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Programme: Day 4
Thursday 13 November 2014

Morning 1 [Chair: Jun’ichi Yokoyama]

9:30 Francois Bouchet (IAP, Planck) [Invited]
            “Latest results from the Planck collaboration” [JGRG24(2014)111301]

10:15 Daisuke Yamauchi (RESCEU) 
            “Constraining primordial non-Gaussianity via multi-tracer technique with Euclid and 
              SKA” [JGRG24(2014)111302]

10:30 Ichihiko Hashimoto (YITP, Kyoto)
            “Detecting primordial non-Gaussianity from the three-point statistics of halo and  
              weak lensing fields” [JGRG24(2014)111303]
            
10:45-11:00  coffee break

Morning 2 [Chair: Yasusada Nambu]

11:00 Yuki Watanabe (RESCEU) 
            “Self-unitarization of New Higgs Inflation” [JGRG24(2014)111304]

11:15 Naoyuki Takeda (ICRR) 
            “No quasi-stable scalaron lump forms after R2 inflation” [JGRG24(2014)111305]

11:30 Masaki Yamada (ICRR) 
            “Gravitational waves as a probe of supersymmetric scale” [JGRG24(2014)111306]

11:45 Tomohiro Nakama (RESCEU) 
            “Investigating tensor perturbations on small scales from their second-order effects to 
              generate scalar perturbations” [JGRG24(2014)111307]

12:00 Laura Castello Gomar (CSIC) 
            “A unique Fock quantization for scalar fields in cosmologies with signature change”
          [JGRG24(2014)111308]

12:15 Sakine Nishi (Rikkyo) 
            “Generalized Galilean Genesis” [JGRG24(2014)111309]

12:30 - 14:00  lunch & poster view
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Afternoon 1 [Chair: Masahide Yamaguchi]

14:00 Leonardo Senatore (Stanford) [Invited]
            “The Effective Field Theory of Cosmological Large Scale Structures”
             [JGRG24(2014)111310]

14:45 Ippei Obata (Kyoto) 
            “Chromo - Multi Natural Inflation” [JGRG24(2014)111311]

15:00  Guillem Domenech (Kyoto) 
            “Conformal frame dependence of Inflation – scalar field with an exponential 
              potential –” [JGRG24(2014)111312]

15:15  Rajeev Kumar Jain (CP3) 
            “Non-gaussian imprints of primordial magnetic fields from inflation”
             [JGRG24(2014)111313]

15:30-16:00  coffee break & poster view

Afternoon 2 [Chair: Takahiro Tanaka]

16:00  Tomohiro Fujita (Kavli IPMU) 
            “Can a Spectator Scalar Field Enhance Inflationary Tensor Modes?”
             [JGRG24(2014)111314]

16:15 Taro Kunimitsu (RESCEU) 
            “Large tensor mode and sub-Planckian excursion in generalized G-inflation”
             [JGRG24(2014)111315]

16:30 Keisuke Harigaya (Kavli IPMU) 
            “Lower bound on the tensor-to-scalar ratio in a nearly quadratic chaotic inflation 
              model in supergravity” [JGRG24(2014)111316]

16:45 Kohei Kamada (EPFL) 
            “Cosmic string in the delayed scaling scenario and CMB” [JGRG24(2014)111317]

17:00 Kohji Yajima (Rikkyo) 
            “Gravitational waves from slow-roll inflation in Lorentz-violating Weyl gravity”
             [JGRG24(2014)111318]

17:15 Tomohiro Harada (Rikkyo) 
           “Black holes as particle accelerators: a brief review” [JGRG24(2014)111319]

17:30 - 18:00  poster view
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“Latest results from the Planck collaboration”  

Francois Bouchet [Invited]

[JGRG24(2014)111301] 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François)R.)Bouchet)
Ins3tut)d’Astrophysique)de)Paris)

On)behalf)of)the)Planck)collabora3on)
))

2013 Results & since and next 

 
50 000 electronic components 
36 000 l  4He 

12 000 l  3He 
11 400 documents 
20 years between the first 
project and first results (2013) 
 
 6c per European per year 
 16 countries 
 400 researchers among 1000 

4,2$m$

4,2$m$
4,2$m$

2000 Kg 
1600 W consumption 
2 instruments  - HFI & LFI 
15 months nominal survey+4 
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François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)
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Page 5 

The Planck sky 

François R. Bouchet,  "Planck Overview & updates" 

Planck coming out of March 21st 2013  

Page 6 

The cosmic microwave background 
Temperature anisotropies 

François R. Bouchet,  "Planck Overview & updates" 
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Page 7 

The Planck power spectrum of 
Temperature anisotropies 

François R. Bouchet,  "Planck Overview & updates" 

Page 8 

Projected mass map 

François R. Bouchet,  "Planck Overview & updates" 

JGRG24, IPMU, Nov 13th 2014 
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Page 9 

The lensing potential spectrum 

François R. Bouchet,  "Planck Overview & updates" 

Page 10 

Base ΛCDM model 6 parameters 

François R. Bouchet,  "Planck Overview & updates" 

– 
– 
– 

– 

– 

– 
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Page 11 

Theory confronts data 

François R. Bouchet,  "Planck Overview & updates" 

Page 12 

Zooming on the very largest scales, 
l<50... 

François R. Bouchet,  "Planck Overview & updates" 
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Page 15 

The 2013 CMB temperature landscape 

François R. Bouchet,  "Planck Overview & updates" 

Page 16 

BAO  acoustic-scale distance ratio 

François R. Bouchet,  "Planck Overview & updates" 

6dF 
WiggleZ 

SDSS 
-DR7  
2010 

BOSS 
-DR9 

 

SDSS 
-DR7 
2012 
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Page 17 

Base ΛCDM model 6 parameters 

François R. Bouchet,  "Planck Overview & updates" 

Summary$on$base$0lted$LCDM$

! Base$LCDM$is$a$very$good$fit$to$Planck$T$spectrum,$
with$parameters$(ns,$Ωb,$Ωc,$θ/H0)$accurately$
determined$by$Planck$alone,$with$the$excep0on$of$
the$(As,$τ)$degeneracy$which$can$be$broken$by$adding$
WP.$$

! The$model$is$fully$consistent$with$two$other$Planck$
observables,$Lensing$and$Polariza0on$spectra.$

! This$model$is$also$fully$consistent$with$BAO,$and$
show$some$tension$with$direct$H0$determina0on.$
The$situa0on$regarding$Ωm$from$SN$was$unclear$at$
0me$of$release$(march$13,$but$JLA$is$out$now).$

! $CMB+LSS$now$exclude$scale$invariance$(ns=1)$at$∼7σ$
$ François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)
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JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Page 20 

Beyond the standard model 

– 
–   
– 
– 
– 
– 

no compelling evidence for any of these 7 ext. !   

François R. Bouchet,  "Planck Overview & updates" 

+)no)compelling)evidence)either)for

infla3on)(flocal=2.7±5.8,)))))))
fequil)=Y42±75,)))fortho=Y25±39)68%CL))
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Constraint$on$representa0ve$Infla0on$models$

François)R.)Bouchet,))"Planck)Overview)&)updates")

" Exponen0al$poten0al$models(power^law$inf.),$simplest$hybrid$infla0onary$models$(SB$SUSY),$$
monomial$poten0al$models$of$degree$n$>2$do$not$provide$a$good$fit$to$the$data.$$

(Higgs 1) 

Chao0c$

68% & 95%  
CL contours 

$$$$$$$$$$$$$$V*=(1.9$x$1016$GeV)4$$(r/0.12)$$and$$r$<$0.11$@$95%$CL$

JGRG24,)IPMU,)Nov)13th)2014)

2013$Status$of$direct$B^modes$searches$

François)R.)Bouchet,))"Planck)Overview)&)updates")

ar
X

iv
:1

31
0.

14
22

v2
 

Bicep1- 3 years (2013.10) 
r < 0.70 at 95% confidence level 

 
So Planck indirect constraints  

(r <0.11) was quite meaningful.  

JGRG24,)IPMU,)Nov)13th)2014)
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Since$then…$
(>march$2013)$

Encyclopædia$Infla0onaris$$

François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)
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Page 26 

Tension with SNLS results… 

François R. Bouchet,  "Planck Overview & updates" 

Page 27 

Astroph1401.4064 Betoule et al. (JLA)  

Planck versus JLA (SNLS +SDSS) 

François R. Bouchet,  "Planck Overview & updates" 
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Page 28 

Sound Horizon 

François R. Bouchet,  "Planck Overview & updates" 

BICEP2,$on$March$17th$2014$

François)R.)Bouchet,))"Planck)Overview)&)updates")

NB: using 100 X 150 GHz, Dust spectral index disfavoured at 2.2 sigma level… 

JGRG24,)IPMU,)Nov)13th)2014)
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Adding$Bicep2$as$stated$in$their$paper…$

François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)

NB: the PRL disfavours a more mundane interpretation, i.e. 100% dust, with 
100X150GHz at only 1.7sig! (“The preferred whole sky dust spectrum from Planck [94], 
… , is also disfavored as an explanation for the excess BB(PTE=0.09,1.7σ)”) 
 

5$Planck$papers$on$dust$polarisa0on…$

!  In$march$2013,$we$did$not$deliver$polarisa0on$data,$nor$performed$
quan0ta0ve$analyses$of$CMB$polarisa0on,$due$to$concerns$on$that$data$
quality,$preven0ng$its$general$use.$

!  We$s0ll$put$out$preliminary$results$at$ESLAB$and$in$the$papers$which$
appeared$in$May$5th$on$what$we$believe$can$be$already$extracted$safely$
from$the$2013$data$(mostly$at$353GHz),$i.e.$on$regions$of$the$sky$where$
the$signal$is$strong$enough$for$Galac0c$studies,$purposely$excluding$the$
(more$demanding)$high$Galac0c$sky.$
–  Planck'intermediate'results.'XIX.'An'overview'of'the'polarized'thermal'emission'from'

Galac<c'dust'
–  Planck'intermediate'results.'XX.'Comparison'of'polarized'thermal'emission'from'Galac<c'

dust'with'simula<ons'of'MHD'turbulence'
–  Planck'intermediate'results.'XX.'Comparison'of'polarized'thermal'emission'from'Galac<c'

dust'with'simula<ons'of'MHD'turbulence'
–  Planck'intermediate'results.'XXII.'Frequency'dependence'of'thermal'emission'from'

Galac<c'dust'in'intensity'and'polariza<on'

!  We$have$kept$working$on$"the)sta3s3cal)characterisa3on)of)dust)
polarisa3on)at)mid&high)Galac3c)la3tude")which'recently'appeared'$
(Sept$22nd)$on$astroph.$The$results$are$based$on$the$2014$data$which$we$
plan$to$release$around$the$end$of$the$year.$$$

François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)
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JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Dust$polarisa0on$at$high$Gal.$la0tude$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

fsky=0.3 

CO mask fsky=0.2 

From light blue to red, corresponds to 0.7-0.6-0.5(yellow)-0.4-0.3 

0.4 

0.5 0.6 
0.7 
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l(l+1)C(l)$in$EE$@$353$GHz$vs$fsky$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Null test (noise) Sum (dust) 

Syst. estimate (EtoP dust leakage) 

~same C(l) exponent (-2.4) than for Intensity 
EE 

TT-based CMB EE expectation 

Dust$B$modes$@$357$GHz$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

BB 

r=0.2 
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Dust$polarisa0on$mean$proper0es$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Amp  α Ι1.9 

βdust=1.59 Tdust =19.6K  

l-dependence 

Relative Amplitudes 

$353$patches$of$400deg2$(at$Nside=8$centers)$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

1)  Lowest intensity regions (I353˜0.04) have DBB ~7.5 µK2 

2)  Mean law (DBB α I1.9) well obeyed 
3)  Intrinsic dispersion larger than expected 
     sample variance for a  
     stationary Gaussian field  

(similar figure in EE) 
0.04 

7.5 µK2 
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$353$patches$of$400degˆ2$(around$Nside=8)$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

1)  Lowest intensity regions (˜0.04) have DˆBB ~7.5 mKˆ2 
2)  Mean law (\propto Iˆ{1.9} well obeyed 
3)  Larger than Gaussian dispersion (blue) 

+SED " 

Dust$extrapola0on$at$150GHz$in$unit$of$r$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")
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But$uncertain0es$are$non$negligible$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

(Noise, spectral 
Extrapolation) 

Best$es0mate$in$B2$field$wo$data$access$

! Just$the$mean$value$of$the$big$pixels$in$the$B2$field$
gives$rd=0.207Merre$valeurs$numeriques$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Does not (cannot) account for B2 individual mode filtering 
# MOU signed in July to get r likelihood from P X B2  
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Consequences$

! There$appears$to$be$no$field$to$measure$the$primordial$B$
modes$at$the$degree$scale$(in$the$recombina0on$bump)$
which$would$be$large$enough$and$clean$enough$for$the$
dust$contribu0on$to$be$neglected.$

! The$best$30%$of$the$sky$have$a$dust$PS$TT$amplitude$only$
1.5$larger$than$the$BICEP2$field$(covering$˜1%$of$the$sky).$

! Conversely,$there$are$fields$with$I353$as$low$as$0.038$$
MJy/sr$thus$berer$by$about$a$factor$of$2$of$the$(more$
probable)$B2$value.$

! The'dispersion'is'large'enough'to'remove'the'possibility'
to'choose'fields'with'only'I353.''

"$The$Planck$collabora0on$has$provided$a$“treasure$map",$
i.e.$a$sky$map$of$the$most$promising$fields$for$degree$scale$
work,$awai0ng$for$the$full$“2014”$release.$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Compara0ve$Informa0on$in$T$&$P$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

Cosmic Variance 
Limited expnt: 
(till l=2500) on 
LCDM 
 
TE or EE  
independently  
Constrain 
parameters 
Better than TT 
(up to 2.8 times 
better) 
 
Yes we can 
(learn more out 
of the CMB $) 
 
NB: large scale 
EE is crucial  
(30 < l < 130) 
 
Galli et al. 
Archiv/1403.5271 
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Expecta0on$of$T$vs$P$in'Planck''

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

 
Note that  
TE alone 
Constrains 
OmC  
Even  
Better  
Than TT 
 
The joint 
brings at  
best ~35% 
Improvement 
 
Galli et al. 
Archiv / 
1403.5271 
 

Minimum$detectable$fNL$versus$lmax$

"PostYPlanck)Cosmology")summer)school,)Les)Houches)François)R.)Bouchet,))"The)Planck)mission",)08Y11/07/2013) 50)

Ya
da

v'
&
'W

an
de
lt'
20

10
'1
00

6.
02

75
v3
'

(40µK.arcmin,'5’)'

ΔfNL
local~1$is$the$limit$from$the$CMB;$Cramer^Rao$for$Planck$~3!$$

WMAP7  
ΔfNL

loc~21 
 

(1.4µK.arcmin,'4’)'

Planck13 
ΔfNL

loc~5.8 
 

Planck13 
ΔfNL

equ~75 
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More$modes$helps$$$

500 1000 1500 2000 2500

`max

�
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0
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0
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c
a
l

N
L

WMAP                                Planck 
 

Limiting the analysis to 
large scales (low l), we 
make contact with 
WMAP9  (which gave               
           fNL

local=37.2 ± 20) 
 
 
Planck now rules out 
the WMAP central 
value by ~6 sigma. 
(by using 10 times more 
modes) 
 
 
 
NB: this figure is before  
subtraction of  
ISW X lensing bias, 
which is clearly visible 
 
 
 
 

François)R.)Bouchet,))"The)Planck)mission",)08Y11/07/2013) "PostYPlanck)Cosmology")summer)school,)Les)Houches) 51)

“2014”$Release$preview$

! The 2013 main unidentified HFI systematics have 
now been identified:
–  Very long time constants (VLTC between 1 and 10 seconds) with 

very low amplitudes.
–  These VLTC do shift the dipoles (by a few arc min) and create a 

leakage of the solar dipole into the orbital dipole (& TF variation).
–  The current accounting of this allows to calibrate HFI on the 

orbital dipole with a ~0.1% accuracy! (both intra and inter-
bands). This matches LFI. Discrepancy / WMAP understood (inc. 
0.6% wrt WMAP dipole).

–  The low-ell EE systematics has been reduced by a factor larger 
than a 100. 

–  We have also improved the leakage correction and the removal 
of glitch tails (lower 1/f noise).

! Does not mean though that there are no troublesome 
residuals on some (mostly large) scales. Debating how 
to deal with that at best (and in any case, 2015 legacy)

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")
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! Add$IAP$mee0ng$affiche$(e$mail)$
! Get$inspira0on$from$Core$+$tomos$2$slides$

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")

François)R.)Bouchet,))"Planck)Overview)&)updates") JGRG24,)IPMU,)Nov)13th)2014)
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Revealing$
secrets$of$

the$
Universe$$$

Following$the$
Sampan,$BPOL$
and$$Core$
earlier$

proposals,$we$
proposed$

PRISM$as$an$L3$
mission$to$ESA;$
eLisa$won$the$

selec0on$
(but$we$were$
encouraged$to$
apply$for$an$M)$$

CMB$observa0ons$from$space$in$Europe$

!  ESA$M4$call$for$a$medium$mission.$Proposal$due$Jan.$15th$2015.$Budget$450$M€$
(ESA)$+$Na0onal$contribu0ons$for$the$science$payload.$Launch$2025.$

!  Strong$interest$and$support$in$European$countries$for$such$a$future$CMB$mission,$
e.g.$top$in$France$prospec0ve$plan$for$space$science.$

!  COrE+$minimal$concept$
–  CMB'BZmodes'+'lensing'science'for'cosmology'and'fundamental'physics.'
–  6’'resolu<on,'2.5'μK.'arcmin'CMB'polarisa<on'sensi<vity'a]er'foreground'subtrac<on.'≈'1.3m'

aperture'telescope'
–  Many'bands'(more'than'15)'for'component'separa<on'covering'60Z600'GHz;'ISM'physics.'
–  budget:'≈550'M€'(450'M€'ESA'+'100'M€'European'countries)'

!  COrE+$preferred$concept$
–  NearZul<mate'CMB'polarisa<on'space'mission'
–  Extensive'astrophysical'cosmology'(clusters)'and'extragalac<c'astrophysics;'superior'ISM'

science'(with'full'sky'resolu<on'bridging'with'Herschel'in'small'fields,'at'highest'frequencies)'
–  ≈3'to'4''resolu<on,'≈1.5'μK.'arcmin'CMB'polarisa<on'sensi<vity.'≈'2m'aperture'telescope.'
–  budget:'≈700'to'750'M€'with'external'partners.'

JGRG24,)IPMU,)Nov)13th)2014)François)R.)Bouchet,))"Planck)Overview)&)updates")
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“Constraining primordial non-Gaussianity via multi-tracer 

technique with Euclid and SKA”  

Daisuke Yamauchi

[JGRG24(2014)111302] 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Constraining 
primordial non-Gaussianity
via multitracer technique 
with Euclid and SKA

YAMAUCHI, Daisuke

(RESCEU, U. Tokyo)

DY, K. Takahashi, M. Oguri, PRD90 083520 ,1407.5453

2014/11/13 JGRG24@IPMU

What’s Primordial non-Gaussianity?

¾ Non-Gaussian initial fluctuations arise in several scenarios 
of inflation.

• WMAP : σ(fNL) < 100     [Bennet+, 2013]

• Planck  : σ(fNL) < 10       [Planck collaboration, 2013]

• Ideal     : σ(fNL) ~ 3         [Komatsu+Spergel, 2001]

9 Even the simplest model predicts small but non-vanishing fNL of O(0.01).

¾ PNG has primarily been constrained from the bispectrum in 
CMB temperature fluctuations.

Prof. Bouchet’s review
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Main Message

We can test the extremely small primordial 
non-Gaussianity at the level of σ(fNL)=O(0.1) 
with Euclid and Square Kilometre Array (SKA).

Euclid Square Kilometre Array

PNG in Large Scale Structure
¾ Luminous sources such as galaxies must be most obvious tracers of 

the large scale structure.

¾ The galaxy density contrast δgal is linearly related to the underlying 
dark matter density contrast δDM though the bias bh:

9 In the Gaussian case, the bias is scale-invariant : bh=bh(M,z).



�615

PNG in Large Scale Structure
¾ Primordial non-Gaussianity induces the scale dependent-bias 

such that the effect dominates at very large scales:

9 Galaxy surveys can effectively constrain fNL to the level 

comparable to CMB temp. anisotropies.

[Dalal+(2008), Desjacques+(2009)]

fNL=+100 fNL=+500

fNL=-100 fNL=-500

[Dalal+(2008)]

Hashimoto-kun’s talk

1/(scale)

(amplitude)

PDM

bG

Pgalaxy= (bG)2PDM

Pgalaxy= (bG+Δb)2PDM

Δb
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Accessing ultra-large scales

¾ Clustering analysis at large scales are limited due to 
cosmic variance.

MULTITRACER TECHNIQUE

• a method to reduce the cosmic variance using multiple 
tracers with different biases.

• The availability of multiple tracers allows significantly 
improved statistical error in the measurement of fNL.

[Seljak (2009)]

Multitracer technique

Full galaxy samples

Lightest Lighter Heavier ・・・

[Seljak (2009)]

σ(fNL) = O(10)

σ(fNL) < 1 !

9 If we treat the data as the single group, the galaxy survey can 
constrain fNL to the level comparable to CMB:

Splitting the data into 
mass-divided subsamples… 
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Multitracer technique

Lighter Heavier

We can make a measurement of the ratio of two biases that is 
only limited by shot noise and hence beats cosmic variance!

Shot noise

Lighter

Heavier

9Angular power spectra

9Accuracy for b2/b1

[Seljak (2009)]

PDM

b1
Pgal,1= (b1)2PDM

The accuracy of the amplitude itself is limited by CV, but for 
the ratio between the powers there is NO fundamental limit!

Pgal,2= (b2)2PDM

b2

b2/b1
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Survey design

¾ Optical/infrared photometric survey : Euclid

• Covers 15,000 [deg2].

• Provides redshift information via photometric redshifts.

• We use various galaxy properties to infer the halo mass.

[Ferramacho+ (2014)]

¾ SKA+Euclid : 9,000 [deg2] 

¾ Radio continuum survey : SKA phase-1/2

• Covers 30,000 [deg2] out to high-z.

• The redshift information is not available.

• Halo mass can be estimated from the galaxy type.

Fisher matrix analysis

9 Covariant matrix generalized to multiple tracers with 
different sky areas with some overlap:

Effect of different 
sky areas

[DY+Takahashi+Oguri (2014)]
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9 The constraining power increases with NM.
9 Even 2-tracers drastically improve the constraint.

Er
ro

r o
n 

f N
L

Number of tracers  NM

1      2 3        4             5

Planck

Euclid

[DY+Takahashi+Oguri (2014)]

Er
ro

r o
n 

f N
L

Maximal redshift

0.66

Euclid

Planck

9Combining multiple z-bins improves substantially σ(fNL).
9Galaxy samples as far as z=3.2 contribute to the constraint.
9Realistic: zmax=2.7 → σ(fNL)=0.66

[DY+Takahashi+Oguri (2014)]
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The constraints of σ(fNL)=O(1) can be obtained even with 
a single survey. Combining Euclid and SKA, even stronger 
constraints of σ(fNL)=O(0.1) can be obtained.

Er
ro

r o
n 

f N
L

Euclid   SKA1  Euclid+SKA1   SKA2  Euclid+SKA2

Number of mass bin = 5

[DY+Takahashi+Oguri (2014)]

Summary

¾Splitting the galaxy samples into the subsamples by 
the inferred halo mass and redshift, constraints on 
fNL drastically improve.

¾The constraints of σ(fNL)=O(1) can be obtained even 
with a single survey. Combining Euclid and SKA, 
even stronger constraints of σ(fNL)=O(0.1) can be 
obtained.

Thank you!
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“Detecting primordial non-Gaussianity from the three-point 

statistics of halo and weak lensing fields”  

Ichihiko Hashimoto

[JGRG24(2014)111303] 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Detecting primordial non-Gaussianity  
from the three-point statistics  
of halo and weak lensing fields

Ichihiko Hashimoto (YITP) 
with Atsushi Taruya(YITP), Shuichiro Yokoyama(Rikkyou-u), 
       Toshiya Namikawa(Stanford-u),Takahiko Matsubara(Nagoya-u) 

11/13  @IPMU2014

Motivation ~Primordial non-Gaussian~
Local-type non-Gaussianity
curvature 
perturbation

Gaussian variable

Planck (2013)
WMAP (2013)

,
Constraints for CMB CL 95%
Suyama et al (2010)

: Non-Gaussianity parameters
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Large-scale structure

Nishimichi et al. (2010)

scale-dependent bias effect 
arises even power spectrum

Galaxy clustering :
Weak lensing :

Photometric survey, 
like Hyper Suprime-cam(HSC) observe

Due to “scale-dependent bias”,
non-Gaussian  
effect enhanced. 

Gaussian non-Gaussian short mode + long mode

Bispectrum

We consider cross-bispectra  
between halo and weak lensing.

Yokoyama et al (2014)

Question
・How much can we enhance detectability of  
   primordial non-Gaussianity? 

Auto-bispectrum also depend on  
primordial non-Gaussianity.
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Method

Multi-point propagator contain non-perturbative effect.  
…

power and bispectrum of  
linear density fluctuation

Improved perturbation Theory  

h or m

Observed bispectrum is defined on  
the 2-dimentional celestial sphere. 

Matsubara (2011)

projection effect

Result ~Scale dependence~
・Cross-bispectra
assume ,

Primordial non-Gaussianity effect enhanced at large scale
:large scale

・ ・
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Result ~Signal to Noise~
・S/N from primordial non-Gaussianity 

: label of triangle 
 satisfy

S/N of halo-power spectrum 
        under same assumption 

・S/N of cross-bispectra comparable auto-bispectrum 
・

at

Summary
・Primordial non-Gaussianity is important  
　to classify inflation.

・By adding cross-bispectra, S/N from 
   primordial non-Gaussianity enhance factor ~1.6 
   than auto-bispectrum.

・Scale-dependent bias enhance  
　signal of primordial non-Gaussianity in LSS.

Future work

Break degeneracy of
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“Self-unitarization of New Higgs Inflation”  

Yuki Watanabe

[JGRG24(2014)111304] 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Self-unitarization of 
New Higgs Inflation

Yuki Watanabe
Research Center for the Early Universe (RESCEU), University of Tokyo

arXiv:1403.5766 with C. Germani and N. Wintergerst (LMU Munich)

JGRG24, Kavli IPMU, Kashiwa, Japan  
13th November 2014  

• The Standard Model Higgs boson is observed in LHC. In the 
same experiment, no new particle has been discovered so 
far. 

• The Planck satellite has measured the primordial spectrum 
of scalar (temperature) perturbations, showing no trace of 
non-Gaussianity and isocurvature perturbations.

•  The BICEP2 has measured the polarization of B-modes in 
the CMB, thus providing the first evidence for primordial 
gravitational waves (if they are not from dust).

Higgs boson as the inflaton 
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Full action of the GEF inflation

S =
R

d4x
p�g

h
M2

p

2 R � 1
2�↵�@↵�@��� V

i
,

where �↵� ⌘ g↵��G↵�

M2 .

In a FLRW background, the Friedmann and field eqs read

H2 = 1
3M2

p

h
�̇2

2

⇣
1+9 H2

M2

⌘
+ V

i
, @t

h
a3�̇

⇣
1+3 H2

M2

⌘i
= �a3V 0 .

During slow roll in the high friction limit (H2/M2 � 1), the eqs are simplified as

H2 ' V
3M2

p
, �̇ ' � V 0

3H
M2

3H2

Yuki Watanabe (RESCEU) Inflation with GEF 2. GEF in a nutshell 15 / 60

The Higgs boson can drive inflation with Gravitationally 
Enhanced Friction (GEF).

where Dµ = @µ � igW a
µ⌧a � ig0

2

Bµ is the covariant derivative related to the SU(2) gauge
bosons W a

µ with generator ⌧a and the U(1)Y gauge boson Bµ. The Higgs boson is a complex
doublet of SU(2) (charged under U(1)Y ). The scale v ⇠ 246 GeV is very low compared to
the Higgs background during inflation, we can therefore safely neglect it.

Forgetting for a moment the contributions of the gauge sectors of the SM, and focusing
only on the radial part of the Higgs boson � ⇠

p
2H†H, we reduce to the following Lagrangian

L� = �1
2
@µ�@µ�� �

4
�4 . (1.2)

Defining the slow-roll parameters that parametrize how close the the system is evolving to a
de Sitter background [7]

✏V ⌘
V 02M2

p

2V 2

and ⌘V ⌘
V 00M2

p

V
, (1.3)

where we considered a generic potential V for the inflaton (�) and V 0 = dV/d�, one finds
that the power spectrum of primordial perturbations, quantum mechanically generated by
the inflaton during inflation, is

P ' H2

8⇡2✏V M2

p

, (1.4)

and the spectral index

ns = 1� 6✏V + 2⌘V . (1.5)

Planck data constrains P ⇠ 10�9 and ns ⇠ 0.96. This requires an extremely small value for
� ⇠ 10�12 which would imply an extreme fine tuning for the top quark mass if running of
coupling constants in SM are taken into account [8].

This fine tuning can be alleviated by considering a non-SM Higgs boson potential, in-
terpolating from the low energy quartic SM coupling, to a high-energy flatter potential.
However, in this case the pure Higgs sector of the SM must pass through a strong coupling
below the inflationary and above the LHC scales. This automatically requires a UV comple-
tion by other degrees of freedom at intermediate scale (see for example [9]). Therefore, in
those cases, this “Higgs” potential cannot be directly connected to the SM Higgs potential
(for latest examples see [10, 11]).

It is interesting to mention that one of the most popular example of Higgs inflation of
this class of models, the one of [10], is now ruled out by BICEP2. In the Higgs inflation of
[10] a conformal coupling of the Higgs boson to the Ricci scalar of the form ⇠�2R e↵ectively
introduces an exponentially flat potential which now predicts a too low gravitational wave
spectrum.

An alternative to consider a new potential for the Higgs boson has been introduced in
[12]. In the New Higgs Inflationary scenario of [12], the Higgs boson kinetic term is (uniquely)
non-minimally coupled to the Einstein tensor as follows

Lkin = �1
2

✓
g↵� � G↵�

M2

◆
@↵�@�� . (1.6)

The above coupling does not introduce any new degrees of freedom other than the graviton
and the Higgs boson and, in particular, no higher derivative terms. Interesting enough, this

– 2 –
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1 Higgs boson as the Inflaton

Recently, there have been three extremely important discoveries:

• The Standard Model (SM) Higgs boson has been observed in the Large Hadron Collider
(LHC) of Geneva [1]. In the same experiment, no new particles, beyond the SM, have
been discovered so far.

• The European Planck satellite has measured, with unprecedented precision, the pri-
mordial spectrum of scalar (temperature) perturbations, showing no trace of non-
gaussianities and isocurvature perturbations [2].

• The USA BICEP2 experiment has measured the polarization of the B-modes in the
Cosmic Microwave Background (CMB), thus providing the first evidence for primordial
gravitational waves [3].

If the results of Planck and BICEP2 are confirmed, they provide striking evidence for the
existence of an inflationary stage in our Universe.

The null observation of isocurvature and non-gaussian modes in the CMB point to
the simplest model of inflation, the one generated by a single scalar field, the inflaton. At
the same time, the large spectrum of gravitational waves, as now apparently measured by
BICEP2, singles out chaotic type models of inflation [4], where the (canonically normalized)
inflaton ranges over trans-Planckian values. Historically, this fact has always been matter
of debate. Naively one would indeed expect Planck suppressed operators (from quantum
gravity) correcting the inflationary potential. However, these corrections will be suppressed
if they only appear as expansions in powers of the potential itself, which is always way below
the Planck scale [5] (see also [6]).

With the LHC discovery, it is tempting to consider the very minimal scenario where the
Higgs boson not only accounts for the masses of the SM particles, but also for inflation.

In absence of gravity, the Higgs boson Lagrangian is

LH = �DµH†DµH� �
⇣
H†H� v2

⌘
2

, (1.1)

– 1 –

Power of the GEF mechanism

Consistency of the eqs requires the slow roll parameters to be small, i.e.

✏ ⌘ � Ḣ
H2 ⌧ 1 , � ⌘ �̈

H�̇
⌧ 1 .

By explicit calculations, one can show that

✏ ' V 02M2
p

2V 2
M2

3H2 , � ' �V 00M2
p

V
M2

3H2 + 3✏ = �⌘ + 3✏ , ⌘ ⌘ V 00M2
p

V
M2

3H2 .

We see that, no matter how big the slow roll parameters of GR are

✏GR ⌘
V 02M2

p

2V 2 and ⌘GR ⌘
V 00M2

p

V ,

there is always a choice of scale M2 ⌧ 3H2, during inflation,

such that slow roll parameters are small.

Yuki Watanabe (RESCEU) Inflation with GEF 2. GEF in a nutshell 16 / 60
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Cosmological perturbations in the GEF inflation

ADM form

ds2 = �N2dt2 + hij(dx i + N idt)2

Use the gauge �� = 0

then: hij = a2[(1 + 2 ⇣|{z}
curvature perturbation

)�ij + �ij|{z}
gravitational waves

]

Vary wrt the constraints N,N i , substitute back into the action and

canonically normalize ⇣ and �ij

N = 1 + �
H ⇣̇, N i = � �

H @i⇣ + ⌃
H2 @i@�2⇣̇

�(�̇,H,M) ' 1 + 2
3✏, ⌃(�̇,H,M) ' �̇2

2M2
p

h
1 + 3H2

M2

i
' ✏H2

in the high friction limit H � M.

Yuki Watanabe (RESCEU) Inflation with GEF 3. Cosm. pert. in GEF 21 / 60

Curvature perturbation spectrum

L⇣2 = 1
2 [v 02 � c2

s (@iv)2 + z”
z v2] with c2

s = 1�O(✏)

h⇣̂k ⇣̂k 0i = (2⇡)3�(3)(k + k 0)2⇡2

k3 P⇣ where P⇣ = H2

8⇡2✏csM2
p

spectral index: ns � 1 =
d lnP⇣

d ln k ⇡ �2✏� 2�

running of the spectral index: dns
d ln k ⇡ �6✏� � 2��0 + 2�2

Matching with the WMAP data, P⇣ = 2⇥ 10�9, we get a relation

M2

H2 = 109

8⇡2
V 3

V 02M6
p

Note that scalar perturbations are slightly sub-luminal.

Can this lead to observational consequences?
(Any GW or NG due to the new non-linear interaction?)

Yuki Watanabe (RESCEU) Inflation with GEF 3. Cosm. pert. in GEF 22 / 60
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Gravitational wave spectrum

L�2 =
P

�=±2
1
2 [v 02

t � c2
gw (@ivt)2 + zt”

zt
v2
t ] with c2

gw = 1+O(✏)

h�̂k �̂k 0i = (2⇡)3�(3)(k + k 0)2⇡2

k3 P� where P� = 2H2

⇡2cgw (1+✏/3)M2
p

spectral index is red: nt = d lnP�

d ln k ⇡ �2✏

tensor to scalar ratio: r = P�

P⇣
= 16✏ = �8nt

Note that GWs are slightly “super-luminal”, but this does not mean “acausal”

unless a closed timelike curve is formed [Babichev et al 2008].

Yuki Watanabe (RESCEU) Inflation with GEF 3. Cosm. pert. in GEF 31 / 60
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New constraint on inflation, if BICEP2 is right. 
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Figure 1. The contours show 1� and 2� constraints on ns and r, taken from Fig. 13 of [3]. The
lines show predictions of New Higgs inflation with N⇤ = 50� 60 and di↵erent values of a theoretical
parameter, �M2

p/M
2. The highest value corresponds to the GR limit, the lowest to the high friction

limit H2/M2 = O(105) and the middle to the best value of �M2
p/M

2 = 2.2 ⇥ 10�4. The latter,
does not describe an inflating background in the high friction limit. It is numerically found for
H2/M2 = O(10), here � = O(10�9).

According to the above equations, the New Higgs inflation predicts

ns � 1 = �5✏, r = 16✏,
dns

d ln k
= �15✏2,

�⇤
Mp

= 0.037

✓ P⇣

2⇥ 10�9

◆
1/4 ⇣ ✏

�

⌘
1/4

,
M

Mp
= 9.0⇥ 10�6

✓ P⇣

2⇥ 10�9

◆
3/4 ✏5/4

�1/4
,

H

Mp
= 4.0⇥ 10�4

✓ P⇣

2⇥ 10�9

◆
1/2p

✏, ✏ =
1

3N⇤ + 1
, (2.23)

where N⇤ is the number of e-folds at the CMB scale.

In Planck Collaboration (2013) XXII [2], the constraints on the parameters for ⇤CDM+
r + dns/d ln k model are given from Planck combined with other data sets. In the data set
Planck+WP+BAO, ns = 0.9607 ± 0.0126, r < 0.25 and dns/d ln k = �0.021+0.024

�0.020 all at
2�. In the data set Planck+WP+high-`, ns = 0.9570 ± 0.0150, r < 0.23 and dns/d ln k =
�0.022+0.022

�0.020 all at 2�, though BICEP2 team [3] cited a slightly di↵erent upper bound for
the running as dns/d ln k = �0.022± 0.020. If we allow the non-vanishing running, the New
Higgs inflation’s predictions can be well within the constraints from Planck and BICEP2.
The New Higgs inflation generically predicts dns/d ln k ⇠ �103 slightly larger than that from
other simple chaotic inflation models.
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New Higgs Inflation fits BICEP2 and Planck 
[Germani & Kehagias ‘10; Germani & YW ‘11; Germani, YW & Wintergerst 1403.5766] 

L =
1
2
M2

p R� 1
2

�
gµ� � Gµ�

M2

�
�µ����� �

4
�4

Predictions in GEF limit:
[1106.0502]

GR limit:
ns � 1 = �3�,

dns

d ln k
= �3�2, � =

1
N� + 1

Specifically we have the following predictions compatible with the Planck and BICEP2
data

ns = 0.95, r = 0.16,
dns

d ln k
= �0.0015, (2.24)

with N⇤ = 33. Compared with minimal gravity (GR), the reported r is a few times smaller
and the running is a few times larger, for the same ns.

3 Unitarity issues: inflationary scale

In this section we complete the previous analysis of [12] by showing that the New Higgs
inflation is weakly coupled during the whole inflationary evolution.

We will initially focus on the scalar sector of the theory. The introduction of a non-
minimal kinetic term for the Higgs boson introduces a new non-renormalizable interaction
to the SM

L
nr

=
1

2

G↵�

M2

@↵�@�� . (3.1)

The question is then what is the tree-level unitarity violating scale of this system, and whether
our inflating background is safely below this scale, as to be able to trust our semiclassical
calculations.

During inflation, and in the high friction regime, the perturbed Lagrangian around the
inflating background, up to cubic order, is

L��,h = �
M2

p

2
h↵�E↵� � 3H2

2M2

@µ��@
µ��+

E↵t

M2

�̇
0

@↵��+
E↵�

2M2

@↵��@���+

+ h↵t�̇
0

@↵��+
1

2
h↵�@↵��@���+ . . . . (3.2)

In the above Lagrangian the Higgs boson has been split as � = �
0

+ �� where �
0

is the

background value and �� the perturbation. The metric has been expanded as g↵� = g
(0)

↵�+h↵�

where g
(0)

↵� is the background metric and h↵� is the metric perturbation. Finally, E↵� is the
linearized Einstein tensor on the inflating background.

By looking at the Lagrangian (3.2), it is clear that neither the graviton nor the Higgs
boson are canonically normalized, and in fact also mix. The canonical normalizations of
these fields are

h̄↵� = Mph↵�

�̄ =

p
3H

M
�� .

Thus we have

L��,h = �1

2
h̄↵�E(h̄)↵� � 1

2
@µ�̄@

µ�̄+
E(h̄)↵�
2H2Mp

@↵�̄@��̄+mixings . . . . (3.3)

It would then seem that the strong coupling scale of this theory is ⇤H ⇠
�
H2Mp

�
1/3 ⌧ Mp.

However, as we shall see, the scale ⇤H will be removed by diagonalization of the scalar-
graviton system. The easy way to do that is to use the the di↵eomorphism invariance of the
theory and go in what is usually called the unitary gauge [22].
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Unitarity issues: inflationary scale 
[Germani & YW ‘11; Germani, YW & Wintergerst 1403.5766] 

Planck+WP+BAO,

ns = 0.9607± 0.0126, r < 0.25 and
dns

d ln k
= �0.021+0.024

�0.020

all at 2�. In the data set Planck+WP+high-`,

ns = 0.9570± 0.0150, r < 0.23 and
dns

d ln k
= �0.022+0.022

�0.020

all at 2�, though BICEP2 team [3] cited a slightly di↵erent upper bound for the running as
dns/d ln k = �0.022±0.020. If we allow the non-vanishing running, the New Higgs inflation’s
predictions can be well within the constraints from Planck and BICEP2. The New Higgs
inflation generically predicts dns/d ln k ⇠ �103 slightly larger than that from other simple
chaotic inflation models.

Specifically we have the following predictions compatible with the Planck and BICEP2
data

ns = 0.95, r = 0.16,
dns

d ln k
= �0.0015, (2.24)

with N⇤ = 33. Compared with minimal gravity (GR), the reported r is a few times smaller
and the running is a few times larger, for the same ns.

3 Unitarity issues: inflationary scale

In this section we complete the previous analysis of [12] by showing that the New Higgs
inflation is weakly coupled during the whole inflationary evolution.

We will initially focus on the scalar sector of the theory. The introduction of a non-
minimal kinetic term for the Higgs boson introduces a new non-renormalizable interaction
to the SM

L
nr

=
1
2

G↵�

M2

@↵�@�� . (3.1)

The question is then what is the tree-level unitarity violating scale of this system, and whether
our inflating background is safely below this scale, as to be able to trust our semiclassical
calculations.

During inflation, and in the high friction regime, the perturbed Lagrangian around the
inflating background, up to cubic order, is

L��,h = �
M2

p

2
h↵�E↵� �

3H2

2M2

@µ��@µ�� +
E↵t

M2

�̇
0

@↵�� +
E↵�

2M2

@↵��@���+

+ h↵t�̇
0

@↵�� +
1
2
h↵�@↵��@��� + . . . . (3.2)

In the above Lagrangian the Higgs boson has been split as � = �
0

+ �� where �
0

is the
background value and �� the perturbation. The metric has been expanded as g↵� = g

(0)

↵� +h↵�

where g
(0)

↵� is the background metric and h↵� is the metric perturbation. Finally, E↵� is the
linearized Einstein tensor on the inflating background.
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During inflation, and in high friction regime, the perturbed Lagrangian up to cubic order is 

By looking at the Lagrangian (3.2), it is clear that neither the graviton nor the Higgs
boson are canonically normalized, and in fact also mix. The canonical normalizations of
these fields are

h̄↵� = Mph↵�

�̄ =
p

3H

M
�� .

Thus we have

L��,h = �1
2
h̄↵�E(h̄)↵� �

1
2
@µ�̄@µ�̄ +

E(h̄)↵�

2H2Mp
@↵�̄@��̄ + mixings . . . . (3.3)

It would then seem that the strong coupling scale of this theory is ⇤H ⇠
�
H2Mp

�
1/3 ⌧Mp.

However, as we shall see, the scale ⇤H will be removed by diagonalization of the scalar-
graviton system. The easy way to do that is to use the the di↵eomorphism invariance of the
theory and go in what is usually called the unitary gauge [22].

Allowing the freedom of time reparameterization, in an inflating background we have

�(t + �t, x) = �
0

(t) + �� + �̇
0

�t + . . . . (3.4)

Now it is clear that one can always reabsorb the scalar fluctuations by choosing

�t = ���

�̇
0

. (3.5)

This is a very well known fact in cosmological perturbations (see for example [22] for a heavy
use of this).

In this gauge, we see that all interactions of the scalar �̄ to the longitudinal graviton
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Non-renorm. operator: 
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Unitarity issues: inflationary scale 
[Germani & YW ‘11; Germani, YW & Wintergerst 1403.5766] 

Planck+WP+BAO,

ns = 0.9607± 0.0126, r < 0.25 and
dns

d ln k
= �0.021+0.024

�0.020

all at 2�. In the data set Planck+WP+high-`,

ns = 0.9570± 0.0150, r < 0.23 and
dns

d ln k
= �0.022+0.022

�0.020

all at 2�, though BICEP2 team [3] cited a slightly di↵erent upper bound for the running as
dns/d ln k = �0.022±0.020. If we allow the non-vanishing running, the New Higgs inflation’s
predictions can be well within the constraints from Planck and BICEP2. The New Higgs
inflation generically predicts dns/d ln k ⇠ �103 slightly larger than that from other simple
chaotic inflation models.

Specifically we have the following predictions compatible with the Planck and BICEP2
data

ns = 0.95, r = 0.16,
dns

d ln k
= �0.0015, (2.24)

with N⇤ = 33. Compared with minimal gravity (GR), the reported r is a few times smaller
and the running is a few times larger, for the same ns.

3 Unitarity issues: inflationary scale

In this section we complete the previous analysis of [12] by showing that the New Higgs
inflation is weakly coupled during the whole inflationary evolution.

We will initially focus on the scalar sector of the theory. The introduction of a non-
minimal kinetic term for the Higgs boson introduces a new non-renormalizable interaction
to the SM

L
nr

=
1
2

G↵�

M2

@↵�@�� . (3.1)

The question is then what is the tree-level unitarity violating scale of this system, and whether
our inflating background is safely below this scale, as to be able to trust our semiclassical
calculations.

During inflation, and in the high friction regime, the perturbed Lagrangian around the
inflating background, up to cubic order, is

L��,h = �
M2

p

2
h↵�E↵� �

3H2

2M2

@µ��@µ�� +
E↵t

M2

�̇
0

@↵�� +
E↵�

2M2

@↵��@���+

+ h↵t�̇
0

@↵�� +
1
2
h↵�@↵��@��� + . . . . (3.2)

In the above Lagrangian the Higgs boson has been split as � = �
0

+ �� where �
0

is the
background value and �� the perturbation. The metric has been expanded as g↵� = g

(0)

↵� +h↵�

where g
(0)

↵� is the background metric and h↵� is the metric perturbation. Finally, E↵� is the
linearized Einstein tensor on the inflating background.
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The apparent scale will be removed by the diagonalizaiton of the scalar-graviton system in 
the unitary gauge. 

L�3 �M2
p �2��̇2 �

�
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Strong coupling scale: 

L��2 �M2
p ��ij�i��j� �

1
Mp

�̄ij�i�̄�j �̄

Non-renorm. operator: 

Unitarity issues: post-inflation 
[Germani, YW & Wintergerst 1403.5766] 

Starting from Minkowski background, a large homogeneous (inflationary) 
background cannot be obtained without UV-completion, because of 

quantum corrections. 

starting from a Minkowski background, without the necessity of integrating-in any new degree
of freedom at low energies.

Let us re-discuss the gauge choice for scalar fluctuations. Up to second order in the
fluctuations, we have

�(t+ �t, x) = �
0

+ ��+ �̇
0

�t+ ��̇�t+
1

2
�̈
0

�t2 + . . . . (4.1)

Truncating this series at the first order would mean

�̇
0

�t � ��̇�t , (4.2)

or

�̇
0

� ��̇ . (4.3)

When the time derivative of the scalar is too small, a linear truncation in (4.1) will be
inconsistent and so the expansion in �t would no longer be useful. In other words, at these
low energies, the fluctuations of the field cannot be re-absorbed into a linear coordinate re-
definition, i.e. into a longitudinal linear graviton. From a particle physics language, this
just means that there is e↵ectively no mixing between the graviton and the scalar in flat
background.

The easier way to treat the system in this regime is thus to ”integrate out” gravity as
in [26]. In that case, the non-minimal gravitational interaction appears as a non-trivial self-
derivative coupling of the Higgs boson. The structure will be the one of a quartic Galileon
[26, 27].

Ignoring the gauge bosons and considering scales much larger than the electroweak, thus
also ignoring v, we have that in the decoupling limit Mp ! 1 but ⇤3

M = M2Mp < 1 [26]

L
dec

= �1

2
@µ�@

µ�


1 +

(⇤�)2 � @µ⌫�@
µ⌫�

2⇤6

M

�
� �

4
�4 . (4.4)

The precise question is now whether we could create a background with Hamiltonian energy
density larger than ⇤4

M .
Before answering this question, let us see why this would not be possible in a theory

with a non-renormalizable potential. Let us take for example a potential V = �6

⇤

2 . The
Hamiltonian of the system would be

H =
⇡2

2
+

1

2
@i�@

i�+
�6

⇤2

, (4.5)

where the momentum is defined in the standard way to be ⇡ ⌘ �Ldec

� ˙�
.

Suppose we want to have a large homogeneous background with H � ⇤4, i.e. a
background formed by a large number of particles with very large wavelength. This can only
be realized by taking � � ⇤. However, a quick inspection of quantum corrections reveals the
(expected) inconsistency. The one-loop correction to the e↵ective potential, renormalized at
the scale µ, takes the form

V
1-loop

⇠ �8

⇤4

log
�

µ
+ counter-terms, (4.6)
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with a non-renormalizable potential. Let us take for example a potential V = �6

⇤

2 . The
Hamiltonian of the system would be

H =
⇡2

2
+

1

2
@i�@

i�+
�6

⇤2

, (4.5)

where the momentum is defined in the standard way to be ⇡ ⌘ �Ldec

� ˙�
.

Suppose we want to have a large homogeneous background with H � ⇤4, i.e. a
background formed by a large number of particles with very large wavelength. This can only
be realized by taking � � ⇤. However, a quick inspection of quantum corrections reveals the
(expected) inconsistency. The one-loop correction to the e↵ective potential, renormalized at
the scale µ, takes the form

V
1-loop

⇠ �8

⇤4

log
�

µ
+ counter-terms, (4.6)

– 11 –

i.e. a background formed by a large number of particles with very large 
wavelength. This can be realized by taking

H � H2M2
p � �4
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Unitarity issues: post-inflation 
[Germani, YW & Wintergerst 1403.5766] 

L =
1
2
M2

p R� 1
2

�
gµ� � Gµ�

M2

�
�µ����� �

4
�4

Mp ��, �3
M = M2Mp <�

Ldec = �1
2
�µ��µ�

�
1 +

(��)2 � �µ���µ��

2�6
M

�
� �

4
�4

H =
�2

2(1 + 3�)
+

1
2
�i��i�(1 + �) +

�

4
�4 � =

1
2�6

M

[(�i�
i�)2 � �ij��ij�]

If we consider a homogeneous field                 with small-momentum 
limit, quantum corrections are under control thanks to the quartic 

Galileon interaction. Therefore, the Higgs boson is unitary throughout.

�� �M

In order to “integrate out” gravity, we take the decoupling limit:

Whenever the Hamiltonian density overcomes the scale M2Mp2 , the strong 
coupling scale will grow with the homogeneous Friedmann background. 

• Data is getting more and more precise, and even a surprise 
is coming! The detection of inflationary gravitational waves 
by BICEP2 will be confirmed or falsified by Planck 12/2014.

• New Higgs Inflation is compatible with Planck and BICEP2 
without having unitarity issues. 

Conclusions 
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No quasi-stable scalaron lump 
formas after R2 inflation 

Naoyuki Takeda  ICRR(Tokyo Uni.) 
Yuki Watanabe   RESCEU(Tokyo Uni.)

JGRG 2014

based on  
arXiv:1405.3830,  
PRD 90, 023519 (2014)

prediction without N ambiguity

PLANCK 2013

intro
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1980 Starobinsky

intro

inflation

decay

COBE  
normal.

Watanabe 06,10

Preheating and I-ball

When the potential is shallower than quadratic, the enhanced 
fluctuation would fragment into I-ball(oscillon).

I-ball

Amin ‘11

quasi-invariant

Formation of I-ball would change the decay 
process of the field

intro
preheating
Fluctuation of scalar field exponentially increases during reheating

Kofman, Linde, Starobinsky ‘94
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what we did result: Minkowski

what we did result: Minkowski
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what we did result: Minkowski
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result: Minkowskiwhat we did

broad resonance2nd narrow 
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result: During reheatingwhat we did

result: During reheatingwhat we did

Due to the Hubble damping, the enhancement does not occur
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result: with back reactionwhat we did

conclusion
In the case that the potential is shallower than quadratic, there  
is a possibility that the inflaton fragment into I-ball during the  
reheating epoch.

As a result, we have confirmed that the I-ball is not formed for R2 
inflation because the enhancement of fluctuation is suppressed 
due to the expansion of Universe.

In this work, we have investigated the possibility of the formation  
of I-ball for R2 inflation model.

Thus, the perturbative analysis for the reheating of R2 inflation is 
not modified, and the predictions of n_s, r, N are confirmed.

If we include the back reaction of the metric, fluctuation is 
enhanced at the horizon scale, which is weak to form the I-ball, but 
has the possibility to form the halo.
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inflation

decay

Komatsu &Watanabe 06, Watanabe 10

COBE normalisation

intro

 0
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-1  0  1  2  3  4  5

U
 [

M
2
M

p
2
]

φ[Mp]

Preheating and I-ball
preheating
Fluctuation of scalar field exponentially increases during inflation

Kofman, Linde, Starobinsky ‘94

Enhanced fluctuation diffuses into other modes
Khlebnikov, Tkachev ’96

intro
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Numerical simulation
To confirm the evolution of fluctuation, we have executed the 
numerical simulation and analyze it with Mathieu equation.

what we did

We have executed the simulations in 3 situations
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“Gravitational waves as a probe of supersymmetric scale”  

Masaki Yamada

[JGRG24(2014)111306] 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M. Yamada
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Gravitational waves as a probe of 
supersymmetric scale

M. Yamada
	

�2753)8(7.32���5&9.7&7.32&0�:&9*6�&2)�2*:�4-;6.(6

Stochastic gravitational wave signals are  
predicted by physics beyond the Standard Model: 
!
　topological defects (cosmic string, domain wall) !
　first order phase transition !
　preheating !
　quantum fluctuations during inflation
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�2753)8(7.32���5&9.7&7.32&0�:&9*6�&2)�2*:�4-;6.(6

Stochastic gravitational wave signals are  
predicted by physics beyond the Standard Model: 
!
　topological defects (cosmic string, domain wall) !
　first order phase transition !
　preheating !
　quantum fluctuations during inflation
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We have shown that  
cosmic strings generally form after the end of inflation  
in supersymmetric theories.  !
These cosmic strings emit gravitational waves,  
which give us information of supersymmetric scale!

Supersymmetric theories are well-motivated,  
because it addresses the hierarchy problem  
and also achieves gauge coupling unification.

M. Yamada

Supersymmetric theories usually predict many 
complex scalar fields (called flat directions)  
whose potentials are absent except for soft terms.  
!
!
!
The dynamics of such flat directions is nontrivial  
during and after inflation.

�0&7�).5*(7.326�.2�684*56;11*75.(�7-*35.*6

B-L

LHu -1
HuHd 0
udd -1
LLe -1
QdL -1
QQQL 0
QuQd 0
QuLe 0
uude 0
dddLL -3
uuuee 1
QuQue 1
QQQQu 1
(QQQ)4LLLe -1
uudQdQd -1

flat directions  
in the MSSM

�++0*(/���.2*�����
�.2*���&2)&00���-31&6���

�-*5,-*77&���.0)&���&57.2����

�

V (�) = m2
� |�|

2
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�2+0&7.32�&2)��8''0*�.2)8(*)�7*516

Inflation is driven by a finite vacuum energy density,  
which modifies the potentials of flat directions  
through supergravity effects:

�

I

V (I)

cH
V (I)

3MPl
|�|2

V (�) = m2
�|�|2 + cHH2|�|2 + (higher dimensional terms)

M. Yamada

�2+0&7.32�&2)��8''0*�.2)8(*)�7*516

After inflation ends, the energy density of the Universe 
is dominated by that of inflaton oscillation, which again 
induces the following potentials:



I

V (I)

In general,          (during inflation)               (after inflation) 
!
When                 during inflation and                 after inflation,  !
global cosmic strings form after inflation

cH 6= cH
cH > 0 cH < 0

during  
inflation

after  
inflation

cH
2İ2

3MPl
|�|2

V (�) = m2
�|�|2 + cHH2|�|2 + (higher dimensional terms)
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�2+0&7.32�&2)��8''0*�.2)8(*)�7*516

During inflaton oscillation era, the Hubble parameter 
decreases with time as  
!
!!
Cosmic strings disappear at the time of   .

�

I

V (I)

H2(t) =
⇢I(t)

3M2
Pl

/ a�3

H(t) ' m�p
|cH |

after

V (�) = m2
�|�|2 + cHH2|�|2 + (higher dimensional terms)

H(t) ' m�

M. Yamada

　the number of cosmic strings in the Hubble volume               (scaling law) 
!
　width of a typical cosmic string

�

�&1&)&�&2)���#�����

�534*57.*6�3+�(361.(�675.2,6�

= O(1)

cH > 0 ) cH < 0

⇠ 1/
p
V 00 / H�1

�2

M2n�6
Pl

|�|2(n�1)

V (�) = m2
�|�|2 + cHH2|�|2 + (higher dimensional terms)
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�

conformal time 
τ = 32 Hi-1

Horizon length
width of cosmic strings / H�1


���).1�6.180&7.32�3+�(361.(�675.2,�+351&7.32

M. Yamada
��

conformal time 
τ = 48 Hi-1

Horizon length
width of cosmic strings / H�1


���).1�6.180&7.32�3+�(361.(�675.2,�+351&7.32
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��

conformal time 
τ = 70 Hi-1

Horizon length
width of cosmic strings / H�1


���).1�6.180&7.32�3+�(361.(�675.2,�+351&7.32

M. Yamada
�	


���).1�6.180&7.32�3+�(361.(�675.2,�+351&7.32

Horizon length
width of cosmic strings / H�1

conformal time 
τ = 100 Hi-1
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�&1&)&�&2)���#�����

      Cosmic strings emit GWs with a peak wavenumber         .

�!�64*(7581

　the number of cosmic strings in the Hubble volume               (scaling law) 
!
　width of a typical cosmic string

= O(1)

⇠ H�1

kpeak
a(tdecay)

' m�

Cosmic strings disappear at the time of             .

�2

M2n�6
Pl

|�|2(n�1)

+ (higher dimensional terms)

Its GW spectrum is “fixed” at this time,  
which results in a GW peak wavenumber           . 

H(t) ' m�

kpeak
a(t)

' H(t)

V (�) = m2
�|�|2 � |cH |H2(t)|�|2

M. Yamada
��

�&1&)&�&2)���#�����

log k

l
o
g
⌦

g
w

kpeak
a(tdecay)

' m�

�!�64*(7581

⌦

gw

(⌧) ⌘ 1

⇢
tot

(⌧)

d⇢
gw

(⌧)

d log k

The GW spectrum is sensitive to the Hubble expansion rate:

kbend ' aH(tRH)

⌦gw / k3
⌦gw / k for modes entering the horizon during MD !

for modes entering the horizon during RD

GW spectrum bends  !
at              .
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��

�&1&)&�&2)���#�����

present peak frequency:

present bend frequency:

We can probe  !
through GW detection experiments!

�!�64*(7581
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M. Yamada
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M. Yamada
��

We have investigated the dynamics of a flat direction,  
which usually exists in supersymmetric theories,  
and have shown that cosmic strings generally form after inflation.  
!
!
These cosmic strings disappear at the time of        .  
!
!
We can obtain  
the soft mass of the flat direction           
and the reheating temperature of the Universe            
through detection of GWs emitted from these cosmic strings. 

�&1&)&�&2)���#�����

�811&5;

m�
TRH

H(t) ' m�
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Investigating tensor perturbations on small scales  
from their second-order effects  
to generate scalar perturbations 

Tomohiro Nakama 
RESCEU 

(JSPS Research Fellow) 
 

in collaboration with  
Teruaki Suyama & Jun’ichi Yokoyama 

Motivation:  
Investigating primordial tensor perturbations on small scales 

𝑘 

Planck 
BICEP2 detected? 

? 
? 

? 

To what extent these types of enhancement  
are allowed observationally? 

tensor power spectrum 

Related works: Ota et al. (2014),   
                           Chluba et al. (2014) 

Gpc−1 

𝑟0.002 < 0.11 

𝑟0.05~0.2  
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Induced scalar perturbations 

• Assumption: On small scales, initially (on super-horizon scales), 
                         tensor pert. >> scalar pert.  
• Then scalar perturbations are generated                                 
    due to the second order effects of tensor pert. 
 

ℎ𝑖𝑗 ≫ 𝛿𝑟, … 

𝛿𝑟, …~𝑂(ℎ𝑖𝑗2) 

Induced scalar perturbations 

• Assumption: On small scales, initially (on super-horizon scales), 
                         tensor pert. >> scalar pert.  
• Then scalar perturbations are generated                                 
    due to the second order effects of tensor pert. 
 

• If tensor pert. is sufficiently large,  
    induced scalar pert. becomes large  
    so that PBHs are overproduced.  
 

• We can place upper bounds on tensor pert.  
    requiring PBHs are not overproduced.   

cf. Saito Yokoyama 2009 

𝛿𝑟~𝑂(1) 
→PBH formation 

ℎ𝑖𝑗 ≫ 𝛿𝑟, … 

𝛿𝑟, …~𝑂(ℎ𝑖𝑗2) 
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Primordial Black Hole (PBH) 

 
 

 
  Various observations have placed upper bounds  
  on the abundance of PBHs on various mass scales.  
 

𝐻−1 𝐻−1 

radiation overdensity 

Horizon crossing 

a PBH is formed. 
              (Carr 1975) 

radiation-domination 

Super-horizon 

If                        , 

Observational constraints on PBHs of various masses 

(Carr, Kohri, Sendouda, Yokoyama, 2010) 

abundance of PBHs  
when they were formed 

~ 

mass 

abundance 
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summary of methods to  
probe tensor fluctuations on small scales 

large tensor pert. 
on small scales induced scalar pert. overproduction of PBHs 

obtain upper bounds on initial tensor pert. 
to avoid overproduction of PBHs. 

ℎ𝑖𝑗 ≫ 𝛿𝑟, … 
𝛿𝑟, …~𝑂(ℎ𝑖𝑗2) 

𝛿𝑟~𝑂(1) 
→PBH formation 

Formulation 
Metric 

 
 The Einstein equations at 𝑂(ℎ𝑖𝑗

2) 

The conservation of energy-momentum tensor 

𝜼: conformal time 
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Source terms 

a bit complicated… 

scalar pert. 

source ~𝑂(ℎ𝑖𝑗
2) 

Scalar pert. are generated due to the source terms.  
prime: 𝝏

𝝏𝜼 

Let us focus on one of the eqs. 

r 
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Growth factor: 
sin 𝑘𝜂
𝑘𝜂  

initial amplitude 

Specifying the initial condition 

horizon crossing constant 

decay 

oscillation 

＋ or ✕ 

(←                                                   ) 

initial amplitude 

Specifying the initial condition 

＋ or ✕ 

• As an illustration, we consider a delta-function like power spectrum 

• The definition of the initial power spectrum: 

amplitude position of spike 
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Calculation of the power spectrum  
of the density perturbation 

This reflects 𝛿𝑟~𝑂(ℎ𝑖𝑗
2) 

The time evolution of the power spectrum  

 

horizon crossing time 

𝜂: conformal time 
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PBH formation has to be sufficiently rare 
     to be consistent with observation 

Upper bound on the amplitude  
of primordial tensor perturbations 

threshold~1/3 

typical amplitude 

collapse to form PBH 

𝛿𝑟 

¥begin{align*} 
¥begin{align*} 
&10¥lesssim¥frac{¥mathrm{threshold¥,¥, 
for¥,¥, PBH¥,¥, 
formation}}{¥mathrm{typical¥,¥, amplitude¥,¥, 
at¥,¥, crossing}} 
¥sim ¥frac{1/3}{{¥cal A}^2}¥¥ 
&¥qquad¥qquad¥qquad¥qquad¥rightarrow{¥c
al A}^2¥lesssim 0.03 
¥end{align*} 
¥end{align*} 

¥rightarrow{¥cal A}^2¥lesssim 0.03 

Summary 

 
 
3. Future work:  
     Other shapes of power spectrum,  
     upper bounds from ultracompact minihalos,  

large tensor pert. 
on small scales induced scalar pert. overproduction of PBHs 

obtain upper bounds on initial tensor pert. 
to avoid overproduction of PBHs. 

ℎ𝑖𝑗 ≫ 𝛿𝑟, … 
𝛿𝑟, …~𝑂(ℎ𝑖𝑗2) 

𝛿𝑟~𝑂 1  
   →PBH  

1. Method: 

2. Result: 
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BBN bound 

= 

≤       7
43 (3.71 + 0.47 ∗ 2 − 3) 
= Allen 1996, Maggiore 2000 

Maggiore 2007 

Steigman 2012 

If GWs give the only extra contribution to 𝑁𝜈, compared to 𝑁𝜈=3, 

The time evolution of the power spectrum 

horizon crossing time 

ここに数式を入力します。 
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• Combining these equations yields  
    the evolution equation for Ψ: 

 
 
 

• This can be formally solved as 

Green’s function 

 
• The energy density perturbation is given by  
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𝒌′ 

𝒌 − 𝒌′ 
𝒌 

(|𝒌′| = 𝑘𝑝) 

(|𝒌 − 𝒌′|= 𝑘𝑝) 
(𝑘 < 2𝑘𝑝) 

𝛿 = 10−5  
with mass 108 − 109𝑀⨀ 

10−2 

z_eq z~15 
~1.68  (collapse) 

grows only slowly  
during R.D. 

grows in proportion 
to the scale factor 

𝛿 = 10−3  
at some small scale 

~1.68  (collapse) 
z~1000 

If the initial amplitude is larger,  
the overdense region collapses earlier. 

ultracompact minihalos 

for more detailed estimation, see  
Bringmann, Scott, Akrami 2012 
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A unique Fock quantization for scalar
fields in cosmologies with signature change

Laura Castelló Gomar
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Instituto de Estructura de la Materia, CSIC

JGRG24 

Kavli IPMU, University of Tokyo

 13th November 2014

  

Ambiguities in QFT

The quantization of a classical system is NOT univocally  defined. Even in linear 
field theory, one finds infinitely many Fock quantizations.

There exist ambiguities in the choice of:

the field description 

the Fock representation of the CCR's

which are not equivalent.

In highly symmetric spacetimes, the invariance under the isometries of the 
background is enough to select a unique Fock quantization. 

For STATIONARY spacetimes, one can select a quantization with certain 
requirements on energy. 

In general, systems lack of sufficient symmetry. Recently, UNIQUENESS has been 
reached in some nonstationary scenarios by appealing to the unitarity of the 
dynamics, rather than to invariance.
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Uniqueness criteria

  

Uniqueness criteria

 Klein-Gordon field in ultrastatic spacetime, with time-dependent mass:

     

  

 

  

φ ' '−Δφ+m2(t)φ=0

SPATIAL SYMMETRY INVARIANCE

 + 

UNITARY DYNAMICS

                  select a UNIQUE canonical pair for the field.    

      select also a UNIQUE Fock representation for the CCR's, for any               
      (smooth) mass. 

    

    The uniqueness result is valid for any spatial topology, and at least in any           
       spatial dimension no larger than three.
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  RESCALED FIELDS  in  FLAT COSMOLOGIES 

  (conformal time)

 

  COSMOLOGICAL PERTURBATIONS

-    SCALAR PERTURBATIONS:

     Mukhanov-Sasaki variables (gauge invariant).

-   PERTURBATIONS of a MASSIVE FIELD in a suitable gauge:       
    asymptotic behavior.

-    TENSORIAL PERTURBATIONS (gravitational waves).

Motivation: Fields with time dependent mass

φ ' '−Δφ+m 2
(t)φ=0

  

Motivation: Generalized field equations

  We want to generalize the class of field equations    
  for which we can apply our UNIQUENESS results.

  We would cover more general situations in               
  cosmology, obtaining robust quantizations.

We will consider the most general second-order 
differential equation  of  KG type, preserving the 
spatial dependence only through the LB operator.

We would like to study situations with “signature 
change”. This kind of scenarios have received a 
lot of attention in Loop Quantum Cosmology 
recently.
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Generalization of the field equations

SCALING 

REPARAMETRIZATION

  

Generalization of the field equations

ϕ ' '+c(t)ϕ '−d (t )Δϕ+m̃2(t )ϕ=0

t ,x= f t t ,x 

φ ' '−Δφ+m2(t )φ=0

dT=g (t)dt , g (t)≠0

SCALING REPARAMETRIZATION

Up to time reversal, there is a bijective correspondance:

f (t)=C d (t)−1/4
exp [−1

2
∫
t

c( t̄ )d t̄ ]
g (t)=s√d (t) , s=±
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Generalization of the field equations

ϕ ' '+c(t)ϕ '−d (t )Δϕ+m̃2(t )ϕ=0

t ,x= f t t ,x 

φ ' '−Δφ+m2(t )φ=0

dT=g (t)dt , g (t)≠0

SCALING REPARAMETRIZATION

The new mass:

m
2(t)=

m̃
2(t)
d (t )

−
d ' ' (t )

4d
2(t)

+
5(d ' (t))2

16 d
3(t )

−
c ' (t)

2 d (t)
−
c

2(t )
4 d (t )

  

Generalization of the field equations

f (t)=C d (t)−1/4
exp [−1

2
∫
t

c( t̄ )d t̄ ]

g (t )=s √d (t) , s=±

m
2(t)=

m̃
2(t)
d (t)

−
d ' ' (t)

4d
2(t)

+
5(d ' (t))2

16 d
3(t)

−
c ' (t)

2 d (t)
−
c

2(t)
4 d (t)

MASS

SCALING 

REPARAMETRIZATION 

When the function          vanishes: d t 

The mass      explodes, in general.  

The scaling and the reparametrization are ill defined. 

If it becomes negative, the new time parametrization turns imaginary.

m(t)
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Space-time Interpretation

  

Space-time Interpretation

ds
2 = − N

2(t)dt2 + a2(t)hij( x)dx
i
dx

j

m̃(t )=N (t) m̄(t)

a
4(t) = d (t) exp [∫t

2c( t̄ )d t̄ ] N
4(t) = d

3(t) exp [∫t

2c( t̄ )d t̄ ]

Let us consider a conformally ultrastatic spacetime, with normal spatial sections:

ϕ ' '+c(t)ϕ '−d (t )Δϕ+m̃2(t )ϕ=0

Where:

The considered field equations are the corresponding Klein-Gordon equations 
(of mass         ) under the univocal correspondence:m̄(t)
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Space-time Interpretation

  The metric degenerates completely when         vanishes.

  If we set                  the metric becomes Euclidean in the region where                  

  

  From this perspective, it is more than a signature change. It involves a                

SINGULARITY where the scalar curvature explodes as

d (t )

d
−7/2

.

d (t d )=0, d (t )<0.

ds
2
: ( - + + + ) ( + + + + )

ds
2 = [−d (t ) dt 2 + hij( x)dx

i
dx

j ]D√∣d (t )∣ exp∫
td

t

c

  

Vacuum dynamics with signature change

 The signature change separates the spacetime 
    into two regions with very different nature. 

How can we fix initial conditions for the vacuum in the Euclidean 
region and specify its evolution to a Lorentzian region?
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i. We choose a complete set of solutions in the Lorentzian region 

ii. Scaling by the invers of the scale factor and reparametrizating in terms of the time 

corresponding to the lapse     we find the set of solutions

 

iii. Wick rotation of the modes in the Euclidean regime 

             

iv.The solutions can be expressed as a linear combination of these modes with 

coefficients          and          respectively, for the Euclidean and Lorentzian regions.

v. We set the initial conditions at       We require continuity conditions of the field and its 

time derivative at the signature change instant, in which the metric degenerates.

N
2=ϵa6

, ϵ = ± ,



{ϕn±(τ)ψn( x⃗)}

n

±E  = lim i  n

± .

cn
±
,cn

±E 

0 .

ϕ̈ = −ϵ[a4 Δϕ + a6
m̄

2 ϕ]

{φn±(T )ψn( x⃗)}.

Vacuum dynamics with signature change

We study the evolution of a fixed vacuum state in the Euclidean region:

  

cn
+

cn
- =- I n

+- - I n
- -

I n
++

I n
- +  cn

+E 

cn
-E  

I n
r s = lim0 〈n

r E  ,n

s  〉 , r , s = +ó -.

 = a T ∑
n
cn+n

+[ T ]  cn
- n

- [ T ]nx .

  Imposing the continuity conditions, we obtain a linear system for each mode that 

  relates the coefficients of the Euclidean and Lorentzian regions: 

where

  The field      with unitary evolution in the Lorentzian region: 

Vacuum dynamics with signature change

Using that the modes are orthonormal under the KG-type product. 
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Vacuum dynamics with signature change

Starting only with positive frequency 
contributions in the Euclidean 
sector,              the corresponding 
combination in the Lorentzian region 
has positive  and negative 
frequencies

which leads to particle production. 

c
n

-= I
n

(++)
.cn

+=−I n
(+-)
,

cn
+(E )=0 ,

Employing the WKB aproximation, the corresponding particle 
production only depends on the background and it is exponentially 
amplified. 

  

Conclusions

 A set of criteria to SELECT a preferred UNIQUE CLASS of Fock quantizations for           
 scalar fields in a variety of nonstationary spacetimes with compact spatial topology

 Removing the ambiguities provides physical predictions with great robustness.

 Generalization to all the second order equations of motion, through the combination of  
 a scaled field configuration and a time reparametrization, univocally determined. 

 Space-time interpretation of the considered equation of motion, as fields propagating 
in conformally ultrastatic spacetimes.

  
 Signature change              elliptic rather than hyperbolic partial differential                      
                                        equations for physical modes.

   space-time singularity: there exists a point where the 
  metric is totally degenerated and the scalar invariant 

   curvature becomes infinity.

  Evolution of a vacuum state from a Euclidean to a Lorentzian region. 

  Generally, there exists an exponentially amplified “particle production”.  
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“Generalized Galilean Genesis”  

Sakine Nishi

[JGRG24(2014)111309] 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Generalized  
Galilean  
Genesis 

‣ Introduction 

‣ Genesis (Previous study -> Generalization) 

‣ Background 

‣ Perturbations (tensor, scalar -> curvaton)  

‣ Conclusion

Outline
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‣ There are many kinds of 
 models which explain  
 the early universe. 

‣ Galilean Genesis 
‣ alternative to inflation 
‣ originally constructed in galileon theory.  

Introduction

->  Horndeski theory in our study

Introduction
‣ Horndeski theory 

‣ action 
 

‣ the most general scalar-tensor theory 

‣ field eqs. have no 3rd and higher derivative 
terms

X := �gµ⌫@µ�@⌫�/2

[G. W. Horndeski, Int. J. Theor. Phys. 10 (1974)] 
[T. Kobayashi, M. Yamaguchi and J. Yokoyama, Prog. Theor. Phys. 126, 511 (2011)]

SHor =

Z
d4x

p
�g

⇢
G2(�, X)�G3(�, X)⇤�+G4(�, X)R

+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤
+G5(�, X)Gµ⌫rµr⌫�

�1

6
G5X

⇥
(⇤�)3 � 3⇤�(rµr⌫�)

2 + 2(rµr⌫�)
3
⇤�

SHor =

Z
d4x

p
�g

⇢
G2(�, X)�G3(�, X)⇤�+G4(�, X)R

+G4X

⇥
(⇤�)2 � (rµr⌫�)

2
⇤
+G5(�, X)Gµ⌫rµr⌫�

�1

6
G5X

⇥
(⇤�)3 � 3⇤�(rµr⌫�)

2 + 2(rµr⌫�)
3
⇤�
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‣ Motivation 

‣ Only inflation can explain the early universe?  

1. Background , Problems (flatness e.t.c.) 

2. Perturbations (tensor, scalar) 

-> compare genesis to other inflation models              
　and discuss observational implications

Introduction

Check!

Galilean Genesis
‣ alternative to inflation model 
‣ Previous study 
‣ action 
                                                        

‣ solutions 
             :             , 

         :                                    , 

S =

Z
dx4p�g


f

2
e

2�(@�)2 +
f

3

⇤3
(@�)2⇤�+

f

3

2⇤3
(@�)4

�

G2 = f2e2�(@�)2 +
f3

2⇤3
(@�)4, G3 =

f3

⇤3
(@�)2⇤�, G4 = G5 = 0

[P. Creminelli, A. Nicolis and E. Trincherini, JCAP 1011, 021 (2010) ]

t ! �1

t ! t0

a(t) ' 1 H(t) ' � f2

3M2
Pl

1

H2
0 t

3

a(t) = exp


8f2

3H2
0M

2
Pl

1

(t0 � t)2

�
H(t) ' 16f2

3M2
Pl

1

H2
0 (t0 � t)3

->  subclass of Horndeski action
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‣ Generalization 
 
 

‣ include the various models of Genesis 
 

‣ solutions

Galilean Genesis

a(t) ' 1 +
1

2↵

h0

(�t)2↵
(�1 < t < 0)H(t) / 1

(�t)2↵+1
,,(�1 < t < 0)

introduce a parameter α

are arbitrary functions

α=1 ->

Y := e�2��X

[                ][P. Creminelli, A. Nicolis and E. Trincherini, JCAP 1011, 021 (2010) ]

[D. Pirtskhalava, L. Santoni, E. Trincherini, P. Uttayarat [arXiv:1410.0882 [hep-th]]]
[P. Creminelli, K. Hinterbichler, J. Khoury, A. Nicolis, E. Trincherini, [arXiv:1209.3768 [hep-th]]]

G2 = e2(↵+1)��g2(Y ), G3 = e2↵��g3(Y ),

G4 =
M2

Pl

2
+ e2↵��g4(Y ), G5 = e�2��g5(Y ).

G2 = e2(↵+1)��g2(Y ), G3 = e2↵��g3(Y ),

G4 =
M2

Pl

2
+ e2↵��g4(Y ), G5 = e�2��g5(Y ).

gi(Y )gi(Y )

t

a

k

H�1

Background

t

a

k

H�1

H2 +
K

a2
=

8⇡G

3c2
⇢

a(t) ' 1 +
1

2↵

h0

(�t)2↵
(�1 < t < 0)a(t) = a(ti)e

Hinf (t�ti)

solve the flatness problem 
in the same way

• Genesis 
 
 
started from the Minkowski 
spacetime 

• Friedman eq. 
 
 
 
 

• Inflation 
 
 
Exponentially expansion 

• Friedman eq. 
 
 
 
 

E ' e2(↵+1)��⇢̂(Y0) +
3K

a2
M2

Pl = 0
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Perturbation (tensor)
‣ Wave eq. 

‣ Powerspectrum  
 
 
 
 
 

ḧij + (3H +
ĠT

GT
)ḣij �

FT

a2GT
r2hij = 0

/ k2 ->  in Minkowski spacetime 
fluctuation do not grow 

This is too small to detect.

S(2)
T =

1

8

Z
dtd3xa3


GT ḣ

2
ij �

FT

a

2
(r2

hij)
2

�Action

' 1

Perturbation (scalar)
‣ Action 

‣ Wave eq. 

‣ solution 

‣                   :  decaying mode + const. 

‣                   :  growing mode + const.

0 < ↵ <
1

2

↵ >
1

2

⇣̈k � 2↵

(�t)
⇣̇k + k2c2s⇣k = 0

⌫ =
1

2
� ↵⇣k =

1

2

r
⇡

A(Y0)
(�t)⌫H(1)

⌫ (!k(�t)),

L⇣ = A(Y0)(�t)2↵
h
⇣̇2k � k2c2s⇣

2
k

i
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Perturbation (scalar)
‣   

‣   

‣            :  flat spectrum 

‣            :  introducing the curvaton field

ns = 2↵+ 3

0 < ↵ <
1

2

↵ >
1

2

ns = 5� 2↵

↵ 6= 2

genesis phase  
ends at t_end

P⇣(k) =
c�2⌫
s 22⌫�2�(⌫)2

⇡3A(Y0)
k3�2⌫

P⇣(k) =
c2⌫s 2�2⌫�3�(⌫)2(�tend)4

⇡3A(Y0)
k3+2⌫

↵ = 2↵ = 2

Curvaton
‣ introduce the conformal metric  

‣ Lagrangian  

‣ p and ρ of curvaton have to be subdominant. 
 
 

ĝµ⌫ = e2���gµ⌫

L� = �1

2
ĝµ⌫@µ�@⌫� � 1

2
m2�2

p�, ⇢� / (�t)�2� , p�, ⇢� / (�t)�2(↵+1)

-> ↵ > 2� � 1 ' 1 (� ' 1)

[P. Creminelli, A. Nicolis and E. Trincherini, JCAP 1011, 021 (2010) ]

(� ' 1)

(t ! 0)
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Curvaton
‣ Power spectrum of curvaton fluctuation  
 
 
 
 
-> we get a flat power spectrum. 

‣ this is only in the case of α>1 

‣ For 0<α<1 curvaton mechanism does not work.  

P��(k) =
23��1Y �

0 �2��(� � 1
2 )

2

⇡3
k2�2�

ns = 3� 2� ' 1 (� ' 1)

‣ Galilean Genesis and it’s generalization 

‣ background and perturbations in Galilean 
Genesis 

‣ make the scale invariant power spectrum  
 -> 

Conclusions

↵ = 2↵ = 2
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“The Effective Field Theory of Cosmological Large Scale 

Structures” 

Leonardo Senatore [Invited]

[JGRG24(2014)111310] 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The Effective Field Theory 
of

Large Scale Structure
the way to go for inflation

Leonardo Senatore (Stanford)

Wednesday, November 12, 14

• The only observable we are testing from the background solution is 

• All the rest, comes from the fluctuations

• For the fluctuations

– they are primordial

– they are scale invariant

– they have a tilt

– they are quite gaussian

– both scalar and maybe tensors 

How do we probe inflation
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Pl ⇠ �̇2

slow�roll (9)

⇤U, threshold & H (10)

⇤U . ⇤U, threshold ) fNL & H2

⇤U, threshold

(11)

fNL, minimal ⇠ ✏ ⇠ 10�2 ⌧ 10 ⇠ fNL, Planck (12)

�mHiggs, quantum ⇠ ⇤new
U ) New Physics (or new principle) guaranteed (13)

⇤U . 1 TeV ) mHiggs ⇠ gweak ⇥ 1 TeV⌧ 1 TeV (14)

cs & 0.02 (15)

⇣̇

H
,

@2⇣

a2H2
(16)

) (17)

f equil., orthog.
NL ⇠ 1

c2
s

(18)

Invariant block ⇠ ⇡̇2 + ⇡̇3 + ⇡̇(@i⇡)2 + (@i⇡)4 (19)

k/kNL (20)

⇡̇3
c

⇤2
U

) NG ' fNL⇣ ⇠ H2

⇤2
U

(21)

) (22)

⇡ ! ⇡ + c (23)

⇡̇3 , ⇡̇(@i⇡)2 , (@2⇡)(@⇡)2 (24)

!2 = c2
sk

2 +
k4

M2
(25)

Wednesday, November 12, 14



�686

Limits in terms of parameters of a Lagrangian
•.

• these are limits on the cutoff of the theory with Smith and Zaldarriaga, JCAP2010
Planck Collaboration 2013

with C. Cheung, P. Creminelli, L. Fitzpatrick, J. Kaplan JHEP 2008 

Wednesday, November 12, 14

• Planck improve limits wrt WMAP by a factor of ~3.

• Since

• Given the absence of known or nearby threshold, this is not much.

• Planck was great

• but Planck was not good enough

– not Plank’s fault, but Nature’s faults

• Please complain with Nature

• Planck was an opportunity for a detection, not much an opportunity to change the 
theory in absence of detection (luckily WMAP had a tilt a 2.5     , so we got to  6     )

• On theory side, little changes

– contrary for example to LHC,  which was crossing thresholds

• Any result from LHC is changing the theory

What has Planck done to theory?
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• Tremendous progress has been made through observation of the primordial 
fluctuations

• In order to increase our knowledge of Inflation, we need more modes

• Planck will soon have observed all the modes from the CMB

• and then what?

• I will assume we are not lucky

– no B-mode detection

– no signs from the beginning of inflation

• Unless we find a way to get more modes, the game is over

• Large Scale Structures offer the only medium-term place for hunting for more modes

– but we are compelled to understand them

• I do not think, so far, we understand them well enough

Cosmology is going to change in a few months

Wednesday, November 12, 14

• Euclid and LSST like: this is our only next chance

– we need to understand how many modes are available

– Need to understand short distances

– Similar as from LEP to LHC

What is next?

Wednesday, November 12, 14



�688

The Effective Field Theory of 
Cosmological Large Scale Structures

with Carrasco, Foreman and Green JCAP1407

with Baumann, Nicolis and Zaldarriaga JCAP 2012 
Cosmological Non-linearities

as an Effective Fluid

The Effective Theory of Large 
Scale Structure (EFTofLSS)

with Carrasco and Hertzberg JHEP 2012 

The 2-loop power spectrum
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• Non-linearities at short scale

A well defined perturbation theory

Wednesday, November 12, 14

• Standard perturbation theory is not well defined

• Standard techniques

– perfect fluid 

– expand in                   and solve iteratively

• Perturbative equations break in the UV

–  .

– no perfect fluid if we truncate

A well defined perturbation theory
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) ḢM2

Pl

c2

s

⇡̇(r⇡)2 ) NG ⇠ fNL⇣ ⇠ L
3

L
2

����
E⇠H

⇠ 1

c2

s

⇣ (4)

M
2

6= 0 ) cs 6= 0 (5)

M4

2

⇠ ḢM2
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Idea of the
Effective Field Theory
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• Very complicated on atomic scales

• On long distances

– we can describe atoms with their gross characteristics

• polarizability                               : average response to electric field

– we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric

Consider a dielectric material

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Very complicated on atomic scales

• On long distances

– we can describe atoms with their gross characteristics

• polarizability                               : average response to electric field

– we are led to a uniform, smooth material, with just some macroscopic properties 

• we simply solve Maxwell dielectric equations, we do not solve for each atom.

• The universe looks like a dielectric

Consider a dielectric material
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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sḢM2
Pl (17)

g2
2

m2
h

⇠ 1

⇤2
U

) mh ⇠ g2 ⇥ ⇤U ⌧ ⇤U (18)

) mnew degree of freedom ⇠ g ⇥ ⇤U ⌧ ⇤U (19)

⇤U ⇠ 4⇡
mW

g2

(20)

S =

Z
d4x

1

g2
3

Tr
⇥
Fµ⌫F

µ⌫ + m2
W W µWµ + m2

Z ZµZµ

⇤ ! (21)

S =

Z
d4x
p�g

h
�ḢM2
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• A well defined perturbation theory

• 2-loop in the EFT, with IR resummation

• Data go as                : naively factor of 200 more modes than before

Bottom line result
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With this
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With this

Look at the dot,
to scale
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With this

Look at the dot,
to scale

If it holds, this is a revolution 
of our expectations
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• If we push 

– then we rule out all theories of early universe but

• Single-Field Slow-Roll Inflation

• As all other theories are more interacting that this

– all interactions are so small that we are perturbatively close to slow roll 
inflation

• Huge discovery without a detection

What would we get?
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Construction of the
Effective Field Theory
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• On short distances, we have point-like particles

– they move

– induce overdensities

– Source gravity

Point-like Particle versus Extended Objects
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• But we cannot describe point-like particles: we need to focus on long distances. 

– We deal with Extended objects

• they move differently:

Point-like Particle versus Extended Objects
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• But we cannot describe point-like particles: we need to focus on long distances. 

– We deal with Extended objects

• they move differently:

Point-like Particle versus Extended Objects
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• They induce number over-densities and real-space multipole moments 

• they source gravity with the `overall’ mass

• These equations can be derived from smoothing the point-particle equations

– but actually these are the assumption-less equations

Point-like Particle versus Extended Objects
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• Similar to treatment of material polarizability:

• Take moments:

• Expectation value

• Response (non-local in time)

• Stochastic noise

• Overall

•  In summary: we obtain an expression just in terms of long-wavelength variables

How do we treat the new terms?
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• For local EFT, we need hierarchy of scales.

– In space we are ok

– In time we are not ok: all modes evolve with time-scale of order Hubble

•            The EFT is local in space, non-local in time
– Technically it does not affect much because the linear propagator is local in space

This EFT is non-local in time

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Similar to treatment for material polarizability:

• Short distance physics is taken into account by expectation value, response, and noise

• Poisson equation breaks when

– gravitational potential from quadrupole moment ~ the one from center of mass

• By dimensional analysis, this happens for distances shorter than a critical length

– the non-linear scale

– on long distances,                 , write as many terms as precision requires.

• Manifestly convergent expansion in 

When do we stop?
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than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• In the universe, finite-size particles move

• In Lagrangian space, we do not expand in

• In Eulerian, we do: we describe particles from a fixed position

– Expand in 

• There are three expansion parameters for a given wavenumber

Connecting with the Eulerian Treatment
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• Expand in all parameters (Eulerian treatment)

• The resulting equations are equivalent to Eulerian fluid-like equations

– here it appears a non trivial stress tensor for the long-distance fluid

Connecting with the Eulerian Treatment
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• Can the short distance non-linearities change completely the overall expansion rate of 
the universe, possibly leading to acceleration without         ?  

• In terms of the short distance perturbation, the effective stress tensor reads

• when objects virialize, the induced pressure vanish

– ultraviolet modes do not contribute (like in SUSY) 

• The backreaction is dominated by modes at the virialization scale 

A non-renormalization theorem
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• In the EFT we can solve iteratively (loop expansion) 
Perturbation Theory within the EFT
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

Perturbation Theory within the EFT
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

– absence of counterterm

Perturbation Theory within the EFT
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• Regularization and renormalization of loops (scaling universe)

– evaluate with cutoff. By dim analysis:

– absence of counterterm

Perturbation Theory within the EFT
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UV convergent. If we regularize it with a cuto↵ ⇤, dimensional analysis allows us to conclude
that, after integration, P I

2-loop

will take the form
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where all the coe�cients c...

...

are expected to be numbers of order one. In the above formula, we
have used the fact that the diagrams P I

42

and P I

33

are not divergent for n = �3/2, so the divergent
terms come only from P I

51

and are therefore proportional to P
11

. The finite parts from P I

42

and
P I

33

are not proportional to P
11

, but have the same scaling in terms of k and k
NL

as the term
proportional to cfinite

1

, so we have expressed it in that way for simplicity. Here the superscript, I,
of P I

...

, refers to “irreducible” diagrams, which means that they do not reduce to combinations of
lower order diagrams. Roughly speaking, this means that all but one of the loop integrations are
nested and are not independent. Only one azimuthal angular integral is independent, explaining
the overall factor of (2⇡) in (9). We will consider the “reducible” diagrams8 in the next subsection.

Each of the ⇤ dependent terms above needs to have a counter-term that cancels the ⇤ depen-
dence. For example, the second term proportional to c⇤
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can be cancelled by the counter-term
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Notice that we multiplied by a factor of (2⇡) in order to make the scaling match P I
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with c⇤

1

and �c
counter

being ⇤-independent, c⇤

1

can cancel the UV divergence while �c
counter

gives
a finite contribution. The first and third terms in (9), proportional to c⇤

0

and c⇤

2

respectively,
cannot be cancelled by any counter-term available in the EFTofLSS, as such terms would violate
the combination of rotation invariance and locality, which requires analyticity in Fourier space. It
can be verified numerically that c⇤

0

= c⇤

2

= 0, as required [8].
By taking ⇤ su�ciently large, we can neglect the terms that depend on ⇤ in a vanishing way

as ⇤!1. Therefore, we have
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8Here irreducible is not the same as one-particle irreducible (1PI). Specifically, all non-1PI diagrams are re-
ducible, by our definition, but some 1PI diagrams are also reducible.
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• Has everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant), but cannot fit the k-shape

Calculable terms in the EFT
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• Has everything being lost?

– to make result finite, we need to add a counterterm with finite part

• need to fit to data (like a coupling constant), but cannot fit the k-shape

– the subleading finite term is not degenerate with a counterterm.

• it cannot be changed

• it is calculable by the EFT 

– so it predicts an observation 

Calculable terms in the EFT

Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]

P finite

13

= (2⇡)
5⇡2

56

k

k
NL

P
11

(k) ' 0.88⇥ (2⇡)
k

k
NL

P
11

(k) (61)

P finite

22

= (2⇡)
75⇡2

392

k

k
NL

P
11

(k) ' 1.88⇥ (2⇡)
k

k
NL

P
11

(k) . (62)

For comparison, the two loop result is given by
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For the n = �3/2 scaling universe, the results are slightly more surprising. At 1-loop, one has

P finite

13

= (2⇡)
1984⇡2

6615

k

k
NL

P
11

(k) ⇠ 0.94⇥ (2⇡)
k

k
NL

P
11

(k) (64)

P finite

22

⇠ �0.464⇥ (2⇡)
k

k
NL

P
11

(k) . (65)

We see that there will be a significant cancelation between P
22

and P
13

in computing P
1-loop

. These
results become more dramatic when we consider two-loops,

P
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1

= 0.044 (67)

The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P

22

and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.

B SPT Formulas up to Two Loops

The loop corrections to the power spectrum in SPT are conventionally written in terms of separate
diagrams, which themselves are integrals of factors of P
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times symmetrized kernels F
(s)
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and G
(s)

n

13Our conventions for k
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di↵er from [6] by kours
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.
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• Each loop-order      contributed a finite, calculable term of order 

– each higher-loop is smaller and smaller

• This happens after canceling the divergencies with counterterms

• each loop contributes the same

• Up to 2-loops, we need only the 1-loop counterterm

Lesson from Renormalization

Appendix

A One and Two-Loop Results in the Scaling Universe

In this appendix we collect some results from calculations in the scaling universe. For the n = �2
scaling universe, the 1-loop diagrams are given by13 [6]
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For comparison, the two loop result is given by
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For the n = �3/2 scaling universe, the results are slightly more surprising. At 1-loop, one has
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in computing P
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The small size of the ⇤-independent term might be surprising, given our loop counting we expected
O(2⇡), but the small number can be understood as cancellations due to the relative sizes of 2P

22

and P
13

, which is the combination that appears in reducible diagrams not yet heavily suppressed
at 2-loops.

13Our conventions for k
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IR-resummation
with Zaldarriaga 1404
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• In Eulerian treatment

The Effect of Long-modes on Shorter ones

xEulerian

x0

t0
δρshort wavelength
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• Add a long `trivial’ force (trivial by GR)

• This tells you that one can resum the IR modes: this is the Lagrangian treatment

The Effect of Long-modes

δρshort wavelength

x0

xEulerian

x0

t0
δρshort wavelength

t1

time

∇⃗Φlong wavelenght

xEulerian

Big `trivial’ Perturbation

Wednesday, November 12, 14

• For equal time matter correlators, naively no effect

• But the universe has features!

• Even on equal time correlators, IR modes of order the BAO scale do not cancel!

– In Fourier space these are the wiggles

• To compute the width, IR-BAO modes are relevant

• But they just do kinematics, so we can resum them!

The Effect of Long-modes

δρshort wavelength
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∇⃗Φlong wavelenght

xEulerian
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x

⟨δ(0)δ(x)⟩

width affected by λshort

peak located at λlong
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Results
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• Well defined and manif. converg.

• Every perturbative order improves the agreement as it should

• We know when we should fail, and we fail when we should

EFT of Large Scale Structures
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
level (dotted green), one loop (dashed red), and two loops (dashed blue). The left plot shows the results
normalized to non-linear data (solid black) while dotted and dashed black lines are the 2-� limits associated
with 1 and 2 percent agreement (1-�) with the non-linear data. The red and blue bands show the 2-�
errors on the 1 and 2 loop EFT parameters respectively. The right plot is the same information without
the normalization to the non-linear data, and with the low-k region omitted for readability.
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By Fourier-transforming this equation, we find that
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get
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We further apply the ansatz (58) about the time-dependent kernel K(a, a0), so that c̄
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Before we proceed, we should emphasize that the momentum power spectrum depends sen-

sitively on the assumptions made about the time-dependence of the c
n
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k

ren

= 0.2 h Mpc�1 , and c

2

s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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• The lines with oscillations are obtained without resummation in the IR

– Getting the BAO peak wrong

EFT of Large Scale Structures

with Carrasco, Foreman and Green 1310
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k

ren

= 0.2 h Mpc�1 , and c

2

s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

EFT of Large Scale Structures
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• Comparison with Standard Treatment (feel free to ask about RPT)

• For the EFT, change from 1-loop to 2-loop predicted

– the other new terms are clearly important

– they `conspire’ to the right answer

EFT of Large Scale Structures

performed using Monte Carlo integration routines from the CUBA library [18], to compute P
1-loop

and P
2-loop

.
First, let us outline the procedure schematically: in order to determine c2

s(1)

, we consider the
1-loop EFT prediction,

P
EFT-1-loop

= P
11

+ P
1-loop

� 2 (2⇡)c2

s(1)

k2

k2

NL

P
11

. (61)

We determine c2

s(1)

by fitting P
EFT-1-loop

to the non-linear power spectrum at low k, where P
1-loop

is expected to be reliable. After determining c2

s(1)

, the two-loop power spectrum is given by

P
EFT-2-loop

= P
11

+P
1-loop

+P
2-loop

�2 (2⇡)(c2

s(1)

+c2

s(2)

)
k2

k2

NL

P
11

+(2⇡)c2

s(1)

P
(c

s

,p)

1-loop

+(2⇡)2c4

s(1)

k4

k4

NL

P
11

.

(62)
The purpose of c2

s(2)

is to cancel the ( k

k

NL

)2P
11

dependence of P
2-loop

that arises from loop momenta

with q � k. Because this contribution is larger than P finite

2-loop

, we can determine it by comparing
to P

EFT-1-loop

in the region where P finite

2-loop

is negligible. By doing so, we can determine all the
parameters in P

EFT-2-loop

without ever fitting the 2-loop power spectrum to the nonlinear data
directly!

However, implementing the above procedure is challenging. It is easy to measure c2

s(1)

and

c2

s(2)

when they contribute significantly to the power spectrum, namely above k ⇠ 0.1 h Mpc�1 .
However, in this regime, it is di�cult to determine, a priori, at which range of k the contribution
from P finite

2-loop

can be ignored (which is required for both measurements to be valid). If one works

at k ⌧ 0.1 h Mpc�1 , one can safely use 2(2⇡)(c2

s(1)

+ c2

s(2)

)( k

k

NL

)2P
11

� P finite

2-loop

. However, because

2(2⇡)(c2

s(1)

+ c2

s(2)

)( k

k

NL

)2P
11

⌧ P
11

, one requires very high precision nonlinear data to make the

measurement of c2

s(1)

.
In practice, it appears that the real universe is much better behaved than one would have

naively expected. As we discussed in Section 3.1, in the regime 0.1 h Mpc�1 < k < 0.3 h Mpc�1 ,
the universe behaves much like a scaling universe with n = �1.7 ⇠ �3/2. As we show in
Appendix A, in the n = �3/2 universe P finite

2-loop

is smaller than our loop counting would suggest by
a factor of 10�2. As a result, we can trust P

EFT-1-loop

up to k ⇠ k
tr

, which is a much higher scale
than our naive counting would suggest. Therefore, in the range 0.1 h Mpc�1 < k < 0.25 h Mpc�1 ,
we can safely measure c2

s(1)

and c2

s(2)

by implementing the above procedure. This is very fortunate
because the error on available non-linear data is too large to apply to above procedure at k ⌧
0.1 h Mpc�1 .

We determine c2

s(1)

from a least-�2 fit of the P
EFT-1-loop

to the Coyote power spectrum over the
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Figure 4: Top: The prediction of the IR-resummed EFT at one-loop (in thick red) and two-loops (in thick
blue). In thin dashed are the predictions from the Eulerian EFT, that is without IR-resummation, with the
same colors respectively. The green band represents the estimated theoretical error from three-loops. The
one- and two-loops results have been renormalized at k

ren

= 0.2 h Mpc�1 , and c

2

s(1) has been approximately
fit up to k ' 0.5 h Mpc�1 . Since the equal-time matter power spectrum is IR-safe, we see that the e↵ect of the
IR-resummation is just to a↵ect the oscillations, which are indeed now correctly taken into account. We see
that the one-loop result matches to percent level the data up to k ' 0.3 h Mpc�1 , while at two-loop matches
all the way up to k ' 0.6 h Mpc�1 . The spike at k ' 0.05 h Mpc�1 is due to the numerical interpolator,
against which we compare, not to the EFT. It is also important to notice that the match stops exactly the
three-loop term is estimated to become relevant. Bottom: We compare the predictions of the IR-resummed
EFT with the ones of SPT. In thick magenta, red and blue we plot respectively the IR-resummed linear, one-
loop and two-loops predictions of the EFT. With the same colors, but simply dashed, the same quantities in
SPT. As we go to higher orders, SPT does not increase the agreement with the data. Furthermore, we notice
that SPT has the same oscillatory features as the Eulerian EFT. In contrast, the IR-resummed EFTofLSS
correctly predicts the size of the oscillations, and, at each order in perturbation theory, it improves the UV
match to the data. Importantly, in the EFTofLSS, order by order in perturbation theory, it is possible to
estimate up to where the theory should match the data.
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• The IR-resummation is crucial to get the BAO peak right.

– we can do this very quickly.

The BAO peak in `5 minutes’

with Zaldarriaga 1404
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Measuring Parameters from
small N-body Simulations

Wednesday, November 12, 14

• The EFT parameters can be measured from small N-body simulations

– similar to what happens in QCD: lattice sims

• As you change smoothing scale, the result changes

• Perfect agreement with fitting at low energies

– like measuring       from lattice sims and          scattering

Measuring parameters from N-body sims.

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• The EFT parameters can be measured from small N-body simulations

– similar to what happens in QCD: lattice sims

• As you change smoothing scale, the result changes

• Perfect agreement with fitting at low energies

– like measuring       from lattice sims and          scattering

– UV dof

Measuring parameters from N-body sims.

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• At one-loop, similarly great results

– with no additional parameter

– as good as they should

– very non-trivial functional forms

• Similar formulas just worked out for Bias

• and Redshfit space distortions

Momentum and Bispectrum
with Angulo, Foreman and Schmittful 1406

with Zaldarriaga 1404

Senatore 1406 See also (McDoland and Roy 0902)

with Zaldarriaga 1409 
Wednesday, November 12, 14

• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

– no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

– from local counterterm

– from viscosity

• Predicted result seems to be verified in sims

Velocity field
goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s

(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

– no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

– from local counterterm

– from viscosity

• Predicted result seems to be verified in sims
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ḢM2
Pl

c2
s

�
⇡̇2 � c2

s(@i⇡)2
�

+
1

c2
s

⇡̇(@i⇡)2 +
c̃3

c2
s

⇡̇3

�
(3)

Qij = l20 �ij + l21
@2

H2
�L + . . . + Qij,S (4)

�⇢/⇢ (5)

h(@i⇡
i)2i (6)

k [h/Mpc] (7)

h!2
ki ⇠ ↵

✓
k

kNL

◆2

+ �

✓
k

kNL

◆3

(8)

~v(~x) =
~⇡(~x)

⇢(~x)
(9)

kren ' 0.2 Mpc�1 (10)

⇢L = ⇢S (1 + v2
S + �S) (11)

pL = ⇢S (2v2
S + �L) (12)

kL & �koscillation (13)

k (14)

�kresolution (15)

�koscillation (16)

) (17)

1/kL (18)

~⇡(~x) ! ~⇡inertial(~̃x) = ~⇡(~x(~̃x)) + ⇢(~̃x) ~v(~̃x) (19)

EM ! GR (20)

PL�loops�finite ⇠
✓

k

kNL

◆L

(21)

Qij,R ⇠ l1(⌘)2 @i@j�L(~zL(~q, ⌘) (22)

⇠ Energyelectrostatic = q V + ~d · ~E + . . . (23)

@2�(~x) = H2�(~x) (24)

1 + �(~x, ⌘) =

Z
d3q �(3)(~x� ~z(~q, ⌘)) (25)

n (26)

⇡̇3

⇤2
U

(27)

F⇡ (28)

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.

vl,R(~x, t) = vl(~x, t)� e1@�(~x, t) + · · · (1)

h⌧i@2�
l

= c1@
2�l + . . . (2)

@2�l ⌧ 1 (3)

Var(⌧) = h⌧ 2i � h⌧i2 (4)

h⌧i@2�
l

= c1@
2�l + c2@

3�l + . . . + d1(@
2�l)

2 + . . . (5)

(k/kNL)4 for k . 0.1 h Mpc�1 (6)

(k/kNL)2 for k . small introduced by spurios e↵ects (7)

h!i!ji⌧ higher order ⇠ �D(~k + ~k0) �ij c4
v

H2

kNL
3

✓
k

kNL

◆7+2n

, (8)

P�⇡ (9)

P11 =
1

kNL
3

✓
k

kNL

◆�3/2

(10)

f loc
NL ⇠

1

e�ciency
& 1 (11)

⇤2
U & ⇤2

min ⇠ 103H2 (12)

) (13)

⇡̇3
c

⇤2
U

, ⇤4
U ⇠ c5

sḢM2
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• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

– no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity
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– from viscosity
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• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

– no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

– from local counterterm

– from viscosity

• Predicted result seems to be verified in sims
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sḢM2
Pl (14)

g2
2

m2
h

⇠ 1

⇤2
U

) mh ⇠ g2 ⇥ ⇤U ⌧ ⇤U (15)

) mnew degree of freedom ⇠ g ⇥ ⇤U ⌧ ⇤U (16)

⇤U ⇠ 4⇡
mW

g2

(17)

S =

Z
d4x

1

g2
3

Tr
⇥
Fµ⌫F

µ⌫ + m2
W W µWµ + m2

Z ZµZµ

⇤ ! (18)

S =

Z
d4x
p�g

h
�ḢM2

Pl(@µ⇡)2 + M4⇡̇2 + M̄3H(@i⇡)2 + M̃2(@2⇡)2
i

(19)

H(t + ⇡) ) Ḧ⇡2 (20)
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Hahn, Angulo, Abel, to appear
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• Momentum is a natural quantity, as connected to density by conservation law 

• Velocity is not a natural quantity

• It is a local composite operator: needs its own new counterterms:

– no new counterterm for the equations

• Because of this, and because it is a viscous fluid, we generate vorticity

– from local counterterm

– from viscosity

• Predicted result seems to be verified in sims

• Former analytic techniques got zero
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End to SPT-like resummations

Hahn, Angulo, Abel, to appear
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Baryonic Effects
with Lewandoski and Perko to appear

Wednesday, November 12, 14

• Baryons heat, but do not move            they can be described as extended objects

– Universe with CDM+Baryons            EFTofLSS with 2 species

– The functional form is predicted by the EFTofLSS

– Awesome!

Baryons
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(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.
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sḢM2
Pl (24)

g2
2

m2
h

⇠ 1

⇤2
U

) mh ⇠ g2 ⇥ ⇤U ⌧ ⇤U (25)

) mnew degree of freedom ⇠ g ⇥ ⇤U ⌧ ⇤U (26)

goes as (k/kNL)2.8 for 0.2 h Mpc�1 . k . 0.6 h Mpc�1 , while it becomes steeper at lower k’s
(k/kNL)3.6 for 0.1 h Mpc�1 . k . 0.2 h Mpc�1 , to slowly asymptote to (k/kNL)9 for k’s smaller
than the equality scale. Notice that h!i✓i and h!i�i vanish because of rotation and/or parity
invariance.

) (1)✓
k

kNL

◆
⌧ 1 (2)

k ⌧ kNL (3)

k & kNL (4)

, Qelectric
ij = c EiEj , . . . (5)

hQSQS . . .i 6= 0 (6)
~ddipole ⇠ ↵ ~Eelectric (7)

datomic (8)

d � datomic (9)

⇤2
U & ⇤2

min ⇠ 103H2 ) ⇤2
min ⌧ 105H2 (10)

vl,R(~x, t) = vl(~x, t)� e1@�(~x, t) + · · · (11)

h⌧i@2�
l

= c1@
2�l + . . . (12)

@2�l ⌧ 1 (13)

Var(⌧) = h⌧ 2i � h⌧i2 (14)

h⌧i@2�
l

= c1@
2�l + c2@

3�l + . . . + d1(@
2�l)

2 + . . . (15)

(k/kNL)4 for k . 0.1 h Mpc�1 (16)

(k/kNL)2 for k . small introduced by spurios e↵ects (17)

h!i!ji⌧ higher order ⇠ �D(~k + ~k0) �ij c4
v

H2

kNL
3

✓
k

kNL

◆7+2n

, (18)

P�⇡ (19)

P11 =
1

kNL
3

✓
k

kNL

◆�3/2

(20)

f loc
NL ⇠

1

e�ciency
& 1 (21)

⇤2
U & ⇤2

min ⇠ 103H2 (22)

) (23)

⇡̇3
c

⇤2
U

, ⇤4
U ⇠ c5

sḢM2
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Figure 6: We fit to the simulations that include various baryonic e↵ects by comparing the quantity R =
PA

with baryon

/PA
DM only

as calculated in the EFT to the same quantity calculated from the data. Each simulation
has a di↵erent best-fit value of �c̄2

A. Here, we obtain a range of �c̄2

A: �c̄2

A ' 0.5 (hMpc�1)�2 is the blue curve,
which is the AGN data, while �c̄2

A ' 0.07 (hMpc�1)�2 is the yellow curve, which is the NOSN NOZCOOL
simulation. The rest of the curves are DMBLIMFV 1618 (dark red), NOSN (dark green), NOZCOOL
(cyan), REF (dark yellow), WDENS (purple), WML1V 848 (red), WML4 (green). The green region is the
size of the theoretical error, which we have calculated by estimating the size of the two loop corrections that
we have not included, using Eqs. (5.10) and (5.11). The dashed line is the same theoretical error after adding
in quadrature a 1% error for unknown systematics. This has only been plotted for the AGN simulation to
avoid clutter.

come with an extra factor of w
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For example, in the power spectrum of baryons and of dark matter, the leading corrections go as
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where P
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is the linear power spectrum of the adiabatic mode �
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= w
c
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c

+ w
b
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b

, with �
c,b

being
the dark matter and baryon overdensities, w

b,c

being their contribution to the energy density of
the universe, and k

NL

is the wavenumber associated to the non-linear scale. Eq. (1.1) tells us that
di↵erent models of star formation will lead at long distances to the same corrections, apart for their
overall size. This is interesting for two reasons. First, it tells us that we can in principle a↵ord to
not have a derivation of the size of these terms from first principles: since the functional form of the
correction is known, we can fit it directly to observations. Of course, it is much better not to have to
fit for any new parameter. So, Eq. (1.1) tells us that in order to reproduce the leading long distance
information, simulation codes can simply work towards determining the numerical coe�cients in
Eq. (1.1), which is probably an easier job than determining the full functional form. As we will
verify, di↵erent star formation models will di↵er in the numerical value of the coe�cients in (1.1),
but not in the functional form. Finally, simulation codes can begin to be run on smaller boxes, so
that their accuracy can be increased.

After constructing the relevant EFT equations, in order to compare the solutions to simulation
data, we need to take care of the e↵ect of infrared modes. In the current universe, large infrared
displacements harm the perturbative expansion and need to be resummed. In the case where there
is only one fluid, general theorems [10, 11] tell us that that these e↵ects cancel for equal time power
spectra, and therefore it is only the displacements from modes of order the BAO scale that need to
be resummed [7]. The reason why displacements induced by arbitrarily long modes do not contribute
at least to some observables is because the displacement induced by long modes is proportional to
the gradient of the Newtonian potential, which, by general relativity, is just a gauge artifact and
does not a↵ect local observables such as the equal time power spectra of short modes. However,
in the case of two fluids, there is a relative displacement that cannot be set to zero by a gauge
transformation, and that therefore give rise to dynamical e↵ect in all observables. This e↵ect, first
pointed out in [14], is large in our universe at redshift of order z ⇠ 40 and leads to a breaking of
perturbation theory [15]. Since this is an infrared e↵ect, we generalize the formulas of [7] to the case
of two fluids, to provide a way to systematically resum such an e↵ect in an analytic way.

Endowed with all these expressions, we are ready to compare with simulation data. We use two
kind of simulations. In the first ones, that we discuss in App. A, baryons are simulated with all
baryon e↵ect shut o↵, but still keeping the di↵erent initial conditions that baryons and dark matter
have in our universe. This gives us a measure of how much the di↵erent initial conditions matter, an
e↵ect that we confirm to be small at redshift zero. Then, we compare with simulations of baryonic
physics. The EFTofLSS predicts that the e↵ect should be described by the functional form of (1.1),
up to a scale which can also be estimated, given by when higher order corrections become relevant.
As we will see, the comparison seems to work extremely well.
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• A manifestly convergent perturbation theory

• we fit until                                           , as where we should stop fitting

– there are 200 more quasi linear modes than previously believed!

– huge impact on possibilities, for ex:

• Can all of us handle it?! This is an huge opportunity and a challenge for us 
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Figure 7: Comparisons between 1-loop EFT (solid red), 2-loop EFT (solid blue) and SPT at tree
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and we can use the perturbative solutions for �(~k, a) (see App. C) to expand the right-hand side
up to the desired order. At one loop, we get
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Pl ⇠ �̇2
slow�roll (41)

Z
d4x


(@⇡)2 +

1

⇤2
U

⇡2(@⇡)2 + . . .

�
(42)

E ⇠ H (43)

�̇slow�roll ⇠
⇣
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• Many (most?) of the features of QFT appear in the EFT of LSS:

– Loops, divergencies, counterterms and renormalization

– non-renormalization theorems

– Calculable and non-calculable terms

– Measurements in lattice and lattice-running 

– IR-divergencies

• Results seem to be amazing, many calculations and verifications to do:

– like if we just learned perturbative QCD, and LHC was soon turning on

• higher      -point functions

• Validation with simulation

– With a growing number of groups (Caltech, Princeton, IAS, Cambridge, CEA, 
Zurich..., just after 2-loop result, a workshop was organized by Princeton)

• If this works, the 10-yr future of Early Cosmology is good, even with no luck

Conclusions
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• Let us not fight between Simulations and Perturbation Theory

Make Peace and no War
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• There is room for everybody: the two approaches are complementary

Perturbation Theory and Simulations

Long Wavelengths:
Perturbation Theory

Short Wavelengths:
Simulations

Wednesday, November 12, 14
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“Chromo — Multi Natural Inflation”  

Ippei Obata

[JGRG24(2014)111311] 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Chromo&–&Mul+&Natural&Infla+on&
�

Ippei&Obata&(Kyoto&univ.&M2)&
Collaborators:&Takashi&Miura&and&Jiro&Soda&
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Infla+onary&paradigm�

volume : a(t)3 � e3Ht, H � ȧ/a � const
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•  A&scalar&par+cle&“Inflaton”&occurs&exponen+al&expansion&:&&

•  It&rolls&very&slowly&on&the&slope&of&its&poten+al&:&&

�̈ + 3H�̇ + V �(�) = 0

The&Infla+onary&mechanism�

� : inflaton

S =

�
d4x

�
�g

�
M2

pl

2
R � 1

2
������ � V (�)

�

�V �
M2

pl

2

�
V�

V

�2

� 1 �V � M2
pl

V��

V
� 1

“Naturalness”&of&the&poten+al&parameters�

The&poten+al&form&is&constrained&by&CMB&obserba+on.�

V (�) =
1

2
m2�2,

1

4!
��4

m � 1013GeV, � � 10�12

Ex)�

�T

T
� 10�5

Observa+on�

� 1� �m � �UV
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“Naturalness”&←&&“Symmetry”&�

Natural&Infla+on�
Use&the&shiU&symmetry&of&the&axion&!&

K.&Freese,&J.&A.&Frieman,&and&A.V.&Olinto,&PRL.&65,&3234&(1990)�

� � � + const.

S =

�
d4x

�
�g

�
M2

pl

2
R � 1

2
������ � µ4(1 � cos (

�

f
))

�

� : axion(inflaton)

We&can&generate&small&parameters&dynamically:&&�

However…�

f � Mpl
m � µ2

f
, � � µ4

f4
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ChromoHNatural&Infla+on�
Ac+on&:&
&
&
&
&
&
SlowHroll&parameters&:�

F a
µ� = �µAa

� � ��Aa
µ + g�abcAb

µAc
�

P.&Adshead&and&M.&Wyman,&PRL&108,&261302&(2012)&
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d4x
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R � 1
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������ � µ4(1 � cos (
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)) � 1

4
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� � 1
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1 + m2
�

m�

�
2V�

V
� V��

V�

�

Aa
0 = 0, Aa

i = a(t)�(t)�a
i : SU(2) gauge field

Remarkable&predic+on�
&
Considering&tensor&fluctua+ons...&
&
&
&
ChernHSimons&term&in&gauge&sector&can&produce&a&chiral&
spectrum&of&gravita+onal&waves:�

�
�

4f
F̃ a��F a

�� �2
h+(k) � �2

h�(k)

P.&Adshead,&E.&Mar+nec&and&M.&Wyman,&PRD88,&no.2,&021302&(2013)&

interacts&metric&perturba+on&�

This&amplitude&depends&on&mass&parameter:&&&�m� =
g�

H
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However…�
CMB&observa+onal&constraint&:&

P.&Adshead,&E.&Mar+nec&and&M.&Wyman,&PRD88,&no.2,&021302&(2013)&
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Chromo&H&Mul+&Natural&Infla+on�
•  Ac+on:&

•  Poten+al:&

•  SU(2)Gauge:& � : Natural inflaton

� : Chromo-Natural inflaton

�� � 1 � ��V (�, �) = µ4(1 � cos

�
�

f

�
) + µ4(1 � cos

��

h

�
)

= Ṽ (�) + Ṽ (�)

(Mpl = 1)

Infla+onary&dynamics�
&

SlowHroll&parameter:�

CMB&scale�
eHfolds:&0&�&20&…&Natural&Infla+on�

eHfolds:&20&�&50&…&ChromoHNatural�

�n =
1

2

�
Ṽ�

Ṽ (�)

�
�H = �Ḣ/H2

�ch =
h

��

1 + m2
�

m�

Ṽ�

Ṽ (�)
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Dynamics&of&mass&parameter�

CMB scale : m� � 0.5

small scales : m� � 4

CMB&scale�

small&scales�

Chiral&gravita+onal&waves�

horizon&cross.&
in&CMB&scale�

horizon&cross.&
in&small&scales&

SuperHhorizon� SubHhorizon�

past�future�

m� = 0.5

m� = 2

m� = 4



�727

Table&of&contents�
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Summary&and&Outlook�
•  Chromo–Natural&Infla+on&predicts&chirallyHenhanced&

gravita+onal&waves.&However,&it&is&hard&to&sa+sfy&CMB&
observa+onal&constraints.&

&
•  Our&new&scenario&might&avoid&to&overproduce&chiral&

gravita+onal&waves&in&the&CMB&scale&and&generate&sizable&
chiral&power&spectrum&in&smaller&scales.&

•  Is&it&possible?&We&leave&more&detailed&analyses&for&future&
work.&
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Appendix.�

The&problem&of&Natural&Infla+on�
In&order&to&occur&infla+on…&
&
&
&
The&axion&decay&constant&is&required&to&have&superHPlanckian&:�

V (�) = µ4(1 � cos (
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f
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ChromoHNatural&Infla+on�

•  EOMs&and&constraint&:�

�̈ + 3H�̇ + V �(�) = �3
�

f
g�2(�̇ + H�)
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Considering&tensor&perturba+ons…&(&&&&&&&&&&&&&&&)�Mpl = 1



�730

Observa+onal&constraints�
•  Spectral&index&:&

&

depends&on�

Friedman&and&EOM�
•  Friedman&equa+on&	&

•  EOM&:�
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Infla+onary&trajectory�
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•
:::::

•
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• � �
V (�) = V e���
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V (�)

⇤ a = a (t/t )p
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• ⌦ (�) = e��� = [V (�)]��
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10-4 1 104 108 kêk0

PHkêk0Lns=0.98, nc=0.96, b~1

0.1 104 109 1014 kêk0

PHkêk0Lns=0.98, nc=1.18, b~0.01
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Non-gaussian imprints of 
primordial magnetic fields 

from inflation

Rajeev Kumar Jain

JGRG24, Kavli IPMU
Nov. 10-14, 2014 

Rajeev Kumar Jain                                 JGRG24, Kavli IPMU                                   Nov. 10-14, 2014

Plan of the talk
! Cosmic magnetic fields: Brief introduction and 

generation from inflation 

! Magnetic non-Gaussianity: Cross-correlations 
with primordial curvature perturbations 

! A new magnetic consistency relation

! The full in-in calculation

! Conclusions
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Our universe is magnetized!
! Large scale magnetic fields are present everywhere in the universe e.g. 

in our solar system, in stars, in galaxies, in clusters, in galaxies at high 
redshifts and also in the intergalactic medium.

! Galaxies: B ∼ 1 − 10 µG with coherence length as large as 10 kpc. 

Clusters: B ∼ 0.1 − 1 µG, coherent on scales up to 100 kpc.

Filaments: B ∼ 10−7 − 10−8 G, coherent on scales up to 1 Mpc 
(Kronberg 2010).

Intergalactic medium: B > 10−16 G, coherent on Mpc scales, the lower 
bound arises due to the absence of extended secondary GeV emission 
around TeV blazars (Neronov and Vovk, 2010), or even more robust 
limits of B > 10−19G (Takahashi et al. 2011).

Rajeev Kumar Jain                                 JGRG24, Kavli IPMU                                   Nov. 10-14, 2014

! Standard EM action is conformally invariant - the 
EM fluctuations do not grow in any conformally 
flat background like FRW - need to break it to 
generate magnetic fields.

! Various possible couplings:

! Kinetic coupling:

! Axial coupling:

! Mass term:

Primordial magnetic fields from 
inflation

�(�,R)Fµ�Fµ�

f(�,R)Fµ� F̃µ�

M2(�,R)AµAµ
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Magnetic non-Gaussianity 
! If magnetic fields are produced during inflation, 

they are likely to be correlated with the primordial 
curvature perturbations.

! Such cross-correlations are non-Gaussian in nature 
and it is very interesting to compute them in 
different models of inflationary magnetogenesis.

! We consider the following correlation here: 

Pirsa: 12110040 Page 28/56

Rajeev Kumar Jain                                 JGRG24, Kavli IPMU                                   Nov. 10-14, 2014

(Ordinary) non-Gaussianity 
! The primordial perturbations are encoded in the 

two-point function or the power spectrum

! A non-vanishing three-point function                 is a 
signal of NG. 

! Introduce        as a measure of NG. 

Pirsa: 12110040 Page 29/56

fNL

Pirsa: 12110040 Page 29/56

��k1�k2�k3�
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(semi)Classical estimate
(for squeezed limit)

! Consider                 in the squeezed limit i.e. 

! The long wavelength mode rescales the 
background for short wavelength modes 

! Taylor expand in the rescaled background

Pirsa: 12110040 Page 31/56

h⇣k1⇣k2⇣k3i ⇠ �(ns � 1) h⇣k1⇣k1i h⇣k2⇣k3i
(Maldacena, 

2002)

��k1�k2�k3�

3

where P
⇣

and P
B

are the power spectra of the comoving curvature perturbation and the

magnetic fields, respectively and are defined as

h⇣(⌧,k)⇣(⌧,k0)i = (2⇡)3�(3)(k+ k

0)P
⇣

(k), (2)

hB(⌧,k) ·B(⌧,k0)i = (2⇡)3�(3)(k+ k

0)P
B

(k). (3)

The conformal time ⌧ is defined by ad⌧ = dt where a(t) is the scale factor of the Friedmann-

Lemâıtre-Robertson-Walker metric ds2 = �dt2+a2(t)dx2 and ⌧
I

denotes the conformal time

at the end of inflation.

The time-dependent coupling of the electromagnetic field to the background, can be

parametrized by a coupling of the form �(�)F
µ⌫

F µ⌫ , where F
µ⌫

⌘ @
µ

A
⌫

� @
⌫

A
µ

is the

electromagnetic field strength and the time dependence of the coupling is parametrized by

its dependence on a slowly rolling background scalar field �, which we think of as being the

inflaton for simplicity. When b
NL

is momentum independent, it corresponds to a “local”

non-linearity which can be obtained from the relation

B = B

(G) +
1

2
blocal
NL

⇣(G)
B

(G) (4)

where B

(G) and ⇣(G) are the Gaussian fields. One can estimate the size of b
NL

by noting

that the interaction Lagrangian between the scalar field and the electromagnetic field is

L
⇣BB

/ �(�)F 2. By Taylor expanding the coupling in the inflaton fluctuations, �(�) =

�(�
c

)+@
�

�(�
c

)��, one obtains that the linear coupling between the inflaton fluctuation and

the electromagnetic field L
⇣BB

/ @
�

�(�)��F 2. It is useful to express the scalar perturbations

in terms of the comoving curvature perturbation ⇣ which can be considered as the scalar

perturbation of the metric

ds2 = �dt2 + a2(t) e2⇣(t,x)dx2 (5)

on large scales where the time derivate of ⇣ vanishes. The comoving curvature perturbation

is related to the inflation fluctuation by �� =
p
2✏ ⇣ where the slow-roll parameter ✏ is given

by
p
2✏ = ��̇/H. With these definitions, we have

@
�

��� =
d�

dt

dt

d�
�� = ��̇⇣/H (6)

which leads to L
⇣BB

/ ��̇(⇣/H)F 2. In analogy with the analysis of [14], we can compare

it with the quadratic term L
BB

. The ratio is L
⇣BB

/L
BB

/ �̇/(H�) · P 1/2
⇣

, and we would
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Non-gaussian cross-correlation
! Define the cross-correlation bispectrum of the 

curvature perturbation with magnetic fields as

! Introduce the magnetic non-linearity parameter

! Local resemblance between        and        

non-Gaussianity in a scenario of mixed inflation and vector curvaton perturbations [9]. Here
we will be agnostic about the detailed role of the gauge field, and leave further exploration of
possible applications of the model for future work. However, for the remaining of this paper,
we will for definiteness refer to the gauge field as if it is the electromagnetic field, which will
also make the comparison with the previous work in [10, 14] more direct.

It is not immediately obvious what is the most convenient way to parametrize the
results. If we define the cross-correlation bispectrum of the curvature perturbation with the
magnetic fields as1

h⇣(k1)B(k2) ·B(k3)i ⌘ (2⇡)3�(3)(k1 + k2 + k3)B⇣BB(k1,k2,k3) , (1.1)

then as we have previously proposed, it is convenient to define the magnetic non-linearity
parameter2 bNL, in terms of the cross-correlation function of the curvature perturbation with
the magnetic fields

B⇣BB(k1,k2,k3) ⌘ bNLP⇣(k1)PB(k2) , (1.2)

where P⇣ and PB are the power spectra of the comoving curvature perturbation and the
magnetic fields, defined respectively as

⌦
⇣(k)⇣(k0)

↵ ⌘ (2⇡)3�(3)(k+ k0)P⇣(k), (1.3)
⌦
B(k) ·B(k0)

↵ ⌘ (2⇡)3�(3)(k+ k0)PB(k). (1.4)

In the case where bNL is momentum independent, it takes a “local” form which can be
derived from the relation

B = B(G) +
1

2
blocalNL ⇣(G)B(G) (1.5)

withB(G) and ⇣(G) being the Gaussian fields. There is an interesting limit where the magnetic
non-linearity parameter takes the local form, which makes the comparison with the above
estimate particularly simple. We will show that in the squeezed limit, where the momentum
of the curvature perturbation vanishes, i.e., k1 ⌧ k2, k3 = k, we, in fact, recover
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A new magnetic consistency relation
! Use the same semi-classical argument to derive the consistency 

relation.

! Consider                                              in the squeezed limit. 

! The effect of the long wavelength mode is to shift the background 
of the short wavelength mode.

! Since the vector field only feels the background through the 
coupling, all the effects of the long wavelength mode is indeed 
captured by

RKJ & Sloth, 2012
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one finds that the spectral index, n
B

, of the magnetic field power spectrum is given by

n
B

= 4� 2n for n � 0.
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to the variation in the background produced by the long wavelength mode of ⇣.
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implies that it only feels the background expansion through � which subsequently depends

on the scale factor. Since A
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to the leading order for a trivial �.

To compute the correlation function for a non-trivial �, we need to write A
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terms of the Gaussian one with a trivial �. If we expand �
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Notice the resemblance with a �N expansion. Using N = ln a, we could also have written

the above as � = �0 + �0
N

�N + . . . , where �0
N

⌘ @�/@N .

Defining the linear Gaussian part of A
i

to be A(G)
i

and in the Coulomb gauge with a pump

field S2 = �0, we can define a linear Gaussian canonical vector potential v
i

= S(⌧)A(G)
i

, such

that the quadratic action in (9) takes the form similar to a canonical scalar field with an

e↵ective time dependent mass term S 00/S and can be written as
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A new magnetic consistency relation

! First compute the two point function of the vector 
field in the modified background

! One finally finds
where                is the linear canonical vector field.vi =

p
�Ai

RKJ & Sloth, 2012
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we have
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and a Fourier transformation gives
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Using d�/d ln a = �̇/H, we then find from (13) the squeezed limit consistency relation for

the gauge field
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Finally, by using the relation (10), we find the consistency relation for the magnetic field to

be
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in agreement with (8). With the parametrization in (12), we obtain the consistency relation

b
NL

= n
B

� 4.

In the squeezed limit, the consistency relation is quite general as an explicit form of

the coupling function has not been used. But as we argue below, the approximation used

to obtain this consistency relation might only be trusted for n > 1 in (12). To see this,

note that for a canonical massless scalar field in de Sitter space, the pump field in (15)

can be identified with the scale factor, and one would have S 00/S = a00/a with a / 1/⌧ .
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A new magnetic consistency relation
! In terms of magnetic fields, the correlation becomes

! With the coupling                            , we obtain 

! For scale-invariant magnetic field spectrum,         
and therefore, 

! Not so small......compared to  

nB = 0
bNL = �4

bNL ⇠ O(✏, ⌘)

RKJ & Sloth, 2012
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Using d�/d ln a = �̇/H, we then find from (13) the squeezed limit consistency relation for

the gauge field
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Finally, by using the relation (10), we find the consistency relation for the magnetic field to

be
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in agreement with (8). With the parametrization in (12), we obtain the consistency relation
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� 4.

In the squeezed limit, the consistency relation is quite general as an explicit form of

the coupling function has not been used. But as we argue below, the approximation used

to obtain this consistency relation might only be trusted for n > 1 in (12). To see this,

note that for a canonical massless scalar field in de Sitter space, the pump field in (15)

can be identified with the scale factor, and one would have S 00/S = a00/a with a / 1/⌧ .
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Since the magnetic field is a divergence free vector field, the two-point correlation function
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Finally, by using the relation (10), we find the consistency relation for the magnetic field to
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in agreement with (8). With the parametrization in (12), we obtain the consistency relation

b
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� 4.

In the squeezed limit, the consistency relation is quite general as an explicit form of

the coupling function has not been used. But as we argue below, the approximation used

to obtain this consistency relation might only be trusted for n > 1 in (12). To see this,

note that for a canonical massless scalar field in de Sitter space, the pump field in (15)

can be identified with the scale factor, and one would have S 00/S = a00/a with a / 1/⌧ .
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A new magnetic consistency relation

! In the squeezed limit                      , we obtain a 
new magnetic consistency relation

! Compare with Maldacena’s consistency relation

k1 ⌧ k2, k3 = k

Pirsa: 12110040 Page 35/56

with blocalNL = (nB � 4)

Pirsa: 12110040 Page 35/56

with f local

NL = �(ns � 1)
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The full in-in calculation
! One has to cross-check the consistency relation by 

doing the full in-in calculation

! The result is 

where ⇣
(0)
k (⌧I) and A

(0)
k (⌧I) are the asymptotic super horizon values of the mode functions

and are given by

|⇣(0)k (⌧I)| = 1p
2✏

Hp
2k3

, (4.9)
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Using d ln a = Hdt, one has �2n = �(@�I/@ ln a)/�I = ��̇I/(H�I), and in this way the
correlation function becomes
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n

⌘

�
✓
�il � k2,ik2,l

k22

◆
k3,l

✓
�jm � k3,jk3,m

k23

◆
k2,m Ĩ(2)
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This expression represents our most general result, where the gauge field indices have not
yet been contracted. The cross-correlation of the curvature perturbation with the magnetic
fields is now given by
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which leads to the final result
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(4.15)

– 9 –

A generic 
result

RKJ & Sloth, 2013

and with this substitution, the action agrees to leading order in slow-roll with the action in
the uniform curvature gauge given in equation (2.23) of [65] and with equation (30) of [10]
in the special case discussed there.

Note that this simple form of the action enables us to generalize our results, in a
straightforward manner, to the case where the scalar field � is not the inflaton but either
an isocurvature field or a curvaton, since the action will take the same simple form in these
cases.

4 The correlation of curvature perturbations with the magnetic fields

In order to compute the higher-order correlation function during inflation, we adopt a very
useful and powerful tool of the in-in formalism [57]. In this formalism, the expectation value
of an operator O at time ⌧I is given by
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where |⌦i is the vacuum of the interacting theory, |0i is the vacuum of the free theory, T and
T̄ are time ordering and time anti-ordering operators, respectively, and Hint is the interaction
Hamiltonian for time ⌧ .

From the interaction Hamiltonian in (3.15) and using the rules of [66], we obtain the
cross-correlation of the curvature perturbation with the electromagnetic field
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where the mode function ⇣k(⌧) is given in (3.8) and the mode function Ak(⌧) is obtained
from (2.15) which is given by
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Inserting the expressions for the mode functions, and using the property of the Hankel func-
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! The two integrals are

where ⇣
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Using d ln a = Hdt, one has �2n = �(@�I/@ ln a)/�I = ��̇I/(H�I), and in this way the
correlation function becomes
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This expression represents our most general result, where the gauge field indices have not
yet been contracted. The cross-correlation of the curvature perturbation with the magnetic
fields is now given by
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and the integrals.......
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The cross-correlation with 
magnetic fields...

! Using this relation

! The cross-correlation with magnetic fields is

! The two integrals can be solved exactly for different 
values of n.
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Using d ln a = Hdt, one has �2n = �(@�I/@ ln a)/�I = ��̇I/(H�I), and in this way the
correlation function becomes
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This expression represents our most general result, where the gauge field indices have not
yet been contracted. The cross-correlation of the curvature perturbation with the magnetic
fields is now given by
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Ĩ(2)
n =

⇡3

2

2�2n�1

�2(n+ 1/2)
(�k2⌧I)

n+1/2(�k3⌧I)
n+1/2

⇥ Im


(1 + ik1⌧I)e

�ik1⌧IH
(1)
n+1/2(�k2⌧I)H

(1)
n+1/2(�k3⌧I)

⇥
Z ⌧I

d⌧⌧(1� ik1⌧)e
ik1⌧H

(2)
n+1/2(�k2⌧)H

(2)
n+1/2(�k3⌧)

�
. (4.12)
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This expression represents our most general result, where the gauge field indices have not
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The flattened shape
! In this limit,                    , the second integral 

dominates

! The cross-correlation thus becomes

! For the largest observable scale today, 

Note that the polarization factor multiplying the integrals is slightly di↵erent than in equation
(41) of [10], where it appears that part of the polarization tensor product was missed.

The solutions of the integrals for di↵erent values of n are listed in the appendix. How-
ever, for the most interesting case of n = 2, we find

Ĩ(1)
2 =

�1

(k2k3)3/2k2t
⇥ ⇥�k31 � 2k21(k2 + k3)� 2k1(k

2
2 + k2k3 + k23)� (k2 + k3)(k

2
2 + k2k3 + k23)

⇤
(4.16)

and

Ĩ(2)
2 =

�1

(k2k3)5/2k2t
⇥ ⇥

(k1 + k2)
2(�3k31 � 3k21k2 � k32) + (k1 + k2)(�9k31 � 6k21k2 � 2k32)k3

+ (�9k31 � 6k21k2 � 2k1k
2
2 � 2k32)k

2
3

� 2(2k21 + k1k2 + k22)k
3
3 � 2(k1 + k2)k

4
3 � k53 + 3k31k

2
t (� + ln(�kt⌧I))

⇤
(4.17)

where we have defined kt = k1 + k2 + k3 and � is the Euler gamma constant.

4.1 The flattened shape

It is interesting to note that the ln(�kt⌧I) term only appears in (4.17), and can therefore
not cancel out in general. This term will be most important when k1 is maximized in the
flattened shape with k1 = 2k2 = 2k3 as already observed in [10]. For length scales relevant
for CMB, the logarithm will give an enhancement by a factor 60, but on smaller scales it can
be even larger. Since the logarithm completely dominates the integral in the flattened limit,
it is easy to estimate the size of bNL in this limit. When the logarithmic term dominates, we
have

Ĩ(2)
2 ' � 3k31

(k2k3)5/2
ln(�kt⌧I) . (4.18)

The contribution of this term to the non-Gaussian cross-correlation function is

h⇣(⌧I ,k1)B(⌧I ,k2) ·B(⌧I ,k3)i ' 6
1
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�̇I
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k31
(k2k3)1/2

ln(�kt⌧I)|⇣(0)k1
(⌧I)|2|A(0)

k2
(⌧I)||A(0)

k3
(⌧I)| .
(4.19)

For n = 2, we have (�̇I/H�I) = 2n = 4, and using k1 = 2k2 = 2k3 in the flattened limit, we
have

h⇣(⌧I ,k1)B(⌧I ,k2) ·B(⌧I ,k3)i ' 96 ln(�kt⌧I)P⇣(k1)PB(k2) . (4.20)

For the reasonable value of the logarithm, corresponding to the largest observable scale today,
ln(�kt⌧I) ⇠ �60, we then obtain in the flattened limit

���bflatNL

��� ⇠ 5760 . (4.21)

This is a quite significant contribution to the non-Gaussianity as compared to the a priori
expected level of order unity.
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Ĩ(2)
2 =

�1

(k2k3)5/2k2t
⇥ ⇥

(k1 + k2)
2(�3k31 � 3k21k2 � k32) + (k1 + k2)(�9k31 � 6k21k2 � 2k32)k3

+ (�9k31 � 6k21k2 � 2k1k
2
2 � 2k32)k

2
3

� 2(2k21 + k1k2 + k22)k
3
3 � 2(k1 + k2)k

4
3 � k53 + 3k31k

2
t (� + ln(�kt⌧I))

⇤
(4.17)

where we have defined kt = k1 + k2 + k3 and � is the Euler gamma constant.

4.1 The flattened shape

It is interesting to note that the ln(�kt⌧I) term only appears in (4.17), and can therefore
not cancel out in general. This term will be most important when k1 is maximized in the
flattened shape with k1 = 2k2 = 2k3 as already observed in [10]. For length scales relevant
for CMB, the logarithm will give an enhancement by a factor 60, but on smaller scales it can
be even larger. Since the logarithm completely dominates the integral in the flattened limit,
it is easy to estimate the size of bNL in this limit. When the logarithmic term dominates, we
have
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The squeezed limit
! In this limit, the integrals are

! The cross-correlation now becomes

4.2 The squeezed limit

Now let us consider the special limit where the wavelength of the curvature perturbation is
much longer than the wavelength of the magnetic fields. In this limit we have k1 ! 0 and
k3 ! �k2 ⌘ �k. Using the asymptotic behavior for the real and imaginary parts of the

Hankel function Re[H(1)
n (x)] / xn and Im[H(1)

n (x)] / x�n for x ! 0, it is possible to verify,
that in the squeezed limit, the integrals reduce to

Ĩ(1)
n = ⇡

Z ⌧I

d⌧⌧Jn�1/2(�k⌧)Yn�1/2(�k⌧) (4.22)

and
Ĩ(2)
n = Ĩ(1)

n+1 . (4.23)

In the squeezed limit, the cross-correlation therefore reduces to

h⇣(⌧I ,k1)Ai(⌧I ,k2)Aj(⌧I ,k3)i =
1

H

�̇I

�I
(2⇡)3�(3)(k1 + k2 + k3)|⇣(0)k1

(⌧I)|2|A(0)
k (⌧I)|2

⇥
✓
�ij � kikj

k2

◆
k2

⇣
Ĩ(1)
n � Ĩ(1)

n+1

⌘
(4.24)

For integer values of n, it can be proven that the integral in (4.22) is

Ĩ(1)
n = (n� 1/2)/k2 (4.25)

which (in the k1 ! 0 limit) gives

h⇣(⌧I ,k1)Ai(⌧I ,k2)Aj(⌧I ,k3)i = � 1

H

�̇I

�I
(2⇡)3�(3)(k1 + k2 + k3)

⇥
✓
�ij � kikj

k2

◆
|⇣(0)k1

(⌧I)|2|A(0)
k (⌧I)|2

= � 1

H

�̇I

�I
h⇣(⌧I ,k1)⇣(⌧I ,�k1)i hAi(⌧I ,k2)Aj(⌧I ,k3)i .(4.26)

One can also verify numerically that (4.25) also holds for real non-integer values of n.
For the cross-correlation of the curvature perturbations with the magnetic fields, we

then obtain for n > 0

h⇣(⌧I ,k1)B(⌧I ,k2) ·B(⌧I ,k3)i = � 1

H

�̇I

�I
(2⇡)3�(3)(k1 + k2 + k3)P⇣(k1)PB(k2) . (4.27)

This agrees with the squeezed limit result in equation (64) of [10], when using �̇⇣ = �@��H��
and inserting the specific form of the coupling �(�) = exp(2�/M) used there. This agreement
is however a coincidence because the di↵erence in the polarization sums noted after (4.15)
vanishes in the squeezed limit. In fact, if we had not taken the trace of BiBj in the correlation
function, the results would no longer agree, even in the squeezed limit. We also note that
both of these results disagree with [14] in the squeezed limit, which used an interaction
Hamiltonian where the leading order term in derivatives of � is a total derivative, which
complicates the calculations. This can be seen by comparing our eq.(3.15) with eq.(46) of
[14]. In eq.(46) of [14] the interaction Hamiltonian is proportional to �, while in our eq.(3.15),
we showed that the physical part of the interaction Hamiltonian is proportional only to the

– 11 –

4.2 The squeezed limit

Now let us consider the special limit where the wavelength of the curvature perturbation is
much longer than the wavelength of the magnetic fields. In this limit we have k1 ! 0 and
k3 ! �k2 ⌘ �k. Using the asymptotic behavior for the real and imaginary parts of the

Hankel function Re[H(1)
n (x)] / xn and Im[H(1)

n (x)] / x�n for x ! 0, it is possible to verify,
that in the squeezed limit, the integrals reduce to
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n = Ĩ(1)

n+1 . (4.23)

In the squeezed limit, the cross-correlation therefore reduces to

h⇣(⌧I ,k1)Ai(⌧I ,k2)Aj(⌧I ,k3)i =
1

H

�̇I

�I
(2⇡)3�(3)(k1 + k2 + k3)|⇣(0)k1

(⌧I)|2|A(0)
k (⌧I)|2

⇥
✓
�ij � kikj

k2

◆
k2

⇣
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function, the results would no longer agree, even in the squeezed limit. We also note that
both of these results disagree with [14] in the squeezed limit, which used an interaction
Hamiltonian where the leading order term in derivatives of � is a total derivative, which
complicates the calculations. This can be seen by comparing our eq.(3.15) with eq.(46) of
[14]. In eq.(46) of [14] the interaction Hamiltonian is proportional to �, while in our eq.(3.15),
we showed that the physical part of the interaction Hamiltonian is proportional only to the

– 11 –

with                           in agreement with the 
magnetic consistency relation.

bNL = � 1

H

�̇I

�I
= nB � 4

RKJ & Sloth, 2013

Rajeev Kumar Jain                                 JGRG24, Kavli IPMU                                   Nov. 10-14, 2014

Conclusions
! Primordial non-Gaussianities induced by magnetic 

fields are very interesting.

! The consistency relation is an important theoretical 
tool to cross-check the full in-in calculations. 

! If the consistency relation is violated, it will rule 
out an important class of models for inflationary 
magnetogenesis.

! The magnetic non-Gaussianity parameter is quite 
large in the flattened limit and can have interesting 
phenomenological consequences. 
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3

We detect
𝒓 = 𝟎. 𝟏

4

𝒓 = 𝟎. 𝟏
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5

𝝆𝐢𝐧𝐟
𝒓

6

𝒫ℎvac = 2𝐻2

𝜋𝑀Pl
2 ∝ 𝜌inf

𝓟𝒉
𝐨𝐛𝐬 ∝ 𝝆𝒊𝒏𝒇

𝒫𝒉
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7

𝓟𝒉
𝐯𝐚𝐜 𝓟𝒉

𝐨𝐛𝐬

•

•

8

𝒓 = 𝟎. 𝟏
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9

𝓟𝒉
𝐚𝐥𝐭

𝓟𝒉
𝐚𝐥𝐭

10
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2

12

•

•

•

•
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13

14

𝓟𝒉
𝐯𝐚𝐜

𝜹𝝈

𝓟𝒉
(𝝈)

2nd order
pert.

≶
?
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15

𝒄𝒔 ≪ 𝟏 𝜹𝝈𝒌

𝓟𝒉
𝐯𝐚𝐜

𝓟𝒉
(𝝈) ∼ 𝑯𝟒

𝒄𝒔
𝟏𝟖/𝟓𝑴𝐏𝐥

𝟒✘
16
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17

18

ℒ𝜎(2) ⊃ 𝑃𝑋𝑋  𝜎02 + 𝑃𝑋 𝛿  𝜎2 − 𝑎−2𝑃𝑋 𝜕𝑖𝛿𝜎 2

𝑐𝑠2 ≡ 𝑃𝑋
𝑃𝑋𝑋  𝜎02+𝑃𝑋

Small 𝒄𝒔 Time KT ≫ Spatial KT

𝑃𝑋 ≡ 𝜕𝑃/𝜕𝑋
𝑃𝑋𝑋 ≡ 𝜕2𝑃/𝜕𝑋2
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19

ℛ ℎ𝑖𝑗

𝑐𝑠 𝒫𝑅𝜎 ≫ 𝒫ℎ𝜎

20

𝒫ℎ𝜎 ≃ 𝐻4

𝑐𝑠3𝑀Pl
4 , 𝒫ℛ𝜎 ≃ 𝐻4

𝑐𝑠7𝑀Pl
4≪𝑐𝑠

𝒫ℛobs≤
𝒫ℛ𝜎 < 𝒫ℛobs 𝑐𝑠

𝒫ℎ𝜎
𝒫ℎvac

≲ 10−5 𝐻
1014GeV

2/7
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21

𝒫ℎ𝜎 ≪ 𝒫ℛ𝜎 , 𝒫ℎ𝜎 ≪ 𝒫ℎvac

𝑐𝑠

22
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23

𝒫ℎvac 𝒫ℎalt

𝒫ℎ𝜎 𝜒

𝑟 = −8𝑛𝑇,

Thank you！

Fin
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Large&tensor&mode&and&&
sub/Planckian&excursion&&
in&Generalized&G/infla9on�

Taro&Kunimitsu&(RESCEU,&UTokyo)&
In&collabora9on&with&Teruaki&Suyama,&Yuki&Watanabe,&Jun’ichi&Yokoyama&

arXiv:1411.xxxx&(hopefully…)�

Disclaimer&
(What&this&talk&is&NOT&about)�
•  This&is&NOT&a&direct&evasion&of&the&Lyth&bound.&

• Assump9ons&we&make&are&not&necessarily&general.&

•  S9ll,&we&feel&that&what&we&are&doing&could&have&
possible&applica9ons.�
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Infla9on&and&tensor/modes�

Planck&(2013)&
r<0.11&(2σ&C.L.)�

BICEP2&(2014)&
r=0.20+0.07/0.05�

Observable&tensor/to/scalar�
•  Lyth&bound&(Lyth&1997)&
Observable&tensor&mode&&
��super/Planckian&excursion&of&the&Inflaton&
&

& & & &for&
&
	�For&a&single&field&canonical&scalar&field&

&�what&are&the&models&that&can&evade&this?�
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Is&super/Planckian&excursion&a&problem?�

• Without&assump9ons,&no.&

•  Explicit&UV&models&–&e.g.&SUGRA&

•  New&d.o.f.&at&the&Planck&scale&
&

&
&

→�

Avoiding&super/Planckian&excursion�

1.Rescale&the&inflaton&(trivial)&
&&
&
2.Change&the&kine9c&structure&of&the&inflaton&
&
&
3.Generalized*G+infla-on*
�
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Generalized&G/infla9on&
(aka&Horndeski&theory)�

Most&general&ac9on&with&e.o.m.&of&at&most&second&order&deriva9ves�
Kobayashi,&Yamaguchi,&Yokoyama&(2011)�

Generalized&G/infla9on&
(aka&Horndeski&theory)�

Most&general&ac9on&with&e.o.m.&of&at&most&second&order&deriva9ves�

�We&will&consider&Poten-al*driven*models.&&
�For&the&nontrivial&models,&the&canonical&kine9c&term&&
&&&is&dominated&over&by&the&newly&introduced&terms�

Kobayashi,&Yamaguchi,&Yokoyama&(2011)�
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Field&excursion&in&&&&&&&/infla9on&�

��

�expand&the&free&func9ons&in&terms&of&X�

Field&excursion&in&&&&&&&/infla9on&�

��

�expand&the&free&func9ons&in&terms&of&X�
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Field&excursion&in&&&&&&&/infla9on&�

Field&excursion&in&&&&&&&/infla9on&�

Making&this&part&large&leads&to&sub/Planckian&field&excursion!�
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Example:&Poten9al&driven&G/infla9on�

Example:&Poten9al&driven&G/infla9on�
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Example:&Poten9al&driven&G/infla9on�

,&&slow&roll&equa9on&of&mo9on�

for�

for�

Example:&Poten9al&driven&G/infla9on�

,&&slow&roll&equa9on&of&mo9on�

for�

for�

Observable&tensor&modes!�
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Consistency&of&the&models�

We&introduced&new&mass&scales&�

We&want&to&check&that&the&model&is&not&destroyed&&
by&quantum&correc9ons&(a&new&“Lyth&bound”).�

?�

Quantum&correc9ons�

Barvinsky,&Vilkovisky&(1990)�

��

We&calculate&quantum&correc9ons&by&modifying&the&second&order&&
ac9on&into&an&effec9ve&canonical&form&(de&Rham,&Ribeiro&(2014))�

where�
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Quantum&correc9ons�

��

We&calculate&quantum&correc9ons&by&modifying&the&second&order&&
ac9on&into&an&effec9ve&canonical&form&(de&Rham,&Ribeiro&(2014))�

where�

Can&be&ignored!�

Barvinsky,&Vilkovisky&(1990)�

Second&order&ac9on&(de&Sirer&background)�

Example:&Poten9al&driven&G/infla9on�
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Second&order&ac9on&(de&Sirer&background)�

Example:&Poten9al&driven&G/infla9on�

�&

with�

Example:&Poten9al&driven&G/infla9on�

cf.�

Quantum&correc9ons&can&be&ignored!�
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Conclusions�

•  Sub/Planckian&excursion&with&large&tensor&modes&is&
possible&in&the&framework&of&Generalized&G/infla9on.&

• We&demonstrated&this&using&explicit&models.&

• We&showed&the&internal&consistency&of&these&models.&
(they&are&not&destroyed&by&quantum&correc9ons)&

Generalized&G/infla9on�
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2014/11/13   JGRG24�

1403.4729  Harigaya, Yanagida 
1410.7163  Harigaya, Kawasaki, Yanagida�

Why chaotic inflation is attractive 
Approximate Shift symmetry is essential�
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Inflation takes place for generic field values, �

Mpl

Linde (1983)�

�

V (�)

No initial condition problem�

� > MPl

Slow-roll�Slow-roll�

Cf. new inflation�

V (� ⇠ 1/m) ⇠ M4
pl �

Possible large kinetic and gradient energy, curvature, etc.�

Inflation can occur just after the universe is created 

V (�) =
1

2
m2�2

Linde (1983)�

Even in closed universe, we can alive�

Short-lived�

t

aHtL
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V (�) =
1

2
m2�2 +

1

4
��4 + · · ·

m2 < 10�10,� < 10�13, · · ·
Suggest approximate shift symmetry�

� ! �+ C

Softly broken by a parameter m : � Lshift breaking(m�)

Guarantee stability against quantum corrections�

MPl ⌘ 1

Two sources of  shift symmetry breaking�
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!  Coupling unification 

!  Dark matter candidate 

!  Well-controlled quantum field theory 

!  Relax the hierarchy problem 

V =eK
h
K īiDiWDīW

⇤ � 3|W |2
i

DiW ⌘Wi +KiW

Boson "Fermion symmetry�

Weyl fermion have 2 d.o.f�
#� Complex scalars� �i

Kahler potential�

Super potential�

K(�i,�⇤ī) = �i�⇤ī + · · ·
W (�i)

⇣
Lkin = Kīi@�

i@�⇤ī
⌘
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V =eK
h
K īiDiWDīW

⇤ � 3|W |2
i

DiW ⌘Wi +KiW

K(�i,�⇤ī), W (�i)

Obstacle to the slow-roll inflation�

K = K(�+ �†) = c(�+ �†) + (�+ �†)2/2 + · · ·

� ! �+ iC

� : inflaton

Kawasaki, Yamaguchi and Yanagida (2000)�

|WX |2 ! 1

2
m2�2

Shift symmetry breaking in super potential�

m ⇠ 10�5

W = mX�

� = (� + i�)/
p
2

K(�)
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A very special feature of  SUSY�

K(�i,�⇤ī) Renormalized�

W (�i) Not renormalized�

By quantum corrections�

W = mX�

|E| � m is  stable against quantum corrections�

Li, Zi, Nanopoulos (2013) 
Harigaya, Yanagida (2014)�

(Assume parity for simplicity)�

� ! ��

K � F (E(�� �†)2)

(perturvatibely)�

K � 1

2
c2E(�� �†)2 � �c2E�2

V (�) =
1

2

m2�2
exp(�c2E�2

)

�

c2E > 0
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10 20 30 40 50 60

5.¥10-6

0.00001

0.000015

0.00002

Potential becomes very steep at �

Obstacle to inflation in a closed universe�

V (�MPl) = 1 = M4
Pl

Harigaya, Kawasaki, Yanagida (2014)�

-5.0 -4.5 -4.0 -3.5 -3.0 -2.5 -2.0
0

1

2

3

4

5

6

7

Log10H-EL

sl
ow
-
ro
ll
pa
ra
m
et
er
s

hHfMpl L
eHfMpl L

V (�MPl) = 1

K � �E�2 +
1
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E < 10�3
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Harigaya, Kawasaki, Yanagida (2014)�
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2

Collapse

Local minimum

r=0.1
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0.08

0.07Ne=60

K � �c2E�2 +
1

6
c4E2�4 + · · ·

!  Chaotic inflation is free from the initial condition 
problem 

!  Shift symmetry breaking in the Kahler potential lower 
tensor fraction r 

!  In a closed universe, � r >⇠ 0.1

1403.4729  Harigaya, Yanagida 
1410.7163  Harigaya, Kawasaki, Yanagida�
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!  Solve the Horizon & Flatness problem 

!  Generate the cosmic perturbation�

Quasi- exponential expansion of  the universe at the very early stage�

Flat and homogeneous !�

Guth (1981)�

The universe we observe�
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Why is the universe almost homogeneous ?�

2.725 K� 2.725 K�

Ex. Cosmic microwave background�

Last scattering surface�

Size of  the universe at that time�

ds

2 = �dt

2 + a

2(t)


dr

2

1�Kr

2
+ x

2
�
d✓

2 + sin

2
✓d�

2
��

K < 10�2H2
0 (a0 = 1)

Observation : �

K/a2 ' �H2 + ⇢/3

The energy density must be extremely tuned�

In the early universe, �a << 1 |K/a2| ⌧ H2



�789

No.�

Physical size �/ a

Hubble horizon �/a2(RD),

a3/2(MD),

a(negative curvature)

For a given scale (e.g. CMB scale), 
the horizon used to be relatively smaller�

The horizon used to be relatively larger�

All the scale we observe used be within a Hubble radius �

Hubble horizon = constant�
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In FRW metric,�

ds

2 = �dt

2 + a

2(t)


dr

2

1�Kr

2
+ x

2
�
d✓

2 + sin

2
✓d�

2
��

K > 0�

Z 1/
p
K

0

drp
1�Kr2

=
⇡

2
p
K

Finite universe�

t

aHtL

Finite Life time�

In FRW metric,�

ds

2 = �dt

2 + a

2(t)


dr

2

1�Kr

2
+ x

2
�
d✓

2 + sin

2
✓d�

2
��

K < 0�

t

aHtL
Infinite size, 
infinite life time�
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Cosmic string in the delayed scaling scenario
and CMB

Courtesy H.Oide

Introduction
Cosmic string... 
- Line-like topological defect associated 
with symmetry breaking.
- Almost unavoidably produced when GUT breaks 
down to the Standard Model gauge group. 

of domain walls, then these would become cosmologically catastrophic; this situation is
forbidden. Another Z2 appears when SO(10) is breaking via GPS [60]; indeed, it is not
SO(10) but its universal covering group Spin(10) which is really broken to [(Spin(6) ×
Spin(4))/Z2](×ZC

2 ) (We remind to the reader that SU(4) × SU(2) × SU(2) ∼ Spin(6) ×
Spin(4).) The quotient Z2 results from the non-trivial intersection of Spin(6) and Spin(4)
and implies the formation of monopoles.

The SSB patterns of GPS and GPS with D-parity down to GSM (Z2) are respectively
given by

4C 2L 2R

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

1−→ 3C 2L 2R 1B−L

{

1−→ 3C 2L 1R 1B−L
2 (2)
−→ GSM (Z2)

2′ (2)
−→ GSM (Z2)

1−→ 4C 2L 1R

{

1−→ 3C 2L 1R 1B−L
2 (2)
−→ GSM (Z2)

2′ (2)
−→ GSM (Z2)

1−→ 3C 2L 1R 1B−L
2 (2)
−→ GSM (Z2)

1 (1,2)
−→ GSM (Z2)

(4.10)
and

4C 2L 2R ZC
2
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⎪
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⎪

⎪

⎪
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1−→ 3C 2L 2R 1B−L ZC
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3−→ 3C 2L 2R 1B−L −→ · · ·
1,3−→ 3C 2L 1R 1B−L

2 (2)
−→ GSM (Z2)

2′,3 (2,3)
−→ GSM (Z2)

1−→ 4C 2L 1R ZC
2

⎧

⎪

⎪

⎨

⎪

⎪

⎩

3−→ 4C 2L 1R −→ · · ·
1,3−→ 3C 2L 1R 1B−L

2 (2)
−→ GSM (Z2)

3 (2,3)
−→ GSM (Z2)

3−→ 4C 2L 2R −→ Eq. (4.10)
1−→ 4C 2L 1R −→ · · ·

1,3−→ 3C 2L 2R 1B−L −→ · · ·
1,3−→ 3C 2L 1R 1B−L

2 (2)
−→ GSM (Z2)

1,3 (1,2,3)
−→ GSM (Z2).

(4.11)

The SSB schemes of SO(10) via the left-right groups with associated defect formation

14

e.g.) R. Jeannerot+ (’03)

cosmic strings

Study of cosmic string can lead to the understanding of the nature
of the Standard Model and beyond. 

Cosmological evolution of cosmic string loops 3

Figure 1. The (100ℓc)3 comoving volume in the matter era when the observable
universe occupies one eighth of the box.

respect to the scaling value, whose length is close to the initial correlation length of the
string network. We then discuss the effects induced by the finite numerical resolution

and show that they do not affect the loops scaling regime. Moreover we confirm an

explosive-like formation of very small sized and numerically unresolved loops during the

first stage of the simulations, suggesting that particle production may briefly dominate

the physical evolution of a string network soon after its formation.

Our numerical simulations of strings in FLRW space-time are performed in a fixed

unity comoving volume with periodic boundary conditions. The initial scale factor is
normalised to unity while the initial horizon size is a free parameter which controls the

starting string energy within a horizon volume. During the computations, the comoving

horizon size grows and the evolution is stopped before it fills the whole unit volume for

which the finiteness of the numerical box starts to be felt. We used the Vachaspati–

Vilenkin (VV) initial conditions where the long strings path is essentially a random

C. Ringeval+ (’07)
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Cosmic string formation
Symmetries can be restored in the early Universe, 
and broken down during the course of cosmic history. 

Field space

Symmetry breaking
G � H

Real space

|�| = 0 |�| = v �= 0

Kibble mechanism (Kibble ’76)

Courtesy H.Oide

When a symmetry is broken, cosmic strings are formed 
if the vacuum manifold is      or                     . Kibble mechanism (Kibble ’76)

|�| = v �= 0

|�| = 0

Higgs field in the vacuum manifold 
distributes randomly at the scale larger 
than the correlation scale. 

There must be line-like points in the real 
space where Higgs field cannot fall 
down to the vacuum,           , from the 
topological reason. (At that point, the 
energy density remains high. )

Such field configuration is topologically 
stable and hence we call it “topological 
defects”. 

|�| = 0

S1 �1(G/H) �= 0
(or when U(1) symmetry is broken)
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Scaling behavior of the cosmic string network
The energy density of cosmic strings decays as
and hence they may overclose the Universe if they are 
produced in the early Universe...

a�2

��������"�

������� �#!�������
�$���

	����������������

���
�����
���

However, cosmic string network forms loops when they 
intersect, and hence its characteristic scale remains 
constant relative to the Hubble length.  
     -> They do not overclose the Universe!

They are still in our Universe, and it is possible to observe 
their traces in CMB, GWB, or cosmic rays.=>

(Kibble ’85)

Courtesy H.Oide

Traces of cosmic strings in CMB
cosmic strings between the last scattering surface and us 
generates the fluctuation of CMB temperature/polarization.��	
��CMB$������$

CMB$photon$

From$WMAP$homepage$

From slide of T.Suyama

(Albrecht+ ’97; Seljak+ ’97)
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Traces of cosmic strings in CMB
cosmic strings between the last scattering surface and us 
generates the fluctuation of CMB temperature/polarization.��	
��CMB$������$

CMB$photon$

From$WMAP$homepage$

From slide of T.Suyama
2
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ℓ = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ℓ ! 300, though they
become different for ℓ > 300.

temperature anisotropies at ℓ = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ℓ < 100 by substantially over-
predicting the high multipole data (ℓ > 100). In detail,
we see that we need f10 ≃ 0.3 to generate the necessary
power at ℓ = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher ℓ.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ℓ = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ℓ = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ℓ = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ℓ = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
ℓ = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ℓ ≃ 200 (as an alterna-
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ℓ = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ℓ ! 300, though they
become different for ℓ > 300.

temperature anisotropies at ℓ = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ℓ < 100 by substantially over-
predicting the high multipole data (ℓ > 100). In detail,
we see that we need f10 ≃ 0.3 to generate the necessary
power at ℓ = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher ℓ.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ℓ = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ℓ = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ℓ = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ℓ = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
ℓ = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ℓ ≃ 200 (as an alterna-
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ℓ = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ℓ ! 300, though they
become different for ℓ > 300.

temperature anisotropies at ℓ = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ℓ < 100 by substantially over-
predicting the high multipole data (ℓ > 100). In detail,
we see that we need f10 ≃ 0.3 to generate the necessary
power at ℓ = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher ℓ.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ℓ = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ℓ = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ℓ = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ℓ = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
ℓ = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ℓ ≃ 200 (as an alterna-
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FIG. 2: B-mode polarization power spectra for textures (solid
red), semilocal strings (dashed black), and Abelian Higgs
strings (dot-dash blue). All the curves are normalized to make
the temperature spectra match the Planck ℓ = 10 value. We
see that all these types of topological defects predict similar
shapes in the BICEP2 data range 30 ! ℓ ! 300, though they
become different for ℓ > 300.

temperature anisotropies at ℓ = 10). The scalar B-mode
spectrum is the one inevitably produced by lensing of the
scalar E-modes. In the B-mode channel the string spec-
trum has a quite different shape to the inflationary ten-
sors, peaking towards smaller scales. Figure 2 shows the
B-mode polarization spectra for several classes of defects
(textures, semilocal strings, and Abelian Higgs strings
[21]), showing that they share the same general shape
in the multipole range of interest. We focus on cosmic
strings (using the Abelian Higgs model) as a specific ex-
ample for the remainder of this work.

We first attempt to match the cosmic string B-mode
spectrum to the BICEP2 data, showing the result in
the lower panel of Figure 3. It is clear that the defect
spectrum has the wrong shape, and could only match
the low-multipole data at ℓ < 100 by substantially over-
predicting the high multipole data (ℓ > 100). In detail,
we see that we need f10 ≃ 0.3 to generate the necessary
power at ℓ = 80, which in turn leads to a B-mode ampli-
tude which is a factor of about 5 too large at higher ℓ.
In addition, matching the low-multipole data requires

a fractional contribution to the total TT power spec-
trum at ℓ = 10 far larger than the maximum allowed
by Planck [13], as shown in the upper panel of Figure
3. We show the defect contributions to the temperature
spectrum as the blue-dotted curves, with the required
contributions to match the B-mode polarization ampli-
tude at ℓ = 80 as the highest blue-dotted curve (which
corresponds to f10 = 0.3). The solid back line is the best-
fit ΛCDM model, while the grey dashed line shows the
sum of the f10 = 0.3 string prediction with the Planck
best-fit ΛCDM model [22]. The model in which strings
match the B-mode polarization amplitude at ℓ = 80 is
clearly incompatible with the temperature data. Allow-
ing the parameters of the ΛCDM model to vary does not
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FIG. 3: Temperature (upper panel) and B-mode polarization
(lower panel) power spectra compared to the Planck temper-
ature and the BICEP2 B-mode polarization data. The black
curve in the upper panel is the best-fit ΛCDM model and
the blue dashed lines show the contribution from strings for
f10 = 0.3, 0.15, 0.06, and 0.03. The green-dotted curves in
the lower panel show the combined contribution from strings
and the lensing of the scalar perturbations, for the same val-
ues of f10 as in the upper panel. The lowest dotted curve, for
f10 = 0.03, shows roughly the maximal allowed contribution
from strings to the temperature power spectrum, given the
Planck data. The highest dotted curve, f10 = 0.3, matches
the BICEP2 B-mode polarization at ℓ = 80. The grey dashed
line is the sum of the f10 = 0.3 string prediction with the
Planck best-fit ΛCDM model. The thin solid red line in the
lower panel shows the combined contribution from the lensing
of scalar perturbations and textures, normalized to match the
ℓ = 80 BICEP2 data point.

help: the 95% upper limit from Planck is around 0.03 to
0.055 depending on the type of defect [13].

We can therefore immediately conclude that defects
do not provide an alternative to inflationary tensors in
explaining the observed data.

We can also use the B-mode data to constrain the con-
tribution of defects to the total anisotropy in a scenario
where both strings and inflationary gravitational waves
contribute significantly, as anticipated in Refs. [23, 24].
In fact, because the strings contribute more substantially
at higher multipoles than inflationary tensors do, a mod-
est admixture of defects improves the fit to the BICEP2
data; as seen in Fig. 4 a string fraction of around 0.04
would explain the excess signal at ℓ ≃ 200 (as an alterna-
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Planck temperature observation gives the strong constraint 
on the cosmic string tension; Gµ � (1� 3)� 10�7

# There are uncertainties in the model of cosmic string.Related to the symmetry breaking scale.
#CMB can see them only through gravity. 
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The discussion for the effect on CMB is based on the assumption that 
the cosmic string entered the scaling regime well before recombination.

It is true for the case of hybrid inflation or thermal-mass triggered 
phase transition.

-> Observational predictions are very generic. 

Delayed scaling scenario
(Lazarides+ ’84; Vishniac+ ’87; Yokoyama, ’88; KK+ ’12)
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Delayed scaling scenario
The discussion for the effect on CMB is based on the assumption that 
the cosmic string entered the scaling regime well before recombination.

It is true for the case of hybrid inflation or thermal-mass triggered 
phase transition.
However, it is possible for the phase transition to take place 
DURING inflation, since the symmetry is naturally restored during 
inflation due to the “Hubble-induced” mass,             coming from

- non minimal coupling to gravity: 
- direct coupling between inflaton and Higgs: 
- gravitational coupling in SUSY F-term inflation: 
- and so on...
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If the Hubble-induced mass and zero-temp. 
mass are comparable and Hubble parameter 
decreases relatively largely, cosmic string 
can be formed during inflation. 

(Lazarides+ ’84; Vishniac+ ’87; Yokoyama, ’88; KK+ ’12)

-> Observational predictions are very generic. 
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The characteristic length, which would be the Hubble length at CS 
formation, gets exponentially long at the end of inflation. 

� H�1
inf

� H�1
inf eN

At the end of inflation, CSs are distributed at the superhorizon scales, 
and characteristic length evolves just          after that. � a
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3

velocity v evolves with the evolution equation,

dv

dt
= (1− v2)

(
k̃

L
− 2Hv

)
, (2)

with k̃ = (2
√
2/π)((1− 8v6)/(1+ 8v6)) being the momentum parameter that represents the acceleration effect due to

the curvature of the strings [18].
Although the velocity-dependent one scale model, characterized by eqs. (1) and (2), is intended to describe evolution

of the string network formed by the conventional Kibble mechanism, these equations also reproduce the initial evolution
of string segments before entering the scaling regime correctly, that is v tends to 0 when L ≫ H−1 and L evolves
in proportion to the scale factor, if we take an appropriate “initial” time with a large initial correlation length
Lini ≫ H−1

ini . Note that the CMB anisotropies induced by cosmic strings are insensitive to their behaviors in the
earlier epoch, and we do not have to follow their evolution from the end of inflation. It is not clear if the one-scale
model, where we assume that the typical curvature of the infinite strings and their mean separation are equal, holds
just after inflation, but we expect it gives a good approximation since the Hubble parameter during inflation is the
unique parameter to determine the string configuration when they are formed. The validity of this model, especially
in the intermediate regime, should nevertheless be investigated through numerical simulations with appropriate initial
conditions, which is beyond the scope of the present paper, and we use (1) and (2) throughout.
Figure 1 shows the typical evolution of the correlation length relative to the Hubble length H−1 with a different

(relatively large) initial correlation length. Hereafter we set z = 2.3 × 107 as initial time. The initial velocity is
set to v = 0 except for the bottom line, which represents the standard, always-scaling case with initial velocity
v = 0.65. While we chose such initial velocities, we also confirmed that the evolution of the correlation length is
almost independent of the initial velocity, since the velocity decreases vanishingly and it loses its initial information
quickly. As mentioned above, when L is larger than the horizon scale, it simply evolves in proportion to a. In terms of
the redshift z, L/H−1 is proportional to z in the radiation dominated era (z ≫ zeq) and z1/2 in the matter dominated
era (z ≪ zeq), where zeq ≈ 3400 is the redshift at the matter-radiation equality. We can also see that it takes a few
orders of redshift for the system to enter the scaling solution completely, which will be important for the observational
signatures. Since this result shows the general feature of the evolution of the correlation length on super horizon scales,
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FIG. 1: The evolution of the correlation length relative to the Hubble length. Compared to the dashed black line which is
proportional to aH, we can easily see that the correlation length evolves proportional to the scale factor on superhorizon scales.

it strongly suggests that even if the correlation length is much larger than the Hubble length just after inflation, the
system gradually approaches the scaling solution and at a relatively late epoch, say z = 103 or later, starts to evolve
in accordance with the scaling rule depending on the epoch of the phase transition during inflation. Note that if the
phase transition takes place when the present horizon scale exited the horizon during inflation, the correlation length
would become the horizon scale again today, since its initial correlation length can be estimated by the horizon scale
at that time. Therefore, cosmic strings formed several e-folds after the current Hubble scale went out of the horizon
during inflation would enter the scaling regime after the recombination3. To evaluate the onset time of scaling, we

3 In principle, the initial correlation length can be calculated from the model parameters, see, e.g., Ref. [9], but it needs specifying the

Adopting velocity-dependent one-scale model (approximation), 
we find the typical evolution of the correlation length of CS 
network and how the system would approach the scaling regime. 

dL

dt
= (1 + v2)HL +

1
2
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= (1� v2)
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recombination

It takes a few orders of redshift for the system to enter the scaling 
regime after the characteristic length comes to subhorizon scales. 
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(Martins+ ’96, ’00)

originally scaling string
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FIG. 3: Angular power spectra for the temperature/B-mode polarization fluctuations induced by cosmic strings with Gµ =
3 × 10−7. From top (blue dot-dashed) to bottom (red long dashed), we take the initial correlation length (L/H−1)ini =
1.5, 7.5× 103, 4.5× 104 and 1.5× 105. In the left panel, the contributions from inflationary perturbations is shown in the black
solid line, for comparison. In the right panel, the black solid line corresponds to the primordial gravitational waves with r =
0.135 and gravitational lensing. Note that the overall amplitudes scale as (Gµ)2.

high multipoles become significantly small. In this case, since the number density of strings is negligibly small until
the system enters the scaling regime, the position of the peak would be determined by the onset time of scaling and
get lower. Next, we consider why we see only a slight decline at low multipoles. The signal in these scales would be
mainly induced by the cosmic strings at late times. As we can see from Figs. 1 and 2, it takes time for the system to
enter the complete scaling regime and a larger initial correlation length turns to a slightly larger correlation length
and hence slightly smaller number density at later times. As a result, there is only a slight decrease of the amplitude
of the string-induced large-scale signals4.
Here we comment more on the number of cosmic string segments. We define the total number of cosmic strings

between the last scattering surface and us as

∫ rdec

0
4πa3r2(z)dr

1

L3(z)

=

∫ 1100

0

dz

H(z)

4π

(1 + z)3

(∫ z

0

1

H(z′)
dz′

)2 1

L3(z)
, (3)

where r(z) is a comoving distance to the surface whose redshift is z,

r(z) =

∫ z

0

1

H(z′)
dz′. (4)

In Fig. 4, we show the dependences on the initial correlation length for the total number and its partial components
which are expected to give dominant contributions to large and small scale fluctuations. We can explicitly see that the
total number of cosmic strings is significantly reduced if we set the initial correlation length very large. We can also
see that for (L/H−1)ini = 103 ∼ 105 the number of string segments around the recombination drastically decreases
whereas those around reionization show milder decreases. This is consistent with the behavior of the power spectrum
of the CMB temperature and polarization fluctuations in Fig. 3. Note that for the large initial correlation length, the
cosmic variance becomes so large that we have to be careful in comparing theoretical, ensemble-averaged quantities
and observations.
With the discussion given above, we then conclude that the constraint on the string tension is relaxed in the delayed

scaling scenario. We show some quantitative constraints in Figs. 5. Solid lines in the left panel of Figs. 5 show the
upper bound on the string tension from the CMB temperature anisotropies, which was obtained from the condition

4 Note that while the number of strings is reduced, each segment contributes to larger multipoles, since we expect the scale of dominant
fluctuations generated by each segment is proportional to L−1. Therefore the delayed scaling effect is not fully determined by the
number density.

String-induced CMB temperature fluctuations

Inflation+gravitational lensing

string with delayed scaling

originally scaling string

used CMBACT[v4] (’99 Pogosian+Moss)

(L/H�1)ini = 1.5
7.5� 103

4.5� 104

1.5� 105

@z = 2.3� 107

The position of the peak is determined by the time when the network 
enters the scaling regime. 
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String-induced CMB polarization fluctuations
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FIG. 3: Angular power spectra for the temperature/B-mode polarization fluctuations induced by cosmic strings with Gµ =
3 × 10−7. From top (blue dot-dashed) to bottom (red long dashed), we take the initial correlation length (L/H−1)ini =
1.5, 7.5× 103, 4.5× 104 and 1.5× 105. In the left panel, the contributions from inflationary perturbations is shown in the black
solid line, for comparison. In the right panel, the black solid line corresponds to the primordial gravitational waves with r =
0.135 and gravitational lensing. Note that the overall amplitudes scale as (Gµ)2.

high multipoles become significantly small. In this case, since the number density of strings is negligibly small until
the system enters the scaling regime, the position of the peak would be determined by the onset time of scaling and
get lower. Next, we consider why we see only a slight decline at low multipoles. The signal in these scales would be
mainly induced by the cosmic strings at late times. As we can see from Figs. 1 and 2, it takes time for the system to
enter the complete scaling regime and a larger initial correlation length turns to a slightly larger correlation length
and hence slightly smaller number density at later times. As a result, there is only a slight decrease of the amplitude
of the string-induced large-scale signals4.
Here we comment more on the number of cosmic string segments. We define the total number of cosmic strings

between the last scattering surface and us as

∫ rdec

0
4πa3r2(z)dr

1

L3(z)

=

∫ 1100

0

dz

H(z)

4π

(1 + z)3

(∫ z

0

1

H(z′)
dz′

)2 1

L3(z)
, (3)

where r(z) is a comoving distance to the surface whose redshift is z,

r(z) =

∫ z

0

1

H(z′)
dz′. (4)

In Fig. 4, we show the dependences on the initial correlation length for the total number and its partial components
which are expected to give dominant contributions to large and small scale fluctuations. We can explicitly see that the
total number of cosmic strings is significantly reduced if we set the initial correlation length very large. We can also
see that for (L/H−1)ini = 103 ∼ 105 the number of string segments around the recombination drastically decreases
whereas those around reionization show milder decreases. This is consistent with the behavior of the power spectrum
of the CMB temperature and polarization fluctuations in Fig. 3. Note that for the large initial correlation length, the
cosmic variance becomes so large that we have to be careful in comparing theoretical, ensemble-averaged quantities
and observations.
With the discussion given above, we then conclude that the constraint on the string tension is relaxed in the delayed

scaling scenario. We show some quantitative constraints in Figs. 5. Solid lines in the left panel of Figs. 5 show the
upper bound on the string tension from the CMB temperature anisotropies, which was obtained from the condition

4 Note that while the number of strings is reduced, each segment contributes to larger multipoles, since we expect the scale of dominant
fluctuations generated by each segment is proportional to L−1. Therefore the delayed scaling effect is not fully determined by the
number density.

Inflation+gravitational lensing

originally scaling string

string with delayed scaling

used CMBACT[v4] (’99 Pogosian+Moss)

The position of the peak is determined by recombination and 
reionization. Their amplitude is determined by the number of strings 
at that time.
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Constraint on the string tension
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FIG. 4: The solid black line represents the total number of string segments from the recombination to the present. The dashed
red line, which corresponds the number of strings near the last scattering surface, rapidly decreases as the initial correlation
length becomes large. We also plot the number of strings in the low-redshift region (0 ≤ z ≤ 20) by a dashed blue line. Its
dependence on the initial correlation length is smaller than that of strings being around the recombination.
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FIG. 5: The contour for the constraint on the string tension Gµ as a function of the initial correlation length (L/H−1)ini. In
the left panel, constraints obtained from the condition that the string temperature anisotropies does not exceed 10% of the
primordial one are shown in red (small scale, 2250 ≤ ℓ ≤ 2450) and blue (large scale, ℓ ≤ 50). The dashed dark blue (red)
line shows the excluded region from the condition that the string polarizations added to the lensing effect does not exceed the
spectra measured by the BICEP2 (POLARBEAR) data. In the right panel, more conservative limits on Gµ are depicted from
the condition that the temperature and polarization fluctuations generated only by cosmic strings (namely, without inflationary
temperature fluctuations and gravitational waves, and the lensing effect) do not exceed the observed values.

that the string-induced temperature anisotropies would not exceed 10%5 of the values given by the fiducial ΛCDM
model. The red line is the constraint from the small-scale signals whereas the blue line is that from the large-scale
counterparts. We can see that the small-scale signals give a stronger constraint for smaller initial correlation length
and large-scale signals give a stronger one for larger initial correlation length. In particular, for (L/H−1)ini = 104,
the constraint on Gµ is Gµ ! 3.4 × 10−7. Although the resultant constraint would depend on the criterion of the
condition, the generic features are expected to remain the same. For comparison, in the right panel of Fig. 5 we also
show more conservative limits coming from the condition that the temperature fluctuation created solely by cosmic
strings (without inflationary perturbations) would not exceed the observed value by Planck. We can see that although
the quantitative constraints are much different, shapes of the constraint lines do not change significantly. That is, the
constraint from the small scales is severer than that from the large scales for smaller initial correlation length, and

5 The precision of the data provided by Planck is about 10% for ℓ ! 50 and 2250 ! ℓ ! 2450.

@z = 2.3� 107
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BICEP2?
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FIG. 6: B-mode polarization angular power spectra for gravitational lensing with primordial gravitational waves (r = 0.135,
nt = 0, black broken line) and contributions from cosmic strings with delayed scaling (Gµ = 3 × 10−7, (L/H−1)ini = 7500,
green dashed line). If we combine them, the favorable value of r would be smaller than 0.2.

FIG. 7: The contour of the difference of χ2 between the prediction in taking r = 0.2 without strings (χ2 ≈ 15) and that of
cosmic strings with delayed scaling added to that for r = 0.135 based on BICEP2 data. The value of χ2 gets worse in blank
regions.

change. The key is to consider the scenario in which cosmic strings are formed not after but during inflation. Such
strings have exponentially large separation due to the dilution during the subsequent inflation and their evolution is
quite different from that of strings which enter the scaling regime at an earlier epoch.
We have traced typical evolution of the string network by solving the velocity-dependent one-scale model. We have

shown that if we take the relatively large correlation length at the initial time, the correlation length decays as a
rather than 1/H at an earlier epoch and it takes a few orders of redshift for the system to enter the scaling regime
[Figure 1].
Based on the evolution of the network, we have calculated the angular power spectra for the string-induced temper-

ature anisotropies and B-mode polarizations. We found that the large initial correlation length and the consequent
delay of the entrance into scaling regime allows the decrease in the number of strings at an earlier epoch, leading
to the decay of the string signals mainly on higher multipoles [Figure 3]. As a result, the delayed scaling scenario
can relax the constraint on the string tension from the measurements for both the temperature anisotropies and the
B-mode polarizations.
We have further discussed the features of the B-mode signals produced by strings. For the string-only model with

the contribution of the gravitational lensing, it is difficult to explain both BICEP2 and POLARBEAR data fully

��2 � �9 for GW (r=0.2)+GL vs GW (r=0.135)+CS+GL
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FIG. 6: B-mode polarization angular power spectra for gravitational lensing with primordial gravitational waves (r = 0.135,
nt = 0, black broken line) and contributions from cosmic strings with delayed scaling (Gµ = 3 × 10−7, (L/H−1)ini = 7500,
green dashed line). If we combine them, the favorable value of r would be smaller than 0.2.

FIG. 7: The contour of the difference of χ2 between the prediction in taking r = 0.2 without strings (χ2 ≈ 15) and that of
cosmic strings with delayed scaling added to that for r = 0.135 based on BICEP2 data. The value of χ2 gets worse in blank
regions.

change. The key is to consider the scenario in which cosmic strings are formed not after but during inflation. Such
strings have exponentially large separation due to the dilution during the subsequent inflation and their evolution is
quite different from that of strings which enter the scaling regime at an earlier epoch.
We have traced typical evolution of the string network by solving the velocity-dependent one-scale model. We have

shown that if we take the relatively large correlation length at the initial time, the correlation length decays as a
rather than 1/H at an earlier epoch and it takes a few orders of redshift for the system to enter the scaling regime
[Figure 1].
Based on the evolution of the network, we have calculated the angular power spectra for the string-induced temper-

ature anisotropies and B-mode polarizations. We found that the large initial correlation length and the consequent
delay of the entrance into scaling regime allows the decrease in the number of strings at an earlier epoch, leading
to the decay of the string signals mainly on higher multipoles [Figure 3]. As a result, the delayed scaling scenario
can relax the constraint on the string tension from the measurements for both the temperature anisotropies and the
B-mode polarizations.
We have further discussed the features of the B-mode signals produced by strings. For the string-only model with

the contribution of the gravitational lensing, it is difficult to explain both BICEP2 and POLARBEAR data fully

��2 � �9 for GW (r=0.2)+GL vs GW (r=0.135)+CS+GL

But they are most likley dust...? (1409.5738, Planck collaboration)

Courtesy H.Oide

Summary
- Cosmic strings are key ingredients for both cosmology and
high energy physics. 
- Their formation during inflation is an interesting possibility. 
- The string network enters scaling regime later in this case, 
which can reduce the high multipole moment of both CMB 
temperature and polarization fluctuations. 

Open issues
- We assumed several idealization, such as one-scale model.
    -> need numerical simulations. 
- We gave just qualitative constraints. 
    -> Combined analysis of Planck temperature/polarization data 
        and other experiments (including BICEP2) is needed to 
        give a precise constraint. 
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Gravitational waves from slow-roll inflation 
in Lorentz-violating Weyl gravity

Kohji Yajima ( D1 / Rikkyo University)  !
 Tsutomu Kobayashi (Rikkyo University)

In preparation

In the very early universe
✤ We don’t know quantum gravity.!

✤ Quantum corrections may be important.!

✤ We put the higher orders of curvature invariants into the 
Einstein-Hilbert action.

S =
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4
x

p
�g

�
R+ ↵R

2 + �Rµ⌫R
µ⌫ + �Rµ⌫⇢�R

µ⌫⇢� + ...

�

often generates ghost degrees of freedom.

But, in general

c = 1
~ = 1
 = 8⇡G
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Weyl gravity
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determines a preferred time direction.

    is everywhere timelike and future-directed.

This theory breaks local Lorentz-invariance spontaneously!
 but ghost-free!!
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Assumption :   

N.　Deruelle,　M.　Sasaki,　Y.　Sendouda　and　A.　Youssef,　JHEP　09,　009　(2012)
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Gravitational waves in Weyl gravity

Action
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The perturbations from the Weyl-squared term:

this contains first order time derivatives

Gravitational waves
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The total action for tensor perturbations is

from Einstein-Hilbert’s action from Weyl-squared term

Gravitational waves in Weyl gravity

ST [hij ] =
1

8

Z
d⌘d

3
x

⇥
a

2(h0
ijh

0ij � @khij@
k
h

ij) + 4�@kh
0
ij@

k
h

0ij⇤

the momentum conjugate to 

canonical quantization:

all other commutators are zero.

hij

⇡ij =
@L
@h0

ij

=
1

4
(a2h0ij � 4�4h0ij)

[ĥij(⌘, ~x1), ⇡̂
ij(⌘, ~x2)] = 2i�(~x1 � ~x2)

In the de-Sitter background,!
 the early time behavior of the mode

: oscillate

: never oscillate

We quantize the tensor perturbations by making the mode coincide with 
the positive frequency mode in Minkowski space-time at early time.

So quantization is carried out in                                  .

Quantization

0 <
p
�H < 1

0 <
p
�H < 1

p
�H > 1

N.　Deruelle,　M.　Sasaki,　Y.　Sendouda　and　A.　Youssef,　JHEP　09,　009　(2012)
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Quantization

where
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Comparing the amplitude of gravitational waves in Weyl gravity with GR.

Power spectrum of gravitational waves  
in de Sitter expansion

⌅ ⌘ amplitude of power spectrumof GWs inWeyl gravity

amplitude of power spectrumof GWs inGR

N.　Deruelle　et　al.　JHEP　09,　009　(2012)
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Action in cosmic time
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⌘
+

k2/a2 � 2H2 � Ḣ
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Slow-roll inflation in Weyl gravity
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with the initial condition

E.O.M

f̈~k + !2
kf~k = 0,
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We solve the equation, numerically, in power-law inflation: a(t) / tp

(p > 2)
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power spectrum of gravitational waves

⌅ ⌘ amplitude of power spectrumof GWs inWeyl gravity

amplitude of power spectrumof GWs inGR
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spectral index of gravitational waves

we calculate the spectral index of gravitational waves
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・GR
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tensor to scalar ratio
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The power spectrum of scalar perturbations in Weyl gravity is the same in GR.
PR (inWeyl) = PR (inGR) ns (inWeyl) = ns (inGR)

Consistency relation

The consistency relation: r = �8nt
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10 Planck Collaboration: Constraints on inflation

Model Parameter Planck+WP Planck+WP+lensing Planck + WP+high-` Planck+WP+BAO

⇤CDM + tensor ns 0.9624 ± 0.0075 0.9653 ± 0.0069 0.9600 ± 0.0071 0.9643 + 0.0059
r0.002 < 0.12 < 0.13 < 0.11 < 0.12

�2� lnLmax 0 0 0 -0.31

Table 4. Constraints on the primordial perturbation parameters in the ⇤CDM+r model from Planck combined with other data sets.
The constraints are given at the pivot scale k⇤ = 0.002 Mpc�1.
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Fig. 1. Marginalized joint 68% and 95% CL regions for ns and r0.002 from Planck in combination with other data sets compared to
the theoretical predictions of selected inflationary models.

reheating priors allowing N⇤ < 50 could reconcile this model
with the Planck data.

Exponential potential and power law inflation

Inflation with an exponential potential

V(�) = ⇤4 exp
 

�� �
Mpl

!

(35)

is called power law inflation (Lucchin & Matarrese, 1985),
because the exact solution for the scale factor is given by
a(t) / t2/�2 . This model is incomplete, since inflation would
not end without an additional mechanism to stop it. Assuming
such a mechanism exists and leaves predictions for cosmo-
logical perturbations unmodified, this class of models predicts
r = �8(ns � 1) and is now outside the joint 99.7% CL contour.

Inverse power law potential

Intermediate models (Barrow, 1990; Muslimov, 1990) with in-
verse power law potentials

V(�) = ⇤4
 

�

Mpl

!��
(36)

lead to inflation with a(t) / exp(At f ), with A > 0 and 0 < f < 1,
where f = 4/(4 + �) and � > 0. In intermediate inflation there
is no natural end to inflation, but if the exit mechanism leaves
the inflationary predictions on cosmological perturbations un-
modified, this class of models predicts r ⇡ �8�(ns � 1)/(� � 2)
(Barrow & Liddle, 1993). It is disfavoured, being outside the
joint 95% CL contour for any �.

Hill-top models

In another interesting class of potentials, the inflaton rolls away
from an unstable equilibrium as in the first new inflationary mod-
els (Albrecht & Steinhardt, 1982; Linde, 1982). We consider

V(�) ⇡ ⇤4
 

1 � �
p

µp + ...

!

, (37)

where the ellipsis indicates higher order terms negligible during
inflation, but needed to ensure the positiveness of the potential
later on. An exponent of p = 2 is allowed only as a large field
inflationary model and predicts ns � 1 ⇡ �4M2

pl/µ
2 + 3r/8 and

r ⇡ 32�2⇤M2
pl/µ

4. This potential leads to predictions in agree-
ment with Planck+WP+BAO joint 95% CL contours for super-
Planckian values of µ, i.e., µ & 9 Mpl.

Models with p � 3 predict ns � 1 ⇡ �(2/N)(p � 1)/(p � 2)
when r ⇠ 0. The hill-top potential with p = 3 lies outside the

Power-law inflation!
 in Weyl gravity

Planck 2013 results. XXII. Constraints on inflation [arXiv:1303.5082]

*

*
* * * * * *

0.95 0.97 0.99

Summary

✤ We calculate the power spectrum of gravitational waves from slow-
roll inflation in Weyl gravity.!

✤ This theory decreases the power spectrum of gravitational waves 
from GR.!

✤ The consistency relation is violated by quantum corrections. !

✤ In small scale, the tensor to scalar ratio is almost the same as GR,      
but it decreases in large scale.
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Introduction Kerr BHs as accelerators Observability Generalizations Summary

Black holes as particle accelerators:
a brief review

Tomohiro Harada

Department of Physics, Rikkyo University

13/11/2014 JGRG24 @ IPMU
Based on arXiv:1409.7502 with Masashi Kimura (Cambridge)

Introduction Kerr BHs as accelerators Observability Generalizations Summary

Rotating BHs as particle accelerators

as

Kerr BHs act as particle accelerators.
(Bañados, Silk and West 2009, Piran, Shaham and Katz 1975)
The CM energy of colliding particles can be unboundedly
high near the horizon.
Not only microscopic particles but also macroscopic
objects, such as BHs and compact stars, are accelerated.
This short talk is only an extract of the brief review.
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Introduction Kerr BHs as accelerators Observability Generalizations Summary

Kerr BHs

Kerr metric

ds2 = �
✓

1 � 2Mr
⇢2

◆
dt2 � 4Mar sin2 ✓

⇢2 d�dt +
⇢2

�
dr2 + ⇢2d✓2

+

 
r2 + a2 +

2Mra2 sin2 ✓

⇢2

!
sin2 ✓d�2,

where ⇢2 = r2 + a2 cos2 ✓ and � = r2 � 2Mr + a2.

Nondimensional spin: a⇤ = a/M
Horizon: rH = r+ = M +

p
M2 � a2

Ergosphere: rE = M +
p

M2 � a2 cos2 ✓

Angular velocity: ⌦H = a/(r2
H + a2)

Extremal: a⇤ = 1
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Formal divergence in CM energy of colliding particles

Total energy observed in the centre-of-mass frame

pa
tot

= pa
1 + pa

2, E2
cm

= �pa
tot

p
tota.

E
cm

for near-horizon collision in the equatorial plane is
formally given by

E2
cm

=
m2

1r2
H + (L1 � aE1)

2

r2
H

E2 � ⌦HL2
E1 � ⌦HL1

+ (1 $ 2) + · · · ,

where both particles are assumed to be infalling.
Divergent if E � ⌦HL = 0 for either of the particles.
We call particles with E � ⌦HL = 0 critical particles.
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The orbit of the critical particle

The critical particle can reach the
horizon from infinity, if and only if
the Kerr BH is extremal, for which
⌦H = 1/(2M) and L = 2ME .
It rotates infinitely many times around
the BH and takes infinitely long proper
time to reach the horizon.
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CM energy in finite time

Suppose particles 1 (critical) and 2 (noncritical) be
released at rest at infinity.

E
cm

2m
⇡

s
(2 �

p
2)(2 � l2)M

2(r
col

� M)
,

where l := L/(mM).
The Killing time T for particle 1 to reach r = r

col

T = �
Z r

col

ri

dr
p

r(r2 + Mr + 2M2)p
2M(r � M)2

' 2
p

2M2

r
col

� M
.

We then obtain

E
cm

⇡ m

r
(
p

2 � 1)(2 � l2)
T
M

' 2.5 ⇥ 1020
eV

✓
T

10 Gyr

◆1/2 ✓ M
M�

◆�1/2 ⇣ m
1 GeV

⌘
.
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The critical particle is accelerated unboundedly.

The critical particle approaches the event horizon, which is a
null hypersurface. This implies that the critical particle is
accelerated to the speed of light with infinite time.
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The infalling particle is accelerated unboundedly.

The infalling particle is accelerated to the light speed. If the
observer can stay at a constant radius near the horizon, he or
she will see the particle falls with almost the speed of light. (cf.
Zaslavskii 2011)
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The structure of circular orbits around a BH

Figure: The Schwarzschild and near-extremal Kerr BHs.

The observer can stay at a constant radius near the horizon
only for a near-extremal Kerr BH, where both the Innermost
Stable Circular Orbit (ISCO) and Innermost Circular Orbit (ICO)
are close to the horizon.
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Collisional Penrose process

The high energy collision may produce superheavy and/or
superenergetic particles.
Energy efficiency: ⌘ = E3/(E1 + E2)

The efficiency is . 1.5 for the original BSW collision.
Hence, the ejecta can only be modestly more energetic
than the incident particles. (Bejger et al. 2012, Harada,
Nemoto and Miyamoto 2012)
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Too low flux to be observed by a distant observer

Observable effects are discussed. (Bañados et al. 2011,
Williams 2011, Gariel, Santos and Silk 2014)
The flux of the ejecta particles from the BSW collision
is too low for the Fermi satelite to detect, due to strong
redshift and diminished escape fraction (McWilliams
2013).

Introduction Kerr BHs as accelerators Observability Generalizations Summary

Revision of the upper limit and super-Penrose process

If we allow one of the colliding particles to be
supercritical (L > 2mM) for an extremal Kerr BH, the
efficiency can be as large as 14 for a variant of BSW
collision. (Schnittman arXiv:1410.6446)
If we allow one of the colliding particles to be that
must be created inside the ergosphere, the efficiency
can be arbitrarily high, for which high E

cm

is not
essential. (Berti, Brito and Cardoso arXiv:1410.8534)
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High energy collision in non-Kerr BHs

Neutral particle accelerators
Kerr BHs (Bañados, Silk and West 2009, ...), KN family
(Wei et al. 2010, Liu, Chen and Jing 2011), Accelerating
and rotating BHs (Yao et al. 2011)
Dirty BHs (Zaslavskii 2010, 2012), Sen BHs (Wei et al.
2010), ...

Charged particle accelerator
Reissner-Nordström BHs (Zaslavskii 2010)
General stationary charged BHs (Zhu et al. 2011), ...

Higher-dimensions
Myers-Perry BHs (Abdujabbarov et al. 2013, Tsukamoto,
Kimura and Harada 2014): Fine-tuning is still needed.
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High energy collision in non-BH spacetimes

High energy collision occurs in a deep potential well. If
there is no horizon, head-on collision is also
physically motivated and hence fine-tuning is relaxed.

Overspinning Kerr/Superspinar (Patil and Joshi 2011,
Stuchlík and Schee 2012, 2013), JNW spacetimes (Patil
and Joshi 2012), Overcharged RN (Patil et al. 2012)
Naked singularity is not essential: Bardeen magnetic
monopoles (Patil and Joshi 2012), Rotating wormholes
(Bambi and Tsukamoto)

(Patil and Joshi 2011)
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Summary

Particle acceleration by near-exteremal Kerr BHs is
founded on the basic properties of geodesic orbits.
The achievable energy is subjected to several physical
effects, such as finite acceleration time.
Although the ejecta from the original BSW collision
will not be directly observed, the observability of high
energy particles is still tantalizing.
Particle acceleration without horizon is advantageous
to observation, if there is an extremely deep potential.




