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Localizing solutions of the Einstein equations

Richard Schoen

UC, Irvine and Stanford University

The 25th Workshop on General Relativity
and Gravitation in Japan

December 10, 2015

Plan of Lecture

The lecture will have four parts:

Part 1: Introduction

Part 2: Main theorem on localization of initial data
Part 3: Connections to the geometry of initial data sets

Part 4: Some features of the proof
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Plan of Lecture

The lecture will have four parts:

Part 1: Introduction

Part 2: Main theorem on localization of initial data
Part 3: Connections to the geometry of initial data sets
Part 4: Some features of the proof

Main results are joint with A. Carlotto and appear in paper at
arXiv:1407.4766.

Part 1: Introduction

On a spacetime S"*1, the Einstein equations couple the
gravitational field g (a Lorentz metric on S) with the matter fields
via their stress-energy tensor T

1
Ric(g) — ER g=T

where Ric denotes the Ricci curvature and R = Trg(Ric(g)) is the
scalar curvature.
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Part 1: Introduction

On a spacetime 8", the Einstein equations couple the
gravitational field g (a Lorentz metric on S) with the matter fields
via their stress-energy tensor T

1
Ric(g) — ER g=T

where Ric denotes the Ricci curvature and R = Trg(Ric(g)) is the
scalar curvature.

When there are no matter fields present the right hand side T is
zero, and the equation reduces to

Ric(g) = 0.

These equations are called the vacuum Einstein equation.

Initial Data

The solution is determined by initial data given on a spacelike
hypersurface M" in S.

4
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Initial Data

The solution is determined by initial data given on a spacelike
hypersurface M" in S.

4

The initial data for g are the induced (Riemannian) metric, also
denoted g, and the second fundamental form p. These play the
role of the initial position and velocity for the gravitational field.
An initial data set is a triple (M, g, p).

The constraint equations for vacuum solutions

It turns out that n+ 1 of the (n+ 1)(n+ 2)/2 Einstein equations
can be expressed entirely in terms of the initial data and so are not
dynamical. These come from the Gauss and Codazzi equations of
differential geometry.

In case there is no matter present, the vacuum constraint
equations become

Rm + Trg(p)? — ||plI> = 0
Zvjﬂ,'j =0
Jj=1

fori =1,2,...,n where Ry is the scalar curvature of M and
mij = pjj — Trg(P)gi-
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The constraint equations with matter present

Using the Einstein equations with matter fields encoded in the
stress-energy tensor T together with the Gauss and Codazzi
equations, the constraint equations are

1
=73

3
J; = Z Vj7r,-j
j=1

for i=1,2,...,n where m; = p;j — Trg(p)gjj. Here the quantity
is the observed energy density of the matter fields and J is the
observed momentum density.

(Rm + Trg(p)? — |Ipl%)

Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition. For an initial
data set this implies the inequality p > ||J||.
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Energy Conditions

For spacetimes with matter, the stress-energy tensor is normally
required to satisfy the dominant energy condition. For an initial
data set this implies the inequality © > ||J||.

In the time symmetric case (p = 0) the dominant energy condition
Is equivalent to the inequality Ry > 0.

The initial value problem

Given an initial data set (M, g, p) satisfying the vacuum constraint
equations, there is a unique local spacetime which evolves from
that data. This result involves the local solvability of a system of
nonlinear wave equations.
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Asymptotic Flatness

We will consider asymptotically flat solutions. The requirement is
that the initial manifold M outside a compact set be diffeomorphic
to the exterior of a ball in R"” and that there be coordinates x in
which g and p have appropriate falloff.

Asymptotic Flatness

We will consider asymptotically flat solutions. The requirement is
that the initial manifold M outside a compact set be diffeomorphic
to the exterior of a ball in R"” and that there be coordinates x in
which g and p have appropriate falloff.

Y
— Asymptotic Flatnesg
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Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is R™! with the flat metric
g = —dxg +>0 dx,-2. It is the spacetime of special relativity.

Minkowski and Schwarzschild Solutions

The following are two basic examples of asymptotically flat
spacetimes:

1) The Minkowski spacetime is R™! with the flat metric
g = —dxg +>0 dx,-2. It is the spacetime of special relativity.

2) The Schwarzschild spacetime is determined by initial data with

p =0 and
E 4
8 = (14 5= 7

for |x| > 0. It is a vacuum solution describing a static black hole
with mass E. It is the analogue of the exterior field in Newtonian
gravity induced by a point mass.
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ADM Energy

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy which is computed in terms of the asymptotic
behavior of g. For this definition we fix asymptotically flat
coordinates x.

E = 2(n—1)wn_1 l)w,, 1 rIL)mOO/|X| i Z 8ij,i — gii,j)l/é dog

ADM Energy

For general asymptotically flat initial data sets there is a notion of
total (ADM) energy which is computed in terms of the asymptotic
behavior of g. For this definition we fix asymptotically flat
coordinates x.

2(” l)wn 1 r_>oo/|x| , Z gl_jl gl/,J)VJ dO'O

ij=1

The limit exists under quite general asymptotic decay conditions.
There is an analogous expression for the linear momentum in terms

the asymptotic behavior of p.
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The positive energy theorem

The positive energy theorem says that E > 0 whenever the
dominant energy condition holds, and that E = 0 only if (M, g, p)
can be isometrically embedded into the (n + 1)-dimensional
Minkowski space with p as its second fundamental form. In case
p = 0, the assumption is R; > 0, and equality implies that (M, g)
is isometric to R".

The positive energy theorem

The positive energy theorem says that E > 0 whenever the
dominant energy condition holds, and that E = 0 only if (M, g, p)
can be isometrically embedded into the (n + 1)-dimensional
Minkowski space with p as its second fundamental form. In case
p = 0, the assumption is R; > 0, and equality implies that (M, g)
is isometric to R".

The problem can be posed in any dimension, and it can be proven
in various cases using mean curvature ideas (S & Yau) or using the
Dirac operator approach developed by E. Witten. In three
dimensions there is a third approach (for p = 0) which is the
inverse mean curvature flow proposed by R. Geroch and made
rigorous by G. Huisken and T. llmanen.
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Part 2: Main theorem on localization of initial data

The Einstein equations lie somewhere between the wave equation
and Newtonian gravity (or the stationary Einstein equations). For
the wave equation one can localize initial data and reduce many
questions to the study of compactly supported solutions.

Part 2: Main theorem on localization of initial data

The Einstein equations lie somewhere between the wave equation
and Newtonian gravity (or the stationary Einstein equations). For
the wave equation one can localize initial data and reduce many
questions to the study of compactly supported solutions.

For Newtonian gravity the asymptotic behavior of the Newtonian
potential is determined by the Poisson equation, and the
asymptotic terms include the total mass and center of mass. The
asymptotic form of the potential is rigidly determined and cannot
be changed. It is similarly true for the Einstein equations that the
asymptotic terms contain physical information such as energy,
momentum, and center of mass. While this limits the asymptotic
forms which are possible, it does not determine the form uniquely.
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Asymptotic behavior

The energy and linear momentum can be shown to exist the under
rather weak asymptotic decay

gi = 0 + Oa(|x|79), pj = O:(|x|7971)

for any g > (n—2)/2.

Asymptotic behavior

The energy and linear momentum can be shown to exist the under
rather weak asymptotic decay

gi = 0 + Oa(|x|79), pj = O:(|x|7971)

for any g > (n—2)/2.

Clearly the positive energy theorem implies that there are no
solutions of the constraint equations with compact support.
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A further consequence of positive energy

If we let U denote the open subset of M consisting of those points
at which the Ricci curvature of g is nonzero, then we have the
following. It shows that under reasonable decay conditions the set
U must include a positive ‘angle’ at infinity.

Proposition Assume that (M, g, p) satisfies the decay conditions

gi = 0ij + O3(Ix*™"), pij = Oa(|x|*").
Unless the initial data is trivial, we have

liminf o'="VoI(U N 0B,) > 0.

g—00

Proof of proposition

The energy can be written in terms of the Ricci curvature

E=—c, lim a/ Ric(v,v) da

g—00
o

for a positive constant cp,.
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Proof of proposition

The energy can be written in terms of the Ricci curvature

E=—c, lim a/ Ric(v,v) da

g—00
o

for a positive constant cp,.

If our initial data is nontrivial, then we have E > 0, and so for any
o sufficiently large we have

E/2 < c,,a/ |Ric(v,v)| da < ca'™"Vol(U N dB,)
So

where the second inequality follows from the decay assumption.
]

Energy in terms of Ricci curvature

The energy formula used in the proposition is based on the identity
o " 1, . 1_ . 1
div(Ric(-, X)") = §<RIC,D(X)> + ;Rd/v(X) + 5(VR,X>
where D is the conformal Killing operator

2 .
D(X) = Lxg — ;d/v(X)g.
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Energy in terms of Ricci curvature

The energy formula used in the proposition is based on the identity
o " 1, . 1_ . 1
div(Ric(-, X)") = §<RIC,D(X)> + ;Rd/v(X) + 5(VR,X>
where D is the conformal Killing operator

2 .
D(X) = Lxg — ;d/v(X)g.

Note that under the decay assumption gjj = 6;; + O3(|x|~9) for
g > (n—2)/2 and R = O1(|x|™") for r > n, the righthand side is
integrable with X = iné’xf, so the limit exists

lim / Ric(X,v) da = lim a/ Ric(v,v) da.
So S

o— 00 o— 00
o

To evaluate the limit we can do it in three steps.

Step 1: Compute it for the Schwarzschild metric

E 4
8 = (1+ ) 720

with X = Zix"%. Since X satisfies D(X) =0 and R = 0 we see
that the righthand side vanishes and the flux integral

/ Ric(v, X) da
s

is the same over any hypersurface > which is homologous to the
horizon S which is the |x| = (E/2)/("=2) sphere. An easy
calculation on the horizon shows that the value is —c,E where
cn = (n—1)(n—2)2%("=2g, ; where 0,_1 = VoI(S""1). Note
that c3 = 128
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Step 2: The same formula now follows for any initial data set for
which g is Schwarzschild to leading order; that is,

4
gj=(1+ )28 + O3(|x|'™").

2‘X|”_2

Step 2: The same formula now follows for any initial data set for
which g is Schwarzschild to leading order; that is,

E
2‘X|”_2

4
gj=(1+ )28 + O3(|x|'™").

Step 3: For the general asymptotic conditions

gij = 0j + Os(|x|7%), R = Ou(|x|™")

with ¢ > (n —2)/2 and r > n, we can now appeal to a density
theorem which asserts that initial data with leading order
Schwarzschild asymptotics is dense in those with general decay
conditions in a norm in which the energy is continuous.
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What are good asymptotic forms?

Since it is possible to achieve any chosen pair E, P by a suitably
boosted slice in the Schwarzschild, people have assumed that this
would be a natural asymptotic form for an asymptotically flat
solution of the vacuum constraint equations.

What are good asymptotic forms?

Since it is possible to achieve any chosen pair E, P by a suitably
boosted slice in the Schwarzschild, people have assumed that this
would be a natural asymptotic form for an asymptotically flat
solution of the vacuum constraint equations.

It was shown by J. Corvino (p = 0) and by Corvino and S. (also
Chrusciel and Delay) that the set of initial data which are identical
to a boosted slice of the Kerr (generalization of Schwarzschild)
spacetime are dense in a natural topology in the space of all data
with reasonable decay.
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Localizing in a cone

Let us consider an asymptotically flat manifold (M, g) with Rz =0
and with decay
gj = 05 + O(|x|™)

where (n —2)/2 < §<n-2.

Localizing in a cone

Let us consider an asymptotically flat manifold (M, g) with Ry =0
and with decay
gj = 05 + O(|x|™)

where (n —2)/2 < §<n-2.

In joint work with A. Carlotto we have shown that there is a metric
g which satisfies R; = 0 with g = & inside a cone based at a point
far out in the asymptotic region while g = ¢ outside a cone with
slightly larger angle. Moreover g is close to g in a topology in
which the energy is continuous, so E is arbitrarily close to E. The
metric g satisfies

gij = 0 + O(|x|79)

with g < g.
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Where is the energy?

Since there is very little contribution to the energy inside the
region where g = g and none in the euclidean region, most of the
energy resides on the transition region. This shows that one
cannot impose too much decay on this region and makes the
weakened decay plausible.
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Construction of non-interacting solutions

Another interesting application of the construction is that it gives
a method of ‘adding together’ initial data. If we have localized
solutions we can super-impose them by putting them in disjoint
cones. When we do this the energies and linear momenta add up.
Since we can approximate a general solution on an arbitrarily large
set and in a suitable topology, we can construct n-body initial data
with bodies which are far separated.

Construction of non-interacting solutions

Another interesting application of the construction is that it gives
a method of ‘adding together’ initial data. If we have localized
solutions we can super-impose them by putting them in disjoint
cones. When we do this the energies and linear momenta add up.
Since we can approximate a general solution on an arbitrarily large
set and in a suitable topology, we can construct n-body initial data
with bodies which are far separated.

The constructions allows us to superimpose solutions in such a way
that they do not interact at all for a fixed time period.
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(M1, g1, p1) (M2, g2, p2)
_/ _
l l

\_/—Y—\J
i
% © %
(M, g, p)

Part 3: Connections to the geometry of initial data sets

Certain geometric aspects of the initial data have important
consequences for the spacetime. For example, the Penrose
singularity theorem shows that if the initial data has an outer
trapped surface then the spacetime cannot be null geodesically
complete.
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Part 3: Connections to the geometry of initial data sets

Certain geometric aspects of the initial data have important
consequences for the spacetime. For example, the Penrose
singularity theorem shows that if the initial data has an outer
trapped surface then the spacetime cannot be null geodesically
complete.

The mean curvature proof of the positive energy theorem relies on
the geometric theorem that an initial data set with strictly positive
energy density cannot have an asymptotically planar stable
minimal surface. The constructions we have made show that this is
not true for nontrivial vacuum initial data sets (e.g. planes in the
euclidean region are stable).

Minimal surfaces and MOTS

The notion of trapping naturally leads to the notion of a
marginally outer trapped surface (MOTS). Such a surface would
satisfy H 4+ Trs(p) = 0, and if it is the boundary between surfaces
that are outer trapped and untrapped, it satisfies a stability
condition. For p = 0 this is the ordinary variational stability of the
area functional (second variation nonnegative for all variations).
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Minimal surfaces and MOTS

The notion of trapping naturally leads to the notion of a
marginally outer trapped surface (MOTS). Such a surface would
satisfy H 4+ Trs(p) = 0, and if it is the boundary between surfaces
that are outer trapped and untrapped, it satisfies a stability
condition. For p = 0 this is the ordinary variational stability of the
area functional (second variation nonnegative for all variations).

For example the Schwarzschild horizon is a stable minimal surface.

A question coming from the proof of PMT

A key ingredient of the mean curvature proof of the PET is the
statement that for n = 3 there can be no complete asymptotically
planar stable minimal surface (p = 0) or stable MOTS (general
case) provided the dominant energy condition holds strictly. For

n > 4 there is a corresponding statement for strongly stable
MOTS.
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A question coming from the proof of PMT

A key ingredient of the mean curvature proof of the PET is the
statement that for n = 3 there can be no complete asymptotically
planar stable minimal surface (p = 0) or stable MOTS (general
case) provided the dominant energy condition holds strictly. For

n > 4 there is a corresponding statement for strongly stable
MOTS.

Question: Can there be a stable asymptotically planar minimal
surface (or MOTS) in a nontrivial initial data set?

A question coming from the proof of PMT

A key ingredient of the mean curvature proof of the PET is the
statement that for n = 3 there can be no complete asymptotically
planar stable minimal surface (p = 0) or stable MOTS (general
case) provided the dominant energy condition holds strictly. For

n > 4 there is a corresponding statement for strongly stable
MOTS.

Question: Can there be a stable asymptotically planar minimal
surface (or MOTS) in a nontrivial initial data set?

Our localization construction shows that this same property is not
true without the strictness of the energy conditions.
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A positive result

The following theorem was proven by A. Carlotto
(arXiv:1310.5118).

Theorem. If (M3, g, p) is nontrivial, satisfies the dominant energy
condition, and is asymptotic to leading order to a slice in the
Schwarzschild spacetime, then there is no complete non-compact
stable MOTS.

A positive result

The following theorem was proven by A. Carlotto
(arXiv:1310.5118).

Theorem. If (M3, g, p) is nontrivial, satisfies the dominant energy
condition, and is asymptotic to leading order to a slice in the
Schwarzschild spacetime, then there is no complete non-compact
stable MOTS.

The construction we have made is limited in the decay which can
be arranged, so the question is still open with |x|>~" decay. Some
evidence for this was given by the result of A. Carlotto.
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Isoperimetric properties of spheres in the euclidean region

Spheres in euclidean space are isoperimetric surfaces in that they
have least area for their enclosed volume. If we consider a sphere
in the euclidean region of a localized solution, it is natural to ask if
it is an isoperimetric surface for the initial data set.

Isoperimetric properties of spheres in the euclidean region

Spheres in euclidean space are isoperimetric surfaces in that they
have least area for their enclosed volume. If we consider a sphere
in the euclidean region of a localized solution, it is natural to ask if
it is an isoperimetric surface for the initial data set.

We have observed that this is not the case for sufficiently large
euclidean spheres. This is based on work of Fan, Miao, Shi, and
Tam who gave a formula for the ADM energy in terms of a deficit
in the isoperimetric profile for surfaces enclosing a large volume
(an idea proposed by Huisken).
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Area minimizing surfaces

The planes in the euclidean region are clearly stable, so it is natural
to ask if they can be area minimizing in a nontrivial initial data set.
The result for isoperimetric spheres suggests that they may not be.
This was shown very recently by O. Chodosh and M. Eichmair who
proved that a nontrivial time symmetric initial data set cannot
contain a complete noncompact area minimizing surface.

Area minimizing surfaces

The planes in the euclidean region are clearly stable, so it is natural
to ask if they can be area minimizing in a nontrivial initial data set.
The result for isoperimetric spheres suggests that they may not be.
This was shown very recently by O. Chodosh and M. Eichmair who
proved that a nontrivial time symmetric initial data set cannot
contain a complete noncompact area minimizing surface.

The mean curvature proof of the positive energy theorem shows
that any asymptotically flat metric with negative mass does
contain an area minimizing surface which is asymptotically planar.
(The scalar curvature must be negative somewhere.)
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Part 4: Some features of the proof

(M, &, B)

Outline of proof |

We first construct a metric g of the form

E=xE+(1—x)d

where x(¢) is a smooth cutoff function which is 1 in Q; of smaller
angle and zero in Qp. Here ¢ is the angle function on the cone
outside the unit ball extended so that it is constant on each
component of 0Q.
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Outline of proof |

We first construct a metric g of the form

E=xE+(1—x)d

where x(¢) is a smooth cutoff function which is 1 in Q; of smaller
angle and zero in Qp. Here ¢ is the angle function on the cone
outside the unit ball extended so that it is constant on each
component of 0Q.

We then seek a solution of the form g = g + h with R(g) =0
where h is supported in €2. The equation can be written

R(g) = R(g)+Lh+ Q(h) =0

where L is the linearization of the scalar curvature map at g. Note
that R(Z) = 0 outside the transition region €.

Outline of proof Il

We have the formula for the operator
Lh=386h— Dg(Tr(h)) — (h, Ric(g))

where computations are with respect to g. The adjoint operator is
then

~

L*u = Hessg(u) — Ag(u)g — uRic(g).

The composition is given by

~

L[([*u) = (n— 1)A(Au) + 1/2(AR)u + 3/2(VR, Vu)
+ 2R(Au) — (Hess(u), Ric(g))



Outline of proof Ill

We solve the equation
Lh+ Q(h)=f

using a Picard iteration scheme in spaces which impose decay of
|x|~9 at infinity and rapid decay near 9. The proof involves first
showing that L is surjective in such spaces.

Outline of proof Ill

We solve the equation
Lh4+ Q(h)=f

using a Picard iteration scheme in spaces which impose decay of
|x|~9 at infinity and rapid decay near 09Q2. The proof involves first
showing that L is surjective in such spaces.

The basic estimate which enables us to impose rapid decay near
o€ is

lull2,—s,0 < cl[L7ullo,~s—2,0
for any s > 0 where these are norms in L? Sobolev norms and no
boundary condition is imposed on u.
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Why do we need g < n — 27

We need to show surjectivity of L, and this follows from injectivity
of L*. The domain of L* is the dual space of the range of L, that is
the dual of Hy,_>_4. This dual space is Hy244—n since we have

[t dul < ([ ARO[ (e,
M M M

and the right hand side is ||fi||o,—g—2]/f2|| g+-2—n-

Why do we need g < n — 27

We need to show surjectivity of L, and this follows from injectivity
of L*. The domain of L* is the dual space of the range of L, that is
the dual of Hy,_>_4. This dual space is Hy 244—n since we have

[t dul < ([ RPN (e,
M M M

and the right hand side is ||fi||o,—g—2]/f2|| g+-2—n-

Since g < n— 2 implies that s = n—2 — g > 0, we can apply the
basic estimate to get the injectivity estimate

|272+q_n S CHZ*UHO,q—n-

lu

This bound is no longer true if g > n— 2.
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Surjectivity of L

The injectivity of L* implies surjectivity of L between dual spaces.
The L? dual to the decay of |x|9~" corresponds to the decay of
order |x|~9 at infinity. Since no decay is required near QU in the
basic estimate we can impose rapid decay near QU as the dual
condition. Thus we can construct solutions of Lh = f in spaces
with such decay. Given sufficiently good estimates we can then
solve the nonlinear equation Lh+ Q(h) = f with the same decay.

Main technical issues

Some of the technical issues which need to be overcome to do this
construction are the following:
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Main technical issues

Some of the technical issues which need to be overcome to do this
construction are the following:

(1) The transition region is noncompact and this creates major
difficulties. We are able to exploit the homogeneity to help
overcome this difficulty. The noncompctness presents challenges
both for getting the basic injectivity estimate and for higher order
estimates. This is especially so for the general constraint equations
since they are more complicated than the p = 0 case; for example,
they are of mixed order.

Main technical issues

Some of the technical issues which need to be overcome to do this
construction are the following:

(1) The transition region is noncompact and this creates major
difficulties. We are able to exploit the homogeneity to help
overcome this difficulty. The noncompctness presents challenges
both for getting the basic injectivity estimate and for higher order
estimates. This is especially so for the general constraint equations
since they are more complicated than the p = 0 case; for example,
they are of mixed order.

(2) There are two different decay rates which must be imposed on
solutions. First the solutions must decay rapidly near the boundary
of U in order to make the patched solution smooth enough.
Secondly we must maintain the decay rate at infinity for the
solutions. These are handled by working in spaces with double
weights which impose the two decay conditions.
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“Non-chaotic Evolution of Lagrange’s orbit due to GW Radiation
Reaction”
by Kei Yamada

[JGRG25(2015)6a2]
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Non-chaotic Evolution of
Lagrange’s orbit due to

GW Radiation Reaction

Kei Yamada (Kyoto U.)
with H. Asada (Hirosaki U.)

arXiv:1512.01087 [gr-qc]

Contents

e Introduction
e GW radiation reaction force to Lagrange’s orbit
e Evolution of Lagrange’s Orbit

e Summary
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Gravitational Wave Detectors

e Ground-based

AERRENRLESR

HEML
(GEARWT HDET)

* aLIGO (USA)
e aVIRGO (Italy, France)
e KAGRA (Japan)

e Space-borne

e eLISA (Europe)

e DECIGO (Japan)

http: / / gwcenter.icrr.u-tokyo.ac.jp

Recent Works of Three-body Systems

e “A millisecond pulsar |
[ertms

in stellar triple system” -+ -~ il
[Ranson et al., Nature (2014)] = l\ ﬁF

-600
600 —400 200 0 200 400 600 -15 -10 -5 O 5 10 15 20

Distance (ight seconds)

° GW & three-body interactions [Ranson et al., Nature (2014)]
[Wen, ApJ (2003); Seto, PRL (2013)]

e PN triangular solution and its stability
[KY & Asada, PRD (2012); KY, Tsuchiya, & Asada, PRD (2015)]
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Lagrange’s orbit in Newton

= [
Tr ——3?"[
rr
= (m%—i—meK + m?2 )3/2
M1 = 2

In circular motion,
the Kepler’s third like law

M ,
o — 6_3 (6 : Separatlon) Lagrange’s equilateral triangular orbit

The Linear Stability of Lagrange’s orbit

This configuration is stable [Gascheau (1843)], if

(O <) mime + moins - msn < 1
(m1 —+ mo + m3)2 o0
0.04
‘\
0.03 \
\
\
%0.02 \\
& D\

001 N
AN

0.00 .
0.00 0.01 0.02 0.03 0.04

my/M




GWs from Lagrange’s orbit

e Gravitational-wave forms
from Lagrange’s orbit
[Torigoe et al., PRL (2009)]

e Parameter determinations
[Asada, PRD (2009)]
(based on
energy balance argument)

02 04 06

t/T

FIG. 2 (color online). Gravitational waves for a three-body
system in Lagrange’s orbit. Long-dashed (blue), short-dashed
(red), and dotted (green) curves denote mass quadrupolar, octu-
polar, and current quadrupolar parts, respectively. The sold
(black) one denotes the total wave forms. The vertical axis is
in arbitrary units, and time in the horizontal axis is normalized
by the orbital period. For simplicity, the mass ratio is assumed as
my:my:msy = 1:2:3, though stability arguments prefer much
larger ratios [24]. In order to exaggerate differences between

[Asada, PRD (2009)]

Energy Balance Argument (EBA)

e In linearized theory,

Low and Sqw come from the source.

e Binaries: # of DOF = # of constants of motion.

dE dL
dt’ dt

(o de
dt’ dt

e Triples: # of DOF > # of constants of motion.
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Question

e [s Asada’s assumption wrong?
e Most 3-bodies orbits are chaotic.

e Study the evolution of Lagrange’s orbit
in circular motion

= by directly treating radiation reaction force.

Contents

e Introduction
e GW radiation reaction force to Lagrange’s orbit
e Evolution of Lagrange’s Orbit

e Summary



Gravitational radiation reaction

In the harmonic gauge, “reaction potential” is
i d° L
5 di2

.k

h(react) 2(1)(react) (I)(react) = ) x”,

where, for point-like particles,

i
L — ij (a: a:k 353krj>

Gravitational radiation reaction force is

F(react) — _aq)(react) 2d° Ijk k:
; = 5

8$j = 5 dt5

Radiation reaction on Lagrange’s orbit

In the orbital plane (x,y), non-zero components are

gt

- = —16w° Zmﬁ% sin(26 ),
J
W d°1y,
dt5y — G ij’l“3 cos(20;) = dt5y :
d°F . d° 1y
—dtgy = 16w° Zmﬂ?] sin(207) = — e

w : orbital frequency, 6; : direction of Jth body.
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Radiation reaction on Lagrange’s orbit

it

- —16w° ijr3 sin(260 ),
J
Aty 5 2 d°Fyy
T = 16w ZJ:mJTJCOS(20J>: e
d>F,, 5 = Aok
— = 16w ZJ:mJTJsm(%J) =
5
) A’ .
F I(Zeac ) x dt5z 2% = 0 : Orbital plane does not change.

Also, Z F&reaet) = 0 : CoM is not moved.

= Need 4 perturbations in the orbital plane.

Radiation Reaction Force

For convenience,
we consider the relative position r;; = r; — 7.

GW radiation reaction force to ris

reac 16 M
Fg(] t) == €£—2€(A[Jnjj = BIJnJ_IJ)7

where ¢ = (Mw)5/3.
Arg = \/g(l/[ = VJ)VK, By — V[(I/J = I/K) == VJ(I/K — V]).

vi=mi/M, nrg=rr;/l, nirg =vrg/lw
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Contents

e Introduction
e GW radiation reaction force to Lagrange’s orbit
e Evolution of Lagrange’s Orbit

e Summary

Perturbations in Lagrange’s orbit

4 perturbations in the orbital plane: (x12,@, X, )

s

v
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Perturbations in Lagrange’s orbit

X12 : a scale transformation

w : a change of the orbital frequency

(dé dPorbit ) /
3

dt: i

\ 4

Perturbations in Lagrange’s orbit

X12 : a scale transformation

w : a change of the orbital frequency

(d@ dPorbit ) /
- ===

dt: i

\ 4

X+ : a shape change from equilateral triangle.

= Evolution of Lagrange’s orbit is chaotic
if X, increase with time.



Perturbed Equations of Motion

Perturbed EoMs become Reaction force
- 9 V3 {16 =
Xig =3x12 = 2w — 3 X = sk i
4 4 5
. = I9y3 9 16
212 0 — T\/_VgX = ZV3770 = 36312 — 5
= 9 a3 16
Oy 2o+ X — (3 — ZVQ) X — 29— T\/_Vzw — E&Agl — i
, : = S - 9 16
2X12 + w4+ 2X — —\/_VQX I ’l,b = —V2¢ + —eB31|= 0,
4 4 \_JD J
Solve in the Newtonian stable case:
V1Vs + ol3 + 3l < —.
Pt
Behavior of perturbations
We can solve EoMs and obtain
| —%5 (V7 (va — v3)* + 13 (v3 — 11)® + v3(11 — v2)?] wt + (oscillating terms),
o %5 (V3 (v2 — v3)? + V3 (vs — 11)® + v3(v1 — v2)?] wt + (oscillating terms),
= —%5 [V3(vs — v1) — V5 (v1 — v2)] + (oscillating terms),
= —%E(VQ —v3)(2v1 — V) + (oscillating terms),

where vV = Vo + a3 + V3.

X12, @ increase with time.
X, oscillate.
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Evolution of Lagrange’s Orbit

Y12 = —%5 [ (vo — v3)? + V3 (vs — v1)? + v3(11 — 10)?] wt + (oscillating terms),
S :_‘8/5 [yf(yz — 132 Fvi(vs —v1 )2 + v3(v — V2)2} wt + (oscillating terms),
— —3125\‘//35 [V%(Vg — i) — v — v2)] + (oscillating terms),
7o — —%s(yg —v3)(2v1 — V) + (oscillating terms),

X12, @ increase with time.

= Triangle shrinks with increasing orbital frequency.
X, v oscillate. = Lagrange’s orbit is adiabatically kept.

Strikingly, the evolution is non-chaotic!

Contents

e Introduction
e GW radiation reaction force to Lagrange’s orbit
e Evolution of Lagrange’s Orbit

e Summary



Summary

e Evolution of Lagrange’s orbit
by directly treating the reaction force.

e The orbit is adiabatically kept.
o[t supports [Asada, (2009)].
= Possibility of parameter determinations.

e What about elliptic cases...?

THANK YOU FOR YOUR ATTENTION

907



908

“Disappearing inflaton potential”
by Naoya Kitajima

[JGRG25(2015)6a3]
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Disappearing Inflaton Potential

by heavy field dynamics after inflation
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4 Asia Pacific Center for Theoretical Physics

(Korea)

NK, F. Takahashi (Tohoku Univ.) arXiv:1509.01729

JGRG2S, YITP Kyoto, Dec 7-11 2015

o Inflaton potential
Credit: ESA
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Tensor-to-scalar ratio (r0.002)

0.05 0.10 0.15 0.20 0.25

0.00

Planck 2015

0.96

\
Quadratic\\
Chaotic inflation

\

0.98

Planck 2013
Planck TT+lowP
Planck TT,TE,EE+lowP
Natural inflation
Hilltop quartic model
v attractors
= - Power-law inflation
——  Low scale SB SUSY
—  R? inflation

V x ¢3
— V x ¢2
— Vol

Vxo
— Vi ¢2/3
e N.=50
@ N.=60

Primordial tilt (n.)
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Quadratic chaotic inflation: V = §m ¢2 IZ:> m ~ 1013GeV

L

During inflation

VA slow “r.?II
P
constrained
« / by CMB
¢

{ Ag,ng,7 +— V. V' V" )
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After inflation

K constrained

\?/ by CMB
> ¢

oscillate -> reheating — Baryogenesis, Dark matter, ...

(o v

Ag, ng,r PRELIY VvV, V'

After inflation

ﬂton
constrained
\?/ by CMB waterfall field
>

oscillate -> reheating — Baryogenesis, Dark matter, ...

(o v

Ag,ng,r PRELIY VvV, V'




1013 GeV

TeV

GeV
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-
-
-

after inflation"‘x“ _Heavy field dynamics

: \
.
L3
.
(3
L3

MSSM 7?7 “

Inflaton ?7?

SM particles

Inflaton + heavy field

Dong, Horn, Silverstein, Westphal, 1011.4521; Achucarro, Gong, Hardeman, Palma, Patil 1010.3693
Cespedes, Atal, Palma 1201.4848; Gao, Langlois, Mizuno 1205.5275; Buchmuller, Wieck, Winkler 1404.2275
Buchmuller, Dudas, Heurtier, Westphal, Wieck, Winker 1501.05812 Kumar, Sandora, Sloth 1501.06919
Dudas, Wieck 1506.01253; Harigaya, Ibe, Kawasaki, Yanagida 1506.05250; and ...

Bended trajectory — oscillating feature in primordial spectrum

“o.002 0.005 0010 0020 0.050 0.100
k [mpe']

Achucarro, Gong, Hardeman, Palma, Patil 1010.3693



Inflaton + heavy field

Dong, Horn, Silverstein, Westphal, 1011.4521; Achucarro, Gong, Hardeman, Palma, Patil 1010.3693
Cespedes, Atal, Palma 1201.4848; Gao, Langlois, Mizuno 1205.5275; Buchmuller, Wieck, Winkler 1404.2275
Buchmuller, Dudas, Heurtier, Westphal, Wieck, Winker 1501.05812 Kumar, Sandora, Sloth 1501.06919
Dudas, Wieck 1506.01253; Harigaya, Ibe, Kawasaki, Yanagida 1506.05250; and ...

x - Heavy field

0.15 (A = o)

Vi¢]

u X*(¢Ne) =2
A~ 10m?)

0.10

0.05-

0.00—

* x«(dne) =0

-
_________

0.950 0.955 0.960 0.965 0.970 0.975 0.980

N

Harigaya, lbe, Kawasaki, Yanagida 1506.05250

Disappearing Inflaton Potential by Heavy field dynamics
NK, F. Takahashi, arXiv:1509.01729

L %K(s)@u¢8’“‘¢ + %G(s)@usi?“s (6, s)

V(¢,5) = F(s)v(¢) + U(s)

During inflation
F(s),

 inflaton ' modulus
slow-roll \\9/
& . trapped
) Sinf s

Large VEV of modulus —> large inflaton mass
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After inflation

2 inflaton F)% modulus
decay ‘ ¢ K
radiation V(g,s) = F(s)v(¢) + U(s)
After inflation
2 inflaton F)% modulus
decay ‘ ¢ K
radiation Vg, s) = F(s)v(o) +U(s)

massless / light inflaton

g




915

|. Chaotic Inflation in SUGRA

Kawasaki, Yamaguchi, Yanagida (2000)

Shift symmetry : & — ¢ +iC IZ:> flat potential

1
Kahler potential : K(®,®', X, XT) = (@ + N2+ XXT 4+ ...

shift etry IZ:> Superpotential: W = mX®

@: inflaton, X: stabilizer

Scalar potential: V = e [(DLW)KU(D;'W)T - 3[W

Ry
.
R
o

: 22/‘ 1 2,2

(n+i¢), n,X =0

=t
Sl

|. Chaotic Inflation in SUGRA

NK, F. Takahashi 1509.01729

@: inflaton, X: stabilizer + S: modulus
m — AS
Superpotential : W = A\SX®

1
Kahler potential : K = 5(@ + 021+ @52 + P |5)h)
HX2( 4+ PSP+ Q181
S22+ 1812 + IS + -

Scalar potential :

o 1 1 1
V(p,s) = eXNKXX|Wx|? = Z)\quzsz (1 — 50232 + 10434 + .. )

1
Co :c()?) -1, g = 5 —cg?)(l —cg?)) —c()?) —I—cg)
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Inflaton potential

V(¢,s) = ¢*F(s)

1 1 1
F(s) = Z)\2s2 1 - 50232 + 10454 +...
1
stabilized
= 05| ]
N
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Post inflationary dynamics

0.3 ‘ T T T ' 0.4
disappear! ) /
0.2t o
C\I/< C\l’< i
= : /. = 0.2
0.1r
0 1 L 1
-2 -1 1.5 2

il /

2277
o]
8%

|

<2

S22

0

9.

LB
LR
AR
LRRIRBRERXR

QKRR

(X
Q

S

Reheating
Inflaton => right handed neutrinos : W = y®SNN + ~7IINN
=> thermal / non thermal leptogenesis

Modulus (s) => Hidden light quarks : W = hSQQ

mixing
Hidden sector +— SM sector
U(1)H U(1)y
® S X N I Q@ Q
ULrg [0 0 2 1 0 1 1
Zo |- - + + + - +
Zup—r, | O 2 2 1 2 1 1
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Reheating
Inflaton => right handed neutrinos : W = y®SNN + AIINN
=> thermal / non thermal leptogenesis
Modulus (s) => Hidden light quarks : W = hSQQ
mixing

Hidden sector +—— SM sector
U(1)H U(1)y

S X N I Q Q
Ul 0 0o 2 1 0 1 1
Z, (&) - + + + - +
Zap-r |0~ 2 2 1 2 1 1
)2 . inflaton is stable => dark matter
w - mé’O ~ ng/g

Il. Hilltop /new inflation

Asaka+ (1999); Senoguz, Shafi (2004); Nakayama, F. Takahashi (2012)

(I)Qm
W:XS(—,LL2+—>

\ M2m—2
\
additional
V:U4S2 1_2¢2m+ <b4m 1_0282+C484_6¢2+
2 M?2m — pfam 2 4 2 o

2 4

6¢2 2¢2m ¢4m B
5~ " apEm T et U(s) =0.

1 1 1
F(s) = 51)432 (1 — —cps? 4 —eyst L. ),
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During inflation After inflation

0.5 S/Sinf
modulus

inflaton

SUSY SM Higgs new inflation

H,H,)?
W=XS —u2+—( E ) + uH,Hy
2 - - 2 ' '
S 1 f i = 1} : '
0 0.5 1 0

¢/ M



SUSY SM Higgs new inflation

M2

*

H, H,)?
WZXS(—UQ—I-Q) + uH, Hy

0.5 1
¢/ M

electroweak vacuum VEW

Summary

Inflaton potential may disappear by heavy field dynamics

. Chaotic inflation in SUGRA

- Mass parameter is promoted to be a dynamical field : S

- <S> # 0 during inflation & <S> = 0 after inflation, and then
inflaton becomes (almost) massless.

=> Dark matter / dark radiation / searched by some experiments

[I. New inflation in SUGRA

- Inflaton may return to the origin after reheating and rolls
down to the electroweak vacuum

=> Inflaton can be MSSM Higgs field

920
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ESP (enhanced symmetry point)

Kofman+ (2004)

Modulus is attracted to some symmetry restoration point
at which some massless degrees of freedom appear.

complex modulus field

Kinetic term

1 1 1
LK :§8M¢8“¢(1 + 5055)32 + chl)s4 +.. )

1 9
+ §6M86M8<1 + 20592)32 + 10(34)54 + .. >

Scalar potential
V(g,s) = e KXW,

1 1 1
— Z)\282<152 <1 — 50282 + 10454 + .. )

1
Co :Cg?) — ]_, Cq = 5 —Cg?)(l —C_()?)) —Cg?) +Cg)

(U(1)gr,U(1)s, Z2) — ©(0,0,—), X(2,1,+),5(0,—1,—)
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During inflation

SIS

.’.‘:,‘s::‘s‘o
ST

25 0.0:0:::::::“: XX

2%

inflaton

F(s)/F(syy)

] slow roll

. >

] o

© =
trapped |

. . 0 . .
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“Entanglement dynamics for two Unruh detectors in de Sitter space-time”
by Shingo Kukita

[JGRG25(2015)6a4]
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Entanglement dynamics
for two Unruh detectors
on de Sitter space-time

SHINGO KUKITA(Nagoya Univ.)

YASUSADA NAMBU(Nagoya Univ.)

Motivation

fluctuations generated in the inflation can be represented by

Our classical universe H OW? the origin of that structure
classical quantum

A condition that quantum fluctuations become “classical’.

disappearance of entanglement(quantum correlation)

GOAL:
Understand how the entanglement of a quantum field
in an expanding universe vanish.
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Detector model

calculating entanglement of a field is generally difficult.

entangled

quantum entanglement of the field ‘f’(tz)\O//\\Q/\

linterpret t
entanglement detection by “detectors” ¢\ @/ g

separable

4 )

Two comoving detector coupling with conformal massless scalar

N I 1
Hy=—0;7 404 Hp = f Az’ (09) *+ 2 RY*  Hyne = AoV ) + 01 (x))

two level system | T) [1)  conformal massless scalar Assuming A < 1

n=(1 o 2= o) »=( )

)

Method

We can use naive perturbation method to analyze this system.

However, This method can fail in long time.

fdt H,.(t)

<< 1 If not, naive perturbation fails.

quantum master equation

Method to treat open quantum systems. / environment \
ps = i[Hers, ps| + L[ps]

Ps = TreProt E

" )
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Method: quantum master equation

treat the background field as an environment(thermal bath)

*Thermalization and entanglement in Unruh effect (2004, Benatti et al)

* Thermalization in de Sitter space (2013, Fukuma et al )

-Entanglement in de Sitter space (2013, J. Hu H. Yu)

—Previous studies: impose rotating wave approximation (RWA)

The RWA master equation is easy to solve.
but
It can not detect quantum fluctuation of the field.

—need more general quantum master equation

Method: coarse graining approximation (schaller 2008)

quantum master equation with coarse graining approximation

t+At

Ps = —i[Heff:pS] - [ dt,dt, Trcp[ﬁint(tl): [Hint(tz)»Ps@’Pcp]]
t

free parameter At <mmmm)> AEAt > 1 Heisenberg uncertainty

We use this quantum master equation.

/ - this equation consists of two parts. \

< < Hine = (0, (1) + 0 $(x2) ><

x; 'x"Z
Self-correlation term Two point

\ (~thermal fluctuation) correlation /
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Result1: entanglement generation from the ground state

the region can be entangled from the ground state |1 L1){l1]

HAt

H/w=1
2=0.2

The region is compact.

05 10 15 20 1M There exists the critical distance 7, for all At.

distance of the detectors

The ground state can be entangled for some parameters
& detect quantum fluctuations of the field

dynamics of entanglement ?

Result2: Disentanglement in long time dynamics

-0.00015

-0.00020

-0.00025

HAt =2
Negativity Tde
0.00005
8 L
05 10 15 20 Q- Hr=1.4
- 6
-0.00005 Hr=1.0
-0.00010 Hr=0.8 4l
— Hr=0.6

05 1.0 15

%We take negativity as a measure of quantum entanglement.
If the value of negativity is positive, the detectors is entangled.
The time of disentanglement T *¢also depends on Hr.

entanglement vanishes for all parameters and initial states
in the long-time evolution.
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Result2: Disentanglement in long time dynamics

analytically explanation

The physical distance of the detectors —oo as t —co

- The correlations between detectors asymptote to O.
*The self correlations remain finite and this destroy the entanglement.
< 7
H
Final state is the Gibbs state at the temperature 2—
A rphys t
No entanglement G

Summary and discussion

-We discussed entanglement and disentanglement process
in an expanding universe by using the detector model.

In the analysis, we use CGA quantum master equation

-there exists the parameter region where the ground
state never become entangled.

- The entanglement of the detectors finally disappears.

*Relation with the entanglement of field itself?
- Other condition for classicalization?

*How is the free parameter At decided in the realistic case?




929

APPENDIX

Negativity: one of the entanglement monotones.

ds? = dt? —e?Htqr?

A A

two comoving detectors
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“Cosmic censorship in dynamical brane backgrounds”
by Kunihito Uzawa

[JGRG25(2015)6a35]



Cosmic censorship in dynamical
brane backgrounds

Kengo Maeda and Kunihito Uzawa

[arXiv:1510.01496 [hep-th]]

[1] Introduction

% String theory :

® This is the only viable unified
fundamental theories at present

& String theory contains p-branes
(p>1) as well as strings.
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&% An innumerable number of static brane
solutions have been discovered so far,

But -

© Cosmological brane solutions may
also exist !

<= Dynamical brane background

» ‘Dynamical’ means time-dependent,

4 Dynamical brane may be related 1o

- brane collision
(Gibbons & Lu & Pope, Phys RevLett 94 (2005) 131602)

- cosmic Big-Bang of our universe
(Chen, et al, NuclPhys. B732 (2006) 118-135)

- black hole in expanding universe
(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)
(Maeda & Nozawa, PhysRev. D81 (2010) 044017)
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-o- |t is of great significance 1o understand
the cosmological backgrounds profoundly.

There is a naked singularity in the
dynamical brane background due to -

(i) the divergence of non-trivial dilaton
(This appears in the static brane).

(ii) the time-dependence in the theory.

# The naKed singularity in the 4-dim
Einstein-Maxwell-dilaton theory
with cosmological constant gives
the violation of cosmic censorship.
(Horne & Horowitz, PhysRev. D48 (1993) 5457-5462)

% Question

Does the smooth initial data in the
dynamical brane background evolve
into the naked singularity?
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. =

- Cosmic censorship conjecture

(Penrose, Riv. Nuovo Cim. 1 (1969) 252-276)
(Penrose, ‘Singularities and time-asymmetry ", (1979) 617-629)

- Weak :

“Singularities have 1o be hidden by
the event horizon of a black hole.’

~ + Strong :
a2 ‘For smooth initial data with suitable

matter systems, the maximal Cauchy
development is not extendible,’

o) s

% Outline my talk

£ L)

& x Geometry of dynamical brane background g

%k Cosmic censorship in dynamical M5-brane

N * Summary and comments

T AR N\




[2] Geometry of dynamical brane background I
(Gibbons & Lu & Pope, Phys Rev Lett 94 (2005) 131602)
(Chen, et al, NuclPhys. B732 (2006) 118-135)

€ Background

(1) The background has gravity,
field strength, dilaton,
= Einstein-Maxwell-dilaton theory

(2) This is a part of SUGRA,
ex) M-brane, D-brane

@ The characteristics of M-brane :
« Classical solution of 11-dim SUGRA
- Static limit of M-brane : Black brane

- M-brane on time-dependent background
= Black hole in expanding universe

(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)
(Maeda & Nozawa, PhysRev. D81 (2010) 044017)




3 Our results:

% The cosmic censorship is violated in
dynamical M-brane background.

= This is similar 1o the result which has been
obtained in Einstein—-Maxwell-dilaton
theory (with cosmological constant).

(Horne & Horowitz, PhysRev. D48 (1993) 5457-5462)

[3] Cosmic censorship in dynamical M5-brane

& Logic : \

- We can set a regular and smooth initial
data for the M5-brane.

*These initial data in the far past evolve
into the curvature singularity.

&The cosmic censorship is violated. /
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€ Dynamical M5-brane background

(Binetruy & Sasaki & Uzawa, Phys.Rev. D80 (2009) 026001)
(Maeda & Ohta & Uzawa, JHEP 0906 (2009) 051)

r (1+5)-dim spacetime
M

~1/3
d52 == (a,t —|— b —I— —3) T]Mydx’u’dafu
Tr

2/3
[(a,t—l—b—l— ) d?“ +r dﬂ(4))]

5-dim space

(a, t+b+ ) 0 : curvature singularity
rs

< M5-brane

(Duff & Stelle, PhysLett B253 (1991) 113-118)
(Gaven, PhysLett. B276 (1992) 49-55)

= matter (bosonic) :
gravity, 4-form field strength
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% The behavior of background
(i) Asymptotic region (r > «): Kasner
= Time dependent vacuum spacetime

(ii) Near horizon limit :
t>4/e, r>er, -0

> AdS, X $4

938

r = constant t = constant

r=20 t = 400

G
.....
e, .
v, **
.
....
.....
------
--------
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V-seodesic equation :

M qpN
¢ _I_ FMN ds ds

e

v

D
“1% " (a) Radial null geodesic for M5-brane :
"% The regular initial data outside +he
W Cauchy horizon evolves into a

* naked singularity at h=0.
0.04_— |l 1

| r/50 Pl ( il s-3)
0.02\ ¢

/1] ———— ¢

7005 010 015 020 025 030
affine parameter
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0.4
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0.8

0.6

0.2
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(b) Radial null geodesic for M5-brane :

The null geodesic inside the Cauchy
horizon never hits the timelike
singularity.

-

r/10
- =
affine parameter

- A t = constant

horizon :

b (5) Null geodesic :
Case (a)

S : Initial Null geodesic :
Case (b)

Surface

r = constant
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[4] Summary and comments

(1) There is a singularity due 1o the time depen-
dence in Einstein-Maxwell-dilaton theory.

(2) For dynamical M5-brane, we can set smooth
initial data evolving into a timelike curvature
singularity.

(3) For dynamical p-brane, the cosmic censorship
is not violated by the non-1trivial dilaton.
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“Modified gravity inside astrophysical bodies”
by Ryo Saito

[JGRG25(2015)6b1]
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JGRG25, Kyoto, 10t December 2015

Modified Gravity
inside Astrophysical Bodies

Ryo SAITO (APC, Paris)

With Daisuke YAMUCHI, Shuntaro MIZUNO, Jerome GLEYZS, David LANGLOIS

JCAP 1506 (2015) 008

Infrared modification of gravity

- The expansion of the universe is accelerated today,
BUT our best theory (GR [EH term] + SM) fails to explain it.

- Gravity should be a major player,
BUT its nature is little known on cosmological scales;

Gravity might not be described by GR.

Questions:

s it possible to modify GR on cosmological (IR) scales without
spoiling its success in the solar-system observations?

If possible,

is it possible to test the modified gravity theories?
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Vainshtein mechanism

The first question is non-trivial.

Modified gravity models typically have

a light scalar dof universally coupled to matter

It mediates a new long-range force (fifth force) at short scales.

m)> Screening mechanisms

Strong coupling for (nonlinear) derivative interactions.

=>» A fifth force sourced by an object is suppressed.
Vainshtein mechanism

[Galileon-type scalar-tensor theories, massive gravity,...]

Partial breaking of Vainshtein mechanism

In a very general class of scalar-tensor theories ( GLPV theory [ Gleyzes+ 20141 )

the Vainshtein mechanism can be partially broken:

€ : model-dependent (dimensionless) parameter

M : enclosed mass
T. Kobayashi, Y. Watanabe and D. Yamauchi (2015)

Gravity is modified inside a source but not outside.
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Impact on the stellar structure

RS, D. Yamauchi, S. Mizuno, J. Gleyzes and D. Langlois, JCAP 1506 (2015) 008

Model for stellar interiors

Static, spherically symmetric, polytropic model

(Realistic stars [Koyama & Sakstein 2015])
Basic equations

Force balance

dP dd

dr _'OE

_ _ Only the gravitational law is modified!
Poisson equation

Equation of state

1
P = KlerW (n=1: neutron star, n=3: sun)
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Modified Lane-Emden equation

Closed equation for the density

1d[2d

e [ (€)=

The variables were made dimensionless through

I
1l
%

p = peX"

47TGN
(n+1)Kps T

It reduces to the standard Lane-Emden equation when € — ()

Solutions

Numerical solutions of the modified LE equation:

1.2 T T T T

n=3 €= -0.5 (orange), -0.3, 0.1, 0, 0.1,
tor 0.15 (blue), 0.3, 0.5, 1 (red) ]
0.8 - -
X 0.6:— -
04 } 4
02 } —
0.0 ]
0 1 2 3 4 5 6



Solutions
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Numerical solutions of the modified LE equation:

€ = -0.5 (orange), -0.3, -0.1, 0,
0.15 (blue), 0.3, 0.5, 1 (red)

1.2 A
n=3 -

1.0

0.1,

Impact of the modification is not so simple.

X 061 Steeper

3 _ flatter
041 stronger gravity =>» Weaker gravity
r (6 < O) (6 < O) |
0.2} il
0.0
0 1 2 3 4 5 6
Mass—Radius relation
Mass-Radius relation is modified as:
n—3
M = f(e)R»—1
L
© N\ n=15
— 5
8 i
S~ 4t
= |
L 3 n=2 Monotonically decrease
S : ,
=3 —
0;(54“463““—6.2“461“”00 ‘0‘.1‘”7 €
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Radius

14
12
107 bnotonically decrease

G 8

4. n=1.5 \
-0.3 -0.2 -0.1 0.0 0.1

€
More sensitive to € for softer equation of state.

Mass
—~ =~ — | :
c,f% 25 n=2
S ]
< |
=
20+ No general behavior n—3
(It depends on “n”)
—03 - —02 o ‘—(‘).1‘ 00 ‘O‘.l |

€
More sensitive to € for softer equation of state.



Solutions
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Numeric tens of the modified LE equation:

n=3 — -0.5 (orange), 0.3, -0.1, 0, 0.1,
0.15 (blue), 0.3, 0.5, 1 (red)
X o I The density blows up for large positive values of epsilon.
04 —
0.2 —
00l
0 1

Universal bound on the modification

Near the center,

p=pet o (L) oy M=
1

Gravity becomes repulsive for € > — .

3

A p.r

3

+0O(r)

—> The pressure has to increase —» The density has to increase

( This is also true for larger radii.)

1
Very general bound € < 6 (for any physically reasonable EoS)



Constraints from Red Dwarf stars

J. Sakstein [arXiv:1510.05964]

Minimum mass for hydrogen burning < Observed minimum RD mass

E> Lower limit on €
e > —0.0068

950

Combining with our limit, € should be in the range:

—0.0068 < e < 1/6

Implication of the bound

What is “€”?
GLPV theories = Horndeski theories + disformal coupling

LD T(¢, X)D,dd,d TH; X = (0¢)

“€” represents the amplitude of the derivative (X-dependent) coupling:

oLy
€ X X

More generally, any derivative coupling can break the Vainshtein mechanism.
[RS, D. Langlois, D. Yamauchi, in preparation]

7))
E

Constraints on - Constraints on derivative couplings
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Summary

- Partial breaking of the Vainshtein screening mechanism;

A deviation from GR inside a source but not outside.

Cosmology can be probed by seeing astrophysical objects.

- The stellar structure significantly changes by the modification
of gravity without any conflict with solar-system constraints.

- A universal bound on the amplitude of the modification can be
obtained, independently of the details of the equation of state.

- Derivative couplings to matter are tightly constrained.
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“Slowly-rotating black hole solutions in Horndeski gravity”
by Masato Minamitsuji

[JGRG25(2015)6b2]
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Slowly-rotating black hole
solutions in Horndeski gravity

Masato Minamitsuiji
(CENTRA, IST, U-Lisboa)

A. Maselli, H. O. Silva, M.M. and E. Berti
Physical Review D 92, 104049 (2015) [arXiv: 1508.03044]

Introduction

* GR has passed all the experimental tests in the weak-field/slow-motion
regimes with flying colors.
* Observational/ theoretical issues with GR, such as the origins of

Inflaton(s)/ DM/ DE, have motivated us to investigate
in UV and IR regimes.

= Search of unambiguous signatures of MGs in the strong gravity regimes,

in/around BHs and NSs, is a major goal of recent studies, in perspective of

forthcoming electromagnetic and GW probes.  Berti. et. al, 1501.07274

* Horndeski gravity, known as the most general single scalar-tensor
gravity with 2"d order EOMs, includes most of familiar MG models, and
so far has been analyzed mainly in the context of cosmology.

= Slowly-rotating BH solutions in Horndeski gravity. .

953
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Horndeki (74)

Horndeski Gravity Katopesh, Yokoyarts and et (11
Most general single field scalar-tensor gravity with 2" order EOMs
5= | angL Gi= G X)  X=—30"0,0,
i=2
L, =G,
Ly =—G; 0O¢

Ly =Gy R+ Gux[(O9)? — p2, ]

G
Ls = ~Gs Gud™ — =2~ [(@¢)° + 20}, — 397, 00]

Horndeski Gravity

contains most of the simple and familiar MG/DE models

5
1
_ 4y =
5=, anas Gi=Gi(dX)  X=-50"%udy
i=2
L, =G, = Quintessence X — V(¢), K-essence
L3=_G3D¢ SDGPG?)ZQX

L,=G,R+ G4,X[(|:|¢ )2 — d)ﬁv] = Nonminimal coupling f(¢)R / f(R)
c GR Gy =~
Ls = ~Gs Gud™ — =27 [(@¢)° + 20}, — 397, 00]



Shift-symmetric Horndeski Gravity

subclass of Horndeski gravity invariant under ¢ — ¢ + ¢

5
1
S = zjd‘*x\/—glli G; = G;(X) X==—29""budy
i=2

Ly =—G3 0¢

Ly =Gy R+ Gux[(O9)? — p2, ]

G
Ls = ~Gs Gud™ — =2~ [(@¢)° + 20}, — 397, 00]

Several models in shift-symmetric Horndeski gravity

- Nonminimal derivative coupling gravity Saridakis and Sushkczv()lo)
Gubitosi and Linder (11
L=G¢R+2nX+ LG ¢ ,d, — 2/ — G, = —20Ay + 2nX
G3 =G5 =0
- Einstein-dilaton Gauss-Bonnet (EAGB) gravity «anti, etal (%)
Pani and Cardoso (09)...
— 1 2 (4) y2

Gy =4E®)X(7 —InX)
1
Gy =5+ 4E@DX(2 —1nX)

~a¢n Gs =—4EWnX
This theory is shift-symmetric only for the linear coupling £(¢p) = a¢

Sotiriou and Zhou (14)

Rép = Rip,, — 4RAy + R?
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Black Holes in Scalar-Tensor Gravity

* Kerr solution is the unique endpoint of gravitational collapse in GR.
* GR BH solution is also the unique endpoint in
- BD gravity Hawking (72)
- ST gravity with potential, including f(R) sotiriouand Faraoni (11)

- k- essence models Grahamand ha (14)

* EdGB gravity of £(¢p) = e? admits BHs with a
- Static spherically symmetric BHs  Kanti,et.al (96)
- Rotating BHs Pani and Cardoso (09) Kleihaus, Kunz and Radu (11)
Ayzenberg and Yunes (15), Maselli, et.al (15)
* In the shift-symmetric Horndeski gravity, BHs cannot have nontrivial

scalar hair, except for the EAGB gravity with the linear coupling.
Hui and Nicolis (11), Sotiriou and Zhou (14) 7
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No-Hair Theorem in Shift-symmetric Horndeski Gravity

Hui and Nicolis (11)

1) Assumptions:
a) Static and spherically symmetric spacetime

ds? = —A(r)dt? + % + 7r2(d08? + sin?0d¢?)
b) Asymptotic flathesss A - 1andB — lasr — o
c) Shift symmetry = Noether current J#; Scalar EOM = VIL/“ =0
d) Scalar field shares the same symmetry with the metric ¢ = Y (r)
= J* =(J",0,0,0)
_gn?

2) J* =4, = <watr —or,= J T >0atr >r,asB - 0.

B
3)0,(r?J" ) =0=J"r’=const = J" =0 Vr
2) 8
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4) J" can be schematically written as

]T‘ — Bl/},F(g,g,,g”,l/)’)
unspecified function
- Asymptotic flatness impliesthat B - 1and )’ - 0asr - o

- In the weak-field regime, the scalar kinetic term should be dominated
by the quadratic one, J, — d,¢ = F - const # 0as r - ®

- Moving “inward” from infinity toward the horizon, B and F
will vary continuously and still be nonzero.

J"=0 Vr=vy'=0 Vr=yY=0 Vr
c) Shift symmetry

Hairy BH Solutions
* Relaxing Assumptions (a)-(d)
e.g.) Relaxing (b) and (d) in the case of nonminimal derivative coupling
d) # Scalar field doesn’t share the same symmetry with the metric
d=yP)+qt =] =BY'F(g,9',9", 1) oomrion Trabeni sy
EOMs=F=0= 19" #0
necessary to ensure the regularity of the scalar field at horizon.
b) # Asymptotically-locally AdS BHs Rrinaidi(12), Minamitsuji (14)
* Finding loopholes in Steps 1)-4)
e.g.) In the EAGB gravity, Step 4) is not the case sotiriouand zhou (14)

Ji=-By — Pl = 0=y’ %0

10
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No-Hair Theorem with Linear-in-time and Slow-Rotation

1) Assumptions:

a) With the leading-order correction in the BH angular velocity
Hartle and Thorne (68)

+1r2(d6? + sin?0d¢p?) — 2w (r)dtde

2

dr
2 _ _ 2
ds A(r)dt +B(r)

b) Asymptotic flatness=> A — 1land B — lasr — oo
c) Linear-in time ¢ = y(r) +qt = J* = (J",0,0,J!)
Jt = —%sz + --- does not depend on time.
At the linear order in rotation,

- A(r), B(r),y¥(r) remain the same as in the static case

- Etp = 0= 2" order differential equation for w () 1

2)J?=(")?/B(r) —AM(JO? <

= J" > 0asr - 1y, aslongasJt = finite & (B/A)' = finite.

3)9,(v=9/*)=0=0,(r}J")=0=]"=0 Vr
JE=J) 2)
4)]T — Bl/J,F(g,g’,g”, 1/),) — 0

- Asymptotic flatness B » 1and i)’ -» 0 asr — o
- In the weak field limit, F — const #+ 0 as r - oo

- Moving “inward”, F and B will still be nonzero
J"'=0 Vr=y'=0 Vr=9y =0 Vr
= BHs cannot have nontrivial scalar hair
at the leading order in rotation.

12
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Nonminimal Derivative Coupling Gravity
L ={R+ 20X + fG* p, ¢, — 2,
Case 1) X = X, = const = Self-tuned BHs with A.¢e = —1/B # Ay

qz —_ ZXO Babichev and Charmousis (14)
B Aegr 1 [$n+BAo
Ar)=B(r)=1—-=——r? "(r) = 1-A
(r) () ST 3 " P'(r) A0 \/ B ( )
Case 2) g = 0 = Asymptotically locally AdS BHs
Rinaldi (12), Minamitsuji (14) \/?(577 + ﬁAo)z tan~?! (%)
1
AC) = Typzaay (G0 = BAIIN(OB? + 1) + BAo(34% = nr®)] — 24B¢*n?u} + 222y -
: 40%(B + nr?)? oy = | Gnt BA)IE(En — BA) + 2B¢r]?
B0 = Gpe—pag? + 2t VO J 4BS (B + AR

* Frame-dragging equation &, = 0
1/8 A" A .
g(X) = 2(¢ — BX)

For both Cases 1) and 2)

C2
S0’ +t-w'=0>w=¢+—=3
r r

Hartle and Thorne (68)

— The leading-order rotational corrections are
identical to the case of GR.

See also Ogawa, Kobayashi and Suyama (15)
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Summary

We have studied leading-order rotational corrections to BH
solutions in shift-symmetric Horndeski gravity.

The no-hair theorem for shift-symmetric Horndeski gravity can be
extended to BHs at the leading-order in rotation.

For nonminimal derivative coupling gravity, the frame-dragging function is
exactly identical to the case of GR for all known BH solutions.

Issues

No-hair argument should not be hold at the second order in rotation.

SIOWIy-rOtating NS SOIUtionS Cisterna, Delsate and Rinaldi (15)

15

Thank you.

16
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“V M in time-domains, graviton Higgs mechanism”
by Ivan Arraut

[JGRG25(2015)6b3]
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V M in time-domains,
graviton Higgs
mechanism.

Ivan Arraut.

Tokyo University of Science (TUS).
1). Europhys.Lett. 111 (2015) 61001. arXiv:1509.08338 [gr-qc]
2). arXiv:1505.06215 [gr-qc]

Based on the sequence of papers:
3).PTEP 2014 (2014) 023E02, with Hideo Kodama.

4).Europhys.Lett. 109 (2015) 0002 5). arXiv:1504.00467 [gr-qc]
6). Phys.Rev. D90 (2014) 124082 7). arXiv:1503.02150 [gr-qc]

8). Int.J.Mod.Phys. D24 (2015) 03, 1550022

Content.

* 1). Motivation: Dynamical origin of the graviton
mass.

* 2). What is the Vainshtein mechanism?

* 3). What is the connection between Vainshtein
mechanism and the Nambu-Goldstone theorem?

* 4). What is the connection between Vainshtein
mechanism and the Higgs mechanism?

* 5). Symmetries of the action.



Motivation. Inflation

Dark Energy
Accelerated Expansion

Afterglow Light
Pattern Dark Ages Development of
380,000 yrs. / Galaxies, Planets, etc.

1st Stars
about 400 million yrs.

Big Bang Expansion
13.7 billion years

Motivation

* Actual composition of the universe in agreement with the

standard model of Cosmology.

26.8% Dark
Matter

68.3% Dark
E‘:\e?gry gd.9% Ordina

963
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Motivation.

¢ The scales involved in the problems of Dark Matter
and Dark energy.

Hubble scale

—

Int.J.Mod.Phys. D23 (2014) 1450008, Int.J.Mod.Phys. D24 (2015) 03, 1550022.

Dark Energy

The easiest way for explaining the acceleraded expansion of the
Universe, is introducing a cosmological constant

1
SEH = /d4$\/ —g(R — 21\) ‘ R;w - Eg,uuR - Ag,uu

The theory is invariant under the transformation

59,&1/ — _2V(/.L<I/)

But then what’s the problem with introducing the cosmological
constant? We should be happy with that. What’s going on?

The calculations from zero point quantum fluctuations provide a
huge value in comparison with observations. Then we need a
magical mechanism for explaining why CC is so small.
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dRGT non-linear massive gravity.

1

Py

ASV -

/ d*z\/=g(R + m2U (g, ),

It is a ghost-free theory. The field equations are:

Ul(g,¢) = Ua + a3Us + aqUs. |:> a =1+ 3as,

: B =3(as+ 4a
G, = —-m.sz,, J (a3 + 4ay)

oU

Xlr.u/ = @

1.
- 3{’ G -
Corresponding to the Bianchi

oU identity in unitary gauge.
Vi ((9(7):0':> Y Y Eate

3, 0%)

dRGT Massive gravity. De-Rham-Gabadadze-Tolley, 2011

The Vainshtein mechanism in dRGT

 Every theory trying to reproduce the accelerated
expansion of the universe reproduces at least three
scales when the local physics is analyzed:

Region of relevance for

Einstein gravity the extra degrees of
recovered freedom.
.
| 1
o (ML _(GMy#E T =R
re =2GNM v (.-’Irfp) As (::13 ) ' VA

Source S. L. Bazanski and V. Ferrari, Analytic Extension of the

Schwarzschild-de Sitter Metric, I
Check for example:  Nuovo Cimento Vol. 91 B, N. 1, 11 Gennaio (1986).
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Analogy with GR
GR case. <: I;

2GM Equilibrium c owical
force scale. osmologica
Horizon.
!

ry = (GMm?)'?

2GM

Vainshtei | Graviton mass
ainshtein scale. scale.

Europhys.Lett. 109 (2015) 0002, (L
arXiv:1407.7796 [gr-qc], arXiv:1503.02150 [gr-
qcl.

The new mechanism operates through the non-linearities of the
theory. The usual explanation goes to the decouping limit of the
theory after finding the field equations.

Deffayet et al.; Kurt Hinterbichler: 2012.

The mechanism in terms of Stuckelberg functions appears
as a extremal condition of the dynamical metric.

o (2Vg:9) 9 96
dU(g, o) = ( L ) dg =0, |:> _ % X Guv _
dg , dg,w or ), dr + o i dt =0,

These set of conditions, when applied to
the dynamical metric, help us to evaluate
the Vainshtein radius.

arXiv:1407.7796 [gr-qc], Int.J.Mod.Phys. D24 (2015) 03,
1550022



The extra-degrees of freedom reproduce the
effect of a preferred time-direction.

To(r.1)

Notion of preferred time-direction.

Non-preferred notion of time. Diffeomorphism invariance explicitly broken.
Diffeomorphism invariance restored at this Restored after introducing redundant variables.
level.

Vainshtein scale

The extra-degrees of freedom reproduce the
effect of a preferred time-direction.

r=0
The notion of a preferred time-direction, affects the definition of
particles in the same way as the curvature effects can reproduce the
same effects, responsible of the Hawking radiation.

arXiv:1503.02150 [gr-qc] Europhys.Lett. 109 (2015) 0002

967
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The path integral formulation

From the perspective of the path integrals, the mismatch between the periodicities of the
propagators with respect to the ordinary time-coordinate and the same propagator defined and
analytically extended with respect to the St\”uckelberg function, create the effect of extra-particle

creation.

¢ t-i4(\pi) M TU(I ?_‘.) — TU(I 7_‘.) — 4 M

Vainshtein scale

From the perspective of the Bogolubov
transformations.

We can use the same set of Bogolubov transformations, in order to demonstrate that the extra-
degrees of freedom of the theory are able to reproduce an extra-particle creation process due
to the ambiguity generated in the definition of vacuum.

Ty(r.t)

The notion of vacuum after the Vainshtein scale is
different to the notion of vacuum before it.



The vacuum solution. Spherical
symmetry

With the degrees of freedom inside the

dynamical metric, the object created

becomes diffeomorphism invariant.

ds® = gudt® + g dr? + gy (drdt + didr) + erQE,
With:
. o , S

it = —f{Si‘“) (af%(‘l f))zw Orr = —f(-g'F’)(('}?-Tg{r, f))u + f‘[ST‘) 1

gf]" = _f(‘gr)df]_b(r f)dTTD{r- t)-
The Stilckelberg fields enter here in the following

0};6 d}f‘j f 0 o s T .
Guv = (&)I‘“ ) (0:{?[} ) ga,:_?.- |:> Y (f_-t) — TD(f:f)r Y {T',t) =T.

The vacuum degeneracy

The generic solution can be written as

12 e o, St g9 0
ds® = —f(Sr)dTy(t,r) +_f[5 ) 4 Ser=dQ)e,
.

Two family of solutions in this theory.

1). Two free-parameters and the Stlickelberg function

given by Sr |
To(r,t) = St + — —1].
o{r1) f (f(:u-) )

Hideo Kodama and Ivan Arraut PTEP 2014 (2014) 023E02
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The equivalence principle is satisfied for this
previous case. In other words, 9,T;(r,t) =0 for
free-falling observers. For the second family of
solutions, we cannot assure the same.

2). One free-parameter and the Stickelberg function
arbitrary. In this case, the Stiickelberg function being
arbitrary, operates as a free-paramater.

This second case is the interesting one.

| The Stiickelberg function defines the prefereed time direction. |

1wﬂﬁﬁﬁﬁﬁﬁr,
& ‘

The procedure for analysis.

Perturbation theory. In a “free-falling” frame.
f(Sr)— 1

And the dynamical metric of the theory becomes.
Ty(r.t)

L (Té(;t))"’

ds? = S? (dt‘g + dr?

-2 5 dtdr + rgdﬂg) .

Here | have assumed the stationary condition for the
metric: Ty(r,t) = S. This assumption is unnecessary but
simplifies the calculations.
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Perturbation theory in a free-falling frame.

1

S = 53 d*zv/—g(R + mgU(g., b)).

971

Expanding the action up to second order in perturbations. The relevant
guantity for our purposes is the potential term, defined as.

o . 11 PR _ L
VAU1.0) %5 (L4 30 = 31, 4 1) (016t +00(5,6)

After expansion up to second order.

1

V=oU(g,0) ~ S (1 + %h. - 1?1%!1-30_ + éh_?) U(g, ®)back + 52 (1 + %h) oU(g. 0).

!

V—=9U(g,9) = V(9.9)

Then we find the vacuum solutions, defined in
agreement with.

dv (g, 6)

dh,, 0,



The effective matrix mass for each mode is defined in agreement with the matrix

I 2 T /
m 224 m af __ M—Q(D)

In agreement with the second derivatives with respect to the field, evaluated at the vacuum level. The
symmetries of the action are defined in agreement with:

59 h-#.;i_; — C)# ci_; + a;ﬂ_; (:#. + =£ (5} ?-p.;r_;-

Og A = O = Gy — A0aG — 5 A AP0,05C, — ...,

59@ — — A. Intermsof St\"uckelberg functions. Or equivalently:
O ]C‘Cx' O f;B i o
G = o gap(F(@), V() = fHY (@)
Y(r.t) = 2% + A%, Ap — Ay + 9uo.
_R+a6+a6+ )] | omi 240,
h‘oouac - 2(1 n O")S + 2:;:'—(](‘.r'? t) ‘4(0‘)‘
a2+ a6+a6+)] a0,
h—r-ruac - 2(1 I Ck)s + ZTO(T: t) B(Q)‘
hopn = To(r, ) [-2(1 4+ @) + o[l + 3a(1 + @)][2 + a(6 + a(6 + a))]]

214+ )1+ 3a(l+a))

!

Iy luae = C (@) + Ty(r,£)D(a) = v.

972

This quantity is the parameter defining the real vacuum.
The solution is degenerate, the symmetry under time-translations is broken,

but the spherical symmetry still remains.
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SO(3,1) (G)— SO(3) (H), G/H— U(1).

In a free-falling frame.
We can compare the situation with the scalar case.

D T W
L= §(du¢” )? + 5#-2(@ )2 — 1[(@ )T,

Where the action is invariant under

o' — R
) Has a minimum
And the potential
2

V(') = —%ﬂg(cﬁi)g ~ 2[(@“’)2]2. ) (i) = %
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The Nambu-Goldstone theorem

V( ) — V{(d ) 1(,-' | )a( 0 b 0 Vv
(0) = Vido) + 5(¢ — ¢0)* (¢ — o) GYTEYE @DJF .....

G: ¢ =Ulg)ss # 3¢,

H: ¢f =U(h)¢§ = o5,

G/H

$

The dimension of the coset defines the
number of broken generators

Finally the physical perturbations in our case, have to be
done with respect to

h‘,u.v — h-,u.v + h‘,u.r.ftrac-. h-,u.v'va.c = 0.

And the action becomes of the form.

£=Lpy+ KdTy(r,t)) + F(v,@)(TT)gauqe + V (g, 0),

The connections become gauge fields due to their
explicit dependence on the Stlickelberg function.
The Stlickelberg function also appears in the explicit
deefinition of the parameter generating the vacuum
shift.
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What happens if we include gravity now.

mE) | mE) | )  BE) | =) )

We then have a multiplicity of Vainshtein scales, all of
them connected through the U(1) symmetry
transformation. The analysis should be better done by
defining the observer located at this scale. The same
proceure as explained before applies.

Cartoon picture

>

Preferred time

direction.
No preferred
source time-direction. Free—falli.ng metric not
. . necessarily conformally
free-falling metric trivial.

conformally trivial.

Equivalence not necessarily satisfied

Equivalence principle satisfied
in the standard sense (Hidden).
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Conclusions

* In the non-linear formulation of massive gravity, the
Vainshtein mechanism in time-domains defines the
dynamical origin of the graviton mass.

* The Stlickelberg function defines the preferred time-
direction of the theory. Breaking the symmetry for
generators depending explicitly on time. The spherical
symmetry remains.

* At the spatial domains, the Vainshtein scale defines a
phase transition scale.

* The previous results explain why apparently the
particle creation process of black-holes is affected by
the presence of the extra-degrees of freedom. See for
example:

Europhys.Lett. 109 (2015) 0002,
arXiv:1407.7796 [gr-qc], arXiv:1503.02150 [gr-qc].
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“Higgs G-inflation and field-dependent cutoff scale”
by Kohei Kamada

[JGRG25(2015)6b5]
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Higgs G-inflation and Field-dependent Cutoff Scale

based on: KK, T. Kobayashi, M.Yamaguchi & J. Yokoyama, PRD85 (2011) 043503
KK, PLB744 (2015) 347

See also: KK, T. Kobayashi, T. Takahashi, M. Yamaguchi & J. Yokoyama, PRD86 (2012) 023504
KK, T. Kobayashi, T. Kunimitsu, M. Yamaguchi & J. Yokoyama, PRD86 (2013) 123518

Kohei Kamada
(Arizona State University)

JGRG25, Kyoto, 12/10/2015

Courtesy H.Oide

Premise

Our Universe has experienced primordial inflation.

=500 e — (’13) Planck collaboration

since Planck and other CMB experiments strongly supports inflation
and we do not have at present any other good mechanism to solve
the cosmological problems such as the horizon, flathess and
monopole problems.

m

Courtesy H.Oide
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Question

What drove inflation?

— ’%ﬁ —

Courtesy H.Oide

M’m
Question
What drove inflation?

We usually assume that the potential energy of a scalar field drives inflation.

;5?+3H¢+V’:o,

1
I 3H2M§1 o 54)2 =+ Pinf
Pinf

\ 4
-

B . — . e

Courtesy H.Oide
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m
Question

What drove inflation?

Now we finally know that
the unique scalar field in the SM, Higgs, really exists.

ATLAS 4 oDaa
—— SigsBg Fit

“““““““““““““““““““ MS Vs=7TeV,L=51fb"}s=8TeV,L=531"
T T

Unweighted
121500
H
s \
2
:

120

Events / 1.5 GeV
wu
8

=}
S
S

130
m,, (GeV)

E E| L L L L L

8 110 120 130 140 150
4

° n ‘u.u“,‘/\“‘ NS m,, (GeV)

S/(S+B) Weighted
o
S

o

CMS, 1207.7235

150 160
m, [GeV]

ATLAS, 1207.7214

Courtesy H.Oide

Question

What drove inflation?

Now we finally know that
the unique scalar field in the SM, Higgs, really exists.

Why don’t we use the Higgs as inflaton?

N_—-—%

Courtesy H.Oide
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The simplest, most elegant model of Higgs inflation
would be R|H|? Higgs inflation.

(08 Bezrukov & Shaposhnikov;
See also ‘84, Spokoiny; ‘89 Futamase & Maeda; '95 Cota; ‘98 Komatsu & Futamase)

Ut

M4

Standard Mode

[AS = /d4x\/—_g [thRH

(®)]
=
©
(0]
e
(0]
M6 ;U:/

X

Courtesy H.Oide

N—%

The simplest, most elegant model of Higgs inflation
would be R|H|? Higgs inflation.

('08 Bezrukov & Shaposhnikov;
See also ‘84, Spokoiny; ‘89 Futamase & Maeda; '95 Cota; '98 Komatsu & Futamase)

v Apparently renormalizable.

v Self-consistent.

[AS _ /d4x\/—_g lﬂ@] v Stable under quantum corrections.
2 v possible even in the case where

~/ Higgs potential once gets negative.

R ~ (0h)* /M,

Nonminimal coupling is not really renormalizable...

(70 canonically normalized graviton)

Courtesy H.Oide
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If we allow non-renormalizable terms for Higgs inflation,
there can be several variants, stimulated by Galileons.

(09,10, '11, Deffayet+ )
~

£2 :K(¢7 X)7
L5 = Gs(6, X)09, =/ d%rz L,
£4=Ga(¢, X)R + Gax [(D¢) - (VuVo) ]
L5 =G5($, X)G VIV ¢ — 6G5X [(D¢)3
0G;

1 2 »
~3(0¢) (V.V.,9)° +2 (vuvygﬁ)ﬂ . X=-3(Ve), Gix=g7

U J

Noncanonical derivative coupling changes the friction term in the equation of
motion and the coupling to gravity changes the potential shape in the Einstein

frame.
(10, Germani & Kehagias, '10, Nakayama & Takahashi, ‘11, Kamada+)

—_— L —

Courtesy H.Oide
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Now we can construct a Higgs inflation model
in the spirit of Generalized Galileons. = see Kk+(12)

A simple, but non-trivial model is the one uses L3 term,
(11 KK+)
4 )

T
AS = — [d*z\/—g (%DMD“H—Fh.C.) |D, H|?

4
e T )

which we name it Higgs G-inflation after Galileon.

J

m

Courtesy H.Oide
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Features and consequences of Higgs G-inflation

Additional derivative coupling generates additional friction
term in the EOM, and we have
‘potential driven additional friction term assisted inflation”.

|modified slow-roll equa‘uonsI e /.v (4
/
2 4
SH“M pl — §b /

/
H(bgb 3 /
<1 ><3H¢>+)\¢ =0 //

My

As a result, sub-Planckian chaotic inflation is possible.

— iﬁf —

Courtesy H.Oide

For the self-consistency, one should check the interaction of
fluctuations around the inflationary trajectory.

Note that the kinetic term of these fluctuations are not canonical
and one must canonically normalize them.

(o [ e ]

=>"FEOR H¢¢ > M*, the kinetic structure of x(z) is much
different from the original one.

Courtesy H.Oide
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For the self-consistency, one should check the interaction of
fluctuations around the inflationary trajectory.

Note that the kinetic term of these fluctuations are not canonical
and one must canonically normalize them.

For the canonically normalized fluctuations X,
the interaction terms reads,

7 1 . 1 $+3H$
3. L 9 )
/dtd xG(t)3/4E(t)3/4 M4XXDX+ GUPAF@)PA  2M* X(Dux)

1 P 1 1
XOx(Dpux)?.

— v v 2 p—
GarmeA 2 NP~ GG 20

=2 g LA W
2¢ —6H 9 9OH
with GO =1+ ¢T4¢¢’ Ba=T— W

— %ﬁ —

Courtesy H.Oide
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The system becomes strongly coupled at the scale,

. G(t 3/8F t 3/8M2 2G(t 3/4F t 3/4M4 21/3G t 1/4F t 1/4M4/3
[ .. = min. { (t) 41(/2) A )(;Jr 3(H)q_5 ’ ) 4_31/5 ) 2VAGH)YER(1)3/3M
¢

For inflationary BG, we have

[ Esc(gz_ﬁ) = 21/3G(t)1/4F(t)1/4M4/3 < )\1/4¢2/3M1/3]

o173

This is found to be larger than the Hubble scale during inflation:
)\1/2&2

+ i : 7o \-1/8 R
2V3M,, when the COBE scale exited the horizon, ¢ o

Thus, this model is self-consistent for sufficiently small M.

B . — . e

Courtesy H.Oide
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Features and consequences of Higgs G-inflation

We can examine the cosmological perturbation in this setup,
and find that effectively the potential is flattened,

1/2 2
A, = M 3 A\1/2 M
82 8 M,

=> For M ~ (1/0.01)"410" GeV, A, ~ 107?is realized.

Gint = A™V/8 /MMy,

It also predicts ng ~ 0.967
326
9 np ~ 0.14

and slow-roll suppressed NG.

Non trivial consistency relation!

—_— L —

Courtesy H.Oide
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Features and consequences of Higgs G-inflation

BICEP2 / Keck Array VI: Improved Constraints On Cosmology and Foregrounds When
Adding 95 GHz Data From Keck Array p,

Keck Array and BICEP2 Collaborations: P. A. R. Ade,! Z. Ahmed,?? R. W. Aikin,* K. D. Alexander,”
D. Barkats,® S. J. Benton,® C. A. Bischoff,” J. J. Bock,*” R. Bowens-Rubin,” J. A. Brevik,* 1. Buder,” E. Bullock,?

of the sky. This analysis yields an upper limit rgos; < 0.09 at 95% confidence, which is robust
to variations explored in analysis and priors. Combining these B-mode results with the (more
model-dependent) constraints from Planck analysis of CMB temperature and other evidence yields
a combined limit r9.05 < 0.07 at 95% confidence. These are the strongest constraints to date on

inflationary gravitational waves. arXiv:1510.09217 d
it 2 A7/E /MMy,

It also predicts [ ng ~ 0.967 W
4 =l .. :

326

T~ — n’TNO.l e Ve P o ? ,,,\edNG
Radiative corrections or more complicated setup may °’ )

relax the situation. But it is more sincere to take the Jtion!
model as a toy study to read off the general feature of
this type of models. (See '15 Kunimitsu et al. )

cm

Courtesy H.Oide
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Summary

v Higgs G-inflation is (was?) one of the possible candidates of Higgs
inflation and is found to be self-consistent.

v Its strong coupling scale depends not only field values but also its
derivative and environmental parameters such as the Hubble parameter.

v The strong coupling scale is smaller than the field value, the knowledge
of UV completion would be necessary to connect the results of low
energy experiments to the inflationary predictions.

v Since the model allows superluminal propagation of fluctuations in a
specific BG, Lorentz-invariant UV completion may not exist (e.g. '06 Adams-+).

# UV extension may be possible? See '14 lvanov+, '15 Barbon+. See also '15 Keltner+.

—_— L —
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“Localized oscillating configurations formed by real scalar fields”
by Gyula Fodor

[JGRG25(2015)7al]



Gyula Fodor

Observatoire de Paris, Meudon
Wigner Research Centre for Physics, Budapest

Péter Forgdcs (Wigner Research Centre, Tours University)
Philippe Grandclément (Observatoire de Paris, Meudon)

The 25th Workshop on General Relativity and Gravitation in Japan
Kyoto, 10 December 2015

G. Fodor: oscillatons and AdS breathers 1/17

Gravitational attraction forms a spherically symmetric star-like
object from a scalar field

/o

For a complex scalar field it is called boson star
For a real scalar field it is called oscillaton

Extremely long living and stable, but for oscillatons the mass
decreases very slowly because of a tiny scalar field radiation

G. Fodor: oscillatons and AdS breathers 2/17

088
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Small amplitude oscillatons
G. Fodor, P. Forgdcs and M. Mezei, Phys. Rev. D, 81, 064029 (2010)

e amplitude ~ ¢2

: 1
SlZze ~ e

°
@ mass M = % [1.7535 — 2.11753]
°

mass loss rate

= ———exp

dt g2

dM 30.0 (_ 22.4993)
€

extension of the mode equations to the complex plane, study
the behavior near the pole, Borel summation

For large amplitude oscillatons the radiative tail can be calculated
numerically by spectral methods
P. Grandclément, G. Fodor and P. Forgacs, Phys. Rev. D, 84, 065037 (2011)

G. Fodor: oscillatons and AdS breathers 3/17
0.1
oot 4/(16m) ] Time averaged central density is a
0001 ] monotonically increasing function of
“ o000t | ] the scalar field central amplitude
1e-05 | 3 — for small amplitudes it is
. - i 2
1e:08 - . 1 proportional to ¢Z
%
0.62 T T T T T
06 1 —_ In general, a star-like astrophysical
058 | ] object is stable if the total mass
056 | . increases with increasing central
0.54 | stable unstable E density
0'52 B 7 - - -
There is a maximal amplitude for

0'5 1 1 1 1 1
0 0.002 0.004 0.006 0.008 0.01 0.012

. stable oscillatons
[}

G. Fodor: oscillatons and AdS breathers 4/17
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For A = 0 oscillatons oscillate almost periodically, with an
extremely slowly increasing frequency

0.6 T T T
® = 0.860625
At=7/(240) -

Behavior of the scalar field
during one oscillation period
for the largest amplitude stable
oscillaton

04 F

0.2

e 0

02 Scalar field decreases

04 ) exponentially up to r = 32,
where a radiative tail begins,

0 T T 6 8 10 12 14 with amplitude 1078

r

For smaller amplitude oscillatons the tail is even much smaller
— the tail decreases exponentially with decreasing central amplitude

G. Fodor: oscillatons and AdS breathers 5/17

Start with a maximal mass oscillaton 13.7 billion years ago,

choosing various scalar field masses m we list how big part of the
mass is lost by now

c? Max—M M
may Moo

M
1072 | 3.16-107> | 8.09 -®1014
10715 | 0.0896 7.36 - 10*
107° 0.263 5.96 - 10°
10° 0.401 4.85-10716
1015 0.500 4.04-10-26

the last column gives the resulting mass M in solar mass units

P. Grandclément, G. Fodor and P. Forgacs, Phys. Rev. D, 84, 065037 (2011)

G. Fodor: oscillatons and AdS breathers 6/17
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Negative cosmological constant acts as an effective attractive force

Exactly periodic solutions exist for real scalar fields (oscillatons)

— we call them AdS breathers
there is no radiative tail, similarly to the sine-Gordon breather

There are breather solutions even for massless free scalar fields
— their size is determined by the cosmological constant ~ 1/v/—A

— for A = 0 massive fields the size is ~ mis

Rest of the talk: massless Klein-Gordon field minimally coupled to
Einstein’s gravity, with A <0

G. Fodor: oscillatons and AdS breathers 7/17

G.Fodor, P. Forgacs and P. Grandclément, Phys. Rev. D 92,
025036 (2015)

We apply three methods:
@ Spectral code for constructing time-periodic solutions
@ Time-evolution code to study stability

@ High-order small-amplitude expansion to get analytical results

Extension of the results of M. Maliborski and A. Rostworowski,
Phys. Rev. Lett. 111, 051102 (2013)

— methods that work well only for 2n + 1 spacetime dimensions
— results presented only for 4 + 1 dimensions

We give 3+ 1 and 4 + 1 results, can reach higher amplitudes,
find maximal mass state and higher amplitude unstable states

G. Fodor: oscillatons and AdS breathers 8/17
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d + 1 dimensional Einstein's equations

G+ N = 87GTo . Ty = 000 — 3 Buba0”
the contracted Bianchi identity gives the wave equation
VIV,0 =0
usually ¢ is rescaled to make 87G =d — 1

We look for spherically symmetric solutions with metric

2 _ 1 )
ds?® = o x (—Ae 20412 + dez + sin? def,_l)
where [2 = —d(gxl) A and § are functions of t and x

— anti-de Sitter correspondsto A=1and 6 =0

G. Fodor: oscillatons and AdS breathers 9/17

£ is chosen as the central amplitude of ¢ at t =0

¢:§:¢(n)€n7 A:1+§:A(n)gn, 5:§:5(n)5n
n=1 n=2 n=2

odd even even

To linear order metric remains AdS, and there are periodic
localized solutions for the scalar field (1) = p,, cos(wpt)

n!

= d)2),

cos? x pid/21d/?) (cos(2x))

Pi*#) is the Jacobi polynomial,

(a)p =a(a+1)...(a+ n—1) is the Pochhammer symbol
frequency: w, = d + 2n

fully resonant spectrum — turbulent instability

G. Fodor: oscillatons and AdS breathers 10/17
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po = cos’ x
3
p1L = COZ X [4 cos(2x) — 1]
3
p2 = COZ X [3 cos(4x) — 2 cos(2x) + 2]
0 cos® x
o \W Ps=—1¢ [12 cos(6x) — 9 cos(4x) + 18 cos(2x) — 5]

0 /8 /4 3n/8 /2
X

Combination with arbitrary amplitudes and phases is a valid
solution of the linearized problem

(0. ¢]
gb(l) = Zan cos(wnt + b,,)p,7 ,  Wp = 3+ 2n
n=0

but to &3 order, there are tsin(wt) secular terms in ¢ if more
then one a, is nonzero

G. Fodor: oscillatons and AdS breathers 11/17

There is a one-parameter family of solutions emerging from each
pn linearized mode

We investigate the family emerging from the nodeless solution pg
Initial guess for numerical code: linearized solution py cos(3t)

KADATH library developed by Philippe Grandclément at
Observatoire de Paris - Meudon

— multidomain spectral method
— radial direction: Chebyshev polynomials

— time direction: Fourier decomposition

¢ = Z ¢k cos(kwt), A= ZAk cos(kwt), 6 = Z&k cos(kwt)
k=1 k=0 k=0

odd even even

G. Fodor: oscillatons and AdS breathers 12/17



Central values of the cos(wt), cos(3wt), cos(bwt) Fourier modes
as function of oscillation frequency

1.6

. ¢1.
| \\\\\\\ 1005
1.2 f .
’ unstable stable 100-95
08 | .
= ©
L [aV}
0.6 S
04}
0.2 F
O L
_02 i a 2 N
2 2.2 2.4 2.6 2.8 3

Using the solution as initial data for a time-evolution code:
AdS breathers with frequency w < 2.253 are unstable
— collapse into black holes

G. Fodor: oscillatons and AdS breathers

Radial profile for the first three modes of the scalar field for the
largest amplitude stable AdS breather (maximal mass)

1.2

1t
0.8 }
0.6 f

n

04 F
0.2 F

0OF

_0.2 2 2 2
0 /8 /4 3n/8 /2

— more compact than the linear solution, but similar shape

G. Fodor: oscillatons and AdS breathers
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Mass as function of the oscillation frequency

0.35 r r r r r r
o
0.3 '/- order €2
unstable | stable order &*
0.25 1 T 1 AdS breather becomes
02} 1 unstable when the total
015 b ] mass starts to decrease
o1l with increasing central
© densit
005 } Q y
N
0 2 2 2 " 2 2 2 2
2.1 22 23 24 25 26 27 28 29 3

First two orders of the small-amplitude expansion is also plotted
— in order to get * order results one has to calculate to £° order
(to fix coefficients of homogeneous solutions)

G. Fodor: oscillatons and AdS breathers 15/17

Central frequency Q2 as function of asymptotic frequency w

As the amplitude grows

the frequency observed
outside the breather
decreases

the frequency measured
by a central observer
grows

21 22 23 24 25 26 27 28 29 3
®

G. Fodor: oscillatons and AdS breathers 16/17
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Periodic solutions, up to a certain amplitude, are on
"stability islands”
— general configurations collapse into black holes

AdS/CFT correspondence
— periodic solutions correspond to states that never thermalize

There are other asymptotically AdS localized regular configurations

@ static axially symmetric electromagnetic states
Herdeiro and Radu, Phys. Lett. B 749, 393 (2015)

@ vacuum gravitational wave geons
Dias, Horowitz and Santos, CQG 29, 194002 (2012)
— helical symmetry

G. Fodor: oscillatons and AdS breathers 17/17
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“Anisotropies from fluctuations of a domain wall during inflation”
by Sadra Jazayeri
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Anisotropies from fluctuations of a Domain

Wall during inflation

Sadra Jazayeri
Institute for Research in Fundamental Sciences
(IPM)- Tehran

Works in Progress: In Collaboration with H. Firouzjahi and
M. Akhshik & Y. Akrami
Some parts of the talk from: 1408.3057 with Y. Wang et al
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]nﬂaﬁonavy Cosmo [ogy
Motivation for the work: CMB Anomalies

]nﬂaﬁon in presence of a 2-Brane

Branion-]nﬂaton (nteraction

Gravitational reaction of the brane on the inﬂaton

Inflationary Cosmology

~ Cuwently ]nﬂaﬁon is the main paradigm of early universe Cosmology.

999

* It acts both as a solution to Big bang Puzzles (Flatness & Horizon problems) and

a source for producing pvimordia[ seeds fov structures.

* Data still can not dist'mguish between enormous bunch of existing models

002)

Tensor-to-scalar ratio (rq

o
=}

=)
a
=)

0.15

0.05 0.10

0.00

L

Planck TT+lowP
Planck TT+lowP-+BKP
Planck TT+lowP-+BKP+BAO
Natural inflation

Hilltop quartic model

« attractors

Power-law inflation

Low scale SB SUSY

R? inflation

Vxo?

V x ¢?

‘,' x (‘)(".‘5

Vxo

Voo ¢?3

N.=50

N.=60

L
0.94

0.96

Primordial tilt (n.)

Planck2015
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CMB Anomalies

- Planck 2013 & 2015: Quadropole-Octopole alignment, Dipole
Asymmetry, Parity Vio lation etc.

- D'qoo[e Power Asymmetry

AT7/T (n)=A+An.p )(AT/T)liso
/<600

,,,,,,,,,,,,,

CMBdipol : CMB.dipole
............. 452 - il Tl i 4BR ool
NEP NEP ;
e . ) » ° . . 3] »
S B 2 8 S § .8 2 3 E
low-(gy ~ | | TTToTTTTTERTTITTTTTTTT [ 1"-; -------
SE, ) : o LN
23 APy ! SEP wmapy
. | o
------------- T T ~
- : ~
: 5
L C
e ——— L —— ] ©
64 128 192 256 320 384 448 512 2 128 256 384 512 640 E
‘max Lmmin
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. ]nﬂaﬁon n presence of a domain wall

Inflation in presence of a domain wall

Inflaton

ULMIpT2 H

Q The space time of a cosmo[ogica[ constant and a ﬂat wall could be described ’oy the

fo[[owing metric

asT2 =—dt12 +eT2Ht dxTi dxdi —2feTHt sgn(2)dtdz+ O(p,€)

*  Where S=pu/MipT2 H is a dimensionless perturbative quantity.
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Gravitational reaction of the domain on the

inflaton

There are two contributions ﬁ'om our brane into inﬂaton 2 point ﬂuctuaﬁons:
First one is the background geometry induced loy the domain and the second is
the probab le Wall pertw’oaﬁons. |

Veg gluv du pdlv o BV—g sgn (2)d4z 5¢ 6

X

* Thevaried 2pt due to this contribution has the fo“owing form:

/. BH? k2q. + ¢k . .
()<()C)k()(:)q> = _—l/f?’q’?’ kz np - (277)3()2(k|| T q||)
z z

The 2Dim delta function signals the violation of a translational invariance due to

the Brane.

* The ]oackground interaction produces a O(f7) variance asymmetry.

*This is a dﬁevent signa[ for mode['mg the power asymmetry on the CMB.

(1402.0870 and Planck 2015)
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* The background interaction also aﬁkc’cs CMB spectrum. Now there are many
non zero qﬂ'—diagonal terms thanks to the breaking of translational invariance.

(allll mil alll2 mi2 )=CIl1 12 Tm
* Asexpected the variation to €U/ decays like ~1 /momentum .

300f o..
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Branion—lnﬂa’con interaction

Branion —Inflaton interactions

* In principle our Wall could be either a defect ora fundamen’ca[ brane.
*  We consider some direct coup[ing between 2-brane and inﬂaton . We neglect

inﬂa’con dependent tension, consequen’dy the [eading operators are of the form:

SiBrane =uf V—h d13 (+A[V=rh nlu diu ¢ d13 (+1 /AT [V="rh (nlu ddu )12 d13 ¢

\ /
|

Nambu-Goto action
* By choosing an approprate meshing on the brane we can set {70 =¢, {71

= (12— The Height of the brane could be treated as a scalar ﬁe[d

ﬁving on the brane. This brane pertwloa’cions (branion) acts as a

mediator between inﬂaton legs.

) ) 171.- 1 )
_ T2 4 32, ) - 2
Sy = 4/3]\[pH/a(t) daydi; [w ~ —(0rm) }

wde (k,r)ocV=fer H2 (k1)



*  Power spectrum of density pertwbations would be modiﬁed due to this new

interactions.
. . 1
A / VoRA 9,0 O A / ad' s (z) [ — 766+ ﬁama]w}
(7,0, —1)

[_ 72+ 5 ((0rm)? + 1)} Y

ny, = 5

ta

dts ([Hj ). B (1), 50x(10)304 (1] )

le
5(1“’)<(—5Ok5@q> = —/ dto
0

=

branion
——) QR ue—
eees———() O—
s———() Rue——
Aat 20,6007 @ O Aalt)éd#

* Theln-ln integra[s should be carried numericaﬂy. The result for the power looks like:

TA \2H?K?
vl ) S(sin b, sin by,)

(09x(re)05q(re)) = (2m0* (K + Q) (17537 ) g
Py

ay - . ®dry [°° dx
S(sinby,sinfy) = / —= / —21 X
Jo a3 Ju, a7

Iln{JJ%JJ%HQ(.I'])HS(IQ)(l— 1 ) exp( I-I(]) )}Im{(l— 2 ) exp( 2 )}

sinf,” " ‘sinf sinf,” " siné,

+Im [.l'?Hg(.{'l)}'[ISH.;(JQ)]'[(I— 1 ) exp( 1 )]'}Im{[(l— fli; ) exp( 2 )ﬂl}
S Ug

{ sinf” " sinf ~sinf,
_Im{l-‘%HQ(u)}r%HS(m}'u— ) exp(—— )}Im{[u— —2) exp(—— )]’}

sinf”  ‘sinfy sinf,” " ‘sinf,

—Im

sin 6}, sin 6, “lsin b,
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[I%HQ(II)}'-l'gHS(I?)[(l - o )exl)(s'i“k ):’}["7{(1 ) ili)ﬂp(i)}> e
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1.0
0.8 0.9
0.6 07

05
0.4 <o theta ¥

TA 2 HQI’Q
il ) - S(sin O, sinby)

(6(7)004(n)) = COPPK+ Q(1Y50) s

*  After taking into account the natural values for couplings together with the resonant shape of
the above function, we conclude that this contribution is as important as the background
induced 2pt. The shape of the power asymmetry or any other observable is completely
distinguishable from the former.

* There are some bounds induced ﬁfom Strong covqo['mg limit of OLI2 . For hav'mg a
perturbaﬁve region in our model we need:
A/VAL Mip <1 1/AT KV2p8/e 1/H
This constraint are important for estimating the amount of Power asymmetry and PNG.
* There are many things interesting about Primordial Non-Gaussianities in our set up.

The Shape of PNG is very non trivial and comp[ete[y anisotropic.

(i) : A/2 / dtd*x {(I((ﬁ)/ﬁ)j(}, 5b — a7, (i()] CcA / /1/'()/,()\/7//(/:)\
. "1 9 3 9 ' : l l
(i) : Ao / 5a 1//7‘//’,1'[#" - ,'—.(U[,T)'} Cc A / l//,(:)/,()\/—//(/'{g
—) ' 9} ] N ] o o ] ., L 9 2 /
(221) : I\ dtd=x {a‘m){[ 00 — —0rmdroo0, m)} C v (n"0,0)*V —hd’¢
(iv) : ° / (/‘(/7‘(/'4'4\(:)(:‘(\“ — —7dy :i),()u) - —/(//"(’),u)‘\/f//(l'{g l
A a? A !

For instance : FANLTE ~(¢T3 ) /(CT2 )ST2 )~ (A /VE
Mip )13 Ve/p / \



Conclusion and prospective

We have proposed a model for explaining some of the CMB anomalies. The
set up consists of an inﬂaﬁonary epoch happening in vicinity of a massive
domain wall.

There are two kinds of interactions between inﬂaton and the brane: the
backgrovmd gravitaﬁona[ induced interaction in the bulk and the localized
interactions on the Iooundary due to branion.

The _former induces a suﬁicient amount of variance asymmetry on the CMB
sphere, as well as variation of angular power spectrum on large scales.

Fora fundamental brane these two contributions to 2pt are compava’o le and
have comp [etely diﬂ%rent shapes.

The PNG in this set up is appealing. Especially in £—0 case, could it be
related to the recent idea of “Cosmological Collider physics? 1503.08043”
which concerns inflation as a laboratory for studying the effects of different
ﬁe[ds and branes on pvimordial pertwbaﬁons?

What happens for Primordial Gravitational waves in presence of the brane?
So far we have neglected the gravitational reaction of branions. In what

regimes this assumption is J'usﬁﬁed?
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“Does the Gauss-Bonnet term stabilize wormholes?”
by Takafumi Kokubu
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Does the Gauss-Bonnet term  Takafumi Kokubu
Stabﬂize Wormh()le S? Hideki Maeda

Tomohiro Harada

Classical and Quantum Gravity, 32, (2015) 235021
Rikkyo

University

% Hokkai-Gakuen
|l¥ll University

Today’s Talk

Shell wormhole
in
Einstein-Gauss-Bonnet
gravity

Shell wormhole
in

Einstein gravity

* STABILITY against RADIAL PERTURBATIONS.
* Compare the two wormhole (ANALYTICALLY).
— Reveal the EFFECT of the GB term on STABILITY.
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Motvation

Wormbholes are fascinating compact objects.
— space-time short cut, time travel.
Problem: instability, use of exotic matter, great tidal force...

Stability is the first priority for wormhole study.
Einstein-Gauss-Bonnet gravity

1
= / d%zy/=g(R - 2) + aLgp) Lap == R? — 4R, R* + Ry, 00 R¥P°

The Gauss-Bonnet term appears in the action as the ghost-free quadratic
curvature correction term in the low-energy limit of heterotic superstring
theory in ten dimensions (together with a dilaton).

Einstein gravity

1

ol
167

/ d%z/—g(R — 2A)

Vacuum solution

ds® = —f(r)dt® + f(r)"ldr® +12(dQ5_,)%, f(r) =k~

Setup

: 1 : :
Junction conditions: S*; = _%([Klj] — o)

Impos1t1.on i ma_tter : Imposition for symmetry :
negative tension (o <0)

S¢,; = diag(—0, —0, —0, - ,—0) Z> symmetry
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@ Master equation & Stability

V(a) L
Schematic figure Birkhoff’s theorem — no GW for radial motion
Stable {Master eq for radial motion : 4 4+ V(a) = 0,
4 2
ao / V(a) = f(a) — < i ) a? O : brane-tension
CLO a S d — 2
\
\
nstable
Unstab t Stable: V”(ap) > 0
Unstable: V' (ag) <0
V@ =
£ ! V" (ao0) = — e 23)k
15| k:1’m>0 g k= :|:1,0
unstable

One static unstable solution

00 L O L L . a

1 e T— kY 4
-0sf
-10L

*Generalization for Einstein-Maxwell system— T.K, Harada, 2015

Kinstein-Gauss-Bonnet gravity

1
5= d?zy/=g(R—2X+ oL d>5
= / z+/—g( +alLgp (d>5)
Los — R- AR REEURIC SR
(v : coupling constant, inverse string tension A|pha>o

Yacuum solution

ds2 = —f(r)dt® + f(r)"tdr? + r2yapdz?dz®

i e
dem - T (d-1)(d-2)
\/1+ T +4°“‘> s i
— : the GR branch
+ : non-GR branch in GR branch, a — 0 G R branCh

f(a)zk—%—]\r2
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Setup

Junction conditions: [K*]+ — 6%[K]+ + 2a(3[Jij}i —&[J]x — 2Pikjl[Kkl]:t) = —k35";

1
Jig =3 (KK K*; + Ky K"K — 2Ky KM K — K2Ki5) s Pt = Rigji + 2higRape + 2hi; Ry + Rhagi b

Imposition for matter: negative tension Imposition for symmetry: Z;symmetry

© Master equation& Stability criterion

Birkhoff’s theorem — no GW for radial motion

T Master eq. for radial motion: &*+ V(a) =0 V(a) :=f(a) — J(a)a?,

@) = A2 1/3 167202
| J(a) ::%, B(a) = {180792 + A(a)*? + 6\/&92(9&92 + A(a)3/2)} sl d-27
' Stability criterion
e G 2kP(ao)
07 a2(a2 + 2ka + 26 f0) (a2 + 2k& — 2@ fo)’ 5 ]V"(ao) x —kP(CLoj

P(ag) ::4d2f0{6k — = 3)f0}+(a3 + de){(d —3)a3 +2(d — 5)kd}

k=+1,0

Instability for k = 1 with m > 0

V"(ag) x —kP(ag) —% V"(ag) x —P(ag)

P(ag) == 4&2f0{6k —(d— 3)f0}+(a3 + de){(d —3)ad +2(d — 5)kd}

V(a)/a®
P (ao) =4562f0{6 = (d= 3)fo}
04 — EGB
_ Einstin + (@ +20){ (@9 + 2a -9}
02
>4d2f0{6 —(d— 3)f0}+2dfo{(d — 3)ag +2(d — 5)&}
00 ”’}______‘—;‘ a a2
s — :2df0{2(d — 3)&(% — fo) +2(d + 1)&}
-02 —_—
T >2df0{—2(d—3)d+2(d+ 1)@}: 16a> fo> 0.

-04

Figure: The potential V(a) for d = 5,6, 7 in Einstein and ”} P(CLO) > O

Einstein-Gauss-Bonnet (EGB) gravity with £ = 1, a = 0.02,
m=1,A=1and o = —0.1.

the wormhole is unstable
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Does the'Gauss-Bonnet term stabilize wormholes?

GB shell wormhole turned out to be unstable.
But, how it unstable is when compared with Einstein shell wormhole?

— EGB

— Einstein

@ is sufficiently small : € := &/ g

Perturbative analysis: @p = G + Q(1)€ + a(2)62 el

€ expansion up to 1st order : Vér/B (ao) ~ VE,),instein (ag) — k 8/ (2aE) .
g

k=1:Destabilize

Summary

+ We construct thin-shell wormholes made of its tension in Einstein and EGB gravity.

+ This is the best setup to analyze stability as a pure gravitational effect because
such a thin shell does not suffer from the matter instability.

+ Shell wormhole both in Einstein and EGB gravity is unstable.

+When «x is small, the GB term destabilizes spherically symmetric shell wormhole.

Future Work :
Since Kanti et al. (2012) numerically reported stable wormholes in EGB + dilaton
system,
The Effect of Dilaton is the Next Target.
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“High energy particle emission form particle collision near an extremal
Kerr black hole”
by Kota Ogasawara

[JGRG25(2015)7a5]



High energy particle emission
from particle collision near
an extremal Kerr black hole

No. 7a5

Kota Ogasawara, Rikkyo U.

arXiv 1511.00110 [gr.qc]
K.O., T. Harada, and U. Miyamoto

JGRG25, YITP

High energy particle emission
from particle collision near
an extremal Kerr black hole

¥

energy extraction process
from the black hole

JGRG25, YITP Kota Ogasawara




Question

"Can we extract energy
from the black hole !

If the answer is yes.

"How long can we extract
energy from the black hole !?

JGRG2Z25, YITP Kota Ogasawara

Collisional Penrose process

- particle collision . particle2
E2 >i()

in the ergoregion

T P D= D T
negative energy ‘ gfzthc|e4 23?3222012)

- energy extraction efficiency Ex

= E T E,

JGRG25, YITP Kota Ogasawara




Collisional Penrose process

- particle collision . %ai;tlocleZ
2
in the ergoregion
. energy conservation G

Pl :5
s =

negative energy O gal;tiocle4
4

- energy extraction efficiency

energy extraction !!

JGRG2Z25, YITP Kota Ogasawara

Why Collisional Penrose
process?

- more realistic process than original Penrose
process (divide = collision)

- ultra-high-energy cosmic ray

- near horizon Physics

- B.S.W. effect (2009)
- -arbitrarily high CM energy < talk later

- super-Penrose process (2014)
- -arbitrarily high energy extraction (on going)

JGRG25, YITP Kota Ogasawara




Outline

1. Introduction < finish
2. (Usual) collisional Penrose process
3. B.S.W. effect and heavy particle production

4. Summary

Outline

1. Introduction < finish

2. (Usual) collisional Penrose process

3. B.S.W. effect and heavy particle production

4. Summary




Kerr spacetime

- conserved quantity
18 = =y S ENEHNDY
L :=g,¥"p”" :angular momentum

- geodesic eq.s. (0 =7/2, a= M)

1(297’)2 +V(r)=0 < 1D potential problem

T 2 (T Tl 2 T2

2(r/M)? (r/M)3 >

where [ :=L/M

JGRG25, YITP Kota Ogasawara

Particle collision and reaction
- particle collision : p{ + ph = p5 + vl
 conservation equations

O LT O Y A o
o1|pi| + o2|ps| = os|p3| + g4|pil, (0" = olp’|)

where o = +1

2m? i e TR 2 s 2(L — E)?
r/M 2(r/M)? (r/M)?

1
2

’I"‘_

—|—E2—m2

p

JGRG25, YITP Kota Ogasawara




Particle collision and reaction

parameters 16 unknown

. energy E1, E5, E3, Ey4
: angular momentum ol Loy

-

: mass my, Ma, M3, My
0 3 r
: sign of p Gilbian i o

1
2

" D2 S T2 2 Gl S
\p ‘ = = 5 =5 Caaas E<—m
r/M 2(r/M) (r/M)

JGRG2Z25, YITP Kota Ogasawara

Particle collision and reaction

head-on
Compton ‘ ' E17 E27 E37 E4

scattering g - Ly, Ly, |Ls, Ly

L 4
@—' miy, Mo, M3, M4y

/—\ 01, 09, P3, 04

if we choose the parameter of
o= ey = particle 1 and 2
my =0, mp # 0 gives it

JGRG25, YITP Kota Ogasawara




Near-horizon behavior

- using radial momentum conservation
to estimate the upper limit of efficiency : 7

o1|p1| + o2|py| = o3|p3| + o4|py]

: DS e 2 e e e i . 5
|p | = i 2 = 8 +E AL
r/M 2(r/M) (r/M)

horizon : r=M

critical : I = 2F

JGRG25, YITP Kota Ogasawara

Near-horizon behavior

- using radial momentum conservation
to estimate the upper limit of efficiency : 7

o1|pi| + o2|p5| = o3|p3| + 04Dy

~

DRI T O e 2

Y e e A AL

p"| =

. M
near horizon : rzl—, ARt o] |
== e

near critical : L = 2E(1 + 6), § = §aye + 62)€> + O(€?)

JGRG25, YITP Kota Ogasawara




Near-horizon behavior

- using radial momentum conservation
to estimate the upper limit of efficiency : 7

o1|p1| + o2|p3| = os|ps| 4 o4lpi] expanded

radial momentum
p"| = Py T Pye+ p€2)€2 O

. M
near horizon : rzl—, ARt o] |
== G

near critical : L = 2E(1 + 0), § = §aye + 62)€> + O(€?)

JGRG25, YITP Kota Ogasawara

Near-horizon behavior

- e.g.) 1=critical, 2=subcritical,
3=near critical, 4=negative energy

o1|p1| + o2|p3| = os|ps| 4 o4lpi] expanded

radial momentum

p"| = Py T P(1)€ +p€2)€2 O

[l = 1/3EF — mie + O(e?)

|p£| — (2E2 == EQ) = 2(E2 et f/2)€ -+ 0(62)
P51 = /B3 [4(1 - 8(1))? — 1] — me + O(e?)

5| = (2E5 — Ls) — [2(E2 — L)+ 2E5(1 — oo 2E1} e+ O(€%)

JGRG25, YITP Kota Ogasawara




Expanded conservation eq.s.

- e.g.) 1=critical, 2=subcritical,
3=near critical, 4=negative energy

o1|p1| + o2|p5| = o3|p3| 4 04Dy

O(e") == estimate o;
[pil = {/3EF — mie + O(e”)
‘pg‘ = (2E2 = EQ) et 2(E2 o ig)e T 0(62)

P51 = /B2 [4(1 — 61))2 — 1] — m3e+ O(&?)

ph| = (2E5 — Ly) — [Q(Ez — Lo) +2E5(1 - T 2E1} e+ O(€?)

JGRG25, YITP Kota Ogasawara

Expanded conservation eq.s.

- e.g.) 1=critical, 2=subcritical,
3=near critical, 4=negative energy

o1|pi| + o2|p5| = o3|p3| 4 04Dy

O(e) == estimate the upper limit of Es

il = y/3EF — mie+ O(e?)

P3| = (2E2 — L) — 2(Ea — Ly)e + O(€°)
95l = /B3 [4(1 — 81))? — 1] — me + O(e)

Pl = (2B; — Ly) — [2(B; — Ls) + 2B5(1 - 0(1)) — 2Bx | e + O(e?)

JGRG25, YITP Kota Ogasawara




The upper limit of £;

 O(e) terms of p" conservation

o1\/3EF — m? + 2B; — 2B3(1 — §(1)) = 034/ B} [4( — 82

= ES,maX == (2 =t \/§>2E1

where

inverse
we have assumed ( )

mi = msz =0 Compton scattering ,*

*“@

0'2:()'3:0'4:—1

01y =0 /e’*\

JGRG2Z25, YITP Kota Ogasawara

Energy extraction efficiency

 O(e) terms of p" conservation

== ES,maX = (2 = \/§)2E1 77 = E3

Ei1+ Es

- O(¢*) terms of p" conservation

= it gives the lower limit of £y

JGRG25, YITP Kota Ogasawara
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Energy extraction efficiency

* O(e) terms of p" conservation

= ES,maX = (2+ \/§>2E1 nmax — 2 ]_9

- O(¢*) terms of p" conservation

(inverse) ‘e

Compton scattering ,¢

i 0

JGRG2Z25, YITP Kota Ogasawara

Energy @ . jency
inconsistent !?

Thmax = 14 $ Tmax = 2.19

Schnittman
(2014)

Kota Ogasawara




Outline

1. Introduction < finish
2. Usually collisional Penrose process < finish
3. B.S.W. effect and heavy particle production

4. Summary

B.S.W. effect

« CM energy of particle 1 and 2

EZ. = —gu (o} + py) (0} +p5)
22E 3E? — m2)(2Es — L
4 15 \/ 2 2) —|—O(€0)

€

where 2E; — I, =0 : l=critical

2E, — Ly > 0 : 2=subcritical

M .
SR : near horizon

e — 0: horizon limit
= Ecom — oo arbitrarily high CM energy!!

JGRG25, YITP Kota Ogasawara




B.S.W. effect Banados, Silk, West (2009)

—_— =2, L=-2(14+V2)

emem =181 = —2(1+v2)
——— L =15,1=—-2(1+2)

e — 0 : horizon limit
= EcMm — oo : arbitrarily high CM energy!!

JGRG25, YITP Kota Ogasawara

B.S.W. effect

1
E.pn x —

Je

- The arbitrarily high CM energy can produce
very energetic and/or heavy particle

E x 1/y/e and/or m o 1/+/e

=P high energy collision !!

JGRG25, YITP Kota Ogasawara




Heavy particle production

- using the momentum conservation

mg = —(p} + pb — p5)(P1u + P2y — P3u)

Qfilifo /e Ol

- we can assume particle 4 is very massive as

22}
T w +v4 where pg4 (> 0) and v4are constants

only in this case, we can obtain 7max =~ 14
if the energy, mass and (4 are fine tuned

JGRG25, YITP Kota Ogasawara

Energy extraction efficiency

 O(e) terms of p" conservation
= ES,maX = (2 5 \/§)2E1 nmax R 2. ].9

- O(¢*) terms of p" conservation

= jt using estimate v ( my = O(1+/€) case)

JGRG25, YITP Kota Ogasawara




Energy extraction efficiency

* O(e) terms of p" conservation

2
= ES,maX i (2 i \/§)2E1 /r]maX _ (2 + \/g) El
E1 + E5

- O(¢*) terms of p" conservation

= jt using estimate v ( mq = O(1+/€) case)

. if E1E2 > g

JGRG25, YITP Kota Ogasawara

Energy extraction efficiency

 O(e) terms of p" conservation
= ES,maX = (2 o \/§)2E1 max ~ 14

- O(¢*) terms of p" conservation

= jt using estimate v ( my = O(1+/€) case)

. if E1E2 > Uy

- moreover, for £, /E; > 1

JGRG25, YITP Kota Ogasawara




Energy . jency
consistent !!

Nmax == 14 e Nmax = 14

(E1/Ey > 1)

Schnittman

. ‘ (2014)
3 -2
log(r-1) Kota Ogasawara

In other cases

- e.g.) energetic escaping particle case

Ej = % +¢3 = |ps| and |pa| have O(\/e) terms

LHS no O(+/¢)
o1pi| — |ps| = os|ps| — |4l

D= 03\/p3[4(1 i 2 el g i o

there is no solution for pz under the assumption
of p3 >0
= there is no energy extraction

JGRG25, YITP Kota Ogasawara




Outline

1. Introduction < finish
2. Usually collisional Penrose process < finish

3. B.S.W. effect and heavy particle production
< finish
4. Summary

Question

"Can we extract energy
from the black hole 1?7

The answer is | Yes !

= 'How long can we extract

energy from the black hole !?

So far, upper limit of the efficiency is [ 14 !! 1

JGRG25, YITP Kota Ogasawara




Summary

- Upper limit of the energy extraction efficiency
of particle collision in the ergoregion
- critical+subcritical+ m4 = O(€°) : 220%
. critical+subcritical+ m4 = O(1//€) : 1400%

- If 7 as large as 10 is observed for this process
this strongly suggest the production m4 = O(1/y/¢)
as a result of the collision of high CM energy

- Two subcritical particles collision might realize
more high efficiency or arbitrarily high efficiency

(on going)
JGRG25, YITP Kota Ogasawara
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“Wormhole shadows”
by Takayuki Ohgami

[JGRG25(2015)7a6]
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" Black hole shadows

< Observation of black hole
horizon is attempted.

< Black hole shadows

Aurore Simonnet,
Sonoma State Univ.

Fukue+ (1988)



1038

< cause of black hole shadow -

< photon orbits from source to observerin
Schwarzschild spacetime

Sclhwarzschlild Blackhlole — r= 1'5T9
4+ . - !
> ;‘” :
1
2 I~ . ~ :
- I 1
Tolobserver. o 2 3 4 5 6 7 8
o0 ol 1 r/rq
IS \ Effective potential of photon.
2+ N - The longer orbit pass through the source,
u.nsta € ) the brighter light becomes.
A circular orbit |

! . . ' L — The light passing through unstable
“ 2 X/Or 2 N circular orbit is observed the most brightest.
g

Touch up Ohgami+ 2015.

bright ring
Interstellar medium (light source)

< cause of shadow

< Light ray passing through unstable circular orbit is
the brightest.

< Inner rays are darker because black hole horizon
arrest light rays.

< Shadow is given by contrast of brightness.

black hole shadow.
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+ ° °
Ellis wormhole spacetime

ds* = —dt* + dr? 4 (r* + a®)(df? + sin® 0 dp?)

> a:throat radius

< About wormhole.

< tunnel-like structure which connects two distant
or disconnected regions.

< Warp drive (long-distance
movement at short times),
Time travel

V4

< traversable wormhole Ohgami+ 2015
Embedding diagram of
Ellis wormhole.
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< Ellis wormholes are unstable.
< Shinkai and Hayward, Phys. Rev. D 66, (2002)
<+ Gonzalez et al., Classical Quantum Gravity 26, (2009)

< Exotic matter could contribute to supporting the Ellis
geometry.

< Das and Kar, Classical Quantum Gravity 22, (2005)

< Even if other wormhole solutions are applied, we could
discuss similarly by using method in this study.

+ Effective potential of photon.

1.4 T T T T T

12 peak .
Bl | _
2° 08 .
R other side observer side
oy 06 .
0.4 4
0.2

throat
0 1 1 1 1 1

Touch up Ohgami+ 2015.

< |t has unstable circular orbits in throat.
< shadow appears.
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=+
Intensity distribution

< intensity distribution of light source

< Intensity : radiative transfer equation

dJ % I(v
T nIEz) —vx(w)J J %

< interstellar medium emit only

n(w)dA = —H@)puda®, x(v) =0

depend on the condition of interstellar medium
p: energy density, u*: four-velocity
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« Relativistic primitive equations (dust approximation) 13
< continuity equation

n _ . .
(nu”),, =0 m : mass of constituent particle
n : number density

< Euler equation
nmau,,,u’ =0

< Solutions

< Spherical symmetry
u" = const.(# 0)
1

1 Distribution of dust.

p X

Ohgami+ 2015

< Axial symmetry

2
a
Y _ P r __ 2
Wl W= —+a2)+(u6)
y 2 2 ug a?
M = 4mmnu” (r° + a®) = constant » = pg— ——=
( ) p="ro u’ 2 4 a?

subscript 0 means valueinr=0and 6=/ 2. u” #0
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< Spherical symmetry

< Wormhole shadow

< Intensity distribution has a similar shape as
black hole.

I(a) /1,(0)

! ! ! ! !
0 0.5 1 15 2 2.5 3

Ohgami+ 2015

wormhole shadow.

L)

*

Comparison with Schwarzschild black hole. 16
< Intensity distributions have a peak in common.
< Black hole : Innerregion < Outer region.

< Wormhole : Inner region > Outer region.

3
25

2
60 T

g 15 ‘ " Ellis Wormhole (Casc2)
ER Schwarzschild Blackhole
! 50 | .
0.5
o wormhole shadow. 40 - —
2
6 5 30 B
S
5
20 B
4 |
3 10 e
2
0 1 1 1 1
1 0 0.5 1 1.5 2 25 3
o black hole shadow. o/ Oy

Ohgami+ 2015
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< Axial symmetry

Wormhole Axis of rotation

Observer

Interstellar medium

< Result : change direction of axis.

(]

1.5

alpha,
[en]

hvd

2 15 1 05 0 05 1 15 2
alphay
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<+ We calculated intensity distribution =
of dust flow around Ellis wormhole.  =|

" Ellis Wormhole (Case2) ———
Schwarzschild Blackhole ———

Intensity

< spherical symmetry
< similar shape as black hole
< intensity contrast are quite different. 0

< axial symmetry
< bright ring : beaming effect
» weakly luminous ring

2 -15 -1 -05 0 05 1 15 2

Ay

< We could detect Ellis wormholes by these properties.

+ It needs to use high-resolution observations (e.g. VLBI).
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“Directional dependence of the local estimation of HO and the non
perturbative effects of primordial curvature perturbations”
by Antonio Enea Romano

[JGRG25(2015)7b1]
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Directional dependence of the local estimation
of Hp and the non perturbative effects of
primordial curvature perturbations

Antonio Enea Romano'

TUDEA, University of Crete
Based on work in collaboration with
Alexei Starobinsky, Misao Sasaki, Sergio Pefia,Sergio Sanes
Partially based on
Eur.Phys.J. C72 (2012) 2242, Europhys.Lett. 106 (2014) 69002,
Europhys.Lett. 109 (2015) 3, 39002.

Antonio Enea Romano

Outline

@ Ho estimation tension
@ Consequences of ignoring large scale inhomogeneities

9 Luminosity distance in an inhomogeneous space: LTB case

9 Effects of non perturbative evolution of primordial curvature
@ LTB metric and primordial curvature fluctuations
@ Hy tension
@ Effects on the cosmological constant

Antonio Enea Romano
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Hp estimation tension
Consequences of ignoring large scale inhomogeneities

Outline

° Hy estimation tension

Antonio Enea Romano

Hp estimation tension
Consequences of ignoring large scale inhomogeneities

Hp tension

@ A 30 tension has been claimed between the local(low
red-shift Supernovae at z ~ 0.04,(Riess, Astrophys.J. 730,
119, 2011) and cosmological (Planck CMB data)
estimation of the Hubble parameter

app app app app
o HO,SN =~ 1..09H0’CMB, whe.re HO,SN aqd HO,CMB are the
values estimated from fitting respectively low-redshift

supernovae and CMB observations

@ Taking into account the effects of metallicity on the P-L
relation for the Cepheid can reduce substantially the
discrepancy (Efstathiou , MNRAS 2014)

@ Could this apparent tension be the result of the effects
local structure on the luminosity distance of low red-shift
supernovae ?

Antonio Enea Romano



1049

Hp estimation tension

Consequences of ignoring large scale inhomogeneities

@ The metric plays the role of the gravitational potential in
GR and the effects of a spatially homogeneous potential
with time evolution determined by dark energy can be
partially mimicked in red-shift space by the effects of a
spatially inhomogeneous potential without dark
energy

@ In the case of the luminosity distance the same red-shift
can be associated to the expansion of the Universe
(assuming spatial homogeneity) or to the propagation
through a spatially inhomogeneous potential (metric)

@ The effects can be important even for relatively small
inhomogeneities compatible with inflation theory

@ The assumption of homogeneity can mistakenly lead to
the conclusion of an evolving dark energy with w(z)
while in fact there is only a cosmological constant with
w=—-1.

Antonio Enea Romano

Hp estimation tension
Consequences of ignoring large scale inhomogeneities

LTB metric

@ The LTB metric can be written as:

2 1.2
o o (R,)7dr 2 102
ds® = dt+1+2E(r)+RdQ, (1)
@ Introducing the following variables
R(t, r 2E(r 6M(r
at.r) = P00 gy = ZED oy = BMD)
ds? = —dt? + & (1 + a,,r>2 ar + r2dQz
- a/ 1—k(r)r? 2
-\ 2
a k
a\?_ k() , polr) A
a a2 3a3 3

Antonio Enea Romano
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Luminosity distance in an inhomogeneous space: LTB case

Outline

9 Luminosity distance in an inhomogeneous space: LTB case

Antonio Enea Romano

Luminosity distance in an inhomogeneous space: LTB case

@ The luminosity distance in a LTB space-time is
Di(z) = (1 +2)°R(t(2), r(2)) = (1 + 2)°r(2)a(n(2), r(2)) ,

where <t(z), r(z)) or ((n(z), r(z)) is the solution of the
radial geodesic equation as a function of z.
@ The past-directed radial null geodesics is given by

at R (tr)

a1 r2E(n)

from which we can get:

ar \/1 + 2E(r(2))
dz (14 2)Rr(2),4(2)]
dt B R,[r(z),t(z)]
dz  (1+2)Rr(2).t(z)]

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

Outline

e Effects of non perturbative evolution of primordial curvature

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

@ In order to make a connection with the early universe we
introduce the metric which describes a spherically
symmetric space-time after inflation at scales much
exceeding the Hubble one:

ds® = —dt? + a2(1)e* ) (dr? 4+ r?dQ?).

(R, )? dr?
14+2E(r)

R = ar(t)e‘r, we find the exact relation:
1+2E(r) =1+ rc'(n)?.

@ In the linear approximation, this reduces to

ds? = —dt? + + R?dQ?, 2)

k(r) = 25

r

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

@ We define apparent the value of H;"” obtained assuming
homogeneity, and " the one obtained taking the
inhomogeneity into account

@ In order to resolve the tension we will assume that HSME is
the correct estimation. This can be achieved if two
conditions are satisfied

@ Fit the low red-shift luminosity distance with HZ%

0.CMB
inh b. h
Dll_n (ZSN7 Hér_%eMB = Dg S(ZSN) = DLom(ZSN, Hg%jN . (3)

@ The distance to the last scattering surface should be
unaffected by the inhomogeneity

h t  inh( gt app  __ gt
D Om(HOrA%?MB7 z15) ~ D" (Hor‘ucem& Z5) = HO.CMB - OrALCIZ?MB
(4)

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

@ We consider an ansatz for the curvature function of this
type

_(r—n 2

k(r) = Ae (F°) (5)

@ By an appropriate choice of parameters it is possible to
modify the luminosity distance relation only in the
vicinity of zgy while leaving unchanged the distance to
the last scattering

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

@ Luminosity density data show that the local universe is
inhomogeneous and anisotropic for z < 0.15

@ Both the Cepheid used for calibration and the low red-shift
supernovae are in this range

@ This implies both SN fitting and calibration could have a
direction dependence, and will definitely be affected by the
local inhomogeneity

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

k(r)

\
03 \

~041 \ /

\ /

\ /

\/ /
-05t
()
.
001 002 003 004 005 006
/7
/
~0.00002 /
~0.00004 /
~0.00006 /
~0.00008 |- /
~0.0001 |- _

Figure: The primordial curvature perturbation ¢(r) and the function k(r) are plotted for
A= —0.5,r) =rgy *0.8,0 =ry/2.5,and rgy = r"°PM. The quantities A and k(r) are in units of (Hg’“gMB)z,
while rg is in units of (Hg)”gMB)”.

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

oplp
60|
al

20f

=20 -

—40 L

HLTB
Fi s5p (2) - .
|gure On the top the percentage density contrast p =100(1 — /\CDM( 2 ) is plotted as a function of the

redshift, showing how contrary to the linear theory approxmatlon when non perturbative effects are taken into
account, not only underdense regions but also overdense regions can be associated to the decrease of the
luminosity distance necessary to explain observations.

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

@ For the luminosity distance in a LTB space
D™(z, Hi"®) = DMT5(2) = (1 + 2)?R(t(2),r(2))  (6)
where we set the parameters of the LTB solution so that

HLTB _ 2R(1,0)  1R(1,0)
0 3 R(f,0) ' 3 R'(ty,0)

= Hive. (7)

@ For homogeneous cosmological models we assume a flat
ACDM solution according to

H(z) = Happ\/QM 1 +z)3+Q/\,

Dz, ) = (14+2) [ s ®

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

Dy (z)
0.06
0.05
0.04 p
0.03 -
0.02 p

001"

001 002 003 004 005 006
Figure: The dashed line is the plot of D”O”"(HgngB, z) while the solid

line is for D™(He, . z), both in units of (Hy'oy5) -

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

D;(z)
0.035¢

0.030¢
0.025} e
0.020¢ -
0.015} Z
0.010¢ ~

0.005} 7

0005 0010 0015 0.020 0.025 0.030 0.035

Figure: D"™(Hy"%,, z) for a homogeneous model and D™ (H{'&;5, 2)
for an inhomogeneous model are plotted in units of (H;%5,5) "
respectively with a dashed and solid line.

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant
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Figure: Density contrast in different directions as a function of red-shift(fig 11,Astrophys. J. 775, 62 (2013)).
The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same RA=azimuth
range, wider DEC=2zenith).The density contrast profile is similar to the one determined theoretically.

LTB metric and primordial curvature fluctuations

Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant
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FIgU [€. Density contrast in different directions as a function of the comoving distance(fig 11,Astrophys. J. 775,
62 (2013)). The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same
RA=2azimuth range, wider DEC22zenith).The density contrast profile is similar to the one determined theoretically.

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant
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Figure: Density contrast in different directions as a function of red-shift(fig 11,Astrophys. J. 775, 62 (2013)).
The subregion 2 is approximately in the same direction of the supernovae set used by Riess(same RA=azimuth
range, wider DEC=2zenith).The density contrast profile is similar to the one determined theoretically.

Antonio Enea Romano

LTB metric and primordial curvature fluctuations
Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

0.69 m— s 0.71

Figure: The Hy parameter mapped through the celestial sphere, namely hubble-map, given in terms of
Hy /100. The lowest and highest values obtained are Hy = 68.9 4+ 0.5 kms~ "Mpc " and
71.2 4+ 0.7 kms~ "Mpc ", respectively, yielding §Hy = 2.3 kms ™ 'Mpc ' .(arXiv:1510.05545)

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

Effects on the cosmological constant estimation

@ We use the relation
/
k(r) = -2\ Y)

to determine the LTB metric given ((r) according to the
ansatz
r\2
() = Ae (%)

@ CMB observations give A ~ 5107°

@ The parameter o controls both the physical size of the
inhomogeneity and the density contrast

@ The gaussian ansatz for the primordial curvature
perturbations is not related to the gaussianity of the field, it
is only a convenient profile, and since the primordial
curvature perturbation are approximately scale
invariant there is no preferred valued of ¢ a priory.

Antonio Enea Romano

LTB metric and primordial curvature fluctuations
Ho tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

Figure: In the top figures ((r) and k(r) are plotted for
A =2 x (5 x 107°) for different values of o . In the bottom figures ¢((r)
and k(r) are plotted for A = 2 x (5 x 10~°) for different values of o .

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

0=02 ——
0=04 ———
0=0.6 - - - -
= 0=0.8 -------
R
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r[Hy "]

Antonio Enea R 0

LTB metric and primordial curvature fluctuations
Ho tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

1015 1.000
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Figure: The energy density ratio p(ty, r)/p(ly, 0) at the time observation £, is plotted as function of the radial

coordinate for A= —2 x (5 x 1075) onthe leftand A = 2 x (5 x 10~°) on the right. As it can be seen positive
primordial curvature perturbations, correspond to a central overdensity, and negative primordial curvature
perturbations correspond to a central underdensity. Another important feature is that larger values of o correspond

to smaller levels of inhomogeneity. The radial coordinate r and o are expressed in units of Ho_1 .

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant
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Figure: The relative difference

A(z) = (D)PM(z) — DMTB(Z)) /D)NCPM(z) of the luminosity distance
between the ALTB case and ACDM is plotted for different values of o,
where the latter is in units of H, '. The left figure corresponds to

A= -2x (5x107%) and the rightto A =2 x (5 x 107°). A local
underdensity, corresponding to A < 0, is associated to a larger
luminosity distance respect to the homogeneous case, while local
overdensities give a smaller distance. o is expressed in units of H; .

Antonio Enea Romano

LTB metric and primordial curvature fluctuations

Ho tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant
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Figure: The energy density ratio p(t, r)/p(f,0) at the time
observation fy is plotted as function of the radial coordinate for
A=-2x(5x107%) onthe leftand A= 2 x (5 x 10~°) on the right.
As it can be seen small values of o correspond to very large levels of
inhomogeneity, making them incompatible with observations. The
radial coordinate r and o are expressed in units of H, .

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension

Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

0.76] 0.76) 0.7
0.74] 0.74 0.74
0.70] 0.70 0.70
0.68 0.68] 0.68)

066 0.6 0.6

Figure: The contour plots for the luminosity distance X2 are shown for the parameters Q25 and o, expressed in

units of H0_1. Forthetop figures A=1 x5 x 107% ,A=2x5x 1072 and A =3 x 5 x 10~5, from left to
right respectively.

Antonio Enea Romano

LTB metric and primordial curvature fluctuations
Ho tension
Effects on the cosmological constant

Effects of non perturbative evolution of primordial curvature

AIGx105] o | 9 | n b
3 1.64 | 0.7204 | 562.242 | 0.983023
2 1.212 | 0.7204 | 562.242 | 0.982992
1 0.864 | 0.7204 | 562.242 | 0.982995
0 0.72 | 562.242 | 0.982778
1 0.209 | 0.7155 | 562.217 | 0.981357
2 0.228 | 0.7124 | 562.202 | 0.980357
3 0.232 | 0.709 | 562.190 | 0.979288

Table: The table shows the values of &, expressed in units of H; ',
and Qx minimizing the 2 for different values of the amplitude A,
where the latter is expressed in integer multiples of the 5 x 1072, the
value of the standard deviation of the primordial curvature
perturbations implied by CMB observations. Positive values of A do
not improve appreciably the value of 2, neither affect greatly the best
fit values for Qa, while negative values improve the x? and affect Q,.

Antonio Enea Romano
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LTB metric and primordial curvature fluctuations
Hp tension
Effects of non perturbative evolution of primordial curvature Effects on the cosmological constant

Conclusions

@ Ignoring local inhomogeneities can cause misestimation of
cosmological parameters

@ Perturbation theory is not always able to account for these
effects

@ The H, discrepancy between the local and Planck
estimation could be explained (1403.2034) as the result of
local structure

@ Low red-shift supernovae data should be analyzed in order
to check the compatibility with the local inhomogeneity
profile coming from luminosity distance and number counts

@ Preliminary result show a degradation of x2. How to
explain this? Evolution, k-correction, selections effects
could substantially bias the inhomogeneity profile detection

@ A more realistic model requires to go beyond the spherical
symmetry and take into account directional dependence

Antonio Enea Romano
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“Probing primordial non-Gaussianity consistency relation with galaxy
surveys”
by Daisuke Yamauchi

[JGRG25(2015)7b2]
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2015/12/10 JGRG25 @ YITP

Probing
primordial non-Gaussianity

consistency relation
with galaxy surveys

YAMAUCHI, Daisuke
(RESCEU, U. Tokyo)
DY and K. Takahashi(Kumamoto), 1509.07585

A critical test of primordial Universe

» One of the most powerful tests of inflation

—> Primordial non-Gaussianity

= Possible departures from a purely Gaussian
distribution of primordial density fluctuations

g

* Hint about a mechanism for generating

|[ primordial fluctuations
* More generally key to understanding the

extreme high-energy physics
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fNLI IgNLI"'

» Primordial bispectrum (3-pt. fn.)
<Q(k,)O(k,)D(k;)> = (2m)® Bk, k,  k5) 63(k,+ky+ks)

L(amplitude) X (shape dependent fn) J

fNL

» Primordial trispectrum (4-pt. fn.)
<Q(k,)O(k,)O(k;)D(k,)> = (2m)° Ty (ko k), k5) 63(k,+k,+ky+k,)

(amplitude) X (shape dependent fn)
» INL

PNG consistency relation

All inflationary models predict that (if f, # 0)
the trispectrum must necessarily exist with

L Z((6/5)) |

[Suyama+Yamaguchi (2010)]

The confirmation of the inequality would
indicate the presence of complicated dynamics
in the primordial Universe.

It should be the target in future experiments!
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Current constraints from CMB

» (local-form) bispectrum

= 0.8+-5.0 (68%CL)  [Planck2015]

» (local-form) trispectrum

gy, = (-9.0+-7.7) X 10* (68%CL)

[Planck 2015]

< 2800 (95%CL) [Planck 2013]

Almost all models are still consistent, though model
parameters are severely constrained.

PNG in large-scale structure

» PNG induces the scale dependent-bias such that
the effect dominates at very large scales:

’Dgal = [bL(M,Z)+ Bf(M,Z)/k2D+(Z)]2 P5

10°F
i f,=10
L. e f,=20
__10°k B N I P — £,=50 -
mo F Shell
[o8 .~
= I .
T 1otk : . \ -
s AN :
_ "N\
Galaxy surveys can effectively SO\
. NN\
constrain PNG to the level O\
N,
comparable to CMB. :
J 0.1 1
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Survey design

> SKA : radio continuum surv

Covers 30,000 [deg?] out to z™5. "
The redshift information is not availahb
Halo mass can be estimated from

. to include u - rtaint
mass inference from data

\

b\

[DY+Takahashi 1509.07585,SKA-JP Science Book]

y - /\
Wil A
> SKA+Euclid : 9,000 [deg?] /Y1

1 ! I | I I
20000 -
10000 P - SKA1
Z ( \ Euclid -
(@)! 0 \\\ ) I Euclid+§§ﬁ; e
~10000 13 i j Euclid+SKA2 ===
~AT0en - 1 SKA:,.=2(solid),|,.;-=3(dashed)
I I { I T T : i : I T T I T
20 f\ - -
10 F \ ' 1
\f\ /—\
1 Q| @
\
10 F \) i / i
20 F j 4 \iill 4 J
1 1 1 1 1 1 1

-I4 |3 .2 0 1 Iz l3 ll -2000010000 0 1000020000
fa InL
Complementary information from SKA and Euclid helps to
break the parameter degeneracy and the joint analysis are

quite effective to constrain PNG.



1068

[DY+Takahashi 1509.07585,SKA-JP Science Book]

20000 _I ' d b I_
Z ; F‘\ 1 Euclld+§£c§;j —
/-
o(fy)) 5
o(ty,) 103 10 102
o(gy) 10°
[We expect >100 times

\ improvement of FoM in future! /

guite effective to constrain PNG.

Can we confirm ©., =((6/5)f,,)* ?

A

fiducial

prohibited

<((6/5)/.)?

fiducial



Can we confirm ©., =((6/5)f,,)? ?

For large 7, the constraining power on fNL

decreases, because the correction from
to the bias dominates.

fiducial

It is generally
difficult to detect

prohibited

<((6/5)/.)?

small f, and/or

fiducial f,

Can we confirm ©., =((6/5)f,,)? ?

For large 7, the constraining power on fNL

decreases, because the correction from
to the bias dominates.

Sweet spot

fiducial

It is generally
difficult to detect

- <((6/5)/,)?

small f, and/or

fiducial f,

1069
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[DY+Takahashi 1509.07585,SKA-JP Science Book]

Accessible region: f,, /o(f,,)>1&,, /o(7, )>1

T T T T — 1 T T T
Planck constrai'nt

Y

Euclid+SKA2 — T
Euclid+ESK,?% oo o

uclid o =

1000 ¢ SKA2 s c"; E

SKA1 e}

28

)

=3

100 |

fiducial

..............................

. St T <((6/5)fn)?

2 4
fiducial 1,

[DY+Takahashi 1509.07585,SKA-JP Science Book]

Accessible region: f,, /o(f,,)>1&, /o(7, )>1

T z T u Y T T
Planck constraint
1 //’ ,4'I
UCTd+OKAZ = |
1000
©
O
S 100 |
= ;
10 |
2 4 8
[(futy)~(0.9,8). )

fiducial 1,
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Summary

» The information from both Euclid and SKA is quite
essential to break the degeneracy between the PNG.

»The combination of SKA2 and Euclid can detect the
consistency inequality in the wide parameter region
at more than 1o level, though for a single survey it is
still hard to confirm when f,<1.5.

Thank you!
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“Modeling redshift-space bispectrum from perturbation theory”
by Ichihiko Hashimoto

[JGRG25(2015)7b3]
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Modeling redshift-space
bispectrum from
perturbation theory

Yukawa institute of theoretical physics

Ichihiko Hashimoto

Collaborators :
Atsushi Taruya (Kyoto U), Yann Rasera (Paris Observatory)

Origin of accelerated expansion

Dark energy or Modified gravity 7 7

B How to distinguish ?

Structure formation history offers cosmological
test of gravity

Growth rate

dIn D o
f(Z) = e D, :linear growth factor of

dlna density fluctuation

GR case : f(2) ~ {Qm(2)}°°

a : scale factor

e.g. Linder (‘05)

Redshift-space distortions (RSD) can be
unique probe to measure the growth rate
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Redshift-space distortion

The apparent anisotropies of galaxy clustering due
to peculiar velocity : v

redshift space real space

Ss=17r-+

at(z) " red-/blue- shift 2 : line of site

The strength of RSD is proportional to growth rate

vox f(z)
Correlation function Constraints
. Samushia et al (‘13) 0.7 : , | , : [ T T
Planck 2015 XIlI
‘ SDSS MGS

10 0.6 | - SDSS LRG VIPERS ]|
os | WiggleZ |

10 - & } » 1' i:[ I %
0.4 | e ]

" 6DFGS | .
03} BOSS gMASS ]
BOSS LOWZ
0.2 T— ' I e ————

100 10* 01 02 03 04 05 06 07 08 09
r, (h~"Mpc) V4
- Consistent with ACDM at ~10% level

- Most of the constraints is based on the measurement
of two point correlation or power spectrum
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Era of precision cosmology

Future redshift surveys will release huge data set

SuMIRe(‘14-~) ESI(‘18~) Euclld(20~)

B Theoretical issues

- Precision theoretical-models reducing nonlinear systematics

- Combining higher-order statistics with power spectrum

In this talk

Precision modeling of bispectrum in redshift space
(66 (k1)6®) (k2)6®) (k3)) = (2m)36p (k1 + kg + k) B® (ky, ks, 012, 11, )

Impact of combining bispectrum

B Sefusatti et al. ('06), Kayo & Takada ('13) ..
- Combination of power spectrum and bispectrum
Improves the constraints on cosmological parameters

B Song et al. (‘15)

- Forecast constraint on A o B it o

L [ kmax = 0.1 [h/Mpc
growth rate based on Sob o [h/Mpc] :
S . t al (‘98) 'Y [ Power spectrum / /
coccimarro et al. 5 [ Bispectrum N
- Combining bispectrum 5 5[ Iommmmeseessiioe ]
Improves the constraint by E - Power + Bispectrum
| S S S NN SR TR S ST SR S ST N ST S SN ST SN |
a factor of two for DESI ‘—4b Sy 0.8 1 1.2 1.4 1.6

Bispectrum helps to reduce statistical errors
— How about systematics errors ?
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Aim of this work

Modeling redshift-space bispectrum, taking account of
nonlinear effects on RSD & gravitational evolution

B Perturbation theory in redshift space
1. Solving Poisson and fluid eqgs order by order

density fluctuation : velocity field :
5251+52+ v:5v1(51)+5v2(51)+---
2. Computing §®) based on the mapping formula ;
redshift space real space v.(r) .
1+NPs =  (1+8)d% ST aH)”
3. Substituting §® into bispectrum (5®§® ) = (27)36, B®
Previous works Our work
B(S) = Biree + Bl—loop + -
O((61)*) O((61)%)

Result : PT vs simulations

Equilateral triangles

200000

real space . redshift space
BB(ky, ko, ks) KB (ky, ka, ks)
150000 - . 1t
z = ; z=0
P Freirs g
100000 < i 1t :_f}.ﬁ{
Hri ¢ N-body iﬁ ----------
50000 #L}f e PT(tree) 1 monopOIe
k’l =kyo=ks=k : ki =ky =ks =k
0 04‘05 0‘.1 0.‘15 0‘.2 0.‘25 0‘43 0.‘35 04 0.‘05 d.l 04‘15 d.Z 0.‘25 d.3 0335 04
Blotetal. (14) k& [h/Mpc] k [h/Mpc]

Box size : 656.25 Mpc/h, # of particles : 102473, # of realizations : 64

In redshift space, 1-loop correction can give a
moderate enhancement in bispectrum amplitude
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Result : redshift dependence

Equilateral triangles

0.8

h S _

il PT (tree) | | .

0.6»\/\f\/\ /\\ 1 Bés)(z = 0.25)
v (s

o3 1| B (z=0)

04 Monopole 1

A N-body |-

s s A

i A ] | Be=1

VNV T | B =0)

0

0.1 02 0‘.3 O‘.4 (;.5 0‘.6 0.7 0.8 09 1
Blot et al. (14)  [h/Mpc]
Box size : 648 Mpc/h, # of particles : 102473, # of realizations : 1

Perturbation theory seems to reproduce simulation
well at high redshift and large scales

Summary

B Purpose

Modeling redshift-space bispectrum taking account of
nonlinear effects on gravity and RSD

B What we did

We calculated bispectrum up to 1-loop order in perturbation
theory and compared it with N-body simulation

- In redshift space, 1-loop correction can give a moderate
enhancement in bispectrum amplitude, while the
simulation results show a rather mild enhancement

— range of agreement becomes narrower at low-z

- Improved PT modeling would be essential (future task)
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“Scalar perturbations in Bimetric Gravity”
by Yuki Sakakihara

[JGRG25(2015)7b4]
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2015/12/10 JGRG2S5 YITP(Maskawa Hall) 14:45-15:00

Scalar perturbations in bimetric gravity

Yuki Sakakihara (Kyoto University)

This research is collaborated with Takahiro Tanaka (Kyoto University)
and it was motivated by Jiro Soda (Kobe University).
We are now preparing for the preprint version.

Massive Gravitons

General relativity well describes many of observations and
experiments.

However, we have unknown things such as dark components of the
universe. dark matter, dark energy...

Can we have some alternative theories to general relativity which
help us to understand the origin of these unknown components?

One way to seek such theories is IR modification.

The effects arising from dark matter and dark energy are low-
energy phenomena.

If gravitons have their mass, that works as an IR modification.

We know very few about graviton’s features. Are gravitons
massless? How many species do they have?
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Massive Gravity

Then, how can we obtain theories including massive gravitons?

We need to introduce another spin-2 field (another spin-2 tensor).
in order to give gravitons their mass.

1%
mass term ~ 9ur g HY = const.

1
(G U7 7 # const

Bimetric GraV1ty (BlgraV1ty) (de Rham et. al., 2011, Hassan and Rosen, 2012)

Ms? 4 M}z g and fare
—= | d*zv/—gR|g..| + —L Aoy [ —
2 _/ 9R[gu] 2 / d'z FR[fu] independently transformed.
massless massless
by adding interaction terms ~ ¢ LA f ‘
(symmetry breaking) AV
massive graviton ~ f —g + massless graviton ~qg+ f

(orthogonal to the massive mode)

@ The interaction terms are restricted in order not to produce ghost instability.

@ The dynamics of both of the metrics are determined by equations of motion.
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Bimetric Gravity is realistic?

@ Bimetric gravity is consistent with observations and it is a
candidate which realizes the history of the universe?

We focus on inflation among cosmological phenomena.

Observable quantities related to inflation are measured (and are to
be measured) with high precision. CMB temperature anisotropy,
B-mode polarization, gravitational wave background ...

It is interesting to consider inflation which is an high-energy
phenomenon in an theory with low-energy modifications.

@ Is bimetric gravity both theoretically and observationally
consistent with inflation?

Inflation in Bimetric Gravity

® (an we construct inflationary solutions with an inflaton
as in the case of GR?

Inflationary solutions are found.

e Are they stable solutions?

We have stable one.

e What is the feature of gravitational waves and curvature
perturbations generated during inflation?

The amplitude are suppressed due to the decay of massive
graviton’s modes. The spectral index is also modified.

e How the points determined by an inflaton potential on the
r - ngplane are moved?

Their behavior is rather restrictive than we expected.
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Bimetric Action with an Inflaton

M? 1

M2 -
#5570 [ e/ =R -ty [ =g S ez

Y =V Vo= VizI V=D,
Vs = Y] - 3[Y][Y?) +2[v?)
Vi = [Y]*—6[y] ]

where Cn : Coefficients of the interaction terms (Theoretical Parameters)

K. : The ratio of the Planck Constant of the other metric to that of the
physical metric

@ :Inflaton

Reduction of Bimetric Action
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“bigravity from gradient expansion in DGP 2-brane model”
by Yasuho Yamashita

[JGRG25(2015)7b5]
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bigravity from gradient expansion

in DGP 2-brane model

YITP, Kyoto University

Yasuho Yamashita

i collaboration with T. Tanaka

| ghost-free bigravity |

bigravity : gravitational theory which contains two gravitons interacting each other

M? 2 xM?2 =75
i S ;/d4m\/—g [R+V(g, )]+ Tpl /d4x\/—gR

For general interaction V, an extra Dol whose kinetic term has wrong sign appears.

... Boulware-Deser ghost

Boulware and Deser (1972)

To avoid BD ghost, V'should be tuned as

-

4
2 v v v ~ de Rham, Gabadadze, Tolley (2011)
V=m E Cpeltbnfctr i KV = \/g¥P » OReY L -
| p VLV T Pn 7 77 9" 9pn Hassan and Rosen (2012) I
\ n=

<= We can construct a realistic cosmological model at low energies.
I <= The gravitational wave has a characteristic feature.

... two gravitons cause “graviton oscillation” like neutrino oscillation
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Questions in ghost-free bigravity

Py
!

What is the hidden metric?

K
%

The form of the interaction is derived technically and artificially.

How the fine-tuning of the interaction term can be realized?

embed ghost-free bigravity

to higher dimensional gravity.

Why higher dimensional theory?

Consider 5-dim braneworld model sandwiched by two branes. 4-d brane

M3
o= ?5 /de\/—gR + (boundary term)

]
[]
A 4

extra dim

in 41d

assless in 5-d

<+ There 1s no BD ghost.

<+ two metrics induced on two branes < two metrics in bigravity

gS

<+ 5-dim massless graviton

= | massless and infinite # of massive gravitons on the branes

The 4-d effective theory contains one massless graviton,

infinite # of massive gravitons and one scalar (radion=brane separation).




1086

Model

In order to get bigravity, only one massive mode is to be kept at low energies.
effective potential by gravity

steep potential wells ( ¢ << depth)

\ / \ / ] Vot —>» nearly degenerate two small mass
<7 (%
%)ss &

» Dvali-Gabadadze-Poratti model

M2 T 1
5= Tpl dx5 V=9°R+ [ d'z\/=g (Ry —204) + X/d490\/ —9-(R- —20.)
potential depth induced gravity terms = potential wells

Gradient expansion

1

il — m2 ~ —
r((;i)é

s T 3 3 L
To obtain bigravity, the parameter is to be tuned as NE) <

The solution has two branches; one is ghost free and one has Higuchi/radion ghost.

‘Kﬂ"gi)‘ <1 should be satisfied for the ghost-free branch.

\ 4

Gradient expansion \

YY and Tanaka (2014)

We calculate the effective action at the leading order the expansion in K¢ <« 1

Aguy = g/(;;) — glg;) ~ O (KY)

r® ~01/K), m?~k~O(K/)

\ c )
\\ _
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Strategy to obtain the effective action

We solve the bulk equations for given boundary metrics gf,f)

1 4 1
Name, = _QKZKPV + KK[U/ + ggw/ = Rw/ + NVNVVN

12 1
e R =
e & i 2N gauge fix: 9N =0, N* =0

Then we can obtain the effective action written in g&f) from

2

12
S :zr(il) fd%\/ —g(R+ K* - KK = g) + (induced gravity term)

by substituting back the bulk metric solution guv(¥) and integrating this along y.

» The bulk degrees of freedom is integrated out and we obtain bigravity.

Result

At the leading order of gradient expansion,

St

Ag? — Agu,Ag™ @ g
= 4 = 2z 2 N7V U D [ o
S 2 () /d v/ —g { 160 + 3 (VEVY — g0 - R*™) | (V@) (V. D) ) Gy

+ (induced gravity terms)

£ : 5-d cosmological constant

V is the covariant differentiation with respect to guuv,

which is indistinguishable from ¢(}, ¢ and %(g,(;ug,gy).

1 3 ; : : :
d .= §N ¢ 1s determined by the Hamiltonian constraint C¢=0:

SR AgQ — RGN el P2
Gr——r g 16@’;'/ =0 owhere—g = % +@V,.V,® + @ 9




1088

Result

treat ® as an independent variable by adding AC'
and eliminate Lagrange multiplier A by use of EOM for

s
Mgl 4 4
* S = { d*z\/—g+ Ry +x | d*x\/—g_R_)

2 [ Ag® — AguAg™ 1, 4 12
V= —— (04— )+~ (R- =
e / 4wV =g { 320 202 tE)et R

absorbed by conformal trsf.\

+

—é (V,.®) (V,®) (VFV” — g" O — R*) @}]

cubic Galileon

i v,

We obtain a well-known ghost-free system with two interacting gravitons and a scalar.

At the leading order of the gradient expansion, we cannot examine

the form of mass interactions at higher order of 1/9()9(-) v — 6

Summary

<+ We want to derive the ghost-free bigravity from some more fundamental theory

which is valid at high energies ... DGP 2-brane model

<= We calculate the effective action under gradient expansion, in which the brane
separation is so small that the metric does not change significantly along y-direction,
by solving bulk equations and integrating out the bulk degrees of freedom.

We obtain a well-known ghost-free bigravity + one scalar system.

<= The extension to the higher order of gradient expansion is difficult
because it will produce complicated and higher-derivative interactions, which may

correspond to the appearance of the other massive KK modes.
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Stabilization mechanism (Goldberser & Wise
g

There is an extra scalar d.o.f. corresponding to the brane separation.

... We should remove it to reproduce bigravity !

We introduce a stabilization scalar field to fix the brane separation.

5, = [ #av=3 (—ggabw,aw,b ~ V() ~ 3 Vi) ($)3(y - ya>>
o=+ *

’tﬁ(yi) : fixed

\/

SRt oo g

=l

The distance between two branes are stabilized.
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DGP 2-brane model with stabilization
mechanism which reproduces bigravity

parameters My = 1.00
r& =1.00x10°, £=1.00

(brane separation / )
<< (strength of induced gravity r.*))

potential of scalar field

8= /d5a:\/—_g (—%gabzp,aw,b = VB(¢) = Z V(a)<1/))6(y = ya))

e

V( = 17
Py Y- [
rgrewiton’s mass m?> scalar mode’s mass ,u2
. mi=987 o
—— ui=177
» cut off
mi =2.00 x 107° ‘ b1grav1ty
mé =0

Correspondence between ghost-free bigravity and
DGP 2-brane model with stabilization mechanism

When the two branes are almost flat,

DGP 2-brane model is identical to ghost-free bigravity.

ghost-free bigravity DGP 2-brane model
two metrics H two metrics induced on the two branes
graviton’s mass H the mass of the lowest massive mode

YY and Tanaka (2014)

N

However, can we really embed bigravity to braneworld setup?

| » Consider doubly coupled matter to test this idea.

\ _ v
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doubly coupled matter

brane model _
Introducing 5-d matter, we can

naturally obtain a matter field

5-dim

which couples to both metrics.

matter
— BD ghost seems absent.

contradiction

bigravity coupling through the matter

/ \ generally detunes the ghost-free

structure of the interaction.

uv <:> — BD ghost appears?

... There seems to be a difficulty in our attempt.

Seeking for models with doubly coupled matter
which have no BD ghost

Introduce a k-essence scalar field

L =+v—gP(X,¢)+/—fP(X,¢)

i - 1
X ==29"09036, X =—3 [*0adOp0

Consider perturbation around FLRW and Bianchi type-1 spacetime

and evaluate the determinant and the eigenvalues of the kinetic matrix 4.

When detA # 0, their signs clarify

an extra d.o.f. exists. whether the d.o.f. is a ghost mode or not.

+ (BD ghost appears unless P = P(gb) or P = P(¢) J

YY, De Felice and Tanaka (2014)
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Radion as a doubly coupled matter

Radion: a degree of freedom which corresponds to the brane separation

We will check how radion couples to the two metrics in 4-dim effective theory.

...We can obtain a ghost free model in bigravity with doubly coupled matter
or find how the correspondence breaks between ghost-free bigravity

and braneworld model.
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bigravity and Boulware-Deser ghost
bigravity : gravity which contains two interacting gravitons

M? M?
Gt / diz/—g [R<9> + 2m2V (g, f)} = Tf —fRWY)
4 fix f

The interaction term breaks general covariance for g

=P GR ( helicity-2 ) + 4 gauge breaking ( helicity-1, helicity-0,

helicity-

V

massive graviton

This mode’s kinetic term

has opposite sign!!
Boulware-Deser ghost
Boulware and Deser (1972)

In order to obtain healthy bigravity, we have to tune the interaction form

so that the ghost mode is removed by constraints.

chost-free bigravity

Choosing the form of the interaction as

(V che“l KK KZ—\/Q”TfW]

de Rham, Gabadadze, Tolley
(2011)

I B e s =

ADM decomposition RN e

define new shift-like vector n?
and rewrite N* with n*

conj uglte momentum

S /\
= NG O B Gk C, Ct, CF are functions of {~i;, 79, 3f;;, p*/}

Then Hamiltonian becomes linearin N, L, L*.

= One of the Hamiltonian constraints kills BD ghost.
Hassan and Rosen (2012)
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graviton’s mass spectrum

massless mode always exists

the lowest massive mode J+ -

massless|mode

For ¢ < 7., eigenfunctions become

lowest massive|mode

junction condition:

el o

1 =5 4 = 2
K[(L:IE) ) <sz£4) = gGi(4)guu) glw/ﬂ = TCD( )gul/ =Tcmi1guy

! .
2 Y e Y 2 -
. 7}~ < Eam hierarchy

mass spectrum (scalar mode)

stabilization mechanism — no massless mode

o, H
HQ

/ 27" )
2i (a) }
2r¢ "H.
the lowest mass becomes @2~ / e g-re
v+ H : 5-d curvature scale

+ stronger stabilization (large [#']) === large pu?

- (1 ForPH, < (D make p° negative

(9y¥)?
o= MyS/HQ <<:1

If stabilization 1s weak:

=g corresponds to the self accelerating branch

: K.Izumi et al. (2007)
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chost in DGP model
the regularity on +brane imposes

u? (y+) 1
2 (Z m2 — 2H? = H2(2r. My — 1) \ 3H2 (zmi+ = Z uZ+4H? +4H2 BRge

diverges as m*—>2H? : Higuchi bound diverges as y’—>-4H’

: critical mass that scalar ghost appears

U ki 0 self-accelerating branch
e A s means m2 — 2H? — e

* ghost never disappears KIumi et al (2007)

2rcHy —1 <0  :normal branch

The same identity prohibits m? & uZ from crossing their critical masses

* no ghost

H : 4-dim comoving curvature scale

collapse of the structure in DGP model

junction condition
1
K = o) (ny) g g;w>

When we consider to increase the energy scale on the branes,

the curvature scale also increase.

On the other hand,

k x 2 5 e
|H| S — must be satisfied to avoid scalar-mode instability

(&)

+ slightly curved branes cause instability and break the stabilization!
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Cosmological solution in ghost-free bigravity

p  vo Higuchi ghost gradient instability
\ in matter or rad dominated era.

P s H(p)>m

Higuchi ghost no Higuchi ghost

\/ w : ratio of scale factors
of two metric

Higuchi ghost in dRG'T" bigravity

In dRGT model, equation for the de Sitter solution insists
i 24
H—42pm == + (62 — co> + <% — 301) w+ <£ — 602) WP — G = flw)
ar Xw X X X
w : ratio of scale factor

effective mass for massive graviton SR

m2yy = m(1 4+ () W) =~ () + 27

this sign determines the ghost appearance

I'(w) = ciw + 4cw? + 6e3w?®

For flat vacuum solution, //—0 as w—>wy where pn(wg)—0,

f'(wo) = 3 (1 & %u%) Two) negative when I' >0 1i.e. mef? >0

» no Higuchi ghost
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Higuchi ghost in dRG'T" bigravity

In dRGT model, equation for the de Sitter solution insists

2 1 24
%pm = (62 —co> + (ﬁ - 3cl> w+ <£ —602) w? — besw® = f(w)
m X X X

w : ratio of scale factor

effective mass for massive graviton of two metric

miss = m*(1+ (xw?) (W) = —mT%f’(w) + 2H?

5 ;  thissign determines
I'w) = caw + 4eaw” + 6esw

P

the ghost appearance

fr=0 flat vacuum H = 0,p =0
1
Hi "(w :—3<1+—)Fw
igu f'(wo) ey (wo)
...negative

when I' >0 < mg° > 0

Higuchi ghost in dRG'T" bigravity

de Sitter solution does not exist above this critical density,

and Higuchi ghost appears after crossing the critical w.

p

A

o

Higuchi ghog

adding cosmological const. little by little

...no Higuchi ghost

w : ratio of scale factor

We of two metric

choose the branch connected to the vacuum flat spacetime

with positive graviton mass
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doubly coupled matter

However, coupling through the matter
/ \ generally detunes the ghost-free
structure of the interaction.

Iuv f pv — BD ghost?

Consider a free scalar field which couples to both metric:

L =77 (50000 + VT (~30.00%)

v

3 1 l B0
conjugate momentum Ty~ | v+ 7 | %
e ==, ; :
Hamiltonian H 3 NIL™ ...nonlinear in the lapse fcns — BD ghost!

Seeking for models with doubly coupled matter
which have no BD ghost

<= another ghost-free model motivated by the quasi-dilaton massive gravity

2 p(9)
SE= /d4x\/jg |:M92R : I 2m2Me2ff Z Cnen<\/glw(f;w + 045',L¢ au¢)>:|

+/d4x\/—7

MJ%R(f)
2

- ;f“"auasam}

YY, De Felice and Tanaka (2014)

<= matter which couples to an effective metric

g,i% = a’QQ[UJ =5 2abgua \/ gaﬁfﬁu o bzfuu

This model has BD ghost, but it appears beyond the strong coupling scale.
de Rham, Heisenberg and Rebeiro (2014)

The model of doubly coupled matter is considerably restricted.

... inconsistent with the intuition in braneworld models.
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Before going to the nonlinear theory

For simplicity, we consider the perturbation around de Sitter brane solution,

whose curvature scale 1s given as f1.

ds® =dy® + a*(y)7,dz"dz”

NG
NEN

a Z

2 dya 3 1 Q=i D
aeaie=— = —— L H"/a pase

o) = ey )<7W+h§”i))
gt =yg (1 +)

Result

M2
o [/ d*z/—ym? {Ah2 NN Z@ (1 - o?H? (O + 4H?)) <I>}

2
6H? 6H? dar -
+/d4x\/T(+) (R(+)—a—2> e <R( )__)] @ := Ah+ 2RO
+
—yoH ()
2

treat @ as an independent variable

by adding A (@ Ah — R 1))

2

/d T/ =9+) (R(+> GIi )+x/d4$\/7(> (&;;)]

M2
el [/ dizy/—y m? {Ah2 — AW Ahy, — §a2H2<I> (O +4H2) @ + %CI) (® — 2AR) — a® (Rgf) = REl)))}

/conformal trsf

...two gravitons interacting through Fierz-Pauli mass term

and one scalar whose kinetic term couples to ¥ ...no BD ghost
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Equations of motion

: SN2 1 R 1 E] :
grypase l
L [m T {”—’159 — 17 + 3o (WV” B ﬂw) T(”}

1 O 1 :
o e e e e/ ()
3 (m2 — 2H?) <V“V el ) O+ 4H2 ]

By .o =
T =R

7D )
T

T(m) .
a’ ax

Qv

Poles at O0—2H2=0, m? and O+4H%? =0

...one massless and one massive gravitons and one scalar (radion)

We find the sign of the coefficient of the pole O+ 4H? = 0 flips at
203 x+rHHL —1=0

...equivalent to the condition for the ghost-free branch

We succeeded to obtain a ghost-free bigravity+scalar system.
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“Perturbations of Cosmological and Black Hole Solutions in Massive
Gravity and Bi-Gravity”
by Daisuke Yoshida

[JGRG25(2015)7b6]



PERTURBATIONS or
COSMOLOGICAL ano BLACK HOLE soLuTtions
~n MASSIVE GRAVITY ano BI-GRAVITY

Daisuke Yoshida (Tokyo Institute of Technology)

Based on arXiv:1509. 02096
Collaborators: T.Kobayashi (Rikkyo Univ.), M.Siino (Titech), M.Yamaguchi (Titech)

JGRJ25 atYITP, 2015.12.10

Motivation

Test of massive/bi gravity by cosmology

Many self-accelerated FLRW solutions of massive/bi-gravity have
been found so far, but many solutions suffer from instabilities.

There is a class of cosmological solutions whose stability has not
been studied. These solutions have a possibility to avoid unrealistic
instabilities.

We investigated the stability of such a class of solutions and found

stability of these solutions coincide with corresponding solutions of
GR at least up to second order perturbations in EoM.

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096
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Physical and Fiducial metric

g Physical metric,
LL 14 which coupled with ordinary matter
and describe the space time

Fiducial metric
In massive gravity:

f external field which give graviton a mass
LL |4 In bi-gravity:

dynamical tensor field interacting with guv

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096

Action and Equation of Motion

M?
S =L [ oG (Rlg) + Loatierlgo @) G e

K MPL /d4:17\/ (R f“y] + LmatteT[fuw (I)I])
MI%L /d4:r: /_2m22,8161 V=V i

en(y) = A, - ytnly,

—2
G*y + X"y = Mpr T,
Gy + X"y = k2 MpiTe",
m?B1v", + m*B2 (er(MV, — (V)4

+m?Bs (e2(7)7h, — er(MN(V)H, + (7)) — o Z m?Bie; (y

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096
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—A9 +m?(6 + 4oz + a3)
m?*(=3 — 3a3 — ay)
m2(1 + 203 + ay)
m2(—az — ay)

—A +mPay

Action and Equation of I

mzﬁZ

2
/d4.’1)\/ ( [gw,] F Ematter[gqu)l]) Zzgi

Key Point --2172  r

1
* Correction terms are described by ’7“,/ =V g‘lf v

* Correction terms have 5 free parameters m2B; ¢ m,as,aq, A9, A
@ Lo A2
GV—I_X[,-Y:I V—MPLTV
p b 22
Gty + Xf )", = KMpETH,
m?B1yh, +m?Bs (e1()74, — (V2)1,)

+m2Bs (e2(N7™, — ex (NP, + (79" —5“Zm2ﬂzez ”)

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096

BACKGROUND
SOLUTIONS
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Metric Ansatz

Our analysis can be extended to spherically symmetric space time.

g spherically symmetric space time:

guudxﬂdmy = Ju (t7 T)dt2 + 294r (ta T)dtd?“ + Grr (t: T)dT'2
+R(t,7)(d6* + sin? Ad¢?)

spherically symmetric space time:
l’l} I/ fuwdstde” = fiu(t, 7")cl1ff2 + 2fe (t, r)dtdr + frr(t, r)dr2
+A%(t, )R (t,7)(df? + sin? 0d¢?)
Alt,7) = v/ oo/ 900

We can treat not only cosmological solution but also static spherically
symmetric solutions at same time.

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096

Cosmological constant solution

We are interested in the case where
EOMs of g, reduce to Einstein equation with a cosmological constant.

GH, 4+ X[V, =8rGT*,

X Constant x 0F',,

Combining with our spherically symmetric metric ansatz,
X, —m?y' . (3-24A+(A-3)(A—Daz+ (4 —-1)%a4) =0
X" —m?y (3 - 24+ (A—3)(A—Daz + (A —1)%ay) =0

A(t, 1) =/ foo/g00
’Yul/ =V gilf“r/

We focuson A(t,r) = const = (2as + ag + 1+ /a3 +as —as+ 1) /(a3 + a4)

A2 _ A~ v b oLt
Xt — X% = m? (“+71)_T47” TV t4— 2+ (A—1)az) =0

Wefocuson A = (2+ a3)/(1+ as)

2
X“,, — ( Ui +A9) 5“1/
1+a3

These two requirements can be satisfiedwhen ay = 1+ a3 +a3 .

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096
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Summary of background solution

G = gul(t, 7")dt2 + 2g4,- (t, ) dtdr + grr(t, r)dr2 + Rz(t, r)(d02 + sin? 0dg)

2
fur = fult,r)dt® + 2 (¢, v)dtdr + frr(t,r)dr? + (i—oQ) R2(t,r)(d6? + sin? Ade)
as

ay = 1+az+al

» G*, + AL, 6", = 8nGT*,

Alpr=m?/(1+az) + A9

Gy + ALy 8", = 62 MpLTH,
ALy =12 (—=m?/(2+ as) + A)

Any spherically symmetric solution g,,,, of GR can be a solution of massive, bi-gravity.

This class of solutions includes
FLRW solution by Chamseddine Volkov (2011), Kobayashi,Siino,Yamaguchi,DY (2012)
Schwarzschild de Sitter solution by Nieuwenhuizen (2011), Berezhani et al (2012), Kodama, Arraut (2013)

STABILITY
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Perturbations and EoMs

We consider general linear perturbations around our spherically symmetric solutions:

Juv = Guv + 5g,uv
f,uv — f,uv + 5f,u1/

Guw = Gu(t,7)dt® + 2. (t,r)dtdr + Grr(t,7)dr® + R?(t,7)(d6* + sin® 0de)
fuw = fu(t,r)dt* +2fu.(t,r)dtdr + fr.(t,r)dr? + A2R?(t,r)(d6? + sin® d¢)

. 2+ as
Equations of motion for perturbations: A= T ras

o0GH", + 0 X", =8rGoT*,

2 A% — A7 +97r) Y — Y

B
X, =m (1= A7

1
(5’YIJ = ﬂglK(—Az(ngJ + (5ij) With,] = 6,¢

The correction appears only in 8 and ¢ components.

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096

Bianchi Identity
Because of Bianchi identity of G/ and conservation law of T},
V, XF, =-V,G", + MV, TH, =0
= V,0XH, =0

Combining with  sx*, =m?

A2 — AV 4+ A) e — e
(1—4)

509 + 57% =0

» Dp(sin 067° 4) = —04(sin 057°y)
1

1 . . .
E(%(sm 005(sin? 007%4)) + —5 ; 904(sin? 06+%9) = 0

Laplace equation on sphere = sin?087%5 = constant over sphere

Assuming 6+’sis reqular at § = 0,7, solutionis §v%y =0
From remaining equations, 07%s =07% = §1%5 =0

1 -
(;"yIJ = ﬂglK(—Az(SgKJ +($ij) =0 5XMV — O

With,] = 6, ¢ ., nstitute of Technology) , arXiv:1509.02096
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Results on Linear Perturbations

Perturbed EoMs reduces to Einstein equations
with 3 constraints between 8g,,,, and 61, .

-2
5GH, = M320T*H,
§fry=A%6g17 1i-0s 4w OXV, =
6G 4", = K MprdTe",
Dynamics of linear perturbations is same as that of GR !

There are only 4 dofs, though bi-gravity has 7 dofs.
3 degrees of freedom disappear at linear order.

? Do these dofs appear at higher order perturbation?
N Is there nonlinear ghost instability at higher order perturbations?

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096

Second order Perturbations

Juv = Guv + 0Gur + g,(fu)

f/u/ — f_uu + 5f,u1/ + f,L(L2I/)
with
Guw = Gu(t,7)dt? + 2, (t,r)dtdr + grr(t,7)dr® + R?(t,7)(d6? + sin® 0de)
fuv = Fu(t,r)dt® + 2fp,. (¢, r)dtdr + frr(t,7)dr? + A2 R?(t,r)(d6? + sin? Ode)
Ofrs = A2591J

dX@0, 5x2)0
IX@y 5XP9

VHXIJ»V =0 ‘ 5X(2),uy —0 - EoMs reduce to

Einstein equations

in 8 and ¢ components.

0
- SX@n o ?2) ) The correction appears only
(

2)

This solution is free from non-linear instability !

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096
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SUMMARY

Summary

Massive gravity and Bi-gravity have
any spherically symmetric solution of General Relativity.

Its stability is same as GR at least up to second order perturbation.

However this result shows
one cannot distinguish our spherically symmetric solutions of massive and
bi-gravity from the corresponding solutions of General Relativity at least up to

second order perturbation.

DAISUKE YOSHIDA (Tokyo Institute of Technology) , arXiv:1509.02096
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“Scale Invariance at low accelerations and the mass discrepancies in the
Universe”
by Mordehai Milgrom (invited)

[JGRG25(2015)I10]



Scale Invariance at low accelerations
and the mass discrepancies in the Universe

Moti Milgrom (Weizmann)

Kyoto Relativity Workshop December 2015

(Some) things everyone should know about
Dark Matter

e No direct evidence for dark matter, only gravitational anomalies

e Dark matter is needed if we adhere to standard dynamics (Newtonian, GR)
e No known form of matter can be the DM (candidates from BSM lore)

e Another fix to standard dynamics is required — “dark energy”

e Many observations conflicts with DM

e Tens of experiments attempting to detect DM directly and indirectly at all
sorts of particle-mass and -type ranges

1112
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MOND — synopsis

e MOND hinges on accelerations: These are many orders smaller in galaxies
(and cosmology) compared with lab and SS ones.

e Departure at small accelerations a < ag ~ 1As—2.

e Works very well in predicting many properties of galaxies of all types (with
practically no free parameters).

e | eaves some discrepancy in galaxy clusters (~ a factor of 2).
e Not yet a coherent picture for cosmology.
e Strongly connected with cosmology; e.g. 2mag ~ Hy ~ (A/3)'/? (c = 1).

e Several full-fledged effective theories (relativistic and their NR limits). Some
based on microscopic arguments. But no “final” theory.

Basic tenets
A theory of dynamics (gravity/inertia) involving a new constant ag (beside G, ...)
Standard limit (ag — 0): The Newtonian limit
MOND limit : a9 > o0, G — 0, Ag= Gag fixed:
Scale invariance: (t,r) — A(t,r)

ag is analog to ¢ in relativity or 2 in QM




An example of a Nonrelativistic theory

Modified gravity:!

£ = B F(6)2/a) - 0

a=-Vo V- (w52 Ve] = 4nGp
DML: F(X)=(2/3)X32 V. [|[Vg|Ve] = drAgp

Conformal invariance

Limit of relativistic theories

IND: £L=—-8rG) Y Ve¢)? - po

a=—-V¢ V- [V¢] = 4nGp

MOND laws of galactic dynamics

e Essentially follow from only the basic tenets of MOND

e Are independent as phenomenological laws—e g, if interpreted as effects of DM
(just as the BB spectrum, the photo electric effect, H spectrum, superconduc-

tivity, etc. are independent in QM)

e Pertain separately to properties of the “DM" alone (e.g., asymptotic flatness,
“universal’ X)), of the baryons alone (e.g., M — o, maximum X), relations

between the two (e.g., M — V)

e Revolve around aq in different roles

1114



Some of the MOND laws

Asymptotic constancy of orbital velocity: V(r) — V., (H)
Light-bending angle becomes asymptotically constant (H)
The velocity mass relation: V2 = M A, (H-B)

DML virial relation: o* ~ M A

Discrepancy appears always at V?/R = ag (H-B)
Isothermal spheres have surface densities > < a/G (B)
The central surface density of “dark halos” is ~ ay/27G (H)

Full rotation curves from baryon distribution alone (H-B)

ap =7
ag can be derived in several independent ways:
ap~1.2x 1078 cm 572
ao = 2mag ~ cHy ag ~ c(A/3)1/?
by = lag =~ Ly
asay & LSy
Why a critical acceleration? MOND length, MOND mass.

No MOND black hole with Rg < Rgupbie

1115



1116

Relativistic theories

e Tensor-Vector-Scalar Gravity (TeVeS—Bekenstein 2004, after Sanders 1997)
Gravity is described by ga g, Ua, ¢: Gop = € 2?(gap+Usldp) —e* U U

e MOND adaptations of Aether theories (Zlosnik, Ferreira, & Starkman 2007 )

2

a
L(A,g) = 167?G]:(IC) + MA*A, +1);

K= a(;QA’Y;aAU;,B(ClgaBQ'ya + 025355 + 035357’8 + C4AQA’BQWJ)_

e Galileon k-mouflage MOND adaptation (Babichev, Deffayet, & Esposito-Farese
2011)

Also a tensor-vector-scalar theory. Said to improve on TeVeS in various regards
(e.g., small enough departures from GR in high-acceleration environments)

e Nonlocal metric MOND theories (Soussa & Woodard 2003; Deffayet, Esposito-
Farese, & Woodard 2011, 2014) Pure metric, but highly nonlocal in that they
involve F'(0J).

e BIMOBD (Bimetric MOND) (Milgrom 2009-2013)

1

I= —167TG/[591/2R+a§1/2R—2(99)1/46%2)/\/1]d4$+IM(9um¢z’)+jM(§p,wXz')

e Massive bi-gravity plus a polarizable medium (Blanchet & Heisenberg 2015)
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“Microscopic” approaches

DM with novel, unexpected properties, that may behave as dictated by MOND:

> Polarized dark medium (Blanchet 2007, Blanchet & Le Tiec 2009, Blanchet
& Heisenberg 2015)

> Novel baryon-DM interactions (Bruneton & al. 2008)

> Dark Fluid (Zhao 2008)

> Superfluid (Khoury, Berezhiani & Khoury 2015)

Entropic effect (Verlinde, Klinkhamer & Kopp 2011, Pikhitsa Ho & al. 2010,
Li & Chang 2010), others

Vacuum effects (Milgrom 1999 )
e Membranes with gravitational DoF extra coordinates (Milgrom 2002)

e Horava gravity (Romero & al. 2010), Sanders (2011), Blanchet & Marsat
(2011)

10
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Discrepancy-acceleration correlation for
rotationally-supported systems

1
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Plotted is g/ g for 73 disc galaxies (points with §V /V < 0.05) — McGaugh (2015)

Discrepancy-acceleration correlation for
pressure-supported systems
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Rotation velocity (km/s)

v(km/s)

Rotation Curves of Disc Galaxies
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x-ray Ellipticals, tested over an acceleration
range ~ 10ay — 0.1ay
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points (squares and small rings) from Milgrom (2012)
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Andromeda satellites—internal dynamics
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Galaxy-galaxy lensing
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Data from Brimioulle et al. 2013, analysis from Milgrom 2013.
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Galaxy Clusters

Galaxy clusters

Newton MOND

- r T ERRAN RN RN RARRARY
TR e 1 1 =
7] F | £ 7
§0,5,— 4 05F e
4 0F E 0 -
g £

) £

505 [ -4 -05 [ E
Q C | C |
4,1 I N T A R - R PN T

{
-1-05 0 05 1 1-05 0 05 1
Log Obs. Mass —14 Log Obs. Mass —14

Sanders 1999

Clowe et al. 2006

Cosmological mass discrepancies
We know the baryon fraction from nucleosynthesis ~ 4% (today)
Cosmological “dark matter” ~ 5 x baryons
“Dark energy” (A) ~ 3 x matter (today)
ag ~ A1/2

Expansion-history-"DM" requires DM /baryons ~ 2w G — 2nG?

22

23
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What is behind the phenomenological
success of MOND?

e Truly new dynamics with direct links between Universe at large and local
dynamics?

e “A phenomenological device that accounts well for the phenomena, but is not
really new dynamics?’

> “...For these hypotheses need not be true nor even probable. On the
contrary, if they provide a calculus consistent with the observations, that
alone is enough ... " Copernicus (Osiander)

> Reality of atoms and molecules:
“The principle point of debate among chemists was whether atoms were real
objects or only mnemonic devices for coding chemical regularities and laws.”

(Pais)

24

DM?
> DM distribution is determined from that of the baryons.

> But DM to baryon ratio varies greatly and also differs from cosmological value.

> It is inconceivable that CDM will ever explain MOND: for individual galaxies the
outcome depends on the unknown history of formation, interactions/mergers,
ejection of most baryons, etc..

25
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Summary

MOND is a paradigm still under construction that replaces DM with new
physics at accelerations below ag ~ ¢Hy ~ cAl/2.

Anchored in symmetry

Several theoretical directions

It achieves a lot, and does it very well.

Some important things that it was not yet shown with certainty to do

Rather unlikely that MOND phenomenology can be explained as some orga-
nizing principle for CDM.

26
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“Beyond Inflation and Beyond Horndeski Theory™
by Masahide Yamaguchi (invited)
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Beyond Inflation and Beyond Horndeski theory

MASAHIDE YAMAGUCHI
(Tokyo Institute of Technology)

12/10/15@JGRG 25th
arXiv:1504.05710, JCAP 1507 (2015) 07, 017
T. Kobayashi, MY, J. Yokoyama

c=T=1 Mg=1/V87rG ~ 2.4 x 108GeV.

Inflation

Inflation, characterized as quasi De Sitter
expansion, can naturally solve the problems of
the standard big bang cosmology.

® The horizon problem
® The flatness problem
® The origin of density fluctuations

® The monopole problem
o ..
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Generic predictions of inflation

® Spatially flat universe

® Almost scale invariant, adiabatic, and
Gaussian primordial density fluctuations

® Almost scale invariant and Gaussian
primordial tensor fluctuations

- Generates anisotropy of CMBR.

Observations of CMB anisotropies

Planck TT correlation :
Green line : prediction by

inflation
Red points : observation
by PLANCK

Multipole moment, ¢
2 10 50 500 1000 1500 2000 2500

6000

5000 \

4000 [ ¥
i

il Angle 0 ~ 180° /1
i~ e
" ’ < v\ﬂ—.i - Total energy density €=» Geometry of our Universe

%0 18° 1 02° 01° 0.07°
Angular scale

Temperature fluctuations [ 4 K2 ]

Our Universe is spatially flat !!
WMAP TE correlation :

,\ Causal seed models

60

10)/(2 ) (uK)*

TEL I+

(55

_— Superhorizon models

(adiabatic perturbations)

L
0 50 100 150

Unfortunately, primordial tensor perturbations have not yet been observed.
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What happened before inflation ?
and/or

How did the Universe begin ?

Contents

® Introduction
Before inflation
Violation of null energy condition

® Beyond Horndeski
What is the most general scalar tensor theory ?

® From genesis to inflation (followed by reheating)
Setup (Beyond Horndeski theory)
Stability (Powerspectrum of primordial perturbations)
Example

® Summary
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Introduction

What happened before inflation ?
and/or

How did the Universe begin ?
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Look back to the past of the Universe

It is often claimed that, if cosmic time goes back to the past,
the energy density gets larger and larger,
and it eventually reaches the Planck energy density.

So, unless one completes quantum gravity theory,
one cannot discuss the state at the extremely early stage
(or even at the onset) of the Universe.

For a perfect fluid : T,uu = (p + p) Upty — Guuvp

The homogeneous and isotropic (Friedmann) Universe:
ds? = —dt® + az(t)'y@-jdacid:cj
=) o= -3H(p+ p).

Aslongas o+ p = O (and H > 0 for the exngdi\ng Universe)

° < O We do not consider
p . bouncing (contracting) Universe.

Null energy condition (NEC)

Tw/f H & ¥ > 0 for any null vector E*.
(glwgugl/ = 0)

This is the weakest among all of
the local classical energy conditions.

For a perfect fluid : 7}, = (p + p) upuy — guvp
mm) NEC & p+p=>0

As long as the NEC is conserved, the Universe cannot start from
a low energy state in the expanding Universe.

inflationary model cannot be globally extended into the infinite past; i.e.,

N.B. Borde & Vilenkin showed with NEC (plus some conditions) that a future-eternal
it is not geodesically complete in the past direction.




How robust is the NEC ?

® Canonical Kinetic term with potential:
L= " 0utdud — V(9).
p = %432 +V(#) .5
- {p - %452_V(¢) - p+p=¢°>0.
(NEC is conserved)

® How about k-inflation ? (Armendariz-Picon, Damour, Mukhanov 1999)

1
L= K(d)JX)? X = _Eg'uuali¢8l/¢'

= {;

2XKx - X - p+p=2XKy.

K
(Kx = 0K/0X)

Apparently, it looks that, if Kx <0, it can violate the NEC.
But, this is not the case.

Primordial density fluctuations

1132

Garriga & Mukhanov 1999

(" Perturbed metric :
ds® = —(1 + 2a)dt? + 2a°8;Bdtdz’ + a’e*Cdx?
Comoving gauge :

L ¢=0¢(@), dp=0.

Prescription:

® Expand the action up to the second order
® Eliminate a and B by use of the constraint equations

® Obtain quadratic action for

2
2) _ 3. 3,22 ¢ (2 €
> 55; ) = /dtd ra” MG — (C __SQC,kC,k)
cs a
S H _ XKy > Kx (sound velocities of

— 2 = .
H2 Mg H? * Kx+2XKxx curvature perturbations)

In order to avoid the ghost and gradient instabilities, €¢> 0 & cs? > 0.
(Hsu et al. 2004)

- p _I_ p — 2X KX > O. (See also Dubovsky et al. 2006)
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Stable violation of NEC is impossible within k-inflation

It is impossible to break the NEC stably within k-inflation.

® Background solutions can break NEC apparently.

® But, the perturbations around them always become unstable
for such background solutions.

This is quite reasonable in some sense because violation of NEC must pay

some price. (see Sawicki & Vikman 2013, Easson, Sawicki, Vikman 2013)
e.g. An observer with almost speed of light observes arbitrary negative energy.

Tuwéhe” >0 mmy REM¢" >0

N.B. k-inflation is the most general action coming from
phi and its first derivatives. (c = K(¢,X), X= —%g#’/aufz,an).)

‘ One may wonder how about introducing higher derivative terms.

mmm) Ostrogradski’s instabilities

Theories with higher derivatives
and/or
What is the most general

scalar-tensor theory
(without ghost instabilities) ?
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Lagrangian

Why does Lagrangian generally depend on only
a position q and its velocity dot{q} ?

Newton recognized that an acceleration, which is given by
the second time derivative of a position, is related to the Force :
m@ = F (x,x)
dt2 e

The Euler-Lagrange equation gives an equation of motion up to the
second time derivative if a Lagrangian is given by L = L(q,dot{q},t).

oL d (0L

(if r:= g—g depends on dot{q} < non-degenerate condition.)

What happens if Lagrangian depends on
higher derivative terms ?

Ostrogradski’s theorem

Assume that [, = L(q, q, q) and if' depends on q :
! (Non-degeneracy)

oL d (0L d? (oL
‘ —— — | — | -— == B (D (,(3) & s o).
d9q dt (84) + a7 <aq'> 0. q q (q 45 4 q)

oL doL
Q1i=q, Pi=——-——,
5 . dq dtdq
Canonical variables : _ oL
Qz:=gq, Pr:= R
q
. . OL . .
Non-degeneracy & G =q|q, b 55 S §=4(Q1,Q2, P2)
Hamiltonian: H(Q1,Q2,P1,P2) = Pig+ P§—L

= P1Q>+ P>i(Q1,Q2, P2) — L(Q1,Q2,4(Q1,Q2, P2)).

. 8H . OH
These canonical variables really satisfy the canonical EOM : @ =75, 5= —55-

‘ P1 depends linearly on H so that no system of this form can be stable !!

aL aL . aL B i __ 1 i () i )
[N-B. a6 O ((’i?(Tu(fJ)) + 8y (W) =0. - (P2 + mP) (P2 +m3)  m3—mi (;1)2 +mi2 + m3) ]

(propagators)
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Loophole of Ostrogradski’s theorem

We can break the non-degeneracy condition
which requires that ‘?ﬁ depends on ddot{q}.
q

In case Lagrangian depends on only a position q and
its velocity dot{q}, degeneracy implies that EOM is first order,
which represents not the dynamics but the constraint.

|

In case Lagrangian depends on q, dot{q}, ddot{q},
degeneracy implies that EOM is second order,
which can represent the dynamics.

Galileon field D 300
The theory has Galilean shift symmetry in flat space :

Ou@ — Ou@ + by

(£ = ¢
Ly = (84)°
{ L3 = (04)°0¢
Lo = (09)? [(00)? — (0u0v9)°]
Ls = (9¢)* [(0¢)° — 3(0¢) (9udv)® + 2 (9udr9)°|

(8u0u$)? = 8.8y pOHDY b,
(Oudv)® = 0,0,08" 8 $O\ "¢

Lagrangian has higher order derivatives, but EOM is second order.
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What is the most general
scalar-tensor theory
whose equations of motion are
up to second order ?

Generalized Galileon

Deffayet et al. 2009, 2011

(o}
N
|

K(6.X).
(6, X6,

{ La = [Ga(d, R+ Gax [(09)° — (VuVu)?],

Gs(¢p, X)Guw VHVY ¢

—=Gsx[(09)° — 3(09) (VuVuh)? + 2 (VuV)?].

1
X = _E (qu)z, G,x = 8G,/8X

0
w
|

[
o1
|

Covariantization of the flat Galileon theory.
Is this the most general scalar tensor theory whose EOMs are up to second order ?

NB: @ G4=Mg?2/2 yields the Einstein-Hilbert action
® G4 = 1(¢) yields a non-minimal coupling of the form f(¢)R
® The new Higgs inflation with G*"8,¢9,¢ comes from G5 o< ¢
after integration by parts.
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Horndeski’s theorem

In 1974, Horndeski presented the most general action (in four dimensions)
constructed from the metric g, the scalar field ¢, and their derivatives,
Oy 02 G, O3 gy, - - -, 00, 0%¢, 03¢, - - - still having second-order equations.

an 2
Ly = 5303 {’*lvﬂv(\‘i’ﬁdq Y+ 3RXVIVadVIVahVIVg + K3Vag VISR, " + 2h73xVM!')V“d?VUVid)VUV*,d>]

+358 [(F 4+ 2W)R, 5" + 2Fx V*Vag V"'V 3 + 2k8VadVFoV*V 38| — 6 (Fy + 2W, — Xrg) 0o + ko.

k1, k3, k8, k9, F : functions of ¢ & X with

W=W(9)
goiaz-an — pslanges  sanl

FX - 2(!1‘.3 —|— 2XKZ3X — Iﬁ)l¢)

What is the relation between Generalized Galileon and Horndeski’s models ?
= Both models are completely equivalent :

X
= kg + 4X/ dX, ("‘58(7) i 2ﬁ3¢¢) ) 22
3
X
= 6F,—2Xkg — 8Xkgzy+ 2[ dX'(kg — 2K34). 4 2
= 2F — 4Xk3, °
= —4x1,

Kobayashi, MY, Yokoyama 2011

K(9,X),

~G3(9, X)0¢,

Ga($, X)R+ Gax [(B6)% = (VuVu$)?],
Gs(h X)Gu ViV

—£Gax[(89)° = 3(86) (V) + 2 (V).

Beyond Horndeski theory
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Horndeski 1974

Horndeski theory Rt s 201
Horndeski theory (= Generalized Galileon) :
4 —
L2 = BloAh X= —%(Vcﬁ)z, Gix = 8G,/9X.
£z = —F306, X104,

Ga(6, )R + Gax |(89) = (VuVug)?],
= uw VEVY

_éGsX [(D¢)3 —3(0¢) (VuVue)? + 2 (V,Nuqﬁ)?’]

_AL
DD
o A

|l

\.

This is the most general (single) scalar-tensor theory which yields
second-order (scalar and gravitational) equations of motion.

But, in order to avoid the Ostrogradski instabilities, this requirement can
be too strong. For this purpose, only time derivatives should be second order
while spacial ones can be higher.

(c.f. Another direction is to include infinite higher derivatives.)

Beyond Horndeski theory gogoe»

ADM decomposition: 452 = — N2t + ~;; (dxi + N idt) (dxj + NI dt)
(¢= const surfaces)

‘ — — 2 2 (¢ and X are functions of
¢ _ ¢(t)’ X = qb (t)/(QN } t and N, and vice versa.)
. 1 F(¢3X)<_>F(t:N)
Unit normal vector:  n, =aV,p, o= ——

‘ VuVup = a_l(K,W — NGy — NpQy) — omAV)\X nuNy

K,uu = hsz'nf/j h,uu — Guv + Tty

a;,u — n'u — 'n;VVynlJ,

R=R® — (K? - KuWk") + 2V, (Kn# — a*)

(ADM => phi)
@m K=V - a*VuVieVadV X — a® (Vb VX + VigV,uX)]
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Beyond Horndeski theory II gogzam

Horndeski theory (= Generalized Galileon) : (.,
L3

L= \AN) L, ,;5
a

(Lo = As(t, N),
L3 = A3(t, N)K,
Y\ La=Aalt, N) (K2 — K3) + Ba(t, MR,

K(¢, X),

~G3(b X)00,

Ga(¢, X)R + Gax [(09)? = (V,:Vu0)?],

Gs(¢. X)GuVHV g

1653 [ - 3(06) (V,906) + 2770077

(1 [ |

g 1
| L5 = As(t, V) (K3 - 3KKZ + 2K3) + Bs(t, N)K" (RS’) - Egin(‘?’)) .

8B4 _ N®Bs { Kij : extrinsic curvature

with 4,=-5,- N2 4, =-2"5 I e . .
4 + TN ®~ 6 oN Rij(3) : intrinsic curvature

Gleyzes et al. (GLPV) pointed out that, even if the above two relations are
absent, the number of the propagating degrees of freedom remains unchanged.
Gao showed that further extension is possible.

Further extention (our later setup) ...
L = (ao + alR(3) + a3R(3)2 + a4Ri(J3)R(3)ij + a5aiai) K

+ [(a2 + a6R(3)> R a7R(3)};R(3)jk + agaiaj] Kij+-

(a; = a;(t,N))
L = ﬂNZﬁa
a

r132 = Ax(t,N),
L3 = A3(t, N)K,
] La= Ag(t,N) (MK? — KZ) + Balt, NYRG),
Ls = As(t, N) (\2K> — 33K K + 2K7)
1

+Bs(t, N)K' (RS - 29, R

\
( The GLPYV theory corresponds to the case with A1 =22=33=1.)
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Stable violation of NEC
with higher derivative terms

Is it possible to violate the NEC stably if one includes higher derivative terms ?

Galilean Genesis et
[ o= [t P 00+ L o000+ L o0
5= [d*sv=g | SMER+ 1262 (89)% + 15 (0$)2 06 + =5 (89)

(In the flat spacetime limit, this theory has conformal symmetry SO(4,2).)

® Energy-momentum tensor :

_ _2( 0242 3f a4 [ 3
p o= =12 (2§ -2t - 6507,

A3 A3
p o= -2 (42 - §%¢4+2%¢2¢).

® A background solution, (t:-0o->0): Starts from Minkowski in infinite past.

/
= ey e (0=it )

A3 1 f3
3f 2MG/\

AR . .
‘ p+p A3 (—0)% < 0. (Actually, you can verify that H increases.)

( The NEC is violated !!)
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Primordial density fluctuations

( Perturbed metric :

ds? = —(1 + 2a)dt? + 2a29;Bdtdz’ + a?e?Sdx?
Comoving gauge :

L p=o), sp=0.
) 52 = / dtd®e o> (gséz — %C,kg,k)

In order to avoid the ghost and gradient instabilities, Gs > 0 & Fs > 0.

4 N>
gs = .FS g 6MGf—3
( The NEC is violated stably !!)

—t)? > 0.

N.B. @ A spectator field like curvaton is responsible for primordial density

perturbations because the genesis field predicts too blue (ns ~3)
perturbations in this simple model.

® Primordial tensor perturbations are not generated at first order.

Galilean GeneSis II Creminelli et al. 2010

Nicolis et al. 2009
Minkowski  Genesis |Reheating Radiation dom
d @

a(t)

W

t, t

(figure taken from Creminelli et al. 1007.0027)

a=1 /

| 4

® In this scenario, the effective theory breaks around t ~ to = 0. So, it is

assumed that the energy density of the genesis field is converted to
radiation, in which hot Universe starts.

® Of course, this is not necessarily a fault of this scenario. A more
fundamental theory will be able to describe the transition adequately.

(See 1401.4024 written by Rubakov for good review)
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From Genesis to inflation

From Genesis to inflation s o

H
l EFT breaks down -> RD
Quantum gravity\?
Inflation (quasi DS)
Genesis
—— > t

® As a epoch before inflation (and the onset of the Universe), use of Galilean
Genesis is proposed by Pirtskhalava et al.

® Unfortunately, in their concrete construction, the gradient instabilities
appear during the transition from Genesis to inflation. They are dangerous
for large k modes even during short period because of . Im(cs)kt .
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We try to construct a concrete
workable example, in which
the Universe starts from Minkowski
spacetime in the infinite past, and
is smoothly connected to inflation,
followed by reheating (graceful exit).

Our setup
i = ﬁNZEa

( Ly = A(t,N),
L3 = A3(t, N)K,
L4 = As(t,N) (M K2 — KZ) 4 Ba(t, N)R®),
Ls = As(t,N) (\2K3 = 3\3K K7 + 2K7)

. 3 1
X +B5(t, K (RS = 9,73)
( The GLPYV theory corresponds to the case with A1 =22 =A3=1.)

ds? = —N2dt? + ;; (da’ + N'dt) (da? + N7dt)

(N =1N(@)(1+dn),

< Nj= NQ(t)ai;%’ . tensor perturbations
Yij = @ (t)e (6 55 (hii = hyjj = 0)

curvature perturbations

.
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Perturbations
® Tensor perturbations ;
(2) . gl QT = —2A4 —6 (3)\3 = 2) A5H,
‘C’T i s N2 23 (3h”) ] {J—'T = 2B 4+i%.

(H ::m)

® Curvature perturbations : (spatial higher derivative appears !!)

2 2 4 H k’4
2 == 0, 6] D __ 2 S
£ =Wa [gos +¢ 7Ty —nsT) | w2 =(T3
a . ZQ% (= - WA'2+%N2AZ+;N2A‘§? 5
gS i 2 + 3gT’ +314 (2A4—2WAA+W2A£{) o2
=<4+ 3C gl =
< Fe - 1 d (a@ngT) < ;3:,’5(6”5(‘”*15"‘;‘]/*5)“1-
5 = = 27 T ) e = 3 _op, (Ag—NAL)H
Na d2t @<+ 3C —;15 (2e— ToAL) 12
H S gBC G = —2mgAq —6nsAsH,
S T a2 s Gp = 2(Bs+ NB})— HNBY,
~ o2 +xC \, ¢ = (1(7 A)As *)(6+9/\2—15,\3)A5H.

(na := (BA1 —1)/2, n5 := (9A2 — 93 + 2)/2)
NB. @C=0forA1=22=23=1.

@ Even if Fs < 0 (with Gs > 0), the curvature perturbations
with large k are stabilized for Hs > 0.

Concrete example

( 4 p—2 1 , X) @ (t, N
Ay = M3f2OtD()an(N), B 0 < 6
As — M3 —(2a+1) N L3 = As(t, N)K,
< 3 3f2 (t)as(N), Ly = Ag(t,N) (ME? — K2) + Ba(t, N)R®),
Ay = — MG 4+ sz_za(t)a,zL(N), Ls = As(t,N) (A2K3 — 3AsKKZ + 2K3)
2 +Bs(t, N) K (125” - %gi]R(?’)) ‘
\As = Msf(t)as(N), (a>0)
Background dynamics : £2(0) = §,3 (A2 + 3A3H + 6ma AL H? + 6n5A5H3) .
—& = (NAy)' +3NALH + 64 N2(N~144) H? + 615N3(N245) H3 =0,
1d
P o= A2 — 67]4A4H2 — 12775A5H3 — ﬁa (A3 + 4774A4H + 6775A5H2> = 0.
(’ = d/dﬁ)

® Genesis phase (t<t0): f(t) ~ fot (fo = const < 0)

N ~ Np (= const) with ax(Ng) + Noab(Ng) = 0.

B P No .—(2a+1) _ -
H = _—
- < T2(2a + DmadZifol (—t)2a+1

a = 1- P Nof_zcE Py 3 fo
4a(2a + 1)174M2 fO p = M3zax(No) + (2a + 1)M3a3(NO)FO

.
(The background dynamics for a = 1 coincides with that of the original Genesis model.)
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Concrete example 11

® Inflationary phase (tend>t >t0) : f(t) ~ f1 (= const)

- {N ~ Ninf (= const),

H ~ His (= const).

& = (NmfA2) + 3A‘TmfA?,I'[lm‘ + 6774N|nf(N|nf A4) Hmf
Wlth +6775N|nf(N| A5) Hlnf = O
P = A2 - 6?’}4A4Hmf - 127’]5A5Hmf = 0.

N.B. A weak time dependence of f(t) yields slight deviation from exact DS.

® Graceful exit (t >tend) : f(t) ~ 1/t | ypm > 4, gravitationaq

. reheating can work.
N ~ Ne(= const), g

- { H2 ~ 1/t2 ~ f2(at1) o 1 /g™ (m := 3Neah/(Neas)' > O) :

—£ = (NeAs) + 3naMZH? 4+ o(f~32+2)) = o,

with
P = Ap+3naMBH?+ 2"4MGdH +0(f~ o4y =0,

e

Perturbations
® Tensor perturbations :
(2) _ 91 ] { Gr = —2A44-6(3)\3-2)AsH,
Ly’ = h; oh; - 1dB
T 8 N2 3’ ( i) Fr = 2Ba+= dff’_

. a
(H '—m)

® Curvature perturbations : (spatial higher derivative appears !!)

(2) _ ~ 3 CQ 92 o4 %Sk,ll-
L = Na® [ +C(]:S 5 ’Hsa—4 ¢ - w? qua,

s Zg2 ( = — NAL + N2A"+ N2A’H
Og = — + 347, 3 2A 2NA’ N24AY) H?
Y e +3n4 (244 - + N24j)
oAl AT2 Al 3
1 d /a®© +35 (6A5—4NA5+N AS)H .
FolNi==— M - o= ¥, (As - NAL) H
N Nadt \©2 4 2C i 9 2~ (e~ WA
2 =35 (2A5 - WA’B) H?,
ey N gBC Gy = —2maAy — 6nsAsH,
S = 2 . Gy = 2(B4+NB;)—HNB’5,
\. ©<+2C \ C = (1-21)44—(6+9%2— 15M3)4sH.

(na := (BA1 —1)/2, 15 := (9A2 — 93 + 2)/2)
NB. @C=0forA1=22=23=1.

@ Even if Fs < 0 (with Gs > 0), the curvature perturbations
with large k are stabilized for Hs > 0.
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Numerical calculations

From Genesis to inflation :

) = % {t _In[2cosh(st)]

S

| fot for t< tg
f(t)—{ £ for t>to

}+fl’

fo=-10"Y, f1 =10, s=2x103>tgt 9

-3000 2000 -1000 1000 2000 3000

During short period,

1— Fs becomes negative.

| But, the perturbations
for large k are stabilized
thanks to the k4 terms.

m): The perturbations for

{ small k grow during
{ short period, but growth
{ is mild and finite.

HslGs
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: ‘ The situation is similar

to the transition from
FIG. 2: The background evolution of the Hubble parameter FIc: 3 The sound speed squared Fs/Gs (a) and the coeffi- . .
H (a) and the lapse function N (b) around the genesis-de giont of k' (divided by Gs) (b} arcund the genesis-de Sitter lnﬂatlon to RD.

Sitter transition. transition,

Conclusions and discussions

® We constructed a concrete example from Galilean Genesis
to inflationary phase followed by graceful exit, based on the
recent development beyond the Horndeski theory.

® The sound velocities squared (or Fs) during transitions
from Genesis to inflation and from inflation to RD
become negative for a short period.

® But thanks to a non-trivial dispersion relation coming from
the fourth order derivative term in the quadratic action,
modes with higher k are completely stable and the growth of
perturbations with smaller Kk is finite and controllable.

® Our model can describe a Genesis scenario with graceful exit
(even without inflationary phase), in which no (first order)
primordial tensor perturbations are produced. The
detection or non-detection of primordial tensor perturbations
may discriminate Genesis scenarios with or without inflation.
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® Unfortunately, modes which exit horizon during genesis
phase are still superhorizon if inflation lasts long enough.

® | hope young people to consider a theory beyond inflation
(an epoch before inflation) and to invent a novel method to
probe such currently superhorion perturbations.
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