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Programme: Day 2
Tuesday 11 November 2014

Morning 1 [Chair: Tetsuya Shiromizu]

9:30 Claudia de Rham (Case Western) [Invited]
“Cosmology and Massive Gravity” [JGRG24(2014)111101]

10:15 Yasuho Yamashita (YITP, Kyoto)
“Appearance of Boulware-Deser ghost in bigravity with doubly coupled matter”
[JGRG24(2014)111102]

10:30 Atsushi Naruko (Titech)
“Cosmology in rotation-invariant massive gravity with non-trivial fiducial metric”
[JGRG24(2014)111103]

10:45-11:00 coffee break
Morning 2 [Chair: Ken-ichi Oohara]

11:00 Hayato Motohashi (Chicago)
“Stability of self-accelerating solutions in extended quasidilaton massive gravity”
[JGRG24(2014)111104]

11:15 Daisuke Yoshida (Titech)
“Covariant Stueckelberg analysis of dRGT massive gravity with a general fiducial
metric” [JGRG24(2014)111105]

11:30 Katsuki Aoki (Waseda)
“Dark matter in ghost-free bigravity theory” [JGRG24(2014)111106]

11:45 Yuki Sakakihara (Kyoto)
“Tensor Spectrum in Bimetric Gravity” [JGRG24(2014)111107]

12:00 Tatsuya Narikawa (Osaka)
“Detectability of bi-gravity with graviton oscillations using gravitational wave
observations” [JGRG24(2014)111108]

12:15 Shinsuke Kawai (Sungkyunkwan)
“Improvement of energy-momentum tensor and non-Gaussianities in holographic
cosmology” [JGRG24(2014)111109]

12: 30 - 14:00 lunch & poster view

Afternoon 1 [Chair: Tomohiro Harada]
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14:00 Andrzej Rostworowski (Jagiellonian) [Invited]
“Current status of the AdS (in)stability” [JGRG24(2014)111110]

14:45 Masashi Kimura (DAMTP)
“Higher-dimensional extremal Reissner- Nordstr'om black holes are fragile”
[JGRG24(2014)111111]

15:00 - 15:30 short poster talks (BO1 - B19, 1 minute each)

15:30-16:00 coffee break & poster view

Afternoon 2 [Chair: Ken-ichi Nakao]

16:00 Ryo Namba (Kavli IPMU)
“Toward constructing ghost-free scalar-tensor theories beyond Horndeski”
[JGRG24(2014)111112]

16:15 Rio Saitou (YITP, Kyoto)
“Structure of constraints of the theory beyond Horndeski” [JGRG24(2014)111113]

16:30 Xian Gao (Titech)
“Spatially covariant gravity and unifying framework for scalar-tensor theories of
gravity” [JGRG24(2014)111114]

16:45 Ryotaro Kase (Tokyo Science)
“Effective field theory approach to modified gravity including Horndeski theory
and Horava-Lifshitz gravity” [JGRG24(2014)111115]

17:00 Tomotaka Kitamura (Waseda)
“The Relation Between Tree Unitarity and Renormalizability in Lifshitz Scalar
Theory” [JGRG24(2014)111116]

17:15 - 18:00 poster view
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“Cosmology and Massive Gravity”
Claudia de Rham [Invited]

[JGRG24(2014)111101]



Cosfnolc)gy
&
Massive Gravity

IPMU - JGRG24
Nov. 1% 2014 Claudia de Rham

CASE WESTERN RESERVE
U ITY

I P M U g\ISTITUTE FOR THE PHYSICS AND FEL -
MATHEMATICS OF THE UNIVERSE think beyond the possible-

GR has been a successful theory from mm length scales to
Cosmological scales
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Testing gravity requires alternatives theories

Size in cm
A .
1 Range of scales for which
Gravity is well tested
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Massive spin-2 fields & Holography

* Spin-2 field may be useful in condensed matter
applications of the AdS/CFT correspondence

e ‘realistic’ materials with momentum relaxation (lattice)
are dual to massive gravity

* New dofs in graviton encodes the phonon dynamics

Vegh, arXiv:1301.0537,
Blake, Tong, Vegh, arXiv:1310.3832
Baggioli, Pujolas, arXiv:1411.1003,...

P

Gravitational Waves

. —
€ W

¥ In principle GW could have 4 other polarizations

w
"~ GR: 2 polarizations

g L §

2 ‘vectors’ 2 ‘scalars’
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Massive Gravity

* When breaking covariance, GW can in principle
propagate up to 6 independent polarizations (in 4d)

* A massive spin-2 field in 4d has 2s+1=5 dofs

Boulware & Deser, PRD6, 3368 (1972)

P

Ghost-free Massive Gravity

Usr = (K2, —K*) +as (K2 +-+) +aq (K*+- )

® In 4d, there is a 2-parameter family of ghost free
theories of Lorentz-invariant massive gravity

Kl; [ga 77] = 5'1; = \/9“0‘%1/

CdR, Gabadadze, 1007.0443
CdR, Gabadadze, Tolley, 1011.1232
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Ghost-free Massive Gravity

Ucr = (IC/%V—ICQ)+043(IC3+--.)+a4(/c4+...)

* In 4d, there is a 2-parameter family of ghost free
theories of Lorentz-invariant massive gravity

* Absence of ghost has now been proved fully non-
perturbatively in many different languages

CdR, Gabadadze, 1007.0443 Kluson, 1202.5899

CdR, Gabadadze, Tolley, 1011.1232 Hassan, Schmidt-May & von Strauss, 1203.5283
Hassan & Rosen, 1106.3344 Kluson, 1204.2957

CdR, Gabadadze, Tolley, 1107.3820 Deffayet, Mourad & Zahariade, 1207.6338

CdR, Gabadadze, Tolley, 1108.4521 Alexandrov, 1308.6586

Hassan & Rosen, 1111.2070 Kugo, Ohta, 1401.3873

Mirbabayi, 1112.1435 Golovnev, 1401.6343, ...

Ghost-free Massive Gravity

e (/CZV—/CQ)+@3<IC3+...>+@4(]C4_|_...)

® In 4d, there is a 2-parameter family of ghost free
theories of Lorentz-invariant massive gravity

* Absence of ghost has now been proved fully non-
perturbatively in many different languages

* As well as around any reference metric, be it
dynanrr or not BiGravity !!!

Hassan, Rosen & Schmidt-May, 1109.3230
Hassan & Rosen, 1109.3515
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Degrees of Freedom

Massive Gravity

® 1 massive spin-2
- 2 helicity-2
- 2 helicity-1
- 1 helicity-o

W—J
5 dofs

Degrees of Freedom

Massive Gravity

® 1 massive spin-2

- 2 helicity-2 V g Naw

- 2 helicity-1
- 1 helicity-o /
5 dofs nabau ¢CL8V ¢b
K—H

- 2 dof in metric
(after gauge fixing)

C - 3 Sttickelberg fields
Restore diff invariance
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— V gﬁfau A

a b
Degrees of Freedom  /a%k® 99

Massive Gravity Bi-Gravity
® 1 massive spin-2 ® 1 massive & 1 massless spin-2
- 2 helicity-2 - 2x2 helicity-2
- 2 helicity-1 - 2 helicity-1
- 1 helicity-o - 1 helicity-o
W—J W—J
5 dofs 7 dofs
A A
- 2 dof in metric - 2x2 dof in both metrics
(after gauge fixing) (after gauge fixing)

C - 3 Stlickelberg fields - 3 Sttickelberg ﬁeldsD
Restore diff invariance Restore 2" copy of diff invariance

Gauge Transformation

e Start with Massive Gravity

2
£ = 2P/ (R~ m?Ulg. f)

o With reference metric f i nabau¢aau¢b

* And Stuckelberg fields ¢ = [V [sog
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Gauge Transformation

e Start with Massive Gravity
M2
=

o With reference metric f o = Uabau¢aau¢b

* And Stuckelberg fields o iV o0

* Clearly the theory is invariant under a change of gauge

s— s d*zL[s] = d*zL[s]

Gauge Transformation
o = 2% +tV* + 50
* The change of gauge can be viewed as a (field dependent)
coordinate transformation,

. , =

ot — TH =zt 4 S0P (x)
D, onlx) > J ) 0 rly)

o= g & WM g )

-

With MO/: — g;z = [H + S’H(as)]_1 — [H — S/l:[(i)]
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Gauge Transformation
ot = x% +tV* + s0%r
e The change of gauge can be viewed as a (field dependent)
coordinate transformation,

. , )

ot — M =zt 4 §OH7(x)

D, oxlr) > J i) 0 rlr)

k g g/ux(a?) . guu(j) :M%Mﬁugoﬁ(a;) J

e The map is invertible and forms a group

Ds_l — S Dy o Dg = Ds+s’

Trivial invariance under gauge

transformation
Galileon Duality Generalized MG
Insight for: Insight for:
superluminality Cosmology in MG

(and potentially Quantum Stability
and UV completion)
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P

Limit of Massive (Bi-)Gravity

* In some limit, theory looks like a Galileon

1 a a a
L- On) b @) tab 0ol )

e Where 7 plays the role of the helicity-o mode

j=1 k=n+1

P

Limit of Massive (Bi-)Gravity

n d
,C%Gal)('ﬂ_) i gal...adgﬁl...ﬁd (H 80@@“) < H nakﬁkz)

* In some limit, theory looks like a Galileon

1 a a a
L=—7(0m) + s L () + a5 (1) + es£L°% (1)

® But there is a “gauge” freedom

(
ot — M =zt 4 §oFn(x)

Dy : 4 dyr(z) — 0,7(%) = d,n(x)

9u(@) — Gu(&) = M® MY, gop(2)

\
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Dual to a Galileon

e A Galileon theory...

1 a a a
L- (On) b @) tab 0ol )

Maps to another Galileon theory, with different coefficients
/
Pn = pn(cka S >

® Maps a theory that exhibits Vainshtein to another one
which also exhibits Vainshtein.

Eg.2 Dual to a Free theory

* A Free theory
1
E — —5(87'(')2

Maps to a specific quintic Galileon theory 6512
p’l’L = (

n — 2)!(5 — n)!

1
Lo—y = — det (1 LI on)°
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Dual to a free theory

* The dual theory admits superluminal propagation
1
Loy == det (1+10) (8)?

in the vacuum ! (ie. no matter or other sources)

. _% det (1 £ TI) (Or)2

in the vacuum ! (ie. no matter or other sources)

plane wave solutions 7 = F'(x — t)
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* The dual theory admits superl.

ST
= .

1
Loy=1 = —5 det (14 II) (Om)?
in the vacuum ! (ie. no matter or other sources)

plane wave solutions 7 = F'(x — t)

1_F//

 Speed of fluctuations: c¢s =1 s 11

Superluminal propagation for [’ I = ]

Dual to a free thec ’

* The dual theory admits superl_. *
=l

1
. - det (1 + II) (O7)*
in the vacuum ! (ie. no matter or other sources)

plane wave solutions 7 = F'(x — t)

1_F//
= P

e FULLY EQUIVALENT to a characteristic analysis

e Speed of fluctuations: c¢; =1
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. —% det (1 -+ IT) (8r)>

® Yet it maps to a free theory
1
o
L. 5 (87‘-)

e Trivially causal, unitary, UV complete,...

Pp——————

Group vs front velocity

e No Paradox here ! Group velocity is:
- Not invariant
- Has been observed to be SL in the real world
- Was computed here classically: Valid till the strong coupling scale

2
£ k
phase( ) Classical phase velocity
A /) in dual theory
EQUIVALENT to what is
1--———————————' diagnosed by a

characteristic analysis

A, >Frequemcy k
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Superluminal phase&group
velocities have been observed in
real world...

grect measurement of superluminal group velocity and of signal veloci}
in an optical fiber

Nicolas Brunner, Valerio Scarani, Mark Wegmiiller, Matthieu Legré and Nicolas Gisin
Group of Applied Physics, University of Geneva,
20 rue de U’Feole-de-Médecine, CH-1211 Geneva 4, Switzerland
(February 1, 2008)
quant-ph/o407155

We present an easy way of observing superluminal group velocities using a birefringent optical
fiber and other standard devices. In the theoretical analysis, we show that the optical properties of
the setup can be described using the notion of "weak value”. The experiment shows that the group
velocity can indeed exceed e in the fiber; and we report the first direct observation of the so-called

\”signal velocity”, the speed at which information propagates and that cannot exceed c. /

Group vs front velocity

e No Paradox here ! Group velocity is:
- Not invariant
- Has been observed to be SL in the real world
- Was computed here classically: Valid till the strong coupling scale

2
C k
phase ( ) Classical phase velocity

A in dual theory
(or characteristic analysis)

1 \\) Classical and Quantum

phase velocity in free theory

>
A, Frequency k&
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Group vs front velocity

e No Paradox here ! Group velocity is:
- Not invariant
- Has been observed to be SL in the real world
- Was computed here classically: Valid till the strong coupling scale

Full phase velocity

9 in dual theory
¢ k
phase ( ) \ Classical phase velocity

A o in dual theory

AN (or characteristic analysis)

1 \\) Classical and Quantum

phase velocity in free theory

>
A, Frequency k&

Group vs front velocity

e No Paradox here ! Group velocity is:
- Not invariant
- Has been observed to be SL in the real world
- Was computed here classically: Valid till the strong coupling scale

Full phase velocity
5 in dual theory
¢ k
phase ( ) \ Classical phase velocity
A o in dual theory

N (or characteristic analysis)

1 \\) Classical and Quantum

phase velocity in free theory

>
A, Frequency k&
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Group vs front velocity

* The classical group and phase velocities may depend
on the field representation and may be SL

* The Causal structure is dictated by the front velocity

e The front velocity (and therefore the causality) cannot
be inferred by a simple classical calculation
(neither by a classical characteristic analysis)

e If the duality was going through at the quantum level
one could compute the front velocity in the free
theory. Since it is luminal we would infer that the
quintic Galileon is actually causal...

Trivial invariance under gauge

transformation
Galileon Duality Generalized MG
Insight for: Insight for:
superluminality Cosmology in MG

(and potentially Quantum Stability
and UV completion)
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Generalized MG

* The framework provides inspiration on how to
generalize MG

M2 g 4 -
i V —g% (R = % Z&n(¢a¢a) Un[K]>
M=

P—

Generalized MG

* The framework provides inspiration on how to

generalize MG
M?2 m?2 - =
L= V_g% (R_7 (9" Pa) Z/{n[K])
=2

e [.orentz invariant !
e Same number of constraints as Ghost-free MG

—5-piPppagating dofs.
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Generalized MG

The framework provides inspiration on how to
generalize MG

M2 g 4 -
£ =/=g=~ (R — 5D @n(d°4a) un[K]>
Nn=2

Lorentz invariant !

Same number of constraints as Ghost-free MG

—5-piPppagating dofs.

In unitary gauge 6" pa = &* = 2°2"Nap
tra 3Iat10n invariance broken

P

Consequences for Cosmology

L’expansion de I'Univers

> -

" Grayité —_

Energie noire

5 milliards d'années——

13,7 milliards d'années——x
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[Large Scale Inhomogeneities]

T

No spatially-flat
FLRW solutions
with Minkowski
] Reference metric

Open solutions
(unstable)

Break Poincaré invariance]

Break Break
Lorentz Translation

dS or FRLW reference metric
(problem with Higuchi ghost)

Addltlonal degrees of freedom

(Extended) Quasi-dilaton
Mass-Varying Bi-Gravity, Multi-Gravity
f(R)

New couphng

Generalized MG

* The framework provides inspiration on how to

generalize MG
M3 ne ~0
L= V_g% R_7 an (9% Pa) Un[K]

e Allows for exact FLRW solutions

NS anla(a) | = B 0l (68" hn(a) # 0
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P

From Lorentz invariance to cosmology

e Start with Open Universe (could be thought of as
local effect from long wavelength inhomogeneity)

& = F)/1+ kZ2, & = klft)z'.

L i B O

Gumrukcuoglu, Lin, Mukohyama, arXiv:1109.3845

P

From Lorentz invariance to cosmology

e Start with Open Universe (could be thought of as
local effect from long wavelength inhomogeneity)

¢ = Fln /L L klE2, ¢ = Jk|fl]
fodrfda? = — f(1)2d#? + |k|F2 dQ%. -

Gn(0%0a) —  am(x(t)

k| — 0

Gumrukcuoglu, Lin, Mukohyama, arXiv:1109.3845
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P

Exact FLRW solutions

e There are exact (self-accelerating) FLRW solutions

Eg.

C m
BMngQ = Pmatter T m2MP2>1 (Cl . 72) (03 9 C4E)

CdR, Fasiello, Tolley arXiv:1410.0960

P

Exact FLRW solutions

e There are exact (self-accelerating) FLRW solutions

Eg.

C m
M H? = prmatter + m* Mg, (01 + 72) (Ca+Cuzr)

® Which are stable in the decoupling limit where
m—0, MIP[—oo, A=(mT2 MIP/)T1/3 - fixed

For all the modes (tensors, vectors, scalar, no tachyon,

gradlent Ok ghOSt IHStablhty) CdR, Fasiello, Tolley arXiv:1410.0960
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P

Validity of DL

® Derived a family of DL theories valid for arbitrary
time

» Fails to account for long wavelength modes >4 1=

e Stability analysis only fails to
account for the long-wavelen
modes. g1

/

DL at #2

DL centered Any instability which arises at the
at &1 resp. horizon scale is harmless.

P

Cosmology in the DL

e There are exact (self-accelerating) FLRW solutions

DL at #5
DL at #4

Eg.

C m
SMFQHHQ = Pmatter - m2MP2>1 (Cl i f) (O?) 9 C4E)

® Which are stable in the decoupling limit.

—* Full Stability should be explored
— As well as viability of the resulting Cosmology

CdR, Fasiello, Tolley arXiv:1410.0960



186

P

Outlook

® Massive Gravity is a specific framework to study
IR modifications of Gravity

* The Vainshtein mechanism comes hand in hand with
strong coupling, non-analyticity and
superluminalities

 Galileon duality may help understanding these issues

e Theory with these issues is dual to a free and
manifestly UV complete theory

P

Outlook

® One can generalize massive gravity
while preserving Lorentz invariance
without ghost
manifestly 5 degrees of freedom
but... breaks Poincare invariance

* Generalized massive gravity allows for exact stable
FLRW solutions (which can self-accelerate)

* Their full analysis should be explored further
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- @@

I P M U INSTITUTE FOR THE PHYSICS AND
s T
MATHEMATICS OF THE UNIVERS

m

Causal structure
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Coupling to Matter

e [f coupling to an external source
B 5 (21 (] oF  Air]f] ]
T(z) = T(z) =T(x + s'(0m))
e These would map to a non-local coupling.

* The same would happen for GR:
An external source breaks diffeomorphism invariance

CdR, Fasiello, Tolley 2013
Creminelli, Serone, Trevisan, and Trincherini, 2014

Coupling to Matter

e [f coupling to a dynamical source

EE § (2] (7] oF )l ]

XI(@) = TET{HY 4P| T)

e Dynamical sources preserve diffeomorphism invariance.

* Local dynamical sources map to local sources

* This map can be applied to any theory.  cdr Keltner, Tolley 2014
Kampf & Novotny, 2014



Matter transformation

e [f coupling to a dynamical source

e Matter fields should transform as they would do under a
standard coordinate transformation

e Eg. Scalar field X(CC) = )A(/(f) — X(CE)

CdR, Keltner, Tolley 2014

Matter transformation

s N

Local dynamical sources
st map to local sources

Following results are not are artefact of non-locality

e\ /

~

T O MmN o

CdR, Keltner, Tolley 2014
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P

Classical Causal Structure

® Galileon coupled to a scalar field y with standard kinetic
term

1 1
L - detil LI (On)° 5(8)()2 + gx’n

* The field y propagates luminaly independently of the
configuration

* There are configurations where the Galileon is
superluminal

e « is subluminal compared to the Galileon

9/

fo(7,07) = (;r - ;(0ﬁ)2>

2

M=1-4TI

Zm = (MM (e
Classical Causal Structure

e In the dual picture,

5 1 1
L£=—5(07)" — 52" 0, %0, + g det M f(7)X"
o 7T has a standard kinetic term == propagates

luminally

o X acquires a non-standard kinetic term and
propagates subluminaly
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P——

Classical Light Cones

m(z) Duality Frame 77 (Z) Dualitv Frame
(7, x) (777 X )
A t nt

A 4
=1

Classical Light Cones

m(z) Duality Frame 77 (Z) Dualitv Frame
(7, x) (7T7 X )
A t nt
o ~

The Classical Causal structure remains preserved

Shown for any field configuration,
does not rely on plane waves
does not rely on vacuum
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If a UV completion exists then we should have

Complete Light Cones

7(x) Duality Frame 77 (Z) Duality Frame
(7, %)

nt

Quantum Stability ??7?
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Ghost-free Massive Gravity

* Structure of mass term is essential to avoid BD ghost

EmGR = MI%I (R + m2 ([]C]2 o [IC2]>)

Boulware & Deser, PRD 6, 3368 (1972)
CdR & Gabadadze, PRD 82, 044020 (2010)
CdR, Gabadadze & Tolley, PRL 106, 231101 (2011)

P

Ghost-free Massive Gravity

* Structure of mass term is essential to avoid BD ghost

['mGR i MFQ)I (R + m2 ([]C]Q o []C2]))

* We expect the structure to detune the potential

-

4 22
m (0°m)
—h? =

Mg, Mg,

— 2
Mgy ~ Mp,
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Ghost-free Massive Gravity

* Structure of mass term is essential to avoid BD ghost

EmGR = MI%I (R + m2 ([]C]2 o [IC2]>)

* We expect the structure to detune the potential

m? (0?71)? (B%mo\"
L : ‘
Y SVF) ( A3 )

827'(' A
2 2 0
mgh o ‘]\"[PI ( A3

CdR, Heisenberg & Ribeiro, 1307.7169

P—

Ghost-free Massive Gravity

* Structure of mass term is essential to avoid BD ghost

['mGR i MFQ)I (R + m2 ([]C]Q o []C2]))

* We expect the structure to detune the potential

m? 2 (627)2 (%mo\ "
i M= A
8271'0 -n
mf,).h ~ M3, ( A3 >
W

< 1 CdR, Heisenberg & Ribeiro, 1307.7169
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1-loop Effective Action

* The 1-loop effective action is itself redressed

2
1 1 C1 8A7:§0 2 =
‘Ceff — M2 925 ((9 '7'(')
5 e

* The detuning of the potential is never a problem at
that level 9 9
Mgy 2 Mp

* Even on top of large background configurations
6271' 0

<
A CdR, Heisenberg & Ribeiro, 1307.7169

P—

Beyond 1-loop...

b

* At higher order in loops, loops can mix virtual matter
fields and graviton fields

. /vmat.ter .ﬁeld 9@ ,
_ > - with its own mass My

\ /
> - < graviton h,,
with mass m
MlO

Could have a mixing . @ [}12] which could be fatal...

4
m ]V[Pl




Ridding on Irrelevant Operators

* Consider an arbitrary theory

1

872,—1—2 ¢m—i—2
An +m

I
. —5(3@2 -

* The theory exhibits the Vainshtein mechanism
an ¢77’L
An+m

Z]w' > 1

Ridding on Irrelevant Operators

* Consider an arbitrary theory

1

n+2 m-+2 / Vi
An—l—m a gb + - X

1
L=—(08) +

* The theory exhibits the Vainshtein mechanism
an ¢m

An+m > |

21~ |

e Coupling to heavier fields with M, > A would
naively detune the theory...
at least perturbatively

z = e % = Z"[9]0,0

m‘ % _ Z7(§10,0

196
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- 62L L
, = 70,

Ridding on Irrelevant Operators

* Consider the exact Renormalization Group equation

o, .| 0@
— =l =
Ok 2 | R+ %% 9,0,

A

Ry, : regulator operator

Ly : effective average action
Kk :IR regulator

Wetterich, 1993

2
P e v

Ridding on Irrelevant Operators

* Consider the exact Renormalization Group equation

Ir

¢ E
Ok 2

d. .
R. + Z£ 0,8,

Deep in the Vainshtein Region,

. -
Z] %

Fully Non-perturbatively CdR & Raquel Ribeiro, arXiv:1405.5213



198

P

Ridding on Irrelevant Operators
* Suppressing the loops... he F = h / 7

~

- .. = -

Quantum corrections become irrelevant
deep in the Vainshtein regime

Zl >1 = hg >0

Fully Non-perturbatively CdR & Raquel Ribeiro, arXiv:1405.5213

P
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P—

On the Strong Coupling Issue

Q: At what scale does standard perturbativity
break down ?

A:  The scale is environment-dependent.

In DGP, (really for a cubic Galileon),
At the surface of the Earth from the mass of Earth alone,

s e L

On the Strong Coupling Issue

In massive Gravity, (really in DL or for a quartic Galileon),
Burrage, Kaloper & Padilla tried to answer this question
PRL 111(2013) 021802, arXiv:1211.6001 and found,

A (1000km - A, (lkm)

From which they conclude that the graviton mass ought
to be bounded...

D



200

P

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

P

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

2) Identified the wrong operator ‘
Identified the strongly coupled operator  /1}.,.c ([H]B — 3[I1] [HQ] + 2[1—[3])

dimension-9 operator e T
=

Total derivative




201

P——

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

2) Identified the wrong operator ‘ ( ‘
Identified the strongly coupled operator /1., i ([H] > 3[11] [HZ] + 2[1_[3])

dimension-9 operator w T
=

Total derivative

Instead the first strongly coupled op is
dimension-7 operator

(a2ﬁback) (aﬂ')QDTF

Arise at a higher energy scale !

P——

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

2) Identified the wrong operator
Same thing when dealt with quartic Galileon
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P——

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

2) Identified the wrong operator
Same thing when dealt with quartic Galileon

3) Assumed exact STATIC & spherically symmetric

configuration
Just the dipole from the Earth ~ 1073 radically change their result

P—

D O it r i g h t ! In arXiv:1211.6001:

1) Looked at a solution which is not stable and does
not exhibit the Vainshtein mechanism in the first
place

2) Identified the wrong operator
Same thing when dealt with quartic Galileon

3) Assumed exact STATIC & spherically symmetric
configuration

Correcting for all these errors leads to
A.~(10ocm) * rather than (1 km)?

But even putting these errors aside the reasoning of the paper is unphysical
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P—

Do it right !

o
4) The scale that comes in is always m2Mpi\/Z,

« dimensionless, non-renormalized free parameter

and not /1 alone =———> cannot put a bound on
the graviton mass itself

P

Do it right !

4) Cannot identify the mass parameter from that DL

5) Even if all the previous points were correct, one
CANNOT use the breaking of perturbativity to put
a bound on a physical parameter.

All it means is that in this variable the DL
description breaks down

From the Vainshtein mechanism we expect to
recover GR better and better the deeper in the SC
regime we are
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P—

Do it right !

4) Cannot identify the mass parameter from that DL

5) Even if all the previous points were correct, one
CANNOT use the breaking of perturbativity to put
a bound on a physical parameter.

6) At these scales, one needs to take into account the

further screening from the experiment itself
(local energy + building, people, etc...)

P—

Do it right !

Finally...

The Galileon Duality suggests of a way (ways) to
repackage infinite number of loops such that
perturbativity in the new variables is under
control up to a much larger energy scale.
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“Appearance of Boulware-Deser ghost in bigravity with
doubly coupled matter”
Yasuho Yamashita

[JGRG24(2014)111102]
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Appearance of Boulware-Deser ghost
'1n bigravity with doubly coupled matter

YI'TP, Kyoto University

Yasuho Yamashita

in collaboration with A. De Felice and ‘I, Tanaka

i = =Tz SSRGS ey i e

t bigravity and Boulware-Deser ghost

bigravity : gravity which contains two interacting gravitons

|
|

| Ve 2 M

| S = T/az =g [R@) +2m2V (g, f)] = —fRW
4 fix f

! The interaction term breaks general covariance for g

= GR (helicity-2 ) + 4 gauge breaking ( helicity-1, helicity-0,(helicity-0))

i V
This mode’s kinetic term

massive graviton has opposite sign!!

Boulware-Deser ghost

Boulware and Deser (1972)

In order to obtain healthy bigravity, we have to tune the interaction form
so that the ghost mode 1s killed by constraints.
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ghost-free bigravity

Choosing the form of the interaction as

( che“l KK KZ = MJ

de Rham, Gabadadze, Tolley
(2011)

N e g N et et T
ADM decomposition -
P ey el
define new shift-like vector n®
and rewrite N* with n’

Then Hamiltonian becomes linear in N, L, L. C‘?“i‘”‘j"* m‘)m;{“
PN O O ¢, CF, CF are functions of {~;, 77, 3fi;, p/}

= One of the Hamiltonian constraints kills BD ghost.
Hassan and Rosen (2012)

Questions in ghost-free bigravity

<+  What is the hidden metric /7
<+ The form of the interaction is derived technically and artificially.

<+ The cosmological solutions in ghost-free bigravity do not exist or
become unstable at high energies.

— We want to extend bigravity to more fundamental theory.

We want to embed ghost-free bigravity
to higher dimensional gravity.
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Correspondence between ghost-free bigravity and
DGP 2-brane model with stabilization mechanism

When the two branes are almost flat and its separation is small,

DGP 2-brane model is identical to ghost-free bigravity.

ghost-free bigravity DGP 2-brane model
two metrics H two metrics induced on the two branes
graviton’s mass H the mass of the lowest massive mode

YY and Tanaka (2014)

It is natural to consider doubly coupled matter in ghost-free bigravity
by introducing 5-dim matter field in braneworld model.

~

doubly coupled matter

However, coupling through the matter
/ \ generally detunes the ghost-free
structure of the interaction.

Inv S — BD ghost?

Consider a free scalar field which couples to both metric:
£ =77 (-50.00°0) + V7T (~50,60"0)
: 1 1
conjugate momentum g ~ (N i f) 09

N
N+L'¢

Hamiltonian # > ...nonlinear in the lapse fcns — BD ghost!
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Seeking for models with doubly coupled matter
which have no BD ghost

Introduce a k-essence scalar field

Ln=vV—gP(X,0)++/—fP(X,9)

X =2 6004058, X = —2 f*P0ugOp0

Consider perturbation around FLRW and Bianchi type-1 spacetime

and evaluate the determinant and the ei%envalues of the kinetic matrix A.

When detA #0 | their signs clarify
an extra d.o.f. exists. whether the d.o.f. is a ghost mode or not.
Result

+ (BD ghost appears unless P = ]5((/5) or P= P(¢) J

YY, De Felice and Tanaka (2014)

Seeking for models with doubly coupled matter
which have no BD ghost

<= another ghost-free model motivated by the quasi-dilaton massive gravity

Mg2 R(9)
2

+ 2m2Me2ff Z Cnen(\/gw)(flﬂf ar Q3M¢8y¢)):|

+/d4x¢ff

S = /d‘*a;\/?g

M]? R
2

1
S 3@}

YY, De Felice and Tanaka (2014)

= matter which couples to an effective metric
gz% = (1’29;“/ + 204Bg,ua \/ gaﬂfﬂv i B2f,u1/

This model has BD ghost, but it appears beyond the strong coupling scale.

de Rham, Heisenberg and Rebeiro (2014)

(The model of doubly coupled matter is considerably restricted.

... inconsistent with the intuition in braneworld models.
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Summary

<= We want to derive the ghost-free bigravity from some more fundamental
theory which 1s valid at high energies ... higher dimensional gravity

<= We obtain the ghost-free bigravity as 4-dim effective theory of DGP 2-brane
model with stabilization mechanism in the very limited low energy regime.

= This idea suggests that it is natural to consider doubly coupled matter
in the ghost-free bigravity, however, we found that doubly coupled matter
generally brings BD ghost.
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How?

Consider 5-dim braneworld model sandwiched by two branes.

4-d brane 4-d brane
M3 «
St /d5x\/—gR + (boundary term)
2 - extra dim

<= There is no BD ghost.

<= two metrics induced on two branes < two metrics in bigravity

gS

<= 5-dim massless graviton — 4-dim massive graviton on the branes.

massless in 5-d
Only one massive mode must have small mass

to reproduce bigravity as a low energy effective theory. E
4-d

4-dim hypersurface

Dvali-Gabadadze-Poratti 2-brane model

4-dim mass spectrum ~ eigenvalue problem in quantum mechanics

Y, effective potential by gravity
—>
AV
= 7
y+ )} .y+ .y'

high potential barrier
— nearly degenerate two small mass

However, such thin throat structure is unstable.
Mgre / d*z/—g@ RW can take its place

== DGP model S= M7§ /d%x/—_g (5R+ > sy — yi)4R(i))

additional length-scale parameter
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Stabilization mechanism (Goldberger & Wise)
There 1s an extra scalar d.o.f. corresponding to the brane separation.
... We should remove it to reproduce bigravity !
We introduce stabilization scalar field to fix the brane separation.
1
Ss =S /d‘r’x\/ —g <_§gab¢,aw,b = VB(w) 0 Z ‘/(a) (?ﬁ) (y 5%, yo))
o==%

: fixed

(=%

>

Y(y+

W *

oo e =

S—~

Vi(¥4)

5 ¢

The distance between two branes are stabilized.

graviton’s mass spectrum

massless mode always exists

the lowest massive mode D+ -

massless|mode

For £ < r. , eigenfunctions become

lowest massive|mode

junction condition:

Ve

4 2
K& = r® (foy(‘*) = %Gi(@gw) G TCD( )gw = TeMmiGuw

1 1 L]
gy iz — < 5 ~m3 : hierarchy
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mass spectrum (scalar mode)

stabilization mechanism — no massless mode

e Al (04)
If stabilization is weak: | 55| ~ MiE <1
Y= dy 21“2") 1
: Yt ? +Z ai 1—027{”)?—[
the lowest mass becomes ? =~ = C j”

e
e @) H : 5-d curvature scale

=+ stronger stabilization (large [#'|) === large z?

.:.@ F 2P, < 0) make p? negative : tachyonic instability!

=g corresponds to the self accelerating branch
: K.JIzumi et al. (2007)

The model which reproduces bigravity

parameters Ms =1.00 (brane separation [ )
réi) =1.00 x 105, ¢=1.00 << (strength of induced gravity r.*))

potential of scalar field
s.= [ dev=g (—%ga"w,aw,b ~Vs() ~ 3 Vig@)s — yg)>

y = =

V) Vi,

4 RN
1/) ’ P
70 03175 03180 T 03155 03160 03165 03170 T )

4 N\
. 2
graviton’s mass m scalar mode’s mass 1

y : m2 = 9.87

I
» cut off
‘ bigravity

m? =2.00 x 107°

\ .
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chost in DGP model

- - H : 4-dim comoving curvature scale
the regularity on +brane imposes

u? (y+) L =
2 (Z m2 — 2H? 2 H2(2r.Hy — 1) \ 3H? (2rc’f-[+ = Z 12 +4H2 R

diverges as m*—2H? : Higuchi bound diverges as u’—>-4H>
: critical mass that scalar tachyon appears

2rcHy —1 >0 : self-accelerating branch
u?+4H2—>:Fe means m?—2H2—>ie

* ghost never disappears : K.Izumi ct. al. (2007)

2r. 4. —1 <0 :normal branch

The same identity prohibits m? & 2 from crossing their critical masses

* no ghost

Cosmological solution in ghost-free bigravity

[0 no Higuchi ghost gradient instability
\ in matter or rad dominated era.

ﬁ st. H(p) >m

Higuchi ghost no Higuchi ghost

B

\\/ w : ratio of scale factors
of two metric
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Higuchi ghost in dRG'T" bigravity

In dRGT model, equation for the de Sitter solution insists
2
H—42pm Sl (62 = co> + <18£ = 301) w+ (24& = 602) w? — beawd = f(w)
m X X X

w : ratio of scale factor

. . . i tri
effective mass for massive graviton sl

m2w

f(w) + 2H?

this sign determines the ghost appearance

mass =m*(1 + (x?) Tw) = —

Nw) =cqw+ 4cow? + 6egw’

For flat vacuum solution, /—0 as w—>wy where pn(wg)—>0,

f'(wo) = =3 (1 =+ %) Two) negative when I'>01i.e. mey? >0

XWo
» no Higuchi ghost

Higuchi ghost in dRG'T bigravity

In dRGT model, equation for the de Sitter solution insists

7 1 24
H—‘;pm =T (62 - co> + <ﬁ — 301> w+ (ﬁ — 602) Wi — G =)
m Xw X X X

w : ratio of scale factor

effective mass for massive graviton of two metric

miw

= fi{w) +2H?

msz =m?(1+ (xw?) (w) = —

this sign determines

I(w) = 4w’ + Gegw®
(W) = aw + 4cow? + 6esw the ghost appearance

p,

f'=0 flat vacuum H = 0,p =0
: 3 1
=g et
Higy f'(wo) 3 ( " X (wo)
...negative

when T' >0 < my”° >0
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Higuchi ghost in dRG'T" bigravity

de Sitter solution does not exist above this critical density,
and Higuchi ghost appears after crossing the critical w.

P

Pe

Higuchi ghog

adding cosmological const. little by little

\ ...no Higuchi ghost

w : ratio of scale factor
We of two metric

choose the branch connected to the vacuum flat spacetime
with positive graviton mass

collapse of the structure in DGP model

junction condition

2
o K
+H, =rPa2H? - FV(:I:) (¥+)

consider to add cosmological const. § H on the brane

S — Tgi)a_25H2

5V(i) is assumed as very small

1 : : : 5
s — must be satisfied to avoid scalar-mode instability
C

1 ; Py
— ) /2 — cause Instability and break the structure
Tc
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“Cosmology in rotation-invariant massive gravity with non-
trivial fiducial metric”
Atsushi Naruko

[JGRG24(2014)111103]



Cosmology in rotation-invariant
massive gravity
with non-trivial fiducial metric

Atsushi NARUKO (TiTech)

in collaboration with
David Langlois (APC, Paris)
Shinji Mukohyama (YITP) Ryo Namba (KIPMU)

based on : CQG. 31 (2014), [arXiv : 1405.0358]

Introduction

probably, | can skip this page...

218



219

Practical motivation

v We would like to consider the dRGT model which is
a (the ?) non-linear extension of Firez & Pauli theory.

v However, dRGT suffers from several issues :
» no FLAT FLRW solution
» new non-linear ghosts (« vanishing kinetic terms)

e abandon isotropy or homogeneity ?
o extend the theory ? introduce new d.0.f 7? | e
e appropriate (doubly-coupled) matter coupling ?77?

Lorentz -> SO(3)

v The original dRGT model enjoys 4D Lorentz symmetry.

| | | 6450,040,0P
v Universe is expanding !

— |Lorentz invariance is broken !
— respect only 3D rotation symmetry !

v It might be natural to consider a massive gravity model
which only possesses a 3D maximal symmetry.

v ®' among [® and @] have SO(3) symmetry :
O ->P+C & O 2RUD & §;0,070,07
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covariant SO(3) gravity

v The theory enjoys 4D diffeomorphism invariance

1
L = éR — mQV(gw, s d , VM(I) . Guy) Cpy = 6]JVM(I)IVV¢J

v Let us introduce 10 scalar functions made of ® and ®!
1

_ I _ I
M= V99,20, NT = Nnl9,9",

' = (g" 4+ n'n")0,®'0,0" , (n* = Ng"0,®)

which reduce to ADM variables in unitary gauge, ®A = x+.

SO(3) gravity w/o BD ghost

v No BD condition restricts the form of V as

5 —Z/[[UIJ EJ
V=U-+ N Comelli et al. (2013)

where U and E are free functions of @, [V and & (& ni).
c.t. U(FIJ — fij 017, (I)) and 8(FIJ ,SI 017 (I))

v @ can appear everywhere... c.f. E=f(®) + g®)Irvee, + ...
= impose a (dilaton-like) symmetry
O D+C & P > eM o T, 0(P))
(O—=>O+C & b@) —1 Comellietal.)



background

v BG cosmology : ds2 = - N2(t) dt2 + a2(t) 6; dx' dxi.

» SWItN:  3MJ H? = pp, + pg(X),

» Swrta: M2 <2H/N + 3H2) = P, — P,(X),

» Swrt®: 22U (/b)) + H(2E' =€) =0y _
where p, = MZm?U(X), P, = M2%m? [2@1’ — U+ (28 — E)/N] (X)
vH=0o0r2E -E=0inthecaseb =1,

= NO interesting cosmology or E is constrained...
c.f. Comelli et al. (2013)

perturbations

v We have studied 3-types of perturbations in a case
without matter where the mass term behaves like c.c. and
hence the BG is described by a de-Sitter.

v At linear level (quadratic in the action), all types of
perturbations have non-vanishing kinetic terms.

< dRGT model (kinetic terms of S and V disappear)

v We have derived conditions for healthy perturbations
= no ghost instabilities & no gradient instabilities.

= a broad parameter region those conditions are satisfied

221
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summary

v investigated a possible extension of the original dRGT
model, i.e. SO(3) massive gravity model

v studied background cosmology where the mass term
has a non-trivial time-dependence in general

v studied perturbations in a case without matter
» non-vanishing kinetic terms for (S,V,T) perturbations
» derived conditions for healthy perturbations

= stability analysis of perturbations in a case with matter
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“Stability of self-accelerating solutions in extended
quasidilaton massive gravity”
Hayato Motohashi

[JGRG24(2014)111104]



Stability of self-accelerating solutions in
extended quasidilaton massive gravity

Hayato Motohashi

Kavli Institute for Cosmological Physics
University of Chicago

HM and W. Hu, PRD90 104008, [arXiv:1408.4813]

The extended quasidilaton massive gravity

Extension of dRGT massive gravity by employing scalar field o
which enjoys the global symmetry 5 ico et al 1206.4253
o= 0+ ag, & — e 90/Mpga  De Felice and Mukohyama, 1306.5502

N 90 /Mpy See also:
|:> fuw — € fuw De Felice, Gumrukcuoglu and
Mukohyama, 1309.3162
Mukohyama, 1410.1996

The extended fiducial metric is dynamical through quasidilaton.

The theory has a flat FLRW solution with an effective
cosmological constant induced by graviton mass term.

It was shown that this solution is stable in vacuum.

Is it also stable in the presence of matter?

224
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Setup

Total action S = S5, + S,
Extended quasidilaton massive gravity

_ ;?\[2 ; W -
Sg = TPl /dﬂ:- —g {B’ + 2'?72.3(£2 + 3Ly + agly) — Wc")#aé')’“cr
F4] . L Pl
£, = L(KP - k),
£5 = LK~ BIKIK?] + 20K7),
Ly = 21____1([’@4 — GIKJ[K?] + 3K + S[K][K®] — 6[K%)
5 QIO' —2a0 /N P15 [a
}C.uV — ()’#V _ f._,U/ﬂ-i’m ( g_1jf-)ﬁL f,uu = fuv - mﬁ 20/M C)HO'()UO'.
v r 9 a9 b
Matter sector fuv = 11ap0, 0" 0y ",
1 1%
Sm — /d4$v —g [_igﬂ a,ugal/g T V(&)]
Background
Spatially flat FLRW cosmological background
ds* = —N (t)%dt* + a(t)?0;;da" da? X = e7/Men
o OO (1), ot =zt .
_ T
o=a(t), &=¢&(1). r= o
Extended fiducial metric
oo =n(t)? = ()2 4 —0T_—20/Mp152
foo =n(?) (07)"+ ﬂ[glmﬁt ’
];gj = (Si.j-
Self-accelerating branch: J = 0, X = ¢7/Mr1/q = const
0
4 [UcﬁX[X - l)J] _ 0
dt | n

J=34+31-X)az+ (1 —X)?ay
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Background

Friedmann equation with effective cosmological constant

. o . | | )
3(1- %) M2 H? = M2 Ax + % v 13 = 0y (1-2)

—2 (1 - %) M3H = 52 Ax =mp(X —1)*[(X — 1)ag — 3).
5

o .y m (6 —w)Qp
M3 A = | 1 ﬂ
For positive Mz, and Ax, (X — 1)2[(X = L)as — 3]

[ w < 6 ] [(X—l)a-g_3>0]

IS

O[\g‘

] 2 9= . p
Since () e G
1

n ﬂfglm.g n? ???3){2:'2
to keep Lorentzian signature for the fiducial metric,

-mgXQrQ _ w(3H? + H)
Qg < —b— r=1+

2 3mz X2[(X — 1)az — 2]

Scalar perturbations

Working in the unitary gauge
Metric perturbations

(5900 = —2b,
5903‘ = a.c"")z-B.

Ogij = (1.2 [2023‘1! T ((i)@(‘)j. — ;r’)ij(")g(.')g) E]
5]

Quasidilaton and matter field

Vacuum case: 2 dof
With matter: 3 dof
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Vacuum case

Integrating out nondynamical dof: B, &, U — jo
Two dynamical dof: £, ¥ + 6o
No-ghost condition

B UPM 2a2H2KS 2A(r — 1)2(k/aH)? + 3(w — 6)(A — 1?) -

r2(r—1)2 4(A—1)(k/aH)? + w(6 —w)
A-"tj‘ufz w[2(A — 1) (k/aH)? + 3(6 — w
Koy = p1w[2( )(k/aH)* + (“ )] -0 o, H?
18 4(A—1)(k/aH)? + (6 — w) A=t
m.g,Xz
Consequently,
o, H?2
[0<w<6’. 1 < ‘; . <r2.]
m2X?2
g
Note that / and r are constant for vacuum case.
With matter HM and Hu, 1408.4813
Integrating out nondymnamical dof: B, ®, ¥
ho . s, .o
Three dynamical dof: (12,13, 14) (W, 50, 5€)
For A'/QH > 1 Linearl comb.
- }‘4 3 =2
B44 QA‘[pla (u, ) )+ N (L/;]_: z/)zt ijg)
K33 K3y w 2
Kyy Ky = T Mt G = 1T ‘1!)4 = F
det K = mﬂf&a“wﬂz +H)2+E2? (1 - w)? 422242 + -
For k/aH << 1
Ky = 12 \[Pla + -
£ - A v
det K = H\I&al H?[(v31 — v32)(Zway — 1) — (v21 — v22)(Zugy — 1)) + -+

Necessary condition

0 ¢ m2X?2 mgX:2 2(2‘)
W ). - < g < T
< < Hz(t) Qo HQ(_I‘) (T,
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ACDM expansion history

107 .

10° ¢

(o) ®m=59

—
[a—
1

103}

0.1 1 10 100
Redshift <

Stability condition for ACDM exp. history

mﬁX 2 mgX 2 5
0 <w <6, < ag < ()

H2(t) H2(t)
=B <w<6
X2 (6 —w) Oy o - 2w 1 2w (X —1)2 (X —1)ag—3
20X —1)2 (X = 1)ag—3 ‘o (X —1)ag =2 +6—w X2 (X —=1)ag—2
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Conclusions

* We considered extended quasidilaton with matter and
derived necessary conditions for stability:

2 32 22
m=X m=X* .
[(} < w < 6. J < g < gf‘z(ﬂ]

H?(t) H?(t)

* While these appear identical in the form with vacuum case,
they provide time-dependent constraint for model
parameters.

* There is model parameter region that is initially stable but
evolves to an instability.

* More generally, there is nothing intrinsic to the dynamics of
the fiducial metric that forbids an evolution from Lorentzian
to Euclidian signature. Backgrounds that evolves through such
a transition develop a ghost instability.
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Covariant Stueckelberg Analysis
of dRGT massive gravity
with a general fiducial metric

Daisuke Yoshida (Tokyo Institute of Technology)
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Collaborators | X.Gao, T.Kobayashi, M.Yamaguchi
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ABSTRACT

We extend the Stueckelberg analysis of dRGT
massive gravity with FLAT fiducial metric
to with a GENERAL fiducial metric.

OUTLINE

1. Introduction of massive gravity
2 . Stuckelberg analysis with flat fiducial metric

3. Extension to GENERAL fiducial metric

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074 2/12
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OUTLINE

1. Introduction of massive gravity

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074

Massive gravity

The action of nonlinear massive gravity is
composed from Einstein-Hilbert action and mass
potential of graviton.

S = SEH[g] + Sma,ss[g7g]

Motivation

Theoretically, can graviton have a mass?

Can the graviton mass explain the accelerated
universe?

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074 3/12




Theoretical feature of massive gravity

Feature 1. fiducial metric
Mass potential is constructed from the graviton h,, = g0 — Guv

Even in nonlinear level, action include fiducial metric
Smass [97 g]

For simplicity, flat fiducial metric 9ur = Muv is often used.
Theoretically, we can use any metric as fiducial metric.

Feature 2. BD ghost

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074

Theoretical feature of massive gravity

Feature 1. fiducial metric

])/11/ — .(]/11/ o ,(7/11/

Sz’mzss [(]~ fﬂ
,(7/11/ = Nuv

Feature 2. BD ghost Boulware,Deser (1972 )

The graviton have 6 d.o.f. in many theory of massive gravity.

233

4/12

massive spin2 ysical

+
5 d.o.f. 1 o.f.

de Rham,Gabadadze, Tolley (2011) dRGT MG

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074

4/12
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Theoretical feature of massive gravity

Feature 1. fiducial metric

]’/1// = Guv Juv

Sm ass [(1“ (ﬂ

.(//l// * 7//11/

Feature 2. BD ghOSt Boulware,Deser (1972 )

Stueckelberg formalism is very useful to see the presence of ghost.

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 4/12

Juv = Nuv

OUTLINE

2 . Stuckelberg analysis with flat fiducial metric

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074
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Stueckelberg Analysis with flat fiducial metric

Stueckelberg analysis occurs in 3step.

STEP1. Stueckelberg trick Smass|Guv: Nuv]
Introduce the Stueckelberg fields

Nuv — f/u/ = uqbaauqbﬁnaﬁ
STEP2. helicity decomposition

I gauge fixing ¢* = z#
Sreass [g,ul/a f,uy]

¢a — % — ¢ helicity-2 fuv:2 d.of.
helicity-1 A, :2 d.o.f.
— a a iz
= A + (9 n helicity-0 77 :1+1 d.o.f

. . ., Additional d.o.f. appear when
STEP3. decoupllng limit the e.0.m. have higher time derivative.

Omit the interaction term beyond the cut off scale.
In dRGT theory cut off scale is Az = (m*Mpz)*/?

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 5112

dRGT mas Sive graVitV de Rham, Gabadadze, Tolley (2011)

dRGT mass potential K=t =g =7
4
SdRGT = d*x\/— (Uz + 0437/13 + asldy)
3 iy S+«
SeH + SdrGT — /d$4 [_Z oM T — (ng)ﬁgiz( ) +
decoupling limit As = (m? MPL)1/3

unmixing, normalization

Equation of motion include only 2nd time derivative.

7T does not have additional d.o.f,
then theory is BD ghost free.

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 6/12
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my, — §,LW

X.Gao, T.Kobayashi, M.Yamaguchi, D.Y. arXiv:1409.3074

OUTLINE

3. Extension to GENERAL fiducial metric

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074

dRGT massive gravity with general fiducial metric

SaraTl9, M) SaraT!9; 7]
* Hamiltonian analysis shows this theory have 5 d.o.f.
Hassan,Rosen (2012)
BD ghO St free Hassan,Rosen,Schmidt-May(2012)

* However Stueckelberg Analysis have not been constructed in general fiducial case.

In the case of de Sitter fiducial metrirc ~ de Rham,Renaux-Petel (2013)
In the case of FLRW fiducial metric Fasiello, Tolley(2013)

Our Purpose

» To construct Stueckelberg formalism
» To confirm BD ghost free
by Stueckelberg formalism

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074 7/12
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Modification from the flat fiduc

STEP1. Stueckelberg trick
Juv = fur = 1 3%0,0° Ga
STEP2. Definition of Stueckelberg field
@) =at —nt Pl 1O ¢ = A% + 9%

7 1s covariant vector !

STEP 3. decoupling limit

Omit the interaction beyond the cut off scale
A3 = (77?/2.7\413[/)1/3

R,pra SJ m2

Cut off scale remain AS

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 8/12

Result: Action in Stueckelberg Langquage

Sex + SarcT = /d4$\/—§(£2 + L3+ Ls+-)

1A i 1/3_ R,u,u =AY A
Lo = —Zhwg” P — 3 <§gw— > ) VHFaVY

3(1+3as) o 2. |1 e
3
1+8a3+902 4804 /o \2 (/=12 o o ~cpoo- 1 > X
L, = — A (V#) ((Dw) - VpVUWV"V”w> + 5 (a3 + day) XS (7)
4A3 4A3
1 = /=" 2 1 =Nz S ATV AT PYTO A
+W Buvpop o VPNV @ — §C>\WMV o | VEaVYaVeVer
&
1 o B L L
Apvpe = me2 [(1 +203) (RuvGpo + Rp(un)o) = @3 (Gp(uBv)e + gﬂ(uRWﬂ)] )
1 (3 = o = _
Buvpopa = m2 {5 (a3 +204) Ry (2gp[ago’]p’) + 1204 Ry (pGp/1j0 G 1w
1 _ _ _ _ _ -
_g (]- + 9a3 + 18&4) (R,u.pu[aga’]p' - R#P/U[Ugﬂ']!)) - 6a4gl‘[ﬂRP']”‘7‘7'j|’
1 [ o = 1 = 5 s = S B
Copvpe = po] {gPUV(ARuW + 3 (V)\RH(PU)V + VuRy(poyy + VVR/\(PU)M)] c

There are new curvature correction terms !

Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 9/12
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XD (@) = gu ((OF) - 804V, V,4V° 977 + 2V°V,4V7 VaA VAV )
+3V,9,7 (V,9,49°97 % — (O8)*) + 69V, (V, V00 — 9,974V, V,#)
R 1 D, - D, - D, - D,
Apvpe = m2 [(1 + 2a3) (ngw + RP(W)U) -3 (gp(uRV)U + go(uRV)p)] )
113 _ _
Buvors = 15 {5 (@3 + 204) Ryuw (2910 907)0) + 1204 R (G110 Fo)s
1 _ B _ _ _ _
_g (1 + 9as3 + 180‘4) (R,upu[aga’]p’ - Rup’u[aga’]p) - 6a4gu[pRp’]z/aa/:| )
O 1 .- - _ _
Cauwps = m2 [gpgv(,\RW) + 3 (V/\Ru(pa)v + VuBx(poyw + VVRA(pa)u)] :

Application 1: Confirmation of BD ghost free

1R,

2 m?2
1

2A3

T R
Ay VRV ROV R

1

= =1 1 _ _ _ _
DAG Bul/pa’p’a’vp Vo r— _C/\;uzpo-v)\ﬁ' VHERVY VPV 7t
278 3

These curvature correction produce at most 2nd derivative term
in equation of motion.
All higher derivative term are canceled due to the symmetric property

Apvpo = A(l“/)PU = AMV(PU)’
Buvpap’o’ = B(p,l/)pap’a’ = _Buup’apo" = _B,uupa’p’aa

Couvpo = Conpvype = Capv(po)-

We have confirmed this theory is BD ghost free |

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074 10/12
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Application 2: Generalized Higuchi bound

I v,p0 7 1 /3. R,uu = W a
ﬁz = —Zh/u/gu P hpo' — 5 <§guy — m2 ) V"‘ﬂV ™
3 R, T itself become ghost!
Ty — —— || < (0 ,
(QQW m? ) 1 + idof
ghost

In order to avoid such a ghost instability,
curvature scale of fiducial metric 1s constraint

by graviton mass scale.

3 R, . . .
(§gﬁw i ) >4 Generalized Higuchi bound
Daisuke Yoshida (Titech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 11/12
Summary

We extend the Stueckelberg analysis of dARGT
massive gravity with FLAT fiducial metric
to with GENERAL fiducial metric

Especially, by
modification 1 defining the Stueckelberg fields covariantally,
modification 2 generalizing decoupling limit,

we can
Result write down the action in Stueckelberg language

up to 4th order.

As an application of this formalism, we succeed to
App.1 confirm the theory is free from BD ghost,
App.2 generalize the Higuchi bound.

Daisuke Yoshida (Titech) yoshida@th.phys.titech.acjp arXiv:1409.3074 12/12
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Stueckelberg Analysis

Original theory Stueckelberg formalism

Introduce the
Smassl 9y Muv) Stuckelberg fields * S'mass [g,uw fpw]

ndifforent gacgs S = 08" 000" 1
¢a:xa ¢a:xa_ﬂ_a
Ty = T == By 78 = A% + 0%

Juv = Nuv + huu
massive spin-2Ruw: 5+1 d.o.f. massless spin-2 tuv :2 d.o.f

massless spin-1 A, :2 d.of.
massless spin-0 77 :1+1 d.of

The existence of BD ghost is related ONLY 7

Daisuke Yoshida (TITech) yoshida@th.phys.titech.acjp arXiv:1409.3074

Modification of Stueckelberg Analysis
STEP2. Definition of Stueckelberg field

Flat case definition new definition
1_
% = 2% — g%  ¢@ =" -7 = DL+ O(r)

Daisuke Yoshida (TITech) yoshida@th.phys.titech.ac.jp arXiv:1409.3074 12/15
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Dark matter in ghost-free
bigravity theory

JGRG24
Nov., 11 , 2014@Kavli IPMU

Waseda University,
Katsuki Aoki

Based on
KA and K. Maeda, PRD 89, 064051 (2014).
KA and K. Maeda, arXiv: 1409. 0202.

Massless graviton or massive graviton?

3

Ordinary Matter

v" General Relativity
Massless spin-2 field  Dark Eng

v dRGT Massive gravity theory
Massive spin-2 field

v HR Bigravity gravity theory

Massless spin-2 and Massive spin-2 fields

Can the modification of gravity explain the biggest problem
in modern cosmology?

m~107-33 eV~Gpcr—1 = Dark energy

m~101-27 eV~kpc?-1 = Dark matter?
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Hassan-Rosen bigmvity theory

1
5= [ deV=gR) + 5y [ deVFR()
g f
:’2 diae/— Z b: Ui (g, f) + St
K2 = ng + K,f

Bigravity theory contains two metrics.

Physical matter Dark matter? Reappearance of ghost?

S[ m] [S[m] (g, ¢g) + S (fv 'lpf)] S[m] (ga f7 "Pdouble)

Twin matters Doubly coupled matter

Can we interpret another matter field as a dark matter?

Homothetic solution

If two metrics are proportional, the equation of motion
is exactly same as GR with a cosmological constant.

Fluv=KT12 gluv, k=const= GR solution

Gy,u(g) O Ag Juv = ""'gT[m]p,u ’ th AQ(K) - KzAf(K) ’
wi i -
Guv(f) + Ag frw = l‘éiT[m],w I@?cT[ ],w = nz Tl ]w/

Hz
Ag(K) = m?*—2 (bo + 3b1 K + 3b2K” + b3K?°)
K,

2
Ap(K)=m —f (ba+ 3bsK ' + 3b, K2 + by K 2)
R,

Minkowski, de Sitter and Anti-de Sitter spacetimes are also
vacuum solutions as homothetic solutions in bigravity.
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Perturbation around homothetic background

The homothetic solution is obtained as an attractor
in the context of cosmology (KA and K. Maeda 14’).

Suv+KT2 gluv - fluv=KT12 gluv

The linear perturbation around homothetic background can
be decomposed to massless and massive graviton modes.

_ [—] — plal _ []
guvzguv+h,[f,],a huv_huv h

2
fuv = Fuv + K2hlf] Rl = ™} sl 4 9 plf]

2 Tpv
Mig Mg

Effective mass

m2n2
mef — mg _|_ m?_‘ mg = o2 g(blK + 2b2K2 + b3K3),
m2F\32
m3 = — T (61K + 2boK2? + b3K?)
Basic idea
Rl=l = plal _ pl7] :
pv Qv pv? <:I Massive mode = FP theory
mi m?2
h’L—*;] = —2h£ﬂ]/ + —29",% <:| Massless mode = GR

m g m_ g

Massless and massive modes couple to both twin matters.
Our spacetime is given by both massive and massless modes.

2
Rl = RIH) 4 ""’g p-] Rl ~ hlt]

p,u j73%
meﬁ-

Both massive and massless
modes survive.

The massive mode decays.
Only the massless mode survives.

LR
Ll

—1 scale
meﬁ'
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Gravitational potential on flat background

The gravitational potential is induced by /~matter field
as well as g-matter field through the interaction terms.

v" Qutside Vainshtein radius

GM G m? 4m3
b, = — 5~ + 5 e Mef T vDVZ discontinuity

r mig 3mig ‘/
2 2
_ ’rnzg K ng (1 _ ée_meﬂ‘r>
mig r

repulsive force in megr < 1

I .
Screened ! Repulsive ! Attractive
: ' =dark matter
! 1 “r
—1
1214 m_g
Ty = =
LLLON 5

Rotation curve in galaxy

1.0¢
0.8 /~-_"*~.m.z =15 kpc (green)

~

Se
~
~
S~
~

0.6- /

V/ Vﬂ at

0.4f | :
» -matter produces repulsive force
0.2 . )
Gravity becomes effectively weak
0.0t

0 10 20 30 40 50 60
r (kPC)

Vainshtein radius: v S 0.1 kpc
1

Pg X eXp[_T/Tgal]’ Pf X 1 L (T/Thalo)z (rgal = Thalo = 3 kpC)
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Rotation curve in galaxy

1.0 et =
/—
. 08 o mog = 15 kpc (green)
CG ~~§
F 06 [ Tteell.
S i /’ --------
0.41 No /~matter (black)
02 |
0.0;\ \ L I I ! !
0 10 20 30 40 50 60
T (kpc)
Vainshtein radius: 7v < 0.1 kpc )
pg X exp[—7/rgall, ps X 1+ (r/rpaps)?  (Tael = Thato = 3 kpe)

Structure formation
GR phase ; Bigravity phase Ascale_l
| ' 1
| | Goe
: | ﬂ/prc} a/k
(¢) =0
m N T Mg
— (®) | e
4/((1) tralae present

(@) a/k < H' K mgg

The evolutions restore to GR like Vainshtein screening
(b) a/k K moy < H™?

The /~matter produces repulsive force
(¢c)m_y < a/k < H™!

The ~matter acts as ordinary dark matter
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Growth history of large-scale structure

outside Compton lenﬁth
a/k > meg

v

pg = Pg(1 + d4),
ps = ps(1+dy)

Background:
dust dominant universe

10°3 102 1071 1
a
k—1 =10 Mpc

For large scale perturbation, the evolution of physical
matter perturbation is similar to CDM model in GR.

Growth history of large-scale structure

alk < my a/k > mg

0g >0 0y <0 0g >0
D e — . S—

pg = Pg(1 + dg),
ps = Pr(1+ dy)

Background:
dust dominant universe

ds 1073 102 101 1
a
k! =102 kpc

The evolution of sig is quite different due to the massive mode
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Growth history of large-scale structure
/ a/k<<me_ff1\( a/k > m

S
>

dg >0 0y <0 dg >0
Dl —— >

e )

-matter produces repulsive force

The -matter accumulates in a

low-density region of the —mattery

mél UUlIld.
/ dust dominant universe

The evolution of 64y is quite different due to the massive mode

Growth history of large-scale structure

a/k < mg a/k > mg

S
rd

Pg = ﬁg(l + 59)’
ps = ps(1+dy5)

Background:

] ~se

-matter produces attractive force

The -matter accumulates in a

S\high-density region of the -matter. y:

The evolution of 6y i
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Summary

v Another one of twin matters can be candidate of dark
matter
m=107-27 eV~kpcf—1 = Dark matter

v" There are two important scales:
Compton wavelength and Screening scale

small | Tpe phenomena are restored to GR

and we can not see the effect of /~matter.

Screening scale
[ g scale |

There are some changes from GR.

[Compton wavelength ]

The phenomena of bigravity with twin
matters are similar to GR with CDM.

large
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Can graviton have a mass?

Fierz-Pauli massive gravity (1939)

E> physical metric giuv = background 7iuv + perturbation ziuv
Slgravity =SLEH (g)+SLFP (1.h)
de Rham-Gabadadze-Tolley massive gravity (2011)

E> physical metric giuv & fiducial metric fluv
Slgravity =SLEH (g)+SINL (g.f)

Hassan-Rosen Bigravity (2011)

physical metric giuv & another dynamical metric flur
Signdvity =SIEH (g)+SLEH (f)+SINL (g.f)

Small cosmological constant and large mass

K'z 2 3
Ag(K) = m*—2 (bg + 3b1 K + 3b2K? + b3K?) |
I<L

2
Af(K)—mn (bgs + 3bsK ' + 3b2 K2 4+ b1 K ?)
I‘-‘J

with A (K) = K?A¢(K),
m2 2
mZH — mZ 4 m?c m? = g(blK + 2b5,K? 4 b3 K?),

2 mznz 2 3
m = o L(b1K + 2b2K? + bsK®)

2 /.2 2, o. - 2
Rg/K: 23+ 3cs  Kas Ag/mig

1 1 5.08 0.0815
10~ 12 1 885 5.11 x 10~
1 =22 4.00 9.34 x 10~ 14

10=° 1076 4.00 8.10 x 10~1!
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Scale dependence of the another matter effect

small scale

The gravity is produced by only physical matter

['rv < 0.1 kpc]

The gravitational force becomes effectively weak

[me_ﬂ} ~ kpc ]

The /~matter behaves like ordinary dark matter

[Galactic disk ]

v

large scale

Gravitational potential on flat background

T 1.27

& 1_1; q)lg/q)é}R
1 |
1.0t

0.9 @ : gravitational force

The effect of /~matter |[ity
is screened inside

0.8- ‘ ‘ | | : : ,
102 107 . 10 oz Vainshtein radius.
’I"/T'V |GM9—K2ng| 1/3 L
TV = 2 < 1
Mg
| I .
Screened ! Repulsive | Attractive
: ' =dark matter
! 1 “r
114 meﬁ'
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Structure formation

2.0F

1.5 NP, /Pcr
| The effect of /~matter

1.0
is screened in early

05 & . itati .
@, : gravitational force .
0.0% ‘ ‘ ‘ ‘
1072 1071 1 10 102
meg/H

(a) a/k < H' < mg

The evolutions restore to GR like Vainshtein screening
(b) a/k < mg < H™

The /~matter produces repulsive force
() meg < a/k < H™!

The ~matter acts as ordinary dark matter

1 :
0.8]__..ommmmesmmmmsammiacssasas Ordinary Matter
nal ‘ / 49%
. Dark Eng rk Matter
(3 100 ML — 26.80
0 N
1073 1072
mleff>HlgT
s K A K2
2 e
Hg_"_g:?g'l' 3H[PQ+PD]
3m? 3m?
2 2 g f 4
Regg = R 1—‘ - PD = - 9 Kpf
g [ 3mZe — 24, 3m3 — 24,

pf X aJTB x ag_3 - (’)(a;G)

The s matter behaves like dark matter component on géuv.
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Tensor Spectrum in Bimetrc Gravity

Yuki Sakakihara (Kyoto University)

This research is collaborated with Jiro Soda (Kobe University)

Massive graviton

Does the graviton have its mass? How many species does it have?
We know few about the graviton...

Suppose there are two (or more) gravitons...

* In order to realize 1/r gravitational force,
at least, one of them should be sufficiently light.

21 cti 1 massless graviton
SS gr n 1 massive graviton

We can realize such a theory
with two metrics interacting with each other.
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Bimetric Grav1ty (de Rham et. al., 2011, Hassan and Rosen, 2012)

g - physical metric

two metrics
f/ wv . the other metric

In order that the theory has stable solutions,
the form of the interaction terms are restricted.
(They include five theoretical parameters.)

LYy = 08 — /(9" )

minimal bimetric model

: 1
2 172 4 — (L = —— 4+ —
m A[e/d €T —~/—al L*LY "2 L ! .
; 9( v ( ,“) ) M?2 [\,[g2 M}

Inflation in bimetric gravity

If the other metric exists,

do some problems happen?
How can we see the effects on observations?

For example, about inflation

o Can we construct inflating solutions with a - Y
inflaton as in the case of GR? €s, we can.

, One branch of
® Are they stable solutions? " he solutions is
guaranteed to
What is the feature of the gravitational waves be stable. (YSetal2013)

o
generated during inflation?



Inflation in bimetric gravity
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If the other metric exists,
do some problems happen?

How can we see the effects on observations?

For example, about inflation

Can we construct inflating solutions with a
' & ) Yes, we can.

inflaton as in the case of GR?

® Are they stable solutions?

o
generated during inflation?

What is the feature of the gravitational wave be stable.

One branch of
e the solutions is

guaranteed to
(YS et al 2013)

Today’s topic

Bimetric gravity (+ inflaton) action

M? 1
=3 [ eitats e/ vi)

kinetic terms of physical metric

2

kinetic terms of the other metric

scalar field (inflaton)

2 .
M / d*zy/—fR[fu] + m* M; / d'x %\/—_9<L5LZ - ()

interaction terms of the metrics

LYy =08 — /(9" )
11 1

MZ T2 T
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Homogeneous isotropic solutions

(1) Substitute the homogeneous isotropic ansatz into the action
gudrtde” = —N2(t)dt? + e>*D(da® + dy* + dz*)
fudatde” = —M*(t)dt* + PO (da® + dy* + d2°)

p = p(t)
(2) Variational principle — 3 equations of motion and 2 constrains.

The time derivative of these constraints gives a relation between the lapse functions.

( = — :the ratio of expansion rates

da

€ .= 6’[3_a : the ratio of scale factors

wo N = (eN

(3) We obtain several branches of the solutions

—  The only one branch is stable, in which epsilon has the value from O to 1.

Slow-roll approximation H:=a
(1) Slow-roll limit (de Sitter) ¢ = ;1_6
o
®m [{ = const. B € =const m (=1 ¢ — fa

(2) The first order of slow-roll approximation

H s 1

Slow-roll parameter § = ———
H? We neglect O(s%), §
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Tensor perturbation

qij\i:0> quZO,

(5gz~j = (qij , 5fij = p;; satisfy TT conditions: ; :
P = 0, pyi=0

Flavor eigen state (g and f) 52£im x (p— q)2 do not vanish in the slow-roll limit.

Rotation 1 ! " ! here K= /(M,/M
= T 5  o5<1/5 where =
) (K2 + )2\ g k2/e v

¢ )

Mass eigen state (x and y) Cross terms vanish in the slow-roll limit.
62 L = (nassless part (x)) +(massive part (y) )+ (ffrder S Cross term§:)
\ x: orthogonal toy  y: proportional to (p-q) )

We can obtain analytic solutions in the slow-roll limit
and construct higher order solutions order by order.

Subscripts 0 mean the values
in the slow-roll limit.

Tensor Spectra in the mass eigen state

In the first order of the slow-roll parameter, ...

Ho \°,  gioe NPT (Trx))’ 4sed(1 —€g)\—vx
[~ — _ +2s—2vx [ Y : 1 0 2s
(wx) = (Fip) 0" (3) ) (=)

~ const. 5 261 )
_ 9 60 — €p
where Vx—2+5<1+7H%+6g )
(-] <:U > X i 0 h
—  They are negligible compared with <£L’£L‘>
1
B (yy) e 0




Tensor Spectra in the flavor eigen state

q 1 IO here K (My/M
F the relation T2 22 ’ where = g
rom the relatio » (K2 _|_€2)1/2 /§2/€ ’

K

(qq) = (qp) = (pp) = /#R—LWHO(?S“)

. . e (12 28(1~<0)
h‘.2 Ho 2(_H0n)—2827?:)%-0(2)—) k 2s(1+ ] ) 1—‘(VX)
k2 +e2 \ M, 2H, F(%)

2 - 6se2(1 — €g)
h‘% +68

Tensor Spectra in the flavor eigen state

! ! 1) here # = 1 /CM, /M
From the relation = T T i3 , where = f
» (K2 + €2)1/2 2 /e g

K Y
K2 3
(ga) = {ap) = (pp) = 5 {wa) + O(e™)
) 2 2e2(1—¢p) —25(l+ﬁﬁ—2€“2’.(17.(0)) 2 9
_ K HO (—H(]T])_QS%-UT)(.OL L ] F(I/x) 1 — 6860(1 — 60)
k2 + e\ 1M, 2H, r'(3) k3 + €

Features

Tensor amplitudes are suppressed due to the mixing in the flavor eigen state.

.2 H 2
(qq) = (qp) = (pp) = H%:(j 2 (F-\?g> (in the lowest order)

dlog(q?)

The amplitudes are conserved in the first order of slow-roll approx.. l
dr
2¢2(1 — 60)> /

K3 + €

=0

spectral index n, = —23(1 +
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Future work

@ Relation to observational values ...How about the scalar tensor ratio?

» Calculation of scalar perturbations

® Ifwe consider m® < V/3M situation,  (de Felice et al, 2014)

this solution will suffer gradient instability in the radiation dominant era.

» Since we have thought only about a minimal bimetric model,
the extension to more general model may circumvent this instability.

@® The tensor perturbations of the other metric couple to the scalar field

through € and ( . >

» Parametric resonance may happen in the preheating era.

(=1+

M?2[mZ; — 2H?]

Enhancement of the physical tensor amplitude
though the mixing terms
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“Detectability of bi-gravity with graviton oscillations using
gravitational wave observations”

Tatsuya Narikawa

[JGRG24(2014)111108]
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JGRG24, Nov 11, 2014

Detectability of bi—gravity with
graviton oscillations using
gravitational wave observations

Tatsuya Narikawa (Osaka v)

with
K. Ueno, H. Tagoshi, T. Tanaka, N. Kanda, T. Nakamura

Outline (}

l) Graviton oscillations
II) Bayesian model selection for GW
lIl) A detectable region of bi-gravity

““Data Analysis" sub-group in ““Grant-in-Aid for Scientific Research on
Innovative Area - New Developments in Astrophysics Through Multi-

Messenger Observation of Gravitational Waves Sources-"

ENRE
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Gravitational waves will be
detected within a few years.

.. | he ada god—base Is' i'r'romet'r
{ such as aLIGO, aVirgo, KAGRA will be full operation.

GEO600,
Germanye
*Virgo,
*LIGO Italy

LIGO
Hanford,

Wachinoto
Washington Livingston,

1 2 e |GO, India
Lousiana

(planned)

[Flamlnlo will review It'] http://www.nature.com/news/physics-wave-of-the-future-1.15561

3

Gravitational waves will be
detected within a few years.

| rédiced' vnt raevf sfo ptubiaisi |
is ~10 events a year, within ~ a few 100Mpc.

-1/2
)
4

z
—_
o

ise amplitude spec. (H

[Sathyaprakash &
Schutz (2009)]

Sensitivity band
10Hz<f<1000Hz

Signal strength

10° ____109

Frequency (Hz)




Parameter estimation and Model selection

Once a detection candidate of GW will be
identified, the next step is to extract full
information of the source parameters.

[mass, distance, time, sky location, spin, ...]

Testing gravity is also one of important themes.
[model selection: Modified gravity (MG) vs GR]

GWs will be powerful probes of strong-field,
dynamical aspect of gravity.

v/c~1 (’

Why alternative theories of gravity?

as an alternative to dark energy

[Suzuki et al., 1105.3470]

Observations of the SNe, the CMB, and the BAO consistently
suggest the current cosmic acceleration.
However, the origin is unknown.

6




Why Bi-gravity?

Massive gravity [de Rham'’s review]
[Mukohyama-san’s
review JGRG22]

Can graviton have mass? mg~Ho?
May lead to acceleration without dark energy

Consistent theory found in 2010 [dRGT] but does
not have a suitable FLRW background solution.

In the case of bi-gravity, we have two gravitons.
assuming matter interacts only with g [Hassan & Rosen 2011]
The double spatially flat FLRW background [Comelli, et al. 2011]

Owing to the Vainshtein screening, almost the same
prediction as GR in the weak filed.
However, the gravitational waveforms differ from

those of GR, due to graviton oscillations.
7

Motivation 6.2

To investigate the detectability of the
corrections to gravitational waveforms
from compact binaries due to
graviton oscillations.




Propagation of the GWs in bi-gravity
Short wavelength approximation (k>>m>>H)

{BAh+m2Fc(h h) =0 [Comelli, et al. 2012]

< ~ 2Fc~ ~
h—@Ah+ 21— S(h—h)=0

KE2 § Propagation modes: h1 and ha.

The observed signal in the frequency-domain
Inspiral waveform [De Falice, Nakamura, Tanaka, 2014]
ﬂh( ) = A(f)e®D | By () 4 Bzewq>2<f>]'§

h and ¥tilde h interfere during propagation.: Graviton oscillations

In this talk, we do not consider the relation between c-1 and p.
9

EﬁeCt Of Bi_graVity on GW [De Felice, Nakamura, Tanaka, 1304.3920]

The GWs differ from those of GR, due to graviton oscillations.
Waveforms:

h(f) = har(f) {Blﬁ’iml(f) + Bzeid%('ﬂ}

where Phase corrections:

uD+ve—1 1— krE2
0P1o=—"—"-——— 1|14z 14+ 22+ 22 <
1,2 Wor ( ¥\/ 1—1—/&52

“#[1 /Hz](D=200Mpc)

Degrees of mixing:

In|/10

= cos 0,(cos b, + /K. sinb,)
= sinf,(sin 0, — /K. cosb,,)
frequency [Hz]
Logpmt (L&l | 1= mé x~1 @peaks
2" (2@;} o 2ﬁ&-) . @p
|h| is enhanced at x~1.
u: effective graviton mass
c-1: speed of h

10
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Parameter Estimation of GWs using Bayesian statistics

Bayes’ theorem  posterior«priorxlikelihood
p(6|H)p(d|6, H)

POl H) = )

H: hypothesis (GW signal embedded in data)
d: data (d=h+n)

GW waveform of non—spinning CBC with 9 pérametérs

Results using
LALInference

[LIGO-Virgo,
PRD88
(2013) 062001

I w IS
=] =] (=3
T T

Probability density

o
T

})

; sk e .
376 384 392 400 408 16 2 3.2 ( [arX|V.

o

M (M,)

1304.1775]]

Bayesian model selection

Which model better describes the data?

The odds ratio and the Bayes factor are useful for model selection.

Oues i — PGl p(MG) p(dMG) _ p(MG)
’ p(GR|d)  p(GR) p(d|GR) — p(GR) ’

The Bayes factor is the ratio of marginalized likelihoods of hypotheses.

The marginalized VIiinho
p(d|H) = [ dopldlo, H)p(61)

is computationally expensive

“confidence” levels of Bxy

Byy 2logByxy Evidence for model X

<1 <0 Negative (supports model Y)
In GW data anaIYSiS, the integrand is the 1to3 0to?2 Not worth more than a bare mention
noise weighted integral of the data and [ERRES 2 SEsiie
. 12 to 150 5to 10 Strong
the model waveform given 0 ~150 ~10 oy it

p(d|0, H) o exp[—(d — h(0)|d — h(0))/2]
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A unified model-selection based on Bayesian inference
[Cornish+, 1105.2088; Vallisneri, 1207.4759; Del Pozzo+, 1408.2356]

Assumptions: large SNR, FF~1,... log BF ~ %(1 _ FF2)SNR? + O[(1 — FF?)?|

OaG,GrR>Orthr for a FAP = SNReq for MG detection.

SNRreq<><(].—FF)_]'/2

1,000 -

100+ false alarm F = 10

source SNR
required for
AG detection

10+

Manifold of GR waveforms

_ (har(Ocr)|hvc (fmc))
FF (Ouc) = e [har(Ocr)| [ (Onc )| SNRreq : required SNR for

SNRres=SNR(1-FF)1/2 detection of deviation from GR
[Vallisneri, 2012]

SNR contour vs FF (SNRreq)
Point: fpeak Within detector bandwidth, 10Hz<f<1000Hz

SNR contour FF (SNRreq) contour

BNS, 200Mpd

FAP=10-*

FF(6yc) = max (har(fcr)|hvc (fue))
MET™ ék Thar (Oar)|[haa (Ove)] 8.699
| 099 | 275 |




Detectable region of the Bi-gravity corrections
to the GR waveforms

158 There is a detectable region!

-16-1s
effective mass: u>10-17cm-1

-7 propagation speed: c-1>10-19

-18-18

-19-10
Source:
20y e NS-NS (1.4Msun-1.4Msun)
-35 -34 -33 -32 -31 -30 d.=200Mpc
log(M2) [em™] sensitivity curve: aLIGO, ZDHP

2=
[TN, Ueno, Tagoshi, Tanaka, KE:2=100

Kanda, Nakamura, in prep.]

Conclusion

e GW will be detected soon.
e@ Testing gravity theory with GW

e Investigate the detectability of bi-gravity
with graviton oscillations with KAGRA

® Bayesian model selection for GW

® There is a detectabile region:
u>10-17cm-1, ¢-1>10-19

® GWs can be powerful probe of bi-gravity.
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“Improvement of energy-momentum tensor and non-
Gaussianities in holographic cosmology™
Shinsuke Kawai

[JGRG24(2014)111109]



Improvement of energy-momentum
tensor and non-Gaussianities in
holographic cosmology

Shinsuke Kawal (SKKU, South Korea)

Based on arXiv:1403.6220
with Yu Nakayama

JGRG24 @IPMU, 11 November 2014

Overview

Inflation is good. Maybe too good.
UV theory? — - inflationary spacetime & 3d QFT
Holographic description of inflation — immature
What is the dual 3d QFT?
of CET — model independent feature: Tuv
invariant or invariant?

Our results: Breaking of conf. invariance < non-Gaussianity




Holographic cosmology

dS/CFET proposal [Witten] [Strominget]

Inflation as dS holography with RG flow [Larsen, van der
Schaar, Leigh (2002)] [Maldacena (2002)] [many others]

Power spectrum and bispectrum, assuming particular
field content in the 3d QFT [McFadden, Skenderis]

Power spectrum and bispectrum, including effects of RG
flow [Bzowski, McFadden, Skenderis, Garriga, Urakawa,
others]

(A)dS/CFT

= Strongly coupled/weakly coupled duality

= A tool to compute strongly coupled dynamics using Einstein
gravity, or quantum gravitational dynamics using perturbative QFT

Uaslgij (), g' (@)] = Zerrlgi (@), g’ (2)]
Tj'j (.“I?), O[(;’l?)

= Dictionary: boundary value of metric = source of EM tensor in the
boundary theory

» Metric fluctuations < correlators of the boundary EM tensor




Is the CMB conformal invariant,
or just scale invariant?

Dark Energy
Accelerated Expansion
Afterglow Light
Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

Inflation _

1st Stars
about 400 million yrs.

Big Bang Expansion

13.77 billion years




4d (approximate)
de Sitter spacetime

De Sitter group is SO4,1):
rotations in the ambient spacetime.

Isomorphic to 3d conformal group

Conformal transformation on
inflationary spacetime

—driE (dat)?
H2+2 3
= P translation in 3d space (homogeneity)

» FRW metric:  ds® = oo < T <0

= M, rotation in 3d space (isotropy)

» D: simultaneous scaling 7 — A7, z° — A2’
(= scale invariance)

» K;: nonlinear transformation 7 — 7 +2(b- x)T,

' =+ (72— 2 4 2(b- x)x’
(=>7)




Observables

» Scale invariance: 7 parameters (F;, M;;, D)
» Conformal invariance: 10 parameters (F;, M;;, D, K;)

= Conformal invariance impose strong constraints on
correlation functions (power spectrum, bispectrum,
trispectrum, etc.) of primordial fluctuations

x (Gravitons and curvatons: conformal
[Maldacena Pimentel 2011] [Creminelli 2011]

= |nflaton fluctuations: only scale invariant

Correlation functions

for quasi-primary field of dimension A
oo 92
dla) = P =51 o)

Poincaré + scaling Conformal

2pt correlators

: Ciz
(& F(B1(z1)02(22)) = RONODON NS (A1 = Ay)
(f1(21)d2(22)) = i x;fAﬁ—Az < ci L T

=0 (A; #Ay)

3pt correlators
C23 (@1(x1)P2(x2)P3(x3))

aRbile
L12%23L31 s
=5 $A1 +As—A3 xA2+A3—A1 $A3+A1 AL
Tij = Bt G O G e A P ING N 12 o3 gt

(O1(z1)P2(x2)03(23)) =




Energy-momentum tensor

EM tensor: conserved current of translation

In presence of rotation (or Lorentz) symmetry, EM
tensor can be made symmetric (Belinfante tensor)

If in addition scaling current conserved and VirialV? = 9;L"
exists, EM tensor can be made traceless

Traceless EM tensor = classical conformal symmetry
(IﬂvarlaﬂCe Of the aCtIOﬂ) Tt e Dl e 05 €t = (2*],(//,‘.,01‘»6]"

33 1 3 1 i .
aB= /dde”aiéj = 5 /dd$TU (&-ej =5 Gjei) = ZZ /ddeQ(?je]

EM tensor and symmetries

» Poincaré = translation + rotation

TY =T 1 0, B* | EORopX
Symmetric and traceless EM tensor

x Scaling symmetry + virial V? = 9;LY

Trace identity (local Callan-Symanzik equation):
TL S B0+ 0,0 + k210,




Qur work

Holographic cosmology with EM tensor improvement

Recall the trace identity: 7% = 81Oy + 8,J" + k2O,
—=0iinexact ds

. 1 3
Action: § = - / P /5(470:610,6 + ER(?)
AR B
¢=0: minimal coupling; ¢="s: conformal coupling
The improvement term affects the observables

Computed power spectrum and bispectrum including
the improvement term in exact dS

Power spectra

= Holographic computation
= Scalar power spectrum — A2(k) = —
= [ensor power spectrum A2 (k) = —
= Tensor/scalar ratio
= Observation
x [Planck (2013)] = AZ(ky) = 2.215 x 107° ko = 0.05 Mpc !
= [BICEP2 (2014)] s IR EE oy ’f = ; =12
3 N;

Central charge of the holographic universe [Larsen Strominger]: Cr = ot 1P
7




Non—Gaussianit/es
(Con Coa o ) = flocal plocal . peauil peauil | pertho prortho

= Holographic computatlon with mprovement term

: 5 10
local equil ortho
N 36( e —gf

= QObservation [Planck 2013]
local Logip g s e e e L 05 1 59

= Holographic computation is consistent with observational
constraint (but hopeless to detect in near future)

= Similar to in-in formalism sub-horizon computation of NG

[Bzowski, McFadden, Skenderis (2009-2013)]: f¥¢ = fofe =0, i =
bosons, fermions, gauge fields (¢ = O, )

5

36

Summary

= Holography may help us understand the primordial
fluctuations better.

= |mprovement of EM tensor — scale invariant but not
necessarily conformal invariant density fluctuations

x Equilateral and orthogonal type non-Gaussianities of
O(1) predicted (but no local type)
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Thank you for your attention.
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Andrzej Rostworowski [Invited]
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Current status of the AdS (in)stability

Andrzej Rostworowski

Jagiellonian University

joint work with Piotr Bizon, Joanna Jatmuzna and Maciej Maliborski

JGRG24, 11th Nov. 2014

Anti-de Sitter spacetime in d + 1 dimensions

Anti-de Sitter spacetime is the maximally symmetric solution of the vacuum
Einstein equations

1
Rag — §ga5R + Agag =0,

with negative cosmological constant A < 0.
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Peculiar causal structure of AdS

£2
(cosx)’
1 ‘
solves Rop — igagR + Agap =0 for A = —d(d —1)/(20?)

Conformal infinity & = /2 is the timelike hypersurface Z = R x S9=1 with the
boundary metric ds2 = —dt* + dQ%,_,

ds® =

[—dt2 + da® + (sin:zc)2 dQ%d_l}, —c0o<t<o0, 0 < %

@ Null geodesics get to infinity in finite time v |
(but infinite affine length) t X7
@ AdS is not globally hyperbolic -

to make sense of evolution one needs to
choose boundary conditions at 7

@ Asymptotically AdS spacetimes by
definition have the same conformal
boundary as AdS

8
I
[en}
8
I
[SIE]

Is AdS stable?

@ By the positive energy theorem AdS space is the ground state among
asymptotically AdS spacetimes (much as Minkowski space is the ground state
among asymptotically flat spacetimes)

@ Minkowski spacetime was proved to be asymptotically stable by
[Christodoulou&Klainerman, 1993]

o Key difference between Minkowski and AdS: the mechanism of stability of
Minkowski - dissipation of energy by dispersion - is absent in AdS (for
no-flux boundary conditions Z acts as a mirror)

@ The problem of stability of AdS has not been explored until recently; notable
exceptions: proof of local well-posedness by [Friedrich, 1995], proof of rigidity
of AdS [Anderson, 2006]
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Two kinds of stability

@ Consider a nonlinear evolution equation i A(u) and its equilibrium

solution ¢ (that is A(¢) =0). Let u = ¢ + w.
The equilibrium ¢ is (nonlinearly) stable if

[lw(0)||1 is small = |lw(t)||2 is small for all ¢ >0

d
o Consider the linear equation @ _ Lv, where L = A'(¢).
The equilibrium ¢ is linearly stable if

[lv(0)||1 is small = ||v(¢)||2 is small for all t >0

o Key idea of linearization: as long as w(t) remains small, the nonlinear part in
A(u) = Lw + N(w) is negligible.
@ Linear stability does not imply stability!

@ The equilibrium ¢ is unstable/linearly unstable if it is not stable/linearly
stable.

@ In case of instability there arises a question: what happens as ¢t — co0?
Model for nonlinear dynamics

@ The problem seems tractable only in 1 4+ 1 dimensions
= spherical symmetry = need matter to generate dynamics

@ Simple matter model: massless scalar field ¢ in d+1 dimensions

1
Gop + A gap = 87G (8a(/585c7 — anﬁamal‘o) J A= —d(d—1)/(20?),
9*PVaVsh =0

@ In the asymptotically flat case (A = 0) this model has led to important
insights (proof of the weak cosmic censorship by [Christodoulou, 1986-1999]
and the discovery of critical phenomena at the threshold for black hole
formation by [Choptuik, 1993])

@ Remark: For even d > 4 there is a way to bypass Birkhoff's theorem
(cohomogeneity-two Bianchi IX ansatz, [Bizor,Chmaj&Schmidt, 2005])
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Model

@ The line element for asymptotically AdS spacetimes at spherical symmetry
€2
cos?zx

(t,z) € R x [0,7/2).

ds? — (—Ae’QddtQ + A7 'da? + sin® xdﬂgd—l) )

o Field equations (units 87G =d — 1)

sin 2x d—1—cos2x
= - (D2 4+ 112 Al=2(1 - A)—————— — A§
2 ( + ) ’ ( ) sin 2 ’
) 1 ) ) i
II= P (taund_1 a:A(f‘B(I)), , P = (A(foﬂ)/,
an® '

@ Auxiliary variables (' = 9,, = 0;): TI = A 'edp and = ¢/ .

@ AdS space: ¢ =0, A=1, § = const.

Boundary conditions
@ Smoothness at the center enforces parity conditions on the fields at z = 0
(where A is irrelevant)
@ Mass function and asymptotic mass:

m(t,z) = (1 — A(t,x)) sec? z tan? 2

/2
M= lim m(t,z)= / (A¢,2+AH2) (tanx)dﬂ de
r—7/2
0

@ Smoothness at spatial infinity and the demand for the total mass M to be
finite put reflecting boundary conditions on ¢ at z = 7/2,
in particular (using z = 7/2 — z)

Ot x) = foo(t) 27 + O (212)
At,z)=1-M"+0 (zd+2) , (tx)=0 (22d71) '

For this model there is no freedom in prescribing boundary data
@ The problem is locally well-posed [Friedrich, 1995], [Holzegel&Smulevici, 2011]

Animation



Key evidence for instability
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(a) e e_gme %2 .
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Key evidence for instability
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Onset of instability at time t = O(¢~2)
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Spectral properties

@ Linearized equation [Ishibashi&Wald, 2004]

. 1 _
¢+L¢:O7 L:_max(tand lxaz),

With the above boundary conditions L is essentially self-adjoint on
L%([0,7/2]; tan? L2 dx)
e Eigenvalues and eigenvectors (oscillons) of L read (j =0,1,...)

w? = (d+25)? ej(z)=N; cosd:z:Pj(d/Q_l’d/2) (cos2x),

@ It follows that AdS is linearly stable, linear solution

o(t,x) = Z aj cos(w;t + f55) ej(x),

=0

with amplitudes «; and phases 3; determined by the initial data.
@ The spectrum is fully resonant and nondispersive (!): dw;/dj = £2

Energy spectrum in 3 + 1 dimensions

@ Spectral decomposition of the total energy

/2

M= / (AP* 4+ AIP?) tan’z do = ZEj(t)
0 J=0

where E; := (e; , VAII)? + w;?(¢} , VA®)?

o Energy spectrum (E; as a function of j) is an important characteristic of

turbulent dynamics
Animation

@ Just before collapse E; ~ j~* with a = 1.2 (6/577)
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Remarks

o Weakly turbulent behavior seems to be common for (non-integrable)
nonlinear wave equations on bounded domains (e.g. NLS on torus,
[Colliander&Keel, 2008], [Staffilani, Takaoka& Tao, 2008], [Carles&Faou, 2010])
and our work shows that Einstein's equations are not an exception.

@ For Einstein's equations the transfer of energy to high frequencies cannot
proceed forever because concentration of energy on smaller and smaller scales
inevitably leads to the formation of a black hole.

@ The role of negative cosmological constant seems to be purely kinematical,
that is the only role of A is to confine the evolution in an effectively bounded
domain. Similar turbulent dynamics has been observed for small
perturbations of Minkowski in a box [Maliborski, 2012]

o Generalizations: different matter models (complex scalar field
[Buchel,Lehner&Liebling, 2012], Yang-Mills [Maliborski, PhD Thesis 2014]),
relaxing symmetry (pure gravity [Dias,Horowitz&Santos, 2011],
[Bantilan,Pretorius& Gubser, 2012]), instability of AdSay; [Bizor& Jatmuzna,
2013]

Regular, stable asymptotically AdS solutions

e Anti-de Sitter space is unstable against the formation of a black hole under a
large class of arbitrarily small generic perturbations...
(also in higher dimensions [Jatmuzna,R&Bizon, 2011], [Buchel Lehner&Liebling,
2012])

@ ... but there are also initial data that may stay close to AdS solution;
Einstein-scalar-AdS equations may admit time-quasiperiodic solutions
[Bizor&R, 2011]

@ Analogous conjecture for vacuum Einstein's equations — existence of geons
[Dias,Horowitz&Santos, 2011], [Dias,Horowitz, Marolf&Santos, 2012].

@ aAdS time-periodic solutions with scalar field (massless: [Maliborski&R, 2013],
massive: [Kim, arXiv:1411.1633])

@ Boson stars (standing waves) in AdS [Buchel Liebling&Lehner, 2013]



Time-periodic asymptotically AdS solutions. Perturbative
construction.

@ We search for solutions of the form
6 = = cos(ws t)es (2) /e, (0) + O(E),

with one dominant mode, ¢ (the amplitude ¢(0,0)) is a small parameter.

@ We rescale the time variable

— — A
T=0, Qy=wy+ E €% Wy
even A>2

and expand the fields perturbatively

¢=c cos(T)e,(x) + Z X (T, @),

odd A>3

6= Z E)\(S)\(T,J?), 1-A= Z et Ay(r,2),

even \>2 even \>2

Time-periodic asymptotically AdS solutions. Numerical
construction.

o= Y filne@)= Y > fijeos((2i+1)r)e;(a),

0<j<K 0<i<N 0<j<K
O= Y pi(Meil@) = > Y pijsin((2i+1)7)e;().
0<j<K 0<i<N 0<j<K

@ Find the solution by determining .
2 x K x N + 1 numbers I e e e e o e

@ Set the equations on a numerical i
grid of K x N collocation points S

@ Add one equation for the i °e @ o o o o
normalization condition b (x"’.T”) e e e

Yo D fisei0)=¢ 0 n/2

0<i<N 0<j<K

Highly nonlinear system solved with the Newton-Raphson algorithm.
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Time-periodic asymptotically AdS solutions (d=4).
Results & consistency.

—
[—0 —1 —2
12 prommmmmmmmmmsm e e e
10 prommmmmmmmmmn T e
I P - r ‘”‘”‘ ‘.‘ -
F ] 0.15 - perturbative
t — resumation
6 " [ © numerics
0.1 [
4 T e - [
0.05
01T ] 0
= 1
L = L °
0.05 @ 1075 | o °°
L = F .
l 10710 °
= r °
0 M 0%k e, 9, ..
0 0.5 1 0 0.5 1
€

From [Maliborski, PhD Thesis 2014]

Non-linear stability (d =4, v =10, e = 0.01)

473107 Closed curves on the
slices of phase space
— strong evidence

for the non-linear

47x107"

E 0 E 0
stability. Sections
of the phase space
" § spanned by the set
—4.7x10 -47%1071
—49% 107" 0 49% 1071 2x 107 0 2x10*  of Fourier
Is fio coefficients
1@, pr(®)}
49x107"" 6.7x10712
o= Y fie(x)
0<j<K
2 0 Ry 0
M= 3 pi()e(x)
0<j<K
—49x 1071 ~67x107 [Animation (from

—17x10°° 0 17x10°° ~16x10°% 0 16310 N, MallbOl’Ski)]
£ Ja
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Remarks

@ There exist (non-linearly) stable time-periodic solutions in Einstein
AdS—massless scalar field system.

@ Cosmological constant confines the evolution in an effectively bounded
domain — the possibility of the existence of time-periodic solutions (in
contrast to asymptotically flat case)

@ Time-periodic solutions in pure vacuum case

> in the cohomogeneity — two Bianchi IX ansatz ([Bizon,Chmaj&Schmidt,
2005]): [Maliborski, PhD Thesis 2014]
» with helical Killing field [Horowitz&Santos, 2014]

@ The existence of time-periodic solutions of (non-linear) wave equations on
compact domains seems to be common [Maliborski, PhD Thesis 2014]

How to bypass Birkhoff in five dimensions to study the
vacuum case

@ Odd-dimensional spheres admit non-round homogeneous metrics

e Homogeneous metric on S3

2B _2 2C 2 2D 2
gss =e“ "oy +e oy +e" o3,

where oy, are left-invariant one-forms on SU(2)
o1+i02 = ew(cosﬁ d¢ +1idf), o3 =dyp —sinb de.

» B = C = D: round metric with SO(4) symmetry
» B # C # D: anisotropic metric with SU(2) symmetry (squashed S?)

@ [Bizon,Chmaj&Schmidt, 2005]: use ggs as an angular part of the five
dimensional metric (cohomogeneity-two triaxial Bianchi IX ansatz). For
AdSyy1, with B = C' (the biaxial case):

62

ds® = 3
cos2x

where A, ¢, B are functions of (¢, z).

08 1
(—Ae—z”dt2 + A tda? + 1 sin’z (e?” (0] + 03) + 6_4303)) ,
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Blowup of the Kretschmann scalar

1e+16 * o

1e+14

1e+12

1e+10

B"(t,0)°

1e+08

1e+06

1e+04

1e+02 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
t

RaprsROP7°(t,0) = 40 + 864 B”(t,0)?

Key evidence for instability

1e+16 * o

1e+14

1e+12

1e+10

1e+08

€2B"(10)°

1e+06

16404

1e+02 1

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
€2t
Conjecture

Within the cohomogeneity-two Bianchi IX ansatz AdSs is unstable against black
hole formation under arbitrarily small gravitational perturbations
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Spectrum of energy

1e-06

1e-07

w® 1e-08

1e-09

1e-10

10 100 1000

Universal power—law exponent: o ~ —1.67 (-5/37)

Weak turbulent instability of AdSy 4

In 2 4+ 1 dimension there is a mass-gap for a black hole formation: if M < 1 black
hole can not form. Two options for the end state of evolution for small initial data
0 < M << 1: naked (conical) singularity or global-in-time regularity

[Bizon& Jatmuzna, 2013], [Jatmuzna, 2014].

" initial data
=100 o

t=230 ©
fit at t=230 ——-

In Ey
In Hy,

0 1 2 3 4 5 6 7 0 50 100 150 200

Ink
Analyticity strip method [Sulem,Sulem&Frisch, 1983]:
Ei(t) = C(t) LB g—20(t)k

Fit: p(t) = poe T, with pg ~ O (), T ~ O (e72)



V. Balasubramanian et al., Holographic Thermalization,
stability of AdS, and the Fermi-Pasta-Ulam-Tsingou
paradox, PRL113, 071601 (2014)

Two-modes initial data and the inverse cascade.
5 T T T T T 9
L — 8 °
34 T M}}:’ngjgal o n 7 + numerics of [1] :
S —o TTE =23 s D
L - e 1 g
ol [~ o — ™ P T 4
$2 AN (PP a 23
o [ AT T R S L
2 17 ".?.:w-:. ‘3'3‘ O ‘\ T e ’_;\ ?i;‘lf’f 1 g
0 = | ~ et | (CRRN b o
0 500 ‘ 1000 ‘ 1500 10 200 400 600 800 1000 1200 1400
t t

F.V. Dimitrakopoulos et al., Instability corners in AdS
space, arXiv:1410.1880

Hierarchy of scales: ¢ >> xg >> w >> €2

r=0

N
/ \

narrower

=0

=
H

1

I
non-thin-shell

I I
strong gravity

non-thin-shell strong gravity
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N. Deppe et al., Stability of AdS in Einstein Gauss Bonnet
Gravity, arXiv:1410.1869

Including Gauss—Bonnet term (in 4+1):
— 5 — i _ g 2 nZ uraf i l m
S = /d TN/ g{QK, |:R 2A+ 9 (R 4R‘1U/R + R,H,juﬂR >:| QVM(Z&V d)

with A = —(6/£2)(1 — a/€?)
Threshold for a black hole formation: «/2

a=0 ) a/0* = 0.002

0,06,

v

14

~

[ry

Fiv

EF% [e
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e vy A
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Conclusions

@ Dynamics of asymptotically AdS spacetimes is an exceptional meeting point
of fundamental problems in general relativity, PDE theory, theory of
turbulence, and high energy physics. Understanding of these connections is at
its infancy.

@ From numerical explorations of Einstein's equations there can grow
understanding, conjectures, and roads to proofs and phenomena that would
not have been imaginable in the pre-computer era. The role of computation
in general relativity seems destined to expand in future.
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“Higher-dimensional extremal Reissner-Nordstrom black
holes are fragile”
Masashi Kimura

[JGRG24(2014)111111]



Higher-dimensional extremal
Reissner-Nordstrom BHs

are fragile

Masashi Kimura
(DAMTP, University of Cambridge)

w/ K.Tanabe (KEK) in preparation
11th Nov 2014 JGRG 2014

Introduction and
Summary

2/14
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== Introduction

Why extremal RN black hole?
-Supersymmetric BHs

 Construction of toy models

e.g. multi-BHs, coalescing BHSs,
Kaluza-Klein BHSs, etc...

3/14

== Summary

Stationary perturbation around
extremal RN BHs behaves

~ (’l" . ,rh)ﬁ/(D—3)
D = 4 :integer power

D > 5 :fractional power
—> smoothness IS broken

¢ = 2 modes cause curvature
singularities If D > 6
© = 4/14
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ol

Detalls

5/14

== Reissner-Nordstrom BHSs
ds® = —fdt* + f~dr?® + r?dQZs_,

D -3 rb-3

. 2M Q?
F=1- rD—3 T r2(D—3)

A, dxh = JZ(D —2) @ dt

1/D—3
horizon radius: r» = (M + \/M2 - Q2>

Q| = M —> extremal horizon
6/14
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== Perturbation around RN BHSs

By using Ishibashi & Kodama formalism,
we can separately discuss tensor/vector/
scalar perturbation around RN BHs

Hereafter, we mainly focus on tensor
perturbations for simplicity

Vector/scalar modes have qualitatively
same features

//14

R

== Master eq for stationary perturbation

DiT;; =0, T!= £>2
2

@ o _ Ty ( d _ i)

dr? r dr, dr
 (D-4)(D-2) (D-2)?2M
B 4 T s

(D—-2)(3D —8) Q72
o 4 r2(D—3)

+£(£+ D — 3)
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= solutions for Master eqgs
h(T) = Clg(y)1+£/(D_3)2F1 (aTa art, 2aT;g(y))
+ ng(y)—ﬂ/(D—3)2F1(bT, bTa 2bT;g(y))

2y/1 — (Q/M)?
2—y+yy1—(Q/M)?
y:=2M/rP~3 ar =1+£/(D — 3)
br = —£/(D — 3)

2
DSV S (’: 1+ /1= (Q/M)2)>
9/14

g(y) =

== Near horizon behavior
non-extremal case
h(T) ~ C~'1 -+ ézln(yh — 1Y)

extremal case
R(T) ~ (”;1 (yn — y)ﬂ/(D—3)

+ Calyn —y) P

This is due to the difference
of the boundary condition at the horizon

10/14



hT) ~ Gy (yn — y)/ P

- perturbed metric vanishes at the horizon
horizon is locally spherically symmetric

‘If D > 5, the power can be fractional
horizon is not smooth

¢ =2 modes cause p.p.
curvature singularities if D > 6

However they are relatively mild
11/14

= easy to be broken or not

-If a generic stationary perturbation
always causes ill-behaved curvature
singularity, we should say “not easy to

7

be broken
However, it is not the case now

-Now, our solutions are physically
acceptable

horizon (smoothness) is “easy to be
broken” against stationary perturbations
12/14



302

== Summary

Horizon is not smooth for generic
stationary perturbations around
higher dim extremal RN BHs

-vector/scalar modes and
AdS/dS cases have qualitatively
same features

13/14

== Discussions

Near horizon geometry

- Physical interpretation
in AdS/CFT context

-non existence of “regular”
multi BHs in D > 6

-BF bound and instabillity
14/14



Thank you
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“Toward constructing ghost-free scalar-tensor theories
beyond Horndeski”
Ryo Namba

[JGRG24(2014)111112]
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Toward constructing ghost-free scalar-tensor
theories beyond Horndeski

Ryo Namba

Kavli IPMU

The 24th Workshop on General Relativity and Gravitation (JGRG24)
November 11, 2014

C. Lin, S. Mukohyama, RN and R. Saitou, JCAP 10(2014)071, [arXiv:1408.0670]
S. Mukohyama, RN and R. Saitou, in progress

>
<
r

Ryo Namba (Kavli IPMU)

[}
beyond Horndeski

=
U=
.2

Introduction

Q: What is the most general healthy scalar-tensor theory?

J
<~ Cosmological applications: accelerating expansion of the universe
< Adding one scalar is a minimal extension of GR
o Testing GR ~ modifying GR

Horndeski (generalized Galileon) theory

Horndeski '74, Nicolis et al & Deffayet et al ‘09
< Most general scalar-tensor theory with 2nd-order field equations

> Higher-order equations would increase the dimension of phase space
> Ostrogradski’s theorem:

A linear instability in the system with a Lagrangian which genuinely depends
on more than one time derivative

< Rather fine-tuned combination of coupling constants
> in general de-tuned by quantum loops

Ryo Namba (Kavli IPMU)

=] =
beyond Horndeski
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GLPV Theory

Gleyzes, Langlois, Piazza & Vernizzi 14
o A class of theories larger than the Horndeski

< Higher-order equations of motion

o Still, the true propagating d.o.f. are 3, the same as Horndeski

o Their analysis of Hamiltonian structure was not complete

Ryo Namba (Kavli IPMU)

beyond Horndeski

Bottom line of the talk

@ There are scalar-tensor theories beyond the Horndeski
> Still only 3 physical d.o.f.
> Ghost free

@ Non-trivial constraint structure
> Eliminates potentially dangerous extra d.o.f.

© An explicit example by studying the GLPV theory

Ryo Namba (Kavli IPMU)

beyond Horndeski




The GLPV Action
S:/d“x\/—_gzs:ﬁn
Lo=P, L nj—eam

L4 = Gu R + [Gax + XFa] [(C0)° — 600"
+F4 ¢;4¢1/ (ng (Zs;w - Qbuqupu)

1
L5 = Gs GIo™ + ¢ (4XFs - Gsx) [(06)° — 8006 ¢, + 20/,

+Fs 66" [(D0) G — o670 + 267,600 — 206 85,00, |

= —3V'oV,uo
> Arbitrary functions: P = P(¢, X), Gn = Gn(¢, X), Fn = Fa(¢, X)
> Contains the Horndeski theory

o ForFa=Fs=0

> ¢u=Vup, ¢ =V, Vyu, o =VHV 0, ...,

> Contains the original Galileon theory
o ForGs=Gs=0,F, #0, F5s #0

=] =
Ryo Namba (Kavli IPMU) beyond Horndeski

it
N
el
?

The GLPV Action in the Unitary Gauge
Unitary gauge: ¢=1t, X=1/(2N?)

ADM decomposition:  ds? = —N2dt? + h; (dx’ + N'dt) (dx/ + N/alt)

The GLPV action reduces to
5
S= /dtd"‘xN\//_?Z Ly,
n=2

Lo=As, Li=AsK, Li=As (K2 _ K;Kf,) + B,R®)

Ls = As (K — 3KKTK; + 2K K KY ) + Bs KTGYY

> Extrinsic curvature: Kj = 5 (h,, — G)DN; - (3)Dij), K=K
> Arbitrary functions: A, = An(t, N), B, = Bu(t, N)

> Broken time diffeomorphism, preserved spatial diffeomorphism

[m] [l = =
Ryo Namba (Kavli IPMU)

beyond Horndeski
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Hamiltonian structure

Goal: to understand the Hamiltonian structure and count the d.o.f
20-dimensional phase space:

(N, 7n)
No N or N’ in the Lagrangian

(N',m) . (hy, ")

Hamiltonian takes the form

— 7ny=0,

=0

5
H = /d3X [ﬂ”h/j—N\/FlZLn]
n=2

= /d3x [H(t, N, hyj, 7") + N'H;(hy, )]
Poisson brackets:

(F.G}p = 5F G OF 6G+ F 6G

Ryo Namba (Kavi IPMU)

0F 6G OF oG
+

=

beyond Horndeski

8F 8G _ 6F G | oF G OF G | 6F 0G _ oF
SN érn  dnnoN — 6N' 6w 6mi 6N Shyonl oxl

ahy

DQAC

Nature of constraints
Constraints

Primary constraints:

Secondary constraints:

OH
— N R Ho~——=C~ —
gt ™~ i Hip =55 =C~0,

dtﬂ','% {7T,‘,H}P ~ —'H,'%O
o Weak equality “~” holds on the constraint surface

o All the Poisson brackets with 7; vanish:

v

e {WiVW/}P =~ {7T,',7TN}P % {71',‘,7-[]'},3 ~ {m; 7C}P ~0
o Spatial diffeomorphism is in fact reflected by the linear combination

Hi=HitnnoiN

= {Hi.m}p = {Hinntp = {Hi, Hytp ~ {#i,C p~0
o (=] =
Ryo Namba (Kavli IPMU) beyond Horndeski

w 22
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Nature of constraints
First-class constraints:

mj ~ 0 )

7:1,' =H;+anyOiN=~=O0
Second-class constraints:

an~0, C=0
The “total” Hamiltonian takes the form
Hiot = /dSX [H + NiHi + )\/71',' + ANTN + ni'?:l/ + /\CC]
a
Lagrange multipliers
Second-class constraints — \: & \y are determined by the consistency
d oc
GiTNE {7n, Hot}p =~ _8_N>\C ~0
d
at
Ryo Namba (Kavli IPMU)

[}
beyond Horndeski

=

C~{C, Hot}p ~ {C,H}p + N'{C, Hi}p + {C,7N}p AN = O

Gauge fixing
First-class constraints —- ) & ' are yet to be determined.
Introduce gauge-fixing conditions

Fiz0, ¢'=0
o Require: det( {F.m p {9 7m}p

(F e (0.7, ) 0

Hamiltonian with gauge-fixing terms

~

o Total 14 second-class constraints

H, = / X [H + N'H; + Nmj + Aty + 0+ AcC+ N F + A7 G
m~0, ny=~0, H;=0, C~0, F=0, =0
¢ (20 — 14) = 6-dimensional phase space = 3 degrees of freedom!
Ryo Namba (Kavli IPMU) beyond Horndeski

[m]

F

v
£ DA



Concluding Remarks

310
Scalar-tensor theories beyond Horndeski
o An example: GLPV theory

Constraint structure is essential

o We performed the Hamiltonian analysis in the unitary gauge

< Reduces the dimension of the phase space
o Eliminates the ghost-like d.o.f.

o The Horndeski theories do not take such constraints into account
Remaining questions:

¢ Understanding of the GLPV theory in the general gauge

> Discussions on this issue come next by Rio Saitou

o General framework to remove pathological d.o.f.
Ryo Namba (Kavli IPMU)

beyond Horndeski
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“Structure of constraints of the theory beyond Horndeski”
Rio Saitou

[JGRG24(2014)111113]
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Structure of Constraints
for the Theory
Beyond Horndeski

Rio Saitou
(YITP, Kyoto Univ. / KIPMU, Tokyo Univ.)

Collaboration with Chunshan Lin, Shinji Mukohyama and Ryo
Namba
Based on the work in progress and JCAP10(2014)071

JGRG24@KIPMU 2014/11/11

Scalar-Tensor theory for Gravitation
General
Relativity

Inflation/Dark Energy/...?

Possible
Theoretical
Extension

Scalar-tensor theory without ghost
instability
ex. Horndeski theory
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The GLPV theory beyond Horndeski

Gleyzes, Langlois, Piazza and Vernizzi (2014)
Lin, Mukohyama, Namba, RS (2014)

* UNITARY GAUGE (® = t) Action in ADM form

=

I= /dx‘l\/—g [Lo + L3 + Ly + Ls)

Ly = P(¢,X), n=2
L3 = —G3(¢ X)D¢

NO EXTRA DEGREES OF FREEDOM !

Ly = Gs(¢,X) W¢“‘—5[G5X(¢>,X)—4XF5(¢>,X)] [(O9¢)?

K =—30¢¢" ¢ + 2¢5¢Z¢ﬁ] +F5(¢, X) [(O¢)* v — 20¢¢,,,9%,
Ko == bpotuv + Q%qupa%y] P*e”

K3 = K® - 3KKYK;; + 2K* . K’, K*

The GLPV theory beyond Horndeski

Gleyzes, Langlois, Piazza and Vernizzi (2014)
Lin, Mukohyama, Namba, RS (2014)

- GENERAL GAUGE Action in Covariant form

= /da:“\/—g [Ly + L3 + Ly + Ls)

+F4(¢7 ) [D¢¢uv ¢up¢5] ¢M¢V

Ly = Gs(6, X)Gud" ¢ [Gax(6,X) — AXF3(6, X)] [(O6)

- 3D¢¢MV¢W/ + 2¢5¢Z¢m +F5(¢7 X) [(D¢)2¢uu - 2D¢¢up¢§
_¢p0¢pa¢uu + 2¢up¢pa¢ay] ¢M¢V
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[
The GLPV theory in GENERAL GAUGE

- The degrees of freedom (dof) should be the same as in
the unitary gauge, that is, 6 dof.

- How do constraints enter in the theory?

/" UNITARY GAUGE /" GENERAL GAUGE

Spatial diffeomorphism ‘ Full diffeomorphism

Two 2nd class constraints 2?9

N J NS J

- Studying general gauge tells us richer information of the
theory, which we can not get from the unitary gauge.

ex. Static case gb = gb(:i") Decoupling limit (Minkowski limit) and etc..

[
The GLPV theory in GENERAL GAUGE

- The degrees of freedom (dof) should be the same as in
the unitary gauge, that is, 6 dof.

- How do constraints enter in the theory?

Let's study general gauge!

- Studying general gauge tells us richer information of the
theory, which we can not get from the unitary gauge.

ex. Static case (b — ¢(f) Decoupling limit (Minkowski limit) and etc..
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Introduction

Convenient form of the Lagrangian
Hamiltonian in general gauge
Minkowski limit and flat FLRW case
Summary

o &~ e bdh -~

- | omit the remaining section because it's a preliminary
result. Thank you.
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“Spatially covariant gravity and unifying framework for
scalar-tensor theories of gravity”
Xian Gao

[JGRG24(2014)111114]
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Spatially covariant gravity and

unifying framework for scalar-tensor theories

Xian Gao (% i)
Tokyo Institute of Technology

November 11, 2014
Kavli IPMU, the University of Tokyo
JGRG 24

X. Gao, Phys.Rev. D 90 (2014) 081501(R), [arXiv:1406.0822]
X. Gao, Phys.Rev. D 90 (2014) in press, [arXiv:1409.6708]
X. Gao, [arXiv:141x.xxxx]

Scalar-tensor theory?

Inflation, dark energy and dark matter have been strong
motivations for alternative gravity theories beyond
Einstein’s general relativity.

— Scalar-tensor theory:
scalar modes in addition to the tensor modes of GR.

— How to introduce these extra degrees of freedom?
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From k-essence to Horndeski

The most straightforward way:
to add gravity with extra scalar field(s), covariantly.

k-essence: L =+/—g [ + K (¢, )}

1 2
—5 (Vo)

Over the years, k-essence was studied as the most general
theory for a single scalar field, which involves at most first
derivatives of the field in the Lagrangian.

Higher derivatives — Extra unwantted mode(s)?

From k-essence to Horndeski

The most general single scalar-tensor theory:
« of which the Lagrangian involves second derivatives,

L($, V9, VV)

* the equations of motion stay at the second order in derivatives
— only one scalar degree of freedom beyond GR

[G. W. Horndeski, Int.J.Theor.Phys. 10, 363 (1974)]
[C. Deffayet, X. Gao, D. Steer, and G. Zahariade, Phys.Rev.D84, 064039 (2011)]

‘62 = (X ) ¢) ’
L3 — (X, gzb) |:| [Dvali, Gabadadze and Porrati, Phys.Lett.B485, 208(2000)]
BG
L4=Gu(X,¢) R+ 2 |(09)° — (VuVu0)*],
,P)

106G
_éa—); [(qu) — 306 (V,V,8)? +2 (vuvycb)?’] .
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Beyond Horndeski?

* Even higher (= 3) order derivatives?

* Degrees of freedom unchanged (2 tensor + 1 scalar)?

This "straightforward and covariant" approach
can only bring us so far...

Alternative approach?

Additional degree(s) of freedom may arise when symmetries
are reduced:

» Massive gravity: 2t + 2v + 1s breaks spacetime diff.
» Massive vector: 2v + 1s breaks U(1)
 Scalar-tensor theory: 2t + 1s spacetime diff.

1

spatial diff.
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Example 1: EFT of inflation

Cosmological backgrounds breaks the full spacetime symmetries by
choosing a preferred time direction or preferred spatial sclices.

The Lagrangian respects unbroken spatial diffs of the FRW background.

The basic ingredients are just perturbative ADM variables:

SN, 3K,

lapse function extrinsic curvature

S=/d4w\/—_gBR+A(t)+f1 (£) 6N + fo () ON? + -+

+g1 (8) 5K 1 + g5 (1) (5K1)° + g3 (t) 6 6K + - -

[Cheung, Creminelli, Fitzpatrick, Kaplan, and Senatore, JHEP 0803, 014 (2008)]

Example 2: Horava gravity

Horava gravity:
1 o
S(Horava) — 5 /d4$N\/ﬁ (Kin” — )\f(2 +V [hij, (3)Rz]aDZ]>

[P. Horava, Phys.Rev. D79, 084008 (2009)]

Healthy extensions:
1 . . -
G Elealthy Bxt) 3 / d*zNVh (cmial + ¢ (aia’)’ + csRijalal + - )

a; = 81 In N
[Blas, Pujolas & Sibiryakov, JHEP 0910, 029 (2009)]

— N enters the Hamiltonian "nonlinearly"!
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Example 3: Horndeski in ADM form

Fixing the unitary (uniform scalar field) gauge: Pt T)=do(t)=t

1
Vb= "N52
1 ; 2 oy i 1o
ViV = =00, 55 (I N = N'Viln N) + —6(,0,)0i In N — =5, 6, Ky

Horndeski in the ADM form:

[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1304.4840]
1 OF;

N2 9¢
1 3(Gs—F)] 3
+[G4 s R
OF;  10G.\, 1 o sy |
_(8(NG4) 1 9Gs

EHomdeskl ~ GQ +

N ' 2N? 99

oG
pon

) (52— 1)

K? - 3KKy;KY + 2K K] K} )

Example 3: Horndeski in ADM form

Fixing the unitary (uniform scalar field) gauge:  ¢(t,%) =¢o () =t
1

Vb= —:0.
1 ; 2 o 0 o
VVid = —808)=5 (0N = N'ViInN) + 260,850 I N — -3, 5K

Horndeski in the ADM form:

[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1304.4840]

EHorndeski

e

functions of (¢, N)

_(8(NGy) | 1 aGs
aN
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Beyond Horndeski

Fixing the unitary (uniform scalar field) gauge: ¢ (t, %) = o (t) =t

1
Vb= ‘N‘52
1 ; 2 oy i 1o
ViV = =00, 55 (I N = N'Viln N) + —6(,0,)0i In N — =5, 6, Ky

GLPV model (deformed Horndeski):

[Gleyzes, Langlois, Piazza & Vernizzi, arXiv:1404.6495]

EGLPV — A2 (t, N)
+[ By (t,N) ] ®R
+ |:< As (t,N) ) hij + Bs (t,N) (3)Gij:| K¥

+ ( Ay (t,N) ) (K? — K;; K)

+ 45 (t,N) (K° - 3KK; K + 2K K] KF)

Landscape of theories

Gauge recovering (Stlickelberg trick)

o L8 N

Gauge fixing (unitary gauge)
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Landscape of theories

Gauge recovering (Stlickelberg trick)

Gauge fixing (unitary gauge)

Landscape of theories

Gauge recovering (Stlickelberg trick)

Gauge fixing (unitary gauge)



Landscape of theories

Gauge recovering (Stlickelberg trick)

Gauge fixing (unitary gauge)

Landscape of theories

Gauge recovering (Stlickelberg trick)

TLL
---------------------------------
-----
........
““““

Gauge fixing (unitary gauge)
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Spatially covariant gravity

A general class of Lagrangians that respect the spatial diffeomorphism:

[X. Gao,
_ 1151, indn Io T Phys.Rev. D 90
V—gL = Nvh (Z Gimy Kijy o Kinj, +V (2014) 081501]
n=1

\

"kinetic terms" "potential terms"

where V, G(n)’s are functions of /
(t, N, ®ny;, @Ry, Vi)

179

"Translating" to the covariant language (Stueckelberg trick)

N = N =1/V2X, hij = By = Guw + %auwm, X =—(09)° /2,
1
V2X
All terms can be written covariantly in terms of ¢ and its derivatives.

il
Kij — KI“/ = — [Vuv,,qﬁ — EV%&V,,QSV,,QSV” InX — V(Mqiv,,) In X 5

— A more general class of scalar-tensor theories beyond Horndeski, which
propagate 2 tensor + 1 scalar dofs, although the equations of motion are
generally higher order.

Constraint analysis

4 primary constraints:

WNEM%O’ WiEM

ON ON?

~ 0,

Extended Hamiltonian:  H.. = /d% (NC~ + N;iC'+ XNV + /\im>

~ ~ - ) j
Czc(t,NahijaRijavi’ﬂ-U) ’ = _2\/Evj (ﬂ-_\/ﬁ>

N appears nonlinearly in the Hamiltonian, as the space-dependent time
reparametrization invariance is broken.

4 secondary constraints:

%“N ~ {7, Hex}p = —=C = —C (t, N, hij, Rij, Vi, 77)
d
™ ~ T, He}p = —Ci.
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Degrees of freedom

Poisson brackets among all 8 constraints: X. Gao,
{ '}P N Tj C C; [arXiv:1409.6708]
TN 0 0 _(;S_](\:’] 0
m |0 0 0 0
c |£ 0 0 -%£v,N
C; |0 0 £V,N 0

Eigenvalues: 6 zero, 2 non-zero:  + ‘(;s—ff‘ /14 (ViN)2

— Among (linearly independent combinations of) 8 constraints:
6 are first class, 2 are second class

— Number of degrees of freedom:
1
number of d.o.f. = = (2 x number of canonical variables — 2 X number of first class constraints
—number of second class constraints)

1
=5(@2x10-2x6-2)=3.

Main message

* Single-field scalar-tensor theories can be written as theories
of spatially covariant gravity.

* We propose a very general framework for the spatially
covariant gravity theories.

* When restoring general covariance, such spatially covariant
gravity theories yield single-field scalar-tensor theories with
higher order equations of motion.
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Thank you for your attention!
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“Effective field theory approach to modified gravity
including Horndeski theory and Horava-Lifshitz gravity”
Ryotaro Kase

[JGRG24(2014)111115]
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“*JGRG24,” IPMU in Tokyo, 11t Nov. 2014.

Effective field theory approach to modified gravity
including Horndeski theory and Horava—Lifshitz gravity

R. Kase and S. Tsujikawa, arXiv 1409.1984

Tokyo University of Science
Ryotaro Kase

1. Introduction

» Discovery of late-time cosmic acceleration

In 1998, the discovery of late-time cosmic acceleration based on Type la
supernovae is reported. The source for this acceleration is named dark energy.

— Planck+WP-+BAO —— Planck+WP+SNLS

/T he equation of state defined below\ —  Planck+WP+Union21  —  Planck+WP
characterizes dark energy.

10} ! _
w=P/p 4= A-CDM
Condition for acceleration : |

\ w<—1/3 / ‘10.4_ w

-Planck+WP+SNLS 02y |
w = —1131_8%2 (95%CL) YT w—i.z " o8 —oa

Planck collaboration arXiv:1303.5076 [astro-ph.CO]

Dark energy problem may imply some
modification of gravity on large scales.
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1. Introduction
» Models based on Modified gravity

Effective field theory of modified gravity (EFT)

GLPV theories

Horndeski theories

Brans-Dicke gravity
« Gauss-Bonnet gravity
« F(R) gravity

Galileon gravity

* Horava-Lifshitz gravity

W
1. Introduction

» EFT on the cosmological background
J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, JCAP 1308, 025 (2013)

z + dz® Under the unitary gauge (6¢ = 0),
) Yiprdt
g v — Nt Qb = qb(t)
E K,ul/ - hﬁnu;A
L
ds\ Ndt fnu constant time hypersurfaces
_(3) I
R;u/ — RNV xa[ Et 1}
B uniform ¢ hypersurfaces
T N
ds? = —N2dt? + hap(dz® + Nedt)(dz® + N°dt) n gb, / X
X = Qb;uﬁb;u

A scalar field qﬁ associated with the modification of gravity is
absorbed into the constant time hypersurfaces.
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1. Introduction

» EFT on the cosmological background
J. Gleyzes, D. Langlois, F. Piazza, and F. Vernizzi, JCAP 1308, 025 (2013)

%+ dz* \E Under the unitary gauge (6¢ = 0),

) t+dt
v — Nt ¢ = ¢(t)
ds\ @lt fnu constant time hypersurfaces
= (S)RNV xa I_I Et :[I
Bt uniform ¢ hypersurfaces
T N
ds® = —N2dt? + hay(dz® + Nedt)(dz® + NPdt) n gb, / X

S = / d*z/—gL(N,K,S, R, Z,U;t)

-
K=K',, S=K,K", R=R',, Z=Ru,R", U=R,K".

1. Introduction

» Horndeski Lagrangians in the EFT language
Ga(6,X) = Ga(N,t) (X =—¢*/N%), "=/ V=X
G3(p, X)Op — 2(~X)*?F3 x K — XF3 4 (G3=F3+2XF3.x) ,

L = Ay(N,t)+ A3(N,t)K + A4(N,t)(K? —S) + B4(N,t)R
+ A5(N,t)K3 + Bs(N,t) (U — KR/2) ,
with Ay =2XByx — By As=—-XDBs x/3
(K3 =3H(2H? —2KH + K* — 8) + O(3))

The Horndeski theory is a subclass of the EFT of modified gravity.

S = /d4a:\/_—gL(N, K,S,R,Z,U;t)

-
K=K!,, S=K,K", R=R',, Z=R,R"™, U=R, K",



332

1. Introduction

» Horava gravity in the EFT language

In order to include the Horava gravity and its extension in
the EFT framework, we need to add extra terms to the EFT Lagrangian.

‘ Gao’s talk! x. Gao Phys. Rev. D90 (2014) 081501

» Projectable Horava-Lifshitz gravity (0N = 0) [v,- : 3D covariant derivative]

M2
L=—F[S—AK? + R — My? (3R + g3 Z) — My (9421 + 95 25) |

(Z=RuWR"™, Z1=V,RV'R, Zy=V;R;V'RF)

The terms Z; , Z> allow the 2 = 3 scaling characterized by
the transformation ¢t — ¢*¢t and z* — ca’.

‘ The theory is power-counting renormalizable.

However, in this theory, the no-ghost condition and the condition to
avoid a Laplacian instability cannot be satisfied at the same time.
Moreover there is the strong coupling problem in the deep IR regime.

1. Introduction

» Non-projectable Horava-Lifshitz gravity (6N # 0)
D. Blas, O. Pujolas and S. Sibiryakov, (2010)

In the non-projectable extended version of the Horava gravity,
the acceleration vector a, = n’n,., = V, In N does not vanish.
In this case one can consider the Lagrangian

1

Ly, = — o735 (9421 + g5 22 + qacy + 505 + -+ )
2Mpl
1 2

Ly, = 3 (92R* + g3Z + mpas + maaz + -+ ),

Ly, = “pl (R+n1a1) ’ oq :aZaQ, ‘042 = a;Aa’, oz; =RV;a",
2 oy = a; A", a5 = ARV;a",

Ly, , Ly, , Ly, areinvariant under z = 3, 2, 1 rescaling, respectively.
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1. Introduction

» EFT Lagrangian including Horndeski theories and Horava gravity

S:/d4$v—gL(N,K,S,R,Z,M,Zl,ZQ,Oél,'" 7045;t)

RK and S. Tsujikawa, arXiv:1409.1984

K=K',, S=K,K", R=R',, Z=RuR",
U=R,, K", Z =VRV'R, Z,=V,RyVRI*,

a; = a;at, ag=a;Adt, as=RVd, a4=a;A%', a5 =ARVd’,

Other terms such, e.g. RZR"; ¢, can be taken into account,

but they are irrelevant to scalar linear perturbations on the flat
FLRW background.

2. Background Equations

S:/d4xv—gL(N,K,S,R,Z,U,Zl,22,a1,--- 7045;t)

ds® = — (14 26N)dt* + 2V pdx'dt + a®(t)(1 + 2¢)8;jdx" da?

Expanding the Lagrangian up to linear order as [ e.g. Ly =0L/ON ]

L=L+LNON+LxIK+Ls6S+ LR+ L z6Z+ Ly + 0(2),

expressing ADM variables in terms of metric variables,
e.g. K;; = (0:hij — ViN; — V;N;) /(2N), we obtain the following
background equations of motion.

Sy = / A= [5N5N+5h5\/ﬁ] ,

EN=L+LNx—-3HF=0,
Eh=L-F-3HF =0.

(F=Lkg+2HLy)
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3. Second order perturbations

S:/d4$v—gL(N,K,S,R,Z,Z/{,Zl,ZQ,Oél,'" ,045;t)

ds? = —(1 4 26N)dt? + 2Vhdx’dt + a®(t)(1 + 2¢)6;dx’da’
J

Expanding the Lagrangian up to second order as

L= [_/—f—3H./f+ (f—FL’N)(SN—i—E(SlR [e~g~ A:L,KK+4HL75K+4H2L,SS 7]

. 1
+ (;L,NN - ]—") SN? + %AéKz + BSKSN +COK6R + DSNG R + E52R + 5g<517z2
2 5
+ L sOKISK}, + L z0REORY, + > L z6Zi+ Y  Lada; +0(3),
=1 =1
Varying with respect to )V and A1, we obtain evolution equations as

(2L + ...) 0N — 2L o, ASN — 2L o, A26N — 2L o, A>6N — WAY = 3W( + ..,
WON — (A+ 2L 5)A¢p = —(3A+ 2L 5)¢ 4 4CAC

Using these equations the second order Lagrangian

\\&\\\\M expressed in terms of a single variable ¢ .

3. Second order perturbations

S:/d4$\/—gL(N,K,S,R,Z,U,Zl,ZQ,Oél,'" 7a5;t)

ds® = —(1 4+ 26N)dt* 4+ 2V, dx'dt + a®(t)(1 + 2¢)6;;dztda? |
J

» In the absence of higher order spatial derivatives
(C=0,4G+3Lz=0, A+2Ls=0,8Lz +3Lz =0, Lo, =L, ==L, =0.)

. 2
Lo = d®Q, [@ - %(3@2] .

QSE 3W? +4L s(2L y + Ly —6HW + 12H?L 5)]
2

4L 3
M= = W (LR+LNR+HLNu+2HLu) )

w= LKN+H(2L,Ns—3LKK—2L75)—12H2L,K5—12H3L753.

Stability conditions
Qs >0and ¢ > 0.
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4. Application to Horndeski and GLPV

L= Ay(N,t) + A3(N,t)K + A4(N,t)(K? — S) + B4(N, )R
+ A5(N,t)K3 + Bs(N,t) (U — KR/2) ,

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, arXiv:1404.6495

Horndeski theories correspond to

A4:2XB4’X—B4 A5=—XB5,X/3

» Stability conditions

Condition to avoid ghost instability
Qs >0 IW? +8L sw >0
W= A3 n+4HAy n +6H?As vy — 4HA4 — 12H? A5,

w = 18H*(Ay + 3HA5) + 3(Aa y — 6H? Ay n — 12H> A5 )
+2(As NN +3HA3 NN +6H? Ay vy +6H?As yn) /3

L TT———
4. Application to Horndeski and GLPV

L= Ay(N,t) + As(N,t)K + A4(N,t)(K? — S) + B4(N,t)R
+ A5(N,t)K3 + Bs(N,t) (U — KR/2) ,

J. Gleyzes, D. Langlois, F. Piazza and F. Vernizzi, arXiv:1404.6495

Horndeski theories correspond to

Ay =2XByx — By As=-XBsx/3

» Stability conditions

Condition to avoid Laplacian instability
>0 M+HM-E>0
4(A4 + 3HA5)(B4 + B4’N — HB5’N/2)

CAsn +4HAy N + 6H?As v — AHA, — 12H%A;5
E=Bs+ B5/2 .

M:
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4. Application to Horndeski and GLPV

» Dark energy in the presence of matter

S = /d4x\/—g [L(N,K,S,R,U;t) + P(¢,Y)] . (v=pr¢,)
]

radiation non-relativistic matter
R. J. Scherrer (2004)

P(p,Y)=01Y? | P(p,Y) =bo(Y - ¥p)?
_Y-Y
T 3Y -V,

(when Y ~ Yp)

w=1/3 w ~0

MW
1) 2Py [2¢2 - ey [ 22V 11
) AL7,

In the Horndeski limit this term vanishes and we obtain

Sound speeds squared

16L>
(¢ =) (& — ) = —st\f;

Dark energy: cZy, = Qi

Matter: 2y, =

. 4L o\ 2
AM+ HM — ) + (TS‘”) Py|,

However, outside the Horndeski domain, both sound speeds should be modified.

4. Application to Horndeski and GLPV

» Dark energy in the presence of matter

S = /d4x\/—g [L(N,K,S,R,U;t) + P(o,Y)] . (v =¢re,)
%

Please see also radiation non-relativistic matter
RK and S. Tsujikawa, Phys. Rev. D90 (2014) 044073 R. J. Scherrer (2004)
detailed calculation P(p,Y) =bY? P(p.Y) = by(Y — Yp)?
evolution of sound speeds Y-y 0
during the cosmological history w=1/3 YTy oy,
_N (when Y ~ Yp)

Sound speeds squared

16L%

(Cg - C§H1) (C§ - C§H2) = W SbQP,Y
S

2c2 — <M + 1>

In the Horndeski limit this term vanishes and we obtain

. 4L s\ 2
2(M+HM—8)+< V’\‘fw) Py

Dark energy: iy = Qi

Py

. 2 _
Matter: iy, = Py —252Pyy

However, outside the Horndeski domain, both sound speeds should be modified.




5. Application to Horava gravity
» Projectable Horava-Lifshitz gravity (6 NV = 0)

M2
L="FS=AK?+ R — My? (3R + 6sZ) — My (9421 + 95 25) |
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A
Lo = M2d® <3A_1< goc)
A2 A3

=A _ =

A=V'V;, M;=M}8g2+3g3)"", My= M§1(894 4 3g5) " *

Conditions to avoid ghost and Laplacian instability
can not be satisfied at the same time.

which coincides with the results in
K. Koyama and F. Arroja, JHEP 1003, 061 (2010),

S. Mukohyama, Class. Quant. Grav. 27, 223101 (2010).

5. Application to Horava gravity
» Non-projectable Horava-Lifshitz gravity (6N # 0)

L=-2 [5 “AK? 4 R+ man — M2 (92R2 + g3 Z + s + 1303

- M;f (9421 + 9522 + naouy + 775045)] .

In the IR regime, on the Minkowski BG,

9 3A — 2 2 2 2_>\—12—771
Ly = M3— L[ - w0y] R v

which coincides with the results in
D. Blas, O. Pujolas and S. Sibiryakov,
Phys. Rev. Lett. 104, 181302 (2010)
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6. Conclusions

» We studied the EFT approach to modified gravity including Horndeski
theories and Horava-Lifshitz gravity on the flat isotropic cosmological BG.

» Expanding the action up to second order, we derived the background
equations of motion, equations of motion for linear perturbations and
stability conditions.

» We applied our general results to Horndeski theories, its generalization
(GLPV theories), Horava gravity and its healthy extension.

» In the presence of matter components, sound speeds squared are
nontrivially modified in GLPV theories. We showed that Horndeski theories
and GLPV theories can be distinguished from each other by the scalar
propagation speeds ci.

» We showed that our general results conveniently recover stability
conditions of Horava gravity and its healthy extension already derived in
the literature.

\\\\\

4. Application to Horndeski and GLPV

L= Ay(N,t) + A3(N, ) K + A4(N,t)(K? — S) + B4(N,t)R
+ A5(N7 t>K3 + B5(N7t) (u - KR/Z) )
(K3 =3H(2H?> —2KH + K* - S) + 0(3))

Horndeski theories correspond to

A4=2XB4’X—B4 A5:—XB57X/3

» Tensor perturbations ;= a*(t)(6;; +i; + %%—mg’)

3
h a . o)
sS4 = /d4xZ |:L,87i2j — 5 (Owij)?

a?

Stability conditions
L’S =—A4,—3HA; >0,
£=B,+B5/2>0.
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4. Application to Horndeski and GLPV

» The inflationary power spectra of curvature and tensor

erturbations . .
n the case where slow-roll parameters ¢ = —~H/H?, 5o, = Qs/(HQs), 6., = ¢s/(Hces)

are much smaller than unity,

X 2
« Scalar perturbation £y = a®Q, [CQ — %(8021 .

) 0,1~ —2¢— g, — 30, .

. 2
» Tensor perturbation Séh) = Z /d4x a*Qy [hi - Z‘;(amﬁ] ,

A=+, X
3
QSCS
r=4—-=,
tht
L,S 62 — g
— =T
2’ Ls

4. Application to Horndeski and GLPV

» Covariantized Galileon
Covariant Galileon : Covariantized Minkowski Galileon + Gravitational counter term

[A. Nicolis, et al. (2009) ] » Since EOMs remain second order in general BG,
C. Deffayet, et al. (2009) it is inside the Horndeski domain.
M? 3
_a _ B x)3/2 _ Tl 90 5o -5 (_x)/2
A= X, A= gyE(X7, A 5 AT pE T
M? ¢ 3¢
By=-—2_ " x?2 B =_5 (_x)52,
4 9 4M6 ) 5 5M9( )

Covariantized Galileon : Covariantized Minkowski Galileon

» Higher order derivatives may appear in general BG.
Thus it is outside the Horndeski domain.

However, due to the symmetry of the FRW space-time,
BG EOMs in two models become same. At the level of
second order perturbations differences appear.

M} 3¢y
(_X)3/27 A4:_Tp_4M6X27 A5

T 3M3

Cs

= 2M9 (_X)5/2 Y
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4. Application to Horndeski and GLPV

» BG evolution

. .\ 5
_ XasHas _H ( X )
o ;
Xds

r=5—, = —
xH Hgs

onk ~ "V T TR T T

late-time
tracking

« ThereisthedSpointat 7y =72 = 1. 0

« The tracker solution (r1 = 1) is g 0 ]
in tension with the observational data. _
-1.5 \ =
- The late-time tracking solution (1" < 1) : N/ tracker
is consistent with the observational data. 200 L Ee——
0.1 1 10

1+z

S. Nesseris, A. De Felice and S. Tsujikawa, Phys. Rev. D 82, 124054 (2010)

4. Application to Horndeski and GLPV

» Evolution of the propagation speed along the late-time tracking

(A) Covariant Galileon

( %(Qr +1) (1) r < 1, 7 < 1],
8+10a — 98+ Q,(2+3a—3 .
(o~ 26)(4 + 1o~ 4808 + 3657) [(iii) 1 =1, 7o = 1].

L 2(243a—608)(2—3a+60)

Under the no-ghost conditions,

Ls >0 »5>0 cox3g = 6+ 9o — 123
g2 >0 —2<3(—20) <2 |cswis=2+9% 95

the above propagation speed of sound is positive in any regime.

“ A. De Felice and S. Tsujikawa, Phys. Rev. Lett. 105, 111301 (2010)
\ My
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4. Application to Horndeski and GLPV

» Evolution of the propagation speed along the late-time tracking

(B) Covariantized Galileon

( 4_10(397“@) (1) m < 1, rg < 1],
16 — 15(cc — 26) + Q,.(4 — 3a + 6 )

€= = 6(2ﬁ—):;; +ég) @+ 00) (i) =1, ro < 1],

\ % [(iil) 7 =1, o = 1].

In the regime (i), the propagation speed become negative
during the matter dominated epoch!!

4. Application to Horndeski and GLPV

» Evolution of the propagation speed along the late-time tracking

(B) Covariantized Galileon

040

0.0

-040

080 | Cw

loglo (1+2)
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The Relation between Renormalizability'and |
Tree Unitarity in Lifshitz Scalar Theory

Tomotaka Kitamura (Waseda U)
in collaboration with Takeo Inami (National Taiwan U)
Keisuke Izumi (Le CosPA)

Purpose

Our final goal is to check the renormalizability
of Horava-Lifshtiz gravity via tree unitarity
but
We have faced some problems in HL gravity

In this work, we try to check the relation
~ between renormalizability and tree unitarity in
| as a toy model for
understanding the problems of HL gravity




Contents

1.Introduction

- 2.Unitarity and Optical theorem

3.Tree unitarity in Lifshitz scalar theory

4.0ne loop calculation in Lifshitz scalar theory

5.Summary
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1 .Ihtroductioh

_‘ Important problem in Hofava gravity

SHL = / dtd%\/;N{% (K ;K7 — A\K?)

Horava proposed Power-counting renormalizable gravity theory
for solving non-renormalizable problem in Einstein gravity

But no proof of renormalizability in HL gravity

then, we are trying to check the renormalizability of HL gravity using the
equivalence between renormalizability and tree unitarity

r \ , , . - :
z=3 (1+3) dim P.Horava '09

+ (a1 ViR V' R* + auV,RV'R+-- )} (i,5.k=1,2,3)

.
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1.Introduction

Suggestion by Llewellyn Smith C.H.Llewellyn Smith *73

the equivalence between renomalizability and tree unitarity

tree unitarity ~ renormalizability

— : (e.g) Yang-Mills theory
Tree unitarity Einstein gravity
. . Weinberg-Salam model

F

~ an scattering amplitude does not growas F — oo

M~ Ef (<0 E_>OO

o

M amplitude [V Eneray in center of mass

if ¢ <0, theory has tree unitarity

&

1 .Ihtroductioh

‘ Differentiation of high-energy bréhaviorA between Einstein graVity énd HL»grévity ‘

r ")

Einstein gravity Higher spatial derivative in Horava
\gravity improves UV behavior
W ) |
j( MNk2 PN@, PHLNw2—k6

but

High-energy behavior of scattering
amplitude is more worse ??

M ~ k6 How should we interpret
A this worse behavior ??
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1.Introduction

QUestions about the work in tree unitarity of HL gravity

1) Is the equivalence held for Lifshitz-type model?
anisotropic scaling of space and time

2) How should we take high-energy limit
because of Lorentz violation ?

In relativistic theory, any system — CM system tanks to Lorentz sym

In non-rela theory, are

w is from time derivative K s from spacial derivative
Which should we take high energy limit ?7?

 3) How should we interpret the power of scattering
amplitude in HL gravity? 16 22

1.Introduction

‘ Lifshitz Scalar thebry

Li'fshitzrscaling [IU] = —1 [t] = —Z inmass dim

X +— bxX b arbitrary number

t — bt Z dynamical critical exponent
Z degree of anisotropy between space and time
z=3 (1+3)dim with shiftsym ¢ — ¢+ ¢ ¢ = const

1. 1
L= ‘Cfree + Lint Lfree = §¢2 + §¢A3¢

Lint = L3+ L4+ L5+ Lg
this Lifshtz scalar is constructed of

£3 = 1 (A2¢)(6@¢)2 + OéQ(A(b)S most general 6thfderivative term with
shift sym

We try to check renormalizability and tree unitarity in
for answering the questions of HL gravity
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2. Unitarity and Optical theorem

For answering the Questions, we check the origin of tree unitary
Optical theorem is derivated from Unitarity of S-matrix

(a) STs =1
2
cross section
Remark; “n” is some information of external line

this theorem limits scattering amplitude using a value

1
(1)|Mnn‘21m|Mnn|Z 7T|-/\/lnn‘2 - ‘MHH‘S ;

3 3
(2)Im<f\T\i>:E/dk1---dk“

w1 Wn
ki ko | T (ks ko | T 1)

(1) &(2) determine a power of energy in scattering amplitude of high-energy

5*(Liki — p)

2. Uhitaritv and Optical theorem |

In the case of Lifshitz type theory w2 = fyk6
more detail to how to determine the value

Bk, dk,
Im(f\T\i}zE/ Lo

X (kp ko [T [5) (kg kn [T 1)
Im(2 | T | 2)] = k*
[d3kn
[6°(Xiki —p)] =k ° P2 <6
[6(Zsw; — E)] = k73
(k1= ke | T 0)] = B

5*(Zik; — p)

] — ko Dimension of RHS and LHS lead to the following inequality
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2. Unitaritv and Optical theorem

(i) Theory with Lorentz symmetry

w? = kk®
(a) 2-n scattering

amplitude <n ‘ T ‘ 2> ~ kPn B, <2—n tree unitarity O

(b) 2-2 scattering
amplitude (2 | T | 2) ~ kP2 By <0 tree unitarity O

(eg1) ¢! theory

M~ )\ (N ko) tree unitarity O

X

(e.g 2) Einstein gravity

M ~ k2 tree unitarity X

hant

'2. Uhitaritv and Optical theorem

(i) Theory without Lorentz symmetry /2 = ~k°

(a) 2-n scattering

amplitude <n | T | 2> ~ kPr Gn <6 tree unitarity O
(b) 2-n scattering
amplitude (2 | T" | 2) ~ kP2 B <6 tree unitarity ()

Origin of differentiation is dispersion relation (2 ~ k°

(e.9) Horava gravity ( a part of diagram)

M ~ K tree unitarityis () ??

ot

At least, we can understand the behavior of the
power in high-energy scattering amplitude
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3. Tree Unitarity in Lifshitz scala‘r‘the‘ory

(e.g)4-point function

o

_/\/l ~ k6 k — o0 tree unitarity ()
(cf)

Propagator Vertex g (AQ(b) (@'@2

w21k6 —‘< —o[(kg - k3)(ky)* + -]

4. One loop caICuIatiOn inLifshi‘tzﬂscaIar

e.
(¢-9) extracting the property of leading order, we
Vertex o (A2¢) (8iq5)2 find the following property
One loop graph kapb
M = [ dwd’k Sa
n (w2 + k6)n

M ~ (/dE E'"3)p
if D > 6, nodivergence in E — oo

even if H < 6, there are divergence

but we can renormalize using counter term

this Lifshitz scalar is finite!! and b=6 is critical value!!

b=6 is same value of the power of high-energy limit !!
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Summary
]
1. checking the power of the high energy limit in Lifshitz scalar
the power is independent on the way to take the high-energy limit
(e.g)
we can take the high energy limit
w, k1, ks, and, kg, or, the combination of them
2. We almostly confirmed the equivalence between
renormalizability and tree unitarity in Lifshitz scalar theory
We can use the equivalence for checking
renormalizability of Horava gravity!!
_—

Thank you!





