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Programme: Day 5
Friday 14 November 2014

Morning 1 [Chair: Misao Sasaki]

10:00 Hitoshi Murayama (Berkeley/Kavli IPMU, SuMIRe) [Invited]
            “soo-mee-ray SUMIRE Subaru Measurements of Images and Redshifts”
            [JGRG24(2014)111401]

10:45 Takashi Hiramatsu (YITP, Kyoto)
            “Progress of code development: 2nd-order Einstein-Boltzmann solver for CMB 
              anisotropy” [JGRG24(2014)111402]

11:00 Tomo Takahashi (Saga) 
            “Studying the inflationary Universe with gravitational waves” 
             [JGRG24(2014)111403]
            
11:15 - 11:30  coffee break

Morning 2 [Chair: Hideo Kodama]

11:30 Akihiro Ishibashi (Kinki) 
            “Instability of extremal black holes in higher dimensions” [JGRG24(2014)111404]

11:45 Hajime Sotani (NAOJ) 
            “Stellar oscillations in Eddington-inspired Born-Infeld gravity” 
             [JGRG24(2014)111405]

12:00 Kazuharu Bamba (Ochanomizu) 
            “Inflationary cosmology in R2 gravity with quantum corrections” 
             [JGRG24(2014)111406]

12:15 Shuntaro Mizuno (Waseda) 
            “Combined features in the primordial spectra induced by a sudden turn in two-field 
              DBI inflation” [JGRG24(2014)111407]

12:30 Guillermo A. Mena Marugan (IEM, CSIC) 
            “Cosmological perturbations in Loop Quantum Cosmology: Mukhanov-Sasaki 
              equations” [JGRG24(2014)111408]

12:45 Yuko Urakawa (Nagoya) 
            “Inflation from holography” [JGRG24(2014)111409]

13:00 - 13:15  presentation awards
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13:15  Kei-ichi Maeda (Waseda)
             Closing [JGRG24(2014)111410]  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“SuMIRe: Subaru Measurements of Images and Redshifts”  

Hitoshi Murayama [Invited]

[JGRG24(2014)111401] 



�823

SuMIRe 
Subaru Measurements  
of Images and Redshifts

Hitoshi Murayama (Kavli IPMU & Berkeley)!
JGRG24 @ Kavli IPMU!

Nov 14, 2014

soo-mee-ray

How did the Universe begin?!
What is its fate?!

What is it made of?!
What are its fundamental laws?!

Why do we exist?!
We need astronomers, 

physicists, and mathematicians!
Founded Oct 1, 2007!

English is the official language
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Oct 2007

Oct 2008
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Oct 2009

Oct 2010
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Oct 2011

Oct 2012

picture will be taken on Oct 19
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Oct 2013

Oct 2014

international members 56%



�828

Departure Name Current Position Current Institute


����� Yasuhiro Shimizu Assistant Professor Tohoku University
������� Satoshi Kondo Assistant Professor Kavli IPMU (promoted)
������� Yuji Sano Assistant Professor Kyushu University
������� Shushi Harashita Associate Professor Yokohama National University

����� Yogesh Srivastava Associate Professor NISER, India
������ Tathagata Basak Assistant Professor Iowa State Univ
������� Yen-Ting Lin Assistant Research Fellow ASIAA
������ Damien Easson Assistant Professor Arizona State University
������ Seong Chan Park Assistant Professor Chonnan Nataional University
	����� Kai Wang Assistant Professor Zhejiang University

����� Mikaël Pichot Assistant Professor McGill University

����� Kwokwai Chan Assistant Professor Chinese University of Hong Kong
������ Cosimo Bambi Professor Fudan University, Department of Physics
������ Jing Shu Associate Professor Chinese Academy of Sciences
������� Masaomi Tanaka Assistant Professor NAOJ
������ Yutaka Ohkouchi Associate Professor University of Kyoto, Hakubi Project
������ Sergey Galkin Associate Professor Moscow Institute of Physics and Technology

����� Alexandre Kozlov Assistant Professor Kavli IPMU (promoted from postdoc)
������ Christian Schnell Assistant Professor Stony Brook
������ Johanna Knapp Assistant Professor Vienna University of Technology
������ Minxin Huang Assistant Professor Univ of Science & Technology China (Heifei)
������� Scott Carnahan Assistant Professor University of Tsukuba
������ Mircea Voineague Lecturer (tenure track) School of Mathematics and Statistics, University of New South Wales
������ Alexie Leauthaud Harnett Assistant Professor Kavli IPMU (promoted from postdoc)
������ Masayuki Tanaka Project Assistant Professor NAOJ
������� Katsuyuki Naoi Lecturer Tokyo University of Agriculture and Technology
2/28/14 Surhud�Shrikant More Project Assistant Professor Kavli IPMU (promoted)
������� Takaya Nozawa Assistant Professor NAOJ
������� Atsushi Nishizawa Lecturer Nagoya University
������� Jing Liu Assistant Professor University of South Dakota
������� Biplob Bhattacherjee Assistant Professor Indian Institute of Science

������� Robert Quimby Associate Professor / Director of 
Mount Laguna Observatory San Diego State University

������� Melina Bersten Scientific Researcher CONICET (National Scientific and Technical Research Council - Argentina
������� Gaston Folattelli Scientific Researcher CONICET (National Scientific and Technical Research Council - Argentina
������� Myeonghun Park Adjunct Professor APCTP / POSTECH
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refereed publications*
institute citation/

paper
#papers!

>50 citations

IPMU 16.0 114

IAS 19.7 137

KITP 19.6 49

YITP 11.1 46

Perimeter 13.9 83

ICTP 11.6 72
Jan 2008 - Jun. 2014!

Web of Science (Thomson Reuters), excluding reviews!
fields: astronomy, astrophysics, particle and fields, !

multidisciplinary physics, mathematics, applied mathematics

*calendar year
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theoretical!
physics mathematics

The map

string

pheno

astro
algebraic geometry

arithmetic geometry

proposed & achieved

unanticipated & achieved

will be achieved

differential geometry

representation theory

condensed 
matter 
physics

astronomy

underground!
experiments

accelerator

statistics

geo
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data!

analysis
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!

leptogenesis Gd supernova

LiteBIRD

@ summit of Mt. Mauna Kea (4200m), Big Island, Hawaii�

Subaru Telescope 
(NAOJ) 

Prime-Focus Instrument�

Subaru Telescope�

3 
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Subaru Telescope:  !
wide FoV & excellent image quality�

~50,000 galaxy images�

HST�

Galaxy cluster�

The Suprime-Cam image �

•  Fast, Wide, Deep & Sharp !
•  a cosmological survey needs these  

4 M. Takada

Subaru Telescope:  "
wide FoV & excellent image quality�

~50,000 galaxy images�

HST�

Galaxy cluster�

The current SprimeCam image (M. Oguri)�

•  Fast, Wide, Deep & Sharp !
•  a cosmological survey needs these  

Hyper Suprime-Cam FoV�

13 M. Takada
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Subaru Measurements of Images and Redshifts 
SuMIRe

• a 5+5 year survey program!

• exploiting FOV ~1.5° of 8.2m Subaru!

• cosmic sensus!

• Imaging with HyperSuprimeCam (HSC)!

• 870M pixels!

• ~20M galaxy images!

• 2014–2018, 300 nights!

• spectroscopy with 
PrimeFocusSpectrograph (PFS) ≠ PSF!

• 2400 optical fibers!

• ~4M redshifts!

• 2018–2022? 300 nights!

• like SDSS on 8.2m telescope!

Subaru

HSC PFS

Wide-field imaging with Hyper Suprime-Cam 5

HSC-UD

HSC-D

HSC-Wide

Figure 1: Left panel: The HSC filter transmission, including the reflectivity of all mirrors, transmission of all optics,
and response of the CCD, assuming an airmass of 1.1. Both the wide-band and narrow-band filters are shown.
The lower panel shows the spectrum of sky emission lines, demonstrating that the red narrow-band filters lie in
relatively dark regions of the sky spectrum. Right panel: The limiting magnitudes (in r) and solid angles of the
HSC-Wide, Deep and UD layers, compared with other existing, on-going, and planned surveys. The three layers are
complementary to each other, and each of the three layers covers a significantly wider area than do other on-going
surveys of comparable depth. The narrow-band components of the Deep and UD layers are unique; no other survey
is planning a major survey to comparable depth.

The top-level science requirement is to derive stringent dark energy constraints from the combina-
tion of weak lensing, Type Ia supernovae, and Planck CMB anisotropy measurements to precisions of
σ(wpivot) ≃ 0.04 and the dark energy figure-of-merit FoM ≡ 1/[σ(wpivot)σ(wa)] ≃ 50.
To meet this scientific goal, the top-level survey requirements are:
• To carry out i-band imaging (20 min in total per field) in nights of good seeing conditions (FWHM <

∼ 0.7′′)
in order to carry out high-precision measurements of the shapes of faint, distant galaxies. This depth gives
us a weighted mean number density of galaxies for which shapes can be measured of n̄g ≃ 20 arcmin−2,
with ⟨z⟩ ≃ 1.
• To cover a solid angle of 1400 deg2 to have a sufficiently-high statistical precision for the WL observables.

With the HSC/Subaru data, we will recover the dark matter distribution with unprecedented statistical
precision up to higher redshifts than previously reached or can be reached with 4m-class telescopes. The
statistical accuracies of our WL measurement will depend on the number density of galaxies usable for
WL analysis and the total solid angle (which, given the redshift range of our sample, determines the total
comoving volume covered by the survey). The i-band is ideal for measuring faint galaxy shapes, given
the red colors of high-redshift galaxies, the high throughput and relatively low sky of the filter, and the
good seeing. Data from the Subaru Suprime-Cam show that the weighted number density of galaxies with
measurable shapes for a weak lensing analysis in 20 min i-band exposures in <

∼ 0.7′′ seeing is about 20
galaxies/arcmin2. With this exposure time, we go deep enough to probe WL to z > 1, allowing us in 200
nights to cover the cosmological volume necessary to attain our desired constraints on w and the DE FoM.
While the statistical accuracy is comparable with that expected for the DES survey (Oguri & Takada 2011;
also see § 5 for more details), we will have appreciably better image quality, and thus better control of
systematics.

The total exposure time is split into 6 exposures for each field, and includes a single 30-second exposure
to allow the photometry of each field to be photometrically tied to SDSS with bright stars (see § 4.1).

imaging

6.4 Science

Table 6.2: Targets for a PFS galaxy evolution survey

Redshift Magnitude Selection Sample size Targets

range limit size

0.1 < z < 2 z
AB

< 22.5 Random ∼ 1× 106 Galaxies

0.5 < z < 7.0 z
AB

< 23.5 Photometric ∼ 5000 QSOs (See Section X)

1.0 < z < 2.0 TBD Photometric ∼ 3− 5× 103 Cluster members

0.5 < z < 2.0 TBD Multi-wavelength TBD X-ray, SZ clusters

0.5 < z < 7.0 z
AB

< 23.5 Multi-wavelength TBD AGN (X-ray, radio)

Figure 6.4: Area coverage versus limiting magnitude for various large extragalactic surveys. The point size represent
the number of spectra; the SDSS symbol size corresponds to one million spectra. Clearly, a PFS survey occupies
a unique position in this parameter space. The BigBoss survey is arbitrarily placed at 23rd magnitude since the
continuum will not be detected in most galaxies.

115

spectroscopy
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Wide-field imaging with Hyper Suprime-Cam 5

HSC-UD

HSC-D

HSC-Wide

Figure 1: Left panel: The HSC filter transmission, including the reflectivity of all mirrors, transmission of all optics,
and response of the CCD, assuming an airmass of 1.1. Both the wide-band and narrow-band filters are shown.
The lower panel shows the spectrum of sky emission lines, demonstrating that the red narrow-band filters lie in
relatively dark regions of the sky spectrum. Right panel: The limiting magnitudes (in r) and solid angles of the
HSC-Wide, Deep and UD layers, compared with other existing, on-going, and planned surveys. The three layers are
complementary to each other, and each of the three layers covers a significantly wider area than do other on-going
surveys of comparable depth. The narrow-band components of the Deep and UD layers are unique; no other survey
is planning a major survey to comparable depth.

The top-level science requirement is to derive stringent dark energy constraints from the combina-
tion of weak lensing, Type Ia supernovae, and Planck CMB anisotropy measurements to precisions of
σ(wpivot) ≃ 0.04 and the dark energy figure-of-merit FoM ≡ 1/[σ(wpivot)σ(wa)] ≃ 50.
To meet this scientific goal, the top-level survey requirements are:
• To carry out i-band imaging (20 min in total per field) in nights of good seeing conditions (FWHM <

∼ 0.7′′)
in order to carry out high-precision measurements of the shapes of faint, distant galaxies. This depth gives
us a weighted mean number density of galaxies for which shapes can be measured of n̄g ≃ 20 arcmin−2,
with ⟨z⟩ ≃ 1.
• To cover a solid angle of 1400 deg2 to have a sufficiently-high statistical precision for the WL observables.

With the HSC/Subaru data, we will recover the dark matter distribution with unprecedented statistical
precision up to higher redshifts than previously reached or can be reached with 4m-class telescopes. The
statistical accuracies of our WL measurement will depend on the number density of galaxies usable for
WL analysis and the total solid angle (which, given the redshift range of our sample, determines the total
comoving volume covered by the survey). The i-band is ideal for measuring faint galaxy shapes, given
the red colors of high-redshift galaxies, the high throughput and relatively low sky of the filter, and the
good seeing. Data from the Subaru Suprime-Cam show that the weighted number density of galaxies with
measurable shapes for a weak lensing analysis in 20 min i-band exposures in <

∼ 0.7′′ seeing is about 20
galaxies/arcmin2. With this exposure time, we go deep enough to probe WL to z > 1, allowing us in 200
nights to cover the cosmological volume necessary to attain our desired constraints on w and the DE FoM.
While the statistical accuracy is comparable with that expected for the DES survey (Oguri & Takada 2011;
also see § 5 for more details), we will have appreciably better image quality, and thus better control of
systematics.

The total exposure time is split into 6 exposures for each field, and includes a single 30-second exposure
to allow the photometry of each field to be photometrically tied to SDSS with bright stars (see § 4.1).

imaging
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PFS collaboration

 Read more

New Views of Saturn's Aurora, Captured by Cassini
A new movie and images showing Saturn's shimmering aurora are helping scientists
understand what drives some of the solar system's most impressive light shows.

News & Features
09.23.10 Cassini Gazes at Veiled Titan

09.23.10 Shining Starlight on the Dark
Cocoons of Star Birth

09.21.10 Laser Tool for Studying Mars Rocks
Delivered to JPL

Upcoming Events
10.14.10 Scientific Results from the Spitzer

Space Telescope (Oct. 14 & 15)

11.11.10 The JUNO Mission to Jupiter (Nov.
11 & 12)

Follow Us Here:

Latest News
Blog
Media Room
Press Kits
Fact Sheets
Profiles

Current
Past
Future
Proposed
All

Videos
Podcasts
Interactives
Audio
Images »

Photojournal
Space Gallery
Wallpaper
Twitter Backgrounds
NASA Images

 

HSC parameters

• FoV: 1.5°, 1.77 deg2!
• 15µm, 870M pixels!
• grizy + 6 NBs!
• three surveys, approved to start Feb 2014

area (deg pointings h science

Wide 1400 916 4.4 (z<1.5) WL, galaxies z~1

Deep 28 15 0.5 (1<z<5) galaxies z<2

Ultra-Deep 3.5 2 0.07 (2<z<7) LAEs, LBGs, SNeIa

Planned HSC Survey: 3 tiers �
•  Wide: 1400 sq. degs., grizy (iAB=26, 5σ)"

–  Weak gravitational lensing!

–  Galaxy clustering, properties of z~1 L* galaxy "

–  Dark Energy, Dark Matter, neutrino mass, the 
early universe physics (primordial non-
Gaussianity, spectral index)"

•  Deep: 28 sq. degs, grizy+NBs (i=27)"
–  For a calibration of HSC-Wide WL/photo-z"

–  LAEs, LBGs, QSOs"

–  Galaxy evolution up to z~7"

–  The physics of cosmic reionization !

•  Ultra-deep: 2FoV, grizy+NBs (i~28)"
–  Type-Ia SNe up to z~1.4"

–  LAEs, LBGs, Galaxy evolution"

–  Dark Energy, the cosmic reionization!
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4 Wide-field imaging with Hyper Suprime-Cam

Table 1: Hyper Suprime-Cam Characteristics

Instrument weight 3.0 tons (estimate)
Field of View 1.5◦ diameter, 1.77 deg2

Vignetting 0 at 0.15◦; 26% at edge
Pixel scale 15µm = 0.16′′

Delivered Image Quality D80 < 0.2′′ in all filters
CCDs 116 2K × 4K Hamamatsu Fully-Depleted
CCD QE 40% at 4000Å, 10,000Å, (??) at peak
CTE 0.999999
Readnoise 4.5 e−

Data Rate 2.31 GBytes/exposure (16-bit A-to-D)
Focal ratio at Focal Plane 2.25
Overhead between Exposures 29 sec
Wide-Field Corrector 7 optical elements, ADC
Shutter Roll-Type
Filters grizy + 6 NB; Table 3
Filter Exchanger 6 filters installed at a time
Filter Exchange Time 10 minutes

Table 2: Summary of HSC-Wide, Deep and Ultradeep layers

Layer Area # of Filters & Depth Volume Key Science
[deg2] pointings [h−3Gpc3]

Wide 1400 916 grizy (i ≃ 26) ∼ 4.4(z < 1.5) WL Cosmology, z ∼ 1 gals, Clusters
Deep 28 15 grizy+3NBs (i ≃ 27) ∼ 0.5(1 < z < 5) z <

∼ 2 gals, SNeIa, WL calib.
Ultradeep 3.5 2 grizy+6NBs (i ≃ 28) ∼ 0.07(2 < z < 7) high-z gals (LAEs, LBGs), SNeIa

over the field of view. Including readout and all overheads, the minimum time between exposures is 29
seconds, allowing for efficient surveying of the sky. The filter exchange mechanism can hold six filters at
one time, and requires about 10 minutes to exchange filters, with the telescope at zenith. The complement
of filters can be changed during the daytime. (More details?) As described in § 3, the survey we plan
will use five broad-band filters (grizy) modeled on the SDSS filter set (the left panel of Figure 1), as well
as six narrow-band filters to observe Lyα at a wide variety of redshifts. All the broad-band filters and two
of the narrow-band filters are in hand; the other four will be delivered in March 2013.

(At this point, we need to describe the commissioning, which we can’t write until the
commissioning is completed!
Suggested figures include a schematic of the instrument itself and a first-light image.)

3 Survey Design

Each of the Wide, Deep and Ultradeep layers will use different filters, go to different depths, and cover
different solid angles and thus cosmological volumes. Table 2 and the right panel of Figure 1 give a quick
summary of the survey parameters of each layer, showing that these three layers are complementary to each
other and are significantly more powerful than are competitive on-going, upcoming surveys. Combining
the three layers allows us to cover a broad range of science topics spanning a wide ranges of length scales
and redshifts. We need 200 nights in total (including overhead and nights with poor weather (30%)) to
carry out the Wide layer, and 100 nights for the Deep and Ultradeep layers.

3.1 Filters and depths

The nature, depth, and solid angle of each filter were carefully determined to meet the main science
requirements. Table 3 gives the summary of filters and depths for each survey layer. We now describe the
rationale for the survey parameters.

HSC-Wide layer: the primary science driver for the HSC-Wide is WL cosmology, as detailed in § 5.

Subaru Strategic Program

unprecedented 300 nights 

approved

~170 collaborators!
survey chair: Masahiro Takada

24
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8.7M pixels!
3t, ~1000xHST

29

30



�838

31

32



�839

Comments

Email Print Reprints

A new look at the Andromeda Galaxy and
Trask Industries gets a Web site
(Innovations in 5)
By Emi Kolawole, Published: July 31 at 1:07 pm E-mail the writer

Here’s what we’ve been reading and watching today:

1) Here is a gorgeous new photo of the Milky Way’s neighbor — the Andromeda Galaxy
(M31). The image was taken by Japan’s Subaru telescope:

The image (here’s the full-resolution version, which may take a while to download) was
captured using a Hyper Suprime-Came (HSC) and, according to a release, is a

1 Like 780 23

M31 captured by HSC. (Credit: HSC Project / NAOJ)

ArchivesTechnology Space Social Media Column Editor's Corner Follow:

More

Innovations
It's all about what's next

Sign In SUBSCRIBE: Home Delivery Digital Real Estate Rentals Cars Today's Paper Going Out Guide Find&Save Service Alley

PostTV Politics Opinions Local Sports National World Business Tech Lifestyle Entertainment Jobs More

33

superb performance
HSC: 3 colors in 2.5hours HST: 1 color in 500 hours

34
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ISON 
comet
H15.11

accurate 
mechanical !

control
35

1.5 deg

Transient survey now
Real HSC data! 
(open-use time)

36 Po
we
r o
f n
ea
rly
 b
illi
on
 p
ixe
ls



�841

0.5 deg 
(30 arcmin)
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3 arcmin
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Supernova
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Before SN
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After SN
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Difference image

43

~30Bly
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accurate calibration of photometry

riz
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Weak lensing mass map for ~20 sq. degrees field (2hrs data)

3d dark matter map

combined with CFHT data: world largest area

galaxies dark matter

1 Gly
6 Gly

4º

3º

1Gly
6 Gly

4º

3º

46
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galaxy

dark matter

47

largest area 3d dark matter map in the world

1~6Glyr!
3º×4º

HSC Survey Fields�

•  HSC Survey Fields selected based on"
–  Overlap with SDSS regions, and overlap with other interesting 

datasets (ACT CMB, NIR, spectroscopic surveys, …) "
–  Low dust extinction"

–  Spread in RA"

R.A.

DEC

HSC-D

HSC-D/UD

HSC-W

Galactic Extinction E(B-V)
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8 Wide-field imaging with Hyper Suprime-Cam

Figure 3: Left: Expected weak lensing cosmic shear power spectra for three redshift bin tomography, where boxes
around each curve show the expected 1σ measurement accuracies. Thin curves are computed using a model in which
the DE equation of state is changed to wDE = −0.9 from wDE = −1, demonstrating that we will be able to cleanly
distinguish between these two models. Right: The marginalized error on w(z) as a function of z, expected from
cosmic shear tomography assuming three redshift bins and using the power spectrum information up to lmax = 2000
for the HSC and DES surveys combined with data from Planck. Here we employ the standard parametrization
w(z) = w0 + wa[z/(1 + z)] to model the DE equation of state.

a shear cross-correlation, the two measurements are affected differently by systematic errors (Mandelbaum
et al. 2005), thus comparing the two can give us confidence that these systematics are under control.
The galaxy-galaxy lensing and cluster-galaxy lensing signature can be measured over relatively small solid
angles, making this approach particularly valuable for constraining cosmological parameters with the first
year or two of HSC survey data.

Combining weak lensing with the halo mass function: We will also use the method proposed in Oguri &
Takada (2011) to constrain cosmology with minimal systematic errors, by measuring cluster-galaxy lensing
using a single population of background source galaxies, for distinct lens redshift slices up to zl

<∼ 1.4.
Since the source redshift (zs) dependence of the cross-correlations appears only via a geometrical factor
⟨dA(zl, zs)/dA(zs)⟩zs , the relative strength of cross-correlation signals for different zl allows us to calibrate
out source redshift uncertainty (see Oguri & Takada 2011 for details), thereby relaxing the photo-z error
requirements for the cluster-galaxy lensing. Then we can combine the cluster-shear cross-correlation with
the cluster auto-correlation function and the number counts of clusters, which are highly sensitive to
the amplitude of matter fluctuations and the DE equation of state. While the traditional cluster count
approach is subject to uncertainty in the mass-observable relation, Oguri & Takada (2011) showed that
combining measurements of the stacked WL and the cluster auto-correlation function directly constrains
the mass-observable relation, and thus breaks its degeneracy with cosmological parameters. This approach
is attractive because the rich data sets (especially BOSS and ACT) in the HSC footprint allow us to
construct a robust, complete sample of clusters (see below). We will demonstrate in Section 3.3 that
the cluster-shear cross-correlations can constrain cosmological parameters to a precision similar to that of
the more standard cosmic shear tomography with optimistic assumptions on systematic errors, even after
accounting for and fully marginalizing over these systematic errors.

The left panel of Figure 4 shows the expected, cumulative S/N for the WL cross-correlation, i.e., stacked
WL signals due to clusters with masses Mhalo > 1014h−1M⊙ in redshift slices of ∆z = 0.1 as a function
of the lens redshift, computed using the method described in Oguri & Takada (2011). The two curves are
the results expected for the proposed HSC Wide-layer and for DES. The figure shows that HSC measures
the stacked WL signals for halos at higher redshift than DES, given its greater depth. HSC WL allows a
significant detection of lensing by large-scale structure around clusters out to z ∼ 1; this signal arises from
the average mass distribution surrounding the lens halos and is easier to model theoretically, as mentioned
above.

Overall approach: We will maximize the cosmological information in our analyses by combining multiple
observations, including cosmic shear, the galaxy- and cluster-galaxy lensing, and the galaxy/cluster auto-

Cosmic Shear

10 Wide-field imaging with Hyper Suprime-Cam

Data wpivot wa FoM γg mν,tot[eV] fNL ns αs

BOSS-BAO 0.064 1.04 15 – – – 0.018 0.0057
HSC(WL)-B (baseline) 0.080 0.86 15 0.15 0.16 30 0.014 0.0041
HSC(WL)-O (optimistic) 0.068 0.66 22 0.083 0.082 18 0.013 0.0040
HSC(WL+SN)-B 0.043 0.60 39 0.15 0.16 30 0.014 0.0041
HSC(WL+SN)-O 0.041 0.45 54 0.081 0.081 18 0.013 0.0040
HSC-O+[BOSS-P (k)] 0.028 0.36 99 0.038 0.076 17 0.011 0.0029
HSC-O+[BOSS+PFS] 0.027 0.19 196 0.035 0.07 17 0.009 0.0022

Table 3: Expected parameter accuracies for HSC cosmology using the Oguri & Takada (2011) shear method: The
“Baseline” case (“HSC(WL)-B”) uses clusters with z < 1 and masses Mhalo > 1014h−1M⊙, and without priors on
nuisance parameters, whereas the “Optimistic” case (“HSC(WL)-O”), uses clusters to z = 1.4, with some conservative
priors on nuisance parameters. The DE constraints listed in this table are also conservative in the sense that the errors
include marginalization over non-standard cosmological parameters such as γg, mν,tot, and fNL. The rows denoted
“WL+SN” include the above HSC-WL and SNeIa measurements. The last two rows show the expected constraints
when we combine the HSC observables with spectroscopic surveys, BOSS and PFS (see Ellis et al. 2012 regarding
the planned PFS survey). The joint constraints assume that the HSC-WL observables can remove the spectroscopic
galaxy bias uncertainty, by comparing the galaxy clustering with the dark matter distributions reconstructed from
the HSC-WL observables. This analysis does not include constraints from cosmic shear, which is largely independent,
with different systematics, and serves as a valuable cross-check.

sample. We can also find clusters as high peaks in the weak lensing mass map (Miyazaki et al. 2002b,
2007), which we will compare with the optically-selected clusters to test their robustness.

Combining the HSC survey and the arcminute-resolution, high-sensitivity ACT CMB experiment also
offers unique, synergistic science opportunities. We are involved in the ACT experiment and its successor,
ACTPol, and our Wide survey fields overlap almost completely with the ACTPol region. The ACT
experiment will provide a unique, redshift-independent catalog of SZ-selected clusters with nearly 100%
completeness for very massive clusters (> 8 × 1014M⊙) at all redshifts, especially those z >∼ 0.6 (Niemack
et al. 2010). The upgraded ACTPol survey will identify clusters down to a smaller mass threshold, by a
factor of a few, providing an opportunity to construct a large, clean sample of high-z clusters in the HSC
footprint. As implied by the left panel of Figure 4, the HSC survey for WL studies of high-redshift clusters
is quite synergistic with the ACT SZ survey.

Lensing of the CMB by large-scale structure can be cross-correlated directly with our cosmic shear
maps. The CMB lensing and HSC-galaxy lensing signals at any given point on the sky arise from the same
large-scale structure in the overlapping redshift range (which is large, given the depth of the HSC survey),
and thus this cross-correlation measures the same signal as the cosmic shear power spectrum, with different
systematics. We estimate that the statistical errors on the HSC shear-CMB lensing cross-power spectrum
will be only 1.5 times as large as those on the cosmic shear power spectrum from HSC alone (and even
better than that on the largest scales), suggesting that the cross-correlation with CMB lensing will add
significant power to HSC.

Geometrical test with HSC SNeIa survey: The Ultradeep layer, with its carefully-chosen cadence
for broad-band filter imaging, allows us to identify ∼ 120 SNeIa with well-sampled lightcurves (Figure 12),
40 of which will be at 1 <∼ z <∼ 1.4. The efficient detection of such high-redshift SNeIa is possible due
to the unique capabilities of Subaru/HSC, its large aperture, field of view, and red-sensitive CCDs (y-
band filter). The HSC SNeIa sample will be complementary to the current SNeIa sample (Suzuki et al.
2012), the majority of which are at z <∼ 0.7, and to samples that will be delivered from multi-color imaging
surveys with 4-m telescopes such as the DES SNeIa survey (Bernstein et al. 2012). In general, using these
SNeIa for cosmology requires spectroscopic follow-up observations with 8-m class telescopes. However, type
classifications and redshifts for many SNeIa will be available from multicolor lightcurve fitting and from
photometric redshifts and spectroscopy of their host galaxies. Real-time spectroscopy of the supernova
themselves is required for only ∼ 20 SNeIa per year for which, e.g., no host galaxy is evident, and will be
readily accessible given the breadth of our collaboration network.
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PFS parameters
!

• 2400 fibers, 128µm, microlens f/2.2→f/2.8!
• FoV: 1.3 degrees!
• share WFC with HSC!
• 4 spectrographs for 600 fibers each!
• λ=0.38–1.26µm with three arms

blue 2800–6400 nm R~2500 Hamamatsu (special coating)

red 6400–9550 nm R~3200, 5000 Hamamatsu (same as HSC)

near IR 9550–12600 nm R~4500 Teledyne HgCdTe (<1.7µ)

Prime&Focus&Instrument

Wide&Field&
Corrector

Wide&Field&
Corrector

Fiber&Posi4oner&&
(from&bo7om)

Spectrograph Fiber&Cable

Metrology&camera
Wide&Field&
Corrector

��
����������
��������
	

52



�849

53

Production of !
2550 Cobras started

10µ precision

throughput @ zenith
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Medium Resolution

• re-evaluation of galactic archaeology: 
dynamics study found very exciting 
together with the GAIA data, now with 
medium resolution option R~5000 for red!

• simple design with little risk

MEDIUM RESOLUTION CONFIGURATION 
Medium Resolution:  

� R~5000 
� Range of [0.710-0.885] microns 

Exchanging the LR grating by a MR Grism 
� Without moving the camera 
� Grism made of two identical prisms  glued 

on a VPHG (340x340mm) 
� Baseline glass for prisms: OHARA S-

LAH53  (back-up: Schott SF4) 
 
 

PDR-Hilo-26th Feb. 2013 

21 

GRATING EXCHANGE MECHANISM 
Allows to replace the LR grating by the 
MR grism 

� Holds 2 big optical pieces 
(340x340mm each) 

� Provides repeatability in repositioning  
 
Preferred solution: Vertical translation 

� More space available for both 
� The exchange mechanism and the 

shutter 
� Dichroic assembly can be used for 

guiding and rigidity 
 
Main drawbacks:  

� Total height of about 1.1m 
� Additional interface between the 

mechanism and the dichroic assembly 
(DCA) 

PDR-Hilo-26th Feb. 2013 

24 
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Major Milestones
Jan 2011 endorsement by Subaru community!
Dec 2011 MOU between IPMU & NAOJ!
Mar 2012 CoDR!
Oct 2012 Requirement Review!
Feb 2013 PDR!
now subsystem CDRs!
Jan 2017 System Integration, tests!
Dec 2017 Operational Readiness Review!
Early 2018 First Light (engineering)

Publ. Astron. Soc. Jpn (2014) 66 (1), R1 (1–51)
doi: 10.1093/pasj/pst019
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Pasadena, CA 91011, USA
8Department of Physics & Astronomy, Johns Hopkins University, 3400 N. Charles Street, Baltimore,
MD 21218, USA
9Institute of Astronomy and Astrophysics, Academia Sinica, 11F of Astronomy-Mathematics Building,
National Taiwan University. No.1, Sec. 4, Roosevelt Rd, Taipei 10617, Taiwan
10Laboratoire d’Astrophysique de Marseille, Pôle de l’Étoile Site de Château-Gombert, 38, rue Frédéric
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BAO: standard ruler�
Sloan Digital Sky Survey (SDSS-I,II) (2000-2008)�

Eisenstein et al. (05)�

€ 
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Figure 2.11: The impact of the observational systematic effects in Fig. 2.10 on the power spectrum
measurement. Here we consider a worst-case scenario: we assume that a systematic error causes
apparent fluctuations in the number of detected [O II] galaxies in between different pointings (but
we do not consider the redshift dependence for simplicity). The PFS FoV corresponds to transverse
comoving scales of about 42 or 66 Mpc/h for z ' 1 or 2 redshift slices, respectively. We used N-
body simulations outputs at z = 1 and 2.2 that are done with 10243 particles and in a box with
2 Gpc/h on a side length. We first added artificial density fluctuations with 5% rms amplitude into
each of 48 or 29 subdivided rectangular-shaped subvolumes in the z = 1 or 2.2 N-body simulations,
where each subvolume has a volume of 41.7 ⇥ 2000 ⇥ 2000 or 69 ⇥ 2000 ⇥ 2000 (Mpc/h)3,
respectively. Here the scales of 41.7 or 69 Mpc/h are intended to mimic the transverse scales
of PFS FoV for the z ' 1 or 2 slices. Then we measured the power spectrum from the modified
simulations. The blue and black points show the power spectra with and without the modifications,
where the error bars are the scatters at each k bin estimated from 3 realizations. The figure shows
that the BAO peak locations are not changed, but modify the power spectrum amplitudes by a
factor of 1 + 0.052.

The PFS cosmology survey rests on the use of [O II] emission-line galaxies, detected with S/N’s
greater than a given threshold (S/N = 8.5 assumed throughout this document). If observational
systematic errors affect a selection of [O II] emitters, i.e. selection bias, it causes an apparent
density fluctuations in the observed galaxy distribution, which needs to be carefully monitored
and calibrated. The systematic effects we need to care about are, e.g.,

• The fiber offset from the true centroid; e.g. if there is a systematic error in the astrometric
solution and/or an imperfect fiber positioning, the fiber offset arises.

• Variation in the throughput over the field angle (e.g. due to the vignetting).

• A misestimation in the seeing FWHM. The PSF misestimation causes a biased estimate of
the intrinsic [O II] flux.

• A flux miscalibration such as an error in the magnitude zero point.

In Fig. 2.10, we use our own exposure time calculator to estimate how the systematic errors men-
tioned above change the number of detected [O II] emitters in each redshift bin, where we em-
ployed the same threshold S/N = 8.5. Here we consider some typical values for each of the

Ripples, Ripples, Ripples

ELGs [OII] > 8.5σ, 15 min exposure
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Figure 2.7: Expected accuracy of reconstructing the dark energy density parameter at each red-
shift, ⌦de(z) ⌘ ⇢de(z)/[3H2(z)/8⇡G] from the BAO-measured DA(z) and H(z) in Fig. 2.6. Here we
considered the cosmological constant (⇢de(z) = ⇢de0 =constant) and the flat universe (⌦K = 0) as
the fiducial model. Adding the PFS BAO constraints to the SDSS and BOSS constraints enables
reconstruction of the dark energy density to z ' 2, and also significantly improves the precision at
low redshifts, as the comoving distance at the high redshift arises from an integration of H(z). he
solid curve shows the energy density parameter for the fiducial ⇤CDM model, while the dashed
curve shows the redshift evolution for an early dark energy model in Droan & Robbers (2006),
where we employed w0 = �1 and ⌦e

d = 0.05 for the model parameters (see text for details).

by inverting the sub-matrix of the inverse of the full BAO matrix, [F �1]↵�, containing only the
parts of the geometrical parameters, pa = {⌦m0,⌦m0h2,DA(zi),H(zi)}. Hence the derived con-
straints on p̃a0 include marginalization over other parameters such as the galaxy bias and the �
parameters. Table 2.3 shows the expected accuracies of the dark energy parameters and the cur-
vature parameter for the PFS survey. Here wpivot is the dark energy equation state at the “pivot”
redshift, at which the dark energy equation of state is best constrained for a given survey. The
quantity FoMde is the dark energy figure-of-merit defined in the Dark Energy Task Force Re-
port (Albrecht et al. 2006), which quantifies the ability of a given survey for constraining both
w0 and wa; FoMde ⌘ 1/[�(wpivot)�(wa)], which is proportional to the area of the marginalized
constraint ellipse in a sub-space of (w0,wa). Table 2.3 clearly shows that the PFS BAO can sig-
nificantly tighten the parameter constraints over the SDSS and BOSS surveys. Most interest-
ingly, the PFS has the potential to constrain the curvature parameter to a precision of 0.3%. If
we can detect a non-zero curvature, this would represent a fundamental discovery giving a crit-
ical constraint on the physics of the early universe, for example insight into different inflation
scenarios (Efstathiou 2003; Contaldi et al. 2003; Freivogel et al. 2006; Kleban & Schillo 2012;
Guth & Nomura 2012).

ΛCDM

Droan & Robbers



�8542.3. PFS COSMOLOGY SURVEY 33

Figure 2.8: Marginalized errors of reconstructing the growth rate, fg ⌘ d ln D/ ln a, in each redshift slice.

in each redshift slice via the RSD measurements. The PFS survey can constrain the growth rate
in each redshift to a 6% accuracy. In particular, such accurate constraints on the growth rate at
redshift beyond z = 1, where the cosmic expansion is back to the decelerating expansion, is very
important for testing modified gravity scenario. We can address whether or not gravity at the high
redshift becomes consistent with GR, together with the constraints on the expansion history. Thus
combining the PFS with other low-z surveys will allow a more stringent test of gravity over wide
ranges of redshift and length scales.

Other constraints
With the growth rate constraints and the information on the shape of the galaxy power spectrum,
we can also constrain other intriguing parameters such as the sum of neutrino mass (m⌫,tot) and
the primordial non-Gaussianity ( fNL). The primordial non-Gaussianity induces a characteristic
scale-dependent biasing effect on the galaxy distribution at very large scales (Dalal et al. 2008)
that are well in the linear regime and cannot be explained by other nonlinearity effects. Hence we
can use the largest-scale signal of galaxy clustering to explore the signature of the primordial non-
Gaussianity. Table 2.3 shows the expected accuracy of constraining fNL to an accuracy of �( fNL) '
11. PFS does not have a comparable power of constraining fNL to the constraints expected from
other probes such as the Planck experiment ( fNL ⇠ 5) due to the relatively small area coverage,
which limits the access to the largest-length scales.

On the other hands, the neutrinos of finite mass scale, as found by the terrestrial experi-
ments, cause a suppression in the galaxy clustering power on scales smaller than the neutrino
free-streaming scale, which imprints a characteristic scale-dependent effect on the galaxy power
spectrum (Takada et al. 2006). The amount of the suppression effect scales with the sum of neu-
trino mass as �Pg/Pg ' �8⌦⌫0/⌦m0 ' �8m⌫,tot/(94.1 eV⌦m0h2); the neutrinos of m⌫,tot = 0.1 eV,
close to the lower bound of the inverted neutrino mass hierarchy, leads to about 6% suppression
in the galaxy power spectrum compared to the case without the massive neutrinos. Hence, we
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Figure 4.2: Left: Depth versus redshift for existing and planned large redshift surveys. The symbol size
represents survey area. Each survey is placed roughly at the median redshift of the survey. PFS occupies a
unique position in this parameter space, as it is the only large survey capable of filling in the redshift regime
between 1.5 < z < 2. Right: This figure shows the number of spectroscopic pairs separated by less than
one arcminute. It highlights the power of PFS to (i) study small-scale clustering on the group scale and (ii)
probe the gas distribution in galaxy halos using absorption lines probes. Fiber-based spectroscopic surveys
doing only one pass over the sky suffer from the fiber collision limitation and cannot access small-scale
pairs.

stellar mass function and star formation history of galaxies as a function of color and galaxy
density at 1 < z < 2.

2. The Growth of Structure: We will measure the spatial correlation functions of galaxies
on both small and large scales (i.e., one and two halo terms; Fig. 4.2 right). Spectroscopic
redshifts give significantly better clustering measurements than photometric redshifts. On
large scales, we will measure the galaxy bias as a function of galaxy properties and redshift,
which is a key constraint on galaxy formation models. On smaller scales, we can study the
properties of galaxies in cluster and group environments, and see how galaxy formation is
related to environment and dark matter halo mass. We will tie the evolution in stellar mass to
that of the underlying dark halos from 1 < z < 7. We will also study the cluster/proto-cluster
population as a function of redshift. Over the survey volume, we expect to find ⇠65 massive
clusters (M > 1014 M�) at 1 < z < 2 (Figure 4.1), an unprecedented sample when compared
to the very few found in current deep pencil-beam surveys. At 2 . z . 6 we expect to find
⇠ 100 proto-clusters using LBGs and LAEs as tracers.

3. Gas Inflow and Outflow: We will trace the interplay between gas accretion and feedback
using both direct and indirect means. We will trace the mass-metallicity relation using
strong emission-line diagnostics for z < 1.6 and with UV interstellar absorption lines at
z > 2 by stacking spectra (Ando et al. 2007). We will search for outflow or inflow using
interstellar absorption lines such as Mg II, S IV, C IV, etc in stacked spectra. We will
also stack background galaxy and quasar spectra as a function of impact parameter around
foreground galaxies to map out the gas kinematics in the outer halos of star forming galaxies
(e.g., Steidel et al. 2010; Tumlinson et al. 2011; Bordoloi et al. 2011). With this technique
we will search for the signature of cold-gas inflow and test the cold accretion hypothesis
with a sample ⇠20 times larger than the one of Steidel et al.

galaxy evolution

with coverage from 380–1260nm,!
unbiased survey with no “redshift desert”
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FIG. 17.— Left: Star formation rate per comoving volume as a function of redshift (Hopkins & Beacom 2006). Different symbols show
measurements made at different wavelengths. The solid lines show parametric fits to the data (refer to Hopkins & Beacom for details). The PFS
redshift ranges are shown as black dashed vertical lines. Right: Expected number of clusters withM > 5× 1013 M⊙ per deg2 survey volume
with the stated depths. The estimates use the “lightcone” simulations of Sehgal et al. (2010). and populate halos with galaxies using the halo
occupation distribution model from Tinker & Wetzel (2010).

ranging from 105 − 1010 M⊙. The evolution of black hole
growth with cosmic time resembles that of the star-formation
activity. The steep drop-off of both at z < 2 points to a link
between supermassive black hole growth and galaxy forma-
tion. Moreover, the masses of SMBHs are correlated with
those of their host bulges in the present-day Universe, sug-
gesting that they evolved together (e.g., Kormendy & Rich-
stone 1995; Magorrian et al. 1998; Marconi & Hunt 2003). A
full understanding of galaxy evolution requires study of the
accretion history of SMBHs. PFS will target color-selected
quasars∼ three magnitudes fainter than the SDSS to a redshift
of z = 7 and will study their clustering properties, the evolu-
tion of BH mass density with cosmic time, and the evolution
in the metal content and ionization state of the inter-galactic
medium.
The wide wavelength coverage and large area of the PFS

will enable an enormously powerful galaxy redshift survey.
We envision a survey of 16 deg2 over ∼ 100 nights. At
1 < z < 2, we will survey to JAB ≈ 23.4 mag with 3 hour
exposures, yielding a fair sample with stellar masses above
∼ 1010 M⊙ at z ≈ 2. To cover comparable objects at lower
redshifts, we will also survey z < 1 targets down to J = 21
mag with 2 hour integrations. We will measure redshifts for
∼ half a million galaxies allowing us to determine luminos-
ity/mass functions that are not cosmic-variance limited. At
2 ! z ! 7 we will target bright, star-forming galaxies. We
expect to observe 15,000 LBGs and LAEs, more than an order
of magnitude more than existing spectroscopic samples. We
will focus on three imaging surveys for target selection, based
on the Hyper-Suprime Cam (HSC) imaging survey. The sur-
vey will have three components; we focus on the HSC Deep
layer, which will reach a 5 σ depth of i < 27.2 mag. We will
target 16 deg2 of the HSC Deep survey that contains existing
deep NIR imaging down to JAB = 23.4mag. HSC Ultradeep
covers 3.5 deg2 and we will perform deeper spectroscopy in
this area. Finally, HSC Wide covers 1400 deg2, over which
we will search for rare high-redshift quasars (z > 3).
The scientific objectives of the PFS Galaxy Evolution Sur-

vey are as follows:

1. The Build-up of Stellar Mass Density: We will derive
stellar masses and star formation rates from the spec-
tra (Fig. 19). It has been shown that stellar population
modeling works well even at our low resolution (e.g.,
Kriek et al. 2006, 2011; Panter et al. 2007; Chen et al.
2012). We will measure star formation rates both from
the modeling and from [O II] emission out to z ∼ 2.5,
which we will calibrate using Hα at low redshift. At
yet higher redshift, we can use the UV continuum as
a star formation rate indicator (Fig. 19). We will trace
the stellar mass function and star formation history of
galaxies as a function of color and galaxy density at
1 < z < 2.

2. The Growth of Structure: We will measure the spa-
tial correlation functions of galaxies on both small and
large scales (i.e., one and two halo terms; Fig. 18
right). Spectroscopic redshifts give significantly better
clustering measurements than do photometric redshifts.
On large scales, we will measure the galaxy bias as a
function of galaxy properties and redshift, which is a
key constraint on galaxy formation models. On smaller
scales, we can study the properties of galaxies in cluster
and group environments, and see how galaxy formation
is related to environment and dark matter halo mass.
We will tie the evolution in stellar mass to that of the
underlying dark halos from 1 < z < 7. We will also
study the cluster/proto-cluster population as a function
of redshift. Over the survey volume, we expect to find
∼ 325 clusters with massM > 5× 1013 M⊙ (and∼65
massive clusters with M > 1014 M⊙) at 1 < z < 2
(Fig. 17), an unprecedented sample when compared to
the very few found in current deep pencil-beam sur-
veys. At 2 ! z ! 6 we expect to find ∼ 100 proto-
clusters using LBGs and LAEs as tracers.

3. Gas Inflow and Outflow:We will trace the interplay be-
tween gas accretion and feedback using both direct and
indirect means. We will trace the mass-metallicity rela-
tion using strong emission-line diagnostics for z < 1.6
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with coverage from 380–1260nm,!
unbiased survey with no “redshift desert”

galaxy archaeology

3.2. KEY SCIENCE GOALS 37

Figure 3.2: Left: Model distribution of tidal streams in spatial coordinates where the different
colors represent different satellites (from Freeman & Bland-Hawthorn 2002). These stream-like
features disappear after several dynamical times. Right: Model distribution of nearby stars in the
integrals of motion space, i.e., E vs. Lz and E vs. L, based on numerical simulations of falling
satellites into the Milky Way (from Helmi & Zeeuw 2000). The different colors represent different
satellites. Shown is the final distribution of stars after 12 Gyr within about 6 kpc from the Sun,
after convolution with the errors expected for Gaia. It is clear that each of progenitor galaxies can
be traced in the current phase space distribution.

galactic and sub-galactic scales. Thus, to assess what CDM models predict, it is essential to derive
the spatial distribution of dark matter halos in the Galaxy and Andromeda through their dynamical
effects on visible stellar systems. Stars are indeed ideal tracers of a background gravitational field
dominated by dark matter.

To make progress we propose to obtain spectra for about a million stars in the Milky Way
and Andromeda, within the framework of a dedicated PFS Subaru Strategic Program. These
spectroscopic studies will be in perfect synergy with the upcoming astrometric satellite, Gaia,
providing very precise measurements of distances and proper motions for Galactic stars, and next-
generation prime focus camera, Subaru/Hyper Suprime-Cam (HSC), providing a large imaging
data set, through its large field of view. Therefore, PFS, in combination with Gaia and HSC, will
provide us with unique data in the area of near-field cosmology. With these data we hope to gain an
ultimate understanding of the nature of dark matter and the associated galaxy formation processes.

The main issues we address in our dedicated Galactic Archaeology (GA) survey are summa-
rized as follows.
1. What is the merging history of the Milky Way?

- addressing the role and nature of dark matter
2. What is the formation of old Galactic components (thick disk and stellar halo)?

- addressing baryonic physics in the hierarchical clustering of CDM
3. The formation of M31: what is different from that of the Milky Way?

- addressing the difference of merging and baryonic processes in small galaxy scales

Our GA survey addresses similarly ‘big-picture’ science questions as the PFS cosmology and
galaxy formation surveys discussed in other Chapters. Indeed, our survey adopts a complementary
approach: tracing the detailed evolution of an individual galaxy as opposed to the statistical study
of millions of galaxies at different epochs.

The summary of our GA survey plan is shown in Table 3.1 and details are described in the
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3.3. LOW-RESOLUTION PFS SURVEYS FOR GALACTIC ARCHAEOLOGY 41

Figure 3.4: Proposed PFS pointings along the minor axis of M31’s halo (⇠ 50 pointings), in which
several stellar streams are included. The map of RGB stars is taken from (Richardson et al. 2011).

thin disk at l = 180� including Monoceros stream (which is a Northern hemisphere target, i.e.,
no competition from VLT), yet unidentified kinematically cold substructures at high Galactic lat-
itudes at b ⇠ 60�, interface of halo/disk/bulge components and more. Subaru/PFS will offer us
important capabilities of measuring detailed velocity distributions of these faint parts of the Galac-
tic components. By the time of the survey, the proper motion will be available from ground-based
imaging survey, such as PanSTARRS. In addition, the photometric distance can be obtained from
the stellar parameters measured from the spectra. Therefore, we can derive the six dimensional
phase space distribution at distances beyond those reached by Gaia.

We propose to observe the total area of ⇠ 390 sq. degree (⇠ 300 pointings) covering all the
survey fields for both the Gaia and faint samples. Survey fields include stripes along constant
Galactic latitudes at around b = 30� with 0� < l < 270� (208 pointings) and b = �30� with
60� < l < 120� (46 pointings), high latitude fields (b = 60�) at l = 90� (10 pointings), the outer-
disk fields at l = 180� (12 pointngs) and the Field of Streams (24 pointings). We require ⇠ 75
nights provided that 2 hr of exposure is needed to obtain S/N⇠ 30 spectra for stars with V = 21.5
mag and 4 fields per night are observed. We would split up these exposures depending on the
magnitude ranges of stars, although the details are yet to be determined.. For the part of observing
bright stars with V < 20, we can utilize grey time.

2. The M31 halo survey:
Primary targets in this survey are bright red giants with 21.5 < V < 22.5 mag, i.e., stars

around the tip of RGB with I-magnitude of 20.5, along the minor axis of the M31 halo (Figure
3.4). Pre-imaging observations and selection of the candidate halo giants will be provided by HSC
imaging survey, where a newly developed narrow-band filter (NB515 filter with CW = 5145 Å and
BW = 80 Å) will be used to remove the Galactic dwarfs in the foreground as much as possible.
The reason for the selection of this survey area along the minor axis is that (1) the area along the

galaxy archaeology

43 
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Timeline

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

imaging
DES
HSC

spectroscopy
SDSS/BOSS

PFS

LSST

Euclid

WFIRST?

Olympic Tokyo

SuMIRe 
all the more important
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The$Tripod$of$Subaru

HSC

PFSGLAO$(w$Gemini?)

Arimoto:&Subaru&Users&Mee4ng&Jan&15,&2013

in&TMT&era

http://sumire.ipmu.jp/pfs/intro.html

PFS Rocks!
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“Progress of code development: 2nd-order Einstein-

Boltzmann solver for CMB anisotropy”  

Takashi Hiramatsu

[JGRG24(2014)111402] 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Progress of code development

2nd-order Einstein-Boltzmann solver 
for CMB anisotropy

Yukawa Institute for Theoretical Physics (YITP)
Kyoto University

Takashi Hiramatsu

Collaboration with Ryo Saito (APC), Atsushi Naruko (TITech), Misao Sasaki (YITP)

10-14 Nov 2014 @ Kavli IPMU

2/18

Takashi Hiramatsu
Introduction : Non-Gaussianity

Focus on the statistical property of fluctuations...

Non-gaussianity can distinguish between inlation models
(slow-roll, multi-field, DBI inflation, etc.)

To evaluate the total amount of          from non-linearity is an important task.

... parameterised by 

3 Boltzmann solvers for 2nd-order perturbations are available, but
the resultant          is not converged... Do it ourselves !

primordial generated by
non-linearity

?
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Takashi Hiramatsu
Introduction : current status of my code

1st-order perturbations 2nd-order perturbations

Implementing basic equations

History of electron density

line-of-sight integral
+angular power spectrum

Qualitative check

Quantitative check with CAMB

Implementing basic equations 1

2nd-order line-of-sight formula

Bispectrum estimator

1st-order

Speed-up + Optimisation

2nd-order

Implementing basic equations 2

98%

35%

R.Saito, Naruko, Hiramatsu, Sasaki, JCAP10(2014)051 
                                                              [arXiv:1409.2464]

NOW

4/18

Takashi Hiramatsu
1st-order perturbation equations

CDM, baryon

Photon temperature

Gravity
(conformal Newtonian gauge)

Photon polarisation Massless neutrino temperature
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Takashi Hiramatsu
Line-of-sight integral

Up to last-scattering surface,

Large Boltzmann hierarchy, say               , is required, but it is too hard to calculate... 

After LSS, we use the integral representation, line-of-sight formula.

Seljak, Zaldarriaga, APJ 469 (1996) 437

So, to guarantee the accuracy of  

superhorizon scale

tight-coupling

6/18

Takashi Hiramatsu
Line-of-sight formula

visibility function

optically thick

suppressing early-time
contributions

optical depth

directly solving

LoS integral

・
・
・
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Takashi Hiramatsu
Initial conditions

Separating primordial (quantum) curvature perturbation, we focus on 
the transfer functions,

massless
neutrino fraction :

Adiabatic initial condition

quantum

classical
le

n
g

th

time

Deep in radiation dominant epoch where all modes are 
larger than horizon scale. We set

unchanged potential,
superhorizon,

similarly fluctuated

radiation dominant

8/18

Takashi Hiramatsu

Angular power spectrum

Angular power spectrum (1st-order)

PRELIMINARY

CosmoLib : Huang, JCAP 1206 (2012) 012

CMBFAST : Seljak, Zaldarriaga, APJ469 (1996) 437

CAMB : Lewis, Challinor, APJ538 (2000) 473

CLASS II : Blas, Lesgourgues, Tram, JCAP 1107 (2011) 034

existing codes

w/o reionisation w/ reionisation

-18%-1.7%

-0.1%

-2.8%

-1.6%

-4.2%
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Takashi Hiramatsu
Go to 2nd-order

Einstein-Boltzmann equations for 2nd-order quantities sourced by [1st-order]2 

Line-of-sight formula sourced by [1st-order]2

CDM+Baryon+Gravity have been implemented,
but Baryon-Photon/Gravity-Photon couplings are not considered yet.

2nd-order contributions appear in...

CMBquick
SONG 
CosmoLib2nd CosmoLib2nd : Huang, Vernizzi, arXiv:1212.3573

CMBquick : Creminelli, Pitrou, Vernizzi, arXiv:1109.1822

SONG : Pettinari, arXiv:1405.2280 (thesis)

Formulations of “curve”-of-sight have been completed by ...

(cf. Fidler, Koyama, Pettinari, arXiv:1409.2461)

R.Saito, Naruko, Hiramatsu, Sasaki, JCAP10(2014)051 [arXiv:1409.2464]

...skip this topic in today's talk...

10/18

Takashi Hiramatsu
2nd-order line(curve)-of-sight formula

Source x ISW
Source x Lensing
Source x Time-delay
Source x Deflection

ISW x ISW

ISW x Time-delay
ISW x Lensing

We found 7 combinations in this formula,

[Fluc. on LSS] x [gravitational]

[gravitational] x [gravitational]

TD

L

D

R.Saito, Naruko, Hiramatsu, Sasaki, JCAP10(2014)051 [arXiv:1409.2464]

ISW
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Takashi Hiramatsu
2nd-order line(curve)-of-sight formula

Source x Lensing

Bispectrum

Spergel, Goldberg, PRD59(1999)103001 [astro-ph/9811252]

All 7 combinations have been implemented in my code.

Spin-weighted Gaunt integral

Goldberg, Spergel, PRD59(1999)103002 [astro-ph/9811251]

Seljak, Zaldarriaga, PRD60(1999)043504 [astro-ph/9811123]

Planck collaboration,  A&A 571(2014) A24 [arXiv:1303.5084]

12/18

Takashi Hiramatsu
Shape of bispectra

Source
X

Deflection

Source
X

Time-delay

Source
X

ISW

ISW
X

Time-delay

ISW
X

Lensing

ISW
X

ISW

Source
X

Lensing
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Takashi Hiramatsu
Bispectrum templates

Amplitude and shape of bispectrum

Amplitude parametrised by 

Bispectrum

Bartolo et al., Phys.Rep.402(2004)103 [arXiv:astro-ph/0406398]

Planck collaboration,  A&A 571(2014) A24 [arXiv:1303.5084]

local-type

equilateral-type

orthogonal-type

+ a variety of non-separable types

14/18

Takashi Hiramatsu
Fitting bispectrum to templates

Using the least-square method, we determine the fitting parameter          so that

Komatsu, Spergel, PRD63 (2001) 063002

is minimised.

local-type

equilateral-type

orthogonal-type
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Takashi Hiramatsu

Local Equilateral Orthogonal

 Source x ISW -0.082 1.7 -0.37

Source x Lensing 3.4 220 -170

Source x Time-delay 21 -49 79

Source x Deflection 0.019 -3.2 2.0

ISW x ISW 0.000030 0.68 0.20

ISW x Lensing 0.029 3.5 -2.2

ISW x Time-delay -0.052 -0.43 -0.043

PRELIMINARY

“Source x Time-delay” seems to be larger than expected. Many bugs still stay
in my code ... ?

Here is the frontier of my code development..

Planck's analysis : 

(The following values would chang through bug-fixing)

16/18

Takashi Hiramatsu
Summary : overview of my code

- Full scratch development, completely independent of existing codes

- Time evolution : 1-stage 2nd-order implicit Runge-Kutta (Gauss-Legendre) method
     (implementing up to 4th-order schemes)

- Line-of-sight Integration : Trapezoidal/Simpson's rule

- Parallelised by OpenMP

- C++

- Ready for implementing a variety of recombination/reionisation simulators

- Interpolation scheme : Polynomial approximation (up to           )

- Fast evaluation of spherical Bessel functions, and (specific) Gaunt integrals
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Takashi Hiramatsu

Summary : current status

- 1st-order looks fine ! (except for reionisation)

- We implemented 2nd-order Boltzmann equations only for gravity and matter.

  (skipped today)

  

- We implemented “curve”-of-sight formulas (2nd-order line-of-sight)

  for scalar contributions of temperature fluctuations.

- Bispectrum estimator has been implemented, and preliminary results

  are obtained. But, many bugs still stay in my code ... ?

18/18

Takashi Hiramatsu
Summary : to-do and application ?

- Check the reionisation models used in Boltzmann solver

- Implement pure 2nd-order Boltzmann equations for radiation

- Bug-fixing of bispectrum estimator

- 2nd-order gravitational waves, magnetic field from [1st-order]2

- curve-of-sight for polarisation

- curve-of-sight for [Scalar] x [Tensor] & [Tensor] x [Tensor]

- y-distortion to photon's distribution function ?

To-do

Applications ?
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“Studying the inflationary Universe with gravitational 

waves”  

Tomo Takahashi

[JGRG24(2014)111403] 



�872

Studying the inflationary Universe 
with gravitational waves

JGRG24, Kavli IPMU

 14 November, 2014 

Tomo Takahashi
(Saga University)

Ref: Ryusuke Jinno, Takeo Moroi, TT 1406.1666,  JCAP

What we want to know about 
the inflationary Universe

What is the inflaton?
- Shape of the potential?   
- Structure of the kinetic term?  
- Number of fields? 

What is the origin of density fluctuations?
- Inflaton?  
- Some other field (e.g., curvaton)? 

What is the thermal history after inflation?
- Reheating temperature?  
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Probes of the inflationary Universe

Primordial scalar fluctuations

-- Power spectrum (amplitude, scale-dependence)

-- Non-Gaussianity (bispectrum, trispectrum)

Primordial tensor fluctuations (Gravitational waves)

ds2 = �dt2 + a(t)2 [1 + hij ] dxidxj

hij =
�

8�G
�

A=+,�

�
d3k eik·x hk(t) eA

ij(n)

�hk1hk2� = (2�)3�(�k1 + �k2)PT (k1)

Probes of the inflationary Universe

Primordial scalar fluctuations

-- Power spectrum (amplitude, scale-dependence)

-- Non-Gaussianity (bispectrum, trispectrum)

Primordial tensor fluctuations (Gravitational waves)

-- Tensor power spectrum (amplitude, scale-dependence)

PT (k) = PT (kref)
�

k

kref

�nT
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Tensor power spectrum

BICEP2:

[Ade et al, BICEP2 1403.3985]

[Planck,  Ade et al.1303.5082]

r < 0.11 (95 % C.L.)

r = 0.20+0.07
�0.05 (68% C.L.)

Tensor-to-scalar ratio

Planck:

PT (k) = PT (kref)
�

k

kref

�nT

r � PT

P�

Tensor power spectrum

PT (k) = PT (kref)
�

k

kref

�nT

BICEP2 alone:

nT = 1.36± 0.83 (68% C.L.)

nT = 1.67± 0.53 (68% C.L.)
[Gerbino et al. 1403.5732]

BICEP2 +TT prior:

Tensor spectral index
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Observables of gravitational waves

Amplitude
probes the energy scale of inflation

Spectral index nT

probes the dynamics of inflation

checks the consistency relation

Consistency test of inflation

nT = �2�

r = 16�

-0.05

-0.04

-0.03

-0.02

-0.01

 0

 0.01

 0  0.01  0.02  0.03  0.04  0.05

n T

r

nT = �r/8

nT = �2�

r =
16�

1 + R

nT = �(1 + R)
r

8

nT = �r

8
R = 1

R = 5

Tensor scale-dependence should give important 
test of the inflationary Universe

Standard inflation model 

Curvaton model (inflaton+curvaton)

R �
P(�)

�

P(�)
�

R→0: (pure) inflaton case 

R→∞: (pure) curvaton case 
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Observables of gravitational waves

probes the energy scale of inflation

Spectral index nT

probes the dynamics of inflation

Reheating temperature TR

Amplitude

checks the consistency relation

10-18

10-16

10-14

10-12

10-10

10-8

10-6

10-4

10-20 10-15 10-10 10-5 100 105

1
G

W

Frequency (Hz)

••

•

GW spectrum:

standard inflation (nT=-2ε)

�GW(k) � 1
�crit

d�GW

d ln k

(f = k/2�)

�GW =
1

64�Ga2

�
(��hij)

2 + (�hij)
2
�

h��
ij + 2aHh�

ij ��2hij = 0

Equation of motion:
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GW spectrum and thermal history

Taking into account the thermal history (e.g., reheating 
after inflation), GW spectrum changes.

�

�r � a�4

� (Inflaton)

time (scale factor)
Inflation MD RD

�� � a�3 �GW � k�2

�GW � const.

10-30

10-25

10-20

10-15

10-10

10-5

10-20 10-15 10-10 10-5 100 105

1
G

W

Frequency (Hz)

••
•

GW spectrum and thermal history

Taking into account the thermal history (e.g., reheating 
after inflation), GW spectrum changes.

standard inflation (nT=-2ε)

(TR=10^8 GeV)
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We consider here future space-based interferometer 
direct detection experiments such as DECIGO.

[http://www.personal.soton.ac.uk/nils/rsweb/thefacts.htm]

How can we observe GWs?

Future space-based exp. are sensitive at f ~ 1 Hz. 

We may be able to probe nT very precisely.

We may be able to probe TR.

Probing inflation with future direct 
detection of GWs

Future space-based exp. are sensitive at f ~ 1 Hz. 
[Jinno, Moroi, TT 1406.1666]

T
R

=
10 7G

eV
10 9G

eV
10 9G

eV

BBO
std

BBO
grandultD

ECIG
O

(Fiducial model: quadratic chaotic inflation)
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Expected constraints
[Jinno, Moroi, TT 1406.1666]

Fiducial model: TR = 10^7 GeV

(nT fixed) (nT marginalized) (ΩIGW marginalized)

(Fiducial model: quadratic chaotic inflation)

Figure 7: The solid lines are the contours of δχ2 = 5.99 with the fiducial values of TR = 107 GeV.
The noise function of BBO-std is adopted with Tobs = 1, 3, and 10 yr (from outside to inside),
and fmin = 0.1 (left panels with blue lines) and 0.3 Hz (right panels with red lines). Pink regions
are the results in the case where TR is also included in the Fisher analysis. Top: case with nT

being fixed to be the fiducial value. Middle: case with nT being marginalized. The dashed line
corresponds to the contour on which the best-fit value of nT becomes 0. Bottom: case with Ω̄IGW

being marginalized. The dashed line corresponds to the contour on which the best-fit value of Ω̄IGW

becomes 5 × 10−16.
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The noise function of BBO-std is adopted with Tobs = 1, 3, and 10 yr (from outside to inside),
and fmin = 0.1 (left panels with blue lines) and 0.3 Hz (right panels with red lines). Pink regions
are the results in the case where TR is also included in the Fisher analysis. Top: case with nT

being fixed to be the fiducial value. Middle: case with nT being marginalized. The dashed line
corresponds to the contour on which the best-fit value of nT becomes 0. Bottom: case with Ω̄IGW

being marginalized. The dashed line corresponds to the contour on which the best-fit value of Ω̄IGW

becomes 5 × 10−16.

20

(BBOstd is assumed.)

(See also Kuroyanagi, Nakayama, Yokoyama 1410.6618)

(Blue: Δχ^2=5.99, Tobs =1,3,10 yrs)

Expected constraints from ultDECIGO

Fiducial model: TR = 10^7 GeV

Figure 9: Same as Fig. 7, except that the noise function for ult-DECIGO is used.

22

Figure 9: Same as Fig. 7, except that the noise function for ult-DECIGO is used.

22

Figure 9: Same as Fig. 7, except that the noise function for ult-DECIGO is used.

22

(nT fixed) (nT marginalized) (ΩIGW marginalized)

(Fiducial model: quadratic chaotic inflation)
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Expected constraints

Fiducial model: TR = 10^9 GeV

(nT fixed) (nT marginalized) (ΩIGW marginalized)

(Fiducial model: quadratic chaotic inflation)

Figure 10: Same as Fig. 7, except for TR = 109GeV.

23

Figure 10: Same as Fig. 7, except for TR = 109GeV.

23

Figure 10: Same as Fig. 7, except for TR = 109GeV.

23

(BBOstd is assumed.)

Expected constraints from ultDECIGO

Fiducial model: TR = 10^9 GeV

(nT fixed) (nT marginalized) (ΩIGW marginalized)

Figure 12: Same as Fig. 7, except for TR = 109GeV and that the noise function for ult-DECIGO
is used.

25

Figure 12: Same as Fig. 7, except for TR = 109GeV and that the noise function for ult-DECIGO
is used.

25

Figure 12: Same as Fig. 7, except for TR = 109GeV and that the noise function for ult-DECIGO
is used.

25

(Fiducial model: quadratic chaotic inflation)
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Reheating temperature

(nT fixed) (-1 < nT < 0)(nT < 0)

We may be able to obtain upper/lower bound for TR

(Fiducial model: quadratic chaotic inflation)

Expected sensitivity: Amp. and nT 

(Fiducial model: quadratic chaotic inflation)

BBOstd ultDECIGO

(We have chosen the pivot scale such that correlation between Omega_GW and nT vanishes.)

Figure 3: 95% C.L. expected constraints on the log10 Ω̄IGW vs. nT plane for BBO-std (top), BBO-
grand (middle) and ult-DECIGO (bottom). In these figures, log10 Ω̄IGW and nT are varied while
αT is fixed to the fiducial value. The minimum frequency fmin is taken to be 0.1 Hz (left panels
with blue contours) and 0.3 Hz (right panels with red contours). The solid (dashed, dotted) line
corresponds to Tobs =1 yr, (3 yr, 10 yr).

13

Figure 3: 95% C.L. expected constraints on the log10 Ω̄IGW vs. nT plane for BBO-std (top), BBO-
grand (middle) and ult-DECIGO (bottom). In these figures, log10 Ω̄IGW and nT are varied while
αT is fixed to the fiducial value. The minimum frequency fmin is taken to be 0.1 Hz (left panels
with blue contours) and 0.3 Hz (right panels with red contours). The solid (dashed, dotted) line
corresponds to Tobs =1 yr, (3 yr, 10 yr).

13

1 yr

3 yrs

10 yrs



�882

Consistency test of inflation: 
yet another test?

nT = �2�

r = 16�
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nT = �r/8
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nT = �(1 + R)
r
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nT = �r

8
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R = 5

Tensor scale-dependence should give important 
test of the inflationary Universe

Standard inflation model 

Curvaton model

R �
P(�)

�

P(�)
�

R→0: (pure) inflaton case 

R→∞: (pure) curvaton case 

Yet another consistency test?
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If three lines cross at one point, we can check the 
consistency of the predictions.

nT = �2�

ns = 1� 6� + 2�
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Expected sensitivity: nT and αT 

(Fiducial model: quadratic chaotic inflation)

BBOstd ultDECIGO
1 yr

3 yrs

10 yrs

Figure 4: 95% C.L. expected constraints on the nT vs. αT plane for BBO-std (top), BBO-grand
(middle) and ult-DECIGO (bottom). In these figures, log10 Ω̄IGW is marginalized. The minimum
frequency fmin is taken to be 0.1 Hz (left panels with blue contours) and 0.3 Hz (right panels with
red contours). The solid (dashed, dotted) line corresponds to Tobs =1 yr, (3 yr, 10 yr).
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CMB+spaced-based GW exp.?

CMB and future space-based GW scales are so 
different. Need some care when we use both CMB 
and direct detection GW obs.

[Kuroyanagi, TT 2011]
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Summary
Gravitational waves would be very useful to probe the 
inflationary Universe.

(If confirmed to be sizable amplitude in any observations.)

Probing the tensor spectral index would give crucial 
consistency test of the inflationary Universe

Future direct interferometer experiments may probe 
the rehearing temperature.

Even higher order scale-dependence of GW may be probed 
and it would give an important test of the inflationary 
prediction.
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“Instabilities of extremal black holes in higher dimensions”  

Akihiro Ishibashi

[JGRG24(2014)111404] 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Instabilities of extremal black holes  
in higher dimensions 

Akihiro Ishibashi  
(Kinki University) 

JGRG-14 Nov. 2014 at IPMU  
based on  arXiv:1408.0801 w/ S. Hollands  

 

• No uniquness in D>4 GR  
  
• Classification of them  
     is yet under way 
 

BH Classification problem in Higher Dimensions 

To classify            need to study their stability 

Instabilities are signals of bifurcation to something  
different, implying more variety of solutions.                       
 

  



�887

Non-rotating BHs  
       Stable 

Ｓ ： Horizon area 

Ｊ ： Angular momentum 

We need criteria for the onset  
of instabilities of rotating - BHs 

Phase space of Higher Dimensional BHs 

Bifurcation: 

  

 Instability  New branch of solutions 
 

Dias  et al  09 

However, the phase space is so large… 

Start wih classifying Extremal black holes 

• Limit of zero Hawking temperature 
 
 

• Play an important role in various contexts  
                      e.g. Supergravity 
                             Entropy counting  
                             Kerr/CFT 

 
• Boundary of the space of all BHs 

Classify “boundaries of the solution space” 
from the stability view point 
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Stability analyses 

• Linear perturbation analysis 
• Nice to have master equations,  
                       e.g.,   Teukolsky equations in 4D 

 
• Unfortunately there is no Teukolsky type 

master equation for higher dimensional 
(extremal/non-extremal) black holes  

 To classify extremal black holes … 
     

• Helpful to study “near-horizon geometries” 
    which  
    *  arise as a scaling limit of extremal black hole 
    *  satisfy the same dynamics   
    *  possess more symmetries  
    *  admit Teukolsky type master equations 
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Near Horizon Geometry (NHG)  

• Diffeomorphism 
 
 

• Scalimg limit 
                          become functions of  

Near-Horizon scaling   

Near-Horizon Geometry 
    

A horizon neighborhood    
   of Extreme black hole 

Carter 72 

Scaling limit 
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When axi-symmetric perturbations on the NHG violate  
          -BF-bound on the NHG, then the original  
extremal BH is unstable 

Durkee & Reall conjectured that 

We show this conjecture by using  
              ・  Hertz-potential  
              ・  Canonical energy method  
              ・  Initial data correction  

… based on numerical results:  

Purpose 

Durkee-Reall  11 

Strategy for proving DR Conjecture 
NHG 

Master Equations 
         available 

Original BH geometry 

Matching  initial data by scaling 

Construct negative canonical 
Energy for the BH initial data 

Attempt to construct 
negative energy initial 
data on NHG 

         No decoupled Master Equtions  
Apply Canonical-Energy Method for Initial Data 
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Decoupled Master equations on NHG 

Thanks to high symmetry of NHG, metric perturbations         
is written in terms of Hertz potential        
 
 that obeys 

where       is  2nd-order operator on the horizon section 

       If  the eigenvalue of          violates the effective BF-bound 

       then the original extremal black hole is unstable 

We show the following theorem: 
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Canonical energy for initial data 

Symplectic current 

Symplectic  form 

Canonical energy 

Hollands-Wald 13 

Construction of a perturbaton with 
negative canonical energy 

• For initial data: 
 

where 
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This energy expression holds only on NHG,  
                                              not on the original BH geometry. 

Corvino-Schoen 03 

One can correct it to hold on the original BH geometry  
by using  Corvino-Schoen’s method.  

Summary 
• We have proven Durkee-Reall conjecture that extremal 

black holes  are unstable when the eigenvalue       of  the 
operator       is less than the effective BF bound 

   
     The stability analysis is thus reduced to an analysis on  
     the horizon cross-section, which is a much simpler problem   
     than analyzing the perturbed Einstein equations. 
 
• Our proof uses   
    (i)  Canonical energy method 
    (ii)  Symmetry of the NHG and Hertz potential 
   (iii)  Structure of the constraint equations  
 
• Our method is applicable to rotating extremal AdS BHs 
     and also for near-extremal BHs  
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“Stellar oscillations in Eddington-inspired Born-Infeld 

gravity”  

Hajime Sotani

[JGRG24(2014)111405] 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consider the spherically symmetric stellar models. EiBI is
proposed by Bañados and Ferreira [19], which can be
obtained with the action as

S ¼ 1

16π
2

κ

Z
d4x

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi−gp #
þ SM½g;ΨM$;

ð1Þ

where jgμν þ κRμνj and g denote the determinants of ðgμν þ
κRμνÞ and gμν, while Rμν is the Ricci tensor constructed
with the connection Γμ

αβ. We remark again that the
connection Γμ

αβ should be considered as the independent
field from the metric tensor gμν in EiBI. The matter action
SM depends on the metric and matter field ΨM. This theory
has two parameters, λ and κ. The dimensionless constant λ
is associated with the cosmological constant Λ, such as
λ ¼ 1þ κΛ. In this paper, we consider only asymptotically
flat solutions, i.e., we adopt that λ ¼ 1. The remaining
parameter κ is the Eddington parameter, which is con-
strained in the context of the observations in the solar
system, big bang nucleosynthesis, and the existence of
neutron stars [19,22,28,29]. Additionally, terrestrial mea-
surements of the neutron skin thickness of 208Pb and
astronomical observations of the radius of 0.5M⊙ neutron
star could enable us to constrain κ [27].
The field equations are obtained by varying the

action [19]

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; ð2Þ

qμν ¼ gμν þ κRμν; ð3Þ
ffiffiffiffiffiffi−qp

qμν ¼ ffiffiffiffiffiffi−gp
gμν − 8πκ

ffiffiffiffiffiffi−gp
Tμν; ð4Þ

where qμν and q denote an auxiliary metric associated with
the physical metric gμν via Eq. (3) and its determinant,
while Tμν is the energy-momentum tensor defined with the
matter action SM as

Tμν ¼ 1
ffiffiffiffiffiffi−gp

δSM
δgμν

: ð5Þ

With the covariant derivative ∇μ, which is defined with gμν,
the energy-momentum conservation law is expressed as
∇μTμν ¼ 0. From Eq. (4), one can show that the physical
metric gμν is completely equivalent to the auxiliary metric
qμν, when Tμν ¼ 0.
The structures of neutron stars in EiBI have been

discussed in some literatures [22–27]. The metric for the
spherically symmetric objects is expressed as

gμνdxμdxν ¼ −eνdt2 þ eλdr2 þ fðdθ2 þ sin2θdϕ2Þ; ð6Þ

qμνdxμdxν ¼ −eβdt2 þ eαdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð7Þ

where ν, λ, β, α, and f are functions of r. Assuming that the
neutron stars are composed of perfect fluid, the energy-
momentum tensor is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð8Þ

where ϵ and p are the energy density and pressure, while uμ

corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, from Eqs. (3), (4), and the
energy-momentum conservation law, one can obtain the
Tolman-Oppenheimer-Volkoff equations in EiBI [22–27].
To close the equation system, one needs to prepare the
relationship between the pressure and density, i.e., EOS.
In particular, in this paper, we adopt two realistic EOSs to
construct the neutron star models, i.e, Shen EOS [30] and
FPS EOS [31]. Shen EOS is based on the relativistic mean-
field approach, while FPS EOS is based on the Skyrme-
type effective interaction (see [32] for more details about the
adopted EOSs). Note that the appearance of the curvature
instabilities at the stellar surface constructed with a poly-
tropic EOS is pointed out in [33], which could be a problem
to solve. Furthermore, the coupling constant κ is constrained
from the evidence that compact objects exist [22], i.e.,

8πpcκ < 1 for κ > 0; ð9Þ

8πϵcjκj < 1 for κ < 0; ð10Þ

where pc and ϵc denote the central pressure and density.
Hereafter, we adopt 8πϵ0κ as a normalized coupling
constant, where ϵ0 is the nuclear saturation density given
by 2.68 × 1014 g cm−3. We remark that the coupling
constant κ has been constrained from the observations in
the solar system, i.e., jκj≲ 3 × 105 m5 s−2 kg−1 [28], which
leads to j8πϵ0κj≲ 2.25 × 107.
In Fig. 1, we show the mass-radius relations in general

relativity and in EiBI with 8πϵ0κ ¼ '0.03, where the

FIG. 1 (Color online) (color online). Comparison between
the neutron star mass-radius relations in general relativity and
in EiBI with 8πϵ0κ ¼ '0.03. The shaded region surrounded by
the broken line shows the allowed values of mass and radius for
EOS with stiffness between FPS and Shen EOSs in general
relativity, while the regions surrounded by the solid and dotted
lines show those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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discussed in some literatures [22–27]. The metric for the
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gμνdxμdxν ¼ −eνdt2 þ eλdr2 þ fðdθ2 þ sin2θdϕ2Þ; ð6Þ
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ð7Þ

where ν, λ, β, α, and f are functions of r. Assuming that the
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Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð8Þ

where ϵ and p are the energy density and pressure, while uμ

corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, from Eqs. (3), (4), and the
energy-momentum conservation law, one can obtain the
Tolman-Oppenheimer-Volkoff equations in EiBI [22–27].
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field approach, while FPS EOS is based on the Skyrme-
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8πpcκ < 1 for κ > 0; ð9Þ

8πϵcjκj < 1 for κ < 0; ð10Þ

where pc and ϵc denote the central pressure and density.
Hereafter, we adopt 8πϵ0κ as a normalized coupling
constant, where ϵ0 is the nuclear saturation density given
by 2.68 × 1014 g cm−3. We remark that the coupling
constant κ has been constrained from the observations in
the solar system, i.e., jκj≲ 3 × 105 m5 s−2 kg−1 [28], which
leads to j8πϵ0κj≲ 2.25 × 107.
In Fig. 1, we show the mass-radius relations in general

relativity and in EiBI with 8πϵ0κ ¼ '0.03, where the

FIG. 1 (Color online) (color online). Comparison between
the neutron star mass-radius relations in general relativity and
in EiBI with 8πϵ0κ ¼ '0.03. The shaded region surrounded by
the broken line shows the allowed values of mass and radius for
EOS with stiffness between FPS and Shen EOSs in general
relativity, while the regions surrounded by the solid and dotted
lines show those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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paper, we adopt geometric units, c ¼ G ¼ 1, where c and
G denote the speed of light and the gravitational constant,
respectively, and the metric signature is ð−;þ;þ;þÞ.

II. EDDINGTON-INSPIRED
BORN-INFELD GRAVITY

EiBI proposed by Bañados and Ferreira [6], is described
with the action

S ¼ 1

8πκ

Z
d4x

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi−gp
#
þ SM½g;ΨM&;

(1)

where Rμν is the symmetric part of the Ricci tensor
constructed with the connection Γμ

αβ, while SM denotes
the matter action depending on the metric and matter field.
jgμν þ κRμνjmeans the absolute value of the determinant of
the matrix of ðgμν þ κRμνÞ. It should be remarked that this
action for SM ¼ 0 can recover the Einstein-Hilbert action;
i.e., EiBI in vacuum is identical to general relativity [6].
The dimensionless constant λ is associated with the
cosmological constant as Λ ¼ ðλ − 1Þ=κ. In this paper,
we adopt λ ¼ 1 to focus on the relativistic stars with
asymptotically flatness. Additionally, the constraints on
the Eddington parameter κ are also discussed in term of
the solar observations, big bang nucleosynthesis, and the
existence of neutron stars [6,11,19,20]. We should remark
that the stellar structures could depend on the value of λ,
which should be considered somewhere.
As a feature of this theory, the metric gμν and the

connection Γα
μν are considered as the independent fields.

Then, the field equations can be obtained by varying the
action [6];

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; (2)

qμν ¼ gμν þ κRμν; (3)

ffiffiffiffiffiffi−qp
qμν ¼ ffiffiffiffiffiffi−gp

gμν − 8πκ
ffiffiffiffiffiffi−gp

Tμν; (4)

where qμν is an auxiliary metric and Tμν is the standard
energy-momentum tensor with indices raised with the
metric gμν. In addition to the above field equations, the
energy-momentum conservation should be satisfied, i.e.,
∇μTμν ¼ 0, where ∇μ is defined with the physical metric
gμν. It is noticed that qμν is the matrix inverse of qμν, which
is different from gμαgνβqαβ if matter exists.
Now, we consider the spherically symmetric relativistic

stars. Previously, the structures of compact objects in EiBI
have already been examined by several groups [11–15].
The metric describing the spherically symmetric objects
can be written as

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where dΩ2 ¼ dθ2 þ sin2θdϕ2. We remark that we use the
gauge freedom to fix that qθθ ¼ r2. In particular, we
consider the neutron stars composed of the perfect fluid,
which is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; (7)

where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Using Eq. (4), one can obtain the
relation

abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;

ðre−αÞ0 ¼ 1 −
r2

2κ

$
a
b3

−
3

ab
þ 2

%
(9)

e−αð1þ rβ0Þ ¼ 1þ r2

2κ

$
a
b3

þ 1

ab
− 2

%
; (10)

where the prime denotes a derivative with respect to r.
In addition to these equations, the energy-momentum
conservation law gives us the additional equation:

ν0 ¼ −
2p0

ϵþ p
: (11)

At last, combining Eqs. (8)–(11), one can derive the
Tolman-Oppenheimer-Volkoff (TOV) equations in EiBI;

m0 ¼ r2

4κ

$
a
b3

−
3

ab
þ 2

%
;

e−α ¼ 1 −
2m
r

; (12)

p0 ¼ −eα
$
2m
r2

þ r
2κ

!
a
b3

þ 1

ab
− 2

#%

×
$

2

ϵþ p
þ 4πκ

!
3

b2
þ 1

a2c2s

#%−1
; (13)

where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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where Rμν is the symmetric part of the Ricci tensor
constructed with the connection Γμ

αβ, while SM denotes
the matter action depending on the metric and matter field.
jgμν þ κRμνjmeans the absolute value of the determinant of
the matrix of ðgμν þ κRμνÞ. It should be remarked that this
action for SM ¼ 0 can recover the Einstein-Hilbert action;
i.e., EiBI in vacuum is identical to general relativity [6].
The dimensionless constant λ is associated with the
cosmological constant as Λ ¼ ðλ − 1Þ=κ. In this paper,
we adopt λ ¼ 1 to focus on the relativistic stars with
asymptotically flatness. Additionally, the constraints on
the Eddington parameter κ are also discussed in term of
the solar observations, big bang nucleosynthesis, and the
existence of neutron stars [6,11,19,20]. We should remark
that the stellar structures could depend on the value of λ,
which should be considered somewhere.
As a feature of this theory, the metric gμν and the

connection Γα
μν are considered as the independent fields.

Then, the field equations can be obtained by varying the
action [6];
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αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; (2)
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ffiffiffiffiffiffi−qp
qμν ¼ ffiffiffiffiffiffi−gp

gμν − 8πκ
ffiffiffiffiffiffi−gp

Tμν; (4)

where qμν is an auxiliary metric and Tμν is the standard
energy-momentum tensor with indices raised with the
metric gμν. In addition to the above field equations, the
energy-momentum conservation should be satisfied, i.e.,
∇μTμν ¼ 0, where ∇μ is defined with the physical metric
gμν. It is noticed that qμν is the matrix inverse of qμν, which
is different from gμαgνβqαβ if matter exists.
Now, we consider the spherically symmetric relativistic

stars. Previously, the structures of compact objects in EiBI
have already been examined by several groups [11–15].
The metric describing the spherically symmetric objects
can be written as

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where dΩ2 ¼ dθ2 þ sin2θdϕ2. We remark that we use the
gauge freedom to fix that qθθ ¼ r2. In particular, we
consider the neutron stars composed of the perfect fluid,
which is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; (7)

where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Using Eq. (4), one can obtain the
relation

abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;

ðre−αÞ0 ¼ 1 −
r2

2κ

$
a
b3

−
3

ab
þ 2

%
(9)

e−αð1þ rβ0Þ ¼ 1þ r2

2κ

$
a
b3

þ 1
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%
; (10)

where the prime denotes a derivative with respect to r.
In addition to these equations, the energy-momentum
conservation law gives us the additional equation:

ν0 ¼ −
2p0

ϵþ p
: (11)

At last, combining Eqs. (8)–(11), one can derive the
Tolman-Oppenheimer-Volkoff (TOV) equations in EiBI;

m0 ¼ r2

4κ

$
a
b3

−
3

ab
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%
;

e−α ¼ 1 −
2m
r

; (12)

p0 ¼ −eα
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×
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2
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þ 4πκ

!
3

b2
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#%−1
; (13)

where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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where Rμν is the symmetric part of the Ricci tensor
constructed with the connection Γμ

αβ, while SM denotes
the matter action depending on the metric and matter field.
jgμν þ κRμνjmeans the absolute value of the determinant of
the matrix of ðgμν þ κRμνÞ. It should be remarked that this
action for SM ¼ 0 can recover the Einstein-Hilbert action;
i.e., EiBI in vacuum is identical to general relativity [6].
The dimensionless constant λ is associated with the
cosmological constant as Λ ¼ ðλ − 1Þ=κ. In this paper,
we adopt λ ¼ 1 to focus on the relativistic stars with
asymptotically flatness. Additionally, the constraints on
the Eddington parameter κ are also discussed in term of
the solar observations, big bang nucleosynthesis, and the
existence of neutron stars [6,11,19,20]. We should remark
that the stellar structures could depend on the value of λ,
which should be considered somewhere.
As a feature of this theory, the metric gμν and the

connection Γα
μν are considered as the independent fields.

Then, the field equations can be obtained by varying the
action [6];

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; (2)

qμν ¼ gμν þ κRμν; (3)

ffiffiffiffiffiffi−qp
qμν ¼ ffiffiffiffiffiffi−gp

gμν − 8πκ
ffiffiffiffiffiffi−gp

Tμν; (4)

where qμν is an auxiliary metric and Tμν is the standard
energy-momentum tensor with indices raised with the
metric gμν. In addition to the above field equations, the
energy-momentum conservation should be satisfied, i.e.,
∇μTμν ¼ 0, where ∇μ is defined with the physical metric
gμν. It is noticed that qμν is the matrix inverse of qμν, which
is different from gμαgνβqαβ if matter exists.
Now, we consider the spherically symmetric relativistic

stars. Previously, the structures of compact objects in EiBI
have already been examined by several groups [11–15].
The metric describing the spherically symmetric objects
can be written as

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where dΩ2 ¼ dθ2 þ sin2θdϕ2. We remark that we use the
gauge freedom to fix that qθθ ¼ r2. In particular, we
consider the neutron stars composed of the perfect fluid,
which is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; (7)

where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Using Eq. (4), one can obtain the
relation

abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;
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where the prime denotes a derivative with respect to r.
In addition to these equations, the energy-momentum
conservation law gives us the additional equation:

ν0 ¼ −
2p0

ϵþ p
: (11)

At last, combining Eqs. (8)–(11), one can derive the
Tolman-Oppenheimer-Volkoff (TOV) equations in EiBI;
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where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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cosmological constant as Λ ¼ ðλ − 1Þ=κ. In this paper,
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asymptotically flatness. Additionally, the constraints on
the Eddington parameter κ are also discussed in term of
the solar observations, big bang nucleosynthesis, and the
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energy-momentum tensor with indices raised with the
metric gμν. In addition to the above field equations, the
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∇μTμν ¼ 0, where ∇μ is defined with the physical metric
gμν. It is noticed that qμν is the matrix inverse of qμν, which
is different from gμαgνβqαβ if matter exists.
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where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
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abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;

ðre−αÞ0 ¼ 1 −
r2

2κ

$
a
b3

−
3

ab
þ 2

%
(9)

e−αð1þ rβ0Þ ¼ 1þ r2

2κ

$
a
b3

þ 1

ab
− 2

%
; (10)

where the prime denotes a derivative with respect to r.
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At last, combining Eqs. (8)–(11), one can derive the
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where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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is different from gμαgνβqαβ if matter exists.
Now, we consider the spherically symmetric relativistic

stars. Previously, the structures of compact objects in EiBI
have already been examined by several groups [11–15].
The metric describing the spherically symmetric objects
can be written as

gμνdxμdxν ¼ −eνðrÞdt2 þ eλðrÞdr2 þ fðrÞdΩ2; (5)

qμνdxμdxν ¼ −eβðrÞdt2 þ eαðrÞdr2 þ r2dΩ2; (6)

where dΩ2 ¼ dθ2 þ sin2θdϕ2. We remark that we use the
gauge freedom to fix that qθθ ¼ r2. In particular, we
consider the neutron stars composed of the perfect fluid,
which is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; (7)

where ϵ and p denote the energy density and pressure,
while uμ corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Using Eq. (4), one can obtain the
relation

abf ¼ r2; eα ¼ eλab; eβ ¼ eνb3=a; (8)

where a≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 8πκϵ

p
and b≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 8πκp
p

. On the other
hand, using Eq. (3), one can get the equations describing
the structures of relativistic stars;

ðre−αÞ0 ¼ 1 −
r2

2κ

$
a
b3

−
3

ab
þ 2

%
(9)

e−αð1þ rβ0Þ ¼ 1þ r2

2κ

$
a
b3

þ 1

ab
− 2

%
; (10)

where the prime denotes a derivative with respect to r.
In addition to these equations, the energy-momentum
conservation law gives us the additional equation:

ν0 ¼ −
2p0

ϵþ p
: (11)

At last, combining Eqs. (8)–(11), one can derive the
Tolman-Oppenheimer-Volkoff (TOV) equations in EiBI;

m0 ¼ r2

4κ

$
a
b3

−
3

ab
þ 2

%
;

e−α ¼ 1 −
2m
r

; (12)

p0 ¼ −eα
$
2m
r2

þ r
2κ

!
a
b3

þ 1

ab
− 2

#%

×
$

2

ϵþ p
þ 4πκ

!
3

b2
þ 1

a2c2s

#%−1
; (13)

where cs denotes the sound speed. We remark that these
equations in the limit of κ → 0 can reduce to the standard
TOV equations in general relativity. With the relation
between ϵ and p, i.e., the EOS, the equation system is
closed. After one adopts the central density ϵc, the TOV
equations are integrated outward with the conditions
mð0Þ ¼ 0. Then, the stellar surface should become the
position where the pressure vanishes. Since EiBI is
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3

where we adopt the relation of FG = fψ which is obtained from Eqs. (14) and (15). From Eqs. (17) and (18), one can get the
relation, such as G = c1H ′, where c1 is an integration constant. Substituting Eqs. (15) and (16) into this relation, one obtains
the metric function ψ, i.e.,

ψ =
c1r2

√
λr4 + κQ2

. (20)

As mentioned before, since ψ approaches to 1 in the limit of κ = 0 or Q = 0, c1 should be equivalent to
√

λ. Furthermore, Eq.
(19) with the relation of G = c1H ′ can be transformed into

(
FHH ′2)′ = H ′ +

H ′

κ
(r2 − H2), (21)

which leads to

f = −r
√

λr4 + κQ2

λr4 − κQ2

[∫
(Λr4 − r2 + Q2)(λr4 − κQ2)

r4
√

λr4 + κQ2
dr + c2

]
, (22)

where c2 is an integration constant. With this expression, the metric function f in the limit of κ = 0 becomes f = 1 −
c2/(

√
λr) + Q2/r2 − Λr2/3, which should be equivalent to Eq. (11). Thus, we can fix c2 to be 2

√
λM .

At last, we got the electrically charged black hole solution in EiBI as

f = −r
√

λr4 + κQ2

λr4 − κQ2

[∫
(Λr4 − r2 + Q2)(λr4 − κQ2)

r4
√

λr4 + κQ2
dr + 2

√
λM

]
, (23)

ψ =
√

λr2

√
λr4 + κQ2

, (24)

Eµ =
(

0,
Q

r2
√

f
, 0, 0

)
, (25)

while the auxiliary metric functions in qµν are given by Eqs. (14) – (16). Hereafter, we will simply consider only the asymptoti-
cally flat solution, i.e., λ = 1 (Λ = 0).

III. PARAMETER SPACE TO EXIST AN ELECTRICALLY CHARGED BLACK HOLE SOLUTION IN EIBI

As mentioned before, since the dimension of the coupling parameter κ is length squared, κ/M2 becomes a dimensionless
parameter. The existence of neutron stars suggests the constraint on κ, such as |κ| ! 1 m5kg−1s−2 [9], which leads to

∣∣∣
κ

M2

∣∣∣ ! 6.87 × 103 ×
(

M⊙
M

)2

. (26)

Now, to see the behavior of the metric function f(r), we numerically integrate Eq. (23) by fixing the parameter set (κ, Q). Fig.
1 shows the distribution of f(r) with some parameter sets, especially for positive κ, where the left panel corresponds to the cases
for Q/M = 0, 0.1, 0.2, and 0.5 with κ/M2 = 3, while the right panel corresponds to the cases for κ/M2 = 0, 1, 2, and 5 with
Q/M = 0.3. We remark that, as mentioned before, the cases of Q = 0 and κ = 0 become equivalent to the black hole solution
in general relativity, i.e., the Schwarzschild solution for (Q/M, κ/M2) = (0, 3) in the left panel and the Reissner-Nordstrom
solution for (Q/M, κ/M2) = (0.3, 0) in the right panel. From Eq. (23), one can find the singularity at r =

√√
κQ for positive

κ, which corresponds to the vertical lines in Fig. 1. That singularity is always covered by the event horizon at least with the
adopted parameter sets, where the event horizon is determined by solving the condition of f(r) = 0. However, with larger
values of Q and κ, the singularity at r =

√√
κQ approaches to the event horizon. So, the limit of parameter set for existing the

black hole solution must exist. In fact, if one adopts extremely large values of Q and κ, the singularity becomes naked.
In the similar way, Fig. 2 shows the distribution of f(r) for negative κ, where the left panel corresponds to the cases for

Q/M = 0, 0.1, 0.2, and 0.5 with κ/M2 = −3, while the right panel corresponds to the cases for κ/M2 = 0, −1, −2, and
−5 with Q/M = 0.3. From Eq. (23) for negative κ, one can see that the position at r =

√√
−κQ becomes singular, because

the denominator in the integrand becomes zero. This position for each parameter set is shown with marks in Fig. 2. From this
figure, one observes that such a singularity can be covered by the event horizon even for negative κ. Even so, as for positive κ,
since the singularity at r =

√√
−κQ approaches to the event horizon with larger values of Q and |κ|. Namely, there would be a
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equivalent to general relativity in vacuum and ϵ ¼ p ¼ 0 at
the stellar surface (r ¼ R), one can find that e−α ¼ e−λ ¼
1 − 2M=R at r ¼ R. As a result, the stellar mass is defined
as M ¼ mðRÞ. Additionally, in order to allow for self-
gravitating objects, the condition of κ is obtained [11] as

8πpcκ < 1 for κ > 0 (14)

8πϵcjκj < 1 for κ < 0; (15)

where pc denotes the central pressure. Hereafter, we adopt
8πϵ0κ as a normalized constant, where ϵ0 is the nuclear
saturation density given by 2.68 × 1014 g cm−3. We remark
that ϵ0 ¼ 1.99 × 10−4 km−2 in geometric units with
c ¼ G ¼ 1.

III. RELATIVISTIC STELLAR MODELS IN EIBI

In order to construct relativistic stellar models, we need
to prepare the EOS. In this paper, we adopt the realistic
EOS proposed by the different theoretical approaches, i.e.,
the phenomenological models, the relativistic mean field
models, and the ones based on the Skyrme-type effective
interactions (see [21] for more information about EOS
adopted here). As the phenomenological models, we adopt
the EOS constructed by Oyamatsu and Iida [22,23], where
they made EOS for various values of incompressibility K0

and the density dependence of the nuclear symmetry
energy at the saturation point L. K0 and L are parameters
characterizing the stiffness of neutron-rich nuclear matter.
Hereafter, we refer to this phenomenological EOS as OI
(a; b), where a and b denote the adopted values of K0 and
L. As the relativistic mean field models, we adopt two EOS,
i.e., the Shen EOS [24] and the Miyatsu EOS [25]. We also
adopt five EOS based on the Skyrme-type effective
interactions, i.e., FPS [26], SLy4 [27], BSk19, BSk20,
and BSk21 [28–30]. We remark that every EOS adopted in
this paper is consistent with the terrestrial experimental data
for masses and radii of stable nuclei. It is important to
consider the neutron stars with 0.5M⊙, because the density
inside such objects is less than a few times the saturation
density, which should be strongly constrained from the
terrestrial experiments [21].
As an example of neutron star models in EiBI, we show

the mass and radial relations constructed from the FPS EOS
in Fig. 1, where the solid line denotes the results in general
relativity (κ ¼ 0), while the broken and dotted lines
correspond to those in EiBI with 8πϵjκj ¼ 0.01 and
0.02, respectively. From this figure, one can observe the
obvious deviation from the predictions in general relativity.
However, as mentioned the above, this difference, depend-
ing on the coupling constant κ, must be buried in the
uncertainties due to the EOS of neutron star matter. That is,
it could be quite difficult to distinguish EiBI from general
relativity only if one would measure the mass and radius of
neutron stars.

With respect to such a difficulty, we are successful in
finding an observational possibility to discriminate EiBI
from general relativity, i.e., via the terrestrial experiments
for the neutron skin thickness of neutron-rich atomic
nuclei. Using the various realistic EOS mentioned above,
we determine the radii of neutron stars with 0.5M⊙ by
varying the value of 8πϵ0κ and then show it in Fig. 2 as a
function of the neutron skin thickness of 208Pb, where R05

and ΔR denote the stellar radii with 0.5M⊙ and the neutron
skin thickness of 208Pb. In particular, in order to estimate
the value of ΔR for each EOS, we adopt the formula
proposed by Oyamatsu and Iida [22], where the neutron
skin thickness can be expressed as functions of neutron
excess, the atomic mass number, and the value of L. Since
the estimation of ΔR could depend a little on theoretical
models, the plots in Fig. 2 may be slightly modified.
Anyway, the value of ΔR dose not depend on κ at all. From
this figure, one clearly observes that R05 can be written as a
linear function of ΔR almost independently of the adopted

FIG. 1 (color online). Neutron star mass-radius relations in
EiBI constructed from FPS EOS. The labels on lines denote the
values of 8πϵ0κ. The solid line corresponds to that in general
relativity.

FIG. 2 (color online). Radii of neutron stars with 0.5M⊙, R05,
as a function of neutron skin thickness of 208Pb for 8πϵ0κ ¼
−0.02, 0, and 0.02, using the various EOS. The solid line denotes
the fitting line in general relativity, while the broken and
dotted lines denote that in EiBI for 8πϵ0κ ¼ 0.02 and −0.02,
respectively.
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consider the spherically symmetric stellar models. EiBI is
proposed by Bañados and Ferreira [19], which can be
obtained with the action as

S ¼ 1

16π
2

κ

Z
d4x

! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jgμν þ κRμνj

q
− λ

ffiffiffiffiffiffi−gp #
þ SM½g;ΨM$;

ð1Þ

where jgμν þ κRμνj and g denote the determinants of ðgμν þ
κRμνÞ and gμν, while Rμν is the Ricci tensor constructed
with the connection Γμ

αβ. We remark again that the
connection Γμ

αβ should be considered as the independent
field from the metric tensor gμν in EiBI. The matter action
SM depends on the metric and matter field ΨM. This theory
has two parameters, λ and κ. The dimensionless constant λ
is associated with the cosmological constant Λ, such as
λ ¼ 1þ κΛ. In this paper, we consider only asymptotically
flat solutions, i.e., we adopt that λ ¼ 1. The remaining
parameter κ is the Eddington parameter, which is con-
strained in the context of the observations in the solar
system, big bang nucleosynthesis, and the existence of
neutron stars [19,22,28,29]. Additionally, terrestrial mea-
surements of the neutron skin thickness of 208Pb and
astronomical observations of the radius of 0.5M⊙ neutron
star could enable us to constrain κ [27].
The field equations are obtained by varying the

action [19]

Γμ
αβ ¼

1

2
qμσðqσα;β þ qσβ;α − qαβ;σÞ; ð2Þ

qμν ¼ gμν þ κRμν; ð3Þ
ffiffiffiffiffiffi−qp

qμν ¼ ffiffiffiffiffiffi−gp
gμν − 8πκ

ffiffiffiffiffiffi−gp
Tμν; ð4Þ

where qμν and q denote an auxiliary metric associated with
the physical metric gμν via Eq. (3) and its determinant,
while Tμν is the energy-momentum tensor defined with the
matter action SM as

Tμν ¼ 1
ffiffiffiffiffiffi−gp

δSM
δgμν

: ð5Þ

With the covariant derivative ∇μ, which is defined with gμν,
the energy-momentum conservation law is expressed as
∇μTμν ¼ 0. From Eq. (4), one can show that the physical
metric gμν is completely equivalent to the auxiliary metric
qμν, when Tμν ¼ 0.
The structures of neutron stars in EiBI have been

discussed in some literatures [22–27]. The metric for the
spherically symmetric objects is expressed as

gμνdxμdxν ¼ −eνdt2 þ eλdr2 þ fðdθ2 þ sin2θdϕ2Þ; ð6Þ

qμνdxμdxν ¼ −eβdt2 þ eαdr2 þ r2ðdθ2 þ sin2θdϕ2Þ;
ð7Þ

where ν, λ, β, α, and f are functions of r. Assuming that the
neutron stars are composed of perfect fluid, the energy-
momentum tensor is given by

Tμν ¼ ðϵþ pÞuμuν þ pgμν; ð8Þ

where ϵ and p are the energy density and pressure, while uμ

corresponds to the four velocity of matter given as
uμ ¼ ðe−ν=2; 0; 0; 0Þ. Then, from Eqs. (3), (4), and the
energy-momentum conservation law, one can obtain the
Tolman-Oppenheimer-Volkoff equations in EiBI [22–27].
To close the equation system, one needs to prepare the
relationship between the pressure and density, i.e., EOS.
In particular, in this paper, we adopt two realistic EOSs to
construct the neutron star models, i.e, Shen EOS [30] and
FPS EOS [31]. Shen EOS is based on the relativistic mean-
field approach, while FPS EOS is based on the Skyrme-
type effective interaction (see [32] for more details about the
adopted EOSs). Note that the appearance of the curvature
instabilities at the stellar surface constructed with a poly-
tropic EOS is pointed out in [33], which could be a problem
to solve. Furthermore, the coupling constant κ is constrained
from the evidence that compact objects exist [22], i.e.,

8πpcκ < 1 for κ > 0; ð9Þ

8πϵcjκj < 1 for κ < 0; ð10Þ

where pc and ϵc denote the central pressure and density.
Hereafter, we adopt 8πϵ0κ as a normalized coupling
constant, where ϵ0 is the nuclear saturation density given
by 2.68 × 1014 g cm−3. We remark that the coupling
constant κ has been constrained from the observations in
the solar system, i.e., jκj≲ 3 × 105 m5 s−2 kg−1 [28], which
leads to j8πϵ0κj≲ 2.25 × 107.
In Fig. 1, we show the mass-radius relations in general

relativity and in EiBI with 8πϵ0κ ¼ '0.03, where the

FIG. 1 (Color online) (color online). Comparison between
the neutron star mass-radius relations in general relativity and
in EiBI with 8πϵ0κ ¼ '0.03. The shaded region surrounded by
the broken line shows the allowed values of mass and radius for
EOS with stiffness between FPS and Shen EOSs in general
relativity, while the regions surrounded by the solid and dotted
lines show those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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Although some of these EOS might be outdated, none of them is
ruled out by present observations. Furthermore, the range of
stiffness of the EOS listed by Arnett & Bowers is still relevant
today. This is important for the present study. In order for our
analysis to be robust it is necessary that our sample of EOS spans the
anticipated range of stiffness. However, we have also included three
more modern EOS: one of the models of Wiringa, Ficks &
Fabrocini (1988) and two models from Glendenning (1985). For
the EOS that were also considered by Lindblom & Detweiler (1983)
we have chosen identical stellar models to facilitate a comparison of
the results. Finally, we have only included stellar models the masses
and radii of which are within the limits accepted by current
observations (Finn 1994; van Kerkwijk, van Paradijs & Zuiderwijk
1995).

2 W H AT C A N W E L E A R N F RO M
O B S E RVAT I O N S ?

Our present understanding of neutron stars comes mainly from
X-ray and radio-timing observations. These observations provide
some insight into the structure of these objects and the properties of
supranuclear matter. The most commonly and accurately observed
parameter is the rotation period, and we know that radio pulsars can
spin very fast (the shortest observed period being the 1.56 ms of
PSR 1937+21). Another basic observable, that can be obtained (in a
few cases) with some accuracy from present day observations, is the
mass of the neutron star. As Finn (1994) has shown, the
observations of radio pulsars indicate that 1:01 < M=M( < 1:64.

Similarly, van Kerkwijk et al. (1995) find that data for X-ray pulsars
indicate 1:04 < M=M( < 1:88. The data used in these two studies is
actually consistent with (if one includes error bars) M < 1:44 M(.
We now recall that the various EOS that have been proposed by
theoretical physicists can be divided into two major categories: (i)
the ‘soft’ EOS, which typically lead to neutron star models with
maximum masses around 1:4 M( and radii usually smaller than 10
km, and (ii) the ‘stiff’ EOS with the maximum values M � 1:8 M(

and R � 15 km (Arnett & Bowers 1977). From this one can deduce
that, even though the constraint put on the neutron star mass by
present-day observations seems strong, it does not rule out many of
the proposed EOS. In order to arrive at a more useful result we
are likely to need detailed observations of the stellar radius
also. Unfortunately, available data provide little information
about the radius. The recent observations of quasiperiodic oscilla-
tions in low-mass X-ray binaries indicate that R < 6M, but again
this is not a severe constraint. Although a number of attempts have
been made, using either X-ray observations (Lewin, van Paradijs &
Taam 1993) or the limiting spin period of neutron stars (Friedman,
Ipser & Parker 1986), to put constraints on the mass–radius
relation, we do not yet have a method which can provide the desired
answer.

2.1 A detection scenario

In view of this situation, any method that can be used to infer
neutron star parameters is a welcome addition. Of specific interest
may be the new possibilities offered once gravitational wave
observations become reality. An obvious question is the extent to
which one can solve the inverse problem in gravitational wave
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Figure 1. The numerically obtained f mode frequencies plotted as functions
of the mean stellar density (M and R are in km and qf mode in kHz).

Figure 2. The normalized damping time of the f modes as functions of the
stellar compactness (M and R are in km and tf mode in s).�7-.;<<87����8448=*<��������

fluid oscillation modes of a star, and we consequently expect that
qf , r̄1=2. That is, we should normalize the f mode frequency with
the average density of the star. The result of doing this is shown in
Fig. 1. From this figure it is apparent that the relation between the f
mode frequencies and the mean density is almost linear, and a linear
fitting leads to the simple relation

qf ðkHzÞ < 0:78 þ 1:635
M̄

R̄3

� ⇤1=2

; ð5Þ

where we have introduced the dimensionless variables

M̄ ¼
M

1:4 M(

and R̄ ¼
R

10 km
: ð6Þ

From equation (5) it follows that the typical f mode frequency is
around 2.4 kHz.

To deduce a corresponding relation for the damping rate of the f
mode, we can use the rough estimate given by the quadrupole
formula. That is, the damping time should follow from

tf ,
oscillation energy

power emitted in GWs
, R

R
M

� ⇤3

: ð7Þ

Using this normalization we plot the functional ðtf M
3=R4Þ¹1 as a

function of the stellar compactness, cf. Fig. 2. The data shown in
this figure lead to a relation between the damping time of the f mode
and the stellar parameters M and R,

1
tf ðsÞ

<
M̄3

R̄4 22:85 ¹ 14:65
M̄
R̄

� ⇤⇥ ⌅
: ð8Þ

The small deviation of the numerical data from the above formula is

apparent in Fig. 2, and one can easily see that a typical value for the
damping time of the f mode is a tenth of a second.

For the damping rate of the p modes the situation is not so
favourable. This is because the damping of the p modes is more
sensitive to changes in the modal distribution inside the star. Thus,
different EOS lead to rather different p mode damping rates, cf.
Fig. 3. Previous evidence for polytropes (Andersson & Kokkotas
1997) actually indicate that this would be the case. Clearly, an
empirical relation based on the data in Fig. 3 would not be very
robust.

The situation is slightly better if we consider the oscillation
frequency of the p mode. From the data shown in Fig. 4 we can
deduce a relation between the p mode frequency and the parameters
of the star,

qpðkHzÞ <
1
M̄

1:75 þ 5:59
M̄
R̄

� ⇤
; ð9Þ

and we see that a typical p mode frequency is around 7 kHz.
Although the data for several EOS deviate significantly from (9) it is
still a useful result. Stellar masses and radii deduced from it will not
be as accurate as ones based on f mode data, but on the other hand, if
M and R are obtained in some other way (say, from a combination of
observed f - and w modes) the p mode can be used to deduce the
relevant EOS.

That empirical relations based on p mode data would be less
robust and useful than those for the f mode was expected, since the p
modes are sensitive to changes in the matter distribution inside the
star. In contrast, the gravitational wave w modes should lead to
very robust results. It is well known (Kokkotas & Schutz 1992;
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Figure 5. The functional Rqw as a function of the compactness of the star (M
and R are in km and qw mode in kHz).

Figure 6. The functional M=tw as a function of the compactness of the star
(M and R are in km and tw mode in ms).
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that in general relativity. Additionally, we emphasize
that the deviation of frequencies from the predictions in
general relativity could depend on the gravitational theory,
although the frequencies in EiBI may partially degenerate
to those in another gravitational theory (cf., the results in
scalar tensor gravity [13]). Thus, one may be able to
distinguish EiBI from scalar-tensor gravity by collecting
the observational data radiated from several neutron stars,
if the observed frequencies would deviate from the pre-
dictions in general relativity.
From the observational point of view, as shown in Fig. 1,

one might have to take into account the uncertainty due to
EOS. In Fig. 3, we show the f mode frequencies (left panel)
and p1 mode frequencies (right panel) both in general
relativity and in EiBI with 8πϵ0κ ¼ "0.03 as a function of
the stellar average density. In the both panels, the shaded
regions surrounded by the broken lines denote the frequen-
cies expected for EOS with stiffness between FPS and Shen
EOSs in general relativity, while the regions surrounded
by the solid and dotted lines denote those in EiBI with
8πϵ0κ ¼ 0.03 and −0.03. Comparing to the mass-radius
relation shown in Fig. 1, one can observe that the
frequencies depend weakly on the EOS. This could be
because that the f mode oscillation, which is an acoustic

wave, propagates inside the star with sound velocity
associated with the stellar average density. In fact, it
has been suggested in general relativity that the f mode
frequencies are written as a linear function of the stellar
average density, which weakly depends on the adopted
EOS [1,2]. From the left panel in Fig. 3, one can obviously
see that the f mode frequencies in EiBI with 8πϵ0κ ≃
"0.03 could be distinguished from those in general
relativity, even if the uncertainty in frequencies due to
EOS would exist. That is, via the direct observations of f
mode oscillations, one could distinguish EiBI from general
relativity, if 8πϵ0jκj≳ 0.03, independently of EOS for
neutron star matter. Of course, if the EOS for neutron star
matter would be determined or constrained via the other
astronomical observations and/or terrestrial unclear experi-
ments, one might distinguish EiBI even with 8πϵ0jκj ≲
0.03 from general relativity. On the other hand, with the
uncertainty due to EOS, it seems to be difficult to
distinguish EiBI with 8πϵ0κ ≃ 0.03 from general relativity
via the observations of p1 mode oscillations.

IV. CONCLUSION

Eddington-inspired Born-Infeld gravity (EiBI) attracts
attention as a modified gravitational theory in the context of

FIG. 2 (Color online) (color online). With FPS EOS, the frequencies of f mode (left panel) and p1 mode (right panel) are shown as a
function of the stellar average density ðM=R3Þ1=2. In both panels, the frequencies in general relativity (κ ¼ 0), while the broken, dotted,
and dot-dashed lines are corresponding to the results in EiBI with 8πϵ0jκj ¼ 0.01, 0.02, and 8πϵ0κ ¼ 0.04.

FIG. 3 (Color online) (color online). Uncertainties due to the adopted EOS in the f mode (left panel) and p1 mode (right panel)
frequencies, where the shaded region surrounded by the broken line denotes the expected frequencies in general relativity, while the
regions surrounded by the solid and dotted lines correspond to those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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equivalent to general relativity in vacuum and ϵ ¼ p ¼ 0 at
the stellar surface (r ¼ R), one can find that e−α ¼ e−λ ¼
1 − 2M=R at r ¼ R. As a result, the stellar mass is defined
as M ¼ mðRÞ. Additionally, in order to allow for self-
gravitating objects, the condition of κ is obtained [11] as

8πpcκ < 1 for κ > 0 (14)

8πϵcjκj < 1 for κ < 0; (15)

where pc denotes the central pressure. Hereafter, we adopt
8πϵ0κ as a normalized constant, where ϵ0 is the nuclear
saturation density given by 2.68 × 1014 g cm−3. We remark
that ϵ0 ¼ 1.99 × 10−4 km−2 in geometric units with
c ¼ G ¼ 1.

III. RELATIVISTIC STELLAR MODELS IN EIBI

In order to construct relativistic stellar models, we need
to prepare the EOS. In this paper, we adopt the realistic
EOS proposed by the different theoretical approaches, i.e.,
the phenomenological models, the relativistic mean field
models, and the ones based on the Skyrme-type effective
interactions (see [21] for more information about EOS
adopted here). As the phenomenological models, we adopt
the EOS constructed by Oyamatsu and Iida [22,23], where
they made EOS for various values of incompressibility K0

and the density dependence of the nuclear symmetry
energy at the saturation point L. K0 and L are parameters
characterizing the stiffness of neutron-rich nuclear matter.
Hereafter, we refer to this phenomenological EOS as OI
(a; b), where a and b denote the adopted values of K0 and
L. As the relativistic mean field models, we adopt two EOS,
i.e., the Shen EOS [24] and the Miyatsu EOS [25]. We also
adopt five EOS based on the Skyrme-type effective
interactions, i.e., FPS [26], SLy4 [27], BSk19, BSk20,
and BSk21 [28–30]. We remark that every EOS adopted in
this paper is consistent with the terrestrial experimental data
for masses and radii of stable nuclei. It is important to
consider the neutron stars with 0.5M⊙, because the density
inside such objects is less than a few times the saturation
density, which should be strongly constrained from the
terrestrial experiments [21].
As an example of neutron star models in EiBI, we show

the mass and radial relations constructed from the FPS EOS
in Fig. 1, where the solid line denotes the results in general
relativity (κ ¼ 0), while the broken and dotted lines
correspond to those in EiBI with 8πϵjκj ¼ 0.01 and
0.02, respectively. From this figure, one can observe the
obvious deviation from the predictions in general relativity.
However, as mentioned the above, this difference, depend-
ing on the coupling constant κ, must be buried in the
uncertainties due to the EOS of neutron star matter. That is,
it could be quite difficult to distinguish EiBI from general
relativity only if one would measure the mass and radius of
neutron stars.

With respect to such a difficulty, we are successful in
finding an observational possibility to discriminate EiBI
from general relativity, i.e., via the terrestrial experiments
for the neutron skin thickness of neutron-rich atomic
nuclei. Using the various realistic EOS mentioned above,
we determine the radii of neutron stars with 0.5M⊙ by
varying the value of 8πϵ0κ and then show it in Fig. 2 as a
function of the neutron skin thickness of 208Pb, where R05

and ΔR denote the stellar radii with 0.5M⊙ and the neutron
skin thickness of 208Pb. In particular, in order to estimate
the value of ΔR for each EOS, we adopt the formula
proposed by Oyamatsu and Iida [22], where the neutron
skin thickness can be expressed as functions of neutron
excess, the atomic mass number, and the value of L. Since
the estimation of ΔR could depend a little on theoretical
models, the plots in Fig. 2 may be slightly modified.
Anyway, the value of ΔR dose not depend on κ at all. From
this figure, one clearly observes that R05 can be written as a
linear function of ΔR almost independently of the adopted

FIG. 1 (color online). Neutron star mass-radius relations in
EiBI constructed from FPS EOS. The labels on lines denote the
values of 8πϵ0κ. The solid line corresponds to that in general
relativity.

FIG. 2 (color online). Radii of neutron stars with 0.5M⊙, R05,
as a function of neutron skin thickness of 208Pb for 8πϵ0κ ¼
−0.02, 0, and 0.02, using the various EOS. The solid line denotes
the fitting line in general relativity, while the broken and
dotted lines denote that in EiBI for 8πϵ0κ ¼ 0.02 and −0.02,
respectively.
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that in general relativity. Additionally, we emphasize
that the deviation of frequencies from the predictions in
general relativity could depend on the gravitational theory,
although the frequencies in EiBI may partially degenerate
to those in another gravitational theory (cf., the results in
scalar tensor gravity [13]). Thus, one may be able to
distinguish EiBI from scalar-tensor gravity by collecting
the observational data radiated from several neutron stars,
if the observed frequencies would deviate from the pre-
dictions in general relativity.
From the observational point of view, as shown in Fig. 1,

one might have to take into account the uncertainty due to
EOS. In Fig. 3, we show the f mode frequencies (left panel)
and p1 mode frequencies (right panel) both in general
relativity and in EiBI with 8πϵ0κ ¼ "0.03 as a function of
the stellar average density. In the both panels, the shaded
regions surrounded by the broken lines denote the frequen-
cies expected for EOS with stiffness between FPS and Shen
EOSs in general relativity, while the regions surrounded
by the solid and dotted lines denote those in EiBI with
8πϵ0κ ¼ 0.03 and −0.03. Comparing to the mass-radius
relation shown in Fig. 1, one can observe that the
frequencies depend weakly on the EOS. This could be
because that the f mode oscillation, which is an acoustic

wave, propagates inside the star with sound velocity
associated with the stellar average density. In fact, it
has been suggested in general relativity that the f mode
frequencies are written as a linear function of the stellar
average density, which weakly depends on the adopted
EOS [1,2]. From the left panel in Fig. 3, one can obviously
see that the f mode frequencies in EiBI with 8πϵ0κ ≃
"0.03 could be distinguished from those in general
relativity, even if the uncertainty in frequencies due to
EOS would exist. That is, via the direct observations of f
mode oscillations, one could distinguish EiBI from general
relativity, if 8πϵ0jκj≳ 0.03, independently of EOS for
neutron star matter. Of course, if the EOS for neutron star
matter would be determined or constrained via the other
astronomical observations and/or terrestrial unclear experi-
ments, one might distinguish EiBI even with 8πϵ0jκj ≲
0.03 from general relativity. On the other hand, with the
uncertainty due to EOS, it seems to be difficult to
distinguish EiBI with 8πϵ0κ ≃ 0.03 from general relativity
via the observations of p1 mode oscillations.

IV. CONCLUSION

Eddington-inspired Born-Infeld gravity (EiBI) attracts
attention as a modified gravitational theory in the context of

FIG. 2 (Color online) (color online). With FPS EOS, the frequencies of f mode (left panel) and p1 mode (right panel) are shown as a
function of the stellar average density ðM=R3Þ1=2. In both panels, the frequencies in general relativity (κ ¼ 0), while the broken, dotted,
and dot-dashed lines are corresponding to the results in EiBI with 8πϵ0jκj ¼ 0.01, 0.02, and 8πϵ0κ ¼ 0.04.

FIG. 3 (Color online) (color online). Uncertainties due to the adopted EOS in the f mode (left panel) and p1 mode (right panel)
frequencies, where the shaded region surrounded by the broken line denotes the expected frequencies in general relativity, while the
regions surrounded by the solid and dotted lines correspond to those in EiBI with 8πϵ0κ ¼ 0.03 and −0.03.
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Planck satellite
[Ade et al.  [Planck Collaboration], arXiv:1303.5076; arXiv:1303.5082]

Spectral index of power spectrum of 
the curvature perturbations

Tensor-to-scalar ratio

I.  Introduction

･

･

InflationR2

2
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3

Various modified gravity theories have 
recently been proposed to explain cosmic 
acceleration.

・

Inflation gravityR2

Dark Energy problem gravityf(R)

[Starobinsky, Phys. Lett. B 91, 99 (1980)]

[Nojiri and Odintsov, Phys. Rev. D 68, 123512  (2003)]

[Carroll, Duvvuri, Trodden and Turner, Phys. Rev. D 70, 043528 (2004)] 

[Capozziello, Carloni and Troisi, Recent Res. Dev. Astron. Astrophys. 1, 625 (2003)]

Motivation

4

We compare the nature of classical 
expressions of modified gravity with 
that with quantum corrections.

・

We investigate a generalized model 
whose Lagrangian is described by a 
function of                     .f(R;K; þ)

: Scalar curvature : Scalar fieldR þ

: Kinetic term of K þ

Purpose
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5

We show that in the Jordan and Einstein 
frames, gravity is equivalent in the 
quatum level.

・

f(R)

We discuss the stability of the de Sitter 
solutions and explore the influence of the 
one-loop quantum correction on inflation 
in       gravity with the quantum correction. 

・

R2

Cf. [Cognola, Elizalde, Nojiri, Odintsov and Zerbini, JCAP 0502, 010 (2005)]

Purpose (2)

II.  Model
6

ñ
@Rà
@f

Action

Gravitational field equation

: Covariant derivative

: Laplacian

Equation of motion for þà

: Gravitatiotanl constantG

The tilde denotes the quantities 
in the Einstein frame.

*
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Solutions for the equations of motion 

There is a constant curvature solution:

For                                  ,

The set of background fields (constant 
curvature, constant scalar field) is a 
solution of the following equations:

・

・

;

;

= constant

7

III. Quantum equivalence
Modified gravity: Described in the Jordan frame

gravity: Can also be described in f(R)

These are equivalent in the classical level.

We show the on-shell quantum equivalence 
of          gravity.

・

[Buchbinder, Odintsov and Shapiro, Effective action in quantum gravity (1992)]

[Fradkin and Tseytlin, Nucl. Phys. B234, 472 (1984)]

[Maeda, Phys. Rev. D 39, 3159 (1989)] 

[Fujii and Maeda, The Scalar-Tensor Theory of Gravitation (2003)]

the Einstein frame

f(R)

8
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：Jordan frame

：Einstein frame

; ;

f0 ñ @R
@f

: Conformal transformation

Quantum equivalence (2)
9

Contribution of scalars to the effective action 

: Laplacian acting on scalarsÉ0

: Renormalization parameterö2

Jordan frame

Quantum equivalence (3)
10
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11

V00(û) ñ @û2

@2V(û)Einstein frame

By the redefinition of , this can become 
equivalent to               .

öà
ÈJord
onàshell

Quantum equivalence (4)

gravity R2

M2 : Mass parameter
Jordan frame

[Starobinsky, Phys. Lett. B 91, 99 (1980)]

12
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Einstein frame

: Volume

（Cf. ）

gravity (2)R2

13

: During inflation

C1 = O(1); C2 ø 300

Conformal transformation

：Reduced Planck massMP

Jordan frame

inflationR2
14
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:

à gà

;

inflation (2)R2
15

Einstein frame

: At the end of inflation

Jordan frame

: Effective cosmological constant 

inflation (3)R2

16
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becomes the minimum at             .V(þ)

+ Scalar field theory for 

þ : Inflaton field

Einstein frame: þ

Contribution of the 
quantum correction

R

O((M=MP)
2)

þ=MP ý 1

InflationR2

:

inflation (4)R2
17

:

IV.  Stability issue
18

: Laplacian acting on transverse-traceless vectorsÉ1

É2

The one-loop on-shell effective action

: Laplacian acting on transverse-traceless tensors
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All of the eigen values for the operators 
in are not negative.

È(1)
onàshell

É0; É1; É2Minimum eigen values of                        :

The first term of                including    
is related to the stability.

É0

È(1)
onàshell

19

É0The minimum eigen value of       is the 
smallest one.

Stability issue (2)

Stability condition:

:Non-negative value

Stability condition

20

Stability issue (3)
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We have studied a generalized model 
whose Lagrangian is described by a 
function of                     .

We have shown the on-shell quantum 
equivalence of          gravity in the 
Jordan and Einstein frames. 

We have examined the stability of the 
de Sitter solutions and the one-loop 
quantum correction to inflation in 
quantum-corrected       gravity.  

･

21

V.  Conclusions

f(R;K; þ)

f(R)

R2

･

･

Back up slides
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m; ø : Constant

;・ Background solution:

Stability issue (4)

Stability condition

For                  ,

Inflation

nS ø 0:968

;

: 1st horizon 
crossing time for 
mode k

=

;

;
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Inflation (2)

f(R) = R+ ëR2 [Starobinsky, Phys. Lett. B 91, 99 (1980)]

nS = 0:960

r = 0:00480

nS ' 1à N
2 ; r = N2

12

N = 50

N = 60 nS = 0:967

r = 0:00333

Cf. [Hinshaw et al., Astrophys. J. Suppl. 208, 19 (2013)]

・

・

V(Ñ) = 8ë
1 1à eà 2=3

p
Ñ

ð ñ2

Ñ = 2
3

q
ln(1 + 2ëR)

8ùG = 1

Planck satellite

[Ade et al.  [Planck Collaboration], arXiv:1303.5076; arXiv:1303.5082]

Spectral index of power spectrum of 
the curvature perturbations

Running of the spectral index

Tensor-to-scalar ratio

･

･

･
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Planck results

nS

r0:002 InflationR2

From [Ade et al.  [Planck Collaboration], 
arXiv:1303.5082].

[Ade et al. [BICEP2 Collaboration], Phys. Rev. Lett. 112, 241101 (2014) ]

BICEP2 experiment

Cf. [Ade et al. [Planck Collaboration], arXiv:1405.0871 [astro-ph.GA]]

[Ade et al. [Planck Collaboration], arXiv:1405.0874 [astro-ph.GA]]

[Adam et al. [Planck Collaboration], arXiv:1409.5738 [astro-ph.CO]]
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Planck satellite (2)
From [Ade et al.  [Planck Collaboration], arXiv:1303.5082].

nS

r

Planck satellite (3)
From [Ade et al.  [Planck Collaboration], arXiv:1303.5082].

nS

ëS
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BICEP2 experiment (2)

nS

r0:002

[Ade et al. [BICEP2 Collaboration], Phys. Rev. Lett. 112, 241101 (2014) ]

Quantum Correction
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Condition to obtain two positive solution: 

;

Stability issue

Quantizatin of the maximally 
symmetric（de Sitter) space

Euclidean action

: Metric of the maximally symmetric space

; ;

Fluctuations around the constant curvature solution
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Euclidean action

Around the background fields , we expand 

Quantum 
correction

. 

Euclidean action (2)

On-shell Lagrangian density: ;
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Expansion of 

û : Scalar component

：Vector component

：Tensor component

Expression of L2
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Lagrangian

Gauge condition

ú : Real parameter

Gauge fixing

í; ì : Constants

Lagrangian (2)

Bk

：Ghost vectorCk

：Anti ghost vector

Ghost Lagrangian

[Buchbinder, Odintsov, Shapiro, Effective action in quantum gravity (1992)]
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Lagrangian (3)

: Laplacian acting on scalarsÉ0

: Laplacian acting on transverse-traceless vectorsÉ1

É2 : Laplacian acting on transverse-traceless tensors

Lagrangian (4)

;

;
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Lagrangian (5)
Total Lagrangian:

[Buchbinder, Odintsov and Shapiro, Effective action in quantum gravity (1992)]
[Fradkin and Tseytlin, Nucl. Phys. B234, 472 (1984)]

;

:;

;

・

bk (k = 0; á á á4)

Effective action 

consists of                         and its derivatives.
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:;・

ak (k = 0; 1; 2)

: Renormalized parameterö2

Effective action (2)

consists of                         and its derivatives.

Effective action (3)

:;・ ;

ck (k = 0; á á á; 4) consists of                         and its derivatives.
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Expression of coefficients

Expression of coefficients (2)
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Expression of coefficients (3)

gravityf(R)
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Combined features in the 
primordial spectra induced 
by a sudden turn in two-field 
DBI inflation

Shuntaro Mizuno (Waseda)

JGRG24 @ Kavli IPMU                          2014. 11. 14

SM, R.Saito, D.Langlois, arXiv:1405.4257, to appear in JCAP

X.Gao, D.Langlois, SM, JCAP 1210 040

X.Gao, D.Langlois, SM, JCAP 1310 023

Features in primordial power spectrum

There might be Features at                ,                   and 
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Heavy field in inflation 
・ Conventional wisdom 

Turn in the inflaton trajectory (change of  light/heavy directions)

・ Conventional wisdom 

・ Recent progress 

- Perturbations from heavy fields (m >> H) are suppressed
- Only perturbations from  light fields are relevant to observables

features in the primordial spectrum 

Schematic picture of single sudden turn

- During the turn, the trajectory deviates from the potential minimum                          

- For soft turn, it smoothly relaxes to the minimum of the potential                           

- For sharp turn, it relaxes to the minimum  via oscillations



�930

Modeling of the turn (canonical field ) 

・ (light-heavy basis)  is useful for the sharp turn

・For a simple description, one can take

Going down  to        direction     

Potential valley is given by     

Gao, Langlois, SM, `12

Features by a soft turn 

・Effective single light field description with a smaller sound speed

Tolley & Wyman `09, 

Achucarro, Gong, Hardeman, Palma, Patil `10

Oscillatory features 

・For                      the turn is soft

・Fitting to CMB data Achucarro, Atal, Ortiz, Torrado `14
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Features by a sharp turn 

・For                      light field effective theory breaks down

Gao, Langlois, SM `12, `13  (See also Noumi, Yamaguchi `13)

・Two features in different scales

Mixing effect Resonance effect

negligible for canonical models !!

Resonance in a model with derivative couplings
Saito, Nakashima, Takamizu, Yokoyama `12, Saito, Takamizu `13

・Action

Inflaton Heavy field Coupling

with

・Evolution equation for inflaton perturbations

Mathieu equation which describes parametric resonance !!
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DBI inflation with a turning trajectory
・Model

with

Derivative coupling 

Overall angle

For consistency, we restrict            is not much smaller than 1            

μ ~ 1/ Δt

Potential                  includes a sudden turn as before.    

Efficiency of the heavy field excitation
parameters are chosen to fit observables

in the sharp turn limit                    
( coincide with the simple analytic estimation )                    
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Relation between the features                               
・Features by the resonance effect from the derivative coupling   

・Relation between the amplitudes of  two features    

Cf.  Only Gravitational coupling 

DBI inflation with a sharp turn                    

Conclusions

• Influence of heavy modes from a sharp turn 

• Possibility of multiple features in primordial spectra 

- Oscillatory feature by mixing effect     

- Oscillatory feature by resonance effect

• DBI inflation with a sharp turn (perturbative region) 

• Need to analyze the cases with small sound speed 

appears for a sharp turn, but negligible for canonical models
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Guillermo A. Mena Marugán

  IEM-CSIC     (L. Castelló Gomar,

M. Fernández-Méndez & J. Olmedo)
 JGRG24, 14 November 2014 

Cosmological Perturbations in LQC:
Mukhanov-Sasaki Equations 

The model The model 

 The most interesting case is flat topology.     
   We assume compactcompact spatial sections. 

 We consider perturbed FRW universes with 
a massive,  minimally coupled scalar field, in 
LQC. The model can generate inflation.
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Perturbations of Perturbations of compactcompact  

(flat) FRW with a scalar field(flat) FRW with a scalar field

 Uses the modes  of the Laplace-Beltrami 
operator of the FRW spatial sections.

 Perturbations have no zero modes.

 Corrections to the action are quadratic. 
•

Approximation: Truncation at quadratic perturbative order 
in the action.  (Halliwell & Hawking)

LQC approaches LQC approaches 

  In LQC, two types of approaches have been considered :

 Effective equations from the closure of the constraint algebra.

 Direct quantization:

 Dressed metric, with perturbations propagating on it as test 
fields, and no genuine perturbed quantum metric. 

 Hybrid approach.
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Approximation: Effects of quantum geometry 
are only accounted for in the background

Hybrid approachHybrid approach

 Loop quantum corrections on matter 
d.o.f. and perturbations are ignored. 

 The ambiguity in selecting a Fock representation in QFT is removed by: 

- appealing to background spatial symmetries.

  - demanding the UNITARITY of the quantum evolution.

 There is additional ambiguity in the separation of the background and the 
matter field. This introduces time-dependent canonical field transformations.

 Our proposal selects a UNIQUE canonical pair  and an EQUIVALENCE 
CLASS of invariant Fock representations for their CCR's.

Uniqueness of the Fock descriptionUniqueness of the Fock description
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  Massive scalar field     coupledMassive scalar field     coupled

  to a compact, flat FRW universe. to a compact, flat FRW universe. 

Geometry: 

 
        Hamiltonian constraint:

 

C0=−
3

4πG γ2
p

2
c

2+πϕ
2+m2

V
2ϕ2.

Classical system: FRWClassical system: FRW



V=⌈ p ⌉
3/2

=a3.{c , p }=8G /3.

 Specific LQC proposal such that it is optimal 
for numerical computation.

      Immirzi parameter.γ :

  Expand inhomogeneities in a Fourier basis of sines (-) and cosines (+),  with

  frequency

  Consider scalar perturbations, excluding zero modes

  Call              and              the (properly scaled) Fourier coefficients of the lapse

  and shift. 

  At quadratic order:

Classical system: FRW + InhomogeneitiesClassical system: FRW + Inhomogeneities

H=
N 0

16G
C 0∑N 0H 2

n ,±N 0 gn ,± H 1

n ,±k n ,±
H 1

n ,± .

gn ,± t  kn ,± t 

n

2=n⋅n .
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Mukhanov-Sasaki variables Mukhanov-Sasaki variables 

  We change variables to these gauge invariants  for 
the perturbations.

  Their field equations match criteria for the choice of a 
unique Fock quantization. 

 The change can be extended to a canonical set which 
includes the perturbative constraints. 

 The homogeneous variables get quadratic corrections. 

Mukhanov-SasakiMukhanov-Sasaki

After this canonical transformation, the Hamiltonian constraint  (at our 
perturbative order) amounts to:

The quadratic perturbative Hamiltonian is just the Mukhanov-Sasaki 
Hamiltonian in the rescaled variables. 

At this order, it is linear in the homogeneous field momentum

H=
N 0σ

2V
[C 0+∑C2

n⃗ ,± ] .

C 2

n⃗ ,±=− Θe

n⃗ ,±−Θo

n⃗ ,± πϕ .

C0=πϕ
2−H 0

2(FRW ,ϕ).

H 0

2=
3

4πG γ2
p
2
c
2−m2V 2ϕ2.
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Consider states whose evolution in the inhomogeneities and FRW 
geometry split, with positive frequency in the homogeneous sector:

The FRW state is peaked (semiclassical).

Disregard nondiagonal  elements for the FRW geometry sector in the 
constraint and call:

Born-Oppenheimer ansatzBorn-Oppenheimer ansatz

d ϕÔ=∂ϕÔ−i [ Ĥ 0 , Ô ].

Ψ=χ0(V ,ϕ)ψ({N },ϕ) , χ0(V ,ϕ)=P [exp (i∫ϕ0

ϕ

d ϕ̃ Ĥ 0(ϕ̃))] χ0(V ) .

The diagonal FRW-geometry part of the constraint gives:

The term in cyan can be ignored if             is not negligible small.

Besides, if we can neglect:    a) The second derivative of         

                                               b) The total    -derivative of                   

Born-Oppenheimer ansatzBorn-Oppenheimer ansatz

−∂ϕ
2ψ−i (2 〈 Ĥ 0〉χ−〈Θ̂o 〉χ)∂ϕ ψ=[〈Θ̂e+(Θ̂o Ĥ 0)sym 〉χ+i 〈d ϕ Ĥ 0−

1

2
dϕ Θ̂o 〉

χ ]ψ .

−i∂ϕ ψ=
〈Θ̂e+(Θ̂o Ĥ 0)sym〉χ

2 〈 Ĥ 0〉χ
ψ .

〈 Ĥ 0〉χ

ϕ
ψ ,
2 Ĥ 0−Θ̂o ,

Schrödinger-like equation.
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Effective Mukhanov-Sasaki equationsEffective Mukhanov-Sasaki equations

Starting from the  Born-Oppenheimer  form of the constraint and 

assuming a direct effective counterpart for the inhomogeneities:

where we have introduced a state-dependent conformal time.

The effective equations are of harmonic oscillator  type, with no 
dissipative term, and hyperbolic in the ultraviolet regime. 

d ηχ

2
vn⃗ ,±=−vn⃗ ,± [4π2ωn

2+〈θ̂e , (v)+θ̂o ,(v)〉χ] ,

〈θ̂e ,(v )+θ̂o ,(v )〉χ vn⃗ ,±
2 =−

〈2 Θ̂e+2(Θ̂o Ĥ 0)sym−i d ϕΘ̂o〉χ

2 〈 ̂[1 /V ]−2/3〉χ

−4π2ωn

2
vn⃗ ,±
2 −πvn⃗ ,±

2
.

ConclusionsConclusions

We have considered the hybrid quantization of a FRW universe with a 
massive scalar field perturbed at quadratic order in the action.

The model has been described in terms of Mukhanov-Sasaki variables.

A Born-Oppenheimer  ansatz leads to a Schrödinger equation for the 
inhomogeneities. 

We have derived effective Mukhanov-Sasaki equations. The ultra-
violet regime is hyperbolic.



�942

“Inflation from holography”  

Yuko Urakawa

[JGRG24(2014)111409] 



�943

Yuko Urakawa (IAR, Nagoya U.)

Inflation from holography

Y.U. & J.G.   arXiv:1303.5997,  JCAP 1307, 033

with J.Garriga, K. Skenderis, F. Vernizzi

Y.U., J.G.&K.S.   arXiv:1410.3290

arXiv:1403.5497,  JHEP 1406, 086

 in progress

Y.U., J.G.&F.V.   in progress

Inflation from holography

 Inflation is now quite compelling. 

©esa

- Can we describe inflation holographically?

If YES, what’s the prediction? 

WMAP, PLANCK,  BICEP2(?), ...

If NO, what’s the obstacle?
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UV sensitivity of inflation

time
energy
・Perturbation with controlled radiative corrections

the bulk action Sbulk with respect to the boundary metric. This differs from the notation
we are using here by a factor of i, since in the semiclassical limit WQFT ∼ −iSbulk (see
Eq. (2.6) ).

When we assume the Friedmann equation as the bulk evolution equation and neglect
the quantum corrections to the beta function, the beta function β is given in terms of the
slow-roll parameter ε as

β2 ≃ (λu)2 ≃ 2ε (4.12)

at the leading order of the deformation from the conformal field theory [26, 27]. If we use
these expressions (4.11) and (4.12), Eq. (4.10) reproduces the well-known power spectrum
obtained in a weakly-coupled inflation driven by a single scale field:

P (k) ∝ 1
ε

(
H

Mpl

)2 1
k3

(4.13)

with H ∝ 1/RdS.
Here, we have related the spectrum of ζ to the two point function of an operator

that lives at the future boundary. This is in contrast with the approach by McFadden
and Skenderis, who considered the primordial spectra of ζ in the context of the domain-
wall/cosmology correspondence [13, 14, 15, 16, 17, 18]. The present formalism can be
applied also to the domain wall space, and the distribution function of the bulk field in the
domain-wall space is still given by the same expressions. (For instance, the formula for the
vertex function given by Eqs. (2.18) and (3.10) still holds.)

4.2 The bi-spectrum

Next, we calculate the non-Gaussian spectrums of the primordial curvature perturbation
ζ(x). The bi-spectrum for ζ(x) is expressed by the cubic interaction W (3)(x1, x2, x3) as

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −
∫ 3∏

i=1

d3yi W
(2)−1(xi , yi) W (3)(y1, y2, y3) , (4.14)

where using Eqs. (2.18) and (3.11), we obtain

W (3)(x1, x2, x3) = −2Re
[
(λu)3⟨O(x1)O(x2)O(x3)⟩u

− λ3u2{δ(x1 − x2)⟨O(x2)O(x3)⟩u + (2 cyclic perms)}
]
.

(4.15)

In Eq. (4.14), we noted that W (3)(x1, x2, x3) is symmetric under an exchange of the argu-
ments x1, x2, and x3. The expression of Eq. (4.14) can be diagrammatically understood
as in Fig. 1. Performing the Fourier transformation, the bi-spectrum for ζ(k) is given by

⟨ζ(k1)ζ(k2)ζ(k3)⟩conn = (2π)3δ(k1 + k2 + k3) B (k1, k2, k3) (4.16)

– 12 –

©esa

(ex)

- High energy scale near Plank scale 
- Large excursion of the inflaton (?)

Geometry of AdS and dS
de Sitter (dS)Anti de Sitter (AdS)

Vacuum with Λ < 0 Vacuum with Λ > 0

in R2,3 (-,-, +, +, +) in R1,4  (-,+, +, +, +) SO(1,4)SO(2,3)
-X0 2-X1 2+Σ Xa2= - A2

a=2,3,4
-X0 2+X1 2+Σ Xa2= A2

a=2,3,4

z=0

z=-∞ z:const, R3

η=0

η=-∞

η:const, R3

lAdS        ildS 
z        iη
t        -iw

Boundary

ds2 = l2AdS

�
�dt2 + dx2 + dy2 + dz2

z2

�
ds2 = l2dS

�
�d�2 + dx2 + dy2 + dw2

�2

�
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dS/CFT
Strominger(01), Witten(01)

η=0

η=-∞

・CFT lives on the spacelike boundary
at the future infinity of dS.

・Wave function for bulk gravity ΨdS[g]=ZCFT

Maldacena(02)

Probability distribution PdS[g]= |ZCFT|2

Here, we focused on the simplest (but very special) QFT model with many nearly
marginal operators, namely the case where there is no operator mixing along the RG flow.
It would be very interesting to extend the analysis to the generic case. It would also be
interesting to present holographic versions of multi-field models that are already discussed
in the cosmology literature. We leave such studies for future work.
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A. Analytic continuation

We review in this appendix the analytic continuations needed using an example the case
of a massless scalar field in four (bulk) dimensions. This example was discussed in detail
in Ref. [7] so we will simply borrow the results from there. This appendix also serves
to illustrate that the analytic continuations in Ref. [7] and Ref. [39], despite apparent
differences, are equivalent.

The renormalised on-shell action for a massless scalar in EAdS is given by

SAdS ren = − 1
κ2

∫
d3k

2π3

1
2
R2

AdSk3φ0(−k)φ0(k)

= −
∫

d3k⟨O(k)O(−k)⟩φ0(−k)φ0(k) , (A.1)

where φ0 is value of φ at the conformal boundary of AdS and the source for the opera-
tor O. This is obtained by directly evaluating the on-shell action and using holographic
renormalisation [64] (see Eq. (5.4) of Ref. [7]). Here (as in the main text) we adopt the
“supergravity normalisation” where there is an overall factor of 1/κ2 in front of the action.
The 2-point function of dual operator is then given by

⟨O(k)O(−k)⟩ = − δ2SAdS ren

δφ0(k)δφ0(−k)
=

1
2

R2
AdS

κ2
k3 . (A.2)

A direct evaluation of the on-shell action in de Sitter (again normalised with an overall
1/κ2) yields [7]

Re(iSdS) =
1
κ2

∫
d3k

2π3

1
2
R2

dSk3φ0(−k)φ0(k) . (A.3)
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- Euclidean AdS

Here, we focused on the simplest (but very special) QFT model with many nearly
marginal operators, namely the case where there is no operator mixing along the RG flow.
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interesting to present holographic versions of multi-field models that are already discussed
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A. Analytic continuation

We review in this appendix the analytic continuations needed using an example the case
of a massless scalar field in four (bulk) dimensions. This example was discussed in detail
in Ref. [7] so we will simply borrow the results from there. This appendix also serves
to illustrate that the analytic continuations in Ref. [7] and Ref. [39], despite apparent
differences, are equivalent.

The renormalised on-shell action for a massless scalar in EAdS is given by

SAdS ren = − 1
κ2

∫
d3k

2π3

1
2
R2

AdSk3φ0(−k)φ0(k)

= −
∫

d3k⟨O(k)O(−k)⟩φ0(−k)φ0(k) , (A.1)

where φ0 is value of φ at the conformal boundary of AdS and the source for the opera-
tor O. This is obtained by directly evaluating the on-shell action and using holographic
renormalisation [64] (see Eq. (5.4) of Ref. [7]). Here (as in the main text) we adopt the
“supergravity normalisation” where there is an overall factor of 1/κ2 in front of the action.
The 2-point function of dual operator is then given by

⟨O(k)O(−k)⟩ = − δ2SAdS ren

δφ0(k)δφ0(−k)
=

1
2

R2
AdS

κ2
k3 . (A.2)

A direct evaluation of the on-shell action in de Sitter (again normalised with an overall
1/κ2) yields [7]

Re(iSdS) =
1
κ2

∫
d3k

2π3

1
2
R2

dSk3φ0(−k)φ0(k) . (A.3)
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Z ~ e-S

- dS

This is related to (A.1) by

RAdS = −iRdS . (A.4)

Then one can compute the bulk 2-point function using the wave function ψbulk[φ0] =
exp(iSdS) to obtain

⟨φ(k)φ(−k)⟩ = − 1
2Re⟨O(k)O(−k)⟩

∣∣∣
RAdS=−iRdS

=
κ2

R2
dS

1
k3

. (A.5)

In Ref. [39] the bulk in-in correlators were computed using the in-in formalism and
compared with the corresponding correlators in the dual QFT. In this section, the AdS
and dS radii were set to one and the following holographic formula was obtained

⟨φ(p)φ(−p)⟩ = − 1
2Im⟨O(−ip)O(ip)⟩

∣∣∣
κ2→−κ2

= κ2 1
Im(−ip)3

= κ2 1
p3

, (A.6)

which indeed agrees with Eq. (A.5) upon setting RdS = 1 there.
The apparent difference between the two prescriptions is due to fact that the three

dimensional correlator in Eq. (A.2) is on R3 with metric ds2 = R2
AdSdxidxi, while that in

Eq. (A.6) is on ds2 = dxidxi. This implies that p = RAdSk and under the continuation in
Eq. (A.4), p → −ip. This then converts the real part in Eq. (A.5) to the imaginary part
in Eq. (A.6). Once we set RdS = 1 the overall minus in the correlator due to the overall
factor of R2

dS in Eq. (A.2) is now accounted for by taking κ2 → −κ2.
In this example, the entire effect of the analytic continuation is to produce an overall

minus sign. In more general cases the action of the analytic continuation is more non-trivial
and produces additional signs, see Ref. [48] for an example. If one uses the conventions of
Ref. [7] one must keep explicitly the factors of RdS in order to do correctly the analytic
continuation. In the cases we discuss in this paper where we only compute the leading
order terms (in the deformation parameters) the effect of the analytic continuation is to
only produce an overall sign.

Finally, we note that the analytically continued correlators that enter the holographic
formulae of the power spectrum also have a meaning in the original QFT− without any
analytic continuation: they are related with the spectral density associated with the 2-point
function of the energy momentum tensor [48].

B. Inverting W (2)
ab

In this appendix, we derive the power spectra for the adiabatic and entropy perturbations
by computing the inverse matrix Ŵ (2)−1

ab (k). For simplicity, we consider the two field case
where the structure constant Cabc satisfies Eq. (3.17) and hence the RG equation becomes

– 21 –

Analytic cont. connects dual boundaries of dS and AdS

Challenges of dS/CFT

Dual boundary theories to dS are non-unitary. 

・Poor understanding on analytic continuation. 

・Holographic direction is time like.

・Lack of a concrete example.

Extendable to a non-perturbative example in 1/N?

Good property?

Λ → - Λ N → - N

First concrete example of dS/CFT
Anninos, Hartman, &Strominger(11)

Vasiliev gravity in dS4 Sp(N) CFT3 living at J  +
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Inflation

de Sitter space

(ex)mass

Deformed CFT

CFT on R3

4D hyperboloid:

in 5D flat spacetime

ds2
4 = {�µ�XµX� = H�2}

SO(1,4)

Breaking symmetry

・Poincare T.

・Dilatation
・Special C.T.

Breaking dS sym. Breaking conf. sym.

Cosmological const. Λ
      + inflaton φ

 CFT
   + φO

Inflation 
= dS + modulation

QFT 

Holographic inflation

CFT+ deformation

Ψbulk[φ]  =   ZQFT [g]

4D bulk 3D boundary

ZQFT =
�

D� exp
�
�SCFT �

�
gO[�]

�

deformation

Necessary building blocks 
- φ& g relation?

- t & µ relation?{
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Holographic inflation: Boundary to Bulk   Consistency check
Single-field slow-roll inflation
・ Time evolution of φ, ζ ← Solving RG flow in boundary

Bzowski et al.(12),  Garriga & Y.U. (14),+

・ Conservation of ζ at large scales if a(t) ∝ µC    C : const
Garriga & Y.U. (14, in progress)

・ Consistency relation     fNL~ (1-ns)
Bzowski et al.(12), Schalm et al. (12)

Multi-field slow-roll inflation

Consistent with bulk prediction via CPT

・Time evolution of φ, ζ, δs ← Solving RG flow in boundary
Consistent with bulk prediction via δN formalism

Garriga, Skenderis, & Y.U. (14), Garriga, Y.U., & Vernizzi(in progress)

Summary of the status (’14)

Background evolution
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Reconstruction of potential
RG equation

dg

d lnµ
= �g +

C̃

2
g2 + O(g3)�̈ + 3H�̇ +

�V (�)
��

= 0

d�

d ln a
= � 2

�2

1
W (�)

�W (�)
��

V (�) =
8
�2

�
3
2
W 2(�)� 1

�2

�
�W (�)

��

�2
�

KG equation

dlna=C dln µ
g(µ, x) = ��(t(µ), x)

φ

V(φ)

ηV<0

ηV>0

μ(t)~p

Klebanov et al.(11)

Primordial perturbations
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ζ Correlators
in cosmology (bulk)

x1
x2 xn flat space R=0

in boundary QFT

� = �H

�̇
�� +

�2

4

�
H

�̇

�2

��2 + · · · at large scales

where R is the curvature perturbation. In this paper, the tensor perturbation will be

completely neglected. As in the standard CPT, we refer to this gauge as the uniform field

gauge. By definition, the curvature perturbation in the uniform field gauge gives the gauge

invariant perturbation ζ, i.e.,

ζ(t, x) = R(t, x)
∣

∣

δg=0
. (4.4)

In the other gauge, we choose the slicing and the spatial coordinates, requesting

R(t, x) = 0 (4.5)

and

hij = a2(t)δij , (4.6)

respectively. We refer to this gauge as the flat gauge. In the flat gauge, the scalar per-

turbation is described solely by the fluctuation of the coupling constant δg(t, x). In the

following, we denote the fluctuation δg(t, x) in the gauge R(t, x) = 0 as

δgf (t, x) ≡ δg(t, x)
∣

∣

R=0
= δφ(t, x)

∣

∣

R=0
, (4.7)

which is also gauge invariant.

In the standard cosmological perturbation theory, performing the gauge transforma-

tion, we find that the curvature perturbation in the uniform field gauge, ζ, is related to

the fluctuation of the inflaton in the flat gauge δgf as (see e.g. [12, 34])

ζ = −
H

φ̇
δgf +

ε2
4

(

H

φ̇

)2

δg2f + · · · . (4.8)

Here we abbreviated the sub-leading terms at large scales, as well as higher orders in δgf ,

and we used the horizon flow functions, defined as

εn ≡
1

εn−1

d

d ln a
εn−1 (4.9)

for n ≥ 1, with

ε1 ≡
1

2

φ̇2

H2
. (4.10)

Notice that for the scalar field with the non-canonical kinetic term, our ε1 does not coincide

with the standard definition of the horizon flow functions, given by ε1 = −Ḣ/H2.

4.2 Renormalization and counterterms

To derive finite correlation functions, we need to perform renormalization. The studies

based on the holographic renormalization provide the necessary counterterms and renor-

malized action in the bulk (see, for instance, Refs. [35, 36, 37, 38, 39]). Meanwhile, to derive

the renormalized correlation functions based on the boundary computation, we need to in-

troduce the counterterms and determine the renormalized action in the boundary theory.

One may expect that the introduction of the counterterms will alter the boundary theory

through the contributions of the following three different types:

– 9 –

�2 �
d ln �2

d ln a

�O(x1)O(x2) · · · O(xn)�h��(x1)��(x2) · · · ��(xn)i

Ψbulk[φ]  =   ZQFT [g]
J.G.&Y.U.(13)

��(x1)�(x2) · · · �(xn)�

Conservation of ζHere, we note that the n-point function of ζ is described solely in terms of the vertex

functions W (m) with m ≤ n. For instance, as is shown in Ref. [18], the power spectrum of

ζ is given by

⟨ζ(x1)ζ(x2)⟩conn = W (2)−1(x1, x2) , (5.2)

with the inverse matrix of W (2)(x1, x2), and the bi-spectrum is given by

⟨ζ(x1)ζ(x2)ζ(x3)⟩conn = −

∫ 3
∏

i=1

ddyiW
(2)−1(xi ,yi)W

(3)(y1, y2, y3) . (5.3)

To make the power spectrum of ζ conserved, the vertex function W (2) should be indepen-

dent of µ. Given that the power spectrum is conserved, to further make the bi-spectrum of

ζ conserved, the vertex function W (3) should be also independent of µ. Thus, to make all

the m-point functions of ζ with m ≤ n conserved, the vertex functions W (m) with m ≤ n

should be totally independent of µ. Therefore, in the following, we study the µ dependence

of the vertex function W (n).

In this subsection, we study whether the correlators of ζ become µ independent or not

under the following two assumptions:

• The gauge invariant variables ζ and δgf are locally related schematically as

ζ(x) = ζ[δgf (x)] . (5.4)

• The dual boundary theory can be renormalized by using the wave function renormal-

ization Z(µ) as

Z−n/2(µ)⟨O(x1) · · · O(xn)⟩µ = Z−n/2(µ0)⟨O(x1) · · · O(xn)⟩µ0 . (5.5)

The first assumption will hold generally at large scales (see for instance Eq. (4.8)), unless a

non-local operator, which typically gives rise to the singular pole in the limit k → 0, shows

up in the relation between ζ and δgf .

In Sec. 4.3, using Eq. (5.4), we derived the vertex functionW (n) as in Eq. (4.23). First,

we consider the power spectrum, given by the inverse matrix of

W (2)(x1, x2) = −2Re
[

B2
1(µ)⟨O(x1)O(x2)⟩µ

]

. (5.6)

Inserting Eq. (5.5) into Eq. (5.6), we find that to make W (2) independent of µ, the wave
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Conservation

The vertex function W (n) with n ≥ 3 can be obtained similarly and we find that W (n) is

given in the form

W (n)(x1, · · · , xn)

= −2Re
[

Bn
1 ⟨O(x1) · · · O(xn)⟩µ

+B2B
n−2
1 {δ(x1 − x2)⟨O(x2) · · · O(xn)⟩µ + (cyclic perms)}+ · · ·

+

[n/2]
∑

m=1

BmBn−m
{

δ(x1 − x2) · · · δ(xm−1 − xm)δ(xm+1 − xm+2) · · · δ(xn−1 − xn)

× ⟨O(xm)O(xm+1)⟩µ + (cyclic perms)
}

]

, (4.23)

where [x] denotes the Gauss’s floor function. Here, the delta functions appeared by taking

the derivative of B(x) with respect to ζ(x), for instance, as

δB(x1)

δζ(x2)

∣

∣

∣

∣

ζ=0

= δ(x1 − x2)B2(µ) .

In Eq. (4.23), we again eliminated the ultralocal term, using the contribution from the n-th

term in Ssource[ζ]. Once the relation between δφ and ζ is given, using Eq. (4.23), we can

express the vertex function W (n) by Bn and the correlators of O in the flat space. Namely,

when we use the relation (4.8), we can express Bn as

B1 =
φ̇

H
=

dφ

d ln a
, (4.24)

B2 = −
φ̇

H

ε2
2

= −
dB1

d lna
= −

d2φ

d lna2
. (4.25)

Thus, the relation between the vertex functionW (n) and the correlators of O is specified by

invoking the relation between ζ and δgf , derived by performing the gauge transformation

in the cosmological perturbation theory. In Appendix B, we seek for an alternative way

to relate W (n) to the correlators of O. The ambiguity discussed in Appendix B.2 can be

eliminated by using the relation (4.8).

5. Conservation of the curvature perturbation ζ

In this section, after we overview the discussion about the conservation of the curvature

perturbation ζ based on the standard CPT, we address the conservation of the curvature

perturbation from holography.

5.1 Conservation in the standard cosmological perturbation theory

In cosmological perturbation theory (CPT) the conservation of the curvature perturbation

ζ holds in the large scale limit for the adiabatic time evolution, when the matter content

is dominated by a single species [40, 41, 42, 43, 44]. This is useful, for instance, in order

to evolve the predicted distribution function for ζ through the process of reheating, the
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Gauge transformation

RG flow

When the condition (5.7) is fulfilled, the first term in the right-hand side of Eq. (5.8)

becomes µ independent. In addition, to make the terms in the third line of Eq. (5.8)

independent of µ, B2(µ) should be given as

B2(µ) = s2B1(µ) (5.9)

with a constant parameter s2. Note that using Eq. (4.25), we can express the parameter

s2 as

s2 = −
d

d lna
lnB1 . (5.10)

Repeating a similar argument, we find that only if the condition (5.7) is satisfied andBm(µ)

with m ≤ n is given as

Bm(µ) = smB1(µ) (5.11)

with a constant parameter sm, the vertex function W (n) becomes independent of µ, imply-

ing the conservation of ζ.

Next, we examine whether the conditions (5.7) and (5.11) can be fulfilled, solving the

RG flow explicitly. In Appendix A, following Ref. [27], we computed the renormalized

correlators of O and then the wave function renormalization is given as

√

Z(µ) = µ−λ

[

1 +
(µ

p

)λ
]2

= 4p−λ β(p)

β(µ)
. (5.12)

(The wave function renormalization is discussed from a different perspective in Ref. [51].)

On the second equality, we noted that using Eqs. (3.15) and (3.18), the beta function is

given as

β(µ) =
4

[

1 +
(

µ
p

)λ]2

(

µ

p

)λ

β(p) =
λ

1 +
(

µ
p

)λ
g(µ) , (5.13)

with

β(p) ≡
λ

2
g(p) . (5.14)

Using Eq. (5.12), we find that the condition (5.7) implies

B1(µ) = Cβ(µ) , (5.15)

where C is a constant parameter. When we use the relation (4.8) derived by performing

the gauge transformation, the µ dependent functions B1 and B2 are given as in Eqs. (4.24)

and (4.25). Using Eqs. (3.15), (4.24), and (5.15), we find that the renormalization scale µ

should be related to the time coordinate in cosmology as

ln(µ/µ0) = C ln(a/a0) , (5.16)
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Identification between t & µ C: const
C=1+O(ε)

B1(µ) = �⌅�⇤

⌅⇥

����
�=0

J.G.&Y.U.(14)
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Conserved Power spectrum

cf Agrees with the result of Bzowski+(12) in μ → ∞
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1.Amplitude

2. Spectral index
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Evolution of “inflaton”

IR ~ Early time
µ ~a

λ <0

λ >0
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~ φ

UV ~ Late time

φ

V(φ)
N.B. ns - 1=-6ε+2η

overdamping 
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Summary of the status (’14)
Holographic inflation: Boundary to Bulk

Single-field slow-roll inflation
・ Time evolution of φ, ζ ← Solving RG flow in boundary

Bzowski et al.(12),  Garriga & Y.U. (14),+

・ Conservation of ζ at large scales if a(t) ∝ µC    C : const
Garriga & Y.U. (14, in progress)

・ Consistency relation     fNL~ (1-ns)
Bzowski et al.(12), Schalm et al. (12)

Multi-field slow-roll inflation

Consistent with bulk prediction via CPT

・Time evolution of φ, ζ, δs ← Solving RG flow in boundary
Consistent with bulk prediction via δN formalism

Garriga, Skenderis, & Y.U. (14), Garriga, Y.U., & Vernizzi(in progress)




