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“Construction of Dynamical Vacuum Black Holes”
by Gustav Holzegel (invited)

[JGRG23(2013)110701]



Existence of Dynamical Vacuum Black Holes
(joint with M. Dafermos and I. Rodnianski)

Gustav Holzegel
Department of Mathematics

Imperial College, London

JGRG Hirosaki, November 7th, 2013

Slide 1

Overview
1. Dynamical Formulation of General Relativity
2. Black Hole Stability Problem

3. Construction of Dynamical Black Holes

Slide 2
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The dynamical formulation of General Relativity

Recall that the vacuum Einstein equations
R,, =0
admit a geometric initial value formulation (“Cauchy problem”):
(3, hyw, K, ) + constraints — (M, g,,,) satisfying R, = 0.

This is the natural setting to construct general solutions and to
discuss the notion of stability. What are the properties of the

maximum development of a given initial data set?

.
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Similarly, there is a ‘characteristic initial value problem” where
initial data are being posed on (what will be) null-hypersurfaces of the

spacetime.

[Rendall, Chrusciel, Luk]

Slide 5

The Black Hole Stability Problem

The Kerr family of solutions (M, gar,q) is believed to play the central
role as the final state for vacuum gravitational collapse. The
(M, gnr.a) satisty

R,, =0.

Do sufficiently small perturbations of Kerr initial data converge
e to a black hole solution?
e another Kerr solution (outside the event horizon)?

This question is still wide open. The only non-linear global stability
result of this type (in the asymptotically flat context) is the celebrated
“Stability of the Minkowski space” (Christodoulou-Klainerman,
Lindblad-Rodnianski).

Slide 6
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Common Folklore

e “The Positive Mass Theorem implies stability of Minkowski space”
Positive mass has nothing to do with stability. Stability of
Minkowski space holds even for R, — %Rg,w = —8nT1),, with T},
the energy momentum tensor of a scalar field. On the other hand,
a PM exists for anti de Sitter space: AdS is a “ground state” and
yet (believed to be) classically non-linearly unstable.

e “Extreme black holes are stable” Stability has nothing to do
with being supersymmetric or not. (see work of Aretakis;
Poster 33 by Murata et al)

e “The stability of the Kerr solution is known/ proven.” (Only mode
stability known (Whiting). Not even linear stability is known!)

Slide 7

Why the stability problem is hard...

As a PDE, we think of R, =0 as (R = DI'+1IT)

OgGuv = (39)2

a coupled system of non-linear wave equations. Even understanding
this system around flat space is hard (Stability of Minkowski space is
a 500 page book!). The key is to use the dispersion of linear waves
to control the non-linearities.

In the black hole problem, you have
e final state has fewer symmetries
e final state unknown; not all components of curvature decay

e more complicated geometry (trapping, redshift, superradiance)

Slide 8
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The idea is to first understand appropriate linearized problems:
e system of gravitational perturbations
o Maxwell
e The wave equation (“poor man’s linearization”), 041 = 0.

There is a huge body of work in the physics literature, including the
famous monograph of Chandraskehar.

This is based on mode analysis and doesn’t tell you anything about

the behavior of general solutions.

Robust tools needed, based on understanding the geometry.

Slide 9

Intense research over the past ten years recently culminated in a
complete understanding of 0,1 = 0 for g a sub-extremal member of
the Kerr family (|a] < M) by Dafermos and Rodnianski:

Solutions to the linear wave equation Oy =0 for g a fized
sub-extremal Kerr background decay polynomially in time on the

black hole exterior, including along the event horizon.

| <€ forr>2M and |¢| < € for 2M <r <3M

Slide 10
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Extremal Case: Instability! Aretakis; Lucietti, Murata, Reall, Tanahashi

This can be generalized to the case of a cosmological constant.
O gw =0

e de Sitter: exponential decay for Kerr-de Sitter
(Dafermos-Rodnianski, Melrose, Dyatlov)

e anti de Sitter: logarithmic decay for Kerr-anti de Sitter
(G.H.-Smulevici)

These results are suggestive for the non-linear problem.

Slide 11

This concludes Part II of the talk.

The non-linear problem is still quite far away. However, there is a

simpler question which has not been answered satisfactorily:

Do there exist any non-trivial spacetimes converging in time

to a member of the Kerr family?

There are examples arising from toy-problems in symmetry classes:

e spherically-symmetric self-gravitating scalar field in 4d
[Christodoulou, Dafermos-Rodnianski]; polynom. decay to Schwschild

e vacuum in 5d with bi-axial symmetry; polynomial decay to
Schwarzschild [G.H]

e Robinson-Trautman metrics [Chrusciel|; exponential convergence to
Schwarzschild

Slide 12
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The main result of this talk is the following

Theorem 1. There exists a large class of smooth vacuum black hole
spacetimes which asymptote in time to a Kerr spacetime for any
choice of parameters |a| < M.

e no symmetry assumptions
e full functional degrees of freedom (for characteristic IVP)
e crponential convergence in time to Kerr (non-generic!)

e extremal case included

Slide 13

The construction proceeds by constructing appropriate “finite”

problems and then show convergence:

Of course, establishing uniform estimates for the finite backwards
problem is key.

Note that one of the main difficulties of the stability problem is absent
here: Final state is a-priori presribed!

Slide 14
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Remarks

Difference with the stability problem: Now not trying to control
arbitrary solutions arising from Cauchy data but constructing special

solutions from infinity.

The solutions decay to a fixed Kerr solution exponentially fast,

while generic solutions will decay only polynomially in time.

In this sense, the set of spacetimes constructed in this way is small.

I'll explain to you why the exponential decay is necessary (i.e. why the

construction from infinity cannot do better).

Slide 15

On the other hand, the set of spacetimes thus constructed is large in
the sense that all free functions in the characteristic problem are
indeed “free” except that they have to decay exponentially.

You can think of the data prescribed as parametrizing how radiation

leaves the spacetime.

Again: No symmetry assumptions!

Slide 16
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The reason for the exponential decay can be traced back to the
blue-shift effect:

At the level of the analysis, this can already be seen for the linear

wave equation O,¥ = 0.

Slide 17

1
Ty = 0u0uy — §9uv (8¢)2
VA (T X)) = Ty, 7

Applying this with a vectorfield X everywhere timelike on the exterior [in
order to produce non-degenerate energies! T,,,n*n” ~ |Di|?], one sees that

tf B
/ |Dyp|? < c/ dt/ |DY|* + “data”
M t X

Slide 18
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The constant of the bad forcing term is related to the surface gravity
of the horizon. From Gronwall’s inequality, it is then easy to see that

imposing sufficiently strong exponential decay can be propagated.

Remark
Note that we are dealing with non-degenerate energies here. For
Schwarzschild, one could actually work with the degenerate energies

arising from 0; and construct an isomorphism between scattering data
on HT and Z* and data on Xy, cf. Dimock et al.

For Kerr or for a non-linear wave equation on Schwarzschild this
breaks down which is why we work with non-degenerate energies from
the beginning.

Slide 19

The analogy with the linear wave equation, explains the exponential
decay.

e only the “naive” energy estimate is used — in particular, no

symmetries/ approximate Killing properties

e the complicated geometry of the black hole exterior

(superradiance, trapping) does not enter

e Schwarzschild- and Kerr are “equally difficult”

Slide 20
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The full problem

e fix differentiable structure of Schwarzschild/ Kerr, want to equip

the manifold with metrics expressed in double null coordinates

e mixed characteristic/ Cauchy problem (data: conformal geometry
of the cones [Rendall, Christodoulou])

e in order to estimate solutions need appropriate formulation:
V*Wapys =0 Bianchi equations
VI +IT =W  (null)-structure equations

e Renormalization of these equations: Substract Schwarzschild/

Kerr values from components of I' and W.

Cf. Newman Penrose. We're doing estimates!

Slide 21

The estimates

For the Bianchi equations, you do (weighted) energy estimates
providing in particular decay estimates for L?-curvature fluxes.

.,
Ht T+

J

AN

Given the curvature fluxes, you can estimate the I'’s from the
transport equations.

Slide 22
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Everything is coupled — large bootstrap.

Crucial Ingredients
e exponential decay required by blue-shift near the event horizon

e understanding the non-linearities of the Einstein equation near

null-infinity (null-condition, hierarchy)

Slide 23

Final comments I

e We constructed a class of smooth dynamical black hole solutions
without symmetry depending on the full scattering data.

(Previously: symmetry classes & Robinson-Trautman [Chrusciel])

e Some of the estimates, as well as the formalism established, may

be useful for the forward problem
e relation with “ultimately Schwarzschildean spacetimes” [G.H]

e Generalization to de Sitter and Anti-de Sitter black holes:
Understand boundary initial value-problem
cf. [Friedrich, G.H.-Smulevici]

e better results (polynomial decay) in the extremal case?

Slide 24
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Final comments I1

What about polynomial decay? The theorem is believed to be sharp
in the following sense:

Conjecture 1. Blue shift-conjecture: For generic, polynomially
decaying scattering data there does not exist a spacetime (M, g)
“bounded” by H™ and I+ and smooth up to H™T.

Note the word “generic”’! You have to be very lucky to pick data such
that you CAN find an infilling solution!

Slide 25

THANK YOU!

Slide 26
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Let us turn to the full problem (for Schwarzschild). Particularly
important is an appropriate formulation of the equations, which
involves the issue of renormalization. We formulate the vacuum

Einstein equations as
V*Wagys =0 Bianchi equations

VI+IT =W (null)-structure equations

null decomposition + renormalization

Slide 27

One fixes the differentiable structure of the Schwarzschild manifold
and wants to equip the manifold with metrics of the form

g = —4Pdudv + ¢, (d0° + b dv) (d6” + b dv)

corresponding to a double-null foliation. [In Schwschild Q2 =1 — %,
g = r? (u,v) 7y, b= 0. We can write the metric arising from the mixed
IVP locally in this way (Rendall, Christodoulou). We null-decompose
with respect to the foliation and renormalize all quantities (T", ¢») with
respect to their Schwarzschild values and finally obtain a system of
hyperbolic and transport equations for decaying quantities:

Vg =DPh+ T ,  Vyp =Dp+ T

and

VL =TT+ , VL =IT+4

Slide 28

483



The proof proceeds as follows.

1. estimate the curvature on spacelike and null-hypersurfaces (fluxes)

via energy estimates from the null-Bianchi equations.

2. estimate the Ricci-coefficients on the spheres S? (u,v) from the

transport equations using the curvature fluxes.

3. “Bootstrap” appropriate exponential decay of these norms

Step 1: r-weighted estimates + null-structure in the non-linearities

Step 2: requires another important null structure

Slide 29

The estimates for the Bianchi equations are done separately for each
“Bianchi pair” (see “ultimately Schwarzschildean spacetimes” [G.H]).

In fact, we first provide a systematic formulation of the equations.

Vb, — D), + By ) M
Yl + 7 (W) trbly = Py + Ea [1)] 2)

with the index p indicating the radial decay at null-infinity.

Structure of equations (i.e. their p-decay) is preserved under

commutation with the operators {¥s,7¥4,7Y}.

Slide 30
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Systematic formulation of the null-structure equations:

(3)
W?,Fp = Z (fpr +Tpy) Tpy + ¢y

p1+p2>p

4) (3)
W41_‘17: Z fplrpz + Z (fpl +FP1)FP2 +¢p+2

p1+p2=p+1 p1+p22>p+2

Note the gain of two powers in the 4-direction except for the
anomalous boxed term. The key observation is that whenever a boxed

term appears, the I', involved satisfies an equation in the 3 direction!

This structure is preserved under commutation with {¥s3,7¥4, 7Y} !

Slide 31

Think as follows

Uhoz
r?P=2|0, |2 d29§data—|—/ du/ 2P 2o, |2\ /gd?0
/SZ(u,v) P \/g U S2 P \/g
Uhoz
da =211 12, /gd?6
‘*‘/u U/SQT Tyl \/57

Insert bootstrap assumptions... No loss in 7! In the other direction,

/52( )TQq_QIFp\Q\/ngQ < data +/ dv /52 r212 ey 4 0]%/gd0

Voo B 1 _
+/U dv/s2 = TP /g

The %2 is necessary for integrability near infinity! For the %-term,

r2972|T,|? will decay in r to ensure integrability and a smallness
factor comes from the fact that the I',, involved has already been
improved in the 3-direction.

Slide 32
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This is, schematically, how the bootstrap assumptions can be
improved. It essentially works because the bad linear terms (caused
by the blueshift) can be estimated by choosing the exponential rate
that is bootstrapped sufficiently large:

to
/ dt/ | D] < C

while all non-linear error-terms can be made small by choosing the ¢
of the bottom slice large. However, recall that understanding the

radial decay was crucial!

Slide 33

This gives uniform control for every solution arising from ¢y <ty < oco.
The final step is to obtain convergence. For this one needs to compare
(i.e. identify) two spacetimes. The fixed differentiable structure

provides a natural setting to do this.

One considers differences of null-structure and Bianchi equations and
repeats the estimates. There is a slight simplification if one is willing

to use elliptic estimates.

Slide 34
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“Destroying the event horizon of regular black holes”
by Zilong Li

[JGRG23(2013)110703]



Destroying the Event Horizon of Regular Black Holes

Zilong Li
Fudan University

7 Nov. 2013

This talk is mainly based on Z. Li & C. Bambi, PRD 87, 124022 (2013).

Pioneer Works

e One can overspin (overcharge) a near extremal Kerr (Reissner
-Nordstrom) black hole by throwing in a test particle, as long as
the back reaction effects may be considered negligible.

— [V. Hubeny, PRD 59, 064013 (1999); T. Jacobson & T.
Sotiriou, PRL 104, 021101 (2010)]

e For all orbits capable of producing naked singularities, the
conservative self-force is non-negligible and seems to have the right
sign to prevent the particles from being captured, thus saving the

cosmic censorship conjecture.
— |[E. Barausse et al., PRL 105, 261102 (2010); P. Zimmerman

et al., arXiv:1211.3889]

2 of 12
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Spacetime Metric

The line element in Boyer-Lindquist coordinates can be written as
ds® = gudt? + grrdr? + goed® + 2g14dtde + gpsde?

the non-vanishing spacetime metric coefficients are

_ 1 2mr >
git = » ) Grr = Av

2amrsin? @

Go=—"""% > 9oo = X,
2a%mrsin? 6
o6 = <r2 ta?y R m;sm >sin29,

where ¥ =7r?+4a%cos®0, A=r%—2mr+ad®.

3of 12

Black holes vs. Regular black holes

In the metric coefficients, the mass term m is given by

MKerr = M Kerr Black Holes (KBHs),
2
mgN = M — g— Kerr-Newman Black Holes (KNBHs),
T
Mr3
mp = W Bardeen Black Holes (BBHs),
r“+g
M3
my = = Hayward Black Holes (HBHs).

The event horizon of black holes can be obtained by solving A = 0.
[C. Bambi & L. Modesto, PLB 721, 329 (2013)]

4 of 12
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Test-particle approximation

One can imagine an experiment in which a black hole absorbs a small
particle of energy F, angular momentum L, and electric charge ¢ = 0.

e Absorption condition:

E > gl ;

o0

e Destroying condition:
A(r) =0 has no solutions.

Once these two conditions are satisfied, the test particle can be
plunged into the black hole and destroy its event horizon.

5 of 12

Test-particle approximation: KNBHs

Kerr—Newman Black Hole Kerr—Newman Black Hole
M=1 M=1
4}F a=09 4F a=04
0 = 043588989431 0=09165151389
T3 T3
S =
) g 2
1 / 1
0 d Ob
0O 2 4 6 8 10 0 2 4 6 8 10
/107 L/107°

Combination of (E, L) that can destroy a near extremal black hole.
The allowed energy range of E is of order L?/M?3, which is
comparable to the correction of the self-force. [E. Barausse et. al,
PRD 84, 104006 (2011); S. Gao and Y. Zhang, PRD 87, 044028
(2013)] That is, the horizon of the Kerr-Newman black hole survived.

6 of 12
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Test-particle approximation: BBHs & HBHs

Bardeen Black Hole Hayward Black Hole
5 5
M=1 M=1
4f a=09 4t a=09
£=0.2667972296 £=04928321017
T3 w3
s S
g2 g2
1 1
0 0
0O 2 4 6 8 10 0 2 4 6 8 10
L/107 L/107
Bardeen Black Hole Hayward Black Hole
5 5
M=1 M=1
4f a=04 4F a=04
- £=06708585186 £=0.9625397004
[y 3 "‘:3 3
g2 )
1 1
0 0
0 2 4 6 8 10 0 2 4 6 8 10
L/107° /1075

The horizon of the Bardeen/Hayward black hole can be destroyed.

7 of 12

Thin disk accretion process

In the case of a thin disk on the equatorial plane, the neutral gas
reaches the innermost stable circular orbit (ISCO) and it then plunges
quickly onto the compact object, which changes its mass M and spin
J by

M->M+0M, J—J+46J,
where
OM = e;scodm, 0J = A\iscodm,

ersco and Aigco are, respectively, the specific energy and the specific
angular momentum of a test-particle at the ISCO, while §m is its
rest-mass.

8 of 12



Thin disk accretion process: KNBHs

Kerr—Newman Black Hole

0.4944 (<~ U

Tl 0.4943 N

. 0.4942 N
".70.8692 0.8693
.

N

0 02 04 06 0.8 1
JIM?

Tracks of the evolution of black holes.

9 of 12

Thin disk accretion process: BBHs & HBHs

Bardeen Black Hole Hayward Black Hole

v
0.8F 0.095 \ E . 01817
T~ 0.094 1 s
v ~._ ostel

0.093 \ \

0.092 v g
N 0.986 0.988 0.99405 0.99413]
N

g/l
o o o
N S [e2)
g/M
o o o o
N S (=2} (o)

\

‘\g 1

b e

0 02 04 06 08 1 0 02 04 06 0.8 1
JIMP JIM2

The evolution of the Bardeen/Hayward black hole ends up with
horizonless state.

10 of 12
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Conclusions

We have presented two different examples strongly suggesting that
regular black hole can be destroyed:

Test particle plunging and thin disk accretion.

It should be noted that regular black holes have no central
singularities. And we can destroy the event horizon because we do not
violate the cosmic censorship conjecture. So, our work support this
conjecture, but the true reason may be more fundamental and needs
further discussion.

11 of 12

Thank You |
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“Supersymmetric Plebanski-Demianski solution”
by Masato Nozawa

[JGRG23(2013)110704]
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Supersymmetric Plebanski-Demianski solution

Masato Nozawa (KEK)

cowork with
Dietmar Klemm (Universita di Milano)

based on
D.Klemm and M.N, JHEP 1305 (2013) 123

JGRG23 at Hirosaki Univ.

Introduction

Supersymmetric (BPS) solutions in supergravities

® gravitational backgrounds preserving supersymmetries

characterized by the existence of Killing spinors €
obeying 1st-order differential eqs. iy, ~ (V, +---)e=0.

# attracted much attention in a variety of contexts

microscopic utilization non-perturbative objects

»theoretical playgrounds for superstrings

eblack hole entropy counting Strominger-Vafa 1996
«AdS/CFT correspondence Maldacena 1998
classical utilization: Witten 1981, Nester 1981

» positive energy theorem a la Witten-Nester

estability of ground states




496

BPS geometry: an example

Einstein-Maxwell theory (bosonic sector of N=2 SUGRA)
L=R-F,F". @“e: (V“—i—;F,,p'y”p'yu) e=0. Gibbons-Hull 1992

Majumbdar-Papapetrou solution

ds? = —H2dt? + H*di?, AH=0, F=dH )Adt

e=H ¢, €0 :constant spinor

inVe = e -half-BPS state (iy"e = —¢ is projected out)

» Characteristic properties

(N=1 recovers extremal RN)

N
e Mechanical equilibrium H=1+ E |ﬁQiﬁ‘
— |T — Ty
7

e Zero Hawking temperature
e BPS inequality (MzQ) is saturated M = ZQi

e Vacuum interpolation near horizon: AdS,xS?

. e . . Maximal SUSY
(analogue of instanton) infinity: Minkowski

BPS solutions
Questions:

»to what extent these properties are universal?

desirable if we can find all BPS solutions

@ systematic classification

A

»BPS solutions are restrictive V,e =0 € :Killing spinor

Killing spinor eq. is 1st-order & linear

pvarious classification schemes

Newman-Penrose, spinor bilinears, spinorial geometries

Tod 1983, Gauntlett et al 2002, Gran et al 2004 and many others

BPS solutions are obtained systematically

4D, 5D, 6D, 10D (llA, 1IB), 11D supergravities
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Our work

#BPS solutions in gauged supergravities

focus on 4D Einstein-Maxwell-A(<o0) theory
»important in AdS/CFT correspondence
» systematic classification is possible  Caldarelli and Klemm 2003

—> the BPS system obeys nonlinear set of PDEs

whole picture of BPS geometries is far from understood

swhat we have done

finding of the most general Petrov D BPS solutions
(Plabanski-Demianski family)

explored physical properties

Contents
e Classification of BPS solutions

bilinear methods

eSupersymmetric Plebanski-Demianski solutions

BPS conditions

Wick rotation to Euclidean solutions

eConcluding remarks
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4D N=2 gauged supergravity

#Einstein-Maxwell-A system

1 -2

»Killing spinor equation

A 1 1 1
V€= <Vp, + iFupWVp%,, + 277“ — %A“) e=0. Kosteleck-Perry 1996
»Killing spinor has a gauge charge A, — AL+ Vux, €—exp(ix/l)e

!
¢~ plays the role of gauge coupling V= V=i A,

(R-symmetry is made local)

»/A must be -ve (no deSitter SUGRA)

¢! .gravitino mass

Spl nor bl I | nears Caldarelli-Klemm 03, M.N <08

Given a Dirac spinor €, one can define spinor bilinears

E:=¢, B:=ileye, V,:=ieye, U,:=ieyye, P =iey,€,

Nab = dlag(_17 1,1, 1)7 €= Z.ET’YO

A matrix e can be expanded in a basis T'(a) = {1, 75, Yu> V5V Yur }

dege = B1 —iViy, + %@“WW +iU"y57, — iBs

bilinears satisfy algebraic relations (Fierz identity)

ViU, = VW, =U'W, =0 W, := e Cv,e : complex vector

~VHV, =U"U, = WHW,, = E? + B2 Vis timelike/null
EV,=x®,U", EB=-10,, xo"
BVM = @WU” , EQ)W = —e,wngPU" + B D, , etc

(E® + B?) gy = —V,V, + U U, + W, W,
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Differential relations

o ) . ) :
Suppose € satisfies a KS eq V€= (vu + iF,,ﬂ”f’% + 5~ EA“) e =0

e9, V,E=V,ec+eV,e

1

— ZFabg[%,yab]e =F,V¥ E: electric potential
V.B = —%U,L —*F, VY, B: magnetic potential
V,V, = %@W — EF,, +B*F,,,
V.U, = —%Bgm, —2F, x®,, + %ngpa * PP
Vo, = %gu[vvp] — (U x Fop + 2600, Fr)°U7)
VW, = —%ETC’Y(M’YPU’}/V)EFPU + %eTC’y,We + %AMETC’%@

Differential relations

i

Suppose € satisfies a KS eq V€= (vu + iFupy”P% + 2%% — ZA“> € =0

eg, V,E= V_Mee + eV e

1

- ZFabg[%,y“b]e =F,V E: electric potential
V.B = —%Uu —*F, VY, B: magnetic potential
ViV = @~ B+ BxF, = VW, =0, :Killing vector
VU, = _%BQMV COF, % By, + %gqupa s BPS sols. are stationary
Vu®yp = %gu[uvp] — (Uu* Fop + 200, Fr)°UT)
VW, = —%ETC'V(MVW%)EFPU + %ETC’YIWE + %AMGTC%E.
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Differential relations
1

- . i 1
Suppose € satisfies a KS eq V€= (vu + iF,/p’pr’yu + 5~ KA“> e =0

e'g’ VME = V_MEE + EVME

= iFabE['yu,'yab]e =F, V" E: electric potential
1 , :
VB = =5Uu = *Fu V", B: magnetic potential
1 -
V.V, = Z(D“” — EF,, + BxF,,, —>» V.V, =0, :Killing vector
1 1 :
Vuly = =5 B = 26" % @y + S0 Fpo 5 077 BPS sols. are stationary

2 o T
V@, = Zg,u[uvp] - (Uu * By + 260001, F )" U ) :

i 1 2i
VW, = —ieTC'y(u'ypU’yy)erg + ZGTC’}/HVE + 7AM6TC’)/V€.

esolutions fall into 2 family

rtimelike class (black holes)  V*V, <0

»null class (plane waves) ViV, =E=B=0

Timelike class in ungauged sugra (A=0)  Tod s MN o8
Suppose Vis timelike
~VHV, =U"U, = WHFW, = E* + B?
(B> + B*)gu = V.V, + U U, + W, W,,, === (V,U, W) constitutes basis
»diff-cond. for (v, U, W) gives
ViV =0, VU,=0  VW;=0
—> V=9/0t U=d: W=dr+idy.

ds® = —f(dt + w)? + f1(da? + dy® + d2?). f=FE?+B?

pdiff-cond. for (E, B) gives  F., = [ (2V[,V1E + €ups VPV B) |
dF +ixF)=0 =3 AU '=0 ©¥=F-iB

»diff-cond. for vV gives w
V= —fdi+w) =—> dw=2%[VA(EIB-BIE)]
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Timelike class in ungauged sugra (A=0)

® General BPS solutions are given by IWP family Israel-Wilon, Perjes 1971

ds? = —|U(dt +w)? + || 2d7?,  dw = 2Im(¥dV¥).
ATt =0, iy(F —i%x F) =dU.

Killing spinor equation is solved by

1 :
€= <\/E—iB—|—iyO\/E+iB> %n, n: constant spinor

i7'e = fY/2(E +iBys5)e. : preserves at least 1/2-SUSY

AU~ = 0, :systemis completely linearized

Timelike class in gauged supergravity (A<o)

Canonical form for timelike family Caldarelli-Klemm 03
VuViy =0, VU, =0, VLW, #0 == V=0, U=dz, W= e?(dz + idy)

ds? = —f(dt + w)? + f71d2" + *?(da”® + dy?)],  f=E*+ B’

AF +e®[F*+3FF' + F"| =0, ¢
1 _ _ _ ) 9
BPS system Mg+ eI+ F'+ F* + F* — FF| = 0, ‘ -
¢ —Re(F) =0

p—— el

eneed to solve a set of nonlinear PDEs

ein the canonical form, AdS takes nonstandard form

2 .
2 dz2 L4 22 l_ ( dt ydx> L da? 4 dy? AdS(3) in SL(2,R)

= + . .. .
1+ 22/¢2 ( 222 422 49/ bi-invariant form

VH =ieyte = (0,)" is not hypersurface-orthogonal
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Contents
e Classification of BPS solutions

bilinear methods

eSupersymmetric Plebanski-Demianski solutions

BPS conditions

Wick rotation to Euclidean solutions

e Concluding remarks

Plebanski-Demianski solution

Goal: BPS conditions for Plebanski-Demianski family Plebanski-Demianski ‘76
»the most general Petrov type D metric with non-null Maxwell field

»7 parameters (mass,ang-momentum, electric charge,
magnetic charge, nut, acceleration, cosmological constant)
o  PPHE . PP,

1 Q(q) P(p)
T | Pt “Pdo) Q@) TP Yt
P(p) = (=A/6 — P? + a) + 2np — ep® + 2mp® + (—A/6 — Q* — a)p* ,
Qq) = (=A/6 + Q% +a) — 2mq + ¢® — 2ng® + (—A/6 + P? — a)¢*.

ds® = (dr + ¢*do)?| |

(=pP +¢Q)d7 — pq(Qp + Pg)do
P+

A=

i

econtains many interesting subclasses (Kerr-Newman-AdS,
Reissner-Nordstrom-AdS, AdS C-metric)

eBoyer-Lindquist analysis for Kerr-Newman-AdS doesn’t work

(KS eq. depends nontrivially on r & 6) Caldarelli-Klemm 1999
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BPS conditions

» BPS conditions for Plebanski-Demianski family Klemm-+MN 2013
1 Q(q) p?+q? P+ ¢ P(p)
ds* = [— dr — p*do)® + dg® + dp? + dr + ¢*do)?| ,
(1-pg)* | p*+ qz( ) Q(q) P(p) P+ q2( )
P(p) = (—A/6 — P2+ a) + 2np — ep?® + 2mp® + (=A/6 — Q% — a)p*, A (—pP 4+ qQ)d7 — pg(Qp + Pq)do
Qq) = (—A/6+ Q%+ a) — 2mq + e¢® — 2ng® 4+ (=A/6 + P% — a)¢*. - P2+ 2 )

necessary conditions for SUSYs

i

. i 1 PSS
V,e= <Vu + iFup”YVp'Yu + VAL ZAM) €=0. =—> det([V,,V,]) =0

BPS conditions

n[m?+n? — (P2 + Q?)e] + 2m(P* + Q*)(P* — a) + %2 [2nPQ +m(P? — Q%] =0, 4

(P? + QY [m?P? — n?Q? — (m?* + n?)a] + z {2mnPQ + %(PQ - Q%) (m* - ”2)] =0.

Bilinears & Killing spinors

» BPS conditions for Plebanski-Demianski family Klemm-+MN 2013
ds? = — [— Q) (4 —pagp 4 X Lz P A Lo PO gy
(1=pg* [ p*+¢? Q(q) P(p) P+ ’

sufficient conditions for SUSY
under BPS conditions, we can find canonical form of BPS metric

ds? = —f(dt +w)* + [~z + €*(d2® + dy?)], [ =E*+ B?

1/4-SUSY ¢= 1exp (Z /Azdz) (VE —iB +iy°VE +iB)(1 —iv*?)(1 +95)n.

4 l
2 2
V=c,0r—c_0,, c_=mQ-nP, cy =mP +nQ, €2¢:w,
(1—pq)

5 (PP @)[cpa(pQ+Pq) — ¢ (0P —qQ)] — cyc- (p* +¢%) LA = (PP 4+ Q%) (mp + ng)

- G+ P T @) ’ 1= '
g Emtd | lP@’+a) +Qp+a")] e [PPP’ +4) = Qp+d°)]

(1-pg)(P*+Q?) (1= pa)(P* +¢*) ’

BPS conditions are necessary & sufficient for supersymmetry
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Limits
p Carter class Carter 1968
Qq) P+ P+ P(p)
ds® = — dr —p*do)* + dg* + P’ + dr +¢*do)?,
p*+ qQ( ) Q(q) P(p) p*+ qQ( )

Kerr-Newman-AdS limit Alonso-Alberca, Meessen & Ortin 2000

A - asin®@ oy
g=r,p=acosf, U:*(z:77’2~*af¢7 dsz:_§<dt_ = dd)) +Kdr2
o aZ = —_—
a 2 2 . 2
= = . a=a"+P 2 o2 _ 2 2
n=0,e=1+7%, ’ +i—d92+A9;;6<adt77T fad¢>,
) =

m2:<1—%>Q2, P—0 —> A:(’j—a>2+[Q—(1+j)r}2
no magnetic charge naked singularity in general
Q=vVal(l1—aft). ——> 1, =Val
»C-metric  Kinnersly 1969 SUSY BH must rotate

describes pair of accelerating black holes

BPS limit in general gives naked singularity

Euclidean solutions

»Wick rotation gives a solution with Euclidean signature

4s? 1 [ Q(q) 2 — wip? q* — w?p? Q? P(p)

_ 2 2 4 2 2 2
= T p0? | = w7 P o)+ Ty A Ty G e T o)
P(p) = k+ 2w tnp — ep® + 2mp® + (wk — P2 + Q% + w2A/3)p?,

_ _ p2
Qg) = (—w2k +P2— Q2) —2mg+eq® — 2w lng® — (k+ A/3)q4. k= A/6 P+ a.

;complex structures

ol Q (dr — wp?do) o2 % —w?p? dg
¢ -wp? 1-pg Q l-pg’

_ L1 2 3 4
self-dual 2-form Q=e Ne“+e’ANe SB:\/m dp g [P (wdrsgdo)
P q2_w2p2 ’

1-pg’ 1—pq

J-J=-1 :JHt, = g"Q,,. is almost complex

Nijenhuis tensor: Ng;“ =2 (JadG[def — dea[dja]c> =0,

ealmost complex structure J is integrable
N.B. this does not guarantee the global existence of J

«Q fails to give a Kahler structure (dQ#0)
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Euclidean solutions

» Wick rotation gives a solution with Euclidean signature

42 1 [ Q(q) 2—wp? o, R —wip? Q2 P(p)

— d _ 2d 2 q d
(1 —pq)? q2—w2p2( T wpdo) T

+ —wdr + ¢?do)?|
Q) o) P T Eup ¢do)

P(p) = k+ 2w tnp — ep® + 2mp® + (wk — P2 + Q% + w2A/3)p?,

—_ _ p2
Q(q) = (~w’k +P? — Q%) — 2mg + e¢* — 2w 'ng® — (k + A/3)q" . k=-A/6—P"+a.

» BPS conditions

n[m? —n? — (P? — Q%)e] 4+ 2wm(Q* — P?)(A/6 + k) + A—;) [2nPQ — m(P*+ Q%] =0, 4

(P? — QY [m?P? — n?Q%* + (m? — n?)(w?k + Aw?/6 — P?)] + A?MQ {—2mnPQ + %(P2 + Q%) (m? + nQ)} =0. i

*—-————

Euclidean bilinear relations given by Dunajski-Gutowski-Tod are satisfied
for non (anti-)self dual solutions

generalizations of [Martelli-Passian and Sparks arXiv:12124618]
to U(1)xU(1) symmetry

Contents
e Classification of BPS solutions

bilinear methods

eSupersymmetric Plebanski-Demianski solutions

BPS conditions

Wick rotation to Euclidean solutions

e Concluding remarks
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Concluding remarks

# Summary

»worked out necessary and sufficient conditions for which the general
Plebanski-Demianski family of solution admits Killing spinors

»Euclidean solutions give a locally complex mfd

# Future outlook

» PD solutions in matter coupled SUGRA (vector-& hyper-multiplets)

»another wick rotation ((—iL) gives fake supergravity

general solutions: fibration over Gauduchon-Tod space

Meessen and Palomo-Lozano ‘09

ebilinear vector is no longer Killing
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“Large D gravity”
by Kentaro Tanabe

[JGRG23(2013)110705]
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LARGE D GRAVITY

KENTARO TANABE

UNIVERSITAT DE BARCELONA ~ ( UNIVERSITY OF BARCELONA )

with R. Emparan, ....

WHY LARGE D

dimension (D) is a parameter of GR

E)  gravity can be simplified at high D or low D

[ Emparan, Suzuki, KT (2013) ]

earlier work on larqge D gravity

» Large D limit of Feynman graph of gravitons
[ Strominger (1981),... ]

» Gregory-Laflamme mode, Shockwave collision
[ Asnin, et.al. (2007), Camps, et.al. (2010), Coelho, et.al. (2012) ]

» Large D gravity and 2-D gravity
[ Soda (1993), Grumiller, et.al. (2003) ]

focus on the practical aspect of large D gravity




509

BH AT LARGE D

WHY simplified? — BH has two scales at large D

4 N
ds? = —f(r)dt*> + f (r) " YWdr?2 +r2dQ,_,

D-3

) =1-(2
\ I ("") Y,

O coordinate scale =1
size of BH from asymptotic infinity ( far from BH )
O physical scale =~ 1,/D

gradient of potential, temperature of BH ( near BH )

we can use the Matched Asymptotic Expansion (MAE)
To/D 1G4 T'O
near region far region
* GR~gravity in 2-D « BH~ point particle
°
* 1/D expansion « Newtonian approximation

overlap region: %0 Kr—1K1

E> MAE can be good approximation at large D



EXAMPLE

Gregory-Laflamme instability

> instability of black brane

0 ro

0.20+
l th+Lkz

0.101

i
V4
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[ Asnin, et.al. (2007),
Emparan, Suzuki, KT (2013)]

Q = (k)

PURPOSE

numerical results by P. Figueras

Large D gravity is useful method to solve the (any)

gravitational problem

To demonstrate it more,

O apply to QuasiNormal Modes (QNMs)

[
eikonal limit
wonm (L, 1)
WKB method
our large D highly dumped
formula
MAE monodromy method

N = overtone number
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QNM IN LARGE D

BACKGROUND
D-dim Schwarzschild BH
4 )
ds? = —f(r)dt?> + f (r)"dr? + r? dQp_,
ro D3
fo=1-()
- /
tensor
perturbation - vector » Schrodinger type eq
scalar

[ Kodama and Ishibashi (2003) ]
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PERTURBATION EQ.

perturbation equation for the tensor type

d2
(drz + w? —V(r))t/)(r) =0
dr, =dr /[f(r)

potential:

I(l+D-3) +(D—2)(D—4)

D+2
V(r)=f(r)< y = f(r)+%f’(r)>

D-3

fm=1-(2)

WHERE IS QNM?
QNMs

R(w) €— @*-- —— — T(w)

outgoing to infinity ingoing to horizon

infinity <— —> BH
T = 7, = —00

QNM condition: T(a)) ~ R (a)) [ Schutz and Will (1985) ]

T(w) = e B@R(w)




TOP OF POTENTIAL

Thus QNMs exists around

Wonm = (D —3) w,

where

20 +1

-1
+ O(D ) ( critical frequency )

(1 +D— —2)(D -
V(r)—f()<(+rD (O —f(r)>

WeTy =

POTENTIAL SHAPE

Near the top of the potential

V(r,) V)

0(D?) +- potential shape
(e.g. D=100, I=2))

triangular potential

0

V(r) = f(r)

Il+D-3) (D-=2)(D—4)
( 2 + 22 fr) + —f (r))

513
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TRIANGULAR POTENTIAL

we approximate V(r) by triangular potential V(r*)_

QNM will exist around

correction

dZ
(dr2+w2 —V(r))t/)(r)=0
g
d2
< +(D—3)2wc(5w—r*)>1/)(r)=0

dr,?2

AIRY FUNCTION

V()

d2
(drz +(D—3)2w3(6a)—r*)>lp(r) =0

solution is written by Airy function

Y(r)=Ai(x) with x=(-0-32)Y36w—-r)

boundary condition ( QNM = bound state ) 0

Y(r) =0 _
7«=0

(c.f. tunneling in infinite potential well) V()



Airy function

QNM CONDITION

—
—
—
—
i

L

wrmo MR

—04F

with xq = (=D - 3)20w?) /38w
QNMs are given by the zeros of the Airy function

wonm = (D — Dwc + (—(D — 3we)3 ay
PN

20 +1

weTy = [zeros of the Airy function

2

a, = —2.338..,a, = —4.088,..a; = —5.521 ...

PROPERTIES

» MAE gives same result
triangular potential approximation (my naive argument) is

correct
» Imaginary part of QNMs is always negative
V3
Im(a)QNM) = wea <0

there is no unstable mode ( stability of Schwarzschild BH )

> there are an infinite number of QNMs labeled by a;,

k can be regarded as an overtone nhumber

» same results for other type perturbation (scalar, vector)

isospectrality of QNMs is restored at large D ?
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SUMMARY

By using large D gravity, we obtained the analytic formula
for QNMs of Schwarzschild BH

wonm = (D = 3we + (=D = Dw)? ay

for all type perturbations

Numerical results agree with our analytic formula
numerical : [m (CUQNM) = 1.334 D1/3 ( by V. Cardoso )

our formula: [m (‘UQNM) = 1.227 D1/3

for [ = 0 scalar perturbation (lowest), upto D = 25

now we are updating numerical data up to D ~100  ( with O. Dias, ... )

FUTURE WORK

Large D gravity is useful and interesting

O application

gravitational collapse ( Choptuik phenomena )
* QNMs for other black holes ( AdS-BH, rotating BH )
+ shockwave collision, apparent horizon formation
* BS - caged BH transition
» application to AdS/CFT ( e.g. holographic superconductor )

+ relation with the large D technique in condensed matter physics

O conceptual

» why gravity is so simplified at large D
[ Emparan, Grumiller, KT (2013) ]
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“Propagation of twisted waves in a Kerr space-time”
by Atsuki Masuda

[JGRG23(2013)110706]
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Propagation of twisted wave
In Kerr space-time

Atsuki Masuda
Osaka City University

collaborator: Hideki Ishihara(Osaka City University)
Shunichiro Kinoshita (Osaka City University)

CONTENTS

. property of twisted wave

. propagation of twisted
wave In a curved spacetime

. result
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What is twisted waves?

w ~x ei(kzz

(@t

m:integer ®:angular component of cylindical

A 0

= ma

| ig%nstates of orbital
angular momentum!

Twisted wave

Transverse plane

m=1

n |
: O

amplitude
2T
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About Twisted wave

- wave vectors are twistesl.
D

Twisted wave propagates with orbital
angular momentum
. Twisted wave have vortex structure

Twisted wave is investigated for presence

in laboratories

Allen et. al , Phvs. Rev. A, 45, 8185 (1992)
H. He et al ,Phys. Lett. 75, 826-829(1995)

Recently, some application of twisted wave to

astrophysics have been considered
F. Tamburini et al

Astronomy and Astrophysics, 488, Issue 3, pp.1159-1165(2008)

wave front

M=+
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Propagation of twisted waves
in a Gravitational field

Propagation of hight frequency waves

Eikonal approximation
— short-wavelength approximation

;S
glu’l/ \/,u \/l/w :O w — Aez =
: 1 5

9" Vi Vo (Ae'C ) 50" (VuS)(V05) et = 0

P@I@9=0 Kk =0
H ? Jacobi equation 7 Kk =0

amilton Jacobi equation B
of massless particle H V]f/lé\/:ezggtor



Propagation of wave

. Eikonal
High frequency wave _ _
l approximation

Geodesic equation

Twisted wave Eikonal
‘ approximation

?

Perturbative approach
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Orbit of Bessel beam in flat spacetime

Y B :Bessel beam solution
(exact solution with wave equation in flat spacetime)

VB = Jm(gp)e™ Sz—wt+kz:—|—

Jm:Bessel function a.k,w:consta
u'u — v,us
= (—w,0,m, k)

1 Z

fL_LM — de/uudS '.‘ n?
éatls ying geodesic equati
wave vector of Bessel beam in flat
spacetime

Uy = Uy T+ Uy

transverse plane
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Bessel beam in a curved spacetime

Uy — 77,LLI/ _I_h,UJ/
w J (Q,U) ection term
~ g +i6SYp

ofo s

Perturbation equation

1
=0,/ = 99", = 0
Ansatz

l{gzmh ¢=¢B+¢'J

I TIR T

1
4+ " uuou, — §h“’/ﬂuﬂy + 4,0, =0

¥ factorization
("™ = W) (u + Su,) (G + 6uy) = —¢° + KU,
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Perturbation equation

""" — W)Y (u 4 duy, ) (U, + ouy,) = h* a0,
I I

l Differentiation \/

(u + 0u”) 7y (U + uy) = VA (W7 uy,v)

Perturbation equation

(W + 0u”) vy (G + 0uy) = 7 (W uy0,)

tveraging around axis of beam
motion equation of the beam

Kk \ 1 kA —

ky =1, + 0,

metric and twisted wave



How does twisted wave
propagate around Kerr B.H?

1
kH \ 1 k’)\ = A—S/VA(h“”uuv,/)dS

Orbit of twisted wave
on the equatorial plane
of a Kerr Black hole
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perturbative metric

Ny T Eh;w —

+e€

-1 0 0 O
0O 1 0 0
0 0 1 0
0 0 0 1|
2M 2M 2M 7
— = — T3ay rsax 0
2M 2M
- T3ay Ty 0
e 0 -4 0
0 0 o 24 |

M:mass of black hole
a . spin parameter

propagation in the direction of
parallel to the axis of black hole
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propagation in the direction of
parallel to the axis of black hole

1
KV ke = — / Y Ah* i, v, dS

B 2mwaM 1 8q5’

propagation in the direction of
parallel to the axis of black hole
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propagation toward
the black hole on equator

'V S

propgation iIn the Tangentia
direction of ro’gation of B.H
on the equatorial plane
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SUMMARY

. We obtained the equation for orbit of
Bessel beam in a Kerr spacetime.

KAV Lk = —/8>\ h* a,v,)d
. Force term promote to hiy X m term.

Future Work

. By using twisted wave determination of
spin parameter
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“Relationship between dark matter properties and
primordial black holes as seeds of supermassive black holes”
by Tomohiro Nakama

[JGRG23(2013)110707]
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Relationship between dark matter properties
and primordial black holes
as seeds of supermassive black holes

Tomohiro Nakama

RESCEU, The University of Tokyo
JSPS Research Fellow
@Hirosaki 7th Nov.2013

Collaborators:
Kazunori Kohri (KEK)
Teruaki Suyama (RESCEU)

Kohri, Nakama, Suyama, in prep.

What are PBHs and UCMHs?
« §~107° on scales probed by CMB or LSS.

* Perturbation amplitude may be larger
on smaller scales.

—>If §~1, radiation collapses to form
primordial black holes(PBHs) during R.D.

(Zel'dovich&Novikov 1967, Hawking 1971, Carr&Hawking 1974)
>1f §~1073, dark matter collapses to form

ultracompact minihalos(UCMHSs) when z < z,

(Ricotti&Gould 2009) q

 UCMHs may emit y-rays due to annihilation of DM.

(Bringmann, Scott, Akrami, 2012)
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What are PBHs and UCMHs?
e §~107° on scales probed by CMB or LSS.

* Perturbation amplitude may be larger
on smaller scales.

—>If 6§~1, radiation collapses to form
primvbrdial black holes(PBHs) during R.D.

Formation of UCMH (Zel'dovich&Novikov 1967, Hawking 1971, Carr&Hawking 1974)
is a lot easier!

>1f §~1073, dark matter collapses to form

ultracompact minihalos(UCMHSs) when z < z,

(Ricotti&Gould 2009) q

 UCMHs may emit y-rays due to annihilation of DM.

(Bringmann, Scott, Akrami, 2012)

Motivation
e Super massive black holes (SMBHs)

~10°M have been observed at z=6~7.

* The origin is not known.

* PBHs may explain SMBHs,
since Mpgy can take various values.

4 - -2
Mppn ~ —-(H(zppn)) " p(zppH) ~ 10° Mg, ( i?sH)

redshift when PBHs formed

Test this scenario using UCMHs!



Key ideas

e Assuming PBHs (6~1) explain SMBHs,
numerous UCMHs (6§~ 10"3) should exist.

upper limits

UCMH f \
PP S N

%_ o } < observed
wrw-— yS flux

* The scenario of PBHs explaining SMBHs is
INCOMPATIBLE with DM models in which
the cross sections exceed these upper limits.

Why numerous UCMHSs?

) 0%\ -
= [TBH / exp (—_, ,)) do
Ptot C 2mo; 2(75

OpBH Zppr

A
Qrad <PBH
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Why numerous UCMHSs?

) 2
0= PPEH / ——— exp ( ) dd
Ptot C 270 O'

|l
3/2
QppHu %p«Bﬁg/N 10-18 (MPBH )

109 M,

\

Assuming there is a PBH(~10°M
5 ( ) Nos ~ 10°M,, (

Qrad 2ppH

ZPBH)_Q

inside the current Hubble radius, 108

Mppn 5 5 1014 Mppn
LH S pe 1090,
3 1o Pe Mo

Why numerous UCMHSs?

62 e
8= PPEH / exp( ) do
/)tot C 2;&0‘ 2

! 03=0.06

QppH %pgﬁg/w 10-18 MpgH 3/2
109 M,

\

Assuming there is a PBH(~10°Mg) o ons
inside the current Hubble radius, pa ~ 107 Mg (

ﬂ[pBH ~ 9% 10~ 14 ( 1UPBH )
s, = 0

Drad Zppi

ZPBH)_Z
108
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Logarithm of Gaussian PDF

10

L e ( 52>d5
xp [ ——
Js. Voro; P\ 202

107 r

10 Assuming there is a PBH(~10°M)
inside the current Hubble radius
107

1077 \

0.02 0.05 0.10 0.20 0.;0 1.00 Log6

Logarithm of Gaussian PDF

10

c e < & > do
X e —
5. \2mo; P 20%

107
107 ¢

10 —29

ol

Assuming there is a PBH(~10°M)
inside the current Hubble radius
107
107 \area
I

E 1 1
0.02 0. 05 0. 10

1
0'3-0.05 5



Logarithm of Gaussian PDF

10

6_2
exp -
V2o E ( 0-(% >

107 r

10 Assuming there is a PBH(~10°M)
inside the current Hubble radius
107

107 ¢ \arlela
0 18

& Logd

L | I
r 0.02 0. 05 0. 10 0, 0.50

Scucmu= 1073 « 05=0. 06

Perturbations leading to UCMH formation are common.

V4

Decent fraction of DM particles are contained in UCMHs!

Method of calculation

Bringmann, Scott, Akrami, 2012
Kohri, Nakama, Suyama, in prep.

U earth<—KUCMH k-th mode / e

Logp, ()

Logr

L P PQ (ov)k
: 47Td2<13k = f PPN, X
UCMH N 2mxx
\
flux from'a UCMH # of photons 1Tev
er one annihilation
U uy dius of
& \[ flux from se|.vera| UCMHs ilky.Way
Li/ &J Qd}%{;ﬁ 1 dMﬁ ! qu)(d‘r) 12 3.7/
E = = dE-———=d*dd
dEdQ ~ 2Myowm /dE Py E =

Faifr center of

th i
Milky Way ©ear NFW profile

do
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Comparison of y-rays from UCMHs and observation

2
dm D :/ P T
P (1) ) Td” Py, o TN om?
10% _V—'_'_\ra | ‘
- SN
' — o0 >y ~_ \\
; 1 L 1-6 —bb — 1 \ LI"';‘ .".‘ |
) 3x1072¢m?s ! \\. I""‘.II‘-,
> ' ‘.I 'l‘
() \
= 0.01¢ \
LT:E 3 T e -
S| 5 10 S S N
FEIJ.] extra galactic gamma-ray background
l 0_6. I | { : ‘ }
100 1000 10* 10° 106
E(MeV)
<ov> bb

—5 ) . .
| < 1077 to be consistent with observation.
3x10726cm3s~ !

Summary

e Assuming PBHs (6~1) explains SMBHs,
numerous UCMHs (6~ 1073) should exist.

upper limits
UCMH
20V Zbb > php s i — VST

= observed
_g——a—:l_?__?__w_‘i'w-

‘ wrw-——=> " T ys-— flux

<JU>bB,W+ w7t

<107°

3x10 %%cm?s~1
* The scenario of PBHs explaining SMBHs is
INCOMPATIBLE with DM models in which

the cross sections exceed these upper limits.
Kohri, Nakama, Suyama, in prep.
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“Newtonian self-gravitating system
in a relativistic void universe model”
by Ryusuke Nishikawa

[JGRG23(2013)110708]
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Newtonian self-gravitating system in
a relativistic void universe model

Ryusuke Nishikawa

Osaka City University
with
C.-M. Yoo and K. Nakao

in preparation.
1/20

Testing the Copernican Principle

We are not living in the special position in the universe.

* Fundamental working hypothesis in modern cosmology
* Technological developments

2/20
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A relativistic void universe model

Non-Copernican cosmological models
v’ Isotropy (CMB) = isotropic (radial) inhomogeneity

A relativistic void universe model
v" Horizon-scale void
v’ distance-redshift relation (SNla observations)
v’ acoustic peaks (CMB observations)

?

=)

A test of void model by using other observations
3/20

Lemaitre-Tolman-Bondi(LTB) spacetimes
void model (dust, spherical) = LTB spacetimes

metric & stress energy tensor

dr? .
ds* = —di* +aji(t, T)T(r)r? +af (t,r)r?*(d0? + sin® 0dp?),
™ = p(t,r)u’u”; u* =(1,0,0,0).

v’ The isometries in LTB are less than those in FLRW

Radial-Hubble & Transverse-Hubble

%) H,(t,r) = 29t

a| ? a |

HH(t,T) -

4/20
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Structure formation in void model
* A test of void universe model
v’ Galaxy distributions

v Weak lensing

* The symmetry of LTB spacetimes

= Perturbation equations in LTB cannot be reduced to a
decoupled set of ordinary differential equations.

We apply weak gravitational field approximation for void model.

5/20

Weak field approximation for void model

* void model

v relativistic, non-linear

* The gravitational field is weak at small scales
v ’xz| < R ~ Lvoid

* The Fermi-normal coordinate expansion is applicable
v Weak field approximation

6/20
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Fermi-normal coordinate

7/20

Fermi-normal coordinate

70 ocal patch

o

) Lvoid ~ H—l

8/20
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Fermi-normal coordinate

timelike geodesic

|ZL‘7’| < Lvoid

9/20
The metric in Fermi coordinate
* The former coordinate
dr?
2 _ 2 2 2 2 2 -2 2
ds® = —dt —{—al‘(t,r)m—{—al(t,r)r (d6* + sin” Odp*)
* Fermi normal coordinate
ds? = — (1 + ngj(tp)x%:r{;‘) dity + (62-1- - ;Rfkﬂ(tp)xfw%) dzbdzl + O(xh)3.

\/x,‘}=0(r=r0)

1|2
v’ Corrections start from |$F2|
R

10/20
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The density and 3-velocity in Fermi coordinate

* Synchronous comoving coordinate

™ = p(t,r)u'u”; u" =(1,0,0,0).

* Fermi coordinate

plte,xk) = p(t,7),, + Orp(t,7)l,, eyzr + O(ak)?
vl(te,ap) = Hy(t,r)|, o+ O(zp)?
VA (e, ) = Ho(t,r)], 257 + O(zh)?

huge void model (LTB spacetime)
=~ homogeneous density and anisotropic expansion

11/20

Newtonian self-gravitating system in void model

* a huge void + local perturbations

gﬂ” - T]y,y + h’,EL%) + hfji)
, 7 void
p = pm(tr)+pm(te, zF) z'| < L
o= UEB) (tF,ZC%‘) + U%N) (tFax%‘) /. \\\
V)
local patch
o Lvoid ~ H—l

12/20
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Newtonian system in void model

* slow motion & weak gravitational field

- 0 0
(3
_ — N
ol <o G <ar WYL e
€ = O ?
* short wave-length scale On
f(N) & L(VOid). k= (Lvoid)
* Fixing the gauge
_ _ 1 Wi (N
) =0 B = b — Lo (P hEY).
* Field equations
— v o __
G, =8n1,, and V,T" =0
13/20
Derived equations
0 .0 ) ;
ot ulgy = | oo + —— | (1 + 0oy = 0,
(E%F U(B)am{?) ®) Oxt, [( (N))U(N)]
I N R I S A N o
(atp T Uip) Ba:{;) viny + Hij(te)vin) + v(y ) YN T T g PNy
Viowy = 47Gpem)(te)dm).
H”(t,T’)‘TO 0 0
where H@‘j(tF) = 0 HJ_(t,THTO 0
0 0 H.(t,7)],,
p)(te) = pt,7)l,,
_ PN _ Ly
0 = oo P =gl

* Numerical N-body simulation in void universe model
14/20
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Linear density perturbations
* Fourier transform: 5(t,xi)_fd3keik-xg(t,ki)

* Linearized equations

d ~ N
§5N = _92N7
EQN = —59891\1 —30p110Nn11 — 47GppiN,
¢ = Zopnly - 2056 5 AnG 2 1)5
dtUNll = 30311 N 3 BON11 — OBI11ON11 TGpPB | M 3 N-
! k!
where v} = ggNdij +Ul<\§j> +w%§ﬂ M= TK]
= Linearized equations are reduced to a decoupled set of
ordinary differential equations.
15/20
Linear density perturbations
* Linearized equations
d ~ N
ngN — _92Na
EQN — _geBéN —30p110Nn11 — 47GpBiN,
¢ = Zopnly - 2056 5 AnG 2 1)5
dtUNll = 30311 N 3 BON11 — OBI11ON11 TGpPB | M 3 N-
— kL
H= i

= Growth factor of the density perturbation

o(t,k;r0) = DV (t, p;70) 6V (k)

16/20



a huge void model

* Density contrast & Hubble functions

548

24 1.C
2z H (to,r)
2C ,O(to,?"‘) 0€ Hcenter(to)
T pcenter(tO)
0.8
1€
14 H| | (to ,T‘)
' 0.7 T ()
13 Hcenter(to)
1.C 0.((-2)
0c 05 1.C 15 2C .C 05 1.0 15 2C
r cto|Gpc] r cto[Gpc]
in __ |
Qin — 0.3, Q% =1.0
17/20

Growth factors D (t, u, 1) at ry = 0.6 cty[Gpc]

~0g
o D*(t, p)
10l DT(t,p=0)

t.:_ to

...‘,-". t .': 0:5 t 0

1.04;
prelimindry .
....-"::::II::,...--"" t = 0.01¢g
1([ ¥ u”m””‘::g..-d.-o ‘ ‘ ‘ ‘ l
0.0 02 04 0.6 0.8 1.C

7

* Anisotropy of growth factor is about 10 %

- +
Df > Df

18/20



549

Growth factors D* (t, u, 1) atry = 0,0.4,0.8,1.2 cty[Gpc]

1.OF

0.8}

06}

04t

L2}

0.0t

0.2 0.4 0.6 0.8 10
L/t

The speed of growth is an increasing function of the radial

distance from the center of the void.
19/20

Summary

By using weak field approximation for void model,
v Newtonian equations in void universe model

v Linearized Newtonian equations are reduced to ordinary
differential equations.

Growth factors of the linear density perturbations
v’ u-dependence, ry-dependence

Future work

Comparing with observational results on the Redshift Space
Distortions.
v Pp(1) with€ = 0,2,4},6, -
FLRW models 20/20



Thank you for your attention.

Linearized solutions

* Rotation
d
EW(N)U = _gg(B)w(N)ij T OB)KWN) Kk~ O(B)kjW(N)ik
N 1 1
WNy12 X W(N)13 X o100 W(N)23 X 2
acar (alf?)

Rotation decays as time grows.

550
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Structure formation in void model

- —
-~ Ss

‘‘‘‘‘
e

- ——
-~ S~

”
~
————————————
~
c N

~ -
______

23/20

Small parameters

* |f we focus on the solar system, the orbital speed of the earth
is about v ~ 30km/s and we have € ~ 10-4. The order of the k
is estimated as k = 1AU/3Gpc ~ 0.2 * 10-14, where we
assumed the curvature radius is 3Gpc. Thus the solar systemis
the case of € > k. If we see clusters of galaxies whose velocity
dispersion is about 1000km/s and spatial scale is about 10Mpc,
we have € ~ kK ~ 0.3 * 10-2. If we consider the scale of the BAO,
the velocity dispersion is about 600km/s and the spatial scale
is about 100Mpc. Thus we have € ~ 0.2 * 10-2 <k ~ 0.3 * 10-1.
In this section, we derive the field equations that can be
applied for all cases, as long as e < 1 and k < 1 are satisfied.
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“GW data analysis beyond first detection”
by Naoki Seto (invited)

[JGRG23(2013)110709]
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GW data analysis
beyond first detection

Naoki Seto (Kyoto U)
JGRG 2013

Hirosaki University
helped by K. Kyutoku

“Ambitious” GW data analysis

This field is evolving very rapidly in various directions

RRAM
j — E MR (B = F) ‘\
2DV U2 e~ FUIDTG—

concentrate on three topics



554

Outline

GW detectors in near future

— projects, timelines, sensitivities

1. Multi-messenger GW astronomy

— low latency analysis for compact binary coalescence

2. Effects measureable only with high SNR

— determination of redshift of a binary by its tidal effects

3. Limitation of GW data analysis due to available
computational power

— already a fundamental problem for searching unknown pulsar
Summary

GW detectors network in 2020

Advanced generation GW
detectors

Next 3 slides from Kajita-san’stalk



Strain [1/sqrt(Hz)]

schedule to 2020

Approximate Time line

013 a01s omis Jaote o017 o0t o0 |a0ao |

Advanced LIGO

Ad

Virgo
GEO

KAGRA

vanced

IndIGO

I Construction, integration I Commissioning I Operation

Note: the definition for integration and commissioning depends on the project.

GW: Advanced-generation Detectors

Sensitivities

24

T

A

———y

Ad.-LIGO (USA), Ad-Virgo (Europe), KAGRA similar design sensitivities

Ly L | 1
~anl% \ V ! \ /’.
' LIGO :
‘\\ Virgo ]
] 1
22 \\ A ~ /{ A
KAGRA R —HF
N Virgo+ / ]
-23 \\ Advanced Virgo / |
| e o
\\ Advanced .-~
24 \ LIGO el ’
Einstein GW *. o il
Telesgope o g
o ~|~2030 | . ‘
1 10 100 1000 1000C

Frequency [Hz]

KAGRA project -- Takaaki Kajita

GWIC report (2010)
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Outline

e 1. Multi-messenger GW astronomy
— low latency analysis for compact binary coalescence

Multi-messenger GW astronomy

simultaneous detections of GW and EMW+ signals

* NS-NS, NS-BH (compact binary coalescence)
— regular chirp waveform at inspiral phase
— plausible progenitors of Short GRBs (Hotokezaka)

e prompt EMW signals of ~O(1 )sec duration around merger

* rapid GW detection/localization are crucial

— generate alert as soon as possible

aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa

eeeeeeeeee



Strain [1/vHz]
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expected NS-NS number detectable
(SNR=8) with Adv-LIGO

ction of time before merger

asafun
AdvLIGO tunings 10° S
-==-NO SRM i
102 ====ZERO DET, low P.
: ——ZERO DET, high P. 107 -----r--
I -=--NSNS Opt. T
NG ~ Jo—
~— - 10sec - II-?;_I-II:l-'I:ZOde ;’ 1
-22 ~ i rel = Iy A
10 ~ g q — E 100 E
S [ =}
. U
2 - :g
; ”“ ]00 — .
o — “"'&'
107 'i/r/
LA 107" bkl
10° 10°
-24
10
1 2 3
10 10 10 Advanced LIGO a given
Frequency [Hz]
Signalto noise ratio (SNR) accumulates
as a function of time
localization

10"

— 10°
o
=
Z 10?
e
=
S 10!
=T
10[]
107

10' 10° w0t 107
time before coalescence (s)

Figure 1. Expected number of NS-NS sources that could be detectable by

number of seconds before coalescence. The heavy

solid line corresponds to the most probable yearly rate estimate from Abadie
et al. (2010a). The shaded region represents the 5%—-95% confidence interval
arising from substantial uncertainty in predicted event rates.

total detectionrate:40/yr

10sec before : 10yr?
25sec before : 5yr!

Cannonet al.2012

40

E S |
i . : : ]
- - - - ' P P
- ., I ]
- NG NG T N e -4 40 yr~!  Detection threshold
: ! ! 4 105!
N Ly
E 1 1 1 ..1
1]l | |IIIIIII | |IIIIIII | |IIIIII 1 | |IIIIII 1 ] |IIIIII | OI }I
10° 10° 10" 10° 107! 107

time before coalescence, t (s)

Figure 2. Area of the 90% confidence region as a function of time before
coalescence for sources with anticipated detectability rates of 40, 10, 1, and
0.1 yr~'. The heavy dot indicates the time at which the accumulated S/N
exceeds a single-detector threshold of 8.

In reality, we need time for alert generation



so far, much longer than 1sec

* Compactbinary coalescence

— data have been analyzed mainly in frequency domain

* CPU cost, FFT

» segmentlength (e.g. O(10?%)sec)
— Source of time delay

— LIGO-S6

* trigger generation ( 2-5min Cannon et al.2012)

* total latency for alert ~30min (human validation etc)

We have to reduce the delay time.

* significant effort has been paid for low latency analysis
— LIGO,... KAGRA (Tagoshi group )
e Cannon etal. 2012
— using time domain

— singular value decomposition for template vector
* templates on nearby grids must be highly correlated

* save CPU cost

— down sampling rate @ low frequency
* for trigger generation

— latency <0.5sec would be possible

— (LIGO S6; 2-5min)

AdvLIGO tunings

---------

tocf’g/3
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Outline

e 2. Effects measureable only with high SNR
— determination of redshift of a binary by its tidal effects

Effects measureable with high SNR

* GW from NS-NS at late inspiral and merger

— probe EoS of NSs (Hotokezaka)
* tidal effects, hypermassive NS formation, ...

e point mass approximation(or BH): simple scaling
— tidal effect (finite size); destroy the simple scaling
— important for cosmology (Messenger & Read 12)

| (4aa) type I 4]

Hotokezaka et al. 2012
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Arguments by Schutz (1986)

luminosity distance from GW of chirping binary

chirping GW waveform for a point mass binary (in Fourier space)

h(f) = A(f)e™

_ 3
A(f) X(angleS;Mfz/Gf /e O(f) = const—|—27rftc—|—1(87TMCZf)_5/3 X [1+...]
L

M.. = (mymo)*?(my +my)7(1 + 2) redshifted chirp mass

determined from frequency evolution

d, :luminosity distance
additionally using the amplitude A

But we cannot separate (1+z) and mass information using phase evolution,
reflecting the scaling of the system.

Redshift should be determined by EMW observation (e.g. host galaxy) for dark energy
study and so on.

In most case, counterpart search might be difficult ,due to beaming/bad localization

Messenger & Read (2012)

 GW phase has correction terms due to tidal effects.
We can solve the degeneracy between redshift and
mass

O(f) = const+27rftc+§(87rMczf)_5/3 x[1+...]+tidal terms

* redshift can be determined only from GWs

— Need to estimated tidal Love number (deformation)
 Calibrate using nearby NS-NS



estimation error of redshift with ET

= EEE=S
SLY '
. %
T 107 b A7
.r“"] IVELY —1—
10-2
0.01 0.1 |

redshift =

FIG. 1. The fractional uncertainties in the redshift as a function of
redshift obtained from the Fisher matrix analysis for BNS systems
using 3 representative EOSs, APR [40], SLY [41] and MS1 [42]. In
all cases the component NSs have rest masses of 1.4M;, and wave-
forms have a cut-off frequency equal o the ISCO frequency (as de-

fined in the BNS mest-frame). We have used a cosmological param- >

eter set Hy = 705 kms~'Mpc!, @, = 0.2736, & = Owy = -1
to compute the luminosity distance for given redshifts and have as-
sumed detector noise comesponding to the ET-D [16, 39] design (a
frequency domain analytic fit to the noise floor can be found in [43])

Outline

different EoSs

Messenger & Read 2012

PN terms becomes imporatnt
Favata 13, Yagi & Yunes 13
Need >3.5PN

e 3. Limitation of GW data analysis due to available

computational power

— already a fundamental problem for searching unknown pulsars

561
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GW from unknown pulsars
* Emitted GWs: relatively simple caused by non-
axisymmetric mass distribution (<O(107))
— need long term (>1yr) integration to increase SNR
* noinformation on frequency and spin-down
—f, df/dt, d*f/dt?, ..
e direction: unknown

— Observed GW: modulated due to rotation and
revolution of the Earth

fitting parameters

* intrinsic parameters: related to phase (difficult)
— f, df/dt, d2f/dt?, ..
— source direction

e extrinsic parameters: related to amplitude (easy)

— inclination
— overall amplitude (deformation/distance)
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number of templates
for full coherent integration

108

g A
100 B (gnored :
10° _‘_f)e.-‘%’-"' 3 X
104 g :
1000 E L T B A L .
1

0
(a) Observation time (days)

1015 e

ig: 4 ® (Brady et al. 98)

1012 ;_

101 ;_ “‘% /// f<1000HZ,

1010 - spin-down age> 40yr
2 1 4 mismatch 0.3

ool oo oo oo ool oo uu}.lulﬂ Ll 1t

—

larger mismatch smaller mismatch
number of templates: increases rapidly with observation time

forexample  AfT, ~ 150 Af oc T2

obs

*Due to limitation of computational resources, we cannot
make a long-term coherent integration (e.g. >1yr)
suse non-coherent (suboptimal) methods for signal detection

what we need to do

Brady & Creighton 1998
Cutler, Gholami & Krishnan 2005

* find the method
to get the maximum sensitivity
for given computing power
* find the method
to get the minimum computing power
for given target sensitivity
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multi-stage stack and slide (cutier et al. 05)
economically select candidate parameterswith increasing data length
* firststage
— take subset of data of length T,
—divide T, into segments of AT,
— coherent integration within AT,

* on coarse grid points in parameter space

— Do stack and slide (next slide)

Tobs
A

Stack and Sllde Cutler, Gholami & Krishnan 2005

* frequency evolution is
given by intrinsic

parameters (slide) e )

* simply add powers =
(stack) along the path )’ -
for given intrinsic §”
parameters //

e select candidates of

intrinsic parameters \A\m\ : }
e 2"dstage: read more aT, M
data (T,) and repeat
. finally fqll coherent \\ Y ] /
integration around the Ts

final candidates YTZ
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a lot of parameters

Cutler, Gholami & Krishnan 2005
e fix
— false dismissal rate at each stage (final ~0.1)

— detection threshold amplitude (corresponding to
SN=39.7 for 1yr full coherent integration)

» search the optimal (minimize cpu cost) set of
— number of stages: n
— each length: T, (i=1,n)
— number of segments in each stage: T,/AT,

— maximum mismatch in each stage: W,

e usedsimulating annealing to find minimum

Results

1yr, f<1000Hz, Spin-down age >40 yr

A o e
107 EEEETRT
:\ L
2
o
TR
2 10 :
: :
0o ;
-— .
g R
g .
g B . .
20 | Technical details
8 i .+
i *
- '
R | 1 1 L
i ®  Number of Stages * :
o Costsaturatesat n>3
FIG. 2. Computational power versus number of semicoherent
stages for different methods of calculating the F-statistic. RES n:3 IS f| ne

indicates the stroboscopic resampling method (strategy (ii)) and

SFT is the SFT method (strategy (i)). SFT + RES corresponds

the mixture of these two methods (strategy (iii)). For each

strategy, solid lines indicate the result for the fresh-data mode. Cutleret al. 2005
while the dashed lines are for the data-recycling mode.



Optimal parameters for n=3 search
1yr, f<1000Hz, Spin-down age >40 yr

TABLE I. The optimal search parameters in data-recycling
mode. fpae = 1000 Hz, 74, =40 yr, Tpe = 1 yr, b3 /S, =
2.5 %X 1077 sec™!, and # is defined according to Eq. (38).

Stage AT (days) M N T (days) J

1 2.58 0. 7805 10 25.79 0.08
2 3.51 0.1139 12 4213 13.23
3 45.66 0.8196 8 365.25 33.86
mismatch
3 2 1
10"
- Frosh Data
&~ Dot Aecydiing
1015r ‘-._ - Fnﬁhnte‘z;i-‘g
T .
Rl T
A Y
Ig 1D1Er :3\:.!';\_ 1
e ., ' _
E 10 [ .\‘\ ' 1-.l?rearzerb—m|srna'hd\SNR=$'_’;.23 1
£ R /
w11 gt
2 107 By Wty
E 101Dr I HEEe .;;'\';'tl\:-" oo e ] I [
P "\\.:‘{\‘
10* ri—yuar.zero—mismatmsm=39.12‘~.'_;.*;;H_‘. T
ST g g
101 1 I i i T--'__?:__f___
w0 1w 1w 1w of 10 1f 10?

10° 1
T %ear}

FIG. 6. The minimum computational power F required for
analyzing 1 year’s worth of data as a function of the pulsar’s
spin-down age 7p;,. We consider a three-stage search in both the
data-recycling and fresh-data mode, for two different signal
strengths. The data-recycling mode results are shown with
dashed lines, while the fresh-data results are in dotted lines. In
parts of the curves, the results for the two modes are so close
together that it is hard to distinguish them.

false dismissal rate of ~0.1
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Sl

L3 + - Data Recycling
. »  Fresh Data

45+ ‘
o ¥
Z a0t
+
=
5 a5f *
=
]
E 30F
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£ o5t -
a "

20f .

* -
S |
15 -||l||l||I2| |||||||I]l |||||ul4| -unml:uuuuuulau |||||||I?| |||||ule| MERTET -
10 10 10 10 107 10 10 10 10°
T (vear)

FIG. 7. The l-year SNE (with zero mismatch) as a function of
Tmin- fOr fixed computational power P = 10" Flops. The dashed
line indicates the result for data-recycling mode and the dotied
ling for fresh-data. Since these two results are very close to each
other, it may be difficult to distinguish them.

summary for unknown pulsar search

* too many templates to make a full coherent
search

* must develop suboptimal methods
* maximize sensitivity for given computing power

We will have similar problems for detecting GW sources with many cycles.



Summary

sensitivity to GWs

— continuously improved in the next 15yrs
GW data analysis

— evolving rapidly in various directions
examples

— low latency data analysis

— effects measureable with high SNRs

— how to cope with computational limitations

and other interesting issues

568
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“Parameter Estimation of Gravitational Wave
from a Stellar Mass and an Intermediate Mass Black Hole Binary
Surrounded by a Dark Matter Mini-spike”’
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Parameter Estimation of
Gravitational Wave from a Stellar
Mass and an Intermediate Mass
Black Hole Binary Surrounded by a

Dark Matter Mini-spike

Kazunari Eda
University of Tokyo, RESCEU

(RESearch Center for the Early Universe)

JGRG23
Collaborators : 7 Nov. 2013 @ Hirosaki University
Y. Itoh, S. Kuroyanagi, J. Silk Ref. Phys. Rev. Lett. 110, 221101 (2013)
0
Motivation

e Dark Matter (DM)
— Many reliable evidence for the existence

— The nature remains unknown

e Searching for DM
— Producing new particles by high energy collisions
— Detecting gamma-rays from DM annihilation

* We show gravitational waves (GWs) can be a tool
to search for Dark Matter.
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Overview

e Consider a binary system formed of a stellar mass
particle and an intermediate-mass black hole (IMBH)
surrounded by dark matter (DM) halo.

e Consider the inspiral GW from the binary

* How accurately is DM distribution determined by GW
observations ?

Without DM halo Including DM halo

@ GWs

M orbital cycle orbital cycle

What is the dark matter mini-spike?

We focus on the DM distribution near the IMBH.
Intermediate-mass Black Holes (IMBHs)

— stellar BH < IMBH < SMBH (10> M® < MimeH < 10° M@ )
Adiabatic growth of IMBH creates a high density DM region

— This region is called a DM mini-spike Gondolo&silk (1999)
Zhao&sSilk (2005)

— DM annihilation may be enhanced

— If this is the case, the DM profile can be investigated by
detecting gamma-rays from the DM mini-spike.

We show GWs can probe the DM profile even if the

DM particles don’t annihilate.
3
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Profile of DM mini-spike

e Adiabatic growth of IMBH creates high DM region.
e DM density prof”e This region is called DM mini-spike

— pi(r): initial profile before forming the BH

<a<2.
— pf(r): final profile after formin Z'ZST—a—Z 3

pi(r)ocr™ (0<y<2)

In P Adiabatic

\ope: Y
seed BH

Inr

growth of
IMBH

Initial profile pi(r) final profile pf(r)

Profile of DM mini-spike
* DM mini-spike profile
rsp = 0.33 pc
Psp = 379 M@/pc3
 |f initial DM profile is well-approximated by Navarro-
Frenk-White (NFW) profile.

r (@4
p(r) = psp (%) (risco <1 < 1yp)

YNFw = 1

pNEW (1) = P — | anpw = 7/3

(r/rs) (1 + 7"/7"5)2

Adiabatic
growth of
IMBH

Initial profile pi(r) final profile pf(r)
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Profile of DM mini-spike

é )

This is only for adiabatic BH growth. rep = 0.33 pc

The value of alpha strongly depends pep = 379 Mg /pc?
on the BH formation history.

ﬁd by Navarro-
- . YNFW
pNEw (1) = i) (1 +r/rs)2 ﬁ QONFW

Inp Adiabatic

growth of

IMBH
\ope: Y
seed BH
Inr
6 Initial profile pi(r) final profile pf(r)
Situation

e Consider a binary system formed of a stellar mass
particle and an intermediate-mass BH surrounded
by dark matter (DM) halo.

* Mbowm halo'\’lo6 M@
Miven~ 103Me
Mestar~1 M@

* Assumptions
— Circular orbit
— Constant DM density

orbital cycle

. Zhao&sSilk (2005)
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Effect of DM halo on the particle

Gravitational potential of the central IMBH
Gravitational potential of the DM halo
GW back-reaction force

ol A

Dynamical friction
from a dense DM halo

‘ DM mini-spike

Equation of motion (EOM) SINEINGLE

dr?
7= —Voémsn — Vopu +[fGW + fDF]

8 l can be treated as a perturbation

GW Waveform
* GW waveform for the Newtonian quasi-circular orbit
quadrupole formula GW waveform
: 2G - 1 4G uw,(t)?R(t)? 1 + cos?
e N U PR L2 cosfa)
2 2
Ik = /dgzl: pzd " hy (t) = %4Guws<ci) R cos ¢ sin [D(1)]
» orbital radius R
» orbital frequency ws
» GW phase O(t)
» stellar mass u
IMBH » Inclination
\_ stellar orbit » distance to the source r
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GW Waveform in Fourier space

* GW Waveform in Fourier space

Mc: charp mass

c (GAL;)S/G 1+ cos?e 5 /31 -2/5
2 M. = p / Mgy

c3

(] —5/3 f f
P (f)zg(&l(;m) [_ff df’ f"”“L‘l(f’)—f df’ f’—S/SL—l(f’)]

3 c O o0

(i) = o + Qﬂ'ift, b = / wWaw (LL)

. o Tﬁ @
L(f) =1 +<G/ﬂ2f o P =ro (S2)
o : power-law index of DM profile

10 Two DM parameters < ce : the combination of rsp and psp

GW observation: eLISA

* Consider eLISA observation
- eLISA: space-craft detector
- Best sensitivity at about f=0.01Hz
- 5years observation until the coalescence

1le=813

le-814

eLISA sensitivity curve

le-813
le=816
le-817
le-818 r

Earth’s orbit 1e-819 |

le-820 ! : ! :
1le-863 6, 66881 8.881 a.61 8.1 1

f [Hz]
11 Amaro-Seoan et al,(2012) arXiv:1201.3621



Parameter Estimation
* Estimation Of the measurements accuracies

e GW waveform

f? (f) @f—?/BPi\P(f)L (f)fI/Q -

U (f) = 2m [N @) T~ (1),

3

- w‘ —5/3 f f
& (f) = 10 (8“(7) g / af' B () + / df’ 8L (fr)]

3

C

L(f) = 1+4Q) (¢/n2s?) 2D

* Six waveform parameters 6

12

13

J oo
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— A: overall amplitude, tc,dc : coalescence time and phase

— Mc : charp mass

P
— a, ce : dark matter parameters —
o : power-law index of DM profile, ce : the combination of rsp and psp

(1) = pep (22)

Results: Errors of DM parameters
* Errors of two DM parameters q, ce

— For larger a, DM parameters are determined more accurately
— o = Mom(<r) T = the effect of the DM on the star T
— For initially NFW profile, a=7/3

— DM parameters can be measurable with very good accuracy!

101 FT T

----------------------------

| T
Aa/a vs a for S/N=10

_ Initially NFW ]

1.6 1.8 2 2.2 2.4
DM power-law index o

_ Ace/ce vs afor /N =10

_ Initially NFW ]

NS EEENEENEEEENEE NN

| ‘Acg‘/cs ‘
L I I I

1.8 19 2 21 22 23 24 25 26

DM power-law index o
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Case for the initially NFW profile
* In the case of initially NFW profile, a =7/3
* Errors of waveform parameters are as follows:

4 AA /10 ) S Phase parameters are measurable
A 0.1 ( g‘f\-') ' with very good accuracy.
mczu( l”\) ol l Why?

AD. — 1.4 10 ad For inspiral GWs,

\ ° S/N j S ho 1/2

(AMe g qomr (10} N foSu (fo) e
M, ' S/N -

§ P = / wawdt o< Neyele
2% 96 x 10~ (ﬂ) - . -
O S/ l the number of orbital cycles
A g1t (2L
\_ ) S/N) ) GW Phase are strongly related to S/N.
signal-to-noise ratio/
Summary

* We consider the binary composed of a stellar mass object
and an IMBH surrounded by DM mini-spike.

* We research on how accurately the DM parameters
contained in the GW waveform are measurable.

et

15

GW observations.

DM parameters can be determined very accurately by

Observation of GWs from IMBHs will be a new

tool to probe the DM distribution near the IMBH.

This may offer hints on the formation history of BHs.

Thank you !!
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“The Hilbert-Huang transform in search
for gravitational-wave bursts”
by Masato Kaneyama

[JGRG23(2013)110711]
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The Hilbert-Huang Transform
in search for
gravitational-wave bursts

Masato Kaneyama
Niigata University

in collaboration with
K. Oohara, Y. Hiranuma, T. Wakamatsu (Niigata Univ.)
H. Takahashi (Nagaoka Univ. of Tech.)
and Jordan B. Camp (NASA GSFC)

Introduction

» The Hilbert-Huang transform (HHT) e Huang et al. (1996)
- a novel, adaptive approach to time series analysis

that does not make assumptions about the data form.
= non-linear and non-stationary time series data

- an empirical mode decomposition (EMD)

- the Hilbert spectrum analysis (HSA)

- It has been applied to various fields:
biomedical engineering, financial engineering,
image processing, seismic studies, ocean engineering
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Waveform reconstruction

» GW bursts from core collapse
and core bounce of rotating stars

- non-stationary and short-duration signals

21 - S20a1005_shen A

- The waveform is unknown but strongly ™
reflected in the physical parameters |

(mass of the progenitor model, W
precollapse rotation, EoS). .

-8e-21

4e-21

et | l l l820a1<3l01 57slhen ]
H. Dimmelmeier et al. (2008) ! W
C. Rover et al. (2009) e L

-0.02 -0.01 0 0.01 0.02 0.03 0.04

t-tb[s]

» We investigated the reconstruction of
GW burst signals with the HHT.

Why the HHT?

» The HHT is not limited by the time-frequency
uncertainty principle.

- Traditional time-frequency analysis of GWs:
the short-time Fourier transform
the wavelet transform

the uncertainty principle
1

> —_

Ot 0f = 4T

» time-varying amplitudes (or powers)
and frequencies in the time domain
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Hilbert spectrum analysis

» Hilbert transform

u(t
v(t) = —P J ( ) P :the (?aqchy
principal value

— 00

- If u(t) is a real part on the real axis of
a holomorphic function G (t)

G(t) = u(t) +iv(t) = a(t)e®® 8(t) = tan—! {@}

u(t)
- Instantaneous amplitude (IA) - Instantaneous frequency (IF)
a(t) = Ju(t)? + v(t)? ) = 1 do(t)
2m dt

Hilbert spectrum analysis

» Consider u(t) = acos(2rft) + B

v(t) = asin(2nft) f,a,pB : const.

IA: a(t) = a2 + B2 + 2aBcos(2nft)

B? + 2aBcos(2nft) = f must be
a(t)? equal to zero.

IF: f@O)=f[1-

» two conditions to obtain a meaningful IA and IF

(1) difference between number of zero crossings
and extreme value is 0 or =1

(2) the mean value of the upper and lower envelopes
defined by the local maxima and minima =0

When the data satisfy the above conditions,
we call the data intrinsic mode function (IMF).
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Empirical mode decomposition

» To obtain the IMFs from the data,
we perform the empirical mode decomposition.

- the original data s(t)

1.2

06

06

1.2

| | 1
-0.1 -0.05 0 0.05 0.1

Empirical mode decomposition

* Find the local maxima and minima.

1.2

086 |

06

1.2

| | 1
-0.1 -0.05 0 0.05 0.1
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Empirical mode decomposition

- Interpolate the maxima and minima using cubic
splines to obtain the upper and lower envelopes,

| respectively.
12 | .
_f/ "" e"‘ll ""'x
0.6 . { I‘II‘" II"I \'I‘II | /] _ —]
II" ""I Vs ‘II‘"\ ;’f
0 ,w'l / "'*. h -
- \ ' ‘II‘. \/ I‘II"" /
086 ¥ ".I‘ ."I‘ III"". / T
a2 b \[/
-0.1 -0.05 0 0.05 0.1
9

Empirical mode decomposition

- Calculate the local mean of upper
and lower envelopes curve m(t).

| | 1
-0.1 -0.05 0 0.05 0.1

10



Empirical mode decomposition

- Calculate the local mean of upper
and lower envelopes curve m(t).

| | 1
-0.1 -0.05 0 0.05 0.1

11

Empirical mode decomposition

- Subtract the mean m(t) from
the original data.

1.2

06

06

1.2

| | 1
-0.1 -0.05 0 0.05 0.1

12
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Empirical mode decomposition

- Until a certain stoppage criterion is satisfied,
iterate this procedure.

. . ' the stoppage criterion
2 Im(ty) | < e
2 |s(E)]

& : apredetermined
value

12 |

42 F .

13

Empirical mode decomposition

- If the stoppage criterion is satisfied,
define the data as IMF1 ¢, (¢t) .

06 .

-0.1 -0.05 0 0.05 0.1

14



Empirical mode decomposition

- If the stoppage criterion is satisfied,
subtract IMF1 from the original data.

1.2

08 A A

-0.6 | v

1.2

| 1 |
-0.1 -0.05 0 0.05 0.1

15

Empirical mode decomposition

- Apply the sifting process on the data
to obtain IMF2 ¢, (t).

| 1 |
-0.1 -0.05 0 0.05 0.1

16
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Empirical mode decomposition

- Apply the sifting process on the data
to obtain IMF2 ¢, (t).

| [\ /\\ .
NEESTRTSYS

12 F

-0.1 -0.05 O 0.05 0.1

Empirical mode decomposition

- Apply the sifting process on the data
to obtain IMF2 ¢, (t).

12 |

| 1 |
-0.1 -0.05 0 0.05 01

587
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Empirical mode decomposition

- In a similar way, obtain IMF3 ¢;(¢)...

1.2

06

06

-0.1

-0.05 0 0.05

0.1

Empirical mode decomposition

- Finally, the original data is decomposed
some IMFs ¢,(t), ¢c,(t) ... and a residual 7(t).

1.2
the original os

0

data 06
-1.2

1.2

06

IMF1 0
-0.6

-1.2

1.2

086

IMF2 0
-0.6

-1.2

0.4

0.2

IMF3 0
-0.2

-0.4

0.4

0.2

residual 0

-0.2
-0.4

ST T

AN AN J\ M Anaand

VV VA \/V ”\/\/ \/\/V\/\/V\Z

=T

ANAAANANNNNNAAAANNNNN]

VVVVVVVVVVVVVVVVVVV

P AAN

VARV

=}
o

1 1 1
-0.05 0 0.05 0.1

SO =) a®+7®)

l
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Ensemble EMD

» When we use the EMD, mode mixing often occurs.

- a single IMF consists of signals of widely disparate scale

- signals of a similar scale reside in different IMF components

» We use a ensemble EMD (EEMD) for minimize
the mode mixing.
N. E. Huang et al. (08)
(1) Add white noise to the original data.

(2) Perform EMD on each data with different noise.

(3) For each IMF, take ensemble mean among
the data as the final answer.

Setup for simulation
» s(t) = n(t) + h(t)

» Signal h(t): GW bursts from core collapse
and core bounce of rotating stars
H. Dimmelmeier et al. (2008)

» Noise n(t): AdvLIGO

- Angular sensitivity of the detector is simply treated
as the angular efficiency factor F=0.4 .

* Noise frequency range: 20 Hz - 4096 Hz

- distance =10 kpc
- Sampling frequency = 8192 Hz



Waveform of IMFs

Model: s20a2013_shen

2e-21

___,_/A (A ___/
— e amaaane— 0 A
- | - 2e21 | -

0

-2e-21

“4e-21

2e-21

o

-2e-21
“de-21
2e-21
0

B 2e-21 B

/
signal i 4001 |

WM‘*‘W T e

2e21 B

2e21 | || -

signal + Noise | 4e21 F IMF4

B 2e-21 B

2e-21 | i 2e21 | | i
4e-21 | IMF1 : 4e-21 | IMF5 -
2e21 |- ' ' ' ' 1 2621 ' ' ' ' ]
fi
0 0 —_.I—q;:-r‘% S
L) | L]
2e21 | li' B -2e-21 | ||| T
4e21 |- IMF2 1 4e21 | IMF6 |
1 1 1 1 | 1 1 1
0.02 0.01 0 0.01 0.02 0.03 002 0.01 0 0.01 0.02 0.03

- After the EMD

t-to[s]

Summation of IMFs

» To obtain a reconstructed GW,

we sum IMFs including the signal.

h(t;) = Z hi(t;)

M =1
S(tj) = Ci(tj) + T'(tj) M
; n(y) = . ni(t;)

IMF i : Ci(t) = hi(t) + Tli(t)

- assume: Noise of IMFs is stationary

and Normal distribution.
Tli(tj): Xi NN(O, O'iz)

- If Ci(tj) = 40; , this IMFs include the signal and

we sum those IMFs to get the reconstructed signal.
24
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Possibility of wave reconstruction

» We performed the EEMD for 100 samples
and the reconstructed signal of each samples.

de-21 ' ' | —— mean of the reconstructed signal
221 | —— theinjected signal
10

2e21 | 25
“l J N

0 o=
-le-21 _
2e21 L i
-3e-21 —
4621 F 4

| | | |
-0.02 -0.01 0 0.01 0.02 0.03
t-to[s]

- We get the reconstructed signal,
when it is obtained by summing appropriate IMFs.

Statistics of IMFs

- assume: Noise of IMFs is stationary
and Normal distribution.

Tli(tj): Xi ~N(0, O'iz)
.U'j = Zﬂij
i

o'? = Z cov(X;, Xi)

ik

¢i(t;): Yij~N(uij, 0:%) = pij + N(0, ;%)

Z Ci(tj): VVJNN(H,], 0-’2 ) :M_’] + N(O; 0-’2 )

L

- Summation of IMFs is the reconstructed signal
including residual noise.



Reconstructed signal

z ci(tj): Wi~N(w'j,0 ) = '; + N(0,0")

l

4e-21 | T T | 1
—— the reconstructed signal

3e-21 - —— the injected signal

2e21 | CL=90%

Te-21

-le-21

-2e-21 i

-de-21 - .

4e21 |- a

-0.02 -0.01 0 0.01 0.02 0.03

27

Summary

- The reconstruction of GW bursts is

one of the important issue in the GW astronomy.

- We investigated the reconstruction of

GW bursts with the HHT.

- The HHT is the adequate technique

for reconstruction of waveform.

- We obtained the reconstructed signal with CL = 90%.

28
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““Possible roles of PBH evaporation in cosmology
and detection of its gravitational waves”
by Tomohiro Fujita

[JGRG23(2013)110712]



PBH evaporation &

detection of itsGW

2013/11/07 j
JGRG@Hirosaki Univ/
Kavli IPMU/Tokyo tﬁv’
Tomohiro Fujita (¢

== TF K Har| aya, M.
& R Mat .
P~ 4

mn
*;;-h\\lz
S

Plan of Talk

PRESENTATION
PBH evaporation
Isinteresting

/
N both theoretically
and observationally

o =
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Introduction 57

PRESENTATION

\ THE THEME
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_Introduction
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PRESENTATION

il Introduction

PRESENTATION

p(x)1

>

We know large scale pert.
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Introduction 557

PRESENTATION

p(x)1

Introduction g

PRESENTATION

p(x)1

high density regions may exist.

ex) Blue running inflation, Preheating, :
Sudden pressure reduction, bubble collision, etc... & it
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3 Introduction ~d

These regionscollapse
and form black holes.

Zel'dovitch & Novikov(1966), Howking(1971), Carr(1975),
Nadezhin et al.(1978), Musco & Miller(2012),
Harada, Yoo & Kohri (2013), Nakama et al.(2013)

These regionscollapse
and form black holes.

Zel'dovitch & Novikov(1966), Howking(1971), Carr(1975),
Nadezhin et al.(1978), Musco & Miller(2012),
Harada, Yoo & Kohri (2013), Nakama et al.(2013)
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Primordial Black Hole

(PBH)

'8 Introduction b
PRESENTATIONI - T T A A A EH
Q @)

O\\./
\O
7
o | NS
@)

PBHslose their mass
by Hawking radiation

Howking(1975), Page(1976)
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PRESENTATION

|f Mpy < 1015g,
they evaporate!

Howking(1975), Page(1976)

Introduction 5N

PRESENTATION

Interesting!
But isit relevant

to cosmology?
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Introduction 7 d

PRESENTATION

Can PBH evaporation
play arole
inthe early universe?

Introduction 557

PRESENTATION

Yes! PBH Evaporation
can contributeto

« Generation of {cup

* Baryogenesis
DM Production
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Set up ]
/| Inflation
0| Radiation dominant
° o| Matter dominant
A DEdominant 5
N <«
j Set up ]
7| Inflation
Inflation —
o-° RD +PBH forms
ol RD
— \E PBH domi+PBH Evap
%° MD 5o RD (again)
M %O MD
A DED ——/ ot
V (A] oo o
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Set up ]

PBHsdominate
the universe

before evaporation

Set up ]

Not so stringent condition

Rad Prad X a?

PBH _3
PpBH X A
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Set up

Not so stringent condition

Rad Prad X a4

p PBH ~3
PpPBH X A

PBHsonce dominate
the universe
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X THE THEME

OF CHAPTER IS...

N

Generation of {-yp

] Single slow-roll inflation ]
Nin > 60
¢inf 131
* (cMB
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Curvaton like scenario

« Curvaton
 Modulated Reheating

« Inhomogeneousend of inf. - Scmp

- PBH

Introduction g

PRESENTATION

How does PBH
model work?
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Hawking rad. = Black body
:> Characterized by T gy

Howking(1975)

[ﬁ PBH Property ]
@ Ty Mg}?\

@ Only particles with
m<Tgy |F———— H

are emitted.

PBHbegins

>
g ‘
@

D

3,

<

1T Masslossis
BH

Masslossrate
@ accelerated
dependson DOF —/

Mgy < g - t




l Mechanism 1 ]

* Introduce ¢ & ¢

0¢ < inflation
« Higgsmechanism
my, = y¢
Tgu(t)
t

l Mechanism 2 ]

N
6(15 ﬁ Inflation perturbes ¢

[ 6m¢ ]% Higgs mech:my, = y¢
. N

[ 81' ] my, triggersthe

PBH acceleration of mass Ioss
nd
[ SN ]4Modula’[ed2 Reheatmg a

J;
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:> my, = Hinf
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ﬁ Result ]
1/2

;% ~1075(3%) () (ﬁ:,,fr
:> my, = Hinf

P

If  gives many ys masses,
one Y may have my, = Hiy¢

l Sales point ]

Unknown Sector known Sector

* inflaton Coupling

necessary
e curvaton




Quick Summary

PBH formation
Higgs mechanims

~
PBH ¢ Generation

Fairytales 55

PRESENTATION

© It sounds
® like a

Fairytale.
(& EEE)
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Observation
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~ GWddetection
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—
How to observe PBH evaporation? ]

O
Y |
O ~ il (&3]
\‘/ ©Yuki
~ \ .
o” | Mo Graviton
O

—> Detect GW!!

—
Frequency of GW

kPBH S TBH X redshift

ﬁ
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Frequency of GW

TI'IOW

kPBH 8 TBH

evap

Frequency of GW ]

TDOW

kPBH fi TBH

evap

RN
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Frequency of GW

T

I, NQ) &

_ |

C |

Frequency of GW
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Detectability ]

[Anantua et al.(2009); Dolgov&glli(2011)]

2+ Qcw
HE Qgw < 1077
Konax~1013M Y 2[H
KAGRA max 0 [ Z]
i SKA
107 Lisn PBH
10—10 i \/\/ /
10~15 |- Planck \/
DECIGO
1072 | | [MESNN NaEE A | | >
1071510701075 1 105 10 10"  [Hz]
Frequency[Hz] A € :;{21\
Detectability ]

[Anantua et al.(2009); Dolgov&glli(2011)]

PBH GW is not

detectable by
Interferometers

Frequency[Hz]



G-effect detector ]

Magnetic
field

Graviton

Gertenshtein-effect ]

[Gertenshtein(1966)]

With GW ( and Static MF g
Maxwell eq. hasa source term.

V x B = E +ikB, he!(kz—®t)

iInduces -
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Sensitivity of G-effect detector ]

M Cruise made a prototype
[AM Cruise(2006)]

.9 Development Path- no seeding

BIRMINGHAM

1 e ——rrr
g Current \
- m-”_%—:_jhﬂagnet upgrade
g
=10 "+ I e
% %V_ 1 yr observing \\- —~
oo f— ~ T
i) A
- * : — ~—
% m-!adﬁﬁ Cryogenic Amplifier \\L//F
8 ot - large WG, 40T| -
—e——| Large WG, 1000 T |——— >/
10'25 T vl AR TR MR IR
10" 10" 10" 10" 10" 10'° 10"

Frequency Hz
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.o.pevelopment Path- no seeding

PBH GW ispossibly

detectable by
G-effect detector.

1
J
\ THE THEME

OF CHAPTER IS...

Summary

A e N e -

e O



Plan of Talk 57

PRESENTATION

PBH evaporation

_~ | isinteresting
N both theoretically

and

o =

Summary Sy

PRESENTATION

@ PBH evaporation can play big roles
In very early universe.

:> PBH can generate {cug

HFGW from PBH evaporation may be
detectablein the future by

:> G-effect detector
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Thank you!

S
.

e
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GW detection 7 d

PRESENTATION

W,
G-effect detector %

Convert GW into EM wave by strong MF
and detect EM wave.

mm) Sensitive to high frequency GW!

Prototype was already
made in Brmingham univ.

Sensitivity isinsufficient
but several ideas for
Improvement are proposed.

[ G-effect detector ]

[LP Grischuk(2003); Fangyu Li et al.(2008); Fangyu Li et al.(2009); JLin et al.(2009); AM Cruise(2012)]

No sensitivity curve yet...
Nhk BSLB
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[ G-effect detector ]

[LP Grischuk(2003); Fangyu Li et al.(2008); Fangyu Li et al.(2009); JLin et al.(2009); AM Cruise(2012)]

No sensitivity curve yet...
(“B3 ~hk B.Lg

Amplitude of

[ Strength & Length of Static MF

:> Strong & Long MF
improves sensitivity



624

“Estimation of gravitational wave spectrum
from cosmic domain walls”
by Ken'ichi Saikawa

[JGRG23(2013)110713]



Estimation of gravitational
wave spectrum from cosmic
domain walls

Ken’ichi Saikawa
Tokyo Institute of Technology

Collaborate with T. Hiramatsu (YITP) and M. Kawasaki (ICRR)

Based on:
T. Hiramatsu, M. Kawasaki, KS, hep-ph/1309.5001. (submitted to JCAP)

November 7,2013, JGRG23 (Hirosaki U.)

Abstract

® 3D Numerical simulation of domain walls
® Estimate spectrum of gravitational waves

® Update & correct the results of
previous studies with larger simulation box

T. Hiramatsu, M. Kawasaki, KS, JCAP05(2010)032
M. Kawasaki, KS, JCAP09(201 1)008




Domain wall

Example: Z2 — |

() =+

+ vacuum

domain wall

field space real space

Width of wall : 6, ~ m3* ~ (V)2

Domain wall problem

o Scaling solution Press, Ryden, Spergel, ApJ 347, 590 (1989) ‘

® One wall per one Hubble radius

L~H1~¢

L :distance between two neighboring walls

® Energy density

2 3
Pwall ™~ UwallL /L ~ Uwall/t

- —4
decays slower than pmatter X @~ ° and pradiation @

® Come to overclose the universe (DVV problem)
Zel'dovich, Kobzarev, Okun, JETP 40, | (1975)

® One way to avoid the problem:
consider the unstable domain walls




Collapse of domain walls

Approximate discrete symmetry (bias) vilenkin, PRD23, 852 (1981)
AV ~ en? e <1
Act as the volume pressure

pv ~ AV ~ en?

_|_
> e,
N E R

Annihilation occurs when
pv ~ pr
P ~ Owall/R ~ X3 /R

: tension of walls
R :curvature radius

Decay time

tdee ~ R ~ )\1/2/677

Gravitational waves from domain walls

® Continuously produced during the scaling regime
— |t terminates at { ~ fgec

® Magnitude of gravitational waves

® Quadrupole formula

P ~ GQZ] QZ] ~ ]\/fVQ\/all/tz :Power [energy / time]

QZ] ~ Wallt2 During the scaling regime
9 L~t

: A= 22l o const. of o(1)
® Energy density Twall

Pt

2 2
Pgw ™~ t_3 ~GA O wall




Previous studies

Hiramatsu, Kawasaki, KS, JCAP05(2010)032
Kawasaki, KS, JCAP09(201 1)008

® Numerical simulations of classical scalar field on
the lattice

® Lattice points were small (N3 = 2563)
= dynamical range was short

e Affected by initial condition ?

® Parameter dependence was not thoroughly investigated
(width of the wall o« A~1/2 was fixed)

® Some errors in the numerical code

® This study :
Correct and clarify these ambiguities by performing
simulations with larger grids (N3 = 1024%)

Numerical simulation

Discretize the spatial coordinate Az
9020 <—>

X — (i, k)
i,j,k=0,1,...,] N — 1

D010 110

(,')(X) (.), gk

P000 ®100 200

2 4 (2 p) j=0
- 12(Ax)?
— (Pit2,4,k + Di2,4k + Piji2,k + Dij—2.k + i ki2 + Pijk—2) — 900; 5]

16(it1,5k + Pi—1,5k + Piiti ke + Pij—1k + Pijkt1 + Pijik—1)

® Solve the classical EOM for real scalar ¢ on 3D lattice N3 = 10243
e 5 oV
a2A) i

®  With small Gaussian fluctuations as initial conditions

b+3Hep —




212V a (1) dosai() o
G dilndie

—/ kds' sin(krNa(r )T

—/ kdr’ cos(k7')a(7")




Spectrum (A dependence)

N =1024, . =0.03
N =1024, A = 0.01
N =1024, » = 0.003

A\ k/algy o ~ 0w

1072 107
physical wavenumber k/a

Fall off at k/a ~ 0" ~ VAn oc A2 (wall width)

L~ 1 in the intermediate scales

Magnitude of gravitational waves

—— N =512, A =0.03
—— N=512, A, =0.01
F—— N=512, A =0.003
»@ N=1024, A =0.03
L =@ N=1024, A =0.01

@+ N =1024, A =0.003

~ 1 dpg\v
bgw = =— 55— | =
SRl GAe e Ikl

c.f.

pgw ~ GA2%02, 1 ~ const.

during the scaling regime

630
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Estimation of the present density

® Assume that the production of gravitational waves
terminated at ¢ = tg..

® Peak amplitude

1 1o 8w, G2 A%02 1 [2
Qpwltaee) = —— ((r&% ) = B Twal f(gy,) = o— x4/ Sen
8 pltaee) \dInk ) . 3H?(tgec) TR 15

_ ~1/3 " 1
Q. h2(tg) ~ 1.0 x 10~21 x A2¢—2 (g—) (—)
gwh”(to) “ A€ 100 1015GeV

Gx :relativistic degrees of freedom at #gec

® Peak frequency

a‘(tdec )

cak(to) =
fp k( U) a(t())

o 9 -1/4_1/2 n i ]
H(t(]cc) ~ 6.7 x 107 x A / € / (m) Hz

® Depend on three theoretical parameters ), ¢, 7

Adv. LIGO (corr.) — |

. K 7‘ ET (corr.)
n=10""GeV, e =10"1° LISA — |
- Ult. DIECIGO —

10°
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Summary

Computed gravitational waves from domain
walls based on the lattice simulations with

improved dynamical ranges
Peaks at k/a ~ H(taec), and falls off at k/a ~ d,,°
Behaves as « k~! between H(t4..) and ¢;'

Signals can be proved in the future
gravitational wave interferometers
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“Axion Bosenova and Gravitational Waves”’
by Hirotaka Yoshino

[JGRG23(2013)110714]
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Axion Bosenova
and

Gravitational Waves

Hirotaka Yoshino (KEK)

Hideo Kodama s AN ‘.‘ TV

JGRG23 @ Hirosaki University
(November 7th, 2013)

Contents

Introduction

Axion Bosenova

Gravitational Waves

Summary
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Introduction

Very interesting era of GR

aLIGO (USA)
4km x 2 (or3)

GEO-HF (GER-UK)

B baseline 600m

Adv.VIRGO (ITA-FRA)
baseline 3km

+ One of the interesting possibilities is to find new physics

beyond GR!




>
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Can we find a signal of string theory?

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel,
PRDS81 (2010), 123530.

Maybe Yes, if there are String Axions with very tiny mass

In string theory, many moduli appear when the extra dimensions get
compactified.

Some of them (10-100) are expected to behave like scalar fields with
very tiny mass, which are called string axions.

Anthropically Constrained

D Inflated
ecays By

Black Hole Super-radiance

4 %1028 3x 1078 T
2x10%0 3 x 10710
Axion Mass in eV QCD axion
AXIVERSE SCENARIO

What happens if axion field exist around a rotating black hole?

Axion field extract the rotation energy of the BH
and forms an axion cloud.

0.22
021 |
02
0.19 |
0.18 |
0.17 r
0.16 |

V20 — 12® =0 H.L - J—FJ

gravitons AN NN axions

mov | P QL

Ring singularity
Event horizon r=r~

Ergosphere

0.15

0.14
-100

-50 0 50 100
r«/M Event horzon  StatoeryImt

surface S.

w < Qgm E{) negative energy falls into the BH I%) Superradiant instability
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16-06

1e-07 |

1e-08 |

Im(w / p)

1e-00 [

1e-10 |

te-11
0

Growth rate

Growth rate

(continued fraction method)

Dolan, PRD76 (2007), 084001.

Time evolution
l=m=1 Mup=04
= iz — ‘ \‘
1=23,m=43 @0’/k;\ // .
1 1.2 14 1.6 18 /'a*
wiM ~107" = ~ 1 min.
© oM ~1071? = ~1day

BH-axion system

(1) Nonlinear Self-Interaction (Bosenova)

(2) GW emission

Super-Radiant Modes

\N\/ \ Decaying Modes

Gravitons

S

Rotating Black Hole

Accretion

Arvanitaki and Dubovsky




BH-axion system

(1) Nonlinear Self-Interaction (Bosenova)

V = f21u%[1 — cos(®/ f,)]

o> Vip—pising=0 o=

(2) GW emission

Super-Radiant Modes

\/\/\, \ Decaying Modes

Gravitons
\>
Rotating Black Hole

Accretion

Arvanitaki and Dubovsky

BH-axion system

(1) Nonlinear Self-Interaction (Bosenova)

V= f(f/f[l —cos(®/ f,)]

o> V2o — p?sing =0

©
[l
| e

‘We want to clarify what happens when the
nonlinear self-interaction becomes important
at the last stage of the superradiant instability.

We perform a 3D simulation of a Sine-Gordon
field in a Kerr background.

(2) GW emission

Super-Radiant Modes

\N\/ \ Decaying Modes

Gravitons
)
Rotating Black Hole

Accretion

Arvanitaki and Dubovsky
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Bosenova in condensed matter physics

http://spot.colorado.edu/-cwieman/Bosenova.html

-
[Start: 10,000 atom BEQ] Wutching the dynamics

BEC state of Rb85 (interaction can be controlled)

“Bosenova”

like tiny supernova:
lapse
L.\JJ[K sion

+small cold remnant

@

B 1500 atom burst
T~200nK

Switch from repulsive interaction to attractive interaction

Wieman et al., Nature 412 (2001), 295

Axion Bosenova

639
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Setup of a typical simulation (1 = m = 2)
Equation V2o — p2sing =0

Setup a/M = 0.99, Mp = 0.89

1oz me2 YT (Equatorial plane)

11111

"
] 0
A , <
/ ‘ 1 rsing o
/\ | - [
o8 1

L
2
Mu

Initial condition: T e w e
7 COS ¢

The bound state of the Klein-Gordon field of the I = m = 2 mode.

Initial amplitude = 1.2

Typical simulation (I=m=2)

Axion field on the equatorial plane (9 =T / 2)

((ZS = 0) (Equatorial plane)

/M = 500.0

v SIS I+

20 45 -0 -5 o 5 10 15 20

20 20

—200 < 7, /M < 200 rcos ¢
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Summary of the typical simulation (1 = m = 2)

200
180 |
160 |
140 |
120 | !
100 | ‘
50 f |
60 | “\ =0
40 | I

I
20 =1000 |
Y e N M

220 I I I I
-200 -100 0 100 200 300

r«/M

dE/dr

When the peak value is sufficiently large, fairly large amount of
axion cloud (20% of total energy) suddenly falls into the black hole
in a relatively short time scale.

This “bosenova implosion” occurs when

E =~ 1450 x (fa/M,)> M

(Gravitational Waves
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Motivation for studying GW's

Does the GW emission stop the growth of axion cloud by
the superradiant instability?

Super-Radiant Modes d E

2
_ x E
Decaying Modes a
Rotating Black Hol
Y- m
Accretion a al
dt

If the bosenova happens, can we observe the signal by
GW detectors?

What kind of signal can be expected?

Steps of our research

@ Does the axion cloud grow until bosenova?

Flat approximation

Perturbation of Kerr spacetime

@ Perturbation of Kerr spacetime (during bosenova)
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Steps of our research

@ Does the axion cloud grow until bosenova?

Flat approximation

Perturbation of Kerr spacetime

@ Perturbation of Kerr spacetime (during bosenova)

Steps of our research

@ Does the axion cloud grow until bosenova?

Flat approximation

Perturbation of Kerr spacetime

@ Perturbation of Kerr spacetime (during bosenova)
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Flat approximation

Axion Compton wavelength > BH radius Mp<1

(Axion cloud distributes in a distant region)

Axion Cloud by Newton Gravity

Hl> We calculate

GW:s by Perturbation of a Flat Spacetime

Ignore the nonlinear self-interaction

V2E, n—0—1! .. _ir

o= [_w(%)?’/z Wﬁ b (2kr) L2 (2k7)Yem (6, )
Mp?
k:=+p?—-w?~ s

n

Axion cloud grows!

Energy extraction rate Detweiler (1970)

dE,
dt

24+2¢(n + £)!
n2t4(n — ¢ —1)!

{(zeﬁ)!(%)!r

l=m=3,a,=0.99

¢
[42 +a2(2 - )] .
j=1

E 5
=2 =5 ) an(Mp)*+?
(M>a( 1)

0
Ng 10 | AC growth rate ]
;f E /M= 10'? e
= 20 ¢ = —
3 P 10 i
5 . P
IS 30 — GW emission rate
3 |/
oo -40
5
- /
-50

0 005 0.1 015 02 025 03 035
Mu

Energy loss by GW emission

dEqw
dt

- (B) oo

04

16¢+10(2¢ — 1)T(20 — 12T (£ +n +1)2

RS (0 + 1)D(0 + 1)*T (40 + 3)T(n — 0)2
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Steps of our research

@ Does the axion cloud grow until bosenova?

Flat approximation

Perturbation of Kerr spacetime

@ Perturbation of Kerr spacetime (during bosenova)

GW energy flux in a Kerr background (1)
The formula for evaluating the amplitude

/ (R, V™ — PV ki) nédS = —167G / hi, T/ —gd
oD D

Physical perturbation
Homogeneous solution

Rate of GW energy emission/absorption

dES)
dt

~ @ | (50,77

dESD)
dt

~ (0 —mQy)w

i 7%

out-mode down-mode




GW energy flux in a Kerr background (2)

Homogeneous solution

Teukolsky equation

Yy €q

[(r2+a2)2 Al (9271/1+4Mar 0?1 a72_ 1 (‘9271/)
A a2 T A o9tdg | | A sin’6| 9¢2

Cams O (emd 1 9 (0PN a(r—M) icosO] oY
. 0r(A ar ) " smeoe M%) "¥ T A T e 99

{M(TQ —a?)

—9s riacose] 7¢+(8200t2978)1/}:47TET

Radial Teukolsky equation

K2 — 2is(r —
A—Si <AS+1dR> 4 < s M S + 4diswr — )\) R =0,

dr dr A

K= (r?+ a2)w —am and )\ = A, + a*w? — 2amw

GW energy flux in a Kerr background (3)

Several studies on reconstruction of the metric

Wald, JMP14 (1973), 1453.

Cohen and Kegeles, Phys. Lett. 54A (1975), 5.
Chrzanowski, PRDir (1975), 2042.

Wald, PRL41 (1978), 203.

Dias, Reall and Santos, arXiv:0906.2380 [hep-th}

Reconstructed metric (outgoing radiation gauge)  Chrzanowski (1975)

By (IOP) = p* = {=n,n, (8 — 3a* — B4 57%)(0 — 4a™ + %) — mumy, (A 4 5u* — 37" +9)(A + 1 — 47%)

Fngm (64 57* + 8 =30 +7)(A + p* = 497) + (A5 — 1= 37" = 7)(6 — 4 + )]} 1o Ry () 2,

me

(0, ¢)e™"
+Pp~* {—nun, (6* — 3 — B* + 5m)(6* —da +7) — m;my (A +5u— 3y +7")(A+p—4y)

Frgemy, [(0 457 + 8% = 3a +77) (A + = 49) + (A + 5p — p* =37 +7") (0" — 4o + )]} 12 Ry (1) 125755 (0, )
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Agreement with the flat approximation

a.=0.00 4. =000
4 : : 6 : :
ol E = m = 1 & K =m = 2 . .
S 67 flat approximation S 8 flat approximation
~ 8 =
Lu Lu
S 10| =
= S
] . | I
Q Q
S 14t S
El ) =
@ -16 ¢ &
= 8t - .
L L L L 220 L L L L L S
0.1 0.2 03 04 0.5 03 04 05 06 07 08 09 1
Mu Mu
ax =0.00
4 ; i
o« ell=m=3
S 3| flat approximation
[\if -10 g
S ! (Schwarzschild, a=0)
S i
=)
o0
Q
—
12 14 16
Mu
Axion cloud in 1 = m = 1 mode
o (Bm) = (2,2), (P =+1)
O (lia ﬁ’l) - (37 2)3 (P = _1)
o (¢,m)=(4,2), (P=+1)
(0,m) = (5,2), (P =—1)
ax=099
ax=0.99 52 AC growth rate '
4 ; ; ; : o at E/M=10° —— ]
SN - oo d < = — \‘
g 6 o DDW_\EK %; -6 _— 10-1 \ /X,xfx S 1
] -8 ) s P
X =< 8F X 1
= 10 S o
3 12 g .0 f T 1
< = " GW emission rate
= e § 12t e ]
& 6 S Ll 7 ]
= 18 A L ‘ ‘ : e
01 02 03 04 05 06 o 02 03 04 03 06
Mu
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Log, o[(dE/di)/(E, /M)*]

Axion cloud in 1 = m = 2 mode

(o] ({,Th) =(4.4), (P=+1)
o (,) = (5,4), (P=—1)
o (L) = (6,4), (P =+1)
(,m) =(7,4), (P=-1)
ax=0.99
-6
8t
-10 ¢

Log, o[(dE/dNI(E /M)*]

03 04 05 06 07 08 09 1
Mu

ax =099
4t SR
AC growthrate \
6+ — = ,j‘ g
E{/M:]O //-l XXX‘X
-8 r // 10 X
£G5S
X
10 | L
x £
12 < " GW emission rate
14 al XX
e
-16

02 03 04 05 06 07 08 09 1

Log,o[(dE/dD/(E /M)*]

Axion cloud in I = m = 3 mode

o (£,m) = (6,6), (P =+1)
° (g,fh) (776)7 (P: _1)
o (4,m) = (8,6), (P=+1)
(¢, m) = (9,6), (P=-1)
-4
-6 |
-8 r
-10
-12
-14 +
-16

'
oo
N T

)
S

ax=0.99
AC growth rate — ) £
3 — 3¢
EJM=10"- o o
10! e
X e X/XX :
X XXXX
Lo GW emission rate
X
X
L X
<
04 0.6 0.8 1 12 14 1.6

Mu
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Summary

Summary
@ Axion Bosenova

Effect of nonlinear self-interaction stops the superradiant
instability and causes the bosenova,

Bosenova is characterized by sudden infall of positive energy
@ Gravitational Waves

We studied GW emission from the BH-axion system in the
superradiant regime (before the bosenova)

|f|> GW emission is weak and does not stop the
growth by the superradiant instability

Axion cloud continues to grow by the superradiant instability
until the occurrence of the bosenova.
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“Dynamical process in Holographic QCD”
by Shunichiro Kinoshita

[JGRG23(2013)110715]
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The 23 workshop on General Relativity and Gravitation in Japan
Hirosaki University

Dynamical process in
Holographic QCD

Shunichiro Kinoshita
(OCAMI, Osaka City U))

K. Murata (Keio), N. Tanahashi (Cambridge),
T. Ishii (Crete)

in preparation

AdS/CFT correspondence

- AdSg/CFT,

gravity gauge theory
@ng XS T = 4 super Yang-Mills

N, D3-branes

Strongly coupled gauge theory corresponds to classical gravity
A new type brane will be added for quark degrees of freedom



Holographic QCD

Karch, Katz (2002), Grana, Polchinski (2002), Bertolini et al. (2002)

- D3/D7 system

- A probe D7-brane is embedded in AdS5XS° geometry
generated by N, D3-brane

D3
d 2
ds® =r?[—dt? + di2] + — + d02 o7
r
1
:{Zﬁdﬁ + dfgj + —[dp” + p2dQ§]+ dw? + dwg] xlﬂf
r
D3 b7 — w1234
ph=wi +wy +wi+wi, 7 =p"+wi+w
, OXr XV Embedding function
DBI action: Spr = —M7/d8y\/— det <g,W(X)a—yia—y,,) we(p) Z%ﬂ = const.
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string between D3-branes and D7-brane < “quark”
fluctuations of D7-brane < “meson”

} quark mass

Finite temperature

Mateos, Myers, Thomson (2006, 2007)
« We consider asymptotically AdS BH as the bulk

spacetime
- Black hole in the bulk theory & finite temperature in the
boundary theory . T'h
Hawking temperature: T' = —
AdS-Schwarzschild x S° ™
ra 1 rA\ T
ds? = — 72 (1 — T-{;) dt? + = ( - T—{;) dr? 4 r2dz% + dQ2
- Embedding function.
quark condensate: (O,,) # 0
w(p) ~ml+ =5+
quark mass P

« Phase transition

- The brane intersects with the black hole when the black
hole is large (high temperature)

- Fluctuations will dissipate (QNM) & meson melting
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Phase diagram of static

embeddings
« Whether the brane intersects with the horizon or
I’:JCO);E | | A | Profiles of the brane in the bulk
.o :\\ i Mir_wkowski embedding
002 | B\ . :Z ‘ n;=1.2 c‘=-0.004187
¢/Thaow o e v rms | m=os c=-omo

08 m=092 c=-0.0224
-0.06 - w :
Black hole 06
-0.08 - | embedding | 1 04l "
.01 L | ! ! 02 i
0 1 2 3 4 5 o o 2 e ‘
0 05 1 156 2
T T/m b\
@ temperature Black hole embedding

Minkowski embedding Black hole embedding

Time evolution?

- Black hole formation & thermalization of
plasma
- Dynamical background spacetime

« Change of brane embedding < phase
transition
- Time evolution of branes

- We would like to know dynamics of the
D 7-brane where BH is forming.
- How will the brane fall into the horizon?
- What does happen to dynamical embedding?
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Our setup e
Z
- Background: AdS-Vaidya g
- From pure AdS to BH 5
2 1 2 2 3
ds® = <[ F(v, z)dv* — 2dvdz 4 d75] +
22 M, 1
F(v,2) =1— M()z* M) ={ M;sin® a (0Sv=Av) AV
0 (U < 0) Static embedding
in pure AdS

Final radius: r, (My = rﬁ) Duration of the energy injection: AV

- D7-brane
OXH OXV
_ 8 _
Spr = M?/d y\/ det (gMV(X) Dy ayb)

We will numerically solve dynamics of the D7-brane on this background

—guations of motion

- BEvolution equations (2d wave egs.)

3 sin @ 0.F F Z
D*V — = D,ZD" dDYV — a _
V-2 V=32 DDV (2 Z)DVDV+ ~A=0,
3 sin Fo.F  F?

0] 1
D*2 - =D,ZD*Z — D, ®D*Z —0, F + D, VD*V
A 3COSCI) + ( o 2 A ) v

2F ZF
—|—<8ZF Z)D VD“Z——D ZD“Z——)\—O

3 sin & sin &
D?*® - =D,ZD® — 3 D, ®D*® — A
Z cos @ 2cos d

- Y

- Constraint equaions

6
Yob = =573 ["F (V. Z)DaVDyV = 2D(V D) Z + Z° Do ® Dy ]

1
ds? = —[=F(v, 2)dv? — 2dvdz + A2 4 dp? + cos? ¢pdQ2 + sin? pdp?
z
Embedding functions: v =V (yo,1),2 = Z(y0,%1), 9 = ®(y0, y1)
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Double-null coordinates

- EOM

constraints

gauge: C, =—F(0,V)? -20,V0,Z + Z%(9,9)* = 0,
Yuu = Yoo =0 Cy =~ F(9,V)? ~20,VO,Z + Z*(8,2)* = 0.
evolution egs. Oy, Op X. + f(}(7 0uX, (‘%X) =0 X =(V,Z, ®)
(tit1,vj41) 20,0,V — 3S‘“I (0, @8,V + 0,V ,®) — (FZ 5= >a VO,V — 320,80, = 0,
9111<I> 2

288Z7—8ZF)Z

3 (0u20,Z +0,20,9) + (FV+FF275F—>8 Vo,V

Uir1$V; Up, Vit1
(ti4125) (8 vs1) +<sz%> (OuVO,Z + 0,20,V + BZF0, 80,8 = 0,

20,0,® — f(a 20,8 + 0,90, Z)fssmq’a oo,» — Sn® 3

. ) s ® ! cos® 72
(ui,v5)
X (FO0,V O,V + 8,V8,Z + 8,Z0,V) = 0,

Vj+1

Uz—l—l
Xit1,j41 = Xiy1,; + Xijr1 — Xy / / dvf

Sub-critical case = i~
low temperature) .

c rhm,

-0.06 -

* Quark condensate

-0.1
[

Power spectrum

0.015 —_— 0.07
vev Wsi
Q 001l | mass 1 0.06 — ‘
g F‘ q | r | \ﬂ‘ 1 005 106 [ \ ‘A‘ ‘\
8 | | “ /‘ \ L \ \ {\ 0.04 107 M \“\ \‘N‘ \
1 3 /N | I
Se o | i w P@ N
8 | H I M' | 008 o S 0
0005+ | / SN
x ‘J \ ] \ U 1002 109 |/ NN N L
S oo \ | b U VY ]
e 1 0.01 J
o 1 U \ 10710 ‘ ‘ ‘
-0.015 ! w w \ ‘ ‘ s 0 0 5 10 15 20
5 0 5 10 15 20 25 30 35 w

time v (r, = 0.5, AV = 0.5)

+ After the energy injection, the D7-brane remains the Minkowski
embedding with periodic oscillations.

» Excitations on the brane have discrete spectrum. & stable
meson
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+ Relation with injection time-scale: AV

0.02
0.015 -
9
3 0.01 |
[
3 0.005 |
8 c
o 0+
X
—
© -0.005 -
>
(o
-0.01 -
-0.015

+ As the time-scale of the injection is shorter, the excitations are harder.
* Non-adiabaticity is important for meson excitations.

Super-critical case
(high temperature) ==

/73 o

-0.06 -

« Quark condensate

0 T x\ T T T T T T T 2.5
\ vev ———
-0.02 - mass
12
-0.04 \
-0.06 - 115
c -0.08 - M
01} 11
012 | _
1 0.5 Equilibrium value
014 | el = —0.144
-0.16 I I I I I I I I 0

-1 0 1 2 3 4 5 6 7 8
v (ry, = 1.25, AV = 1.0)

* The quark condensate settles into an equilibrium value of the static BH
embedding.
* The excitations dissipate. (quasi-normal mode) < meson melting
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« Shapshots of time-evolution of the D7-brane

- Although any equilibrium BH embedding oulo1es

-0.01
-0.02
-0.03 -
0.04
-0.05 -
-0.06
-0.07 -
-0.08

-0.09

14

Ve—oz | ( _cosé  sing
0.2 (p z v z )
06 ——— |
10
14 _

0.6

07 08 09 1

156

2 25

Eventually, the brane becomes the equilibrium solution of

the BH embedding.

Overeager phases-~

0.02

T T _—
r om A 11
Mlnkovism —

embedding

0025

. lack hole

a theddina
P S E—
rh/m

008

0.1

Nnot exit if static, the brane can intersect with the
horizon dynamically. (because of inertia)

Quark condensate

14

/ 108

1 04

1 02

-1 0 1 2 3 4 5 6 7 8

(r, = 1.06, AV = 0.5)

|4

14
12 -

1 [
08 -
0.6 -
04 -
0.2 -

0

Snapshot (late time)

09 1 1 L 4
02 03 04 05 06

0 05 1 15 2 25
p

*  While the black hole has settled into the final state, the brane
remains dynamical intersecting with the horizon.



- |If the energy injection is sufficiently slow, the

brane can not intersect with the horizon.
0

14

vey
'0.005 r mass 112
-0.01 | .
-0.015 | | | ﬂ /]
002 - \/\M ;\\ //fo.sM
c | | /
-0.025 |- \) | \\ U Vv 106
0.03 | | \ ’
| I ! 104
-0.035 | I
0.04 | J 102
_0‘045 | | | | | 0
0 5 10 15 20 25

v (r, = 1.06, AV = 5.0)
* This is just sub-critical where the brane remains the Minkowski
embedding.

* non-adiabaticity plays an important role in the overeager phase.

Summary

+ We have numerically solved time evolutions of the D-

brane in the AdS

- The equations of motion become a set of 2d nonlinear

wave eguations and constraint equations

« Three cases depending on final temperatures and

iNnjection time-scales.

- Overeager case other than sub-critical and super-
critical cases

- Non-adiabaticity of the energy injection is important.

- What is the final fate of the overeager cases”’

- |t is expected that the brane will be singular within finite

time from extrapolation of our numerical result.

- Stringy effect? (Finite N?, reconnection”?, and so on)

- How can we interpret it in the boundary theory”?
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“No-boundary wave function toward good inflation models”
by Dong-han Yeom

[JGRG23(2013)110716]



No—bouvxdar\j wave Sunction toward

good Wwflation wodels

TARK R AR aF 5P Yukawa Wnstitute Sor Theovetical Physics

HIIETERRS Downg-han Yeowm

®ased on

Hwang, Sahlmann and DY, avXiv:il07.4653
Hwang Lee, Sahlwmann and DY arXiv:(zod.oliz
Hwang, Kim Lee S3ahlmann and DY arXiv:(z07.0359
Hwang Lee Stewart DY and Zoe avXiv:(208.6563
Sasaki, DY and Zhang, avXiv:307.5943
Saito, Sasaki, DY and Zhawng, n prepavation
Hwang, Park and DY in prepavation
Hwang, Kkim Lee and DY in preparation

+, I Preparation




Why (Euclidean) quantuwm cosmology?

Tvaditional Problems

. The s‘mgu\a\r‘\t\j theovewm:
our universe should begim Svom the initial Sthqularity.

How to vesolve?

2., Initiadl condition of Universe:

IS theve @ principle that uniquely deterwmines ouv universe?

I§ wot, is the hypothesis that explains our universe
probabilistically/statistically veasonable?




Quantuwmw COSW\o\o”

Owve can ded|l with these problems by introducing the
Schrodinger equation fov §ields: so-called,
the Wheelev-Dewitt equatiow.

& &
(Gi.j::r—— —"5*7”2 (3::3)\1,[(3)9]= 0

if 57&:

3-wmetric (and fields) ESuPerspace
(quantized)

wave function of universe
Hawmiltonian constraint

No-boundary proposal

wWhat 1S the boumc\a\r\j condition of WDW eqwn?
Perha?s, the ground state?

Euclidean action

Wolhy1=N [ 8g exp(—Ig[g])

Path inteqral
ovey veqular compact wmanifold
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R R v o, — S T P e " T

wave Sunction of Universe

Tield divection ~ difSerent initial condition

e R e R T v, =

Steepest-descent ApPProximation




Steepest-descent Approximation
~ Sum-ovey nstantons

Alternative histories:

wany-world interpretation

Probabilities will be aSSighed
|

Present univevse:

we want to know

the probability of here,
|

nitial singularity = wave function




-

Due to analyticity, the path-integral
still makes sense,
even though we analytically continue
+0 Euclidean time,

Theve can be various
ana\\;-l-,ic continuations.

%‘ug—bang Singularity




Find geometry over the complex time,

until the geometry to be veqular.

How to calculdte Path inwteqval?

< ) APproximation [: Mini-Supevspace

& =N’ + "




How to calculadte Path inwteqvral?

t:.;)A??VOXTW\Q'!;TOV\ 2: Steepest-descent (Sum-over fuzzy instantons)

How to calculdte Path inwteqval?

(L’)A??voximatiom 2: Steepest-descent (Sum-over fuzzy mstantons)

Van(q) % ) Plgexr)e Elieml/?

ext

Sp = 212 / dn {— 3

(0 4 ) + 3P+ PV ()
9 pavawmeters determine | histovy.

6 of thew ave deterwmined by
vegulavity + compactness.




How to calculadte Path inwteqvral?

t i3 Requivement: classicality

By tuning 2 pavameters we Satisty
C\assica\i-b\j of wmatter and wmetric.,

How to calculdte Path inwteqval?

( =43 Requivewent: classicality
(VIn)?| < |(VS)]

By tuning 2 pavameters we Satisty
classicality of watter and wetric,

n the end we obtain
the probability distribution 3s a

one (§ield) dimensional functiown.

(Havrtle, Hawking and Hertog, 2007)




How to calculadte Path inwteqvral?

t i3 Requivement: classicality

Lavge e-Solding is exponentially
Suppressed!

(Havtle, Hawking and Hevtog, 2007)

Does this prefer wm§lation?

unfortunately, Euclidean probability does not prefer nflation.

Possible answers:




Does this prefer w§lation?

unfortunately, Euclidean probability does not prefer inflation.

Possible answers:

[, nw§lation s WYong (Ekpyrotic, big bounce, string ¢as coswology, etc.)
Ground State 1S wrong (vilenkin's tunneling proposal)
Quantum coSmology 1S wrong (Susskind’s multiverse + anthropic)

Swall wmodification (Havt\e—HawkIV\3—Hevt09’s volume weighting)

IS theve any better explanation, apart frow these unsatistactory

oPMnions?

Towavrd 3ood wilation wmodels

Prefevence of |avge e—‘{o\c\'\wgs




CV-H;eY-\-OV\ OQ 3 90 0d w\O de‘ (Hwang, Park and DY, W prepavation)

Typicality for 3 given hypothesis

PN > 50]
PN < 50|

'TE

For 3 given probability cutof§, there is covresponding typicality bound.
1§ the typicality is swallev than the bound then we veject F3p
the hypothesis.

Thvee ways to prefer inflation

(Hwarg, Park and DY, ™ preparation)

rr . The §irst nflation began at lavge energy scale. J

r

r 2. Yotential shape 1S finely tuned, J
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CASEI: Tirst inflation was near-Planck scale?

(Hwang, Park and DY, W preparation)

17.50 X =193 X ki [1] + 17.50 x 1.44 x p~192,

25.33 x p~ 193,

CASE(Z First wwilation was near-?lanck scale?

(Hwarg, Park and DY, W preparation)

VIdA Planck scale inflation: Net

Planck scale inflation gives
mitial conditions for the secondary inflation

low-energy scale: Nadd
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CASEZ: F’\v\e—-bMV\TV\S of the potential (Hwang, Park and DY, in preparation)

CASEZ: Stavobinski-like wiodel (kaiiosh and Linde, 208)

Liotal = vV —9J [@
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CASE3: New ‘\V\SVec\IeV\t Svow wulti-field wilation

(Hwang, KKim, Lee, Sahiwann and 1Y, 2012)

P[J\rﬁ] 6: (él!q&Z&'"!‘_ﬁf\r)

~ exp (m~2 = Ny) 3 ((I)Z _ N/3)2

dP [®] ~ exp yry ol SNV dd

CASE3: fole of wass hievarchy

(Hwang, KKim, Lee and DY, ™ preparation)

—#—(m /m }'=0.125

——(m /m }’=0.25

—A—(m /m }*=0.5 =~ Unstable by perturbations
- \\ along massive direction

=
—




CASE?: new wngredient fvom wmassive gravity (dRGT)

(Sasaks, DY and Zhavg, 208)

Sp = 272 fdr {2&31’;5 — 6 — n1§a3Yi V—f }

4m?

% = ~g

CA353: New ivxgved’\ewl; Svow wassive qravity (bi—g\(a\/‘\t\j)

(W preparation)

127 M3 ) ME Ay(a)
= TTA(e) T Miksa)
122 M3 ( 4 Az(a)
- Aq(a) Aifa)
2
£

12m2 M m
~ [ iy
Ay * J\? !

675




676

Quantuw coswmology can be 2

new wotivation for wmassive gravity!

dR&GT, bi-gravity, So(3), ---?

Can it remain tImprints?




677

“On the graceful exit from Higgs G-inflation”
by Taro Kunimitsu

[JGRG23(2013)110717]
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Graceful Exit from
Higgs G-inflation

Taro Kunimitsu (RESCEU, Univ. of Tokyo)

arXiv:1309.7410 [hep-ph]

in collaboration with Kohei Kamada, Tsutomu Kobayashi,
Masahide Yamaguchi, Jun’ichi Yokoyama
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Higgs In cosmology

e Only scalar field in the Standard model

—Might be the responsible for inflation

Higgs in cosmology

e Only scalar field in the Standard model

—Might be the responsible for inflation
1. o 1,4

1
X = —ig‘“’augo&,go A~ 0.1
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Higgs Inflation
1
Lo —5@93
with f ~ 5 X 104

Bezrukov, Shaposhnikov (2008)
— r=0.003, n, = 0.967

e Small tensor fluctuations
— Cannot be observed in the near future

Higgs G-inflation

e Kamada et al. (2011)

M? 1
S = /d4a:\/—g ITPR—I—X - 1)@4 — G(@,X)Dgp]
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Higgs G-inflation

e Kamada et al. (2011)
4 MI% 1, 4
S= [ dzy=g | = R+ X = 22" = Glp, X)Og

X
Glp, X) = —% in the original model

Higgs G-inflation

e Kamada et al. (2011)

slow-roll equation of motion

)3Hgb+)\g03:()

\ Extra friction term

r=0.14, ns = 0.967
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After inflation
Ohashi, Tsujikawa (2012)

e equation of motion

p -2 2.4
PP P 3p°p . . 3
1 —6H 2 Hp+ A
( i M4+2M]%M8>90+3 pEAP

fogr_ 3% 3¢t BT\ pe?
2M?2  2MZM4  4AM3Z ) 2M4
P P P
Ohashi, Tsujikawa (2012)
e equation of motion
. .2 2 .4
PP P 3¢ . .
(1—6HM4+2M4+2M]%M8)¢+3H¢+A¢3
(ogzr_ 390 360 3ty e
2M2  2MEM*  AMZ ) 2M*
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After inflation
Ohashi, Tsujikawa (2012)

e equation of motion

. .2 2.4
po P 3p7¢ 3
(1_6HM4 At 2M1%M8> — 0+

og 30360 ememy @8
M2 2MZM* T AMZ ) 2M*

After inflation

Ohashi, Tsujikawa (2012)

e sound speed

_ P P2 32t
1 —6H 377 +23m + 2M2 M¥
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After inflation

Ohashi, Tsujikawa (2012)

e sound speed

. oo 2.4
2 1_(4H90+290)%_21\§1%fM8 < O

—instability at small scales

Solution
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Solution

Add an X? term

Lo

X
d*z/—g Mpp o xpLox2 1y a9
/ x [ + +2M 1 ) +M4

Solution

Add an X? term

equation of motion

3p? P ¢ 3%t . @?
1 r_ _6H 2 3(1 ) Ho + \o°
(+2M4 vit2yats ERVE @+ +2M4 O+ A

oz B3F 3&7 3¢ +3/\904 v
SM2M4  2ME 2MEM* T AME | 2M*
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Solution

Add an X? term

equation of motion

3¢ P 9 3p*" 1\ . ¢ , 3
W =2 6H 2 3(14+ 2 ) Hp+ A
( Coap PO T T oz ) YT\ g ) T
=4 22 -4 b 4 <2
_<9H2_ 3¢ 3¢ 3¢ 390>9090 0

SM2M4  2M3  2MEM* ' AME | 2M*

Solution

Add an X? term

sound speed
1_|_ 1 2—(4H—|—2)(’0 . 902Sb4
onis P LN N VERRY VERS VE

s 3 »2 _ P P2 3p2 51
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Solution

Add an X? term
sound speed
“ 1 .« 9 . . 2 K4
, Y mE® \{ (4H$ +20) 3 — 21\?5]\48

S 3 22 PP P2 3p2pd
LY 5im¥ /- 6H s + 290 + oaz o

Solution

Add an X? term
sound speed
4 . . oo 2 .4
| 2]\14’4 902\ (4H$ +20) 3 — 2]\(’;123sz8

S 3 2 P P2 3p2p*
L X 5=2¢7 6H 377 + 23 + 2MZ, M

— Both problems avoided!
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Solution

/d%ﬁ[ PR+X+$X2— ZM +%D¢
r=0.116 — 0.155,
ns = 0.958 — 0.964
M — oo sma||>M without instabilities

New Class of
inflationary models

e (Generalize kinetic and Galileon terms

1 1 902n+1Xm
Mg_l 4 M2n+4m
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1 ' 1 4 (p2n—|—1Xm
T ]\7£—1X B Z)\gp T M2n+4m He

()
— N
> O
o Bl Planck+WP: ACDM + r — 1) —
éﬁ " e =1
= o - ) = 2 7
© e =95
]
v
g2 _
g o
(@)
c
=3 ]

o

o ‘\

Q : L\

© 0.94 0.96 0.98 1.00

Primordial Tilt (ng)
1 p 1 4 S02714—1)(771
X+ =& =M e Y

(@)
— N
> O
o B Planck+WP: ACDM +r — 1 —
S in mm =1
- S - =2
© e =95
]
v
g2 _
g o
2
c
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() \

Q : A

© 0.94 0.96 0.98 1.00

Primordial Tilt (ng)



690

Tensor-to-Scalar Ratio (r)

005 010 015 0.20

0.00

1 ' 1 4 s02n+1){m
Xt =X~ T e Y
B Planck+WP: ACDM +r
mm =0

- =
- = 2
7, =5

oo
8
-
e
‘‘‘‘‘‘

-
Amt

~,
‘,
o,
*
.,
>,
.
o,

0.94 0.96 0.98
Primordial Tilt (n)

1.00

Summary

¢ |nstabilities in Higgs G-inflation avoided
by adding a higher order kinetic term

e New class of Higgs inflation models,
consistent throughout inflation and
reheating

e (Typically) a large tensor-to-scalar ratio
—Would be detected by Planck
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S.Oe_6 1 T T T T T T T .
T\Smallest value of M
45e-6 | for which instabilities can be avoided |
4.0e-6 | .
M /M P
3.5e-6 } .
3.0e-6 | |
2.5e'6 - L L L L | | | _
1.5e-5 20e5 25e5 3.0e-5 3.5e-5 40e5 45e5 5.0e5
M /M p
(@)
— N
= o
5 B Planck+WP: ACDM +r
=
LN
= =t M=39x10"°Mp -
o © M =1.4% 1075 Mp
M=36x10"3M
mLn)cp M 15i10—5Mp B . = 60
= 1. P
E = B Ne =50+
)
wv
@
LN
F ol 1
o M =2.7x 103 Mp
M =6.8x 107°Mp
S . .
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Primordial Tilt (ns)
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52 =M [ d'wad [Q & - Taep|.
M2X % e ) N 2
o= | Kx =26, + 4HpGx +2¢Cx +2X$Cxx +2XCx, — WXQG?X]
MEX [ Hghe 2 .
o2 x+—5 [—4m — (m — 1)a + 2(m* + Xmx)n| — Wg2h2m2},
M232X "
_¥p K IXK . ) 6
o2 x + XX—2G¢+6H¢Gx+6H(pXGXX—2XGX¢+WX2G§(1
MEX [} axk Hghe 2 6
@2 X XX+ [—6 (m +me>+(m+1)a/} +W92h2m2};
p




