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Gravitational radiation reaction to the Lagrange’s solution of
the three-body problem I:Reaction force

Kouta Iseki

Hirosaki University, Japan
with N.Harada, K.Yamada, H.Asada(Hirosaki)

JGRG24 in IPMU Nov. 10-14, 2014
Abstract: This poster gives an explicit expression for the reaction force of the Gravitational waves in the Lagrange’s solution.

1 Introduction

Figure 1: Lagrange’s solution

・Gravitational waves from the Lagrange’s solution have been studied in [1,2,3],
but the radiation reaction on the solution is not fully discussed.
→ we examine the effect of the GW emission on the Lagrange’s solution by adding
the 2.5 post-Newtonian terms into EoM.
・As a Part I, As a result, this poster presents an explicit expression for the reaction
force(Poster by Harada as a Part II will discuss an orbital evolution).
・In the following, we take the unit of G=c=1.

2 Radiation reaction by Gravitational waves

Radiation reaction potential in the Gravitational waves emission is expressed as [4]

Φ =
1
5

d5I−ij

dt5
xixj (1)

The reaction force around the unit mass in the Gravitational waves emission is
expressed as

ai = −Φ,i = −2
5

d5I−ij

dt5
xj (2)

Here,

I−ij = Iij − 1
3
δijI

l
l (3)

is the reduced quadrupole moment, and

Iij =
N∑

A=1

mAxAixAj =
∫

ρxixjd
3x (4)

is quantity called the quadrupole moment. In other words, a (2) is obtained if a
(4) can calculate.

3 Two-body system

At first, we consider a two-body system in circular motion.

Figure 2: Two-body system in circular motion with angular velocity ω in xy plane.

We take the origin in the center of mass. mI is mass of the heavenly bodies. rI is
distance from the centers of gravity. φI is the initial phase. Where, θI ≡ ωt + φI

(x1, y1) = (r1 cos θ1, r1 sin θ1) (5)
(x2, y2) = (r2 cos θ2, r2 sin θ2) (6)

Substituting these into Eq.(4), Eq.(2) is rewritten as(
axI

ayI

)
= −32

5
ω5

(
0 BI

−BI 0

)(
rI cos θI

rI sin θI

)
(7)

Where, I=1,2

B1 = −(m1r
2
1 + m2r

2
2), B2 = −B1 (8)

Eq.(7) implies that reaction force is always along to the tangential direction. Re-
action force of each body is opposite to each other with the same magnitude.These
lead to the inspiral phase of the binary.

4 Equilateral triangular configuration

Next, we consider the Lagrange’s solution.

Figure 3: The Lagrange’s solution with angular velocity ω in xy plane.

We take the origin in the center of gravity. mI is mass of the heavenly bodies. rI

is distance from the centers of gravity. φI is the initial phase. Where, θI ≡ ωt+φI

(x1, y1) = (r1 cos θ1, r1 sin θ1) (9)
(x2, y2) = (r2 cos θ2, r2 sin θ2) (10)
(x3, y3) = (r3 cos θ3, r3 sin θ3) (11)

(2) can write in the following form that we substitute these for (4).(
axI

ayI

)
= −32

5
ω5

(
AI BI

−BI AI

)(
rI cos θI

rI sin θI

)
(12)

Note: Diagonal components!
Where I=1,2,3

AI = −
3∑

J=1

mJr2
J sin 2θIJ , BI = −

3∑
J=1

mJr2
J cos 2θIJ (13)

θIJ ≡ θJ − θI = φJ − φI (14)

Eq.(12) implies that reaction force is not always along to the tangential direction.
Reaction force of each body is not opposite to each other with the same magnitude.
These may not lead to the inspiral phase of the binary.
→In the poster PART II, we discuss the orbital evolution.

5 Conclusion

・We studied the reaction force by gravitational waves.
・We obtained the expression of the reaction force to the Lagrange’s solution.
・In the poster PARTII, we discuss the orbital evolution.

6 References

[1]H.Asada,PRD 80, 064021 (2009)
[2]Y.Torigoe, K.Hattori, and H.Asada, PRD 102, 251101 (2009)
[3]N.Seto and T.Muto, PRD 81, 103004 (2010)
[4]C.W.Misner,K.S.Thorne and J.A.Wheeler,「Gravitation」(Free-man, New York,
1973)
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�
• Gravitational waves from the Lagrange’s 

solution have been studied in [1,2,3],           

but the radiation reaction on the solution 

is not fully discussed.�

�
�

Gravitational radiation reaction to the �
Lagrange’s solution of the three-body problem �
II : Orbital evolution

1. Introduction

4.Condition to mass ratio II

2. Equations of Motion 3. Condition to mass ratio I

5.Preliminary 6.Summary

References

Hirosaki University, Japan with K. Iseki, K. Yamada, and H. Asada.

NAOYA HARADA

JGRG24 in IPMU November 10 -14, 2014

As a solution of equation of motion we can have

Condition (1) is

AI = 0

mI = mJ mK = 0and

mJ = mK = 0

[1] H. Asada, PRD 80, 064021 (2009)�
[2] Y. Torigoe, K. Hattori, and H. Asada, PRD 102, 251101 (2009)�
[3] N.seto and T.Muto, PRD 81, 103004 (2010)�
[4] Bernard Schutz,「A First Course in General Relativity, Second Edition」(Cambridge University Press, 2009)

Newtonian term GW radiation �
  reaction

(a)

(b)

(c)

This is satisfied only in the following three cases:

• In equilateral triangle, all the mass 

are the same.�

• Is assumption appropriate, whether 

or not?�

• As future work, we are going to 

consider post-Newtonian triangle.

We discuss orbital evolution of Lagrange’s solution by taking account of gravitational radiation.�
This poster gives the expression of the orbital evolution, and also we expressed the rate of change of the orbital period.

Abstract :

We assume

rI = rINeCεt

*N:Newtonian value

AI = −
3∑

j=1

mJr2
J sin 2θIJ BI = −

3∑
j=1

mJr2
J cos 2θIJ

Where,

 We examine the effect of GW emission on �
the Lagrange’s solution by adding �

the 2.5 post-Newtonian terms into EoM.

B1 = B2 = B3

a = aeCεt

Thus, condition (2)

This is satisfied in the following three cases:

m1 = m2 = m3

rI = rINe
64
5 ωN BIεt

ω = ωNe−
96
5 ωN BIεt

m1 = m2 = m3

From Conditions (1) & (2),�
mass ratio is only

m1 = m2 = m3

 For tangential part

For radial part

In this case, gravitational waves �
are not radiated [4].

Lagrange’s solution with angular velocity    in xy plane.ω

y

x
a

a

a

ω = ωNeDεt

(1)

(2)

r̈I − rIω
2 = −GM

a3
rI − 32

5
G

c5
rIω

5AI

2ṙIω + rI ω̇ =
32
5

G

c5
rIω

5BI
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1

Probability distribution function for inclinations 
of merging compact binaries detected by 

gravitational wave interferometers

2014.11   JGRG24

Naoki Seto (Kyoto)  
arXiv:1406.4238 (event rate)
arXiv:1410.5136 (PDF of inclinations)

Coherent analysis 
with detector network (HLVK+…)

• detection rate
– basic measure
– observational strategy 

• duty cycle
• importance of LIGO-India

• PDF of inclinations
– multi-messenger astronomy

• SGRB?

detection rate: binary inspiral
• detection rate

• effective volume

(Merger rate [Mpc-3yr-1]) x (effective volume)

relative event rate

orientation

solid estimation Monte Carlo etc

direction

geometry

I=cos[i]

important 4D

re-analysis
detector sensitivity (spin 2)

GW amplitude (excellent for NS-NS)

Cutler & Flanagan 1994

offset (irrelevant for our analysis below)

Cutler & Flanagan 1994

total sensitivity

anisotropy to 
2 orthogonal modes

Cauchy-Schwarz inequality

(a1,b1), (a2,b2),(a3,b3)…  � (a1,a2,a3,…), (b1,b2,b3,…)

one interferometer or aligned
randomly placed
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2

relative event rate

effective volume for a direction n

relative volume for 

orientation integral

We can complete 2D integrals, but

profile of the function 

monotonic function

3/2�1 constant
dg/dε=0@ε=0

power index

1

1

3/2

Taylor expansion (error less than 10-4)

why?

approximation with         =const

• guaranteed accuracy with error <1.0126%
– integral of positive definite functions
– identical to Schutz 2011 (taking ψ average for f)
• validity: not clarified so far (in spite of quantitative arguments)

• we can effectively neglect orientation dependence 
of binaries
– easy to evaluate
– only consider face-on binaries

      similarly for PDF of inclination

relative volume for 

integrate dn dψ

1st dψ integral

2nd dn and normalize 

For a network with ε=0

N0=0.82155

PDF of inclination becomes very simple (identical to Schutz 2011) 

ε=1 (single interferometer)

ε=0
relative difference less than 1%

general network: basically bounded by ε=0 and 1 
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Hilbert-Huang Transform in Search for Gravitational waves �
Hirotaka Takahashi  (Nagaoka University of Technology, Japan)�

Collaborate with �
Satoshi Ueki, Yukitsugu Sasaki, Yoshihisa Kon (Nagaoka Univ. of Technology), 

Ken-ichi Oohara, Masato Kaneyama, Takashi Wakamatsu (Niigata Univ. ), �
Jordan B. Camp (NASA GSFC)�

Hilbert-Huang Transform (HHT)�
•  The HHT consists of two components [1]; �

�  Empirical Mode Decomposition (EMD)�
�  Hilbert Spectral Analysis (HSA)�

Hilbert Spectral Analysis (HSA)�
•  The Hilbert spectral analysis can be applied to investigate�
   characteristics in non-stationary time series data.�

,  where     indicates the Cauchy Principal value. �P

: Instantaneous Amplitude (IA)�

: phase�

The signal        must satisfy the following conditions :�
�  (# of extrema) – (# of zero crossing) = 0 or ±1.�
�  The mean value of the envelope defined using the     �
    local maxima and the envelope defined using the local �
    minima is zero.�

Empirical Mode Decomposition (EMD) �
EMD is a series of a high-pass filter�

•  If    is the real part of a analytic complex function �
on the real axis         and                    for any positive value   , �

  then the imaginary part  is given by Hilbert transform (HT) :�
z = t lim

|z|→∞
|zkF (z)| < ∞ k

F (z)

Simulation �
•  Signal1 : �s(t) = asg exp

[−(t/τ)2
]
sin φ(t)

Frequency depends on time :��f(t) =
1
2π

dφ

dt
=

[
301.172 + 48

( t

0.01sec

)]
Hz

Test1 : signal1 + white Gaussian noise (SNR=20)�
 Test2 : sginal2 + Adv. LIGO noise (SNR=15)�

Summary�
•  We investigated the possibility of the application of a Hilbert-Huang transform (HHT) to  �
     the search for gravitational waves. �
•  We compared the Time-Frequency map obtained by HHT with the Time-Frequency map �
     obtained by CWT.�
•  We also investigated the reconstruction of waveform with the HHT.�
�
•  More details of the results of systematic simulations will be discussed elsewhere. �

Reference :�
[1] N. E. Huang and Z. Wu, Rev. Geophys. 46, RG2006 (2008).�
[2] H.Takahashi et. al., Advances in Adaptive Data Analysis, Vol.5 No.2, 1350010 (2013).�
[3] H. Dimmelmeier et. al., Phys. Rev. D, 78, 064056, (2008).�

: Instantaneous Frequency (IF)�

For further noise reduction, we apply ensemble EMD (EEMD) [1]. ��

Results �

Targeted signal�

Intrinsic Mode Function (IMF)     �
EMD�

HSA�
Instantaneous Amplitude (IA) �
Instantaneous Frequency (IF)�

Time - Frequency Map�

Targeted signal�

IMF1�

IMF1-IA� IMF1-IF�

IMF2�

IMF2-IA� IMF2-IF�

IMFn�
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� 
 ���h ( ) k 1�

���

k = kmax
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Outline of EMD shifting algorithm : �

We use S type stoppage criterion �
proposed in [1]. We set S=4 [2].�

h(t) h(t)

h(t)

v(t) =
1
π

P

∫ ∞

−∞

h(τ)
t − τ

dτ

F (z) = h(t) + iv(t) = aHT(t)eiθ(t) aHT(t) =
√

h(t)2 + v(t)2

θ(t) = tan−1

{
v(t)
h(t)

}
fHT(t) =

1
2π

dθ(t)
dt

h(t)

Wavelet Transform (WT)  �

�� �� �� �� � � � � �
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�

Morlt wavelet �
ψa,b(t) =

1√
a
ψ

( t − b

a

)
    : mother wavelet (wavelet function)�
    : scale factor�
    : sift factor  �

ψa,b(t)

b

a

•  Continuous WT (CWT) : Time-Frequency analysis�
•  Discrete WT (DWT): Image processing, Image data compression etc�

Continuous WT :�

•  Signal2 : Supernova waveform [3]�
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•  Circular velocity R(dφ/dt) of a test particle in the gravitational field of a central point mass M = 1010 M�= 
1013 m, embedded in a Universe in expansion following the S-FRW metric presented here, as a function of 
the distance R to the central potential.   

•  As one can see in the Figure above, the circular velocity is decreasing with the distance R to the center of 
the gravitational potential, here thought to be for a trajectory of a test particle (star) in a galactic plane. 
Sub-luminal velocities are reached close to the horizon (R->2M).  

(Thick discs) Dynamics embedded in a  
Schwarzschild-FRW Metric 
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Guideline to a S-FRW metric Context 

Conserved quantities 

Types of orbits 

• Circular velocity R(dφ/dt) of a test particle in the gravitational field of a central point mass M = 1010 M�=
1013 m, embedded in a Universe in expansion following the S-FRW metric presented here, as a function of 
the distance R to the central potential.   

• As one can see in the Figure above, the circular velocity is decreasing with the distance R to the center of 
the gravitational potential, here thought to be for a trajectory of a test particle (star) in a galactic plane. 
Sub-luminal velocities are reached close to the horizon (R->2M). 
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•  FRW metric, homogeneous and isotropic, with local curvature in spherical co-moving coordinates (t, r, θ, φ) 
with k = 0 (flat FRW metric)   

 
with a(t) the scale factor, A is an integration constant and dΩ2 is the metric on a unit 2-sphere. 
 
•  FRW metric can be expressed in spherical local coordinates (T, R, θ, φ) using the following transformations 

With, 
 

(1) 
 
It comes   
 
 
(2) 
 
 
 
With,  
 
Which, in the limit for weak fields (Aa << R), can be given by  
 
 
(3) 
 
 
•  The integration constant A is interpreted as A = 2M, with M the mass of the spherically symmetric object of 

radius rs. Also, the Equation (3) is close to a Schwarzschild-deSitter metric, with H = constant = Λ/3 (Λ, the 
cosmological constant), and a(t)= e(Ht) as a scale factor. In the local Universe, the scale factor is assumed to 
be a(t = t0) = 1 at the present cosmological time t0.   

ds2 = − dt2 + a2 (t)[(1− A / r)−1dr2 + r2dΩ2 ] ,

R = R(r, t) = ra(t) ,

dR = r �adt + adr

H = �a / a,

adr = dR−HRdt

ds2 = −
α
ξ

⎡

⎣
⎢

⎤

⎦
⎥dT

2 +α−1dR2 + R2dR ,
α =1−

Aa

R
−H 2R2

ξ =1−
Aa

R

ds2 = −αζdT 2 +α−1dR2 + R2dR , ζ =1+
Aa

R

•  A homogeneous and isotropic Universe is well defined by a general FRW metric in 
spherical co-moving coordinates (t, r, θ, φ) which takes the form  

With Σ(r) a function of the radial coordinate r to determine, and a(t) is the scale factor.  
 
•  The form of the metric implies the isotropy about a position, and the homogeneity is 

verified if the Ricci scalar of curvature of the three-dimensional metric, Ri
i (i = r, θ, φ), 

is independent of position at a fixed time. This last statement implies that the trace G 
of the three-dimensional Einstein tensor is a constant called κ.  

An integration gives 
 
 
 
 
Where A is a constant of integration which is commonly assumed to be zero to respect 
the local flatness of the metric at r = 0, grr(r=0)=1.  
 
•  Here, a local non-null curvature (A≠0) is approached by studying the shape of the 

metric at the exterior of an astrophysical object of mass M embedded in an 
expanding Universe. The resulting exterior dynamic is also described by computing 
the trajectory of a test particle. Following the latest cosmological data, the Universe 
in expansion is assumed to be flat, k = κ/3 = 0.  

ds2 = − dt2 + a2 (t)[e2Σ(r )dr2 + r2dΩ2 ] ,

G = Gijg
ij = −

1

r2
r(1− e−2Σ(r ) )⎡⎣ ⎤⎦

′ = κ

grr = e2Σ(r ) = 1+
1

3
κr2 −

A

r

⎛

⎝
⎜

⎞

⎠
⎟

−1

dT = dt +
HRdR

α

•  Trajectories of test particles with or without mass (a ‘particle’ and a ‘photon’ respectively) are investigated 
 
•  The present S-FRW metric with a(t) = a(t = t0) = 1 is time independent and spherically symmetric. Also, 

conserved momentum component are associated to trajectories.  

•  Time independence of the metric means for the energy 

(4) 
•   Independence of the metric of the angle φ about the axis implies that the angular momentum pφ is constant 

(5) 
•  Because of spherical symmetry, motion is confined to a single plane chosen to be the equatorial plane here 

(θ = constant = π/2 for the orbit). Then pθ α dθ/dλ = 0, with λ any parameter on the trajectory. The non-
vanishing components of momentum are 

(6) 

•  The scalar product                  allows to give the following equations for orbits  

(7) 

particle : �E = −p0 /m , photon :E = −p0

particle : �L = pϕ /m , photon : L = pϕ

particle : p0 = g00p0 =m αζ( )−1 �E ,

pr =m dR / dτ ,

pϕ = gϕϕ pϕ =m �L / R2

photon : p0 = αζ( )−1
E ,

pr = dR / dλ ,

pϕ = dϕ / dλ = L / R2

�
p.
�
p = −m2

particle : dR / dτ( )2
= �E 2 − �V 2 (R) ,

photon : dR / dλ( )2
= E 2 −V 2 (R) ,

�V 2 (R) = (αζ )(1+ �L2 / R2 )

V 2 (R) = (αζ )(L2 / R2 )
(Effective 
potentials) 

•  From the derivative of (7), it follows 

(8) 

•  It follows for the angular momentum of a particle 

(9) 

•  Considering the case of a stable circular orbit of a test particle, it comes 

•  In order to reach the angular velocity dφ/dt, we have 

(10) 

Giving 
 
 
(11) 
 
This drives to a circular velocity R(dφ/dt). As one can see from (11), it exists an 
intrinsically bound to the angular velocity following this S-FRW metric, in sense that 
the radius R is restricted to the limit R < (2M/H)1/2 ~ 3.6x1020 m ~11.6 kpc, if one 
consider a central galactic mass M = 1010 M�= 1013 m, and the hubble constant H = 
H0 ~7.7x10-27 m.  

particle : 0 =
d

dr
(αζ )(1+ �L2 / R2 )⎡⎣ ⎤⎦

photon : 0 =
d

dr
(αζ )(L2 / R2 )⎡⎣ ⎤⎦

Which lead to non-trivial 
expressions for the trajectories 
radius 

�L2 =
−R2 (8M 2 − 2MH 2R3 − 2H 2R4 )

16M 2 + 2MH 2R3 − 2R2

�E 2 = �V 2

dϕ / dτ =Uϕ = pϕ /m = gϕϕ pϕ /m = gϕϕ �L = �L / R2

dt / dτ =U 0 = p0 /m = g00p0 /m = g00 (− �E) = �E / (αζ )

dϕ
dt

=
dϕ
dτ

dτ
dt

=
1

2R2
8M 2 − 2MH 2R3 − 2H 2R4⎡⎣ ⎤⎦

1/2

(Hubble’s parameter) 

R (pc)

-210 -110 1 10 210 310

)
-1

/d
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km
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�

 R
(d

1

10

210

310

410

510

•  Gravitational deflection of light following this S-FRW metric in the weak field 
approximation (R<<2M) will be stated.  

•  Following the image method (“displace, cut, fill and reflect”) from Gonzalez and Letelier 
(2003), the dynamic of a thick disc embedded in a S-FRW metric will be stated.  

•  The final goal of the development being to compare the computed circular velocities to 
the data from the DiskMass Survey (Martinsson et al., 2013) to check the validity of the 
Keplerian model, and if an improvement in the understanding of the distribution of 
luminous and dark matter in spiral galaxies is available.  

I would like to thank Ekaterina Gracheva for our fruitful discussions, and her useful 
comments and questions. Also, I would like to thank the Institute for Basic Science (IBS) 
and the Center for Underground Physics (CUP), to allow me to join the JGRG 2014 at the 
Kavli-IPMU, Tokyo, Japan.   
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•  P����"�&�#����"�-��&�����#�
�����)��&�
��Q 

ds2 = e2ψdz2 + ρ2e−2ψdφ2 + e2(γ−ψ)(−dt2 + dρ2)

•  	����)��&�
���Q、P�"�'��"�
��R���"�&�
�!�� 

•  S����"�&�#����"�-��&���!����#�
�%���+)�&�
�� 

γ,ρ = ρ(ψ2
,ρ + ψ2

,t), γ,t = 2ρψ,tψ,ρ

Δψ ≡
(

∂2

∂t2
− 1

ρ

∂

∂ρ
− ∂2

∂ρ2

)
ψ = 0

z axis (ρ = 0)
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ds2 = e2ψ(dz + ωdφ)2 + ρ2e−2ψdφ2 + e2(γ−ψ)(−dt2 + dρ2)

Δψ =
e4ψ

2ρ2
(ω2

,t − ω2
,ρ) Δ̄ω = 4(ω,ρψ,ρ − ω,tψ,t)
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��L 

γ,ρ = ρ(ψ2
,ρ + ψ2

,t) +
e4ψ

4ρ
(ω2

,t + ω2
,ρ), γ,t = 2ρψ,tψ,ρ +

e4ψ

4ρ
ω,tω,ρ
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ds2 = e2ψ(dz + ωdφ)2 + ρ2e−2ψdφ2 + e2(γ−ψ)(−dt2 + dz2)
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A = (A2
+ +A2

×)
1/2

B = (B2
+ +B2

×)
1/2

�
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�%��� 
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•  9
!�#���&�
����$!��L� 

tan 2θA =
A×
A+

tan 2θB =
B×
B+

�
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B× =
2e2ψω,u

ρ

A× =
2e2ψω,v

ρ

B+ = 2ψ,u

A+ = 2ψ,v

z axis (ρ = 0)

��$��
)&$
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�%�� 

v := t+ ρu := t− ρuu

R 

& 

v := t− ρ v :ρ: tuu
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γ,ρ =
ρ

8
(A2 +B2) γ,t =

ρ

8
(A2 −B2)

•  P����"�&�#����"�-�� 

•  Q���"�T��#��"�&�#����"�-�� 

ds2 = e2ψ(dz + ωdφ)2 + ρ2e−2ψdφ2 + e2(γ−ψ)(−dt2 + dρ2)

A+,u =
A+ −B+

2ρ
+A×B×

A×,u =
A× +B×

2ρ
−A+B×+++++AAAAA+++++++++++++AAAAAAAAAAA++++++ ×B×

AAAAA−AAAAAAAAAAA+AA B×

�
�.!����#�&�#�� � �

B×,v = −A× +B×
2ρ

−A×B+B+,v =
A+ −B+

2ρ
+A×B×
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(A2
+ +A2

× +B2
+ +B2

×)
1
2

(A2
+ +A2

× +B2
+ +B2

×)
1
2

A+ +B+

A+ +B+

A× +B×

A× +B×

ρ

ρ

ρ

ρ

ρ

ρ

t t t

t t t

?��"�J�����
�'�#���&�#����7�W��-��
 

979



�(,����RUI� 

�%UI 

�)UI ))))))))))))))))))))))))UUUUUUUUUUUUUUUIIIIIIIIIIIIIIIIIIIIIII�)))))))))))))))))

�%UI%

(ar, ai.q) = (10, 0, 1)

�)U)55 

�)U)5. 

�)U).5 

�)U).. 

(��
)&$
��$�5��
"��
�%���
�%�#&��&
�&���8��
"��
�%���
�����&�
��&�#��&��
�&�������$
��$�8��
"��
�%��L�� 

sin 2θ

v

sin 2θA

sin 2θB sin 2θ

sin 2θ

sin 2θ

v

v

v

sin 2θA

sin 2θB

sin 2θA

sin 2θB

sin 2θB

sin 2θA

u+± =
ar±

√
a2
r−16q2−8aiq

8

u−± =
−ar±

√
a2
r−16q2+8aiq

8

980



9��&��)!!���J��&���)UX� 

�<)&)#���)!!���J��&���%U � 

�(,����RUI� 

�%UI 

�)UI 

?������!��"#���!�
�%��'����&���#���#�Y��&�"�
���&����,��7�
&��������&��#������&���J��&���")��&
�&����
�.!����#��=��&�Z���� 

%UX %UX 

)UX 
)UX 

%UX %UX 

)UX )UX 

a = ar + aii = keiθ

(k, θ) =
(
1
3 ,

17π
24

)

(k, θ) =
(
1
3 ,

5π
24

)
(k, θ) =

(
1000, 5π

24

)

(k, θ) =
(
1000, 17π

24

)

981



�  >��&����

#�7��''!���$�&���9
��#�����[��'#
��")#���
#�&�����%�#���
���&&�#��$���&�
"�&
�����!��"#���!!�������&#����'���&���7�
����%��

-&����"�&���$#�%�&�&�
��!�&

.�
!�&
���������,��&��
!)&�
��&
�%��))��
*���&�����+)�&�
���
�&����!��"#���!������&#����

�  M)#��
!)&�
��"���#�-����
�.!����#��
!�&
�.!������!��"#���!�
�%��L����
����"��&�
�%�����
���$��#
����J��&���
!!�'������"�&�����,'��"��&
�
��J��&����

�  	����
!)&�
��"
����
&���%������!����#�
�%����)���&��&�&���*��
�%���
�  ?����%���&)"��"��
����
�.!����#��=��&�L�

�  �#�%�&�&�
��!�<�#�"����=��&L�(��
)&$
��$�
�%��
�&����')#��5��
"������
'�#&��!!��
#��
�'!�&�!���
�%�#&�&
���8��
"��
�%��")��&
������$
��$�
�%��

�&����8��
"�����

�  	��������&�9���
���
�L�?�%��'����&������'#
'�$�&���&��!

�#��'��"�
&����!�$�&�%�!
��&����

982



+
+
+

×××

B+

B×

A×

<�#�"����=��& 

983



�  ��.�
!�&
�����
!)&�
��
�&���
�'!�,�'
!���
�  �F�%�. �%�&������!����������"�
�  ��#�%�&�&�
��!�'!����
�%������
!!�"��$�$#�%�&�&�
��!�

�%���

�   
��
!
$���!�$#�%�&�&�
��!�
�%���
�  6�$��#�"������
��
�  E�!)��.E!����&��
#���
� ・・・�

984



 

 

 

 

 

 

“Relativistic evolution of hierarchical triple systems” 

Mao Iwasa (Kyoto) 

[JGRG24(2014)P07] 

 

(The presenter declined to upload the poster.)  

985



 

 

 

 

 

 

“Negative time delay of light by a gravitational concave lens” 

Koji Izumi (Hirosaki) 

[JGRG24(2014)P08] 

 

  

986



Negative time delay of light by a gravitational lens

  We re-examine the time delay of light in a gravitational concave lens as well 
as a gravitational convex one. The frequency shift due to the time delay is also 
investigated. We show that the sign of the time delay in the lens models is the 
same as that of the deflection angle of light. The size of the time delay 
decreases with increase in the parameter n. We also discuss possible parameter 
ranges that are relevant to pulsar timing measurements in our Galaxy.

FIG.1. Frequency shift due to the gravitational time delay.

Hirosaki University, Koki Nakajima, Koji Izumi, Hideki Asada

Ⅰ.Abstract

Conclusion
  We examined the arrival time delay of light and the frequency shift in the 
lens model with an inverse power law. The time delay by a gravitational 
convex lens (i.e., positive deflection angle of light) would be positive, even if 
the lens model had negative convergence like Ellis wormholes. On the other 
hand, time delay by a gravitational concave lens might become negative, even 
if the convergence were positive.

  We find that negative time delay might appear not only in the strong 
gravitational field but also in the weak field.

Reference
Koki Nakajima, Koji Izumi, Hideki Asadam Phys. Rev. D 90, 084026 (2014)

Ⅱ.Modified spacetime model

 B.Frequency shift
  The Frequency shift is y due to the time delay is defined as

y≡ νðtÞ − ν0
ν0

¼ −
dðδtÞ
dt

;

  For n=2p, the frequency shift is obtained as

y2p ¼ π

c
ð2p − 1Þ!!
ð2p − 2Þ!!

ε

r2pþ1
0

v2t;

  and n=2p+1, it becomes

y2pþ1 ¼
2

c
ð2pÞ!!

ð2p − 1Þ!!
ε

r2pþ2
0

v2t:

Ⅲ.Time delay and frequency shift
 A.Time delay of a light signal

  and n=2p+1, it becomes

  where p is a positive integer.

δt2p+1 = 2
(2p− 2)!!

(2p− 1)!!

2pε1 + ε̃

r2p0
,

δt2p = π
(2p− 3)!!

(2p− 2)!!

(2p− 1)ε1 + ε̃

r2p−1
0

,

FIG.3. Time delay curves. The solid for dot-dashed, dashed, and dotted curves correspond to n = 1, 2, 3,  and 4, 
respectively. The horizontal axis denotes the time t in days and the vertical axis means the time delay δt in seconds. 
Here, we assume rmin is 40 AU and v = 200 km=s. The lens is assumed to be a ten solar mass black hole for n = 1(ε/

rmin ∼ 10−8), and the parameters for the other n are chosen such that the peak height of the time delay curve can 
remain the same as each other. left:ε < 0, right:ε < 0.

δt ¼ 1

rn−10

Z
ΨR

ΨS

�
ε1ð1 − cosnΨÞ

sin2Ψ
þ ~εcosn−2Ψ

�
dΨ;

where ΨR and ΨS correspond to the direction from the lens to the receiver 
and that to the source of light, respectively.

  For n=2p, the time delay is obtained as

FIG.2. Schematic figure for a configuration of the source (emitter) of a signal of light S, the receiver of the signal R, 
and the lens L.

  Subtracting the time in the flat spacetime from it provides the time delay at 
the linear order as 

  We consider the light propagation through a four-dimensional spacetime, 
though the whole spacetime may be higher dimensional. The four-dimensional 
space- time metric is

ds2 ¼ −
�
1 −

ε1
rn

�
c2dt2 þ

�
1þ ε2

rn

�
dr2

þ r2ðdΘ2 þ sin2Θdϕ2Þ þOðε21; ε22; ε1ε2Þ;
where r is the circumference radius and ε1 and ε2 are small bookkeeping 
parameters in iterative calculations.
  The deflection angle of light becomes at the linear order

α ¼ ε

bn

Z π
2

0

cosnΨdΨþOðε2Þ;
where the integral is positive definite, b denotes the impact parameter of the 
light ray, we denote ε ≡ nε1+ε2, and we define Ψ by r0/r = cos Ψ for the 
closest approach r0.

FIG.4. Frequency shift curves corresponding to Fig. 3. Here, the parameter values for n ≠ 1 are rearranged such that 
the peak heights of the time delay curve can remain the same as each other.

 C.Possible parameter ranges in pulsar timing method
  The number density of the lens objects ΩL would be constrained by no event 
detection as

ΩL < 103 pc−3
�
40AU
r0

�
2
�
1 kpc
DS

��
10 year
Tpt

�
:

  Although it seems very weak, this constraint might be interesting, because n 
> 1 models are massless at the spatial infinity and thus it is unlikely that these 
exoticobjects are constrained by other observations regarding stellar motions, 
galactic rotation, and so on.
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Microlensing by an ultra-compact dark matter halo

Chisaki Hagiwara

Hirosaki University, Japan
with H. Asada and K. Izumi (Hirosaki)

JGRG26 in Tokyo Nov. 9 - 11, 2014
Abstract: Inthis poster, we use a generalized NFW profile to study miclolensing by an ultra-compact dark matter halo in a collaboration with

Izumi and Asada.

1 Motivation

Dark matter is one of the compotent that consists of the Univers. It is important
to explain problems such as:

• The formation of large-scale structure

• The rotation cutve of galaxies.

The existence of dark matter was indirectly cinfirmed, but its nature has not been
known. In 2009, ultra-compact minihalos (UCMHs) as nonbaryonic massive com-
pact halo objects (MACHOs) are suggested by Ricotti and Gould [1]. Then, we
concentrate on small-scale dark matter halos . If these structures are detected,

• the origin of structure in the Universe could be understood

• inflation models could be constrained.

Microlensign by halos with intermediate-mass (10MJ � M � 106MJ) have been
studied (e.g. [4], [5]). Thus, we study microlensing caused an ultra-compact (earth
mass M � 10−6MJ) dark matter halo with the density described by generalized
NFW (gNFW) profile [2]

ρgNFW =
ρs

( r
rs

)γ( r
rs

+ 1)3−γ
rs : scale radius, ρs : density inside rs

2 System of gravitational lensing

Figure 1: Diagram showing the position of the source object, its image, and the
lens object.

Considering that a lens object is static spherical symmetry, surface density of
the lens object projected on the lens plane is[3]

Σ(θ) ≡ 2
∫ π/2

0

ρ(θ, φ)dφ. (1)

Bending angle is written as

α(θI) =
4GDOL

c2

∫ θI

0

Σ(θ)
θI − θ

|θI − θ|2 dθ, (2)

where G and c is the gravitational constant and light speed, respectively. The lens
equation is[3] is

θS = θI − DLS

DOS
α(θI). (3)

The total magnification is[3]

Atot = Σ
1

θS

θI

∂θS

∂θI

(4)

Considering the motion of the source object which performs linear motion of con-
stan speed to the lens plane with the origin at the lens object, the angular position
of the source object at the time t is

θS(t) =
√

t2 + θ2
S0, (5)

where θS0 is the nearest distance between the source object and the lens object
(the distance of closest approach).

3 Result

The surface density derived from gNFW profile is [6]

Σ(θ) = 2ρsrs

(
θ

rs

)1−γ ∫ π/2

0

{
(

cos φ +
θ

rs

)γ−2

− θ

rs

(
cos φ +

θ

rs

)γ−3

}dφ. (6)

The projected surface density (6) can be analytically calculated for each γ,
(a) γ = 0

Σ(θ < |rs|) =
ρsrs

(1 − θ2/r2
s)2

{(1 − θ2/r2
s) − 6θ2/r2

s√
1 − θ2/r2

s

tanh−1(

√
1 − θ/rs

1 + θ/rs
)} (7)

Σ(θ > |rs|) =
ρsrs

(1 − θ2/r2
s)2

{(1 + 2θ2/r2
s) − 6θ2/r2

s√
θ2/r2

s − 1
tan−1(

√
θ/rs − 1
θ/rs + 1

)} (8)

(b) γ = 1

Σ(θ < |rs|) =
2ρsrs

1 − θ2/r2
s

{ 2√
1 − θ2/r2

s

tanh−1(

√
1 − θ/rs

1 + θ/rs
) − 1} (9)

Σ(θ > |rs|) = 2
2ρsrs

θ2/r2
s − 1

{− 1√
θ2/r2

s − 1
tan−1(

√
θ/rs − 1
θ/rs + 1

) + 1} (10)

(c) γ = 2

Σ(θ < |rs|) = 2ρsrs{ π

2θ/rs
− 2√

1 − θ2/r2
s

tanh−1(

√
1 − θ/rs

1 + θ/rs
)} (11)

Σ(θ > |rs|) = 2ρsrs{ π

2θ/rs
− 2√

θ2/r2
s − 1

tan−1(

√
θ/rs − 1
θ/rs + 1

)}. (12)

The light curve is calculated numerically

 0

 2

 4

 6

 8

 10

 12

 14

-1 -0.5  0  0.5  1

y

x

Schwarzschild
gamma=0
gamma=1
gamma=2

Figure 2: Magnification light curve. In this case, DOL = rs/
√

3[Gpc], DOS =
50[Gpc],M � 10−4[MJ]. Horizontal axis is standardized by rs and crossing time
in units of rs is 0.7day.

4 Conclusion

We compared light curves with the cases of (a), (b), (c), and Schwarzschild lens.

• It is distinguishable because the shape of the light curves are different from
the Schwarzschild lens.

• It may be tested the density profile of ultra-compact dark halos by observation
in the near future.
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2 

Introduction 

• Superstring theory                                          
(see e.g. Smith et al. (2008)) 

 
• Loop quantum gravity                                    

(see e.g. Mercuri & Taveras (2009)) 

 
• Effective field theory for inflation                    

(see S. Weinberg (2008)) 

Chern-Simons (CS) modified gravity is 
inspired by various theories. 
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3 

CS modified gravity 
Action (see e.g. Jackiw & Pi (2003)):  

C-tensor   � � � � � �*1
2

C R R�� �� ! � "���
�  ! " �# $ # � �% &' * , , - , , - . /0

� �m
1

2
G C TT�� ��

#
�� ��

1
 - ' * -

*

4
g R R�� " �  !

� � � ! "

1 
#, , ' *

� �� �4 * 1( )
4 2 mx R RI d x g R g �� ! ��

!  �� � �

1 
# # #1 * 2 2% &' * * - -3 40 /5 L

Field equations:  
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Properties of CS gravity 

• For spherically symmetric spacetimes,  the CS 
corrections vanish. 
 

• The static and asymptotically flat black hole 
spacetime is unique to be Schwarzschild 
spacetime. (see Shiromizu & Tanabe (2013)) 
 

• The rotating black hole solution has not yet been 
explored thoroughly. It should have different 
form from the Kerr solution.  

4 
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Previous & Present works 

• N. Yunes & F. Pretorius, PRD 79, 084043 (2009)  
• K. Konno, T. Matsuyama & S. Tanda, Prog. Theor. Phys. 122, 

561 (2009)  
• K. Yagi, N. Yunes & T. Tanaka, PRD 86, 044037 (2012)  

Slowly rotating black hole solutions have been 
investigated by several authors. 

Rapidly rotating black holes have not yet been 
investigated. 

We investigate the CS scalar field around 
a rapidly rotating black hole. 

 K. Konno & R. Takahashi, PRD 90, 064011 (2014)  
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6 

Bootstrapping scheme 

� �(1) 1~ O#  

Assume GR solution  

Let us assume weak CS coupling  6and vacuum for 
ordinary matter            7  

(1) * (0) (0)

4
g R R�� " �  !

� � � ! "

1 
#, , ' * 1st order solution  

m 0T �� '

� �(0) 0~g O��  

� �(2) (1) (2)1
2

G g C T�� �� ��
�� # 

1
' * * 2nd order solution  � �(2) 2~g O��  

Higher order of   

997



7 

CS Scalar field solution 
We assumed the Kerr spacetime as the background 
and solved the field equation for the CS scalar 
field.  

� � � � � �(1)
2 1 2 1

0
,cos const cosn n

n
r r P# 8  8

9

- -
'

' - :;

� �
� �� �

� �� �
� �

� �

� � � � � � � � � �
3
2

2 22

1 2 22 2 2 2 2 2

2
22 2

2 22

2

1 2 1 2 13 1 1 2 2
2 1 11 1

1
1 2arctan 1 1 log 1

11

where : 1 , : , :

r r ra
r r

rr r r
r

r aa r a
M M

!1 ! !
! ! !! !

!
! < !

!!

!

* *

> ?- * * -% - -@ @
: ' * *A B3 * - *-0 - *@ @C D

&E F E F* -
4G H- * * * - * *G H
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The solution takes the form 

The higher order terms :2n+1 (n ≥ 1) were obtained numerically. 
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Results 

:m vs r/M when a/M = 0.8.  
The inner and outer horizons are 
given by r*=0.4 and r-=1.6, respectively. 

Color map on the 
meridian place when 
a/M = 0.8.  
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Summary 
We investigated the solution of the CS scalar 
field around a rapidly rotating black hole in CS 
modified gravity 

• We obtained the solution analytically and 
numerically with the boundary condition that the 
scalar field be regular and vanish at infinity. 
 

• We found the signature that the scalar field 
diverges at the inner horizon on the Kerr 
background. 
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Recursive structure  
in 

  the definitions of gauge-invariant variables 
 for any order perturbations 

Kouji Nakamura (NAOJ) 

Based on  :  
 
         K.N. PTP 110 (2003), 723.                                         (arXiv:gr-qc/0303039). 
         K.N. PTEP 2013 (2013), 043E02.                              (arXiv:1105.4007 [gr-qc]). 
         K.N. IJMPD 21 (2012), 1242004.                               (arXiv:1203.6448 [gr-qc]). 
         K.N. CQG 31 (2014), 064008.                                    (arXiv:1403.1004 [gr-qc]).6
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     The higher order perturbation theory in general relativity 
has very wide physical motivation. 

 
– Cosmological perturbation theory 

• Expansion law of inhomogeneous universe  
    (KCDM v.s. inhomogeneous cosmology) 
• Non-Gaussianity in CMB. 

 
– Black hole perturbations 

• Radiation reaction effects due to the gravitational wave emission. 
 

– Binary coalessence through the post-Minkowski expansion 
• Target of GW detectors in 2nd generation. 

 
– Perturbation of a star (Neutron star) 

• Rotation – pulsation coupling (Kojima 1997) 
 

    There are many physical situations to which higher order 
perturbation theory should be applied. 

2 

I. Introduction 
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However, general relativistic perturbation theory  
requires very delicate treatments of “gauges”. 

It is worthwhile to formulate the 
higher-order gauge-invariant perturbation  
theory from general point of view. 

• According to this motivation, from 2003, we have been formulating a 
general-relativistic higher-order perturbation theory in a gauge-invariant 
manner.  
– General formulation :  

• Framework of higher-order gauge-invariant perturbations : 
• K.N. PTP110 (2003), 723; ibid. 113 (2005), 413.  

• Construction of gauge-invariant variables for the linear-order metric perturbation : 
• K.N. CQG28 (2011), 122001; PTEP 2013 (2013), 043E03; IJMPD21 (2012), 

1242004. 
• The nth-order extension of the definitions of gauge-invariant variables : 

• K.N. CQG 31 (2014), 135013. ( but this is still incomplete. ) 
– Application to cosmological perturbation theory : 

• Einstein equations :  K.N. PRD74 (2006), 101301R; PTP117 (2007), 17. 
• Equations of motion for matter fields :  K.N. PRD80 (2009), 124021. 
• Consistency of the 2nd order Einstein equations :  K.N. PTP121 (2009), 1321. 
• Summary of current status of this formulation :  K.N. Adv. in Astron. 2010 (2010), 576273. 
• Comparison with a different formulation :  A.J. Christopherson, et al., CQG28 (2011), 225024. 
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The second kind gauge in GR.

    “Gauge degree of freedom” in  
general relativistic perturbations 
arises due to general covariance. 
 
    In any perturbation theories, we  
always treat two spacetimes : 

– Physical Spacetime (PS); 
– Background Spacetime (BGS). 

Physical spacetime (PS) 

Background spacetime (BGS) 

 
 

(Stewart and Walker, PRSL A341 (1974), 49.) 

     In perturbation theories, we always write equations like 
 
 
     Through this equation, we always identify the points  
on these two spacetimes and this identification is called  
“gauge choice” in perturbation theory. 

4 
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     The gauge choice is not unique  
by virtue of general covariance.  

    Gauge transformation :  
– The change of the point 

identification map. 

Physical spacetime (PS) 

Background spacetime (BGS) 

General covariance : 
– “There is no preferred coordinates 

in nature” (intuitively). 

• Different gauge choice : 
 

• Representation of physical variable :  
 

• Gauge transformation :  

, 

     The is the basic understanding of gauge transformation. 
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In this poster, .... 

     I point out the recursion structure in the definition  
of gauge-invariant variables for any order perturbations.  
 
     I also discuss the correspondence between the  
gauge issues in our framework and in an exact non- 
linear perturbation theory. 

6 
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II. Order-by-order gauge-transformation rules 

• The Taylor expansion of 
tensors is an approximated 
form of tensors at   (in   ) 
in terms of the variables at  
(in  ).  

• One parameter family of 
diffeomorphisms : 
–  
–  
 

• Taylor expansion of a function 

• Taylor expansion of a function         is regarded as that of 
the diffeomorphism       , and general arguments lead  

Taylor expansion of tensors on a manifold :  

1008



•  Representation of general diffeomorphism :  
 
 
 

  
 

 
 

     nth-order representation of Taylor expansion 
(Sonego and Bruni, CMP, 193 (1998), 209.) 

8 

• Problem 1 :  
General diffeomorphism should form a group.  
How to prove it from the above representation? 

 

 
     

: the exponential map generated by . 

Key point :  
 

where 

1009



•  Representation of general diffeomorphism :  
 
 
 

  
 

 
• Expansion of the variable : 

 
• Order by order gauge transformation rules : 

 
 

 
 

     To develop nth-order gauge-invariant perturbation theory,  
we have to construct gauge-invariant variables for each order  
perturbation through this gauge-transformation rule. 

     Gauge transformation rules for nth-order 
perturbations (Sonego and Bruni, CMP, 193 (1998), 209.) 

9 

where , : the exponential map generated by            .  
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•  Order-by-order gauge-invariance : 
– We say that the k-th order perturbation  Q(k) of the variable Q 

is gauge invariant iff                            for any gauge-choice 
        and    .  

• Direct observables in experiments and observations 
should be gauge-invariant!! 
– Any experiment or observation is  
    carried out on PS (not on BGS) through  
    the physical processes on PS and  
    should have nothing to do with BGS  
    nor gauge choices in perturbation theory 

•  In this sence, gauge- 
     transformation rules  

 
 
 
 

     imply that perturbations Q(k) include unphysical degree of 
freedom. ---> gauge degree of freedom. 

     Gauge-invariant variables 

 

Physical spacetime (PS) 

Background spacetime (BGS) 

10 
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III. Construction of gauge-invariant variables 

    Our general framework of the higher-order gauge invariant 
perturbation theory is based on a single assumption. 
linear order (decomposition conjecture) : 

metric expansion :  

,  metric perturbation :  metric on PS :  metric on BGS :  

   Suppose that the linear order perturbation        is decomposed as  
 
so that the variable         and       are the gauge invariant and the  
gauge variant parts of        , respectively. 
   These variables are transformed as  
 
under the gauge transformation                        .  

    p

                
        

                      

11 

   This conjecture is almost proved but is still a conjecture  
due to the “zero-mode problem” !! (Problem 2) 

K.N. CQG28 (2011), 122001; PTEP 2013 (2013), 043E02; IJMPD21 (2012), 1242004. 

,
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Example: Cosmological perturbations (1) 

metric perturbation 

decomposition of linear perturbation 

Background metric 

: metric on maximally symmetric 3-space 

: curvature constant associated with the metric  

Uniqueness of this decomposition 
<---  Existence of Green functions , , 

12
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   Gauge variant and invariant variables of linear order 
metric perturbation: 

gauge variant variables :  

gauge invariant variables :  

(J. Bardeen (1980))  

g g

     where                               .                               

(J. Bardeen (1980))

where 

Example: Cosmological perturbations (2) 
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Once we accept the decomposition conjecture, we can 
construct higher-order gauge-invariant variables. 

14 

� As a corollary of these decomposition formulae, any order-by-order 
perturbative equation is automatically given in gauge-invariant form. 

     (Gauge-variant parts are unphysical.) 
 

� The decomposition of the metric perturbation into gauge-invariant 
and gauge-variant parts is not unique. 

     (This corresponds to the fact that there are infinitely many gauge  
      fixing procedure. Christopherson, et al., arXiv:1101.3525 [astro-ph.CO]) 

 
� Gauge-variant parts of metric perturbations also play an important 

role in the systematic construction of gauge-invariant variables for 
any perturbations. 

     (In this sense, gauge-variant parts are also necessary.) 
  

<--- Conjecture 

Results 
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IV. nth-order extension of the definitions of  
      gauge-invariant variables  

     When the proof of the above statement is accomplished, we may apply the 
decomposition conjecture and we can decompose the variable           into its 
gauge-invariant and gauge-variant parts as 

y
        

ppp

Gauge transformation rule : 

  Inspecting this gauge-transformation rule, we define the variable           by             

   We have to prove the following statement :  
      There exists a vector field          such that the gauge-transformation rule 
for the variable           is given by 

g gggggggggggggggggg
         

gggggggggggggggggggggggggggggggg
         

b

     This implies that we have decomposed          as         

: gauge-invariant part,  : gauge-variant part.  
I have confirmed this to 4th-order perturbations. 
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We have derived explicit expressions for        to 4th order:      

•1st order : 

•2nd order : 

•3rd order : 

•4th order : 

These are evidences of the fact that I did check to the 4th order. 
16 

   We have to prove the following statement :  
      There exists a vector field          such that the gauge-transformation rule 
for the variable           is given by 

g ggggggggggggggg
         

gggggggggggggggggggggggggggggggg
         

b
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    Through the confirmation to the 4th order, I also find the  
following identities for gauge-transformation rules of gauge-variant  
variables in metric perturbations.  

•2nd order : 

•3rd order : 

•4th order : 

•1st order : 

17 
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Example: 3rd-order perturbation (1) : 

These terms 
vanish due to 
the 1st and 2nd 
order identities. 

Tough 
calculations 
yields … . 

18 Here, 
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Example: 3rd-order perturbation (2) : 
     Then, we may apply the decomposition conjecture which implies that the 
variable           into its gauge-invariant and gauge-variant parts as         

19 

     Through the last equation, the following 4th-order identity is derived: 

     This is the recursive structure in the definition of 
gauge-invariant variables for the metric perturbations. 
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V. Recursive structure in the definitions of gauge- 
invariant variables for nth-order perturbations 

  Furthermore, we obtain the n-1 identities which are expressed as 

   Through the construction of gauge-invariant variables for        (                    ) , 
we can define the vector fields        (                    ) , whose gauge-
transformations are given by 

gggggggggggggggg g
        

                            
                        ( ) , g

  To define the gauge-invariant variables for         , we consider the variable          

where 

1021
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  From the analyses to the 4th order, the following conjecture (algebraic conjecture) 
is reasonable: 

   Through the above identities, the gauge-transformation rule for the variable       
is given by 

      

   There exists a vector field        such that       

   To prove this conjecture, tough algebraic calculations are necessary, but we 
expect that there is no difficulty to prove this conjecture except for this tough 
calculations.  
   Actually, we have confirmed this conjecture to 4th order. 
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Furthermore, the above algebraic conjecture and the gauge-variant variables        , 
we obtain the following identity 

   The above algebraic conjecture is true, the gauge-transformation rule for the 
variable          is given by           

   Then, we may apply the decomposition conjecture to the variable          and we 
can decompose it as 

            

  This implies that the original metric perturbation         is decomposed as        

sssssssssssssss         

This identity is the i=n version of the previous set of identities and is used when 
we construct the gauge-invariant variables for more higher-order metric 
perturbations. 

1023



    We pointed out the recursive structure in the definition of  
gauge-invariant variables for higher-order general-relativistic  
perturbations. 
    We used the “decomposition conjecture” and the “algebraic 
conjecture” in our construction of gauge-invariant variables.  
    The “algebraic conjecture” is just algebraic one but tough  
algebraic calculations are necessary to show this. 
    On the other hand, “decomposition conjecture” is still a  
conjecture due to the “zero mode problem” [See K.N. PTEP 2013  
(2013), 043E02; IJMPD 21 (2012), 1242004.]. In other words,  
the zero mode problem is an essential problem in our scenario of  
the higher-order gauge-invariant perturbation theory.  

23 

VI. Summary and Discussion 

• Summary 

1024



    The full metric         , which is pulled back to the background  
spacetime, is given by  

      

(gauge-invariant) 

(background) 

(gauge-variant) 

    If the limit                       converges, this corresponds to the  
gauge-invariant variable in an exact non-linear perturbation theory  
and the gauge issue in an exact non-linear perturbation theory will  
be justified in this way.  

• Discussion 
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SSpherical Domain Wall Shell 
Collapse in a Dust Universe 

Chul-Moon Yoo  
Graduate School of Science, Nagoya University 

Introduction 

Domain wall shell dynamics in dust universe   

with Norihiro Tanahashi (DAMTP) 

1. Bubble nucleation during inflation 
         → lower density region + pure tension shell 

Possible scenario   

2.  The bubble enters the horizon after the inflation 
3. Shrinks due to the tension 
         → induced inhomogeneity? BH?  1 
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Shell in a Dust-dominated Universe 

Shell interior: FLRW universe 
-  Metric 

-  Friedmann equations 

-  Energy-momentum tensor 

Shell exterior: LTB model 
-  Metric 

-  Einstein equation 

-  Energy density 

where 

-  Solution(3 arbitrary functions: ) 

where 

where 

 

 

  

  

 

  

  

  

 

 
 

  with   

2 
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Shell 
-  Shell trajectory 

-  Tangent vector 

-  Normalization ( ) 

-  Shell energy momentum tensor(pure tension) 

Evolution Equations along the Shell Trajectory  

Dynamical variables 
-  Variables for shell trajectory(6 variables) 

-  Variables for LTB(3 variables) 

junction conditions + continuous four velocity of dust 
                                                          (Appendix B) 

ODEs (Appendix C) 

  
  

  
  

where  

  

  

 

 

3 
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Initial Conditions  

- Independent initial values 

- Others are fixed by these values(Appendix D) 

 : Initial shell radius  
 :shell tension  
 :Deviation of the Hubble between FLRW and EdS 

 

- Assumption: LTB region is initially infinitesimal  

Results  

Useful unit 

Settings 
- , , ,   

- Hubble parameter  at horizon crossing 
                                            (shell radius=1/Hubble) 

- -  

Summary of results 

- BH forms in the center in every case 
-  near the center 

- BH Mass increases with time due to dust accretion 

-  at the moment of the formation 

- No essential dependence on  

  

*Results do not change for initial conditions 

4 
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LLa
rg

er
 

 

Larger  

Spacetime figures 

BH mass 

 

- Mass at the moment of the formation 

5 
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Induced inhomogeneity 

  near the center 

- Time evolution ( ) 

6 
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Notation 

Appendix A: Junction Condition  

-  Physical quantities 

-  Brackets 

Israel’s junction conditions 

 
 

: surface normal unit vector 
: normal coordinate  

 

: induced metric  

  

: extrinsic curvature 

 

: energy momentum tensor 

 
 

 

-  1st  junction condition 

 

-  2nd junction condition 

 

7 
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-- Shell EoM 

Spherically symmetric case 

- Energy momentum conservation 

- Metric  

 

 

- Shell trajectory  

- Tangent vector  

- Energy momentum tensor  

- Equations  
 of 2nd junction conditions  

 of 2nd junction conditions  

Shell EoM  

Shell energy momentum conservation  

n cond t ons

8 
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-- Gauge condition on  
 

where 

- 1st junction condition 

differentiate w.r.t  

- 2nd junction condition  

- 2nd junction condition  

where 

- Shell equation of motion 

[dynamical-1] 

[constraint-1] 
[constraint-2] 

[constraint-3] 

[dynamical-2] 

[dynamical-3] 

Appendix B: Equations 

9 
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-- Definitions 

- From the 3 constraint equations  

- Continuous four velocity of dust  

[dynamical-5,6,7,8]

3 constraints, 8 dynamical eqs 

(LTB mass) (FLRW mass) (Shell energy) 

- Consistency 
It can be shown that 3 constraints are automatically  
kept satisfied if they are initially imposed  

[constraint-4] 

differentiate w.r.t  

[dynamical-9] 

In other words,  
 - no friction  
 - no interaction between the shell and the dust fluid 
 - individual realization of energy momentum conservation  

- From [dynamical-4] and [constraint-4],  

- Shell energy conservation [dynamical-4] 

10 
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-- Use  as the independent variable 

- How to calculate other quantities

where 

Appendix D: Boundary Conditions  

Outer boundary(LTB | EdS) 
- No singular surface, comoving boundary, 1st junction 

- Mass compensation 

- From the above two equations and Einstein eq. 

Appendix C: ODEs 

11 

1037



Initial hyper-surface 

- [constraint-1] 

- Independent initial values in this presentation 

- Continuous energy density on the shell 

- Continuous Hubble on the outer boundary 

- Deviations 

- How to determine other initial values 

- Assume that LTB region is infinitesimal  
1]

Gauge fix →  : results do not depend on   
Time shift→  
LTB eq.    →  

FLRW eq. →  

1st junc.   →  

[constraint-2,3]  →  

- We can also choose  as a independent              
                                          initial value instead of  

12 
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Power Spectrum

Uniform Approximation 

Third-
Order

Allan L. Alinea
Osaka University

Takahiro Kubota
Yukari Nakanishi

Wade Naylor

on 

Using

Power Spectrum

P (power spectrum), � (conformal time), 
   (constant), �i(Hubble �ow f�n), �i(sound 
�ow f�n), � (index f�n), � (integral of �g),

g � �2/�2 - k2cs2, k (wavenumber),
cs (speed of sound)

N* 

pp

Allan L. Alinea
Osaka University

Takahiro Kubota
Yukari Nakanishi

Wade Naylor

P (power spectrum), � (conformal time),�
   (constant), �i(Hubble �ow f�n), �i� (sound 
�ow f�n), � (index f� �n), � (integral of � �g),��

g � �2�� /2 �2 - k2 2kk csc 2, k (wavenumber),
csc  (speed of sound)s

N    *   �

What is this all about? Cosmic in�ation Uniform Approximation
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The primordial cosmo-

primordial cosmolo-
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logical perturbations are seeds

of structures that we nowadays,

observe as galaxies and clusters of gala-

xies. 

Mukhanov-Sasaki Equation

The equation of motion for the primordial 

cosmological perturbations is called the
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Here, the quantity � is 
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The cosmological pertur-
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Starting with the 

original di�erential 

equation, perform 

Liouville transformation.

To lowest order, � is ignored 

and what is left is an Airy

di�erential equation.

The solutions are Airy 

functions. The quantity � serves 

as a correction.
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Working Equation for the Power Spectrum

ctr
u

ctru

g = 0

Expand about the turning 

point where g = g* = 0.

Here, N is the number 

of e-folds and N = N - N*

~

The quantity g is likewise, 

expanded about the turning 

point before integration.

u
m

�
p

o

Unfortunately, there is an

imperfect cancellation of log

terms resulting in log divergences

in the third-order power spectrum.

Power spectrum is one of the most important 

physical quantities in in�ationary cosmology. 

It is a measure of the variance in the 

distribution of (in this case,) the primordial 

cosmological perturbation �. This work is 

about the calculation of the power spectrum 

P, of � using the method called uniform 

approximation (UA). We calculate P up to 

third order with respect to the Hubble and 

sound �ow functions evaluated at the 

turning point (see the discussion of uniform 

approximation). As demonstrated by  (Martin, 

Ringeval, and Vennin, 2013), in the process of 

calculation, one encounters terms involving 

ln(�/�*), where � is the conformal time and 

(*) means evaluation at the turning point.  

Luckily   enough,   these   terms   cancel when

� � 0 (the limiting process needed to calcu-

late P ) up to second-order with respect 

to the Hubble and sound �ow func-

tions. We demonstrate that such 

cancellation does not occur 

for the third-order part of

the power spectrum.

Some of the log 

terms survive

rendering the

resulting ex-

pression 

proble-

matic.

Our current understanding tells us that the universe started with a "Big Bang". Although 

successful in accounting many of the observed characteristics of the universe, the 

standard Big Bang cosmology su�ers from two outstanding problems namely, horizon 

problem and �atness problem. Cosmological in�ation is a rapid exponential expansion 

of the universe  (or parts of the universe). The period of in�ation is inserted right before 

the usual "slow" expansion of the universe as described by the Standard Big Bang 

cosmology. It solves the two mentioned problems. The merger of the Standard Big 

Bangcosmology and in�ation forms a powerful hybrid theory : Big Bang + In�ation.

Prior to in�ation, there were no large-scale structures (galaxies and clusters of galaxies). 

All that we had were quantum �uctuations. During in�ation, these �uctuations were 

stretched due to the rapid expansion until they "went out" of the Hubble sphere. After 

in�ation,the �uctuations "went back" to the Hubble sphere to form the structures that 

we nowadays observe                                                                             as galaxies andclusters of 

galaxies. 

The Mukhanov-Sasaki equation (see pie #2)  

is a second-order linear homogeneous 

di�erential equation involving the primordial 

cosmological perturbation � and the confor-

mal time  �. One may "solve" this equation by 

dividing the domain into three regions and 

matching the three resulting solutions at the 

boundaries of these regions. Uniform 

approximation (UA) is a method of solving a 

di�erential equation using a (single) global 

interpolating solution (see pie #1) instead of 

three for the case of the Mukhanov-Sasaki 

equation. In applying this method to this 

di�erential equation, one performs Liouville 

transformation and de�nes the newly 

introduced independent variable in such a 

way that to the lowest order approximation, 

the resulting   di�erential   equation  has  one  

1

2

3

pie #

pie #

pie #

turning point characteristic of the origi-

nal di�erential equation (Mukhanov-

Sasaki-equation). At the turning 

point, the nature of the solu-

tion of a given di�erential

changes; eg., from oscil-

latory to exponentially

decaying.

Calculating the Power Spectrum 

through Uniform Approximation

To lowest 

order in UA,

one arrives at 

the Airy di�e-

rential equation

after transforming

the Mukhanov-Sasaki

equation. The Airy func-

tion solutions are then used

in the expression for the po-

wer spectrum (see pie# 2) subject

to some conditions to �x some cons-

tants. The resulting working equation 

for P involves the speed of sound, index func-

tion, scale factor, slow-roll parameter, and the in-

tegral of 	g (see pie #3). Starting from this working 

equation, the mentioned quantities are expanded about the
turning point. The resulting equations after the expansion mainly 

involves the Hubble and sound �ow functions evaluated at the 

turning point. With these equations at hand, the quantity 	g in the 

working equation is integrated with respect to the conformal time. 

The exponential of this integral together with the other factors in the 

equation for P are then combined and the limit is taken as � � 0. 

What results is an expression for the power spectrum mainly 

involving the Hubble and sound �ow functions evaluated at the 

turning point. Mathematically, one has P = P(0) + P(1) + P(2) + P(3) 

+ ... , where the quantity n in P(n) means the order of the expression 

with respect to the mentioned functions.

Logarithmic Divergences

As demonstrated in  (Martin, Ringeval, and Vennin, 2013), in the 

process of calculating the power spectrum (P ), one encounters terms 

involving ln(�/�*), where � is the conformal time and (*) means 

evaluation at the turning point.  Luckily   enough,   these   terms 

cancel when � � 0 (the limiting process needed to calculate P ) up to 

second-order in the Hubble and sound �ow functions. We 

demonstrate that such cancellation does not occur for the third-order 

part of the power spectrum. This result poses a challenge for the 

calculation of P beyond the second order.

Credits

Poster template : based on http://

blog.felixbreuer.net/2010/10/24/

poster.html

S. Habib, etal, "The In�ationary 

Perturbation Spectrum," 

Phys.Rev.Lett. 89 (2002) 281301

J. Martin, C. Ringeval and V. 

Vennin, "K-in�ationary Power 

Spectra at Second Order," JCAP 

1306, 021 (2013)

F. W. J. Olver, "Asymptotics and 

Special Functions", AK Peters, 

(1997)
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Some insights into 
cosmological four point correlation function

Nobuhiko Misumi (Osaka U.)
Collaboration with Takahiro Kubota (Osaka U.)

1) Small speed of sound cs (propagation speed of perturbation)
2) Shape of this model is equilateral.

JGRG24@Kavli IPMU
2014/11/10-14

1.Introduction

General single field inflation with non minimal coupling

P (ϕ, X) = K(ϕ)X + L(ϕ)X2 + · · · X = −1
2
gμν∂μϕ∂νϕ,

S =
1
2

∫
d4x

√−g
[
f(ϕ)R + 2P (ϕ, X)

]

Single-field inflation looks good (in 2pt. function)

More informations are needed.

It’s generalization is

For single-field models, 3pt. function in the squeezed limit is given by

lim
q→0

〈ζ�qζ�k1
· · · ζ�kN

〉′
P (q)

= −
(

3(N − 1) +
N∑

a=1

�ka · �∇ka

)
P (k)

lim
q→0

〈ζ�qζ�k1
ζ�k2

〉′
P (q)

= −
(
3 + k

d

dk

)
P (k)

extraction of (2π)3δ(3)(�q + �k1 + �k2)

Creminelli, Norena and Simonovic 2012

Hinterbichler, Hui and Khoury 2012,2013

f local
NL = 2.7 ± 5.8(1σ) fequil.

NL = −45 ± 75(1σ)

arXiv:1303.5084

2.Models

=
k2

k1

=
k3

k1

3.Consistency relation with small cs

Graviton Exchange Scalar Exchange

k1

k2

k3

k4

Contact Interaction

vanishes is squeezed limit
(leading order)

4pt. func. is 1/cs4

Squeezed limit is proportional to 1/cs2

4pt. function with cs≠1 cannot have a squeezed limit.

4.Counter-collinear limit

Chen, Hu, Huang, Shiu and Wang 2009

In slow-roll inflation, there exists similar relation to consistency 
relation for k1～k2, k3～k4.

Seery, Sloth & Vernizzi 2009

1) non-canonical kinetic term with f=1
2) both canonical and non-canonical with f≠1

Taking the limit,

5.Double soft limit
Joyce, khoury & Simonovic 2014
Mirbabayi & Zaldarriaga 2014

In 4pt. function, dominant contribution is 
graviton exchange diagram.

We have to include graviton exchange diagram and
rederive above relation.

Consistency relation

Current Observation

S
(3)
ssgLeading term in

S
(3)
ssg = −

∫
d4x af̄

(H

θ̇
− 1 +

θ̈

θ̇2

)
γij∂iζ∂jζ

∼ O(ε, η)∼ r1/2 Graviton exchange 
is dominant.

We study cosmological four point correlation function with small speed of sound.
And we explore whether there exists the useful relation like consistency relation focusing on 
counter-collinear limit and double soft limit.

・ 4pt. correlation function has rich information, although they cannot be observed in immediate future...

・ In double soft limit, there may be useful relation, but we need further study.

Abstract

Conclusions

Is non-Gaussianity dead ?

Many models survive.

equilateral local

ex) 3pt function

shape of triangle

〈ζk1ζk2ζk3〉 = (amplitude) × (2π)3δ3(k1 + k2 + k3)F (k1,k2,k3)︸ ︷︷ ︸∝

fNL

Features

z2 = 6e2θ
(H

θ̇
− 1

)2

+
2aΣ
θ̇2

〈ζk1ζk2ζk3ζk4〉

= (2π)3δ(3)
( ∑

a

ka

)
f̄
(H

θ̇
− 1 +

θ̈

θ̇2

)2 16a8H6∏
a(2c3

sk
3
a)z8

F (k12, k1, k2, k3)

4pt. function

T (k1,k2,k3,k4) = 4τNLP (k12)P (k1)P (k3)

does not satisfy
above relation

lim
�q1,�q2→0

∇j
q1
∇i

q2

( 〈ζ�q1ζ�q2ζ�k1
ζ�k2

〉′
P (q1)P (q2)

)
= P (k)

(
1 − 1

c2
s

){(3
4

δij

k2
+

5
2

kikj

k4

)
+

(
4
δij

k2
− 5

2
kikj

k4

) 〈ζ�q1ζ�q2ζ−�q〉′
P (q1)P (q2)

}
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Numerical Analysis of Quantum Cosmology��
Nagoya University QG lab,  Hiroshi Suenobu, Yasusada Nambu 

2. Our approach�

Quantum Cosmology  
�Use a no-inflaton-solution of the Wheeler-De Witt  
    equation as the boundary condition. 
�Solve the wave function of the universe numerically 
�Define and Calculate a probability for a classical universe. 
�Discuss about what type of the boundary condition can  
    lead to sufficiently long duration of inflation.�

�Investigating the initial state of the universe from quantum 
    theory. 
�It can be provided by the wave function of the universe. 
�The boundary condition of the wave function plays 
    a crucial roll in quantum cosmology. 
�

Our research overview �

Problems in quantum cosmology�

�What boundary condition of the wave function of the universe 
    can predict our universe ? , such as how much inflate ?�
�

No-boundary proposal  
    by Hartle and Hawking 

�The wave function is often approximately evaluated by saddle point 
    value of action using a complex classical solution.�

a=0�a=0

(b, χ)

t�
V(qA)� Ψ ∝ exp(−iS)

a�
0�

Ψ(a, φ) ≈ exp (−Iext/h̄)

Tunneling proposal 
              by Vilenkin�

4. Summary�

�We could obtain the method to predict the classical universe 
   from the numerical wave function of the universe.�

�The no-boundary proposal is not favored so much to lead 
    sufficiently long duration of inflation.�
�We will explore furthermore about various combinations of 
   boundary conditions and dependence on Λ and m.�

JGRG24@IPMU (2014)�

�The equation is hard to solve analytically.�

We consider General Relativity + massive scalar field in homogeneous 
 and isotropic universe.�

Ψ is the wave function of the universe.�

1. Introduction�

Canonical quantization leads the Wheeler-De Witt equation (WDW eq). 

1
2

[
h̄2

a2

∂

∂a

(
a

∂

∂a

)
− h̄2

a3

∂2

∂φ2
− a + a3

(
Λ
3

+ m2φ2

)]
Ψ(a, φ) = 0

In this region, the wave function becomes�

, qA = (a,φ)�Ψ ≈ A(qA) exp[iS(qA)] A(qA) = exp(−IR(qA)),�

� � �� �� �� �� �� ��
����

�����

�

����

���

����

�

	�

�

�

��

��
��

�

	�
��
����������������������

�

�
	�
�

Extract pre-factor IR and phase S
from the numerical wave function�

Amplitude � IR�

Intervals of peaks � S�

Λ  : cosmological  
      constant�

Probability of sufficient inflation Psuf�

�Definition of probability�
Conserved current in mini superspace�

, 

P(qA) ≡ J · n = |A(qA)|2∇nS(qA)

Probability measure�

It can predict sets of initial data                   for the classical equation.�(b, χ, pb, pχ)

 , What is a number of e-folding N  ?�How long inflation ?�

Psuf ≡
∫ φp

φsuf
dφP(φ)∫ φp

φmin
dφP(φ)

������	
	�����
������Psuf�

φmini� φp�φsuf�

P(φ)�

φ�φmini φpφsuf

��
�	����������	
	���
	
���	����
���

����	�	�
�
��	
�
����
N > Nsuf� ������
�
���

�
��������	�
�

Probability of boundary condition P(t|S)�

P(t|S) based on the Bayes' theorem�

P (Ai|B) =
P (Ai)P (B|Ai)∑n

k=1 P (Ak)P (B|Ak)

t : parameter of boundary condition�

α�

γ�

δ�

��

��

��

��������� ������	��t=0� t=1�





��
tt

����
�����������������	���������
�����������������������������������������������	��

〈N〉 =

∫ φp

φm
dφN (φ)P(φ)∫ φp

φm
dφP(φ)

  Expectation value of e-folding number�

�Classicality�

P (t|S) =
P (S|t)∫ 1

0
dt′P (S|t′)

 P(S|t) : probability of sufficient  
            inflation with BC=t.�

In the region φ < φmin , the universe can not 
reach current age of universe or there is no 
 classical region in mini superspace. �

, P(S|t) = Psuf(t)�

boundary condition� parameters (α,β,γ,δ)�  Asymptotic form�
(a) no-boundary proposal � (0,0,1,1)� Ψ~exp(1/V)cosS�
(b) tunneling proposal �  (1,0, 0,i) � Ψ ~exp(-1/V)e-iS�

(c) tunneling like real� (1,0,0,0) � Ψ~exp(-1/V)cosS�

 [J.J.Halliwell et.al. PRD39 (1989)]�

We can use it as the boundary condition  at a = 0.�

�Boundary condition of the wave function (BC)�

General solution of the WDW eq without inflaton�

It is characterized by parameters (α,β,γ,δ) .�

They correspond to integration contours in path integral.�

(a) no-boundary proposal� (b) tunneling proposal� (c) tunneling like real�

Ψ(0, φ), ∂aΨ(0, φ)

	����������	

���

�
��������������

NR�

NI��	�
	���
�
����
�������������

�	��������������

NR�

NI�NNIN�	�
	���

�
���
�������������

�	��������������

NR�

NI� �
�NNIIN�	�
	���

JA =
ih̄

2
(Ψ∗∇AΨ − Ψ∇AΨ∗) ∇ · J = 0 ∇A =

(
∂

∂a
,

∂

∂φ

)

Fig1. Parameterize boundary condition 
        between (a) and (c).�

3. Our results �

� � � � � � � � � ��

�

�

�

�

�

�

�

�

	
��
��

��


�
�
�
�

������
�
��
����
��

(a) no-boundary proposal 

favors small φ  � small N�
<N > = 29.4�

(c) tunneling like real 

� � � � � � � � � ��

�

�

�

�

�

��

��

��

��

	
��
��

��


�
�
�
�

������
�
��
����
��

<N > = 85.3�
favors large φ  � large N�

(2) Probability of boundary condition P(t|S) :  (a) t = 0  to (c) t = 1 (Fig1)�

(1) Boundary condition : (a),(b),(c)  
        with Λ=0.3, m=0.1, φmin=0.55, φp=10, Nsuf=60. �

(b) tunneling proposal 

doesn't classicalize at small φ 

� � � � � �� �� �� ��

�

�

�

�

��

��

��

�
��
��

���

�
�
�
�

����	��
���
�������

�Solve the WDW eq�
1
2

[
h̄2

a2

∂

∂a

(
a

∂

∂a

)
− h̄2

a3

∂2

∂φ2
− a + a3

(
Λ
3

+ m2φ2

)]
Ψ(a, φ) = 0

Discretize and use RK4 algorism. �
Obtain numerical wave function.�

Wave function obtained 
by no-boundary BC 

a
�

If we consider complex contours in path integral, 
 the action becomes complex.� I � IR - iS�

Classicality condition :� |∇IR|2
|∇S|2 	 1

 wave function oscillates�

0 5 10 15
0

10

20

30

40

50

60

q

p
h
i

exstract, fit start, classicalize lines

exstract
clasiccalize

φ�

a�

����������	
���
��
���
�����
	����
�

����������������������

����������	
���
�

Ψ(a) = αAi(z)Ai(z0) + βBi(z)Bi(z0) + γAi(z)Bi(z0) + δAi(z0)Bi(z)

��

���

���

���

���

���

���

	��


��

���

����

�� ���� ���� ���� ���� ���� ���� ��	� ��
� ���� ��

t�

<N>�


�����������


������������


������������

��

��

���

���

���

���

���

���

���

���

���

�� ���� ���� ���� ��
� ��

t�

P(t|B)�


������������


������������

��

����

��

����

��

����

��

����

��

����

��

�� ���� ���� ���� ���� ���� ���� ��	� ��
� ���� ��

t�

P(t|B)�
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Adiabatic regularization of power spectrum
for non-minimal k-inflation

Allan L. Alinea, Takahiro Kubota, Yukari Nakanishi, Wade Naylor
Department of Physics, Osaka University, Japan

PRIMORDIAL PERTURBATIONS

The power spectrum of the cosmic
microwave background is an observable
arising from cosmological primordial
perturbations.

We can compare observables and infla-
tion theories by using the power spectrum.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Definition and properties

The power spectrum of the scalar per-
turbation |Rk(η)|2 is defined by a Fourier
transformation of the two point function.

〈|R(x)|2〉 =
∫ ∞

0

dk

2π2
k2|Rk(η)|2

The scalar perturbation obeys
Mukhanov-Sasaki equation.

v′′k +
(
c2sk

2 − z′′

z

)
vk = 0, vk ≡ zRk

where f ′ = df
dη

, z2 = 2a2ε1
c2s

and the "sound

speed" is defined by c2s ≡ P,X

P,X+2XP,XX
.

� �
Our aim is checking the regularization

of the power spectrum.
� �

ADIABATIC REGULARIZATION

Adiabatic regularization[1] is one of regu-
larization schemes of QFT in curved space-
time. In this regularization, the physical
amplitude is schematically given by

〈|R(x)|2〉phys ≡
∫ ∞

0

dk

2π2
k2

[|Rk(η)|2bare − |Rk(η)|2sub
]
.

The bare power spectrum is derived from
an inflation model. However, we regard
the bare spectrum minus the subtraction
term as the observable power spectrum.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
How to make the subtraction term

1. introduce a fictitious parameter T
in the metric.

gμν(x) → gμν(x/T )

2. Require the adiabatic condition and
do a WKB-like expansion.

Adiabatic condition� �
In lowest adiabatic order, vk should
have the form
vk ∝ ωk(η)

− 1
2 exp

(−i
∫ η

ωk(η
′)dη′

)
� �

3. Rearrange terms so that the power of
1/T are in ascending order.

4. Isolate divergent terms as the adiabatic
subtraction term.
|Rk(η)|2sub ≡ |Rk(η)|2(0) + |Rk(η)|2(2)

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
In slow-roll inflation, the "sound speed" is

equal to one (= c).
The subtraction term for slow-roll

inflation model becomes small because
the coefficient of the second-order adiabatic
term is exponentially suppressed.[2]

SUBTRACTION TERMS FOR K-INFLATION

In k-inflation model, which is motivated by string theory, the Lagrangian has
non-canonical kinetic terms and the "sound speed" is not constant.[3]

L = P (φ,X), X ≡ 1

2
gμν∂μφ∂νφ, c

2
s �= constant.

By using the MS equation, we derived the subtraction term.

In conclusion, the subtraction term for k-inflation models depend on the "sound speed".
Therefore the time dependence of it is not obvious unlike one of the slow-roll model.

SUBTRACTION TERMS FOR NON-MINIMAL K-INFLATION

In non-minimal coupling model, the Einstein equation is more complicated to solve. Then
we use the conformal transformation and make it simple.

where X̂ ≡ 1
2 ĝ

μν∂μφ∂νφ and P̂ (φ, X̂) ≡ f(φ)−2P (φ,X)− 3ĝμν(∂μ ln
√
f)(∂ν ln

√
f).

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Comoving gauge

δφ = 0

g00 = a(η)2, gij = −a(η)2e2Rδij

In this gauge, it is known that the scalar perturbation
and its correlation functions are frame invariant.[4, 5]

R = R̂, 〈|R|2〉bare = 〈|R̂|2〉bare

in the Jordan frame� �

v′′k +
(
c2s,effk

2 − z′′eff

zeff

)
vk = 0, vk ≡ zeffRk

zeff and cs,eff have been estimated
directly by ADM formalism in [6].

� �

in the Einstein frame� �

v̂′′k +
(
ĉ2sk

2 − ẑ′′

ẑ

)
v̂k = 0, v̂k ≡ ẑR̂k

ẑ and ĉs can be estimated
by conformal transformation.

� �
Because η = η̂ , the scalar perturbations in Jordan/Einstein frame obey the equations

which have the same form. We showed that zeff = ẑ and cs,eff = ĉs as long as we take the
same normalization manner, so we conclude that

Therefore, the physical power spectrum can be derived from both frames and we do not
need to do the complicated calculation in Jordan frame to derive the adiabatic subtraction
term for non-minimal k-inflation.

FUTURE WORK

We need next to constrain the model parameters.
However, in the non-minimal case, the result is obtained by arguments with some

additional assumptions and conditions.

We take the comoving gauge δφ = 0.
We set the non-diagonal components of the energy-momentum tensor to zero.

(This is related to neglecting the anisotropic inertia.)

If we choose another gauge and throw away the second assumption, the non-diagonal
components which are gauge invariant and frame invariant appear. Then the
argument becomes unobvious because we cannot combine the Einstein equations into
one MS equation without other equations or relations.
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Fig 1: Amplitude of  suppression, A, of  low-l ClTTs relative to the 
best-fit Planck model.  A is determined by fitting the two-
parameter model shown below to the low-l Planck data, restricted 
to various ranges                    [1].                 

• the fast-rolling of the inflaton, the p-dependent 
suppression factor and the modified horizon 
crossing condition are all important in determining 
the suppression on large scales

Fig 7:  Relative power                                        where        
is the scale at which the spectrum transitions from being 
blue- to red-tilted.

• Horizon exit of  scale associated with l=100,        

- Modified horizon crossing condition for 

Open inflation and scalar suppression on large scales
Jonathan White, RESCEU  

with Ying-li Zhang (NAOC) and Misao Sasaki (YITP) 

 Introduction

Open inflation

 Toy Models

Conclusions
• Planck and WMAP hint at a deficit in primordial scalar power on large scales

• This tension is worsened if the BICEP2 signal is primordial

1. Fast-rolling of the inflaton after tunnelling 

• Open Inflation models offer a viable explanation for the deficit

2.  Additional effects due to the tunnelling

• The source of suppression in Open Inflation is two-fold:

• Have studied two toy models that are qualitatively viable, but a more 
quantitative analysis is required

An epoch of inflation is in good agreement with observations
But - what is the exact nature of inflation?  
Could anomalies represent important clues?

20 30 40 50
Maximum multipole moment, �max

0.
8

0.
9

1.
0

1.
1

B
es
t-
fi
t
am

pl
it
ud

e,
A

Planck

WMAP

• e.g. 5-10% power deficit in CMB temperature 
anisotropies on large scales               with(l ≤ 40)

statistical significance 2.5—3σ [1] 

Cl(A, n) = ACfid
l

(
l

l0

)n

l0 =
(2 + lmax)

2

Fig 1:  Planck [1]

• If the signal contains a contribution from r 
the scalar contribution must be even more 
suppressed on large scales

• Non-zero tensor modes,  
as suggested by BICEP2 [2], would  
contribute to        on large scales l � 100

• Primordial scalar power spectrum with 
suppression on large scales is favoured by 
Planck even under the assumption r=0 [1]. 

Evidence for modified primordial scalar 
spectrum increased after BICEP2 [3]

Model Δ logZBroad Δ logZInformative 2Δ logLmax

10

10−6 10−5 10−4 10−3 10−2 10−1

(Mpc−1)

10−11

10−10

10−9

10−8

Δ
2 ζ
(

)

1

break in spectrum

Fig 2:  Abazajian et al. [3]

• String theory predicts a landscape of vacua

• There are two key features:          

2. Steepening of potential near barrier
1. Universe after tunnelling is open [4]

V (φ)

tunnelling

fast-roll
slow-roll

φFVφNφS

φ
0

• Our universe may have  
emerged after false-vacuum decay

φ̈+ 3Hφ̇+ Vφ = 0H2 =
1

3

(
φ̇2

2
+ V

)
+

1

a2

After tunnelling our open universe is described 
by the equations

with the Initial conditions:
a = 0 = φ̇, φ = φN , ȧ = 1

• Two sources of suppression of scalar power on large scales:

• Scalar and tensor power spectra take non-standard form in open inflation.  Use 
fitting functions based on analytic results of Yamamoto et al. and Garriga et al. [6]

⇒ large wavelength modes freeze later

their amplitudes are suppressed⇒

⇒

• Consider two toy models from Linde et al. [7] 

Model 1:

Model 2:

12 14 16 18 20
4.μ 10-9

6.μ 10-9

8.μ 10-9

1.μ 10-8

1.2μ 10-8

f

V
Hf
L

12 14 16 18 20

2.μ 10-9

3.μ 10-9
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• M2 “sharper” - expect suppression to affect a 
smaller range of scales

pot. dom.

pot. dom.

• Given these initial conditions we expect three stages: 

1. Curvature domination: H =
1

a
, a = t, φ̇ = −Vφt

4
Large Hubble friction ⇒ field slowly rolling

2. Fast-roll phase:

3. Slow-roll inflation 
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Fig 5:  Hubble evolution for M1 (black curve).  Also plot the curvature 
scale (blue), current Hubble scale (red) (assuming                ) and the 
scale associated with l=100 (green).  Qualitatively similar for M2.

Fig 4:  Tunnelling potentials of  Model 1 (M1) and Model 2 (M2).  
The fiducial         potentials are plotted for comparison.  From 
right to left, vertical lines correspond to the location of  the field at 

• Potential—Curvature equality
• Horizon exit of  current Hubble scale       

Tensor Analytic

Linde et al. numerics

Naive hor. crossing

No sup. fact.

Scalar Analytic
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Model 1:
• Curvature—potential equality at N = 66

⇒ ~ 10 e-foldings of fast-roll
• Even for unobservable curvature, i.e. when 

                                   ,  get                   
suppression for                        

PR(p)/PR(pred)

• Can still satisfy constraints on        and 
get                suppression for 
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Model 2:
• ~ 6 e-foldings of fast-roll
⇒ suppression on smaller range of scales

JGRG24

⇒

After the transition to potential domination we are still in the 
vicinity of the tunnelling barrier where the potential is steep

Such a spectrum arises in Open Inflation

1. Fast-roll: - Inverse dependence on 

2. p-dependent suppression factor
reflecting memory of tunnelling:

• See transition from curvature domination to slow-roll

• Whether or not the suppressed scales leaving the 
horizon during the fast-roll transitionary phase 
correspond to the largest observable scales in 
the CMB is determined by the separation between 
the curvature scale and the current Hubble scale: 

Fig 6:  Scalar and tensor power spectra for M1.  For the scalar 
spectrum we have four curves:  Numerical results from [7] (black 
(upper)), full fitting formula with c1 = 4 (blue), fitting formula without p-
dependent suppression factor (red) and fitting formula using the naive 
horizon crossing condition.  For the tensor spectrum we plot: Numerical 
results from [7] (black (lower)) and full fitting formula with c2 = 1.  
Qualitatively similar for M2.

pot. dom. M1

M1

p ��� pl=100

O(10%)

If slow-roll phase is short enough, e.g. N ~ 60, expect to see 
signatures of spatial curvature and steep potential [5]

1 Knot 1.6 3.1 6.2

Fig 2: Form of  “broken” primordial spectrum 
analysed in [3] and found to be preferred over the 
standard power-law form in light of  BICEP2 results.

2 ≤ l ≤ lmax

Fig 3: Form of  potential associated with Open 
Inflation models, where standard inflation is 
preceded by tunnelling from a false vacuum.

assuming

m2φ2

Fig 4a

Fig 4b

Fig 7a

Fig 7b

Fig 5

Fig 6

Based on Phys.Rev. D 90, 083517
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Tomohiro Fujita, Hajime Fukuda, Ryo Namba, Yuichiro Tada (Kavli IPMU)
Naoyuki Takeda (ICRR)

Too large!

Sphaleron
effect

We generate B-L instead of B. (Leptogenesis)

This term is a total 
derivative and 
thought to be zero 
in vacuum [2].

Feasible feature: exponential 
grow in super-horizon mode in 
terms of

[1] Stephon H. S. Alexander, Michael E. Peskin, and M. M. Sheikh-
Jabbari, Phys. Rev. Lett. 96, 081301 (2006)
[2] Tohru Eguchi and Andrew J Hanson, General Relativity and 
Gravitation, 11, 5, (1979)
[3] Neil Barnaby, Ryo Namba and Marco Peloso, JCAP04(2011)009

1. A energy VS inflaton energy 
2. backreaction of A
3. non-gaussianity

First we simply simulate ξ:

This directly generate asymmetric h in 
perturbative calculation.

With ε, η→0, we obtain

• Left-right asymmetric gravitational wave generates 
B-L through the anomaly.

• Axion inflation realizes such CP violation easily.
• We study axion-gauge interaction and its effect.

Axion
inflation

automatically 
violate CP

Most stringent!

Non-gaussianity

@ inflation end

However, we should keep in mind that in 
the estimation ξ 6  we do not take ξ 
time dependence into account. Also, 
preheating effect might be important.

CMB scale

• We show axion-gauge interaction generates plausible amount of B-L. 
Our numerical simulations support this result.

• Elementary process of B-L production has not been clear yet. Hence the 
remnant of gravitational wave is unknown.
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Conditions for circular orbit�

Momentarily circular condition (Condition 1)�

�
Permanently circular condition (Condition 2)�

�
�
Linear stability of orbit�

�
     : the radius of a circular orbit (�             ),       : perturbation�

The equation of motion for perturbation�

�
�
�
The condition for stable (or unstable)�

�
�
�
Marginally stable is a transition point between stable and unstable. (Condition 3)�

Conditions of MSCO

MSCO: Part 1 Formulation
Tomohito Suzuki 
Hirosaki University, Japan 
with T. Ono, N. Fushimi, K. Yamada, and H. Asada (Hirosaki) 
JGRG24 in Kavli IPMU Nov. 10 - 14, 2014

We studied a MSCO of a timelike geodesic in any spherically symmetric and static 

spacetime.�

�
�
�
�
�
Applications to exact solutions to Einstein's equation are discussed in Ono's poster.

• The metric components are separable from the constants of motion along 

geodescis.�

•        does not affect MSCOs.�

• Any ISCO measurement may be put into the same category as gravitational 

redshift experiments among gravity tests.

grr

5. Conclusion References
[1] T. Ono, T. Suzuki, N. Fushimi, K. Yamada, and H. Asada, �

      arXiv:1410.6265 [gr-qc] (2014).�

[2]�L. Rezzolla, and A. Zhidenko, Phys. Rev. D 90, 084009 (2014). �
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      A. Sadowski, Astron. Astrophys. 521, A15 (2010). 

Abstract 1. Motivation
We study a marginally stable circular orbit (MSCO) such as the innermost stable 

circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static 

spacetime. We present the equations describing the location of the MSCO [1].�

It turns out that the metric components in this equations are separable from the 

constants of motion along geodescis. In addition, metric component        (r is a 

radial coordinate) does not affect any MSCO radius. This suggests that, as a gravity 

test, any measurement of the ISCO may be put into the same category as 

gravitational redshift experiments, even in the strong field region.

grr

ISCOs [2] are useful for testing�

�
�
They are

• the strong gravity.�

• the no-hair theorem for black holes.�

�
• important in gravitational waves astronomy [3].�

• associated with the inner edge of an accretion disk around a black hole [4].

2. Timelike geodesic 
    in spherically symmetric and static spacetimes
A general form (                   )�

�
�
The Lagrangian in the equatorial plane�

�
�
Two constants of motion�

�
�
�
�
    : the specific energy,       : the specific angular momentum�

Orbit equation�

�
�
�
�
          is not the same as the so-called effective potential.�

By Eq. (5), we obtain the radial acceleration of the test body as

G = c = 1

θ = π/2

E L

r̈ = −1

2

dV (r)

dr

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2)

V (r)

(1)�

�
�

(2)�

�
�
�

(3)�

�
�
�
�
�
�

(4)�

�
�
�

(5)�

�
�
�
�
�
�

(12)�

�
�
�
�
�
�

(13)

3. Conditions for MSCO

ṙ = 0

r̈ = 0

V (r) = 0 and
dV (r)

dr
= 0 and

d2V (r)

dr2
= 0

δrṙC = r̈C = 0

d2

dτ2
(δr) = −1

2

d2V (rc)

dr2c
δr

d2V (rC)

dr2C
> 0 (or

d2V (rC)

dr2C
< 0)

r = rC + δr

rC

(6)�

�
(7)�

�
�

(8)�

�
�
�

(9)�

�
�
�

(10)�

�
�
�
�

(11)

4. MSCO equation
The matrix�

�
�
�
�
�
�
The determinant of this matrix vanishes : a necessary condition of MSCO.�

MSCO equation�

�
�
Eq. (13) can recover Eq. (41) in Ref. [2].�

The radius of the MSCO must satisfy not only the root of MSCO equation but also                          and                        .   0 < E2 < ∞ 0 < L2 < ∞

d

dr

(
1

A(r)

)
d2

dr2

(
1

C(r)

)
− d

dr

(
1

C(r)

)
d2

dr2

(
1

A(r)

)
= 0

⎛
⎜⎜⎜⎜⎜⎝

1

A(r)
− 1

C(r)
−1

d

dr

(
1

A(r)

)
− d

dr

(
1

C(r)

)
0

d2

dr2

(
1

A(r)

)
− d2

dr2

(
1

C(r)

)
0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

E2

L2

1

⎞
⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎝

0

0

0

⎞
⎟⎟⎟⎟⎠

E2 = − 1

Δ

d

dr

(
1

C(r)

)
, L2 = − 1

Δ

d

dr

(
1

A(r)

)
, Δ ≡

∣∣∣∣∣∣∣
1

A(r)
− 1

C(r)
d

dr

(
1

A(r)

)
− d

dr

(
1

C(r)

)
∣∣∣∣∣∣∣

     and       on MSCO isE2 L2

(14)

•           makes no contribution to the MSCO. Moreover, any circular orbit is not 

affected by          .�

• The geometrical part including           and          is separated from the particle 

motion parameters as     and     .

B(r)

A(r) C(r)

B(r)

E L

ṙ2 =
1

B(r)

(
E2

A(r)
− L2

C(r)
− 1

)
≡ −V (r)
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MSCO: Part 2 Applications to exact solutions

Toshiaki Ono

Hirosaki University, Japan
with T.Suzuki, N. Fushimi, K. Yamada, and H. Asada (Hirosaki)

JGRG24 in Tokyo Nov. 10 - 14, 2014
Abstract: We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any

spherically symmetric and static spacetime. We discuss several examples: Schwarzschild, Kottler (Schwazschild-de Sitter), Reissner-Nordström, and
Janis-Newman-Winicour (JNW) spacetimes.[1]

1 Introduction

We follow the Suzuki’s poster. A general form of the line element for spherically
symmetric and static spacetime that may have a deficit angle:

ds2 = −A(r)dt2 +B(r)dr2 + C(r)(dθ2 + sin2 θdφ2). (1)

A MSCO equation:

d

dr

(
1

A(r)

)
d2

dr2

(
1

C(r)

)
− d

dr

(
1

C(r)

)
d2

dr2

(
1

A(r)

)
= 0. (2)

In addition, E2(E: energy) and L2(L: angular momentum)

E2 = − 1

Δ

d

dr

(
1

C(r)

)
, L2 = − 1

Δ

d

dr

(
1

A(r)

)
, (3)

where we define a determinant as

Δ ≡
∣∣∣∣∣

1
A(r) − 1

C(r)

d
dr

(
1

A(r)

)
− d

dr

(
1

C(r)

) ∣∣∣∣∣ . (4)

Effective potential:

Veff (r) ≡ −1

2

{
E2

(
1

A(r)B(r)
− 1

)
− L2

B(r)C(r)
− 1

B(r)
+ 1

}
. (5)

In the following sections, we apply MSCO equation to some of exact solutions of
the Einstein’s equation. And also, we need to check whether L2 is positive finite.
We study whether the real roots are physical. Throughout this poster, we use the
unit of G = c = 1.

2 Schwarzschild spacetime

The Schwarzschild spacetime:

ds2 = −
(
1− rg

r

)
dt2 +

(
1− rg

r

)−1

dr2 + r2(dθ2 + sin2 θdφ2), (6)

where rg ≡ 2M . From Eq.(2),

rMSCO = 3rg, (7)

3 Kottler (Schwarzschild-de Sitter) spacetime

The Kottler spacetime[2]:

ds2 = −
(
1− rg

r
− Λ

3
r2
)
dt2 +

dr2

1− rg
r − Λ

3 r
2
+ r2(dθ2 + sin2 θdφ2), (8)

where Λ: the cosmological constant. For this spacetime, Eq.(2) becomes

8λx4 − 15λx3 − x+ 3 = 0, (9)

where x ≡ rr−1
g and λ ≡ 3−1Λr2g . We use the Sturm’s theorem[3] in order to study

the number of physical roots of this quartic equation.

• 0 < λ < 16/16875 : two MSCOs, where one is corresponding to the ISCO and
the other is the OSCO.

• 16/16875 < λ : no MSCO. Every circular orbit becomes unstable.

• λ < 0 (anti-de Sitter case) : single MSCO.

4 Reissner-Nordström spacetime

The Reisnner-Nordström spacetime[4]:

ds2 = −
(
1− rg

r
+

e2

r2

)
dt2 +

(
1− rg

r
+

e2

r2

)−1

dr2 + r2(dθ2 + sin2 θdφ2). (10)

For this spacetime, Eq.(2) becomes

x3 − 3x2 + 9q2x− 8q4 = 0, (11)

where x ≡ rr−1
g and q ≡ er−1

g . We use the Sturm’s theorem for Eq.(11).

• 0 < e2 < (5/16)r2g : single MSCO.

• (5/16)r2g < e2: no MSCO. Every circular orbit becomes stable.

5 Janis-Newman-Winicour(JNW) spacetime

Finally, JNW spacetime[5]:

ds2 = −
(
1− rg

γr

)γ

dt2 +

(
1− rg

γr

)−γ

dr2 +

(
1− rg

γr

)1−γ

r2(dθ2 + sin2 θdφ2), (12)

In this spacetime, Eq.(2) becomes

2γ2r2 − 2(1 + 3γ)γrgr + (1 + γ)(1 + 2γ)r2g = 0. (13)

Hence, the MSCO radius:

rMSCO =
(1 + 3γ)±

√
−1 + 5γ2

2

rg
γ
. (14)

Therefore, there are three cases.

• 0 < γ < 1/
√
5 : no MSCO. Every circular orbit becomes stable.

• 1/
√
5 < γ < 1/2 : two MSCOs. where one is corresponding to the ISCO and

the other is the OSCO.

• 1/2 < γ < 1 : single MSCO.

Schwarzschild

JNW

Kottler

anti-de Sitter

Reissner-Nordström

Schwarzschild ISCO

V
e
f
f
(r
)

r/rg

Fig 1: Veff (r): effective potential. Black line: Scwarzschild, blue line: Kottler,
ISCO(λ = 1/1125), cyan line: (λ = −1/1125), red line: Reissner-Nordström(q2 =
1/4), purple line: JNW(γ = 0.55)

6 Conclusion

We examined roots of the MSCO equation to the Schwarzschild, Kottler, Reissner-
Nordström, and Janis-Newman-Winicour spacetimes.

• If 0 < λ < 16/16875 in Kottler spacetime, two MSCOs appear, where one is
corresponding to the ISCO and the other is the OSCO.

• If λ < 0 (anti-de Sitter case), single MSCO appears.

• If 0 < e2 < (5/16)r2g in Reissner-Nordström spacetime, single MSCO appear.

• If 1/
√
5 < γ < 1/2 in JNW spacetime, two MSCOs appear, where one is

corresponding to the ISCO and the other is the OSCO.

• If 1/2 < γ < 1 in JNW spacetime, single MSCO appear.
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Gravitational wave extraction from binary
simulations

Hiroyuki Nakano

Department of Physics, Kyoto University

The 24th Workshop on General Relativity and Gravitation
(JGRG24)

Nov. 10-14, 2014, Kavli IPMU, the University of Tokyo

Hiroyuki Nakano Gravitational wave extraction
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Gravitational waves from merging binary black holes

Binary black holes: mass and spin {m1, m2, S1, S2}
Gravitational wave frequency:

fGW ∼ 13Hz
MΩorb

0.02

(
M

100M�

)−1
.

M: Total mass of the binary

Ωorb: Orbital frequency

From MΩorb ∼ 0.02, we have 20-30 gravitational-wave cycles
before merger.
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Intro.: Wave extraction in numerical relativity

BEST Waveforms extracted at future null infinity

BETTER Waveforms extracted very far from the source but
finite radius

1059



Intro: Wave extraction in numerical relativity (cont’d)

BEST Directly computed using the method of
Cauchy-characteristic extraction

—– Winicour, LRR 15, 2 (2012).

BETTER Computed at very large, or extrapolating
several finite-radius measurements using

the Regge-Wheeler-Zerilli formalism (ψ
(even/odd)
�m )

or the Newman-Penrose formalism (ψ�m4 )
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Intro.: Perturbative extraction

An extrapolation formula for the Weyl scalar ψ4:

r ψ�m
4

∣∣∣
r=∞

= r ψ�m
4 (t, r)− (�− 1)(�+ 2)

2 r

∫
dt [r ψ�m

4 (t, r)] + O(r−2) ,

in the spin-weighted spherical harmonics (−2Y�m) expansion.

r : an approximate areal radius

ψ�m4 (t, r): (
, m) mode of ψ4 at finite radius r

—– Lousto, Nakano, Zlochower, Campanelli, PRD 82, 104057
(2010).

Gravitational waveforms h+/× are related to ψ4 as

ψ4 = ḧ+ − i ḧ× .

This is true only at r → ∞.
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Intro.: Perturbative extraction (cont’d)

Why does this simple formula work?

For example, this formula has been used in

—– Babiuc et al., PRD 84, 044057 (2011).

in the comparison with a characteristic evolution code
to obtain the gravitational waveform at null infinity, and

—– Kyutoku, Shibata and Taniguchi, PRD 90, 064006 (2014).

for numerical relativity simulations of neutron star binaries.

1062



Basic idea

In the Regge-Wheeler-Zerilli (RWZ) formalism,

h+ − i h× =
∑ √

(�− 1)�(�+ 1)(�+ 2)

2r

(
Ψ

(even)
�m − i Ψ

(odd)
�m

)
−2Y�m ,

in r → ∞.

Ψ
(even)
�m : Even parity wave function

Ψ
(odd)
�m : Odd parity wave function

which satisfy

[
− ∂2

∂t2
+

∂2

∂r∗2
− V

(even/odd)
� (r)

]
ψ
(even/odd)
�m (t, r) = S

(even/odd)
�m (t, r) .

V
(even/odd)
� : Potential, S

(even/odd)
�m : Source

The NR waveforms are usually obtained from the NR ψ4 data, and

ψ4 = ḧ+ − i ḧ× .
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Basic idea (cont’d)

In the analysis of the asymptotic behavior of the RWZ functions,
we have

Ψ
(even/odd)
�m (t, r) = H�m(t − r∗) +

�(�+ 1)

2 r

∫
dt H�m(t − r∗) + O(r−2) ,

H�m: Wave observed at infinity

r∗ = r + 2M ln[r/(2M)− 1],

for general 
 modes.

Error due to finite extraction radii arises from the integral
term and higher orders in 1/r .

Inverting the above relation, the wave function at r → ∞ becomes

Ψ
(even/odd)
�m

∣∣∣
r=∞

= Ψ
(even/odd)
�m (t, r)− �(�+ 1)

2 r

∫
dt Ψ

(even/odd)
�m (t, r) + O(r−2) .

This expression is applied to waveforms in the black hole
perturbation approach.
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Basic idea (cont’d)

Similarly, we discuss the mode function ψ�m4 of the Weyl scalar.

If the NR Weyl scalar satisfies the Teukolsky equation
in the Schwarzschild spacetime, ψ�m4 is expanded
with respect to 1/r as

r ψ�m
4 (t, r) = ¨̃H�m(t − r∗) +

(�− 1)(�+ 2)

2 r
˙̃H�m(t − r∗) + O(r−2) ,

where dot denotes the time derivative.

The difference between this H̃�m and H�m of the RWZ
function is only a numerical factor.

Inverting the above relation, we have

r ψ�m
4

∣∣∣
r=∞

= r ψ�m
4 (t, r)− (�− 1)(�+ 2)

2 r

∫
dt [r ψ�m

4 (t, r)] + O(r−2) .

This is used for extrapolating waveforms in the numerical
relativity.
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Basic idea (cont’d)

Phase and amplitude collections by the perturbative formula:

We assume

H�m(t − r∗) = A�m exp(−iω�m(t − r∗)) .

Then, the RWZ functions Ψ
(even/odd)
�m at a finite extraction radius

are written as

Ψ
(even/odd)
�m =A�m

[
1 +

i�(�+ 1)

2ω�mr

]
exp(−iω�m(t − r∗)) + O(r−2)

=A�m

√
1 +

(
�(�+ 1)

2ω�mr

)2

exp(−iω�m(t − r∗)) exp(δφ�m) + O(r−2)

= (A�m + δA�m) exp(−iω�m(t − r∗)) exp(δφ�m) + O(r−2) .
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Basic idea (cont’d)

Amplitude correction:

δA�m

A�m
=

1

2

(
�(�+ 1)

2ω�mr

)2

+ O(r−4) .

The amplitude collection will be O(r−2) which we have
ignored here.

Phase correction:

sin δφ�m =

(
�(�+ 1)

2ω�mr

)/√
1 +

(
�(�+ 1)

2ω�mr

)2

=
�(�+ 1)

2ω�mr
+ O(r−2) .

The phase correction from the perturbative formula has
O(r−1), and is dominant.
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Radiated energy

Teukolsky function −2Ψ = (r − ia cos θ)4ψ4 (a: Kerr parameter) is
written in the frequency domain as (we need higher order!)

−2Ψ�mω(r) =

[
(r3 + i

(
ma+

1

2

λ

ω

)
r2 +

(
1

2
i
(−3 ia+ im2a+ 2Mm

)
a

+
1

2

i (iλma+ 3 ima+ 3M)

ω
− 1

8

λ (2 + λ)

ω2

)
r + O(r0)

]
Hω ,

Hω/r : Second time derivative of the waveform at infinity

The separation constant λ of the Teukolsky equation
is obtained for aω � 1 as

λ = (� + 2) (�− 1)−
2m

(
�2 + � + 4

)
� (� + 1)

aω + (H(� + 1)−H(�)) a2ω2 + O((aω)3) ;

H(�) = 2
(�− m) (� + m) (�− 2)2 (� + 2)2

(2 �− 1) �3 (2 � + 1)
.

—– Mano, Suzuki and Takasugi, PTP 95, 1079 (1996).
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Radiated energy (cont’d)

We discuss the O(r−2) correction in the radiated energy.

The energy flux from the asymptotic expression is obtained as

Ė�mω(r) =

(
1 +

6aω(aω −m)− λ
2ω2r2

+ O(r−3)

)
Ė∞�mω ,

by the square of the time integration of −2Ψ�mω.

Ė∞�mω: Evaluated from the waveform at infinity, Hω/r

This is the same as

—– Burko and Hughes, PRD 82, 104029 (2010).

via the Sasaki-Nakamura equation.

—– Sasaki and Nakamura, PTP 67, 1788 (1982).
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More analysis of the perturbative formula

An extrapolation formula (with the Kinnersley tetrad):

r ψ�m
4

∣∣∣
r=∞

= r ψ�m
4 (t, r)− (�− 1)(�+ 2)

2 r

∫
dt [r ψ�m

4 (t, r)] + O(r−2) .

Difference between the Kinnersley (Kin) and a NR (num) tetrads

rψKin
4 =

1

2
[rψnum

4 ]− M[rψnum
4 ]

r
+

i a cos (θ) [rψnum
4 ]

r
+ O(r−2) ,

—– Campanelli, Kelly and Lousto, PRD 73, 064005 (2006).

The Teukolsky function −2Ψ for ψnum
4 is

−2Ψ =(r − ia cos θ)4
(
1

2
ψnum
4 − Mψnum

4

r
+

i a cos (θ)ψnum
4

r

)

=
r4

2
ψnum
4 −M r3ψnum

4 − i a r3 cos (θ)ψnum
4 + O(r2)

=
r4

2

(
1− 2M

r
− 2i a cos (θ)

r

)
ψnum
4 + O(r2) .
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More analysis of the perturbative formula (cont’d)

On the other hand, the asymptotic form of −2Ψ

−2Ψ�m =¨̃H�m(t − r∗)r3 +
[
(�− 1) (�+ 2)

2
˙̃H�m(t − r∗)− 4 i ma

� (�+ 1)
¨̃H�m(t − r∗)

]
r2

+ O(r , (aω)2) ,

for aω � 1.

Finally, r ψ�m4 at infinity is extrapolated from rψnum
4�m (t, r) as

r ψ�m
4

∣∣∣
r=∞

=

(
1− 2M

r

)(
rψnum

4�m (t, r)− (�− 1)(�+ 2)

2 r

∫
dt[rψnum

4�m (t, r)]

)

− 2 i a

r

∑
�′ �=�,m′=m

[rψnum
4�′m′ (t, r)]C �′m′

�m + O(1/r2, (aω)2) ,

C�+1m
�m =

1

� + 1

√
(�− 1) (� + 3) (�− m + 1) (� + m + 1)

(2 � + 1) (2 � + 3)
.

—– See also, Berti and Klein, PRD 90, 064012 (2014).
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Discussion

What are M and a in the formula?

The formula will give a good result for the 
 = m = 2 mode.

How about the other modes?

Better extraction of GWs?

[Kyokado Toshiyasu, Shigure-gasa]
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Takahiro Tanaka (Kyoto u) 
with Stefano Ansoldi (Udina u)

1) Thin wall dynamics
Spherically symmetric shell motion

Schwarzs
child 

outside

t

R
Minkows

ki
inside

shel
l

22222 1 �dRdR
f

fdtds ����

Effective Lagrangian is derived by using this t coordinate.
effeff HRPL �� �

�

�

��

�

�
�
�

	




�
�

�


 ��
�

f

RRfs
RPeff

2
,

2
,

ˆˆ
log

22
,
ˆ RRfsRHeff �

�

�
� ��	



��

 ���

�

�

Junction condition gives Heff = 0

��� �� dRSshell
2ˆ

� � 0ˆˆ 2
, �� RVR�

Setting

� � � �� �2222
4

1 232232
4 ������ RRRR

R
RV ����

�

� < 16/27

� �422 RRsigns ����R
f 21���

-V-V-

1��s
� �32 2 Rsigns ��� �

� > 16/27

tunneling 

+ +

+

R

1��f

2) Strange Tunneling

At the turning point R,� =0.

��
f

i

R

R

E
eff

E dRPS

R
tunneling 

E
effP

�

�

��

�

�
�
�

	




�
�

�


 ��
��

f

RiRfs
iRPE

eff
,

2
,

ˆˆ
log

1��s � �32 2 Rsigns ��� �
��<1/2

��>1/2

fRiR

R�

Usually s+=1 and so               at the turning point. 0�E
effP

However, when s+ flips the sign + → � ,                  at R =Rf .RPE
eff ��

Something is wrong?

MR 2�

R=∞

iR

fR

O

Usual case

t

MR 2�

R=∞

iR

fR

O

Case with flipping sign
2
,
ˆ
�Rfs �

Sign flip occurs 
when 0ˆ 2

, �� �Rf

0�
�d

dt

t =constant 
foliation breaks 

down 

Alternative 
foliation

3) Foliation independent approach

� � 2222222 �� dRdtdrLdtNds ����

� � dtrLNRS t
E
shell � ��� 2

,
222 ˆˆˆ �� 1��s

� �32 2 Rsigns ��� �� �� �
�

� termsboundary
16

1 4
�gxdS E

grav �

� ��� ����� rttLtRt
E HNHLRdtdrrpdtS ��� ,,,̂

Hamilton formalism 

� �rr
L
pR

L
RRHt ˆˆ

ˆ
2

2
42 ����

�
�
�
�

�
�
� �

� ���

� �rrpRLH RLr ˆ������� ���

If we use the time coordinate in the static chart, the bulk 
term completely vanishes, but here we do not do so. 
Without fixing the gauge, we only use the constraint equations: 

0�tH 0�rH
In the bulk constraint equations can be solved as 

221 X
R
MRL �����

X
L

R
��
�

� 21 XRL ��� L
RX
�

 

Integration of the constraints across the shell gives 
junction conditions. 

� �
L
p
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Using the junction conditions, we have

At the turning point, X2=f. 

Difference from the gauge fixed approach. 
f

i
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t
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Minkowski

In this combination integrand vanishes at R=Rf

R
tunneling 

E
effP

��<1/2

��>1/2

fRiR

R�

f

i

t

t
E

eff
E drdRPS !�� ��

M2

� �� �# RPdR E
eff �

The description of quantum tunnelling in the presence of gravity shows subtleties in some cases. Here we discuss 
wormhole production in the context of the spherically symmetric thin-shell approximation. By presenting a fully 
consistent treatment based on canonical quantization, we solve a controversy present in literature. 

Action to be evaluated is 
corresponding to this area.

arXiv:1410.6202
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Stability of the wormholes
in higher dimensional spacetime

Takashi TORII（Osaka Institute of Technology）
Hisa-aki SHINKAI（Osaka Institute of Technology）

141110-14 JGRG (KIPMU) 

科研費：22540293

We investigate the stability of the simplest traversable wormhole supported by a single ghost 
scalar field in n-dimensional general relativity. This is the generalization of the Ellis solution to a 
higher-dimension. In the asymptotically flat case we reported that the wormhole is unstable 
against the linear perturbations and also in the non-linear regime. When the cosmological 
constant (c.c.) is included, there is no wormhole solution for positive c.c. Although there exists 
the solution for negative c.c., we show that the wormhole is stable against linear perturbation if 
the throat radius     is large as                       . 

B05

a a/�ads > 0.4
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�Visser, 1995 : 
If a Minkowski spacetime contains a 
compact region Ω, and if the topology of Ω 
is of the form Ω ～ R×Σ, where Σ is a 
three-manifold of the nontrivial topology, 
whose boundary has topology of the form 
Σ～ S2, and if, furthermore, the 

hypersurfaces Σ are all spacelike, then the 
region Ω contains a quasipermanent intra-
universe wormhole. 

�We employ the “naive definition”.
• Two asymptotic regions are connected.
• The spacetime has a throat structure.
• Two asymptotic regions can be the same. 
(The throat is a handle)

What is wormhole?

asymptotic region

throat

mouth

asymptotic region

2

There are some definitions of a wormhole.

A

B
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The “desirable” wormhole for passing through is
� There is no horizon for coming back.
� The tidal force should be small enough. 
� It takes finite and short proper time to passing through.
� It is constructed of physically reasonable matters.

　　　　　　（But the energy conditions are violated (Visser 1994)） 　
� perfect fluid with negative energy density
� the ghost field
� the tachyonic field（Das & Kar, 2005）
� generalized gravity

� It should be stable for perturbations at least.
� It should be possible for human being to construct it.

“desirable” wormhole

◎ Ultimately, we want to construct the desirable wormhole !

3

Let us list up the conditions of “desirable” traversable wormhole for passing through.

★ First, we should find wormhole solutions.

(Ellis 1973, Morris-Thorn 1988)
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 stable wormhole ?
� Bronnikov, et al (Grav. Coamol. 19 (2013) 269, arXiv:1312.6929) 

★In 4-dim. GR. perfect fluid and source free electro-magnetic field. 

★The pressure of the fluid is zero for the static solution. However, if we 
perturb it, the pressure appears !  

★However, the matter field must satisfy a certain EOS.
This is the key!!

4

� Kanti, Kleihaus and Kunz, (PRL107 (2011) 271101)
★In dilatonic Einstein-Gauss-Bonnet theory. 

★No exotic matter and linearly stable ! 

★However, they fix the throat radius.

Does the matter behaves like this?

The stability analysis is insufficient.

??

!!

stable wormhole
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� stabilize by the negative c.c.?
� In black hole physics, a Yang-Mills hair and a 
scalar hair can be stabilized by adding the 
negative c.c.

� If wormhole is stabilized ...

� construction of a time machine and “dokodemo 
door” may be possible theoretically.

� adS/CFT : What effects appear on the boundary 
theory in the wormhole bulk.

� Bizon & Rostworowski showed that the pure adS 
is unstable in some sense.（PRL107 (2011) 
031102）

why Λ?
5

several reasons why we consider the cosmological constant

We include the cosmological constant.

We proceed from a simple 
model step by step.

Ellis wormhole

higher-dimension

Gauss-Bonnet term

dilaton coupling

c.c.

the simplest solution

B05

B06

1080



� general relativity, n-dimensions

model & equations

ε = −1

ds2n = −f(r)dt2 + f(r)−1dr2 +R(r)2hijdx
idxj

S =

∫
dnx

√−g
[

1

2κ2n
(R−2Λ)− 1

2
ε(∇φ)2 − V (φ)

]

the line element of the (n-2)-dimensional sub-manifold.
It is assumed to be a constant curvature space with 
curvature   .k

6

massless scalar field

 (ghost)

R is the area radius.

r
R

radial 
coordinate

area radius

� static spacetime

� Λ = 0
� 4-dim：Ellis wormhole (1973)
� n-dim：T.T & Shinkai (2013)
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� Einstein equations and the Klein-Gordon equation

(n− 2)R′

R

[f ′
f

+
(n− 3)R′

R

]
− (n− 2)(n− 3)k

fR2
+
2Λ

f
= − κ2nC

2

f2R2(n−2)

(n− 2)R′′

R
=

κ2nC
2

f2R2(n−2)

①

②

③

φ′ =
C

fR2
,The Klein-Gordon equation can be integrated, and the 

scalar field is obtained by integrating the metric functions.

integration 
constant

The Einstein 
equations are 
reduced to 
two equations.

model & equations

(t, t) −n− 2

2
f2
[
2R′′

R
+
f ′R′

fR
+

(n− 3)R′2

R2

]
+

(n− 2)(n− 3)kf

2R2
−Λf =

κ2n
2
εf2φ′2,

(r, r)
n− 2

2

R′

R

[
f ′

f
+

(n− 3)R′

R

]
− (n− 2)(n− 3)k

2fR2
+
Λ

f
=
κ2n
2
εφ′2,

(i, j)
f ′′

2
+ (n− 3)f

(
R′′

R
+
f ′R′

fR
+
n− 4

2

R′2

R2

)
− (n− 3)(n− 4)k

2R2
=
κ2n
2
εfφ′2.

(KG)
1

Rn−2

(
Rn−2fφ′

)′
= 0.

7
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� regularity condition (+ symmetry) at the throat r = 0

throat radius R = a

R′ = 0

f = f0

f ′ = 0

φ = 0

8

shift symmetry

We also assume the mirror symmetry at the 
throat. We can extend the solution to non-
symmetric one.

boundary conditions

mirror sym.

� Asymptotically AdS 
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and

② κ2nC
2 = f0

[
(n− 2)(n− 3)ka2(n−3)−2Λa2(n−2)

]
� At the throat, Einstein equation ② becomes

Λ <
(n− 2)(n− 3)

2a2
k.

� For the positive c.c., k is positive and the cosmological horizon should appear. 

④

④ k = 1

① ③ φ′ → ∞, R′′ → ∞ at r = rC

� For the negative c.c.,
k = 1, 0

k = −1 ④ a >

√
(n− 2)(n− 3)

2|Λ| .

existence of solutions
9

f = 0 at r = rC

The spacetime becomes singular!

There is no regular wormhole solution for positive cosmological constant.

there is no constraint for              .

Throat radius has the lower limit.

exist exist

exist

exist

Λ = 0 Λ > 0 Λ < 0

k = 1

k = −1

k = 0 ×
×

×
×
×
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� configurations 

★ We find that they have qualitatively same 
configurations independently of their size.

configurations
(n = 4, k = 1, �ads = 1, a = 0.2− 2.0)

R

r

r

φ
a = 0.2

R

f

10

examples of the solution

The solution with red curve is 
the a=1.0 case, which implies 
that the throat radius is same 
as the adS radius.

The expansions of the 
out-going and in-going 
directions are zero at 
the throat. It can be 
regarded as a double 
trapping horizon.
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� metric ansatz

ds2
n = −f(t, r)e−2δ(t,r)dt2 + f(t, r)−1dr2 +R(t, r)2hijdxidxj

f = f0(r) + f1(r)eiωt, R = R0(r) +R1(r)eiωt,

δ = δ0(r) + δ1(r)eiωt, φ = φ0(r) + φ1(r)eiωt.

linear analysis
11

In the rest of this section, we examine the linear stability of the higher-dimensional Ellis wormhole.

We consider only the spherically symmetric perturbations.

� These functions are expanded.
The variables with 0 are the static solutions.

The variables with 1 are the perturbations.

ω is a frequency.

� By taking linear combination, we can find the single master equation. 

gauge invariant under 
spherical symmetry

ψ1 = R
n−2
2

0

(
φ1 − φ′0

R′0
R1

)
,
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� By taking linear combination, we can find the single master equation. 

perturbation equation

gauge invariant under 
spherical symmetry

ψ1 = R
n−2
2

0

(
φ1 − φ′0

R′0
R1

)
,

diverges at the throat !

The potential is positive definite.  stable 

12

V (r) =
2C2R−2n+4

0

(n− 2)f0R′20

[
(n− 3)k − 2ΛR2

0

n− 2

]
−Λf0 +

(n− 2)f0
4R2

0

[
2(n− 3)k − (n− 2)f0R

′2
0

]
.

?e 
� 0-mode solution The mode which changes the throat radius.

The 0-mode diverges at the throat. 

This divergence is canceled by the divergence of the potential function.

ψ̄1

−d
2ψ1

dr2∗
+ V (r)ψ1 = ω2ψ2
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・ Operating D+ on the eqaution and defining                   , .... 

� regularize the perturbation equation by the 0-mode 

regularization

D−D+ψ1 = ω2φ1.

Ψ1 = D+ψ1

13

the perturbation equation

� We find the regularized equation.

D± = ± d

dr
− 1

ψ̄1

ψ̄1

dr∗

−d
2Ψ1

dr2∗
+W (r)Ψ1 = ω2Ψ1

W (r) = 2f20

(
1

ψ̄1

dψ̄1

dr∗

)2

− V (r)

W

r

n = 4
l = 1

a = 1.0

a = 0.2

n = 4, �ads = 1.0

For n = 4 and lads = 1, the potential W is positive definite for a > 1. Hence these 
wormholes are stable !!
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� Solving this equation numerically, we can find a negative mode for a < 0.4. 

stable or unstable?

★ For n=4 and lads=1, 

eigenvalue of negative mode eigenfunction of the negative mode

14

Ψ
1

r

n = 4
l = 1

ω
2

a

n = 4
l = 1

a > 0.4 stable

a < 0.4 unstable
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��� ��� ��� ��� ���

����

����

����

����

����

p+ = p
+sol + a exp{−100(x+ − 0.5)2}

n = 4

dynamical evolution
15

� we add the pulse to the momentum of the ghost field, and investigate the 
evolution of the wormhole.

The throat can be considered 
as a double trapping horizon. pulse
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Summary16

Anyway, we want to construct stable wormhole solution 
because we want a dokodemo door and a time machine !!

� We derived the Ellis wormhole solution in higher dimensions including the c.c..
� For positive Lambda no solution exists.
� For negative Lambda there can be the solution with not only k=1 but k=0, -1.

� We investigated their linear stability, and found the large (               ) wormhole 
is linearly stable.

� We performed the dynamical simulation to investigate the evolution of the 
wormhole.

a/�ads > 0.4
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Wormhole Evolutions in n-dim Gauss-Bonnet gravity

@ JGRG24 workshop, IPMU, Tokyo Univ., 2014/11/10-14

Time Machine &
Science of Space-time

(HS, 2011)

http://www.is.oit.ac.jp/~shinkai/

Motivations

Results in 4-dim. GR 
PRD66 (2002) 044005

Previous Stories

WH evolution in 5/6/7-dim. 

     Hisaaki Shinkai & Takashi Torii (Osaka Inst. Technology, Japan)

　            　    真貝寿明 ＆ 鳥居隆                （大阪工業大学）

(a)  “Fate of Morris-Thorne (Ellis) wormhole” was numerically investigated in 2002. [HS & Hayward, PRD66, 044005].

     The fate is either black-hole collapse or inflationary expansion, depending on the excessed energy.

(b) The n-dimensional GR Ellis wormhole solutions are obtained. Perturbation study suggests instability. [TT & HS, PRD88 (2013), 

     064023].  Numerical evolutions in 4-6 dim confirm its instability. [HS & TT, in preparation]

(c) The wormholes in anti-de Sitter spacetime are analyzed. Perturbation study suggests instability if throat is smaller than 

     a half of AdS horizon.  Numerical evolutions support this prediction. [TT & HS, in Poster B05.]

     

poster B06

Outline & Summary
The dynamics of the simplest wormhole solutions in n-dimensional Gauss-Bonnet gravity are investigated numerically. 

The solutions catch an unstable mode, and the throat begins inflate if GB coupling term is positive, while it turns into a black-hole 

if the coupling is negative. This horizon bifurcation can be seen easily in higher-dimensional spacetime. There exists the optimized

positive coupling constant which maximizes the throat expansion. 

Field Eqs. 

in GB

in GR
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Wormhole on DGP brane 

Yoshimune Tomikawa 
Department of Mathematics, Nagoya University 

 
based on  
 Y.Tomikawa, T.Shiromizu, K.Izumi, arXiv:1409.6816, to appear in PRD 

JGRG24 Nov. 10-14 (2014) 
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 1.  Introduction 
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 Wormhole and Exotic matter 

Exotic matters are required to construct wormhole   
 
 
 

(at least for static) 

The presence of throat violates null energy condition 

M.S.Morris, K.S.Thorne (1988), D.Hochberg, M.Visser (1997) 
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-On brane, in general, gravity is modified from Einstein’s one. 

 
-Without introducing of exotic matters, we may be able to  
  construct the wormhole in the braneworld.  
 
-A candidate has been constructed recently in DGP(Dvali,  
  Gabadadze, Porrati) model. 
 

 Braneworld and wormhole 

K.Izumi, T.Shiromizu (2014) 

We examine the detail of spacetime structure on 
brane focusing on wormhole aspect 
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 2.  Setup 
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  DGP braneworld – single vacuum brane- 

�� ����
brane

)4(4

bulk

353 )(22 qRqxdrMRgxdMS c

action 

G.R.Dvali, G.Gabadadze, M.Porrati  (2000) 

braneon  metric induced
metricbulk 

scalelenth  havingconstant  a
scalePlanck  ldimensiona five

�

�

�

�

'(

'(

q
g
r
M

c
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New configuration K.Izumi, T.Shiromizu (2014) 

2
0

2212
bulk )/(1)(    ,)()( rrrfdxdxrdrrfdrfg ba

ab ����� � )*

Bulk spacetime: five dimensional Kaluza-Klein bubble  

)Sitter de dim.-3(  cosh 2
2

22 ���� dddxdx ba
ab ��)

-Brane location  
is determined by junction condition  

Bulk and vacuum single brane 

bulk 
-Single vacuum brane solution is  
 realized for  

(regular brane) 
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Induced metric on brane
K.Izumi, T.Shiromizu (2014) 

+     positivity and real  :2,

r 

throat 
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 3.  Wormhole on DGP brane 

1103



Induced metric on brane 

)Sitter de dim.-3(  cosh 2
2

22 ���� dddxdx ba
ab ��)

We examine the detail of this spacetime.  
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Location of throat 

�� cosh)(,sinh)( rrhRrrhT ��
�

�
� dr

r
rh

,
,1))(log(

)( 2
2

22222 �����- � dRdRdThds

142
0

422
min )tanh1()tanh1()( ����� ��� rrr c

0
tanh1

tanh)( 4

8
2

0
22

min .
�

.�- / �
�� rrr

Location of minimal surface on T=const.  

coordinate  ),(In  (i) r�

coordinate  ),(In  (ii) RT

Maeda, Harada, Carr’s definition (2009) 
    Throat is defined as the minimal surface in the trapped region   

22
0at    surface minimal crrrr ��� /

1)(lim �
01

rh
r

or at the bifurcating trapping horizon.   

(aymptotically flat) 
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Minimal surface depends on slice  

ab
ab

ba
ab Khkrhk

�
�

�

21~1 �
�2� �

0  ,1~ 2 ���� a
aaaa trtrr ��

bc
c

a
c
aab tttK 2�� )(�

at

ar

ar~

Location of minimal surface depends on slice 

babaabab rrttgh ���
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),(),( ����� 33

Spacetime structure on brane 

Penrose diagram 

2
2

2222 cosh ���� �� drdudurds � )/( ,� rdrddu ���

)(tanh
2
1)coshln( ,��3 ��

"
"

�
�

� u
r

null expansion rate  for outgoing/ingoing 

),( ��

trapped region

bifurcating trapping horizon 

trapped 

),( ��

trapped 

),( ��
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throat  
 

In (T,R) plane 
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No exotic, but effectively…   

)eff()4(
'('( TG �

� �)eff()eff()eff()eff()eff(
ˆˆ ,,,diag pppT r4(' �

0)21(1 2
2

)eff()eff( 5������ ,,,4 r
r

p

0)1(3 2
2

)eff( 5��� ,
r

pr

0)1(2 2
2

)eff()eff( 5������ ,,,4 r
r

pr

all energy conditions are not satisfied 

effectively energy-momentum tensor 
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Traversability -Acceleration and tidal force-  

Earth
i grca 50

2 /|~|
pc1~cm10~/    182

0 Earthgcr 6-

2
000 |~| �rR ji

|||||~|on accelerati   tidal 00
2 789- ji

i Rca

-acceleration 

-tidal force 

cm10~/)|(|    102
0 Earthgcr 76-

||7

Earthg
c : speed of light 

: acceleration on the Earth 

: size of traveler 

(depend on traveler) 
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 4.  Summary
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  Summary 

 
 
-we confirmed that wormhole spacetime is realized  
  on DGP brane. No exotic matters! 
 
-traversable wormhole is too large, say             .  
 
-a mechanism to keep the size compact?  

cm1010
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Charged multi-black strings  
in a Kaluza-Klein universe 

Hideki Ishihara, Masashi Kimura*, and Ken Matsuno 
 Department of Physics, Osaka City University 

* DAMTP, University of Cambridge 

2014/11/22 1
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Solutions 

2 

We consider the 5-dimensional Einstein-Maxwell equations: 

Exact solutions : 

: harmonics on the 4-dim. Ricci flat space 

. 
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Physical properties of Solutions 

3 

Single solution : 

. 

We investigate 
• geometrical properties of the metric,  
• motion of a test particle.  
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Geometrical Properties 

4 
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Asymptotic structure 

5 

5-dim. Kasner universe with the parameter (½, ½, ½, -½) 

At a large distance 

Expanding 3-dimensions and a contracting extra dimension 

Effectively 4-dimensional Friedmann universe 

1118



Singularities 

6 

The Kretschmann scalar : 

seems to be non singular. 
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Ingoing null geodesics 

7 

Then 

An approximate solution is 
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New coordinates 

8 

we have 

regular ! 

Metric in the coordinates is  
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Global structure 

9 

The metric 

provides the analytic extension. 

The Penrose diagram : 

The metric describes charged black string in a KK universe. 
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Staticity near horizon 

10 

the spacetime has non-degenerate horizon, and  
the size of horizon is constant during evolution of  the universe. 

the metric has the form of 

We see that  

1123



Motion of a Test Particle 

11 
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Test particles  

12 

Lagrangian of a test particle around the black string is  

Conserved quantities are 

Concentrate on a particle with 

is time dependent, and      is not conserved. 

There is no circular orbit ! 

, we have  

(The dot denotes derivative w.r.t. the proper time.) 
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0.0 0.5 1.0 1.5 2.0

0.6

0.8

1.0

1.2

1.4

Physical length 

13 

At a large distance, the 3-dimensional metric becoms 

The physical length is given by  

. 

Effective potential as the function 
of  physical radius becomes 

time 
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Quasi circular orbits 

14 

At a late stage, the cosmological expansion  

becomes small. 

Then, the scale factor can be considered as a constant 
during an orbital motion of a particle at the late stage.  

At the late stage, for a particle motion of small duration from  
a time              , we set                     .  

Under this assumption we can find quasi circular orbits by 

. 

. 

The radius of quasi circular orbit is  

. 
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Kepler’s 3rd. law 

15 

Then, the period of the particle is 

large radius 

We can define effective mass by Kepler’s 3rd law in the form, 
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Quasi ISCO 

16 

The physical radius is time dependent in the form  

Quasi Innermost Stable Circular Orbits are determined by 

. 

. 
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Numerical plot of orbits 

17 

400 200 200 400

400

200

200

400
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Conclusion 

 
� There exist quasi circular orbits which are shrinking gradually. 
� Kepler’s 3rd law almost holds.  
� Quasi ISCO can be defind. It increases as time.  

18 

� We study exact solutions which describe charged black strings in a 
dynamical Kaluza-Klein universe.  

� The metric is analytic at the horizon. 
� The spacetime admits no timelike Killing vector, but the size of 

horizon is constant.  
 
 

Geometry of the spacetime 

Motion of a test particle 
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Polarization of photons around black holes  
in non-minimally coupled  
Einstein-Maxwell theory��

Daisuke Nitta (Nagoya University)�

JGRG24 @IPMU�
�
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MOTIVATION�

Black hole observation as a test of GR.�

(Rohta Takahashi ’04)�

�Sg A* is the most promising target for the direct observation of black holes 
�An observable wave length region is sub-mm radio wave. 
  → polarizations are observed simultaneously   

Does polarization have new 
information about a theory of 
gravity?�

Black hole shadow�
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NON-MINIMALLY  COUPLED  
EINSTEIN-MAXWELL 
THEORY�

(Prasanna&Subhendra 2003)�as α<1.1×10^20 cm^2�
Today the parameter α is constrained by the solar system�

(e.g. Drummond-Hathrell effective action,   
        Horndeski vector-tensor theory)�

with R>>F^2, and we will use a vacuum solution of the Einstein 
equation       �

(Lorentz gauge)�

Lagrangian�

Field equations 
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WKB APPROXIMATION�

To derive the equation of motion for a photon, we assume that the 
Radius of curvature is much greater than photon’s wave length.  
Then the solution of the field equation is given by  �

ε<< 1 �

Geodesic equiation�

Maxwell equations in WKB approximation up to second-order give 
well known relations �

1st  order:�

2nd order:�

(                                       )�

Parallel transport of 
polarization vector �

Photon number conservation�

�Minimal coupling (α=0)  �
�
�
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� �Violation of the Equivalence principle�

� Generation of polarization�

We assume α satisfies αR << 1�

1st  order�

2nd order�

We obtain�

WKB APPROXIMATION�

�Non-minimal coupring��

�Birefringence � (Drummond&Hathrell 1979)�

1137



Stokes parameters�

Introduce null tetrad� Polarization vector�

where�

+ 
- 
1 
2�

GENERATION OF POLARIZATION�
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Introducing Ricci rotation coefficients�

GENERATION OF POLARIZATION�

where θ denotes the expansion �

Ricci rotation coefficients are determined by the following equations�

( of course the equations for γA+B are equivalent to  
                                   the Raychaudhuri equations)�

1139



we obtain�

Above equations can be solved approximately  
(note that we assume αR<< 1 ).�

GENERATION OF POLARIZATION�

where, I denotes intensity given by the homogeneous solution 
of the above equations.   �

θ�
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POLARIZATION IN SCHWARZSCHILD 
SPACE-TIME�

The Schwarzschild metric is given by �

3√3M=bc�

At the first order of α, the photons orbits are regarded as null geodesics. �

b: impact parameter �

A black hole shadow in a celestial coordinate�
���

bc=3√3M: critical impact parameter�

(G=1)�
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Riemann tensor is given by using bivectors as �

POLARIZATION IN SCHWARZSCHILD 
SPACE-TIME�

We obtain�

Then we compute the photon polarization.�

shear�

θ�

expansion�

unpolarized�

polarized�
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RESULT�

Critical impact parameter = 3√3�

q=Q/I�

b: impact parameter�
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�We obtain the geodesic equation and for  
  non-minimally coupled photons. 
 
�We compute the polarization around Schwartzshild black hole. 
 
�We would like to emphasis that these polarized photons has no 
  wave length dependence. 
  
�the polarization around Sgr A* may be contaminated by  
  synchrotron radiation. According to Bower et al. 1999,  
  this degree of polarization is ~0.01. This corresponds to  
  α~10^20 cm^2, however, these are distinguishable from  
  wave length dependence.�

SUMMARY�
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�Masaaki Takahashi (Aichi U. of Education) �

JGRG2014@IPMUB１１
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    To show the evidence of the super-massive black hole in 
our Galactic center (Sgr A* BH) by observations, I discuss 
time-variability of plasma surrounding the black hole. Here, 
I consider the emission from a hot spot orbiting around the 
black hole. For the Sgr A* BH, the accreting plasma onto the 
black hole is optically-thin, so we can observe the multiple 
images (emissions) from a hot spot. The rays from the hot 
spot are influenced by the general/special relativistic effects 
(i.e., the gravitational lens effect, gravitational redshift 
effect,  Doppler beaming effect).  By comparing the flux of 
the first and second images with the time-lag of two images, 
we can get some information of the black hole space-time.  
Thus, we can expect that more careful observations by sub-
mm VLBI and/or X-ray can probe  the existence of the black 
hole. 
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Credit: Roberts et al. NRAO / AUI ./ NSF

Credit: :  NASA Chandra X-Ray Observatory and Penn State Universityyyy.

al. Naval Research Lab,,, APOD: :: The Galactic Center in Radio Waves.

VLA : SgrA West

Chandra : SgrA 

CreCC dittttttttttttttttttttttttt:::::::::::::::::::::::::::::::: : RobR ertttttttttttttttttttsssssssssssssssss ss eeeeeeeeee eeeeeeet al. R

SgrA*

?
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�

Black Hole Shadow with Disk

How can we see the 
Central Region of Galaxy ?

Hot plasma by MHD Shock  
“Black Hole Aurora”

rotating BH in a BH Magnetosphere

For a light bending effect by the BH,  
it seems that the other side of  

the thin disk rises.

“Mirage of the space”

＜Theoretical Model＞
R.Takahashi & M.Takahashi

R.Takahashi R.Takahashi

Fast-Magnetosonic shock  
can occur near the  

event horizon 

non-rotating BH
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sub-mm VLBI telescope The place where we see the  
galaxy center very well

Place with a little quantity of steamPlace with a little 

Baseline of 1000～2000km is necessary.  

��������	
��
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Original models EHT＋pALMA ＋ Charaban submm

The whole shines.

ISCO neighborhood �

shines.

Ittt isss dddddddddddiiiiiiiiiffffffffffffffffffffffeeeeeeeeeeerrrrrrrrrrrreeeeeeeeeeennnnnnnnnnnntttttttttttt ffffffffffffrrrrrrrrrom an 
original drawingoriginal drawingorrrrrrrrriiiiiiigggggggggggiiiiiiiinnnnnnnnnnaaaaaaallllllll  dddddddddrrrrrrrrrraaaaaaaaaaaawwwwwwwwwiiiiiiiinggg.

ppIIIIIIIIIIttttttttttt  rrrrrrrrrreeeeeeeeeeepppppppppprrrrrrrrrrroooooooooooodddddddddduuuuuuuuuces an 
original imageoriginal imageooooooooooorrrrrrrriiiiiigggggggggggiiiiiiiinnnnnnnnaaaaaaaaallllllllll iiiiiiimmmmmmmmmaggge.

��������	
��



We can confirm the disk.

BHHH ssshhhhhhhhhhhhhhaadddddddddddddooooooooowwwwww ???????? BBBBBBBBBBBuuuuuuuuuttttttttt ,,,,,,,, NNNNNNNNo BBBBBBBBBHHHHH ssshhhhhadddddddoww ???????? 

Imaging simulation by the VLBI

Models Prospective Image of the accretion disk
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The information from a black hole  
space-time is obtained.

Prior to the observation of the BH shadow,,, 

１。Orbit Determination of the S２ star 

２。More inside ? …. Direct image of the BH Shadow 

３。Time variability of accreting gases！

Black Hole exploration

1177



Bright spot !  orbting a rotating Black Hole

https://www.cfa.harvard.edu:~/loeb/im.pdf

BH shadow images (theoretical)

Bottom panels include the effect of the light scattering by the electron between the star.

BH evidence   size ＋ time variability
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��

Time variability of a Hot spot 

Direct(1st) + BH Echo (2nd) + …. 

BH mass 
BH spin

Hot spot :   
        Flares on the disk surface,  
        MHD shocks in the BH magnetosphere, etc

(Fukumura+2008)

direct image

BH Echo

time-delay 
10 min

observer

source

2nd image
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The image of 
Thin Disk 

Pθ

Pφ

��������

Panton  (1977)

��	�
�	�
�
	�������
���

���������������

�������������

Solve the geodesics�
numerically. Pφ

photon orbit’s �
parameters�

Pθ

PφPP
photon orbit’s 

parameters
PθPP
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Fobs = g4 Femi
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θ = 0.25πa = 0.5m

Time-averaged Hot Spot        

= ring-like shape

� The brightness of the second 
light can be at the same level 
as primary light.�

� The image of the second is 
small, so it has a small total 
flax.�

� We may estimate the space-
time and/or disk parameters 
from a change at the time of 
the flux ratio.

������

1st

2nd

３rd

φ

φ = 0

φ = π

φ =
π

2
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θ = 0. π

a = 0. a = 0.

Flux Flux 

Time Time 

奥 1st

1st

1st

2nd

2nd

2nd

2nd

2nd

1st

1st

Δt

Δt

φ φ

φ φ

0 π−π 0 π−π

0 π−π 0 π−π

��� ��

�� ���

��

3rd

3rd
�

T

FF

dFobs
dFobs

1st

2nd

1st

2nd

front-side image

back-side image

��	�����	��

�

slow rotation rapid rotation
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rapid rotation

Flux Flux 

Time Time 

奥 1st

1st

2nd

2nd

2nd

2nd
2nd

1st

1st

Δt

Δt

φ φ

φ φ

0 π−π 0 π−π

0 π−π 0 π−π

��� ���

�� ���

��
3rd

�

T

2n

ππ

πππ

n

ππ

��	�����	��

�

Fobs
Fobs

1st
2nd

1st

2nd

θ = 0. π

a = 0. a = 0.slow rotation

front-side image

back-side image
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 !"#$%&'(

θ = 0. π
a = 0.

θ = 0. 5π

Flux Flux 

Time Time 

1st 2nd

φ φ0 π−π 0 π−π

φ φ0 π−π 0 π−π

2nd
1st

3rd

2nd

1st

3rd

Δt

dFobs
dFobs

) ��

1st

2nd

1st

2nd

    low latitude    middle latitude
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Information from BH space-time

� We have discussed the images and fluxes from a orbiting hot spot 
around a black hole. �

� We may see two (or more) images of the hot spot.  These two images 
have different brightness, flux and red shift. �

� The time-lag of two images also give us the very important 
information about the scale of the horizon (i.e., mass and spin). �

� Thus, by comparing two images, we can get some information of the 
black hole space-time, in addition to a state of the hot spot. 
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Hawking-Page phase transition in 
AdS3 and extremal CFTs 

Yasunari KURITA Kanagawa Inst. Tech.  

JGRG24@Kavli IPMU, Nov. 10-14  2014  

1 

Ref.  :  Hawking and Page, Comm.Math.Phys. 152 (1984) 220    
            Banados, Teitelboim and Zanelli,  PRL 69 (1992) 1849   
            Witten, arXiv:0706.3359,  
 
 
For multiple-BTZ: YK and Masaru Siino, PRD89, 024018 (2014) 

Collaborator Masaru Siino Tokyo Inst. Tech.  
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Contents 

-dim. pure AdS Gravity and extremal CFTs (ECFTs) 
(Witten ’07  

BTZ Black holes entropy as number of primary 
fields 
(Witten ’07) 

Emergence of Hawking-Page transition from ECFT 
partition functions 

 

2 
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Witten’s conjecture 

• ECFT has central charge c=24k, and its lowest dimension of  
primary operators is precisely k+1  
 

• A k=1 ECFT is known as FLM model. 
 
• It is not yet known whether the k>1 ECFTs exist, but this is 

fascinating conjecture! 

Witten, arXiv:0706.3359 

3 

3-dim. pure gravity with negative Λ 
corresponds to extremal CFT (ECFT) 

having Monster symmetry 

Frenkel, Lepowsky, Meurman(‘88) 

k: natural number 

(1) -dim. pure AdS Gravity and extremal CFTs  

1190



Partition functions of genus one s 

The partition functions for each k: 

4 

nome: 
Klein’s modular invariant  

moduli parameter of boundary torus 

Index 
is k 

For arbitrary each k, partition function is calculable  

where   

1191



Expansion of partition functions 

5 

Witten, arXiv:0706.3359 

For large k, good approximation!  

k=1 
k=2 
k=4 

• Note the coefficients! 
 
 
 

 
• Take log!  

(2) BTZ black hole entropy as number of primary op.  
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Entropy of BTZ black holes 

• For , Log of coefficients are nealy equals to entropy (for 
each holomorphic sector and anti-holomorphic sector ) 

• For k=1, FLM interprets 196883 as the number of primary operators. 
• Witten interprets that, including the case of k>1, the coefficients 

are the number of primary operators creating BTZ black holes. 
• Witten have also shown that it agrees with the Bekenstein-Hawking 

entropy in the limit: 

6 

Witten, arXiv:0706.3359 (2) BTZ black hole entropy as number of primary op.  
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• Free energy based on Euclidean 
classical action  
 
 
 

• Critical temperature: 
 
 

 

  
 

 

Hawking-Page transition semi-classical  

7 

3-dim. version of Hawking Page (‘84) 

 

AdS3 

BTZ phase AdS3 phase 

1194



Behavior of ECFT partition functions
low temperature limit 

• Leading behavior  
 
 

 
 
• Thermodynamical relation  

8 

  AdS3 dominant ! 

(3) Emergence of Hawking-Page in ECFT.  
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Behavior of ECFT partition functions
high temperature limit 

• Leading term (after the modular transformation)  
 
 
 
 

• Thermodynamical relation 
 

 
 

9 

  BTZ dominant ! 

(3) Emergence of Hawking-Page in ECFT.  
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Internal Energy (semi-classical)  

• The semi-classical result 

10 

AdS3 

 

We take the internal energy as order parameter  
for the Hawking-Page transition 

(3) Emergence of Hawking-Page in ECFT.  
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11 

AdS 3 

BTZ 

AdS 3 

BTZ 

• k=1 case 
 
 

• k=10 case 
 
 

It agrees with mass of AdS3 at low T and with mass of BTZ at 
high T. The transition becomes sharper with increasing k 
(corresponding to thermodynamic limit). 

Internal Energy obtained from ECFT 
partition functions we set J=0, for simplicity  

(3) Emergence of Hawking-Page in ECFT.  
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Specific heat from ECFT partition 
functions  

12 

TC 

    

k=10 case k=1 case 

TC 

The specific heat will diverge at TC in thermodynamic limit(             ).  
The internal energy will jump discontinuously at the critical temperature. 

 implies that the HP transition is a first order transition. 

(3) Emergence of Hawking-Page in ECFT.  
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Summary 
•

•

•

•

13 
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Appendix 

• Partition funcion of k=10 ECFT: 

14 
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Bimetric gravity and 
the AdS/CFT correspondence

Nomura Kouichi  (Kyoto University)

arXiv:1407.1160 [hep-th]
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We study bimetric gravity through the context of the AdS/CFT
correspondence, especially, in the first order hdrodynamic limit.
In the case of general relativity, we have the N = 4 supersymmetric
Yang-Mills plasma as the boundary field, and the transport coefficients 
are computed via the AdS/CFT correspondence.
Then, we put bimetric gravity on the bulk side, where the interaction
generates a massive graviton. We see that this massive mode leads to the 
extra divergences which are absent in the case of general relativity.
Our first investigation is how to cancel these divergences. After that, we
find the emergence of two-component fluid and calculate their pressure 
and sheer viscosity.

Abstract

1204



1. the AdS/CFT correspondnce

The correspondence between 
(d+1)-dimensional gravity theory   ↔   d-dimensional matter field theory

A lot of examples are known, but the most classic one is 
five-dimensional general relativity  ↔  four-dimensional Yang-Mills theory

Especially, in the first order hydrodynamic limit (derivative exoansion), 
we can easily calculate the transport coefficients such as sheer viscosity.

We can investigate complicated (quantum) matter field theory, 
thorough the rather simple (classical) gravity theory  

We consider an extension of this method to the case of bimetric gravity

1205



2. The case of general relativity (a short review)
We begin with the action 

� : induced metric on the AdS-boundary

K :extrinsic curvature
: spatial curvature,

Einsyein-Hilbert term

Gibbons-Hawking term

counter term

1206



(Schwarzschild AdS Black-Hole)

The background metric is set to be   

0�u
1�u

:AdS-boundary

:Black Hole Horizon

0r : constant

u=0: AdS-Boundary (t,x,y,z)

Asymptotic AdS
Space Time

u
u=1: Black Hole Horizon (t,x,y,z)

1207



We take a perturbation

This solution is substituted back into the action, 
and we obtain the on-shell action 

:field value at the AdS-boundary

and solve the EOM  

4)0(

0

2
)0(

4
)( u

r
Liu ��� ���� �� + higher order terms of u and ω

with the ingoing wave condition at the horizon

Fourier transform (t → ω)

1208



Through the AdS/CFT prescription, we obtain 
the (perturbed) enegy-momentum tensor for the boundary field theory   

On the other hand, if the boundary space-time 
is slightly distorted from the flat space-time 

the linear response of the energy momentum tensor can be written as  

Therefore, 
we conclude that 

pressure

Sheer viscosity:

and the ratio to the entropy density is

from the background(                                    )

1209



3.The case of dRGT massive gravity (16πG=1,L=1)

We add the mass 
(interaction) term

g : fixed background metric 
(Shwartzschild AdS Black-Hole)

Parameters β are chosen to reduce to the Fiertz-Pauli mass term in the linear level  

1210



We take a perturbation 

and solve the EOM
Fourier transform (t → ω)

�� BA , :ω dependent coefficient,

This solution is substituted to the action, and we encounter divergences 

1211



In order to remove the divergence, 
we introduce a new counter term

which  reduces to the Fiertz-Pauli form in the linear level  

Then, the leading divergence is removed  

but other divergent terms remain.
We eliminate them by the BF-bound like condition (                        )

and obtain the finite on-shell action

1212



We fix the remaining constant �� BA ,
the solution of the EOM should coincide with that of general relativity in the massless limit. 

by the condition that

Then, the action is

and the energy momentum tensor
for the boundary field is 

Comparing to the linear response formula, 

we find that the pressure is zero               .

However, the pressure can be calculated from the background metric 

which contradicts with our result.

:Euclidean on-shell actionES

It seems to be unphysical .

1213



4. The case of bimetric gravity

We give dynamics 
to the fixed metric  

for metric g (induced metric ϒ)

for metric f (induced metric ρ)

interaction term
new counter term 

f
f

g
g G

M
G

M
�� 16
1,

16
1 22 ��

fg MM ,(                 does not have mass dimension)
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The interaction term is given by 

and the newly introduced counter term is 

,ggg 	�� fgf 	��Under a perturbation g(     : background)
we have  

1215



We take a perturbation on the common background (Schwartzschild AdS BH)

gwhere the background     is  Schwartzschild AdS Black Hole.
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We solve the EOM and substitute the solution to the action, 
and obtain the on-shell action

The coupling between φ and ψ suggests emergence of two-component fluid.

1217



To interpret this result, we assume that there are two AdS-boundaries at u=0, 
which correspond to metric g and f respectively.  
Focusing on the boundary for g 
the field  sourced by φ has the energy momentum tensor

and the field sourced by ψ has the energy momentum tensor

we are focusing on the boundary not for f sourced by φ

�xyT )(�	

�xyT )(
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We compare these results to the linear response formula 

and read off the pressure and the sheer viscosity

for the φ sourced fluid 

and

for the ψ sourced fluid 
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The total pressure coincides with that calculated from the background

5

4
0

16 LG
r

g�
�

The entropy density of the boundary for the metric g is 
and the ratio is   

If                  , we obtain
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Black holes in non-projectable 
Horava-Lifshitz gravity

JGRG24@Kavli-IPMU 10-14/11/2014

Yosuke Misonoh (Waseda University)
 : in preparation
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abstract and contents
  We investigate the black holes solution in Lorentz violating spacetime in the 
context of Horava-Lifshitz(HL) gravity considering the higher order spacial 
curvature correction as a counter term of quantum renormalization.  It is already 
known that HL gravity in low energy (IR) limit is equivalent to Einstein-aether 
theory and the black hole solutions are already known in the context of this theory.  
However if higher order spacial curvature corrections are considered, the analysis 
becomes difficult,  that is caused by lack of null coordinate. 

In our analysis we rewrite the theory in the Stueckelberg field called khronon, 
which restore the choice of time direction.  And then, the static and spherically 
symmetric solution with higher order spacial curvature corrections is discussed by 
comparing the solution without such a correction.

P3-6 : HL gravity in khronon formalism.

P7-9 : set up.

P10 : the solution in asymptotic flat region. 

P11-13 : the definition of horizons in Lorentz violating spacetime.

P14-15 : result (example of solution)

P16 : summary

2

1225



HL action in ADM formalism

✓Gauss relation (                                                     ,                                                     )

✓Possible terms in HL action    

      time derivative :                           (2nd order)

   spacial derivative :  combination of                                            (up to 6th order)

3

γij : induced metric on Σ

Pμ
i =

∂xμ

∂yi
: projection to Σ

uμ = (N, 0, 0, 0) : unit normal to Σ

Kij =
1

2N
(∂tγij −DiNj −DjNi)R

(3)
ijkl : Riemann tensor on Σ

KijK
ij , K2

(R
(3)
ij , ai := ∂iN/N , Di)

R
(3)
ijkl = Pμ

iP
ν
jP

ρ
kP

σ
lRμνρσ +KilKjk −KikKjl

ds2 = −N2dt2 + γij(dy
i +N idt)(dyj +N jdt)

(P.Horava, 2009, D.Blas, O.Pujolas and S.Sibiryakov, 2010)
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ADM vs khronon formalism

ADM formalism

   coordinate :    

   variables :  

   foliation : a priori fixed

   null coordinate : No 

4

khronon formalism

   coordinate : 

   variables :  

   foliation : can be changed by setting 

   null coordinate :  Yes 

gμν , φ

  coordinate : 

  variables :  

  foliation : can be changed by setting 

  null coordinate :  Yes

gμν , φ

xμ (μ = 0, 1, 2, 3)

φ

yi

yj

uμ ∝ ∇μt xi

xj
uμ ∝ ∇μφ

Σ(φ)

x0

N ,N i , γij

   coordinate :    

    variables :  

  foliation : a priori fixed

   null coordinate : No

N ,N i , γij

t, yi(i = 1, 2, 3)

Null coordinate is prohibited in HL gravity

1227



Stueckelberg formalism in HL gravity in IR

ADM formalism

5

IR limit of HL gravity

khronon theory (restricted Einstein-aether )

Skh =
1

16πGkh

∫
d4x
√−g

[
R− c1

(∇αu
β
)
(∇αuβ)− c2 (∇ · u)2 − c3

(∇αu
β
)
(∇βu

α) + c4a
2
]
,

uμ := ∇μφ/
√
−(∇αφ)(∇αφ) : twistless timilike unit normal to Σ

aμ := uα(∇αu
μ),

α := c14/(1− c13) , cij := ci + cj

SHL =
1

16πGHL

∫
dtd3y

√
γN

[
KijKij − λK2 + g1R

(3) + αa2
]
,

GHL := Gkh/(1− c13) , λ := (1 + c2)/(1− c13) , g1 := 1/(1− c13) ,

(T.Jacobson, 2010)

khronon theory is equivalent to HL gravity in IR region

1228



The theory we consider is :

khronon formalism

6

full HL gravity

full HL gravity with khronon

SHL =
1

16πGHL

∫
dtd3x

√
γN

[
KijKij − λK2 + g1R

(3) + αa2 + Vhigher[R(3)
ij , ai, Di]

]
,

Vhigher : higer spacial derivative terms (up to 6th order)

uμ := ∇μφ/
√
−(∇αφ)(∇αφ) : twistless timilike unit normal to Σ

Rμν [gμν , φ], Kμν [gμν , φ] : 3D Ricci tensor and extrinsic curvature associated with gμν , φ

SkhHL =
1

16πGHL

∫
d4x
√−g [KijKij − λK2 + g1R+ αa2 + Vhigher[Rμν , aμ,Dμ]

]
,

Vhigher : higer spacial derivative terms (up to 6th order)

α := c14/(1− c13) , cij := ci + cj

GHL := Gkh/(1− c13) , λ := (1 + c2)/(1− c13) , g1 := 1/(1− c13) ,

1229



action
In khronon formalism, 3-quantites can be written by (                            )

where,                                   , and         is a tensor on Σ. 

for simplicity, we consider       terms as higher order spacial derivative. 

 

 

7

for simplicity, we consider       terms as higher order spacial derivative. 

aμ := uα(∇αuμ) , DμAνρ... := P α
μ P β

ν · · · (∇αAβ...)

Rμν = P β
μP

δ
νP

γ
αR

α
βγδ +KμαKα

ν −KKμν

Aβ...Kμν := Pα
μP

β
ν (∇αuβ) (C.Germani et.al. 2009, etc…)

Rn

S =
1

2κ2

∫
d4x
√−g [KμνKμν − λK2 + g1R+ αa2 + Vhigher[Rμν , aμ,Dμ]

]
,

R = R− (∇αuβ)(∇βuα) + (∇ · u)2 + 2∇α[a
α − uα(∇ · u)]

Vhigher[Rμν , aμ,Dμ] = g2R2 + g5R3

Pμ
ν := δμν + uμuν

λ := (1 + c2)/(1− c13) , g1 := 1/(1− c13) , α := c14/(1− c13)
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8

theory variables aether higher spacial 
derivative

null 
coordinate e.o.m

Einstein-aether N/A possible

khronon 
theory 

(IR-HL gravity)
N/A possible

full HL gravity impossible

full HL gravity  
with khronon possibleRμν , aμ ,Dμ

R
(3)
ij , ai , Di

gμν , u
μ

N ,N i , γij

gμν , φ

gμν , φ

Eμν − (Æαu
α)uμuν = 0

(gμα + uμuα)Æ
α = 0

u2 = −1

uμ = Nδtμ

uμ =
∇μφ√−(∇αφ)(∇αφ)

uμ =
∇μφ√−(∇αφ)(∇αφ)

Eμν + uμuν(Æαu
α)

+2Æ(μuν) = 0 ,

∇μ

[
(gμν + uμuν)Æν√−gαβ(∂αφ)(∂βφ)

]
= 0

∇μ

[
(gμν + uμuν)(Æν + Vν)√−gαβ(∂αφ)(∂βφ)

]
= 0

Eμν + Vμν + uμuν(Æα + Vα)uα

S =
1

16πG

∫
d4x
√−g

[
R−Mμν

αβ (∇μu
α)

(∇νu
β
)]

δS=
1

16πG

∫
d4x
√−g [Eμν(δg

μν) + 2Æμ(δu
μ)] δS̃=

1

16πG

∫
d4x
√−g [(Eμν + Vμν)(δgμν) + 2(Æμ + Vμ)(δuμ)]

S̃ =
1

16πG

∫
d4x
√−g

[
R−Mμν

αβ (∇μu
α)

(∇νu
β
)
+ V[∂6

i ]
]

+2[Æ(μ + V(μ]uν) = 0 ,

δS̃

δN
= 0 ,

δS̃

δN i
= 0 ,

δS̃

δγij
= 0 ,
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spherically symmetric spacetime
✓ansatz : spherically symmetric spacetime in Eddington-Finkelstein coordinate

(1)      is determined by norm fixed condition             .

(2)  In spherical symmetric spacetime, these two equations are equivalent.

9

uμ =

(
a(r) ,

a(r)2T (r)− 1

2a(r)B(r)
, 0, 0

)

ur u2 = −1

uμ =

(
a(r) ,

a(r)2T (r)− 1

2a(r)B(r)
, 0, 0

)

∇μ

[
(gμν + uμuν)(Æν + Vν)√−gαβ(∂αφ)(∂βφ)

]
= 0

Eμν + Vμν + uμuν(Æα + Vα)uα

+2[Æ(μ + V(μ]uν) = 0 ,Eμν + Vμν + uμuν(Æα + Vα)uα = 0 ,

(δ α
μ + uμu

α)(Æα + Vα) = 0 , ∇μ

[
(gμν + uμuν)(Æν + Vν)√−gαβ(∂αφ)(∂β∂ φ)

]
= 0

Eμν + VμV ν + uμuν(Æα + VαVV )uα

+2[Æ(μ + V(μ]uν) = 0 ,Eμν + VμV ν + uμuν(Æα + VαVV )uα = 0 ,,,,,,,

(δ α
μ + uμu

α)(Æα + VαVV ) = 0 ,
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perturbative solution around asymptotic flat region

explicit form of asymptotic solution up to 4th order

 then, it is confirmed that…

(1) every function depends on only t1 and a2 (at least up to 8th order).

(2) g2 first appears in 4th order.

(3) g5 first appears in 8th order.

10

T (r) = 1 +
t1
r
+

(
t31c14
48

)
1

r3
+

[
c14{(19 + 4c14)t

4
1 − 144t21a2 + 192a22 + 384g2t

2
1}

192(2− c14)

]
1

r4
+ · · ·

B(r) = 1 +

(
c14t

2
1

16

)
1

r2
−

(
c14t

3
1

12

)
1

r3
+

[
c14{3(c214 + 14c14 + 4)t41 − 576t21a2 + 768a22 + 512(2c14 − 1)g2t

2
1}

512(c14 − 2)

]
1

r4
+ · · ·

+
[5c2{5c14(2c14 − 1) + 24}+ 18c14(c14 − 2)]t41 + 48[{c14(c14 − 2) + 10c2(c14 − 5)}a2 + 40g2c14c2]t

2
1 − 1920c2(c

1920c2(2− c14)

a(r) = 1− t1
2r

+
a2
r2
−

[
(c14 − 6)t31 + 96t1a2

96

]
1

r3

14 − 1)g2a
2
2 1

r4
+ · · ·

1) t

1)

84g t

higher order curvature correction g2
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“time rescaling”

stretching out coordinate along 

their inverse are given by 

under this transformation, form of the action is invariant.

However, the value of coupling constants                   are changed.

11

g′μν = gμν + (1− σ)uμuν , u
′μ =

1√
σ
uμ

g′μν = gμν +

(
1− 1

σ

)
uμuν , u′

μ =
√
σuμ

uμ

λ , g1 and α

1234



horizon for gravitons in Einstein-aether or IR limit of HL

following transformation does not change the action except coupling constants 

that is, 

which gives, 

thus,  the location of horizon for spin-i graviton given by

                                                                                                                  . 12

(s′i)
2 = (si)

2/σ

c′14 = c14 , c′123 = σc123 , c′13 − 1 = σ(c13 − 1) , c′1 − c′3 − 1 = σ−1(c′1 − c′3 − 1)

Sæ =
1

16πG

∫
d4x
√−g

[
R− c1

(∇αu
β
)
(∇αuβ)− c2 (∇ · u)2 − c3

(∇αu
β
)
(∇βu

α) + c4a
2
]
,

u2 = −1 and si gives the sound speed of spin i graviton.-

(s2)
2 =

1

1− c13
, (s1)

2 =
(c13 − 1)(c1 − c3 − 1)− 1

2c14(c13 − 1)
, (s0)

2 =
c123(2− c14)

c14(1− c13)(2+ c13 + 3c2)

g′μν = gμν + (1− σ)uμuν , u
′μ =

1√
σ
uμ

(B.Z.Foster,2005)

g(i)00 := g00 + [1− (si)
2]u0u0 = 0
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horizon for particle with infinite speed : universal horizon

13

UV limit
ua

particle trajectory

ω2 ∼ k6 =⇒ s2 →∞ for k →∞

ua

particle trajectory

: universal horizon

IR limit
ua

particle trajectory

ω2 ∼ k2 =⇒ s2 ∼ 1

UV limit

13

If there are the location s.t.               , 

no particle can escape from inside 

the region even if its speed is infinite.

(u · χ) = 0
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✓spherical solution without spin-0 horizon

 

 there is double spin-2 horizon, however no spin-0 horizon…

essentially naked singularity

solution (g2=g5=0)

14

1 2 3 4

�1.0

�0.5

0.5

1.0

1.5

B(r)

a(r)

g(0)00

(u · χ)
λ = 279/250 , α = 51/1000 , g1 = 1 ,

g2 = g5 = 0 ,

t1 = −1 , a2 = −1/10 .

(s2)
2 = 1 , (s2)

2 = 56521/29937 ,

(C. Elling and T. Jacobson 2006)
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✓spherical solution with spin-2, 0 horizon (                                     )

 

✓horizon for low-energy graviton : 

there are triple spin-2 horizon and single spin-0 horizon

✓horizon for high-energy graviton :

universal horizon seems to appear, however it is irregular.

solution with higher order spacial curvature

15

B(r)

a(r)

g(0)00

(u · χ)

1 2 3 4

�1.0

�0.5

0.5

1.0

1.5

2.0

B(r)

a(r)

g(0)00

(u · χ)

0.15 0.20 0.25 0.30 0.35 0.40

�0.1

0.1

0.2

0.3

0.4

0.5

g2 = 5.0× 10−8 , g5 = 0 .
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summary and future work

• We consider the HL gravity in khronon formalism considering higher order 
spacial curvature corrections.

• The effect of such a correction to the static and spherically symmetric black 
hole is studied.

- outside the horizon, there is little effect, on the other hand, near or inside 
the horizon, the spacetime structure drastically changed.

- we find the black holes solution in IR region, however, it has irregular 
horizon for high-energy particle. 

• Can we impose the regularity on the horizon for high-energy particle?

• How about the effect from other types of correction such as 

16

RμνRμν , ...

1239



 

 

 

 

 

 

“Relativistic Sagnac effect by CS gravity” 

Daiki Kikuchi (Hirosaki) 

[JGRG24(2014)P35] 

 

  

1240



PRD in press

Relativistic Sagnac effect by CS gravity

Daiki Kikuchi

Hirosaki University, Japan
with N. Omoto, K. Yamada, and H. Asada (Hirosaki)

JGRG24 in Kavli IPMU Nov. 10 - 14, 2014
Abstract: We discuss relativistic Sagnac effect in Chern-Simons (CS) modified gravity [1]. In particular, we examine possible altitudinal, latitudinal, and

directional dependence comparing the CS effects with the general relativistic Lense-Thirring (LT) effects.

1 Motivation

The Chern-Simons (CS) correction is one of themost interestingmodified gravitymodels.

• The CS modification motivated by both string theory and quantum gravity.

• A possible constraint by neutron interferometers has recently been studied [2, 3].

⇒ We improve the previous results regarding two points[1].

• a point-like spinning object [4] → an extended one [5]

• neutron interferometers → Optical (Sagnac) one

2 Relativistic Sagnac effect

©The time shift cΔt is given by the relativistic version of Sagnac effect

cΔt = −2
∮
C

g0i
g00

dxi = −2
∫
S

(
�∇× �h

)
· �NIdS +O(h2). (1)(

gμν = ημν + hμν ⇒ �h ≡ h0i = (h01, h02, h03)
)

C : a clockwise closed path of a light beam, S : the area of the Sagnac interferometer
�NI : unit normal vector

3 Time shift and Chern-Simons(CS)modified gravity

©The action of CS gravity theory [5]

S =

∫
d4x
√−g

[
− 1

2κ2
R+

�

12
θRR̃− 1

2
(∂θ)

2 − V (θ) + Lmat

]
, (2)

κ2 =
8πG

c4
, RR̃ ≡ Rα

β
γδRβ

αγδ =
1

2
εγδμνRα

βμνR
β

αγδ.

� : the parameter of the theory , θ : the scalar field

©The metric as the weak-field solution by Earth (extended source)

�hLT =
4GMEr2E
5c3r2

(�n× �ω) . (3)

�hCS =
12GME

mCSc3rE
[C1(r)�ω + C2(r)�n× �ω + C3(r)�n× (�n× �ω)] , mCS ≡ − 3

�κ2θ̇
. (4)

�ω : angular velocity vector, �n : unit vertical vector

©The time shift

(cΔt)LT =
8GMErE

2S

5c3r3
�NI · [2�ω − 3�ρ] . (5)

(cΔt)CS =
24GMES

c3rE
�NI ·

[
D1(r)�ω −D2(r)�λ−D3(r)�ρ

]
. (6)

where �ρ ≡ �n× (�ω × �n), �λ ≡ �ω × �n. r ≥ rE ,

C1(r) =
2rE

3

15r3
+

2rE
r

j2(mCSrE)y1(mCSr), D1(r) =
2rE
r

j2(mCSrE)y1(mCSr),

C2(r) = mCSrEj2(mCSrE)y1(mCSr), D2(r) = mCSrEj2(mCSrE)y1(mCSr),

C3(r) =
rE

3

5r3
+mCSrEj2(mCSrE)y2(mCSr), D3(r) = mCSrEj2(mCSrE)y2(mCSr).

(7)

jn(z), yn(z) : spherical Bessel function of the first and second kind, respectively

⇒ (5) and (6) depend on interferometers’

latitude (�ρ,�λ), direction ( �NI), and altitude (r).

Figure 1: Sagnac interferometer on Earth and related vectors.

4 Dependence of time shift

©The angular part of (cΔt)LT
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©The angular part of (cΔt)CS
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Figure 2: Contour maps for the latitudinal and directional dependence of time shift.

© (cΔt)CS/(cΔt)LT
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Figure 3: The ratio of
(cΔt)CS

(cΔt)LT
at the equatorial case and the northbound direction.

5 Order of magnitude estimation

©The strain of the time shift

(cΔt)LT√
S

∼ 10−21

( √
S

10m

)
(8)

(cΔt)CS√
S

∼ 10−22

( √
S

10m

)(
0.01km−1

mCS

)
(9)

� GINGER experiment will measure LT effect with 1 % accuracy by reducing various

sources of noises [6] .

6 Conclusion

We investigated relativistic Sagnac effects in CS modified gravity.

〈The latitudinal and directional dependence 〉
LT effects on the eastbound interferometer cancel out.

⇒ The eastbound Sagnac interferometer might be preferred for testing CS separately.

〈The altitudinal dependence〉
The altitudinal effect makes a more complicated form of oscillating behavior in terms

of mCS at the ISS site compared with the ground level.

⇒ Space experiments might place tighter constraints on mCS .
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Disformal transformation of 
cosmological perturbations

Masato Minamitsuji (IST, University of Lisbon)
Physics Letters B 737 (2014) 139-150
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Inflation and Modifications of GR

�Models with nonminimal coupling
� � �� � � � � 	 � 
� � � � �

� Frame independence of observables

� Explaining flatness and homogeneity of the Universe
� Generating successful seed of Large Scale Structures

Inflation

� Comfortably consistent with observation data

2

� Ubiquitous in high energy physics

Planck (13)

� Supported by observations.

Bezrukov and Shaposhnikov (08) Starobinsky (81)
String theory                    Renormalization                 Higher curvature theory
Copeland, Easther and Wands (97) 


 ��� � ������ � �
�

��� ��
��

Comoving curvature perturbation  �� (� ��

�
)  

Makino and Sasaki (86), Chiba and Yamaguchi (08), Gong, et.al (11)

���������	�
����
�
in the convenient Einstein frame

Kallosh and Linde (13,14)
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The Horndeski Scalar-Tensor Theory

Realistic models of Inflation, Dark Energy and Modified Gravity
belong to the Horndeski scalar-tensor theory.

Horndeski (74), Deffayet, Esposito-Farese & Vikman (09), Kobayashi,  Yamaguchi & Yokoyama (11) 

3

�Most general scalar-tensor theory with 2nd order EOMs.

 Ghost-free
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Framing the Horndeski theory

4

� Conformal transformation   
can frame the scalar-tensor theory with nonminimal coupling � � �

�Disformal transformation

The theory written in terms of ���� belongs to another class of the Horndeski theory.

Bettoni & Liberati (13)�

� The Horndeski theory is framed within the disformal transformation  
Bekenstein (93)

C.f. Framing the scalar-tensor theory beyond Horndeski. Zumalacárregui & Garcia-Bellido (13)
Gleyzes, Langlois, Piazza & Vernizzi (14)

The transformation including up to the 1st order derivative of �

� Here we will restrict to the class of the Horndeski theory.
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Disformal Transformation Bekenstein (93) Bettoni & Liberati (13)

5

� ��� � ������
���� �  

�Disformal transformation modifies the causal structure of spacetime
� Keeping causality for the conformal part ! "  

#� : a null vector field in the barred frame

Timelike in the original frame

Spacelike in the original frame

��

�$ % "  

�$ % �  

#�

� Lorentz signature, causal behavior and invertibility
��&& �  ��&& �  

!�&& ' %�&
� �  % �  ! � (%) "  

����#
�#� �  

% "  
 ���#
�#� �  

% �  
 ���#
�#� "  

� �� "  




1247



Disformal Coupling to the Matter Sector 

�Gravity and Matter frames related by the disformal relation.    

Gravity frame Matter frame 

6

Gravity sector 
(Horndeski theory)

Matter sector 
(disformally coupled)

� The energy-momentum is not conserved in gravity frame but in matter frame.

� We will investigate the relation of curvature perturbations associated with 
the scalar and matter fields between frames and their evolution.
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Disformal Inflation
� Deceleration in the gravity frame : ! � * % � �

+

,-

��� � ���� ' �
�
.�/0��

/��0

Kaloper (04)

� � �& '12 34 �

� ��� 5 ��6� ' 78 9�/0��
/��0

Inflation in the matter frame

� �� cannot be the responsible source for curvature perturbations. 

� Density perturbations should be sourced by matter 
propagating on the matter frame

�, � � �� � ����
�:
�: �1;
�:� 1; < �



� 5  

7

Taken from hep-ph/0312002 


 In general, both scalar field and matter contribute to density perturbations.

=

Need of a general formulation of cosmological perturbations

���
1�

>12
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Perturbations in the Gravity Sector

� Perturbed FLRW universe in the gravity frame

8

� Perturbed FLRW universe in the matter frame

� Curvature perturbations from the inflaton fluctuations 

� � �� � � �� � � �� 	 
 �	 � 
 ��� 
� � � � � ����� ��� � ��; 

Relating frames
Proper time in matter frame
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� Gauge-invariant metric perturbations

Relating frames 

9

Comoving curvature perturbation ��
� (� ��

�
) is disformally invariant

as well as conformally invariant.

���
�

� ��
�

� may be evaluated in any disformally related frames.
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� The non-interacting fluids

Perturbations in the Matter Sector

� Background

10

� Perturbations are also related, as   
Disformal transformation keeps the structure of the energy-momentum tensors.

Kaloper (04)

�Disformally coupled matter could be the dominant source 
of density perturbations via the curvaton mechanism

��������	
��
������	���	���	������	�����	
������
�����
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�Curvature perturbation in the uniform energy density hypersurface

11

Gravity frame

Matter frame

�

�

Curvature perturbations in two frames are not equivalent 
by the isocurvature perturbations associated with the scalar field.

Not suppressed on superhorizon scales
in the presence of disformal coupling
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Evolution of Curvature Perturbations

12

� In the gravity frame

 ! "� #$
!
�

�$
!

�% !
#%

!

Entropy perturbation

�

� In the matter frame

� ! "� # 
$
!
�


$
& �'

!

�%
& �'

!
# �%

!

Entropy perturbation

Wands, Malik, Lyth and Liddle (00)

�

Sourcing by the coupling 
to the scalar field 

(�
!
" )*+,-./012 234312315 +/3667+73158
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13

� The adiabaticity conditions in both frames are not equivalent:
� ! � 9:  ! � 9

Conservation in the matter frame does not lead to that in gravity frame

�

� Curvature perturbation should be finally evaluated in the matter frame
where CMB photons propagate along the null geodesics.
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Summary

14

�Disformal transformation can frame the Horndeski theory: 

� Curvature perturbations associated with matter are not equivalent, 
but straightforwardly related between frames.

;<=> � � � <=> ? � � @=�@>�

� Comoving curvature perturbation ��
� is disformally invariant.

� Vector and tensor perturbations, and tensor-to-scalar ratio 
are manifestly disformally invariant.  

A Conformal transformation ;<=> � � � <=>
for the ordinary nonminimally coupling B � �
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New model of massive spin-2 on curved space-time

Fierzrz-z-Pauli theory

Application of the new modelpppppppppppppppppppp

1. SUSY breaking

One of the SUSY breaking model uses V.E.V of a scalar field theory 
with the potential because V.E.V of the scalar field does not break 
the isotropy. 

Interactinonn of massive spinn-n-2 theories

Ghost-free interaction for Fierz-Pauli theory

d : the number of derivatives,     n: the number of the field

is products of Minkowski metrics anti-symmetrized over ν

Hinterbichler, JHEP 10 (2013) 102

In 4 dimensions, there exist 3 interaction terms

From the ghost-free interaction terms, we construct a new 
model of massive spin-2 particles. 

New model of massive spin-2 in flat space-time

μ , : coupling constants.

The V.E.V of the trace part of the rank 2 tensor can break
SUSY keeping the isotropy. 

Derivative interaction

New non-minimal coupling terms

Is this interaction ghost-free on the Einstein manifold?

Phys.Rev.D90 (2014) 043006, arXiv : 1410. 5553

Yuichi Ohara (QG lab. Nagoya univ.)
This work is in collaboration  with Satoshi Akagi and Shin’ichi Nojiri

Counting d.o.f in the lagrangian formalism 

e.o.m

Primary constraint 

Secondary constraint

2. BH physics, Cosmology

We have to consider  whether a ghost appears or not when 
the model is coupled with gravity.

Before considering the application……

The second time derivatives are not defined for and .

do not contain any time derivative of 

does not contain any time derivative of 

( and give and respectively.)

10 constraints for and and the system has 5 d.o.f

� h is not the perturbation of g but a independent tensor field of g

� Non-minimal couplings and the restriction of the space-time are 
required for the ghost-free property.

should not contain any time derivative of for the ghost-free 
property.  Then, can we eliminate using the non-minimal 
coupling terms? 

The derivative interaction induces a ghost.

The system has 5 degrees of freedom thanks to the Fierz-Pauli mass term.

Ghostst-t-free model in curved spacee-e-time

Here the background metric satisfies

We eliminate in by tuning and 

We confirmed this term is really ghost-free on the Einstein manifold 
by repeating the above procedure.

We also obtain the following new interaction terms 

Can we have non-minimal coupling terms with the Weyl tensor?

C : Weyl tensor
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S E I J U  O H A S H I  ( K E K )  

 

W I T H  

N O R I H I R O  T A N A H A S H I  ( C A M B R I D G E )  

T S U T O M U  K O B A Y A S H I ( R I K K Y O  U N I V . )  

M A S A H I D E  Y A M A G U C H I ( T I T E C H )  

Multi-Scalar Extension of 
Horndeski Theory�
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1.Introduction�

�  Horndeki Theory is the most general single-scalar tensor 
theory with second order field equations.  

 

�  That gives us theoretical framework to describe  all 
single-scalar tensor theory in a unified manner. 

�  Recently, Horndeski theory has been extensively studied  
in the context of inflation. 

L = G2(X,φ)−G3(X,φ)�φ +G4(X,φ)R+
∂G4

∂X

[
(�φ)2 − (∇μ∇νφ)

2
]

+G5(X,φ)Gμν∇μ∇νφ− 1

6

∂G5

∂X

[
(�φ)3 − 3�φ(∇μ∇νφ)

2 + 2(∇μ∇νφ)
3
]

X := −∂μφ∂
μφ/2where�
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2.Introduction�

�  Aim is to give more general theoretical framework, and  
to apply them to multi-field inflationary scenario. 

�  Straightforward generalization of Horndeski theory into 
multi-scalar field (covariant multi-Galileon) 

�  The theory is NOT the most general theory ! 

L = G2(X
IJ , φK)−G3L(X

IJ , φK)�φL +G4(X
IJ , φK)R

+G4,〈IJ〉

(
�φI

�φJ −∇μ∇νφ
I∇μ∇νφJ

)
+G5L(X

IJ , φK)Gμν∇μ∇νφ
L

−1

6
G5I,〈JK〉

[
�φI

�φJ
�φK − 3�φ(I∇μ∇νφ

J∇μ∇νφK) + 2∇μ∇νφ
I∇ν∇λφJ∇λ∇μφK

]

XIJ := −1

2
∂μφ

I∂μφJwhere�

[Tsutomu Kobayashi, Norihiro Tanahashi and Masahide Yamaguchi,PRD(2013) ]�
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3.Introduction�

 

�  What is the most general multi-scalar tensor theory with 
2nd order field equations ? 

�  We constructed the most general two-scalar + gravity 
theory with 2nd order field equations in four dimension. �

[SO, Tanahashi, Kobayashi and Yamaguchi ]�
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4.Assumption�

�  Two-scalar field extension of Horndeski Theory  

(i) The system has covariant Lagrangian 

(ii) The field equations are 2nd order �

L = L(g, ∂g, . . . , ∂pg, φI , ∂φI , . . . , ∂
qIφI)

I = 1, 2 p, qI ≥ 2

δL
δgab

≡ Eab(g, ∂g, ∂2g, φI , ∂φI , ∂
2φI)

δL
δφI

≡ EI(g, ∂g, ∂
2g, φJ , ∂φJ , ∂

2φJ)
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5.Constraints from covariance�

�   Covariance  

�  Constraints from covariance  

= 0δ

∫
Ld4x =

∫ (
∇aEab −

2∑
I=1

1

2
EI∇bφI

)
ξbd4x

Eab ≡ δL
δgab

EI ≡ δL
δφI

xa → xa + ξa

∇bE
ab =

2∑
I=1

1

2
EI∇aφI

Coordinate transformation�
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6.Constraints from covariance�

�  Right-hand side is 2nd order 
�  Left-hand side is 3rd order in general 

�  Left-hand side is also 2nd order�

∇bE
ab =

2∑
I=1

1

2
EI∇aφI

3rd order� 2nd order�
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Outline of Construction�

�  Starting from field equations 

�  No 3rd derivative conditions 

�  General covariance conditions   

Eab = Eab(g, ∂g, ∂
2g, φI , ∂φI , ∂

2φI)

EI = EI(g, ∂g, ∂
2g, φJ , ∂φJ , ∂

2φJ)

∂∇bE
ab

∂gcd,efg
= 0

∂∇bE
ab

∂φI ,cde
= 0

∇bE
ab =

2∑
I=1

1

2
EI∇aφI
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7.No 3rd derivative conditions�

∂∇bE
ab

∂gcd,efg
= 0

∂∇bE
ab

∂φI ,cde
= 0

•  These conditions are equivalent to�
∂2Eab

∂gcd,ef ∂ghi,jk
= 0

∂3Eab

∂gcd,ef ∂φI ,hi ∂φJ ,jk
= 0

∂4Eab

∂φI ,cd ∂φJ ,ef ∂φK,hi ∂φK,jk
= 0

•  We can determine the structure of field equations 
     by integrating above equations�
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8.No 3rd derivative conditions�

�������������	
���������
���
���	
��

�������
�������������	
���������
���
���	
��

������

∂

∂gc1c2,c3c4

∂

∂gc5c6,c7c8
Eab = 0

Eab = ξ̃abc1c2c3c4gc1c2,c3c4 + ξ̃ab

= ξabc1c2c3c4Rc3c1c2c4 + ξab
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9.No 3rd derivative conditions�

�  By integration, 

�  38 arbitrary function of      and � XIJ = ∂aφI∂aφJwhere�

Ea
b = Aδab +

2∑
I,J=1

AIJφI
aφJ b +

2∑
I=1

BIδ
ac
bdφI

d
c +

2∑
I,J,K=1

CIJKδacebdf φI cφJ
dφK

f
e

+

2∑
I,J,K,L,M=1

DIJKLMδacegbdfhφI cφJ
dφKeφL

fφM
h
g

+

2∑
I,J,K,L,M=1

EIJKLMδacegbdfhεcepqφI
pφJ

qφK
dφL

fφM
h
g

+

2∑
I,J=1

GIJδ
ace
bdf φI

d
cφJ

f
e +

2∑
I,J,K,L=1

HIJKLδ
aceg
bdfhφI cφJ

dφK
f
eφL

h
g + Iδacebdf R

df
ce

+
2∑

I,J=1

JIJδ
aceg
bdfhφI cφJ

dRfh
eg +

2∑
I=1

KIδ
aceg
bdfhφI

d
cR

fh
eg +

2∑
I,J,K=1

LIJKδacegbdfhφI
d
cφJ

e
fφK

h
g

XIJφI
a
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10.General covariance conditions�

�  Divergence of field equation is proportional to gradient 
of scalar field.  

�  These conditions determine the relations between 
functions and reduce the number of arbitrary functions�

∇bE
ab =

2∑
I=1

1

2
EI∇aφI

e.g.�

GIJ =2JIJ −
(
∂KI

∂φJ
+

∂KJ

∂φI

)
−

2∑
K,L=1

HKLIJφKL

LIJK = −4

9

(
∂KI

∂XJK
+

∂KJ

∂XIK
+

∂KK

∂XIJ

)
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11.Most general field equation with 2nd order�

�  12 arbitrary functions (6 arbitrary function in Gen. 
Cov. Multi-Galileon) 

Ea
b = Aδab +

2∑
I,J=1

AIJφI
aφJ b +Gδacebdf R

df
ce − 4

2∑
I,J=1

∂G

∂XIJ
δacebdf φI

d
cφJ

f
e

+

2∑
I=1

(
− 4

∂G

∂φI
−

2∑
J,K=1

(
CJKI − 4

∂JIJ
∂φK

+ 4
∂JJK
∂φI

)
φJK − 2

2∑
J,K,L,M=1

DJKLMIXJKXLM

)
δacbdφI

d
c

+
2∑

I,J,K=1

CIJKδacebdf φI cφJ
dφK

f
e +

2∑
I,J,K,L,M=1

DIJKLMδacegbdfhφI cφJ
dφKeφL

fφM
h
g

+
2∑

I,J=1

JIJδ
aceg
bdfhφI cφJ

dRfh
eg − 4

2∑
I,J,K,L=1

∂JIK
∂XJL

δacegbdfhφI cφJ
dφK

f
eφL

h
g

+
2∑

I=1

KIδ
aceg
bdfhφI

d
cR

fh
eg − 4

3

2∑
I,J,K=1

∂KI

∂XJK
δacegbdfhφI

d
cφJ

e
fφK

h
g
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Summary�

��
�  We studied the multi-scalar generalization of 

Horndeski theory. 

�  We derived most general EoM for two-scalar + 
gravity theory.  

 
�  Finding Lagrangian is in progress 
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