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Gravitational radiation reaction to the Lagrange’s solution of
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HIROSAKI
UNIVERSITY

the three-body problem I:Reaction force

Kouta Iseki

Hirosaki University, Japan
with N.Harada, K.Yamada, H.Asada(Hirosaki)

JGRG24 in IPMU Nov. 10-14, 2014
Abstract: This poster gives an explicit expression for the reaction force of the Gravitational waves in the Lagrange’s solution.

1 Introduction

Gravitational waves

Figure 1: Lagrange’s solution

+ Gravitational waves from the Lagrange’s solution have been studied in [1,2,3],
but the radiation reaction on the solution is not fully discussed.
— we examine the effect of the GW emission on the Lagrange’s solution by adding
the 2.5 post-Newtonian terms into EoM.
+ As a Part I, As a result, this poster presents an explicit expression for the reaction
force(Poster by Harada as a Part II will discuss an orbital evolution).
+ In the following, we take the unit of G=c=1.

N\

2 Radiation reaction by Gravitational waves

Radiation reaction potential in the Gravitational waves emission is expressed as [4]
_ 1dF;
C 5 dtb

The reaction force around the unit mass in the Gravitational waves emission is
expressed as

xiad (1)

2d°L;;
_ g, 2%, 2
a; et 2
Here,
1 ;
+ij = Lij — 30510 ()

is the reduced quadrupole moment, and

N

Iy = Z MATATA; = /pxixjdsz (4)
A=1

is quantity called the quadrupole moment. In other words, a (2) is obtained if a
(4) can calculate.

3 Two-body system

At first, we consider a two-body system in circular motion.

Iy

Figure 2: Two-body system in circular motion with angular velocity w in xy plane.

p
‘We take the origin in the center of mass. my is mass of the heavenly bodies. r; is
distance from the centers of gravity. ¢y is the initial phase. Where, 0; = wt + ¢r

(z1,91) = (ricosbi, r1sinb;) (5)

(z2,92) =

Substituting these into Eq.(4), Eq.(2) is rewritten as
aer ) _ 7¥w5 @ B 71 €08 0r )
Qyr 5 —By r7sinf
Where, 1=1,2
Bi = —(mar} + mar3), By = —B; (8)

Eq.(7) implies that reaction force is always along to the tangential direction. Re-
action force of each body is opposite to each other with the same magnitude.These
lead to the inspiral phase of the binary.

(rg cos Oz, rosinby) (6)

\

(4 Equilateral triangular configuration

Next, we consider the Lagrange’s solution.

y

1y

e

Figure 3: The Lagrange’s solution with angular velocity w in xy plane.

We take the origin in the center of gravity. m; is mass of the heavenly bodies. ry
is distance from the centers of gravity. ¢y is the initial phase. Where, 0; = wt+ ¢

(z1,91) = (ricosfy, rysinby) 9)
(w2,52) = (r2costs, T2sin6h) (10)
(x3,y3) = (r3costs, r3sinfs) (11)
(2) can write in the following form that we substitute these for (4).
a;r ) _ 32 5 @ By 7 cosfr
( Ay ) - 50.} ( —Bjr rrsinfy (12)
Note: Diagonal components!
Where 1=1,2,3
3 3
Ajzfzmﬂ%sin%”, Blzfzmﬂgcos%” (13)
J=1 J=1
01y =0;—0r=¢;—¢1 (14)

Eq.(12) implies that reaction force is not always along to the tangential direction.
Reaction force of each body is not opposite to each other with the same magnitude.
These may not lead to the inspiral phase of the binary.

L —1In the poster PART II, we discuss the orbital evolution.

5 Conclusion

+ We studied the reaction force by gravitational waves.
+ We obtained the expression of the reaction force to the Lagrange’s solution.
* In the poster PARTII, we discuss the orbital evolution.

6 References

[1]H.Asada,PRD 80, 064021 (2009)

[2]Y.Torigoe, K.Hattori, and H.Asada, PRD 102, 251101 (2009)

[3]N.Seto and T.Muto, PRD 81, 103004 (2010)

[4]C.W.Misner,K.S.Thorne and J.A.Wheeler, Gravitation) (Free-man, New York,
1973)




957

“Gravitational radiation reaction to the Lagrange’s solution of the
three-body problem II: Orbital evolution”
Naoya Harada (Hirosaki)

[JGRG24(2014)P02]



Gravitational radiation reaction to the
Lagrange’s solution of the three-body problem
Il : Orbital evolution

NAOYA HARADA

Hirosaki University, Japan with K. Iseki, K. Yamada, and H. Asada.

JGRG24 in IPMU November 10 -14, 2014

Abstract : We discuss orbital evolution of Lagrange’s solution by taking account of gravitational radiation.
This poster gives the expression of the orbital evolution, and also we expressed the rate of change of the orbital period.

1. Introduction

- Gravitational waves from the Lagrange’s
solution have been studied in [1,2,3],
but the radiation reaction on the solution
is not fully discussed.

We examine the effect of GW emission on

_> the Lagrange’s solution by adding
the 2.5 post-Newtonian terms into EoM.

y
11y
ma

th r
o

7y WG a

msg

Lagrange’s solution with angular velocity w in xy plane.

2. Equations of Motion

For radial part
GM 332G

rr—rwt=——1r; — ——rw’A
I 1 P I 5 CSTI I
Newtonian term GW radiation
reaction
For tangential part /
2riw+riw = ——57’1w5B1
5 c
We assume
Cet
rr =rinve”®  w=wyeP?t
a — aeCEt “N:Newtonian value
Where,

3 3
A,:—Emﬂ%sin?@m B,:—Zmﬂ'?}cos%”

j=1 j=1

3. Condition to mass ratio |

Condition (1) is

Ar=0 (1)

This is satisfied only in the following three cases:
(@ M1 =Mma =m3
® my=mg =20

© mr=myad Mg =0

4.Condition to mass ratio Il

As a solution of equation of motion we can have

64
rr = TINe?uJNBIEt

6wNB15t

_96
w=wne 5

Thus, condition (2)
Bl = BQ = Bg )

This is satisfied in the following three cases:

m1 = Mo = M3

5.Preliminary

From Conditions (1) & (2),
mass ratio is only

mq1 — Mo — 13

In this case, gravitational waves
are not radiated [4].

6.Summary

- In equilateral triangle, all the mass
are the same.

- Is assumption appropriate, whether
or not?

- As future work, we are going to
consider post-Newtonian triangle.

References

[1] H. Asada, PRD 80, 064021 (2009)

[2] Y. Torigoe, K. Hattori, and H. Asada, PRD 102, 251101 (2009)

[3] N.seto and T.Muto, PRD 81, 103004 (2010)

[4] Bernard Schutz, "A First Course in General Relativity, Second Editions (Cambridge University Press, 2009)
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Probability distribution function for inclinations . Coherent analysis
of merging compact binaries detected by with detector network (HLVK+...)

gravitational wave interferometers « detection rate

— basic measure

— observational strategy
 duty cycle

Naoki Seto (Kyoto) * importance of LIGO-India

arXiv:1406.4238 (event rate) * PDF of inclinations

arXiv:1410.5136 (PDF of inclinations) multi-messenger astronomy

2014.11 JGRG24 * SGRB?

detection rate: binary inspiral re-analysis

detector sensitivity (spin 2)

cit(n, V) = ai(n)cos 2y + bi(n)sin 2y,

¢ detection rate
(Merger rate [Mpc3yr1]) x (effective volume)
\erfective volume),

cix(n, ) = —ay(n)sin2y + bi(n) cos 2y
geometry
= relative event rate GW amplitude (excellent for NS-NS)
e effective volume B do(I) = I';], do(l)=1
direction \ SNR

\/ important 4D

o S I) orientation SNE oS [(einds ) + (esedi )] = Fmo 1 0)
SNR? oc HE DI <3 | = stn 1

I=cos[i] >

fln, o, I) = a(n) [[J’i +d%) +e(n)(d] —d2, ‘.Itw-'lr."’]
volume o< 12, oc f(n, 1, 1)*?

. . . offset (irrelevant for our analysis below)
solid estimation : Monte Carlo etc

Cutler & Flanagan 1994

o)L | cm) \ f(n, 0, 1) = o(n) [(di + di) + e(n)(d%r - d%( ) cos 41#”_
- Cutler & Flanagan 1994

m

\ a(n) = Z [af + 7], total sensitivity
=1

\/[Z:’;l (a? - b;‘]]z +4(3%, a;b)* anisotropy to

to the ty jected orbital angular
. 2 orthogonal modes

polarization modes e of a binary e(n)

m(n)

: - o N —— Cauchy-Schwarz inequality
Figure 1. The geometnie mterpretation of Eq.(5) for meommg GW from

a sky direction n. (Left panel) In the plane normal to n, the network 0 < F(n) < l
has two orthogonal polarization bases at specific orentations, and measure - -
these two modes with sensitivities proportional to 4/ a{n)(1 + e(n)) and

lal[b] > Ja - b]

v/ oln)(l — c(r)). Here the parameter o{r ) represents the total sensitiv-

ity to the two modes and ¢(n ) shows the asymmetry between them. (Riglt
panel) The orbital angular momentum of the binary is projected to the nor-
mal plane. Tts orientation is characterised by the angle 1" measured from
the better sensitivity mode in the left panel. The onginal amplitudes (1) are - -/
given for the polarization modes symumetric o this projected vector o

5 = (a1,b1), (a2,b2),(a3,b3)... > (a1,a2,a3,..), (b1,b2,b3,..)

one interferometer (or aligned) =1
randomly placed =1
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relative event rate

profile of the function g(¢)
N _ 2 _ j2 !
fln, ¢, I) = o(n) [(d2 +.£’{i)+e(n)(d+ d7,) cos 4y 1 0< e(n) <1
dyld) = j-—+l do(l)y=1
2 (n)*g(e(n))dn
’ | ain /
| | fi b o /e ) b
relative volume for dnddl f(n, g-:‘,',f)‘ﬁfzdnd@-i'dl
_ (0) = 0.290451, g(1) = 0.293401 = 1.010125 x g(0)
‘ orientation integral monotonic function
effective volume for a direction n Taylor expansion (error less than 104)
0(n)3/2 g(e(n))dn Gerp(€) = 0.200451(1 + 0.00978€> + 0.00026¢* + O (%))
gle) = fl ndr_‘ : dl[(d% + d3, ) power index
" 2"2“['; '3/" [ 3: : ole) = % [‘.n- }"I dif(d +d%) why?
+elds — dy) (‘c)&-lr_'] bl — o) oos h_:.l 2 -
We can complete 2D integrals, but zf/d_);;gi;m
approximation with g(e)=const similarly for PDF of inclination
fnw, 1) =a(n) [(d3 +d2) + e(n)(d} —d2) cos4t[:'l
e guaranteed accuracy with error <1.0126%

an="71
relative volume for dndid]

Lode () =1

W TV3/2 .-|
— integral of positive definite functions fln g, 1) / dndipdl

—identical to Schutz 2011 (taking { average for f)

‘ integrate dn d{»
« validity: not clarified so far (in spite of quantitative arguments) -
. . . E - alnd)== Fln, Lpy* dy
e we can effectively neglect orientation dependence r[
of binaries = o(m)V2Do(1)"* [(m)R(1],
5 . m o)
— easy to evaluate nn(nf(.:i-,:;)f% - (5;) - rirerey
. . . " N and
— only consider face-on binaries D= (@ -y = L0 2 [""'.1 R

/ dna(n,I)
Poa(l)y= 52—

1
dl / drna(n, 1)
o Jar
For a network with =0

PDF of inclination becomes very simple (identical to Schutz 2011)

372
Po(l) = P(1,0) = % N,=0.82155

33
30 . )
.. &=1(single interferometer) .
‘/" -/4
< 15 S /
' - relative difference less than 1%
03| e £=0 yd
"
ih 0 a s 05 0
I=cos

x “ L B0
viewing angle ¢ [degree]

general network: basically bounded by €=0 and 1
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Hilbert-Huang Transform in Search for Gravitational waves

Hirotaka Takahashi (Nagaoka University of Technology, Japan)

Collaborate with
Satoshi Ueki, Yukitsugu Sasaki, Yoshihisa Kon (Nagaoka Univ. of Technology),

Ken-ichi Oohara, Masato Kaneyama,

Takashi Wakamatsu (Niigata Univ. ),

Jordan B. Camp (NASA GSFC)

I
@ Hilbert-Huang Transform (HHT) .
» The HHT consists of two components [1];
v Empirical Mode Decomposition (EMD)
v  Hilbert Spectral Analysis (HSA)

Targeted signal h(t)

Targeted signal h(t)
EMD

g

g =

— EMD ~
Intrinsic Mode Function (IMF) IMF1 IMF2 “IMFn
HSA HSA. ‘HsAL HSA

Instantaneous Amplitude (IA)

IMF1-IA IMF1-IF IMF2-IA  IMF2-IF .. IMFnIA IMFn-IF
Instantaneous Frequency (IF) IMF1-IF IMF2-1F "

v . v v N

Frequency Map /

h 4

Time -

@ Hilbert Spectral Analysis (HSA)

* The Hilbert spectral analysis can be applied to investigate
characteristics in non-stationary time series data.

« If h(t) is the real part of a analytic complex function F(z)
on the real axis = =t and lim_-*#)l <~ for any positive value k,
then the imaginary part v(t) is given by Hilbert transform (HT) :

Time - Frequency Map [

1 ° h(r) o -
v(t) = =P ——>dr , where P indicates the Cauchy Principal value.
T t—T .
F(z) = h(t) + iv(t) = anr()e® ™ anr(t) = \/n()* +v()* : Instantaneous Amplitude (IA) |
0(t) = tan™* v ‘phase  fur(t) = N W) . Instantaneous Frequency (IF)"
h(t) ’ 27 dt

The signal 1(t) must satisfy the following conditions :

v’ (# of extrema) — (# of zero crossing) = 0 or +1.

v' The mean value of the envelope defined using the
local maxima and the envelope defined using the local
minima is zero.

6 Empirical Mode Decomposition (EMD)

Outline of EMD shifting algorithm :

| EMD is a series of a high-pass filter |

(@) *ay
N
1| n M
saanutyn fln [ ¥ \/ Vutetel

n

| Identify local maxima and minima of ; x(#) (Fig.1a) l T

Us(t)  the upper envelope joining the local
maxima using a cubic spline (Fig.1b)

hikr1(t) = hix(t) — mix(t)
(Fig.1c)

Lix(t) : the lower envelope joining the local
minima using a cubie spline (Fig.1b)

Compute i &(t) = (Ui i(t) + Lix(1))/2 (Fig.1b) I

toppage criterion,
‘which will be described below
or

No

We use S type stoppage criterion
proposed in [1]. We set S=4 [2]

@

ro(t) = h (i
Residual : 7 (t) = iy, 1(t) Time

6 Wavelet Transform (WT)

» Continuous WT (CWT) : Time-Frequency analysis
» Discrete WT (DWT): Image processing, Image data compression etc
+oo 1

Wh(a,b) :/_oc %w(

¥a(t): mother wavelet (wavelet function)

Continuous WT :
t—>b
a

h(t)vg b (t)dt, Ya,p(t) ) Morlt wavelet

|

e

i Simulation
« Signall : s(t) = agg exp [—(t/7)?] sin ¢(¥) SNR = [>"s?/o
ime : (1) = L9 _ w1
Frequency depends on time : f(t) = s [301.172 + 48(0401560)]HZ

« Signal2 : Supernova waveform [3]
h(t) = s(t) + n(t)

Test1 : signal1 + white Gaussian noise (SNR=20)

Test2 : sginal2 + Adv. LIGO noise (SNR=15)

I\
{

Signal1 : waveform and result of HT

VA

Test2 (SNR:15)

1|

Signal2 : waveform and result of HT

Test1(SNR:20)

t-nls]

@ Results Results of HHT
Results of EMD
Test1 I Test2
— = —
signal E Vm# 1 | E —% %signal
Bl L B B i
noise . noise
E e | N R R
| v 1 - |
3 4 N 28—
i
| i Ar
| ——T :
£ ol ! N
| —ifp- =l E t
E St i
Instantaneous Amplitude of each IMF
! Reconstruction of
!' .. GW waveform
| t 52022013 shen |
i > pi ol
3 ‘ Wlkmw-l
| R |

e rconsices s
| o e
.

Time-Frequency Map

w0 ™ T T 25

0005, o

0005,

i
|
i
I - :
[
[
I
Results of WT

20)

0.0 0,08 0,06 ~0.08 -0.02
"hine (sec)

0 0.02 0.04 006 0.08 0.1

quency (Hz)

‘ Summary

+ We investigated the possibility of the application of a Hilbert-Huang transform (HHT) to
the search for gravitational waves.

We compared the Time-Frequency map obtained by HHT with the Time-Frequency map
obtained by CWT.

+  We also investigated the reconstruction of waveform with the HHT.

» More details of the results of systematic simulations will be discussed elsewhere.

Reference :
[11N. E. Huang and Z. Wu, Rev. Geophys. 46, RG2006 (2008).

a : scale factor ; [2] H.Takahashi et. al., Advances in Adaptive Data Analysis, Vol.5 No.2, 1350010 (2013).
b : sift factor - [3] H. Dimmelmeier et. al., Phys. Rev. D, 78, 064056, (2008). N ?En'ﬂ?t‘i)\]ﬂ??q‘$
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Corresponding author: Guillaume Lambard? (lambard@ibs.re.kr)
1IBS-CUP — Institute for Basic Science — Center for Underground Physics, 70, Yuseong-daero 1689-gil, Yuseong-gu, Daejeon
JGRG 2014 - The 24th Workshop on General Relativity and Gravitation in Japan

Guideline to a S-FRW metric . / Context

« FRW metric, homogeneous and isotropic, with local curvature in spherical co-moving coordinates (t, r, 8, ¢) » A homogeneous and isotropic Universe is well defined by a general FRW metric in
with k = 0 (flat FRW metric) spherical co-moving coordinates (t, r, 6, @) which takes the form

2 2 2 -1 72 2 132 2 2 2 23 22312
ds*=—dt"+a" (O[A-Alr)y dr' +rdQ°], ds* = —dt’ +a*(O)[e”*Vdr* +1r*dQ*] ,
with a(t) the scale factor, A is an integration constant and dQ? is the metric on a unit 2-sphere. With Z(r) a function of the radial coordinate r to determine, and a(t) is the scale factor.
* The form of the metric implies the isotropy about a position, and the homogeneity is
. , verified if the Ricci scalar of curvature of the three-dimensional metric, Ri, (i =r, 6, ¢),
R=R(r,t)= ra(t) , With, H=ala, (Hubble’s parameter) is independent of position at a fixed time. This last statement implies that the trace G
of the three-dimensional Einstein tensor is a constant called k.

« FRW metric can be expressed in spherical local coordinates (T, R, 8, ¢) using the following transformations

) dR = radt +adr adr = dR - HRdt o o]
G=Gye' =-[r1-e™")] =k
It comes Aa ij 2
a=1-==-HR* r
a _ . . .
) dsz _ _|Z de iy ldRz + deR , R An integration gives | A -1
(2) E Aa 25(r) 1 2
=] —-— =e = +—-Kr ——
g 1 gﬂ' 3
T = dr + TIRAR R r
With, =al+ a Where A'is a constant of integration which is commonly assumed to be zero to respect
the local flatness of the metric at r = 0, g, (r=0)=1.

Which, in the limit for weak fields (Aa << R), can be given by

« Here, a local non-null curvature (A#0) is approached by studying the shape of the
) ) o ) 2 Aa metric at the exterior of an astrophysical object of mass M embedded in an
3) ds” = —O{é‘dT +a dR” +R°dR s C =1+— expanding Universe. The resulting exterior dynamic is also described by computing
the trajectory of a test particle. Following the latest cosmological data, the Universe
\._ in expansion is assumed to be flat, k = k/3 = 0.

« The integration constant A is interpreted as A = 2M, with M the mass of the spherically symmetric object of
radius r,. Also, the Equation (3) is close to a Schwarzschild-deSitter metric, with H = constant = A/3 (A, the
cosmological constant), and a(t)= e as a scale factor. In the local Universe, the scale factor is assumed to

. bea(t=ty) = 1 at the present cosmological time t,. p Types of orbits ™\

« From the derivative of (7), it follows

. d 2 2
particle: 0 = E[(aé‘)(l +I* IR )]

p Conserved quantities N Which lead to non-trivial
 Trajectories of test particles with or without mass (a ‘particle’ and a ‘photon’ respectively) are investigated ’ ®) d Ie'z;:;l)i[}esssmns for the trajectories
hoton :0 = —|(a&)(L* | R*)
* The present S-FRW metric with a(t) = a(t = t;) = 1 is time independent and spherically symmetric. Also, pnoion U =—
conserved momentum component are associated to trajectories. dr
« Time independence of the metric means for the energy * Itfollows for the angular onmentuZm ofa part|(2:|e 5 24
@ particle:E=-p,/m ,  photon:E=-p, © 2 _ -R'8M"-2MH'R" -2H'R")
+ Independence of the metric of the angle ¢ about the axis implies that the angular momentum p,, is constant ]6M2 + 2M[—]2R3 - ZRZ
®) particle : [: = plP /m , phOlOl’l L= plﬁ « Considering the case of a stable circular orbit of a test particle, it comes E~'2 = ‘72
« Because of spherical symmetry, motion is confined to a single plane chosen to be the equatorial plane here . y
(6 = constant = 1/2 for the orbit). Then pg a d6/dA = 0, with A any parameter on the trajectory. The non- In order to reach the angular velocity de/dt, we have I )
vanishing components of momentum are =U?=p" = o% =% =
] 1 o dpldt=U"=p" Im=g"p, Im=g"L=LIR
infopd = o®p = o -0 o - 0_ 0 00 0, 7 _
particle:p” =g po—m(ai) E, photon : p —(aé‘) E, dt/dt=U"=p" Im=g"p,/m=g"(-E)=E/(ag)
r r -
(6) p =m dR/dv 5 )4 =dR/dA s Giving
A i p2 dp dodr 1 2 2p3 2412
p*=g"p,=mLIR p* =dgldi=LIR ay =T [8M* - OMHR' -2HR']
o dt drvdt 2R
* The scalar product p.p = _mz allows to give the following equations for orbits This drives to a circular velocity R(dg/dt). As one can see from (11), it exists an
: . _ _ 72 72 r2 2 intrinsically bound to the angular velocity following this S-FRW metric, in sense that
) parnde : (dR / d‘[) =E |4 (R) »V (R) = (O!;)(l +L' /R ) (Effective the radius R is restricted to the limit R < (2M/H)"2~ 3.6x102° m ~11.6 kpc, if one
) 5 ) 2 ) ) potentials) consider a central galactic mass M = 10" Mg= 10"3m, and the hubble constant H =
photon:(dR/dA) =E*-V*(R) , V' (R)= (a)(L"/R") , | Ho~7.7x1027m.
/ .
In Progress... / Effective potential and circular velocity of a test particle ™
+ Gravitational deflection of light following this S-FRW metric in the weak field « Circular velocity R(dg/dt) of a test particle in the gravitational field of a central point mass M = 1010 M=
approximation (R<<2M) will be stated. [ 10"3m, embedded in a Universe in expansion following the S-FRW metric presented here, as a function of
the distance R to the central potential.
« Following the image method (“displace, cut, fill and reflect”) from Gonzalez and Letelier
(2003), the dynamic of a thick disc embedded in a S-FRW metric will be stated. _
‘« 5
« The final goal of the development being to compare the computed circular velocities to £ 10
the data from the DiskMass Survey (Martinsson et al., 2013) to check the validity of the f
Keplerian model, and if an improvement in the understanding of the distribution of T 10¢
luminous and dark matter in spiral galaxies is available. 3
o
) 10°
References -
1. B. F. Schutz, A First Course in General Relativity, Second Edition, Cambridge E
University Press, 2009. =
2. R. Adam et al., Planck Collaboration, Planck intermediate results. XXX. The angular
power spectrum of polarized dust emission at intermediate and high Galactic
latitudes, arXiv:1409.5738.
3. G. A. Gonzélez, P. S. Letelier, Exact General Relativistic Thick Disks, arXiv:gr-qc/
0311078 = | | | | | |
10 10" 1 10 10? 10°
Acknowlegments R (pc)
I would like todthank Ekate;i?a (irach?;/el{lor ou}r1fruli(tfl:1l d:SCU,SSiO?S’ gndlhest L,Jsefl” BS \ . As one can see in the Figure above, the circular velocity is decreasing with the distance R to the center of
co?menct:s a{\ ?ueat'zns' So'd ;‘;\0“, . atJOPt atm Itl e ”St'tt”t? 'OrthajlgRge;(;eAt( ttr: the gravitational potential, here thought to be for a trajectory of a test particle (star) in a galactic plane.
and the Lenter for Undergroun ysics ( ). to allow me to join the atthe . Sub-luminal velocities are reached close to the horizon (R->2M).
Kavli-IPMU, Tokyo, Japan. .




966

“Gravitational Faraday Effect for Cylindrical Gravitational
Solitons”
Shinya Tomizawa (Tokyo U. of Tech.)

[JGRG24(2014)P06]



Gravitational Faraday Effect
for Cylindrical Gravitational Solitons

Shinya Tomizawa (Tokyo U. of Tech )
& Takashi Mishima (Nihon U.)

* Phys.Rev. D go (2014) 044036
* To be appeared

JGRG24@Tokyo U.



968

Introduction

Cylinderical gravitational waves are the simplest form of gravitational radiation

A diagonal metric form of a cylindrically symmetric spacetime makes the vacuum
Einstein equation to an extremely simple structure of a linear wave equation in a
at background.

Einstein-Rosen wave [1937] can be interpreted as superposition of cylindrical
gravitational waves with a + mode only.

However, the non-diagonal component of a metric drastically changes the
structure of the Einstein equation since it generally yields a x mode together with
non-linearity.
Piran et al . [1985] numerically studied non-linear interaction of cylindrical gravitational
waves of both polarization modes and showed that the + mode converts to the x mode,

whose phenomenon was named gravitational Faraday effect after the Faraday effect in
electrodynamics.

Tomimatsu [1989] studied the gravitational Faraday rotation for cylindrical
gravitational solitons by using the inverse scattering technique.

Moreover, the interaction of gravitational soliton waves with a cosmic string was

also studied
Interaction of GW pulse with a cosmic string (Economou-Tsoubelis 1987,Xanthopoulos 1986,1986)
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[nverse scattering method

Belinsky & Zakharov (‘1979) showed that the vacuum Einstein equation with
two commuting Killing vectors is completely integrable and admits a Lax
pair of a linear equations.

This BZ’s method generated many physically interesting solutions such as

cosmological, cylindrically symmetric, colliding plane waves, stationary
axisymmetric solutions, ... .

The BZ’s method can be simply extended to higher dimensional Einstein
theories , but generally does not generate any regular solutions.

Pomeransky (‘2006) improved the original ISM formulated by BZ so that it
can generate regular solutions.

Actually, all known five-dimensional black hole (vacuum) solutions were
found or re-derived by the Pomeransky’s procedure not by BZ’s procedure

(Koikawa '05, Pomerasky '06, S.T-Morisawa-Yasui ‘06, S.T-Nozawa '06, Pomerasky-Sen’kov '06, Elvang-Figuras 'o7, [zumi '07...).




Ourvienlk

* In this work, using the Pomeransky’s improved Inverse Scattering Method
for a cylindrical spacetime, we construct a new gravitational two-soliton
solution which describes GWs.

 In terms of the two-soliton solution, we analyze of GWs:
Wave packets can propagate at slower speed than light velocity
Wave packets can collide or split as they collapse

Outgoing “+ mode” waves can convert to “x mode” waves when they interact
with ingoing “x mode” waves



Einsteimn-Rosen wave
* Metric describing cylindrically symmetric spacetime

ds? = e2¥dz? + p2e=2%dg? + 20~V (—dt? + dp?)

s (0—0)

! |1(

* The functions Y. y depend on p and t only

 Einstein eq. is reduced to a wave equation:

* Wis determined by the linear wave equation

-
Ocis M0 0?
e I e e =
£ (5%2 pOp 8p2)¢ : I

* vy is determined by the harmonic function {

R P(w?p I w?t% b 2p¢,t¢,p



General cylindrically symmetric spacetime

The metric describing the most general cylindrically symmetric
spacetime is written in Kampaneets-Jordan-Ehlers form (‘s8, ‘60)

ds® = e®¥(dz + .dg)? + p?e 2V dg? + 20 (—dt? + dp?)

The functions . y, and < depend on p and t only

 Einstein eq. is reduced to non-linear equations:

* 1V and w are determined by ‘non-linear’ wave equations coupled
with each other:

Aip =

* yis determined by the Y and w

6. — P(@b?p + ¢2t) T y Ve = 2000, +
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Our new two-soliton solution:

We choose Minkowski spacetime as a seed, and construct a ‘two-soliton’ solution
with complex conjugate poles by using the Pomeransky’s procedure.
Tomimatsu (‘89) constructed two-soliton from Minkowski, using the BZ procedure

The metric in terms of Kampaneets-Jordan-Ehlers form:

ds? = 2% (dz + wdg)? + p2e~dp? + 2= (—dt? + d2?)

where the metric functions are given by

B
(wr-12 cB
- p DB-A)

(B—A)

B * M TR T T i iy

2 1)4(g2 — 1)4 2 _ )32 — 1]4
62"/’ - |w|4 <1 e ﬁ) 1 A= o [(|W| u—ﬂ(%u)ﬂ(z]l) 1) (X2+a2Y2)] _2W0X|2+|a'2|ﬂ2),

1
B = m!xz +a?y?R — W——T)"‘(lez + lal?|Y[?)2,

(

a(w? —1)? (x2+ ,12)'2)] — R [

w(w? —1)

1
D= i 1|2|x2 +aY?P -

w

g = m[ “‘“’"”2] (X +]aPIYP),

w(jwl* 1)

1
P =12 (1XP + laPIY?)?,

2y _
el =6 SI1X2 +a2Y?2 — (IXP + a2V 2))?),

X = (v’ - 1)*(lwf* - 1)?,
_ JwPw

2

* The solution has a complex parameter ‘a=a_+a, i’ only

The special choice of the parameter, a=o corresponds to Minkowski spacetime
Hence, this does not have the limit to Einstein-Rosen wave




Following Piran et al. (‘85) & Tomimatsu (‘89), we define several useful quantities
for analysis. z axis (p =0)

« Amplitudes for ingoing waves with + & x modes

‘ ‘ 2621%)’1,
.A\_|_ = 27/)71} A‘X o P
« Amplitudes for outgoing waves with + & x modes
D E -
B_|_ == 2¢7’LL B>< — i B P D
P
» Amplitudes:
4= ( \i + 42 )*/ & for ingoing waves :
e.g. outgoing wave
2 20D ;
B = (Bi + BY) / for outgoing waves t
A
* Polarization angles: ui=t—p wv:i=t+p
tam 26 4 = ":‘X for ingoing waves
-\
for outgoing waves




Analysis of cylindrically symmetric gravitational waves

Metric form describing general cylindrically symmetric spacetime
(Kampaneets-Jordan-Ehlers form):

ds® = 2% (dz + d¢)? + pPe ¥ dp? + 2% (—dt? + dp?)

Einstein eq can be written in terms of (A,,A ,B,,B,) only.

* 1 and w are determined by

Myl
2p

A\.,. = B.,.
2p

‘ P
Py g(«“z ) i g(""‘Q i BQ)




976

Tomimatsu sol (‘89) On Axis S.T. & Mishima

The singular source on the axis continues to The polarization angles on the axis have
absorb and emit gravitational waves with + time-depending behavior
mode only constantly

* Amplitudes:
¥ AmplitudES: A= p ot =20t - wflzx(/i?(!’,:’?)’(m—gt)"u(mﬂ—,]&?’ Gy
A — 00, B— o
* Polarizations: * Polarizations:

(2% + 22 — a,t + aiq)(2t* + 2¢° + a,t — aiq)
4+ ¢*)(aig — art) ’

tanfy = —tamnfgp =0 tan 20,4 = tan 20 =




Tim £ — S.T. & Mishima

The spacetime is not asymptotically The spacetime asymptotically behaves as
Minkowsky spacetime because of emission Minkowski spacetime. Hence, both the
from singular source ingoing and outgoing waves decay and

The + mode dominates the x mode finally vanish.
The x mode dominates the +mode

Tomimatsu sol (‘89)

« Amplitudes: * Amplitudes:

4~ B~ ﬁ AxBx 5+ 0().
* Polarizations: » Polarizations:

tanf,y = —tan g ~ 0 tanf 4 ~ —tanfp ~ 1




Tomimatsu sol (‘89)

* The spacetime is asymptotically .
Minkowski spacetime. The ratio of x mode
to + mode becomes constant

* Amplitudes:
A~ ; 5 B ~ !

e Polarizations: ° ¥

||

tamf, = —tanfp ~ <

w=a (+,X)

(+: %)
(%)

-+

|

The spacetime asymptotically behaves as
Minkowski spacetime. Hence, both the
ingoing and outgoing waves decay and

finally vanish.
The x mode dominates the +mode

* Amplitudes:

A o

» Polarizations:

!

|FA

v

Nl

9

S.T. & Mishima

B

More complex behaviors
— See next slide

t
A

N

~

5
A

v

(Nl
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Amplitudes

We define new parameters (k, 0) by ¢ = a, + @;1 = kew
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Gravitational Faraday Effect
An outgoing + mode wave converts to the x mode waves when it
interacts with an ingoing x mode waves:
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Time shift phenomenon

When cylindrical wave packets are reflected on the axis,
time shift arises at infinity (due to the non-linear effect ?)

Future null infinity (v=c0) . -
a=a,~+ a;t = ke’

(k,8) = (1000, 5z

Past null infinity (u=co)
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Summary & Discussion

In this work, applying the Pomeransky's procedure for the inverse
scattering method to a cylindrically symmetric spacetime, we have
obtained the gravitational two-soliton as an exact solution to vacuum
Einstein equations with cylindrical symmetry.

Our solution describes non-linear soliton-like cylindrical waves: an
incident wave incoming from infinity collapses and then expands to
infinity.

The solution does not have any linear waves such that the ER wave.

We have studied some non-linear effects:
Gravitational Faraday effect: An outgoing wave with a pure + mode can
partially or completely convert to a x mode wave due to an ingoing wave
with a x mode.
Time Shift Phenomenon: Wave packets can propagate at slower speed
than light velocity.
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Faraday effect




Future Works

2-solitonic solution with complex poles
Levi-Civita family as a seed

Gravitational plane waves & colliding gravitational
waves

Cosmological gravitational waves
Higher dimension
Kaluza-Klein theory
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Negative time delay of light by a gravitational lens

Hirosaki University, Koki Nakajima, Koji lzumi, Hideki Asada

| .Abstract

We re-examine the time delay of light in a gravitational concave lens as well
as a gravitational convex one. The frequency shift due to the time delay is also
investigated. We show that the sign of the time delay in the lens models is the
same as that of the deflection angle of light. The size of the time delay
decreases with increase in the parameter n. We also discuss possible parameter
ranges that are relevant to pulsar timing measurements in our Galaxy.

t
[ ) [ 4
C .

) -

C »

tr

FIG.1. Frequency shift due to the gravitational time delay.

|| .Modified spacetime model

We consider the light propagation through a four-dimensional spacetime,
though the whole spacetime may be higher dimensional. The four-dimensional
space- time metric is

ds® = —(1 —8—1) c2di* + (1 +£—§)er
r r

+ r2(d©? + sin’@d¢?) + O(S%, 8%, €18),
where r is the circumference radius and €1 and €2 are small bookkeeping
parameters in iterative calculations.
The deflection angle of light becomes at the linear order

o= ;/5 cos"Ud¥ + O(e?),
0

where the integral is positive definite, b denotes the impact parameter of the
light ray, we denote € = nel+¢e2, and we define W by r0/r = cos W for the
closest approach r0.

lIl.Time delay and frequency shift

A .Time delay of a light signal

FIG.2. Schematic figure for a configuration of the source (emitter) of a signal of light S, the receiver of the signal R,
and the lens L.

Subtracting the time in the flat spacetime from it provides the time delay at
the linear order as

1 Ur 1- my
5t = / (w + Ecos”‘2\11> dv,
v

n—1 in2
s s sin“ W

where WR and WS correspond to the direction from the lens to the receiver
and that to the source of light, respectively.

For n=2p, the time delay is obtained as
2p—3)!'(2p—1)e1 + £
2
and n=2p+1, it becomes

(2p — 2)!1 2pey + &
2p—-1! 22

where p is a positive integer.

5t2p =T

5t2p+1 — 2

9e-08 —— n'=£—_ 20081 T a1l —
ne3 - e e
8e-08 = == ~ -3e-08} ey g
7 N k.
7e-08 | el N 1 4a-0BF .
| il R ’
6e-08f 7 N, ~ — -5e-08] N i
o 3 ~ L % L . i
. s ~ 2 ., N 1 I
5e-08 | g i = -ge-08F . N P
I % N # o
1 T i ~ £
4e-08| - Fe-08 | o ey
L . L
[ N it
3e-08 i -8a-08 e -
2e-08 - -9a-08 -

-400 300 200 -100 O 100 200 300 400 400 -300 -200 -100 O 100 200 300 400

t[day] t[day]
FIG.3. Time delay curves. The solid for dot-dashed, dashed, and dotted curves correspond ton = 1,2, 3, and 4,
respectively. The horizontal axis denotes the time t in days and the vertical axis means the time delay Ot in seconds.
Here, we assume rmin is 40 AU and v = 200 km=s. The lens is assumed to be a ten solar mass black hole for n = 1(g/

rmin ~ 10-8), and the parameters for the other n are chosen such that the peak height of the time delay curve can
remain the same as each other. left:e <0, right:e < 0.

B Frequency shift
The Frequency shift is y due to the time delay is defined as

v(t) -y  d(61)
Ly B dt ’

For n=2p, the frequency shift is obtained as
z(2p -1 €
el (%

— 2 2p+l
c(2p=2)!'r;
and n=2p+1, it becomes
2 @2p)t e
= — (%
Y2p+1 C(2p— 1>!!r3p+2

y

2
y2p [

9

2¢

Je-11 v - ——— 3a-11
2e-11}
te11 e

= 08400

“le-11}

-2e-11}

<3e-11
-400 300 -200 100 O
tlcday]

0 100 200 300 400

FIG 4. Frequency shift curves corresponding to Fig. 3. Here, the parameter values for n # 1 are rearranged such that
the peak heights of the time delay curve can remain the same as each other.

C.Possible parameter ranges in pulsar timing method
The number density of the lens objects QL would be constrained by no event

detection as
40AU\2 (1 kpc\ /10 year
QL<103pc_3< >< p)( Y )
ro Dy T,
Although it seems very weak, this constraint might be interesting, because n
> 1 models are massless at the spatial infinity and thus it is unlikely that these

exoticobjects are constrained by other observations regarding stellar motions,
galactic rotation, and so on.

Conclusion

We examined the arrival time delay of light and the frequency shift in the
lens model with an inverse power law. The time delay by a gravitational
convex lens (i.e., positive deflection angle of light) would be positive, even if
the lens model had negative convergence like Ellis wormholes. On the other
hand, time delay by a gravitational concave lens might become negative, even
if the convergence were positive.

We find that negative time delay might appear not only in the strong
gravitational field but also in the weak field.

Reference

Koki Nakajima, Koji Izumi, Hideki Asadam Phys. Rev. D 90, 084026 (2014) |




988
Negative time delay of light by a gravitational lens
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Abstract: Inthis poster, we use a generalized NF'W profile to study miclolensing by an ultra-compact dark matter halo in a collaboration with

Izumi and Asada.

1 Motivation

Dark matter is one of the compotent that consists of the Univers. It is important
to explain problems such as:

e The formation of large-scale structure
e The rotation cutve of galaxies.

The existence of dark matter was indirectly cinfirmed, but its nature has not been
known. In 2009, ultra-compact minihalos (UCMHs) as nonbaryonic massive com-
pact halo objects (MACHOs) are suggested by Ricotti and Gould [1]. Then, we
concentrate on small-scale dark matter halos . If these structures are detected,

e the origin of structure in the Universe could be understood
e inflation models could be constrained.

Microlensign by halos with intermediate-mass (10Mg < M < 10°Mg) have been
studied (e.g. [4], [5]). Thus, we study microlensing caused an ultra-compact (earth
mass M < 10’6]Wo) dark matter halo with the density described by generalized
NFW (gNFW) profile [2]

Ps

PgNFW = 7
g G (

Tz s o scaleradius, p, : density inside 7

2 System of gravitational lensing

® ¢

Image

Lens plane

Bending angle

'
'
'
'
'
'
1.
-4
'
P

r Source object

Observer

Lens object

Doy,

Drs

Figure 1: Diagram showing the position of the source object, its image, and the
lens object.

Considering that a lens object is static spherical symmetry, surface density of
the lens object projected on the lens plane is[3]

/2
so)=2 6,000 M
0
Bending angle is written as

4GDop, /91 5 0, —6

e Jo Ve —op
where G and c is the gravitational constant and light speed, respectively. The lens
equation is[3] is

a(dr) =

de, (2)

D
95 = 0] — DLS (Y(@[). (3)
oS
The total magnification is[3]
1
Avot = X757 (4)
0; 901

Considering the motion of the source object which performs linear motion of con-
stan speed to the lens plane with the origin at the lens object, the angular position
of the source object at the time ¢ is

Os(t) = \/t> + 0%, (5)

where g is the nearest distance between the source object and the lens object
(the distance of closest approach).

3 Result

The surface density derived from gNFW profile is [6]

1-v /2 y-2 ~—3
3(0) = 2psrs <%> /0 {<c0s¢>+ %) - 7% <cos¢ + r%) Ydeo. (6)

The projected surface density (6) can be analytically calculated for each =,
(a)y=0

Ts 2.2 2 ’f -1 —U/Ts
(O < |7’s|):(17[igw{(1—9 /Ts)—\/%ﬁtanh ( %z;rs)} )
. 2 /.2 _
B0 > ) = (4 200 — Bt )
(b)y=1
0 < ) = 2 g ) 1) ©)
50> ) = 295’;%? 1{7¢€2/14ﬁtan’1( Zf; D+ (10)
(c)y=2
200 < |rsl) = 2p57~5{#7_§ - ﬁtanh’]( %z;:)} (11)
S0 > [nal) = 2pr{ st — ——tan1(y [ L)y, (12)
20/r V02/r2 —1 0/rs+1

The light curve is calculated numerically

Schwarzschild ——
14 gamma=0 ——
gamma=1 ——
gamma=2 ——
12
10
8
>
6
4
2
e e—— |
0
-1 0.5 0.5 1

X

Figure 2: Magnification light curve. In this case, Do = 1/ \/E[Gpc],Dog =
50[Gpc], M ~ 10~*[Mg)]. Horizontal axis is standardized by r, and crossing time
in units of r is 0.7day.

4 Conclusion

We compared light curves with the cases of (a), (b), (c), and Schwarzschild lens.

e It is distinguishable because the shape of the light curves are different from
the Schwarzschild lens.

e It may be tested the density profile of ultra-compact dark halos by observation
in the near future.
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Introduction

Chern-Simons (CS) modified gravity is
inspired by various theories.

 Superstring theory
(see e.g. Smith et al. (2008))

 Loop quantum gravity
(see e.g. Mercuri & Taveras (2009))

- Effective field theory for inflation
(see S. Weinberg (2008))
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CS modified gravity

Action (see e.g. Jackiw & Pi (2003)):

I=[d'x|-g |:—KR - % 9(x) 'R R’ —% g (0,9)(0,9)+ gm}

m

Field equations:

) 1
G +a C" =——(T, " +T;")
) 2K

C-tensor: C*’ = —%[(vag) £7N Ry +(V.V,9) R +(u>v)]

3
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Properties of CS gravity

* For spherically symmetric spacetimes, the CS
corrections vanish.

- The static and asymptotically flat black hole
spacetime is unique to be Schwarzschild
spacetime. (see Shiromizu & Tanabe (2013))

» The rotating black hole solution has not yet been
explored thoroughly. It should have different
form from the Kerr solution.
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Previous & Present works

Slowly rotating black hole solutions have been
investigated by several authors.

N. Yunes & F. Pretorius, PRD 79, 084043 (2009)

« K. Konno, T. Matsuyama & S. Tanda, Prog. Theor. Phys. 122,
561 (2009)

K. Yagi, N. Yunes & T. Tanaka, PRD 86, 044037 (2012)

Rapidly rotating black holes have not yet been
investigated.

®) We investigate the CS scalar field around
a rapidly rotating black hole.

K. Konno & R. Takahashi, PRD 90, 064011 (2014)
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Bootstrapping scheme

Let us assume weak CS coupling a. and vacuum for
ordinary matter 7. =0.

Assume GR solution g, ~ O(ao)

|

v KO « T o« .
gV v, 9" e R R — 1st order solution 9 ~ O(al)
i |
v v 1 v :
G"(g?,,)=—aC" =T/ — 2nd order solution g?,, ~0(ca’)
i |

Higher order of «
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CS Scalar field solution

We assumed the Kerr spacetime as the background
and solved the field equation for the CS scalar

field.
The solution takes the form

3V (r,cos8) =const + az ®,,..(r)B,. (cosb)

o :ﬁ[L e2pe2p (Fr1-287)(F-1) 2P +1)
TR CAFR) Feep)

=i

+(1_132)_§[;;—Zarctan\/1_7](7—1)+(1—ﬂ2)—2[1 (,;-24_114—_’,‘;) J( 1)]
where fB:=+1-a’ = a

The higher order terms ©,,,, (n> 1) were obtained numerically.

r
(YR,
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Results

Color map of ot

T T 1 0.15
0‘2 I T T T
: analytic = 2 _
i [T p—
015 - t 3 1 0.1
5 [
01 b . 7 N
9 1 F -1
1 M 0.05
0.05 13 1
E " = \' i
or = Sor ¢ AH © 6"
e = W,
-0.05 F -
-0.05
01 F N ] 4
015 1 -0
0.2 ] 1 I 1 -2 = ]
0 05 1 15 2 25 T o
/M 0 05 1 15 2 25

((/M)(1- 2172

Color map on the
meridian place when
a/M=0.8.

®,,vs r/M when a/M=0.8.
The inner and outer horizons are
given by r =0.4 and r,=1.6, respectively.
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Summary

We investigated the solution of the CS scalar
field around a rapidly rotating black hole in CS
modified gravity

- We obtained the solution analytically and
numerically with the boundary condition that the
scalar field be regular and vanish at infinity.

* We found the signature that the scalar field
diverges at the inner horizon on the Kerr
background.
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“Recursive structure in the definitions of gauge-invariant
variables for any order perturbations”
Kouji Nakamura (NAOJ)

[JIGRG24(2014)P11]
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Recursive structure
in
the definitions of gauge-invariant variables
for any order perturbations

Kouji Nakamura (NAOJ)

Based on :
K.N. PTP 110 (2003), 723. (arXiv:gr-qc/0303039).
K.N. PTEP 2013 (2013), 043E02. (arXiv:1105.4007 [gr-qc)).
K.N. IJMPD 21 (2012), 1242004. (arXiv:1203.6448 [gr-qc)).

K.N. CQG 31 (2014), 064008. (arXiv:1403.1004 [gr-qc]).

1
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I. Introduction

[ The higher order perturbation theory in general relativity

has very wide physical motivation.

- Cosmological perturbation theory
e Expansion law of inhomogeneous universe
(ACDM v.s. inhomogeneous cosmology)
¢ Non-Gaussianity in CMB.

- Black hole perturbations
¢ Radiation reaction effects due to the gravitational wave emission.

— Binary coalessence through the post-Minkowski expansion
e Target of GW detectors in 24 generation.

- Perturbation of a star (Neutron star)
e Rotation - pulsation coupling (Kojima 1997)

There are many physical situations to which higher order
perturbation theory should be applied.
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However, general relativistic perturbation theory
requires very delicate treatments of “gauges”.

It is worthwhile to formulate the
higher-order gauge-invariant perturbation
theory from general point of view.

e According to this motivation, from 2003, we have been formulating a
general-relativistic higher-order perturbation theory in a gauge-invariant
manner.

- General formulation :
« Framework of higher-order gauge-invariant perturbations :
« K.N. PTP110 (2003), 723; ibid. 113 (2005), 413.
« Construction of gauge-invariant variables for the linear-order metric perturbation :
. Ileizggfg (2011), 122001; PTEP 2013 (2013), 043E03; IJMPD21 (2012),
 The nth-order extension of the definitions of gauge-invariant variables :
« K.N. CQG 31 (2014), 135013. ( but this is still incomplete. )

- Appllcatlon to cosmological perturbation theory :
Einstein equations : K.N. PRDZ4 (2006), 101301R; PTP117 (2007), 17.
Equations of motion for matter fields : K.N. PRD80 (2009), 124021.
Consistency of the 2nd order Einstein equations : K.N. PTP121 (2009), 1321.
Summary of current status of this formulation : K.N. Adv. in Astron. 2010 (2010), 576273.
Comparison with a different formulation : A.J. Christopherson, et al., CQG28 (2011), 225024.

3
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The second kind gauge in GR. Physical spacetime (PS)
(Stewart and Walker, PRSL A341 (1974), 49.)£’ Me

] “Gauge degree of freedom” in
general relativistic perturbations
arises due to general covariance.

€

O In any perturbation theories, we

always treat two spacetimes :
— Physical Spacetime (PS);
— Background Spacetime (BGS). Background spacetime (BGS)

O In perturbation theories, we always write equations like

Q(“p”) = Qo(p) +Q(p)

Through this equation, we always identify the points
on these two spacetimes and this identification is called
“gauge choice” in perturbation theory.

4
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0 The gauge choice is not unique
by virtue of general covariance. Physical spacetime (PS)

General covariance : N - Me

- “There is no preferred coordinates
in nature” (intuitively).

O Gauge transformation :

— The change of the point Mo
identification map.

Background spacetime (BGS)
Different gauge choice: X, )

O
e Representation of physical varial::kle : §
O XQ::XeQa :)Q::yeQa

Gauge transformation: %} — 7))
: —1
(be = A O yﬁa :)Q - (ijQ

The is the basic understanding of gauge transformation. 5

O e
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In this poster, ....

I point out the recursion structure in the definition
of gauge-invariant variables for any order perturbations.

I also discuss the correspondence between the
gauge issues in our framework and in an exact non-
linear perturbation theory.
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II. Order-by-order gauge-transformation rules

Taylor expansion of tensors on a manifold :

[] The Taylor expansion of
tensors is an approximated
form of tensors at ¢ (in M )
in terms of the variables at P
(in M ).

O One parameter family of
diffeomorphisms : @,

- o M- M f(p)
- Oe(p) 1 q#p, Pe—olp) =p.

O Taylor expansion of a function f(p)

e + O(e)

Ho =@ w=rw+ (5@0)| g (5z@0)

e Taylor expansion of a function f(p) is regarded as that of
the diffeomorphism @, , and general arguments lead

e + O(e%)

£@) = @D @) = F®) + (e )l e+ 5 (Lo + £2,) 1]
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0 nth-order representation of Taylor expansion

(Sonego and Bruni, CMP, 193 (1998), 209.)
e Representation of general diffeomorphism :

*(;2 .o . n+1
® (gb(ﬂ)'&n) ¢—r(if__11;€(n_1) ol (’b—f;)!&(z) ° ¢W5(1J) Q@+0(e™)
- ! i} J1 o pj2 Ji n+1
= > & Y ai) £ LL £ Q+O(EH,

=0 {ji}eh;
Lo

where C;({j;}) := HW, Jj 1= {(jl,...,j;) e N
¢ .

i=1

é-a

Zl:z'jﬁz}.

I,)g(” the exponential map generated by

(11"

e Problem 1:
General diffeomorphism should form a group.
How to prove it from the above representation?

Key point: @, 0®) #®,,y, &' #d_,.
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0 Gauge transformation rules for nth-order
perturbations (Sonego and Bruni, CMP, 193 (1998), 209.)

e Representation of general diffeomorphism :
PIQ = (qb%&(n) OQ -1 0:--0 gbé_g)!gm o (bﬁ&(l)) Q + O(e"’"’l)

(n Tn=D18(n—1)

= > & > GWab)£E, £L, - £8,Q+ 0"
=0 r;}EJa

[
€
where J, = {(jl,...,j;) eN

D i :‘}, ‘f’%gw : the exponential map generated by mfﬁs) :

i=1

n_o
e Expansion of the variable: (Q = Z %Q(;) + O(e"t)
1=0

e Order by order gauge transformation rules :

k
k! : 1 j2 1
W) — 2w = Z (k=1)! Z Ci ({4i}) £2(1)£?§(2) o "E?é(z)kQ(k—U
=l

“{iyed

To develop nth-order gauge-invariant perturbation theory,
we have to construct gauge-invariant variables for each order
perturbation through this gauge-transformation rule.




0 Gauge-invariant variables

O oOrder-by-order gauge-invariance :

1011

— We say that the k-th order perturbation Q, of the variable Q
for any gauge-choice

IS gauge invaria
X and ).

nt iff

yQi) = xQ k)

O Direct observables in experiments and observations

should be gauge-invariant!!

) . N
- Any experiment or observation is —,

carried out on PS (not on BGS) through

the physical processes on PS and

should have nothing to do with BGS

nor gauge choices in perturbation theory

O In this sence, gauge-

transformation rules

Physical spacetime (PS)

M
Background spacetime EBGS)

k

W) — Q) =

=1

e 2 Gl

C{jiyed;

£j1 £J'z

§(1)

. f?ka(k—z)

£2)

imply that perturbations Q, include unphysical degree of

freedom. ---> gauge degree of freedom.

10

€
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ITI. Construction of gauge-invariant variables

[0 metric perturbation : metri% onl PS : gab , metric on BGS : gab
€
metric expansion : gap» = ﬂ(l)gab + 0>, gy = gas.
=0
Our general framework of the higher-order gauge invariant
perturbation theory is based on a single assumption.
O linear order (decomposition conjecture) :

Suppose that the linear order perturbation h, is decomposed as
| hab = Hap + £xgab |

so that the variable Hqap and X are the gauge invariant and the
gauge variant parts of h,p , respectively.
These variables are transformed as
yHap — xHap =0 yX* —x X =&
under the gauge transformation ¢, = .Jc’e_l o).

This conjecture is almost proved but is still a conjecture
due to the “zero-mode problem” !! (Problem 2)

K.N. CQG28 (2011), 122001; PTEP 2013 (2013), 043E02; IJMPD21 (2012), 1242004. 11
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[0 Example: Cosmological perturbations (1)

O Background metric _ _
gab = a°(n) [=(dn)a(dn)s + vij(dz")a(dz")s)

Yij metric on maximally symmetric 3-space

O Mmetric perturbation

_ 1
Jab = Gab + €hap + gfglab + 0(63)
O decomposition of linear perturbation

hab = hayy (dn)a(dn)p + 2hyi(dn) (o (dz)p) + hij(dz*)o(dz?),

hpi = Dihory+ by, D'hay =0,
hij = ahayvij+a by, hery; =7 by =0,
1
heryi; = (DiD:i - g’h‘jA) herry +2Dhrv)j) + hrryig,
D'hirvyi = 0, D'hrry; =0, Dipvi; =0, A:=D'D;.

Uniqueness of this decomposition

<--- Existence of Green functions A™! (A +2K)~1, (A + 3K)

-1
- - - . = 12
K : curvature constant associated with the metric i3



1014

[0 Example: Cosmological perturbations (2)

Gauge variant and invariant variables of linear order
metric perturbation:
O gauge variant variables : X, := X, (dn), + Xi(dz®),

1
Xy = hwr) =500k,

1
XQ', = (1,2 (h(TV)Z —|— §Dzh(TL)) )

where yXa — xXq = f(l)a, !
O gauge invariant variables :

Hyy = —2a°® = h,, —2(0, — H) X,

Hiy = a’v; =hy — DX, — (0, — 2H) X;,

%ij = —2a2111 + azxij = h,?;j — QD(%XJ) + 27‘[’}/in,7,
D'v; = 0, ~Yx;; =0= D', (1. Bardeen (1980))

where yHab — xHap = 0. 13
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O Once we accept the decomposition conjecture, we can
construct higher-order gauge-invariant variables.

Wgap = MHap + L)x Gab <--- Conjecture
@gar =1 PHap + 2L 0x Vgap + (Lorx — £2x) Gab
Q1 =: Q1+ LuxQo — Results

Q2 =: Q2 +2L0)x Q1 + {Lox — £ix } Qo

» As a corollary of these decomposition formulae, any order-by-order
perturbative equation is automatically given in gauge-invariant form.

(Gauge-variant parts are unphysical.)

—

» The decomposition of the metric perturbation into gauge-invariant
and gauge-variant parts is not unique.

(This corresponds to the fact that there are infinitely many gauge
fixing procedure. Christopherson, et al., arXiv:1101.3525 [astro-ph.CO])

» Gauge-variant parts of metric perturbations also play an important

role in the systematic construction of gauge-invariant variables for
any perturbations.

(In this sense, gauge-variant parts are also necessary.) 14
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IV. nth-order extension of the definitions of
gauge-invariant variables

Gauge transformation rule :
w N~ W pit g (1)
S = Qo = Dy X CUGD L £ £, R
=1 {siten

= F [5?1)5'-- €81y €0y ¥ 9abs Nab, - ,(”‘A})gab}

Inspecting this gauge-transformation rule, we define the variable (™A, by
(n)ﬁab = (n)gab + F |:_(1)Xaa Ty _(n—l]Xa, 0; (O)gaba (l)gaba Ty (n_l)gab]

We have to prove the foIIowin% statement :
There exists a vector field o0(;, such that the gau(ge-transformation rule

for the variable "f,, is given by g, — "WH , = Lo Vgab

When the proof of the above statement is accomplished, we may apply the
decomposition conjecture and we can decompose the variable (™f,, into its
gauge-invariant and gauge-variant parts as

(n)ﬁab —. (n)fHab 4+ £(")X (O)Qab; (;)?'Lab _ (:’)'Hab =0, (;)Xa _ (;)Xa _ o_t(],n)‘
This implies that we have decomposed (?)g_, as

(n)gab = (ﬂ)Hab + £("1)Xgab — [_(I)Xaa R _(n_l)Xaa 0; (Olgaba (l)gaba Tty (n_l)gab

: gauge-invariant part, : gauge-variant part.

15
I have confirmed this to 4th-order perturbations.
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We have to prove the foIIowin% statement :
There exists a vector field ;) such that the gau(%e-transformation rule

for the variable (", is given by g, — "Wg , = Lo Ogab

We have derived explicit expressions for o(,) to 4t order:

-1st order : 01y = &Yy
a

«3rd order : 0(3) = &(3) +(3),
65y =3 [6) €] +3 [5(1)=(2)X] 2 [&1): [5(1),(1)}{” N [(I)Xa [5(1» mX” ’

4th order : 0y = &y + 64,
5ty = 46 &) +6 &, 60 é))” + 40, Ox]

3@, @x| +6 g0y, [60), @X]] "+ 3 [ g OX] ]

+3 :(2))(, [5(1), (I)X]]a +3 [6(1), [45(1), [5(1)’ (I)X”]“

+3 :6(1)= [(I)Xa [5(1): (I)Xma + [(”Xs [(I)Xa [5(1)1(1))(”]“,

16
These are evidences of the fact that I did check to the 4th order.
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Through the confirmation to the 4th order, I also find the
following identities for gauge-transformation rules of gauge-variant
variables in metric perturbations.

e]st Order : Z Cl({js:}) (,{’i‘(;}x - £T{A’X £§:n) =0,

{siYen

2nd order @ Y. Ca({4i}) (5211)“532 Ll £y - fcil(;)xﬁffi)x)

£2)
{jited2
+ 2 Glinehy, X GlkabLg, =0,
{j }EJl {km}EJl

o3rd Order : Z CS({Jt}) (fgl) £é?2) ’E%?s) + £Jl(1)X "EJQ(Z)X £33(3)X £_1(1)X £32(2)X £J U”X)

{ji}€Js

+ Z Ci({dih) (1) Z Ca( {km}),{”g(ll),g?é)
{diyen {kitet2

20 G e D Gl £, =0,
(e, T tmlen

4t order : Y Ci({ii}) (fﬁl)' L+ £91{1)X "fj_4<;)x£j_l(;gx”'£j_‘lt;)x)
{j£}€J4

+Z Z Cs {3% £ (I)X : (3)X Z 63({km} £§(11) £§(33): :

n=1{j;}eJ, Y7 {km}Y€Jicn 17



[0 Example: 3"9-order perturbation (1) :
(3Jﬁab g (SJ_F“Iab

= Z CI {.71, (ag'n(l)x £}—1(ng + £§(1)) (,};')gab

{jz eJl
l Z Cz {Jﬂ}) (£31(1)X£32(2)X £J_1(1)X£32(2)X £%zl)£%?2)) -
{ji}€J2

+ Y G (1) > Ci({knm }«5?(11)] 29ab

{jt}EJl {k }€J1

+3! l Z 62({ji})( %(1),{?5(2) + £31(1) -’632(2) £j_l(1)X£j2(2)X)

1019

These terms
vanish due to
the 1st and 2nd
order identities.

{jiYeIs\sJ h
: ke pk Toug
+ Z Ci({7:}) 1>x Z Ca({hm}) £€(1>°€Efz> __ . calculations
{ji}en {km}ez yields ... .
+ Z C({5ih) £ jl(l)X'sz(z)X Z Ci {km})££(1)]
{ji}e T2 {km}ed1
+£5(3)ga2,___/ =

= f&(g,)gab -T_ ££(3)gab-

Here, s/ = {js = 1.j; = 0,i = 1,2,4,5,..}. 18
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[0 Example: 3"9-order perturbation (2):

Then, we may apply the decomposition conjecture which implies that the
variable (3)Hab into its gauge- |nvar|ant and gauge-variant parts as

(3 3 a 3 a &
(S)Ha,b =: 3 }?{ab + £3)x Gab, 37 Hap — X)Hab =0, (JJ)X - (X)X =03+ 6(3)'

Through the last equation, the following 4th-order identity is derived:

> Cu{i}) (‘féin' £L ,gnmx ..,€~7_4(;)X — £y ,ga_a(ﬁx)
{J!}EJq

j k k
+Z > Cs({ih) £ e 53_3<§,>x Yo Ca({kmb)£g - L8 =0.
n=1{j}eJ, {km}€Jan

4

This is the recursive structure in the definition of
gauge-invariant variables for the metric perturbations.

19
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V. Recursive structure in the definitions of gauge-
invariant variables for nt*-order perturbations

Through the construction of gauge-invariant variables for ¢ gab (e=1,...,m—1),
‘%

we can define the vector flelds ixa (z =1,. n — 1) whose gauge-
transformations are given by ( X“ - X“’ — 5( + cr( )

Furthermore, we obtain the n-1 identities which are expressed as

Z Z Ci({jl})’gjl(;)x""'{’ji(gx Z C({k })£’§§1) ' Em
p=1 {jz}EJp {km}EJa p
= Ci RN S
Z ({71)£7 Ux ~x

{7 }eJ;

(n)

To define the gauge-invariant variables for *"’gab , we consider the variable

j; (n—1)

(H)Hab = (n)gab+ (1)X L ()x Gab

{32}6‘]1

+n! Z Cn—l({Ji})f"?_lmx £ - 1)x Jabs
(i YT \nlg

where (mJg := {jn = 1,4; = 0,7 € N\{n}}.

20
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Through the above identities, the gauge-transformation rule for the variable (“)ﬁab
is given by

{;}ﬁab_(;}ﬁab = fEin)gab
- ] ju— ] Fn— j jn—
+n! [ > Coa{ad) (,{’-‘é;l) R fj_'a;;x“'fj_(nl-;;X — £ ”"f_{ﬂl-;;x)
{ji}EJH\nJS_

n—1
+ Z Z C —1({ji})£j_lmx o "CT{E; WX Z C”‘l({km})fgtlu o '{l;un__lu Gab-
i=1 {ji}e: Y {km}€Jn_

From the analyses to the 4t order, the following conjecture (algebraic conjecture)
is reasonable:

There exists a vector field (,, such that

. J1 Jn—1 J Jn—1 J1 Fn—1
n! [ Z Cn—1({7:}) (f,g(l) £5(ﬂ_1) + f_l(;;)X o ‘£_(n—;’)X - f_‘jgx T f_(n—;.gx)
{j1}€In\ndg

n—1

. o in— 1 I

+Z Z Cn—l({ﬂ})‘{’]"’_(l)x""gj_(nl—l)x Z C”fl({km})fgm”"Cﬁ(n—ll
i=1 {j,}eJ; Y Y7 {km}edn i

= £

F(n)

To prove this conjecture, tough algebraic calculations are necessary, but we
expect that there is no difficulty to prove this conjecture except for this tough
calculations.

Actually, we have confirmed this conjecture to 4th order. 21
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The above algebralc conjecture is true, the gauge-transformation rule for the
variable ™f,, is given by

(;)ﬁab — (;)ﬁab = £a(n)gab

Then, we may apply the decomposition conjecture to the variable ™H,, and we
can decompose it as

n) [ n (n) (n _ (n)yra M)yva _ _a ._ ¢a ~a
( )Hab =: ( )Hab + Lyx Gab, y Hab — x)Hab =0, YA =X = O(n) = §(n) T 0(n)-

This implies that the original metric perturbation (Mg, is decomposed as

(n)gab = irL};"fauib Z Z Cl {Jz £1(1)X fﬂ(z)x(n_”gab:
{Jt}EJg

Furthermore, the above algebralc conjecture and the gauge-variant variabled™x @ ,
we obtain the following identity

Z Z Cn({ai}) £’ 1(1) ' (n)X Z ({km})fg(ll) N ’5&)
p=1{j}eJ, Y {km}€In—p

= Z Co({ii}) £ _x (n)X'
(1} E€dn "

This identity is the i=n version of the previous set of identities and is used when
we construct the gauge-invariant variables for more higher-order metric
perturbations.

22
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VI. Summary and Discussion

* Summary

We pointed out the recursive structure in the definition of
gauge-invariant variables for higher-order general-relativistic
perturbations.

We used the “decomposition conjecture” and the “algebraic
conjecture” in our construction of gauge-invariant variables.

The “algebraic conjecture” is just algebraic one but tough
algebraic calculations are necessary to show this.

On the other hand, “decomposition conjecture” is still a
conjecture due to the “zero mode problem” [See K.N. PTEP 2013
(2013), 043E02; IJMPD 21 (2012), 1242004.]. In other words,
the zero mode problem is an essential problem in our scenario of
the higher-order gauge-invariant perturbation theory.

23
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e Discussion

The full metric X3« , which is pulled back to the background
spacetime is given by

E()

X:gab = A Jab
k=0
= G (background)
€ (k
+Z k! Hab (gauge-invariant)
n k k .
Z 12 Z Ci({7i}) (UX o Jl(t)x(k_g)gab (gauge-variant)
= =1 {Jz}EJI
+0( "),

. €
If the limit nan;oZ E(kmab converges, this corresponds to the
gauge-invariant variable in an exact non-linear perturbation theory
and the gauge issue in an exact non-linear perturbation theory will
be justified in this way.
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“Spherical Domain Wall Shell Collapse in a Dust Universe”
Chulmoon Yoo (Nagoya)

[JGRG24(2014)P12]
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Spherical Domain Wall Shell
Collapse in a Dust Universe

Chul-Moon Yoo

Graduate School of Science, Nagoya University
with Norihiro Tanahashi (DAMTP)

Alntroduction

©Domain wall shell dynamics in dust universe
time
Hubble radius

open dust

Friedmann radial

(comoving)

initial

shell

/

©OPossible scenario

1. Bubble nucleation during inflation
— lower density region + pure tension shell

2. The bubble enters the horizon after the inflation

3. Shrinks due to the tension
— induced inhomogeneity? BH? 1
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AShell in a Dust-dominated Universe

©Shell interior: FLRW universe
- Metric

ds? = —dt2 + a%(t_)[dx? + f2(x)d0?|

siny for K=1 (closed)
where 50 ={ x fork=0 (flat
sinhy for K=-1 (open)

- Friedmann equations
2
8mp_ =3() +3

_ _p () _ (2a)\2 _K
0——2(7) () -2
- Energy-momentum tensor
T = p_utu¥

©Shell exterior: LTB model

- Metric
2
dsz = —dt% + 1(—012?)# dr? + R*(t,,r)dQ?
- Einstein equation
(atR)z = —kr? + —21‘;(1')

- Energy density

1
20,M r2m+§r36rm(r)

ke = R29,R R23,R
where m(r) = 6M(r)/r3
- Solution(3 arbitrary functions: k(r), m(r), tg(1))
R(t,,r) = rm!/3(t, — tg(r))*/3S(x)

where x=km23(t, —tg)?/3

| 1—-cos\/n - _ (ym-siny?/3
S(x) T 61/3(\/ﬁ—sin\/ﬁ)2/3 with x = T
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©Shell
- Shell trajectory
(t_,X) : (ts—(t)! XS(T)) A

(ty, 1) = (3 (), r°(7)

- Tangent vector | LTB (1., ) {EdS (1)
. ,‘._—_H: (:,_—1 H,)i
(v, vX) = (i%,y) Shell b
7 :

@4, v}) = (&,w)
where y =y, w:=71°
- Normalization (v/'v, = —1)

time

Dust-dominated FLRW

tS =1+ a?y%2 =:y_ 0 Y >

i ‘;yR)Z y o comoving raaius
. w
t3 = \/1 t o =Y.

- Shell energy momentum tensor(pure tension)

Sy = —ohy,

AEvolution Equations along the Shell Trajectory

O©Dynamical variables

- Variables for shell trajectory(6 variables)
t5 (), x*(0), r(v), y(v), w(7)
- Variables for LTB(3 variables)
m(r*(7)), k(r*(7)), tg(r*(7))
1 junction conditions + continuous four velocity of dust
(Appendix B)
©ODEs (Appendix C)
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Alnitial Conditions

- Assumption: LTB region is initially infinitesimal

- Independent initial values

R, : Initial shell radius
o :shell tension
6y :Deviation of the Hubble between FLRW and EdS

0y = (H_o — Hgaso)/Hgaso
- Others are fixed by these values(Appendix D)

AResults
OUseful unit

- Hubble parameter H, . at horizon crossing
(shell radius=1/Hubble)

OSettings
- 8y = 1078, RoHgqso = 24 3y 4

-0/Hp.=1.72%x107° = 3.01 x 1072

O©OSummary of results
- No essential dependence on R;H,
- BH forms in the center in every case

- p x R-3/2 near the center

- BH Mass increases with time due to dust accretion
- MgyHy. = 170/H,,. at the moment of the formation

Mgy ~ 4.5 % 1072 (hZGaeV3) (70kn11{/hsc-Mpc)_2 Mg

*Results do not change for 6, = 0 initial conditions

4
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RoHg=2, o/H;,.=8.58:x107
T T T T T

T
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LI1H, )

RoHo=2, o/H,=8.58x10"
T T T T T

Hubble radius
Comoving
Shell
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~
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1[}D: T T T 1111 T T T TITT] T T T T T T1T17T T T T TTT1TT1TH
C — 1 1 3
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- Time evo'“tion (Mmax — gnR%pEdSO F— %H%dSOR?))

5,,=107

1[]_ III T ||I

R:E—1 —t—

2 - R22 —x—
T LT R2-3 —%—"]
= i e R R3-1 -
2 g R3-2 —+— 1
@ T D R3-3 1
< (10 S A —— AT -
N - i i ‘ ] R4-2 1
2 . R4-3

9

[ Etﬂ%@ﬁ

o.:tﬂ'ﬁﬂﬂ

0.0001 A I R R B
10 100 1000 10000 100000

time [1/H;, ]

©Induced inhomogeneity

A -1
102 Just after collapse(t=3.0H;. ') 10 t=23H},.
\ ch_m 7 N \, ocR_ajlz
. EdS 1 A EdS
10 R R2-1 —— 7 107 = R2-1 —— 7
L R2-2 —— | I ~ R22 —— |
— 1n0 > i QR 23— ]
i 10° | N R2-3 ] <2 107 | R2-3 .
; i N =4 i
= 10-1 C . " b = 10_3 C ; st \
i . ] i -
\\ o
I . ] I . ]
1072 £ S : 107 £ :
r , - = \\\ 4
3L \\\\ ] 5 [ \\\ W i
107 107 A
10 103 102 107 10° 107 1072 107 100 107
Area radius [1/H,] Area radius [1/Hp]
-1 -1
109 t=47Hpe 102 +=233H,,
F T T T T T T T T T T T ™ R, T T UL T TrTTTTT T T TTTT T T rTTTTy
AN wRH —— 1 . N R —— 7
1077 f-os EdS 4 103 bRy EdS 5
S R2-1 —— 7 i SN R2-1 ——
102 L NI R22 —— ] 104 [ R22 —— |
= R23 — 1 o~  f \ R2-3 —
2 1 2,.s¢[
z 10 1 T 107 F 7
T4 1 % s = ]
107 ¢ : 107 & .
107 & NE 107 ¢ .
5 N ] 8 -
1[] 1 1 1 1 1 1 1 1 1 1 1 1 10 = 1 11111 1 111111 1 111111l 1 11 111
107 102 107" 10° 10' 102 107" 10° 10! 102
Area radius [1/Hy,] Area radius [1/H,]

p <« R~3/2 near the center
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AAppendix A: Junction Condition

©Notation
- Brackets

[A]f = A, —A_
{AY::=A, +A_=:2A

- Physical quantities
s,: surface normal unit vector

x * normal coordinate

F) 24
— ] =gk
(f?x) °

h,,: induced metric
huv =Guv — SuSv
K,,: extrinsic curvature
1 1
Kuv = ELShHV = Eaxhuv

Tio?: energy momentum tensor

T:g}tal = Tuv + Suva(x — Xs)

Olsrael’s junction conditions
- 1st junction condition

[hﬂv] el

- 2"4 junction condition

1
K| =8n (—Sm, e hm,S>
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- Shell EoM
— +
S K" = [T ,,s"s"|
- Energy momentum conservation

D,S" = —[Tus"h%]"

O©Spherically symmetric case

- Metric

ds? = —e?*t0)dt? 4 2PX)dx? + R2(t, x) (d6? + sin? 8d¢?)
- Shell trajectory
b= (T8 K (T
- Tangent vector
v* = (f5, x, 0, 0)
- Energy momentum tensor
T = (p+ +p+) w-u; + pigr,
St = (o + w)v'v” + wh”
- Equations
(6, 0) of 2nd junction conditions

[s"8, In R]* = —4no
(z,7) of 2nd junction conditions
Dvr*
!s“‘} = 4m(o + 2w)
dr

Shell EoM
Dot = 2 2co
{su—} = ——[(p+p)(uts,)® + 'p}i + — {s*8,1In R}
dr o o

Shell energy momentum conservation

D, (v*(o + @)) — v*Dyw = [(p + p)u,v u, s’
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AAppendix B: Equations

- Gauge condition on r [dynamical-1]
8.R=+/1—kr2 = | Cir+ Dk+ Etg = Fw

1 .
where C = Srm,_g/g(t —tn)2(3 (S — 225),
= rm~Y3(t — tp)¥/38’,

D
2 . :

E = _grm”-‘(t —tg) 3(S 1 =8),

F

' = /1 — kr? — ’m”s(t — tB)2/35'.
- 1%t junction condition

af = R
* differentiate w.r.t 7

v-Oi(Ina) + yoy(In f) = v+ 0:(In R) 4+ wo,(In R)

- 2" junction condition (0,0)
w(In R) + v+ 0,.(In R) — ydia — 7—_8,((111 f) = —4drmo
a

- 2" junction condition (7,7) [dynamical-2]
W a;c}+Gm+Hic+Itig+wJ —
T RlmlismELena: Y

1
where ¢ = §,C = Erm‘m(t —itg)

1
?1
2 .

H — 0,1 g'rm_l/s(t — tg)'/3(28' + =8"),
1
g%

2 13 -1/3 /
J = gm/ (t — tg)~Y3(S + zS).

- Shell equation of motion [dynamical-3]

ay Grn Hk Ity  wld 2 : s
S 20,0y = —— 7
M e o o ~ (prw® — p_a®y?)

—2 |wd,(In R) + 7.8,(In R) + y8a + —8,(In f)
a

1
I =8E= rm"(t—ts)™
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- Shell energy conservation [dynamical-4]

p+Y+w — p_vy_ay =0 <

- Definitions
t.si — ‘)/j:, [dynamical-5,6,7,8]
Xq = U

rs = Ww.

, 8 dynamical eqs

- Consistency

It can be shown that 3 constraints are automatically
kept satisfied if they are initially imposed

- From the 3 constraint equations

1 4
M = —mr = ?”a-‘*ﬁp_ +4moa®f? [0, fy- + af (270 + B,ay)]

(LTB mass) (FLRW mass) (Shell energy)
- Continuous four velocity of dust
w's, =0 < w=ay
¥ differentiate w.r.t

w = 8;av_y + ay|[dynamical-9]

In other words,

- no friction

- no interaction between the shell and the dust fluid

- individual realization of energy momentum conservation

- From [dynamical-4] and [constraint-4],

(Gl =i
10
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AAppendix C: ODEs

- Use a(t_) as the independent variable

X Yy

e ,

da drary_

di 20 6mo 44 d%ay -

_ }I_ e _Y_f _2 + ) L E e | y2_ - _f E;_ . a(ata)~933

da a?(0ia)?fv2  a(8:a)?*y®> av? (8:a)?

dr W

da  8av_’

dm 3agm  24mwa®f?90,Rp_

et — =t - )

da 7 re

- How to calculate other quantities
w = ay
t- a 1 a il a "
; N E g a —aresii a where o = E?T{J,,(I-S = constant
di_/dt )= 1
2M
¢ (— = (af.R)‘*) /7?
R{-mr'—SkR) *m.arctan(\%) S
. T il T for ;R > 0,
t+ \Bf \/m m arctml( e 3;"}.? )
6k3/z T \/?A: I 3;.3/121”._'“:}{' for O;R < 0.

AAppendix D: Boundary Conditions
©Outer boundary(LTB | EdS)

- No singular surface, comoving boundary, 15t junction

(atR(t+a o
R(t+e TU)

- Mass compensation
4 5
M (ro) = ?R(t-{-sTO) peas(ty)
- From the above two equations and Einstein eq.
k(?"g) —i)

Ny 2 87
= Hi(t+a?°0) = Hpas(t4)? = ?PEdS(H)

11
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Olnitial hyper-surface

- Assume that LTB region is infinitesimal

- [constraint-1]
a(t_o) f(xo) = R(t+o,70) =: Ro
- Continuous energy density on the shell
P—o = P+o0 =: Po
- Continuous Hubble on the outer boundary
Hio — Hgpas(tro0) —: Ho

- Deviations
Po — PEdSO

doh =
PEJSO
H_o,— H,
o ———————
H,

- How to determine other initial values

Gauge fix - r; = Ry /b : results do not depend on b
Time shift— ig(rg) = 0

.,  (&R)? 2M 1 st
L €q- — H, = R? t=tyo a i P - 3b3 My < M= ‘Sb‘Hﬂ
FLRWeq. > . — 12 5, & a= L
(1{2} =0 3 . H[]\/(S%I + 26H = (5!,
. R
1stjunc. — sinhx, = — = RoH, \/631 + 20y — 0,
ap
Hyop
=S Amoa
[constraint-2,3] — ;(}Wgag 9
5, = 205 — T \/ 167202 + 6% H?

- Independent initial values in this presentation
RoH,, 0/Hy, 0y

- We can also choose §, as a independent
initial value instead of 5,

12
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“Third Order Power Spectrum Using Uniform Approximation”

Allan L. Alinea (Osaka)

[JGRG24(2014)P13]



What is this all about?

Power spectrum is one of the most important
physical quantities in inflationary cosmology.
It is a measure of the variance in the
distribution of (in this case,) the primordial
cosmological perturbation ¢ This work is
about the calculation of the power spectrum
P, of C using the method called uniform
approximation (UA). We calculate P up to
third order with respect to the Hubble and
sound flow Ffunctions evaluated at the
turning point (see the discussion of uniform
approximation). As demonstrated by (Martin,
Ringeval, and Vennin, 2013), in the process of
calculation, one encounters terms involving

Cosmic inflation

Our current understanding tells us that the universe started with a "Big Bang". Although
successful in accounting many of the observed characteristics of the universe, the
standard Big Bang cosmology suffers from two outstanding problems namely, horizon
problem and flatness problem. Cosmological inflation is a rapid exponential expansion
of the universe (or parts of the universe). The period of inflation is inserted right before
the usual "slow" expansion of the universe as described by the Standard Big Bang
cosmology. It solves the two mentioned problems. The merger of the Standard Big
Bangcosmology and inflation forms a powerful hybrid theory : Big Bang + Inflation.

Prior to inflation, there were no large-scale structures (galaxies and clusters of galaxies).
All that we had were quantum Fluctuations. During inflation, these fluctuations were
stretched due to the rapid expansion until they "went out" of the Hubble sphere. After
inflation,the Fluctuations "went back" to the Hubble sphere to form the structures that
we nowadays observe as galaxies andclusters of
galaxies.

In(n/n*), where n is the conformal time and
(*) means evaluation at the turning point.
Luckily enough, these terms cancel when
n — 0 (the limiting process needed to calcu-
late P) up to second-order with respect

to the Hubble and sound flow func-

tions. We demonstrate that such
cancellation does not occur

for the third-order part of

the power spectrum.

Some of the log

terms survive

rendering the ..~

resulting ex-

pression

To lowest order, y is ignored
and what is left is an Airy
differential equation.

Starting with the
original differential
equation, perform

Liouville transformation.

THIRD-

o POWET Spectrum uvswe
Uniform Approximation

TAKAHIRO KUBOTA
YUKARI NAKANISHI
WADE NAYLOR

Allan L. Alinea

Osaka University

Unfortunately, there is an
imperfect cancellation of log
terms resulting in log divergences
in the third-order power spectrum.

To lowest

order in UA,

one arrives at

the Airy diffe-

rential equation

after transforming

the Mukhanov-Sasaki

equation. The Airy func-

tion solutions are then used

in the expression for the po-

wer spectrum (see pie# 2) subject

to some conditions to fix some cons-

tants. The resulting working equation

for Pinvolves the speed of sound, index func-

tion, scale factor, slow-roll parameter, and the in-

tegral of Vg (see pie #3). Starting from this working
equation, the mentioned quantities are expanded about the
turning point. The resulting equations after the expansion mainly
involves the Hubble and sound flow functions evaluated at the
turning point. With these equations at hand, the quantity Vg in the
working equation is integrated with respect to the conformal time.
The exponential of this integral together with the other factors in the
equation for P are then combined and the limit is taken as n — 0.
What results is an expression for the power spectrum mainly
involving the Hubble and sound flow functions evaluated at the
turning point. Mathematically, one has P = P(0) + P(1) + P(2) + P(3)
+ ..., where the quantity nin P(n) means the order of the expression
with respect to the mentioned functions.

Calculating the Power Spectrum
through Uniform Approximation

functions. The quantity y serves

imation @ uniform apprOXi’"atio
n@
Unj

The solutions are Airy
U(§) =

-
=

as a correction.

of structures that we nowadays,

Uniform Approximation

The Mukhanov-Sasaki equation (see pie #2)
is a second-order linear homogeneous
differential equation involving the primordial
cosmological perturbation ¢ and the confor-
mal time n. One may "solve" this equation by
dividing the domain into three regions and
matching the three resulting solutions at the
boundaries of these regions. Uniform
approximation (UA) is a method of solving a
differential equation using a (single) global
interpolating solution (see pie #1) instead of
three for the case of the Mukhanov-Sasaki
equation. In applying this method to this
differential equation, one performs Liouville
transformation and defines the newly
introduced independent variable in such a
way that to the lowest order approximation,
the resulting differential equation has one
turning point characteristic of the origi-

nal differential equation (Mukhanov-
Sasaki-equation). At the turning
point, the nature of the solu-

tion of a given differential

changes; eg., from oscil-

latory to exponentially

decaying.

observe as galaxies and clusters of gala-

xies.

Hubble sphere

The cosmological pertur- \‘

bations involve the scalar
field called inflaton.

\—’Qk

primordial cosmolo-
gical perturbations

The equation of motion for the primordial

Power Spectrum

P = lim N,»?

n—0

A
2V oy
V.

.

d
X exp [ 7—]nf(6¢,6¢) =

P (power spectrum), 1 (conformal time),
N, (constant), €j(Hubble flow f'n), 8j(sound
flow f'n), v (index f'n), V (integral of|{g),
g = /i’ - Kcs’, k (wavenumber),
cs (speed of sound) Mk =

.2
Cs

2
2a°€¢ |

cosmological perturbations is called the

Mukhanov-Sasaki Equation

Here, the quantity p is
related to { by the definition

Apply uniform
Ck approx'n (UA)

Power Spectrum

The quantity gis likewise,
expanded about the turning
point before integration.

Expand about the turning
point where g=g.=0.

Here, Nis the Eumber
of e-foldsand N= N- N.

od d
@ wniprags 1amod @ wnidads 1oMO

As demonstrated in (Martin, Ringeval, and Vennin, 2013), in the
process of calculating the power spectrum (P), one encounters terms
involving In(n/n*), where n is the conformal time and (*) means
evaluation at the turning point. Luckily enough, these terms
cancel when n — 0 (the limiting process needed to calculate P) up to
second-order in the Hubble and sound flow functions. We
demonstrate that such cancellation does not occur for the third-order
part of the power spectrum. This result poses a challenge for the
calculation of Pbeyond the second order.

Logarithmic Divergences

S. Habib, etal, "The Inflationary
Perturbation Spectrum,"
Phys.Rev.Lett. 89 (2002) 281301

J. Martin, C. Ringeval and V.
Vennin, "K-inflationary Power
Spectra at Second Order," JCAP
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Some insights info

cosmological four point correlation function

JGRG24@Kavli IPMU Nobuhiko Misumi (Osaka U.)
2014/11/10-14 Collaboration with Takahiro Kubota (Osaka U.)
Abstract

We study cosmological four point correlation function with small speed of sound.
And we explore whether there exists the useful relation like consistency relation focusing on
counter-collinear limit and double soft limit.

——1 1.Introduction 3.Consistency relation with small ¢

Chen, Hu, Huang, Shiu and Wang 2009

Single-field inflation looks good (in 2pt. function)

Contact Interaction  Graviton Exchange Scalar Exchange

. k2 ky ki + ks )
=P Many models survive. ke \ TR /g o \ kitke [
I5Y ki ks k1 ks
K ks

More informations are needed.

vanishes is squeezed limit 4pt. func. is 1/cs
(leading order)

ex) 3pt function

= (amplitude 2m)363 (k1 + ko + k3) F(ky, ko, k
(Cer i G (U“PQ“““) X (2m)°0% (ky + ko + B)M »' 4pt. function with cs#l cannot have a squeezed limit.

Squeezed limit is proportional to 1/cs?

i shape of triangle

4 .Counter-collinear limit

[ Consisfency relation } - - Seery, Sloth & Vernizzi 2009
Creminelli, Norena and Simonovic 2012

Hinterbichler, Hui and Khoury 2012,2013 % 5
ks K
For single-field models, 3pt. function in the squeezed limit is given by K ¥
k2 s

sextraction of (2m)25) (¢ + Fy + k)

(€, Ck@_/

In slow-roll inflation, there exists similar relation to consistency

. d
limy =y = —(3+ kg P relation for ki~kKz, ks~ks. [T(Ki, K, Ky, K1) = dry, P(k1z) P (k1) P(Fs)
Its generalization is b ot Graviton exchange
lim M =—(3(v-1)+ iﬁ Vi, | P(k) = ’ is dominant.
a0 Plg Lyt Tk

Leading term in S{)

——————“{ Current Observation g Ség)g = —/d4m af(% -1+ G%)W”é)i(aj(

arXiv:1303.5084

Is non-Gaussianity dead ? 4pt. function
; (Gicr Ciea Cics Gy
l l l. 15K25K35K,
]\?Za =27+ 58(10’) qulfl = —45+ 75(10’) . H G2 16aSHS
= (2m)% (;k“)f(jf 1*(@*2) Wﬂkmkhkz,ks)
— Z.MOdelS Z2:6629(%71)2+2g722
~ General single field inflation with non minimal coupling Taking the limit,
1 1) non-canonical kinetic term with f=1 does not satisfy
S = 3 /(i4x\/jg[f(<p)R +2P(p, X)] 2) both canonical and non-canonical with f#l above relation
— 2 Ly T
P(p, X) = K(p)X + L(p) X"+, X = 50" 000,0 5.Double soft limit
_ Joyce, khoury & Simonovic 2014
Mirbabayi & Zaldarriaga 2014
Features ij 1.5
) (G AT RN 1 369 5kikI
1) Small sp?ed .oF sound ¢ (pr9pagafion speed of perturbation) {;1,13;220 Vi Ve, (713((]1)13((12) > = P(k)<1 - C—%) { (Zﬁ t5 )
2) Shape of this model is equilateral. ( s §kikf> <Cq*lC@2C:)/}
equilateral s - f2 local k22 k* ) P(a1)P(q2)

§ In 4pt. function, dominant contribution is

L.
\%‘%%\ ; graviton exchange diagram.

\Q\\\\\\

We have to include graviton exchange diagram and
rederive above relation.

~—+t Conclusions

* 4pt. correlation function has rich information, although they cannot be observed in immediate future...

* In double soft limit, there may be useful relation, but we need further study.
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“Numerical analysis of quantum cosmology”
Hiroshi Suenobu (Nagoya)
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Numerical Analysis of Quantum Cosmology

Quantum Cosmology

+ Investigating the initial state of the universe from quantum
theory.

+ It can be provided by the wave function of the universe.

+ The boundary condition of the wave function plays
a crucial roll in quantum cosmology.

- + Solve the wave function of the universe numerically

1. Introduction

We consider General Relativity + massive scalar field in homogeneous
and isotropic universe.

Canonical quantization leads the Wheeler-De Witt equation (WDW eq).

1[r20 [ 8 n? 9? Iy
= [ == | = 0 V(a,d) =
5 [112 7 <a0u> @ 05° a+a (3 +m¢ )] (a,¢) =0

A : cosmological
‘lIJ is the wave function of the universe. ‘

constant

Problems in quantum cosmology
- The equation is hard to solve analytically.

- The wave function is often approximately evaluated by saddle point
value of action using a complex classical solution.
¥(a,p) ~ exp (—Leat/h)
- What boundary condition of the wave function of the universe
can predict our universe ? , such as how much inflate ?

(b,x)

No-boundary proposal t

Tunneling proposal
by Hartle and Hawking \ by Vilenkin

g

2. Our approach

* Boundary condition of the wave function (BC)
General solution of the WDW eq without inflaton
U(a) = adi(z)Ai(z0) + BBi(z)Bi(z0) + vAi(z)Bi(z) + 0 Ai(20) Bi(2)
We can use it as the boundary condition at a=0. ¥(0,¢),9,%(0,¢)
It is characterized by parameters (a.f,7,9) .

boundary condition parameters (a,8,,8) Asymptotic form

(a) no-boundary proposal (0,0,1,1) W~exp(1/V)cosS
(b) tunneling proposal (1,0, 0,i) W ~exp(-1/1)e
(c) tunneling like real (1,0,0,0) W~exp(-1/V)cosS

They correspond to integration contours in path integral.

complex N plane complex N plane complex N plane

N, N
c A <
g pick these saddles oy, 4" pik his sadde oy,

NV
picks these saddles
% %
R Nt .4-./'
N, —————»

Ny e s Y
. 5

&
. ®

2 .

(a) no-boundary proposal (b) tunneling proposal (c) tunneling like real
[J.J.Halliwell et.al. PRD39 (1989)]

+ Solve the WDW eq
2 . P 2 52
% {%% (n%) - %% —a+d® (% + 1112(,)2)} U(a,$) =0

Discretize and use RK4 algorism.
Obtain numerical wave function.

Wave function obtained

b Classicality by no-boundary BC

If we consider complex contours in path integral, e .
the action becomes complex. ;_, Iy-iS

S n Ir|?
Classicality condition : “VV;“L 1 N

In this region, the wave function becomes
W~ A(g”) expliS(q™)] Al*) = exp(~In(a*)). 4' = (ad)

= ‘ wave function oscillates ‘

Extract pre-factor 7, and phase S
from the numerical wave function
Amplitude — I,
Intervals of peaks — S

JGRG24@IPMU (2014)
Nagoya University QG lab, Hiroshi Suenobu, Yasusada Nambu

Our research overview

+ Use a no-inflaton-solution of the Wheeler-De Witt
equation as the boundary condition.

- Define and Calculate a probability for a classical universe.
+ Discuss about what type of the boundary condition can
lead to sufficiently long duration of inflation.

- Definition of probability
Conserved current in mini superspace

f P P
(]4:%(\I/'VA\II—\IIVA\I/*) v -0 ,v,\:<" f’)

Probability measure
P(¢*) = J-n = |A(¢*)PVaS(e?)
It can predict sets of initial data (b, x,ps,py) for the classical equation.
m) How long inflation ? , What is a number of e-folding N?

Probability of sufficient inflation P,
Jir, 9P (9)
doP(8) e

Probability range of P,

suf

In the region ¢ < ¢, , the universe can not
reach current age of universe or there is no
classical region in mini superspace.

Expectation value of e-folding number

Gonsider probability
in this range

Jém

Probability of boundary condition P(z|S)

P(St)

P(t|S) = W , P(S|t) = Py (1)

Parameterize boundary condition
between (a) and (c)

¢t : parameter of boundary condition

P(S|?) : probability of sufficient
inflation with BC=z.

P(1|S) based on the Bayes' theorem A
P(A)P(B|A;)
P(A|B) = et
(B = S S P B

Figl. Parameterize boundary condition
between (a) and (c).

3. Our results

(1) Boundary condition : (a),(b),(c)
with A=0.3, m=0.1, ¢,,=0.55, ¢,=10, N,,~60.

(a)no-boundary proposal  (b) tunneling proposal

(c) tunneling like real

;H/\

;j ‘/ TN
S \ '

favors large ¢ = large &~
<N>=85.3
(2) Probability of boundary condition P(¢|S) : (a)z=0 to (c) #=1 (Figl)

favors small ¢ = small &~ doesn't classicalize at small ¢
<N>=294

PUB) " PU|B) hid

T
1™

4. Summary

+ We could obtain the method to predict the classical universe
from the numerical wave function of the universe.

- The no-boundary proposal is not favored so much to lead
sufficiently long duration of inflation.

+ We will explore furthermore about various combinations of
boundary conditions and dependence on A and m.




1044

“Adiabatic regularization of power spectrum
for non-minimal k-inflation”
Yukari Nakanishi (Osaka)

[JGRG24(2014)P16]



1045

Adiabaticregularization of power spectrum
for non-minimal k-inflation

Allan L. Alinea, Takahiro Kubota, Yukari Nakanishi, Wade Naylor
Department of Physics, Osaka University, Japan

PRIMORDIAL PERTURBATIONS

The power spectrum of the cosmic
microwave background is an observable
arising from cosmological primordial
perturbations.

We can compare observables and infla-
tion theories by using the power spectrum.
Definition and properties

The power spectrum of the scalar per-
turbation |Ry(n)[* is defined by a Fourier
transformation of the two point function.

(RE@F) = [~ Sk R

The scalar  perturbation
Mukhanov-Sasaki equation.

obeys

"
2
v+ <c§k2 — ?) ve =0, v, = 2Ry,
2
j—f, 2 = 204 and the "sound
Ul Cs

" - 2 Px
speed" is defined by ¢; = PrieXPax’

where ' =

Our aim is checking the regularization
of the power spectrum.

\. J

ADIABATIC REGULARIZATION

Adiabatic regularization[1] is one of regu-
larization schemes of QFT in curved space-
time. In this regularization, the physical
amplitude is schematically given by

< dk .
(R hs = [ 555 (Rl = R (1) ]

The bare power spectrum is derived from
an inflation model. However, we regard
the bare spectrum minus the subtraction
term as the observable power spectrum.

How to make the subtraction term

1. introduce a fictitious parameter T’
in the metric.
9w (®) = Gy (x/T)

2. Require the adiabatic condition and
do a WKB-like expansion.

Adiabatic condition

In lowest adiabatic order, v;, should
have the form

v o< wi(n) 2 exp (=i [T wr(n')dn')

3. Rearrange terms so that the power of
1/T are in ascending order.

4. Isolate divergent terms as the adiabatic
subtraction term.

1Rk = IRe() P + [Rai(n)

In slow-roll inflation, the "sound speed" is
equal to one (= ¢).

The subtraction term for slow-roll
inflation model becomes small because
the coefficient of the second-order adiabatic
term is exponentially suppressed.[2]

|2<2)

\.

KIRAF

OSAKA UNIVERSITY

SUBTRACTION TERMS FOR K-INFLATION

In k-inflation model, which is motivated by string theory, the Lagrangian has
non-canonical kinetic terms and the "sound speed" is not constant.[3]

L=P(p,X), X = %g“"@d)&,qﬁ, ¢? # constant.

By using the MS equation, we derived the subtraction term.

1
222¢.k

z 1

1
1 s
{ 2} 2¢2k? 2 ¥ )}

cok®
In conclusion, the subtraction term for k-inflation models depend on the "sound speed".
Therefore the time dependence of it is not obvious unlike one of the slow-roll model.

1 32

(R (7 2 _ sk
| 5(?."J|:-u|h (4 Cs 8 C%

J

\.

SUBTRACTION TERMS FOR NON-MINIMAL K-INFLATION

In non-minimal coupling model, the Einstein equation is more complicated to solve. Then
we use the conformal transformation and make it simple.

S:éfr;-i;r[f(r.a}!?+2P{0,X)] s=3

where X = 159,60,¢ and P(¢,X) = f(6)"2P(¢, X) — 3" (9, n/T)(, In /7).

/r.f'lr[ﬁ’ + P(s, X)]

Comoving gauge
In this gauge, it is known that the scalar perturbation
and its correlation functions are frame invariant.[4, 5]

R =R, (IR )bare = (|RI*)bare

0p=0
Joo = a(ﬁ)27 Gij = _a(n)zem%

in the Jordan frame in the Einstein frame

”
z
" 2 2 ff ), PO
v, + <Cs,effk — 7Ze ) v =0, v = Zeff Rk

eff

Zeff and c,ef have been estimated z and ¢ can be estimated

directly by ADM formalism in [6] by conformal transformation.

Because , the scalar perturbations in Jordan/Einstein frame obey the equations

which have the same form. We showed that z.s = Z and ¢, = ¢, as long as we take the
same normalization manner, so we conclude that

|RL(?}') fub = |ﬁk(ﬁ)|§ub

Therefore, the physical power spectrum can be derived from both frames and we do not
need to do the complicated calculation in Jordan frame to derive the adiabatic subtraction
term for non-minimal k-inflation.

J

\.

FUTURE WORK

We need next to constrain the model parameters.
However, in the non-minimal case, the result is obtained by arguments with some
additional assumptions and conditions.

e We take the comoving gauge é¢ = 0.
© We set the non-diagonal components of the energy-momentum tensor to zero.
(This is related to neglecting the anisotropic inertia.)

If we choose another gauge and throw away the second assumption, the non-diagonal
components which are gauge invariant and frame invariant appear. Then the
argument becomes unobvious because we cannot combine the Einstein equations into
one MS equation without other equations or relations.

J
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Open inflation and scalar suppression on large-scales
. “Jonathan White, RESCEU '

with Ying-li Zhang (NAOC) and Misao Sasaki (YITP)

Based on Phys.Rev. D 90, 083517

« Consider two toy models from Linde et al. [7]

An epoch of inflation is in good agreement with observations L2t
But - what is the exact nature of inflation? I ‘ P Model 1:  V(g) = Lm?s? (1 L ) .
Could anomalies represent important clues? <[ | 2 B2+ (- _
e P oy = 17.14 .
¢ e.g. 5-10% power deficit in CMB temperature Sob-d-b-g----- R Pi=100 exit — 2
nisotropies on large scales (I < 40) with s 2 inh [A(¢ — - S
anisofropies on larg (1 < 40) wit g Model 2: V()= " (02 _ priinh[A@ 0] ) axm P Lopg
statistical significance 2.56—3c [1] P i 2 cosh? [A(¢ — v)] o :
‘E by = = 4x10” " " =
Fig 1: Amplitude of suppression, 4, of low-/C/'Ts relative to the & ¢y = 16.55 " ' " " B

best-fit Planck model. A is determined by fitting the two- @l & Planck Fig 4: Tunnelling Zpotenu‘z_ls of Model 1 (M1) and Model 2 (M2).

parameter model shown below to the low-/ Planck data, restricted . _E e The fiducial m2¢ potentials are plotted for comparison. From .0+

to vatious ranges 2 < | < luax [1]. 20 30 40 50 right to left, vertical lines correspond to the location of the field at
N Maximum multipole moment, {ay Sx107
Ci(dyn) = 4CS (i) Jo = 2+ hovae) + Potential—Curvature equality .
o 2 + Horizon exit of current Hubble scale pz, § o
“o-8 . . . assuming Qg = 0.01 10
* Primordial scalar power spectrum with *+ Horizon exit of scale associated with /=100, P;=100

suppression on large scales is favoured by 2107

100 Planck even under the assumption r=0[1]. * M2 “sharper” - expect suppression to affect a

smaller range of scales '

Non-zero tensor modes,
as suggested by BICEP2 [2], would

break in spectrum

Fig 5: Hubble evolution for M1 (black curve). Also plot the curvature

Fig 2: Abazajian et al. [3] contribute to C/* on large scales | < 100 " Z‘i‘,dZQit ,_,' scale (blue), current Hubble scale (red) (assuming Q= 0.01) and the
* - o
10- . L L L o Pr=100 exit - scale associated with /=100 (green). Qualitatively similar for M2.

10°% 107 107 1079 1072 10°F

If the signal contains a contribution from r

(Mpc™) the scalar contribution must be even more 3 « See transition from curvature domination to slow-roll
Model | Alog Zrons D108 Zistormaine 28108 Luse suppressed on large scales A ¢ Whether or not the suppressed scales leaving the
ikeot |06 3. horizon during the fast-roll transitionary phase

= Evidence for modified primordial scalar
spectrum increased after BICEP2 [3]

correspond to the largest observable scales in
the CMB is determined by the separation between

Fig 2: Form of “broken” primordial spectrum

analysed in [3] and found to be preferred over the . N . N .
standard power-law form in light of BICEP2 results. Such a spectrum arises in Open Inflation 10°% : ; the curvature scale and the current Hubble scale:
P, — M1 (70— () = i
assuming Q= 0.01 /__ W) =m Vo) ? n(10)

Fig 6: Scalar and tensor power spectra for M1. For the scalar
spectrum we have four curves: Numerical results from [7] (black

Open inflation® % k-

) 101 (upper)), full fitting formula with ¢ = 4 (blue), fitting formula without p-
« String theory predicts a landscape of vacua & dependent suppression factor (red) and fitting formula using the naive
. tunnellin & horizon crossing condition. For the tensor spectrum we plot: Numerical
* Our universe may have 9 1071/ results from [7] (black (lower)) and full fitting formula with c2 = 1.
emerged after false-vacuum decay . . : Qualitatively similar for M2.
ast-rol
* There are two key features: s\ow-roll\ ‘\j 5 102 ) « the fast-rolling of the inflaton, the p-dependent
1. Universe after tunnelling is open [4] . - _ suppression fa_c_tor and thg modnfled_honzon »
. . ) | 13 / ot L L crossing condition are all important in determining
2. Steepening of potential near barrier ¢ } 10704 T 10 100 th . | |
0 bs  dw  brr o e suppression on large scales
After tunnelling our open universe is described Fio 3: T £ 1 iated with
ig 3: Form of potential associated with Open - . B
by the equations Inflation models, where standard inflation is Fig7: Relative power P (0)/Pr(rea) whete preg " Fig Ta

is the scale at which the spectrum transitions from being

preceded by tunnelling from a false vacuum. blue- to red-tilted.

65 0 55 50 s
v T
08 | |

a2o 1 (4'52 N ‘/) N i ¢ YN with the Initial conditions: Model 1: *
o3\ 2 a2 = ; P ) ) Zo e DHy assuming @ =00
“ a=0=¢, ¢=¢n,a=1 « Curvature—potential equality at N = 66 s . | %_jgf:"wsj ing 1 =00
) o y = ~ 10 e-foldings of fast-roll P wPred M1
« Given these initial conditions we expect three stages: . e
) Vit » Even for unobservable curvature, i.e. when 2
1. Curvature domination: A =2 g=t ¢=—-—2 Qx $107" = pp, 2 10°, get O(10%) Y
a 4 suppression for v < D100 &

Large Hubble friction = field slowly rolling
Model 2: o

* ~ 6 e-foldings of fast-roll
= suppression on smaller range of scales

2. Fast-roll phase: After the transition to potential domination we are still in the
vicinity of the tunnelling barrier where the potential is steep

Relative Power

3. Slow-roll inflation If slow-roll phase is short enough, e.g. N ~ 60, expect to see

signatures of spatial curvature and steep potential [5] * Can still satisfy constraints on {2 and " | o > M2

get O(10 ) suppression for v < V=100

W00 0t 10 100 10t et 100 100 100 100 100
P

* Scalar and tensor power spectra take non-standard form in open inflation. Use
fitting functions based on analytic results of Yamamoto et al. and Garriga et al. [6]

Planck and WMAP hint at a deficit in primordial scalar power on large scales

H2\? cosh(mp) + cos(8,) p? H\* cosh(mp) =1 p?
R = —— Pr=4 g —_— .
t=tr,

m t=tr. sinh(mp) ?+p?’ 27 sinh(mp) 3+ p?
« This tension is worsened if the BICEP2 signal is primordial

« Two sources of suppression of scalar power on large scales: « Open Inflation models offer a viable explanation for the deficit
. * The source of suppression in Open Inflation is two-fold:
1. Fast-roll: - Inverse dependence on ¢? PP P
1. Fast-rolling of the inflaton after tunnelling

- Modified hori i dition f P
odified horizon crossing condition for Ry 2. Additional effects due to the tunnelling

.“ 2 .-
Padeem?(1e 2 ) (1122 = large wavelength modes freeze later * Have studied two toy models that are qualitatively viable, but a more
oH ¢H ] = their amplitudes are suppressed quantitative analysis is required
2. p-dependent suppression factor p>1 — irrelevant References:
reflecting memory of tunnelling: P pLl:d,—moxp — taked, =7 . Planck collaboration, A&A 571, A15 & A22 (2014). 6. K. Yamamoto e al, PhysRev. D54, 5031 (1996).
. BICEP2 collaboration, Phys. Rex: Lett. 112, 241101 (2014). J. Garriga ¢/ al, Nucl.Phys. B351, 317 (1999).

- K. N. Abazajian ¢ al, JCAP 08 (2014) 053. 7. "A.D. Linde ¢ al, Phys.Rev. D39, 123522 (1999).
cosh(rp)—1  p? p>1-1 . S. R. Coleman and F. De Luccia, Phys.Rev. D21, 3305 (1980). » _
=P Sy . B. Freivogel ¢/ al, JHEP 0603, 039 (2006). R. Bousso e al, ~ Otion Nebula image credit: Subaru Gallery
sinh(mp) i, +p p<1 = 7p’/(2c] 5) arXivi1309.4060 (2013). B. Freivogel ef al, arXivi1404.2274  http://subarutclescope.org/
(2014). R. Bousso ¢ al, arXiv:1404.2278 (2014).
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Introduction to thermal inflation

4 . . N . 4 ) I
Motivation: Mechanism: A Observational effects:

Solving the Thermal inflation is driven by Accelerating period after
“gravitino problem” and the potential energy of a scalar the primordial inflation dilute
“cosmological moduli problem” field, named flaton, the primordial GWs
by diluting them using a short, with almost flat potential but create GWs from the
secondary inflation Vidl = Vir — Lm2e2 4 ... collisions of bubbles
(Lyth and Stewart, 1995) 6] = Vin = gmed” +

- NG J J

Scenario of thermal inflation \

The flaton is fixed at the origin of 2rr e ped gty PRL et
the potential due to the thermal potential 4N I -
correction before the thermal inflation. £ J=—

Then the thermal inflation begins when b / .
other energy density decays to be L~ 7 1
as small as the flaton potential energy. RO "L

Thermal effects: effective potential a

Interactions with fields in a thermal bath leads to

i) Corrections to effective potential

ii) Noise term coming from the imaginary part of
the effective action (and additional friction)

hermal fluctuations

EoM of the flaton

¢ — V3¢ \Wﬁb o [0 @

Effective potential only: B
- thermal inflation ends with

(strong) first-order phase transition (at T=Tp)
- production of GWs by bubble percolation

strong coupling case (MDD — T1) strong coupling case (M — T1)

With thermal noise:
- noise terms kick the flaton
- flaton may escape from the dip
before bubble nucleation (at T~Tsub > Tp) .
- N0 GWS el gl U“:: i

Vearl#)=Vea [0TNT
|
|
\
_“/

Vel = Viag [ O] 1T
5.

schematic summary of potential shapes around the origin

N
\

Results of numerical calculation
At T=Tsub>Tp, flaton has already overflowed.

The width of the PDF of

FOF of 6t T=7 the flaton becomes broader
than the potential wall before
critical bubble nucleation starts.

Venlél=Vea[0]

We obtain +/(¢?) ~ 0.9T or larger values.

Conclusion

Thermal inflation ends with a weakly first-order phase transition.
We expect practically no GWs created at the end of thermal inflation.

X critical bubble production - generation of GWs

The end of thermal inflation: o 544l phase transition - no GWs
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Gravi-Leptogenesis during Axion Inflatioh
Tomohiro Fujita, Hajime Fukuda, Ryo Namba, Yuichiro Tada (Kavli IPMU)

Naoyuki Takeda (ICRR)

Abstract

Left-right asymmetric gravitational wave generates
B-L through the anomaly.

* Axion inflation realizes such CP violation easily.

* We study axion-gauge interaction and its effect.

Conclusion

* We show axion-gauge interaction generates plausible amount of B-L.
Our numerical simulations support this result.

* Elementary process of B-L production has not been clear yet. Hence the
remnant of gravitational wave is unknown.

Introduction

+ Baryon Asymmetry and Leptogenesis

ng/s~ 10710 >  Too large!
Ol = sW, we

3%\} e +

327 ot
We generate B-L instead of B. (Leptogenesis)

- How to Generate B-L?

[

.

Sphaleron
effect

O Jb =

dJg_1 N
E> Vudt_ ;= 10472

[ b
R“ Sl err vab

Tpuns

This term is a total
derivative and

thought to be zero
in vacuum [2].

__N 4. 2\
AQp_1 = 1042 /d v/ —g(RR

Any CP violating effects could generate B-L!

OurSetup
T " 2 _E ! o
AL = ngF |:>A A-S¢VxA=0

This vrolates CP and generates B-L through A.

Feasible feature: exponential /.
Srow n <liner-hor P B AL (T’ f\) o ( k )l.f lr\-‘FE—E\.-"QEk;'{a,‘H
grow in super-horizon mode in J_ 2EaH
terms of ¢ = ad/2AH
M s e
T e o ™
E 7 - i
= / & \ NG
L J A 5 0 \\\
E: 7 A B N\
£ J g
_ 1
it \‘
* The Constraint on & e

WMAP T

;- -5 ~ 2.7

1. A energy VS inflaton energy
2. backreaction of A

{’-\xion. ﬁf’(T) #0 |:> a}JtomaticaIIy 3. non-gaussianityﬁ Most stringent! .
inflation Qﬁ(q«) #[] violate CP — 5 d
Previous Work and Problem Result

S\ (2,t) o< £/€0;0.hy
This directly generate asymmetric h in
perturbative calculation.

np_r/s~ 6.3 x 1074(H/Mp)*/?(jn/ Mp, )"

np/s ~ 10710 — w— Mpy
+ The Diagram and the Divergence

Involving a
graviton loop

u = Mp :> Including vacuum divergence
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With g, n=>0, we obtain
np/s~ 10710 = ¢~ 6.09 Isittoo large? — No!
Non-gaussianity

— . = Q%AHW

CMB scale 0 @ inflation end

First we simply simulate €:

1

10 T
simulation

& seems large enough!

However, we should keep in mind that in
w100 ] the estimation { ~ 6 we do not take ¢
time dependence into account. Also,
preheating effect might be important.

107
0 10 20 30 40 50 60 70

N

- Remaining Work

How to create B-L charged particles?

Is this L-R hyuw
asymmetry

survive after

B-L creation?

9JB_1. ¢ This blob

does not
mean

particles.

h;w
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Abstract

We study a marginally stable circular orbit (MSCO) such as the innermost stable
circular orbit (ISCO) of a timelike geodesic in any spherically symmetric and static
spacetime. We present the equations describing the location of the MSCO [1].

It turns out that the metric components in this equations are separable from the
constants of motion along geodescis. In addition, metric component grr (r is a
radial coordinate) does not affect any MSCO radius. This suggests that, as a gravity
test, any measurement of the ISCO may be put into the same category as
gravitational redshift experiments, even in the strong field region.

2. Timelike geodesic

in spherically symmetric and static spacetimes
A general form (G =c=1)

ds® = —A(r)dt? + B(r)dr? + C(r)(d6? + sin® 0d¢?) (1)
The Lagrangian in the equatorial plane 0 = /2
. T 1
£ =—A(r)i + B(r)i* + C(r)d?, "= (;_T @)
Two constants of motion
5 . loZ _10%
T 20t _ T 296 3)
= —Ale = C(r)é
E : the specific energy, L : the specific angular momentum
Orbit equation
. 1 E? rL?
re = — —1
B(r) \A(r) C(r)
=-V(r) @)

V() is not the same as the so-called effective potential.
By Eq. (5), we obtain the radial acceleration of the test body as

_ _1 (lV(T) (5)
2 dr

4. MSCO equation

1. Motivation
ISCOs [2] are useful for testing

« the strong gravity.

« the no-hair theorem for black holes.

They are
+ important in gravitational waves astronomy [3].

- associated with the inner edge of an accretion disk around a black hole [4].

3. Conditions for MSCO

Conditions for circular orbit
Momentarily circular condition (Condition 1)

=0 (6)
Permanently circular condition (Condition 2)
=0 N

Linear stability of orbit
r 1o 4 b ®
r¢: the radius of a circular orbit ( 7 = ¢ = 0), dr: perturbation
The equation of motion for perturbation
d? 1d2V (r.)
— (§r) = -5 9
dr? (6r) 2 dr? ! ©

The condition for stable (or unstable)
d*V(r¢) d*V(re)

0 —— <0
dr% >0 (or dr% <0) 0

Marginally stable is a transition point between stable and unstable. (Condition 3)

Conditions of MSCO

: 2
V(r)=0 and %(7) —0 and & Vir) _ 0 (1n
L T

+ B(r) makes no contribution to the MSCO. Moreover, any circular orbit is not

The matrix
! ! [\ /| B2
() oy !
i L ,i L 0 L2 _ 0
dr \ A(r) dr \ C(r) - (12)
d? ( 1 > d? ( 1 ) 0 " 0
dr? \A(r)) __dr? \C(r)

affected by B(r).
« The geometrical part including A(r) and C(r)is separated from the particle

motion parameters as /' and L .

The determinant of this matrix vanishes : a necessary condition of MSCO.

MSCO equation

o (A?r)) di (czw) a (cém) di <A§r>> -0 W

Eq. (13) can recover Eq. (41) in Ref. [2].

E? =

~xir (ew)r =5 () 4= df(’i) ) L (C("f)

F?and L? on MSCO is

The radius of the MSCO must satisfy not only the root of MSCO equation but also 0 < E? <ooand0 < L2 < o0.

5. Conclusion

We studied a MSCO of a timelike geodesic in any spherically symmetric and static
spacetime.

« The metric components are separable from the constants of motion along
geodescis.

* 9rr does not affect MSCOs.

+ Any ISCO measurement may be put into the same category as gravitational

redshift experiments among gravity tests.

Applications to exact solutions to Einstein's equation are discussed in Ono's poster.
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JGRG24 in Tokyo Nov. 10 - 14, 2014
Abstract: We study a marginally stable circular orbit (MSCO) such as the innermost stable circular orbit (ISCO) of a timelike geodesic in any
spherically symmetric and static spacetime. We discuss several examples: Schwarzschild, Kottler (Schwazschild-de Sitter), Reissner-Nordstrom, and
Janis-Newman-Winicour (JNW) spacetimes.[1]

1 Introduction

We follow the Suzuki’s poster. A general form of the line element for spherically
symmetric and static spacetime that may have a deficit angle:

ds® = —A(r)dt* + B(r)dr® + C(r)(d6* + sin® 0d¢*). (1)
A MSCO equation:

d(1\& [ 1 d( 1 \d (1

i (i) i (c7) e (et ) e () =

In addition, E?(E: energy) and L?(L: angular momentum)

k() - )

—
no
—

where we define a determinant as

1 _ 1
A(r) @

(
a2l | ®

Effective potential:

Vst =3 {7 (e 1) - B(Sz:(r) B ®

In the following sections, we apply MSCO equation to some of exact solutions of
the Einstein’s equation. And also, we need to check whether L? is positive finite.
We study whether the real roots are physical. Throughout this poster, we use the
unit of G = ¢ = 1.

— 2

A=

é . . )
2 Schwarzschild spacetime
The Schwarzschild spacetime:
2_ _(1_Tg\ 52 _Tg Lo 202 2 2)
ds? = (1 r)dt +(1 T) dr? + r2(d6? + sin® 0do?), (6)
where r, = 2M. From Eq.(2),
L rumsco = 3rg, (7) y

anti-de Sitter |

JNW

Verr(r)

006 |-

Kottler 1

Reissner-Nordstro

1 10

/1y
Schwarzschild ISCO

Fig 1: Vess(r): effective potential. Black line: Scwarzschild, blue line: Kottler,
ISCO(\ = 1/1125), cyan line: (A = —1/1125), red line: Reissner-Nordstrom(q? =
1/4), purple line: JNW(y = 0.55)

6 Conclusion

‘We examined roots of the MSCO equation to the Schwarzschild, Kottler, Reissner-
Nordstrém, and Janis-Newman-Winicour spacetimes.

o If 0 < X\ < 16/16875 in Kottler spacetime, two MSCOs appear, where one is
corresponding to the ISCO and the other is the OSCO.

o If A < 0 (anti-de Sitter case), single MSCO appears.
e If0<e?< (5/ 16)1"3 in Reissner-Nordstrom spacetime, single MSCO appear.

If 1/v/5 < v < 1/2 in JNW spacetime, two MSCOs appear, where one is
corresponding to the ISCO and the other is the OSCO.

If 1/2 < v < 1 in JNW spacetime, single MSCO appear.
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Gravitational waves from merging binary black holes

h+ o

0 2000 4000 6000 5000 10000 12000

t'M

A post-Newtonian waveform for m1/m2=10

Binary black holes: mass and spin {m1, my, S1, S»}

Gravitational wave frequency:

CMQe, (M O\T!
frr ~ 13I8 i .
aw ~ LR27505 (100/\//@)

M: Total mass of the binary
Qo: Orbital frequency

From M1, ~ 0.02, we have 20-30 gravitational-wave cycles
before merger.
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Intro.: Wave extraction in numerical relativity

BEST Waveforms extracted at future null infinity

BETTER Waveforms extracted very far from the source but
finite radius
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Intro: Wave extraction in numerical relativity (cont'd)

BEST Directly computed using the method of
Cauchy-characteristic extraction

— Winicour, LRR 15, 2 (2012).

BETTER Computed at very large, or extrapolating

several finite-radius measurements using
the Regge-Wheeler-Zerilli formalism (gbé:e”/"dd))

or the Newman-Penrose formalism (z/5™)
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Intro.: Perturbative extraction

An extrapolation formula for the Weyl scalar 4:

| = evinen - S [aruirtn o,

in the spin-weighted spherical harmonics (_» Y;,) expansion.

r: an approximate areal radius
YEM(t, r): (£, m) mode of 14 at finite radius r

— Lousto, Nakano, Zlochower, Campanelli, PRD 82, 104057
(2010).

Gravitational waveforms h /. are related to 14 as

Vs = hy —ihy.

This is true only at r — oc.
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Intro.: Perturbative extraction (cont'd)

Why does this simple formula work?

For example, this formula has been used in

— Babiuc et al., PRD 84, 044057 (2011).

in the comparison with a characteristic evolution code
to obtain the gravitational waveform at null infinity, and

— Kyutoku, Shibata and Taniguchi, PRD 90, 064006 (2014).

for numerical relativity simulations of neutron star binaries.
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In the Regge-Wheeler-Zerilli (RWZ) formalism,

hy —ihe=> V= DA+ +2) (wg‘jnm) - ,-wg?,;id>) o Yim,

2r
in r — oo.
llléf:eﬂ): Even parity wave function
\Ué,ojd): Odd parity wave function

which satisfy

2 2
o) 0 V(eweﬁ/odd)(r) w(ewen/odd)(t, " = Sé(renwen/odd)(t, .

- £m

——+
o> or=2 !

Ve(even/ °dd). potential Séf;eﬁ/ odd). g\ ree

The NR waveforms are usually obtained from the NR 4 data, and

Vo= hy —ihy.
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Basic idea (cont'd)

In the analysis of the asymptotic behavior of the RWZ functions,
we have

0(0+1)

wgen':eﬁ/odd)(t’ r) _ Hgm(t i r*) + T

/ dt Hym(t — r*) + O(r™2),

Hym: Wave observed at infinity
r*=r+2MIn[r/(2M) — 1],

for general £ modes.

@ Error due to finite extraction radii arises from the integral
term and higher orders in 1/r.

Inverting the above relation, the wave function at r — oo becomes

ever /o evyer /o E £+ 1 evyer /o —
ylerer/odd) = ylerer/edd) (g r)—%/dt\llém /o9 (¢ 1)+ O(r2).

m
£ r=oo

@ This expression is applied to waveforms in the black hole
perturbation approach.
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Basic idea (cont'd)

Similarly, we discuss the mode function wﬁm of the Weyl scalar.

If the NR Weyl scalar satisfies the Teukolsky equation

in the Schwarzschild spacetime, @bﬁm Is expanded
with respect to 1/r as

2 e~ )+ 012,

rwf’"(t, r) = F/gm(t —r*)+

where dot denotes the time derivative.

@ T[he difference between this F/gm and Hy,, of the RWZ
function is only a numerical factor.

Inverting the above relation, we have

riln| = et = CEEER [atvdn(e i+ 0( ),

@ This is used for extrapolating waveforms in the numerical
relativity.
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Basic idea (cont'd)

Phase and amplitude collections by the perturbative formula:
We assume

Him(t — r*) = Agmexp(—iwem(t — r")).
- (ever/odd) . : :
Then, the RWZ functions V¥, at a finite extraction radius

are written as

i0(0 + 1)

Wyemft

\U(eweﬁ/odd) — A |:1 +

£m

} exp(—iwgm(t — r*)) + O(r_z)

2
Aem\/l + (W . 1)) exp(—iwem(t — r*)) exp(d¢em) + O(r—?)

2wpmr

= (Atm + 6Aum) exp(—iwpm(t — r*)) exp(ddem) + O(r?).
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Basic idea (cont'd)

@ Amplitude correction:

SArm 1 [4(L41) ) 2 .
== o) :
Aom 2( +ot™)

2wgmr

The amplitude collection will be O(r=2) which we have
ignored here.

@ Phase correction:

_ e(z +1) oL+ 1)
1) =

- Qbﬁm 2wgmr /\/ 2wgmr

U +1)

N 2Wpmr

+ 0(r72).

The phase correction from the perturbative formula has
O(r~ '), and is dominant.
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Radiated energy

Teukolsky function oW = (r — iacos §)*)4 (a: Kerr parameter) is
written in the frequency domain as (we need higher order!)

1A 1
oW yme(r) :[(r3 +1i (ma—I— 5 —) r’ 4+ (Ei(—3ia—|—im2a—|—2l\/lm) a
w
1i(ixma+3ima+3M) 1 )\(2+>\)>r—|—0(r0)]Hw,
2 w 8 w?

H./r: Second time derivative of the waveform at infinity

The separation constant A of the Teukolsky equation
is obtained for aw < 1 as

2m(£2+£+4)
(L+1)
(£ —m)(L+ m) (£ —2)% (£ +2)?
(20 —1)63(2¢0+1)

A=(+2)(£—1)— aw+ (H(L+1) — H(E)) 2°w? + O((aw)?);

H(E) = 2

— Mano, Suzuki and Takasugi, PTP 95, 1079 (1996).
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Radiated energy (cont'd)

We discuss the O(r—2) correction in the radiated energy.

The energy flux from the asymptotic expression is obtained as

b6aw(aw — m) — A
2w?r?

Epm (1) = (1 + + O(r_3)) Ese

by the square of the time integration of _,Wy,,.,.

'El?;w: Evaluated from the waveform at infinity, H,/r

@ This is the same as
— Burko and Hughes, PRD 82, 104029 (2010).
via the Sasaki-Nakamura equation.
—— Sasaki and Nakamura, PTP 67, 1788 (1982).
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More analysis of the perturbative formula

An extrapolation formula (with the Kinnersley tetrad):

r¢ﬁm‘ =) - dt [rpim(t, r)] + O(r=2).

¢—1)(£+2)
2r /

Difference between the Kinnersley (Kin) and a NR (num) tetrads

+0(r?),

riﬁﬂﬂn _ % [rpEu=] — M[rrglb’fum] . I acos (92 [r¢fum]

—— Campanelli, Kelly and Lousto, PRD 73, 064005 (2006).

The Teukolsky function _oW for 1/;"* is

1
oW =(r — iacos§)* (5 Yt —

A

=5 PEE M Py — i ard cos (0) YEYE 4+ O(r?)

r (1 2M  2ia cos(6)

Mapzoe= n i acos(0) wjfum>

r r

2

) v+ o),

r r
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More analysis of the perturbative formula (cont'd)

On the other hand, the asymptotic form of _,WV

L—1)(L+2) -~ 4 -
2 0(+1)

oV :IEIgm(t— ) + (t — r*)} r?

+0(r, (aw)?),

for aw < 1.
Finally, rwﬁm at infinity is extrapolated from riyi;"(t, r) as
oM £—1)(¢+2
o] = (120 (e - SR Lo
- 2— ST T (e 0] CLT + 01/, (aw)?),
L'#L, m'=m

conim_ 1 [E=DE+)E-mt)(C+m+ 1)
tm C+1 (2¢+1)(2¢+3)

—— See also, Berti and Klein, PRD 90, 064012 (2014).
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Discussion

@ What are M and a in the formula?

@ The formula will give a good result for the £ = m = 2 mode.

@ How about the other modes?

Better extraction of GWs?

[Kyokado Toshiyasu, Shigure-gasal]
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“On the creation of a baby universe”

Takahiro Tanaka (Kyoto)
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Takahiro Tanaka (Kyoto u) .
B04 Tunneling with baby universe ereation .~ °"° " (Uding ) 27Xiv:1410.6202

The description of quantum tunnelling in the presence of gravity shows subtleties in some cases. Here we discuss
wormhole production in the context of the spherically symmetric thin-shell approximation. By presenting a fully
consistent treatment based on canonical quantization, we solve a controversy present in literature.

1) Thin wall dynamics

3) Foliation independent approach
Spf;erically symmetric shell motion

Ry ds* = N’dt* + *(dr + f it} + R*de?*
Minkows /shel ™ ——
i SR Sha=o[ RN+ (7, + p e s =1
inside e —vionlo?/2— R
| I Schwarzs dszz—ﬁit2+%dRz+de_Qz Seran = Ton d x\/§R+(boundaryterms) Sy szgn(a / )
child

Hamilton formalism

Effective Lagrangi@t$id&rived by using this 7 coordinate. St :Idtp;? +Jdtdr[ﬂ R, +m L,—NH, - pBH, ]
L=P,R-H, g , rRIG T Ly ' ,
— T , ’ N 2
P Rl SV TR AR H, = [que ] ~oR J2 o 15 I R =L _5(r—7)
of g \/7 ¢ a L L2
- H, =—L7z, +R'7y—pS(r—r)
Junction condition gives H,f» & +V If we use the time coordinate in the static chart, the bulk
s term completely vanishes, but here we do not do so.
Settin{ ;;:1‘7 s, =sign2RF o R* | - Ss :Sllgn /2 x) Witlf}o_u(’g fix[iin%'(c)he gauge, we only use the constraint equations:
1 3 2 3 2 o T . .
VR)=——= (R _20R* +2)o R’ +20R" +2) In the bulk constraint equations can be solved as .
V. -V R/1—2M x> nR:”—); m=R-XT A=
o<16/27 VR : ,
R Integration of the constraints across the shell gives
junction conditions.
o> 16 [”L]tgz_% [R]”— R 2R4 pz
We introduce a potential @(R R L) such that satisfies
. @_ﬁ(a@j )
+ n "R ar\or ‘ a
§* = [drp, +j‘dt'[dr—+jdt MjR,}
OR'" |
—r
jdr¢\f+jdzr [o] ] (i _py)
R L
h jdtr rdﬂl’ +Idt1§,[a@}
t 5 aR! B

I 2
a—dj——iRlog —X+l\/§_X

2) Strange Tunneling . oR"
r . s\ f—R: +iR, Using the junction conditions, we have
:J‘ P, dR Py =—iR| log ——7——— = A e
V7 o™ . sl f — R +iR, .
pE —0 | =R log ———=—— || =F,
o s.= oR' |, Jr
R s, :sign(o-z/Z—R3) . . -
o<1/2 Difference from the gauge fixed approach.
‘ X+i\f-X?
75> 12Q\ fdrfp\,f @ =—iRR'log XN =X R f-X?
4 A2 R N
i tunneling =/ At th . int Y= D0
At the turning point R ,=0. t the turning point, X’=f. X =.[f -0
Usually s,=1 and so P = 0at the turnlng point. X=-r @ =7RR
However, when s, flips the sign + - — ef/ =7R atR=R;. ‘ E/
Something is wrong? ;‘fi’ RR' | Minkowski ll I
Usual case Case with flipping sign : : r
s\f-R; 7, 7,

Sign flip occurs SE :J.d E +J-drcz7\’f
when /=R =0

d_ ~IdRi Py 7zR) In this combination integrand vanishes at R=R;

dr PE
f II =cons;antk el L Action to be evaluated is
oliation breaks ; ;
corresponding to this area.
down 7R o<l1/2

Alternative Am

. . R
foliation 2MR;  tunneling &,
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“Stability of the wormholes in higher dimensional spacetime”

Takashi Torii (Osaka Inst. of Tech.)

[JGRG24(2014)P24]
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L 3 141110-14 JGRG (KIPMU)

We investigate the stability of the simplest traversable wo‘rmhélé supported by a single ghost,

scalar field'in n-dimensional general relativity. This isithe generalization of the Ellis solution to a'

higher-dimension. In the asymptotically flat case we reported thatithe' wormhole is unstable

against the linear perturbations and also in‘the non-linear regime. When the cosmological

constant (c.c.) is included, there isinoswormhole solution for positive c.c. Although there exists 4-;

the solution for negative c.c., we show that'the wormhole is'stable against linear perturbation if ,

the throat radius a is large as @/¢4qs > 0.4 . ! e : 22540293
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© What is wormhole?

There are some definitions of a wormhole.

asymptotic region

» Visser, 1995 :
If a Minkowski spacetime contains a
compact region Q, and if the topology of Q
is of the form Q ~ Rx2>, where X is a
three-manifold of the nontrivial topology,
whose boundary has topology of the form
d2~ S2, and if, furthermore, the
hypersurfaces 2 are all spacelike, then the
region Q contains a quasipermanent intra- asymptotic region
universe wormhole.

» We employ the “naive definition”.
- Two asymptotic regions are connected.
- The spacetime has a throat structure.
- Two asymptotic regions can be the same.
(The throat is a handle)
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“desirable” wormhole

Let us list up the conditions of “desirable” traversable wormhole for passing through.
(Ellis 1973, Morris-Thorn 1988)

The “desirable” wormhole for passing through is
» There is no horizon for coming back.
» The tidal force should be small enough.
» It takes finite and short proper time to passing through.
» It is constructed of physically reasonable matters.
(But the energy conditions are violated (Visser 1994))
» perfect fluid with negative energy density
» the ghost field
» the tachyonic field (Das & Kar, 2005)
m=) » generalized gravity
» It should be stable for perturbations at least.
» It should be possible for human being to construct it.

O Ultimately, we want to construct the desirable wormhole !

% First, we should find wormhole solutions.
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stable wormhole 7

» Bronnikov, et al (Grav. Coamol. 19 (2013) 269, arXiv:1312.6929)

% In 4-dim. GR. perfect fluid and source free electro-magnetic field.

% The pressure of the fluid is zero for the static solution. However, if we
perturb it, the pressure appears | ==p stable wormhole
% However, the matter field must satisfy a certain EQS.

Does the matter behaves like this?

» Kanti, Kleihaus and Kunz, (PRL107 (2011) 27110T)

% In dilatonic Einstein-Gauss-Bonnet theory.

% No exotic matter and linearly stable !

% However, they fix the throat radius.

The stability analysis is insufficient.



why A7

1080

several reasons why we consider the cosmological constant

We include the cosmological constant.

» stabilize by the negative c.c.?

» In black hole physics, a Yang-Mills hair and a
scalar hair can be stabilized by adding the
negative c.c.

» If wormhole is stabilized ...

» construction of a time machine and “dokodemo
door” may be possible theoretically.

» adS/CFT : What effects appear on the boundary
theory in the wormhole bulk.

» Bizon & Rostworowski showed that the pure adS
is unstable in some sense. (PRL107 (2011)
031102)

We proceed from a simple
model step by step.

the simplest solution

v

e

Ellis wormhole

higher-dimension

EE. @\ o

Gauss-Bonnet term

dilaton coupling B0k
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model & equations

» general relativity, n»-dimensions
massless scalar field

e

S = [@ov=g| oy (B-20) - V0P = VG| = hos)

» static spacetime
R is the area radius.

ds? = —‘J;(’C)dtz + f(r) " dr? + R(r)*h;jdx'da?

the line element of the (n-2)-dimensional sub-manifold.

radial [t is assumed to be a constant curvature space with
_ coordinate curvature k.
area radius r

» A =0
» 4-dim : Ellis wormhole (1973)
» n-dim : T.T & Shinkai (2013)
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model & equations

» Einstein equations and the Klein-Gordon equation

(t.1) _n;QfQ[QZ" N fJ:Z N (n fR?;)R'Q] N (n— 2)2(;; S)kfi/‘f _ %EJ%,Q’
(r.7) n;Q%{f%_F(nf;)R’]_(nfg}(;;?))kjL%:%w,Q’
I e R
e ey o

integration
,/ constant

. H I C
The Klein-Gordon equation can be integrated, and the =y ¢ = TR? ®

scalar field is obtained by integrating the metric functions.

The Einstein (n—2)R [f’ (n — 3),3'] (n—2)n—3)k 24

| s - L
equations are : R f R IR f
reduced to (n—2)R" B K2 C?

two equations. R T f2R2(n-2)

2 (12
ki C

- _szz(nfz) @

®
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boundary conditions

» regularity condition (+ symmetry) at the throat r =20

throat radius —— R=a
R =0 .
We also assume the mirror symmetry at the
f=1r throat. We can extend the solution to non-
=0 / symmetric one.

shift symmetry —— ¢ =0

mirror sym. . ) .

» Asymptotically AdS



1084

existence of solutions

» At the throat, Einstein equation @ becomes

@ = K202 =f [<n —9)(n - 3)ka2<”*3>—2m2<"*2>} Lod< Sk @
a

n

» For the positive c.c., k is positive and the cosmological horizon should appear.
@ wp k=1 and f=0at r=r¢

D@ =P ¢ — oo, R'— 00 at r=rc The spacetime becomes singular!

There is no regular wormhole solution for positive cosmological constant.

» For the negative c.c,, A=0 A>0 A<O0

there is no constraint for k=1, 0. k=1 exist X exist
k=—1 @ wup a>\/(n_;>—/(ﬁ_3). k=0 X X exist
k=-1 X X exist

Throat radius has the lower limit.




1085

configurations

examples of the solution

» configurations (n=4, k=1, ly4s =1, a = 0.2 — 2.0)

The expansions of the ol
out-going and in-going
directions are zero at
the throat. It can be
regarded as a double

trapping horizon.

that the throat radius is
as the adS radius.

same

I
0 2 4 6

% We find that they have qualitatively same
1 configurations independently of their size.

/
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® . .
linear analysis

In the rest of this section, we examine the linear stability of the higher-dimensional Ellis wormhole.

» metric ansatz

ds? = —f(t,r)e 2D dt?® + f(t,r) " tdr? + R(t, r)h;jdz'dz?

We consider only the spherically symmetric perturbations.

» These functions are expanded. _ _ _ _
The variables with O are the static solutions.

f=folr) + fi(r)e™’, R = Ro(r) + Ri(r)e™",
§ = Go(r) + 81(r)e™", ¢ = ¢o(r) + d1(r)e™’. > w is a frequency.
The variables with 1 are the perturbations.

» By taking linear combination, we can find the single master equation.

n=2 / . .
by = Ry? (¢1 _ % ) gauge invariant under
spherical symmetry
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perturbation equation

» By taking linear combination, we can find the single master equation.

n=2 ot auge invariant under
Vv =Ry* (¢1——(,)R1) . J9He°
R spherical symmetry
d*y;

+ V()Y = w’ihy

, 202 Ry 2t 24 R2 —2 ,
0 0 N
diverges at the throat !
== The potential is positive definite. .. stable

» O-mode solution +; <@=m The mode which changes the throat radius.

The O-mode diverges at the throat.

This divergence is canceled by the divergence of the potential function.



regularization

» regularize the perturbation equation by the O-mode

d 1 4
Dy = 4+— — =
+ dr  ); dr,

- Operating D+ on the eqaution and defining Y¥; =Dy , ...

» We find the reqgularized equation.

d*Vy; N :
LW (r)W; = WV
d7"2 amm———
*

For n=4 and lds= 1, the potential W is positive definite for a > 1. Hence these

wormholes are stable !l

the perturbation equation
D_D_|_17ZJ1 - cu2gz51.

1088

0

0.5



» Solving this equation numerically, we can find a negative mode for a< 0.4.

0

-20

-40

-60

-80

-100

stable or unstable?

0.1

eigenvalue of negative mode

0.2

a

0.3 0.4

% For n=4 and la=1,

—>

0.5

1.2

-—-- a=0.4
--------- a=0.3
— —a=0.2
a=0.1

0 1 2 3

eigenfunction of the negative mode

a>04

stable

a<04

unstable

1089
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dynamical evolution

» we add the pulse to the momentum of the ghost field, and investigate the
evolution of the wormhole.

1.6 T - -
——— 0.000E+00
—0.100E+00
14 |- _| ——0.200E+00
— 0.300E+00
— 0.400E+00
—0.500E+00
T — — 0.600E+00
£ — 0.700E+00
‘E —— 0.800E+00
— 0.900E+00
g VLR i —| —— 0.100E+01
£ H
@
g 08— i—f— e
a
8 s
=
04 [
02 i 1 1 1 1
-1.5 1.0 -0.50 0.0 0.50 1.0 1.5
X-plus

The throat can be considered
as a double trapping horizon.

pulse
P+ =Dygol T aexp{—100(z* — 0.5)?}
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Summary

» We derived the Ellis wormhole solution in higher dimensions including the c.c..
» For positive Lambda no solution exists.
» For negative Lambda there can be the solution with not only k=1 but k=0, -1.

» We investigated their linear stability, and found the large (a/¢.qs > 0.4) wormhole
is linearly stable.

» We performed the dynamical simulation to investigate the evolution of the
wormhole.

Anyway, we want to construct stable wormhole solution

because we want a dokodemo door and a time machine !l | J
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“Wormbhole evolutions in n-dimensional Gauss-Bonnet gravity”

Hisaaki Shinkai (Osaka Inst. of Tech.)

[JGRG24(2014)P25]
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“Wormbhole on DGP brane”
Yoshimune Tomikawa (Nagoya)

[JGRG24(2014)P26]
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1. Introduction
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Wormhole and Exotic matter
M.S.Morris, K.S.Thorne (1988), D.Hochberg, M.Visser (1997)

Exotic matters are required to construct wormhole
(at least for static)

The presence of throat violates null energy condition
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Braneworld and wormhole

-On brane, in general, gravity is modified from Einstein’s one.

-Without introducing of exotic matters, we may be able to
construct the wormhole in the braneworld.

-A candidate has been constructed recently in DGP(Dvali,
Gabadadze, Porrati) model. K.Izumi, T.Shiromizu (2014)

We examine the detail of spacetime structure on
brane focusing on wormhole aspect



2. Setup
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DGP braneworld — single vacuum brane-

action

S=2M*[ d’x-gR+2Mr.| d*xJ-q“R(q)

bulk

G.R.Dvali, G.Gabadadze, M.Porrati (2000)

M ---five dimensional Planck scale
r.---a constant having lenth scale

g, - bulk metric

q,, - -induced metric on brane
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New COnflgU ration K.lzumi, T.Shiromizu (2014)

Bulk spacetime: five dimensional Kaluza-Klein bubble

2 —1 2 2 a b 2
o =S )y + f(r)dr” +r7y dxtadx”,  f(r)=1=(r,/7)
. ¥ dx’dx” =—dr* +cosh® ), (3-dim. de Sitter)
| éulk and vacuum single brane

- = _g(r) -Branelocation X = X(T)

is determined by junction condition

-Single vacuum brane solution is
realized for rg > 1.

(regular brane)
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Induced metric on brane
K.lzumi, T.Shiromizu (2014)

ds? = a™2dr? + r?~deda’

,  —(r*=2r})+ \/T4 — 4rer?

o =

o’ : real and positivity < >, = 1/r2 42




3. Wormhole on DGP brane
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Induced metric on brane
ds? = a7 2dr? 4+ r2~,pdx®da’

¥, dx?dx” = —d7r® +cosh® (), (3-dim. de Sitter)

o (= 2r) /= Argr?

o’ =
2
273
r>r. = a/re 4 r?

We examine the detail of this spacetime.
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Location of throat

Maeda, Harada, Carr’s definition (2009)
Throat is defined as the minimal surface in the trapped region

or at the bifurcating trapping horizon.

(1) In(z,7) coordinate
minimal surface at r =7, =/r; +7’

(11) In (7', R) coordinate {

log( A(r)) = j

lim A(r) =1

7 —>0

—% ar
T =rh(r)sinh 7, R = rh(r)cosh r ar
=ds’> =h?(=dT’> +dR*> + R*dC)})
(aymptotically flat)
Location of minimal surface on T=const.
rnzﬂn (7)= rcz (1- tanh* 7))+ r02 (I- tanh* z')_1

tanh® 7
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Minimal surface depends on slice

| — =

_ R2
k=h"V 1, = lrsyl=s h'K,
B B

7 =P 1= %1, rt° =0
K,=(0 +tt)V 1,

hab — gab + tatb o rarb

Location of minimal surface depends on slice



Spacetime structure on brane
ds* = —r’du, du_+r’ cosh® @) du, = dr +dr /(ror)

null expansion rate for outgoing/ingoing

_ Oln(rcoshz) 1

A —(tanh7 + @)
Penrose diagram M\ Ou, 2
ﬂ T =T,
Hy
t/rapped trapped region
0.,0.) = (= 0.0_ > 0
_I_ —
(__94_)
A
t d
rappe 9+ — 9_ — 0

1107

bifurcating trapping horizon



1108

In (T,R) plane

throat

the trapped region

the bifurcating trapping horizon

O ., R




No exotic, but effectively...

effectively energy-momentum tensor

(4) _ o(eff)
G, =T,

(eff) _ 7: (eff) (eff) (eff) (eff)
T,[n? _dlag[p 9pr 9p 9p ]

J—

(eff) _ _

Yo, pm = iz (1-a’-2raa’)<0
r

7

. 3
<ﬂ>:—r—2(1—a2)<0

Py p ——%(l—a2+raa')<0
r

all energy conditions are not satisfied

1109
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Traversability -Acceleration and tidal force-

c . speed of light
-acceleration & rarn: @cceleration on the Earth

' 2
|al |N c /I"O < & zarn
= 1,>c’/g,,,~10"cm~1Ipc
(depend on traveler)

-tidal force

| Ryjo, I~ 1 |$] : size of traveler

= tidal acceleration | Ad' |~ ¢* | Ry, | x| & |

= 7> €1/ gy ~10"em
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4. Summary
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Summary

-we confirmed that wormhole spacetime is realized
on DGP brane. No exotic matters!

-traversable wormhole is too large, say 10'°cm.

-a mechanism to keep the size compact?
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“Charged multi-black strings
in a five-dimensional Kaluza-Klein universe”
Hideki Ishihara (Osaka City)

[JGRG24(2014)P27]
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Charged multi-black strings
in a Kaluza-Klein universe

Hideki Ishihara, Masashi Kimura*, and Ken Matsuno

Department of Physics, Osaka City University
* DAMTP, University of Cambridge

1 2014/11/22
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Solutions

We consider the 5-dimensional Einstein-Maxwell equations:

1

1 A o"
R,uu — §Rg,(w =2 (E(L)\Fy — Zg,(wFa,BF ﬁ) )

Exact solutions :
ds* = —H *dt* + H [V (dr® + r*d6® + r* sin® 0d¢?) + V™ Hdw?]

M; . : .
H =1+ Z @ — =z, : harmonics on the 4-dim. Ricci flat space

t

lo

v

3
Aydat = :t\gH‘ldt,
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Physical properties of Solutions

Single solution :
ds*> = —H7*dt* + H [V (dr® + r*d6” + r? sin® 0d¢”) + V™ Hdw?]

M t
H=1+— V= L
r 0
3
A dzt = i%H—ldt,

We investigate

* geometrical properties of the metric,
* motion of a test particle.



1117

Geometrical Properties
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Asymptotic structure

At alarge distance 7 — 00 — 1 + % — 1
"

‘ 2 ‘
ds* = —H *dt* + H L— (dr* 4+ r*dQ3.) + %ﬂdwz ;
0

t t
= —dt* + — (dr® +1%dQ%%) + ?Oduﬂ,
0
5-dim. Kasner universe with the parameter (12, 'z, 72, -72)

Expanding 3-dimensions and a contracting extra dimension

Effectively 4-dimensional Friedmann universe
dsy = —dt* + a(t)? (dr® + r?dQ%.)

a(t) = V) = /t/to
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Singularities

The Kretschmann scalar :

R™P Ry
L 18(r + M) [(r + M) — toM2tr] + (toMtr)? (14412 + 48Mr + 31M?)
B 4t4rd(r + M)S ’
curvature singularities exist at t = 0, » = 0, and » = —M.

t = oo, r = 0 with rt = finite. seems to be non singular.
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Ingoing null geodesics

0 = const.,¢ = const., 1) = const.,

t
—H2dt? + Ht—d’r'2 =0,
Then ) !
ANt _t (MY
dr ]ty \ r '

An approximate solution is

- 19 (uz B SMZ)
=a—+ur’"+ T+

4a t[]
M3
a=—-,
to




New coordinates

r o= pz,
pr— —_— —_ u —
top*  p  AM? to

Metric in the coordinates is

d82 — L(U’ap)Q

o0 H(p)’ K (u,p) —

1121

t 2
du® + 4dud 40
toM3p4H(p)2( g+ Ada ‘“)*
+p"H(p) | K (u, p)dQ% + K(u, p)~ dw?]

u? 3M?
AM3 t%

3
K(u,p) = At/[Q -I—UP-F(
In the limit p — 0 with v = finite we have

AM M* t2

ds® — —d'u,der—dQ et —=dw?,  Adrt — +£—

regular !

M
)pz, Hp) = 1+

topSH (p)?

V3 tg
2 M

—udp,



1122

Global structure

The metric
L(u, p)? to tap°H(p)* K (u, p) — L(u, p)?
ds® = ’ — 2du® + 4dud 42 ’ L dp?
T T (e \ A T ) top®H(p)? £

+p°H(p) [ K (u, p)dQG. + K (u, p)~ dw?], (

provides the analytic extension.

The Penrose diagram :

The metric describes charged black string in a KK universe.
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Staticity near horizon

we consider the limit »r — 0y, t — oo keeping rt — finite

r2 tM trM toM
ds? = ———dt? + ——dr? dO2, + 2 dw?
’ M? +t0’=’" r to 52+ tr w

Introducing coordinates and constants,
Mtr M* to 2Ry,
R* = . R =", dl = —=dt
T3 e T R R

the metric has the form of

dR, W = Muw,

dW?
R? "’

4R?
R? — R?

ds* = —R*(R* - R})dT* +
We see that

the spacetime has non-degenerate horizon, and
the size of horizon is constant during evolution of the universe.

dR? + R*d0%, +

10



Motion of a Test Particle

11



1125

Test particles

Lagrangian of a test particle around the black string is

1 ) : o
L= [~HT + HVi® + HVr?® + HVr?sin® 0% + HV ™t
Conserved quantities are (The dot denotes derivative w.r.t. the proper time.)

. - F—1,:
L =HVr?sin®f¢, Pw = HV ™ w.
Concentrate on a particle with ¢ = 7/2, p,, = 0, we have

. -9
H Wi+ Ug = E?, E=Ht

L? r[L*ty + rt(M +r)]
Ug=H?|(1 — :
ft ( * HV?"Z) t(M +1r)3

U 1s time dependent, and F 1s not conserved.

There 1s no circular orbit !

12
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Physical length

At a large distance, the 3-dimensional metric becoms

ds® = —di* + V(t) (dr® + rd6* + r?sin® §d¢?)
t
V=i

The physical length is given by
r=+/V(t)r=+t/ty .

U
Effective potential as the function .,

of physical radius becomes

TP TF(VEM + 7))
UefE(T:t) — (\ﬁM—FﬁF)S :

time

1.0,
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Quasi circular orbits

At a late stage, the cosmological expansion

a(t) 1
ORE becomes small.
Then, the scale factora(t) = /V (t) can be considered as a constant

during an orbital motion of a particle at the late stage.

At the late stage, for a particle motion of small duration from
atimet = 11, weset V =V(t;).

Under this assumption we can find quasi circular orbits by
U —E =0, Ug=0.

The radius of quasi circular orbit is
L2

M\/t/ty

Te =

14
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Kepler's 3™, law

Then, the period of the particle 1s
2 3
T2 — 42 dt _ 2W2t (M +r.)*(M + 2r,)
dqﬁ tM?“CtO
large radius (t/to) 2 _ 4 ng

— 47 =47 .
M it/ toM

We can define effective mass by Kepler’s 37 law in the form,

(GM) o = 47r = \/t/toGM.

15
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Quasi ISCO

Quasi Innermost Stable Circular Orbits are determined by
Ugg —E =0, Ulgsz=0, Uft=0

1
TISco = 5(1 +V3)M .

The physical radius 1s time dependent in the form

1
rrsco = \/t/torrsco = 5(1 + \/5,) Vi/toM = 1.366 Mg .

rrsco

200
150

100

/ t

4x108 6x108 8x10°8 1x107 16
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Numerical plot of orbits

1
M= —
20

ti = 10,000, 000 — 11,000,000
0

Tinit = 900
Einie = 0.89, [ = 351.6

7

{ _:‘ Tisco = 216

~

17
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Conclusion

Geometry of the spacetime

We study exact solutions which describe charged black strings in a
dynamical Kaluza-Klein universe.

The metric is analytic at the horizon.

The spacetime admits no timelike Killing vector, but the size of
horizon is constant.

Motion of a test particle

There exist quasi circular orbits which are shrinking gradually.
Kepler's 3 law almost holds.
Quasi ISCO can be defind. It increases as time.

18
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“Polarization of photons around black holes in non-minimally
coupled Einstein-Maxwell theory”
Daisuke Nitta (Nagoya)

[JGRG24(2014)P28]
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Polarization of photons around black holes
in non-minimally coupled
Einstein-Maxwell theory

JGRG24 @IPMU

Daisuke Nitta (Nagoya University)
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MOTIVATION

Black hole observation as a test of GR.

-Sg A* is the most promising target for the direct observation of black holes
-An observable wave length region is sub-mm radio wave.
— polarizations are observed simultaneously

Black hole shadow (Rohta Takahashi ’04) ‘

Does polarization have new

a b c
‘ ‘ ‘ information about a theory of

gravity?

| |
d ‘ e ! f

® & O
T ——
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NON-MINIMALLY COUPLED
EINSTEIN-MAXWELL

THEORY (e.g. Drummond-Hathrell effective action,

Horndeski vector-tensor theory)
Lagrangian

7n12?l 1 nv o PLL IOV
E — TR —|— ZFMVF —|— ZRPNU"’F F

Fuw =0uAy —0,A, =V, A, —V, A,

Field equations
{ APy = aRPP Agyp.

Au;u =0 (Lorentz gauge)

with R>>F22, and we will use a vacuum solution of the Einstein
equation

Today the parameter a is constrained by the solar system
as a<1.1x10720 cm”2 (Prasanna&Subhendra 2003)




WKB APPROXIMATION

To derive the equation of motion for a photon, we assume that the
Radius of curvature is much greater than photon’s wave length.
Then the solution of the field equation is given by

A”’ = a.”’ei@/e, (")ﬂ@ = p# " £<< 1
-Minimal coupling (a=0)

Maxwell equations in WKB approximation up to second-order give
well known relations

1st order: Pﬂpu =0=p"V,p" =0, Geodesic equiation
: 1
2nd order:  atVp, + 5&“])”;1, =0
U
Vu(azp”) =0 Photon number conservation
p'V,fH* =0, Parallel transport of

olarization vector
(a® = a*a,, f* = a/a) P

1136
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WKB APPROXIMATION

Non-minimal coupring
We obtain
1t order a*p”p, = aR**"p,p,a,,
= -Violation of the Equivalence principle

-Birefringence  (Drummond&Hathrell 1979)

. 1 1
ond order at’p, + 5(1“]9”;1, = §OJRIWPU (pp;vaa + ppaa;u):

= Generation of polarization

We assume a satisfies aR << 1
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GENERATION OF POLARIZATION

Introduce null tetrad Polarization vector

4
e =pt, e B =1, ept, (A,B=1,2),
0O —1 0 0 +
_ -1 0 0 0 -
nab:ea eby, — O 0 1 O 1
0 0O 0 1 2

Stokes parameters
(aaaﬁ> = (aAaB>eAaeB’6,

<CLACLB> _ 15A3+VWAB+QXAB -|-U’(/)AB,

ag_ (10 as_ (0 1
where 53:(0 1)* W <—1 o)’

AB 1 0 s [0 1
X (0 —1)’ 4 :(1 o)’

Il
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GENERATION OF POLARIZATION

1 «
pyvlja# + §0au —_— §R#Vpa(pp’yao- + aBp'DG’f,V + aB,VppeBo'),

where 0 denotes the expansion

Introducing Ricci rotation coefficients
Yabe = V]able = 8a,Mf’/by,;uecV:
_ _ b
Yab = Ya+b = Y(ab): TYa =" ab

Ricci rotation coefficients are determined by the following equations
dW/abc

d
d)\ - _f)’abdﬁ/'c - Rabc-*—?

( of course the equations for y,,g are equivalent to
the Raychaudhuri equations)
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GENERATION OF POLARIZATION

we obtain
da? 0 A«
i v :—DA B~
N

1
Dg = Rey™ + R aipB™ + §RAaB+’7a,

Above equations can be solved approximately
(note that we assume aR<< 1).

(aaam)() = 109 52z + o [ aDia)

where, I denotes intensity given by the homogeneous solution
of the above equations.

I(\) = aQ(O)e—fd)‘e,
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POLARIZATION IN SCHWARZSCHILD
SPACE-TIME

The Schwarzschild metric is given by (G=1)

2M 2M
ds* = —(1 — ==)dt* + (1 — =) 1dr* + r*(d6” + sin® 6d¢?),

r r

At the first order of a, the photons orbits are regarded as null geodesics.

3vV3M=bc

( dr ) 2 b2 2M d¢

b
o) “lmpl-=r) T

b: impact parameter

bC:3\/3M: critical impact parameter

A black hole shadow in a celestial coordinate
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POLARIZATION IN SCHWARZSCHILD
SPACE-TIME

Riemann tensor is given by using bivectors as

M
Racba = ﬁ [nabncd — Nadeb + 3(U acUbd — Vachd)] ;

Up = et — eple,, Vg = r?sin 0(6a2eb3 — eb2ea3).
We obtain shear expansion
M &2, V bls ¥ ber b2
Dap=——3 |(1=3-3)o0+(1-3-35)0+3—5mn-—35(7-+7-—)| x4B,

f

Then we compute the photon polarization.

polarized
.—' 9\'
unpolarized .
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RESULT

0.25

| T T T T T T
1
1
/ I
g/a | _
: q=Q/I
|
0.2 1| -
i b: impact parameter
o
1
P
P
015 F 1 \ -
\
)
1 \\
I \
1
1
1
01 F 1 -
1
1
1
1
1
1
1
- 1 .
0.05 |
1
1
I T
I V\\;
| ,
1 - _
0 1 ] ] ] ] ] L
5 1\ 5.5 6 6.5 7 7.5 8 8.5

Critical impact parameter = 33 b
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SUMMARY

-We obtain the geodesic equation and for
non-minimally coupled photons.

-We compute the polarization around Schwartzshild black hole.

-We would like to emphasis that these polarized photons has no
wave length dependence.

-the polarization around Sgr A* may be contaminated by
synchrotron radiation. According to Bower et al. 1999,
this degree of polarization is ~0.01. This corresponds to
a~10720 cm”2, however, these are distinguishable from
wave length dependence.
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“Multi-black holes on Kerr-Taub-bolt space in five-dimensional
Einstein-Maxwell theory”
Ken Matsuno (Osaka City)

[JGRG24(2014)P29]
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Multi-black holes on Kerr-Taub-bolt space

in 5D Einstein-Maxwell theory

Ken Matsuno,!:" Hideki Ishihara,! Masashi Kimura?

10saka City University, Japan
2University of Cambridge, United Kingdom

*matsuno@sci.osaka-cu.ac.jp
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/Introd uction A

m String theory, brane world models:
Studies of higher-dim. black holes, rings, strings, branes, ...

« Construction of more and more general solutions
(charges, horizon topologies, asymptotic structures, ...)

« Physical properties of solutions
(geodesics, stabilities, thermodynamics, uniqueness, ...)

- Applying to our spacetime
(mini-black holes, classical tests, black hole shadows, ...)

We construct extremal charged static multi-black holes
on Kerr-Taub-bolt space in 5D Einstein-Maxwell theory

. /
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4 N

» Five-dimensional Einstein-Maxwell theory

. T N
R,U,l/ — 2 (\TMV — ’?;g’uy) y VMF:U’V — O

* Five-dimensional static exact solution

—

3.2 (AN 2 142 1 7N g2
as”™ = —ii(x") “at” + (T )dSRicci flat
/2 _
A YV~ s ’L\—l 7
- A=+"—"H(z") “dt

Aricei flatH(z') = 0 : Laplace’s equation

v harmonic function H(x’) with point sources
= extremal charged multi-black holes

dSriccifiat> = (4D Kerr-Taub-bolt space) : new multi-BHs

. /
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=

5D multi-black holes on Kerr-Taub-bolt space A
ds? = '

—H(r,0)"2dt* + H(r,0)ds3
3 _

A i%H(r, 0) " Ldi
» Four-dimensional Kerr-Taub-bolt space

<32 A n
2 o X B N R VJ 2 ) 2 7
| —— +df | —— [2avdy — (r* — v* — o®)dg)

‘—‘\’/ 1 A )
A(r) )
= S —_ [2udi) + (2v cos @ + asin29)d¢]
:('I,U} - B
A(r):rQ—Q,errVﬁ—a =(r,0) = > (V—a0039)2>0
A(ry) =0, rp=p+V/p2—12+a2>0, p>v>0
\_ —o<t<oo, p<r<oo, <8<
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/Asymptotlc behaviors
— —} ; \: A i
J
1, | |
L |
| A | ;o) | , b
| v | i -
. -
. . E H ]
H
A R j Do
* Far region r—oo :
r.’nz v _,._1_.!_2 ! .A.’A.ez ! .1'32 f.".’./—-lz ! r-.-.=<.ﬂ.2 Qr.’.rL_Q\ [ I R ~ 2 N e T
as — at- ——ar - T (av Sl vae ) T 4Gl Sl U CosSvag

+ 4% (dap + cos Hdgb)z
Effectively four-dimensional spacetime

L

®* Mass M, Charge Q : _
Z '”
\_ Extremal charged solution %
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8 Near horizon r=r,, 6=0 : (t, r, 6, ¢, ¥)= (v, p, Oy, O n, W) A
o - — (0=6y=7/2)
1.2 A lor, \ 1.2 [ NE| o T
as :4\/4\/b—u)|lb—w—u) |/HL1(LU(L/)
v I |
2my |ry — (v —a)”| B L
+ - = (dO0x +sm” Ondoy + cos® Onayyy)
r’"-b R LL . 4

» p=0 (r=r,, 9’:0) : smooth, round Killing horizon

v Regularity conditions
6,=0 :identify ¢,\~27m along ¥, =const.
6,= /2 : identify ¥,~2 7 along ¢, =const.

Equivalently,
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/

e Near horizon r=r,, 8=m: (t,r, 0, ¢, W)= (V, p’, 05,05, ¥s)
i i (06.=7/2)

~

> p'=0 (rzré, 9=7r) : smooth, round Killing horizon

v Regularity conditions
6;=0 :identify ¢ s~27m along Ws =const.
{95=7r/2 : identify W.~2 7t along ¢ ¢ =const.

Equivalently,
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Regularity of 4D Kerr-Taub-bolt space N
|— dr? -~ ,]  sin 20 -

2 o\ 4,12

O

V1 am T |+ gpg Povdd — 7 — 7 —af)dg]
Alr) o, c D 12
———— | 2vdy + 2v cos O + asin’ 6)d
=i, 0) v i
M2  Diias 2 _ :‘\2 =/ O\ ~=2 _ [ oo .Q\z ~ N
v ~per vy e, —\r, U] — i \V wwiludv)] ~ U
) =0, =+ —124a02>0, pu>v>0, a>0
K|II|ng vector field fixed point
0 0 .
% - 6'_@ r—ﬂnlte, 6=0
0 0
90 T 90 r=finite, 6=rn
0 2av 0 B
N R R Ny F=rp
L/lf/ Ib [ %4 wr UW
nam r\a, I‘=I‘b,9=0,7r
oy Jdo -
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a N
- Near r=finite, 6=0 :
dsﬁz(rz—(y—a)z | dr” +d92+924 —cw d(z/)Jrcb)erch |
) LAU“) L% — (v — )? )]
2
v A(r) (i + )]
re — (z/—az)‘ﬂ s
« Near r=finite, 6= :
:ﬁ"?’—(\u—{—a)z],l_d?,n\—l—dé?z—%—(ﬂ—ﬁ\QI av —d(1) —
] C o Alr) L7 (V+Of)
280y — g
— (v +a)?
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/

2(r —r —2aw
.Nearr_ L‘)’:H/ ( b)7 X — 5 ) 0r¢+¢
Ve —H e e
|— 2 zfm—u 21"(?"b_,!~") 12-|
ds3 ~Z(ry, H) dR* + R i =(r2.0 )(21/ cos 6 + asin® 6)dx R d,u;j |
+ 9) 62 + (5 V2~ 0% 2 pay?|
E(re, )| =15, 0)? sin” fdx”
pear-shaped bolt (R=0)
« Near arbitrary point on bolt R=0 (6, x=const.) :
r2 —v? —o? —2av
identify ¢ ~ 27 f)) { — along x = 5—— Y + ¢ = const
u:‘/"\rfpb - ;,:',/ ’.rib — vV &

\
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/

* Near 6=0 on bolt r=r, :

o oy
~ |1y — (v —)? |d,H‘+H"‘ k

5% —(7/—(1/\2
2 2 2 N 2

re — v — o
pa? a2
\Tpy — ¥V — &)~ /J

Equivalently,

, , r2 —v? — a? —2awv
identify 1 ~ 27 -2 — — along — - —~1) + ¢ = const.
' 2v(ry — ) T —ve—af

identity ¢ ~ 27 along v + ¢ = const.

N
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/

* Near 6= on bolt r=r, :

als
l7L/

~

2

\
J

ds2 ~ [r2 — (v + a)?] .[dipr_._lDLQd/ 2 (76 — 1) v 2v(rp — p)
4= b A /] \ r?—(v+a)2"  r 12— a2
do* + (0 ‘gal/'g_yZ_”2 V]
T+ (0 =) k 2 (V—l—OﬂzX) J|
Equivalently,
s 2 .2 9 9
identity 1 ~ 27 lf\ - — along — - =1 + ¢ = const.
i ' 2v(ry — 1) ) 'iﬁg—u“—()r

identify ¢ ~ 27 along v — ¢ = const.
-

/
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/

Required identifications in Kerr-Taub-bolt space A
[ dr? A qin? A

ds5 =Z(r, ) | A[m\ —l—d9‘| + _(M o 2avdy — (r’ —v? — o )dqzbj
A / L\ \"/ ‘T Y
+ = |2vdy + (2vcosf + asin Q)dng
=\’ "’/

A(r) = r? — 2ur + v° — o, =(r,0) = r? — (1/—0:(3036’)2 > 0

A(ry) = 0, rb:#+\/y2—y2+a2>0, w>v >0,

o >0

v Regularity conditions :

A. identify ¢ ~ 27 along 1 + ¢ = const.

B. identity ¢ ~ 2w along v — ¢ = const.

12 a2 _
O identify ) ~ r).ﬂ'Tb v @ alane Zow 2y L h = econet
e Joor = . RO 2 o 2 . 27 7 AEEE e
2u(ry — ) Ty — UV —

o
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A. identify ¢ ~2 ralong ¥+ ¢ = const.
B. identify ¢ ~2ralong ¥ - ¢

bg
» v - -
| 9
; \\ ‘/ \, N R
\ 4 TN K4

I
(@)
®)
>
n
cr
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/

(!

-\_j'

idantifo 2y A~
J.u\_/J.J.U].J.J

27

2 2
;Q,,Tb_y — &

2

W ~

2v(ry — p)

(8/0W-8/3 ¢ )

(R4

—2av

1{\1/\”‘

a2 INANG
(_AJJ.UJ.J.B 2

2

2 T (878LH+8/8 ®)

3‘...:2...‘

\,
. v
: g
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a o 7 N

(" identif (A ) -
. lu\zllUlLJ’ \\,{/n '7L/} -
"« re —p? — g2 (gL —q_ gy +q_ >
(Ov O)Nzﬂ-{ ; [:/ N \:271_( i _a i _)
\T"o — 4 2V(rp — ) ) \ P p )
-O(\ﬂg(\”_l_ . — 0 < n< gL + aqg_
- I 4 D S D S e & I - AT v
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" Region of identification points (except boundaries) N

x
(R4 ~,
o ¥
he R

b

A
N\, R4

Nl N Wl

3‘..._.2...’\...;...\"2;
No regular S3 topology Kerr-Taub-bolt space
N satisfying conditions A~C simultaneously W
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/Kerr—Taub—boIt space topology: Lens space L(p;q)\

- Add satisfying condition C
{identification points satisfying conditions A, B
except on

orbits of 9/0W+09/0 ¢

» Adding identification points on orbits of /0¥, /9 ¢
(fixed points r=r,, 6=0, )

> Regular Kerr-Taub-bolt space except 6=0, ron bolt r=r,

5D regular multi-BHs by putting BHs on poles of bolt

. %
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Example: Lens space L(3;2) topology

v
T
» v A J v
« e o ¥
~ / N
N\, v [ S
N\, 0 N,
\, 4
N, ,’
S, &
N, 4
\, * b
N\, R4
S’
® | o sf
&
4
K \\ L }:
4 N,
¢ \,
K4 LN L
0’ \\ 4
R N K4
4 N, 4
Q \, Q
(4 ’
) Y Y ¥
\, \,
AN * 8
N, K4 E N
\, Y2 \,
N\, 0 \,
\, /
S &
N, 4
\ *
\, R4
N/

° o w
0, ‘
7
’
,0
N ,
&
N, 4
N\ Q
\ K4
S0
-
/,
> s
&
N, 4
\ »
S
S,/

2 T (878LH+8/8 ®)

N\,

N ¢
M I Y PR
S

~
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/

L(3;2) : C.

identifv (o, ) - (0. )
44444444 Yy \¥, ¢ Yy Z \
\ ,
\ ind
¥
T
» v hJ v -,
« o o ¥ O o x
N A BN s
\\ o,’ ‘\ 0,’
\ ’ N R
N P I S ’
‘ 4 &
N\, ’ ’
\, Q \, 0
N R4 N, R4
N/ St
o X o sf T p o
\, N
el S ! e >
/ \ / (N
’ \ ’ \
o \, S \,
/ N / N
0 \ * \
0’ p »’ S,
\ \

0’ N, By \
(Y4 A K4 \, R
i | o o 4 o o »
2N AN ¢ N

\, * N ,o

\, .’ N 0

\\ o' \\ 0’
\ / N R
\, /’ N, 4

\ & 4
N\, U4 U4
\ 0 \ Q
\ 0’ \ 0’
N/ S’
o X e 2o X o
\, \
0’0 \\ 0" \\
’ \, / N
,‘ \ V4 \
R (N L R ~\

R AN s .

4 \ 4 N\,

’” N, ’” S

» \ G \

v ’ » .- [] -. » » N, . [ ] I. » S ' ¢
3‘ -2 RN 2 :’s ;
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p=3 equal parts
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/Topology of 4D Kerr-Taub-bolt space A

» Lens space L(p;qg) (coprime natural numbers p,g#1)

divicion niimher » Iy
AL ¥V AhJAN/ AL LA\ALLLR/S A 1\/’ \1

» Topology: everywhere L(3;2)
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4 N

Geometry of 4D Kerr-Taub-bolt space
- Topology L(3;2): identification points satisfying condition C

v Various geometries are possible:

—

» ds,?=ds,%(v, p, q): Quantized 4D Kerr-Taub-bolt space

\ /
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/Summary b
We construct multi-BHs on Kerr-Taub-bolt space

in five-dimensional Einstein-Maxwell theory

v'Far region: Effectively 4D spacetime
v'Near horizon: 5D smooth black hole spacetime

v Topology: Everywhere lens space L(p;q)
(coprime natural numbers p,g#1)

L(p;qg) black hole
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“Time Variability of an orbiting Hot Spot around a Black Hole”

Masaaki Takahashi (Aichi U. of Education)

[JGRG24(2014)P30]
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To show the evidence of the super-massive black hole in
our Galactic center (Sgr A* BH) by observations, | discuss
time-variability of plasma surrounding the black hole. Here,
| consider the emission from a hot spot orbiting around the
black hole. For the Sgr A* BH, the accreting plasma onto the
black hole is optically-thin, so we can observe the multiple
images (emissions) from a hot spot. The rays from the hot
spot are influenced by the general/special relativistic effects
(i.e., the gravitational lens effect, gravitational redshift
effect, Doppler beaming effect). By comparing the flux of
the first and second images with the time-lag of two images,
we can get some information of the black hole space-time.
Thus, we can expect that more careful observations by sub-
mm VLBI and/or X-ray can probe the existence of the black
hole.
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Chandra : SgrA

The Galactic Center

Sgr A West

SNR 0.9+0.1

_ \
Sgr D HII
o\

Ser D SNR “ \ LY

\
" \ SNR 0.3+0.0
Ser B2 /' . . /

Nonthermal Filaments

Sgr Bl 4
The Cane
Radio Arc =—— ——

ound Galaxy
N Sgr A East
Nonthermal
“NAS/ andra X-Ray Observatory and Penn State University.

The Pelican

VLA : SgrA West

Vouse

-

SNR 359.0-0.9

APOD: The Galacti ter in Radio Waves.
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How can we see the <Theoretical Model >
- R.Takahashi & M.Takahashi
Central Region of Galaxy ?

Black Hole Shadow with Disk Hot plasma by MHD Shock
“Mirage of the space” “Black Hole Aurora”

R.Takahashi R.Takahashi
non-rotating BH rotating BH in a BH Magnetosphere
For a Iight bending effect by the BH, Fast-Magnetosonic shock
it seems that the other side of can occur near the

the thin disk rises. event horizon
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galaxy center very weII

-~

2 Todiﬂi‘t_ln:

o
Baseline of 1000~2000km is necessary.

srhay s
kel A

PIace W|th aﬁtle quantlty of steam

.
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Imaging simulation by the VLBI Miyoshi (2012)
Models Prospective Image of the accretion disk

Original models EHT +pALMA =+ Charaban submm

No BH shadow ?

BH shadow ? But ,,,

ISCO neighborhood

shines.

It is different from an It reproduces an
original drawing. original image.

The whole shines. -‘ |
S T e \/\/c can confirm the disk.
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Black Hole exploration

1, Orbit Determination of the S 2 star
2., More inside ?.... Direct image of the BH Shadow
@ Time variability of accreting gases !

Prior to the observation of the BH shadow,,,

Time variability of
Hot spot

The information from a black hole
space-time is obtained.
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Bright SpOt ! orbting a rotating Black Hole

« size + time variability
BH shadow images (theoretical)

(

Bottom panels include the effect of the light scattering by the electron between the star.

https://www.cfa.harvard.edu:~/loeb/im.pdf
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Time variability of a Hot spot

Hot spot :

Flares on the disk surface,
MHD shocks in the BH magnetosphere, etc

Direct(1st) + BH Echo (2nd) +....

(Fukumura+2008)

{ mass
direct image 7/ > BH .
BH spin

-~ =
/
//\( PR L NS

& 5

I source N
\
. —F

N

\\

’ A )
/time-delay s
v 10 min
_____ BH Echo %,__ - ' observer

R _———»
2nd image. Seme
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The image of Accretion Disk
= - Photographic
Thin Disk
Solve the geodesics Py  photon orbit’s ' —P*
numerically. Py parameters 4 "
e 8 e Gravitational redshift Observer
74
= LNRF
the position and Doppler boost (at the Obasives)
i i Panton (1977) i e
direction of the ray B o bt
o Sl Sl s T =] — 20 100 T T T——F 1 — 1.2 100 — 2
HF+4 18 90 - 90
411 16 80 | 111" =0
F4 1.5
4] 4 0} 1 05 7
ALl OF gp 2 . 60
1B, sof Q‘ 4k 06 50 L 1
4 40 | - 40
g s 0.4
- 30 ~ = L e0)
6 . 0.5
— 20 — 20
4 0.2
u 10 — 10
2
1 I 1 Il 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 0 0
10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100 0O 10 20 30 40 50 60 70 80 90 100

isoradius redshift

Obs. Flux
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: 4 1
. F A e
The Observed Flux F,;, (for Line profiles) o ?Pf ________ emi

From the relativistic invariance of I,/v® (= I,/E®), i.e., IS™ V3, = IE™ V3., the observed
flux distribution F, is given by !!

dF" (Eobs) = I;™(Eobs) 40 = (Eobs/ Eera)* I;™ (Eerm) 46 (1.87)

where dO is the solid angle subtended by the disk in the observer’s sky. Here, we define the
redshift factor (GR version of Doppler factor) as

: __ Vobs _ obs (Pnu )ubs (P:‘u )obs . ==1/2 =
: 9= Yem - Eem (Pa‘ua)em [pt‘ut(l + Qp¢/pt)]am o [1 ¥ Q(p‘?/pt)]on}l y 11.88)

1
. u:!m = (get + 29:6) + 9@:‘-92)*1/2 =ay ) (1.89)

is the gravitational redshift factor for the rotating emitting matter. Note that u!, = 1 and

= p¢bs. The value of constant p,/p,(= — ) is determined by the angle between the rotational
direction of the emitter and the direction of the photon trajectory at the disk surface (Luminet
1979) 12,
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e

Page-Thorne thin Disk model

&

Time-averaged Hot Spot
= ring-like shape

(1974)

=

a=05m 6 =0257

* The brightness of the second

light can be at the same level
as primary light.

* The image of the second is

small, so it has a small total
flax.

* We may estimate the space-

time and/or disk parameters
from a change at the time of
the flux ratio.
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back-sideimage
? A%,

-..gnd

. frame dragging.

S
.

At : ' suN,
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T T T T
E B B =N == =B = =

back-sideimage
r 8o

gnd
At

4

. frame dragging .

¢-:.‘
.

T T T T T T
E I = =N =B = = = = .

|

»
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Information from BH space-time

ode

We have discussed the images and fluxes from a orbiting hot spot
around a black hole.

* We may see two (or more) images of the hot spot. These two images
have different brightness, flux and red shift.

* The time-lag of two images also give us the very important
information about the scale of the horizon (i.e., mass and spin).

* Thus, by comparing two images, we can get some information of the
black hole space-time, in addition to a state of the hot spot.
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“Hawking-Page phase transition in AdS 3 and extremal CFTs”
Yasunari Kurita (Kanagawa Inst. of Tech.)

[JIGRG24(2014)P31]
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JGRG24 @Kavli IPMU, Nov. 10-14 2014

Hawking-Page phase transition in
AdS; and extremal CFTs

[ Yasunari KURITA (Kanagawa Inst. Tech.) ]

Collaborator: Masaru Siino (Tokyo Inst. Tech.)

Ref. : Hawking and Page, Comm.Math.Phys. 152 (1984) 220
Banados, Teitelboim and Zanelli, PRL 69 (1992) 1849
Witten, arXiv:0706.3359,

For multiple-BTZ: YK and Masaru Siino, PRD89, 024018 (2014)
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Contents

(1) 3-dim. pure AdS Gravity and extremal CFTs (ECFTs)
(Witten '07)

(2)BTZ Black holes entropy as number of primary
fields

(Witten '07)

(3) Emergence of Hawking-Page transition from ECFT
partition functions
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(1) 3-dim. pure AdS Gravity and extremal CFTs Witten, arXiv:0706.3359

Witten’s conjecture

3-dim. pure gravity with negative A
corresponds to extremal CFT (ECFT)

e ECFT has central charge c=24k, and its lowest dimension of
primary operators is precisely k+1.

k: natural number

. having Monster symmetr
e Ak=1ECFTis known as FLM model.4 & Y Y
Frenkel, Lepowsky, Meurman(‘88)

* Itis not yet known whether the k>1 ECFTs exist, but this is
fascinating conjecture!
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Partition functions of genus one ECFTs

The partition functions for each k:

2
Index B 2 —J:]_E4(T)3 + 31E6(T)2
Za) =l = [y

N
Zy(q) = |I(q)* — 393767|
Z3(q) = |.J(q)* — 590651.] (¢) — 64481279
Z4(q) = |J(q)* — 7875351 (q)? — 85975039.1 (q) + 74069025266

=

(For arbitrary each k, partition function is calculable. )

where J(q) = 1728 (1)

Klein’s modular invariant

QﬂiT

\
nome: g = \

moduli parameter of boundary torus




1192

(2) BTZ black hole entropy as number of primary op. Witten. arXiv:0706.3359

Expansion of partition functions

* Note the coefficients!
Z1(q) = g~ +196884q + O(¢*)[*

Za(q) = |72 4+ 1 + 42987520q + O(q?)|?

Za(g) =g~ + ¢ * + ¢ + 2+ 810266094287 + O(g?)|?

e Take log!
kel  In 196884 ~ 12.19 Ary/1 ~ 1257
k=2  In42087520 ~ 17.58 D AmV2 = 1777
k=4  1n81026609428 ~ 25.12 4mv/4 =~ 25.13

For large k, good approximation!
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(2) BTZ black hole entropy as number of primary op. Witten. arXiv:0706.3359

Entropy of BTZ black holes

)\ 1/2
S=m (f() (\/Mff —J+ VMl + J) = 4rVk (\/LO + \/E.O)

MV = Lo + f,-o._ J=Lg— f.-[],_ C

3

= =24k
2G

* For L,=1 , Log of coefficients are nealy equals to entropy (for
each holomorphic sector and anti-holomorphic sector )

* For k=1, FLM interprets 196883 as the number of primary operators.

* Witten interprets that, including the case of k>1, the coefficients
are the number of primary operators creating BTZ black holes.

e | Witten have also shown that it agrees with the Bekenstein-Hawking
entropy in the limit: # — o0, Ly — o, Lg/k fixed
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3-dim. version of Hawking Page (‘84)

Hawking-Page transition (semi-classical)

* Free energy based on Euclidean AdS; phase BTZ phase

classical action A ~ A

Vs
8(;3F

Z~e el = FP=_"Inz 0
3 &
. i \

AdS,
 Critical temperature: \
BTZ

o _ VTP

N 27l
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(3) Emergence of Hawking-Page in ECFT.

Behavior of ECFT partition functions:
low temperature limit

* Leading behavior:

2k
Jq) = q¢lasT -0 = 7 — |q|_2k_e};p( ) — o laas,

i 2miT Qp '
[ AdS, dominant ! ] 0= e [ S - ]
 Thermodynamical relation:
IOF JF
F=-TnZz,=-1 S=——=0, Jg=—=0
e - or — TP T 90,

/
When 8G3 =1, k= 2/(
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(3) Emergence of Hawking-Page in ECFT.

Behavior of ECFT partition functions:
high temperature limit

* Leading term (after the modular transformation):

2
STklT _ —Iprz
Q%02 + 1
—17?2?‘129 E . '—'1?:‘2 T

[ BTZ dominant ! ] g=e™" = {‘ e FE+1

Z(@) = |32 = exp (

* Thermodynamical relation

4r22T?
F=-ThiZy=——p
R Tz
OF OF  _|r_|r
= —— =d4mry =S5, —Q|! ‘“r:JE

JT 00 [



(3) Emergence of Hawking-Page in ECFT.

Internal Energy (semi-classical)

e The semi-classical result
8Ci5{12)

O BTZ
E) = -2
(E) R InZ /
= M2 I

T

=

T,

AdS,

1197

We take the internal energy as order parameter
for the Hawking-Page transition
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(3) Emergence of Hawking-Page in ECFT.

Internal Energy obtained from ECFT
partition functions (we set J=0, for simplicity)

* k=1case e k=10 case
(E) =T2%0rInZ, S (E) = T20r In Zy
Py

BTZ / | BTZ

‘."-77“; PR L L L 1 T
0.004 0.006 OTS 0.010 0.012 0.014

AdS 5 " Ads,

It agrees with mass of AdS; at low T and with mass of BTZ at
high T. The transition becomes sharper with increasing k
(corresponding to thermodynamic limit).

11
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(3) Emergence of Hawking-Page in ECFT.

Specific heat from ECFT partition
functions

k=1 case

k=10 case

6000 [
4000 ‘ ‘

2000 ; | ‘

The specific heat will diverge at T. in thermodynamic limit( # — « ).
=The internal energy will jump discontinuously at the critical temperature.
= ECFT implies that the HP transition is a first order transition.

12
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Summary

In AdS; pure gravity/ECFT correspondence, the number of
primary op. in ECFT corresponds to number of microscopic
black holes states. (review)

Hawking—Page transition emerges from the ECFT partition
functions.

ECFTs imply that the Hawking—Page transition is a first
order phase transition.

ECFTs show thermodynamical properties of AdS; gravity
especially of BTZ black holes.
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Appendix

e Partition funcion of k=10 ECFT:

Zyo = |J" —1968839.J° — 214937599.J7 + 1348071256190./°
+253704014739574.J° — 361538450036076764.7*
—82414308102793025330.)° + 30123373072315438416085./°
+6219705565173520637592236.] — 264390492553551717748100292|°
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“Bimetric gravity and the AdS/CFT correspondence”
Kouichi Nomura (Kyoto)

[JGRG24(2014)P32]
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Bimetric gravity and
the AdS/CFT correspondence

arXiv:1407.1160 [hep-th]

Nomura Kouichi (Kyoto University)



1204

Abstract

We study bimetric gravity through the context of the AdS/CFT
correspondence, especially, in the first order hdrodynamic limit.

In the case of general relativity, we have the N = 4 supersymmetric
Yang-Mills plasma as the boundary field, and the transport coefficients
are computed via the AdS/CFT correspondence.

Then, we put bimetric gravity on the bulk side, where the interaction
generates a massive graviton. We see that this massive mode leads to the
extra divergences which are absent in the case of general relativity.

Our first investigation is how to cancel these divergences. After that, we
find the emergence of two-component fluid and calculate their pressure
and sheer viscosity.
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1. the AdS/CFT correspondnce

The correspondence between
(d+1)-dimensional gravity theory <> d-dimensional matter field theory

We can investigate complicated (quantum) matter field theory,
thorough the rather simple (classical) gravity theory

: N

A lot of examples are known, but the most classic one is
five-dimensional general relativity <> four-dimensional Yang-Mills theory

Especially, in the first order hydrodynamic limit (derivative exoansion),
we can easily calculate the transport coefficients such as sheer viscosity.

A /

We consider an extension of this method to the case of bimetric gravity
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2. The case of general relativity (a short review)

We begin with the action

S =Sy + Scuy + Sa

1
/d‘E@"\/—g(R — 2A) - Einsyein-Hilbert term

SEH =

16?!'@5

2 ., ) _ |
Sen = oo Ads_wy d'z/—7K - Gibbons-Hawking term

1 . 6 L
Set = 1670 /Ads_bdyd T/ ”'(E + §R+ ) counter term

7/: induced metric on the AdS-boundary
K :extrinsic curvature

R :spatial curvature, A = —6/L?
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The background metric is set to be

— hdt® + da* + dy* + d2*) + L—du
hu?

(Schwarzschild AdS Black-Hole)

u= O :AdS-boundary
:Black Hole Horizon

| | ¥, :constant
: Asymptotic AdS :
I . !
: Space Time |

u _

u=1: Black Hole Horizon (t,x,y,z) u=0: AdS-Boundary (t,x,y,z)
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00 O0O0O0
00 ¢ 0O0
We take a perturbation s¢*, =9 =| 00s 000 |. s=00tw
00 O0O0O0
Fourier transform (t > w)
00 O0O0O0

b\ (L N2 ]
and solve the EOM (Fﬁﬁ;) + (—w)Qﬁqﬁw =0 with the ingoing wave condition at the horizon

To

- 2
& (1) =g + 1460—L¢Cf,°)u4 + higher order terms of u and w
Yo

#% -field value at the AdS-boundary
This solution is substituted back into the action,
and we obtain the on-shell action

Vi 15 Vi 1y [d 1 1 L?
S ot o | o]~ 30000 + 500 (i)}
o

orl 2

T 167G L5 | 167Gs LP
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Through the AdS/CFT prescription, we obtain

1
167TG5

0S5 1 r

ST —— —
<% 2 56 167G L°

oL + 1

On the other hand, if the boundary space-time
is slightly distorted from the flat space-time "l —7 Gy = T + OG-

and the ratio to the entropy density is
[ n/s = 1/4w ]

(3 — ﬁ(%)g from the background)

Therefore,
we conclude that
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3.The case of dRGT massive gravity (16nG=1,L=1)|

S = Sgu + Scu + Set + Sint

We add the mass
(interaction) term

b

Jlﬂ

v1"'vn)-n+1'")-5A#1 oo AHm
v Un

€p1pnAni1-As€

g : fixed background metric
(Shwartzschild AdS Black-Hole)

Parameters 3 are chosen to reduce to the Fiertz-Pauli mass term in the linear level

Siy = —imz / dﬁx\/——g(Tr(ég)ﬂ _ Trﬁ(ég))
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00 0O0O0
We take a perturbation 00¢00
5g*, =3 ga = | 0 000 |, b = p(t,u)
00 000
00000 Fourier transform (t - w)
ho o\ 1 2
and solve the EOM (—gé;) gy + =, =0
u3 u uh

L 1
Bulu) = A{u? ™ + S = )u + O]} + Bu{u* ™ + 2(1 + a)u** + O

A,, B, :wdependent coefficient, @ = 1+m2/4

This solution is substituted to the action, and we encounter divergences

S=Vi+ / g—j{u +a)A_ B, + (1 —a)B_,A,

+ A_MAW((l —a)u + %(az —a— Du'™" + O[us“‘“]) }

u=0
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In order to remove the divergence,
. } 4 — -1
we introduce a new counter term | om X /Ads_bdyd wv/=7e(y77)

which reduces to the Fiertz-Pauli form in the linear level

[SM — —%(1 —a) d“x\/——f_}*(Tr(éfy)Q _ Tr2(5fy)) }

Ads—bdy

Then, the leading divergence is removed

dw

m u=>0

S+8,.,=Vi+ / {204 B+ AAL( - %u4_4“ +Ow*]) }

but other divergent terms remain.
We eliminate them by the BF-bound like condition 0 < a <1 (—4 < m? < 0)

. . . _ . dw
and obtain the finite on-shell action 8 ¢ S, .=V +/

(s
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We fix the remaining constant 4,, B, by the condition that
the solution of the EOM should coincide with that of general relativity in the massless limit.

dw 7iow

Then, the actionis | s+ 5 , =V, + f i (—)gf)“” O
2w\ 2 T

and the energy momentum tensor
for the boundary field is

Comparing to the linear response formula,

we find that the pressure iszero P = ().

However, the pressure can be calculated from the background metric

4
LP = %31/3 InZ = 6 1G % /= E_SE S :Euclidean on-shell action }
s

which contradicts with our result. It seems to be unphysical .
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4. The case of bimetric gravity

S =Seulg] + Sculv] + Sal7] -« for metric g (induced metricY)

We give dynamics

- ) .. for metric f (induced metric p)
to the fixed metric

+Seu(f] + Sculp] + Slp)]

+Sint[gu f‘]
new counter term

Sassssssmsnas interaction term

Senlg] + Seuly] + Sl

= Mi[d%ﬁ(R[g] —2A) —|—2M§/ d'v /=Ky + Mg?/ d'z —'}*(% -I-)
AdS—bdy AdS—bdy

Senlf]+ Saulp] + Selp)

A f Far/F(RIf] - 20) + 2002 f do/ K[ + M2 / d%J—T}(E b
AdS—bdy AdS—bdy L

2 1 Ve 1

=——0M;= ( M,,M . does not have mass dimension)
¢ l6nG, 167G, g2
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The interaction term is given by

Sintlg, f] = szMesz/d5$ _95( g_lf) My = (Mig N J'v!ij%’)_1

and the newly introduced counter term is

2
Me.f.f

L

S-int,ct[’}f ; P] &

Under a perturbation g=g+0dg, f=g+d (& :background)
we have

Sualg, £] = —gm M, j /=5 (Te(6g - 8f)° = Te(g - 1))

1 M2

Suralyo) = —5 (=)L [ atay=5(Te(oy - 40 ~ Tt (67— o))



1216

We take a perturbation on the common background (Schwartzschild AdS BH)

(00000
00¢00
89", =990 =106000
0000
000)

-
o O
=

[00000)
¥ 00
000

]
]

ft, =g%f=| 0

b
0000
0000)

\ 0

, Y =1(tu)

where the background g is Schwartzschild AdS Black Hole.
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We solve the EOM and substitute the solution to the action,
and obtain the on-shell action

ra
S = L%I/Q(MQ + Mf)
4
To 1 @ 4 4(0) ,(0) LPw ooy s 21 1(0) ((0)
+L5(M2+M2)Vf2ﬂ{ Mﬁﬁ wPy’ +i g ——M; (M7 +aM;)oZ, ¢,
— MBSO + T + oM

1
2

SM2ME (6000 + ¢‘“ )
L?w
+12—mM§M}:(1 a) (¢'( PR +'¢'m’¢‘ﬂ))}

o = y/1+ (mL)?/4

The coupling between ¢ and | suggests emergence of two-component fluid.
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To interpret this result, we assume that there are two AdS-boundaries at u=0,
which correspond to metric g and f respectively.
Focusing on the boundary for g

4

the field sourced by ¢ has the energy momentum tensor
rd M} 4O raN MZ(MZ + oM7)
-(5) MZ + +is(5)

x oS
) — 0 - 5 2 3 2 2 t;Di,}
(9) 5(3(_i bt L Mz L Mz + M;
/ \we are focusing on the boundary not for f

and the field sourced by Y has the energy momentum tensor

(8T)= 5w
W)/ 511'/.(_9}

202 2p72
_ (r;,l) MM oy, (2 )M 2ME1—0)
L ) M2+ M2 e

M2 + M 2w

¥=0
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We compare these results to the linear response formula

0T* = —PSge + iwndg’.

u

and read off the pressure and the sheer viscosity

i r M2(M? + aM?) .
l9ls = (L—%)m nlgls = (L_g gMgng 77 I”" for the ¢ sourced fluid

3\ M2M3(1— )
Plgls = (-2 ) L5 nlgly = (22) =21 for the  sourced fluid
L5) M?2 + M7} YN M2+ M? v
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The total pressure coincides with that calculated from the background

[P[g],,p + Plgly, = 15 M; 167z(0?gL5J

The entropy density of the boundary for the metric g isLs[g] =4 M2 (ro/L)* ’

and the ratio is

s[g] A7 ﬂ-ifgz + ﬂﬂ'f '

If M, = M, we obtain

nlgls

v (1 M7 (1 — )
slg] (E) M2 + M3

4

2

slg]

nM¢_(1)1+ﬂ_
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“Anti-evaporation in bigravity”
Taishi Katsuragawa (Nagoya)
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In collaboration with S.Nojiri and S.D.Odintsov

Anti-evaporation in Bigravity

1. Introduction

It is well known that horizon radius of the black hole usually
degreases by the Hawking radiation.

— Black hole evaporation [Hawking (1974)]

However, the black hole radius can increases by the quantum
correction for the Nariai space-time.

——— Black hole anti-evaporation [Bousso and Hawking (1997)]

The anti-evaporation can occur in F(R) gravity without quantum
correction. [Nojiri and Odintsov (2013,2014)].

It might be general phenomena in modified gravity.

In this work, we study if the anti-evaporation could occur on the
classical level in bigravity.

2. Natiai space-time and Quantum correction

Schwarzschild-de Sitter space-time Nariai space-time

ds® = —V{(r)dt* + V(r) " Ydr? + r2a? ds* =

n ‘;—\re _—

1 2 2 101
v T i e A
Virj=1-— LT st
" e ghty Topology of st x s?
When we consider the Hawking radiation from BH, this quantum
correction leads to the trace anomaly of energy-momentum tensor.

Classical {T%,) =0 —— Quantum (T%,} # 0

The effective action corresponding to the trace anomaly can be
written by a covariant form.
For instance, in the case of massless scalar field,

1
487G

i

. % 1 % |
Si= f.—; 5/=g [E.Rﬁﬁ'— 6(Vo) 5 R - wok

¢ is dilaton due to dimensional reduction, w is redundancy parameter.

3. Anti-evaporation in GR and beyond

The effective action leads to the modification for the EOM.
In GR, specific perturbations around the Nariai space-time shrink
from its initial values, and the size of black hole horizon
increases at least initially

—— Black hole anti-evaporation
On the other hand, anti-evaporation may occur without quantum
corrections in F(R) gravity. [Nojiri and Odintsov(2013,2014)]

Modification of EOM may be important (?)

It might be interesting to study if the anti-evaporation may occur
on the classical level in other modified gravity.

In Bigravity, the interaction terms between two metric may affect to
the time-evolution of the perturbation, and its behavior is not so
trivial.

Therefore, it is worth studying if the anti-evaporation occurs
even on the classical level.

4. Bigravity

Bigravity describes interacting massive spin-2 field and
gravitational field.

+ Two dynamical metrics g,, and f,,

« Background independence (general coordinate trans. inv.)

s = M;ff die/—gR(g) + M}’[ d*a/— fFR(f)
4
[Hassan and Rosen (2011)] —?vr:}‘,ﬁ!frrf d'ry=5Y " Buen (\/y“f]

n=0

artan (V) (V) = s

1
Planck mass scales .'hf....h'_;.F =sEtie
et Mg My

Free parameters: 5,  Mass of massive spin-2 field (massive graviton): m,

oA 1 2 24 1 P @ ¢
lX) =1, er(X) = [X], ea(X) = 5 (DX = X)L ealX) = g (]~ 3XIC) 4 217
1

alX) = 5

(1] = 6[X[X?] + 3[XH? + S[X|[XY] - 6]X]) = det(X), [X] = X",

1411.1610

5. Nariai solution in Bigravity

In order to obtain background Nariai space-time, we impose some
condition for the metrics and parameters.

|f,,,, = ('gf,w (C is a constant) | fw and g, are determined by Einstein'’s eq.
Required so that

(i) theory reproduce FP-theory
h=1-20a+0o4, (h=n03—04 Gy=a4| (ii)theory has asymptotically flat
solution

M; = M; | To make the calculation easy.
Only trivial .
For instance,

the model with (a3, a,) = (1,-1),(-1,1),(-1,-1)
have asymptotically de Sitter solution.

Bh=6—-daa+ay, H=-3+30a—0y

Z%Tutmgl We can obtain Nariai solutions
T ay [TK(2013)] for some parameter.

6. Perturbations and Stability

We introduce the two metric ansatz with topology of S* x §2 in
conformal gauge.
guudztdz® = 2ot (g2 4 de?) 4 e~ 21 (b3 g0yl
Suudatde? = 2P2(0) (_di? 4 dx?) 4 e~ 27alb=)d0?
1 e~ Tita) _ l elpaita) _ c?

(_«2
Acostt' A Aeostt' N

e-2ealta) _

Nariai bg.: " =

Then, we make perturbations around the Nariai solutions.
pL= L+ dpi(tx), w1 = @1+ St o),
p2 = pa+dpa(t, ), w2 = G2+ dpa(t.x).
p, @ are the Nariai background, §p, 8¢ are the perturbations.
And these two sets of perturbations are independent.
When we substitute above perturbations into EOMs, we obtain the
equations for perturbations.
And we study the time evolution of the location of BH horizon.

7. Horizon trace

Egs. For &g,
(tt) ) = tan bl + ey L
(6%) 0 =82 — tantds)

(%)

(6.6)(¢. )

Contributions from interaction terms
We specify the perturbation along s'.coordinate. dg(t,x) = ea(t) cosx

Substituting the perturbation into (t,x) component, we obtain
o(t)= 2L gp=a(t=0] 6(t=0)=0

cost’
L]

The size of the BH horizon is  ru(t) # = ¢** = All + 2¢4(1)], dit) =& (1 + ;1) =ay

The size of horizon remains that of the initial perturbation.

Therefore the anti-evaporation does not occur on classical level
in bigravity.

8. Summary and Discussion

O We found that the anti-evaporation does not take place on the
classical level in the bigravity.

O Time evolution is defined by the (t,x) component of the equations.
On the other hand, off-diagonal components are not modified
and they take the same form as those in GR.

O Moreover, we obtain 6§ — 26¢ = 0. Then, contributions from the
interaction terms vanish in (t,t), (t,x), and (x,x) components, and
these equations take the same forms as those in GR.

O The time-evolution of ¢ is exactly same as that in GR.
O In order to realize the anti-evaporation, we need

To find the spherical BH solution with off-diagonal
components.

To introduce the quantum corrections in g,, and/or f,, sector.

To modify the bigravity to F(R) bigravity in g,, and/or f,,
sector.
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Black holes in non-projectable
Horava-Lifshitz gravity

Yosuke Misonoh (Waseda University)
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abstract and contents

We investigate the black holes solution in Lorentz violating spacetime in the
context of Horava-Lifshitz(HL) gravity considering the higher order spacial
curvature correction as a counter term of quantum renormalization. It is already
known that HL gravity in low energy (IR) limit is equivalent to Einstein-aether
theory and the black hole solutions are already known in the context of this theory.
However if higher order spacial curvature corrections are considered, the analysis
becomes difficult, that is caused by lack of null coordinate.

In our analysis we rewrite the theory in the Stueckelberg field called khronon,
which restore the choice of time direction. And then, the static and spherically
symmetric solution with higher order spacial curvature corrections is discussed by
comparing the solution without such a correction.

P3-6 : HL gravity in khronon formalism.
P7-9 : set up.

P10 : the solution in asymptotic flat region.

PI1-13 :the definition of horizons in Lorentz violating spacetime.

P14-15 : result (example of solution)

P16 : summary
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HL action in ADM formalism

ds? = —N?dt? + ~;;(dy’ + N'dt)(dy’ + N7 dt)

N : lapse function
N; : shift vector

vi; : induced metric on

u, = (N,0,0,0) : unit normal to X
pH_ oxH

) PG

Y

: projection to X

? g 1
v Gauss relation ( Rfjlzl : Riemann tensor on X, K;; = ﬁ(amj =D NEDE NG )

Rz(?lz:l T P%P?Ppk;PUZRw/pJ T Kz'lKjk e Kik:Kjl

¥ Possible terms in HL action (PHorava, 2009, D.Blas, O.Pujolas and S.Sibiryakov, 2010)
time derivative : Kinij ., K? (2nd order)

spacial derivative : combination of (R<-3) a; == 0O;IN/N , D;) (up to 6th order)

1]
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ADM vs khronon formalism

ADM formalism
coordinate : ¢, y'(i = 1,2, 3) ~ coordinate : = (1 = 0,1,2,3)

| variables: NV N Vi variables : g ; ¢
,. foliation : a priori fixed i foliation : can be changed by setting ¢

IS i N null coordinate : Yes

Null coordinate is prohibited in HL gravity
4




Stueckelberg formalism in HL gravity in IR

Skh o

167erh /d%r[ — o1 (Vau?) (Voug) = e2 (V- )’ = c5 (Vau?) (Vgu) + eaa?]

=V, ¢/ V—(Vad)(Veg) : twistless timilike unit normal to ¥

a? == u*(Vau"), ¢1,c2,c3,c4 @ arbitrary coupling constants

(T-Jacobson, 2010)

ADM formalism l

1 ..
dtd3y AN [K” Kii — AK2 + gR® 2}

GHL = Gkh/(l == 613), )\ = (1 +CQ>/(1 0 013), g1 - — 1/(1 = 013),

as=ciu/{l—ci3),ccisi=ci+ ¢;

1S Hih

IR limit of HL gravity

khronon theory is equivalent to HL gravity in IR region

5



The theory we consider is :

1
167G

=V,.0/\/—(Vad) (V) : twistless timilike unit normal to ¥

SkhHL = /d4$\/ —g [K7Kij — AC? + 1R + aa® + Vhigher [Ryuws i, Dy

Vhigher : higer spacial derivative terms (up to 6th order)

Ruvl9pws @) Kuvlguw, @] © 3D Ricci tensor and extrinsic curvature associated with g,., ¢

1 .
/ dtd3z /AN [K”Kij XK 4 g1 B®) 4 aa® + Vighee RS a2, Z]]

167TGHL
Gur = Gn/(1 —c13), A= (1+c2)/(1 —c13), g1:=1/(1 = c13),
(07— 014/(1 = 613) 9 Cij = C; 4 Cj

Vhigher : higer spacial derivative terms (up to 6th order)

SHL =

full HL gravity
6




action

In khronon formalism, 3-quantites can be written by ( P#, := §*, + u"u, )
)
Ruv = P2 P)PTR% 5+ KoK — KK,

a, :=u*(Vau,), DA, = PMO‘PVB - (Vads..)

where, ), = P(LPVB(VQUB) ,and Ag is a tensor on 2. (C.Germani etal.2009,etc...)

for simplicity, we consider R™ terms as higher order spacial derivative.

1
s 2K2 diz\/—g [/C”W/C,w — M2+ 1R + aa® + Vhigher [Ruv» @y, DMH )

Vhigher [R,ul/a Qs Du] = 92R2 + 95R3
R = R — (Voug)(VPu®) 4+ (V- u)? + 2V [a* — u*(V - u)]
Ai=(1+c)/(1-c3), g1:=1/(1 —c13), o= c14/(1 — c13)

7



higher spacial

null

with khronon

theory variables aether seeie | eserelieie €.0.m
E. t . th g u,u 2 1 N/A b| E/u/ = (}Eaua)uuuu =0
Instein-aether| guv » u” = — possiole (G + Uptta) BE = 0
khronon v By + Uuiaga?La) .
= ad 1 (/,{uy) : )
theory | Guv » @ | A TTT) N/A possible e rwm, |
(IR-HL graVIty) % — 9% (00)(050) =
. ; o t 3 : - 88 65 3
full HL gravity | N, N*,vi; Uy = N m REj) ,ai, Di |impossible | = =0, 0 557"’; =0,
Eu + Vi + upuy (Ba + Vo )u®
full HL gravit = Vuo ¢ +2[E(, + Viulu) =0,
9 y gul/ 9 ¢ v _(Va¢)(va¢) Ruv m aDu pOSSIble § -

(g™ + w'u”) (B, + V)
—9°%(0a9)(059)

Vi

1 17 «
S = 1o | @'V [R= M4, (9,0 (Vo)

/ d*zy/=g B (0g") + 28, (0u)]

1
05= 167G

22— 167G

1

8= o [ dov=g [R- a0, (V) (Vo) + Vi8]

d*ov/=g (B + Vi) (69"") + 2(Byu + V) (0u)]




spherically symmetric spacetime

v ansatz : spherically symmetric spacetime in Eddington-Finkelstein coordinate

ds* = =T (r)dv? 4 2B(r)dvdr + 12 (d6? + sin® 0d¢?)
e <CL(T‘) ’ a(r)°T(r) = 1 0, 0)

(1) u"is determined by norm fixed condition u* = —1.

(2) In spherical symmetric spacetime, these two equations are equivalent.

E/,w e V,uz/ i uuuy(Ea e Voz)ua
By 4+ Vi + upuy (Ba + Vo )u® =0, 2B + Vipluw) =0,
(gt futul (At Vi)

Ve T e ) @8) |

(5ua + u,u®)( By + Vo) =0,




perturbative solution around asymptotic flat region

explicit form of asymptotic solution up to 4th order

1 4 (314{(19 + 401_1)#11 — 144t%a2 + 1920,% + 384gzt%} 1 +
192(2 — (114) 7

(:147?%) 1 <(:14tif) 1 7 [(;14{3((,%4 + 14c1q + 4)t1 — 576t7ag + 76803 4 512(2c14 — 1)goti} ]| 1 "

r3 512((?14 — 2) r4

tl a9 (014 R 6)ti1)) == 96t1a2 1

- 1 e —— —rves

2, 2r Lk 72 { 96 3
. [502{5014(2614 — 1) + 24} =+ 18614(014 — 2)}15411 =+ 48[{014(014 — 2) + 1002(614 — 5)}&2 + 409261462}(‘% — 192062(014 — 1)g2a§ i eds

19202(2 — c14) =
then, it is confirmed that...

(1) every function depends on only tl and a2 (at least up to 8th order).

(2) g2 first appears in 4th order.
(3) g5 first appears in 8th order.
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“time rescaling”

(9uw , u") frame
stretching out coordinate along /*
g:u/ = Guv + (1 —
their inverse are given by
gt =g" + (

under this transformation, form of the action is invariant.

o

However, the value of coupling constants ), g; and o are changed.




horizon for gravitons in Einstein-aether or IR limit of HL
(B-Z Foster;2005)

5o = orc / d*oy/=g | R — 1 (Vat) (Voug) = 02 (V- 0)* = 3 (Vo) (Vgu®) + caa?]
2 _ 1 2 _ (613_1)<Cl _63_1)—]— 2 6123(2—C14)

<82) 1— C13 ’ <S ) 2014(613 — 1) ’ (SO) 014(1 — 013)(2 + c13 + 302)

u? = —1 and s; gives the sound speed of spin-i graviton.

following transformation does not change the action except coupling constants

1
g:w =g + (1 — o)uyu, ,u* = —u

NZa

that is,
diyi= clalclss=0C s Clamli= aleiz =nac —chi=id = gt (b =1)
which gives,
(59) = (s0)*/o
thus, the location of horizon for spin-i graviton given by
12 9“)00 = goo + [1 - (6‘7‘,)2]’“()“() =0,
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horizon for particle with infinite speed : universal horizon

UV limit

ua

——

particle trajectory particle trajectory

W~k = 2~ 1 w2 ~ k% = 5% = 0o for k — o0

x® (u-x)=0:universal horizon

4: . . ! i
;part'cl'e trajectory | If there are the location s.t. (u - x) = 0,}

no particle can escape from inside
T = Const

the region even if its speed is infinite.
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solution (g2=g5=0)

V'spherical solution without spin-0 horizon (C.Eling and T Jacobson 2006)

A = 279/250,a = 51/1000, g1 = 1,

92:95:07
tlz—l,agz—l/l().

(52)% =1, (s2)* = 56521/29937,
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solution with higher order spacial curvature

V'spherical solution with spin-2, 0 horizon (g3 = 5.0 X 108 ,g5 = 0)

0.20

_' - 9(0)00 i
v horizon for low-energy graviton :

there are triple spin-2 horizon and single spin-0 horizon

v’ horizon for high-energy graviton :

universal horizon seems to appear, however it is irregular.




summary and future work

We consider the HL gravity in khronon formalism considering higher order
spacial curvature corrections.

The effect of such a correction to the static and spherically symmetric black
hole is studied.

- outside the horizon, there is little effect, on the other hand, near or inside
the horizon, the spacetime structure drastically changed.

- we find the black holes solution in IR region, however, it has irregular
horizon for high-energy particle.

Can we impose the regularity on the horizon for high-energy particle?

How about the effect from other types of correction such as R, R"", ...
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Abstract: We discuss relativistic Sagnac effect in Chern-Simons (CS) modified gravity [1]. In particular, we examine possible altitudinal, latitudinal, and
directional dependence comparing the CS effects with the general relativistic Lense-Thirring (LT) effects.

1 Motivation

The Chern-Simons (CS) correction is one of the most interesting modified gravity models.

e The CS modification motivated by both string theory and quantum gravity.

e A possible constraint by neutron interferometers has recently been studied [2, 3].
= We improve the previous results regarding two points[1].

e a point-like spinning object [4] — an extended one [5]

e neutron interferometers — Optical (Sagnac) one

2 Relativistic Sagnac effect

(OThe time shift cAt is given by the relativistic version of Sagnac effect

cAl = —2]{ 904 g = —2/ (ﬁ X H) - N1dS + O(h?). (1)
c 900 S
( G = v + hyy = h=hoy = (h017h027h03))

Q : a clockwise closed path of a light beam, S : the area of the Sagnac interferometer
N; : unit normal vector

3 Time shift and Chern-Simons(CS)modified gravity

(OThe action of CS gravity theory [5]

1 [
_ 4 o -~ - 2
5= /d /=g { saR+ G0RR— 5 (207 —V(0) + z:ma,,] : )
81G - 1 )
K2 = ; L RR=RR o5 = S8R 5 B .

£ : the parameter of the theory , € : the scalar field

(OThe metric as the weak-field solution by Earth (extended source)

o AGMpr

11 = g P (X ). 3)
Fos = % [CL(M)@ + Co(r)i x & + Ca(r)i x (7 x &), mos = —%. (4)
@ : angular velocity vector, 7 : unit vertical vector
(OThe time shift
(cAt)Lr = %NH “[26 - 3] (5)
(atjes = 2EMES g, Dy (13 - DarX - Dar)A]. ©)
Srp
where f=ii x (& x 1), \=&xid. r>rg,
Ci(r) = igﬁ; + QTTEJZ(WCSTE)M(WCST), D(r) = 2TTEjz(mcsTE)yl(mcsr),

Ca(r) = mesrejz(mesre)y(mesr), Ds(r) = mesrrjz(mesre)yi(mesr),
3

r ) .
Cs(r) = % +mesreja(mesre)yz(mesr), Ds(r) = mesreja(mesre)yz(mesr).

©]

Jn(2), yn(2) : spherical Bessel function of the first and second kind, respectively

= (5) and (6) depend on interferometers’

latitude (5,X),  direction (N;), and  altitude (r).

Figure 1: Sagnac interferometer on Earth and related vectors.

4 Dependence of time shift

(OThe angular part of (cAt)pr (OThe angular part of (cAt)cs

1 90 0.015
60 0.01
o0 o0
) 05 %D
<, <, 30 0.005
<] <)
e, 0 T o 0
=] =}
- +
S S0 0.005
< 05 <
- L]
p 60 -0.01
1 90 0.015

N E S woN
irection directiom
Figure 2: Contour maps for the latitudinal and directional dependence of time shift.

O (CAt)Cs/(CAt)LT

0.5

-05

K ground level ( altitude 0 km)

15
10" 1072 107"

mes[on ™
Figure 3: The ratio of % at the equatorial case and the northbound direction.

5 Order of magnitude estimation

(OThe strain of the time shift

(CA\/t%LT ~ 10—21 <10£i> (8)
(cAt)es o m 5\ (0.01km™!
VS 10 (10m> < mes > ©)

% GINGER experiment will measure LT effect with 1 % accuracy by reducing various
sources of noises [6] .

6 Conclusion
We investigated relativistic Sagnac effects in CS modified gravity.

(The latitudinal and directional dependence )
LT effects on the eastbound interferometer cancel out.
= The eastbound Sagnac interferometer might be preferred for testing CS separately.
{The altitudinal dependence>

The altitudinal effect makes a more complicated form of oscillating behavior in terms
of megs at the ISS site compared with the ground level.
= Space experiments might place tighter constraints on megs.
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Inflation and Modifications of GR
Inflation

* Explaining flatness and homogeneity of the Universe
* Generating successful seed of Large Scale Structures
* Supported by observations.

» Models with nonminimal coupling

L = y=g1f (P)R — w($)(3)? — V()]

O Ubiquitous in high energy physics

String theory Renormalization Higher curvature theory
Copeland, Easther and Wands (97) Bezrukov and Shaposhnikov (08) Starobinsky (81)

Planck (13)

[0 Comfortably consistent with observation data Kaliosh and Linde (13,14)
O Frame independence of observables  Makino and Sasaki (86), Chiba and Yamaguchi (08), Gong, et.al (11)

, , 8T
Comoving curvature perturbation R, (<> ?)

H —_
Ro=R————6¢p = R.=R ...may be evaluated
d(}b/dt ¢ ¢ in the convenient Einstein frame °
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The Horndeski Scalar-Tensor Theory

» Most general scalar-tensor theory with 2"9 order EOMs.
= Ghost-free

Horndeski (74), Deffayet, Esposito-Farese & Vikman (09), Kobayashi, Yamaguchi & Yokoyama (11)

5
Lolg. ¢l = Lilg, ] X = _%Quyﬁbuj(% Pu = Vu¢
=2

Ly = P(X,$), Ls=-G(X,¢)0¢,
Ly = Gu(X.0)R+Cix((06)" = g d™).
'C—’ - G—}(X* @)G,ﬂw(fjuu

1 LY« [ / / v fi
— 2Gs.x|(09)* - 3(06)6uud"” + 26,20 61 ]

Realistic models of Inflation, Dark Energy and Modified Gravity
belong to the Horndeski scalar-tensor theory. ;



Framing the Horndeski theory

» Conformal transformation g, = a(®)gu.
can frame the scalar-tensor theory with nonminimal coupling f(¢)R
— The Horndeski theory is framed within the disformal transformation
» Disformal transformation sekenstein (93)
The transformation including up to the 1st order derivative of ¢

Guv = (D) G +55(¢)¢u¢u

— Eg [‘6’ Q‘S] — Z E?, [g’ gb] Bettoni & Liberati (13)
=2

The theory written in terms of g,,,, belongs to another class of the Horndeski theory.
— Here we will restrict to the class of the Horndeski theory.
C.f. Framing the scalar-tensor theory beyond Horndeski. zumalacarregui & Garcia-Bellido (13)

Gleyzes, Langlois, Piazza & Vernizzi (14)

g,u,v — a(X: Qb)g,u,v 2 B(Xa Qb)qb,uqbv

1246
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D i Sfo r m a | Tra n Sfo r m a t i O n Bekenstein (93) Bettoni & Liberati (13)

» Keeping causality for the conformal part a > 0
» Disformal transformation modifies the causal structure of spacetime
v# :a null vector field in the barred frame g, v#v" =
B>0=g,vHv’ <0
Timelike in the original frame
p<0=g,vHvY >0
Spacelike in the original frame
» Lorentz signature, causal behavior and invertibility
Goo <0  d5*=g,dxtdx" <0 —-g>0 g% <0
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Disformal Coupling to the Matter Sector
S — Sg _I_ Sm Sg - /d4$\/—_g£g[g,gb] Gravity sector

(Horndeski theory)
S s d4 = = Matter sector

(disformally coupled)

» Gravity and Matter frames related by the disformal relation.

G = () guw + B(D)Pudy

Matter frame  Gravity frame
» The energy-momentum is not conserved in gravity frame but in matter frame.

» We will investigate the relation of curvature perturbations associated with
the scalar and matter fields between frames and their evolution.

6
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Disformal Inflation «aoser s
1

» Deceleration in the gravity frame:a =1 f = —
2

ds? = —dt? + t36;;dx'dx’! ¢ = ¢o +myInt

= Inflation in the matter frame 2 ay

t=0 452~ —dr?+ef76;dxldy)  H:= /!

3mp '/
g l
’ H

O 6¢ cannot be the responsible source for curvature perturbations.
U

O Density perturbations should be sourced by matter o

propagating on the matter frame <
- _ Taken from hep-ph/0312002
Ly =/—g(—=g"0,x0,x — m2x?) m, < H
= In general, both scalar field and matter contribute to density perturbations.

Need of a general formulation of cosmological perturbations



Perturbations in the Gravity Sector

» Curvature perturbations from the inflaton fluctuations ¢ + ¢
> Perturbed FLRW universe in the gravity frame
ds® = —(1+ 2A(t,z"))dt* + 2a(t)0; B(t, z*)dtdz’
+ a(t)? [(1 — 2(t, ))dy; + 280, E(t, :c")] dada?
> Perturbed FLRW universe in the matter frame

di = /a—ﬁ’cf)zdt gl=xi;, a—a@ A—A B—B Y-y E-E
Proper time in matter frame

Relating frames "
a’'s 12 Al s bo
(J:A-{-——;i—%qgﬁéqb—ﬁgbégb B:B—i—md@

1 = A = : —
4= yaa o — P2 J1-24
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» Gauge-invariant metric perturbations

—a-Z[@@E-2) ¥ = w+a2E(E-§~) R = ¢+%%5¢.
b 4_%[@9(&_%)] - zﬁ+&2a;(Et—§) R = 1!3+¢i£&€f<5¢5-
Relating frames & = o — a—lﬁgei:? ([3&22 3)% |

B

5, Y = 8Y — aQY(E - E)

5(®) _ p(@)
RC - RC

: : ST, . . : :
Comoving curvature perturbation Ré‘p) (e— ?) is disformally invariant

as well as conformally invariant.
= may be evaluated in any disformally related frames.
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Perturbations in the Matter Sector

» Disformally coupled matter could be the dominant source
of density perturbations via the curvaton mechanism Kaloper (04)

» The non-interacting fluids T(,, =Y 7@, Th = T
[} (1

(a) ; (.n)

; N PV

T{a)l_l“ = _p{n} _ (5,0(”). T(u)?ﬂ — __f ( ! (‘)r'i.-‘(“)
1

.T{a).’j — (p(t?) 4 bp(u})é;—’ . p((i_} [().‘.()J - 5(5;;&] H(u.}
“Hatted” components for the matter frame counterparts.

> Background p\* = fpl¥, pl) = L-fp(a’) f = Va—p¢?
o — 6¢2 . o:%
» Perturbations are also related, as 11(@) — 11(@)

Disformal transformation keeps the structure of the energy-momentum tensors.
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» Curvature perturbation in the uniform energy density hypersurface

(a) 5(a)
- (a) , & 0p = N8
Gravity frame —(\% =1 4+ — a 5@ ¢ Z
: . g p@ 5%
Matter frame  —((®) .= L 520,) = Z p:_f-é‘(a-)
Pi a Pi
e &f a4 & (o)
*a a (a) ey a j 1 ) Qev
= P = 00 + B .
2(a (a) f (a) _ 2
% oy P + Em Bé

Curvature perturbations in two frames are not equwalent
by the isocurvature perturbations associated with the scalar field.

2 .= AB? — $é¢ + ¢pdp © TP .= §p(¥) _ %5&@
; Not suppressed on superhorizon scales

5(;,Y = Y — —.5qb in the presence of disformal coupling

11
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Evolution of Curvature Perturbations

O In the matter frame  wands, malik, Lyth and Liddle (00)

~

L ) 1 b
(ap — 0 = W=- -t f(a)
VLLT v O 1 ﬁ(a.) 4 ﬁ(a) a ﬁﬁa)
fla). — Aa) Ot oA(a)
%= 6p ~@ 6p
Pi
O In the gravity frame Entropy perturbation
L (1 6 a)pa 1 (1 a £ !
V“T{a)# y = _Q(a)gby Q( vp(aT( ) @U) — %T( )p (a 9o + B @qug)
; 0 (a d (a .
— C(a) - CF}') p(')‘qIS +C£G)i( p(.Jﬁs) s C,:ga)z((p) n C_)(lﬂ)l—‘(ﬂ')
‘ o dt\ ¢ | @
Y r@. = 5p(a) _ 2?( )5p(a)
Sourcing by the coupling pré
to the scalar field Entropy perturbation

Ci(a): Background dependent coefficients 12
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O The adiabaticity conditions in both frames are not equivalent:
[@=0eT@=0

Conservation in the matter frame does not lead to that in gravity frame
~(a)

CA(?) — 0 : C'-('a) ~ {C‘Ea p( ){)( )(p )}), ()F(:.) p(“))cin)] 6{){(:)@
,t : p(ﬂ }) a) '( ;I) p(a.J p(n) @’)

(a) d ,,u)
+ G df( o

a B' (a) ) 5(a) a
' ' 3(92 ,(A(U) p Ala)

O Curvature perturbation should be finally evaluated in the matter frame
where CMB photons propagate along the null geodesics.

~(a) 2(a (a) ~(a ¢ (a b Q a

— B30 = R BN ¢ f o Bee™
/3}9 ( Qv ) Z((b) ' ﬁ
2 gy — [3(,’)2 -
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Summary

» Disformal transformation can frame the Horndeski theory:
Juv = a(¢)guv + ,B(Qb)auqbavgb

& Conformal transformation g,, = a(¢)g,v
for the ordinary nonminimally coupling f(¢)R

» Comoving curvature perturbation Rgp) is disformally invariant.

» Curvature perturbations associated with matter are not equivalent,
but straightforwardly related between frames.

» Vector and tensor perturbations, and tensor-to-scalar ratio
are manifestly disformally invariant.

14
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Yuichi Ohara (QG lab. Nagoya univ.)
This work is in collaboration with Safoshi Akagi and Shin'ichi Nojiri - phys.Rev.D90 (2014) 043006, arXiv : 1410. 5553 )

Fierz-Pauli theory

Lyp = _éam,,,,aw“* 4+ Bhya W — WA h %c‘),\hé}"h - %m‘-’(h,,,,m“’ —h?)

The system has 5 degrees of freedom thanks to the Fierz-Pauli mass term.

Interactinon of massive spin-2 theories

Ghost-free interaction for Fierz-Pauli theory
Hinterbichler, JHEP 10 (2013) 102
Lan "‘7-"'“ e am am h.!r-.wz T a}m— 1 a!/r:— 1 h‘!*r:l*dhﬂufﬂ Vg1

d : the number of derivatives, n: the number of the field
pitrEete s products of Minkowski metrics anti-symmetrized over v

In 4 dimensions, there exist 3 interaction terms
JC{J.:] "‘ﬂm MIpEtapovs hm by hml’z hil'.s!'a

ﬂ'lT’II'!l":!ﬂ!i]".'jlfdi’ihu " h
it

Lo,4 ~1 j;gm'I*u:,p_qhn.m.|

09 1 po L e B Ly by F.
Lya 1 am ()r11 ;’-Ji"yg hjx_-w:. h-;xw..

From the ghost-free interaction ferms, we construct a new
model of massive spin-2 particles.

[New model of massive spin-2 in flat space-time ]

Hu
L=CLpp- a”‘”y”lzyﬂlal’ahﬂlUlh'.l!ﬂmhh:;lf:l

HLV praliapigifapiy iy h‘p (Vi v'!.;,.z - hmw:' h”.ml

= E”

u . A coupling constants.

Application of the new model

1. SUSY breaking

One of the SUSY breaking model uses V.E.V of a scalar field theory
with the potential because V.E.V of the scalar field does not break

the isofropy.

The V.E.V of the trace part of the rank 2 tensor can break
SUSY keeping the isotropy.

2. BH physics, Cosmology

Before considering the application......

We have to consider whether a ghost appears or not when
the model is coupled with gravity.

Ghost-free model in curved space-time

9
g :fn"":r.\f—_q {E;-p + %Rh,”,h‘”' + -l—-é-—fﬂhe

H gy vy iy pag ey A i
_Ef.‘fh T .1_1!1‘ VIRV b i Bpawa Prasun By,

Here the background metric satisfies R, = lq; JR
I 4. L

® his notf the perturbation of g but a independent tensor field of g

® Non-minimal couplings and the restriction of the space-fime are
required for the ghost-free property.

[ Counting d.o.f in the lagrangian formalism)

e.0.m

Euv = =930V 11y Vi By, + (terms without VVE)
The second time derivatives are not defined for hyy and hy;.

Primary constraint

Eﬂv = !InOEllu + ngiu
(Oo)mvparvany w7 ) + (terms without VVh) = :;';L'} a0

= —Guved 1 Vi Pugun

Secondary constraint
Aol = BE", ~ VFE,, = ol ~ 0

¢§Z) do not contain any time derivative of hgyq

206 = BTV E,,

~ VYVFE,. + gg‘uu By — ", + 1 I g

Rg" By + -+ = 63 = 0
¢®does not contain any time derivative of hyq
f;\]r.)(:” 2 (terms without VoWVoh) = =
(0,07 and 9,9 @give hy; and figo respectively.)

10 constraints for hy,,, and h,u, and the system has 5 d.o.f

Derivative interaction

i 1 fla g el g by ¢
g vm vl’l hﬂul’z ’I"ﬂ.'sv:!'r’.tu#’-l

Is this interaction ghost-free on the Einstein manifold?
0[2);1 = Vll E;n— =) {_(',umt]..iyuil + Cnt].ﬂbg:i(l + C’""u"_r}'iu}-’!-n_jVnhm

C : Weyl tensor

¢@ should not contain any time derivative of hg, for the ghost-free
property. Then, can we eliminate Ay, using the non-minimal
coupling terms?

1C* PR, hagh + c2CFPh,h Mg

\ 4

G-)(Z)p - vﬂE{w ) {[2(.1 o \‘.'.2)6"'”'03_{[00 + (2{:1 + CQ} Cl}n[l,.'jgjxﬂ} hn,-‘iv['lhnﬂ

+ (terms not including Vohoo)

The derivative interaction induces a ghost.

New non-minimal coupling terms
Can we have non-minimal coupling terms with the Weyl tensore
We eliminate kg, in 9@ by tuning ¢; and ¢,

PR Raph — S0P R ki

We confirmed this term is really ghost-free on the Einstein manifold
by repeating the above procedure.

We also obtain the following new interaction terms

Ty 2 Vs
giakenvag, o Riaus

SH1 Mz Ha Mg Ay M2 My by PP T2 o Palapady
a ] gJC g [

/Mop2 op3 pa 01 G2 O3 'hilwuh.ﬂuffah.“:w
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Multi-Scalar Extension of
Horndeski Theory

O



Horndeki Theory is the most general single-scalar tensor
theory with second order field equations.

L = Ga(X,6) ~ Gs(X, $)06 + Ca(X, R + St [(B9)° ~ (V,, V)’
+G5(X,9)G"' V.V, — %% [(O¢)® — 30¢(V,.V.9)* +2(V,.V.0)*]
where X := —9,00"¢/2

That gives us theoretical framework to describe all
single-scalar tensor theory in a unified manner.

Recently, Horndeski theory has been extensively studied
in the context of inflation.

1261
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» Aim is to give more general theoretical framework, and
to apply them to multi-field inflationary scenario.

» Straightforward generalization of Horndeski theory into
multi-scalar field (covariant multi-Galileon)

E _ GQ(XIJ,¢K) . G3L(XIJ,¢K)D¢L +G4(XIJ,¢K)R
+Gary (O¢"0¢7 =V, V, ' VIV ¢T) + G5 (X7, 5)GH' YV, V0"

1
—<Gs1, i) 09" 087 09" — 306UV, V,07VEV*¢5) 12V,V,¢! vV V¢V VH 6K |

1
where X'/ := =3 LT Ok

» The theory is NOT the most general theory !
[Tsutomu Kobayashi, Norihiro Tanahashi and Masahide Yamaguchi,PRD(2013) ]
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3.Introduction

O

Ghat is the most general multi-scalar tensor theory th}
ond order field equations ?

~—l.—

» We constructed the most general two-scalar + gravity
theory with 274 order field equations in four dimension.

[SO, Tanahashi, Kobayashi and Yamaguchi ]
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4.Assumption

O

(i) The system has covariant Lagrangian

E:‘C(g7aga'"78pga¢178¢17"'7aq1¢1)

I:1,2 p,q122

(ii) The field equations are 2" order

oL

5gab

oL
—— = FEy(g,09,0%g, ¢5,005,0%0y)
Yo

= Eab(g, dg,0%g, é1,001,0%d1)
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5.Constraints from covariance

O
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6.Constraints from covariance
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Outline of Construction

O
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7.No 3" derivative conditions
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8.No 3" derivative conditions
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9.No 3'd derivative conditions

O
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10.General covariance conditions

O
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11.Most general field equation with 274 order

2
= A6+ > Apsor“éan + GO RY —
1,J=1

2
*Zl( T

JK=1

+ Z Crixdigdreds oxl +
1JK=1

£ (o

O

Z

IJ1

d
g§f¢IC¢Je

0Jry
500

2

>

I,J,K,L,M=1
2

2

0J.

+4 8<ZK> ¢k —2 Y DikimrXsxXom
! JK,LM=1

Dryx Ly b1ch s Orcedr! drrlh

2
ace. aJIK ace.

+ Y JuSgnered s RIP —4 > X, O 016" brcz b

I1,J=1 1,J,K,L= 1

2
ace 4 aI(I ace

+ ZKI(defgﬁbIdR Ih § 6X 6bdf}gl¢l ¢J§‘¢Kz

=1 I,JK=1

) Shsre
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Summary




