k

k0

◆ns�1

Pt = At

✓
k

k0

◆nt

Credit: ESA

CMB observation

As, ns, r V, V 0, V 00
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Quadratic

Chaotic inflation

Planck 2015

Quadratic chaotic inflation: V =
1

2
m2�2 m ⇠ 1013GeV

V

�

During inflation

slow roll

As, ns, r V, V 0, V 00

constrained 

by CMB
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V

�

After inflation

oscillate -> reheating

As, ns, r V, V 0, V 00??
Baryogenesis, Dark matter, …

constrained 

by CMB

V

�

After inflation

oscillate -> reheating

As, ns, r V, V 0, V 00??
Baryogenesis, Dark matter, …

waterfall field

inflaton

waterfall

constrained 

by CMB
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SM particles

MSSM ??
Inflaton ??

GeV

TeV

1013 GeV Inflaton ??

after inflation Heavy field dynamics

Inflaton + heavy field
Dong, Horn, Silverstein, Westphal, 1011.4521; Achucarro, Gong, Hardeman, Palma, Patil 1010.3693 
Cespedes, Atal, Palma 1201.4848; Gao, Langlois, Mizuno 1205.5275; Buchmuller, Wieck, Winkler 1404.2275 
Buchmuller, Dudas, Heurtier, Westphal, Wieck, Winker 1501.05812 Kumar, Sandora, Sloth 1501.06919 
Dudas, Wieck 1506.01253; Harigaya, Ibe, Kawasaki, Yanagida 1506.05250; and …

Achucarro, Gong, Hardeman, Palma, Patil 1010.3693

Bended trajectory oscillating feature in primordial spectrum
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Inflaton + heavy field

Harigaya, Ibe, Kawasaki, Yanagida 1506.05250

χ : Heavy field

Dong, Horn, Silverstein, Westphal, 1011.4521; Achucarro, Gong, Hardeman, Palma, Patil 1010.3693 
Cespedes, Atal, Palma 1201.4848; Gao, Langlois, Mizuno 1205.5275; Buchmuller, Wieck, Winkler 1404.2275 
Buchmuller, Dudas, Heurtier, Westphal, Wieck, Winker 1501.05812 Kumar, Sandora, Sloth 1501.06919 
Dudas, Wieck 1506.01253; Harigaya, Ibe, Kawasaki, Yanagida 1506.05250; and …

L =
1

2
K(s)@µ�@

µ�+
1

2
G(s)@µs@

µs� V (�, s)

V (�, s) = F (s)v(�) + U(s)

Disappearing Inflaton Potential by Heavy field dynamics
NK, F. Takahashi, arXiv:1509.01729

inflaton modulus
slow-roll

sinf� s

F (s)v(�)

trapped

Large VEV of modulus —> large inflaton mass

During inflation
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After inflation

s

V (�, s) = F (s)v(�) + U(s)

F (s)

�

v(�)

radiation
decay

inflaton modulus

After inflation

s

V (�, s) = F (s)v(�) + U(s)

F (s)

�

v(�)

radiation
decay

disappear!

massless / light inflaton
�

V

inflaton modulus
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I. Chaotic Inflation in SUGRA
Kawasaki, Yamaguchi, Yanagida (2000)

V = eK

(DiW )Kij̄(DjW )† � 3|W |2

�
Scalar potential:

Shift symmetry : � ! �+ iC flat potential

Superpotential:shift symmetry

Φ: inflaton, X: stabilizer

V =
1

2
m2�2

� =
1p
2
(⌘ + i�), ⌘, X ! 0

Kähler potential : K(�,�†, X,X†) =
1

2
(�+ �†)2 +XX† + . . .

DiW = @iW +KiW, i = �, X

W = mX�

�

NK, F. Takahashi 1509.01729 
I. Chaotic Inflation in SUGRA

W = �SX�Superpotential :

Φ: inflaton, X: stabilizer + S: modulus
m ! �S

Kähler potential : K =
1

2
(�+ �†)2(1 + c(2)� |S|2 + c(4)� |S|4)

+ |X|2(1 + c(2)X |S|2 + c(4)X |S|4)

+ |S|2(1 + c(2)S |S|2 + c(4)S |S|4) + · · ·

V (�, s) = eKKXX̄ |WX |2 =
1

4
�2�2s2

✓
1� 1

2
c2s

2 +
1

4
c4s

4 + . . .

◆

c2 = c(2)X � 1, c4 =
1

2
� c(2)X (1� c(2)X )� c(4)X + c(2)S

Scalar potential :
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 0

 5

 10  0

 1

V

φ (inflaton) s (modulus)

V inflation

 0

 2

 4

 6

 8

 0  2  4  6  8  10

V
/λ

2

φ

slow roll

inflaton

 0

 0.5

 1

 0  0.5  1  1.5  2

V
/λ

2

s

stabilized

modulus

sinf ⇠ MP ! � ⇠ 10�5

Inflaton potential

V (�, s) = �2F (s)

F (s) =
1

4
�2s2

✓
1� 1

2
c2s

2 +
1

4
c4s

4 + . . .

◆

 0

 0.1

 0.2

 0.3

-2 -1  0  1  2

V
/λ

2

φ

 0

 5

 10  0

 1

V

φ (inflaton) s (modulus)

V

Post inflationary dynamics

 0

 0.2

 0.4

 0  0.5  1  1.5  2

V
/λ

2

s

soft mass
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 0

 0.1

 0.2

 0.3

-2 -1  0  1  2

V
/λ

2

φ

 0

 5

 10  0

 1

V

φ (inflaton) s (modulus)

V

 0

 0.2

 0.4

 0  0.5  1  1.5  2

V
/λ

2

s

disappear!

Post inflationary dynamics

soft mass

Reheating

� S X N ⇧ Q Q̄
U(1)R 0 0 2 1 0 1 1
Z2 � � + + + � +

Z4B�L 0 2 2 1 2 1 1

W = hSQQ̄Modulus (s) => Hidden light quarks : 

Hidden sector SM sector

=> thermal / non thermal leptogenesis

W = y�SNN + �⇧NNInflaton => right handed neutrinos : 

mixing

U(1)H U(1)Y
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Reheating

� S X N ⇧ Q Q̄
U(1)R 0 0 2 1 0 1 1
Z2 � � + + + � +

Z4B�L 0 2 2 1 2 1 1

W = hSQQ̄Modulus (s) => Hidden light quarks : 

Hidden sector SM sector

=> thermal / non thermal leptogenesis

W = y�SNN + �⇧NNInflaton => right handed neutrinos : 

mixing

inflaton is stable => dark matter
m2

�,0 ⇠ �2

16⇡2
m2

3/2SUSY

U(1)H U(1)Y

W = XS

✓
� µ2 +

�2m

M2m�2
⇤

◆

II. Hilltop /new inflation
Asaka+ (1999); Senoguz, Shafi (2004); Nakayama, F. Takahashi (2012)

V =
v4s2

2

✓
1� 2�2m

M2m
+

�4m

M4m

◆✓
1� c2s2

2
+

c4s4

4
� ��2

2
+ . . .

◆

F (s) =
1

2
v4s2

✓
1� 1

2
c2s

2 +
1

4
c4s

4 + . . .

◆
,

v(�) = 1� ��2

2
� 2�2m

M2m
+

�4m

M4m
+ . . . , U(s) = 0.

additional
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During inflation

 0

 0.5

 1
 0

 0.5

 1

V/v4

φ/M s/sinf

V/v4

inflaton modulus

slow roll
trapped

 0
 0.5

 1  0

 0.5

 1V/v4

φ/M

s/sinf

V/v4

inflaton

modulus

After inflation

W = XS

✓
� v2 +

(HuHd)2

M2
⇤

◆
+ µHuHd

SUSY SM Higgs new inflation

 0

 1

 2

 0  0.5  1

V
(φ

)

φ/M

 0

 1

 2

 0  0.5  1

V
(φ

)

φ/M
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W = XS

✓
� v2 +

(HuHd)2

M2
⇤

◆
+ µHuHd

SUSY SM Higgs new inflation

 0

 1

 2

 0  0.5  1

V
(φ

)

φ/M

vEW

 0

 1

 2

 0  0.5  1
V
(φ

)
φ/M

electroweak vacuum

Summary

Inflaton potential may disappear by heavy field dynamics

I. Chaotic inflation in SUGRA
- Mass parameter is promoted to be a dynamical field : S
- <S> ≠ 0 during inflation & <S> = 0 after inflation, and then 
inflaton becomes (almost) massless.
=> Dark matter / dark radiation / searched by some experiments

II. New inflation in SUGRA
- Inflaton may return to the origin after reheating and rolls 
down to the electroweak vacuum

=> Inflaton can be MSSM Higgs field
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ESP (enhanced symmetry point)

Kofman+ (2004)

Kofman+ (2004)

ESP

complex modulus field

Modulus is attracted to some symmetry restoration point

at which some massless degrees of freedom appear.

LK =
1

2
@µ�@

µ�

✓
1 +

1

2
c(2)� s2 +

1

4
c(4)� s4 + . . .

◆

+
1

2
@µs@

µs

✓
1 + 2c(2)S s2 +

9

4
c(4)S s4 + . . .

◆

V (�, s) = eKKXX̄ |WX |2,

=
1

4
�2s2�2

✓
1� 1

2
c2s

2 +
1

4
c4s

4 + . . .

◆

Kinetic term

Scalar potential

c2 = c(2)X � 1, c4 =
1

2
� c(2)X (1� c(2)X )� c(4)X + c(2)S

(U(1)R,U(1)S,Z2) ! �(0, 0,�), X(2, 1,+), S(0,�1,�)
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 0.5

 1

 0  0.5  1
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“Entanglement dynamics for two Unruh detectors in de Sitter space-time”

by Shingo Kukita

[JGRG25(2015)6a4]
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Entanglement dynamics 
for two Unruh detectors
on de Sitter space-time

SHINGO KUKITA(Nagoya Univ.)

YASUSADA NAMBU(Nagoya Univ.)

Motivation

the origin of that structure

quantumclassical

Our classical universe How?

A condition that quantum fluctuations become “classical”.

disappearance of entanglement(quantum correlation)

GOAL: 
Understand how the entanglement of a quantum field 

in an expanding universe vanish.

fluctuations generated in the inflation can be represented by 
classical distribution function.
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two level system conformal massless scalar

Detector model

   

 

    

↓ interpret
quantum entanglement of the field

entanglement detection by “detectors”

 

 

entangled

separable

calculating entanglement of a field is generally difficult.

Two comoving detector coupling with conformal massless scalar

S
environmentMethod to treat open quantum systems.

 

 

quantum master equation

Method
We can use naive perturbation method to analyze this system.

However,This method can fail in long time.

∫dt H  (t)int

2

<< 1 If not, naive perturbation fails.
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→Previous studies: impose rotating wave approximation (RWA)

→need more general quantum master equation

Method: quantum master equation
treat the background field as an environment(thermal bath)

The RWA master equation is easy to solve.
but

It can not detect quantum fluctuation of the field. 

・Thermalization and entanglement in Unruh effect (2004, Benatti et al)

・Thermalization in de Sitter space (2013, Fukuma et al )

・Entanglement in de Sitter space (2013, J. Hu H. Yu)

Two point 
correlation

Method: coarse graining approximation

 

 

 

 

Self-correlation term

 

   

quantum master equation with coarse graining approximation

Heisenberg uncertainty

this equation consists of two parts. 

(~thermal fluctuation)

We use this quantum master equation.

(schaller 2008)
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Result1: entanglement generation from the ground state

dynamics of entanglement ?

 

 

the region can be entangled from the ground state

The region is compact.

distance of the detectors

 

H/ =1ω

=0.2λ

Result2: Disentanglement in long time dynamics

entanglement vanishes for all parameters and initial states
 in the long-time evolution.

 

 

 

※We take negativity as a measure of quantum entanglement.
If the value of negativity is positive, the detectors is entangled.
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Result2: Disentanglement in long time dynamics

analytically explanation

 

  

・The correlations between detectors asymptote to 0.

・The self correlations remain finite and this destroy the entanglement.

 

No entanglement

Summary and discussion

・The entanglement of the detectors finally disappears.

・Relation with the entanglement of field itself?

・We discussed entanglement and disentanglement process 
  in an expanding universe  by using the detector model.

・there exists the parameter region where the ground 
state never become entangled.

・Other condition for classicalization?

 

In the analysis, we use CGA quantum master equation
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APPENDIX
Negativity: one of the entanglement monotones.

 

two comoving detectors
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“Cosmic censorship in dynamical brane backgrounds”

by Kunihito Uzawa

[JGRG25(2015)6a5]
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Cosmic censorship in dynamical 
brane backgrounds 

 

Kengo Maeda and Kunihito Uzawa 
 
  

[arXiv:1510.01496 [hep-th]] 

❖ String theory :  
 
♠ This is the only viable unified  
    fundamental theories at present. 
 
♣ String theory contains p-branes  
    (p>1) as well as strings. 

[1] Introduction 
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❁ An innumerable number of static brane 
     solutions have been discovered so far.  
 
But … 
 
☺ Cosmological brane solutions may    
    also exist ! 
 
☞ Dynamical brane background 

▶ “Dynamical” means time-dependent.  
 
♦ Dynamical brane may be related to  
 
   ・ brane collision 
     (Gibbons & Lu & Pope, Phys.Rev.Lett. 94 (2005) 131602) 

 

   ・ cosmic Big-Bang of our universe 
        (Chen, et al., Nucl.Phys. B732 (2006) 118-135) 
 

   ・ black hole in expanding universe 
        (Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051) 
        (Maeda & Nozawa, Phys.Rev. D81 (2010) 044017) 
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☀ It is of great significance to understand  
    the cosmological backgrounds profoundly. 

 
☠ There is a naked singularity in the   
    dynamical brane background due to … 
 
(i) the divergence of non-trivial dilaton 
   （This appears in the static brane）. 
 
(ii) the time-dependence in the theory. 

✍ The naked singularity in the 4-dim  
     Einstein-Maxwell-dilaton theory  
     with cosmological constant gives  
     the violation of cosmic censorship. 
     (Horne & Horowitz, Phys.Rev. D48 (1993) 5457-5462) 

 
✰ Question 
 
   Does the smooth initial data in the     
   dynamical brane background evolve  
   into the naked singularity? 
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☀ Cosmic censorship conjecture 
     (Penrose, Riv. Nuovo Cim. 1 (1969) 252-276) 
     (Penrose, "Singularities and time-asymmetry“, (1979) 617-629) 
 

・ Weak :  
    “Singularities have to be hidden by  
      the event horizon of a black hole.” 

 
・ Strong :  
    “For smooth initial data with suitable  
      matter systems, the maximal Cauchy  
      development is not extendible.” 

★Outline my talk 

＊Geometry of dynamical brane background 
 
 

＊Cosmic censorship in dynamical M5-brane 
 
 

＊Summary and comments 
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[2] Geometry of dynamical brane background 
        (Gibbons & Lu & Pope, Phys.Rev.Lett. 94 (2005) 131602) 
        (Chen, et al., Nucl.Phys. B732 (2006) 118-135) 

 
◆ Background 
 
 (1) The background has gravity,  
      field strength, dilaton. 
     ⇒ Einstein-Maxwell-dilaton theory 
 
 (2) This is a part of SUGRA. 
       ex) M-brane, D-brane 

● The characteristics of M-brane : 
 
・ Classical solution of 11-dim SUGRA 
 
・ Static limit of M-brane : Black brane  
 
・ M-brane on time-dependent background 
  ⇒ Black hole in expanding universe 
 
(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051) 
(Maeda & Nozawa, Phys.Rev. D81 (2010) 044017) 
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❏ Our results: 
 
❀ The cosmic censorship is violated in    
     dynamical M-brane background.  
 
☞ This is similar to the result which has been  
     obtained in Einstein-Maxwell-dilaton  
     theory (with cosmological constant). 
 
       (Horne & Horowitz, Phys.Rev. D48 (1993) 5457-5462) 

[3] Cosmic censorship in dynamical M5-brane 

☆ Logic :  
 
・ We can set a regular and smooth initial  
  data for the M5-brane.  
 
・These initial data in the far past evolve  
  into the curvature singularity. 
 
・ The cosmic censorship is violated.  
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◆ Dynamical M5-brane background 
      (Binetruy & Sasaki & Uzawa, Phys.Rev. D80 (2009) 026001) 
       (Maeda & Ohta & Uzawa,  JHEP 0906 (2009) 051) 

    

(1+5)-dim spacetime 

5-dim space 

M5 

✿ M5-brane  
       (Duff & Stelle, Phys.Lett. B253 (1991) 113-118) 

       (Güven, Phys.Lett. B276 (1992) 49-55) 

 

✏ matter (bosonic) :  

      gravity, 4-form field strength 

x 

                                                                                                                    937



❃ The behavior of background 
 
(i) Asymptotic region (r → ∞)： Kasner 
 
  ⇒ Time dependent vacuum spacetime 
 
(ii) Near horizon limit : 
      t → t/ε,   r → εr,    ε → 0 
 
  ⇒ AdS7 × S4   

I  + 

I  - 

i0 

i+ 

i- 

a=0 : 
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✒ Geodesic equation :  

✠ We can set a regular and smooth initial  
     data for the M5-brane.  
 
✪ The asymptotic behavior of the null curves 
    depends crucially on whether r is inside or     
    outside the Cauchy horizon.  

(a) Radial null geodesic for M5-brane : 
 
The regular initial data outside the  
Cauchy horizon evolves into a  
naked singularity at h=0. 

r/50 

affine parameter 
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(b) Radial null geodesic for M5-brane : 
 
The null geodesic inside the Cauchy 
horizon never hits the timelike 
singularity.  

affine parameter 

r/10 

I  - 

i+ 

i- 
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[4] Summary and comments 
 
(1) There is a singularity due to the time depen- 
     dence in Einstein-Maxwell-dilaton theory. 
 
(2) For dynamical M5-brane, we can set smooth  
     initial data evolving into a timelike curvature  
     singularity. 
 
(3) For dynamical p-brane, the cosmic censorship 
     is not violated by the non-trivial dilaton. 
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“Modified gravity inside astrophysical bodies”

by Ryo Saito

[JGRG25(2015)6b1]
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Modified'Gravity''
inside'Astrophysical'Bodies�

JGRG25,'Kyoto,''10th'December'2015'�

Ryo'SAITO'(APC,'Paris)�

With'Daisuke'YAMUCHI,'Shuntaro'MIZUNO,'Jerome'GLEYZS,'David'LANGLOIS�

JCAP'1506'(2015)'008�

Infrared'modificaRon'of'gravity�

T  The'expansion'of'the'universe'is'accelerated'today,''
'''BUT'our'best'theory'(GR'[EH'term]'+'	M)'fails'to'explain'it.'
'
T  Gravity'should'be'a'major'player,''
'''BUT'its'nature'is'li]le'known'on'cosmological'scales;'

Ques=ons:�
''''Is'it'possible'to'modify'GR'on'cosmological'(IR)'scales'without''
spoiling'its'success'in'the'solarHsystem'observa=ons?'
'
If'possible,''
'
''''is'it'possible'to'test'the'modified'gravity'theories?�

Gravity(might(not(be(described(by(GR.�
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Vainshtein'mechanism�

The'first'quesRon'is'nonTtrivial.�

a'light'scalar'dof'universally'coupled'to'maLer''

It'mediates'a'new'longHrange'force'(fiMh'force)(at'short'scales.'�

Modified'gravity'models'typically'have'�

	creening'mechanisms�

Vainshtein'mechanism�

'Strong'coupling'for'(nonlinear)'derivaRve'interacRons.'�

!'A'fibh'force'sourced'by'an'object'is'suppressed.'�

[GalileonTtype'scalarTtensor'theories,'massive'gravity,…]�

Par6al(breaking'of'Vainshtein'mechanism�

the'Vainshtein'mechanism'can'be'par6ally'broken:'

T.'Kobayashi,'Y.'Watanabe'and'D.'Yamauchi'(2015)�

('GLPV'theory'['Gleyzes+'2014']')�

�ravity'is'modified'inside'a'source'but'not'outside.�

ε':'modelTdependent'(dimensionless)'parameter'

In'a'very'general'class'of'scalarTtensor'theories�

M':'enclosed'mass'

d�̃

dr
= GN

�
M

r2
� �M ��

�
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Impact'on'the'�tellar'structure�

'RS,'D.'Yamauchi,'S.'Mizuno,'J.'Gleyzes'and'D.'Langlois,'JCAP'1506'(2015)'008'�

Model'for'stellar'interiors�

Basic'equa=ons�
Force'balance�

StaRc,'spherically'symmetric,'polytropic'model�

Poisson'equaRon�

EquaRon'of'state�

P = K�1+ 1
n (n=1:'neutron'star,'n=3:'sun)�

d�̃

dr
= GN

�
M

r2
� �M ��

�

dP

dr
= ��

d�̃

dr Only'the'gravitaRonal'law'is'modified!�

�RealisRc'stars'[Koyama'&'Sakstein'2015]��
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Modified'�aneTEmden'equaRon�

Closed'equaRon'for'the'density'�

1

�2

d

d�

�
�2 d

d�

�
� � ��2�n

��
= ��n

The'variables'�ere'made'dimensionless'through�

� � r

�
4�GN

(n + 1)K�
�1+ 1

n
c

, � = �c�
n

It'reduces'to'the'standard'LaneTEmden'equaRon'when'�� � 0

SoluRons'�

n=3�
Ε = -0.5 (orange), -0.3, -0.1, 0, 0.1,

0.15 (blue), 0.3, 0.5, 1 (red)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ

Χ
!Ξ
"

Numerical'soluRons'of'the'modified'LE'equaRon:�

�

�
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SoluRons'�

n=3�
Ε = -0.5 (orange), -0.3, -0.1, 0, 0.1,

0.15 (blue), 0.3, 0.5, 1 (red)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ

Χ
!Ξ
"�

�

Impact'of'the'modificaRon'is'not'so'�imple.�

Steeper�
fla]er�

!Stronger'gravity�
!Weaker'gravity�

(� < 0) (� < 0)

Numerical'soluRons'of'the'modified'LE'equaRon:�

�ass�Radius'relaRon'�

MassTRadius'relaRon'is'modified'as:�

M = f(�)R
n�3
n�1

!0.4 !0.3 !0.2 !0.1 0.0 0.10

1

2

3

4

5

6

7

Ε

f
(�

)/
f
(0

)

n = 3

n = 2

n = 1.5

�

Monotonically'decrease�
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Radius'�

Monotonically'decrease�

More'sensiRve'to'ε'for'sober'equaRon'of'state.�

!0.3 !0.2 !0.1 0.0 0.12

4

6

8

10

12

14

Ε

Ξ 1

n = 3

n = 2

n = 1.5

!0.3 !0.2 !0.1 0.0 0.1

2.0

2.5

3.0

Ε

M
!"4Πr c3

Ρ c
#

Mass'�

No'general'behavior'
('It'depends'on'“n”')�

More'sensiRve'to'ε'for'sober'equaRon'of'state.�

n = 3

n = 2

n = 1.5
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SoluRons'�

n=3�
Ε = -0.5 (orange), -0.3, -0.1, 0, 0.1,

0.15 (blue), 0.3, 0.5, 1 (red)

0 1 2 3 4 5 6
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ξ

Χ
!Ξ
"�

�

The'�ensity'blows'up'for'�arge'posiRve'values'of'epsilon.�

Numerical'soluRons'of'the'modified'LE'equaRon:�

Near'the'center,�

� = �c +
1

2
�2

� r

R

�2
+ · · ·

Universal'bound'on'the'modificaRon'�

M =
4��cr3

3
+ O(r5)

Gravity'becomes'repulsive'for'''''''''''''''''.�

d�̃

dr
= GN

�
M

r2
� �M ��

�

� (1 � 6�)GN
M

r2

� >
1

6

The'pressure'has'to'increase� The'density'has'to'increase�
('This'is'also'true'for'larger'radii.)'�

Very'general'bound� � <
1

6
(for'any'physically'reasonable'EoS)�
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�onstraints'from'Red'Dwarf'stars�

J.'Sakstein'[arXiv:1510.05964]�

Minimum'mass'for'hydrogen'burning'<'Observed'minimum'RD'mass'�

Lower'limit'on'ε�

� > �0.0068

Combining'with'our'limit,'ε'should'be'in'the'range:�

�0.0068 < � < 1/6

ImplicaRon'of'the'bound�

What'is'“ε”?�

GLPV'theories'='Horndeski'theories'+'disformal'coupling�

“ε”'represents'the'amplitude'of'the'derivaRve'(XTdependent)'coupling:�

More'generally,'any'derivaRve'coupling'can'break'the'Vainshtein'mechanism.''�

Constraints'on'“ε”'→'Constraints'on'deriva=ve'couplings�

[RS,'D.'Langlois,'D.'Yamauchi,'in'preparaRon]�

L � �(�, X)�µ���� Tµ� ; X � (��)2

� �
�

��

�X

�2
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	ummary'�

T  ParRal'breaking'of'the'Vainshtein'screening'mechanism;'

''''''''A'deviaRon'from'GR'inside'a'source'but'not'outside.'
'
'
'

T  The'stellar'structure'significantly'changes'by'the'modificaRon''
of'gravity'without'any'conflict'with'solarTsystem'constraints.'

T  A'universal'bound'on'the'amplitude'of'the'modificaRon'can'be'
obtained,'independently'of'the'details'of'the'equaRon'of'state.'
'
T''''DerivaRve'couplings'to'ma]er'are'Rghtly'constrained.''

Cosmology,can,be,probed,by,seeing,astrophysical,objects.�
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“Slowly-rotating black hole solutions in Horndeski gravity”

by Masato Minamitsuji

[JGRG25(2015)6b2]
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Slowly-rotating black hole 
solutions in Horndeski gravity

Masato Minamitsuji
(CENTRA, IST, U-Lisboa)

1

A. Maselli, H. O. Silva,  M.M. and E. Berti
Physical Review D 92, 104049 (2015) [arXiv: 1508.03044]

Introduction

2

• GR has passed all the experimental tests in the weak-field/slow-motion 
regimes with flying colors.

• Observational/ theoretical issues with GR, such as the origins of 
Inflaton(s)/ DM/ DE, have motivated us to investigate modified theories 
of gravitation (MGs) in UV and IR regimes.

• Horndeski gravity, known as the most general single scalar-tensor 
gravity with 2nd order EOMs, includes most of familiar MG models, and 
so far has been analyzed mainly in the context of cosmology.
⟹ Slowly-rotating BH solutions in Horndeski gravity. 

⟹ Search of unambiguous signatures of MGs in the strong gravity regimes, 
in/around BHs and NSs, is a major goal of recent studies, in perspective of 
forthcoming electromagnetic and GW probes. Berti. et. al, 1501.07274
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Horndeski Gravity

3

Most general single field scalar-tensor gravity with 2nd order EOMs

𝑆 = 
𝑖=2

5

 𝑑4𝑥 −𝑔ℒ𝑖

ℒ2 = 𝐺2

ℒ3 = −𝐺3 □𝜙

ℒ4 = 𝐺4 𝑅 + 𝐺4𝑋 □𝜙 2 − 𝜙𝜇𝜈2

𝑋 = −
1
2𝑔
𝜇𝜈𝜙𝜇𝜙𝜈𝐺𝑖 = 𝐺𝑖 𝜙, 𝑋

Horndeki (74)
Deffayet, Deser & Esposito-Farese (09)
Kobayashi, Yokoyama and Yamaguchi (11)

ℒ5 = −𝐺5 𝐺𝜇𝜈𝜙𝜇𝜈 −
𝐺5𝑋
6 □𝜙 3 + 2𝜙𝜇𝜈3 − 3𝜙𝜇𝜈2 □𝜙

4

𝑆 = 
𝑖=2

5

 𝑑4𝑥 −𝑔ℒ𝑖

ℒ2 = 𝐺2

ℒ3 = −𝐺3 □𝜙

ℒ4 = 𝐺4 𝑅 + 𝐺4𝑋 □𝜙 2 − 𝜙𝜇𝜈2

ℒ5 = −𝐺5 𝐺𝜇𝜈𝜙𝜇𝜈 −
𝐺5𝑋
6 □𝜙 3 + 2𝜙𝜇𝜈3 − 3𝜙𝜇𝜈2 □𝜙

𝑋 = −
1
2𝑔
𝜇𝜈𝜙𝜇𝜙𝜈

⟹Quintessence 𝑋 − 𝑉 𝜙 , K-essence 

𝐺𝑖 = 𝐺𝑖 𝜙, 𝑋

⟹ DGP 𝐺3 = 𝛼 𝑋

⟹ Nonminimal coupling 𝑓 𝜙 𝑅 / 𝑓 𝑅
GR  𝐺4 =

1
2

contains most of the simple and familiar MG/DE models
Horndeski Gravity
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Shift-symmetric Horndeski Gravity

5

𝑆 = 
𝑖=2

5

 𝑑4𝑥 −𝑔ℒ𝑖

ℒ2 = 𝐺2

ℒ3 = −𝐺3 □𝜙

ℒ4 = 𝐺4 𝑅 + 𝐺4𝑋 □𝜙 2 − 𝜙𝜇𝜈2

𝑋 = −
1
2𝑔
𝜇𝜈𝜙𝜇𝜙𝜈𝐺𝑖 = 𝐺𝑖 𝑋

ℒ5 = −𝐺5 𝐺𝜇𝜈𝜙𝜇𝜈 −
𝐺5𝑋
6 □𝜙 3 + 2𝜙𝜇𝜈3 − 3𝜙𝜇𝜈2 □𝜙

subclass of Horndeski gravity invariant under 𝜙 → 𝜙 + 𝑐

6

- Nonminimal derivative coupling gravity

⟹

- Einstein-dilaton Gauss-Bonnet (EdGB) gravity

This theory is shift-symmetric only for the linear coupling  𝜉 𝜙 = 𝛼𝜙

ℒ = 𝜁𝑅 + 2𝜂𝑋 + 𝛽𝐺𝜇𝜈𝜙𝜇𝜙𝜈 − 2Λ0 𝐺2 = −2Λ0 + 2𝜂𝑋
𝐺4 = 𝜁 + 𝛽𝑋
𝐺3 = 𝐺5 = 0

⟹ℒ =
1
2𝑅 + 𝑋 + 𝜉 𝜙 𝑅𝐺𝐵2 𝐺2 = 𝑋 + 8𝜉 4 𝑋2 3 − ln𝑋

𝐺3 = 4𝜉 3 𝑋 7 − ln𝑋

𝐺4 =
1
2 + 4𝜉 2 𝑋 2 − ln𝑋

𝐺5 = −4𝜉 1 ln 𝑋𝜉 𝑛 =
𝜕𝑛𝜉
𝜕𝜙𝑛

𝑅𝐺𝐵2 = 𝑅𝛼𝛽𝜇𝜈2 − 4𝑅𝜇𝜈2 + 𝑅2

Several models in shift-symmetric Horndeski gravity 
Saridakis and Sushkov (10)
Gubitosi and Linder (11)

Kanti, et.al (96)
Pani and Cardoso (09)…

Sotiriou and Zhou (14)
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Black Holes in Scalar-Tensor Gravity

7

• Kerr solution is the unique endpoint of gravitational collapse in GR.
• GR BH solution is also the unique endpoint in 

• In the shift-symmetric Horndeski gravity, BHs cannot have nontrivial 
scalar hair, except for the EdGB gravity with the linear coupling.

Hui and Nicolis (11), Sotiriou and Zhou (14) 

- BD gravity Hawking (72)

- ST gravity with potential, including 𝑓 𝑅 Sotiriou and Faraoni (11)

Graham and Jha (14)- k- essence models

• EdGB gravity of 𝜉 𝜙 = 𝑒𝜙 admits BHs with a nontrivial scalar hair
- Static spherically symmetric BHs 
- Rotating BHs

Kanti, et. al (96)

Pani and Cardoso (09) Kleihaus, Kunz and Radu (11)
Ayzenberg and Yunes (15), Maselli, et.al (15)

8

1) Assumptions:

𝑑𝑠2 = −𝐴 𝑟 𝑑𝑡2 +
𝑑𝑟2

𝐵 𝑟 + 𝑟2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2

No-Hair Theorem in Shift-symmetric Horndeski Gravity 

2)  𝐽2 = 𝐽𝜇𝐽𝜇 =
𝐽𝑟 2

𝐵 < ∞ at 𝑟 ⟶ 𝑟ℎ ⟹ 𝐽𝑟 → 0 at 𝑟 → 𝑟ℎ as 𝐵 → 0. 

Hui and Nicolis (11)

a) Static and spherically symmetric spacetime 

d) Scalar field shares the same symmetry with the metric  𝜙 = 𝜓 𝑟
c) Shift symmetry ⟹ Noether current 𝐽𝜇; Scalar EOM ⇒ 𝛻𝜇𝐽𝜇 = 0
b) Asymptotic  flatness⟹ 𝐴 → 1 and 𝐵 ⟶ 1 as 𝑟 → ∞

3) 𝜕𝑟 𝑟2𝐽𝑟 = 0 ⟹ 𝐽𝑟𝑟2 = 𝑐𝑜𝑛𝑠𝑡 ⟹ 𝐽𝑟 = 0 ∀𝑟
2)

⟹ 𝐽𝜇 = 𝐽𝑟, 0,0,0
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4)  𝐽𝑟 can be schematically written as 

- Asymptotic flatness implies that 𝐵 → 1 and 𝜓′ → 0 as 𝑟 → ∞

- Moving “inward” from infinity toward the horizon, 𝐵 and 𝐹
will vary continuously and still be nonzero.  

𝐽𝑟 = 𝐵𝜓′𝐹 𝑔, 𝑔′, 𝑔′′, 𝜓′

- In the weak-field regime, the scalar kinetic term should be dominated 
by the quadratic one, 𝐽𝜇 ⟶ 𝜕𝜇𝜙 ⟹ 𝐹 → 𝑐𝑜𝑛𝑠𝑡 ≠ 0 as 𝑟 → ∞

𝐽𝑟 = 0 ∀𝑟 ⟹𝜓′ = 0 ∀𝑟 ⟹𝜓 = 0 ∀𝑟
c) Shift symmetry

unspecified function

10

Hairy BH Solutions 

d) ⇏ Scalar field doesn’t share the same symmetry with the metric

• Relaxing Assumptions (a)-(d)
e.g.) Relaxing (b) and (d) in the case of  nonminimal derivative coupling  

e.g.) In the EdGB gravity,  Step 4) is not the case Sotiriou and Zhou (14)

• Finding loopholes in Steps 1)-4)
b)  ⇏ Asymptotically-locally AdS BHs

Babichev and Charmousis (14),
Kobayashi and Tanahashi (14)

Rinaldi (12),  Minamitsuji (14)

𝐽𝑟 = −𝐵𝜓′ − 𝛼 𝐴′𝐵 𝐵−1
𝐴𝑟2 = 0 ⟹𝜓′ ≠ 0

EOMs⇒ 𝐹 = 0 ⟹ 𝜓′ ≠ 0
𝜙 = 𝜓 𝑟 + 𝑞𝑡 ⇒ 𝐽𝑟 = 𝐵𝜓′𝐹 𝑔, 𝑔′, 𝑔′′, 𝜓′

necessary to ensure the regularity of the scalar field at horizon.
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No-Hair Theorem with Linear-in-time and Slow-Rotation

At the linear order in rotation,
- 𝐴 𝑟 , 𝐵 𝑟 , 𝜓 𝑟 remain the same as in the static case
- ℰ𝑡𝜑 = 0 ⇒ 2nd order differential equation for 𝜔 𝑟

𝑑𝑠2 = −𝐴 𝑟 𝑑𝑡2 +
𝑑𝑟2

𝐵 𝑟 + 𝑟2 𝑑𝜃2 + 𝑠𝑖𝑛2𝜃𝑑𝜙2 − 2𝜔 𝑟 𝑑𝑡𝑑𝜑

1) Assumptions:
a) With the leading-order correction in the BH angular velocity           

Hartle and Thorne (68)

b) Asymptotic flatness ⇒ 𝐴 ⟶ 1 and 𝐵 ⟶ 1 as 𝑟 → ∞

c) Linear-in time  𝜙 = 𝜓 𝑟 +𝑞𝑡 ⟹ 𝐽𝜇 = 𝐽𝑟, 0,0, 𝐽𝑡

𝐽𝑡 = − 𝑞
𝐴 𝐺2𝑋 + ⋯ does not depend on time. 

12

2) 𝐽2 =  𝐽𝑟 2 𝐵 𝑟 − 𝐴 𝑟 𝐽𝑡 2 < ∞

3) 𝜕𝜇 −𝑔𝐽𝜇 = 0 ⟹ 𝜕𝑟 𝑟2𝐽𝑟 = 0 ⇒ 𝐽𝑟 = 0 ∀𝑟

⇒ 𝐽𝑟 → 0 as 𝑟 → 𝑟ℎ,  as long as 𝐽𝑡 = finite ⟸  𝐵 𝐴 ′ = finite.

2) 
4) 𝐽𝑟 = 𝐵𝜓′𝐹 𝑔, 𝑔′, 𝑔′′, 𝜓′ = 0

- Asymptotic flatness 𝐵 → 1 and 𝜓′ → 0 as 𝑟 → ∞

- Moving “inward”, 𝐹 and 𝐵 will still be nonzero 
𝐽𝑟 = 0 ∀𝑟 ⟹ 𝜓′ = 0 ∀𝑟 ⟹ 𝜓 = 0 ∀𝑟

- In the weak field limit, 𝐹 → 𝑐𝑜𝑛𝑠𝑡 ≠ 0 as 𝑟 → ∞

⟹ BHs cannot have nontrivial scalar hair
at the leading order in rotation.

𝐽𝑡 = 𝐽𝑡 𝑟
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Nonminimal Derivative Coupling Gravity 
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Case 1) 𝑋 = 𝑋0 = 𝑐𝑜𝑛𝑠𝑡 ⟹ Self-tuned BHs with Λeff = −  𝜂 𝛽 ≠ Λ0
Babichev and Charmousis (14)

Case 2) 𝑞 = 0 ⇒ Asymptotically locally AdS BHs
Rinaldi (12), Minamitsuji (14)

ℒ = 𝜁𝑅 + 2𝜂𝑋 + 𝛽𝐺𝜇𝜈𝜙𝜇𝜙𝜈 − 2Λ0

𝐴 𝑟 = 𝐵 𝑟 = 1 −
𝜇
𝑟 −

Λeff
3 𝑟2 𝜓′ 𝑟 =

1
𝐴 𝑟

𝜁𝜂 + 𝛽Λ0
𝛽𝜂 1 − 𝐴 𝑟

𝜓′ 𝑟 = −
𝜁𝜂 + 𝛽Λ0 𝑟3 𝜁𝜂 − 𝛽Λ0 + 2𝛽𝜁𝑟 2

4𝛽𝜁2 𝛽 + 𝜂𝑟2 3𝐴 𝑟

𝐴 𝑟 =
1

12𝛽𝜁2𝜂2𝑟 𝑟 𝜁𝜂 − 𝛽Λ0 𝜁𝜂 9𝛽2 + 𝜂𝑟2 + 𝛽Λ0 3𝛽2 − 𝜂𝑟2 − 24𝛽𝜁2𝜂2𝜇 +
𝛽 𝜁𝜂 + 𝛽Λ0 2 tan−1 𝜂𝑟

𝛽
4𝜁2𝜂  5 2𝑟

𝐵 𝑟 =
4𝜁2 𝛽 + 𝜂𝑟2 2

2𝛽𝜁 − 𝛽Λ0𝑟2 + 𝜁𝜂𝑟2 2 𝐴 𝑟

𝑞2 = 2𝑋0

14

⟹ The leading-order rotational corrections are    
identical to the case of GR.

For both Cases 1) and 2) 

• Frame-dragging equation ℰ𝑡𝜑 = 0

Hartle and Thorne (68)

ℊ 𝑋 = 2 𝜁 − 𝛽𝑋

⟹ ℊ𝜔′′ + ℊ𝑋𝑋′ +
1
2

8
𝑟 −

𝐴′

𝐴 +
𝐴′

𝐴 ℊ 𝜔′ = 0

⇒ 𝜔′′ +
4
𝑟 𝜔′ = 0 ⟹ 𝜔 = 𝑐1 +

𝑐2
𝑟3

See also Ogawa, Kobayashi and Suyama (15)
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Summary 
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• For nonminimal derivative coupling gravity, the frame-dragging function is 
exactly identical to the case of GR for all known BH solutions. 

• We have studied leading-order rotational corrections to BH 
solutions in shift-symmetric Horndeski gravity.

Issues

• The no-hair theorem for shift-symmetric Horndeski gravity can be 
extended to BHs at the leading-order in rotation.

• No-hair argument should not be hold at the second order in rotation. 

• Slowly-rotating NS solutions Cisterna, Delsate and Rinaldi (15)

Thank you.

16
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“V M in time-domains, graviton Higgs mechanism”

by Ivan Arraut

[JGRG25(2015)6b3]
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V"M"in"&me)domains,"
graviton"Higgs"
mechanism."


Ivan%Arraut.%
Tokyo%University%of%Science%(TUS).%

Based%on%the%sequence%of%papers:%%
3).PTEP 2014 (2014) 023E02, with Hideo Kodama. %

4).Europhys.Lett. 109 (2015) 0002 %
 6). Phys.Rev. D90 (2014) 124082%

8). Int.J.Mod.Phys. D24 (2015) 03, 1550022%

7). arXiv:1503.02150 [gr-qc]%
5). arXiv:1504.00467 [gr-qc]%

1).$Europhys.Le/.$111$(2015)$61001.%  arXiv:1509.08338 [gr-qc] %
2). arXiv:1505.06215 [gr-qc] %

Content.


•  1).%Mo@va@on:%Dynamical%origin%of%the%graviton%
mass.%
•  2).%What%is%the%Vainshtein%mechanism?%
•  3).%What%is%the%connec@on%between%Vainshtein%
mechanism%and%the%NambuMGoldstone%theorem?%
•  4).%What%is%the%connec@on%between%Vainshtein%
mechanism%and%the%Higgs%mechanism?%
•  5).%Symmetries%of%the%ac@on.%%
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Mo&va&on."Infla&on


Mo&va&on

•  Actual%composi@on%of%the%universe%in%agreement%with%the%
standard%model%of%Cosmology.%%
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Mo&va&on.


•  The%scales%involved%in%the%problems%of%Dark%MaTer%
and%Dark%energy.%

2GM%

Geometric%average%scale%
Hubble%scale%

Int.J.Mod.Phys. D23 (2014) 1450008, Int.J.Mod.Phys.$D24$(2015)$03,$1550022.%

The%easiest%way%for%explaining%the%acceleraded%expansion%of%the%
Universe,%is%introducing%a%cosmological%constant%

But%%then%what’s%the%problem%with%introducing%the%cosmological%
constant?%We%should%be%happy%with%that.%What’s%going%on?%

The%calcula@ons%from%zero%point%quantum%fluctua@ons%provide%a%
huge%value%in%comparison%with%observa@ons.%Then%we%need%a%
magical%mechanism%for%explaining%why%CC%is%so%small.%

Dark$Energy$

The%theory%is%invariant%under%the%transforma@on%
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dRGT"non)linear"massive"gravity.


It%is%a%ghostMfree%theory.%The%field%equa@ons%are:%

Corresponding%to%the%Bianchi%
iden@ty%in%unitary%gauge.%

dRGT$Massive$gravity.$DeHRhamHGabadadzeHTolley,$2011%%

The"Vainshtein"mechanism"in"dRGT

•  Every%theory%trying%to%reproduce%the%accelerated%
expansion%of%the%universe%reproduces%at%least%three%
scales%when%the%local%physics%is%analyzed:%

Einstein%gravity%
recovered%

Region%of%relevance%for%
the%extra%degrees%of%
freedom.%

Source%

Check%for%example:%

S.$L.$Bazanski$and$V.$Ferrari,$AnalyRc$Extension$of$the$
SchwarzschildHde$Si/er$Metric,$Il$
Nuovo$Cimento$Vol.$91$B,$N.$1,$11$Gennaio$(1986).$
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Analogy"with"GR


GR%case.%

2GM%
Cosmological%
Horizon.%

2GM%

Graviton%mass%
scale.%Vainshtein%scale.%

Equilibrium%
force%scale.%

Europhys.Le/.$109$(2015)$0002,%
arXiv:1407.7796$[grHqc],$arXiv:1503.02150$[grH
qc].%

The%new%mechanism%operates%through%the%nonMlineari@es%of%the%
theory.%The%usual%explana@on%goes%to%the%decouping%limit%of%the%
theory%a]er%finding%the%field%equa@ons.%
!
Deffayet!et!al.;#Kurt!Hinterbichler:!2012.!
%

These%set%of%condi@ons,%when%applied%to%
the%dynamical%metric,%help%us%to%evaluate%
the%Vainshtein%radius.%

The$mechanism$in$terms$of$Stuckelberg$funcRons$appears$
as$a$extremal$condiRon$of$the$dynamical$metric.$

arXiv:1407.7796$[grHqc],$Int.J.Mod.Phys.$D24$(2015)$03,$
1550022%%
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The"extra)degrees"of"freedom"reproduce"the"
effect"of"a"preferred"&me)direc&on.


Vainshtein%scale%

NonMpreferred%no@on%of%@me.%
Diffeomorphism%invariance%restored%at%this%
level.%%

No@on%of%preferred%@meMdirec@on.%
Diffeomorphism%invariance%explicitly%broken.%
Restored%a]er%introducing%redundant%variables.%%

The"extra)degrees"of"freedom"reproduce"the"
effect"of"a"preferred"&me)direc&on.


 arXiv:1503.02150 [gr-qc] % Europhys.Lett. 109 (2015) 0002 %

The%no@on%of%a%preferred%@meMdirec@on,%affects%the%defini@on%of%
par@cles%in%the%same%way%as%the%curvature%effects%can%reproduce%the%
same%effects,%responsible%of%the%Hawking%radia@on.%%

                                                                                                                    967



The"path"integral"formula&on


From%the%perspec@ve%of%the%path%integrals,%the%mismatch%between%the%periodici@es%of%the%
propagators%with%respect%to%the%ordinary%@meMcoordinate%and%the%same%propagator%defined%and%
analy@cally%extended%with%respect%to%the%St\”uckelberg%func@on,%create%the%effect%of%extraMpar@cle%
crea@on.%%%

Vainshtein%scale%

t% tMi4(\pi)%M%

From"the"perspec&ve"of"the"Bogolubov"
transforma&ons.

We%can%use%the%same%set%of%Bogolubov%transforma@ons,%in%order%to%demonstrate%that%the%extraM
degrees%of%freedom%of%the%theory%are%able%to%reproduce%an%extraMpar@cle%crea@on%process%due%
to%the%ambiguity%generated%in%the%defini@on%of%vacuum.%

The%no@on%of%vacuum%a]er%the%Vainshtein%scale%is%
different%to%the%no@on%of%vacuum%before%it.%
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The"vacuum"solu&on."Spherical"
symmetry


With%the%degrees%of%freedom%inside%the%
dynamical%metric,%the%object%created%
becomes%diffeomorphism%invariant.%%

With:%%

The%Stückelberg%fields%enter%here%in%the%following%
way:%

The"vacuum"degeneracy


The%generic%solu@on%can%be%wriTen%as%

Two%family%of%solu@ons%in%this%theory.%

1).%Two%freeMparameters%and%the%Stückelberg%func@on%
given%by%%

Hideo$Kodama$and$Ivan$Arraut$PTEP$2014$(2014)$023E02%%
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The%equivalence%principle%is%sa@sfied%for%this%
previous%case.%In%other%words,%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%for%
freeMfalling%observers.%For%the%second%family%of%
solu@ons,%we%cannot%assure%the%same.%

2).%One%freeMparameter%and%the%Stückelberg%func@on%
arbitrary.%In%this%case,%the%Stückelberg%func@on%being%
arbitrary,%operates%as%a%freeMparamater.%%%

This$second$case$is$the$interesRng$one.$$
The%Stückelberg%func@on%defines%the%prefereed%@me%direc@on.%%

The"procedure"for"analysis.


Perturba@on%theory.%In%a%“freeMfalling”%frame.%%

And%the%dynamical%metric%of%the%theory%becomes.%

Here%I%have%assumed%the%sta@onary%condi@on%for%the%
metric:%%%%%%%%%%%%%%%%%%%%%%%%.%This%assump@on%is%unnecessary%but%
simplifies%the%calcula@ons.%
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Perturba&on"theory"in"a"free)falling"frame.


Expanding%the%ac@on%up%to%second%order%in%perturba@ons.%The%relevant%
quan@ty%for%our%purposes%is%the%poten@al%term,%defined%as.%

A]er%expansion%up%to%second%order.%

Then%we%find%the%vacuum%solu@ons,%defined%in%
agreement%with.%%

                                                                                                                    971



The%effec@ve%matrix%mass%for%each%mode%is%defined%in%agreement%with%the%matrix%

In%agreement%with%the%second%deriva@ves%with%respect%to%the%field,%evaluated%at%the%vacuum%level.%The%
symmetries%of%the%ac@on%are%defined%in%agreement%with:%

In%terms%of%St\”uckelberg%func@ons.%Or%equivalently:%

This%quan@ty%is%the%parameter%defining%the%real%vacuum.%
The%solu@on%is%degenerate,%the%symmetry%under%@meMtransla@ons%is%broken,%

but%the%spherical%symmetry%s@ll%remains.%%
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In%a%freeMfalling%frame.%%
We%can%compare%the%situa@on%with%the%scalar%case.%%

Where%the%ac@on%is%invariant%under%

And%the%poten@al%
Has%a%minimum%
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The"Nambu)Goldstone"theorem


The%dimension%of%the%coset%defines%the%
number%of%broken%generators%%

Finally%the%physical%perturba@ons%in%our%case,%have%to%be%
done%with%respect%to%%%

And%the%ac@on%becomes%of%the%form.%

The%connec@ons%become%gauge%fields%due%to%their%
explicit%dependence%on%the%Stückelberg%func@on.%%

The%%Stückelberg%func@on%also%appears%in%the%explicit%
deefini@on%of%the%parameter%genera@ng%the%vacuum%

shi].%
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What"happens"if"we"include"gravity"now.


We%then%have%a%mul@plicity%of%Vainshtein%scales,%all%of%
them%connected%through%the%U(1)%symmetry%

transforma@on.%The%analysis%should%be%beTer%done%by%
defining%the%observer%located%at%this%scale.%The%same%

proceure%as%explained%before%applies.%%

Cartoon"picture


source%

Preferred%@me%
direc@on.%

No%preferred%
@meMdirec@on.%

freeMfalling%metric%
conformally%trivial.%

FreeMfalling%metric%not%
necessarily%conformally%
trivial.%

Equivalence%principle%sa@sfied% Equivalence%not%necessarily%sa@sfied%
in%the%standard%sense%(Hidden).%
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Conclusions

•  In%the%nonMlinear%formula@on%of%massive%gravity,%the%
Vainshtein%mechanism%in%@meMdomains%defines%the%
dynamical%origin%of%the%graviton%mass.%%
•  The%Stückelberg%func@on%defines%the%preferred%@meM
direc@on%of%the%theory.%Breaking%the%symmetry%for%
generators%depending%explicitly%on%@me.%The%spherical%
symmetry%remains.%
•  At%the%spa@al%domains,%the%Vainshtein%scale%defines%a%
phase%transi@on%scale.%%
•  The%previous%results%explain%why%apparently%the%
par@cle%crea@on%process%of%blackMholes%is%affected%by%
the%presence%of%the%extraMdegrees%of%freedom.%See%for%
example:%

Europhys.Le/.$109$(2015)$0002,%
arXiv:1407.7796$[grHqc],$arXiv:1503.02150$[grHqc].%
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“Higgs G-inflation and field-dependent cutoff scale”

by Kohei Kamada

[JGRG25(2015)6b5]
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Courtesy H.Oide

Higgs G-inflation and Field-dependent Cutoff Scale

Kohei Kamada 
(Arizona State University)

JGRG25, Kyoto, 12/10/2015 

based on: KK, T. Kobayashi, M.Yamaguchi & J. Yokoyama, PRD85 (2011) 043503

See also: KK, T. Kobayashi, T. Takahashi, M. Yamaguchi & J. Yokoyama, PRD86 (2012) 023504
KK, T. Kobayashi, T. Kunimitsu, M. Yamaguchi & J. Yokoyama, PRD86 (2013) 123518

KK, PLB744 (2015) 347

Courtesy H.Oide

Premise
Our Universe has experienced primordial inflation. 

Planck Collaboration: The Planck mission

Fig. 14. The SMICA CMB map (with 3 % of the sky replaced by a constrained Gaussian realization).

Fig. 15. Spatial distribution of the noise RMS on a color scale of 25 µK
for the SMICA CMB map. It has been estimated from the noise map
obtained by running SMICA through the half-ring maps and taking the
half-di�erence. The average noise RMS is 17 µK. SMICA does not
produce CMB values in the blanked pixels. They are replaced by a con-
strained Gaussian realization.

for bandpowers at ⌅ < 50, using the cleanest 87 % of the sky. We
supplement this ‘low-⌅’ temperature likelihood with the pixel-
based polarization likelihood at large-scales (⌅ < 23) from the
WMAP 9-year data release (Bennett et al. 2012). These need to
be corrected for the dust contamination, for which we use the
WMAP procedure. However, we have checked that switching
to a correction based on the 353 GHz Planck polarization data,
the parameters extracted from the likelihood are changed by less
than 1⇥.

At smaller scales, 50 < ⌅ < 2500, we compute the power
spectra of the multi-frequency Planck temperature maps, and
their associated covariance matrices, using the 100, 143, and

Fig. 16. Angular spectra for the SMICA CMB products, evaluated over
the confidence mask, and after removing the beam window function:
spectrum of the CMB map (dark blue), spectrum of the noise in that
map from the half-rings (magenta), their di�erence (grey) and a binned
version of it (red).

217 GHz channels, and cross-spectra between these channels11.
Given the limited frequency range used in this part of the analy-
sis, the Galaxy is more conservatively masked to avoid contam-
ination by Galactic dust, retaining 58 % of the sky at 100 GHz,
and 37 % at 143 and 217 GHz.

11 interband calibration uncertainties have been estimated by compar-
ing directly the cross spectra and found to be within 2.4 and 3.4⇥10�3

respectively for 100 and 217 GHz with respect to 143 GHz

25

(’13) Planck collaboration

since Planck and other CMB experiments strongly supports inflation
and we do not have at present any other good mechanism to solve 
the cosmological problems such as the horizon, flatness and 
monopole problems. 
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Courtesy H.Oide

Question
What drove inflation?

Courtesy H.Oide

Question
What drove inflation?

We usually assume that the potential energy of a scalar field drives inflation. 

⇥̈ + 3H⇥̇ + V � = 0,

3H2M2
pl =

1
2
⇥̇2 + �inf
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Courtesy H.Oide

Question
What drove inflation?

Now we finally know that 
the unique scalar field in the SM, Higgs, really exists. 

5.2 H ⇥ ZZ 11
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Figure 3: The diphoton invariant mass distribution with each event weighted by the S/(S+ B)
value of its category. The lines represent the fitted background and signal, and the coloured
bands represent the ±1 and ±2 standard deviation uncertainties in the background estimate.
The inset shows the central part of the unweighted invariant mass distribution.

The largest absolute signal yield as defined above is
taken as the systematic uncertainty on the background
model. It amounts to ±(0.2−4.6) and ±(0.3−6.8) events,
depending on the category for the 7 TeV and 8 TeV data
samples, respectively. In the final fit to the data (see
Section 5.7) a signal-like term is included in the likeli-
hood function for each category. This term incorporates
the estimated potential bias, thus providing a conserva-
tive estimate of the uncertainty due to the background
modelling.

5.6. Systematic uncertainties
Hereafter, in cases where two uncertainties are

quoted, they refer to the 7 TeV and 8 TeV data, respec-
tively. The dominant experimental uncertainty on the
signal yield (±8%, ±11%) comes from the photon re-
construction and identification efficiency, which is es-
timated with data using electrons from Z decays and
photons from Z → ℓ+ℓ−γ events. Pile-up modelling
also affects the expected yields and contributes to the
uncertainty (±4%). Further uncertainties on the sig-
nal yield are related to the trigger (±1%), photon isola-
tion (±0.4%, ±0.5%) and luminosity (±1.8%, ±3.6%).
Uncertainties due to the modelling of the underlying
event are ±6% for VBF and ±30% for other produc-
tion processes in the 2-jet category. Uncertainties on the
predicted cross sections and branching ratio are sum-
marised in Section 8.
The uncertainty on the expected fractions of signal

events in each category is described in the following.
The uncertainty on the knowledge of the material in
front of the calorimeter is used to derive the amount of
possible event migration between the converted and un-
converted categories (±4%). The uncertainty from pile-
up on the population of the converted and unconverted
categories is ±2%. The uncertainty from the jet energy
scale (JES) amounts to up to ±19% for the 2-jet cate-
gory, and up to ±4% for the other categories. Uncertain-
ties from the JVF modelling are ±12% (for the 8 TeV
data) for the 2-jet category, estimated from Z+2-jets
events by comparing data and MC. Different PDFs and
scale variations in the HqT calculations are used to de-
rive possible event migration among categories (±9%)
due to the modelling of the Higgs boson kinematics.
The total uncertainty on the mass resolution is ±14%.

The dominant contribution (±12%) comes from the un-
certainty on the energy resolution of the calorimeter,
which is determined from Z→ e+e− events. Smaller
contributions come from the imperfect knowledge of the
material in front of the calorimeter, which affects the ex-
trapolation of the calibration from electrons to photons
(±6%), and from pile-up (±4%).
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Figure 4: The distributions of the invariant mass of diphoton can-
didates after all selections for the combined 7 TeV and 8 TeV data
sample. The inclusive sample is shown in (a) and a weighted version
of the same sample in (c); the weights are explained in the text. The
result of a fit to the data of the sum of a signal component fixed to
mH = 126.5 GeV and a background component described by a fourth-
order Bernstein polynomial is superimposed. The residuals of the data
and weighted data with respect to the respective fitted background
component are displayed in (b) and (d).

5.7. Results

The distributions of the invariant mass, mγγ, of the
diphoton events, summed over all categories, are shown
in Fig. 4(a) and (b). The result of a fit including a signal
component fixed to mH = 126.5 GeV and a background
component described by a fourth-order Bernstein poly-
nomial is superimposed.
The statistical analysis of the data employs an un-

binned likelihood function constructed from those of
the ten categories of the 7 TeV and 8 TeV data samples.
To demonstrate the sensitivity of this likelihood analy-
sis, Fig. 4(c) and (d) also show the mass spectrum ob-
tained after weighting events with category-dependent
factors reflecting the signal-to-background ratios. The
weight wi for events in category i ∈ [1, 10] for the 7 TeV
and 8 TeV data samples is defined to be ln (1 + S i/Bi),

10

ATLAS, 1207.7214
CMS, 1207.7235

Courtesy H.Oide

Question
What drove inflation?

Now we finally know that 
the unique scalar field in the SM, Higgs, really exists. 

Why don’t we use the Higgs as inflaton?
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Courtesy H.Oide

The simplest, most elegant model of Higgs inflation 
would be            Higgs inflation. 

Potential in Einstein frame

0

λM4/ξ2/16

λM4/ξ2/4

U(χ)

0 χend χCOBE χ

0
λ v4/4

0 v

Re
he

at
in

g Standard Model

DESY-Hamburg, September 27, 2011 – p. 7

(’08 Bezrukov & Shaposhnikov;  
See also ’84, Spokoiny; ’89 Futamase & Maeda; ’95 Cota; ’98 Komatsu & Futamase)

R|H|2

Courtesy H.Oide

(’08 Bezrukov & Shaposhnikov;   
See also ’84, Spokoiny; ’89 Futamase & Maeda; ’95 Cota; ’98 Komatsu & Futamase)

✓Apparently renormalizable. 
✓Self-consistent. 
✓Stable under quantum corrections.
✓possible even in the case where 
   Higgs potential once gets negative. 

h̃

R � (�h̃)2/M2
pl

(     : canonically normalized graviton)

Nonminimal coupling is not really renormalizable...

The simplest, most elegant model of Higgs inflation 
would be            Higgs inflation. R|H|2
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If we allow non-renormalizable terms for Higgs inflation,
there can be several variants, stimulated by Galileons.  

L2 =K(�, X),
L3 =�G3(�, X)��,

L4 =G4(�, X)R + G4X

�
(��)2 � (�µ���)2

�
,

L5 =G5(�, X)Gµ��µ���� 1
6
G5X

�
(��)3

� 3 (��) (�µ���)2 + 2 (�µ���)3
�
. X � �1

2
(��)2, GiX �

�Gi

�X

S =
�

d4x
�
�g

5�

i=2

Li

(’09, ’10, ’11, Deffayet+ )

Noncanonical derivative coupling changes the friction term in the equation of 
motion and the coupling to gravity changes the potential shape in the Einstein 
frame.  (’10, Germani & Kehagias, ’10, Nakayama & Takahashi, ‘11, Kamada+)

Courtesy H.Oide

Now we can construct a Higgs inflation model 
in the spirit of Generalized Galileons. => See KK+(’12) 

A simple, but non-trivial model is the one uses        term,  L3

�S = �
�

d4x
�
�g

�
H†

M4
DµDµH + h.c.

�
|DµH|2

(’11 KK+) 

which we name it Higgs G-inflation after Galileon. 

� �
�

d4x
�
�g

���

2M4
(��)2 H =

1�
2

�
0
�

�
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Features and consequences of Higgs G-inflation
Additional derivative coupling generates additional friction 

term in the EOM, and we have 
“potential driven additional friction term assisted inflation”. 

3H2M2
pl =

�

4
�4

�
1� 3H�̇�

M4

�
� 3H�̇ + ��3 = 0

modified slow-roll equations

As a result, sub-Planckian chaotic inflation is possible. 

Mpl

Courtesy H.Oide

For the self-consistency, one should check the interaction of 
fluctuations around the inflationary trajectory.

Note that the kinetic term of these fluctuations are not canonical 
and one must canonically normalize them.

Skin[�] =
�

d4xa3(t)

�

�1
2

�

�1 +
2 ˙̄�

2
� 6H�̄ ˙̄�
M4

�

� �̇2 � 1
2

�
1� 2�̄( ¨̄� + 2H ˙̄�)

M4

�
�ij

a2(t)
�i��j�

�

�

H�̄ ˙̄��M4For                , the kinetic structure of        is much 
different from the original one.          

�(x)=>
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For the self-consistency, one should check the interaction of 
fluctuations around the inflationary trajectory.

Note that the kinetic term of these fluctuations are not canonical 
and one must canonically normalize them.

�
dtd3x̃

1
G(t)3/4F (t)3/4

˙̄�
M4

�̃ ˙̃���̃ +
1

G(t)3/4F (t)3/4

¨̄� + 3H ˙̄�
2M4

�̃(Dµ�̃)2

� 1
G(t)3/4F (t)3/4

�̄

2M4
��̃(Dµ�̃)2 � 1

G(t)1/2F (t)3/2

1
2M4

���(Dµ�)2.

For the canonically normalized fluctuations     ,
the interaction terms reads,

�

G(t) � 1 +
2 ˙̄�

2
� 6H�̄ ˙̄�
M4

, F (t) � 1� 2�̄( ¨̄� + 2H ˙̄�)
M4with

Courtesy H.Oide

The system becomes strongly coupled at the scale, 

Esc � min.

�
�

�
G(t)3/8F (t)3/8M2

˙̄�
1/2

,
2G(t)3/4F (t)3/4M4

¨̄� + 3H ˙̄�
,
21/3G(t)1/4F (t)1/4M4/3

�̄1/3
, 21/4G(t)1/8F (t)3/8M

�
�

� .

For inflationary BG, we have

Esc(�̄) =
21/3G(t)1/4F (t)1/4M4/3

�̄1/3
� �1/4�̄2/3M1/3

This is found to be larger than the Hubble scale during inflation:

H � �1/2�̄2

2
�

3Mpl
�̄ � ��1/8

�
MMplwhen the COBE scale exited the horizon, 

Thus, this model is self-consistent for sufficiently small     . M
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Features and consequences of Higgs G-inflation
We can examine the cosmological perturbation in this setup, 
and find that effectively the potential is flattened, 

As =
(2N + 1)2

8�2

�
3
8

�1/2

�1/2

�
M

Mpl

�2

M � (�/0.01)�1/41013=> For                              GeV,                 is realized.  As � 10�9

�inf � ��1/8
�

MMpl

It also predicts ns � 0.967

r � �32
�

6
9

nT � 0.14

 Non trivial consistency relation!

and slow-roll suppressed NG. 

Courtesy H.Oide
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�
M
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We present results from an analysis of all data taken by the BICEP2 & Keck Array CMB po-
larization experiments up to and including the 2014 observing season. This includes the first Keck
Array observations at 95GHz. The maps reach a depth of 50 nKdeg in Stokes Q and U in the
150GHz band and 127 nKdeg in the 95GHz band. We take auto- and cross-spectra between these
maps and publicly available maps from WMAP and Planck at frequencies from 23GHz to 353GHz.
An excess over lensed-⇤CDM is detected at modest significance in the 95⇥150 BB spectrum, and
is consistent with the dust contribution expected from our previous work. No significant evidence
for synchrotron emission is found in spectra such as 23⇥95, or for dust/sync correlation in spectra
such as 23⇥353. We take the likelihood of all the spectra for a multi-component model including
lensed-⇤CDM, dust, synchrotron and a possible contribution from inflationary gravitational waves
(as parametrized by the tensor-to-scalar ratio r), using priors on the frequency spectral behaviors of
dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions
of the sky. This analysis yields an upper limit r0.05 < 0.09 at 95% confidence, which is robust
to variations explored in analysis and priors. Combining these B-mode results with the (more
model-dependent) constraints from Planck analysis of CMB temperature and other evidence yields
a combined limit r0.05 < 0.07 at 95% confidence. These are the strongest constraints to date on
inflationary gravitational waves.

PACS numbers: 98.70.Vc, 04.80.Nn, 95.85.Bh, 98.80.Es

Introduction.—Measurements of the cosmic microwave
background (CMB) [1] are one of the observational pil-
lars of the standard cosmological model (⇤CDM) and
constrain its parameters to high precision (see most re-
cently Ref. [2]). This model extrapolates the Universe

back to very high temperatures (� 1012 K) and early
times. Observations indicate that conditions at early
times are described by an almost uniform plasma with a
nearly scale invariant spectrum of adiabatic density per-
turbations. However ⇤CDM itself o↵ers no explanation
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We present results from an analysis of all data taken by the BICEP2 & Keck Array CMB po-
larization experiments up to and including the 2014 observing season. This includes the first Keck
Array observations at 95GHz. The maps reach a depth of 50 nKdeg in Stokes Q and U in the
150GHz band and 127 nKdeg in the 95GHz band. We take auto- and cross-spectra between these
maps and publicly available maps from WMAP and Planck at frequencies from 23GHz to 353GHz.
An excess over lensed-⇤CDM is detected at modest significance in the 95⇥150 BB spectrum, and
is consistent with the dust contribution expected from our previous work. No significant evidence
for synchrotron emission is found in spectra such as 23⇥95, or for dust/sync correlation in spectra
such as 23⇥353. We take the likelihood of all the spectra for a multi-component model including
lensed-⇤CDM, dust, synchrotron and a possible contribution from inflationary gravitational waves
(as parametrized by the tensor-to-scalar ratio r), using priors on the frequency spectral behaviors of
dust and synchrotron emission from previous analyses of WMAP and Planck data in other regions
of the sky. This analysis yields an upper limit r0.05 < 0.09 at 95% confidence, which is robust
to variations explored in analysis and priors. Combining these B-mode results with the (more
model-dependent) constraints from Planck analysis of CMB temperature and other evidence yields
a combined limit r0.05 < 0.07 at 95% confidence. These are the strongest constraints to date on
inflationary gravitational waves.
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Introduction.—Measurements of the cosmic microwave
background (CMB) [1] are one of the observational pil-
lars of the standard cosmological model (⇤CDM) and
constrain its parameters to high precision (see most re-
cently Ref. [2]). This model extrapolates the Universe

back to very high temperatures (� 1012 K) and early
times. Observations indicate that conditions at early
times are described by an almost uniform plasma with a
nearly scale invariant spectrum of adiabatic density per-
turbations. However ⇤CDM itself o↵ers no explanation
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Radiative corrections or more complicated setup may 
relax the situation. But it is more sincere to take the 
model as a toy study to read off the general feature of 
this type of models. (See ’15 Kunimitsu et al. )
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Summary
✓Higgs G-inflation is (was?) one of the possible candidates of Higgs 
inflation and is found to be self-consistent.

✓Its strong coupling scale depends not only field values but also its 
derivative and environmental parameters such as the Hubble parameter. 

✓The strong coupling scale is smaller than the field value, the knowledge 
of UV completion would be necessary to connect the results of low 
energy experiments to the inflationary predictions. 

✓Since the model allows superluminal propagation of fluctuations in a 
specific BG, Lorentz-invariant UV completion may not exist (e.g. ’06 Adams+). 

# UV extension may be possible? See ’14 Ivanov+, ’15 Barbon+. See also ’15 Keltner+.
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“Localized oscillating configurations formed by real scalar fields”

by Gyula Fodor

[JGRG25(2015)7a1]
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Localized oscillating configurations

formed by real scalar fields

Gyula Fodor

Observatoire de Paris, Meudon
Wigner Research Centre for Physics, Budapest

Péter Forgács (Wigner Research Centre, Tours University)

Philippe Grandclément (Observatoire de Paris, Meudon)

The 25th Workshop on General Relativity and Gravitation in Japan

Kyoto, 10 December 2015

G. Fodor: oscillatons and AdS breathers 1/17

Gravitational attraction forms a spherically symmetric star-like
object from a scalar field

For a complex scalar field it is called boson star

For a real scalar field it is called oscillaton

Extremely long living and stable, but for oscillatons the mass
decreases very slowly because of a tiny scalar field radiation

G. Fodor: oscillatons and AdS breathers 2/17
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Small amplitude oscillatons
G. Fodor, P. Forgács and M. Mezei, Phys. Rev. D, 81, 064029 (2010)

amplitude ⇠ "2

size ⇠ 1
m"

mass M = 1
m

⇥
1.753 "� 2.117 "3

⇤

mass loss rate

dM

dt
= �30.0

"2
exp

✓
�22.4993

"

◆

extension of the mode equations to the complex plane, study
the behavior near the pole, Borel summation

For large amplitude oscillatons the radiative tail can be calculated
numerically by spectral methods
P. Grandclément, G. Fodor and P. Forgács, Phys. Rev. D, 84, 065037 (2011)

G. Fodor: oscillatons and AdS breathers 3/17

There is a one-parameter family of oscillatons

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 0.01  0.1  1

ρ
c

φc

φc
2 / (16π) Time averaged central density is a

monotonically increasing function of
the scalar field central amplitude

– for small amplitudes it is
proportional to �2

c

 0.5

 0.52

 0.54

 0.56

 0.58

 0.6

 0.62

 0  0.002  0.004  0.006  0.008  0.01  0.012

M

ρc

stable unstable

In general, a star-like astrophysical
object is stable if the total mass
increases with increasing central
density

There is a maximal amplitude for
stable oscillatons

G. Fodor: oscillatons and AdS breathers 4/17
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For ⇤ = 0 oscillatons oscillate almost periodically, with an
extremely slowly increasing frequency
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Behavior of the scalar field
during one oscillation period
for the largest amplitude stable
oscillaton

Scalar field decreases
exponentially up to r = 32,
where a radiative tail begins,
with amplitude 10�8

For smaller amplitude oscillatons the tail is even much smaller
– the tail decreases exponentially with decreasing central amplitude

G. Fodor: oscillatons and AdS breathers 5/17

Mass lost since the early universe

Start with a maximal mass oscillaton 13.7 billion years ago,

choosing various scalar field masses m we list how big part of the
mass is lost by now

m

c

2

eV

M

max

�M

M

max

M

M�

10�25 3.16 · 10�5 8.09 · 1014
10�15 0.0896 7.36 · 104
10�5 0.263 5.96 · 10�6

105 0.401 4.85 · 10�16

1015 0.500 4.04 · 10�26

the last column gives the resulting mass M in solar mass units

P. Grandclément, G. Fodor and P. Forgács, Phys. Rev. D, 84, 065037 (2011)
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⇤ < 0 : asymptotically anti-de Sitter case

Negative cosmological constant acts as an e↵ective attractive force

Exactly periodic solutions exist for real scalar fields (oscillatons)

– we call them AdS breathers
there is no radiative tail, similarly to the sine-Gordon breather

There are breather solutions even for massless free scalar fields

– their size is determined by the cosmological constant ⇠ 1/
p
�⇤

– for ⇤ = 0 massive fields the size is ⇠ 1
m"

Rest of the talk: massless Klein-Gordon field minimally coupled to
Einstein’s gravity, with ⇤ < 0

G. Fodor: oscillatons and AdS breathers 7/17

AdS breathers – massless minimally coupled real scalar

G.Fodor, P. Forgács and P. Grandclément, Phys. Rev. D 92,
025036 (2015)

We apply three methods:

Spectral code for constructing time-periodic solutions

Time-evolution code to study stability

High-order small-amplitude expansion to get analytical results

Extension of the results of M. Maliborski and A. Rostworowski,
Phys. Rev. Lett. 111, 051102 (2013)
– methods that work well only for 2n + 1 spacetime dimensions
– results presented only for 4 + 1 dimensions

We give 3 + 1 and 4 + 1 results, can reach higher amplitudes,
find maximal mass state and higher amplitude unstable states

G. Fodor: oscillatons and AdS breathers 8/17
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d + 1 dimensional Einstein’s equations

Gµ⌫ + ⇤gµ⌫ = 8⇡GTµ⌫ , Tµ⌫ = �,µ�,⌫ �
1

2
gµ⌫�,↵�

,↵

the contracted Bianchi identity gives the wave equation

rµrµ� = 0

usually � is rescaled to make 8⇡G = d � 1

We look for spherically symmetric solutions with metric

ds2 =
L

2

cos2 x

✓
�Ae

�2�dt 2 +
1

A

dx2 + sin2 x d⌦2
d�1

◆

where L

2 = �d(d�1)
2⇤ , A and � are functions of t and x

– anti-de Sitter corresponds to A = 1 and � = 0

G. Fodor: oscillatons and AdS breathers 9/17

Small-amplitude expansion

" is chosen as the central amplitude of � at t = 0

� =
1X

n=1
odd

�(n)"n , A = 1 +
1X

n=2
even

A

(n)"n , � =
1X

n=2
even

�(n)"n

To linear order metric remains AdS, and there are periodic
localized solutions for the scalar field �(1) = p

n

cos(!
n

t)

p

n

=
n!

(d/2)
n

cosd x P

(d/2�1,d/2)
n

(cos(2x))

P

(↵,�)
n

is the Jacobi polynomial,

(↵)
n

= ↵(↵+ 1) . . . (↵+ n � 1) is the Pochhammer symbol

frequency: !
n

= d + 2n

fully resonant spectrum – turbulent instability
G. Fodor: oscillatons and AdS breathers 10/17
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3 + 1 dimensional spacetime (d = 3)

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

0 π/8 π/4 3π/8 π/2

p
n

x

p0

p1

p2

p3

p0 = cos3 x

p1 =
cos3 x

3
[4 cos(2x)� 1]

p2 =
cos3 x

3
[3 cos(4x)� 2 cos(2x) + 2]

p3 =
cos3 x

15
[12 cos(6x)� 9 cos(4x) + 18 cos(2x)� 5]

Combination with arbitrary amplitudes and phases is a valid
solution of the linearized problem

�(1) =
1X

n=0

a

n

cos(!
n

t + b

n

)p
n

, !
n

= 3 + 2n

but to "3 order, there are t sin(!t) secular terms in �(3) if more
then one a

n

is nonzero

G. Fodor: oscillatons and AdS breathers 11/17

There is a one-parameter family of solutions emerging from each
p

n

linearized mode

We investigate the family emerging from the nodeless solution p0

Initial guess for numerical code: linearized solution p0 cos(3t)

KADATH library developed by Philippe Grandclément at
Observatoire de Paris - Meudon

– multidomain spectral method

– radial direction: Chebyshev polynomials

– time direction: Fourier decomposition

� =
1X

k=1
odd

�
k

cos(k!t) , A =
1X

k=0
even

A

k

cos(k!t) , � =
1X

k=0
even

�
k

cos(k!t)

G. Fodor: oscillatons and AdS breathers 12/17
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Central values of the cos(!t), cos(3!t), cos(5!t) Fourier modes
as function of oscillation frequency
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ω

unstable stable

2
.2

5
3

φ1

10·φ3

100·φ5

Using the solution as initial data for a time-evolution code:
AdS breathers with frequency ! < 2.253 are unstable
– collapse into black holes

G. Fodor: oscillatons and AdS breathers 13/17

Radial profile for the first three modes of the scalar field for the
largest amplitude stable AdS breather (maximal mass)
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 0.2

 0.4

 0.6

 0.8

 1

 1.2

0 π/8 π/4 3π/8 π/2

φ
n

x

φ1

φlin

20·φ3

400·φ5

– more compact than the linear solution, but similar shape
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Mass as function of the oscillation frequency
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ω

unstable stable
2
.2

5
3

d=3

m

order ε
2

order ε
4

AdS breather becomes
unstable when the total
mass starts to decrease
with increasing central
density

First two orders of the small-amplitude expansion is also plotted
– in order to get "4 order results one has to calculate to "6 order

(to fix coe�cients of homogeneous solutions)
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Central frequency ⌦ as function of asymptotic frequency !

 3

 4
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 9

 2.1  2.2  2.3  2.4  2.5  2.6  2.7  2.8  2.9  3

Ω

ω

As the amplitude grows

the frequency observed
outside the breather
decreases

the frequency measured
by a central observer
grows

G. Fodor: oscillatons and AdS breathers 16/17
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Concluding remarks for ⇤ < 0

Periodic solutions, up to a certain amplitude, are on
”stability islands”
– general configurations collapse into black holes

AdS/CFT correspondence
– periodic solutions correspond to states that never thermalize

There are other asymptotically AdS localized regular configurations

static axially symmetric electromagnetic states
Herdeiro and Radu, Phys. Lett. B 749, 393 (2015)

vacuum gravitational wave geons
Dias, Horowitz and Santos, CQG 29, 194002 (2012)
– helical symmetry

G. Fodor: oscillatons and AdS breathers 17/17
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“Anisotropies from fluctuations of a domain wall during inflation”

by Sadra Jazayeri

[JGRG25(2015)7a3]
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Anisot'opies*+om*fluct0ations*of*a*Domain*
Wall*during*inflation*

Sadra%Jazayeri%%
Ins.tute%for%Research%in%Fundamental%Sciences%
(IPM);%Tehran%%

Works%in%Progress:%In%Collabora.on%with%H.%Firouzjahi%and%
M.%Akhshik%%&%Y.%Akrami%
Some%parts%of%the%talk%from:%1408.3057,with%Y.%Wang%et%al,

Contents*

•  Inflationar;*Cosmolog;**
•  Motivation*for*the*work:*CMB*Anomalies**
•  Inflation*in*presence*of*a*2DBrane**
•  Gravitational*reaction*of*the*brane*on*the*inflaton*
•  BranionDInflaton*interaction**
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Inflationar;*Cosmolog;*

•  Cur'ently*Inflation*is*the*main*paradigH*of*early*universe*Cosmolog;.**

•  It*acts*both*as*a*solution*to*Big*bang*Puzzles*(FlatNess*&*Horizon*problems)*and*

a*source*for*producing*primordial*seeds*for*st'0ct0res.**

•  Data*still*can*not*disting0ish*betReen*enorHous*bunch*of*existing*models**

Planck2015%
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CMB*Anomalies*

D*Planck*2013*&*2015:*QuadropoleDOctopole*aligNment,*Dipole*
AsyHmet';,*Parit;*Violation*etc.**

D*Dipole*Power*AsyHmet';***
​∆"/" ( ​% )=(1+'' ​% . ​( )​( ​∆"/" )↓+,-  

Pl
an
ck
20
15
%

.<600%

Contents*
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Inflation*in*presence*of*a*domain*wall*
%

/≪​0↓(↑2 2 

3%4.56-% 

•  The*space*time*of*a*cosmological*constant*and*a*flat*wall*could*be*described*by*the*
following*met'ic*

•  Where*''7= ​//​0↓(↑2 2 *is*a*dimensionless*per]0rbative*quantit;.***

8​,↑2 =−8​6↑2 + ​e↑22t ​dx↑i ​dx↓i −27​9↑26 ,:%(;)868;+<(7,=) 
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Gravitational*reaction*of*the*domain*on*the*

inflaton*
•  There*are*tRo*cont'ibutions*+om*our*brane*into*inflaton*2*point*fluct0ations:*

First*one*is**the*backg'ound*geomet';*induced*by*the*domain*and*the*second*is*

the*probable*Wall*per]0rbations.***

 
​√⁠−: :↑/? ​@↓/ A​@↓? A⊃7√⁠−: ,:%'(;)​@↓; BA'BA′' 
*

*

*

•  The*varied*2pt*due*to*this*cont'ibution*has*the*following*forH:**

The*2Dim*delta*f0nction*sigNals*the*violation*of*a*t'anslational*invariance*due*to*

the*Brane.**

•  The*backg'ound*interaction*produces*a*<(7)*variance*asyHmet';.**
*
%%%%%%%%%%%%%%%%%%%%%%⟨​​Δ"/" ↑2 (%)⟩= ​⟨​​Δ"/" ↑2 ⟩↓+,- ∑↑▒​5↓. ​G↓. (H-,I)  
**This*is*a*different*sigNal*for*modeling*the**power*asyHmet';*on*the*CMB.*
(1402.0870*and*Planck*2015)**

*
*
*
*
*
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•  The*backg'ound*interaction*also*affects*CMB*spect'0m.*Now*there*are*many*
non*zero*offDdiagonal*terHs*thanks*to*the*breaking*of*t'anslational*invariance.**

*
**************************************************⟨​5↓​.↓1 ​J↓1  ​5↓​.↓2 ​J↓2  ⟩= ​K↓​.↓1 ​.↓2 ↑J  
•  As*exeected*the*variation*to*​K↓. *decays*like*∼ ​1/J-J9%6LJ '.  
  
*
*
*
*
​.↓2 *

*
*
*
*
*

m
=0

, ​.
↓1
 =
​.↓2

  

Contents*
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•  BranionDInflaton*interaction**

                                                                                                                  1005



Contents*

•  Inflationar;*Cosmolog;**
•  Motivation*for*the*work:*CMB*Anomalies**
•  Inflation*in*presence*of*a*2DBrane**
•  Gravitational*reaction*of*the*brane*on*the*inflaton*
•  BranionDInflaton*interaction**

*
•  In*principle*our*Wall*could*be*either*a*defect*or*a*f0ndamental*brane.***
•  We*consider*some*direct*coupling*betReen*2Dbrane*and*inflaton*.*We*neglect*

inflaton*dependent*tension,*consequently*the*leading*operators*are*of*the*forH:*

*
•  By*choosing*an*approprate*meshing*on*the*brane*we*can*set*​M↑0 =6',' ​M↑1 
=N,' ​M↑2 =O'.*The*Height*of*the*brane*could*be*t'eated*as*a*scalar*field*
living*on*the*brane.*This*brane*per]0rbations*(branion)*acts*as*a*
mediator*betReen*inflaton*legs.**



​Q↓H (R,S)∝√⁠−RS ​2↓2 (RS) 

​T↓UV5%9 =/∫√⁠−ℎ ​8↑3 M+Λ∫√⁠−ℎ ​' ​%↑/ ​@↓/ A'8↑3 M+ ​1/​Λ↑′  ∫√⁠−ℎ ​​(​%↑/ ​@↓/ A)↑2 8↑3 M 

Nambu-Goto action 

Branion*–Inflaton*interactions*
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*
•  *Power*spect'0m*of*densit;*per]0rbations*would*be*modified*due*to*this*new*

interactions.**

•  The*InDIn*integ'als*should*be*car'ied*numerically.*The*result*for*the*power*looks*like:**

R↔X%
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•  Aster*taking*into*account*the*nat0ral*values*for*couplings*together*with*the*resonant*shape*of*
the*above*f0nction,*we*conclude*that*this*cont'ibution*is*as*impor]ant*as*the*backg'ound*
induced*2pt.*The*shape*of*the*power*asyHmet';*or*any*other*obseriable*is*completely*
disting0ishable*+om*the*forHer.***

•  There*are*some*bounds*induced*+om*St'ong*coupling*limit*of*​BY↓2 .*For*having*a*
per]0rbative*region*in*our*model*we*need:*

%%%%%%%%%%%%%%%%%%%​Λ/√⁠47 ​0↓(  ≪1''''''''''''''''''​1/​Λ↑′  ≪√⁠​27/'=  ' ​1/2 ***
This*const'aint*are*impor]ant*for*estimating*the*amount*of*Power*asyHmet';*and*PNG.*
•  There*are*many*things*interesting*about*Primordial*NonDGaussianities*in*our*set*up.**

The*Shape*of*PNG*is*ver;*non*t'ivial*and*completely*anisot'opic.**

For*instance*:*​4↓ZY↑+ ∼ ​⟨​M↑3 ⟩/⟨​M↑2 ⟩⟨​M↑2 ⟩ ∼ ​(​Λ/√⁠7 ​
0↓(  )↑3 √⁠​=/7  %
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Conclusion*and*prospective%%
•  We*have*proposed*a*model*for*exelaining*some*of*the*CMB*anomalies.*The*

set*up*consists*of*an*inflationar;*epoch*happening*in*vicinit;*of*a*massive*

domain*wall.**

•  There*are*tRo*kinds*of*interactions*betReen*inflaton*and*the*brane:*the*

backg'ound*g'avitational*induced*interaction*in*the*bulk*and*the*localized*

interactions*on*the*boundar;*due*to*branion.*

•  The*forHer*induces*a*sufficient*amount*of*variance*asyHmet';*on*the*CMB*

sphere,*as*well*as*variation*of*ang0lar*power*spect'0m*on*large*scales.**

•  For*a*f0ndamental*brane*these*tRo*cont'ibutions*to*2pt*are*comparable*and*

have*completely*different*shapes.**

•  The*PNG*in*this*set*up*is*appealing.*Especially*in*7→0'case,*could*it*be*
related*to*the*recent*idea*of*“Cosmological*Collider*physics?**1503.08043”,

which*concerNs*inflation*as*a*laborator;*for*st0dying*the*effects*of*different*

fields*and*branes*on*primordial*per]0rbations?**

•  What*happens*for*Primordial*Gravitational*waves*in*presence*of*the*brane?**

•  So*far*we*have*neglected*the*g'avitational*reaction*of*branions.*In*what*

regimes*this*assumption*is*justified?**
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“Does the Gauss-Bonnet term stabilize wormholes?”

by Takafumi Kokubu
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JGRG25 @ YITP

Does the Gauss-Bonnet term 
stabilize wormholes?

Takafumi Kokubu!
Hideki Maeda !
Tomohiro Harada

Classical and Quantum Gravity, 32, (2015) 235021
Rikkyo 
University

Hokkai-Gakuen 
University

Today’s Talk

Shell wormhole 
in  

Einstein gravity

Shell wormhole 
in  

Einstein-Gauss-Bonnet 
gravity

・STABILITY  against RADIAL PERTURBATIONS.!
・Compare the two wormhole (ANALYTICALLY).!
     → Reveal the EFFECT of  the GB term on STABILITY.
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Motivation
Wormholes are fascinating compact objects.!

  → space-time short cut, time travel.!

Problem: instability, use of exotic matter, great tidal force…!

Stability is the first priority for wormhole study.!

!

!

The Gauss-Bonnet term appears in the action as the ghost-free quadratic 
curvature correction term in the low-energy limit of heterotic superstring 
theory in ten dimensions (together with a dilaton).

LGB := R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�
S =

1

16⇡G

Z
ddx

p
�g(R� 2�+ ↵LGB)

Einstein-Gauss-Bonnet gravity

Einstein gravity
S =

1

16⇡

Z
ddx

p
�g(R� 2⇤)

Setup

ds2 = �f(r)dt2 + f(r)�1dr2 + r2(d⌦k
d�2)

2, f(r) = k � m

rd�3
� ⇤̃r2

Junction conditions :

Imposition for matter :!
negative tension

Si
j = diag(��,��,��, · · · ,��)

Z2symmetry

Imposition for symmetry :
(� < 0)

Si
j = � 1

8⇡G
([Ki

j ]� �ij [K])

Vacuum solution
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Stable: 

V (a) = f(a)�
✓

4⇡�

d� 2

◆2

a2

Master equation & Stability

a0
a0 �：brane-tension

V 00(a0) =� 2(d� 3)k

a20k=1,m>0 
unstable

※Generalization for Einstein-Maxwell system→ T.K, Harada, 2015

ȧ2 + V (a) = 0,Master eq for radial motion : 

One static unstable solution・

k = ±1, 0

Schematic figure

Einstein

Birkhoff’s theorem → no GW for radial motion

V
00
(a0) < 0Unstable: 

Einstein-Gauss-Bonnet gravity

LGB := R2 � 4Rµ⌫R
µ⌫ +Rµ⌫⇢�R

µ⌫⇢�

: coupling constant, inverse string tension↵

(d � 5)

Vacuum solution

f(r) := k +
r2

2↵̃

 
1⌥

r
1 +

4↵̃m

rd�1
+ 4↵̃⇤̃

!
ds2d = �f(r)dt2 + f(r)�1dr2 + r2�ABdz

AdzB

↵ ! 0 in GR branch,

 −  : the GR branch!
＋ : non-GR branch GR branch

f(a) = k � m

rd�3
� ⇤̃r2

S =
1

16⇡G

Z
ddx

p
�g(R� 2�+ ↵LGB)

Alpha>0

⇤̃ :=
2⇤

(d� 1)(d� 2)

↵̃ :=(d� 3)(d� 4)↵
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[Ki
j ]± � �ij [K]± + 2↵

⇣
3[J i

j ]± � �ij [J ]± � 2P i
kjl[K

kl]±
⌘
= �2

dS
i
j

Z2symmetryImposition for symmetry: Imposition for matter: negative tension 

Junction conditions: 

Jij :=
1

3

�
2KKikK

k
j +KklK

klKij � 2KikK
klKlj �K2Kij

�
, Pikjl := Rikjl + 2hi[lRj]k + 2hk[jRl]i +Rhi[jhl]k

Master equation& Stability criterion
V (a) :=f(a)� J(a)a2,ȧ2 + V (a) = 0Master eq. for radial motion:  

J(a) :=

�
B(a)�A(a)1/2

�2

4↵̃B(a)
, B(a) :=

⇢
18↵̃⌦2 +A(a)3/2 + 6

q
↵̃⌦2(9↵̃⌦2 +A(a)3/2)

�1/3

.

V 00(a0) =� 2kP (a0)

a20(a
2
0 + 2k↵̃+ 2↵̃f0)(a20 + 2k↵̃� 2↵̃f0)

,

P (a0) :=4↵̃2f0

⇢
6k � (d� 3)f0

�
+(a20 + 2k↵̃)

⇢
(d� 3)a20 + 2(d� 5)k↵̃

� V 00(a0) / �kP (a0)

k = ±1, 0

Stability criterion 

Setup

⌦ :=
16⇡2�2

(d� 2)2

EGB

Birkhoff’s theorem → no GW for radial motion

Instability 
for k = 1 with m > 0

V 00(a0) / �P (a0)

the wormhole is unstable

V 00(a0) / �kP (a0)

P(a0) =4↵̃2f0

⇢
6� (d� 3)f0

�

+ (a20 + 2↵̃)

⇢
(d� 3)a20 + 2(d� 5)↵̃

�

>4↵̃2f0

⇢
6� (d� 3)f0

�
+2↵̃f0

⇢
(d� 3)a20 + 2(d� 5)↵̃

�

=2↵̃f0

⇢
2(d� 3)↵̃

✓
a20
2↵̃

� f0

◆
+2(d+ 1)↵̃

�

>2↵̃f0

⇢
�2(d� 3)↵̃+ 2(d+ 1)↵̃

�
= 16↵̃2f0> 0.

Figure: The potential

¯V (a) for d = 5, 6, 7 in Einstein and

Einstein-Gauss-Bonnet (EGB) gravity with k = 1, ↵ = 0.02,
m = 1, ⇤ = 1 and � = �0.1.

V (a)/a2

P (a0) > 0

P (a0) := 4↵̃2f0

⇢
6k � (d� 3)f0

�
+(a20 + 2k↵̃)

⇢
(d� 3)a20 + 2(d� 5)k↵̃

�
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Does the Gauss-Bonnet term stabilize wormholes?
small

is sufficiently small :

a0 = aE + a(1)✏+ a(2)✏
2 + . . . .

V 00
GB(a0) ' V 00

Einstein(aE)� k
8fE(aE)

a2E
✏expansion up to 1st order :✏

k=1:Destabilize

↵

Perturbative analysis :     

GB shell wormhole turned out to be unstable. !
But, how it unstable is when compared with Einstein shell wormhole?

✏ := ↵̃/a2E ⌧ 1

STABILIZE DESTABILIZE

Summary

❖ We construct thin-shell wormholes made of its tension in Einstein and EGB gravity.!

❖ This is the best setup to analyze stability as a pure gravitational effect because 
such a thin shell does not suffer from the matter instability.!

❖ Shell wormhole both in Einstein and EGB gravity is unstable.!

❖ When     is small, the GB term destabilizes spherically symmetric shell wormhole.↵

Future Work :!
Since Kanti et al. (2012) numerically reported stable wormholes in EGB + dilaton 

system,!
The Effect of Dilaton is the Next Target.
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“High energy particle emission form particle collision near an extremal 

Kerr black hole”

by Kota Ogasawara

[JGRG25(2015)7a5]
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High energy particle emission 
from particle collision near 
an extremal Kerr black hole

Kota Ogasawara, Rikkyo U.
arXiv 1511.00110 [gr.qc] 
K.O., T. Harada, and U. Miyamoto 

No. 7a5

JGRG25, YITP

High energy particle emission 
from particle collision near 
an extremal Kerr black hole

energy extraction process 
from the black hole

JGRG25, YITP Kota Ogasawara
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Question

If the answer is yes.

⇒「How long can we extract 
　　energy from the black hole !?」

「Can we extract energy 
       from the black hole !?」

JGRG25, YITP Kota Ogasawara

Harada, 
Kimura(2012)

・particle collision 
　in the ergoregion

・energy conservation

・energy extraction efficiency

E1 + E2 = E3 + E4

negative energy

⌘ :=
E3

E1 + E2

Collisional Penrose process

JGRG25, YITP Kota Ogasawara

1
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Harada, 
Kimura(2012)

・particle collision 
　in the ergoregion

・energy conservation

・energy extraction efficiency

E1 + E2 = E3 + E4

negative energy

Collisional Penrose process

⌘ > 1energy extraction !!

JGRG25, YITP Kota Ogasawara

1

Why Collisional Penrose 
process?
・more realistic process than original Penrose 
　process (divide ➞ collision) 
・ultra-high-energy cosmic ray 
・near horizon Physics 
・B.S.W. effect (2009) 
　‥arbitrarily high CM energy ⇐ talk later 
・super-Penrose process (2014) 
　‥arbitrarily high energy extraction (on going)

JGRG25, YITP Kota Ogasawara

2
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Outline
1. Introduction ⇐ finish 
!

2. (Usual) collisional Penrose process 
!

3. B.S.W. effect and heavy particle production 
!

4. Summary

Outline
1. Introduction ⇐ finish 
!

2. (Usual) collisional Penrose process 
!

3. B.S.W. effect and heavy particle production 
!

4. Summary
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Kerr spacetime

: energy  
: angular momentum

E := �gµ⌫⇠
µp⌫

L := gµ⌫ 
µp⌫

・geodesic eq.s. (✓ = ⇡/2, a = M)

・conserved quantity

where

⇐ 1D potential problem

JGRG25, YITP Kota Ogasawara

3

1

2
(pr)2 + V (r) = 0

V (r) = � m2

r/M
+

L̃� E2 +m2

2(r/M)2
� (L̃� E)2

(r/M)3
� E2 �m2

2

L̃ := L/M

Particle collision and reaction
・particle collision : pµ1 + pµ2 = pµ3 + pµ4

・conservation equations
E1 + E2 = E3 + E4, L̃1 + L̃2 = L̃3 + L̃4

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|, (pr = �|pr|)

|pr| =
"
2m2

r/M
� L̃2 � E2 +m2

2(r/M)2
+

2(L̃� E)2

(r/M)3
+ E2 �m2

# 1
2

where � = ±1

JGRG25, YITP Kota Ogasawara

4
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Particle collision and reaction
parameters

E

L̃

m

�

: energy 
: angular momentum 
: mass 
: sign of pr

E1, E2, E3, E4

L̃1, L̃2, L̃3, L̃4

m1, m2, m3, m4

�1, �2, �3, �4

16 unknown

|pr| =
"
2m2

r/M
� L̃2 � E2 +m2

2(r/M)2
+

2(L̃� E)2

(r/M)3
+ E2 �m2

# 1
2

JGRG25, YITP Kota Ogasawara

4

Particle collision and reaction

E1, E2, E3, E4

L̃1, L̃2, L̃3, L̃4

m1, m2, m3, m4

�1, �2, �3, �4

the parameter of 
particle 1 and 2 
gives it by hand

1

head-on 
Compton 
scattering

if we choose
�1 = 1, �2 = �1

m1 = 0, m2 6= 0

JGRG25, YITP Kota Ogasawara

4

2
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Near-horizon behavior
・using radial momentum conservation 
　to estimate the upper limit of efficiency :

JGRG25, YITP Kota Ogasawara

5

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

|pr| =
"
2m2

r/M
� L̃2 � E2 +m2

2(r/M)2
+

2(L̃� E)2

(r/M)3
+ E2 �m2

# 1
2

horizon :

critical :

r = M

L̃ = 2E

⌘

Near-horizon behavior
・using radial momentum conservation 
　to estimate the upper limit of efficiency :

r =
M

1� ✏
, 0 < ✏ ⌧ 1

L̃ = 2E(1 + �), � = �(1)✏+ �(2)✏
2 +O(✏3)

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

|pr| =
"
2m2

r/M
� L̃2 � E2 +m2

2(r/M)2
+

2(L̃� E)2

(r/M)3
+ E2 �m2

# 1
2

　near horizon :

　near critical :

JGRG25, YITP Kota Ogasawara

5

⌘
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Near-horizon behavior

r =
M

1� ✏
, 0 < ✏ ⌧ 1

L̃ = 2E(1 + �), � = �(1)✏+ �(2)✏
2 +O(✏3)

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

|pr| = pr(0) + pr(1)✏+ pr(2)✏
2 +O(✏3)

expanded 
radial momentum

JGRG25, YITP Kota Ogasawara

5

　near horizon :

　near critical :

・using radial momentum conservation 
　to estimate the upper limit of efficiency : ⌘

Near-horizon behavior

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

|pr| = pr(0) + pr(1)✏+ pr(2)✏
2 +O(✏3)

|pr1| =
q
3E2

1 �m2
1✏+O(✏2)

|pr2| = (2E2 � L̃2)� 2(E2 � L̃2)✏+O(✏2)

|pr3| =
q
E2

3

⇥
4(1� �(1))2 � 1

⇤
�m2

3✏+O(✏2)

|pr4| = (2E2 � L̃2)�
h
2(E2 � L̃2) + 2E3(1� �(1))� 2E1

i
✏+O(✏2)

・e.g.) 1=critical, 2=subcritical,  
          3=near critical, 4=negative energy

expanded 
radial momentum

JGRG25, YITP Kota Ogasawara

5
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Expanded conservation eq.s.

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

・e.g.) 1=critical, 2=subcritical,  
          3=near critical, 4=negative energy

JGRG25, YITP Kota Ogasawara

6

|pr1| =
q
3E2

1 �m2
1✏+O(✏2)

|pr2| = (2E2 � L̃2)� 2(E2 � L̃2)✏+O(✏2)

|pr3| =
q
E2

3

⇥
4(1� �(1))2 � 1

⇤
�m2

3✏+O(✏2)

|pr4| = (2E2 � L̃2)�
h
2(E2 � L̃2) + 2E3(1� �(1))� 2E1

i
✏+O(✏2)

estimateO(✏0) �i

Expanded conservation eq.s.

�1|pr1|+ �2|pr2| = �3|pr3|+ �4|pr4|

・e.g.) 1=critical, 2=subcritical,  
          3=near critical, 4=negative energy

JGRG25, YITP Kota Ogasawara

6

O(✏) estimate the upper limit of

|pr1| =
q
3E2

1 �m2
1✏+O(✏2)

|pr2| = (2E2 � L̃2)� 2(E2 � L̃2)✏+O(✏2)

|pr3| =
q
E2

3

⇥
4(1� �(1))2 � 1

⇤
�m2

3✏+O(✏2)

|pr4| = (2E2 � L̃2)�
h
2(E2 � L̃2) + 2E3(1� �(1))� 2E1

i
✏+O(✏2)

E3
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The upper limit of E3

・　   terms of    conservation
�1

q
3E2

1 �m2
1 + 2E1 � 2E3(1� �(1)) = �3

q
E2

3

⇥
4(1� �(1))2 � 1

⇤
�m2

3

pr

) E
3,max

= (2 +
p
3)2E

1

where 
we have assumed

4

1

2

3

(inverse) 
Compton scattering

O(✏)

m1 = m3 = 0

�1 = 1

�2 = �3 = �4 = �1

�(1) = 0

JGRG25, YITP Kota Ogasawara

7

Energy extraction efficiency
・　   terms of    conservationprO(✏)

・　    terms of    conservationpr

) E
3,max

= (2 +
p
3)2E

1

O(✏2)

) it gives the lower limit of E2

⌘ :=
E3

E1 + E2

JGRG25, YITP Kota Ogasawara

8
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Energy extraction efficiency
・　   terms of    conservationprO(✏)

・　    terms of    conservationpr

) E
3,max

= (2 +
p
3)2E

1

O(✏2)

E2

4

1

2

3

(inverse) 
Compton scattering

⌘
max

' 2.19

JGRG25, YITP Kota Ogasawara

8

m1 = m3 = 0

�1 = 1

�2 = �3 = �4 = �1

Energy extraction efficiency

⌘
max

' 14

Schnittman 
(2014)

⌘
max

' 2.19

inconsistent !?

JGRG25, YITP Kota Ogasawara

8

m1 = m3 = 0

�1 = 1

�2 = �3 = �4 = �1
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Outline
1. Introduction ⇐ finish 
!

2. Usually collisional Penrose process ⇐ finish 
!

3. B.S.W. effect and heavy particle production 
!

4. Summary

B.S.W. effect
・CM energy of particle 1 and 2

✏ ! 0 : horizon limit
) ECM ! 1 : arbitrarily high CM energy!!

where

E2
cm := �gµ⌫(p

µ
1 + pµ2 )(p

⌫
1 + p⌫2)

' 2(2E1 �
p
3E2

1 �m2
1)(2E2 � L̃2)

✏
+O(✏0)

2E1 � L̃1 = 0

2E2 � L̃2 > 0

r =
M

1� ✏

: 1=critical 
: 2=subcritical

: near horizon

JGRG25, YITP Kota Ogasawara

9
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B.S.W. effect
Bañados, Silk,West (2009)

Ecm / 1p
✏

JGRG25, YITP Kota Ogasawara

9

✏ ! 0 : horizon limit
) ECM ! 1 : arbitrarily high CM energy!!

B.S.W. effect

・The arbitrarily high CM energy can produce 
　very energetic and/or heavy particle

high energy collision !!

E / 1/
p
✏ m / 1/

p
✏and/or

Ecm / 1p
✏

JGRG25, YITP Kota Ogasawara

9
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Heavy particle production

・we can assume particle 4 is very massive as
m2

4 =
µ4

✏
+ ⌫4 where            and    are constants⌫4µ4 (> 0)

m2
4 = �(pµ1 + pµ2 � pµ3 )(p1µ + p2µ � p3µ)

= E2
cm +m2

3 + 2(pµ1 + pµ2 )p3µ

・using the momentum conservation

O(1/
p
✏) O(✏0)

　only in this case, we can obtain 
　if the energy, mass and     are fine tunedµ4

⌘
max

' 14

JGRG25, YITP Kota Ogasawara

10

Energy extraction efficiency
・　   terms of    conservationprO(✏)

・　    terms of    conservationpr

) E
3,max

= (2 +
p
3)2E

1

O(✏2)

it gives the lower limit of      (                case)) E2 m4 = O(✏0)

it using estimate     (                   case)m4 = O(1
p
✏)⌫4)

⌘
max

' 2.19

JGRG25, YITP Kota Ogasawara

11
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Energy extraction efficiency
・　   terms of    conservationprO(✏)

・　    terms of    conservationpr

) E
3,max

= (2 +
p
3)2E

1

O(✏2)

it gives the lower limit of      (                case)) E2 m4 = O(✏0)

it using estimate     (                   case)m4 = O(1
p
✏)⌫4)

E1E2 � µ4

⌘
max

=
(2 +

p
3)2E

1

E
1

+ E
2

・if

JGRG25, YITP Kota Ogasawara

11

Energy extraction efficiency
・　   terms of    conservationprO(✏)

・　    terms of    conservationpr

) E
3,max

= (2 +
p
3)2E

1

O(✏2)

it gives the lower limit of      (                case)) E2 m4 = O(✏0)

it using estimate     (                   case)m4 = O(1
p
✏)⌫4)

E1E2 � µ4・if

・moreover, for E1/E2 � 1

JGRG25, YITP Kota Ogasawara

⌘
max

' 14

11
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Energy extraction efficiency

⌘
max

' 14

Schnittman 
(2014)

consistent !!

E1/E2 � 1(               )

⌘
max

' 14

JGRG25, YITP Kota Ogasawara

11

In other cases
・e.g.) energetic escaping particle case

E2
3 =

⇢3
✏

+ �3 ) |pr3| and       have          terms|pr4| O(
p
✏)

�1|pr1|� |pr2| = �3|pr3|� |pr4|

) 0 = �3

q
⇢3[4(1� �(1))2 � 1]� 2(1� �(1))

p
⇢3

O(
p
✏)LHS no

there is no solution for    under the assumption 
of

⇢3

⇢3 > 0

) there is no energy extraction

JGRG25, YITP Kota Ogasawara

12
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Outline
1. Introduction ⇐ finish 
!

2. Usually collisional Penrose process ⇐ finish 
!

3. B.S.W. effect and heavy particle production 
　　　　　　　　　　　　　　　　　　　 ⇐ finish 
4. Summary

Question

The answer is「Yes !!」

So far, upper limit of the efficiency is「14 !!」

「Can we extract energy 
       from the black hole !?」

⇒「How long can we extract 
　　energy from the black hole !?」

JGRG25, YITP Kota Ogasawara
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Summary
・Upper limit of the energy extraction efficiency 
　of particle collision in the ergoregion 
　・critical+subcritical+                : 220％ 
　・critical+subcritical+                    : 1400％

・Two subcritical particles collision might realize 
　more high efficiency or arbitrarily high efficiency 

　(on going)

m4 = O(✏0)

m4 = O(1/
p
✏)

・If    as large as 10 is observed for this process 
　this strongly suggest the production 
　as a result of the collision of high CM energy

⌘

m4 = O(1/
p
✏)

JGRG25, YITP Kota Ogasawara

13
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“Wormhole shadows”

by Takayuki Ohgami

[JGRG25(2015)7a6]
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+	

Wormhole	Shadows �
Graduate	School	of	Science	and	Engineering	

Yamaguchi	University	
Takayuki	Ohgami	and	Nobuyuki	Sakai�

+	
Contents�

1.  Background	:	Black	hole	shadows	

2. Ellis	wormhole	

3. Numerical	calculation	

4. Results	
5. Conclusion	

��
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+	
Background�

��

+	
Black	hole	shadows �

v  Observation	of	black	hole	
horizon	is	attempted.	

v  Black	hole	shadows	�

Fukue+	(1988) � Aurore	Simonnet,		
Sonoma	State	Univ. �

��

                                                                                                                  1037



v  cause	of	black	hole	shadow	

v  photon	orbits	from	source	to	observer	in	
Schwarzschild	spacetime	

-4

-2

 0

 2

 4

-4 -2  0  2  4

y /
 r g

x / rg

Schwarzschild Blackhole

Interstellar	medium	(light	source) �

To	observer. �

The	longer	orbit	pass	through	the	source,	
the	brighter	light	becomes.	

�	The	light	passing	through	unstable	
circular	orbit	is	observed	the	most	brightest.	

Touch	up	Ohgami+	2015. �

r = 1.5rg

 0  1  2  3  4  5  6  7  8

V e
ff

r / r g
Effective	potential	of	photon.�

��

unstable	
circular	orbit�

bright	ring�

v  cause	of	shadow	

v  Light	ray	passing	through	unstable	circular	orbit	is	
the	brightest.	

v  Inner	rays	are	darker	because	black	hole	horizon	
arrest	light	rays.	

v  Shadow	is	given	by	c0ntrast	of	brightness.	

��

black	hole	shadow.�
 0

 1

 2

 3

 4

 5

 6

-3 -2 -1  0  1  2  3
αx / αmax

-3

-2

-1

 0

 1

 2

 3

α
y /

 α
m
ax
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+	
Ellis	wormhole �

	�

+	
Ellis	wormhole	spacetime�

z

Embedding	diagram	of	
Ellis	wormhole. �

Ohgami+	2015 �

Ø  a	:	throat	radius	

v  About	wormhole.	

v  tunnel-like	structure	which	connects	two	distant	
or	disconnected	regions.	

ds2 = �dt2 + dr2 + (r2 + a2)(d✓2 + sin2 ✓ d'2)

v  Warp	drive	(long-distance	
movement	at	short	times),	
Time	travel	

v  traversable	wormhole		


�
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v  Ellis	wormholes	are	unstable.	
v  Shinkai and Hayward, Phys. Rev. D 66, (2002) 
v  Gonzalez et al., Classical Quantum Gravity 26, (2009) 

v  Exotic	matter	could	contribute	to	supporting	the	Ellis	
geometry.	
v  Das and Kar, Classical Quantum Gravity 22, (2005) 

v  Even	if	other	wormhole	solutions	are	applied,	we	could	
discuss		similarly	by	using	method	in	this	study.	

��

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

-6 -4 -2  0  2  4  6

(a2
 / 
L2

) V
ef
f

r / a

Touch	up	Ohgami+	2015. �

v  Effective	potential	of	photon.	

v  It	has	unstable	circular	orbits	in	throat.	
v  shadow	appears.		

peak�

���

other	side	� observer	side�

throat�
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+	
Numerical	calculation�

���

+	
Intensity	distribution �

v  intensity	distribution	of	light	source	

v  Intensity	:	radiative	transfer	equation	

v  interstellar	medium	emit	only	

depend	on	the	condition	of	interstellar	medium	
ρ	:	energy	density,		uµ	:	four-velocity�

���

J ⌘ I(⌫)

⌫3
dJ
d�

=
⌘(⌫)

⌫2
� ⌫�(⌫)J

⌘(⌫)d� = �H(⌫)⇢uµdx
µ, �(⌫) = 0
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v  Spherical	symmetry	

v  Axial	symmetry	

ur
= const.( 6= 0)

⇢ / 1

r2 + a2
 0

 0.2

 0.4

 0.6

 0.8

 1

-6 -4 -2  0  2  4  6

ρ /
 ρ a

r / a

Distribution	of	dust. �

Ohgami+	2015 �

u' = u'
0

a2

r2 + a2
ur = ±

s

(au'
0 )

2

✓
1� sin2 ✓

a2

r2 + a2

◆
+ (ur

0)
2

˙M = 4⇡mnur
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���v  Relativistic	primitive	equations	(dust	approximation)	
v  continuity	equation	
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v  Solutions	
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 n	:	number	density	
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v  Spherical	symmetry	

v Wormhole	shadow	

v  Intensity	distribution	has	a	similar	shape	as	
black	hole.		
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v  Axial	symmetry	
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v  Result	:	change	direction	of	axis.	

	

�
�

                                                                                                                  1044



+	
Conclusion�

���

v  We	calculated	intensity	distribution	
of	dust	flow	around	Ellis	wormhole.	

v  spherical	symmetry	
v  similar	shape	as	black	hole	
v  intensity	contrast	are	quite	different.	

v  axial	symmetry	
v  bright	ring	:	beaming	effect	
v  weakly	luminous	ring	
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v  We	could	detect	Ellis	wormholes	by	these	properties.	

v  It	needs	to	use	high-resolution	observations	(e.g.	VLBI).	
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of H0 and the non perturbative effects of

primordial curvature perturbations

Antonio Enea Romano1

1UDEA, University of Crete
Based on work in collaboration with

Alexei Starobinsky, Misao Sasaki, Sergio Peña,Sergio Sanes
Partially based on

Eur.Phys.J. C72 (2012) 2242, Europhys.Lett. 106 (2014) 69002,
Europhys.Lett. 109 (2015) 3, 39002 .

Antonio Enea Romano

H0 estimation tension
Luminosity distance in an inhomogeneous space: LTB case
Effects of non perturbative evolution of primordial curvature

Outline

1 H0 estimation tension
Consequences of ignoring large scale inhomogeneities

2 Luminosity distance in an inhomogeneous space: LTB case

3 Effects of non perturbative evolution of primordial curvature
LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

Antonio Enea Romano

                                                                                                                  1047



H0 estimation tension
Luminosity distance in an inhomogeneous space: LTB case
Effects of non perturbative evolution of primordial curvature

Consequences of ignoring large scale inhomogeneities

Outline

1 H0 estimation tension
Consequences of ignoring large scale inhomogeneities

2 Luminosity distance in an inhomogeneous space: LTB case

3 Effects of non perturbative evolution of primordial curvature
LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

Antonio Enea Romano

H0 estimation tension
Luminosity distance in an inhomogeneous space: LTB case
Effects of non perturbative evolution of primordial curvature

Consequences of ignoring large scale inhomogeneities

H0 tension

A 3σ tension has been claimed between the local(low
red-shift Supernovae at z ≈ 0.04,(Riess, Astrophys.J. 730,
119, 2011) and cosmological (Planck CMB data)
estimation of the Hubble parameter
Happ
0,SN ≈ 1.09Happ

0,CMB, where H
app
0,SN and Happ

0,CMB are the
values estimated from fitting respectively low-redshift
supernovae and CMB observations
Taking into account the effects of metallicity on the P-L
relation for the Cepheid can reduce substantially the
discrepancy (Efstathiou , MNRAS 2014)
Could this apparent tension be the result of the effects
local structure on the luminosity distance of low red-shift
supernovae ?
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Consequences of ignoring large scale inhomogeneities

The metric plays the role of the gravitational potential in
GR and the effects of a spatially homogeneous potential
with time evolution determined by dark energy can be
partially mimicked in red-shift space by the effects of a
spatially inhomogeneous potential without dark
energy
In the case of the luminosity distance the same red-shift
can be associated to the expansion of the Universe
(assuming spatial homogeneity) or to the propagation
through a spatially inhomogeneous potential (metric)
The effects can be important even for relatively small
inhomogeneities compatible with inflation theory
The assumption of homogeneity can mistakenly lead to
the conclusion of an evolving dark energy with w(z)
while in fact there is only a cosmological constant with
w = −1.

Antonio Enea Romano
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Consequences of ignoring large scale inhomogeneities

LTB metric

The LTB metric can be written as:

ds2 = −dt2 + (R,r )2 dr2
1+ 2E(r) + R2dΩ2 , (1)

Introducing the following variables

a(t , r) = R(t , r)
r , k(r) = −

2E(r)
r2 , ρ0(r) =

6M(r)
r3

ds2 = −dt2 + a2
[

(

1+ a,r r
a

)2 dr2
1− k(r)r2 + r2dΩ2

2

]

(

ȧ
a

)2
= −

k(r)
a2 +

ρ0(r)
3a3 +

Λ

3
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The luminosity distance in a LTB space-time is
DL(z) = (1+ z)2R (t(z), r(z)) = (1+ z)2r(z)a (η(z), r(z)) ,

where
(

t(z), r(z)
)

or
(

(η(z), r(z)
)

is the solution of the
radial geodesic equation as a function of z.
The past-directed radial null geodesics is given by

dt
dr = −

R,r (t , r)
√

1+ 2E(r)
.

from which we can get:

dr
dz =

√

1+ 2E(r(z))
(1+ z)Ṙ,r [r(z), t(z)]

,

dt
dz = −

R,r [r(z), t(z)]
(1+ z)Ṙ,r [r(z), t(z)]

.
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LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

In order to make a connection with the early universe we
introduce the metric which describes a spherically
symmetric space-time after inflation at scales much
exceeding the Hubble one:

ds2 = −dt2 + a2F (t)e2ζ(r)(dr2 + r2dΩ2) .

ds2 = −dt2 + (R,r )2 dr2
1+ 2E(r) + R2dΩ2 , (2)

R = aF (t)eζr , we find the exact relation:

1+ 2E(r) = [1+ rζ ′(r)]2.

In the linear approximation, this reduces to

k(r) = −2ζ
′(r)
r .

Antonio Enea Romano
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We define apparent the value of Happ
0 obtained assuming

homogeneity, and Htrue
0 the one obtained taking the

inhomogeneity into account
In order to resolve the tension we will assume that HCMB

0 is
the correct estimation. This can be achieved if two
conditions are satisfied
Fit the low red-shift luminosity distance with Happ

0,CMB

Dinh
L (zSN ,Htrue

0,CMB) = Dobs
L (zSN) = Dhom

L (zSN ,Happ
0,SN) . (3)

The distance to the last scattering surface should be
unaffected by the inhomogeneity

Dhom(Htrue
0,CMB, zLS) ≈ Dinh(Htrue

0,CMB, zLS) ⇒ Happ
0,CMB = Htrue

0,CMB
(4)

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

We consider an ansatz for the curvature function of this
type

k(r) = Ae−
( r−r0

σ

)2

, (5)

By an appropriate choice of parameters it is possible to
modify the luminosity distance relation only in the
vicinity of zSN while leaving unchanged the distance to
the last scattering

Antonio Enea Romano
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Luminosity density data show that the local universe is
inhomogeneous and anisotropic for z < 0.15
Both the Cepheid used for calibration and the low red-shift
supernovae are in this range
This implies both SN fitting and calibration could have a
direction dependence, and will definitely be affected by the
local inhomogeneity

Antonio Enea Romano
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Figure: The primordial curvature perturbation ζ(r) and the function k(r) are plotted for
A = −0.5, r0 = rSN ∗ 0.8,σ = r0/2.5, and rSN = rΛCDM . The quantities A and k(r) are in units of (Htrue0,CMB)

2,
while r0 is in units of (Htrue0,CMB)

−1.
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Figure: On the top the percentage density contrast δρ
ρ

= 100(1 −
ρLTB (z)

ρΛCDM (z)
) is plotted as a function of the

redshift, showing how contrary to the linear theory approximation, when non perturbative effects are taken into
account, not only underdense regions but also overdense regions can be associated to the decrease of the
luminosity distance necessary to explain observations.
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For the luminosity distance in a LTB space

Dinh
L (z,Htrue

0 ) = DΛLTB(z) = (1+ z)2R(t(z), r(z)) (6)

where we set the parameters of the LTB solution so that

HLTB
0 =

2
3
Ṙ(t0, 0)
R(t0, 0)

+
1
3
Ṙ′(t0, 0)
R′(t0, 0)

= Htrue
0 . (7)

For homogeneous cosmological models we assume a flat
ΛCDM solution according to

H(z) = Happ
0

√

ΩM(1+ z)3 + ΩΛ ,

Dhom
L (z,Happ

0 ) = (1+ z)
∫ z

0

dx
H(x) . (8)
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Figure: The dashed line is the plot of Dhom(Htrue
0,CMB, z) while the solid

line is for Dinh(Htrue
0,CMB , z), both in units of (H

app
0,CMB)

−1.
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0,CMB, z)
for an inhomogeneous model are plotted in units of (Happ
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−1

respectively with a dashed and solid line.
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Figure: Density contrast in different directions as a function of red-shift(fig 11,Astrophys. J. 775, 62 (2013)).
The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same RA∼=azimuth
range, wider DEC∼=zenith).The density contrast profile is similar to the one determined theoretically.
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Figure: Density contrast in different directions as a function of the comoving distance(fig 11,Astrophys. J. 775,
62 (2013)). The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same
RA∼=azimuth range, wider DEC∼=zenith).The density contrast profile is similar to the one determined theoretically.
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Figure: Density contrast in different directions as a function of red-shift(fig 11,Astrophys. J. 775, 62 (2013)).
The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same RA∼=azimuth
range, wider DEC∼=zenith).The density contrast profile is similar to the one determined theoretically.
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Figure: The H0 parameter mapped through the celestial sphere, namely hubble-map, given in terms of
H0/100. The lowest and highest values obtained are H0 = 68.9 ± 0.5 kms−1Mpc−1 and
71.2 ± 0.7 kms−1Mpc−1, respectively, yielding δH0 = 2.3 kms−1Mpc−1.(arXiv:1510.05545)
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Effects on the cosmological constant estimation

We use the relation

k(r) = −2ζ
′(r)
r

to determine the LTB metric given ζ(r) according to the
ansatz

ζ(r) = Ae−(
r
σ )

2

CMB observations give A ≈ 510−5
The parameter σ controls both the physical size of the
inhomogeneity and the density contrast
The gaussian ansatz for the primordial curvature
perturbations is not related to the gaussianity of the field, it
is only a convenient profile, and since the primordial
curvature perturbation are approximately scale
invariant there is no preferred valued of σ a priory.
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Figure: In the top figures ζ(r) and k(r) are plotted for
A = 2× (5× 10−5) for different values of σ . In the bottom figures ζ(r)
and k(r) are plotted for A = 2× (5× 10−5) for different values of σ .
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Figure: The energy density ratio ρ(t0, r)/ρ(t0, 0) at the time observation t0 is plotted as function of the radial
coordinate for A = −2 × (5 × 10−5) on the left and A = 2 × (5 × 10−5) on the right. As it can be seen positive
primordial curvature perturbations, correspond to a central overdensity, and negative primordial curvature
perturbations correspond to a central underdensity. Another important feature is that larger values of σ correspond
to smaller levels of inhomogeneity. The radial coordinate r and σ are expressed in units of H−1

0 .
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Figure: The relative difference
∆(z) = (DΛCDM

L (z)− DΛLTB
L (z))/DΛCDM

L (z) of the luminosity distance
between the ΛLTB case and ΛCDM is plotted for different values of σ,
where the latter is in units of H−1

0 . The left figure corresponds to
A = −2× (5× 10−5) and the right to A = 2× (5× 10−5). A local
underdensity, corresponding to A < 0, is associated to a larger
luminosity distance respect to the homogeneous case, while local
overdensities give a smaller distance. σ is expressed in units of H−1

0 .
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Figure: The energy density ratio ρ(t0, r)/ρ(t0,0) at the time
observation t0 is plotted as function of the radial coordinate for
A = −2× (5× 10−5) on the left and A = 2× (5× 10−5) on the right.
As it can be seen small values of σ correspond to very large levels of
inhomogeneity, making them incompatible with observations. The
radial coordinate r and σ are expressed in units of H−1

0 .
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Figure: The contour plots for the luminosity distance χ2 are shown for the parameters ΩΛ and σ, expressed in
units of H−1

0 . For the top figures A = 1 × 5 × 10−5 , A = 2× 5 × 10−5 and A = 3 × 5 × 10−5, from left to
right respectively.
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LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

A/(5× 10−5) σ ΩΛ χ2min t0
3 1.64 0.7204 562.242 0.983023
2 1.212 0.7204 562.242 0.982992
1 0.864 0.7204 562.242 0.982995
0 0.72 562.242 0.982778
-1 0.209 0.7155 562.217 0.981357
-2 0.228 0.7124 562.202 0.980357
-3 0.232 0.709 562.190 0.979288

Table: The table shows the values of σ, expressed in units of H−1
0 ,

and ΩΛ minimizing the χ2 for different values of the amplitude A,
where the latter is expressed in integer multiples of the 5× 10−5, the
value of the standard deviation of the primordial curvature
perturbations implied by CMB observations. Positive values of A do
not improve appreciably the value of χ2, neither affect greatly the best
fit values for ΩΛ, while negative values improve the χ2 and affect ΩΛ.

Antonio Enea Romano
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H0 estimation tension
Luminosity distance in an inhomogeneous space: LTB case
Effects of non perturbative evolution of primordial curvature

LTB metric and primordial curvature fluctuations
H0 tension
Effects on the cosmological constant

Conclusions

Ignoring local inhomogeneities can cause misestimation of
cosmological parameters
Perturbation theory is not always able to account for these
effects
The H0 discrepancy between the local and Planck
estimation could be explained (1403.2034) as the result of
local structure
Low red-shift supernovae data should be analyzed in order
to check the compatibility with the local inhomogeneity
profile coming from luminosity distance and number counts
Preliminary result show a degradation of χ2. How to
explain this? Evolution, k-correction, selections effects
could substantially bias the inhomogeneity profile detection
A more realistic model requires to go beyond the spherical
symmetry and take into account directional dependence

Antonio Enea Romano
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“Probing primordial non-Gaussianity consistency relation with galaxy 

surveys”

by Daisuke Yamauchi

[JGRG25(2015)7b2]
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Probing 

primordial non-Gaussianity

consistency relation 

with galaxy surveys

YAMAUCHI, Daisuke

(RESCEU, U. Tokyo)

DY and K. Takahashi(Kumamoto), 1509.07585

2015/12/10 JGRG25 @ YITP

A critical test of primordial Universe

→ Primordial non-Gaussianity
= Possible departures from a purely Gaussian

distribution of primordial density fluctuations

¾One of the most powerful tests of inflation

• Hint about a mechanism for generating 
primordial fluctuations 

• More generally key to understanding the 
extreme high-energy physics 
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fNL,τNL,gNL,…
¾Primordial bispectrum (3-pt. fn.)

¾Primordial trispectrum (4-pt. fn.)

<Φ(k1)Φ(k2)Φ(k3)> = (2π)3 BΦ(k1,k2,k3) δ3(k1+k2+k3)

<Φ(k1)Φ(k2)Φ(k3)Φ(k4)> = (2π)3 TΦ(k1,k2,k3) δ3(k1+k2+k3+k4)

(amplitude) × (shape dependent fn)
fNL

(amplitude) × (shape dependent fn)
τNL,gNL

PNG consistency relation

τNL≧((6/5)fNL)
2

[Suyama+Yamaguchi (2010)]

The confirmation of the inequality would 

indicate the presence of complicated dynamics 

in the primordial Universe.

It should be the target in future experiments!

All inflationary models predict that (if fNL = 0) 

the trispectrum must necessarily exist with 
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Current constraints from CMB

fNL = 0.8+-5.0 (68%CL)

gNL = (-9.0+-7.7)×104 (68%CL)

τNL < 2800 (95%CL)

¾(local-form) bispectrum

¾(local-form) trispectrum

[Planck 2015]

[Planck 2015]

[Planck 2013]

Almost all models are still consistent, though model 
parameters are severely constrained.

PNG in large-scale structure

Pgal = [bL(M,z)+ fNLβf(M,z)/k2D+(z)]2 Pδ

Large PNG

Light

Heavy

[Ferremacho+(2014)]

¾ PNG induces the scale dependent-bias such that 

the effect dominates at very large scales:

Galaxy surveys can effectively 

constrain PNG to the level 

comparable to CMB.
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• Covers 30,000 [deg2] out to z~5.
• The redshift information is not available.
• Halo mass can be estimated from the galaxy type.
• 8 nuisance parameters for mass inference.

Survey design

¾ Euclid : optical/infrared photometric survey
• Covers 15,000 [deg2] out to z~2.7.
• Provides redshift information via photometric redshifts.
• 14 nuisance parameters to include uncertainties in 

mass inference from data

¾ SKA+Euclid : 9,000 [deg2] 

¾ SKA : radio continuum survey

[DY+Takahashi 1509.07585,SKA-JP Science Book]

Complementary information from SKA and Euclid helps to 
break the parameter degeneracy and the joint analysis are 
quite effective to constrain PNG.

fNL

τ N
L

g N
L

gNL
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[DY+Takahashi 1509.07585,SKA-JP Science Book]

Complementary information from SKA and Euclid helps to 
break the parameter degeneracy and the joint analysis are 
quite effective to constrain PNG.

fNL

τ N
L

g N
L

gNL

Planck this work σPlanck/σours

σ(fNL) 5 1 5

σ(τNL) 103 10 102

σ(gNL) 105 5×103 20

We expect >100 times 
improvement of FoM in future!

Can we confirm                            ? 

prohibited

fiducial fNL

fid
uc

ia
lτ

N
L

τNL<((6/5)fNL)2

τNL≧((6/5)fNL)2

prohibited
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Can we confirm                            ? 

prohibited

fiducial fNL

fid
uc

ia
lτ

N
L

τNL<((6/5)fNL)2

τNL≧((6/5)fNL)2

It is generally 
difficult to detect 

small fNL and/or τNL.

For large τNL, the constraining power on fNL
decreases, because the correction from τNL

to the bias dominates.

prohibited

Can we confirm                            ? 

prohibited

fiducial fNL

fid
uc

ia
lτ

N
L

τNL<((6/5)fNL)2

τNL≧((6/5)fNL)2

It is generally 
difficult to detect 

small fNL and/or τNL.

For large τNL, the constraining power on fNL
decreases, because the correction from τNL

to the bias dominates.

Sweet spot

prohibited
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Accessible region: fNL/σ(fNL)>1&τNL/σ(τNL)>1

[DY+Takahashi 1509.07585,SKA-JP Science Book]

fiducial fNL

fi
d

u
ci

al
τ N

L

SKA1

SKA2
SKA2+Euclid

[DY+Takahashi 1509.07585,SKA-JP Science Book]

fiducial fNL

fid
uc

ia
lτ

N
L

(fNL,τNL)～(0.9,8).

Accessible region: fNL/σ(fNL)>1&τNL/σ(τNL)>1
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Summary

¾The information from both Euclid and SKA is quite 
essential to break the degeneracy between the PNG.

¾The combination of SKA2 and Euclid can detect the 
consistency inequality in the wide parameter region 
at more than 1σ level, though for a single survey it is 
still hard to confirm when fNL<1.5.

Thank you!
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“Modeling redshift-space bispectrum from perturbation theory”

by Ichihiko Hashimoto

[JGRG25(2015)7b3]
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Modeling redshift-space 
bispectrum from 
perturbation theory
Yukawa institute of theoretical physics  
Ichihiko Hashimoto
Collaborators： 
Atsushi Taruya (Kyoto U), Yann Rasera (Paris Observatory)

  

Origin of accelerated expansion

Redshift-space distortions (RSD) can be 
unique probe to measure the growth rate

How to distinguish ?
Dark energy　or　Modified gravity 　？？

Structure formation history offers cosmological 
test of gravity 

e.g. Linder (‘05)GR case : f(z) ' {⌦m(z)}0.55

f(z) ⌘ d lnD+

d ln a

Growth rate
D+ : linear growth factor of 
  density fluctuation 

: scale factora
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Redshift-space distortion 
v

The apparent anisotropies of galaxy clustering due 
to peculiar velocity :  

real space

redshift space
v

observer

The strength of RSD is proportional to growth rate
v / f(z)

On large scales,

s = r +
vz(r)

aH(z)
ẑ
red-/blue- shift

redshift space real space

s = r +
vz(r)

aH(z)
ẑ : line of site

Current status

・Consistent with ΛCDM at ~10% level 
・Most of the constraints is based on the measurement 
   of two point correlation or power spectrum

Constraints
Planck 2015 XIII

 z

Samushia et al (‘13)
Correlation function

line of sight
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Era of precision cosmology
Future redshift surveys will release huge data set

・Combining higher-order statistics with power spectrum
・Precision theoretical-models reducing nonlinear systematics
  Theoretical issues

h�(s)(k1)�
(s)(k2)�

(s)(k3)i = (2⇡)3�D(k1 + k2 + k3)B
(s)(k1, k2, ✓12, µ,�)h�(s)(k1)�

(s)(k2)�
(s)(k3)i = (2⇡)3�D(k1 + k2 + k3)B

(s)(k1, k2, ✓12, µ,�)

Precision modeling of bispectrum in redshift space
In this talk

Euclid(‘20~)SuMIRe(‘14~) DESI(‘18~)

・・・

Impact of combining bispectrum

Song et al. (‘15)  

z
0

5

10f Power spectrum
Bispectrum

Power + Bispectrumer
ro
r o

f  
  (
%
)

1�

k
max

= 0.1 [h/Mpc]

Bispectrum helps to reduce statistical errors 
→ How about systematics errors ?

・Forecast constraint on 
   growth rate based on 
   Scoccimarro et al. (‘98)
・Combining bispectrum 
   improves the constraint by 
   a factor of two for DESI 

・Combination of power spectrum and bispectrum 
   improves the constraints on cosmological parameters

  Sefusatti et al. (’06), Kayo & Takada (’13) ..
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Aim of this work
Modeling redshift-space bispectrum, taking account of 
nonlinear effects on RSD & gravitational evolution
Perturbation theory in redshift space  

3. Substituting      into bispectrum h�(s)�(s)�(s)i = (2⇡)3�DB
(s)

(1 + �

(s))d3s = (1 + �)d3x

redshift space real space
(1 + �

(s))d3s = (1 + �)d3x(1 + �

(s))d3s = (1 + �)d3x s = r +
vz(r)

aH(z)
ẑ

O((�1)
4) O((�1)

6)

B(s) ' B
tree

+B
1�loop

+ · · ·B(s) ' B
tree

+B
1�loop

+ · · ·B(s) ' B
tree

+B
1�loop

+ · · ·
Previous works
B(s) ' B

tree

+B
1�loop

+ · · ·
Our work

1. Solving Poisson and fluid eqs order by order

v ' �v1(�1) + �v2(�1) + · · ·� ' �1 + �2 + · · ·

2. Computing      based on the mapping formula ;

density fluctuation : velocity field :

�(s)

�(s)

Result : PT vs simulations

In redshift space, 1-loop correction can give a 
moderate enhancement in bispectrum amplitude

k1 = k2 = k3 = k k1 = k2 = k3 = k
 0

 50000

 100000

 150000

 200000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4
 0

 50000

 100000

 150000

 200000

 0.05  0.1  0.15  0.2  0.25  0.3  0.35  0.4

real space redshift space

N-body

PT (1-loop)

PT (tree)

k [h/Mpc]k [h/Mpc]

z = 0 z = 0

Blot et al. (‘14)
Box size : 656.25 Mpc/h, # of particles : 1024^3, # of realizations : 64

 monopole

Equilateral triangles

k3B(k1, k2, k3) k3B̂(s)
` (k1, k2, k3)
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Result : redshift dependence

Perturbation theory seems to reproduce simulation 
well at high redshift and large scales

Blot et al. (‘14)
Box size : 648 Mpc/h, # of particles : 1024^3, # of realizations : 1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1
k [h/Mpc]

N-body

PT (1loop)
PT (tree)

k1 = k2 = k3 = k
 monopole
Prelim

inary

Prelim
inary

Equilateral triangles

B̂(s)
` (z = 0.25)

B̂(s)
` (z = 0)

B̂(s)
` (z = 1)

B̂(s)
` (z = 0)

Summary
Modeling redshift-space bispectrum taking account of 
nonlinear effects on gravity and RSD

We calculated bispectrum up to 1-loop order in perturbation 
theory and compared it with N-body simulation

Purpose  

What we did  

・In redshift space, 1-loop correction can give a moderate 
   enhancement in bispectrum amplitude, while the  
   simulation results show a rather mild enhancement  

→ range of agreement becomes narrower at low-z 
・Improved PT modeling would be essential (future task)
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“Scalar perturbations in Bimetric Gravity”

by Yuki Sakakihara

[JGRG25(2015)7b4]
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Scalar perturbations in bimetric gravity 

Yuki Sakakihara (Kyoto University)�

2015/12/10 JGRG25 YITP(Maskawa Hall) 14:45-15:00 �

This research is collaborated with Takahiro Tanaka (Kyoto University)  
and it was motivated by Jiro Soda (Kobe University). 
We are now preparing for the preprint version.�

If gravitons have their mass, that works as an IR modification.  

Massive Gravitons 

One way to seek such theories is IR modification. 

The effects arising from dark matter and dark energy are low-
energy phenomena.  

General relativity well describes many of observations and 
experiments.  

However, we have unknown things such as dark components of the 
universe. dark matter, dark energy... 

Can we have some alternative theories to general relativity which 
help us to understand the origin of these unknown components?  

We know very few about graviton’s features. Are gravitons 
massless? How many species do they have?   
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(              )2 

Massive Gravity�

We need to introduce another spin-2 field (another spin-2 tensor). 
in order to give gravitons their mass.  

mass term�~ const. gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

const. 

Then, how can we obtain theories including massive gravitons? 

gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

gµνg
νλ = (1)

gµνf
νλ ̸= (2)

φ̈ + (3H + Γ)φ̇ + m2
φφ = 0 (3)

χ (4)

Γ(φ → χχ) ∝ g4

(5)

χ̈k + (k2 + g2φ2)χk = 0 (6)

χ̈k + 3Hχ̇k + (k2/a2 + g2φ2)χk = 0 (7)

φ = f(t) sin(mφt) (8)

χ′′ + (Ak − 2q cos 2z)χk = 0 (9)

where

Ak = k2/m2
φ − 2q (10)

q :=
g2f 2

4m2
φ

(11)

z = mφt (12)

d

dt
(a3nφ) = −Γ(a3nφ) (13)

q̈ + 3Hq̇ +
k2

e2α
q = −m2M2

e

M2
g

ϵ(−3 + ϵ + ζϵ)(p − q) (14)

1

g and f are  
independently transformed. 

by adding interaction terms 
(symmetry breaking) 

massless massless 

massless graviton 
(orthogonal to the massive mode) 

massive graviton                    + 

∼ f − g (1)

∼ g + f (2)

∼ (3)

H ∼ +πijπ
ij − π2 (4)

πij (5)

1

∼ f − g (1)

∼ g + f (2)

∼ (3)

H ∼ +πijπ
ij − π2 (4)

πij (5)

1

∼ f − g (1)

∼ g + f (2)

∼ (3)

H ∼ +πijπ
ij − π2 (4)

πij (5)

1

Bimetric Gravity (Bigravity)� (de Rham et. al., 2011, Hassan and Rosen, 2012)�

The interaction terms are restricted in order not to produce ghost instability. 

The dynamics of both of the metrics are determined by equations of motion.  
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Bimetric Gravity is realistic?�

Bimetric gravity is consistent with observations and it is a 
candidate which realizes the history of the universe? 

We focus on inflation among cosmological phenomena. �

Is bimetric gravity both theoretically and observationally 
consistent with inflation?�

Observable quantities related to inflation are measured (and are to 
be measured) with high precision. CMB temperature anisotropy, 
B-mode polarization, gravitational wave background …  

It is interesting to consider inflation which is an high-energy 
phenomenon in an theory with low-energy modifications. 

What is the feature of gravitational waves and curvature 
perturbations generated during inflation? 

Inflation in Bimetric Gravity�

Can we construct inflationary solutions with an inflaton 
as in the case of GR? 

Are they stable solutions? 

Inflationary solutions are found. 

How the points determined by an inflaton potential on the 
r - ns plane are moved?  

We have stable one. 

The amplitude are suppressed due to the decay of massive 
graviton’s modes. The spectral index is also modified. 

Their behavior is rather restrictive than we expected.  
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Bimetric Action with an Inflaton 

I. INTRODUCTION

II. BIGRAVITY ACTION

S =
M2

g

2

∫
d4x

√
−gR[gµν ] +

∫
d4x

√
−g

(
−1

2
gµν∂µϕ∂νϕ− V [ϕ]

)

+
κM2

g

2

∫
d4x

√
−fR[fµν ]−m2M2

g

∫
d4x

√
−g

4∑

n=0

cnVn[Y
µ
ν ] , (2.1)

M2
g = 1/(8πMG), Y µ

α Y
α
ν = gµαfαν

III. CONFORMAL TRANSFORMATION

We know that if we impose

fµν = ξ2gµν , (3.1)

we obtain

S =
M2

g

2

∫
d4x

√
−g(1 + κξ2)R[gµν ] +

∫
d4x

√
−g

(
−1

2
gµν∂µϕ∂νϕ− V [ϕ]

)

−
∫

d4x
√
−gU(ξ) , (3.2)

where

U(ξ) = m2M2
g (c0 + 4c1ξ + 12c2ξ

2 + 24c3ξ
3 + 24c4ξ

4) (3.3)

Transformation

gµν = Ω2[φ]ḡµν (3.4)

where

Ω =
( 1

1 + κξ2

)1/2

(3.5)

gµν =
1

Ω2
ḡµν (3.6)

√
−g = Ω4√−ḡ (3.7)

1
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∫
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√
−g
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µ
ν ] , (2.1)

M2
g = 1/(8πMG), Y µ

α Y
α
ν = gµαfαν

III. CONFORMAL TRANSFORMATION

We know that if we impose

fµν = ξ2gµν , (3.1)

we obtain

S =
M2

g

2

∫
d4x

√
−g(1 + κξ2)R[gµν ] +

∫
d4x

√
−g

(
−1

2
gµν∂µϕ∂νϕ− V [ϕ]

)

−
∫

d4x
√
−gU(ξ) , (3.2)

where

U(ξ) = m2M2
g (c0 + 4c1ξ + 12c2ξ

2 + 24c3ξ
3 + 24c4ξ

4) (3.3)

Transformation

gµν = Ω2[φ]ḡµν (3.4)

where

Ω =
( 1

1 + κξ2

)1/2

(3.5)

gµν =
1

Ω2
ḡµν (3.6)
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where

Ω =
( 1

1 + κξ2

)1/2

(3.5)

gµν =
1

Ω2
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Bigravity model has been studied in a various context, but how it can be matched with the
standard cosmology seems to be still unclear. We discuss how the standard inflationary paradigm
will be modified in the context of the simplest ghost free bigravity model.

I. INTRODUCTION

Infrared modification of general relativity is attracting
interest in the attempt of building a consistent model
of cosmology that explains various cosmological observa-
tions in harmony. Ghost free bigravity model is one of
possible infrared modifications of general relativity that
have not been ruled out yet. The model is relatively new,
and therefore various fundamental aspects of the model
have not explored yet. Our focus here in this paper is
whether or not the ghost free bigravity model is compat-
ible with the low energy modification of general relativity
and inflationary paradigm.

II. SIMPLE GHOST FREE BIGRAVITY

We express two metrics as

ds2 = gµνdx
µdxν , ds̃2 = g̃µνdx

µdxν . (2.1)

The simplest ghost free action S =
∫
d4xL, in which two

metrics gµν and g̃µν interact only through non-derivative
coupling and there is no extra field in the gravitational
sector, is given by

Lg =
√
−g

[
M2

G

(
R

2
−m2

4∑

n=0

cnVn(Y
µ
ν ),

)]

+
κM2

G

2

√
−g̃R̃ , (2.2)

where M2
G = 1/(8πGN ) and Y µ

α Y α
ν = gµαg̃αν . R and R̃

are the Ricci scalars with respect to gµν and g̃µν , respec-
tively, and g and g̃ are the determinants of gµν and g̃µν ,
respectively. GN is the bear gravitational coupling con-
stant for gµν metric, while GN/κ is that for g̃µν . To this
setup, we add Lm, the Lagrangian of matter fields which
interact only with gµν . cn are the model parameters and
Vn’s are defined by

V0 = 1, V1 = [Y ], V2 = [Y ]2 − [Y 2],

V3 = [Y ]3 − 3[Y ][Y 2] + 2[Y 3], (2.3)

V4 = [Y ]4 − 6[Y ]2[Y 2] + 8[Y ][Y 3] + 3[Y 2]2 − 6[Y 4],

where

Y µ
ν =

√
gµαg̃αν , (2.4)

and

[Y n] := tr(Y n) = Y α0
α1

Y α1
α2

· · ·Y αn−1
α0

. (2.5)

III. THE FLRW BACKGROUND

The bigravity model possesses simple spatially flat
FLRW background solutions. Two metrics are simply
given by

ds2 = a2(−dt2 + dx2) , (3.1)

ds̃2 = ã2(−c̃2dt2 + dx2) , (3.2)

where a, ã, and c̃ are functions of the proper time t. c̃
play the role of the expansion velocity of the light cone
of g̃-metric with respect to the physical metric gµν . In-
troducing ξ ≡ ã/a, we find that the Friedmann equation
for the physical metric derives as

3H2 =
ρ+ ρV
M2

G

, (3.3)

where H ≡ ∂ta/a2 and ρ are the Hubble parameter and
the matter energy density, respectively, while

ρV (ξ)

M2
Gm

2
≡ U(ξ)− ξ

4
U ′(ξ) , (3.4)

is the energy density originating from the mass term,
where

U(ξ) = c0 + 4c1ξ + 12c2ξ
2 + 24c3ξ

3 + 24c4ξ
4 .(3.5)

On the other hand, the Friedmann equation for the
fiducial metric is given by

3

c̃2a2

(
∂tã

ã

)2

=
m2

4κξ
U ′(ξ) +

ξ2ρ̃

κM2
G

. (3.6)

We basically consider the simplest model in which the
ordinary matter fields are coupled to the physical metric
without tilde, but our main interest is in massive gravi-
tons as dark matter. As massive gravitons couple to both
metrics, we keep the energy density and pressure of the
matter coupled to the hidden metric.
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1

Reduction of  Bimetric Action 

... 
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“bigravity from gradient expansion in DGP 2-brane model”

by Yasuho Yamashita

[JGRG25(2015)7b5]
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bigravity from gradient expansion  
in DGP 2-brane model

YITP, Kyoto University 
Yasuho Yamashita 

!
in collaboration with T. Tanaka 

ghost-free bigravity
bigravity : gravitational theory which contains two gravitons interacting each other

S =
M

2
pl

2

Z
d

4
x

p
�g [R+ V (g, g̃)] +

�M

2
pl

2

Z
d

4
x

p
�g̃R̃

For general interaction V, an extra DoF whose kinetic term has wrong sign appears.

To avoid BD ghost, V should be tuned as

We can construct a realistic cosmological model at low energies.

Boulware and Deser (1972)

The gravitational wave has a characteristic feature.

… Boulware-Deser ghost

… two gravitons cause “graviton oscillation” like neutrino oscillation

de Rham, Gabadadze, Tolley (2011)
Hassan and Rosen (2012)

V = m2
4X

n=0

cn✏
µ1...µn
⌫1...⌫n

K⌫1
µ1

. . .K⌫n
µn

, K⌫
µ =

p
g⌫⇢g̃⇢µ
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Questions in ghost-free bigravity

What is the hidden metric?  

The form of  the interaction is derived technically and artificially.                                    

embed ghost-free bigravity  
                  to higher dimensional gravity.

How the fine-tuning of  the interaction term can be realized?

Why higher dimensional theory?
Consider 5-dim braneworld model sandwiched by two branes.

S =

M

3
5

2

Z
d

5
x

p
�g R + (boundary term)

4-d brane

extra dim

massless in 5-d

massive in 4-d

The 4-d effective theory contains one massless graviton, 
   infinite # of  massive gravitons and one scalar (radion=brane separation).

There is no BD ghost. 

two metrics induced on two branes ⇔ two metrics in bigravity  

5-dim massless graviton
= 1 massless and infinite # of  massive gravitons on the branes

y-y+

`
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Model

y+ y-

effective potential by gravity

steep potential wells (    << depth)

nearly degenerate two small mass

In order to get bigravity, only one massive mode is to be kept at low energies.

Dvali-Gabadadze-Poratti model

induced gravity terms = potential wells

S =
M

2
pl

2


1

2r(+)
c

Z
dx

5
p
�5

g

5
R+

Z
d

4
x

p
�g+ (R+ � 2�+) + �

Z
d

4
x

p
�g� (R� � 2��)

�

potential depth

`�1

`

Gradient expansion

The solution has two branches; one is ghost free and one has Higuchi/radion ghost.
���K±r

(±)
c

��� . 1 should be satisfied for the ghost-free branch.
YY and Tanaka (2014)

To obtain bigravity, the parameter is to be tuned as                    → 

We calculate the effective action at the leading order the expansion in 

gradient expansion

K` ⌧ 1

m2 ' 1

r(±)
c `

`

r(±)
c

⌧ 1

�gµ⌫ := g(+)
µ⌫ � g(�)

µ⌫ ⇠ O (K`)

r(±)
c ⇠ O (1/K) m2 ⇠ k2 ⇠ O (K/`),
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Strategy to obtain the effective action
We solve the bulk equations for given boundary metrics

K2 �Kµ
⌫K

⌫
µ = �12

`2⇤
+R

1

N
@yKµ⌫ = �2K⇢

µK⇢⌫ +KKµ⌫ +
4

`2⇤
gµ⌫ �Rµ⌫ +

1

N
rµr⌫N

Kµ⌫ = � 1

2N
@ygµ⌫

S =
M

2
pl

2r(+)
c

I
d

5
x

p
�g(R+K

2 �K

µ
⌫K

⌫
µ � 12

`

2
⇤

) + (induced gravity term)

g(±)
µ⌫

by substituting back the bulk metric solution            and integrating this along y. 

The bulk degrees of  freedom is integrated out and we obtain bigravity.

gµ⌫(y)

gauge fix: @yN = 0 , Nµ = 0

Then we can obtain the effective action written in         fromg(±)
µ⌫

Result
At the leading order of  gradient expansion, 

S =
M

2
pl

2

2

r

(+)
c

Z
d

4
x

p
�g


�g

2 ��gµ⌫�g

µ⌫

16�
+

�

3
(rµr⌫ � g

µ⌫⇤�R

µ⌫)

✓
(rµ�) (r⌫�)�

�2

`

2
⇤

gµ⌫

◆�

+(induced gravity terms)

`⇤ : 5-d cosmological constant

is determined by the Hamiltonian constraint C=0:  � :=
1

2
N`

ḡµ⌫ =
g(+)
µ⌫ + g(�)

µ⌫

2
+ �rµr⌫�+

�2

`2⇤
gµ⌫whereC := R̄� 12

`2⇤
� �g2 ��gµ⌫�gµ⌫

16�2
= 0

is the covariant differentiation with respect to       ,r gµ⌫

which is indistinguishable from        ,        , and                       .g(+)
µ⌫ g(�)

µ⌫
1

2

⇣
g(+)
µ⌫ + g(�)

µ⌫

⌘
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Result
treat     as an independent variable by adding 
and eliminate Lagrange multiplier      by use of  EOM for 

�
��

�C

cubic Galileon

We obtain a well-known ghost-free system with two interacting gravitons and a scalar. 

S =
M

2
pl

2

Z
d

4
x

p
�g+R(+) + �

Z
d

4
x

p
�g�R(�)

+
2

r

(+)
c

Z
d

4
x

p
�g

⇢
�g

2 ��gµ⌫�g

µ⌫

32�
� 1

2`2⇤
�2

✓
⇤+

4

`

2
⇤

◆
�+

�

2

✓
R� 12

`

2
⇤

◆

�1

6
(rµ�) (r⌫�) (rµr⌫ � g

µ⌫⇤�R

µ⌫)�

��

absorbed by conformal trsf.

At the leading order of  the gradient expansion, we cannot examine
q

gµ⇢(+)g(�) ⇢⌫ � �µ⌫the form of  mass interactions at higher order of  

Summary

We want to derive the ghost-free bigravity from some more fundamental theory            
which is valid at high energies … DGP 2-brane model

We calculate the effective action under gradient expansion, in which the brane    
separation is so small that the metric does not change significantly along y-direction,        
by solving bulk equations and integrating out the bulk degrees of  freedom.                                               
We obtain a well-known ghost-free bigravity + one scalar system. 

The extension to the higher order of  gradient expansion is difficult                          
because it will produce complicated and higher-derivative interactions, which may 
correspond to the appearance of  the other massive KK modes.
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Stabilization mechanism (Goldberger & Wise)

The distance between two branes are stabilized.

: fixed

@y ! 1 as `! 0

`

There is an extra scalar d.o.f. corresponding to the brane separation.

We introduce a stabilization scalar field to fix the brane separation.

… We should remove it to reproduce bigravity !
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DGP 2-brane model with stabilization 
mechanism which reproduces bigravity

r(±)
c = 1.00⇥ 105 , ` = 1.00

M5 = 1.00

bigravity

µ2

cut off

m2

m2
0 = 0

m2
1 = 2.00⇥ 10�5

µ2
0 = 1.77

m2
2 = 9.87

graviton’s mass scalar mode’s mass

!
（brane separation l ） 

　  <<（strength of induced gravity rc(±) ）

0.3155 0.3160 0.3165 0.3170 0.3175 0.3180

3.5¥10-11

4.¥10-11

4.5¥10-11

5.¥10-11

 
 + �

0.3155 0.3160 0.3165 0.3170 0.3175 0.3180

2

4

6

8

10

 
 �  +

V(+) V(�)

parameters

potential of  scalar field

Correspondence between ghost-free bigravity and 
DGP 2-brane model with stabilization mechanism

two metrics two metrics induced on the two branes

graviton’s mass the mass of  the lowest massive mode

ghost-free bigravity DGP 2-brane model

When the two branes are almost flat, 

YY and Tanaka (2014)

DGP 2-brane model is identical to ghost-free bigravity.

However, can we really embed bigravity to braneworld setup?

Consider doubly coupled matter to test this idea.
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doubly coupled matter

5-dim  
matter

gµ⌫ fµ⌫

brane model
Introducing 5-d matter, we can  
naturally obtain a matter field  
which couples to both metrics.

→ BD ghost seems absent.

…There seems to be a difficulty in our attempt. 

contradiction

matter

gµ⌫ fµ⌫

coupling through the matter  
generally detunes the ghost-free 
structure of  the interaction.

bigravity

→  BD ghost appears?

Seeking for models with doubly coupled matter  
which have no BD ghost

Introduce a k-essence scalar field

Consider perturbation around FLRW and Bianchi type-1 spacetime

When                 ,  
 an extra d.o.f. exists.

detA 6= 0

Lm =
p
�g P (X,�) +

p
�f P̃ (X̃,�)

X = �1

2
g↵�@↵�@�� , X̃ = �1

2
f↵�@↵�@��

BD ghost appears unless ˜P =

˜P (�) or P = P (�)

and evaluate the determinant and the eigenvalues of  the kinetic matrix A.

YY, De Felice and Tanaka (2014)

their signs clarify  
 whether the d.o.f. is a ghost mode or not.
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Radion as a doubly coupled matter

`

Radion: a degree of  freedom which corresponds to the brane separation

We will check how radion couples to the two metrics in 4-dim effective theory.

…We can obtain a ghost free model in bigravity with doubly coupled matter 
     or find how the correspondence breaks between ghost-free bigravity  
     and braneworld model.

                                                                                                                  1092



bigravity and Boulware-Deser ghost

This mode’s kinetic term  
has opposite sign!!

Boulware-Deser ghost
Boulware and Deser (1972)

In order to obtain healthy bigravity, we have to tune the interaction form 
                                              so that the ghost mode is removed by constraints.

The interaction term breaks general covariance for g 
fix f

S =
M

2
g

2

Z
d

4
x

p
�g

h
R

(g) + 2m2
V (g, f)

i
+

M

2
f

2

Z
d

4
x

p
�fR

(f)

massive graviton

GR ( helicity-2 ) + 4 gauge breaking ( helicity-1, helicity-0, helicity-0 )  

bigravity : gravity which contains two interacting gravitons

ghost-free bigravity

V =
4X

n=0

cn✏
µ1...µn
⌫1...⌫n

K⌫1
µ1

. . .K⌫n
µn

K⌫
µ =

p
g⌫⇢f⇢µ

Choosing the form of  the interaction as

de Rham, Gabadadze, Tolley 
                                      (2011)

Then Hamiltonian becomes linear in N, L, Li.

H = NC + LCL + LiCL
i . C, CL, CL

i are functions of

�
�ij , ⇡

ij , 3fij , p
ij
 

One of  the Hamiltonian constraints kills BD ghost.
Hassan and Rosen (2012)

conjugate momentum

ADM decomposition
N�2 = �g00 , Ni = g0i , �ij = gij ,

L�2 = �f00 , Li = f0i ,
3fij = fij .

define new shift-like vector        
and rewrite       with niN i

ni
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graviton’s mass spectrum

the lowest massive mode

: hierarchy

massless mode always exists

y+ y-

lowest massive mode

massless mode

K(±)
µ⌫ = r(±)

c

✓
G±(4)

µ⌫ � 1

3
G±(4)gµ⌫

◆
junction condition:

m2
1 ' 1

rc`
⌧ 1

`2
' m2

2

For              , eigenfunctions become` ⌧ rc

gµ⌫/` ' rc⇤(4)gµ⌫ = rcm
2
1gµ⌫

` ⌧ rc

stronger stabilization ( large       )                  large μ2             |H0|

                          make μ2 negative

corresponds to the self  accelerating branch 
                                            : K.Izumi et al. (2007)

1⌥ 2r(±)
c H± < 0

mass spectrum (scalar mode)
stabilization mechanism → no massless mode 

If  stabilization is weak:                            ,  

H : 5-d curvature scale

µ2 ⇡
2

Z y�

y+

dy

a2
+
X

�

2r(�)c

a2�

1

1� �2r(�)c H�Z y�

y+

dy

a4(�H0)

the lowest mass becomes       

����
@yH
H2

���� ⇠
(@y )2

M3
5H2

⌧ 1
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ghost in DGP model

means 

 ghost never disappears   K.Izumi et. al. (2007)

: self-accelerating branch2rcH+ � 1 > 0

m2
i � 2H2 ! ±✏µ2

i + 4H2 ! ⌥✏

The same identity prohibits        &        from crossing their critical masses 

no ghost

: normal branch 2rcH+ � 1 < 0

m2
i µ2

i

2

 
X

i

u2
i (y+)

m2
i � 2H2

!
+

1

H2
+(2rcH+ � 1)

 
22

3H2
+(2rcH+ � 1)

 
X

i

v2i (y+)

µ2
i + 4H2

!
+H+

!
= 0

diverges as m2→2H2 : Higuchi bound diverges as μ2→-4H2  
: critical mass that scalar ghost appears

the regularity on +brane imposes
H : 4-dim comoving curvature scale

collapse of  the structure in DGP model

junction condition

On the other hand,        

                           must be satisfied to avoid scalar-mode instability

slightly curved branes cause instability and break the stabilization!

When we consider to increase the energy scale on the branes,  
the curvature scale also increase.

K(±)
µ⌫ = r(±)

c

✓
G±(4)

µ⌫ � 1

3
G±(4)gµ⌫

◆
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Cosmological solution in ghost-free bigravity

⇢ no Higuchi ghost

Higuchi ghost

ω : ratio of  scale factors  
of  two metric 

no Higuchi ghost

gradient instability  
  in matter or rad dominated era.

⇢̄ s.t. H (⇢̄) � m

Higuchi ghost in dRGT bigravity
In dRGT model, equation for the de Sitter solution insists

2
4

m2
⇢m =

c1
�!

+

✓
6c2
�

� c0

◆
+

✓
18c3
�

� 3c1

◆
! +

✓
24c4
�

� 6c2

◆
!2 � 6c3!

3 ⌘ f(!)

ω : ratio of  scale factor  
of  two metric effective mass for massive graviton 

For flat vacuum solution, H→0 as ω→ω0 where ρm(ω0)→0, 

this sign determines the ghost appearance

negative when Γ >0 i.e. meff2 >0

no Higuchi ghost
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Higuchi ghost in dRGT bigravity
In dRGT model, equation for the de Sitter solution insists

2
4

m2
⇢m =

c1
�!

+

✓
6c2
�

� c0

◆
+

✓
18c3
�

� 3c1

◆
! +

✓
24c4
�

� 6c2

◆
!2 � 6c3!

3 ⌘ f(!)

ω : ratio of  scale factor  
of  two metric effective mass for massive graviton 

this sign determines 
 the ghost appearance

flat vacuum H = 0, ρ = 0

ω 

⇢

no Higuchi ghostHiguchi ghost

f 0 = 0

!0

...negative  
     when Γ >0 ⇔ meff2 > 0

Higuchi ghost in dRGT bigravity

ω : ratio of  scale factor  
of  two metric 

⇢

⇢c

de Sitter solution does not exist above this critical density,  
and Higuchi ghost appears after crossing the critical ω.

Higuchi ghost appears
adding cosmological const. little by little

…no Higuchi ghost

choose the branch connected to the vacuum flat spacetime  
                                        with positive graviton mass 

!c
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doubly coupled matter

Consider a free scalar field which couples to both metric: 

However, 

Lm =
p
�g

✓
�1

2
@µ�@

µ�

◆
+
p

�f

✓
�1

2
@µ�@

µ�

◆

matter

gµ⌫ fµ⌫

coupling through the matter  
generally detunes the ghost-free 
structure of  the interaction.

→ BD ghost?

conjugate momentum ⇡� ⇠
✓

1

N
+

1

L

◆
@t�

Hamiltonian H 3 NL

N + L
⇡2
� …nonlinear in the lapse fcns → BD ghost!

Seeking for models with doubly coupled matter  
which have no BD ghost

The model of  doubly coupled matter is considerably restricted.

… inconsistent with the intuition in braneworld models.

another ghost-free model motivated by the quasi-dilaton massive gravity

S =

Z
d

4
x

p
�g

"
M

2
gR

(g)

2
+ 2m2

M

2
e↵

X

n

cnen

✓q
g

µ⌫(fµ⌫ + ↵@µ�@⌫�)

◆#

+

Z
d

4
x

p
�f

"
M

2
fR

(f)

2
� 1

2
f

µ⌫
@µ�@⌫�

#

matter which couples to an effective metric

This model has BD ghost, but it appears beyond the strong coupling scale.
de Rham, Heisenberg and Rebeiro (2014) 

YY, De Felice and Tanaka (2014)

ge↵µ⌫ = a2gµ⌫ + 2abgµ↵

q
g↵�f�⌫ + b2fµ⌫
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Before going to the nonlinear theory

For simplicity, we consider the perturbation around de Sitter brane solution,  
                                                                           whose curvature scale is given as H.

g

(±)
µ⌫ = a

2(±y

+
0 )

⇣
�µ⌫ + h

(±)
µ⌫

⌘

ỹ

+ = y

+
0 (1 + x)

ds2 =dy2 + a2(y)�µ⌫dx
µdx⌫

H2 :=

✓
@ya

a

◆2

= � 1

`2⇤
+H2/a2

y+0 �y+0

Result

� := �h+
4↵

3
R̄(1)

S =
M2

pl

2

Z
d4x

p
��m2

⇤

⇢
�h2 ��hµ⌫�hµ⌫ � 3

4
�
�
1� ↵2H2

�
⇤+ 4H2

��
�

�

+

Z
d4x

p
�g(+)

✓
R(+) �

6H2

a2+

◆
+ �

Z
d4x

p
�g(�)

✓
R(�) �

6H2

a2�

◆�

S =
M2

pl

2

Z
d4x

p
��m2

⇤

⇢
�h2 ��hµ⌫�hµ⌫ � 3

4
↵2H2�

�
⇤+ 4H2

�
�+

3

4
� (�� 2�h)� ↵�

⇣
R

(1)
(+) +R

(1)
(�)

⌘�

+

Z
d4x

p
�g(+)

✓
R(+) �

6H2

a2+

◆
+ �

Z
d4x

p
�g(�)

✓
R(�) �

6H2

a2�

◆�

conformal trsf

…two gravitons interacting through Fierz-Pauli mass term  
            and one scalar whose kinetic term couples to      …no BD ghost

↵ :=
�y+0 H�1(0)

2
treat Φ as an independent variable

by adding �

✓
���h� 4↵

3
R̄(1)

◆

�
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Equations of  motion
h(i)TT
µ⌫ =

�2M�2
pl

a2+ + a2��


1

⇤� 2H2 �m2
i

⇢
T (i)
µ⌫ � 1

4
T (i)�µ⌫ +

1

3 (m2
i � 2H2)

✓
rµr⌫ � ⇤

4
�µ⌫

◆
T (i)

�

� 1

3 (m2
i � 2H2)

✓
rµr⌫ � ⇤

4
�µ⌫

◆
1

⇤+ 4H2
T (i)

�

T (0)
µ⌫ := T (+)

µ⌫ + T (�)
µ⌫

T (m)
µ⌫ :=

T (+)
µ⌫

a2+
� T (�)

µ⌫

a2��

Poles at                             and ⇤� 2H2 = 0, m2 ⇤+ 4H2 = 0

…one massless and one massive gravitons and one scalar (radion)

We find the sign of  the coefficient of  the pole                       flips at⇤+ 4H2 = 0

2a2±�±r
(+)
c H± � 1 = 0

…equivalent to the condition for the ghost-free branch

We succeeded to obtain a ghost-free bigravity+scalar system.
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“Perturbations of Cosmological and Black Hole Solutions in Massive 

Gravity and Bi-Gravity”

by Daisuke Yoshida

[JGRG25(2015)7b6]
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PERTURBATIONS OF

COSMOLOGICAL AND BLACK HOLE SOLUTIONS

IN MASSIVE GRAVITY AND BI-GRAVITY

Daisuke Yoshida (Tokyo Institute of Technology)

Based on arXiv:1509. 02096
Collaborators: T.Kobayashi (Rikkyo Univ.), M.Siino (Titech), M.Yamaguchi (Titech)

JGRJ25 at YITP, 2015.12.10

Motivation

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 2/17

Many self-accelerated FLRW solutions of massive/bi-gravity have 
been found so far, but many solutions suffer from instabilities.

We investigated the stability of such a class of solutions and found 
stability of these solutions coincide with corresponding solutions of  
GR at least up to second order perturbations in EoM.

There is a class of cosmological solutions whose stability has not 
been studied. These solutions have a possibility to avoid unrealistic 
instabilities. 

Test of massive/bi gravity by cosmology 
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Contents

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 3/17

1. Brief Review of Massive/Bi gravity

2. Background Solutions

3. Stability

BRIEF REVIEW
OF

MASSIVE/BI GRAVITY
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Physical and Fiducial metric

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 5/17

Physical metric,
which coupled with ordinary matter
and describe the space time

Fiducial metric
In massive gravity:
external field which give graviton a mass
In bi-gravity:
dynamical tensor field interacting with 

de Rham, Gabadadze, Tolley (2011)
Hassan, Rosen (2011) 

Action and Equation of Motion

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 6/17
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de Rham, Gabadadze, Tolley (2011)
Hassan, Rosen (2011) 

Action and Equation of Motion

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 6/17

Key Point

• Correction terms are described by

• Correction terms have 5 free parameters 𝑚2𝛽𝑖

BACKGROUND
SOLUTIONS

                                                                                                                  1105



Metric Ansatz

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096 8/17

spherically symmetric space time:

spherically symmetric space time:

We can treat not only cosmological solution but also static spherically 
symmetric solutions at same time. 

Our analysis can be  extended to spherically symmetric space time. 

Cosmological constant solution

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 9/17

EOMs of 𝑔𝜇𝜈 reduce to Einstein equation with a cosmological constant. 

Constant ×

Combining with our spherically symmetric metric ansatz,

These two requirements can be satisfied when                                                .  

We focus on

We focus on

We are interested in the case where 

                                                                                                                  1106



Summary of background solution 

DAISUKE YOSHIDA (Tokyo Institute of Technology, Japan)  , arXiv:1509.02096 11

Any spherically symmetric solution 𝑔𝜇𝜈 of GR can be a solution of massive, bi-gravity.

This class of solutions includes
FLRW solution by Chamseddine,Volkov (2011), Kobayashi,Siino,Yamaguchi,DY (2012)
Schwarzschild de Sitter solution by Nieuwenhuizen (2011), Berezhani et al (2012), Kodama, Arraut (2013) 

STABILITY
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Perturbations and EoMs

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096 12/17

We consider general linear perturbations around our spherically symmetric solutions:

The correction appears only in 𝜃 and 𝜙 components.

With I, J = 𝜃, 𝜙

Equations of motion for perturbations:

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096

Bianchi Identity

13/17

Because of Bianchi identity of 𝐺𝜈𝜇 and conservation law of 𝑇𝜈𝜇,  

Combining with 

Laplace equation on sphere

Assuming        is regular at                 , solution is 

From remaining equations,

With I, J = 𝜃, 𝜙
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Results on Linear Perturbations

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 14/17

3 degrees of freedom disappear at linear order.

Do these dofs appear at higher order perturbation? 
Is there nonlinear ghost instability at higher order perturbations?

There are only 4 dofs, though bi-gravity has 7 dofs.

Perturbed EoMs reduces to Einstein equations
with  3 constraints between 𝛿𝑔𝜇𝜈 and 𝛿𝑓𝜇𝜈. 

Dynamics of linear perturbations is same as that of GR !

Second order Perturbations

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096 15/17

This solution is free from non-linear instability !

with

EoMs reduce to
Einstein equations

The correction appears only
in 𝜃 and 𝜙 components.
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SUMMARY

Summary

Massive gravity and Bi-gravity have

any spherically symmetric solution of General Relativity.

Its stability is same as GR at least up to second order perturbation. 

However this result shows

one cannot distinguish our spherically symmetric solutions of massive and

bi-gravity from the corresponding solutions of General Relativity at least up to

second order perturbation. 

DAISUKE YOSHIDA (Tokyo Institute of Technology)  , arXiv:1509.02096 17/17
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“Scale Invariance at low accelerations and the mass discrepancies in the 

Universe”

by Mordehai Milgrom (invited)

[JGRG25(2015)I10]
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•

•

•

•

•

•
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•

• a ! a0 ≈ 1 s−2

•

• ∼

•

• 2πa0 ≈ H0 ≈ (Λ/3)1/2 c = 1

•

a0 G, ...

Standard limit (a0 → 0)

MOND limit : a0 → ∞, G → 0, A0 ≡ Ga0 fixed

(t, ) → λ(t, )

a0 c !
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1

L = − a20
8πGF [(∇⃗φ)2/a20]− ρφ

a = −∇⃗φ ∇⃗ · [µ(|∇⃗φ|
a0

)∇⃗φ] = 4πGρ

F(X) = (2/3)X3/2 ∇⃗ · [|∇⃗φ|∇⃗φ] = 4πA0ρ

1 L = −(8πG)−1(∇⃗φ)2 − ρφ a = −∇⃗φ ∇⃗ · [∇⃗φ] = 4πGρ

•

•

•
Σ M − σ Σ

M − V

• a0
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• V (r) → V∞

•

• V 4
∞ = MA0

• σ4 ∼ MA0

• V 2/R = a0

• Σ̄ ! a0/G

• ≈ a0/2πG

•

a0 =?

a0

a0 ≈ 1.2× 10−8 cm s−2

ā0 ≡ 2πa0 ≈ cH0 ā0 ≈ c(Λ/3)1/2

ℓM ≡ c2/a0 ≈ ℓU

a ≶ a0 ⇔ ℓa ≶ ℓU

RS " RHubble
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•
gαβ, Uα, φ g̃αβ = e−2φ(gαβ+UαUβ)−e2φUαUβ

•

L(A, g) =
a20

16πG
F(K) + λ(AµAµ + 1);

K = a−2
0 Aγ

;αA
σ
;β(c1g

αβgγσ + c2δ
α
γ δ

β
σ + c3δ

α
σδ

β
γ + c4A

αAβgγσ).

•

•

F (!)

•

I = − 1

16πG

∫
[βg1/2R+αĝ1/2R̂−2(gĝ)1/4a20M]d4x+IM(gµν,ψi)+ÎM(ĝµν,χi)

•
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•

◃

◃
◃
◃

•

•

•

•
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g/gN δV/V ≤ 0.05
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∼ 10a0 − 0.1a0
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•

• ∼ 4%

• ∼ 5× baryons

• Λ ∼ 3×matter

• a0 ∼ Λ1/2

• DM/baryons ≈ 2π G → 2πG
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•

•

◃

◃

◃

◃
◃
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•
a0 ∼ cH0 ∼ cΛ1/2

•

•

•

•

•
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“Beyond Inflation and Beyond Horndeski Theory”

by Masahide Yamaguchi (invited)

[JGRG25(2015)I11]
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Beyond Inflation and Beyond Horndeski theory

MASAHIDE YAMAGUCHI
(Tokyo Institute of Technology)

12/10/15@JGRG 25th 
arXiv:1504.05710, JCAP 1507 (2015) 07, 017 

T. Kobayashi, MY, J. Yokoyama

Inflation

Inflation, characterized as quasi De Sitter
expansion, can naturally solve the problems of
the standard big bang cosmology.

z The horizon problem
z The flatness problem
z The origin of density fluctuations
z The monopole problem
z…
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Generic predictions of inflation

z Spatially flat universe

z Almost scale invariant,  adiabatic,  and  
Gaussian primordial density fluctuations

z Almost scale invariant and Gaussian 
primordial tensor fluctuations  

Generates anisotropy of CMBR.

Observations of CMB anisotropies

Total energy density ÍÎ Geometry of our Universe

Planck TT correlation :

Our Universe is spatially flat !!
WMAP TE correlation :

Causal seed models

Superhorizon models
(adiabatic perturbations)

Angle θ ~ 180。/ l 

Green line : prediction by
inflation

Red points : observation
by PLANCK

θ

Unfortunately, primordial tensor perturbations have not yet been observed.
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What happened before inflation ?

and/or

How did the Universe begin ?

Contents
z Introduction

Before inflation
Violation of null energy condition

z Beyond Horndeski
What is the most general scalar tensor theory ?

z From genesis to inflation (followed by reheating)
Setup (Beyond Horndeski theory)
Stability (Powerspectrum of primordial perturbations)
Example

zSummary  
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Introduction

What happened before inflation ?

and/or

How did the Universe begin ?
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Look back to the past of the Universe

For a perfect fluid :

It is often claimed that, if cosmic time goes back to the past,
the energy density gets larger and larger, 

and it eventually reaches the Planck energy density.

So, unless one completes quantum gravity theory, 
one cannot discuss the state at the extremely early stage 

(or even at the onset)  of the Universe.

The homogeneous and isotropic (Friedmann) Universe:

As long as                       (and H > 0 for the expanding Universe)

We do not consider
bouncing (contracting) Universe.

Null energy condition (NEC)

for any null vector ξμ.

This is the weakest among all of 
the local classical energy conditions.

For a perfect fluid : 

NEC Ù

As long as the NEC is conserved,  the Universe cannot start from 
a low energy state in the expanding Universe.

N.B. Borde & Vilenkin showed with NEC (plus some conditions) that a future-eternal 
inflationary model cannot be globally extended into the infinite past; i.e., 
it is not geodesically complete in the past direction. 
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How robust is the NEC ?
z Canonical kinetic term with potential: 

(NEC is conserved)

z How about k-inflation ?

Apparently, it looks that, if KX < 0, it can violate the NEC.
But, this is not the case.

(Armendariz-Picon, Damour, Mukhanov 1999)

Primordial density fluctuations
Perturbed metric :

Comoving gauge :

z Expand the action up to the second order

z Eliminate α and β by use of the constraint equations
z Obtain quadratic action for ζ

Prescription:

(sound velocities of 
curvature perturbations)

Garriga & Mukhanov 1999

In order to avoid the ghost and gradient instabilities,  ε > 0 & cs2 > 0.
(Hsu et al. 2004)

(See also Dubovsky et al.  2006)
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Stable violation of NEC is impossible within k-inflation

It is impossible to break the NEC stably within k-inflation.

One may wonder how about introducing higher derivative terms. 

Ostrogradski’s instabilities

z Background solutions can break NEC apparently.
z But, the perturbations around them always become unstable

for such background solutions.

N.B.  k-inflation is the most general action coming from 
phi and its first derivatives.

This is quite reasonable in some sense because violation of NEC must pay
some price.  (see Sawicki & Vikman 2013,  Easson, Sawicki, Vikman 2013)
e.g.  An observer with almost speed of light observes arbitrary negative energy. 

??

Theories with higher derivatives

and/or

What is the most general 
scalar-tensor theory

(without ghost instabilities) ?
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(if              depends on dot{q}  Ù non-degenerate condition.)

Lagrangian

Why does Lagrangian generally depend on only
a position q and its velocity dot{q} ?

The Euler-Lagrange equation gives an equation of motion up to the
second time derivative if a Lagrangian is given by L = L(q,dot{q},t).

Newton recognized that an acceleration, which is given by 
the second time derivative of a position,  is related to the Force : 

What happens if Lagrangian depends on 
higher derivative terms ? 

Ostrogradski’s theorem
Assume that                                   and        depends on       :

(Non-degeneracy)

Canonical variables :

Non-degeneracy  ⇔ ⇔

These canonical variables really satisfy the canonical EOM : 

Hamiltonian: 

P1 depends linearly on H so that no system of this form can be stable !!

(propagators)
N.B.
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Loophole of Ostrogradski’s theorem

We can break the non-degeneracy condition
which requires that       depends on ddot{q}.

In case Lagrangian depends on only a position q and 
its velocity dot{q}, degeneracy implies that EOM is first order, 
which represents not the dynamics but the constraint. 

In case Lagrangian depends on q, dot{q}, ddot{q},
degeneracy implies that EOM is second order,
which can represent the dynamics. 

Galileon field
The theory has Galilean shift symmetry in flat space :

Nicolis et al. 2009
Deffayet et al. 2009

Lagrangian has higher order derivatives, but EOM is second order.
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What is the most general 
scalar-tensor theory 

whose equations of motion are 
up to second order ?

Generalized Galileon
Deffayet et al. 2009, 2011

Covariantization of the flat Galileon theory.
Is this the most general scalar tensor theory whose EOMs are up to second order ?

NB :  ● G4 = MG2 / 2 yields the Einstein-Hilbert action
● G4 = f(φ) yields a non-minimal coupling of the form f(φ)R
● The new Higgs inflation with                      comes from G5 ∝φ

after integration by parts.  
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Horndeski’s theorem Horndeski 1974

In 1974, Horndeski presented the most general action (in four dimensions) 
constructed from the metric g, the scalar field φ, and their derivatives, 

still having second-order equations.

What is the relation between Generalized Galileon and Horndeski’s models ?
⇒ Both models are completely equivalent : 

κ1, κ3, κ8, κ9, F  :  functions of φ & X with  
W = W(φ)

Kobayashi, MY, Yokoyama 2011

Beyond Horndeski theory
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Horndeski theory
Horndeski theory (= Generalized Galileon) :

This is the most general (single) scalar-tensor theory which yields 
second-order (scalar and gravitational) equations of motion.

But, in order to avoid the Ostrogradski instabilities, this requirement can 
be too strong. For this purpose, only time derivatives should be second order 
while spacial ones can be higher.

Horndeski 1974
Deffayet et al. 2011
Kobayashi et al. 2011

(c.f. Another direction is to include infinite higher derivatives.)

Beyond Horndeski theory
ADM decomposition:
(φ= const surfaces)

(φ and X are functions of 
t and N, and vice versa.)

Gleyzes et al. 2014
Gao 2014

Unit normal vector :

…
(ADM => phi)

…
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Beyond Horndeski theory II
Horndeski theory (= Generalized Galileon) :

with

Gleyzes et al. 2014
Gao 2014

Gleyzes et al. (GLPV) pointed out that, even if the above two relations are 
absent, the number of the propagating degrees of freedom remains unchanged.
Gao showed that further extension is possible.

Kij : extrinsic curvature
Rij(3) : intrinsic curvature

Further extention (our later setup)

( The GLPV theory corresponds to the case with λ1 = λ2 = λ3 = 1. )

Gao 2014
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Stable violation of NEC
with higher derivative terms

Is it possible to violate the NEC stably if one includes higher derivative terms ?

Galilean Genesis Creminelli et al. 2010
Nicolis et al. 2009

(In the flat spacetime limit, this theory has conformal symmetry SO(4,2).)

zA background solution,  (t : -∞ -> 0 ) :     Starts from Minkowski in infinite past.

z Energy-momentum tensor : 

(Actually, you can verify that H increases.)

( The NEC is violated !! )
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Primordial density fluctuations
Perturbed metric :

Comoving gauge :

In order to avoid the ghost and gradient instabilities,  Gs > 0 & Fs > 0.

N.B. zA spectator field like curvaton is responsible for primordial density 
perturbations because the genesis field predicts too blue (ns ~3) 
perturbations in this simple model. 

z Primordial tensor perturbations are not generated at first order.

( The NEC is violated stably !! )

Galilean Genesis II Creminelli et al. 2010
Nicolis et al. 2009

(figure taken from Creminelli et al. 1007.0027) 

z In this scenario, the effective theory breaks around t ~ t0 = 0. So, it is 
assumed that the energy density of the genesis field is converted to
radiation, in which hot Universe starts. 

z Of course, this is not necessarily a fault of this scenario. A more   
fundamental theory will be able to describe the transition adequately.

(See 1401.4024 written by Rubakov for good review)
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From Genesis to inflation

From Genesis to inflation Pirtskhalava et al. 2014

zAs a epoch before inflation (and the onset of the Universe), use of Galilean   
Genesis is proposed by Pirtskhalava et al.

z Unfortunately, in their concrete construction, the gradient instabilities   
appear during the transition from Genesis to inflation. They are dangerous   
for large k modes even during short period because of                        .

t

H

Inflation (quasi DS)

Quantum gravity ?

Genesis

EFT breaks down -> RD
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We try to construct a concrete
workable example, in which 

the Universe starts from Minkowski 
spacetime in the infinite past, and 
is smoothly connected to inflation, 

followed by reheating (graceful exit).

Our setup

( The GLPV theory corresponds to the case with λ1 = λ2 = λ3 = 1. )

curvature perturbations

tensor perturbations

Gao 2014
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Perturbations
z Tensor perturbations : 

z Curvature perturbations :  (spatial higher derivative appears !!)    

N.B.  ● C = 0 for λ1 = λ2 = λ3 = 1.
● Even if Fs < 0 (with Gs > 0), the curvature perturbations 

with large k are stabilized for Hs > 0.  

Concrete example

(α > 0)

z Genesis phase ( t < t0 ) :

(The background dynamics for α = 1 coincides with that of the original Genesis model.)

Background dynamics :

(φ, X) Ù (t, N)
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Concrete example II
z Inflationary phase ( tend > t  > t0 )  :

with

N.B.  A weak time dependence of f(t) yields slight deviation from exact DS. 

z Graceful exit ( t  > tend )  :

with

If m > 4, gravitational
reheating can work.

Perturbations
z Tensor perturbations : 

z Curvature perturbations :  (spatial higher derivative appears !!)    

N.B.  ● C = 0 for λ1 = λ2 = λ3 = 1.
● Even if Fs < 0 (with Gs > 0), the curvature perturbations 

with large k are stabilized for Hs > 0.  
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Numerical calculations
From Genesis to inflation : 

During short period,
Fs becomes negative.
But, the perturbations 
for large k are stabilized
thanks to the k4 terms.

The perturbations for 
small k grow during
short period, but growth 
is mild and finite.

The situation is similar 
to the transition from 
inflation to RD.

Conclusions and discussions
zWe constructed a concrete example from Galilean Genesis 

to inflationary phase followed by graceful exit, based on the 
recent development beyond the Horndeski theory. 

z The sound velocities squared (or Fs) during transitions    
from Genesis to inflation and from inflation to RD
become negative for a short period. 

z But thanks to a non-trivial dispersion relation coming from  
the fourth order derivative term in the quadratic action,  
modes with higher k are completely stable and the growth of     
perturbations with smaller k is finite and controllable.

z Our model can describe a Genesis scenario with graceful exit 
(even without inflationary phase), in which no (first order)   
primordial tensor perturbations are produced. The
detection or non-detection of primordial tensor perturbations    
may discriminate Genesis scenarios with or without inflation.
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Conclusions and discussions II

z Unfortunately, modes which exit horizon during genesis
phase are still superhorizon if inflation lasts long enough.

z I hope young people to consider a theory beyond inflation
(an epoch before inflation) and to invent a novel method to
probe such currently superhorion perturbations. 
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