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Oral Presentations: Fourth Day

Friday 8 November
Morning 1 [Chair: Jiro Soda]
9:30 Takahiro Tanaka (YITP, Kyoto University)
“Graviton oscillation in bi-gravity theory”
[JGRG23(2013)110801]
9:50 Kazuharu Bamba (Kobayashi-Maskawa Institute for the Origin of Particles
and the Universe, Nagoya University)
“F(T) gravity from the Kaluza-Klein and Randall-Sundrum theories and cosmology”
[JGRG23(2013)110802]
10:10 Ryuichi Takahashi (Hirosaki University)
“Observational Upper Bound on the Cosmic Abundances of Negative-mass Compact
Objects and Ellis Wormholes from the SDSS Quasar Lens Search”
[JGRG23(2013)110803]
10:30 Tomohiro Harada (Department of Physics, Rikkyo University)
“Analytic formula for the threshold of primordial black hole formation”
[JGRG23(2013)110804]
10:50 Daisuke Ida (Department of Physics, Gakushuin University)

“First—Quantized Theory of Expanding Universe from Quantum Field in
Mini—Superspace”
[JGRG23(2013)110805]

11:10-30 Break

11:30

12:30

Morning 2 [Chair: Misao Sasaki]

Christian Byrnes (University of Sussex) [Invited]
“Constraining the small scale perturbations in our big universe”
[JGRG23(2013)110806]

Kei-ichi Maeda (Waseda University)
Closing remarks

[*]
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“Graviton oscillation in bi-gravity theory”
by Takahiro Tanaka

[JGRG23(2013)110801]
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"um YUKAWA INSTITUTE FOR
J. [ | \I! THEORETICAL PHYSICS

Graviton Oscillation in viable
bigravity models

Takahiro Tanaka (YITP)
with
Antonio De Felice and Takashi Nakamura
arXiv:1304.3920
partly work with Yasuho Yamashita

Gravitation
waves will be
detected soon!!!

eLISA(NGO)
= DECIGO/BBO LIGO=>adv LIGO -



GW generation is almost confirmed

Pulsar : ideal clock
25

Test of GR by pulsar

binariesé. ."/“'

We know that GWs are emitted from binaries.

tir

stron

ve shift of peria

-40 |-

45

Periastron advance due to GW emission

T T T T T T
L \r!...\‘. Line of zero orbital decay ]

he

PSR B1913+16

lse-Taylor binary

697

d ;b/dt:—2.423 X 10712

Agreement with GR 5
prediction \
\‘\
\\i
SR b LY
1975 1980 1985 1990 1995 2000 2005

Year

What is the possible big surprise when we

directly detect GWs?

Is there possibility that graviton disappears during

its propagation over cosmological distance?

Fony _ 0.997 +0.002

(J.M. Weisberg, Nice and J.H. Taylor, arXiv:1011.0718)



698

Braneworld

Infinite extra-dimension Infinite bulk

RS-1l model, DGP model

Modification of GW propagation is small even if sources
are placed at cosmological distances.

Chern-Simons Modified Gravity

a Voo a,
S DZJAd“xw/—g 0&c""R,, /’)Raﬂ,p(7
Right-handed and left-handed gravitational waves are magnified
differently during propagation, depending on frequencies.

However, the effect is large only in the strong
coupling regime, outside the validity range of EFT.

+Massive gravity
Ch,=0 mmp (O-m*)n,, =0

Just adding mass to graviton seems theoretically
inconsistent - ghost, instability, etc.

—) Bi-gravity
L — V_gR_|_ V_§§+Lmatter(g’¢)+
M. l6rx 167Kk M

Both massive and massless gravitons exist.
— v oscillation-like phenomena?

First question is whether or not we can
construct a viable cosmological model.
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Ghost free bi-gravity
When g is fixed, de Rham-Gabadadze-Tolley massive gravity.
L _\/_gR+\/_§E+V_gi Lmatter
2 Vs T
M 2 2K 2 = M
V, =LV, =7,V, =Z’12 —T,), - T, ETI’[Q/n] )/;. = ,/gikgkj

Even if g is promoted to a dynamical field, the

model remains to be free from ghost.
(Hassan, Rosen (2012))

FLRW background

(Comelli, Crisostomi, Nesti, Pilo (2012))

Generic homogeneous isotropic metrics

ds® = a*(t \—dr +dx2)

ds? = b2 (£ 2 (t)dr* +dx*) o =bfa
—> (60252 +4c,& +c, cha’—ab')z 0
branch 1 branch 2

branch 1:Pathological:
Strong coupling
Unstable for the homogeneous anisotropic mode.

branch 2:Healthy
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Branch 2 background

A very simple relation holds:
Lorf-F/ke =0 fllog&)=c,+3¢,+66,E +6¢,¢

fllog &)= c,& +6¢,E% +18¢,E° +24¢,&*
&=b/a is algebraically determined as a function of p.

M_

We consider only the branches
with F > 0, F’<

/ required for the absence
of Higuchi ghost
(Yamashita and TT)

3

We further focus on low energy regime.

&> & for p 0.

Branch 2 background

We expand with respectto 66 =& - £, .

HZ — IO H2 — /—Q
;) = (w2
effective energy Effective gravitational coupling
density due to is weaker because of the
mass term dilution to the hidden sector.
1 ' ' 3 P
T I - 2)
c-1¢& a G
Effective 1 ,
graviton H = 1+? e
mass Ko

natural tuning to coincident light cones (c=1)
at low energies (p = 0)!
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Why do we have this attractor behavior, c>1 and {5 &,
at low energies? (—Yamashita-san’s talk)

2 2
dS y KK graviton ma?s spectrum

X

L

. 7 - =

otential wells due to
DGP 2-brane model?! Pnduced gravity terms

+[d*xJ-gR& [d*x[-ER
ﬁ? Only first two modes remain at low energy
Ny 52 Eds” mm) identical light cone ¢ =1

/\ h

d—0

Solar system constraint
Ordinary Vainshtein mechanism is not good enough!
G,, =MZT,, +T™)

nv

Ordinary Vainshtain mechanism tells that 70" can be
simply neglected on small length scales for 7™ — 0.

Then, however,
“local effective gravitational coupling M ”

# “cosmological one (1+K§f)Mé”

Here, we do notsend 7/ 0
but we only tune the graviton mass to be small: u° <<c,
hyv = hw
“local effective gravitational coupling”= (1 + ng )Mé

12
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Gravitational wave propagation

Short wavelength approximation:
k>>m, >>H

B —Ah+ =k )=0 AN )

5 - e S Al

h'—2AK — ¢ (h—l:):O (Comelli, Crisostomi, Pilo (2012))
K&

2._ 2 1+K§2 . ﬂ
e ]fc " 2e-)
>k
mass term is important. C #1 is important.
Eigenmodes are Eigenmodes are
h+h, k&h—h - h ok
modified dispersion relation modified dispersion relation
due to the effect of mass due to different light cone

At the GW generation, both & and/ are equally excited.

= — = > k
Only the | h+h, | kE’h—h h,| h  Onlythe
first mode :

- _ first mode
is excited % @ @\X is detected

We can detect only A.

Only modes with k£ ~k_ picks up the non-trivial
dispersion relation of the second mode.

Interference between |:> Graviton oscillations
two modes.

If the effect appears ubiquitously, the model
would be already ruled out.
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Summary

Gravitational wave observations open up a new
window for modified gravity.

Even graviton oscillations are not immediately
denied, and hence we may find something similar to
the case of solar neutrino experiment in near future.

Although space GW antenna is advantageous for the
gravity test in many respects, we should be able to
find more that can be tested by KAGRA.
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“F(T) gravity from the Kaluza-Klein and Randall-Sundrum theories
and cosmology”’
by Kazuharu Bamba

[JGRG23(2013)110802]
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F(T) gravity from the Kaluza-Klein
and Randall-Sundrum theories and
cosmology [110802]

Main reference: Phys. Lett. B 725, 368 (2013) [arXiv:1304.6191 [gr-qc]].

JGRG23
The 23rd Workshop on General Relativity
and Gravitation in Japan
KM i | 8th November, 2013
1P 50th Anniversary Auditrium i,ﬂ
KMy Hirosaki University w

Kobayashi-Maskawa Institute
for the Origin of Particles and the Universe

Presenter : Kazuharu Bamba (KMI, Nagoya University)

Collaborators : Shin'ichi NOj iri (KMI and Dep. of Phys., Nagoya University)
Sergei D. Odintsov (CREA and CSIC-IEEC, Spain)

Contents

I. Introduction
Current cosmic accelerated expansion

II. F(T) gravity
III. From the Kaluza-Klein (KK) theory
IV. From the Randall-Sundrum (RS) theory

V. Summary
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I. Introduction

Current cosmic accelerated
expansion

- Recent observations of Type Ia Supernova
(SNe Ia) has supported that the current
expansion of the universe is accelerating.

[Perlmutter ef al. [Supernova Cosmology Project Collaboration], Astrophys. J.
517, 565 (1999)]

[Riess et al. [Supernova Search Team Collaboration], Astron. J. 116, 1009 (1998)]

2011 Nobel Prize in Physics
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- Suppose that the universe is strictly homogeneous
and isotropic.

_ =

There are two approaches to explain the current
accelerated expansion of the universe.

Reviews: E.g.,

[Copeland, Sami and Tsujikawa, Int. J. Mod. Phys. D 15, 1753 (2006)]

[Nojiri and Odintsov, Phys. Rept. 505, 59 (2011); Int. J. Geom. Meth. Mod.
Phys. 4, 115 (2007)]

[Capozziello and Faraoni, Beyond Einstein Gravity (Springer, 2010)]
[De Felice and Tsujikawa, Living Rev. Rel. 13, 3 (2010)]

[Clifton, Ferreira, Padilla and Skordis, Phys. Rept. 513, 1 (2012)]
[KB, Capozziello, Nojiri and Odintsov, Astrophys. Space Sci. 342, 155 (2012)]

6

Gravitational field equation
_ .2

Gravity Matter

G pv - Einstein tensor

TW : Energy-momentum tensor

I~€2 = 87T/¢MP12

Mpy : Planck mass

(1) General relativistic approach —— Dark Energy

(2) Extension of gravitational theory
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(1) Candidates for dark energy

Cosmological constant, Scalar field, Fluid

(2) Extension of gravitational theory

» F (R) gravity F ( R) : Arbitrary function of the Ricci scalar R
* DGP braneworld scenario = Galileon gravity

- Massive gravity * Bimetric gravity

- Extended teleparallel gravity (F(7) gravity)

F (T) . Arbitrary function of the torsion scalar

Condition for accelerated expansion

Flat Friedmann-Lema1 tre-Robertson-Walker (FLRW) space-time

i 2
ds® = dt? — a®(t) Y., , 55 (da?) a(> 0) :Scale factor

Equation of a(t) for a single perfect fluid 0 : Energy density
. 2
a __ K : Pressure
f= -2 (14+3w)p P
=0/0t

a > 0 : Accelerated expansion

) |w

W : Equation of state (EoS) parameter

cf w=—1

: Cosmological constant

=N lav

<_

|
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PLANCK data for the current W (=constant)

[Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO]]

w=—1.132

“05:  (95%; Planck+WP+BAO)

w = —-1.09+0.17 (95%; Planck+WP+Union2.1)

~1.137010 (95%; Planck+WP+SNLS)

<
I

w=—1.24701%  (95%; Planck+WP+H,)

WP: WMAP, BAO: Baryon Acoustic Oscillation

Hubble constant ( H() ) measurement

PLANCK data for the time-dependent W

2D Marginalized posterior distribution

92
88

-+ 84

- 80

- 76

72

From [Ade et al.
[Planck Collaboration],
arXiv:1303.5076
[astro-ph.CO]].

w(a) =

wo + we(l — a)

. (68% CL)
64 (95% CL)
%20 16 12 08 _os
Wo
wo = —1.04*015 (95%; Planck+WP+BAO)
w, < 1.32 (95%:;, Planck+WP+BAO)
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11

Motivation and Subject

- It is meaningful to investigate theoretical
features and cosmological aspects of
modified gravity theories.

We explore the four-dimensional effective
F(T) gravity originating from higher-
dimensional space-time theories, in particular

the Kaluza-Klein (KK) and Randall-Sundrum
(RS) theories.

II. F(7) gravity
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13

Teleparallelism

A B NAB : Minkowski metric

* Yuv = TABCE, €,
ea(x") : Orthonormal tetrad components

* 10, =T0W — T = ¢ (deit — ,€i}) : Torsion tensor

Fﬁ(yw) = ei&ue;‘l : Weitzenbock connection

% 1 and V are coordinate indices on the manifold and also run over O, 1, 2, 3,
and e 4(x") forms the tangent vector of the manifold.

% Anindex A runs over 0, 1, 2, 3 for the tangent space at each
point z* of the manifold.

14

C> T'=5,""T",, :Torsion scalar

HY

) (T’“’ b TV P T "“’) - Contorsion tensor

P

[Nl I

Sp v (K,u,v ) 14 (55 TO(VQ . 55 Tau&)

Il
DO | —

[Hehl, Von Der Heyde, Kerlick and Nester, Rev. Mod. Phys. 48, 393 (1976)]

[Hayashi and Shirafuji, Phys. Rev. D 19, 3529 (1979)
[Addendum-ibid. D 24, 3312 (1981)]]
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15

Extended teleparallel gravity
Action
S = /d4x\e\ (};Ej;) +EM> : F(T) gravity
Cf. F (T) = T": Teleparallelism

le| = det (e}) = /=g

L1 : Matter Lagrangian

(M) V. Energy-momentum

e . T p  tensor of matter
Gravitational field equation
1 pv / A p v/ 77 F// 1 v 52 p (M) ¥

% A prime denotes a derivative with respect to 1.

[Bengochea and Ferraro, Phys. Rev. D 79, 124019 (2009)]

16

- Gravitational field equation in F(7) gravity is
2nd order, while it is 4th order in F(R) gravity.

- For the flat FLRW space-time with the metric:

ds? = di? — a*(t) o105 (d2')" ) T = —6H

gMV — dlag(17 —CL2, —CLQ, —(1,2)

en = (1,a,a,a) H =

: Hubble parameter

Q|
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17

Gravitational field equations ,
PDE : Dark energy density

2

K
H? = ? ( om + pDE) PpE : Pressure of dark energy
. p PM, Py
H = —3 (pM + Py + PDE T PDE) : Energy density and

pressure of dark energy

1 y
PDEZQ—FLQ(—T—F%-QTF)

Pop=——[4(1 — F' = 2TF"YH — T — F + 2TF'

2K2

Continuity equation

poe + 3H (ppE + Ppe) =0

18

Example of F(7) gravity model

UT() i ”LLI})
D =T+~ T | = In(—)—7(1—e"/T)
T T
[KB, Geng, Lee and Luo, JCAP 1101, 021 (2011)]
1 — QW
v = u(> 0) : Positive constant

2u~12 4+ [1 — (1 — 2u)e"]

' = o /o, Ty =T(z = 0)
p((:?i)t = 3HZ/ K? e % — 1 :Redshift

Cf. For the cosmological dynamics, see also, e.g.,
[Wu and Yu, Phys. Lett. B 692, 176 (2010); 693, 415 (2010)].



-0.5

0.6

0.7 F

0.8 r

097F

Cosmological evolutions of WpE

Whoe

u=20.5 )
" (dash-dotted i
e

-

.
l“l:- -

From [KB, Geng, Lee and

714

19

Luo, JCAP 1101, 021 (2011)].

line) "/ u=0..8
J (dashed line)
II.
'
i
!
/
o
I’, !
- l,. < WDE — — 1
N
N 7
u = 1 (solid line) Crossing of the

phantom divide

Z : Redshift

I1I. From Kaluza-Klein (KK)

theory
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21

Action in five-dimensional space-time

5
(5)g _ /d% )(5)6) F(OT)

2
2/4;5

1 1
(5)T — ZTabcTa . + ETabCTC u— Tab ach .
Ble = /B)g %« a,b, ... runover 0,1,2,3,5.
59 _ /(5 —3 % “5” denotes the component of the
Ky = 8mGs = (( )MPl) fifth coordinate.

= The superscript or subscript of (5) or 5 mean the quantities
in the five-dimensional space-time.

[Capozziello, Gonzalez, Saridakis and Vasquez, JHEP 1302, 039 (2013)]

22

Original KK compactification scenario

= One of the dimensions of space is compactified to a
small circle and the four-dimensional space-time 1s
extended infinitely.

* The radius of the fifth dimension 1s taken to be of
order of the Planck length in order for the KK effects

not to be seen.

The size of the circle is so small that phenomena

in sufficiently low energies cannot be detected.
[Appelquist, Chodos and Freund, Modern Kaluza-Klein Theories
(Addison-Wesley, Reading, 1987)]

[Fujii and Maeda, The Scalar-Tensor Theory of Gravitation
(Cambridge University Press, Cambridge, United Kingdom, 2003)]
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23
Effective action in the four-dimensional space-time

Metric in five-dimensional space-time

(5) Gab = v 0 5 ® : Dimensionless
0 _Q/) homogeneous scalar field

ed = diag(1,1,1,1,0), nw = diag(l,-1,-1,-1,-1)

a

= ik = [ d'alel 5 6F(T + 6720,60"0)

L i

% Our KK reduced action is compatible with the results in
the reference: [Fiorini, Gonzalez and Vasquez, arXiv:1304.1912 [gr-qc]].

24
Teleparallelism with a positive
cosmological constant

- F(T) =T — 2\4 , A4(> 0) : Cosmological constant

602, £E=1/4

- Wedefine 0 as @

) SE|Fr)y=T—27, =

[ d*zle| (1/k2) [(1/8) 0T + (1/2) 8,,00"c — A4]

Canonical kinetic term
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25

Cosmology in the flat FLRW space-time
Gravitational field equations

(1/2)6% — (3/4) H?0? + Ay = 0

6% + Hoo + (1/2) Ho? = 0

—) (3/2) H?0® — 2Ay + Hoo + (1/2) Ho* = 0
Equation of motion of O

g+3Ho+ (3/2) H*0 =0

Cf. [Geng, Lee, Saridakis and Wu, Phys. Lett. B 704, 384 (2011)]

26
Solution

H = H;,s = constant(> 0)

o = b (t/tl) + b bl, b2(> O), t1 :Constants
«» Inthe limit ¢ — 0, we can find approximate expressions

Hins =~ (2/b2) \/A4/3

O"riﬁbg

bl ~ —(1/2) f_)QHinftl ~ —\/A4/3t1

a ~ aexp (Hntt), a(>0)

C> An exponential inflation can be realized.
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IV. From the Randall-Sundrum
(RS) theory

28

The RS type-I and II models

* In the RS type-I model, there are a positive tension
brane at y = 0 and a negative one at ¥y = S , where ¥
1s the fifth direction.

ds* = e 2Wl/lg, (x)datds” + dy®, | = /=6/A;

e*2|y|/ ! : Warp factor A5(< O) : Negative cosmological
constant in the bulk

J 1 F-00
» In the RS type-II model, there is only one brane with the
positive tension floating in the anti-de Sitter bulk space.

[Randall and Sundrum, Phys. Rev. Lett. 83, 3370 (1999); 4690 (1999)]

Cf. [Garriga and Tanaka, Phys. Rev. Lett. 84, 2778 (2000)]
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29

Procedures in the RS type-I1 model

Pioneering work:

[Shiromizu, Maeda and Sasaki, Phys. Rev. D 62, 024012 (2000)]

e

Application to teleparallelism:

[Nozari, Behboodi and Akhshabi, Phys. Lett. B 723, 201 (2013)]

30

(1) The induced equations (Gauss-Codazzi equations) on the
brane are examined by using the projection vierbein of
the five-dimensional space-time quantities into the four-
dimensional space-time brane.

(ii) The Israel's junction conditions to connect the left-side

and right-side bulk spaces sandwiching the brane are
investigated.

(iii) Provided that there exists Z> symmetry, i.e., ¥ < — Y ,

in the five-dimensional space-time, the quantities on the
left and right sides of the brane are explored.
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31

Cosmology in the flat FLRW space-time

Friedmann equation on the brane

dF (T 1 n2)
[—[2% — _E[F(T) —4A — 2%2,0M - (7) Q,O§4j|

Q = (11 — 60wy + 93w3;) /4 «——— includes the contributions
from teleparallelism,

wy = Pu/pu which do not exist in

general relativity.

A = As + (mg / 2)2 A?  : Eeffective cosmological constant in the brane

)\(> O) : Tension of the brane

G = [1/(3m)] (x3/2)" A
Case (1)
F(T) =T —2As

— H = Hpg = \/As + k2)\2/6 = constant

a(t) = apg exp (HDEt) , CLDE(> O)

An approximate de Sitter solution on the brane
can be realized.

* At the dark energy completely
dominated stage, we can consider
that wy = 0.



Case (2)

F(T) = T2/M2—|—04A5 M : Mass scale

(¢ : Constant
— H = Hpg = [(M2/108) j]1/4 — constant

T = (a—4)As — 4 (k2/2)" A2
a(t) = AapE €Xp (HDEt) , CLDE(> O)

Similar approximate de Sitter solution
on the brane can be obtained.

V. Summary

721

33
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35
* Four-dimensional effective F(T) gravity coming from

the five-dimensional KK and RS space-time theories

have been studied.

- With the KK reduction, the four-dimensional effective
theory of F(7) gravity coupling to a scalar field has
been built.

* For the RS type-II model, the contribution of F(7)
gravity appears on the four-dimensional FLRW brane.

- Inflation and the dark energy dominated stage can
be realized in the KK and RS theories, respectively,
due to the effect of only the torsion in teleparallelism
without that of the curvature.

Backup Slides
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No. 6

General relativistic approach
(i) Cosmological constant
(ii) Scalar field :

- x-matter, Quintessence «—— Canonical field

[Chiba, Sugiyama and Nakamura, Mon. Not. Roy. Astron. Soc. 289, L5 (1997)]
[Caldwell, Dave and Steinhardt, Phys. Rev. Lett. 80, 1582 (1998)]

Cf. Pioneering work: [Fujii, Phys. Rev. D 26, 2580 (1982)]

- Phantom Wrong sign kinetic term

[Caldwell, Phys. Lett. B 545, 23 (2002)]
- K-essence

Non canonical kinetic term
[Chiba, Okabe and Yamaguchi, Phys. Rev. D 62, 023511 (2000)]
[Armendariz-Picon, Mukhanov and Steinhardt, Phys. Rev. Lett. 85, 4438 (2000)]
* Tachyon <« String theories « The mass squared is negative.
[Padmanabhan, Phys. Rev. D 66, 021301 (2002)]

PLANCK 2013 results of SNLS )

Magnitude residuals of the A CDM model that best fits
the SNLS combined sample

1 [ (a) SNLS combined

= i
O
QO
o ]
& ~«ACDM
Im model
“c

0 0.2 0.4 0.6 0.8 1

2 : Redshift
From [Ade et al. [Planck Collaboration], arXiv:1303.5076 [astro-ph.CO]].
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5
Distance
estimator SNLS data
4 |« Flat A\
: cosmology
421
o 40:—
=. B
38 Pure matter
[ ¢ cosmology
361% ,
348
T T T T T . .
0.2 04 0.6 0.8 1 Z : Redshift

SN Redshift

From [Astier ef al. [The SNLS Collaboration], Astron. Astrophys. 447, 31 (2006)].

Baryon acoustic oscillation (BAO) .

200 ,

Z 1 Special
C 1 pattern in the
150 T large-scale
1 correlation
100 | — function of
. - 1 Sloan Digital
% 50 - |T a3 Sky Survey
i C ] (SDSS)
C ] luminous red
O 3 I ] galaxies
- Pure cold dark matter (CDM) [No=
-50 | L]+
- model: “No peak” "
~100 i l L 1 P I B | I:

—_—
)
(-

20 40 60 80 100 200
Comoving Separation (h™! Mpec)
From [Eisenstein et al. [SDSS Collaboration], Astrophys. J. 633, 560 (2005)].

Cf. [Yamamoto, astro-ph/0110596; Astrophys. J. 595, 577 (2003)]
[Matsubara and Szalay, Phys. Rev. Lett. 90, 021302 (2003)]
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10

PLANCK data for the current W

—  Planck+WP+BAO —  Planck+WP-+SNLS From [Ade et
—  Planck+WP+Union2.1 —  Planck+WP al. [Planck
- . e e . Collaboration]
M 1 t t t i
arginalized posterior (lllS ribu 10[n | | | arXiv:1303.507
6 [astro-
1.4 | ' A
| ph.CO]].
I
0.8 | | 1w = constant
|
x WP: WMAP
Q:E“ 06 .
o BAO: Baryon'
04 ] Aco'usuf:
| Oscillation
|
0.2 .
|
00 ! ] |
-20 -16 -12 -08 -04
w
No. 15

9-year WMAP data of current W

[Hinshaw et al., arXiv:1212.5226 [astro-ph.CO]]

For constant W :

~1.084+0.063  (fat) -
w = 687 CL
1.12270068  (onflat)

(From WMAP-+eCMB-+BAO-+H;+SNe-)

% Hubble constant ( H)) measurement
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Time-dependent 70 N1
w(a) =
wo + we(l — a)

(68% CL)

f [] CMB+BAO+H,

- [] CMB+BAO+H+SNe |
—2 [ 1 1 1 1 I 1 1 1 1 i 1 1

—1.5 ~1.0 ~0.5
WO

For the flat universe:

(95% CL)

From [Hinshaw et al.,
arXiv:1212.5226 [astro-ph.CO]].

Wy : Current value of W

(From WMAP+eCMB

+BAO-+Hy+SNe.)

wy = —1.177013 — (0.357920

—0.12 » Wq

(iii) Fluid :

- (Generalized) Chaplygin gas

Z o049 (68% CL)

No. 7

Equation of state (EoS): P=— A / pu

A > 0, u : Constants

p : Energy density

P : Pressure

[Kamenshchik, Moschella and Pasquier, Phys. Lett. B 511, 265 (2001)] «— (u = 1)

[Bento, Bertolami and Sen, Phys. Rev. D 66, 043507 (2002)]
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No. 8

Extension of gravitational theory

- F(R) gravity F( R) : Arbitl.‘ary function of
the Ricci scalar R

Cf. Application to inflation: [Starobinsky, Phys. Lett. B 91, 99 (1980)]

[Capozziello, Cardone, Carloni and Troisi, Int. J. Mod. Phys. D 12, 1969 (2003)]
[Carroll, Duvvuri, Trodden and Turner, Phys. Rev. D 70, 043528 (2004)]
[Nojiri and Odintsov, Phys. Rev. D 68, 123512 (2003)]

Scalar-tensor theories «— fl(qb)R

fi (Cb) (¢ =1,2) :Arbitrary function of a scalar field )

[Boisseau, Esposito-Farese, Polarski and Starobinsky, Phys. Rev. Lett. 85, 2236 (2000)]
[Gannouji, Polarski, Ranquet and Starobinsky, JCAP 0609, 016 (2006)]

No. 9

Ghost condensates scenario

[Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405, 074 (2004)]

- Higher-order curvature term

L Gauss-Bonnet invariant with a coupling to
a scalar field: f5(¢)G

G=R?— 4R, R* + IRy e RI7P? Rlﬂ/ : Ricci curvature tensor

: Gauss-Bonnet invariant . D:
R wwpo - Riemann tensor

[Nojiri, Odintsov and Sasaki, Phys. Rev. D 71, 123509 (2005)]

- f(G) gravity — % + f(9) k> = 81G
(G : Gravitational constant

[Nojiri and Odintsov, Phys. Lett. B 631, 1 (2005)]
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No. 10
- DGP braneworld scenario

[Dvali, Gabadadze and Porrati, Phys. Lett B 485, 208 (2000)]
[Deffayet, Dvali and Gabadadze, Phys. Rev. D 65, 044023 (2002)]

- Non-local gravity «~— ﬁf ([J"'R) : Quantum effects

[Deser and Woodard, Phys. Rev. Lett. 99, 111301 (2007)]
[]: Covariant d'Alembertian [Nojiri and Odintsov, Phys. Lett. B 659, 821 (2008)]

F(T) gravity Extended teleparallel Lagrangian
described by the torsion scalar 7.

[Bengochea and Ferraro, Phys. Rev. D 79, 124019 (2009)]
[Linder, Phys. Rev. D 81, 127301 (2010) [Erratum-ibid. D 82, 109902 (2010)]]

* “Teleparallelism” : One could use the Weitzenbock connection, which has no
curvature but torsion, rather than the curvature defined by
the Levi-Civita connection.

[Hayashi and Shirafuji, Phys. Rev. D 19, 3524 (1979) [Addendum-ibid. D 24, 3312 (1982)]]

No. 11

- Galileon gravity «—— []¢ (0"$0,0)

Longitudinal graviton (a branebending mode ¢ )

[Nicolis, Rattazzi and Trincherini, Phys. Rev. D 79, 064036 (2009)]

- Massive gravity «— Graviton with a non-zero mass

[de Rham and Gabadadze, Phys. Rev. D 82, 044020 (2010)]
[de Rham and Gabadadze and Tolley, Phys. Rev. Lett. 106, 231101 (2011)]

Review: [Hinterbichler, Rev. Mod. Phys. 84, 671 (2012)]
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Example of F(7) gravity model

* The model contains only one parameter U
if one has the value of Q) .

[KB, Geng, Lee and Luo, JCAP 1101, 021 (2011)]

Cosmological evolutions of Opg, O and Q,

1

u=1
0.9r

0.8
0.7F

0.6

Dark energy
dominated
stage

0.5

041

0.3

0.2

0.1r

0 . ' From [KB, Geng, Lee and
Luo, JCAP 1101, 021 (2011)].
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Metric in five-dimensional space-time

w0
(5)gab — (96 ¢2> : gb — (p/gp* . Dimensionless

homogeneous scalar field

@« :Fiducial value of ¥

CDQ — R20? ‘R : Rradius of the compactified space

0 : Dimensionless coordinates such as an angle

(5)9 = Vv gR\@ § : Determinant of the metric corresponding to
the pure geometrical part represented by

Veom = f gdfl  : Compactified space volume

31

Settings in the RS type-1I model

= We start with the equation in the five-dimensional space-time
with the brane whose tension is a positive constant.

» We consider that the vacuum solution in the five-dimensional
space-time is the AdS one, and that the brane configuration is
consistent with the equation in the five-dimensional space-time.

C> This implies that the brane configuration with a positive
constant tension connecting two vacuum solutions in the
five-dimensional space-time, namely, the condition of the
configuration is nothing but the equation for the brane.
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35

(1) The Israel's junction conditions to connect the left-side and
right-side bulk spaces sandwiching the brane are investigated.

= The first junction condition is that the vierbeins induced
on the brane from the left side and right side of the brane
should be the same with each other.

= Moreover, the second junction condition is that the
difference of the tensor S, between the left side and
right side of the brane comes from the energy-momentum
tensor of matter, which is confined in the brane.

(ii1) Provided that there exists Z5 symmetry,i.e.,y < — 1y ,
in the five-dimensional space-time, the quantities on the
left and right sides of the brane are explored.

36

= The difference between the scalar curvature and the torsion
scalar is a total derivative of the torsion tensor.

— This may affect the boundary.

= [t has been shown that in comparison with the gravitational
field equations in general relativity, the induced gravitational
field equations on the brane have new terms, which comes
from the additional degrees of freedom in teleparallelism.

= These extra terms correspond to the projection on the brane
of the vector portion of the torsion tensor in the bulk.
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Cf. Other solution 38

For F(T) =T, A=0,Q=28/3, and wy = —5.5 x 1073,

H? = (57/3) pr [1 4 pm/ (2]

[Astashenok, Elizalde, de Haro, Odintsov and Yurov, Astrophys. Space Sci. 347, 1 (2013)]

Case (2) _
M  : Mass scale
F(T) - TQ/M2+QA5 (¢ : Constant

1/4
/ = constant

— H = Hpg = [(M?/108) J]
J = (a—4)As —4(/{%/2)2/\2

a(t) = AapEg exp (HDEt) , CLDE(> O)
T(>0) = a>4+ (k202 /As



“Observational Upper Bound on the Cosmic Abundances
of Negative-mass Compact Objects and Ellis Wormbholes
from the SDSS Quasar Lens Search”
by Ryuichi Takahashi

[JGRG23(2013)110803]
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Observational Upper Bound
on the Cosmic Abundances of
Negative-mass Compact Objects
and Ellis Wormholes
from the SDSS Quasar Lens Search

Ryuichi Takahashi & Hideki Asada
(Hirosaki U)

0. Abstract

Observational constraints on cosmic abundances of
negative-mass compact objects & Ellis wormholes

from SDSS quasar lens survey

Source
(quasar)
‘ Lens
Observer
= Ellis wormhole & Negative mass object

If there are Negative masses or Ellis wormholes in the Universe

Distant quasars seen as multiple images by gravitational lensing
SDSS quasar survey didn’t find such multiple images

As a result, we can set an observational upper bound



1. Introduction

Negative Mass Object

: Source of repulsive gravitational force

It has “negative” gravitational mass
The inertial mass can be positive or negative

CamnlS

’ \
LAl \
(mﬁl — G‘a-GZ—G (Eq. of Motion)
\~_’, r

: Theoretical hypothetical object
: Possible ideas have been discussed since 19" century
in analogy with electric charge

: It have not been found observationally

Motion of Negative Mass in Newtonian Mechanics

m Negative mass (“negative” gravitational mass
& “positive” inertial mass)
@ oOrdinary matter (positive gravitational & inertial masses)

= Negative mass and Ordinary matter
m “repulsive” '

= Two Negative masses

N N

“attractive”

735



Negative-Masses Clustering in the Universe

(N Negative mass O Ordinary matter

Dark matter halo composed
of ordinary matter - =S

/2 \
P 1 @ !
\ \
| . \ \9_ -7
\ /
\‘ 7/ -~ \\ .
S~=-- /m , Negative mass clump
‘\ £ ! resides in void
\ p— /

-

/ \ // \\
| @ \ PR l‘&\
N A ' !

/ \
o " I @ \ %
\\,_’/I

Motion of Negative Mass in Newtonian Mechanics

m Negative mass (“negative” gravitational mass
& “negative” inertial mass)

‘ Ordinary matter (positive gravitational & inertial masses)

* Ordinary matter and Negative mass

N @

“ @ escapes from ()"

= Two Negative masses

N N

“repulsive”
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Negative-Masses Clustering in the Univesers

(N Negative mass O Ordinary matter
Dark matter halo composed PN
of ordinary matter /m \

| \

/ \ N ’

1 @ \ ~--

\ /

N~ _ -7 Negative Masses exist in Dark Haloes

7 TN
1 / \
/ /,__\ | l\
\ \
L} Y N Jbe
\ /

Wormbhole

“Tunnel” connects distant space-time
theoretical prediction of general relativity

A solution of Einstein Eq.

737
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Ellis wormhole

= a solution of Einstein eq.

* massless scalar field

. a :throat radius
Metric

ds? = dt? —dr? — (r? + a?)(d6? + sin®0dp?)

no interaction with matters
no light emission

light ray path is deflected by gravitational lensing

Previous upper bound on abundance of negative masses

Cramer+ 1995 Magnification curve
Gravitational microlensing by c
negative masses in our galaxy % 5

E‘g Vie 3

[ =

g 2

2 ] Va k

= Time
FIG. 3. Intensit rofile of ravitationally negative

TorreS+ 1998 anomalous complztl::t};mfu object (C?NiCHO} as it :asseg near

the source-detector axis DS. The several curves correspond to

H H H H minimum dimensionless impact parameter values By = 0.50
GraVItatIonaI IenSIng Of dIStant AGNS (at edge of plot), 0.75, 1.00, 1.25, 1.50, 1.75, 2.00, 2.10, and
2.20 (small central bump). (See text for definitions of the

(Active Galactic Nuclei) by negative nrinbles)
masses

lpl <1073° gcm™  for [M| = 0.1Mg

|Q] < 1077 (cosmological density parameter)
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Previous upper bound on abundance of Ellis wormhole

Magnification curve

Abe 2010

Microlensing effect in

our galaxy A |
:t Ellis wormhole Y. \:
o 2 N ! ‘

Constraint on wormholewith —— —— | =~ —
throat radius

a=100— 10"km o

Yoo+ 2013

Gravitational lensing of distant
GRBs(Gamma Ray Bursts) by
wormholes

n<107°AU3 for a = 0.1cm

Observational data we used

SDSS (Sloan Digital Sky Survey) Quasar Lens Search

Largest homogeneous sample of Quasars

= # of quasars 50836

* redshifts z=0.6-2.2

= apparent magnitude <19.1 (i band)

= Lensed quasar systems 19 (image separations 1-20arcsec)

= No multiple image lensed by negative masses and Ellis wormholes
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Lensing by Negative Mass

Negative point mass(M < 0)

Deflection angle is same as ordinary point mass lens,
but its sign is opposite

Deflection angle

\ a
b
Impact parameter Lens
. 4IM]
ad = ——
b

# of images

Source
p > 20k double images

Image+
0,

I\ Image—
—————————— 6_

B o
mage is brighter
0. =5 (B + B2~ 46)



# of images

p < 20g zero image

Gravitational lensing by Ellis wormhole

b )&

Impact parameter

Deflection angle

throat radius a

741
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Lens equation

Einstein radius

—_ — 3_
,8 =0 0E|9|3 HE:(naz DLS)

1/3

4 DiDg

Double images form

throat radius estimated from Einstein radius

3/2 1/2
— 10h~1pc(CE D1Ds/Drs
a = 10h pC(l,,) (1h—1Gpc)2]

throat radius a = 10 — 100pc

Negative Masses & Ellis Wormholes are distributed homogeneous

Number density of lenses n - Lensing probability o< n

Sources

Lenses (Quasars)

Observer
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Upper Bound on Cosmological Number Density of Negative Mass

Number density

105 I e B Bac B i R B ke

] negative—mass object |

: upper bound :

5 r 1
= 10°F :
g8 :
= >
c r ]
.r

107F :

: . :

r 68%

] o]

10° 10”10 10'® 10"

mass |M| (Me/h)

Mn
0O =

Pcrit

(cosmological
density parameter)

Upper Bound on Cosmological Number Density of Negative Mass

image

Number den

105 S Rt T B S B i B mua b

negative-mass object ;

3

upper bound 1

separation < larcsec 1

= 10 \™ !
k)
Q.
2
c

10

10

10 10"
mass |M| (Me/h)

10'°

Mn
0=
Pcrit
! (cosmological

{ density parameter)
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Upper Bound on Cosmological Number Density of Negative Mass

105 Ml Baaes T Bicee Se Bicie s R mi b
negative-mass object :
:
B upper bound 3 Mn
A 1
‘u;: @ 0:, 3 Pcrit
S < 107 7 (cosmological
t o ] L] L \
Q. 3 1
S 3
g = |
g s ey W e, T :
2
107°F Q=10 ]
r N\
- 5
68%
3 E
o T T T IR T e T e e g i %)

10" 10" 10" 10'® 10'®

mass |M| (Me/h)

Upper Bound on Cosmological Number Density of Ellis Wormhole

Ellis wormhole 3
3 1
Z o f
¥ 10°F 3
c T i upper bound 5
v = 1 PP 3
© K3) 3
E Q. L 4
E
2 = |
€ c [
=1 ]
2 [
3
107k
]
: 1 1 N 1 1
10° 10° 10*

throat radius a (pc/h)



Upper Bound on Cosmological Number Density of Ellis Wormhole

Ellis wormhole

745

Image separation < larcsec g
§ % : ukper bound 1
3 = )
g e Image separation > 20arcsec
2 95%

§o7°

10° 10° 10
throat radius a (pc/h)

Summary

* Negative Mass Object

n < 1078(10™*) h3Mpc~3

for mass |M| > 10*°(102)Mg

Q] < 10™* formass M = 10% 1M

* Ellis Wormhole
n < 10~* h3Mpc—3

for throat radius a = 10 — 10*pc



Thank you for your attention

Enjoy your stay in Hirosaki
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‘“Analytic formula for the threshold
of primordial black hole formation”
by Tomohiro Harada

[JGRG23(2013)110804]
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Analytic formula for the threshold of primordial
black hole formation

Tomohiro Harada

Department of Physics, Rikkyo University

The 23rd JGRG meeting @ Hirosaki U, 5-8 Nov 2013

In collaboration with Yoo (Nagoya U) and Kohri (KEK)
arXiv:1309.4201; PRD88, 084051 (2013)

T. Harada with Yoo and Kohri PBH Threshold

Outline

0 Introduction
e Model and Maximum

© PBH Threshold

e Summary

T. Harada with Yoo and Kohri PBH Threshold
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Introduction

Outline

o Introduction

T. Harada with Yoo and Kohri PBH Threshold

Introduction

Primordial black holes

@ Primordial black holes (PBHs) may have formed from
primordial fluctuations (Zeldovich & Novikov 1967,
Hawking 1971).

@ PBHSs can be used as a probe into the early Universe.
(Carr 1975).

{Galactic Y

EGB
CMB};21em

0 10 20 30 40 50
log,((Mg)

Carr et al. (2010)

T. Harada with Yoo and Kohri PBH Threshold
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Introduction

Condition for the PBH formation

@ An analytic estimate: Carr (1975)
W=>0c <0y <Omax =1,

where the EOS is p = wpc? and 6y is 6 = (p — pp)/pp at
the horizon crossing. §; = 1/3 for radiation (w = 1/3).
@ The production rate (5 is very sensitive to dc.
@ Numerical relativity simulations
@ §;~ 0.43 — 0.47: Musco et al. (2005), Polnarev & Musco
(2009)
o /. for different values of w: Musco & Miller (2012)
o More detailed study with radiation: Nakama et al. (2013)
@ Jmax IS Not due to the separate universe condition but due
to geometry: Kopp et al. (2011)

T. Harada with Yoo and Kohri PBH Threshold

Introduction

Questions

@ How good Carr’s condition is in comparison with the recent
numerical results?

@ Can we improve Carr’s condition, which was obtained 38
years ago?

T. Harada with Yoo and Kohri PBH Threshold
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Model and Maximum

Outline

© Model and Maximum

T. Harada with Yoo and Kohri PBH Threshold

Model and Maximum

Three-zone model

@ The background universe: a flat Friedmann for r > ry
@ The overdense region: a closed Friedmann

ds? = —c2dt? + &2(t)(dx? + sin? xdQ?) for 0 < x < xa.

The areal radius of the overdensity is Rz = a(t) sin xa.
@ The underdense layer compensates the overdensity.

T. Harada with Yoo and Kohri PBH Threshold



Model and Maximum

Maximum amplitude

@ The Friedmann equations

2
= BWSGp - % and H2 =

H\? )
(5/-/— <I‘Ib> — COS Xaa

at the horizon crossing R, = Ry, = cH, .
@ In the uniform Hubble slice, on which H = Hj, it follows

87 Gpp

2
H 3

give

0<dopt =siny,<1,

where 61 = 1 holds only for y, = /2. This is a
3-hemisphere and not the separate universe x5 = .

T. Harada with Yoo and Kohri PBH Threshold

Model and Maximum

Trapped surfaces and apparent horizons

@ The Misner-Sharp mass M for the closed Friedmann is

given by
a\?| .,
1+ <C> ] sin”™ x,

@ An apparent horizon is given by a 2-sphere on which
2GM/(c?R) = 1.

@ Therefore, if x4 > 7/2, the region has a (future) apparent
horizon immediately after the maximum expansion.

2GM
c2R

T. Harada with Yoo and Kohri PBH Threshold
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PBH Threshold

Outline

© PBH Threshold

T. Harada with Yoo and Kohri PBH Threshold

PBH Threshold

Jeans radius and Carr’s threshold formula

@ At the maximum expansion, the areal radius R, max of the
overdense region which goes into a PBH should satisfy

HJ < Ra,max < @max,

where R, is the Jeans radius.
@ In an analogy with Jeans’s analysis in Newtonian gravity,
one can adopt the following choice:

1
Ry =vVwe————
J /87 Gpmax/3

After some calculation, we find
w < S < 1.

— \/Wamax .

This is nothing but Carr’s condition. However, this is clearly
dependent on the choice of R;.

T. Harada with Yoo and Kohri PBH Threshold
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PBH Threshold

Solution for the overdense region

@ Defining the new variables  and f such that
a=a'""  di=(1+3w)3"/ (3wt
the Friedmann equation can be integrated to give

1 —cosn i n—sinn

2 ) max T Y

o~

a= émax

where thax = (7/2)(8max/€)-
@ The line element can be rewritten in the form

1

2 _x2/(1+3w) [
as" =& (1 + 3w)2

dn? + dx? + sin® xdQ?| .

T. Harada with Yoo and Kohri PBH Threshold

PBH Threshold

Trajectory of sound waves

@ The sound wave propagates in the closed Friedmann
geometry according to
dx dy AT

s G s .
a g vwe or o T 3w

| Future apparent horizon

Maximum expansion

3 Sound wave

| Past apparent horizon

X

Ao 2

T. Harada with Yoo and Kohri PBH Threshold




PBH Threshold

New analytic formula

@ Let us adopt the following criterion:
If and only if the overdensity reaches the maximum
expansion before the sound wave crosses over the radius,
it collapses to a black hole.
Equivalently, the sound crossing time > the free-fall time

@ This reduces to the following condition:

VAT
143w

Xa >

W
1+3w)/

or Ry = amaxSin (

@ This leads to the following threshold value:

UH _ ain2 W\/W
dfe = sin <1+3W>.

T. Harada with Yoo and Kohri PBH Threshold

PBH Threshold

Density perturbation in the comoving slice

@ Most of the numerical simulations of PBH formation have
been implemented in the comoving slice.

@ Polnarev and Musco (2007) introduce the asymptotic
quasihomogeneous (AQH) solutions and use them for
setting initial data.

e Defining § = 6$°M(R,/Ry,)?, where 5§°M is § in the
comoving slice in the first-order AQH solution, we can find
for the present model

3(1+w)

T UH
"= 5iaw H

@ § is used as the measure of the initial density perturbation.

T. Harada with Yoo and Kohri PBH Threshold
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PBH Threshold

Comparison with the numerical result

Museo & Miller (2012)
Carr
- (:;LII,'_'.L‘(L [T G
s - Maximum ——
0.6 """ _..-""‘
0.4 F i o
0.2
[ L - . )
1} 0,2 0.4 0.6 0.8
w

Figure: Carr’s formula has a factor-of-10 error.

T. Harada with Yoo and Kohri PBH Threshold

PBH Threshold

Comparison with the numerical result

Museo & Miller (2012)
Cur formula
i Carr
0.8 Ganged Carr ——emm
Maximum ——
0. | .
04 _"'_————__
0.2
0 L L
1} 0.2 0.4 .6 0.8
w

Figure: Our new formula agrees within 10-20%.

T. Harada with Yoo and Kohri PBH Threshold
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PBH Threshold

Summary of our analytic formula

o ) g ()

0= 53w 143w

@ Shows an agreement with the numerical result within
10-20 % for 0.01 < w < 0.6. This is much better than
Carr’s estimate both qualitatively and quantitatively.

@ Special cases

o bc~ 3r?w/5 for w < 1
@ 0;~0.4135for w = 1/3
@ )c~04for1/3<w=s1
e 3/8forw =1

T. Harada with Yoo and Kohri PBH Threshold

PBH Threshold

Probability distribution

@ Conventionally, a Gaussian distribution is assumed for d:
5max(M) 2 2

M) = ——————exp| —=—5- | dd.

PolM) Se(M) 2no?(M) P ( 202(M)>

However, it has a problem in the nonlinear regime. (Recall
oy = sin® xa.)

@ Kopp et al. (2011) suggested a Gaussian distribution for a
curvature fluctuation ¢:

00 CZ )
M) = —————eX
/80( ) Ce(ken) \/27TPC kBH P < 2P kBH)

T. Harada with Yoo and Kohri PBH Threshold
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PBH Threshold

Threshold values for curvature fluctuations

.01
0 0.2 0.4 0.6 0= 1

i

Figure: The threshold values for the averaged value ¢ (red thick line)
and peak value ¢ (green thick line).

T. Harada with Yoo and Kohri PBH Threshold

Summary

Outline

e Summary

T. Harada with Yoo and Kohri PBH Threshold
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Summary

Summary

@ A new analytic formula for the PBH threshold is derived.
@ It shows a very good agreement with the numerical result.
@ The maximum amplitude is analytically derived.

@ Further analytic and numerical studies are important.

T. Harada with Yoo and Kohri PBH Threshold
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“First—Quantized Theory of Expanding Universe
from Quantum Field in Mini—Superspace”
by Daisuke Ida

[JGRG23(2013)110805]



First—Quantized Theory of Expanding Universe

from Quantum Fields in Mini—Superspace

Daisuke Ida, Miyuki Saito (Gakushuin Univ.)

e mini—superspace model

e quantum fields in mini—superspace
e structure of Hilbert space

e pseudo—1-particle states

e classical-quantum correspondence

1/22

Hamiltonian formulation of Einstein gravity

Einstein-Hilbert action:
S = / d'z/—gR
ADM decomposition:

g = —N?dt* + h;;(dx’ + N'dt)(dz’ + Ndt)

canonical variables: (h;;, ")

~Vh
167G

i (Kij — Khij)
extrinsic curvature of Y,

1
K;; = NF?]‘ = ﬁ(aﬁhiﬂ' = 2DuNj)

2/22
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total Hamiltonian:

Hyp = / d*z(NO® + N0
i

Hamiltonian constraint:

(DO =Giix i, _kl (h) ~
= GjumT" — e R

momentum constraint:
P’ = 2D ~ 0

superspace metric:

1 P
Giju = m(hijhkl + RTRIY — hiihy)

3/22

Wheeler-DeWitt quantization: (5N|\I/ ) =10

0 ) Vh
(——Giju— — (h
5hm 5hkl 167G

=

e No unitary evolution.

e Interpretation of the wave function W[hj.

4/22

TR)W[h;;] =0,

762
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Classical theory: Einstein gravity + real scalar field
(FRW background)

Slg. X) = [ dley=g(R - (1/2X,X")
FRW metric:
g=—N(t)?2dt* +a(t)*vx (K =0,%1)

Hamiltonian:
Hr =N

1 2 2
Py = — <_& + ]ﬁ) — 6Kva = 0, (v= /d?’x\/ws')

v 12a  a?

5/22

minisuperspace coodinates: ¢" = (a, X)
minisuperspace metric:

gs = 2v(—12ada® + a*dX?)

Hamiltonian is rewritten as:

HT = N[(gS)mnpmpn + U((]k)], u(qk) = —6Kva

Einstein, Klein—Gordon egs.

d2qk' A dqm dqn B N—lﬂdik B » du

N - ~ 2 -
T Lo e dt df (95)" 7

6/22
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Conformal Transformation of Mini—Superspace:

invariance under conformal transformation (DeWitt, Misner etc.):

(g9s,u) = (fgs, f~"u)

conformal transformation (u(q*) # 0):

(:72
(9s)mn = M(gc)mn, (C' = const.)

reparametrization of time:

7/22

= geodesic eq. in mini-superspace:
quk dqnqun
—— el -~ 0
ds ds ds

Hamiltonian constraint:
dqu dqn

mn~ 7 1 %0
ds ds +

Dy =u |(g0)

equivalent classical system:

Hy = M(9¢)™ Dmpn + 1)

8/22
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Quantization of Einstein eq. (K = —1 case):
Mini—superspace (., gc):
Hy = M(ge)™"pmpn + 1)

go = 142(12T/\/§(—(JT2 + dXQ) (a = ape ) 2

Quantum theory: Klein—Gordon field in (., g¢),
1
Si6) =5 [ ATAX((@rof  (0x6) — AmPeH 1)
mode function: {f(p;T,X), f*(p;T,X)}

_ 1 _ _
P T, X) o Iy gy (VBAmeT VAP X o5 e (T — —o0)

V4|p|

9/22

quantization:
o= [ dfaly) flp: 7. ) + @ ()1 (3T, X)

Fock representation w.r.t. [):

a(p)l) =0 (p € R)

10/22
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Hamiltonian for K—G field at T

7(|pl; T)
P

“(Ipl; T .

0ff—diago¥1al terms

1= [ dp |ollpl: Thalp)a’ o)+ alp)a(—p) +

o(pl;T) == |D(1 — iv3p|)I”

A2m2e2T/VB T/V3 V3
{ 7\/—“)‘ 1(\/—4771(/ )_]\/_\I)Hl (\/—4mc/ )

8lpl

1 ipl + A2m?2e2T/V3 ‘}
o p - 2
"2 Ip|

23|
(bl T) = T(1 — iv/3]p))* (f“”)

A2m2e2TIV3 TIVE T3
{ 8[p] { vt (VBAMTIYE) = I e (VEdmeT ”

% <pl + 74 mT)T/\/_> [.],i\/g‘p‘ (\/gAm(gT/\/ﬁ)]z}

']i\ﬁ\ﬁ\ (\/gAmeT/ﬁ)

2

11/22

cf. standard approach (particle creation in FRW):

Bogoliubov transformation:

a(p;T) == a(p) cosh O(p; T) + a*(—p)e P sinh §(p; T)

a(piT) = UT)alp)U" (1), U(T) =exp; [ dpdle alplal—p) ~ "’ (p)a’(~p)

Hamiltonian is diagonalized:

H - / dpo([pl; T)a* (0 T)ap: T), w = V/o? — 77

“T'—vacuum”:
a(p; 1) T) =0 (p€ R)

Creation of scalar particles:

(Qla*(p; T)a(p; T)|2) #0

But “the universe should be in a 1-particle state.”

12/22



Structure of Hilbert space:

1. K-G Hamiltonian defines continuum of Fock spaces .7, (T € R)

2. Fp, and Fp, (I # 1) are improperly unitarily equivalent:
y]‘l N ﬁ]‘z = {0} or

o

finite particle state of .y, = “infinite particle state” of .7
3. K—G Hamiltonian at H(T) : % — ¢

4. This means it immediately becomes infinite particle state:

1-particle state “infinite—particle state”
o—iH(T)AT La;}l) _ g}l) N fj}of)AT

13/22

Structure of Hilbert space:

7> ¢
Bogoliubov transformation 4. € Friar & Friar

’
7

[O(T + AT);u) | [ —iH(T)AT
(T + AT); T+ AT)

oT):w) (1) T)

-

Projection

U(T + AT)U(T)
yﬂ

Fr Friar

T

Fibre bundle structure — notion of parallel transport

14/22

T
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Proposal: covariant unitary time evolution

e covariant time derivative:
d
Dy :=—+U(0rU"
ri=gp T UEU)
is anti self-adjoint operator on 7.

e unitary evolution:

iDr|(T); Ty = H(T)|(T); T)

< i0p|(T);u)y = H(T)|(T);u) (in projected Fock space .%,)

e Any 1-particle state remains in the space of 1-particle states.

15/22

Canonical observables in space of 1-particle states:

e annihilation operator for a localized particle:
1 .
U X:;T) = — [ dpa(p;T)e?*
(1) = = [ dpal)

e position operator in ﬂ}l):

QT) = /dXE*(X;T)XE(X;T)
e localized 1—particle state in .Z:
| X:T) =a"(X; T T)
= Q(T)|X;T) = X|X;T)

. 1
e momentum operator in ﬁ} ),

P(T) = —i/dXE*(X;T)axa(X;T)

e CCR—algebra:
[Q(T), P(T)] =il |(,¢1<<1>

16/22
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Schrodinger representation:

e completeness of localized states:

/dX|X;T><X;T| =1

P

e wave function for the 1—particle state [(T);T):

VX, T) = (X;T(T); T)
e Hamiltonian at early universe (7" — —o0):
A2m2€2T/\/§

p| +
Pl =5

CCTIHTIXGT) = o [ dp

+ 0(64T/\/§)] e P(X'=X)

e Schrodinger eq.

i0rh(X,T) = {\/ —0% + A2m2e2T/V3 4 O(e4T/\/§)} U(X,T)

— free from operator ordering ambiguity.

17/22

Classical-quantum correspondence:

from quantum theory:

e asymptotic solution to the Schrodinger eq.

/V3 A
WX, T) = / dp c(p) exp [—z’ (W  YRATTIE 0<e4W§>>] e

4p|

e group velocity of a wave packet
A2e2T/V3

elr/\/g
pymp T O

vy(p) =1 —

from classical theory:

e Hamiltonian constraint:

pr ~ =\ Pk + A2V

A2e2T/V3 I
v=PX_ by 1—(74-0(64]7\/3)

PE o + A2e2TV3 2k

18/22

e velocity:
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dynamics of a localized 1—particle state:

0

| | | | [
"geodesic_k=-1" /
-0.5 + "geodesic_k=+1" -/ -~

-1 F

35 A TR R N R B
-35-3-25-2-15-1-05 0 05

X

19/22

dynamics of a localized 1-particle state (k= —1):

O = DD W A O O

-3-2.5-2-1.5-1-0.50 0.5 1
X

20/22



dynamics of a localized 1-particle state (k= —1):

-3-2.5-2-1.5-1-0.50 0.5 1
X

20/22

dynamics of a localized 1-particle state (k=1):

-3-2.5-2-1.5-1-0.50 0.5 1
X

21/22

O =~ N W H 01 O N
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dynamics of a localized 1-particle state (k=1) :

-3-2.5-2-1.5-1-0.50 0.5 1
X

21/22

Summary

e We consider the quantum Klein—Gordon field in the mini—superspace
fixing the conformal frame s.t. Einstein eq. becomes geodesic eq.

e The present method can be applied to fermionic quantization in the
mini—superspace.

e We propose a quantum theory in which the Hamiltonian gives a
unitary time evolution of a 1-particle state in a separable Hilbert
space.

e We construct the observable set subject to the CCR-algebra.

e This quantum system reproduces Einstein eq. as a correct classical
limit.

22/22
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“Constraining the small scale perturbations in our big universe”
by Christian Byrnes (invited)

[JGRG23(2013)110806]



hristian Byrnes
University of Sgssex (24.5 hours from Hirosaki)

ArXiv:1206.4188; CB, Copeland & Green

ArXiv:1307.4995; Sam Young & CB

8th of November 2013 — Hirosaki - JGRG

From very large to very small scales

We have the “precision era” measurements on CMB
and LSS scales

These span approximately the largest 5-10 efoldings
which are inside the Hubble scale today

Lyman alpha, 21cm and spectral mu distortions in the
CMB may add a similar range of scales in the (farish)
future

But inflation is believed to have lasted at least 50-60
efoldings

So we only observe a small fraction of all scales

Limits our ability to constrain the early universe
2



Probing the small scales

Very hard to go beyond the linear scales of structure
formation ~ Mpc scales

Problem is that structure formation erases memory of
the very small scales

Two examples of a sufficiently dense probe which could
survive until today

Ultra Compact Mini Haloes (UCMHs), if DM annihilates
we have a good chance to see them

Primordial Black Holes (PBHs), only Hawking radiation
can make them disappear

Other small scale probes

Gravitational waves - should leave a fossil
which will be preserved, but detectors not yet
competitive

Spectral distortions of the CMB blackbody
spectrum - silk damping injects energy -
promising future probe with Pixie/Prism

New: lack of Sne la lensing dispersion weakly
constrains another 4-7 efolds of inflation -
Ben-Dayan & Kalaydzhyan ‘13
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kPik)

107 ~T ~T T T T T ? T 7 14
3 : : 4 3
i COBE y limit; COBE; u limit "} = =
T RE
-5 : ! B
10 .F Intermediaté E :;:‘ |' g 3
_l"m :E_ 'l 2 -
10'6 ’ ' :;'c' -g-
3 y-type : i ptype || G |
i low redshift confusion limited | ] ' N
107 . CMB best fit + Ly-c_ i Pide | - A ]
10" E : 6 e-folds :17 u-fuh'lg:} 7 c-fu]dsé j; 1
10-9 o - - - 1 1 N 11 — - A .
w* 10?* 1w? w' 1w 1w 1w 1w 1w 10°
k Mpe!
Currently about 6 efolds chatri 13
With Pixie, maybe 17 efolds an
Still far short of 50-60 efolds
5
Where PBH constraints come from?
¢ The Hawking radiation from PBHs must not:
e stop the success of big bang nucleosynthesis
e |[nterfere with the CMB
e Be compatible with the observed extragalactic photon background
® PBHs must not have greater energy density than DM (but
could be a DM candidate)
e Strongly scale/mass constraints in terms of beta, the fraction

What we observe

of the energy density of the universe in PBHs satisfies (over many
scales):

_ PPBH <1072 — 1075

tot
Pto formation
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PBH constraints

B = Qppn

formation
0

10 T T T T
Ent
\Entropy

-5

10

—— — — — ———

10-10

o 1077

10-20

102

% | . 3 | | aw 1 Carr et al review; 2010

0 10 20 30 40 50

107

The Gaussian case

People usually assume this to be a good estimate

1 2
P() = 2M€:Ep(—2€7)
[e’e) 2
B ~ / P(¢)d¢ ~ exp (—2%2)
o 1
¢ = \mam <!

Critical value is uncertain: for radiation domination Green et al ‘04, using Shibata &
Sasaki "99 found 0.7-1.2, Harada et al 13 found 0.2. Sensitive to both equation of state
and overdensity profile (2 parameters) - See Tomohiro Harada’s talk and recent papers

Result is accurate to order of 10% (compared to more involved calculation using
density perturbation with window functions)

’]DC 5 1072 on the relevant PBH scales
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Power spectrum bounds

o2 = 1T 1T _l___l__l_ L 1 T T T 1T T 1T T dyp
10-3 |— WIMP kinetic decoupling TTTT =10
101 [~ S 1 mE
Allowed regions — 104
1072 |— —
—
= — Ultracompact minihalos (gamma rays, Fermi-LAT) 15 i&/
= 1070 075
Qa Ultracompact minihalos (reionisation, WMAPS5 7.) 10-6 )
1070 = = Primordial black holes
10-8 = Very model dependent — 1077
— CMB, Lyman-a, LSS and other cosmological probes
10-9 — 1078
— 10-°
—10 f—
10 N I Y [ [ [ I [ S [ [ (I (S B (O
1070072107 Y 10 4@ 40 100 100 10° 40T 408 40 10 40t 1017 10 10 10 10 100 40t 40
. . —1 .
Bringmann, Scott, Akrami 201 | kE (Mpc™) Lots more scales best constrained by PBHs

Amplitude of power spectrum very uncertain beyond a few |/Mpc, huge uncertainty on much
smaller scales, PBHs give the tightest constraint we have got over the biggest range
UCMH - dependent on DM model
PBH amplitude assumes a Gaussian distribution, result can be several orders of magnitude
different if thats not true

9

Could the perturbations become large!?

®  |f quasi scale invariance holds until the end of inflation, then clearly no
®  But no reason to assume this - remember we observe only a small window onto inflation
®  Running mass model - spectral index strongly k dependent

®  Hybrid inflation: popular model in which a second stage generates much larger small
scale perturbations (also highly non-Gaussian)

YV A
\7[/ I'st stage from inflaton field
b ¢
1

*»54 2nd/stage from waterfall field - tachyonic instability
1

v

s



Power spectrum constraints only sensitive
to log of the observational constraints

So small changes in the amplitude of perturbations changes the
PBH formation rate exponentially

We will see that even small non-Gaussianity is very important
(small faL can mean a large skewness, when the amplitude of
perturbations grow)

PBH formation is very rare, so we are measuring the tails of the
pdf's, typically larger than 5-10 sigma deviations

So skewness/kurtosis really matters!

Lets take it into account, and see how the normal constraints on
the power spectrum change

Quadratic non-Gaussianity

¢ =Ca+ fNL (¢& — 25/CG

Results will depend on the sign of the non-Gaussianity, if positive its
easier to form overdensities because the linear and quadratic terms
act in the same direction (similarly to the speculated “too big, too early
clusters” which could be explained by large and positive fNL)

Otherwise the two terms tend to cancel each other, and zeta is
bounded from above
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Large influence of small faL

1 | ] T T 1 I T 1 1 T I T I T T I ] T T T
0.8 |
. 08
':’_\5- - 5 = QPBH7 formation
— 04
0.2 ~ 3 Black §=10"°
C ] Red =102
0 ] I ]
-1 -0.5 0 0.5 1

Results especially dramatic for negative faL
If PBHs are detected in the future, fy. <0 (and all higher-order parameters

zero) on the relevant scales is ruled out, unless it has a tiny amplitude

13

Very large and positive fy.

Results are about the square of the Gaussian case,
hence much more stringent

B=10"% Pr~10"2 = P~ 10"
Gaussian Chi-squared

Limit of very small and very large non-Gaussianity was
previously known, we recover those results and interpolate
between them CB, Copeland & Green 2012

Very small: Seery & Hidalgo '06
Chi squared non-Gaussianity: Avelino '05 and Lyth '12

14



Small gni, big changes again

1 R L] L] L] T I T T T T I L T Ll T I 1 T L T i
08 ] B = QpBH, formation
o 06 7 Black 8=107°
&’ [ ] Red =102
0.4 ~ 7
0.2 .
o i L 1 1 1 l 1 1 L 1 l 1 1 1 1 l 1 1 L 1 ]
~10 -5 0 5 10

En

There is a symmetry as gy, — = infinity, because the Gaussian is an even function

What happens to the pdf's?

LN 1IIIII

oF 4  of E
fnr >0 2 F ‘\ 3 —2F 4 —f fnp <0
L I 7
3 _61|I1...I.|.i-}kr _6_1/1-'i|||||1|||||-
A
5 -1 0 1 -1 0 1
6“7 L L R L N 8 [T 0
— 0 = 0 =
_2:_ .".. _: _2:_ _:
gz >0 - s - 1 9Nz <0
4 Y/ ; BN -4 3 E
_641}"1|||||||1‘1|T _ il il
-1 0 1 -1 0 1

|fnvo| s red =2, blue = 3.5, green =5, 0 =0.1
lgnr|: red = 10, blue = 20, green = 30, o = 0.1
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What if fa. and g, are not zero?

P12
o]

0.6

0.5

.

One parameter at a time, higher order
C=¢g+ ngL (63 - 02) + %gm(ﬁ + %hz\m (C; - 304) + %iNLCS + ..

[P{]uz
0.8

— J/NL — quadratic
- gNL — cubic
hnL — quartic

J— iNL, — quintic

okt [~ ..\':EEE“MIHiHI-"H]

-2 -1 0 1 2

Notice the similarity between odd and even terms
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What if all non-linearity
parameters are interdependent!

® If all non-linearity parameters are positive,
constraints keep getting tighter, no problem.

® |f some are negative, life gets complicated!

® Result may depend on the highest order non-
linearity parameter and its sign, since the
perturbations are large, no certainty of convergence

® Good test bed is the quadratic curvaton scenario,
the complete non-linear zeta is known

(Sasaki, Valiviita & Wands ’06)

Hierarchical scaling

8L

3 2 2 9 o 3 27 3 4 4 4 5
ot 2 vn (G =) + 5 Rt + s (G —30%) + g A +
[P{]I/Z
04
/ : — 2" order
No convergence, behaviour 0 B —  3%order
dominated by highest order term L _
Y g 0 ==== 4" order 6 — 10 5
5" order

Convergence: constraints keep getting tighter

20
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Curvaton scenario |

Specific inflationary scenario in which perturbations are often non-Gaussian

Assume curvaton chi has a quadratic potential, then full pdf can be calculated (does
any other example exist?) - Sasaki,Valiviita & Wands 2006

Key parameter is Qchi, energy density of curvaton at decay time.When small fae~1/Qchi

For CMB constraints, all other non-linearity parameters are unimportant

20+

-20F e
oy
]
!
i
]
[

21

Curvaton scenario |l

® For the curvaton scenario, all higher-order terms are
important, approximating the pdf as Gaussian is never accurate

Probability density

. Gaussian

-1.0

1.0

22

[l’;l“z

Young and CB 2013
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Conclusions

Even today, non-Gaussianity arguably remains the best window onto
the early universe (and provides the tightest constraints)

Our constraints come from a very limited range of scales, about 6
efoldings out of 60

PBHs give us a much larger (albeit cloudier) window onto the physics
of the early universe

Constraints are weak, but the tightest which exist on small scales

Since PBHs are rare, they measure the extreme tail of the pdf and
hence are highly sensitive to non-Gaussianity

Given a model which forms PBHs, you need to take non-Gaussianity
into account, even if this is irrelevant on CMB scales

Truncating the results at low order in the non-linearity parameters is
not safe (especially if some of them are negative)
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Wormhole is

» Wormhole is ...
» a region of spacetime containing a "world
tube" (the time evolution of a closed

surface) that cannot be continuously asymptotic region
deformed (shrunk) to a world line.

» It has a throat which connect two mouth
asymptotic regions (which can be g
identified). f_ throat

» Historically, a "tunnel structure" in the A

Schwarzschild solution was first pointed
out by Flamm in 1916, Einstein and Rosen
propose a "bridge structure".
» Morris and Thorne considered human asymptotic region
travel through wormholes and concluded
that such a wormhole solution is available if
we allow "exotic matter”.
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Wormhole is ...

» Desirable wormhole is ...
» No horizon for travel through
» Tidal gravitational forces should be small for traveler
» Traveler should cross it in a finite and reasonably small proper time
» Must have a physically reasonable stress-energy tensor (but some energy
condisions are violated).
» Should be perturbatively stable
» Should be possible to assemble

» How to constract a wormhole solution (three classes)
» wormholes genelated from exotic thin shells.
» wormholes generated from matching an interior exotic solution to an
exterior vacuum, at a junction surface.
» wormholes generated by continuous funcamental fields with exotic
properties.

We focus on this type.

In this poster

» We derive the higher-dimensional Ellis wormhole solutions (
in general relativity with a ghost scalar field.

» We study their stability using linear perturbation analysis
and show that all higher-dimensional wormholes have an
unstable mode.

R TR
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Ellis wormhole

H. G. Ellis, J. Math. Phys. 14 (1973) 104

» general relativity, 4-dimentional
» massless scalar field (ghost)
» static and spherically symmetric, asymptotically flat
» exact solution
» everywhere regular, no horizon
» stability

» stable against linear perturbation

C. Armendariz-Picon, Phys. Rev. 65 (2002) 104010

» dynamically unstable
H. Shinkai & S. A. Hayward, Phys. Rev. 66 (2002) 044005

= re-analyze w

higher-dim Ellis wormhole

» general relativity, n-dimentional massless scalar field (ghost)

SZ/d”x\/—ig[ZiQR—;e(aqﬁ)/z—%}, e——1 .

" R
» static and spherically symmetric, asymptotically flat /

ds? = —f(r)dt® + f(r)"tdr* + R(T)ZM

N k=1

» basic equations

fQ{ - f’R’ N (n—3)R’2} N (n—=2)(n=3)kf _ 71f[ ef¢/2+%)]

(t,t) :

R fR R? 2R?
L n—2R[f 7173 (n—2)(n—3)k 7&31 1 ,
(7,"’). P [ i| 2fR2 7[36f¢2_%):|7
" /R/ _ R/Z
(i,9): %+(n73)f(R A "24 )= D _ ez [2eso + 8],
dv, o constant

(KG): R qu) »QS/:W



higher-dim Ellis wormhole

» regularity condition (+ symmetry) at the throat r = 0

R = a —— throat radius * By scaling symmetry we
can generically assume
RZO, f:f07 f:07 ¢:0 a=1 f0:1
basic equation s «2C? = (n—2)(n — 3)a*" %) D
» exact solution
f=1
1 ']l —m
r(R) = —mDB, [ —m, ﬂ - % (higher-dim Ellisfi)
_V(n=2)(n-3) , 4 1
A e =
— — pm — : p—11 _ )91 CES A A — #
me g =R B /0 P — ) d e N— S B

% In the another metric ansatz : V. Dzhunushaliev, arXiv:1309.2448

higher-dim Ellis wormhole

» exact solution

expansion is O
trapping horizon|

% the throat of the wormhole has larger curvature and the
scalar field becomes steeper as the dimension goes higher.

% In the n — oo limit

R=r+1 ¢p=0 (r=0) (r>0)

m
2
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linear perturbations

% For the non-linear analysis, see PO9 (Shinkai & Torii).

» metric ansatz
ds? = —f(t,r)e" 2 a2 + f(t,r)" dr? + R(t,r)hijdz’da’

» linear perturbations static solution

f = folr) +f1(7“)eiwt’ R=Ry +R1(r)ewt,
§ = 0o(r) 4+ 61(r)e™t, ¢ = po(r) + o1 (r)e™".

» master equation

—U W (r)¥; =Ty,

1 13(n—2)? =
W(r) = = [ Saia — (0= (0 —6)]
4R2 Rg("—d)
B - d 1[}/1 B % - (;576 00 0.5 1;0 15 20
Vi=Dir De=go- o1 V= "F (d)l R}, Rl)’ % potential function W

% U is gauge invariant under the spherically symmetric ansatz.

linear perturbations

» negative mode

2

n w
4 —1.39705243371511 i
5 —2.98495893027790
6 —4.68662054299460 b
7 —6.46258414126318
8 —8.28975936306259 5 i
9 —10.1535530451867 E
10 —12.0442650147438
11 —13.9552091676647 i
20 —31.5751101285105
50 —91.3457759137153
100 — 191.283017729717 02, ; s 3 4 . p
.
eigen-values of netive mode eigen-functions of netive mode

% There is one negative mode for each dimension.

) | The higher-dim. Ellis’'s wormhome is unstable.

% We find large negative eigen-vallus for higher n, which indicates the
time-scale of instability becomes shorter.
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Gauged
Q-balls

Takashi Tamaki (Nihon university)
tamaki@ge.ce.nihon-u.ac.jp

collaboration: Nobuyuki Sakai (Yamaguchi university)
nsakai@yamaguchi-u.ac.jp

l. Introduction

Ordinary Q-balls
(many investigations since 1985)

Gauged Q-balls
only a few investigations

The reason:
Gauge field kills Q-balls !



797

ll. Basic egs.

| 1 1 | | o
S = /d4;1? liFm,,F“” — E'I}W"Dﬁrjja_Dyrﬂa — Vo)

Assumptions: ¢ = ¢(r)(cos wt, sinwt)

only static electric field Ag = Aq(r)
26  2do 5 dV

— + —— + Q= —

dr? 7 dr | do

d?Q  2dQ N

—5 + - = Q(qrﬂ)z () = w -+ {};—’10
dr r dr

Ordinary Q-balls (q=0)
1

Vold) N Vo =V - sw?e?

\

r=0) O,/ \
QI ‘z,/ | \

Ny

(0) j}with gauge field ?
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lll. Results K=-0.1

0.06 =

X largeQ >
Shell-like !

0.05

0.04

1= 0.03

0.02

0.0
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K = —1.5 (solid lines)
|
K = —2 (dotted lines)

max
s

IV. Summary

Complicated structures

—>exquisite balance between
gauge and scalar fields!!

The branch having linear relation
in Q-E would be stable.

Other branches unstable(?)
|:>We will confirm them !l
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“Bound states of extreme Type-I cosmic strings
in two-dimensional space”
by Takashi Hiramatsu

[JGRG23(2013)P03]
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JGRG23, 5-8 Nov 2013 @ Hirosaki Univ.

Bound states of extreme Type-I cosmic

Takashi Hiramatsu

Yukawa Institute for Theoretical Physics (YITP)
Kyoto University

Collaboration with Daisuke Yamauchi (RESCEU)

Cosmic strings Y TP

Takashi Hiramatsu

+ 1D (linear) topological defect associated with spontaneous symmetry
breaking in high energies Kibble, J.Phys.A9 (1976) 1387

+ Old days : seeds of large scale structure — Inflation

+ Recent attention

+ Possibility of direct observation of superstrings
+ As a probe for high energy phenomena involving phase transition

+ As a source of gravitational waves

+ Scaling property

+ Naively thinking, the string energy evolves as psir o< a~

+ Loops created through the reconnection of strings carry off the energy from
long strings, which maintain the string energy as py;, o a % avoiding to

overclose the Universe. .= Shrinking and vanishing.
As a result string energy

loop .~
>©< |:> > ¢C>¢< is diffused into space.

reconnect reconnect

Bound states of extreme Type-I cosmic strings in two-dimensional space



Field theoretic model

Takashi Hiramatsu

Abelian Higgs model : complex scalar + local U(1) gauge

U(1) gauge field complex scalar field
S =— /d334\/ -9 (ZFMVFWJ + (Dpd)" (D" o) + V(¢ T))
D, =90, —1ieA,

A A
V(¢;T)=Z(|¢|2—772)+ET2|¢\2 F B A A
prv = OpAy vAp

T"  : environmental temperature supported by radiation.
The temperature-dependent term becomes important in —
the high-energy regime. When the temperature becomes
Lower than the critical temperature, the U(1) symmetry
breaks spontaneously. =
T<T. T>T 6l =n |1 ¢l =n
s This linear shape is topo-
logically stable. So strings
live a long time.
~-| L
- —»
5y A
The gauge field is not shown,
but it clings around the string

Type-I strings

Takashi Hiramatsu

After the spontaneously breaking of U(1) symmetry, the scalar field possess
its vacuum expectation value, |#vac| =7 | and thus the scalar and gauge fields
acquire their masses (neglecting the temperature dependence)

Scalar mass : me = \/Xn
Gauge mass: 1M g4 — \/5677

The physical property of a static streight string in the Minkowski background
is determined by the unique parameter

A omg

T 2e2 mi
We focus on the case with 8 < 1, so-called Type-I strings. Type-I strings
have not so well studied, and it has been reported that this kind of strings
is associated with SSB of flat direction in MSSM.  Cul. Martin, Morrissey, Wells,

) . s ) PRD 77 (2008) 043528
As a first step, we performed simulations of Type-I string network.

TH, Sendouda, Takahashi, Yamauchi, Yoo, PRD 88 (2013) 085021
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Interaction of two parallel strings

Takashi Hiramatsu

. Bettencourt et al., PRL 78 (1997) 2066
Possible to form a bound state (1997)

Type-I 5 <1
(string core) | attractive no force s
‘ Lol

—1

critical B =1
(string core) | no force o
i >

-1 _ —1
Type-II 5 >1
(string core) replusive no force

\J

B AN &

The attractive force between strings promotes to form a bound state. If the bound states are
efficiently formed in the network, the late-time evolution of string networks would be changed.
Besides, the networks perhaps lose the scaling property.

1 4—‘—» A=20
Type-1 ~ Type-ll

|

N |
{ H
densest L ] 1

0.5 1 1.5 2

p

TH, Sendouda, Takahashi, Yamauchi, Yoo,

PRD 88 (2013) 085021
According to our 3D simulations in recent paper, we confirmed that the networks have the
scaling property even in the extreme cases, 3 = 0.2 . Moreover, we found a peculier property
that the number of strings depend on 3 and can be largest with a specific value of 3 depending
on the energy scale of the phase transition (3 ~ 0.4 in the above case.)

Have the bound states been formed in these simulations ... ?
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404 Not found...

Takashi Hiramatsu

No bound states

at least in all our realisations whose effective volume is(38.8 7 ')?

According to numerical experiments about the collision of two straight strings with
low-angle (nearly parallel) and low-velocity, it has been reported that they form a
bound state for 8 = 0.36, 0.125. Salmi et al., PRD 77 (2008) 041701R

Bound states are quite rare evenin 5 = 0.2 ?

. =

In more extreme cases, the bound states may be formed more.
Go further with smaller 3 !

EID

Takashi Hiramatsu

Imposing | |
translation
symmetry l l
%/ along z-axis
3D 2D

2D space strongly restricts the dynamics of strings after their formation
the collision rate is expected to be larger than 3D

‘ It is expected to give an upper limit of the fraction of bound states
for realistic 3D box simulations

And, of course, 2D simulations ...

- save the computational resources.
- allow a larger dynamical range and surveys in large parameter space.

Bound states of extreme Type-I cosmic strings in two-dimensional space

810
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Our goal / Warning !
Takashi Hiramatsu

" To obtain number fraction of dynamically formed bound states )
in Abelian-Higgs model. )

But,...
2D is not the real world.

The energy release mechanism in 3D to support the scaling property
is loop production. But, there are no loops in 2D space.

The only mechanism is pair annihilation.
MW dissipates into kinetic energy in bulk

R

Network properties involving its long lifetime would be different from those in 3D.
(cf. time evolution of correlation length.) So, taking care of the above peculiar property,
we have to extract the phy51cally meanlngful results being independent to the dimension.

pamaddes

Simulation setup 2 S
Takashi Hiramatsu

+ Computational domain

2
+ comoving box Temperature : 27, — §TC

=18 =2

+ periodic boundaries Box size/horizon scale :

+ radiation dominant Grid - 27-5;812 ~ 819922
+ not considering gravitational backreaction
+ Equations
gauge condition Ap =0
constraint 0; AL = 2ea? Im(¢*¢') (i = 2,y)
A — 8 Fj; = 2e Tm(¢*0ip) — 2€* A;|p|”

EOM /! d
& + 2H —a—¢ DiD;é + a” d;/*

derivative w.r.t conformal time L = 0 in radiation-dominant universe

0

Bound states of extreme Type-I cosmic strings in two-dimensional space
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Initial conditions

Takashi Hiramatsu

The values of the complex scalar field on the grid are given as Gaussian
random numbers with the power spectrum for the thermal fluctuations,

. A3k eik-(x—y)
T\o(x, T Tin) | 1) =
< |¢( 9 1n)¢ (yo 1n)| > (277)3WI<: ewk/T - 1
(wr = VKZ2 +m?)
The phases, Arg ¢(x, 7in), are given as homogeneous random numbers
between 0 ~ 27 |
How about Ai ? Dufaux, Figueroa, Garcia-Bellido, PRD82 (2010) 083518

Al(x,Tin) — > given by solving constraint equation using FFT
/ 2 /
0;A; = 2ea” Im(¢™ ")

Ai(X,Tin) = No way to give it... So usually set
A; =0

(Strictly speaking, the gauge field in the thermal bath should be determined on the basis
of the finite-temperature field theory. But the concrete calculation would be difficult for
Type-I strings where the gauge coupling is strong.)

Bound states of extreme Type-I cosmic strings in two-dimensional space

After the phase transition, the %" . e E[ : »
scalar field starts to condense in | T = 6:25 " ¢ . 41

the true vacuum which has a non-- ' s -

vanishing expectation value (blue » : . .
region) , and the false vacuum, T2 e -

which has been left topologically,[ ** *« = - B o
form strings (red region). ' f ’ ;

Some strings meet together
and make a bound state with N — effective winding
oscillating around each other numBges 2
like a binary/triple star. °

effective winding
/8 — 01 number = 3

Bound states of extreme Type-I cosmic strings in two-dimensional space
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Number of strings / correlation length
Takashi Hiramatsu

0 60 60
) 50 'ﬂbsol;‘i;([)ype ic 50 .ﬂbml;‘;el"([)ype Ic 50 vabs(ﬂ;:(;éype c
2v ’ l ] &40 ] &40
Z ‘g =]
T‘; 30 l | ] —; 30 { l 30
2 2 £
g» / g 20 ] g

ol 10 error over 100 realisations o ] 1 1 I

0.01 !El o 0.01 DB‘ T

L
ot Correlation length :§ = —= 10
;| (=mean separation VN .
of strings)

The number of strings (upper panels) depends on 3 and the value of Srealising the largest number becomes
smaller for larger \ .

The time evolution of correlation length (lower panels) is almost flat at late time, which is reflected by the
limitation of the energy release mechanism. It has been reported that the correlation length evolves logarithmically
in time (for global strings). Yamaguchi, Yokoyama, Kawasaki, PTP100 (1998) 535

i 1

£ 0981 separation criterion o 04 —— 1 = 0.2 1
£ 02 2 0.1

8 007 - 0.15 g 0.05

Z 0.1 — s 0.02

_é 0.06 H é 4
2 o005} 2 At most 1.3%, and

s kK the fraction seems

§ 004r At most 1% ] B

g E

to be limited for 1
B < 0.05 \

m
We judge that two strings form a bound state when the separation
becomes shorter than the criterion.
- The fraction is ~ 3.5% even for the best case.
- For A = 1.0, the fraction seems to be limited even if we set
smaller 5 . It is needed to investigate the other cases.
From these results, we expect that

- The A\ dependence would be resulted from the change of the
ratio //m controling the strength of dragging effect by the
cosmic expansion against the binding energy of strings.

- The 8 dependence seems to be reflected by the number of
the strings just after the string formation. Actually, for such an
extreme case, the number of strings itself becomes smaller,

007? . . .
3.5%? butseems toneed  4cording to the results in the previous page.
more simulation time.

number fraction of bound states with n=2

Bound states of extreme Type-I cosmic strings in two-dimensional space
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Gauge field prevents to form strings ?

Frlaments are segmented
and separated into indivi-
dual string-ceres.

Takashi Hiramatsu

As aresult,...
moderate
number
of strings

Scalar freld is mhomo- Frlamentary structure of
geneously distributed.  false vauum appears.

largest
number
of strings

True vacuum

False vacuum

smallest
number
of strings

B=0.1

Each blue ‘colony' is One 'colony' becomes
already isolated ? an individual string core.

False vacuum region
is wider and drstrrbuted

Summary

Takashi Hiramatsu
In order to study the number fraction of dynamically formed bound states
in Abelian-Higgs model, we performed string 'network' simulations
in the expanding 2D space.
The important parameters characterising string networks are A and /3. Varying them, we obtain

number of strings
- The number of strings depends on them.
- Fixing A, there is a specific value of 3 realising the largest number of strings.
- The 'critical 3 ' becomes smaller when A is smaller, and the number becomes also smaller.

number fraction of bound states

- The fraction is ~ 3.5% even for the best case.
- The fraction seems to be limited even if we set smaller 3 .

In the 3D case, it is expected that two strings are required to collide head-on, where the collision
angle is as small as possible, to form a bound state, and thus the formation rate would be reduced.

This work is in progress. But we speculate that the gauge field between strings plays an important role.
Conjecture
Strong gauge field plays an important role to homogenise the scalar field
during the string formation and prevents to form large number of strings.
The number of bound states would be determined by the competition between
the binding energy contributed by the gauge field and number of strings.

Bound states of extreme Type-I cosmic strings in two-dimensional space
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Gravitational lensing shear by an exotic lens object

Hirosaki University Koji lzumi

| ,Abstract

In recent years, concern about an exotic matter and energy is increasing. However, the behavior is not yet known well, it is difficult to detect directly. However, it is possible by being with The gravitational lens to observe
the existence indirectly. By calculating the physical quantity called gravitational lensing shear, we explore the difference between ordinary lens and exotic lens. Therefore, the following metric is used[1].

ds? = — (1 - 7‘) at? + (1 + fi) dr? + 12(d6? + sin® ©de?) + O(e2, €2, e12)
where r is the circumference radius and & 1 and & 2 are small book-keeping parameters in the following iterative calculations. Here, € 1 and & 2 may be either positive or negative, respectively. Negative & 1 and € 2 for n =
1 correspond to a negative mass (in the linearized Schwarzschild metric). The deflection angle of light is obtained at the linear order as [1]
2 on g 2
= cos" Ydip + O(e?)
where the integral is positive definite, b denotes the impact parameter of the light ray, and we define & = ne 1 + €2. For €50, the deflection angle of light is always,positive, which means the corresponding spacetime
model causes the gravitational pull on light rays. For &0, on the other hand, it is inevitably negative, which implies the gravitational repulsion on light rays like a concave lens. Thinking from how to turn at light, & >0
corresponds to ordinary lens, <0 corresponds to exotic lens, respectively.

Il ,Gravitational lensing shear

The lens equation, shear, convergence of the two types is as follows.

pull type(e > 0) repulsio type(e < 0)

én+1 ;/\7‘, e /\71 ——
dﬁ 17L . B ,K
do gr+1] ’
A+ A
2
1—-n 1
2 fn+tl
4 0 : 0 S

Where B denotes the angular position of the source, 6 denotes the angular position of the image, A+ and A- denotes shear, x denotes convergence.

k=1

lll,Simulation

Here, In order to understand intuitively modification of the image by the gravitational lens of two types, we performed the simulation using the
suitable figure. Moreover, the lens object assumes the galaxy cluster.

nomal lens exotic lens

IV,Conclusion

In conclusion, It turned out that the gravitational lens by the ordinary matter differs from the gravitational lens by an exotic matter(Especially, the
position and modification of an image). Moreover, from this,

Discovery of radial pair= Discovery of exotic matter or enerugy

Reference

[1]T. Kitamura, K. Nakajima, and H. Asada, Phys. Rev. D 87, 027501 (2013)
[2]K.Izumi,C.Hagiwara,K.Nakajima,T.Kitamura,and H.Asada, Phys. Rev. D 88, 024049(2013)
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Shapiro delay by an exotic lens object

with negative convergence

J

Koki Nakajima

Hirosaki University, Japan

HIROSAKI
UNIVERSITY

with H. Asada (Hirosaki)
JGRG23 in Hirosaki Nov. 5 - 8, 2013

Abstract: We give Shapiro delay by an exotic lens object with negative convergence.

1 Introduction

Source

Observer

Fig 1: Image of Shapiro delay

Shapiro predicted that gravitational field delays round-trip travel time for rader
signals (Shapiro delay) and it was confirmed in 1960’s.[1, 2]

This is one of the tests of General rerlativity. In solar system, Shapiro delay by
the Sun is about 200 micro seconds(from the Earth to Mercury). Shapiro delay is
also tested with electromagnetic wave of pulsars in our Galaxy.

Our motivation is that exploreing exotic lens object in our Galaxy.

We consider Shapiro delay in modified gravity lens model[3], and use weak field
approxmation.

2 Method

The line element

ds? == (1= ) art + (1+ 2 ) dr® +7249° + Oerea, = (1)
i 7
CLec 1,2 <1, d0? = d6? +sin® 0d6?,n > 0
7 i
This metric gives the Lagrangian for a massless (light-like) particle as
_ €1 ;2 €2 .2 | 2052 | 2932 >
L77(17;)t+(1+ﬁ)r +72(0° + sin® 04%), @)
d
= w A af fine parameter
‘We have two constants of motion as
E= (1 _ i;) i, h=r% ®3)
0

E: specific energy, h: specific angular momentum

The two constants of motion are substituted into the null condition ds* = 0 to
obtain an equation for arrival time of the photon as

dr ZN 1 I‘(Z] 1 €1+51 @)
dat) = 2 ™ g

ro: the closest approach of the light
An integration of Eq. (4) immediately gives the Shapiro delay expressed as

(o) 2
AT =2 / (1 =4
rs T

E=e1+eéy
This is rewritten as
1 Y@ (g1(1—cos™ ¢
A= — / (1(7) + &cos™ 2 <)> do (6)
To ~ Jys sin” ¢

with 7 = ro/ costp
‘We have not carry out the integration of (6), but this corresponds Schwarzschild
geometry at n=1, &; ¢» and & = 2r,( r, is schwarzschild radius).

3 Discussion

Shapiro delay causes relativistic frequency shift. Frequency shift y is written as

. dA{;(t) @

Let us consider for Schwarzschild geometry, frequency shift y is

9=teD o) = Jm B ®)
b(t) is distance of right and lens.

3607

207

le-07

“le07

2e:07

3007 . n . . . .
. 05 0 05 i 15 2

time(days)

Fig 2: Dependence of frequency shift on the distance b and £ for n = 1. Blue line

is the Sun’s Shapiro delay (around the Earth and Mercury) for £ > 0, and red one
is for £ < 0.

See Fig. 2. Negative £ may cause frequency shift but bring arrival time of radio
signal forward.

4 Conclusion

o We expressed Shapiro delay by an exotic lens model with negative convergence.

e We pointed out that exotic lens may bring the arrival time of photon forward
in negative ¢ ca:

References

[1] 1. I. Shapiro, Phys. Rev. Lett, 13, 789-791 (1964).

[2] I. I. Shapiro et al. Phys. Rev. Lett, 20, 1265-1269 (1968).

[3] T. Kitamura, K. Nakajima, and H. Asada, Phys. Rev. D 87, 027501(2013).
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Gravitational field of a rotating ring
around a Schwarzschild black hole

[ Metric reconstruction in radiation gauge ]

Yasumichi SANO
Supervisor: Hideyuki TAGOSHI

Osaka University gV ps I
== le) A L

Osaka University Theoretical Astrophysics

JGRG23@Hirosaki Univ.

Introduction

[0 EMRI (Extreme Mass Ratio Inspiral) is m
one of sources of gravitational wave. ¢

B We consider Black hole perturbation of Kerr

spacetime (non—vacuum perturbation) Jap = g(oﬁ) + hos
«

1st order perturbation
[1 We investigate the method for calculating haﬁ
using Hertz potential.

B This method is based on Chrzanowski (1975) and
Kegeles & Cohen (1979) ---CCK formalism

B We discuss the problem about the lower modes [ = 0, 1
of perturbation.

JGRG23@Hirosaki Univ.
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Setting

O Schwarzschild BH=+ Rotating ring

B Ring -+ Set of point particles on a circular geodesic

— wy Dezg

[0 Energy momentum tensor (axisymmetric & steady)
o, B
ToB _ n:;r:; d(r —rp)d(cosh)

M Restmass 297m < M
B Radius T0
0 Four velocity uais geodetic (determined by the radius 70 )

— Angular velocity M
0=/ —
To

JGRG23@Hirosaki Univ.

Teukolsky equation+ CCK formalism

Ta5 Energy momentum tensor

\ 4
[ Teukolsky egs. }

¢O ’ ¢4 Weyl scalar

‘

CCK formalism [ ) \[J Hertz potential
[ ]

Metric perturbation

JGRG23@Hirosaki Univ.



822

§ 1: Teukolsky equations
and Yo, ¥4

JGRG23@Hirosaki Univ.

Teukolsky equation

B Weyl scalar: components of Weyl tensor
= = £ Yo, U1, o, Vs, s

[0 They represent the curvature at a vacuum point

[0 Teukolsky equation (Teukolsky 1972, 1973)
B Perturbation equations for g, 4

[0 We can solve %0 and ¥4 analytically

Z R¢o
SYE(Q) :szl,mZO (Ha d))

=~ ZRW _2Yi(0)

JGRG23@Hirosaki Univ.
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Yo and Y4

] Green’s
function for !
the radial functﬁn

O(r" —r)hy(r)ha(r") + O(r — r")hy (r")ha(r)
W (r")
(W: Wronskian)

Gi(r,r") =

0 L
‘ 4 6 8 10 12 14 16 18

= ¢4 is continuous and smooth at 7 = T¢

= 6 #mr/2

\ Re(¢a(r,m/4)) iﬁv Tm (4 (7, 7/4))

C on is smooth when 8 # 11/2, too

JGRG23@Hirosaki Univ.

§ 2: CCK formalism
and Hertz potential

JGRG23@Hirosaki Univ.
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CCK Chrzanowski (1975), Kegeles & Cohen (1979)

0 Hertz Potential W

B Application of Hertz potential in electromagnetism

B Hertz potential is a vacuum solution of (0)
. Jap = gaﬁ + ha/B
Teukolsky equation. . 5 \?
; - hoy = —— ( ) Re (Sin 0 @)
B Metric perturbation 72 \ Ocosf

is given by W . —>h23:—\/§(8r—%) rsilnH (8Cisg)sin29§
[ Radiation gauge |

1 3\ —
hos = has, has = hss h33:_<ar+;) <8r—;)\p
hi1 =hiza=hiz3=hy=h3s =0

[0 The problem is how to find the Hertz potential.

JGRG23@Hirosaki Univ.

Weyl scalar & Hertz potential

= Weyl scalars w()? ¢17 ¢27 ¢37 ¢4 are also
given by Hertz potential \|J =% (g) el ®)

1 9 T
hs = V2 (0 - ;) rsin@ <800$9> sin=0

AL o=~ (12) (a2
=z (a) ¥ J

11 o \*' 1 —
— - 7
Ya 2 4r4 sin” 0 (80089) sin? 6

[] We already know ¢)gand v, as the o(,0) = ZR“’” )2i(6
solutions of Teukolsky equations. ZW ~2Yi(0)

B We look for \D which gives those solutions ”QDO and V4 .

JGRG23@Hirosaki Univ.
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]
1 o \* 1 _
— N\
4r4 Sin 9(80050) sinZ @

§ 3: Finding Hertz potential
(Part 1)

Py =

N | = [\le—\

JGRG23@Hirosaki Univ.

3.1 A solution for Hertz potential

170\~ 11 o \' 1 —
e a7 - &in?
Yo (6r> Va= 2 474 oM 0<8C089> sin? 0\11
,0) =

ZR P)Yi(0 ﬂ E 145_0: )2Yi(6

0 “A” solution Up (particular solution) is found.
o~ SR (r)2Yi(0)
— (I+2)1—1)(1+ 1)l

Up =

B We used the following relations.

(2)4 R (r) _ lRwO(r) (Teukolsky-Starobinsky

or) (+2)(-n@+11 47 relation)

Sinzg( 0 )4 1 2Y1(0) LYi(0) (spin-weighted
dcosf ) sin?0 (1+2)(1—1)(1+ 1)l spherical harmonics)

JGRG23@Hirosaki Univ.



826

Reconstruction of Weyl scalars from Wp

oo \ T 0 000006 ‘l ™~
N oo
i M) T \ Ti
TN w0 e ’ /
Re(iﬁl) (1/12) ./ Re(vs)

rrrrrrrrrr 4
\ 0.00002 \
\ \
\
ooy T am 2 \ \
\ — \
\ 000001 AN
0 000001
I T I T K -
r ~__
000002 M 0 0
3N 8 10 12 s 13 46 8 10 12 14 16 18
~0.00004
000006

() . Im(wz) -~ Tm(¢3)

(Plotted W|th 6 =7 /4 fixed) =0
[] There are unphysical jumps at /ring
vacuum point (r,0) # (o, 7/2) . ® ;_ /2
>
0=

JGRG23@Hirosaki Univ.

Wp lacks lower modes

o0 P4 s
O Wpcontains only I > 2 modes 7r=>_ fg(z(—)1;?z(i)1)z
=2

B The lower modes [ =0, 1
is the perturbation of mass and angular momentum

0 Wp is a particular solution. , - (;)4\1;

] More general SOIUtiOVw: 41481“29(05259)4 1y
. Sin
of these equations

would contain the lower modes. W = Wp + WUy

N = [\3\»—!

[0 Are the unphysical jumps of Weyl scalars (and ho3 )
due to the lack of Wy ?

JGRG23@Hirosaki Univ.
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3.2 General solution for Hertz potential

"J"J:%(%)} 1/;4:%4/’%9190(80250)481529@
[J Since Wp is a solution, & = Wp + ¥y also
satisfies the above equations for Hertz potential
if

— 2A [a(r b(r
Uy(r,0) = — (r) cos® 0 + QCOSQQ—I—CU‘) cosf + d(r)
sin“6 | 6 2
a(r) = ayr?(r — 3M) + ay A— m
b(r) = byr? + (r — M)by 7“O\/A_O
u Degrees of freedom e(r) = —%al(r — M)(r? +4M?) - %(12 + co(r — M) + ¢y
are reduced to d(r) = %WM%bgwdlrQ(rigMHdg

8 complex parameters

O (We used the condition that a Hertz potential is
a vacuum solution of Teukolsky eq.)

JGRG23@Hirosaki Univ.

Hertz potential

[0 Vacuum solution of Teukolsky equation can not
satisfy both of w-}(7) v and w-!lLa(,2,) L
because of the presenof matter (the ring).

[1 We look for W that...

- - 4 4
B satisfies vw-:(2)w and 4, =1L e 2 L 5
2 2 44

or Ocosh ) sin’6
B and is a vacuum solution of Teukolsky equation
at r <rgandr > rg.

[1 We try to remove jumps by considering
U =Up +UyuO(r —rp)

JGRG23@Hirosaki Univ.
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Wyg(r,0) = siij;le [a(ﬁ’r) cos® 6 + b(;) cos? 0 + c(r) cos O + d(r)
a(r) = a1r2(r — 3M) + a
b(r) = bir? + (r — M)bs
c(r) = —%al(r — M)(r? +4M?) — %ag + co(r — M) + ¢172
d(r) = %blﬂ + %bgr +dir2(r — 3M) + ds

§ 4: Finding Hertz potential
(Part 2: Determining parameters)

JGRG23@Hirosaki Univ.

Angular momentum perturbation

L1 It is found that Im(ay)corresponds to the angular
momentum perturbation. §J = —A Im(as) ,_ m

A= T
B (Keidl, Friedman, and Wiseman 2007) —

] We equate §J with the angular momentum

of the ring  Jin, = 2mmuy
and add the associated Uy to Wp.

L1 = Jumps of Im(¢)1) Im(1)s) - @nd Im(1)5)

= -
vanish simultanedusly! 70
0.00002 0.00001 '
4 6 8 10 12 14 16 4 8 10 12 14 16 4 6 8 10 12 14 16 18
r r r
00002 0.00001

0

1
-0.00004 4 0.00002 4

JGRG23@Hirosaki Univ.
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How to determine other parameters?

L1 It is found that Re(b;) and Re(by) correspond
to the mass perturbation. §M = —A(3MRe(b;) + Re(bs))
B (Keidl, Friedman, and Wiseman 2007)

[J Two conditions are needed to determine them.
But we know only one.

M 5\ equals to the energy of the ring Mying = 2mmuy

[0 We expect that all the jumps vanish when the
parameters are fixed properly.

» We fit the parameters to cancel the jumps

JGRG23@Hirosaki Univ.

Cancelling the jumps in fields

[ We look for parameters that fill the jumps
in Weyl scalars, metric perturbation and V.

[ Result Mo
B Parameters are found if
we allow a new discontinuity — @ —
. 0=m/2
at the equatorial plane
(r >rg, 0 =7/2) . 0—n

B Each of obtained Weyl scalars, metric perturbation and
Y is smooth at the sphere surface (r = rg).

B Physical parameters satisfy

Mying= —A(BMRe(b1) + Re(b2))  Jring = —A Im(a2)

JGRG23@Hirosaki Univ.
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§5 Conclusion

[0 Perturbed metric (radiation gauge) is completed.

B The [ > 2 modes are directly calculated from ¢07 ¢4
— Field has a discontinuity at the sphere(r = 7“0)

B The lower modes perturbation and pure gauge
are added outside the sphere
— Field becomes smooth at the sphere.
— Discontinuity at the equatorial plane appeared.

[J Future works

B Circular—orbiting particle around a black hole

O ... and calculate the gravitational self force
(following the work by Pound, Merlin & Barack 2013)

B More analytic determination of the lower modes

JGRG23@Hirosaki Univ.
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“Demagnification by an exotic lens object with negative mass”
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Gravitational lensing by negative mass object

Chisaki Hagiwara

Hirosaki University, Japan
with H. Asada (Hirosaki)

JGRG23 in Tohoku Nov. 5 - 8, 2013
Abstract: We have derived the lens equation and the deflection angle when the lens object with negative mass is expressed by the exterior metric
of the Schwarzschild space-time. As a result, we have found that at most two images appear on the source. Also, no images are observed if the
source is inside Caustics.

1 Motivation

The structure of space-time can be studied indirectly by observing the light bended
by gravitational field that is caused by astronomical bodies. Recently, exotic matter
or exotic energy such as dark energy which accelerates the cosmic expansion has
attracted interests. While these matter and energy are difficult to be detected
directly, it is expected that they can be detected by observing exotic space-time
using gravitaional lensing. We discuss gravitational lensing caused by an object
with negative mass which is one of the exotic matter.

2 Introduction
From the Schwarzschild metric, taking b as the impact parameter, the bending
angle in the weak field approximation is[1]

4GM
= 1)

The lens equation derived from the relative position of the images 6, source
object @g and the observer is[2]

2
Os =0 — 2, (2

is the Einstein ring radius and Dog, Doy, Dps are the

distance from observer to the source object, from observe to the lens object, and
from the lens object to the source object, respectivelly.
Solving it respet to 0y, angular position of the images are

0,:9i:%<95i,/9g+4a5>. 3)

The magnification is ratio of the luminosity of the images to the source object.
Taking Ay and A_ as the magnification of the images appearing at 6, and 6_
respectively, the total magnification is[2]

Aot = Ay +]A-| = 4)

where z = fg/ap.

Considering the motion of the source object which performs linear motion of
constan speed to the lens plane that is Doy, distant from the observer with the
origin at the lens object, the angular position of the source object at the time ¢ is

Os(t) = \/t2 + 0%, (5)

where g is the nearest distance between the source object and the lens object
(the distance of closest approach). It is normalized by the time at which the source
object crosses the Einstein ring radius. The magnification is written as

z(t)? +2

Apor(t) = 2(t) /a0 14

(6)

M-
Bt

Figure 1: Relative motion of the source and lens object on the lens plane

3 The effect of gravitational lensing by lens object
with negative mass

Assuming the mass of the lens object is My,eq = —M (M > 0), from (1), the bending
angle is

AGM, 4G(—M
Qneg = 7&;"” = 71()52 ) _ o, (7)

Einstein ring radius is

2 2
P AGMpegDrs 4GMDyrs P
2 = T neg oo = s = —a?
Goneg = <\/ c?DosDor, ) <\/ EED()SDOL) o ®

Therefore lens equation and the angular position of the images are written as

ad,.. a?
Os :0,—%:0,+6—?, 9

1
or =b2=7 (95i\/9§74a§) , (10)

taking 64 as 6, and 6_ as 0 for convinience. From the above, it proves that the
images appear up to 2. (See also Figure2)

Figure 2: The solution of th lens equation of a negative mass object (blue:a?/r,
red:fg = 0, pink:fg = 2, black:fg = 5)

From the relative motion of the source object and the lens object on the lens
plane, the total magnification derived from the equation is

o wm)?-2
Apor(t) = V=T (11)
4 Result

The light curve that varied fgg are substituted in the expression (11) and locus of
the images are shown below. In Figure3, the horizontal axis is ¢t normalized by the
time at which the source object cro: the Einstein ring radius, and the vertical
axis is the total magnification Az (¢). The magnification is A(t) = 1 at the infinit
point. Besides, it is confirmed that the two images 6; and 62 appear on the source
side from the graphd4.

Figure 3: Light curve. blue:flgo = 0.9,
red:0go = 0, green:fgo=2, pink:05o=>5,

Figure 4: Locus of images(at g = 2).
blue:0;, red:0s, green:fs, treating the
origin as the lens object.

5 Conclusion

We examined the lens equation and the deflection angle when the lens object with
negative mass is expressed by the exterior metric of the Schwarzschild space-time.

e Images are magnified.
e At the most two images appears at the source side.

e No images are observed if the source is inside Caustics.

References
[1] Frittelli, T. P. Kling, and E. T. Newman, 2000, Phys. Rev. D 61, 064021

[2] P. Schneider, J. Ehlers, E. E. Falco, Gravitational Lenses

832



833

“Wormbholes in higher dimensional space-time: Dynamics”
by Hisaaki Shinkai

[JGRG23(2013)P09]



834

Wormbhole in Higher-dim. Space-time: Dynamics poster POS

Hisaaki Shinkai & Takashi Torii (Osaka Inst. Technology, Japan)
BE8FH & REE (KBRTHEKZ)

Outline & Summary

(a) “Fate of Morris-Thorne (Ellis) wormhole” was numerically investigated in 2002. [HS & Hayward, PRD66, 044005].
The fate is either black-hole collapse or inflationary expansion, depending on the excessed energy.

(b) The higher-dimensional Ellis wormhole solutions are obtained. (o-br-nemacasn )
Perturbation study suggests instability. [Torii & HS, PRD88 (2013), 064023] ]
Numerical evolutions in 4-6 dim confirm its instability. [this poster]

(c) The wormholes in 5-dim. Gauss-Bonnet gravity are numerically obtained.
Evolutions suggest that positive GB term accelerates throat inflation.

Motivations N-dim. Ellis Wormhole sol.

Science of Space-time

D! (HS,2011)
Why wormholes? A Wormhole Solution (n-Dim, massless ghost scalar) _ .
o spherical symmetry.
 They make great science fiction ~ short cuts between otherwise distant regions N I e o op . .
ds? = —f(t,r)e PU0d 1 f(t,r) dr? + R(t, e (1
Morris & Thorne 1988, Sagan “Contact” etc de’ = —flte + ey Bl o Perturbation AnaIYSIS
@ They increase our understanding of gravity when the usual energy conditions are not ® with massless ghost scalar field ¢. ~d
satisfied, due to quantum effects (Casimir effect, Hawking radiation) or alternative gravity o static, f = 1, and throat radius R(0) = a; Just solve \* See the poster PO1. Torii & HS, PRD8S (2013), 064023
theories, brane-world models etc. PR (n—3)a0d
@ They are very similar to black holes —both contain (marginally) trapped surfaces and can P @
be defined by trapping horizons (TH). a9 _ oy . =
ar = =20 =3)py ®) eI

Wormhole = Hypersurface foliated by marginally trapped surfaces

© BH and WH are interconvertible?

New duality? . —
(1] How the stability changes in 5-d GR? . B f EI

[2] How the stability changes in Gauss-Bonnet gravity?

=; 6 ioseamsimminn
| = 7 oussimin
| == i
S i luos of

The potental function ¥ (7). The cigentunction 7,

—

|

BH and WH are interconvertible ? (New Duality?) WH eVO|Uti0n in 4’ 5’ 6_dim . GR in prep.

SA. Hayward, Int. J. Mod. Phys. D 8 (1999) 373

‘» They are very similar ~ both contain (marginally) trapped surfaces

and can be defined by trapping horizons (TH) 4d 5d 6d GR 4d 5d 6d GR
» Only the causal nature of the THs differs, whether THs evolve in z ghost pulse (additional amp.) input ghost pulse (subtract amp') input

plus / minus density.

Black Hole Wormhole
Locally | Achronal(spatial/null) | Temporal (timelike)
defined by | outer TH outer THs

= Lway traversable | = 2-way traversable

Einstein eqs. | Positive energy density | Negative energy density

normal matter . .
P exotic” matter
Appearance | occur naturally Unlikely to occur naturally. N
but constructible 727 ¥
\ y,
negative energy input --> throat inflates positive energy input —> BH formation

Results in 4-dim. GR

PRD66 (2002) 044005

Gauss-Bonnet gravity

o Action

Bifurcation of the horizons i
-- go to a Black Hole or Inflationary expansion Fleld EqSo
o Field eqs.

where Hu, = 2[R

WH evolution in 5-dim. GB i St Syt
in prep. /' ds? = 271 et da 4P (ot o)l @3

- ( ‘
.
conformal factor Q= - )

Wormholes in Gauss-Bonnet gravity (initial data on z*) expansions 0. ®

. ) N ) inaffinities ()

Ghost pulse input — Bifurcation of the horizons ; N

momenta of 6 ) )

momenta of e = r0a = Q0L (8)

o F p
A e % N Omatter = normal field ¢/(u,v) and for ghost field o(u,v)
g )
4", e’,
| |
|7 e . Field Eaqus
: T+ IA
[Fdecion 0]
3 (0]
1o @
Travel through a Wormhole e
— with Maintenance Operations! (~San+ B) ®
¢ @
/ -

A oD TN S oo
\ D) ) S o D RTUT) )
| 7 ©
> o
. / )
/ ©

BH formation throat inflates

§= [ 1aygl (@R + axlen)

(10)
an
a2)
(13)

where Lo = R~ 1R,.R

\ J

shinkai@is.oit.ac.jp http://www.is.oit.ac.jp/~shinkai/ @ JGRG23 workshop, Hirosaki U., 2013/11/5-8
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P10 General Relativistic Sitnikov 3-Body Problem

Hideyoshi ARAKIDA (Nihon University)

arakida@ge.ce.nihon-u.ac.jp

1

 One of the restricted 3-body problem
© Under the gravitational attraction due to two-equal mass primaries, third body (zero-mass test body) moves along the
trajectory which is through the center of mass of primaries and perpendicular to the orbital plane of primaries.

Introduction : Sitnikov 3-Body Problem

Third body
5

Primary 1

Primary 2

Orbital Plane of Primaries

o We consider the Sitnikov 3-body problem in first-order post-Newtonian approximation.

2 Equation of Motion (EOM)

Einstein-Infeld-Hoffmann (EIH) equation: 1st post-Newtonian order O(c~2) EOM

Gm
Tk |:2

i#i

Gm;

+42%

v 7
gk 'k

Gm FYC
rl/[/r/w'!'rfl)*’zwiz’”y"U/*’U]\-"Uk‘f’ lvy, - v;

ij Tk
,/} Lo,

)

Tt
Gmy
iy

ik ki

:
Gm,

Tki

. 7 Gm
wggl(dv) — 3v) ) = 5y -
itk

>

it

. )
i

2.1 EOM of Primaries
Introducing relative coordinates: R =7, — 7o, V = dR/dt = v) — vy
v GM GM

= {5

R=|R|,M = my +my,v = mymo/M*

GM
3

I 3 (R-V)?
H+2V)—5u‘ 2

@)

—(1+30)(V - V)] Rt (41— 21/)(R-V)V}

Initial value dependent of stable/unstable orbits

Escape time

2.2 EOM of third body

my=my=m, my=0,

dv.  Gm_ Gm { [mm duy
e bkl Pkl +
3 2R

dt

oy

©)]

dt s

2.3 Transforming into dimensionless variables
d by semi-maj
_2Gm

9
c2a

Introducing a di ionl | radius A: Ct

axis a and mass 1/ of primaries.

2.3.1 Primaries

av A

ar

£

du, dyy

2
1 ol 3
—§[V-V)+Sx:]z+1\}2 T

dz
ar

3 Numerical Experiments

Initial value of third body

Initial value of primaries

Range of dimensionless gravitational radius
Range of Eccentricity of primaries
Integration method

Integration time

Judgment condition for unstable orbit

s =0 (Free fall from %))
, Y = VI —¢2/(1 - e) (Starting from periastron)
0< X <0.035, 6\ = 0.0005
0<e<09, de=01
Gragg's Extrapolation method based on Aitken-Neville algorithm
1000 Kepler Periods of primaries (Maximum)
Kepler energy Ef > 0

Escape velocity

Excae Time Pt

escape Voot

Escae Time Pete)

escaoevancry

===

escave vencty

White ¢ In stable, Bluc -Third body in unstabe, Red B Primaris n unstable

r: R/2 ratio when escape

Acceleration when

escape Rate of surviving particles

Time Revouton P

son Pare)

o e s |
o m aw w mo

s 2
‘5 % o3

T Rvssin P Time Revouton Pt

Tims Rovsn (o) Time Revoton et
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Black Hole Universe with A
Chul-Moon Yoo

Graduate School of Science, Nagoya University

Alntroduction

©BH Universe vs Dust Universe

— -y
‘\

-

//
P Y T

~

(“. | BN
..

e & o

\\ P
-~ -

—_— e - -

- Can global aspects of the BH universe be approximated

by those of a dust universe? —Yes (see 1306.1389)
- What about with A?

©What we want to do
- Construction of initial data for the BH universe with A
- Comparing it with a dust universe with A

Expanding Universe with
periodically aligned BHs
BH at the center of
-__ a cubic domain O

___________________________

Box for numerical calculatior”,
- M v 1
-7 1 ! 1
- ] 1
________________ el — - -

, <O 1
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Boundary

, e
S LS

AConstruction of Initial Data

©Constraint Equations
- Conformally flat, no TT-part of the extrinsic curvature

. s i) Jua 1 ..

vij=¥*;, Ki=9"10 [a‘XJ +dX - §<Slfak)("] + 5‘["46”K
- Hamiltonian constraint

AP + - (LX) (LX) 97 — ZK*PS 4 2 APS = 0

8 12 4

- Momentum constraint

AX +30'0,X) — ZW69IK = 0

One component is enough because of the discrete sym.

- Form of K...?

©CMC slice in Kottler(Sch-dS) sol.

- Line element
Ar?

Zg & 2, 1 4.2 2402 _ 4 2M A
ds“ = —f(r)dt +f(r)dr +r<dQ-, f(r) =1 3 3

- Normal vector to t = h(1)

n#

o 1 -1 l
= (f " fh',0,0)
- constant mean curvature condition
V,,n” =—-K 2



- Induced metric

-1
2M 1 1
— = —-Ar2 + —Kzrz)
r 3 9

di? = F(r; M, K)dr? + r2dQ2, F(r; M,K) = (1
- Isotropic coordinate

dl? = $*(dR? + R2dQ?)

R = Cexp [i f:min dr/F(r; M,K) /r]

Y =r/R
- Puncture structure requires

R=0for r » o = K? =3A
& Fr; M, K) = (1—#)_1 SW=1+__

O©OForm of K and sol. near the center

K(X) = K.+ (K, —- K)W(R), where K. = —/3A

0 forO<R<?
W(R) ={6736[(R— 0 —£)6 —05]° for{<R<f{+o
1 for{+o0 <R

=sol. near the center X' ~ 0, ¥ ~ 1+ %
- New regular variable y
M
P =¥ - [1-WR)

- Hamiltonian constraint

Ap =A (% W(R)) — %(LX),-]-(LX)U'I"7 + % (K*—K?)yS5

© |I‘Ite . I'abilit condition integral of Hamiltonian constraint

2nM + %f (LX) (LX)T®P~7dx® — % (VaK§ + 2VoK Ky — V3KZ) = 0

where V, = [ W?W3dx3, V, = [ (1 — W)WW>dx3, V3 =V, + 2V,

—determines the value of K;,

840
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©Momentum constraints

AZ = 20,(¥°9'K), where Z = 9;X’

AXi = — % 9z + %wﬁaiK

AMarginal Surfaces in Initial Data

BH : black hole horizon O- : outer -

CH : cosmological horizon |- : inner -
WH: white hole horizon

OPossible configurations(for A < 1/9M~?)

(a) ICH + IWH + OWH

(b) ICH + IWH + OWH + OCH

(c) ICH + IBH + OBH

(d) ICH + IBH + OBH + OCH (expected final config.)
(a) (b) (c) (d)

OEquations
- null expansions
0, = (vY - s's/)(£D:s; — Kyj)
s': outgoing unit vector normal to the 2-surface

- marginal surfaces ( = h(9, 9))
0, = 0 for ICH, IWH, OBH (+45° lines in the diagram)
0_ = 0 for IBH,OWH, OCH (—45° lines in the diagram) 4
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- elliptic equations in polar coord.

1
W-i_ cot19 +1n2196<p (2—-m)h=nh+S.(h)

S.: complicated function of h
n = 1 for WHs and BHs, n = 3 for CHs

OTypical examples

-A=0.1M2 L = 2.6M (case (b))

inner horizons (A=0_1DOM'2, L=2.6M)

outer horizons (.’\:0.1OOM'2, L=2.6M)

25
OWH ——
2 OCH
15 |

-A=0.111M% L = 2.6 M (case (b))

inner horizons (A=0.111 M'z, L=2.6M) .
— . outer horizons (A=0.111M =, L=2.6M)

> OWH ———

0.25

- horizons disappear for larger A (AM? > 1/9)

X N ==

large A

v
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ATime evolution

©Gauge conditions(BSSN formalism)

- Lapse condition
] ;@
(5 - B'x) N = —2N(K - K,)
K,: K at the vertex of the box

- Shift condition : hyperbolic Gamma driver

OTransition of horizon configuration

- Appearance of OCH: (a) — (b) (A = 0. 1M 2,L = 2M)
initial time : (a)

inner horizons (A=0.100M2, L=2.0M)
— outer horizons (A=O.100M’2, L=2.0M)

t=0.2M : (b)

inner horizons (A:O.WOOM'Z, L=2.0M, t=0.2M)
— outer horizons (.-'\:0.1OOM'2, L=2.0M, t=0.2M)
0.25 )

02 K=

OWH ———

0.15
0.1
0.05
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- Bifurcation surface cross: (a) — (¢) (A = 103M2,L = 2M)
initial time : (a) »t=0.16M : (c)

inner horizons (A=10M2, L=2M, t=0M) inner horizons (A=10M, L=2M, t=0.16M)

IWH > OBH ——
OWH —> IBH ——

y/M

©Cosmic expansion

- Effective scale factor: a, .= \/A(7)
7= proper time
A(7): area of a face on const. proper time slice

- Fiducial scale factor: ap zyw (flat dust+A)

) 1/3
(l—exp [m(T+Tf)])

(1+exp[\/ﬁ(r+rf)])2—(1—exp [\/ﬁ(‘ﬁrf)])z

arLrw — Q¢

2 free parameters(a; and ;)
- Comparison with fitting

120

ap for A;1 0% +

100 k ap for A=1O"51 +
ap for A=10 +

fited FLRW A=10"

2 0T fited FLRW =10 ]
g fitted EAS to A=10° ——

R e

2 fitting region :

S 40 S

20

0 20 40 60 80 100
proper time [M]



ASummary

- Black hole lattice universe with 1 is simulated

- The vacuum Einstein equations in a cubic box
with a black hole at the origin, periodic boundary

- Configuration of marginal surfaces is analyzed

- Comparison between effective scale factor a, and ag rw

©Behavior of the effective scale factor is well
approximated by that in the FLRW universe
even with A

845
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“Modeling of the secular evolution of a inspiral orbit
around a Kerr black hole”
by Norichika Sago

[JGRG23(2013)P12]
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Modeling of the secular
evolution of an inspiral orbit
around a Kerr black hole

Kyushu University

Norichika Sago

with S. Isoyama, T. Tanaka, R. Fujita, H. Nakano

JGRG23 at Hirosaki University

—~ Ve —

NS 5-8 November 2013

TR &
\I KyusHu UNIVERSITY 2011

KYUSHU UNIVERSITY 100th Anniversary

(D

Introduction

» Extreme Mass Ratio Inspiral (EMRI) is a candidate of GW targets.

« GW analysis requires accurate prediction of the dynamics and GW
waveforms.

 Self-force picture in BH perturbation theory can describe EMRI well.
» Currently, calculations of the instantaneous SF are developed.

« Still, there are several issues to incorporate the SF effect to the long
term orbital evolution and GW waveform.

Aiming to solve the issues, we study a new formulation to
describe and solve the equation of motion of a particle in
Kerr geometry based on Hamiltonian mechanics.
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Kerr spacetime

e N\
Kerr metric in the Boyer-Lindquist coordinate
gg?dx“dxv
2Mr 5 4Marsin26 DI
= — 1_T dt —Tdtd¢>+gdr s = 12 + q2c0s20
2 A=1?—-2Mr+a?
2 2 2 ZMa r a2 s 2 2
+XdO“ +|r* +a” + sin“6 ) sin“0d ¢
NG J
e N N\
Kinnersley null tetrad Killing vector/tensor
1
* = K(rz +a%A,0,a), §(o = (1,0.0,0),

f&ud)) = (OIOIOI]‘)’

0
29;(11/)

nk =i(r2+a2 —A,0,a)
22 ) ) ) )

K#v = ZZl(ﬂTlv) +7r

1 i
mt = (ia sin6,0,1, —)
L V2(r + ia cos 0) sin 6

AN /

Bound geodesics in Kerr geometry

Hamiltonian for a test particle in Kerr spacetime

1
0 af 0 0
H(O) (X‘u,p[(l )) = _g(O) (Xp)p(a! )p(g )

Constants of motion

mass: m
energy : E© = —pg))ggg)
angular momentum : L(ZO) = pé°)§{‘¢)

Carter constant: ¢(© = K“ﬁpéo)péo) — (aE©® — L(zo))z

For simplicity, label these constants
2
m
Po=——, P=E9 P=LY P=C®
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Action variables (unperturbed case)

Introduce an action variables J,, [Schmidt (2002)]:

o

1
A(r)dr, ]9=§3§ 0(6)do

1
0
Je=—EO, Jp=17", 1r=§j€

2 2
R(r) = {(7‘2 +a?)E® — aL(ZO)} - A{mzr2 + (L(ZO) - aE(O)) + C(O)}

{ o
— 0 _ 2 _ p(0)2),2 z 2
0@ =cC (m )a +sin29 cos-6

These variables can be expressed as functions of constants of motion:
Ju=fu(Py)  (f is bijective and C*)
The corresponding coordinates (action angle variables) are given by
y_ WG R AW £ () |
0Ju 0Ju
where the generating function is given by [Carter (1968)] :

r /R ; 0
W (x*, P,) = —E<O>t+L(Z°)¢>+f #dr’+] Jo®Ndo’

q

Perturbed orbits in Kerr geometry

Perturbed orbits can be expressed by the geodesics for the effective
metric [Mino-Sasaki-Tanaka(1997), Detweiler-Whiting (2003)]:

hgz,) : regularized metric perturbation

Uy — A0 R)r..u.
Yap [x#;y] = Yap (x#) + haﬁ x5 7] y : trajectory of the particle

The effective Hamiltonian for a point mass is given by
4 N

1
Heff[x“,pu;)/] = %gaﬁ[x”;V]PaPﬁ

= H(O) (x”, p#) + Hint[x‘ur p/,u y]

background interaction
1 1
Heoy (¥, p) = 5~ 900y @ IPabp  Hine[x", 05 ¥] = =5~ h (x5 vIpapp
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"Action variables" (perturbed case)

Introduce the generating function

r /R ’ 0
W(xH P) =—Et+ L, + f A(r )dr’ +J NCICDY X
R() ={(r? +a®)& —aL,}* — A{u*r*>+ (L, —a&)? + C}
2
eO) =C - {(,u2 —&%a? + Ls }cosze

sinZ%0

with the following variables
2

p0=—M7, Pi=E Pp=L, P3=C
Define "action variables" by the relation in unperturbed case:

]u = f,u(Pa)
Then the other associated phase space variables are given by
oW (x",P,) oW (x¥,Pg) oW (x", fz ()
Pu=""m » 97 o, o],

EOM in Hamiltonian mechanics

Rewrite the Hamiltonian in (x#,J ) : H(x%,],) = H(x?,ps(x",]y))

Hamiltonian equation for J,

Ay <0H (x”,]a)>
J

using the following relation
(am> oW (x%,]s) (0q”>

aJ, » 0xVadJ, axv I
< H(xa:]a) = H(O)(xa']a) + Hint(xa']cr)

2
_ 6]# aHint(xa;]a) Hipy(x%,]5) = —% =Py =fo 'Us)
apv x% axv Jo

This expression coincides with that in the previous work [NS et al. (2005)].

dr dgt

0x¥ 0H(x7, ] ;)
dgHt  dxV ]

Hamiltonian equation for g#

dqﬂ OH(x“,]G) aHint(xaija) aH(O)
- = QH + O*(J,) =
( I ), Ua) 0 ), T

Interaction Hamiltonian H;, is important to determine the dynamics.

dt
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Radiative and symmetric pieces

The interaction Hamiltonian is expressed as

m (% 1~ (R / 1,0
H[, 2] =5 [ a6, 8% [, 2 Y pappuv?

The regularized Green function can be divided into the radiative and
symmetric pieces:

G(R) (x,x’) — G(ret)(x’x’) — G(S) (x’x’) G(rad) —

2 )
d
— G(rad) (.X', x’) + G(Sym_s) (x’ x’) G(sym=8) — M —G®
2

G(ret) _ G(adv)

Following this splitting,

Hine[x%, D] = Hie O [x#, pu v] + Har ™ > [x¥, ps v]

\

Radiative piece Symmetric piece
*including the dissipative effect *only conservative effect
sregular at the particle's position *need regularization

Secular approximation of Hamiltonian egs.

Introduce a slow time variable: T=et (e K1)
Divide (g, J) into the secular and oscillatory parts:
q“(r, €) = C_Iu @ + Eqéll) (¥, 7) + 0(62) YV: phase variables
]M(T' €) = ]—“ () + E]lgl) (WY, %) +0(e?) M= gH (%) at Oth order)
Secular term / N Oscillatory term (no secular growth)

(contains all order of ¢€) The leading term is at O0(¢).

Then, the Hamiltonian eqgs. can be divided into the corresponding parts:

A0 _ i oy (PRI Gl 00Uy (MG S] _ (Hi [0
az W o, dz o, ° o 0. |
T
Ay _ [oH5e 14" 1] L A S W L
dt dqH at daq# dq#
T T

Since (qé‘l),]ﬁl)) give only the higher order contribution,
(9¥,J,) can be replaced with (g#,],) at the leading order.

10
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Osculating geodesic approximation

Replace the secular terms with the geodesics approximately:

q* () =| (o5 (TT0) | +| A4 (7 70)
(050)

Ju® = 1@ |+ ML)
1 errors
Bound geodesic with the initial value, {g#(z,), J,(to)} att =1,

Parity for the transformation (¢t,7,6,¢) = (=t,r,6,—¢)
q*, Hl(;?d) odd parity Jus Hl(rffm 5) : even parity

Using these properties, the secular EOM can be expressed by:

S = d
aH(sym )[ (osc) ](OSC)] d]u aHl?;? )[ (osc) ](OSC)]

dC_I'u T int
— = (OH * =
= QLT (D] + a7, ke =

T

g* is determined by averaged HY™ > while J, by averaged H(2®

1

Gauge invariance of averaged Hj

Physically acceptable gauge transformation
1d
R = hSY + 7,8, + 7,8,

where &#[z%(A)] has no secular growth.

This gauge transformation does not break the perturbation scheme.

Under this gauge transformation,

_ d
1d
H(new) [xli, Pu; ((osc)] = Hl(r?t )[x”' Pu; ((Iosc)] + 2 a (Eupu)

int

Taking the long term average, the gauge-dependent term vanishes:

(new) L5l (old) i
<Hll'lt I:xu'r pﬂl Z(OSC)]> <H1nt [ ,Ll, p;u ((OSC)]>T

12
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Summary

Formulate the orbital evolution of a point mass in Kerr
geometry in Hamiltonian mechanics.

The secular evolution can be expressed by the averaged
interaction Hamiltonian in a gauge invariant manner.

gH is determined by averaged H&Y™ ™),

int
J,, is determined by averaged g&ad

int

Toward the post-adiabatic order:

Evaluate the error of the osculating approximation
Estimate 2nd order effects (including oscillatory parts)

The oscillatory parts become more important in
resonance case.

13
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“Spin-Regge-Wheeler-Zerilli formalism and gravitational waves”
by Hiroyuki Nakano

[JGRG23(2013)P13]
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Spin-Regge-Wheeler-Zerilli Formalism and

Gravitational Waves

Hiroyuki Nakano

Y. Zlochower, C. O. Lousto, M. Campanelli

YITP, Kyoto University
CCRG, Rochester Institute of Technology

JGRG23, Hirosaki University, November 5-8, 2013

Intermediate-mass-ratio binary black holes

Mass ratio: 1/10 > g > 1/100 for binary black holes (BBHs)

“Full numerical simulations” (NR):

Challenge in the exploration of the extremes of
BBH parameter space

“Analytic treatments” (AR): Which is a better description?
Post-Newtonian (PN) approach
Effective One Body approach

Gravitational self-force [See (P12) by Norichika Sago]
in Black Hole Perturbation (BHP) and so on.

Simple as possible : We use

o Regge-Wheeler-Zerilli formalism (BHP) + remnant BH's spin
o TaylorT4 orbital phase evolution (PN) + fitting parameters
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Final remnant of BBH mergers

Final remnant black hole’s spin after BBH merger in NR,

Mass ratio g=1/10 g=1/15 g =1/100
Non-dim. spin | 0.261 £0.002 0.189 +0.006 0.0332 + 0.0001

Lousto et al., Phys. Rev. D82, 104057 (2010).

@ We want to introduce the spin effect
into the black hole perturbation approach.
@ The background BH has mass (M = m; + mp)
and a particle (u = mymy/M) orbits around the BH.

Analytic, perturbative approach

Spin-Regge-Wheeler-Zerilli (SRWZ) formalism
Lousto et al., Phys. Rev. D82, 104057 (2010).

@ Extension of the RWZ for Schwarzschild perturbations.

@ We include a term linear in the remnant BH's spin
perturbatively.

@ Coupling between linear waves and the spin is discussed
in 2nd order perturbations.

\Ufm(tvr):w§2(tar)+wga(t7r)7

Wi =i (w2 [ vt (e

m

\U(l) \|1(2)'

vm Vot Even parity Zerilli function

\Ué(:,;l): Odd parity Regge-Wheeler function
w{®%2). Odd parity Zerilli function
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The SRWZ formalism

Example (even parity wave equation)

02 02 (even) . A(even)
_ ﬁ\U@m (¢, r)—&-w‘llgm(t7 r)—=V, (NVem (t,r)+imx P, Wy (t,r)

= 51N (8, 15 (1), (1))

(t, r, 0, ¢): Background Schwarzschild coordinates
r*=r+2MIn[r/(2M) — 1]
, m): armonic decomposition for (0,
14 H ic d ition for (6, ¢
x: Nondimensional spin parameter
Vg(even) . Potential

I?’éeven): Differential operator
Slg,e:en): Source term (with 2nd order effects,

including the mode couplings)

@ It is noted that the SRWZ formalism gives a reasonable result
for —0.3 < x < 0.3 (from the analysis of quasinormal modes).

o We need the particle’s trajectory (rp(t), ¢p(t)).

Check: Quasinormal modes

Quasinormal mode frequencies for various x

@ Considering only the dominant harmonics, { =2, m = 2,
i.e., ignoring the mode couplings.

@ The second and third columns are shown as p = —iwqnwM.

@ Numerical analysis in the third column by
[Glampedakis and Andersson (2003)].

@ Note that the even and odd parity equations become same via
“Chandrasekhar transformation”.

X m = 2 (SRWZ) m = 2 (Numerical) Errgy Errg
—0.5 —0.176825 — 0.643379 —0.178062 — 0.648614 i —0.006947 0.008071
—0.4 —0.177466 — 0.661283 / —0.178262 — 0.664916 i —0.004465 0.005463
—0.3 —0.177930 — 0.680440 i —0.178368 — 0.682666 i —0.002455 0.003260
—0.2 —0.178181 — 0.701019 / —0.178364 — 0.702106 i —0.001025 0.001548
—0.1 —0.178186 — 0.723233 —0.178228 — 0.723536 i —0.000235 0.000418

0.0 —0.177923 — 0.747340 i —0.177924 — 0.747344 i —0.000005 0.000005
0.1 —0.177398 — 0.773654 i —0.177412 — 0.774036 i —0.000078 0.000493
0.2 —0.176662 — 0.802534 i —0.176622 — 0.804290 i 0.000226 0.002183
0.3 —0.175836 — 0.834372 —0.175458 — 0.839054 i 0.002154 0.005580
0.4 —0.175116 — 0.869549 i —0.173764 — 0.879684 i 0.007780 0.011521
0.5 —0.174747 — 0.908398 i —0.171278 — 0.928246 i 0.020253 0.021382
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Trajectory: Orbital frequency Q2 evolution

Time evolution of the orbital frequency:
Based on TaylorT4 evolution [Boyle et al. (2007)]

aQ 9% 1173, 5/3 5/3\~1 ( 743 1 ) 2/3
— =o'y 1+B (2/90)" 1+ (—— — = n) (MQ*3? +ax M
= n (1+8(2/20)"%) e 2 ") M
34103 13661 59 4159 189
+( +7n+fn2>(/\/’9)4/3+(—fﬂ—fnﬂ>("/’9)5/3
18144 2016 18 672 8

16447322263 16 5 1712 1712 56198689 451 o 541 ,
(7 — 7" — — v — —— In(64 MQ) — n+ —nmw —n
139708800 3 105 315 217728 48 896

5605 3 2 4415 358675 91495
— B MaR + (- — +

T ™
2592 K 4032 6048 K 1512

nzﬂ) (MR)/? A (2/20)°/3 |,

_d¢
odt’

mymy

Q Ve

M=mi+m, n=

@ We introduce A, «, B and 3: Fitting parameters

o MQo = (1/3)%? ~ 0.19 at Rse, = 3M for circular orbit.
@ a > 7 and 8 > 7 to be consistent with the 3.5PN formula.

Trajectory: Orbital radius

Orbital radius:

Based on the ADM (Arnowitt, Deser and Misner)-TT PN
(NR coordinates ~ ADM-TT
~ “trumpet” stationary 1 + log slice of Schwarzschild)

M 1 23 19 1, /3
R:71+(71+7)MQ/+(77+7 +- )MQ
(MQ)2/3{ 3"( ) 4 g1 9" (M<2)
1 1625 167 , 3 ,

2 3 2] a
+l—-=—n+—= - -n"+ = MQ 1+a9(Q/0)) +C,
( i m "t TR 81n>( )|/ (1+20(2/90)7 )

R and €2: in the NR coordinates

ao, a1, C: Fitting parameters

MQo = (1/3)3/2 ~ 0.19

a1 > 2 to be consistent with the 3PN calculation.
C (looks like 1PN)

Inconsistent with the ADM-TT PN formula. — But, we need!
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Trajectory: Fitting for orbital frequency and radius

Fitting parameters:

@ For the orbital frequency

Mass-ratio | A a B 8
g=1/10 | 17.0500 7.21975(>7) 8.18920 1255197 (> 7)

g=1/15 | 26.0150 7.54047(>7) 8.65525 13.6168(> 7)
g =1/100 | 93.0650 4.32071(< 7) 5.42457 14.9711(>7)

@ For the orbital radius

Mass-ratio | C ag a

g—=1/10 | 0.216953 (£ 0) 0513214 4.68472(> 2)
g=1/15 | 0.237427(#0) 0.600321 4.57899 (> 2)
g =1/100 | 0.198137 (£ 0) 0.923360 5.29681 (> 2)

Nakano et al., Phys. Rev. D84, 124006 (2011).

Wave calculation in the SRWZ formalism

1. Radial transformation to remove the offset C between the NR
and the "trumpet” coordinates by assuming Tnr = Trog,

RNR — RLog = RNR - C.
2. Coordinate transformation to the standard Schwarzschild coordinates
(TLoga RLog) — (TSCh7 RSch)a

Final plunge trajectory :

Plunging (Schwarzschild) orbit from a matching radius Ry ~ 3M

to the horizon R = 2M: Geodesic without the radiation reaction.

The SRWZ waveforms at a sufficiently distant location Rops:

R;\)/’bs (he i)=Y V=) +1)(+2) (
£m

(even) ., (odd)
o v v ) Yo

£m £m
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Short summary for wave calculation

Extended TaylorT4 (Trajectory)
+
SRWZ formalism (Wave generation)

0.04

0.02 — -

h (r, /M)

+ * obs
(=]
= =

-0.02 — —

y . | . | . | . |
004 1500 2000 2500 3000

t/M

Wave extrapolation for NR waveforms

Relation between the Weyl scalar 14 and the wave strain h:

t t/
h= hy — ihy :/ dt’/ dt" s .

@ In NR, 14 is typically extracted at a finite radius (rgxt)-

@ To extrapolate @bﬁm(r = rpxt, t) to r — 00,
we may use a perturbative formula as

Jim [0 = i) - CEREED g

+0(rg2) -
@ This formula gives reliable extrapolations for rgyx; = 100M.
(from numerical study by [Babiuc et al. (2011)])

o For ¢4 — h, PYGWANALYSIS code
[Reisswig and Pollney (2011)] in EINSTEINTOOLKIT
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Results: Gravitational wave phase (g = 1/10)

NR vs. SRWZ waveforms (=2, m=1)
g=1/10, ¢ =0 at t = —830M. L =l
({ =2, m=2) 7
I
ol 1 (=3m : 3)

NR vs. SRWZ waveforms (=2, m=1)
g=1/15, ¢ =0 at t = —600M. ]
({=2, m=2) ]
I~g T T ‘ L A L ]
|
—- SRWZ 0 B
20 - P e ] - T
(¢t =3, m=23)
40l | ——
0| _ s ]
I :
I R R e T BT ‘e

M



Results: Gravitational wave phase (g = 1/100)

NR vs. SRWZ waveforms (=2, m=1)
g=1/100, ¢ =0 at t = —85M.

T
— NR
— - SRWZ

20 B

L
-50 0 50

Matching and Summary

Match between the NR and SRWZ (¢ =2, m = 2) GWs in aLIGO
(Zero Det, High Power). (Integration from fioy, ~ 10Hz.)

g=1/10 | g=1/15 | g =1/100
Range (MQ2) | >0.075 | =009 | >0.15
Total mass (Mg) 242 290 484
Moo 0.994669 | 0.996039 | 0.995477

@ Currently, we have only one approach, the effective-one-body
approach (calibrated numerically) to treat gravitational waves
from intermediate-mass-ratio BBHs.

@ The SRWZ formalism is an alternative
(and fast for calculating various GW modes).

@ Next plan : Using longer NR simulations for various g cases,
— Fitting parameters in fitting functions for the trajectory

(A, o, B, B, ao, a1, C) = con.

862
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“3+1 gauge-invariant variables for perturbations
on Schwarzschild spacetime”
by Kouji Nakamura
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3+1 gauge-invariant variables for the
perturbations on Schwarzschild spacetime

Kouji Nakamura (NAOJ)

References :
K.N. Prog. Theor. Phys., 110 (2003), 723. (arXiv : gr-qc/0303039).
K.N. Prog. Theor. Phys., 113 (2005), 413. (arXiv : gr-qc/0410024).
K.N. Adv. in Astron. 2010 (2010), 576273. (arXiv : 1001.2621[gr-qc]).
K.N. CQG 28 (2011), 122001. (arXiv : 1011.5272 [gr-qc]).
K.N. Int. J. Mod. Phys. D 21 (2012), 1242004. (arXiv : 1203.6448 [gr-qc]).

K.N. Prog. Theor. Exp. Phys., 2013 (2013), 043E02. (arXiv : 1105.4007 [gr-qc]).
K.N. in progress

I. Introduction

[0 The higher order perturbation theory in general relativity
has very wide physical motivation.

- Cosmological perturbation theory
e Expansion law of inhomogeneous universe
(ACDM v.s. inhomogeneous cosmology)
¢ Non-Gaussianity in CMB (beyond WMAP)

- Black hole perturbations
e Radiation reaction effects due to the gravitational wave emission.

— Perturbation of a star (Neutron star)
¢ Rotation - pulsation coupling (Kojima 1997)

There are many physical situations to which higher order
perturbation theory should be applied.
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However, general relativistic perturbation theory
requires very delicate treatments of “gauges”.

It is worthwhile to formulate the
higher-order gauge-invariant perturbation
theory from general point of view.

e According to this motivation, we have been formulating the general
relativistic second-order perturbatlon theory in a gauge-invariant
manner.

- General formulation :
Framework of higher-order gauge-invariant perturbations :

+ K.N. PTP110 (2003), 723; ibid. 113 (2005), 413.

« Construction of gauge-invariant variables for the linear order metric perturbation :
+ K.N. CQG28 (2011), 122001;
+ K.N. PTEP2013 (2013), 043E02;
« K.N. IJMPD21 (2012), 1242004.

« The nth-order extension of the definitions of gauge-invariant variables :
+ K.N. in progress. (I am trying to resolve this issue.)

- Appllcatlon to cosmological perturbation theory :
Einstein equations : K.N. PRDZ4 (2006), 101301R; PTP117 (2007), 17.
« Equations of motion for matter fields : K.N. PRD80 (2009), 124021.
« Consistency of the 2" order Einstein equations : K.N. PTP121 (2009), 1321.
«  Summary of current status of this formulation : K.N. Adv. in Astron. 2010 (2010), 576273.
+  Comparison with a different formulation : A.J. Christopherson, et al.,, CQG28 (2011), 225024.
3

Our general framework of the higher-order
gauge-invariant perturbation theory is based on
a single assumpt|on for linear-order metric
perturbation.

[0 metric perturbation : metric on PS : gab metric on BGS : Jab
metric expansion : Gab = Jab + €Rap + O( )
O Decomposition conjecture :

When we have the gauge-transformation rule yhas — xhar = Legab
under the gauge-transformation ®, = Xe_l o Y., we can always
decomposed the linear-order metric perturbation hqp as

LAy = Hon + £x9an |,
where the variables Hq., and X are the gauge-invariant and the
gauge-variant parts of hqp, respectively. These variables are
transformed as yHap — ¥Hapr =0, X% — X% = {* under the gauge
transformation &,

This conjecture is almost proved but is still a conjecture
due to the “"zero-mode problem” !1

[K.N. CQG 28 (2011), 122001; PTEP2013 (2013) 043E02; IJMPD 21 (2012), 1242004.] 4
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In Ref. [K.N. CQG28 (2011), 122001.], an outline of a proof of
the decomposition conjecture is shown through the ADM
decomposition of the background metric: Mo=Rx %, dim(X)=n

gab = —(dt)a(dt)s + gij(dz")a(dz?),, sign(gi;) = (+0 5 4)
€ We assume the existence of Green functions of the elliptic derivative

operators ( D;g;x =0, R;': Ricci curv. of g. ) :

A:=D'D;, D;j'=qA+ (1 B %) D;D'+ R},
----> zero-mode problem arise!!!
€ This outline is generalized to the background metric :
Gap = —2(dt) o (dt)p + qij (dz’ + Bldt) o (da? + B dt),,
in Ref. [K.N. PTEP2013 (2013), 043E02.].

€ As a by-product, we defined gauge-invariant variables on an arbitrary
background spacetime, which corresponds to the longitudinal gauge in
cosmological perturbations.

To resolve the zero-mode problem, it is necessary to clarify the
appearance of this problem in some specific background spacetimes.

€ We are trying to apply our arguments to the Schwarzschild spacetime.

This poster presentation is a progress report of this attempt. .

II. Construction of n+1 gauge-invariant variables
for linear metric perturbations on an arbitrary
background spacetime

[K.N. CQG 28 (2011), 122001; PTEP2013 (2013) 043E02; IJMPD 21 (2012), 1242004.]
[0 ADM decomposition of BGS : Mo=Rx ¥, dim(X)=n
gab = —a(dt)a(dt)s + qij(da’ + Bdt)a(da’ + Bdt)y sien(ay) = (+,--,+).

[0 Gauge-transformation for the linear metric perturbati'on hab
o = &(dt)a + &i(dz')a
hap = htt(dt)a(dt)b + thi(dt)(a(dwi)b) + hij (da:i)a(dmj)b.

yhtt — .;I:'h'tt = Zaté-t - a (8tCl{ =F ﬁ”D%a — BjﬁzKij) &-t

yhat — xhap = LeGap

2 ) ) . .

—= (B'B* B Kij — B0 + aq? 0.5
+ a’D'o — ap* DBy — 5i:3ijOt) 32

2

2 . .
yhei — xhy = & + Di& — - (Diax — B K;j5) & — aMi 7E5,
2 2
vhij —xhi; = 2DugG) + K& — aﬁkKijﬁk,

covariant derivative: D;g;r =0 extrinsic curvature: sz. = ¢* Ky,
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Inspecting these gauge-transformation rules, we can derive the
following decomposition of the components h¢; and hi; [K.N. CQG28
(2011), 122001; arXiv:1105.4007[gr-qc]; arXiv:1203.6448[gr-qc].] :

hti = Dihwry +hwyi — 2 (Dija — B Ki5) {h(vry — AT 'D*0ihirvyn } — EM@ Fhervyes
hij = %Qijh(l,) + h(1yi; + %Kij {h(VL) - A_leath(TV)k} - %BkKijh(TV)ks
heryij = Dihervyj + Dikirvy — %Q‘éjpih(l"v)t + h(r1)ijs
Dih(V)i = 0, qijh(TT)ij =0, Dih(TT)ij =0.

The inverse relations of these decompositions are guaranteed by the
existence of Green functions of elliptic derivative operators

A:=D'D;, F=A- 2 (Dia — B K;;) D' — 21Dfil (Do — mKij)l,

and the existence and the ﬁniqueness of the integro-differential quation

for a vector field A,

2 - 2 - 1
D;*A+ D™ {EKW- {J—“‘lD"“ (aMklAl — 8 Ay — ﬁkAk) H = L;, Kiji= Kij = g, K.

. 2 o
A:=D'D;, D;':=q¢ A+ (1— E) D;D'+ R} R,': Ricci curvature on ¥

[0 We can derive gauge-transformation rules for variables as

2 . o
vhit = xhyr = 20i& — — (da + B'Dia = B 8°Kij) &
9 _ . _ » .
= (5188 K — Bidua + ag 9,8, + o’ Dia
—aB*D'f, — B4/ Djar ) &,

yhvry — xhvry = &+ ATIDFO,

yhovyi — xhoy = 0&i — DiAT DR9.&,
yhy — xhy = 2D,
vhvyi — vy = &,
vh(rryi; — xhr)i; = 0.

[0 Gauge-variant variables : yX: —xX: =&, »Xi—2X;=6&.

X; == hwr) — AT DROhirvye,  Xi = hirvyi.
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[0 Gauge-invariant variables :

—2® := hy — 20X+ o (8;0[ + B'Dia — ﬁ]B%Kﬁ) Xy

+= (88" A" Kij — B'0r + ag” 0B + o’ D'a — af* D'By — B4 Djar) X;,

—2n¥ = Ry —2D'X; = hy — 2D h(pvyi,
v; = h(V)’i — ath(TV)i + D;‘A_leath(TV)k:
Xij = har)is

D'v; =0, ¢“xi; =0, D';=0, Xij=Xji-

[0 Definitions of gauge-invariant and gauge-variant parts :
’Ho:b = —Q‘I)(dt)a(dt)b -+ QVZ(dt)(a(dﬂL'i)b) + (—2‘11%5,‘ + X%'j) (d:ci)(a(da:j)b),
X, = X (dt)q + X;(dz"),.

In terms of these variables, the original components hy, hy, and h;; of
the linear metric perturbation h,, are summarized in the covariant form :

hab — 7'[ab + °€Xgab

II1I. 3+1 gauge-invariant variables on the
Schwarzschild background spacetime

[0 Schwarzschild metric: o®=1-— B =0, K;; =0,

r 4

1
Qab = ﬁ(dr)a(dr)b + 129py (dzP) o (dz?), , 7pq : Metric on S2,

[ linear metric perturbation : hgep |
hap = htt(dt)a(dt)b + 2hti(dt)(a(dl‘z)b) + hij (dﬁ?z)a(dﬁﬂ])b.

hii = Dihwvry + by — %Dia {hvry — AT D Ohirvy}
hij = %Qijh(l,) + h(1)ij»
hryij = Dibvy; + Dihirvyi — %q";leh(TV)l + h(r7)ij)
D'hyvyi = 0, ¢“hirryij =0, D'hirryij =0.

The inverse relations of these decompositions are guaranteed by the
existence of Green functions of elliptic derivative operators1

A= D'D;, Fi= A— 2 DiaD' — 2D’ {lDz‘a} . D= i A+ 3D D'+ Ry
(0% (0%
R;' : Ricci curv. of gj.

----> zero-mode problem arise!!l 10




[0 Gauge-variant variables : yXi—xXi =&, yXi—xX;=¢&.

X; = hwry — AT DROhirvye,  Xi i= hirvyi-

[0 Gauge-invariant variables :

—2d
—6Wv
v

Xij

= hy — 20, X; + 2aD'aX;,

= hy — 2DX; = higy — 2D h(pvyi,

= hwyi — Othirvy + DiA_leath(TV)ka
= hrT)ij-

Dy; =0, ¢"x; =0, D'xi; =0, xij=Xjs-

[0 Definitions of gauge-invariant and gauge-variant parts :

%ab = —Qq)(dt)a(dt)b -+ QI/E(dt)(a(d.’Et)b) -+ (_QII!q'ij — X‘ij) (d$é)(a(d$j)b),

X, = X (dt) + Xi(dz?),.

-——->

hab — HCLb + vEXgab

[0 Vacuum Einstein equations :

1
« Background Einstein equations : Aa=0, ®R;; = aDiDja.

« Linearized vacuum Einstein equations :

Hamiltonian constraint: Ay _ kaDlaxlk -0
4o ’

Momentum constraint :

—4a0;D;V + 4D;00: ¥ + aAv; + DiDjO{Vj — QDjOéD(.;Vj) + Djoz(?txﬁ =0,

Spatial components :

2 2 2
—D,‘qu) + —DiDjO((I) — —2D1'CEDJ'05(I) + —D(iOt.Dj)(I) + CYZDiDj\I' — QQD(iC){Dj)\I’
(87 « e

2 . 2
+4i; [A(I) + = D*aDpa® — =DFaDp® + 20; ¥ — o AV
[0 x

—6tD(i'Vj)
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1 3 : 1 . . 1 .
+§8t2xéj — —aqileD"axm — 50:2sz-3,- -+ 3aD"“D(5an)k + aD"“aD(i-xj)k — E(IDAC&:D;;XZ':,'

2
=0,



870

IV. 2+2 formulation for perturbations on
spherically symmetric background

One of most popular formulations for perturbations with
the Schwarzschild background is 2+2 formulation.

[0 Schwarzschild metric :  gap = Yab + r2vpq (dzP) o (dz?),

Yo = yap(de)y(de?), = —a?(dt)a(dt), + — L (@r)adry, a?=1-2M

,
[] linear metric perturbation :
hap = hap(dz™)o(dzB)y + hpg(dzP)q (dz?)y.
hap = fﬁABS,
hap = T‘DpfE(G)AS+TEPQDP/FL(O)AS,
r2 . S . - T
hpy = Typq]heos+r2 (Dqu = §~/pq1.)3,11.3) /h(el)5+2r253(qu)DsfholS,
Ds’\qu = 0, €pg = €[pq]» S = Yém: /: Z
I,m
13

] Inverse relations :

/ilABS = hasg, A :=DPD,
,\ = 1. o
/h( )AS = —A quhAq, /h(o)AS = ;A_le (eP?h 44)
~ 1
/heOS — _27 hpq7
- 2 1
fh(el)S = — [ ] A~YDapr [h 5"/pq’}’suh5u:| ,
- 1 1
fh(ol)S = —2 [ :| EqSD Dp [h §’qu’}/ugh¢w:| .

In this inverse relations, we used the Green functions for the derivative
operators A and A + 2 , respectively.
----> zero-mode problem arise!!!

Zero-modes are kernel modes of the operators A or A + 2.
---> 1=0,1 mode ( AY},, = —Il(l +1)Y},, ) are zero-modes.

14
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[0 Gauge-transformation rules : yha — xhay = £edab, Daypc =0,

yhap — xhap = Vaép+Vpta=Dalp+ Dpéa,
Yoy — ahap = Valp+ Vpéa=Daby+ Dpés — %DArgpa
Wil — ol = Wefag 0 Wi = .Dp{fq - qufp + QTDArqu§A.
o= Ea(deMa+ (A7), €a= [ S G=rDy [GoS+rend” [ s,
-
yﬁ(o)A = XB(O)A = Dalp) — %DATC(O),
. . 1 — (0Odd mode)
vh — xheoy = —;C(o),
vhap — xhap = 2Da(p), 7
yi"(e)A — Xil(e)A = Dale) — %DATC(e) + %CA:
yﬁ(eO) - X;L(eO) = éCADA"' — %C(e)l(l +1), - (Even mode)
yﬁ(en — Xh(el) = %C(e)- ) 15

[0 Gauge-variant variables : ,
~ ~ reo_ o~ ~ re . ~ ~
Y4 = Th(e)A o ?DAh(el)a Yv(e) = ?h(61)7 Yv(o) = _T2h(01)’

Wa —a¥a="Ca W) — Vo) =7C0)  Wie) — ¥¥e) = 0
Y, = /?AS(dxA)a + (Dp/f’(e)S—I—equq/ff(o)S) (dzP),.

--==> | Ya — aYe = o,
O Gauge-invariant variables :

Fa = heat TDAB(M), (Odd mode)
_ 5 4. s
F = hig — —YaD% + heepA,
R TF ey } (Even mode)
Fap = hap—2D4Yp),

Fip :=/ﬁABS, Fap := epqﬁqfﬁ'AS, F::/ﬁ'S,

] Original metric perturbation ---> |hgpy = Fap + £ 9ab,

1
Fap=1Fap, Fap:=rFap, Fpq:= §’quT2F'

16
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V. To derive the relation between 3+1 and 2+2

formulations

To derive the relation between 3+1 and 2
We fix the gauge choice so that hep = Hap =
This relation yields the correspondence betwe

+2 formulations,

Fav + £y Gab-
en the variables :

2
Vyp — Ft’r‘ + 8t1/7- + 61'}/% - aa:f'a}/ta
v, = rFy,+D,Y;+08Y,,
2 1 4 4 4 2 .
rr = _Fr'r__F _'.r'Yr' 5. Yr Y?'__YT‘_—DPY’
A 3 3a? * 33 * 30:8 “ 3r 3r2a® P
. 2
Xrp = TFp+DpY.+0.Y,— ;Yp,
1 1 2 2
Xpg = _g’)’pqrzagFrr + E"r”;oq"'"zF - 5?“2&2%,(18,.1’? — grga&.aq/er + gran/qu,,.
2 A 2 ~
+DpYy + DgYp — g'quDSYs-

To determine the variable Y,, we have to eval

uate the properties
17

The properties D'v; =0 = Din'j yields equations for the

components of Y, as follows :

2r’ —9Mr + 6M° 2M2(57"—6M) T
: Y + =D?D,Y;
O Y: + r2(r —2M) OrYy + r3(r — 2M)2 t+r2 Yt
2r — 3M 1 . =
+8TatY'r+ ! 23 BtYr+—28tDpr
r T
= —_ (]_ = %) BTFtr _ 2"‘" 723MFtT’
T T
2r— M o — 3M 3 S
2y =M v =M L S pepy,
% _'—(?"—2]\/1’)?"a r2(r —2M) +4’I‘(T—2M) P
1 N 8 .
+4r(r—2M) (GTD Y TD YP)
1 3T—4M r 3
= ——8rFrr - 71’—‘1'?‘ e o (6TF —F) ,
2 2(r —2M)r +4(?‘—2M) +7~
o 1 1 b 1. .
2 s L s 1 .
3erp+T(r_2M)3rYp T2YP+T(T—2M) (D DSK"+3DPD y;)
1, - 15M — 8r -
Py r— ——————D,Y,
+361'DPY 3(’1‘—2M)7‘ pLT
3r—5M 1 . r
- TFT 7}7"" 5D Frr_iF .
PO Frp+ ——o e Frp + 5 p( o )

If we have solutions to these equations, we can derive the

relation between 3+1 and 2+2 gauge-invarian

. 4
t variables.
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IV. Summary

We have shown that the 3+1 gauge-invariant variables which
corresponds to the longitudinal gauge in perturbations on
Minkowski spacetime is possible even in perturbations on the
Schwarzschild background spacetimes.

We have to note that the zero-mode problem appears due to
the construction of the 3+1 gauge-invariant variables.

We pointed out that the zero-mode problem is also exists
even in the popular 2+2 formulation for perturbations on the
Schwarzschild background spacetime, which is the famous [=0,1
problem.

We also derived the vacuum the Einstein equations, equations
to clarify the relation between the popular 2+2 formulation for
the perturbations on the Schwarzschild spacetime.

Since the 3+1 gauge-invariant variables proposed here have
the similar form to the post-Newtonian expansion, it might be
useful when we discuss the physical interpretation of
perturbations in terms of post-Newtonian words. 19
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How can we detect BHs ?

Detect BH’s strong gravitational lens effect
by Time Delay Self-interferometry
for radio observation

Hiromi Saida (Daido Univ.) / saida@daido-it.ac.jp

—_——

‘ Ilght S]gnal ////
Earth ol
gas cloud

JGRG23, 2013.11.5-8 at Hirosaki Univ.

1. Intro. : I want to see the black hole.

e What is the meaning of “seeing BH (direct detection of BH)” 7
{To verify the existence of BH horizon by detecting GR effects of BH

To measure the mass and angular momentum (and charge) via GR effects

e We scarch for Strong Gravitational Lensing (SGL) by BH horizon
— What can we read from SGL 7

¢ Spatial information — viewing image
— ex. BH Shadow
¢ Temporal information — time series of radio oscillation

— Time Delay Self-interferometry - -- Topic of this presentation

* To make use of the phase of wave (light),
we assume radio observation at present technology.
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2. Direct detection of BH with astronomical method

, , Observe rays emitted by a source at the same time near BH
e Situation :

Palse-like (a few wave length) emission with the same intensity.

Wy : direct ray

Compare two rays o
Wj : a ray winding around BH once ,

ival ti
the difference of aI‘I'IVE'i ME il let us detect BH directly.
amplitude

e How do the rays (waves) Wy and W1 appear in one telescope ?

¢ Case 1: Sinusoidal emission by the source

E Oscillation of observed wave at ONE telescope
A TO

Atobs

Al s . due to Strong Grav. Lensing by BH
— § AE,,s  : due to Strong Grav. Lensing by BH
Ty # Ty : due to Kinematic Doppler Effect by source’s velocity

x Exactly, At and AEp depend on distance, BH <+ source.
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o Case 2: Gaussian emission (in time) by the source

— Wave form changes from W, to W !! ... Gouy phase shift

oscillation of bserved wave
at ONE telescope

E
—L x Hilbert Trans. of Wo 4

EO tObS_At()bs

ﬁggource “Wo Y
A 10 20/
NBH © wi

Figure reproduces the wave forms
simulated in [Zenginoglu and Galley, PRD86(2012)064030]

— Wave form changes by Gouy Phase Shift known in Wave Optics

o When a ray passes one Caustic,

T
+ freq. component : Phase shift by — —

— Hilbert transformation
— freq. component : Phase shift by + 5

f(t) . Time variation before passing a caustic
O

H[f](t) : Time variation after passing a caustic

Hilbert trans. * H[f](t) o« Re /OO dz f(z)

o 2t

Mathematics: Analytically continue f(t), then extract the real part
*
Technology : Hilbert trans. of real time series data is already possible



o Example of Hilbert trans.

« Case: f(t) = sin(wt) = H[f](t) = sign(w) 7 cos(wt)

x Case: f(t) = exp(—i—i)
= H[f](t) = —n exp(—(j—i) erﬁ(é) |
where erfi(z) = —ierf(ix) = —i /Omdzexp(—tQ)

o Attention -

Gouy phase shift (Hilbert trans.) changes the wave form,
but NOT the spectrum.

— Spectrum changes due to Kinematic Doppler effect
between the source and rays (W , Wy)

e How can we find Wy and W7 in time series data 7

— Wy and Wy, emitted by the same source at the same time,

878

should be coherent.

— Time Delay Self-interferometry , TDS (# Tokyo Disney Sea)

step 1 : Create two copies of time series data (A, B) tE

operate Hilbert trans., 2'8 original data (A)
step 2 : On data B, ¢ multiply a const. (E1/Ey), ..
modulate for Doppler effect. o Wo \XIJ\ fobs
step 3 : Search for coherent part between ' ﬂz ’
original data A and modulated data B. coherence/\/
0.2 /W/ Wl
— Wy and W7 are found in data A, A : . C\ﬁ : fobs
then At , E1/Ey, T1/T) are measured. " modulated data (B)



879

e A trial calculation : At s, E1/Ey and Ty/Ty for given M, J and source

winding angle about z-axis : 0.06 x 27 (ray Wy)

(
Parameters
BH spin
emission at

source vel.

\

x The other parameters : <

(

p

\

T~

-5

(ray W)

—0.94 X 27

: M=1, (withe=1, G=1)

J = (1/2)(GM?/c)

: (0,3 (GM/c?), n/2, 0) in Boyer-Lindquist coord.
. (170, 0,0, 0.0603) — (g /() = 0.03 (ZAMO)

r=3.65x 10" (GM/c?)
6 = 0.300 rad (17°)

Observer’s position : [
¢ = 0.405 rad

2T
Freq. at emission  : Wsource = 10 (trial value)

GM Ser.A* . about 10 min.
Atobs ~ 30 3
c Cyg.X-1 : about 0.001 sec.
FE1\2  [intensity of W] _
* Results : < <_) = ~ 0.00868 ~ O(1072
E) [intensity of Wy ( )
T ler shift of
Ty _ [doppler s 1% t of W] ~ 0.956871
Wi [doppler shift of W

— Formulas of these values - - -

under construction (present task)
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3. Does BH’s Strong Grav. Lens denote BH directly ?

e Obvious relation : BH’s SGL = UCON (# ISCO)
— It is not sure : BH’s SGL = BH horizon --- 777
— A task for GR : To what extent does the UCON imply existence of BH 7

BH shadow is associated with this !

\

- Unstable Circular Orbit of Null ray
: (UCON)

source Telescope

4. Summary

e Direct detection of BH is to measure M and J via GR effects.
— we search for BH’s Strong Grav. Lens effect:

{Viewing image: BH shadow

Time series  : Time Delay Self-interferometry
M(Atobs ) El/E(') ) TO/T1>
J(Atons, B1/Ey, To/Th)

1
ATobs

— Target of TDS : Source’s motion giving A f,,s ~ 2 GHz

e Under construction: Formulae {

~ 2 GHz

e Typical band width of radio receiver: A froc =

e GR’s problem : To what extent does the UCON imply existence of BH 7
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““A new numerical scheme for Einstein equations
with discrete variational derivative method”
by Takuya Tsuchiya

[JGRG23(2013)P17]
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Motivations
e What is the best way to make a discretized equations for Numerical Relativity (NR)?
oIn NR, the Crank-Nicolson (CN) scheme and Runge-Kutta scheme (RK) are often used.
e However, these schemes were not proposed for NR.

e For accuracy simulations, we need to use a numerical scheme that is built for NR.

Method

e The Discrete Variational Derivative Method (DVDM) is one of the nu-
merical scheme.

o The DVDM was proposed and extended by Furihata, Mori and Matsuo
(D. Furihata and T. Matsuo, Discrete Variational Derivative Method,
(CRC press, 2010)).

e The DVDM is considered as a discrete version of the variational prin-
ciple.

o To make a discretized equations using the DVDM scheme, the La-
grangian or the Hamiltonian is necessary.

o With the DVDM scheme, we can make a discretized equations with
preserving constraints and diffusion characters in the continuous sys-
tem.

DVDM Process

Continuous Discretized
Hamiltonian Discretized Hamiltonian
Variational Variational
Principle Derivative
Continuous Discretized
Equations Pl Equations

Ordinary Process

The diagram of making the discretized equations from the continuous equa-

tions. In general, the equations are derived from the Hamiltonian by the
variational principle, and the discretized equations using numerical schemes
such as the CN scheme or the RK scheme (red line process). On the other
hand, by the DVDM scheme, we first make a discrete Hamiltonian, and de-
rive the discretized equations (green line process).

Application to Einstein Equations
We apply the DVDM scheme to the canonical formalism of the Einstein
equations. A discrete Hamiltonian density of the Einstein equations can be

Numerical Tests

Following the proposal of the Apples-with-Apples, We show damping of
constraint in numerical evolutions using polarized Gowdy wave evolution,
which is one of the standard tests for comparisons of formulations in numer-
ical relativity as is known to the Apples-with-Apples testbeds (Class. Quan-
tum Grav. 21 (2004) 589).

The metric of polarized Gowdy wave is

ds® = 712N (—dt? + da?) + t(edy? + e Td2?), ©6)

where P and ) are functions of  and ¢. The time coordinate ¢ is chosen such
that time increases as the universe expands, this metric is singular at ¢t = 0
which corresponds to the cosmological singularity.

e Convergences

200 00 600 800 1000

~Time

Left panel is using CN scheme, Right panel is using DVDM scheme.
These values of the cases of 50 plot and 200 plot are rescaled by 1/4
and 4 times, respectively. Both of the convergences are satisfied until
t = —200.

e Comparison of CN scheme with DVDM scheme

CN scheme
DVDM scheme ——
T

L
50 100 150 200
—Time

The violations of the constraints, {(H*PM) + § MAPMAEPMI2 o
the DVDM scheme (blue line) is lower than that of the CN scheme (red

written as line).
H G =~ f(")R(" Vv +aZ}7r“”{Z§7rab{Z§/ﬁEZ§
- 25@(1;)( b ) 25C ") ab(n)F >cab (k) (1) Summary
then the discretized ADM formulation is calculated as oWe pI'OpOSCd a discretized ADM formulation
HAPME = \/W”R + (Y @A) — T VA, @ using the DVDM scheme.
MEPME) = 9 D@V A — oIy, (0, 3) eWe performed some simulations using the
%‘jfﬁf“ — _ @ DVDM scheme and CN scheme, and the viola-
l,(nmAf 5(n) ’ tions of the DVDM scheme are lower than that
% Seaeq ®) of the CN scheme.

JGRG23@Hirosaki University
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Cosmological matching conditions in Horndeski’s theory
I

Sakine Nishi (7 &), Rikkyo University
Collaborators : T.Kobayashi (Rikkyo Univ.), N.Tanahashi (Cambridge Univ.), M.Yamaguchi (TITech)

I IntrOdUCtion Kobayashi, SN, Tanahashi, Yamaguchi, in preparation
B —
4 N\
* Horndeski's theory is the most general 2nd-order The action of Horndeski’s theory
scalar-tensor theory. Phasel @ Phase2
[ T b X) — e
* This theory has a solution violating null energy condition Sitor = ,/d LN{GZ(O-X) Gs(¢, X)0¢ + Ga(d, X)R e ——
(NEC) stably called Genesis. +G"l)‘ (@97 1(vpv,,o)2] +G;EG’X)GWV“V3"© t Boundary term in GR : K
* Boundary term and matching conditions are different —5Csx[(00)° = 306(V,.V,9)* + 2(V,.V0) ]}
between GR and Horndeski’s theory. . o ~
L X i==g"0,00,0/2 J In Horndeski’s theory -
II. Surface terms

B;y = / &y
In Horndeski's theory, the action of surface term is changed as follows. =
By = 2 S 34K — Fiy D%¢

S = Shor + S + 58 o= 2 (G D)

rXo

B du .
— . By — / d%ﬁ{l(}s(l(? KKV T Xo¥)= 7 G y)
General relativity Horndeski's I 2
s ~Gs (KD*$ — K" D, D,¢) + %FSR("‘)
S = /\/ﬂ'}xd x Sg = By + Bi+ Bs \ 1 - s [APadilla and V.Sivanesan,
\ 3l [(D%)° = DuDygD"D "]} JHEP 1208, 122 (2012)]

[1I. Applying to Cosmology 91 +=2 (64~ 2XGy X (HiGex - G )]

= Gs = Gs(Ga, G, G4, Gs)

57 = [7 (l«ru + (—BA) + wa} + ,ia X
3 3 Fi(6.X) = / NememeRnt
0
0 = O(Ga, Gs, G, Cs)

The phase transition occurs on a hypersurface, g=const.

- 0 oy 50 Lo
We take a gauge: dq — dg = dg — g€ =0 gz (00 = 6/9) [-610 23

7" - —% {3((—) ~ HGr) b — (S +3HE) A - %6%} S = £(Ga. Gy, Gu, Gs)
The perturbed metric : o . .
R P . . +0/L(§; - wﬂ) [T.Kobayashi M.Yamaguchi and J.Yokoyama,
ds? = —(1+ 24)dt? + 2B;dtda’ + a® [(1 — 240)8;; + 2E;; + hyj] da'da? zoaz— o X PTP 126 (2011) 511]
+250%06 — 0%,
1) Homogeneous background 2) Perturbation * Example
L . ) Scalar Vector ! q(t, %) = ¢(t,x) — b
37(0:6.H) = =3 fs+2GiH — AHXGax + Gy Mr —0 5p1+ EY]f =0
H2X$Goy +2HX Gy, L {”’*”%] =0 B .\t J de=0
T . H) = T+ fao— 6HGuy [E]T=0 [ﬁw d)aﬂ] . [QT ( a; - E})] =0
[66]7 =0 ol N The matching condition
Background Scalar field {0 - %}} -0 Tensor . 1 (G} o]’
- g‘<7ef—‘(—+ 5)0‘7{ =0
[af=0 =0 [QTi'JreAfL’.nga'o‘ (] =0 { Rowle ™) -
— . 4 . . + .
[]]ir =0 [f“]t -0 . ©—HGr\ op]" Grhi; + ﬁazzw =0 R: Curvature perturbation
t(GrH + ———0) —| =0 a? .
3 pl - in §¢ =0 gauge

IV. Examp]e : Generalization of genesjs Scenario  PCremineli, ANicolis and E-Trincherini, JCAP 1011,021(2010) ]

We choose G2 ~ G5 as follows. Considering the transition.
Ge=cg(Y), Gy=ePgs(Y), o) = gAY (Vi) (Phase1) (Phase?)
12 B(Y) g2 — ANY g3 + 24N°Y (g4 — Ygl) ; iati ; R
Gi= % e (V) Gy = e Pgy(Y), Yy = ME AN (4 YD) Genesis Radiation dominant (Expanding)
i =220 . . Yo ..
Yi=em™0X The matching condition : —g» — 2A\Yyg3(Yo) + 3)\\/1/0/ Mdy >0
In genesis scenario, we seek for NEC violation o
the solution ¥ satisfying : p(¥o) <0 When the transition occurs at t*, we get these equations.
1 1 hy
Ap L Mo _ . = s ao
- —y H=r75 (Fee<t<0) Stability of background hy = oy =S [T 8y
© TN () (=t) Y g ! O )
5 (Yo) >0 Tensor perturbation o oar
hij = Cf +—% [ < te
p(Y)=0 gives the solution Y . v\ A 773 /v am ¢
We get the stable NEC violating solution . ( ~ ) >0 D A
r R g e <)
Curvature perturbation T ar
— + i
R = Ct+ I /t @) (t>t.)

V. Summarz Matching condition; Cj =C;, Cf=Cy, Ct=C~, Df=D~.

* From the surface terms in Horndeski's theory, we derived the cosmological matching conditions for the background and perturbations.

* We applied the matching conditions to the model in which the standard radiation-dominant phase is joined to the NEC violating phase.
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21cm signature of minihaloes
from cosmic string wakes

Naoya Kitajima

Institute for Cosmic Ray Research (ICRR),

University of Tokyo

Collaborators:

Daisuke Yamauchi & Masahiro Kawasaki

JGRG23 in Hirosaki University

1. Introduction : Cosmic string

http://www.damtp.cam.ac.uk/research/gr/public/cs top.html

A4
l\\\\\ *

:“///{
//{

Cosmic strings (CSs) may be formed
at the phase transition
(U(1) symmetry breaking)

“1-dim topological defect”

< Cosmic string is characterized by the “tension” Gu
% Tension is related to the symmetry breaking scale

Cosmic string detection = Probe of high energy physics
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Cosmic string “wake”
Moving,strings change the geometry behind them!

. A [string rest frame]
long(infinite) :
string \
b_‘:;_ i “/ 2 — <
/ - particle flow /| ’

&

overdensity http://www.damtp.cam.ac.uk/research/gripublic/cs top.htm

. @ k ”
region(‘wake’) energy density inside the wale

~ 2xbackground energy density

— More and more particles
\ / accrete on the wake

m Early structure formation!

“deficit angle”
AO = 87Gpu

21cm Cosmology —probe of the DARK AGE-

What is the Reionization Era? L
A Sachelr?atic gutlinSL?tE;%:?srL%rListoI;ya * After I’ecombl nat'on
o Sng oo bt until reionization is completed

ooooo

* The universe is filled with
the neutral hydrogen

el (\\/hat is interesting in dark age?

CDM & baryon can collapse

» Minihaloes can be formed
A\

¢ Small mass (M < 10° M)

+ Atomic cooling cannot occur
(T <10* K)

eeeeeeeeeeeeeeeeeeee

Small-scale power spectrum may be imprinted
on the minihalo abundance!



Q. How can we probe the dark age?

A. Redshifted 21cm emission/absorption signal
due to the neutral hydrogen

21cm emission 21cm absorption

T higher energy
21cm photon 21cm photon Eii
NNANNANN \NANANNN T --- $>
Tl
_ _ 21 cm
Cold IGM = absorption signal tran3|t|on
Minihaloes = emission signal
Cosmic string = 22279227 é
Related works: Khatri &Wandelt (2008) lower energy

_hyperfine splitting states

Brandenberger et al(2010)
Tashiro(2013), Tashiro, Sekiguchi & Silk(2013)

2. Structure formation from cosmic string wakes

Sheet-like structure is unstable & must collapse!
sheet PP filament PP “bead” (halo)

0060
> 000
A 000

virialized “minihaloes”

Halo mass?
Halo number density?

888



Equation of motion for nearby particles

p
& Distance from the center of the wake : r = a(t)(x + ¥)

Hubble flow perturbation

sk Particles around the wake get an velocity kick: w; = 4nGpuvgys
(initial velocity)

2

.4
. . e = — 0
Equation of motion » ) + 3t¢ 572 )

3 " 2/3 " —1
Solution for EOM : w(t):—gsgn(x)uiti[(t—) _<_) ]

4+ Perturbation grows like : ¥ < a

4+ When perturbation overcomes the Hubble flow,
particles turn around

» Turnaround surface is determined via 7turn = 0

4 After turnaround, the region is collapsed

1
» The thickness of the wake: d, =2 x 5 burn

(collapsed region) \

analogy with the spherical collapse
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Minihalo formation from cosmic string wakes

halo volume is determined
by the wake thickness: Vv, = ¢,d?

¥

Halo mass is determined
at turnaround:  pg, = o, cpd®

w |turn

where pw =2p (background)

collapsed region

** number of minihaloes originated from one wake

vn(z, 2) = L (2)ww (2)dw ()
y A1 Chd%} .
7 ®

wake formation  length of string: lw =7t with v ~'1
width of wake: Ww = Vs7st

3% number density of wake: Nwake(2:) = NH?(2;)a® ()

3

number density of halo: nn (2, 2i) = VhNwake(2:)

dnh

= ion: ————
We can calculate the mass function: J1n M),
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Mass function of minihaloes:
cosmic string vs primordial perturbation

Gu=15x10"",N =200, =1/v2,yv=1
7]

10 |
7 — 10
™ 7z = 15 e
Ia 7, — 20 -----
E 7, = 25 -----
~
NS T
o
e
T~
-~
<
3
0 l \ l
10
10° 10* 10° v "

M, / M,
Maximum mass of minihalo & z; = zeq ~ 3000

Wake-induced minihaloes dominate for z>15

3. 21cm signature from wake-induced minihaloes

minihalo

(redshifted)
21cm photon

* Can we detect the wake-induced
minihaloes by future obs.?

* Can we constrain the
string tension?

e  *1 http://www.skatelescope.org



Density & temperature profile of minihalo (TIS model)

ni T, j, energy splitting:
0

-

21cm brightness temperature

z =20, M, = 10° M,

H 3
10° — " profile 10
10t F ]
- 102 b N -
N = 2
T 107 — 10
10 e
1 0_5 mean density ------
6 background ------- .
107 T E— 10
102 10t 100 10t 107 10
r/1

minihalo contribution > Ts > Tcuyp > emission signal!

% Brightness temperature:

oo

0
Ty(v, ) = Tovpe ™) +/ Ts(R, oz)e_T(”’R)a—;dR

— 00

(Ty)
142

‘{averaged over halo mass)

Gu=15x10"",N =20,v, =1/vV2,y=1
2 :

L5 halo(primordial) ----- | S
1t T IGM e .

% Differential brightness temperature: 61}, =

— Tems(0)

AR

}Ilalo(stringl) —

> I
E 05
HQ O
o

0.5

-1 F i
1.5 : : )
10 15 20 25 30

892
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-* RMS of the differential brightness temperature fluctuation

(6TAY? = qo,(Abyeam, Av)B(2)0Ty

rms of density perturbation flux averaged bias
smoothed over obs. cylinder

string ]
____pirmordial ------ ] Av = 0.01 MHz

Abpeam = 10 arcmin

10 15 20 25 30

Wake-induced halo signal can be detectable by SKA!!

Conclusions

® We reinvestigated the early structure formation from
cosmic string wakes.

& The overdense planar regions induced by the cosmic string
wakes collapse into the virialized minihaloes.

¥ The number density of such wake-induced minihaloes can
exceed those from the primordial perturbaiton

4 21cm emission signal from such wake-induced minihaloes
can be observed by the future radio telescopes such as SKA.
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Liquid bridges and black strings
IN general dimensions:
Stability (of non-uniform bridges)

Umpei MIYAMOTO
(Akita Prefectural Univ)

&

Miyuki KOISO

(Kyushu Univ) 21st JGRG.
Hirosaki Univ
2013.11.5-8

Abstract

Phase diagrams of black strings in Kaluza-Klein spacetimes
and liquid bridges between parallel plates are known to
exhibit startling similarifies in general dimensions.

The stability of liquid bridges might tell us much about the
ability of Kaluza-Klein black strings, which has not been
confirmed in every mass regime.

In this study, we clarify the stability of non-uniform liquid
bridges in all dimensions and in all parameter regimes,
while formulating the problem as a variational problem.
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Introduction (1):
Gregory-Laflamme instability [1993)

Schwarzschild black string

ds® = —f(r)d(ct)® + f(r)"tdr® +r2dQ7, | 1) + dz°
foy=1- (=)

(a)

z

Growth rate (dispersion relation)

9ab — Gab + 99ab
dGab ~ e_th-I_iszab(T)

Solve the perturbed Einstein eq.

5Gab =
kc ~ \/ﬁ/'f’o

Introduction (2):
Rayleigh-Plateau instability (riateau 1873; Rayleigh 1878]

» Cylindrical fluid tube supported by
surface tension is unstable if

(length) > 2w (radius)

Pressure perturbation
5p = SFikzp(py
Solve the perturbed Euler eq.

Qe.z - ;g

Plateau’s sketch of breakup of an oil fube T
suspended in a mixture of alcohol and water




unduloid

Introduction (3):
Phase diagram of fluid lumps in R"*1 x ST:
critical dimension miyamoto-Maeda 2008]

“.. cylinder

2

4
/M,

13d fluid

1.001
sphere

B %

unduloid

UB *

cylinder

0.5
“'/HCI’

14 . A
#= 132 reduced volume (L: circumference of §!) @ = T ry7507y reduced area

Question/Motivation

» There exists a critical dimension (~12) for the fluid between two
parallel plates where the phase structure drastically changes.

» The existence of a similar critical dimension (~13) has been

reported in Kaluza-Klein BHs [Sorkin 2004]. But the stability,
specially that of the non-uniform strings, has not been known
[cf: Figueras-Murata-Reall 2012].

» Let’'s examine the stability of the unduloid (non-uniform bridge)
[Delaunay 1941] in all parameter (dimension and non-
uniformity) regimes.
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Formulation as a variational problem

[Koiso-Miyamoto 2013, in preparation]

Surface area and bulk
volume of fluid lump in R**1 x st

z2
Alh] = sn/ h™\/1 + hgdz Sn, :volume of unit n-sphere
z1

22
Viz] = bn+1/z htldy by,+1 :volume of unit (n+1)-balll
1

15t variation:
J equilibrium state (critical point in math)
' Variation of the generating curve h(z) — h(z) + €p(2)

1t variations of area and volume
d
z
—sn/ (n 4 1)Hh"¢dz + snlh=h(1 + h2)~1/2¢)2
z1

d
d—|€=OV[h + €] Mean curvature of the surface
€
1

"2 _ 2\—3/2 -1 2\—1/2
Sn/ 2h"¢dz H_n—_l_l[(1+h,z) 1Phyy —nh~ Y1 + h2)~1/?
z1

®» An equilibrium state is defined as the critical point of the surface area
(delta_A=0) for the volume-preserving (delta_V=0) variations.

= From the above expressions, one finds that the surface is a critical point of the
area for volume-preserving variations iff H=constant and h_z =0 at the bdrys.
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2nd variation:
stability < eigenvalue problem

For the volume-preserving variations of the H=constant
surface, the 2@ variation of the area is given by

d? 5
= @kzoA[h + e+ O(e”)]

= —sn [ 6Ll + saldod]Z
21

Ll¢] = (o¢2). +nh"2(1 4+ h2)~"/?¢
o = (1+4h2)3/2pn

52A

» The critical point is said to be stable if the above 279 variation is non-
negative (deltar2_A>=0) for all volume-preserving variations.

» The problem reduces to solve the following eigenvalue problem [cf:

B L8] = —Ad, ¢2(21) = ¢2(20) = O

Results (1): 1=<n=<6

» Jnduloids (non-uniform bridges) are unstable in all volume region
[see Vogel 1987 and Athanassennas 1987 for n=1].

= The phase transition from the cylinder to sphere is of 15" order.

R8

1.0035F7
1.0030

10025
10000

1.0000!"_‘»'\ """ grmeen X , . ' " ]
0.4\05 0.6 0.7 08 09 10

Vv
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Results (2): n=7,8,9

» Unduloids (non-uniform bridges) close to either the sphere or cylinder are unstable.
» There are stable unduloids! [cf: Pedrosa-Ritore 1999]

10
unstable R
= — 1.0002¢
stable : - \gﬂ unstable
T . unstable
< 1.0000}} <
0.9999;
0.9998

0.80 0.85 0.90
o

Results (3): n>=10

» Unduloids (non-uniform bridges) except those quite close to the sphere are stable!

= The phase fransition from the cylinder to sphere is of 2n9 order or higher.

R

I\ unstable

:l%le
0.845 0.850 0.855 0.860 0.865 0.870
v

—
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Conclusion

= Summary: Stability of unduloids (non-uniform liquid bridges) in R™*1 x §' has
been clarified in all dimensions (n>=1) and all parameter volume regimes.

®» |=<n=<6: all unduloids are unstable

» n=7,8,9: unduloids close to either the cylinder or sphere are unstable; the
rests are stable

» n>=10: unduloids close to the sphere are unstable; the rests are stable

= Note: all spheres are stable; thin cylinders (radius<(n'/2 /2 pi)* length) are
unstable

= Future prospect:

®» |nterpret the results in ferms of thermodynamic quantities: e.g. S=S(U) or
F=F(T)

» |nterpret the above thermodynamic results from the holographic viewpoint
[Aharony-Minwalla-Wiseman 2006].

» Compare our results with the stability analysis of non-uniform black strings
with the local Penrose inequality [Figueras-Murata-Reall 2012]
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(In)-stability of naked singularity
formation
in gravitational collapse

Contents

1. Introduction

2. Perturbation Analysis

3. Summary
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1. INTRODUCTION

1.1 Cosmic Censorship Conjecture

<Cosmic Censorship Conjecture>
No naked singularity form during the gravitational collapse

v" At the singularity, gravitational theory
breaks down.

v' We cannot predict anything from singularity.

v' Itis important to study whether cosmic censorship
conjecture holds .



1.2 Counter-example ?

» Counter-example to CCC

® 4 dimension ® Higher dimension
v" Dust collapse v" Dust collapse
v" Null dust collapse v' Null dust collapse
v’ Perfect fluid etc...... v’ Perfect fluid collapse

v' Collapse in Gauss-Bonnet, Lovelock
gravitational theory.

» So far we have many counter-example to CCC. But are they serious
counter-examples to CCC?

» They are highly symmetric, e.g. spherical symmetry, cylindrical symmetry etc.

[> Does naked singularity form without such a symmetry ?

1.3 Stability of NS formation

» Does naked singularity stably form under small perturbation ?

If unstable, they are not serious counter-example to CCC
» Here we consider the stability of naked singularity formation.

We assume that the background spacetime is

v' Arbitrary dimension (D=n+2 dim)

v" Spherical collapse of null dust
(&inhomogeneous dust)

v’ Self-similar

905



2. PERTURBATION ANALYSIS

2.1 Background spacetime (null dust
collapse)

> Matter (null dust)

Ty = _pluly 2 =0
energy density

» Metric of spacetime

2
ds? = — (1 — m(v)) dv? + 2dvdr + r2dS,

rnfl

I:> m(v) = A"t

Selfsimilarity

v

v In other coordinate, z=7 x =logr

ds® = €2 | —(1-2X2""1)dz2 4+ 2(1—z+2X2")dzdz+2(2— 24-202") d2? +dS2,,

906
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2.2 Perturbation

» We perform perturbation analysis on the spherical background.

ds® = Guvdatdx” = gAdeAde + rgwjdmidxj
M? s"
v Metric perturbation Juw = gfy + huy
i B
v Matter perturbation Ty = T+ 06T

5Gu = 80T,
» There are three types of perturbation, i.e. scalar, vector and tensor.

Here we consider the tensor (vector) type perturbation.

2.3 Tensor Perturbation

» Tensor perturbations for the metric and matter.

hij = h;[j hai = 0 hap = 0
6Ty = T 6Ta = 0  6Tap = 0
, -

with DRl = 0 D'T; = 0

'y =0 "% =0

» Master equations for tensor perturbation.

3G = 87T, WD L(THH\A) ——
rn—2 |A

T 2 )
hij = 2r°1T;; 7i; : tensor harmonics

TZ:]F = TrT; mr = Il(l+n—1)

where



2.4 Master equations

» Concrete form of the master equation.

Partial differential equations for perturbative quantity
with second order

ad 4284y ®"+(d+B(n—2k)) D+ (B+7(n—2k)) &' — (K(S+y(n—~))+mr)® = 0

1

G = 5-xmt 8 = 1-2:G
h
where a = —22(1-2G) vy = 2G
IT:= e

» How @ behaves on the Cauchy horizons ?

We need to judge whether @ diverges or not on the Cauchy horizon.

2.5 Sketch of Analysis

» Introduce the “norm” of perturbation

B[®](2) = /R (_ﬂbz A 4 2@2) dz

All coefficients are positive

» Take the derivative of the norm with respect to z.
dE. . . .
- :/ [(d+26(n— 2k)) D2 + 2 <5+7(n— 2/1)) o’
dz JR
N

+ 492 + D@Q] dx
By using the EoM

» We can prove that norm is finite.

dFEs
W < CEZ |:> EQ(Z) < eC(zsz)EQ(ZE)

C is constant
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2.6 Results

Naked singularity formation is stable under tensor type
perturbation.

» We can also prove that NS formation is stable under vector
type perturbation.

» The same procedure works for time-like dust collapse (LTB)
for vector, tensor type of perturbations.

3. SUMMARY
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3.1 Summary

» We consider the stability of naked singularity formation under
small perturbation.

v’ They are stable under vector and tensor types of perturbations
in the null dust and time-like dust collapse.

» At this stage, they seem to be stable under perturbations.
But the scalar perturbation analysis is needed in order to have
definite conclusion.

@ Itis interesting to consider the perfect fluid collapse.

@ ltis also interesting to analyze the case without self-similarity.

3.2 Table of the results

mode model Dust Null dust Perfect fluid
Scalar ? ? ?
Vector Stable Stable ?
Tensor Stable Stable ?




911

“Issues on curvaton scenario with the thermal effect”
by Shuichiro Yokoyama

[JGRG23(2013)P27]



912

[ssues on curvaton scenario
with thermal effect

Shuichiro Yokoyama (ICRR, Univ. of Tokyo)

with Naoya Kitajima, Tomohiro Takesako, Tomo Takahashi

Introduction I

* Planck data release in March 2013

=>» Precise information about the physics of the early Universe

e.g., constraint on single-field inflation models

8
o \
9 Planck+WP
i 3 B Planck+WP-+highL
g§s W Planck+WP+BAO
E I Natural Inflation
-% 3 - - Power law inflation
[ Low Scale SSB SUSY
.;g z R? Inﬂ?tlon
o Vxo??
<] Vxo
E é — Vx cnf
V x ¢*
=) e N.=50
=
s 0.9¢ 0.96 0.98 100 | ® MN.=60
Primordial Tilt (n,)
arXiv:1303.5082

constraint on non-Gaussian models

KSw Binned Modal

Local ................ 27+58 22+59 1.6 £ 6.0

Equilateral ce—42x75 -25+73 —20+77

Orthogonal ............ -25+39 -17 £41 —14+£42
Flattened model (Eq. number) Raw fy.  Clean i  Afae
Flat model (13) ............. 70 37 77
Non-Bunch-Davies (NBD) . . ... 178 155 78
Single-field NBD1 flattened (14) 31 19 13
Single-field NBD2 squeezed (14) . 0.8 0.2 0.4
Non-canonical NBD3 (15) ........... 13 9.6 9.7
Vectormodel L=1(19) ............ -18 —4.6 47
Vectormodel L=2(19) ............ 2.8 -0.4 29

arXiv:1303.5084

make us discuss a variety of models in more detail..
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Introduction II

L Curvaton Scenario Lyth and Wands, Moroi and Takahashi,
Enqvist and Sloth (2002)

A mechanism of generating primordial adiabatic perturbations
through the decay of a scalar field (curvaton) other than inflaton

energy 4

density | radiation produced from inflaton; r adiabatic 4
perturbation;
oscillating scalar field;
time .
> time
background dynamics or pr = Po
1 decay rate of curvaton 3
(constant in time in simple standard case) Fdee 1= Pa
3ps +4
m; mass of curvaton 5 Po T 2Prlg=r
__ Tdec 9o
C - 3 neglecting the contribution
Po |H=m from the inflaton fluctuations

Introduction III

 Thermal effects?

curvaton should decay into the radiation
=> curvaton has the coupling to the radiation (plasma)
> It is expected to give some thermal effects..  e.g., £, = —Mox? — Ax&2,

Ling = —yopp — gAyH e

For background dynamics of the curvaton decay,

e.g., temperature-dependent mass/decay rate

* modulation of the evolution of the curvaton energy density p, X a 37
* life time of the curvaton (related to the decay rate)

There are several works
about the dynamics of oscillating scalar field in thermal bath;

We focus on the effect of the temperature dependent decay rate on
the primordial adiabatic fluctuations in the curvaton scenario.
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Simple model

* Temperature dependent decay rate

r-rm = f1+c(L)]

m

Background dynamics

. 1 B
500 —— ! —without thermal effect SO0 T ——withrtemperature-dae endence
050 s ! 1] 050 T 1
0.10 0.10
005 - 0.05 Q O'
001 L L 001 L L L L L L

6 8 18 6 8 10 12 14 16 18

n=15 C=1.0

Little difference can be seen...

Enhancement of primordial

adiabatic fluctuations? I
* sudden decay approximation

In case with the temperature-dependent decay rate,

decay hypersurface # constant Hubble hypersurface

H=T H = const.

cf. modulated decay
of the curvaton

C = I'dec 5& — ""dec 5_F Langlois and Takahashi (2013)
3 po Hem 6 I’ H_r Assadullahi et al. (z013)
or e 8po

iso-curvature fluctuations

cf. In the reheating era (inflaton decay), because of no iso-curvature fluctuation,
the enhancement does not occur.. Ref. e.g., Weinberg (2004)
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Enhancement of primordial

adiabatic fluctuations? II
« amplitude, fNL by sudden decay approx.

¢/S S = 0ps/pol=m /NL

1 T T T T T T T 12 /1= T T T T T T
n=0 —— Sy .
1 10 k ~.  Planck constraint
n= i B, 3
0.8 8 =
n=15--------
_ 6 7
06 N=16 1 I |
N=17 —— N enhancement ??

2

0 n=0 el m
n=1 n=1.6 o
2rn=15-- n=17 - .
4 Planck constraint
0 _6 1 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 0.4 05 0.6 07 08 0.9 1
T'dec T"dec
cC =1 , i T
o; = 10~ ' Mp me = 10~ Mp Changing 1 ( corresponds to

changing 7 jec

Numerical analysis by delta N I

e Appropriate parameter; r [' = constant
/S JNL
030F . /" '.— l'|
[ ] t,’ 20 H
02sf . ‘,¢’/ . ‘I‘
020 ,// S \
L] ’/ \‘
015 // 1 of o %
u L AN
010 el 1 \,
[} '/A 5 Ll A‘s\
oosfp ® 4 r” 9 . \\7\~
l,?' 0 - n ~’..--"“r- —— B
0.00 ) ) ) ) ] ‘ ‘ LY e --—‘rl sl
0.0 02 04 06 038 1.0 02 04 0.6 08 10
black dashed; 7 / 3 black dashed:; £ _ 5 _ sr
4r 3 6
blue box; numerically evaluated 7" Jec
_ _ T C S T P L
red triangle; Gupta et al. (2004) fitting formula r(p RERTRL withp={*e\/ T
H=m
green circle; entropy production rate 7 7 3 (S 4/3 7
(we newly introduce) rs(q) =1—(1+ 1 q)” " with ¢ = ( S‘/. ) -1
\ ©1 /



Numerical analysis by delta N II

 r-parameter related with entropy production rate

=~ W

L Sy 4/3 S; ; initial entropy
q)” " with g = = — 1

S f ; total entropy after the
complete curvaton decay

Iy
~
N

e
T=I@ =To [l +C <E> } : magenta; sudden decay formula

1.2? C’ =1
L my = 10715MP

I'p=10""m, n=15

green; numerical result

black dashed; 7° / 3

* Changing 0 ; corresponds to ]
changing 7" g - =>» sudden decay approximation

does not work well..

06|

04l i

-y .
[ 522222770 thermal effect is not so large
02+

ol - smalldeviation

4 - ' appear around r~1 ?
,',,8 PP

Numerical analysis by delta N III

* n-dependence  _p(T)=T, {1 +C (%)n]
¢/S

JNL
0.5 —— T 10 r
) [ — R

0.4 n=1— 81 n=1—

6 F n=15----—-
031 Al n = 1.8 e ]
02t fNL(ana)

2 o
0.1 0t

ol -2

0.1 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1 0.1 0.2 0.3 04 05 06 0.7 08 09 1

T Ts

Deviation depends on the value of n.

We have also checked the result by It really comes from 5r or other effects??
using standard perturbation theory,
and both are consistent.
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OI" obtained numerically
 O3I' @ H =T surface

05 .

/S

041

- numerical C
c'. i -

ot
e

03 ° /,— ,
0. \ Ts S Ts 5 I
ol g -3 6 I
o S oy , H=T
N /’?S (SF
== 5T obtained numerically
H=I"

oole A77777‘777‘777.7777,,.,7‘77477#+‘+4—u‘,...‘,

02 04 0.6 0.8 1.0

Is

difficult to explain the numerical result only by introducing the effect of dT".

but numerical 8"

, ® Overestimate the iso-curvature fluctuations at decay hypersurface
® overestimate the density of matter-like curvaton component

Dilution gas effect before H=I"?

radiation component produced from curvaton decay

My = 10_8Mp1

 negative n model (n=-5) o =5x10"°Mp ¢ =10

10°%

For this case, due to the smallness of
the decay rate, dilution gas effect
before H = I might be small.

OI" effect seems to be able to explain
the numerical result for r<o.9..

small deviation around r~1
€= dilution gas effect??

ry =094

o) Evolution of H, T’

-

s
P
-

using numerieal I
numnierical
- suddendecay

L L L
02 0.8 10
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Discussion

* Thermal effect really appears in primordial
curvature perturbations?

First, 7" seems to be a good parameter to describe the curvature perturbations,
even in the case with temperature-dependent decay rate.

By using simple sudden decay approximation, large thermal effect seems to
appear.

But, in the numerical result obtained by using delta N formalism, such large
effect does not appear, but there seems to be small deviation from the result in
I' = constant case.

This deviation might be expected to come from not only the fluctuation of the
decay rate at H=I" hypersurface but also dilution gas effect before H=T"..

How to quantify this effect?

Still need more investigation..
Anyway, the thermal effect from the temperature-dependent decay rate for the
curvature perturbations could be expected to be small.

Dilution gas effect before H=I"?

radiation component produced from curvaton decay

* negative n model (n=-5)

+ decay rate depends only on the radiation
component originated from inflaton (toy model)

030[ ad Z
- ’ -
r Rad -
r ”¢’ ¥ -
025 e ® -
L -
L I”” ° :
020} ’,¢’ )
gl
r '
0.15F ’)”/3 ,/”, B -
i g Good agreement??
7 R
0.101 ’,(f/
r R . .
7 s using numerical §[
L ” .
05| _ge” numerical
[ &
000F e
02 04 0.6 08 1.0
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Monte Carlo Simulation of Quantum Cosmology

Nagoya University Hiroshi Suenobu, Yasusada Nambu
Daidou University Hiromi Saida

Quantum Cosmology

- To investigate a quantum property of the universe especially in the very early period.
- It can be understood through the wave function of the universe.
- The wave function have been obtained exactly in a simple model, not for more complicated models so far.

Our research purpose

- Evaluating the wave-function of the universe by using the Monte Carlo method.
- Applying that method to more complicated models.

1. Quantization of the universe
/ day/5(R - 2))

Quantization v
Wheeler-De Witt equation : H ¥ = 0

Einstein-Hilbert action : S, =

e “P is a wave function of the universe‘

Path-integral representation of W
W= [ Dy exp (ilg)

’iSE—SE

-

Wick rotation : ¢ — itg

The wave function can be evaluated as the partition function.

Z) = /Dg,“, exp (—SE)
Probability distribution : P(g,.) o exp (—Sg)
2. Monte Carlo method

We use the Monte Carlo method with probability P(g,,.)
to evaluate some physical quantities and the partition function.

@ Generate many samples of space-time configuration by move.

move : A method to generate sample configuration from given initial
configuration according to probability distribution P(g,,,) .

2 Obtain a physical quantity A as expectation value of samples.

(A =" Awumpic

sample
®@ To evaluate the partition functicpm with Monte Carlo method
Introduce inverse temperature {3 as external parameter.
G*SE — c*ﬁSE
Evaluate each expectation value of the action in the interval
[B:B,] and integrate them.

B
Partition function : Z[8] = Z(fo) exp (7/3 ds’f’<55>w>

3. Our model

* Mini-supersupace model
Metric in the homogeneous and isotropic universe
5 AP ;
2 — 42 2
ds® = q(t)dt +q(t)d Q3

Einstein-Hilbert type action
a2

SN, q] = /dt [% + N(es — Ag)

This has a classical solution with boundary condition q(0)=0, q(ts)=0.

AN?
qt) = ?(*[2 +rt)

with gauge fix N =0

m) The Euclidean de Sitter universe

This model have been investigated by several authors. And its path-
integral could be performed exactly e.g. [J. Halliwell et.al. PRD39
(1989)] ,however, over all sign of the action is opposite to ours.

~———

In our research, we attempt to evaluate the path-integral by using
the Monte Carlo method. Then, we apply that method to more
complicated model, for example including inflaton, connected to
Lorentian universe etc...

+ Simulation details

Discrete version of the action
T _ P
S— ; [m (q,+14N W x ((:2 _ )\(rm];r q,))]
+ Consider T sites in 1-dimension (time direction).
- Distribute Q particles on the sites according to
probability e (value of Q is able to vary).

+ Number of particles q; at i-th site corresponds to spatial volume
at time i.

+ We obtain an equilibrium distribution by move of g;.

move
9]
£ 9 l v q;
E ¥
b 4 L 4 b

g XN o0 N H \
T 88888 88 \
2 q — :

"J—_'—. (g Fig.2 obtain a configuration around

time the classical solution
Fig.1 (T=80, thermalized at 3x106 step )

For fixed space-time volume Q=/itq(t)=const, this process is
regarded as a 1-dimensional effective model for the Causal
Dynamical Triangulation (CDT), which is a typical quantum gravity
theory with using the Monte Carlo method. L. Bogacz et. al. Pro8s, 104015 (2012)

- Partition function and integration of lapse

Partition function with fixed N : Zy[N] = /quxp(—S[M q))
Partition function : 2z, = / dNZy([N]

The N integral does not converge usually.

conversing
contour
—~—

Analytic continuation of N
N — N = Ng+iN;

Choose a conversing integration contour
on the complex N plane (— fig.3).

Fig.3 conversing contour on
complex N palane

- Result in our simulation

We have estimated the value of Z, by move of q. L \\\
. Soe
Iy~ e (—figd) N
The action evaluated with the classical solution. | ™ ~N
wgNe |7 :
S[N] = - 48¢; + et N Fig.4 evaluated <S> by moveof q

(T=80, simulation step 107)

We have evaluated Z, from the S[N] by move
of N on the contour in fig.3 .

Iy ~e"x  (—fig5)
——
Zy and Z, are consistent with Halliwell (1989). R

Fig.5 evaluated fdB<S> by move
of N (T=80, simulation step 107)

4. Summary and Discussion

+ We could evaluate the partition function about q and N
separately by using the Monte Carlo method.

- In order to evaluate the wave function automatically, we
have to find the way of combining g move and N move.

+ Then, extend this method to models including inflaton,
or connected to the Lorentzian universe.
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“Magnetic Penrose Process in a Black Hole Magnetosphere”
by Masaaki Takahashi

[JGRG23(2013)P29]



922

JGRG23 2013 Nov. 5-8@Hirosaki Univ.

2013%F12A7HLER
ERGOSPHERE
Space-time dragging effect
= o 1 by rotating black hole

"""" wave. front

Negative potential region

— “Penrose process”

.....................................

(r/m) sin ¢

Magnetic field lines are also:
dragged near the horizon.

Ergosphe;é

2 3

(r/m) cos ¢

. Energy extraction due to
. “Blandford-Znajek process “

magnetic torque:

2013512870 LEH
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ISCO : inner most stable circular orbit
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EFFECTIVE POTENTIAL
- > Y

prograde rotation retrograde rotation

1.4;||||||| 1-55||||||||
i 8.0
: 1.0 |- i g —‘
Vetr Ve R
1.0 |43 ;
o5l
08} 5
0.0 ------- ]
0.6 |
S
0.4 -0.5
oM T B T e (6
r'm
201312870 LBH
PENROSE PROCESS
Accretion of negative Outgoing particle can release
energy particles higher than incident energy.

There is a restriction that
the relative velocity of
two particles exceeds c/2.

Seeemmeaeeeaeeeaeeaceeceeeeseeesesaseeae----mdX eSCOPE

mean binding sxpced-lo‘;\ms"
one:quo"c

'
'
Y
H max binding
'
\

energy~10%’
The Penrose
‘ process is not
realistic when a
star is destroyed \ J
by the tidal force ? ™./

2013512870 LEH



R ESTRICTION ON Wagh & Dadhich(1989)
PENROSE-PROCESS

Inertial frame of particle 1 : eft) = efa) (=2

Energy of particle 1: e
By =Ulk, = Utk =ky U =(1,0,0,0)

Energy of particle 2 (after devision) :

E2 E= ngu = Uéa)k(a) = ’}/k(t) + ’71)(0‘)]{7(@) — ’}’k(t) —+ fy|'v||;<:| cos
et e 0l
relative velocity

( klky = k(o) = kyk® + kg k(® = E? — |k|?
\ kﬂku = Jit
|k| = (E12 = gtt)1/2 —1<cosf <1
2013%F12A7HLER

R ESTR | CT ION ON Wagh & Dadhich(1989)
PENROSE-PROCESS (2)

E,
i oE Estimate of the velocity of the lower limit
l a=M
Ei >1/V3  (1SC0)
1
lv| > =c git(rm) > —1
2 near the Event Horizon

strict condition !

2013512870 LEH
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RESTRICTION ON e
PENROSE-PROCESS (3)

[ Electrostatic potential & (= 4;) ] in Kerr spacetime

v By = [o](Bf — gu)'?] < €20 «—— E<0

¥

0<exd® < Fy |’U| < 1/2 is possible

for Magnetic Penrose Process

Ei <exd no-restrictions !

20135F12F7HLEH

When electromagnetic field exist.

the restriction of the limitation on
Penrose process is relaxed.

What is the Extracted energy ?

Rotational energy of a Black Hole

Electrostatic potential energy

due to the dragging effects of Kerr space-time ]

2013512870 LEH
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MAGNETIC FIELD ?

w
o

N
o

(r/M)cos6

Black Hole
Magnetosphere

with a thin disk
(vacuum solution)

(r/M)cos8

0 20 40 60 80 100

: OEBEC R o i oD b s )
(r/M)sin® (r/M)sin®
Here, we consider Fe
e e magnetic field lines

black

test magnetic fields.
| hole
% Uniform field el L
* Loop field e etk /
* Dipole field |

e ring current

2013512870 LEH

EFFECTIVE POTENTIAL

E = mu; +eA; = constant Charged Particle in Stationary and
Axisymmetric Magnetic Fields

—L = muy ) — constant

Dipole Magnetic Fields in Kerr Geometry
T_T_) - (T—MCOSze)} ;

—3dap 2 241 L
Ay = =17 M )
¥ ey {[r(r )+ (a r) cos® 6] o n (7”—7"+
Ay = — e (r — M)a®cos® 0 + r(r? + Mr + 2a?)
& 42y

— [r(r® — 2Ma® + a®r) + Ad® cos® 6] 2iln (T _T) }
VE(MQ—a?)l/Q W T Tt
r+ — M:i:’}/

2013512870 LEH




928

Black Hole-Dipole Magnetosphere
Effective Potential

a=098M, Vin=—-20m, Vy.x =2.0m

(blue line) = nelgative potential region

/ / [/

2013512870 LEH

Negative Potential region
magnetic moment T (left) and | (right)
a=098M, Vin=-2.0m, Vyax =2.0m

Charged particles o Off-faquatonal
|are trapped ! A regions
L~

!
1 Chaotic orbit! , _
l Jet formation ?

| Cosmic-ray

formation ?

0 2 4 0 5 "
Near equatorial plane : High-latitude area :

Negative potential region (bule line) Negative potential region (blue line)

2013512870 LEH



MOTION OF A TEST CHARGE

dipole field

: paraboloid field

(r/m) cos O
(r/m) cos 0

10 10

(0§l e (i ok S HO)

(+/m) sin 8 (r/m) sin @

2013512870 LEH

BH in a Uniform Magnetic Field  wald 1974)

BH charge

if ic field of : : :
Uniform magnetic field of strength in 2 nhifaon b

\

B 2
A — — (mu i —ku) © k,

% M 2M
In the case of Kerr BH, BH is charged with electricity
Electrostatic potential A; when BH rotates in a magnetic field.

is generated.

My the axial Killing vector AQS il
: field lines
ki the timelike Killing vector :
S the angular momentum of the BH spacetime At electrostatic
potential

M the mass of the BH spacetime

2013512870 LEH
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Restrictions on
Magnetic Penrose Process
Uniform magnetic field (Wald solution)

Limit to the relative
Effective potential
5

| H.‘/d 1a/pdten(+.d"u 12 -
||| ['-/datalelectric.d’ u 1:2 \ -~
4 |".data/potent-d’ u 1:2 Y-
|| Jdatarnorizon.d’ u 5:6 -\
\//' J/dataftiorizen.d’ u 1:2
3 F l/f/' / N\ \
/ | \
. | \
2 N\ | \\ \
. N \\ \\ \\
1 NV 1
£ \ \ \
0 | |
- |
1 ‘// / /,r"/ / ,“ 1
P / // /f J‘!
2 S | / /
A
ok /)
3 W /
T /
-4 /’
I /.
5 0 1 2 3 4 5
a = 098M, E, = 0.7m, L = —GO/Mm, By = 2.0, Qpy = 0.2

2013512870 LEH

Restrictions on
Magnetic Penrose Process
Uniform magnetic field (Wald solution)

Limit to the relative
velocity is relaxed !

Effective potential
5 T T T 5
(/ J./data/potent+.d’” u 1:2\\

|| Idatalelectric.d u 1:2 \ -

/} | *./data/potent-.d’u 1:2 ~------ |
i // '{data/orizon.d' u5:6 -\

//,’,/ /./Li/a/t,afhormr{? ut:2 \\ |

0 0
-1 -1
-2 -2
-3 / -3

/
/
-4 / -4
/
/[

a = 098M, El = O7m, L= —6.O/Mm,BH =0.2

2013512870 LEH
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Restrictions on
Magnetic Penrose Process

Uniform magnetic field (Wald solution) riverse direction

Limit to the

Effective potential relative velocity
5 ! :

icld” E:Z  —
etody 12 - ape
rizdn.d 3 4 4 .
\ 1 3 3
ectrostatic
Np Lﬁtial 1 27 2
‘w} 1 18
‘ 0 0
‘\ A -1
) 2 -2
A /Hconst
-3 -3
nagnetic
fleld lines 4 4
0 1 2 ; 4 5 0 1 2 ; 4 5 0 1 2 3 4 5
a=0098M, E; =0.7m, L = —6.0/Mm,|By = —3.0,| Qgn = 0.2

2013512870 LEH

Restrictions on
Magnetic Penrose Process

Uniform magnetic field (Wald solution) riverse direction
Limit to the

Effective potential
5

,.‘g té/;%fﬁmi.g‘u ik '
’ fdat; tric. i

/ "’.ﬁialgﬁoe}gﬁg,d ﬂ 1
i

./data/hifizon.d[ u 5:f
*fddmori opdlu1:
L

rostatic
shtial

|
2 |
const i
-3
etic | \
. . | { ]
ines 4 /\ \‘
Al

a=0.98M, By =0.7m, L = —6.0/Mm, Qpr = 0.2

2013512870 LEH
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NEGATIVE POTENTIAL REGION

Wald solution (Black Hole-Uniform) a = 0.98M

i M “““““““ E

0 1 234567891(]ﬂ2|3!415|6|7|8|920

Effective Potential - Effectlve Potential
T L] T L T }g i w :
1 | 1
13 1 Acceleration
ﬁ 1 of a charged
9 1 particle is
8 k- 5 i
7 1 possible in
alr 1 this area.
2
1
0
=i o
=0 o
]| 1 Jet
-5 i 3
Z 1 formation?
3
-10
-11
-12
-13
-14
<115
-16
-17
-18
-19

2013512870 LEH

INFORMATION OF THE BLACK
HOLE SPACE-TIME

Accretion Disk --- The radiation is emitted from

- ¢ outside of ISCO.
(radio ~ X-ray, gamma-ray)

BH - Aurora --- The HE emission from very close to

the Event Horizon is possible.

BH - Van Allen radiation belt --- The plasma can be
trapped in this zone, which may be
related to a COSMIC ray .

Magnetic Penrose Process !

-------------------------------------------------------------

2013512870 LEH
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“Gravitational waves generated during slow-roll inflation
in Lorentz-violating Weyl gravity”
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[JGRG23(2013)P31]



Gravitational waves generated during slow-roll inflation in
Lorentz-violating Weyl gravity

Kohji Yajima
Rikkyo University, Japan
in collaboration with Tsutomu Kobayashi (Rikkyo University)

JGRG23 in Hirosaki Nov. 5 - 8, 2013
Abstract: We study gravitational waves generated during inflation in the ghost-free but Lorentz-violating Weyl gravity. This is the one of the
theories about higher orders of curvature invariants in Einstein-Hilbert action as a quantum correction. Using this theory, we calculate the power
spectrum of gravitational waves generated during power-law inflation, as an example of slow-roll inflation. We compare our results with the study
about de Sitter expansion and the case of general relativity.

1 Lorentz-violating Weyl gravity
N. Deruelle, M. Sasaki, Y. Sendouda and A. Youssef , JHEP 09, 009 (2012)
‘We use the model:

1
S(gavs x] = b /(143?\/ =9 (R + 2vCabcaCergny "y v 0uu”) + Sy [gan. x] .

where

Oa
Uy = __YaX and

vV =9hx9°x

Yab = Gab + UaUlp -
. _ 2 1
Cavea = Raved = = | JateBap + golaRela = =7 IalcGain R (n=>3).
We use units: ¢ =i = 1. k=87G. + has dimension of length®. The action of the
scalar field x, Sy[gab, X], is arbitrary, but we assume d,x everywhere timelike and
future-directed. The vector u® determines a preferred time direction and then in

this theory the solution breaks local Lorentz symmetry spontaneously. This model
has no ghost degrees of freedom.

2 Metric perturbations

‘We consider the constant x surfaces are flat and take a flat Friedmann-Robertson-
Walker (FRW) spacetime as a background,

Japdadz’ = a*(n)(—dn® + 6;;da’da’),

where 7 is conformal time: dn = dt/a. We expand metric perturbations around a
flat FRW spacetime

dgapdzda’ = o [~2Adn? + 2(0;B + B;)dndx’
+(2C0;; + 20:0;E + 0 Ej + 0, B + h”)dm’dw]} .

The dynamical perturbation from Weyl term in the action is only the tensor per-
turbation /. We write down the action for the tensor perturbations:

1 [ i .
Srlhij] = ™ / dnd®z [a®(hj;h'" — Oghi;0Fh'9) + 4y0 k0 h'I] .

3 Gravitational waves generated during inflation
E.O.M. of tensor perturbations in Wely gravity is

3a? + dvk?

.. . 2
(T Vo =
hy + (a2+4wk2)hk+a2+4'yk2hk 0,

where dot stands for derivative with respect to cosmic time t.

3.1 Sub-horizon limit

To consider the behavior of the mode in sub-horizon, we take the limit, ﬁ > 1,
and then E.O.M. of the mode is

. . 1
hk+Hhk+4—Ahk =0.
Y

3.2 Power-law inflation

We consider power-law inflation a(t) o t” (p > 1) as an example of slow-roll in-
flation. Then H = p/t and the sub-horizon E.O.M. can be solved analytically
as

hy =t" {aHfL“ (2\%) + ﬁHsz) (2\%)} (a8 = const.),

where

p—1

= >0.

4 Quantization

From the analysis of de Sitter expansion, modes are oscillating at ¢ > ¢y, ; is the

time when the length scale /¥ at which the Lorentz-violating Weyl term operates

is equal to the Hubble radius H~'. We take the positive frequency mode in ¢ > #;

and quantize tensor perturbations. From the action for the tensor perturbations,

the momentum conjugate to h; is

o 9L _ 1
N ohi; T4k

We impose the commutation relation

(@R — 4y BT

ks

hij (g, 31), 79 (n, )] = 2i(F) — 7).

log(length)

Thn

log(a)

Figure 1: the length scale \/7 on which the Lorentz-violating Weyl term operates,
the Hubble radius !, and an arbitrary mode a/k,. t; is the time when VY=
H~', and t, , is the time when a mode a/k,, exits the Hubble radius.

5 Numerical analysis

5.1 Initial condition
We take the initial condition of mode functions as

L

kr\2 1 t
he = [ — —t=rH2) X
k (4«,«) k o \24

This form is chosen to be the Minkowski positive frequency modes at /7y < t on
sub-horizon scales.

5.2 Power spectrum

We calculate the power spectrum of gravitational waves in Weyl gravity and general
relativity in power-law inflation.

P

: k

0107 107 10 0 10 108

Figure 2: The power spectrum of gravitational waves in Weyl gravity and general
relativity in power-law inflation. The red line is in Weyl gravity and blue line is in
general relativity. A vertical axis is arbitrary.

6 Conclusion

We calculate the power spectrum of gravitational waves generated in power-law
inflation in Lorentz-violating Weyl gravity. That is differ from the power spectrum
in general relativity on large scales. The situation is the following: the modes with
small k exit Lorentz-violating scale \/7 and soon cross horizon. So the effect of
Lorentz-violation is large.
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Closed membranes

without spherical symmetry

Hiroshi Kozaki (Ishikawa national college of technology) <kozaki@ishikawa-nct.ac.jp>

with H. Ishihara and T. Koike

Introduction and conclusion

Introduction

Extended objects have been providing various topics in cosmology. The
dynamics, however, is still not well clarified since equations of motion
(EOMs) are given in non-linear partial differential equations.
Cohomogeneity one symmetry, which means that (p + 1)-dimensional
world volume X is foliated by p-dimensional orbits of isometries,

is helpful to study the dynamics because the EOMs are reduced to
ordinary differential equations. In particular, the Nambu-Goto EOMs
for strings (p = 1) and membranes (p = 2) are reduced to geodesic
equations in certain quotient spaces.

Conclusion

A closed membrane solution without spherical symmetry is obtained in
Minkowski spacetime by assuming a particular cohomogeneity one
symmetry. While the membrane itself is closed, the intrinsic geometry
of the world volume is a 2 4+ 1 dimensional flat FLRW universe,
which is nots spatially closed. This result, which seems contradictory,
is due to the peculiarity of the assumed symmetry. The cosmological
singularity corresponds to a singular orbit of isometries, which is
given as a null line.

The world volume ( z -direction is omitted).
dashed lines : snapshots of the closed membrane.
solid lines :  foliating orbits of isometries.

two dimensional homogeneous and isotropic surface

with zero constant curvature.
jagged line :  singular orbit of the isometries.

null line.

The solution

Cohomogeneity one symmetry
The world volume is assumed to be foliated by the orbits of the
isometries generated by the commuting Killing vectors:

K, +L., K.—L,

K;: Lorentz boost  Lj : rotation

Foliating orbits

The embedding of the orbit is solved as
‘= U o U +v

2
2 Y 2

r=—t+u, y=uy', z=uy

7= (y*,y?) : coordinates on the orbit
u, v : constants
These equations are written in the implicit forms:

7(t—%)2+(m+%)2+y2+z2:0, t+z=u.

The orbit is, therefore, the intersection of the light cone and the null
plane.

Coordinate system and ansatz
We consider (u, v, y',y?) as coordinates in Minkowski spacetime,
where the metric is written as

ds? = —dudv + u?dij?

and then take the following ansatz to impose the cohomogeneity one
symmetry
w=u(r), v =o(r),y' = ol g = 0?

(1, o', 0?) : coordinates on the world volume

Solution
The Nambu-Goto equations are reduced to the geodesic equations in
two dimensional spacetime with the metric

ds? gim = u*(—dudv)
This is readily solved as
v=C?y®. C:integration constant

The embedding of the world volume is implicitly given as

2+ 2+ 2+ 22+ Ct+2)5 =0

Induced metric on the world volume X

ds? = —dr? +u?(1)d7 2, u(r) oc 7H/3
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