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PREFACE

The Fifth Workshop on General Relativity and Gravitation was held at Symposion Hall (Nagoya
University) from January 22 to 25, 1996. The main purpose of this series of workshops is to
review the latest observational and theoretical work in gravitational physics and relativistic
astrophysics. A further purpose is to promote lively and stimulating interactions between
researchers working in fields related to relativity and gravity -- including particle physics,
astrophysics and cosmology.

110 researchers participated and 57 speakers gave 12 invited talks and 45 short contributions.
Their research thema ranges over a wide field. We believe that there were mamy useful discussions
and interactions between the participants.
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Chaos in Stellar Systems

Toshio Tsuchiya
Department of Astronomy, Kyoto University, Kyoto 606

March 11, 1996

1 Introduction

Study of chaos has a long history. For example, Poincaré discussed the complex behaviour
of the 3-body problem of celestial mechanics, in 1982. It is still very active, and applied to
remarkably wide range of fields, not only physics, but also chemistry, biology, economics,
and even for amusement park (Jurassic park). However, I have an impression that the
outcome of the study is unclear. A part of interests in chaos are paid toward its mathe-
matical properties. Thus before I started working on chaos, I had a simple question: how
is chaos useful, or how important is it in studying Astrophysics. I guess that this question
is somewhat common. Therefore, I will devote a half of this paper to a review of this issue.
There I try to figure out substance of chaos in Stellar dynamics. And the result of our
recent study about the evolution of gravitating systems using a one-dimensional model is
given in the latter half.

2 Chaos in Hamiltonian Systems

2.1 Definitions of Chaos
The definition of chaos is not unique. I enumerate three main definitions of chaos beneath:

1. Unpredictability

This is the most naive and intuitive concept of chaos. Even when one has sufficient
information of the state at a instance, he/she cannot predict the state in a future.
Of course, in some system, it is because random noise makes the evolution undeter-
ministic. However, a more interesting example is the model of atmospheric motion
suggested by E.N. Lorentz which has only three variables and the evolution of de-

terministic, but very sensitive dependence on the initial condition makes it actually
unpredictable.

2. Positive Lyapunov Exponents




This means the existence of exponential instability. A system with N degrees of
freedom has 2N Lyapunov exponents (A, i = 1,..., N) corresponding to the growth
rates of the perturbations with respect to 2N independent direction in the phase
space. The maximum Lyapunov exponent is determined as follows:
1 d(t)
A= lim 3 0y (1)
t—oe

where d(t) and d(0) are the separations in the phase space between two nearby orbits
at times ¢ and 0, respectively.

In more mathematical descriptions, this second definition of chaos is expressed that
the Kolmogorov-Sinai entropy (KS entropy) is positive. I don’t give the exact ex-
pression of KS entropy, Ay, but it is useful to give a simple relation which is valid in

many usual case:
hk = Z A,’. (2)
>0
This condition guarantees the exponential instability, and it induces the strong sen-
gitivity to the initial conditions. That causes chaos.
3. Non-Integrability

This definition is only for Hamiltonian systems. Instead of explaining the non-
integrability, I explain integrability.

A system with N degrees of freedom has 2N canonical variables. If one can find N
independent integrals of motion I; which satisfy the following equations,

{L;,I}pn =0, { }rn is the Poisson bracket, (3)

it is possible to transform the canonical variables into the action-angle variables,
(6;, I;), where I’s are constant. In this case the system is called integrable. The
orbits in the system make tori in the phase space, and show only regular motion. On
the other hand, in the system which is not integrable orbits no longer show regular
motion but stochastic. Figure 1 shows the basic concept of the regular and stochastic
orbits. The concentric closed curves are the tori, the regular orbits, and the other
regions filled with dots are the stochastic orbits.

This definition of chaos sounds different from the above two definition, but they are
closely related. Motions on the tori do not posses any exponential instability. On
the other hand the exponential instability causes stochastic diffusion of orbits in the
phase space, to produce uniformly distributed stochastic seas.

2.2 Classification of System
2.2.1 Integrable systems

As described before, in this system all the orbits are regular. Thus the state of the system
can be predicted however far in the future. Examples of such systems are the Kepler motion,
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Figure 1: Orbital structure in phase space of the standard map system. The map from
the old coordinates (z,p) to the new one (z',p') is defined by p’ = p + 1/2 sin 27z, and
r=z+p.

and harmonic oscillators. The motion in a static spherical potential is also regular, because
there exists at least three independent integrals, the energy, and two components of angler
momenta.

2.2.2 Ergodic systems

In a ergodic system, the time average and statistical average (space average) are equivalent.
This property is one of the most important basics of statistical mechanics.

2.2.3 Mixing systems

There is a famous example given by Arnold and Avez[1] to explain the concept of mixing.
Following it, we take a shaker that consists of 20% rum and 80% cola, representing the
initial distribution of the “incompressible fluid” in phase space. If A is the region originally
occupied by the rum, then for any part B of the shaker, the percentage of rum in B, after
N repetitions of the act of stirring (see Fig. 2), is

#(¢"AN B)
WA “

where u is a measure and ¢ is the mathematical representation of the act of stirring. In
such a situation, physicists expect that, after the liquid has been stirred sufficiently often
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Figure 2: Mixing. This figure is taken from Arnold and Avez.

(n — o00) every part of B, however small, will contain “approximately” 20% rum. When
stated rigorously, this defines a mizing system.

The property of mixing is equivalent to relazation, because the mixing leads a system
to stationary, the maximum entropy state. Mixing implies ergodicity.

2.2.4 K-systems

A system is called a K-system if the KS entropy of the system is positive. In this case, as
stated above, there exist exponential instabilities. Let us consider a subset of the phase
space A. Due to the exponential instability, the measure of phase points which remain
in the A decreases in time. In other words, the system loses the initial information. The
physical meaning of KS entropy is a measure of rate to lose the information.

2.3 Intermediate zone between the order and chaotic systems

There is a inclusion relation between the systems stated above:
Ergodicity O mixing systems 3 K-systems. (5)

Chaotic systems are always K-systems. Thus the chaos is important for statistical prop-
erties of the system. A strongly chaotic system is guaranteed applicability of statistical
mechanics. However, there are systems which are intermediate between the order and
chaos. In such system, sometimes peculiar phenomena are observed.

The historic problem was given by Fermi, Pasta and Ulam[2]. They studied an one-
dimensional chain of weakly nonlinear harmonic oscillators. They had an expectation
that the nonlinear term drives the system to ergodicity and then the system achieves the
equipartition of energies. On the contrary, their numerical study revealed that the energy
given in one mode initially was not transfered to all another mode but some, and after a



while the energy returned to the initial mode. It seemed that even though the system had
many degrees of freedom, the ergodicity was broken.

After that many works are devoted to solve the problem. The main issue was that what
happen in the system of intermediate between order and chaos.

2.3.1 KAM tori

In a near-integrable system, which can be described as a perturbation from a integrable
system. If the Hamiltonian of the integrable (unperturbed) system is Hy, then the Hamil-
tonian of the perturbed system is H = Hy + eH,. In the unperturbed system, all orbits
make tori. Since the perturbed system is no longer integrable, one might expect there is no
torus in the phase space. On the contrary, what KAM (Kolmogorov, Arnold, and Moser)
theory tells is the tori around stable periodic orbits in the unperturbed system remain tori
in the perturbed system. Thus tori and chaotic orbits coexist in the phase space. Figure 1
was the example of the KAM tori.

2.3.2 Arnold diffusion

In a system with .V degrees of freedom, tori forin N-dimensional hyper-surface. With this
hyper-surface, N + 1-dimensional space can be divided into disconnected regions. Thus for
N > 2, the tori cannot divide the equi-energy hyper-surface, which has 2N — 1 dimensions.
In the system, all chaotic regions are connected. The Arnold diffusion is the motion of a
phase point to escape from the inside of the shells of KAM tori.

2.3.3 Stagnant motions

There are remarkable regions where two different orbits with opposite characters, KAM
tori and chaotic orbit, meet. In this region, orbits are chaotic, but behave like regular
orbits in some duration due to the KAM tori nearby. The time scale for a orbit to stay
near the KAM torus was estimated by Nekhoroshev[3], which is the longer for the nearer
orbit to the torus. The KAM tori are, however, present in fractal manner. Therefore an
orbit moves in a web of KAM tori like a Brownian motion. That is the Arnold diffusion.
In the region intermediate KAM tori and chaotic orbits, which is called stagnant layer, the
distribution of time for a orbit to escape from the layer is estimated as

P(T)x T\ (6)

This means the expectation value of the time of stay in side the layer becomes infinite.
That is why the motion is called stagnant motion. This phenomena cause the apparent
break of ergodicity and usual application of statistical mechanics.

Now it is known that the stagnant motion plays an important roll in the FPU problem.

Another example of realisation of the stagnant motion is found in a motion of asteroids
in the Solar system. Milani and Nobili{4] found by numerical studies that the eccentricity
of 522 Helga shows no change for a duration 1000 times longer than the Lyapunov time.
They call this phenomena steble chaos.
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Figure 3: Konishi-Kaneko model. A two-particle interaction is schematically shown.

One more example is the work by which I was motivated to study chaos in Astrophysics.
I will explain it in the next subsection.

2.4 Globally coupled standard map systems

Though ergodicity of a system is basic ground of statistical physics, we saw that near inte-
grable system could break this property. In particular, statistical physics is so important
in systems with many degrees of freedom. Thus in the next logical step, the study of chaos
in systems with many degrees of freedom was noticed.

For systems with a short range interaction force, in other words when the particles
couple only with the neighbours, some numerical work resulted that the volume of KAM
tori is getting reduced as the number of degrees of freedom increases|s, 6].

On the other hand, though not so clear results are obtained, the systems with long
range force show the different behaviours. Konishi and Kaneko(7} studied the roll of chaos
in a globally coupled system by using a simple model. In their the map of coordinates of
N particles, (z;, p;) — (zl,p}) is given by

K
| = pt— = S Nsin2n(z;—1x;), K>0 7
P p+2ﬂ _N—ljg,! sin 27(z; — ;) (7

T = Zi+p) (8)
This system is called the symplectic coupled map system, or sometimes simply Konishi-
Kaneko system, among the researchers of astrophysics. This system is depicted as a set
of particles distributed on a ring, moving under the attractive force (K > 0) which is
proportional to the sine of the angle between two particles,(Fig. 3).

In the system, there are two quasi-equilibria. One is the uniform state, in which particles
distribute uniformly on the ring, but the motions are random. The other is the clustered
state, in which most particles make a clump and rotate on the ring as a whole.

From numerical simulations, they found that the system start with the uniform state
transforms into the clustered state after a while, and then returns to the uniform state.
The system repeated the transformation, which appeared similar to the transition of the
excited modes in FPU problem.

Analysing microscopic dynamics of the system using the variation of the Lyapunov
exponents revealed that the clustered state is less chaotic than the uniform state. They
showed that the orbits of clustered states exhibited torus like structure. Figure 4 shows a
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Figure 4: A 2D slice (p;, p;) of phase space. N =4, K = 0.3. In the (4x2 =) 8-dimensional
phase space, the slice is taken by setting the following six constraints; z; = —0.075,
T2 = —0.025, 73 = 0.025, p3 = 0, T z: = Tl p; = 0.

2-dimensional slice of the phase space of the system with N = 4. Two axes are values of
P and p, where the other coordinates each are given some fixed values. Time evolution of
the orbits which start with the given (p;, p,) as the initial condition are calculated. Among
the initial conditions, dots are plotted for the initial points such that the orbits show small
growing rate of the instability are shown by dots. In other words, the dots indicate weakly
chaotic orbits. It is clear that the dots make torus like structure. Thus the reason why the
orbits are weakly chaotic is the orbits are located in the vicinity of KAM tori or at least
the ruin of KAM tori.

This is a very simple model, but capable to study structure formation. In this case,
structure formation (from the uniform to the clustered state) can be interpreted as the
stagnant motion.

This system is not real, but have several common properties with gravitating systems.
Both systems are

1. Hamiltonian systems,
2. many-body systems,
3. globally coupled by long range force.

Thus it is possible that the similar phenomena relating chaos is observed in gravitating
systems. It is worthwhile to study what role chaos plays in gravitating many-body systems.
Especially time scale is apt to be affected by existence of KAM structures.

Besides, analyzing tools of chaos reveals the microscopic dynamics of the system, which
should be new information about states and evolution of the system.



Since my idea is fundamental, I employ the simplest model: the one-dimensional sheet
model. In succeeding sections, I will explain the results of my work.

3 Evolution of one-dimensional self-gravitating many-
body systems

Here I report a brief review of the series of works[8, 9, 10] with N. Gouda and T. Konishi.

3.1 Model

One-dimensional self-gravitating many-body systems consist of N identical parallel sheets
which have uniform mass density m and infinite in extent in the (y, 2) plane. We call the
sheets particles in this paper. The particles are free to move along the z axis and accelerate
as a result of their mutual gravitational attraction. The Hamiltonian of this system has
the form:

Zv +(27Gm*) Y |z; — zif, (9)

i<y

where m, v;, and 7, are the mass (surface density), velocity, and position of ith particle,
respectively.

This system is originally introduced as a model for the motion of stars in a direction
normal to the disk of a highly flattened galaxy[l1, 12]. In 1970s and 1980s this system
was used to study mechanism of relaxation and evolution of galaxies. This system was not
realistic model of galaxies but the reason why they used it was because the gravitational
force is uniform in one-dimensional systems thus the equations of motion are reduced to
algebraic equations.

This model has some advantages over ueual three-dimensional systems: no softening
parameter is necessary, then we do not worry about the effect of softening, which may alter
the evolution of the systems. Further, the force in one-dimensional systems are uniform,
thus the equations of motion can be integrated analytically while no intersection of particles
occurs. Therefore we can calculate the evolution without any truncation error, which is
inevitable for three-dimensional systems. Since our main interest is chaos in the systems,
these properties are important.

3.2 Numerical simulations

In our numerical simulations, we use the system size, the total mass, and crossing time
t., as the units of length, mass, and time. In these units, N is the only parameter which
discriminates the Hamiltonian.

Our initial condition, the water-bag distribution (Fig. 5a), has a homogeneous phase
density, and is in a virial equilibrium. Putting particles in a rectangle region is just for
convenience. In a few crossing times, the corners disappear and become round but still
remains to be uniform. In such a short time scale, the system behaves like collisionless
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Figure 5: The water-bag(a) and the isothermal(b) distributions in one-body phase space.

system, and in that case the water-bag distribution is one of the stationary solutions.
One of the other stationary solutions is the isothermal distribution (Fig. 5b). It is true
thermal equilibrium, the maximum entropy state, and then all the other distributions
should transform into the isothermal distribution. However, it is known that the water-
bag has difficulty to relax to the thermal equilibrium(13].

We have studied the very long time evolution of the stationary water-bag distribution,
and found it eventually transformed into the isothermal distribution[8]. At t ~ 4 x 108¢,
the macroscopic distribution changed, but in a much shorter time scale we found another
kind of relaxation. It can be seen in the microscopic dynamics. To see that, we concern
with the individual (specific) energy fluctuation ¢;(t), where i is index of the particles. If
the system is ergodic, which is expected in usual thermal equilibrium, the infinite time
average of ¢(t) gives unique value for the equipartition:

T—oo

1T _
anAeﬂm_a=Q. (10)

Even in the thermal equilibrium, there exist the thermal fluctuations thus a finite time
average,

mn:%;mww, (11)

shows small deviation from the equipartition. Here we introduce a averaged deviation from
equipartition until time ¢,

N

At) = ea‘\J % D (E(t) — €0)?. - (12)

i=1



The statistical theory tells us that if €;(¢) behaves like thermal noise, A(t) o t~!/2. There-
fore we can make use of A(t) for test of thermalization.

Figure 6 shows the time variation of A(t). In the figure we can find two distinct time
scales. The plateau at the beginning represents the collisionless phase, because in the
collisionless phase the individual energies are conserved. After ¢ ~ 100, A(t) begins to
decrease as t~!/2, which means that the fluctuation behaves as the same manner as the
thermal noise.

This behaviour of A(t) is one of indirect evidences that the state is in the thermal
equilibrium. We analyzed by two more methods. One is to examine convergence of the
maximum Lyapunov exponent. Since the Lyapunov exponent is defined as a time average
of local instability, its convergence means that the orbit shows ergodicity. Another method
is the spectral analysis. The power spectrum density (PSD) of fluctuation reveals the
motion of the phase point, which determines the state of the system, in the phase space.
If PSD is proportional to f~2, the motion is diffusion by the process of random walk,
and once the phase point travels all region in the phase space, then the motion is ergodic
and PSD becomes a white noise. These three analyses give quite the same time scale of
relaxation. Therefore we show only result of the analysis of A(t).

The transition from constant of A(t) to the power law, A(t) o t~!/2 determines the
microscopic relazation. In the time scale where A(t) o< t~!/2 the system has the same
properties as the thermal equilibrium. However, what surprised us is the macroscopic
distribution is the water-bag distribution and unchanged from the beginning.

If the water-bag distribution is the thermal-equilibrium, then no more change is ex-
pected and A(t) goes to zero as t increases. However, it is found that A(t) increases at
some 10%¢.. At that time the macroscopic distribution transforms from the water-bag into
the isothermal distribution. It is the macroscopic relazation. Since the water-bag distribu-
tion shows all properties of the thermal equilibrium, but it is different in the macroscopic
distribution, it is called a quasiequilibrium.

3.3 Mechanism of two relaxations

Dependence of relaxation time on the number of particles gives us much insight about
its mechanism. Figure 7 shows dependence of the microscopic relaxation time on the
number of particles. The doted line stands for the linear dependence on N. Thus the
microscopic relaxation time ~ N {.. It can be explained that the microscopic relaxation is
a diffusion process caused by random force created from thermal fluctuation of mean field
distribution[14]. Even though the microscopic dynamics shows the same property as the
thermal equilibrium, the macroscopic distribution still remains the water-bag one.

The mechanism of the macroscopic relaxation time is not so clear. The macroscopic
relaxation has some different properties to the microscopic relaxation. In the case of the
microscopic relaxation of the water-bag distributions, different microscopic distributions
(created by different random seeds) yield the definite relaxation time scale. For the macro-
scopic relaxation, however, we found a distribution of relaxation time which has a range
over an order of magnitude. Therefore the mechanism of the macroscopic relaxation is sur-
mised to be different from that of the microscopic relaxation. In this case, the distribution
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Figure 8: (left) Probability distribution of macroscopic relaxation time

Figure 9: (right) Dependence of the macroscopic relaxation time on N.

of the relaxation time is a big clue to find the mechanism.

Figure 8 shows the probability distribution of the relaxation time of the system with
N = 64. We took 100 different initial states, statistical ensemble, of the macroscopically
same water-bag distribution, which are created by different seeds of the random number
generator The relaxation time of each run, Ty, is determined by the figure of é(t), but
there are wide variations among the ensemble. The relaxation times are divided into bins
with the interval of 2 x 108¢.. The solid diamonds represent the results of the numerical
simulations. The vertical axis is scaled such that P(Ty)dTy gives the fraction of the
number of runs, which fall into the interval dTy. It is clear from the figure, that the
distribution has a exponential distribution,

P(T) = 77

h

>e-TM/<TM>, where, (Ty)=2.8x10%, for N=64, (13)

and this gives the expectation value of the relaxation time.

Before we proceed to speculate the mechanism it is useful to remind us the phase space
dynamics of the system.

Any state of the system with N particles can be described by a certain point in the 2N
dimensional phase space (I space). Each point yields some macroscopic distribution, such
as the water-bag or the isothermal. In I' space, there is a region where all phase points
yield the water-bag distribution. At the beginning the phase point is located in the region
and then it moves out of the region as the system evolves. The macroscopic distribution is
the water-bag during the phase point stays in the region. When the point escapes from the
region, the macroscopic distribution is transformed from the water-bag distribution into
the isothermal distribution because the isothermal distribution is defined as the maximum
entropy state, which means that it occupies the largest, and usually most region in the T
space.



Now we should explain the following facts:

1. The water-bag exhibits several properties of thermal equilibrium, such as convergence
of Lyapunov exponents, and equipartition of energy, which suggest ergodicity.

2. The probability distribution of the macroscopic relaxation time is a exponential func-
tion.

One possibility to explain these facts is that there exists a barrier which is an obstacle
for a phase point to get away from the water-bag region. Due to this barrier a phase
point is restricted in the region for a long time, then it travels all over the region as if the
water-bag region is ergodic. However, the barrier is not perfect and there is a small gate
from which a phase point in the water-bag region can escape. A phase point travels in
the region in a very complicate way and almost ergodic, thus the point finds the gate and
escape at random. Now we show a simple model which might explain the numerical results
well as follows: as the simplest case, we assume that the escape probability is uniform
in the region. Suppose that we have an ensemble of the phase points in the region. At
the beginning the ensemble contains n(0) points, but they escape from the region with
constant rate 1/(Ty), then the number of points which stay in the region at ¢ decreases
as n(t). It is well known that n(t) has the same form as eq.(13). Therefore this simplest
model can explain the facts obtained by the simulations. This kind of stochastic escape is
basically same as decay of unstable nuclear, which also results the exponential distribution
of life time.

Next, in order to investigate the dependence of the time scale on the number of particle,
the same procedure was applied to the system with different N: N = 16, 32, 128, and 512.
Figure 9 shows the results. Especially for N = 512, we observed that 50 runs of the
maximum integration until the time T = 10, did not relax. Thus we can not determine
the time of the relaxation for N = 512, but by assuming the exponential probability
distribution, we can restrict the region that the true relaxation time lies probably. The
arrow indicated the region of 90% confident level. These data is approximated by a linear
relaxation,

(Tu) =4 x 10° N ¢,, (14)

which is shown by the dashed line.

3.4 Evolution in longer time scale

In our recent work[10], we investigated the evolution of longer time scale toward the thermal
equilibrium. The initial conditions were taken in general, and found that there exist many
quasiequilibria other than the water-bag. They experienced the same relaxation processes
as the water-bag. In the time scale of the macroscopic relaxation the macroscopic distribu-
tion changed. However, the system did not became the isothermal distribution directly, but
after experienced a transient state for a while the system went back to another quasiequi-
librium, and repeated such transitions. From detailed analysis of the quasiequilibria and
the transient states (I do not explain it here, please see Ref. (10]), we can speculate the
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Figure 10: Basic idea of the structure of orbits in the phase space. The solid lines indicates
the orbits, which describes the states of the system. The regions which enclosed by dashed
curves corresponds to the quasiequilibria. The paths which connect the quasiequilibrium
regions corresponds to the transition states. Actually these structures are fractal.

structure of the orbits in the phase space. Figure 10 shows the basic idea of the evolution
in the phase space. There are many barriered region in the phase space, which are denoted
by dashed circles in Fig. 10. The barriers which enclose the region obstruct the orbit to
go out of the region, then the orbit travels all over the region ergodically. The barriers
are, however, not complete, and the orbits escape trough small windows on the barriers.
The escaped orbits enter the transition stage. In this stage the number of dimension of
the orbits reduces as if the orbits are passing through a narrow corridor. And the orbits
enter another barriered region and the system becomes another quasiequilibrium, again.
The orbits repeat the same itenerancy again and again, and at last, the orbits travels all
over the phase space. In this stage, the thermal equilibrium is established.



3.5 Conclusions for the study of one-dimensional systems

As conclusion we summarize the evolution of the one-dimensional self-gravitating many-
body systems, based on the results which are obtained by the series of our works.
We suggest that there are roughly four stages of evolution in the system.

1. Virialization phase: The system which is far from the virial equilibrium experiences
violent oscillation of the mean field. The violent relaxation leads the system to one of
the virial (dynamical) equilibrium at the end of this stage. Many works were devoted
to the study of this stage in 1970s and 1980s. In general, this violent oscillation ceases
in several ¢..

2. Dynamical equilibria: This stage corresponds to the era with the time scale of several
te St S Nt. The system is in a dynamical equilibrium such as the water-bag
distribution, which we investigated in Paper I and II. In this stage the energies of the
individual particles conserve. Small fluctuations of mean field are driving the system .
to the equipartition, but it is not yet effective in this time scale.

3. Quasiequilibria: After the change of energies driven by the fluctuation of the mean
field becomes effective, the energy distribution achieves the equipartition. This pro-
cess is called the microscopic relaxation. The time scale of the microscopic relaxation
is about N {. irrespective with the initial conditions and after that the system is set-
tled in a quasiequilibrium. This quasiequilibrium is realized by the orbit which is
restricted in a part of the phase space. This region is enclosed by some kind of
barrier which obstructs the orbit to go out of the region, thus the orbit eventually
travels all over the barriered region and exhibits the nature of equilibria. That is
why the mixing of energies occurs sufficiently but the global distribution does not
change. The water-bag distribution is one of the quasiequilibria, but we found in
this paper that there exist many similar quasiequilibria. The orbit which is initially
located in one of the regions stays inside. It escapes from the region when it find a
window to the outside. This happens stochastically, but the typical time scale is, in
the case of the water-bag, 4 x 10 N ¢.. As for other quasiequilibria, the time scale is
about the same. When the orbit escapes from one of the barriered region, the global
distribution transforms. This process is, we call, the macroscopic relaxation.

4. The thermal equilibrium: We found that the system in a quasiequilibrium trans-
forms into another quasiequilibrium, experiencing a transition state in the midway
between the quasiequilibria. The system wanders between the quasiequilibria and
the transition states. Averaging this behavior over a time scale much greater than
the macroscopic relaxation time, gives the isothermal distribution. In this time scale,
the system becomes ergodic and then the thermal equilibrium.




4 Discussions

Our results are not sufficient to prove existence of the KAM tori. It is very difficult to
figure out the precise structure of orbits in the phase space of such a system with many
degrees of freedom. We found, however, that the phase space has rich structure, and is
weakly separated into pieces. This structure persists and even is strengthen for larger N
systems, because the relaxation times are proportional to N. The facts that the separation
of the phase space is enhanced, and the Lyapunov exponent becomes smaller for the larger
N system. Combined with the results of Reidl and Miller[15, 16] that dynamics is most
chaotic for the system with about 30 particles, we conclude that the one-dimensional self-
gravitating systems are the less chaotic for the larger NV (¥ R 30). This result is interesting
in the view of the basic theory of statistical mechanics, because the strength of chaos and
ergodicity of a system assures validity of the statistical mechanics. Since our system is one
of the simplest models, it is very important to study more general systems such as three
dimensional systems, which are realistic systems commonly existing in the universe.
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Abstract

There are various cosmological situations where the nonlinear physics is
important. In this paper, we would like to concentrate on the problem to
explain the reason why the distribution of the galaxies shows the scaling
behavior, {(r) ~ =1 . First, the argument by Peebles is presented. To find
the asymptotic form of the scaling function is the essence of his result. In
the linear region, the free parameter in the self-similar solution is determined
by assuming the initial power spectrum in the power law form P(k) ~ k™,
In the nonlinear region, the scaling function is determined by combining
the self-similar solution with the pair conservation equation which is derived
from BBGKY hierarchy. Consequently, the scaling exponent in the strong
nonlinear regime is found as a function of the initial spectrum index n.
Although this argument is attractive, the self-similar solution may not be
stable under the small perturbations. Then, we will present the somewhat
radical alternative attempt which uses the Burgers equation with noise term
as a basic equation. Using the renormalization group method, the scaling
exponents are calculated and related to the correlation functions. According
to the properties of the noise, there are various possible exponents. We
could regard these as the universal dynamics for the structure formation
in the universe. We also discuss other connections between the structure
formation in the universe and the nonlincar physics.



1 Introduction

Nowadays, cosmology has been considered as a subject of physics.
One of the purpose of cosmology is to explain the present struc-
ture of the universe. Recent observations show various kind of
structures, e.g., void, filament, etc.. It is usual to quantify these
structures statistically. If one can know all of the n-point corre-
lation functions, one can reconstruct the probability distribution
functional of the density field. However, it is not possible to know
all of them from the observational data. Hence, it is not necessary
to calculate them theorctically, rather a good representative statis-
tics is desired in practice. Usually, the 2-point correlation function
or , equivalently, the power-spectrum is used for that purpose. It
is well known that the two-point correlation function, £(r), shows
the scaling behavior in a certain range, i.e., £(r) ~ =!8, However,
it should be stressed that the two-point function is not enough to
characterize the structure of the universe. Indeed, the CfA data
shows the multi-fractality instead of the mono-fractality. Hence, we
should consider various statistics to characterize the fertile struc-
ture of the universe. Many statistical quantities, such as count in
cell, percolation and topology, etc. are invented. Different statis-
tical descriptors measure different aspects of the clustering pattern
revealed by a survey.

There are two aspects to understand the large scale structure of
the universe, i.c., the quantification of the structure and the dy-
namical evolution of it. As for the quantification problem, we have
mentioned already. Recent progress of the numerical apparatus
have forced us to calculate the dynamics by computer. There is no
doubt that it is tremendously strong tool to analyze the non-linear
dynamics. However, it is desired to study the non-linear dynam-
ics analytically, because it reveals the physics behind the numerical
calculation. Of course, here, there are two possible attitude to ex-
plaining the present structure of the universe. One of them is to
consider the present structure as a transient pattern, so it is mean-
ingless to consider the scaling £(r) ~ r~!8 seriously. The other



possible attitude which we take in this paper is to consider the
present structure as a consequence of the non-linear physics. As
an example, we present two attempts to explain the scaling of the
two-point correlation function. The argument by Peebles is well
known. [1] As it is unique as an analytical result, we briefly review
it. Peebles also discussed the renormalization group computation
to investigate the large scale structure of the universe. [2] Recently,
Berera and Fang (3] studied the structure formation problem by
using the theory of the surface growth. They considered the re-
heating stage and concluded that the seed of density perturbation
is generated by the stochastic fluctuations besides initial (inflation-
ary) quantum fluctuations. Here, we consider the matter dominant
stage. However, the spirit is the same, i.e.. the structure formation
in the universe can be classified as the universal dynamics. This
phenomenological approach is our main concern.

The plan of this paper is as follows: In Sec.2, we review the
BBGKY hierarchy and Peeble’s argument of the scaling. This is the
traditional method in a sense. In Sec.3, we would like to present the
radical approach. i.e., KPZ phenomenology. Honestly speaking, we
did not perform any new calculation. We only give the argument
to connect known results. In the final section, other topics are
discussed.

2 Peebles’s argument

The theory of self-gravitating matter distributions is inherently non-
linear, and nounlinear problems have always been notoriously diffi-
cult to attack analytically. Given this, and the availability of mod-
ern first computing hardware and efficient algorithms for large scale
N-body simulation, it is little surprise that for the last decade, an-
alytic study of large scale cosmological structure in the full nonlin-
ear regime has more or less dried up. In these circumstances, the
argument based on BBGKY hierarchy [1] is valuable to consider se-
riously. Let us start with the fluid limit approximation. The basic
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By comparison, it is easy to find
_ 4
TR
Furthermore, if we consider the strong non-linear region,i.e., £ > 1,
it is expected that the peculiar velocity compensate the Hubble flow

(10)

v~ —az . (11)
Substituting the above equation into eq.(4), we can solve as
£(z,t) = d®g(ax) , (12)

where g is the arbitrary function. By comparing eq.(12) with the
self-similar solution (5), the scaling function is determined as

1) ~ ()= (13)
~ R, (14)

where we have used the relation (10).

The result mentioned above is very attractive in the sense that we
can predict the scaling exponent in the non-linear region. However,
the self-similarity is too restrictive to be plausible. Indeed, there
is a work which shows that the self-similarity solution is not stable
against the small perturbation. [4] So we will consider the dynamical
scaling instead of the kinematical scaling in the next section.

3 KPZ phenomenology

In this section, we shall start with the basic equation for a self-
gravitating dust fluid. -As we are considering the density fluctua-
tions within a Hubble scale, the Newtonian approximation is valid.
Moreover, we will use the fluid approximation. The basic equations
are

ap a l=
_— — —\ . U = . 1
T +3ap+aV (p?) 0, (15)
ar 1, =, a, l=
Gt Vitgy = —gve (16)
Vip = 4nGa’pyé . (17)
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In the next step, we will add the noise term by hand. The phys-
ical origin of this noise is not discussed in this paper ( It may be
supernova explosion). Here, we shall consider the resulting equa-
tion as the phenomenological equation. When the dissipation is
taken into account, it is natural to consider the noise. In this case,
the velocity field becomes the stochastic variable. Remember that
the cosmological fields should be the stochastic variables. Let us
consider the noise effect in the following form:

Al +@-Vi=vVii-Vy, (26)
Oa
where
< n(x, t)p(a’, t') >=2D6%x — a")6(t — t') . (27)
If we perform the transformation of variable,
ii=-Vh, (28)
we obtain o 1
0_(: = SMVRY + v 9%+ (29)
This eq.(29) is well known as KPZ cquation in the surface theory.
[6, 7]
To begin with, we shall consider the lincar theory
h .
% =vVih+7q. (30)
If the function h(x,t) is self-affine, then on rescaling it
r—=2 =bx,h = W =bh, (31)

we should obtain the function that is statistically indistinguishable
from the original one. Since the function depends on time ¢ as well,
to compare two functions obtained at different moments we must
also rescale the time,

t—t =0t (32)
Straightforward substitution yields
h a 2
b°"% = vb* 2 Vih 4 b iy (33)



here we used the fact

< (b, b t)p(ba’, b°t') > = 2D&(bx — bx')6(bt — b*t')  (34)
= 2Db™ g4 w — 2")8(t — 1') . (35)

Multiplying both sides of eq.(35) with b*~®, we obtain

h a 2
oh _ vb72V2h 4 bmEtiey) (36)
ot
By imposing the scale invariance, we find
2-d 2-d
a="—"—p= ﬂ = 2. (37)

To relate this results with the cosu‘lological two-point function, no-
tice that the relation (22) and (28). The result is

£ ~ pi¥ie, (38)

This expression gives the cosmological 2-point function, when we
know the exponent a. In the linear theory, as is shown above,
a simple scaling argument gives the value a = 1/2. While, in the
nonlinear theory, it does not work well, then we need more elaborate
tool. Below, we will explain the renormalization group method as
such a tool.

Now we shall consider the full nonlinear equation (29). It is
convenient to work in the Fourier space. Using the Fourier trans-
formation

~ duw k<t dF

- Br) I(L Yexpli(k - ¥ - wt)] . (39)

eq.(29) can be solved perturbatively. The lowest solution is given
by
ho(k,w) = Go(k, w)n(k.w) , (40)

where

1

Go(k,w) = vk? —jw

(41)



Formally, we have the integral equation

h(k,w) = G(Elw)q(izlw) (42)
= Go(kaw)n(kaw) (43)
A dqdQ

—EGU(E, w)/W(I (k- Dh(d, Q)h(’: - qw-1Q)

To improve the perturbative solution, the renormalization group
method is useful and, indeed, widely used in the quantum field the-
oretical problems. It is the renormalization group equation that
is used to predict the scaling exponent of the cosmological 2-point
function. Practically, we take the following scheme. Divide the
momentum integral, & € [0, A], into two parts, one with high mo-
mentum, k> € [A/b, A] and with low momenta, k< € [0, A/b]. The
resulting integrals have a cut off A/b. Then, we shall rescale the
system using k — bk. At the same time, we must do rescaling,
h — b*h and t — b’t. This procedure defines the renormalization
group transformation. Now, let us move to concrete calculation.
Straightforward perturbative calculation yields

- = A2D d-2
G(k,0) = Gy(k,0) + -7 1
Since Go(k,0) = 1 /vk?, we define the effective viscosity as G(k, 0) =
1/0k2, then

G3(k,0)

MR, [deg®®  (44)

MDd -2

P=v[l - ——

- d-3
T 1 I\d/(qu ], (45)
where Ky = S;/(27)? and Sy is the volume of d-dimensional sphere.
After integrating out the high momentum, we obtain
ADd -2
v dd
where we have used 6! = logb for convenience. The rescaling com-
plete the renormalization group transformation
o= b (47)

= vS[146l(z - 2)] (48)

2p9 _
= v[1+6l{z -2+ A D2 de] (49)

v?  4d

v< =v[l -6l K4, (46)
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Using eqs.(56) , (57) and (58), we can calculate the flow of the
coupling constant

dg 2-d 2d-3 4

o= 5 9t le— (60)

The fixed point of this equation is obtained by taking dg/d! = 0.
For d = 1, there are two fixed points:
2

* 0 (=

gl s 9o (I\’d)

e

(61)
In this case, the relevant one is g;. At the fixed point g3, we obtain

z =

1
5 (62)

Y I

’a=

Consequently, we find
E(ry ~r74. (63)
Of course, we would like to know the scaling exponent in the
real world. In d = 3 case, unfortunately, there is no infrared fixed
point in the weak region. The fixed point which we are interested
in should lie on the strong coupling region. Therefore, the non-
purturbative method is necessary to obtain the desired result. Thus,
we encounter the difficulty again. If we consider the colored noise,
however, the situation is very different [8] and it is easy to derive the
exponent which coincides with the observed value. If we consider
the power law distribution of the noise instead of the Gaussian
distribution, we obtain the multi-fractal distribution. Therefore, it
may be possible to explain the observed multi-fractal structure in
the universe along this line of thought. As the result depends on
the nature of the noise. the physical origin of the noise should be
clarified. This task is the beyond of the scope of this paper. Further
investigation to this direction must be interesting.

4 Discussion

We have discussed the possible physical explanation for the large
scale structure. In particular, we have concentrated on the 2-point
function which shows the scaling observationally.



First, we reviewed Peebles’s argument which relies on the self-
similar solution of the BBGKY hierarchy. If we assume the power
law spectrum, P(k) ~ k", the correlation function becomes £(r) ~
r=9+3n/54n in the strong non-linear region v = —az. However, the
above self-similar solution might be unstable against the small per-
turbation.

As an alternative approach, we propose the phenomenological
equation in which the noise term is artificially included. In the
statistical physics, the concept of the universality class is useful to
understand critical phenomena. There is also an attempt to study
the quantum gravity as a universality class in the field theory. Our
strategy is similar in the sense that we take effective theory to under-
stand the cosmological dynamical scaling phenomena. As we have
seen in this paper, there arec many universality classes according to
the nature of the noise. Observation determines which universal-
ity class our univer choose. We can also find another example in
quantumn chromodynamics. There, the effective theories are useful
to understand the confinement phenomena.

As for other topics in non-linear physics, wavelet analysis is in-
teresting as a data analysis method and an analytical tool for non-
linear analysis. Many fundamental properties of physical systems
have been described in terms of Fourier spectrum. However, since
Fourier spectrum ignores the phase of each Fourier coefficients, it
lacks information about positions of local events. Wavelet analy-
sis is invented to overcome this problem. In Fourier analysis, the
basis functions of expansion are the familiar sines and cosines. In
wavelet analysis, [9, 10] the bases functions are somewhat more
complicated localized functions, the so-called wavelet. By using
this new method, various statistics can be defined. It should be
noted that the wavelet analysis is especially powerful in the analy-
sis of multi-fractal structure. [11] Hence, the nonlinear analysis on
the basis of the wavelet analysis might be available as a tool for
investigating the large scale structure of the universe.

The reductive perturbation method is also attractive as a non-
linear method. We have previously studied the quasi-nonlinear evo-



lution of the density perturbation in Newtonian gravity by using the
reductive perturbation method. [12] Especially, weak mode-mode
coupling in a small range below Jeans wavelength is considered.
We have shown that the basic equation for the acoustic wave re-
duces to a nonlinear Schrodinger equation. As a result, it turns
out that there is a new kind of instability in the self-gravitating
systems.

It should be stressed that the non-linear analytical method is
important for future development of understanding the large scale
structure of the universe.
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Post-Zel’dovich approximation in general relativity

Masaaki Morita
Department of Physics, Hirosaki University, 8 Bunkyo-cho, Hirosaki, 036 Japan

Abstract

The gravitational instability of irrotational dust in the expanding universe is
studied by the relativistic second-order approximation. Introducing the orthonor-
mal tetrad, we obtain equations very similar to those given in the Lagrangian
perturbation theory in Newtonian cosmology. The solutions of the nonlinear dy-
namics of cosmological perturbations are presented in the Einstein-de Sitter back-
ground. We propose a relativistic version of the Zel’dovich approximation and its
higher-order corrections, say, “post-Zel’dovich” approximation.

1 Introduction

The investigation of the nonlinear clustering based on the gravitational instability sce-
nario is quite important in the research of the large-scale structure formation in the
universe. By using N-body codes it is possible to follow the general nonlinear evolution
of initially small perturbations numerically, but an understanding of what has happened
between input and output can often better be gained by analytical treatments. Pertur-
bative approaches such as the linear perturbation theory in Newtonian cosmology (1]
are well-known and often used as conventional analytic methods. These approaches,
however, depend on the assumption that the absolute value of the density fluctuation
|8] is much smaller than unity, whereas in the real universe |§] > 1 up to the scale of su-
perclusters. Zel’dovich (2] considered an approximation scheme which does not depend
on the assumption. This scheme is known as the Zel’dovich approximation, which is
now widely applied to the problems of the large-scale structure formation. Various an-
alytical approaches have been compared with the numerical results statistically (3, 4, 5]
and it has turned out that the Zel’dovich approximation gives the best fit to the numer-
ical treatments. Buchert [6] developed the Lagrangian perturbative approximation and

showed that the Zel’dovich approximation can be regarded as a subclass of its first-order



solutions. This work was extended to second-order (7] and even to third-order [8], giving
some new useful information about self-gravitating systems.

But these and most other analytical treatments are Newtonian approaches, which
are valid only for perturbations on scales much smaller than the horizon size. On super-
horizon scales one needs a relativisic approach instead. The pioneering work was done
by Lifshitz [9]. This work was extended to second-order by Tomita [10, 11, 12]. Yet
in some of these works there remained a gauge problem that unphysical perturbations
were included in the solutions. This problem was solved by the gauge-invariant formal-
ism [13, 14]. The relativistic approaches mentioned above, however, again use the as-
sumption |§| < 1. In order to develop a more realistic description for an inhomogeneous
universe, Futamase [15, 16, 17] formulated the so-called cosmological post-Newtonian
approximation to describe a clumpy (6] >> 1) universe. In his scheme the spatial aver-
aging is introduced to get a background metric. But the relation of his approach to the
linear perturbation theory is not very clear, partly because he adopted the harmonic
gauge condition. Therefore, it is desirable to construct a scheme which does not use the
assumption |{§| < 1 and reproduce the linear perturbation theory in the limit || < 1.

Matarrese et al. [18] considered a “relativistic Lagrangian approach” in the case of
vanishing the magnetic part of the Weyl tensor H,, = 0 in the first-order, based on the
fluid flow approach. It is extended to second-order {19, 20]. They claim some similarity
to the Zel’dovich approximation, but their formulation is quite complicated even under
the restriction Hy = 0. Moreover, in the second-order H,; inevitably appear. Thus,
the second-order calculation by their formulation becomes complicated all the more.

Parry et al. [21] presented the nonlinear solution of the Hamilton-Jacobi equation
for general relativity and reproduced the Zel’dovich approximation, using the gradi-
ent expansion technique. The “higher-order Zel’dovich approximation” is discussed in
Refs. [22, 23). In spite of its elegance, this method is classified as “long-wavelength ap-
proximation” and is applicable only when the characteristic scale of spatial fluctuations
is much larger than the horizon size.

In this article, we develop a relativistic Zel'dovich-type approximation without any
restrictions such as vanishing H,, and the wavelength-specific assumption, based on the
works by Kasai [24] and Russ et al. [25]. By using the tetrad formalism, we derive fully

general relativistic equations very similar to those given in the Newtonian case, which



are solved in the Einstein-de Sitter background by an iteration method up to second-
order. A general relativistic version of the Zel’dovich approximation is proposed and its
higher-order corrections are also considered. Following Munshi et al. [26], we call this

scheme “post-Zel'dovich” approximation.

2 Exposition of the Method

First, we summarize a general relativistic treatment to describe the nonlinear evolution
of an inhomogeneous universe [24, 27, 28]. The models we consider contain irrotational
dust with density p and four-velocity u* (and possibly a cosmological constant A). Ne-
glecting the fluid pressure and the vorticity is a reasonable assumption in a cosmological
context. In comoving synchronous coordinates, the line element can be written in the
form

ds® = —dt? + g;;dz'dz’ (1)

with u# = (1,0,0,0). Then the Einstein equations read

S[ R+ (K6)' - K g0 ] = snGpe A, (2)
K=Ky =0, ®3)
K+ KXK' +°R; = (4nGp+A) &, (4)

where 3R‘j is the three-dimensional Ricci tensor, K ‘J- =3 g"*g;x is the extrinsic cur-
vature, || denotes the covariant derivative with respect to the three-metric g;;, and an

overdot () denotes 3/3t. The energy equation u, T+, = 0 gives
p+pKi=0 (3)

with the solution

det g5t 2]\ *
p = pltin, @) (W) : (6)

Let us introduce the scale factor function a(¢) which satisfies the Friedmann equation

+==—p+ 7, (7)

(d)’ k 8xG A
a? 3 3

a

where the curvature constant k takes the value of +1,0,—1 for closed, flat, and open

spaces, respectively. If the spacetime is exactly Friedmann-Lemaitre-Robertson-Walker



(FLRW), then we have
2k

R';==8; for FLRW. ®)

2 7

Kio=25
a

Therefore, the deviations from the FLRW models due to inhomogeneity are expressed

by the peculia.r part of the extrinsic curvature
i = Ki a(;' 9
Vj = = =4, ( )

which represents the deviation from the uniform Hubble expansion, and the deviation
of the curvature tensor

Rij Ea2 SR’J—sz’J . (10)

The procedure essential to develop the relativistic Zel'dovich-type approximation [24]

is to introduce the following orthonormal tetrad
I = Mayeye e (11)
with
& =u=(-1,000, &9=(0,0)=(0,a(t)e¥) fore=1,23 (12)
The spatial basis vectors are parallelly transported along each fluid line, ie.,
é(f,);,, u=0. (13)
In our choice of the tetrad components, it reads
& =v: e(? or V‘; = ez,, é(? . (14)

The Einstein equations can be rewritten in terms of these quantities as the following

key equation

% [a3 (é(? + 23(’3(? - 471'Gp,,e(?)] =aq (P(.-t) +QY 4 S(?) ) (15)

where R
PO _ % {GT [(v';)’ - v';v;] e — a® (ViVi - vivk) e‘?} , (16)
Q¥ = (ViRY + ViRY, - 25 VARY) €9, (17)



and

§9 = [Vit + VAV - viF VAN 1k (3Vi - Vhe) 9. (18)
Note that the left-hand-side of Eq. (15) is already linearized with respect to e(?, and all
terms on the right-hand-side, except S(f), are manifestly nonlinear quantities. It has,
therefore, a form suitable for solving it perturbatively by iteration. It should also be
stressed that we have not used any approximation methods in deriving Eq. (15). Our

treatment here is fully nonlinear and exact.

3 Perturbative approach

We solve perturbatively the key equation Eq. (15) by an iteration method. Hereafter,

we restrict our consideration to the Einstein-de Sitter background, ¥ = A = 0.

3.1 The first-order solutions

Linear perturbations are classified into scalar, vector, and tensor modes. In the first-
order level, they do not couple with each other, and can be discussed separately. Here
let us consider the scalar perturbations. The general form for the linearly perturbed

triad in this case is
e =89+ EQ =59 +69 (46 + BY) . (19)

Let us write the first-order quantities with subscript (1). The first-order perturbed

extrinsic curvature is
Viy; =B - (20)
As was noted previously, it is apparent that the source terms P(f ) and Q(? are second-
order quantities (and higher). Using Eq. (20), we also find that S(f) vanishes in linear
order:
S((:;s = 5(? (V(J;)i'k,k + V(’;)k'j..' - V(J;)k.;'k - V(’:)i‘{k) =0. (21)
Therefore, to first-order, the right-hand-side of the key equation (15) vanishes and it

can be integrated to give

o (E‘? +22E0 - 4«0,0,,3‘,9) =CYz). (22)



Note that now it has the same form as the equation which governs the density contrast 4
in conventional linear perturbation theory [1]. Using the growing mode D*(t) = a(t) =
£/ and the decaying mode solutions D~(t) = ™! respectively, we obtain the solutions
in the form

B =150 j(z) + £ 0% (x) . (23)
The scalar function A can be expressed in terms of W(x) as A = ZQ¥(z2) . Thus the

first-order solution for the triad is
e = (1 + \IJ(:!:)) 59 4 69 (13 W) + 17 97 (=) . (24)
Note that we have not assumed that the density contrast is small, in order to derive the
solutions. Then, the Zel’dovich-type approximation can be composed from Eq. (6):
_ det[ePD(tin, )] N det [§© + EQ (1;m, 1’)]
e O2)] et [0+ BO(Lw)]

(25)

3.2 The second-order solutions

In order to avoid notational complexity, in this subsection we only deal with growing

mode terms. Thus we begin with the following form
10 ;
e = (1 + ?lll(:c)) 59 4 3 50 (2) 4+ £9 . (26)

The second-order quantity e(? is decomposed into a transverse-traceless part and a

remaining longitudinal part
Let us pay our attention to the key equation (15). To second-order it reads
A0 | o8 (e o_ 1 ¢ 1 ¢ ¢ ¢
5(.‘) + 2;5(:') - 47"GPbE(.‘) = a—3°(i)(“’) + _3/ ( ((2)). + Q%'Z))z ((2;:) dt. (28)

It is apparent that the source terms P, 2). and Q(ﬁ) ; are quadratic with respect to the
first-order quantities, hence contain neither ,B'j nor x* ;- Furthermore, we find that the
longitudinal part of S((g ; does not contain 8';. Therefore, solutions for #%; can be written
as a linear combination of the homogeneous solution and the inhomogeneous solution

in the presence of the given source terms:

B =td g () + 13 o (). (29)



Once we obtain the temporal dependency of the solutions, their spatial dependency,

i.e., ¥';(x) and ¢';(z) are determined. To second-order

A 0
¥, = -xp'np o — 19 (¥2)4;, (30)
o5 = §(uk6',-—4u,-), (31)
where
I"JE%(‘I" AR NN (32)

The equation for x can also be obtained from Eq. (28). To second-order, it gives

for the transverse-traceless part

i a.; 1 i i
where
1 3 K 3 1 i\
S = 7#kk Fies 7 (#kkfsj —4p j) e,e (34)

is a transverse and traceless tensor: S%; =0, &';; = 0. This shows that gravitational
waves are induced even if there are initially scalar perturbations only. Eq. (33) can be
solved by use of the retarded Green function.

Finally, the post-Zel’dovich approximation can be composed as follows:

, detl Ot 2)]  det [Q + EQ(tin, 2) + €D (tin, )]
det[ 91, 2)) = det [5(? + EY(t, =) + ¥, :u)]

(35)

4 Concluding remarks

In this article, we have developed the second-order perturbative approach to the non-
linear evolution of irrotational dust universes in the framework of general relativity. We
have presented the second-order solutions in a k = 0, A = 0 background, based on the
tetrad formalism given by Kasai [24]. A relativistic version of the Zel’dovich-type ap-
proximation have been also proposed, which reproduces the conventional perturbation
theories in the limit |6} < 1.

In our approach the extensions to & # 0, A # 0 cases and radiation universes

(p = }p) are straightforward. These will be the subjects of future investigation.

f38—
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A Spinning Test Particle

in
A Relativistic Space Time

- Chaos and its Effect on Gravitational Wave Detection -

SHINGO SUZUKI' and KEI-IcHT MAEDAM
Department Physics, Waseda University, Shinjuku-ku, Tokyo 169, Japan

Abstract

We study the motion of a spinning test particle in Schwarzschild spacetime, and find
chaotic behavior for a rapidly spinning particle. The critical value of spin is about
S = 0.6mM for J = 4mM, where m and M are the mass of a test particle and of
a Schwarzschild black hole, respectively. This chaos is induced by spin-orbit coupling.
The possibility that the chaotic behavior of the spinning particle may affect detection of
gravitational waves from a coalescing binary is also discussed.

1 Introduction

Starting with the famous three body problem, many studies about chaos in celestial mechanics
have been done and some important chaotic phenomena have been found in the Universe. Now
chaos has become one of the most fundamental ideas to explain various non-linear phenomena
in nature.

In the Universe there exist systems which are in a strong gravity field and whose dynamics
have to be analyzed with Einstein’s theory of gravitation. Because the equations of motion of
the object in general relativity are different from those in Newtonian dynamics and there may
exist some relativistic effects which make the motion more complicated, we may find new types
of chaos in a strong gravitational field, which does not appear in Newtonian dynamics.

If we find chaotic behavior in a general relativistic system, it may affect some experimental
tests of general relativity. One such test is the detection of the general relativistic frame-
dragging effect[l]. In this experiment the spin-orbit and spin-spin interaction between the
Earth and a gyroscope on the satellite hope to be detected. In [1}, the authors have made the

theoretical analysis about such a system and shown some numerical results, in which we find
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a very strange motion of the gyroscope. It is natural to think that such a strange motion is
induced by spin effects. |

Another test of general relativity is the detection of gravitational waves. Coalescing binary
systems of neutron stars and/or black holes are promising sources of gravitational waves de-
tected by large-scale laser interferometric gravitational observatories, such as the US LIGO and
Italian-French VIRGO projects (see, e.g., [2] and references therein).

If we can detect the signal of gravitational waves emitted from such a system and compare it
with theoretical templates, we may be able to determine a variety of astrophysical parameters
of the sources such as their direction, distance, masses, spin, and so on[3][4]. In order to extract
exact information about a source from an observed signal we need exact theoretical templates
of the gravitational waveforms. In order to make such templates, it is very important to know
the exact motion of the sources because the mass distribution is the most important factor in
emission of gravitational waves. In post-Newtonian approximation, it is known that spin brings
about some serious effects on the orbital motion of the sources. The motion is not necessarily
confined to an orbital plane, due to the spin-orbit and spin-spin interaction force. The non-
parallel spin motion will induce the precession of the orbital plane, resulting in modulation of a
gravitational wavelorm[5][6]. In [5] it is shown that the orbital plane may behave in very strange
way due to some spin eflects. We do not verify whether or not any chaotic behavior occurs
in their system. However from the analogy of the studies about spin effects in Newtonian
dynamics, we may expect that a spin effect can make a motion chaotic. The gravitational
waveform from a system with chaotic motion will be different from waveform from a regular
system. If such a difference is enough large to be detected on the Earth, it will make it difficult
to prepare complete theoretical templates.

Thus we believe that the study of the spin eflect on the orbital evolution and the gravita-
tional waves is very important from an observational viewpoint as well as the academic one.
To clarify the pure effect of a spin, especially spin-orbit interaction, on the orbital evolution in
general relativity we study the motion of a spinning test particle around a Schwarzschild black
hole.

Throughout this paper we use units ¢ = G = 1. We define the signature of the metric as
(= +,+.4).

2 Chaotic Behavior of a spinning test particle

In this section we discuss the chaotic behavior of a spinning test particle in Schwarzschild
spacetime.

2.1 Basic Equations

~ First of all, we briefly introduce the basic equations for a spinning test particle in relativistic
spacetime.



The equations of motion of a spinning test particle are obtained by the “pole-dipole approx-
imation” method[7].

dz*
= ptt
AR (1)
Dp* 1 .
Dr = _§Rﬁpav s° ) (2)
mz
S e, 3)

where p* is the momentum of the particle, S* is its spin tensor and 7 is an affine parameter
of the orbit, which is taken as proper time of the particle in this study. We also need a
supplementary condition that gives a relation between v* and p*. We adopt the following
condition([8],

puS* =0, (4)

which determines the center of mass of the particle consistently. Using (4) we can write down
the relation between v¥ and p* explicitly, that is,

1
T u v, Agpo
vi=n [u + 2mZAR,,,\,,,S“ u*S ] , (5)
1 aff o6
A=1+4 —47712 Raﬁ.,gs 577 (6)
where n is a normalization constant determined by v,v* = —1, u* is a unit vector parallel to

p*, and m, which is regarded as mass of the test particle, is defined by

m? = —p,p*. (M

This system has several conserved quantities. Regardless of the symmetry of a background
spacetime, it is easy to show that m and $? = S$*S,, /2 are constants of motion. If the
spacetime allows an isometry, one can show that

1 -
C=8p, - ;fuwbu (8)

is also a conserved quantity, where £* is the Killing vector associated with the isometry.

2.2 Chaos in Schwarzschild Spacetime.

We shall analyze the motion of a spinning particle in Schwarzschild spacetime,

2M 2M\7! .
ds* = — (1 — —) de* + (l - —) dr? + r2d0* + r?sin’® 0d¢?, 9)
r r
to study the effect of spin-orbit interaction. Because this spacetime is static and spherically
symmetric, two Killing vectors 5(",) and £, exist. Using these Killing vectors we define two
conserved quantities (8) as

M .
—E=Cy=-p - r—gst ) (10)



J. = Cg) = ps — rsin® 0(S°" — r cot 05%). (11)

E and J; are interpreted as the energy and the z component of the total angular momen-
tum of the particle, respectively. Because the spacetime is spherically symmetric, the z and y
components of the total angular momentum of the particle should also be conserved. With-
out loss of generality, we can choose the z-direction to find the total angular momentum
(Jrs Jys J:) = (0,0,J), where J is the total angular momentum. To study the motion of a
test particle, if we can define the effective potential, the analysis becomes much casier. How-
ever, because the spin interaction is not described by a potential force, we may not be able to
define the effective potential. Instead here we introduce a contour map in 2-dimensional space,
on which the r-0 components of the momentum vanish. Imposing the condition p* = p® = 0
to the constraint equations(10), (11), we find the boundary of a region where the particle with
energy E can move. This contour curve is defined by

E=V(r0,J,5S), (12)
y J2 2 2
V(r0;0.8) = mfh(1 4 A2} 4 Ap (522 Lcos"0)* (13)
r 1+ A2

where f =1 —2M/r and

1
—mJrsind m?J%r?sin? 0 (-]2 - Mc0520 - Szf)] ’

_ - 14
m?r? - §2f + (m?r? — S2f)2 m?r2 — S2f (14)

The particle with energy E can move in the area inside of the contour curve(12), i.c.,
E>V(r,8JS8), (15)

We shall call the function V/(r,0;J, S) the “effective potential” of a spinning test particle in
Schwarzschild spacetime, although its gradient does not give a force. We find the “effective
potential® V' is classified into four types depending on J and S. The result is shown in Fig.1.
Note that the contours of “effective potential® are depicted in the p-z plane, where p = rsin 0
and = = rcosd.
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Fig. 1: Typical shapes of effective potential. The type(U-1) and
type(U-2) have no bounded region, while the type(S-1) and type(S-2)
have them. (U-2) has one saddle point on the equatorial plane. (S-2)
and (S-1) have two saddle points off the equatorial plane and on the
equatorial plane, respectively.

Because type(U-1) and type(U-2) potentials have no bounded region and any particle will fall
into a black hole or escape Lo infinity, we are not interested in those potentials here. We analyze
the type (S-1) and (5-2) potentials which have a bounded region. The type(S-1) potential has
one saddle point on the equatorial plane, just as in the case of a spinless particle, which is the
case that S/J is small. As 5/J gets large and becomes larger than some critical value, the
type(S-1) potential shifts to the type(S-2) potential, in which two saddle points appear off the

equatorial plane.
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Fig. 2: Poincaré maps of the particle orbits for J = 4mM.

(a) § =

0.4mM, E = 0.97698396m, (b) § =

0.6mAM,

E = 0.96730999m, (c) § = 0.8mM, £ = 0.95815568m,
(d)y § =
E = 0.93545565m and (f) S = L.4mM. E = 0.9229241m.

tmM. E = 0.94738162m, (c¢) § =

1.2mM,

In Fig.2 the Poincaré maps of the orbits in type(S-1) or (S-2) potentials are shown. These
Poincaré maps are constructed by choosing the equatorial plane as a Poincaré section. The
gray dots in these figures are on a torus in the phase space, which means such orbits are not
chaotic. Black dots, which are not on a torus, denote a chaotic motion. Figs.2(a) and (b)
are the Poincaré maps for the particle which moves in the type(S-1) potential. We find that
all orbits are not chaotic. On the other hand, Figs.2(c)-(f) depict the Poincaré maps for the
particle which moves in the type(S-2) potential. We find that some orbits become chaotic. From
a numerical study, we obtain some conditions for the appearance of chaos. First, a particle
should move in the type(S-2) potential, which means S > 0.6mAf for J = 4mAf. Secondly, the
particle energy must be high enough for it to be able to approach the saddle points. Thirdly,
the initial condition should be chosen appropriately in order that the particle will approach the



3 Effect on Observation of Gravitational Waves

3.1 Does Chaos Appear?

We find that a spin effect induces chaos. Then we discuss whether such chaotic behavior of
a test particle affects observation of gravitational waves from a coalescing binary. When a
particle moves in relativistic spacetime, it produces gravitational waves. Because the motion
of the particle determines the gravitational wave from, it is expected that some influence will
appear in the gravitational waves emitted from the system when the particle motion is chaotic.

As the system of a black hole and a spinning test particle emits the gravitational waves it
loses energy and total angular momentum. If chaos occurs during the evolution of the system
by energy and angular momentum losses, the next two conditions must be satisfied.

Y . - - .
o The system passes through a region in a parameter space where it may become chaotic.

o The system stays in that region for a long enough time for its chaotic behavior to become

conspicuous,

To see whether the those conditions are satisfied, the energy and angular momentum emission
rates must be given. Here we use the quadrupole formula to estimate them. We assume that
S is constant during the evolution and the system changes adiabatically. First we give Ej and
Jo and integrate the equations of motion with appropriate initial condition from r = ro. Then
we calculate £ and J by using the quadrupole formula. We set the state of the system after

some time interval 8, which is sufficiently longer than the orbital period 7', as

Jy = Jo + Jét. (17)

Repeating this estimation of the change of energy and angular momentum, we find an evolution
sequence in the parameter space of £ and J.

The result is shown in Fig.3. We set § = ImM. The solid lines represent the energies of the
saddle point( Emax) and of the minimum point(£,y;,,) of the “effective potential”. The bound
orbit exists only for £ ;, < E < Emax. In Fig.3, we sce that all evolutions end up with
crossing the Emax line. It means that the particle has enough energy to go over the saddle
point just before the end of adiabatic evolution. We then conclude that the first condition is
satisfied.
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Fig. 3: The evolution of the system in the J-E plane.
The orbits just before the end of the adiabatic evolution
(encircled points) can become strongly chaotic .

To check the second condition, we have to calculate the Lyapunov exponent A. The inverse
of the Lyapunov exponent represents the time scale for the occurance of chaos. Hence we expect
that chaotic behavior may appear during the evolution of the system if
% < At (18)
At is the time interval when the system stays in the parameter space where the system can
be chaotic. We calculate the Lyapunov exponent A by the method developed by Sano and
Sawadal[9].

We find that 1/ just before the end of adiabatic evolution is a few times longer than the
average orbital period 7', while the time scale of loss of energy or angular momentum is about
10~20 times longer than the average orbital period. Therefore we conclude there is enough
time for the chaotic motion to appear just before the end of the adiabatic evolution of the
system.

3.2 How Does Chaos Appear?

What can we say about the gravitational wave form from the system we consider? Due to a
spin cffect, the orbital plane is not fixed but precesses, even for a regular motion of the particle.
This causes the modulation of the gravitational waves, especially in their amplitude[6]. How
does chaotic behavior of the particle affect the wave forms?

Fig.4 shows the behavior of the orbital plane during the evolution of the system. © is the
angle between the = axis and the direction of the orbital plane. In the early and middle stages
of the evolution ((i) and (ii)) the particle motion is not chaotic. \We find that the precession
of the orbital plane is periodic. But just before the end of evolution, this periodicity is broken
and the variation of © becomes chaotic. Such a clear difference in the behavior of the orbital
plane between the regular and chaotic motions will change the gravitational wave form.
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Fig. 4: The behavior of the orbital plane. In the early and

middle stages of the evolution ((i) and (ii)), the precession
is periodic. In the last stage of the evolution, however, the
periodicity is broken and the precession becomes chaotic.

4 Summary and Discussion

e find that a spin-orbit interaction induces chaos. In realistic systems, we may find more
complicated interactions, such as spin-spin or quadrupole interactions. We are interested in
whether such additional terms enhance the chaotic behavior found here or not. To study the
effect of spin-spin interaction, we have to analyze the motion of a spinning test particle in Kerr
spacetime.

Secondly, in order to investigate the effect of chaos on the gravitational wave form precisely,

it is necessary to estimate £ and J more accurately with a relativistic method[10][11].
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ABSTRACT

We develop classical and quantum descriptions of spherically symmetric gravitational
collapse of a massless scalar field. Our purpose is to present some interesting examples of
black hole dynamics. First, the four-metric and scalar field variables are restricted to a
continuously self-similar functional form. The canonical quantization procedure is applied
to the minisuperspace model, and the wave function of black hole evaporation is derived.
We propose a clear mechanism of the quantum evaporation in terms of the time evolution
of the wave function, and the evaporation time is semi-classically estimated. Next, we
study the critical behavior near the threshold of black hole formation in the classical level.
The mass-scaling relation with the critical exponent v and the echoing with the universal
period A have been found by numerical calculations of the near-critical collapse. Here we
treat the periodic echoing (which represents a discretely self-similar field) as an oscillatory
perturbation for the continuously self-similar field. This perturbation approach allows us
to clarify a dynamical feature of the echoing near the singular center, and we can establish
an analytical relation between v and A.
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I. INTRODUCTION

Gravitational collapse has attracted much attention in relation to various interesting
problems in general relativity. For examples, the cosmic censorship hypothesis which
requires the absence of naked singularities has been critically checked, by constructing
realistic models of gravitational collapse. The emission of gravitational waves from col-
lapsing stars also is an important astrophysical problem, which has inspired remarkable
development of numerical relativity. Here we would like to emphasize another aspect
of gravitational collapse, describing a dynamical stage of black hole formation. Various
properties of stationary black holes have been extensively studied, one of which is a close
analogy to the ordinary thermodynamic laws. However, a detailed understanding of evo-
lutionary behaviors of dynamical black holes interacting with matter fields is still lacking.
In particular, the validity and true implications of the black hole thermodynamics should
be confirmed in the dynamical level. We may be able to establish important new features
of black hole physics in terms of the dynamical models.

Spherically symmetric collapse of a massless scalar field (which is minimally coupled
to gravity) is useful to consider dynamical black holes. Different end states can occur for
one-parameter families of initial data of ingoing wave packets; while weak scalar fields
bounce and disperse to infinity, strong fields form a black hole [1). There exists a critical
parameter value p = p* which separates the supercritical (black hole) solutions from the
subcritical (dispersed wave) solutions. Choptuik [2] has numerically discovered a critical
behavior near the threshold of black hole formation, which shows the universal mass-
scaling relation

Mpy x (p—p°), v=037 (1)

and the echoing of the gravitational and scalar fields
Z(r,t) = Z(red,ted) (2)

where Z stands for any field strength and A = 3.44 is the period in a logarithmic scale.
(The relation (2) for a fixed A is called a discrete self-similarity. If it holds for arbitrary
A, the field is continuously self-similar.) The change from the black hole (ordered) states
to the dispersed wave (disordered) states may be regarded as a phase transition known in
statistical physics. The origin of such critical phenomena appeared in near-critical black
holes should be fully understood as a typical example of black hole dynamics.

The other example we consider here is a black hole evaporation as quantum dynamics.
It is well-known that the Schwarzschild black hole is quantum-mechanically unstable owing



to the Hawking radiation. This thermal process leads to the information loss paradox in
addition to the explosive evaporation

Mpy < —1/M2y (3)

in the small mass limit. However, this will be partly due to the classical Schwarzshild
background geometry. To contain a consistent backreaction effect which makes the process
fully dynamical, we must develop a quantization procedure without fixing the background
geometry. If the above-mentioned scalar field collapse is quantized, we will obtain a good
dynamical model to study the quantum evaporation of black holes..

The purpose of this talk is to discuss the classical and quantum dynamics of near-
critical black holes and evaporating ones, by using a simple model of the collapsing scalar
field with a critical parameter. The basic assumption of the model is a continuous self-
similarity of the field variables [3,4,5]. In Sec.Il, we construct the canonical formulation
for the dynamical variables. Then, in Sec.III, we apply the canonical quantization proce-
dure to this minisuperspace model of continuous self-similarity of metrics and scalar field
configurations. Quantum dynamics of the spherical collapse with the supercritical initial
data are described by a wave function which is defined on the minisuperspace and satisfies
the Schrodinger equation. It is found that the supercritical initial state can evolve finally
into an outgoing wave state without leaving any black hole state. We can propose a clear
mechanism of quantum evaporation of black holes and estimate the evaporation time.
Though this model is a good example of black hole evaporation, the proposed mecha-
nism should be verified without the restriction of continuous self-similarity. Here we do
not pursue the quantum dynamics in more extended models of scalar field collapse. The
present step should be rather to develop the analysis of near-critical black holes in the
classical level. In fact the continuously self-similar model fails to recover the critical be-
havior found numerically by Choptuik, although it has the critical parameter. In Sec.IV,
we introduce the echoing with the period A as an oscillatory perturbation for the contin-
uously self-similar configuration in the near-critical collapse. The important result is an
analytical relation between the critical exponent  of the mass-scaling law and the period
A of the echoing, which is due to the inetraction between the oscillatory mode and the
continuously self-similar field near the central singularity. We conclude that the essential
features of near-critical dynamics can be well understood in terms of the perturbation

approach.



II. CONTINUOUSLY SELF-SIMILAR MODEL

We consider a massless scalar field ¢ which is minimally coupled to the gravitational
field. (In the following we use units such that G = ¢ = & = 1.) The Einstein-scalar action
for the metric g, plus ¢ is given by

1
= — [ d'z/=g(R - 20°¢0.9) . 4
I = 55z [d'=v=a(R - 20°80.9) )
In spherical symmetry, the line-element may be written in double-null form as
ds® = —2hdudv + rdQ? | (5)

where dQ?® refers to the unit sphere and k& and r depend on the retarded and advanced
null coordinates u and ». A time coordinate defined by £ = —v/u is used to assume the

continuous self-similarity of the form

h=h(€)1 r=_uf(€)v ¢=¢(£)) (6)

where the variable f is introduced as a self-similar field instead of the radius r of S,.
The allowed region of this metric form is assumed to be u < 0 and v > 0, where the
hypersurface of a constant £ becomes spacelike, and the other region £ < 0 is replaced by
the empty Minkowski spacetime [4,5]. This means that ingoing scalar waves from past
null infinity start at £ = 0, and the subsequent self-similar evolution lasts in a restricted
region 0 < £ < oo. The two boudaries £ = 0 and € = oo are null surfaces. The initial
boundary £ = 0 covers both the path of the first ray v = 0 of ingoing scalar waves and the
past null infinity —u = co. The boundary at the final time £ = oo also covers both the
path of the last ray —u = 0 of outgoing scalar waves and the future null infinity v = oo.
The classical self-similar family of solutions is given by

h = 1/2, (7)
£ = 5=+ 2+ 1], (®)
5o LpltpEt o)

2 (1-pk+1’
where p is a critical parameter. To see the spacetime structure, it is convenient to calculate

the quasi-local mass
2

= -0 S
M = 2(l 3°rd,r) g U (10)



which is positive only in the region £ > 0. We note that the apparent horizon r = 2M
exists at £ = £, = 1/(p* — 1) only when p > 1, and the supercritical collapse stops at the
spacelike singularity r = 0 corresponding to £ = £, = 1/(p—1). In the subcritical collapse
(p < 1), the scalar field completely disperses to infinity in the limit £ — co without such
a black hole formation.

We can construct the canonical formulation for the self-similar dynamics [6], if the

classical Einstein-scalar equations are divided into the two equations of motion

f=-1é, (11)
d ..
d_ﬁ(f2¢) =0, (12)
and the one constraint
= 2f f — 2%(f* - 1*¢*) (13)

where dots mean derivatives with respect to £. It is easy to check that the conservation
h = 0 is automatically satisfied by virtue of the two equations of motion, which give the
dynamical evolution of the independent variables f and ¢. Note that for the self-similar

fields the original action reduces to the form

5 [ - e, (14
which generates the canonical momenta conjugate to the variables f and ¢
o, = —f, 0y = f*4, (15)
and the Hamiltonian with the kinetic terms only
H = ;( -2 - 13) . (16)
By using the canonical variables, the constraint is rewritten into the form
= 2(2¢H - fIly) . (17)

The calculation of the Poisson bracket of & and H can confirm that the metric component
his a constant of motion for the Hamiltonian. The physical importance of the Hamiltonian

is clear, because it is related to the critical parameter p as follows,
1
H = §(p2 -1). (18)

The Hamiltonian H is a useful measure for separating the supercritical and subcritical

solutions.



III. BLACK HOLE EVAPORATION

Now the canonical quantization of the scalar field collapse is straightforward [6], in
which the canonical momenta are replaced by the operators

1 - 190

n, = a7 I = e (19)
and the Hamiltonian operator has the form
A = %(f'zﬁi - [T f1) (20)
The metric operator £ is also defined by
h = 22¢d -1i,f), (21)
which satisfies the equation
% = %[i;,fz]+% =0, - (22)

for the commutator bracket [, #]. This means the consistency of the canonical quanti-
zation procedure on the minisuperspace covered by the coordinates f and ¢.
The next task is to study the Hamiltonian eigenstates defined by

HYg = BV, (23)
where E is the Hamiltonian eigenvalue. The eigenfunction can have the form

Ye = Ypi(f)exp(ikg) , (24)

where k is the eigenvalue of the momentum operator ﬁ,,. Because the Hamiltonian has
no potential term, we can easily obtain exact solutions of V. By virtue of the form of
a Klein-Gordon equation in two dimensions, the eigenvalue E is allowed in all the range
—00 < £ < 00. We consider separately the cases £ > 0 and E < 0:

(1) For E > 0 we have a black hole state corresponding to the classical supereritical solu-
tion. This state which may be called a bound state shows a localized structure, because
the eigenfunction g, given by the modified Bessel function decreases exponentially at
large f as follows,

Yex = Ka(fV2E) ~ exp(~fV2E). (25)



(2) For E < 0 there exist two linearly independent osillatory solutions. We denote them
by the Hankel functions as follows,

vex = HY(fV=2E), (26)
and
Yer = HP(fV=2E). (27)

If we consider the WKB approximate form exp(iSg) of (27) in the limit f — oo, we can
obtain the classical dynamics f = V—2F according to the equation

I, = 8Sg/df . (28)

Recall that in the subcritical evolution initial ingoing waves bounce and are scattered away
to infinity. The solution (27} corresponds to a quantum description of the subcritical state
and the behavior in the asymptotic region f — co represents the evolution of f due to
outgoing scalar waves at large £. Then the other solution (26) is interpreted to be the time
reversal. These subcritical Hamiltonian eigenfunctions constitute a basic set of scattering
states.

To discuss the time evolution of the wave function, it is important to remark a behavior

of the metric eigenfunction defined by
h¥y = h¥y (29)

where h is the metric eigenvalue. We can find the metric eigenfunction which shows no
oscillatory behavior in the asymptotic region f — co. This is a black hole state with
the metric eigenvalue and is represented by a superposition of various black hole states
corresponding to the Hamiltonian eigenstates. The remarkable point is that the metric
eigenstate W), leads to a complete uncertainty of the Hamiltonian eigenvalue E, because
h and H do not commute. Further we note that W), is dependent on the time coordinate

£, and the time evolution occurs according to the Schrédinger equation
ov ~
t— = HV ., 30
A (30)
For the scattering states corresponding to the metric eigenstates the asymptotic WKB
form in the limit f — oo becomes oscillatory as follows,

¥, ~ exp(—if?/2€) x exp(ikg) . (31)



The factor exp(—if?/2€) is identical with the asymptotic form of the time-dependent
subcritical Hamiltonian eigenfunction

exp(—i€E)HP(fV=2E) ~ exp[-i(€E + fV—2E)], (32)

if we eliminate the eigenvalue £ by the help of the classical relation /=2E = f/¢ which is
valid in the limit £ — co. This implies that the wave function of such an asymptotic form
describes a final stage of the quantum collapse toward an outgoing propagation of scalar
waves, in which our knowledge of E is lost as a result of the time evolution according to
the Schrodinger equation.

The final step to arrive at the black hole evaporation is to use the integral formula
involving the Bessel function,

Ku(fV2E) = - / =B g — Byt g (f2EVE (33)

which is due to the breakdown of orthogonality of the Hamiltonian eigenfunctions. This
expansion of the Hamiltonian eigenstate corresponding to £ > 0 in terms of different
Hamiltonian eigenstates corresponding to E' < 0 reveals an important property of quan-
tum black holes. We can interpret the black hole state to be a special superposition
of various scattering states. Then the asymptotic behavior of the eigenfunction Kj; at
f — oo will imply a well-localized wave packet rather than a bound state independent of
scattering states. If so, the wave packet must spread with time by virtue of the quantum-
mechanical uncertainty of II;. This is a quantum instability of black holes.

We can verify the decay process, by giving the initial condition ¥ = K (fv2E)e™*
of the wave function at £ = 0. The solution of the time-dependent Schrdinger equation
satisfying the initial condition has the form

v = - / exp(—i€E')(—= )"""’(E E) I fV=IE)dE' €™ | (34)

To evaluate the integral with respect to E’, we use the Wick rotaion T = —i¢ of the time
coordinate. Then we obtain the wave function of black hole evaporation as follows,

U = 9(r, f)exp(ikg) , (35)
1, f2
v =3GE
For a rough estimation of the integral it is useful to consider the minimum point # =
Tm = f/V2E of the factor EF + (f2/27) in the exponential function:

. oo , 2
)ik exp(E‘r)/7 d7F~ (¥R oxp(— EF — g:;,_—) . (36)



(1) If 7 < 7, and fV2E > 1, the main contribution to the integral with respect to 7
is restricted to a narrow range near the minimum point, which corresponds to a classical
trajectory characterized by the eigenvalue E. Then we obtain the approximate form of
the black hole state written by

¥ ~ exp(—ifE)exp(~2ET,) . (37)

(2) The effective decay of the black hole state occurs only when the minimum point is
outside the range of the integral ( > 7,,,). In particular, at the final stage 7 > 7, of the
time evolution the asymptotic behavior of ¢ is approximately given by

¥ ~ exp(-if?/2) . (38)

Note that the wave function behaves like the WKB approximation of the metric eigen-
function (rather than the Hamiltonian eigenfunction) of the subcritical collapse. For
this final state no black hole structure remains and the outgoing flux corresponding to
the amplitude k& becomes observable at future null infinity as a result of the black hole
evaporation. '

The above-mentioned behavior of the wave function motivates us to define semi-
classically the decay (evaporation) time £ = &; by the equation &3 = f3(¢;)/2E, which

leads to 1
€ = 2(?_3(]+\/2p”—1) . (39)

We obtain the interesting inequality &, > £; > €4, which means that the quantum effect
becomes important after the apparent horizon is formed and before the singularity is
formed. Further note that the ratio defined by

_&E—& - %(_H\/E) (40)

vanishes in the limit p — 1 (£ — 0) and increases in proportion to p for large p. If the
efficiency of black hole evaporation is measured in comparison with &4 and £, we can
recover the usual result that the quantum process for larger black holes is less efficient.
We have constructed a quantum-mechanical model of the self-similar scalar field col-
lapse and have derived the wave function of black hole evaporation as a solution of the
time-dependent Schrodinger equation. Though the Hamiltonian eigenvalue £ character-
izes the geometrical structure of the initial black hole, the final state misses any informa-
tion of the initial eigenvalue. This will be an information loss analogous to the prediction
of the Hawking radiation. However, the evaporation process presented here shows no



explosive phenomenon at least in the time evolution of the wave function. The thermal
picture of the Hawking radiation will break down in the quantum treatment of the dynam-
ical black hole which is different from the Schwarzschild one. A more precise implication
of the result for the Hawking radiation should be understood in quantum models beyond
the framework of the continuously self-similar minisuperspace model.

VI. NEAR-CRITICAL BLACK HOLES

The purpose of this section is to study the critical behavior of dynamical black holes
and to treat a deviation from the continuous self-similarity only in the classical level.
We have mentioned that the continuously self-similar model is valid only in a restricted
region of the spacetime. The boundary of the continuously self-similar spacetime, which
is a path of the first ingoing null ray, must be matched with the flat spacetime to reqire
the regularity of the center r = 0 before the beginning of spacelike singularity. This
corresponds to an artificial truncation of scalar field distribution at the null boundary.
However, Choptuik has numerically studied the near-critical collapses, by giving some
smooth initial data of scalar field distributed over the regular center. Then the echoing
with a special period A, which corresponds to a discrete self-similarity, has been found as
a dynamical behavior different from the continuous self-similarity.

The regularity condition of the center during an early stage of the near-critical collapse
is essential to determine the period A. For example, Gundlach [7] has investigated the
scalar field collapse just at the critical parameter value p = p*, by assuming the discrete
self-similarity of the critical spacetime written by the metric

ds® = —d’di® + a’dr® + r3dQ°. (41)

The beginning of singularity is adjusted to be r = 0, { = 0, and the self-similar and
periodic variables are defined by

€ =lIn(r/-1t), 7 = In(-1). (42)

Then the Einstein-scalar equations allow the derivative 8Z/8€ for any field Z(£,7) to
be expressed as functions of all the fields and their derivatives with respect to r. This
set of the field equations defines a Cauchy problem with the time coordinate £. It has
been numerically shown that the boundary condition which requires the regularity both



at the center £ — —oo and some sonic line £ = £(7) can be satisfied only when the
period is restricted to the eigenvalue A = 3.4439 & 0.0004. Further Price and Pullin (8]
have claimed that in each region near the two boundaries the critical solution can be well
approximated by a flat spacetime scalar field solution, and a nonlinear matching across
the transition region can yield the period A as the eigenvalue.

These approaches based on the eigenvalue problem have partly revealed the origin of
discrete self-similarity. However, the structure of the critical spacetime, in particular, in
relation to the singularity remains unclear. Here we would like to treat the singular center

r = 0 in the spacetime written by the advanced null form of metric

ds* = —F*(1- g)dv'} + 2Fdvdr + 72dQ?, (43)
where M denotes the quasi-local mass. This is a useful form to obtain a simple picture
of near-critical black holes with the apparent horizon » = 2M very close to the singular
center, and in the following the mass-scaling law will be shown to be due to the discretely
self-similar behavior.

Our key idea is to assume the approximate validity of the continuously self-similar
solution given in Sec.II with the critical parameter value p = 1, which for the metric (43)

is rewritten into the form

¢ = $lé) =

g = mo(€) = E/1+€-6), F = R(6) = 1//e+1, (45)

where the self-similar variable is defined by £ = v/2r > 0. The discrete self-similarity

TP -¢
In e e (44)

B |

is introduced as an oscillatory perturbation for the continuously self-similar soltuion as
follows,

¢ = 60(€) + &1, ¢ = R(p(E)e™T), (46)

where 7 = Inv is the periodic variable. Of course, as previously mentioned, the discretely
self-similar field must dominate at least in the range v < 0 for assuring the existence of a
regular center. However, this does not necessarily mean that the perturbation treatment
is meaningless also in the range v > 0. Recall that the absence of any apparent horizon
around the singular center is a feature essential to the critical collapse. The background
solution ¢ is critical because of the behavior 2M /r — 1/2 at the singular center, which
should be compared with the result that 2M > r for a black hole center and M  r* for
a regular center. The perturbation treatment is partly verified, if the perturbed field ¢,
also can preserve such a critical feature.



The Klein-Gordon equation V2V, ¢ = 0 for the perturbed field ¢, is given by

(1- z);;[(l - z2):—: + iw(1+ %)tp] = (2z+ g)tp -2z ‘/: wdz | (47)

where 0 < z = £//T+ & < 1. The solution of the wave equation (47) can be written in
the form

¢ = bz + o(z), (48)

where § is a constant, and the function ¢ satisfying the constraint
1
/ odz = (1+iw)8/2 . (49)
0

is a solution of (47) in which the second term of the right-hand side is omitted. The
important point of the solution is the asymptotic behavior in the limit z — 1 (i.e,,
rfv <1),

g ~(1-2)", (50)

where for the exponent n = « + 8 we have
1
a = m(tl—w2+\/w‘1 — 4w + 16)/2 . (51)

Note the inequality 1/2 < & < 1. This power law (50) of the oscillatory field ¢, is crucial
to determine the radius r = r4(v) of the apparent horizon, because the Einstein-scalar
equations lead to the equation

Ta . 1(2r0,0,¢ + 20,06 + FO,¢)
= 52
/o Fdr = lim 1026 + 0,9 (52)
In this perturbation treatment (52) should be understood to be
Ti/‘v ~ lim r(2r6,6.,¢1 + 26,,¢1 + F03,¢1 + Flar¢0) , (53)

r—0 1‘6'2¢0 + ar¢0

where F) is the perturbed part of F. It is easy to see that the right-hand side of (53)
vanishes by substitution of the solution ¢ with the power law. Then, we can conclude
that no apparent horizon exists around the singular center.

We have found the essential feature (50) of the discretely self-similar field at the critical
collapse. However, for the near-critical collapse, the apparent horizon with very small
radius must form as a result of the violation of the power law in the region r < r,. Let
us discuss such a change of the behavior in the near-critical collapse to derive the mass-
scaling relation. Now the background field ¢y should be modified into the near-critical



black hole solution of continuous self-similarity. This modification of the background
field becomes important only in the region (r/v)? < ¢ < 1, where ¢ = p— p*(p* = 1).
Therefore, it is sufficient to reconsider the equation for the perturbed part ¢ of discrete

self-similarity under the approximation y = 1 — z < 1, and we obtain

o i e.de 241w
+f——+ 1_2w+___

e ¢ =0. (54)

If the variable y is rescaled by z = —y/e¢, (54) becomes the hypergeometric differential

equation, and we obtain the solution which remains finite at z = 0 as follows,
¢ = kF(—-n,n—1iw,1;2), (55)

where & is a constant. The behavior of (55) in the region —z 3> 1 is given by

I(2n — iw)

[(iw — 2n)
- K[I‘(l +n)l(n — iw)

A ntimrm 1 (56)

I_ﬂ
\3)+P

Note that the second term becomes negligible in the critical limit ¢ — 0. Then, the
requirement that the solution recovers the asymptotic behavior (50) in the region —z > 1
leads to the choice & ~ ¢*. This implies that the deviation ¢ from the critical value
generates the scalar field ¢ of discrete self-similarity with the amplitude of order of ¢*
near the singular center, which is much larger than the amplitude ¢ of the continuously
self-similar black hole field. Therefore, this part of the scalar field can work as a source of
a more massive black hole. If so, the black hole solution of the perturbed field ¢, which
violates the discrete self-similarity should have the amplitude of the same order, and it is
found to be

$ ~ f"/v2 (57)

in the limit » — 0. By using this estimation of the scalar amplitude in (53), we obtain
7‘?‘ ~ €, (58)

which leads to the relation between the critical exponent v of the mass-scaling law and

the frequency w of the echoing as follows,
1= of2 = oo+ VT AT IO (59)

In fact, for the value w = 2x/A = 1.824 evaluated by Gundlach, we can derive the value
v = 0.370, which is in agreement with the result of numerical calculations.



In summary, we have understood that the near-critical black hole is formed as a result
of the interaction between the continuously self-similar part and the oscillatory part with
the period A. If the latter is absent, we have the mass-scaling relation Mpy o (p—p)?
[4,5]. The latter contribution is important to increase the black hole mass to the value
Mpy o« (p— p°)". Though our analysis to treat the singular center is not useful to
determine the period A, we have succeeded in finding the analytical 7 — A relation and
the new critical behavior & ~ (r?/v%)" of the oscillatory part in the region r/v < 1 outside
the apparent horizon, which should be confirmed by more detailed numerical calculations.

The quantization of the oscillatory part also is an interesting problem as a next step to
study black hole evaporation. The perturbative treatment developed here in the classical
level is a good approximation of the near-critical collapse. Then it will not be so difficult to
clarify the quantum effect in terms of the canonical formulation presented in the previous
sections. This will be done in future works.
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The collapse of a massless scalar field in the Brans-Dicke theory of gravitation is studied numer-
ically. By conformally transforming the Choptuik’s solution into the Brans-Dicke frame, we find for
w > —3/2 that at the critical solution shows discrete self-similarity, however, the critical exponent
and the echoing parameter do depend on w.

I. INTRODUCTION

Critical phenomena in black hole formation found by Choptuik (1] has renewed interest in the classical general
relativistic black hole formation. Among the most interesting things in Choptuik’s results are
(1)Sealing: Black hole mass exhibits a power law

Mpy « (p-p°), (1.1)

where p is arbitrary parameter which characterize the strength of initial condition and p* is the threshold value.
(2) Echoing: Configurations sufficiently close to critical show a discrete homotheticity (or scale invariance)

¢(p—A,T—A)=‘¢(p, T]! (12)

where p and 7 are logarithms of proper radius r and central proper time {. Echoing means that the features of critical
solution are repeated on ever decreasing time length scales.
(3) Universality: The exponent 8 =~ 0.37 and echoing parameter A are independent of any choice of initial data p.

It should be noted, however, that the universality mentioned there refers to the independence from the initial
condition of the matter field considered. To investigate the dependence of the model of the matter, the collapse of
gravitational wave [2] and radiation fluid collapse [3] were examined. For vacuum gravity, § ~ 0.37 and A =~ 0.6,
while for radiation fluid # >~ 0.36 with A being arbitrary(i.e. continuous self-similarity). These results excite the
expectation that the critical exponent § may be universal among matter fields having massless property, although
quantum effects will destroy the phenomena against expectation [4).

In this paper, we will investigate another mode! dependence: dependence on the theory of gravilation. To see this we
take the Brans-Dicke theory of gravitation [5] for its simplicity. The theory contains a parameter w which controls the
strength of gravity, and in the limit w ~ oo the theory reduces to the Einstein theory. We consider the Brans-Dicke
theory in vacuum. The scalar field examined here is thus the Brans-Dicke scalar field. By conformally transforming
the Choptuik’s solution into the Brans-Dicke frame, we find that a discrete self-similar solution appears, however, the
critical exponent and the echoing parameter do depend on w.

The collapse of massless scalar field in the Brans-Dicke theory is also interesting in the light of structural stability
of Choptuik’s solution, which is our next problem.

Our paper is organized as follows. In sec.2, basic equations and numerical procedures are given. We reproduce
Choptuik solution. In sec.3, numerical results for Brans-Dicke theory are given. Sec.d is devoted to summary.

‘e-mail: chiba@tap.scphys.kyoto-u.ac.jp



11, COLLAPSE OF BRANS-DICKE SCALAR FIELD IN DOUBLE-NULL COORDINATES

We consider the collapse of the Brans-Dicke scalar field. The action is
S= / d'oy/TH(@ - 5(99)2) 2.1

By the conformal transformation Jap = gas/®, the action is reduced to that of a massless scalar field coupled to the
Einstein gravity:

5= [ d=y=i(R- 3V, (22)

where ¢ = /2w + 3In®. We treat the problem with the action Eq.(2.2) in terms of null initial value formulation.
Since in the null initial value formulation the grid points are tied to ingoing light rays, overall size of the grid becomes
smaller as system evolves and the resolution improves. Adaptive mesh refinement algorithm used by Choptuik is not
always necessary.

We take the following line element

ds? = —a’dudv + r2dQ>. (2.3)

Double-null coordinates are not unique. There remain two degrees of gauge freedom which correspond to redefining
u and v. We fix one of them by requiring u = v on axis r = 0. The remaining gauge freedom will be fixed by the
initial condition.

The equations of motion that derived from Eq.(2.2) are

Prup + TuTy + %a"’ =0, (2.4)
alay, —a 2a,a, — r2rur, — %r"za2 + -;—4:.,45., =0, (2.5)
Téuy + rudy + rydy = 0. (2.6)
And constraint equations are
Tyu — 207 g,y + 4lr¢3 =0, (2.7)
Ty — 207 'a,r, + %reﬁf =0, (2.8)

where r, = 8r/8u, for example. These equations are solved numerically. Since the usual iteration scheme for solving
these equations does not work because of their nonlinearity, we adopt the first order scheme developed by Hamade
and Stewart [6].

We introduce the following new variables

d= aa—vr-f=ru:g=ru-p=¢usq=¢"‘ (29)

The system of equations (2.3-2.7) can then be converted to a first order system:

1
fo+17Hfg+ 767 =0, (2.10)
- 1 ]
du = %(fg + za*) + FP1=0, (2.11)
po+r ' (fg+gp) =0, (2.12)
gu+r"Yfa+gp) =0, (2.13)
1
9o —2dg + 7rg’ =0, (2.14)

and the equations defining variables



a, —ad =0, (2.15)
r, —g=0, (2.16)
$o—q=0. (2.17)

We have to specify the boundary conditions on axis, u = v. Of course, r = 0 there and this implies ry +r, = 0,
ie., f = —g. Eq.(2.10) will be regular on axis if and only if a = 2g. Eq.(2.12) implies p = ¢ on axis. The boundary
value for a and ¢ are obtained by requiring a, = ¢, = 0 there.

We need to give initial data d and ¢ on the initial surface u = 0. The remaining gauge freedom mentioned in the
second paragraph is the choice of d on u = 0. This is arbitrary, and we chcose d = 0. As for the initial condition of ¢
(or ¢) on u =0, we typically take

#(u = 0,v) = 1 + ov® exp(—(v — v0)*/2?). (2.18)

We then integrate outward from axis Eq.(2.15) to obtain a, Eq.(2.16) to obtain r, Eq.(2.14) to obtain g, Eq.(2.10) to
obtain f and Eq.(2.12) to obtain p. Thus we set initial conditions.

The integration in the u-direction is done using an explicit difference algorithm. The integration in the v-direction
is done using an implicit algorithm, which is necessary to ensure stability. However, the integration can be made
explicit. Details of algorithm are given in [6).! :

In Fig.1, we plot the scalar field at the center with marginally subcritical initial parameter as a function of logarithm
of the proper time r = —log(t" — t), where t* is the time when an infinitesimal black hole forms. We find that the
scalar field oscillates with period A 2 3.43 in 7-coordinate, in agreement with Choptuik.

Fig.2 shows the black hole mass for marginally supercritical evolution as a function of ¢a — ¢3 with ¢3 being the
critical parameter. The least square fit shows the exponent 8 = 0.38, in agreement with Choptuik.

These results confirm logical consistency and accuracy of our numerical code.

I11. CRITICAL PHENOMENA IN THE BRANS-DICKE THEORY OF GRAVITATION

Next we study the behavior of scalar field for various values of w, 125 > w > —3/2 by conformally transforming the
Choptuik’s sotution reproduced in the previous section. The results are shown in Figures and Table. Fig.3 shows the
scalar filed at the center as a function of logarithm of the proper time 7 = —log(t* — t) for several values of w. The
scalar field oscillates greatly for smaller w. Fig.4 shows the black hole mass for marginally supercritical evolution as
a function of initial parameter for 2w + 3 = 2. The least square fit gives the exponent § ~ 0.43. Table summarizes
the numerical results. As can be seen the exponent § depends strongly on w, hence it is not universal quantity. This
is the first numerical evidence of non-universality (7] for the collapse of single matter content. On the other hand the
scaling parameter A depends weakly on w.

Table  Brans-Dicke parameter, critical exponents, and scaling parameters.

I 2w+3 | [] A ]
0.50 0.50 3.41
1.0 0.46 3.43
2.0 0.43 345
5.0 0.41 3.46
10 0.38 3.46
50 0.38 347
200 0.38 3.47
1000 0.38 347

It is to be noted that critical phenomena in the Brans-Dicke theory does emerge in discrete self-similar manner.
Thus stability analysis around a continuous self-similar solution gives no information for the stability of the actual
dynamical solutions.

{ However, slight modification is necessary to ensure that the system has second-order accuracy; Eq.(3.5) in their paper should
be replaced with z, = %(é,. +zo+ ;—'(G(ﬁn, zn) + G(yw, zw))). We thank T.Harada for pointing this out to us.



IV. SUMMARY

We have studied the collapse of the Brans-Dicke scalar field to examine the dependence of the critical phenomena
on the theory of gravitation. By conformally transforming the Choptuik’s solution into the Brans-Dicke frame, we
find for w > —3/2 that at the critical solution shows discrete self-similarity. However, the critical exponent and the
scaling parameter do depend on w. Numerical dynamical solutions show discrete self-similarity. These are another
examples of discrete self-similar critical solutions. Given these numerical examples, the critical phenomena are not
universal. The apparent analogy to statistical system may be just analogy not fundamental.

There remain many unanswered questions in critical phenomena in black hole formation. For example, “Why does
the critical solution exhibit discrete (or continuous) self-similarity? * or “Why is the critical solution independent of
initial condition?" We have no idea at present, however, we hope to report on the resolution of these problems near
future.
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FIGURE CAPTIONS

Fig.1. The scalar field on the center with a marginally suberitical initial parameter as a function of logarithm of the

proper time T = —log(t” — t), where ¢* is the time when an infinitesimal black hole forms. In this time scale
the scalar field oscillates with a periodicity A ~ 3.43.

Fig.2. The mass of a formed black hole for supercritical solutions as a function of p — p* with p* being the critical
initial parameter. The least square fit shows the exponent 8 ~ 0.38.

Fig.3. The scalar.field on the center for 2w +3 = 0.5, 1,2 with a marginally subcritical initial parameter as a function
of logarithm of the proper time r = — log(t* —t).

Fig.4. The mass of a formed black hole for supercritical solutions for 2w + 3 = 2 as a function of p—p°. The least
square fit shows the exponent § =~ 0.43.
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Abstract

According to previous work on magnetic monopoles, static regular solutions are
nonexistent if the vacuum expectation value of the Higgs field 5 is larger than a critical
value 7, which is of the order of the Planck mass. In order to understand the properties
of monopoles for 7 > 7, we investigate their dynamics numerically. If 5 is large enough
(> %er), a monopole expands exponentially and a wormhole structure appears around
it, regardless of coupling constants and initial configuration. If  is around 1., there
are three types of solutions, depending on coupling constants and initial configuration:
a monopole either expands as stated above, collapses into a black hole, or comes to take
a stable configuration.

1 Introduction

In recent years static and spherically symmetric solutions of the Einstein-Yang-Mills-
Higgs system have been intensively studied in the literature [1,2,3]. One purpose of such
investigation has been to understand the nature of black holes, especially in the context of
the no-hair conjecture; it was shown that non-trivial black holes are stable and hence the
monopole black hole could be one of the most plausible counterexamples. The other interest
has been in the properties of particle-like solutions; it was shown that such regular monopoles
exist only if the vacuum expectation value of the Higgs field 5 is less than a critical value
fer, Which is of the order of the Planck mass mp;. This result naturally gives rise to the next
question: what is the fate of monopoles for > 54?

Because the only static solution for 5 > 7. is the Reissner-Nordstrom black hole, we can
expect that a monopole which is regular initially evolves into the Reissner-Nordstrém black
hole. Even if this speculation is reasonable, we still do not know how the black hole formation
occurs. One could imagine two alternatives: a monopole just shrinks, or its core continues to
expand inside the black-hole horizon, just as a “child universe” [4].

Linde and Vilenkin independently pointed out the latter possibility in the context of the
“topological inflation” model [5]. They claimed monopoles as well as other topological defects
expand exponentially if 3 > O(mp;). Their discussions for the Einstein-Higgs system were
verified by our numerical simulation in [6]: we found that domain walls and global monopoles
inflate if and only if R 0.33mp,. The next question on this monopole inflation is similarly
what happens to magnetic monopoles in the Einstein-Yang-Mills-Higgs system. Because we
cannot find an answer to the question only by analyzing static solutions, we investigate
dynamic monopole solutions in this paper.

The plan of this paper is as follows. In Sec. II, we derive the basic equations and explain
how we solve those dynamical equations numerically. In Sec. III, we offer analytic discussions
and numerical results. Sec. IV is devoted to summary and discussions. In this paper we use
the units e=% = 1.

*This talk is based on N. Sakai, preprint, WU-AP/95/52, gr-qc/9512045, submitted to Phys. Rev. D.
Electronic address: sakai@cfi.waseda.ac jp




2 Basic Equations

The SO(3) Einstein-Yang-Mills-Higgs system is described by

s= d*'x,/_[m"'n V)?-%(D,,qw)?— V()] @.1)
V(®) = ]A@ — ), @ = VET, 22)
Fl = 0,A2— 8,A% + ec™ AL AL, D,8° = V,° 4 e 40", (2.3)

where A7 and Fj, are the SU(2) Yang-Mills field potential and its field strength, respectively.
®° is the real t.rlplet Higgs field and V/(®) is its potential. A and e are the Higgs self coupling
constant and the gauge coupling constant, respectively.

We assume a spherically symmetric spacetime and adopt the coordinate system,

ds? = —dt* + A%(t,r)dr® + B2(t,r)r*(d6? + sin? 0dp?). (2.4)

For the matter fields, we adapt the 't Hooft-Polyakov ansatz in such a way that we can apply
it to a time-dependent curved spacetime:

®* = &(t,r)f*, 7* = (sinfcosp,sinfsinp,cosf). (2.5)
a _ 0( g”";b) ubc*cl - w(t,r)
Al = Ggr € T — = (2.6)

With the metric (2.4) and the t Hooft-Polyakov ansatz (2.5) and (2.6), we derive the basic
equations:

L = Kok —axn . 2B B® 4B 6B 24 1 1
G = Ka(2K — 3KG) AR ARt + A3B  A?Br + A3r A2 + B?r?
8r [§2 o7 wdy2 oo w? o 1w?-1
= m—[,ﬁ[?+ﬁ+(ﬁ) +V+( B )z{ +F+§(—Br—)}]’ @7
1 _ o (B 1 2 . 2w
5Gn = Ki'+ (§+;)(3K K)y=— |d&'+ B )2], (2.8)
5(G1+ G+ 63— G8) = K — (K1Y - 2(K3Y
_81r 2 1 o w? 1,w?-1
=3 $2 — VﬁL—(eBr)2 {w +F+2(__Br )HE (2.9)
= . P A 2B 2\ ¥ 2wld dV
<1>-K<1>-P—(—7 ?+‘)F+Bz2+5‘°’ (2.10)
w”  A'w  w(l -w?
W — Kjw — =t (Bzrz ) + e*®%w = 0, (2.11)

where the overdot and the prime denote the partial derivative with respect to ¢ and r, re-
spectively. We have introduced the extrinsic curvature tensor of a ¢ = constant hypersurface,
K;;, whose components are given by
A B
Kl = -7 K (=K} =-=, (2.12)



and we have denoted its trace by K = K}.
As an initial configuration of the matter fields, we adopt the functional form of the static
solution in a flat spacetime with A = 0:

ry _ 1 1
q)(t = 07 1‘) = q’ﬂat (;) =7 [tanh(enr/f:q,) - GT]T’/CQ )
w(t=0,r) = wﬂm(é) = %, (2.13)

where cg and c,, are the initial size parameters. As to the time-derivative, we suppose <I>(t =
0,r) = w(t = 0,r) = 0. In order to set up consistent initial data, we have to solve the
constraint equations (2.7) and (2.8). At this point, there are four unknown variables, A, B, K
and K2, in the two constraint equations; two of the variables are arbitrarily chosen. One of the
methods which is usually adopted is to assume K = const and A = B. In this system, however,
the condition of K = const # 0 is not appropriate because the far region is asymptotically
flat. Further, in the range where there exists no static solution, we cannot fix X = 0 even
momentarily. As an alternative, thereby, we suppose A(t = 0,7) = B(t = 0,r) = 1 and solve
the constraint equations (2.7) and (2.8) to determine K (¢ = 0,r) and K3(¢ = 0,r). This
treatment is suitable for this system because we obtain

K 2 8z (02 @2

which approaches zero as r increases; we can construct an asymptotically flat spacetime with-
out iterative integration. We have also assumed K(t = 0,r) < 0: every point in the spacetime
is locally expanding. The numerical boundary is fixed at r = 30/(en)™! or 60/(ep)~".

In order to solve the dynamical equations, we use a finite difference method with 2000 to
10,000 meshes. Now we have six dynamical variables: A, B, K, KZ, ® and w. Equations
(2.9)-(2.12) provide the next time-step of A, B, K, ® and w, respectively. At each step,
we integrate (2.8) in the r-direction to obtain K2. In this way we have reduced spatial
derivatives appearing in the equations, which may become seeds for numerical instability.
The Hamiltonian constraint equation (2.7) remains unsolved during the evolution and is used
for checking numerical accuracy. We stop numerical computation when some errors exceed a
few percent.

In order to understand the spacetime structure from the numerical data, it is useful to
observe the signs of the expansion of a null geodesic congruence. Nambu and Siino [7] also
utilized this tool to study wormhole formation in a singlet scalar field system. For the metric
(2.4), the expansion O is written as

’

Op = k2, +hly = 2[ K}t (f};l ] (2.15)
where k% = (—1,+£A71,0,0) is an outgoing (+) or ingoing (—) null vector. We observe the
signs of O3 at all points in the numerical spacetime. For later convenience, we define “RI”
as the region where both ©* and ©~ are positive, and “RII” as the region where they are
negative. We can interpret that the region around RI is de Sitter-like and the region around
RII is Schwarzschild-like. The two-surface which bounds RI or RII is called an “apparent
horizon”. Later, we will use the term “black hole horizon” to refer to any boundary of RII.



And, we will use the term “cosmological horizon” in the sense that no information beyond it
reaches the center of a monopole; only the innermost boundary of Rl is called the cosmological
horizon.

3 Numerical Results

Before we move on to numerical simulation, we offer a rough discussion on the effect of the
gauge fields on the gravitational field. In our previous paper [6], we investigated the effect for
static monopole solutions and found that the gauge fields generate an attractive force. This
property is also described in the time-dependent coordinate system (2.4) as follows.

In a homogeneous and isotropic spacetime, the evolution of the scale factor a(t) follows

— = ———(p+3p) (3.1)

a

where p and p are the energy density and the pressure of a matter, respectively. Equation (3.1)
indicates that the sign of p + 3p determines whether the acceleration of the cosmic expansion
is positive or negative. We can extend this discussion to general spacetimes: the sign of
p+ Zp; = =T + T determines whether a local region expands with positive acceleration or
not. A corresponding equation in the present system to (3.1) is (2.9). At the origin, (2.9)

reduces to .
3 A 172

47

47 Jw
o= ——(p + Spi)roo = -;2;( 2V + W)r_o (3.2)

In the case of global monopoles, the second term of the right-hand side disappears, and hence
the central region is always locally de Sitter spacetime. If gauge fields exist, however, the
local acceleration at the center also depends on the second term. Although the exact value
of 8*w/(Adr)? cannot be determined without solving the full dynamical equations, we can
estimate its order by use of the static solution in a flat spacetime with A = 0. Assuming
*w/(Adr)? = b wh,, (r) with b = O(1), we have

X 2

P+ Ep,m0 = (-5 + 50), (3.3)
which lets us understand how the local expansion of the spacetime in the center depends
on Afe?. We see that, if A/e? < 1, the monopole core is an attractive spacetime; while, if
Afe* > 1, it is repulsive like de Sitter spacetime. Of course, if the initial configuration is
quite different from that of the static solutions, i.e., & # O(1), the above discussion is not

true. The dynamics may also depend on initial configuration.
In what follows, by use of the method in Sec. II, we will numerically integrate the field
equations (2.7)—(2 11). To show the results, we define X as a proper distance in the radial

direction: X = | Adr. We also define the boundaries of a monopole in two ways: Xg(t) =

at the position of ® = /2 and X, (t) = X at the position of w = 1/2. We normalize time
and length by the horizon scale defined as Hy' = (87V(0)/3m;2)"5.

First, we check our numerical code by solving the equations for the case of weak gravity. In
Fig. 1 we set n = 0.1mp; and A/e? = 0.1, and give two initial configurations: ¢y = ¢, = 1 and
0.5. We plot the trajectories of X¢(2). We find that the fields behaves stably; this reasonable
result indicates that our numerical code works well.



From now on, we concentrate on the parameter range where no static solution exists. In
Fig. 2 we set n = 0.4mp| and A/e? = 0.1, and give two initial configurations: ¢4 = ¢y =1
in (a) and ¢ = ¢, = 10 in (b). In Fig. 2(a)(b) we plot the trajectories of Xo(t) and of
Xu(t) as well as apparent horizons. The dynamics in these two cases contrast sharply: in (a)
a monopole shrinks and black-hole horizons appear, while in (b) a cosmological horizon exists
from the beginning and a monopole continues to expand. We also draw the distributions of
p + Ep; in (c) and in (d), which correspond to the results in (a) and in (b), respectively. In
(c) the values around the center become negative at the beginning, but they bounce back to
positive values, which confirms that the monopole core never inflates. On the other hand,
in (d) the values of p + Xp; around the center remain negative from the beginning. This
behavior indicates that exponential expansion really occurs inside the monopole. These two
results tell us that monopoles for 7 > 5 tend to be dynamic, and their dynamics depends
on initial configuration, contrary to the case of global monopoles.

As we will see soon, for larger 5, monopoles are more likely to inflate rather than shrink.
We show an example for larger 7 in Fig. 3; we set n = 0.55mp;, A/e? = 0.1 and c = ¢, = 1.
In Fig. 3(a) we plot the trajectories of Xo(t) and of X,(t) as well as apparent horizons.
(Please also refer to Fig. 4, which is a schematic sketch of the spacetime structure.) From the
beginning there are two apparent horizons, $1 and §2: S1 is the cosmological horizon. Later
other two apparent horizons, S3 and 54, appear, and then $2 and 54 approach each other.
These surfaces turn out to be black-hole horizons, 52’ and S4’, the moment they intersect.
In Fig. 3(b) we draw the distributions of p + Zp;. Contrary to the case of the contracting
monopole in Fig. 2(a), the values around the center are initially positive, but they become
negative. This suggests that, if 5 is large enough, a monopole begins to expand exponentially
even if its initial size is not so large. We also show in Fig. 3(c) the relation between the proper
distance along the radial direction and the circumference radius, which indicates a wormhole
structure really appears. Figure 4 lets us understand how the wormhole is created. Because
the expanding core is causally disconnected from the outer region, such an isolated region is
called a “child universe”.

One may think that if # > 7, a monopole either expands or collapses, as shown in
Fig. 2 or 3. However, we find some cases where a monopole neither expands nor collapses.
An example of such solutions is presented in Fig. 5 (7 = 0.3mp and Afe? = 10). Setting
s = cu = 1, we show the evolution of @ in (a) and that of w in (b), and the trajectories of
Xs(t) and of X, (t) in (c). Although some oscillations remain outside the monopole, the core
of the monopole approaches a stable configuration. We change the initial size in Fig. 5(d),
finding monopoles with any initial size behave stably. These results indicate that there exist
stationary solutions. The existence of such solutions looks surprising, because one may expect
that all solutions in the parameter range where no static solution exists must be dynamical.
The existence of “stationary” solutions, however, does not contradict the nonexistence of
“static” solutions: the solutions in Fig. 5 cannot be described with a static coordinate system
because the size of the monopole is greater than the cosmological horizon.

Finally we systematically survey the dynamics of monopoles for 0.05 < 7/mp £ 0.55 and
0.1 < A/e? < 10 and summarize the solutions in the A/e?-n/mp plane of Fig. 7. A square
denotes a stable solution, as is the case in Fig. 1 or 5. A cross denotes the case where a
monopole shrinks, as is the case in Fig. 2(a). A circle denotes the case where a monopole
inflates and the wormhole structure appears, as is the case in Fig. 3. A dotted line indicates
the maximum values of 7/mp versus A/e?, depicted approximately by use of Fig.6 in [1]. We



vary ¢ and ¢, from 1 to 10, and hence some parameter points are labeled as two symbols. We
interpret these results as follows. In the case of A/e? > 1, a monopole expands exponentially
if n R 0.35mpy; this critical value has little dependence on A/e? and initial configuration, and
almost agrees with that for global monopoles [6]. This agreement is quite reasonable because
the effect of the gauge fields is smaller as A/e? is larger. Below the critical value, a monopole
tends to take a stable configuration even in the theories where static solutions are nonexistent.
In the case of A/e? < 1, the dynamics also depend on A/e? and initial configuration. In some
cases the effect of the gauge ficlds becomes dominant and a monopole shrinks and becomes a
black hole. These results are consistent with our analytic discussions at the beginning of this
section.

4 Summary and Discussions

We have studied the dynamics of magnetic monopoles numerically. Our main purpose has
been to understand the behavior of monopoles in the case where static solutions are nonex-
istent.

If n is large enough (> 5 ), a monopole inflates and a wormhole structure appears around
it. We have shown how the wormhole connected with a child universe is created. We should
emphasize that a child universe can be generated without fine-tuned initial conditions in this
model, contrary to the case of a trapped false vacuum bubble {4]. In the case of A/e? > 1,
the condition of inflation is 7 & 0.35mp;, which has little dependence on Afe? and initial
configuration. Below the critical value, a monopole tends to take a stable configuration even
in the theories where static solutions are nonexistent. This is true for any initial configuration,
which indicates the existence of stationary solutions. While, in the case of Afe? < 1, the
dynamics also depends on A/e? and initial configuration. In some cases the effect of the gauge
fields becomes dominant and a monopole collapses into a black hole.

We should notice that the condition of inflation was also estimated analytically in a sim-
plified model by Tachizawa et al.[3] They discussed the global structure of a spacetime by
regarding the inside the monopole core as de Sitter spacetime and the outside as Reissner-
Nordstrém spacetime. They showed that the surface of the monopole core exceeds a cosmo-
logical horizon if 5 > mp|/\/3_ = 0.33mp;. This condition almost agrees with the condition of
inflation for most cases in our analysis; this agreement suggests that our numerical results are
reasonable as well as that their simplified model is a good approximation in most cases. When
the effect of the gauge fields is dominant to that of the Higgs field, however, the spacetime is
not de Sitter-like, and then the validity of the simplified model is lost.

Our results as a whole support the discussions of Linde and Vilenkin [5], who pointed
out the possibility of monopole inflation. Actually, we have found that inflation happens in
most cases of 9 > ... Further, if the initial size of a monopole is large enough, the effect of
the gauge fields is not important, as Linde mentioned. What we have clarified more about
this subject is there are some cases where static solutions are nonexistent but monopoles do
not continue to expand, as the results in Fig. 5. Although we did not state this fact in our
previous paper [6], it is also true for global monopoles.
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Figure Captions

Fig. 1. Dynamics of a monopole for the case of weak gravity. We set 5 = 0.1mp, and
A/e? = 0.1, and give two initial configurations: cg = ¢, = 1 and 0.5. We plot the trajectories
of Xo(t). The Higgs field behaves stably; these reasonable results indicates that our numerical
code works well.

Fig. 2. Dynamics of a monopole for = 0.4mp) and A/e? = 0.1. We assume two initial
configurations: ¢y = ¢, = 1 in (a) and ¢ = ¢, = 10 in (b). In (a) and (b) we plot the
trajectories of X¢(t) and of X,,(t) as well as apparent horizons. In (a) a monopole shrinks and
the black-hole horizons appear, while in (b) a cosmological horizon exists from the beginning
and a monopole continues to expand. We also draw the distributions of p + Xp; in (c) and in
(d), which correspond the results in (a) and in (b), respectively. In (c) the values around the
center get negative at the beginning, but they bounce back to positive values, which confirms
that the monopole core never inflates. On the other hand, in (d) the values of p + Zp; around
the center remain negative from the beginning. This behavior indicates that exponential
expansion really occurs inside the monopole.

Fig. 3. Dynamics of a monopole for = 0.55mp;, A/e? = 0.1 and c¢ = ¢, = 1. In (a) we
plot the trajectories of X¢(t) and of X, () as well as apparent horizons. (Please also refer to
Fig. 4, which is a schematic sketch of the spacetime structure.) From the beginning there are
two apparent horizons, S1 and S$2: S1 is the cosmological horizon. Later other two apparent
horizons, S3 and S4, appear, and then 52 and S4 approach each other. These surfaces turn
out to be black-hole horizons, S2' and S4’, the moment they intersect. In (b) we draw the
distributions of p + £p;. The values around the center are initially positive, but they become
negative. This suggests that, if 5 is large enough, a monopole begins to expand exponentially
even if its initial size is not so large. We also show in (c) the relation between the proper



the proper distance along the radial direction and the circumference radius, which indicates
a wormbhole structure really appears.

Fig. 4. Schematic sketches of the spacetime structure. These figures are not generated from
the numerical data, but they are based on the results presented in Fig. 3.

Fig. 5. Dynamics of a monopole for n = 0.3mp) and A/e? = 1. Setting cs = ¢, = 1, we show
the evolution of @ in (a) and that of w in (b), and the trajectories of Xg(t) and of X, (t)
in (c). Although some oscillations remain outside the monopole, the core of the monopole
approaches a stable configuration. We change the initial size in (d), finding monopoles with
any initial size behave stably. These results indicate that there exist stationary solutions.

Fig. 6. Parameter plane of n/mp; and A/e? in which we summarize our numerical results.
A square (O) denotes a stable solution, as is the case in Fig. 1 or 6. A cross (x) denotes
the case where a monopole shrinks, as is the case in Fig. 2(a). A circle () denotes the case
where a monopole inflates and the wormhole structure appears, as is the case in Fig. 2(c) or
4. A dotted line indicates the maximum values of n/mp, versus A/e?, depicted approximately
by use of Fig.6 in [1]. We vary ¢ and c, from 1 to 10, and hence some parameter points are
labeled as two symbols.
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Inflation in the inhomogeneous universe
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Abstract

We studied how the initial inhomogeneity of the spatial curvature
affects the onset of inflation in the closed universe. We consider the
model of a chaotic inflation which is driven by a massive scalar field.
In order to construct an inhomogeneous universe model, we use the
long wavelength approximation ( the gradient expansion method ).
We show the condition of the inhomogeneity for the universe to enter
the inflationary phase.

1 Introduction

Inflationary scenario explains the reason why the universe is homogeneous
and isotropic on large scales. An important question concerning inflationary
cosmology is whether inflation is generic or needs a fine tuning of initial
conditions.

For the Friedmann-Robertoson-Walker ( FRW ) models with a massive
scalar field, many authors (1] studied this problem. Belinsky et al [2] con-
cluded that inflation is a general property of FRW models with a massive
scalar field except for the closed one. In the homogeneous universe, whether
the universe will enter the inflationary phase is almost determined by the
competition between a positive spatial curvature and a effective positive cos-
mological constant which drives inflation.

The role of initial inhomogeneity on the occurrence of inflation was stud-
ied by a numerical simulation. This problem was investigated in the case of
planar symmetry (3] and in the case of spherical symmetry (4]. In ref. [4],
it is concluded that the crucial feature necessary for inflation is a sufficient
high average field over a region of several horizon sizes.

We study how the initial inhomogeneity of the spatial curvature affects
the onset of inflation in the closed universe by use of an alternative approach.
We consider the model of chaotic inflation which is driven by a massive scalar
field. In order to treat the inhomogeneity of the gravitational field coupled
to a massive scalar field, we use the long wavelength approximation ( the
gradient expansion method ).

The long wavelength iteration scheme is a method to construct an ap-
proximate solution of Einstein’s equations which describes an inhomogeneous
universe on large scales. This approximation is assumption that all spatial



gradients are small compared to time derivatives. In the iteration scheme, the
spatial metric can be expanded as a sum of spatial tensors of increasing order
in spatial gradients. Thus the approximation is called the gradient expansion.
It was introduced by Lifschitz and Khalatnikov [5]. They investigated the
behavior of the spacetime near the Big Bang. Using this method, Tomita [6]
studied the evolution of irregularities on super-horizon scales. For the higher
order solutions. Comer, Deruelle, Langlois ¢t al [7] developed an iteration
scheme of Einstein’s equations and Salopek, Stewart et al [8] developed one
of Hamilton-Jacobi equation for general relativity.

Recently the influence of initial inhomogeneity on the occurrence of in-
flation is studied by using the gradient expansion method [9, 10]. From
investigations in the homogeneous universe model, it is important to study
the inhomogeneity in the closed universe because a positive spatial curvature
prevents universe from inflating. However the spatial curvature is treated as
a small quantity in the gradient expansion scheme.

In this paper, we improve the approximation scheme in order to treat
the non-small spatial curvature. Then we show the condition of the inho-
mogeneity of the spatial curvature for the universe to enter the inflationary
phase.

2 The influence of inhomogeneity for infla-
tion in the closed universe

In this section, we derive the first order equation of gradient expansion in
the closed universe with a scalar field.

The Einstein equations for the gravitational field coupled to a scalar field,
in a synchronous reference frame, read

1o 1oy om 2, y-
S +31\5,,1\, = w|-0*+V(0)]. (2.1)
R3+2—ﬁo,(71\g) = h[o,»oofoﬂ(o)ag], (2.2)
Lo . :
5(1\,% - I\.,') = I(OO.‘(D, (2.3)

where R{ is the Ricci tensor associated with v;;, Kij = 45, 7 = det ¥ij» a dot
denotes the derivative with respect to t. a semicolon denotes the covariant
derivative with respect to 7, V(0) is the potential of the scalar field and
x = 87G. Throughout this paper Latin letters will denote spatial indices.
The equation of motion for the scalar field is

- 1 - .
o+ sKo—oi+d,V(e) = 0. (2.4)



At lowest order, we assume the space-dependence of the solution in the
form

(O] 9
Vi (x) = a1, Qx))hy;, (2.5)
(:;) (t.x) = ¢éo(t,Qx)), (2.6)

where h;; is the metric of §%. The spatial metric and the scalar field in the
lowest order has the space-dependence by an arbitrary spatial function Q(z).

Substituting Eq.(2.3) and Eq.(2.6) into Eq.(2.1), Eq.(2.2) and Eq.(2.4)
and neglecting all spatial derivatives, we obtain the equations which e and
¢p must satisfy:

é = K1 &2 vis
- 3 [-6*+V(e)]. (2.7)
a\? 1 Kl . .
)+ ekt ve). (28)
b+ 3%& +,V(6) = 0. (2.9)

These equations have the same form of the equation for the homogeneous
model.

Here we show the behavior of the lowest order solution. We think the
special model that V'(¢) = !’5—2(152. For simplicity, we consider the case of
%(,2.52 >> V(¢) initially. At the early time, the asymptotic behavior of the
scale factor and the scalar field is

a¥(t,z) = t30%(x), (2.10)

) 81
1/3—’ [lnt+ ot ]+C, (2.11)

where C is a constant of space and time variables. In the early stage, the
scale factor is proportional to () then the spatial dependence of the spatial
curvature Riuiimt < 272, The constant C corresponds to the freedom of
initial value of the scalar field ¢inisiai. Figure.l shows the inflationary region
and the recollapsing one by varying §? and C. From Figure.l, we can see
that a(t, ) inflates in the region where  is big ( Rinitiat is small ) and C is
big ( dinitiar is big ). This result corresponds with the case of homogeneous
universe because the lowest order equations are same as homogeneous ones.

At next order, we consider the parts of two spatial gradients of (x). We
will take corrections to the metric and the scalar field of the form

() VA%Y] CAZY

G b)) = a(t,00) %F(f,Q)—Q—hij-{-f(f,Q) Q

¢U(t..l’)




+%G(t, Q)V’?IY Qh,, + G, Q)m (2.12)
(1) v,ViQ Vv QV Q
¢ (te) = P(tO)—=— +Q(t, W)~ (2.13)

where V denotes the covariant derivative with respect to hy;, the over-line

denotes its traceless part.
(0 (. . .
Substituting vi; =7 ; + 745 into Eq.(2.3) and comparing the coefficients

of the first order derivative of 2, we obtain

a  ad

T = 2 [z - —| N+ h¢0¢oQ (2.14)

where a prime denotes the derivative with respect to 1. Note readers should
pay attention to the commutation relation for the covariant derivative. Sub-
stituting v;; into Eq.(2.1) and comparing the coefficients of the second order
derivative of €2, we get

F+2HF = 21 [—’Zéof’ + m2¢0P] , (2.15)
& + '2Hé = 2 [—QéoQ + 1112¢0Q] + . (2.16)

where G = G + T~ Similarly from Eq.(2.4), we have

. ., 1. .. 1 -
P+3HP 4+ m"P = —EQD()F -+ E(ﬁaﬂ, (2.1 ()
.. . . I. = 1 ! .

Q+3HQ +m*Q = —560G + = [ o + %qs;,] Q2. (2.18)

From Eq.(2.2), we obtain

. '
F4+6HF = 6um*oyP + % [F -F+ 2%9] , (2.19)
o - 2’
F4+3HF = =9, (2.20)
a
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= = 2K 1900
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a® | 2 2a a a?



We obtain the nine equations E¢.(2.14) ~ Eq.(2.22) for the six variables
F,F,G,G,P and Q. These equations are consistent. In order to solve
Eq.(2.] 1 7) ~ Eq.(2.22), we need to know the time evolution of a’,a", &, ¢}, ¢
and F. Differentiating Eq.(2.7) ~ Eq.(2.9) and Eq.(2.14), we obtaln the
equations for them.

We choose initial conditions as follows:

F=F=F=CG=G=P=0Q=0,
24 S 12 _|_ -
.G=- T e=-

\/? \/?
PR R

This condition means that we take the growing mode of the solution.
At each point, we define a local scale factor which includes up to the first

order by
, w w7
Qoeal = det |5 ij + {*J

[ 1. _v,\v'Q + 1 ~V;QV'Q]

Cab

3
@"'

I+gf—g—+30—
We can follow the evolution of the local scale factor a,m,(tlx) by the spatial
derivatives of {2 and the evolution of a(t, ), F(¢,Q) and G(¢,12). The local
expansion rate and acceleration rate are given by

(2.23)

fl;om( a 1 : V;VlQ > V;QV’Q

Qlocal - E + 6 |:F Q0 G (92 ’

tocat  _ g [ Py ] v,V L1 [ Gy ] V:QV’Q
Qlocal 6 6

The time evolution of the above two quantities is determmed by the
value of C.Q, V;V!'Q/Q and V,QVIQ/Q. We divide the four-dimensional
parameter space into two regions, inflationary region and recollapsing region.
The local scale factor with the parameters in the inflationary region enter the
phase with accelerating expansion: @ecat/ @rocat > 0 and &ocat/atocar > 0. On
the other hand, the local scale factor with the parameters in the recollapsing
region enter recollapsing phase: @ueat/@ocat < 0 and @1gcat/ Atgeat < 0.

While we compute the time evolution, we assume the approximation is
valid when

< 0.5,

(0) (1) (0) (0)
[det (7.‘j + 7,‘]‘) — det 'Yg'j] /dct Tij

' I‘z’z’ 1/ B (7)| < 05



3 Numerical results

Investigating the evolution of the local expansion rate and acceleration rate
numerically, we can see the role of two spatial gradient, V,V'Q2/Q and V,02V'Q /92,
on the occurrence of inflation. The result is shown in Figure.2. The posi-
tive V,V'Q2/Q hLelps the universe tends to enter the inflationary phase. The
negative value of it helps the universe to recollapse. On the other hand,
ViIQVIQ/Q? tends to prevent the onset of inflation.

From the result, we obtain the condition for the onset of inflation,

1 ALY vavial |
Q_‘Z [l — 30 q + 100’9—2 < l})(t), (31)

where ¥(t) is a constant of space and corresponds to the marginal value of
the scalar field in the homogeneous universe model. In the early stage, the
spatial curvature R, 15

2 D vavo
Rt'm'h'nl = [3 - 2V,V + IQ ] .

I 0 0 (32)

This condition described by Rinitia is

VIV Rinitial 143 Vi Rinitiat V' Rinivial
3 Rinitial 12 R?

tnitial

Rinitiat |1 +

] <U(@), (3.3)

where ¥(t) is a constant of space.

D.S.Goldwirth and T.Piran calculate how inhomogeneity influences the
inflationary epoch numerically in the case of spherical symmetry by use of a
special model. They conclude that the crucial feature necessary for inflation
is a sufficiently high average value of the scalar field ( suitable value for
inflation in homogeneous universe ) over a region of several horizon sizes.
In order to compare their results with ours, we impose Q%(z) to spherically
symmetry, Q%(y, 8, ) = (*(\), in the spherical coordinate where the metric
hij is hij = diag[l,sin \.sin* \ sin?0]. We consider the form of Q%(x) as
follows

cos? &
1 —exp [——Ag-z-

() = 21460 (3.4)

1 —exp [—Kl,;]

The form of §2* is shown in Figure.3. The distribution of Q2 depends on
the three parameter (23, 6§ and A which are constant of space and time.
A describes the comoving width of the initial inhomogeneity of the spatial
curvature. We study the conditions for entering the inflationary phase at



the origin when we vary (2. 692 and A keeping Q2[1 + 6£2/2) = p-1(¢) { for
example C is 5.0 and €7 is about 1.73013, see Figure.l ) unchanged. From
now on m?=0.1 in ¢ = x = 1 unit.

At the origin universe can enter the inflationary phase whenever A is
smaller than about 0.7. It means that the region of a suitable value of 02 is
over Y < 2.0 ( as a physical length 1.22 for C = 5.0, 1.6 for C = 3.0). The
initial horizon size is a(0.x)y = 0.3 in our calculation. So we conclude the
condition for inflation is a suitable value of Q2 over about a several times the
initial horizon size at least. The above condition corresponds with Goldwirth
and Piran’s.

4 Conclusion

We studied how the initial inhomogeneity of the spatial curvature affects the
onset of inflation in the closed universe by use of the gradient expansion from
a locally closed Freidamnn model. We consider a chaotic inflation which is
driven by a massive scalar field.

At lowest order, we assume the spatial dependence of the spatial metric
and the scalar field is described by an arbitrary spatial fanction Q(x) which
describes the initial inhomogeneity of the spatial curvature. The equations
for @ and ¢ reduce to locally closed Friedmann equations. At next order,
using the local scale factor ayeeqr, We investigate the effect of inhomogenecous
spatial curvature for inflation.

From numerical results, we obtain the condition for the onset of inflation.

In the case of spherically symmetry, we compare D.S.Goldwirth and
T.Piran’results with ours. Our results recover them within the first order
of the gradient expansion.
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Abstract

Recently a mechanism generating the primordial magnetic field at the
recombination time is considered. If such a magnetic field existed, protons
entering into it would be trapped and as a result a density perturbation would
be generated. It is assumed that the amplitude of the density perturbation is
10™2. Then the scale of the density perturbation is that of the quasar if the
present baryon density parameter is 0.01 and is that of the galaxy if it is 0.1.

1 Introduction

It is well known from the observation that the amount of the dark matter is 10
times as large as that of the luminous matter. However, it is less known what is
the dark matter. The conventional theory of the structure formation based on the
gravitational instability needs the cold dark matter f1]. But it has not yet been
experimentally verified that the cold dark matter really exists. So it will be mean-
ingful to consider any alternative theory of the structure formation without the cold
dark matter.

Many years ago, Wasserman suggested that if the primordial magnetic field had
existed, they might generate a density perturbation at the recombination time of
the Universe since they became a gravitational source (2, 3, 4). He assumed that
the density perturbation was roughly 10=2 at the recombination time because it
became 102 times larger and nonlinear until the present time. The correlation scale
of the primordial magnetic field was assumed to be 1022¢m becanse the mass scale
was that of the ordinary galaxy, 10'! solar mass. He concluded that the primordial
magnetic field was 10~3 Gauss at the recombination time. But the difficulty is that
the corresponding magnetic jeans length is 1023¢m and the magnetic field becomes
unstable.

In this paper, we propose a simple mechanism which more efficiently generates
the density perturbation of ~ 10~3 by the primordial magnetic field. The basic
idea is the following. Protons in the magnetic field do a synchrotron motion and
are trapped inside the Larmor radius. So if there was the primordial magnetic
field at the recombination time with a relatively large correlation scale in which
the direction of the magnetic field was more or less aligned, protons entering the
correlation region would do a synchrotron motion. Then they can move only along
the magnetic field line. If the Larmor radius was smaller than the correlation scale,



protons would be trapped in the correlation region. There is a similar phenomenon
to this mechanism. It is well known that charged particles coming from the Sun are
trapped by the magnetic field of the Earth. The above mechanism would generate
a density perturbation.

A mechanism generating the aligned magnetic field at the recombination time
is considered by A. Hosoya and S. Kobayasi [5]. However, in the present paper we
do not need to specify the creation mechanism of the magnetic field.

From the condition that the Larmor radius is smaller than the correlation scale
and protons are trapped, the lower limit of the value of the magnetic field can be
estimated by the correlation scale. If it is assumed that the density perturbation
is 10~3 and the baryon density parameter is 0.1 or equivalently the number den-
sity of the protons at the recombination time is 102, the upper limit of the value
of the correlation scale can be estimated to be 3 x 10?'cm and the mass scale is
3 x 10! solar mass which is that of the galaxy. Then the corresponding lower limit
of the magnetic field is 3 x 10~2%gauss. If the baryon density parameter is 0.01
or the number density of the protons is 102cm~3, the upper limit of the correla-
tion scale is 3 x 102%m and the mass scale is 3 x 10® solar mass which is that of
the quasar(QSO) or the active galactic nuclei{AGN). Then the lower limit of the
magnetic field is 3 x 10~°Gauss. The correlation scale must be larger than the
magnetic jeans length because the scale smaller than the magnetic jeans length is
unstable. From that condition, the upper limit of the magnetic field is determined.
It is concluded from the above results that our mechanism requires the magnetic
field smaller than that of Wasserman’s mechanism and whose scale is smaller than
that observed by the COBE.

Let us examine a possible mechanism for protons to escape from the magnetic
field by which the density perturbation decreases. If the Larmor radius was smaller
than the correlation scale, but larger than the mean free path of a proton, the
diffusion of -protons caused by the Coulomb scattering had to be considered. The
diffusion speed of a proton perpendicular to the magnetic field is proportional to the
gradient of the pressure or the density of charged particles(protons and electrons)
and inversely proportional to the correlation scale. So the effect of the diffusion is
very small because the density perturbation considered here is 103 at most and the
correlation scale is relatively large. Moreover the larger the density perturbation
is, the larger the effect of gravity is. So the effect of the diffusion can be negligible.
Neutral hydrogens are not trapped in the magnetic field. So the density perturba-
tion may decrease as the increased number of neutral hydrogens escape from the
magnetic field. The net number of hydrogens escaping from the correlation region
per unit time is proportional to the density perturbation and the density of hydro-
gens. As the Universe becomes neutral and the density perturbation becomes large,
that number may become large. But then the effect of the gravitation would be-
come large and hydrogens could not escape from the correlation region. The effect
of the escaping hydrogens turns out to be negligible as we show later.

Finally, we consider the evolution of the magnetic field. The magnetic field
around the density perturbation would be enhanced after the turn-around epoch by
a factor 10! at a redshift z ~ 2 if the density parameter was 0.1 and the redshift
of the galaxy formation was 4 [6]. Because it seems that the magnetic field is not
50 enhanced until the turn-around epoch, the magnetic field of 10~2°Gauss at the
recombination would be about 10~%Gauss at z ~ 2. From the observation, the
inter galactic magnetic field is 10~6Gauss at z ~ 2 (7]. This is consistent with the
result expected from our mechanism.



2 Density perturbation generated by the primor-
dial magnetic field

It is assumed that the primordial magnetic field, B had the correlation scale, £ and

was aligned at the recombination time. Protons would enter the magnetic field by

the analogous way to the charged particles trapped by the magnetic field of the
Earth.

particles from the Sun can enter into the closed magnetic field along the opened
Protons coming along the magnetic field will make a helical motion with the Larmor
radius r,, of the synchrotron motion of protons (Figure 1). It is given by,

P

B B B

- B

> | PP

Figure 1: This figure represents protons trapped by the magnetic field.
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where e is the electric charge of a proton and m,, v, is the mass and the thermal
velocity of a proton respectively. From the above equations, we obtain

7y ~ 10} (1Gauss/B)em n

If r, < £, protons would be trapped by the magnetic field inside the correlation
region.

The number density of protons, n, has not be determined yet because it is not
known what is the dark matter. If the dark matter was all baryonic, the number
density of protons at the recombination time, np¢ was 103¢m~3. If it was all
nonbaryonic, ;¢ was 10%em=3.

The number of free protons decreases rapidly after the recombination time.
When it is assumed from the Saha thermal ionization equilibrium equation that the
fractional ionization, x, decreases with the power of the redshift, z while it decreases

rapidly and x = 10~3 _;&y at 14 2z = 1000 [8], it may be given as below.
10%cm

x = (355)° @
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~ 6.85(3~ log 1—0%;_—3)

The flux of protons is isotropic. So the number of protons per unit time which
enter the correlation region is given by,

B = ant?nylt)uy ®)
n, = xn;*

The effect of the expansion of the Universe is negligible because the number of
protons sufficiently decreases before that effect is considerable.

Using the relation, £ = #o(1+ 2)=3/% with {p ~ 1.5 x 10!° year, being the present
age of the Universe, we can estimate the number of protons accumulated in the
correlation region before x becomes much smaller than 1 as,

2f M 2
N, ~ (_P_) x 10 4
P 102em~3 )

The resultant density perturbation is then given by

= Np,s
§ = FE/0
o memrf P 17
3 (102cm'3) x 10 (5)
where V = "—3’—53, is the volume of the correlation region.
If § is assumned to be more than 10~3 as we explained before, the upper limit of
the scale of ¢ is determined as,

rec

By 20
€< 3(1020171'3) X 10%em (6)

Then the lower limit of the magnetic field is determined by the trapping condition
for protons that r, (1) is smaller than £ as,

( 10%cm=3

nrec

B>+

>3 ) x 10~ 8Gauss (M

The total mass density of the Universe at the recombination is about 102m, (em=3)
whatever the dark matter is. So the mass scale of the density perturbation is,

M = 10®my(cm™3)V

3 x IOB(L)SM, (8)

102em=3

IA

where M, is the solar mass.

If the dark matter was all baryonic (nf° = 10%m~3), the mass scale was 3 x
101 M, and the density perturbation would become the size of the galaxy. If it was
all nonbaryonic, the mass scale was 3 x 103M, and it would become that of QSO
or AGN.

The magnetic jeans length at the recombination, Ap is given as,

Ap = cB

I’to:\/(_?



where p,,¢ is the total mean density of the Universe at the recombination time and
about 10~2!gem=3.

The correlation scale must be larger than the magnetic jeans scale. If it is not
so, the density perturbation becomes unstable. So the upper limit of the magnetic
field is determined as,

B S Pm\/a'ﬁ
c
_5 £ 102
~ 3x10 (W) (n—;‘?) (Gauss) (9)

3 Diffusion of protons

If r, was smaller than £ but larger than the mean free path of a proton, I, the
diffusion of protons had to be considered because protons might escape from the
region of the magnetic field and 6 might vanish. The cross section of the Coulomb
scattering for a proton with velocity v, is,
1
e
Oc~T=——1InA
¢ I:?EC
where In A ~ 20 is the Coulomb logarithm.
So the mean free path of a proton at the recombination time is,

1

le = ———
¢ n;ecac
( 10%2em=3

rec
ny

) x 10%cm (10)

The condition that r, (1)is smaller than {. implies B > (I—J}{Fg) x 10-¢Gauss.
This value is comparable to the upper limit determined by the magnetic jeans length.
So one might worry if there exists an allowed region for the magnetic field. If B
does not satisfy the above condition, the diffusion of protons must be considered.
However, if we can show the diffusion length is much smaller than £, we can conclude
the effect of the diffusion is negligible. So we will estimate the diffusion length of a
proton and show that the diffusion is indeed negligible.

The collision frequency of an electron scattered by a proton is given by,

),

l

v

Vep =

When the plasma is quasi neutral and in equilibrium, the magnetic hydrodynamics
equation of the plasma is,

—j_}xﬁ—?[’ = 0
P = PB+P,
E+?xB = Dy (11)

(12)

where f is the electric field and Pp, P, is the pressure of protons and electrons
respectively and n is the number density of protons or electrons and v is the velocity

of the center of mass and | is the current density. We can regard v as vp because



proton mass is much larger than electron mass.
The cquation of the state of a proton and an electron is,

P = T
P. n,T (13)

where T is the temperature.
If we use the cylindrical coordinate and direct F and VP to the direction of r

and H to that of z, from the above equations, we obtain the diffusion speed of a
proton perpendicular to the magnetic field as,

v = MeVepdree O(np + 1)
e* B3, ar

~ 310 (g53) () (2 ) (P ) s
nI'CC

3x loz(m)q(%)(cm/s) (14)

The diffusion may occur until the ionization fraction is not so small. The interval
from z = 1400 to z = 1000 is,

eft = etp(1000'5 — 1400-1-5)
10%(cm)

So the diffusion length of a proton until : = 1000 is,

g = dtuy
rec

) n
~ 10”(@)(@)"(”")

In this paper we estimate the diffusion length under the condition that the
ionization is 1 for simplicity until z = 1000. So the real value of the diffusion length
may be smaller than the above value.

It is concluded that the diffusion of protons is negligible because § > {4.

4 Escape of hydrogens

By the above discussions, protons are trapped inside the correlation region where
the magnetic field exists and the diffusion of protons is negligible. But because
neutral hydrogens are not trapped by the magnetic field, the density perturbation
may decrease as the number of hydrogens increases. If the number density of hy-
drogens in the density perturbation is a little larger than the mean number density

out
of hydrogens, the net number of the escaping hydrogens per unit time, %ﬁ is,

dNg

An€nyd
It € nydpvy

4n€*npee{1 — x}on vnr

]

where vy, nyanddy are the velocity of a hydrogen and the mean number density
and the density perturbation of the hydrogens, respectively,

It is reasonable to assume that the velocity of a hydrogen is equal to that of a
proton and the density perturbation of hydrogens is below 10~2 and the ionization



fraction is over 1073. Then the ratio of the net number of the escaping hydrogens
per unit time to that of the incoming protons (3) is given by,
AN dN,
dt dt

1=y
___;5,,
X

< 1

The real value of this ratio would be much smaller than the above value because
as the density perturbation became large, the effect of the gravitational force was
large and hydrogens could not escape from the correlation region. So the effect of
escaping hydrogen is negligible.

5 Conclusion
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Figure 2: The bold solid line, the thin solid line and the dashed line represent
£=r,6 = Ag,6 = 1073 respectively and 8 = l—o-';{#,. The structure may be
formed by the primordial magnetic field with the value of B and £ inside the dotted
area.

Recently a theory generating the magnetic field at the recombination time is con-
sidered ([5]). We suggest that the primordial magnetic field may play a role in the
structure formation. Protons entering into the magnetic field are trapped inside the
Larmor radius. If the magnetic field existed at the recombination time, it would
gather protons by the above mechanism and generate a density perturbation. The
theory of the structure formation based on this mechanism does not need the cold
dark matter as the one based on the gravitational instability theory and is more
efficient than the scenario suggested by Wasserman.

We conclude that the primordial magnetic field indicated inside the dotted area
in fig 2 would generate the density perturbation of more than 10~2 at the recombi-

nation time. Then the required magnetic field ranges from 3 x 10“9(“’:",+") to
P

3x lO“"(m','cl,;n-) Gauss in our scenario. The upper limit of the correlation scale of
the magnetic field or the scale of the density perturbation is 3 x 10?%(jg72=y) cm
and then the mass scale is 3 x 103(%6"'—_;)3 solar mass. So if the number density



of the protons at the recombination time was 10%em=3, AGN or QSO would be
generated. If it was 10%em™3, the galaxy would be generated.

The effect of the diffusion of protons and the escaping neutral hydrogens is neg-
ligible.

The mechanism which generates the magnetic ficld at the recombination time
suggests that the correlation scale would be over 10%! cm (5). So it is consistent
with our result.
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1 Introduction

The perturbation calculation in curved spacetime is usually very complicated. Be-
sides the theoretical difficulties like non-renormalizability of quantum gravity, it
seems that technical difficulties also disturb further analysis of the quantum effects
in curved spacetime.

[n order to reconsider the quantum feld theories in curved spacetime. we focus
the anomalies, which are one of the direct quantum effects and are analyzed by
many authors[l]. This talk is based on the paper[2].

Fujikawa’s general standpoint that the anomalies come from the path-integral
measure is taken. Then a general approach to anomaly in quantum field theory is
newly formulated by use of the propagator theory in solving the heat-kernel equation.
We regard the heat-kernel as a sort of the point-splitting regularization in the space(-
time) manifold. We obtain some useful formulae which are valid for general anomaly
calculation.

In the present talk, special emphasis is on the Weyl anomaly which is diffcrent
from other anomalies in the following points. Weyl anomaly appears in general the-
ories because it is directly related to the trace part of the energy-momentum tensor.
It is essentially given by the 8-function, which determines the scaling properties of
a theory. [t represents that Weyl anomaly has dynamical degree of freedom. Weyl
anomaly, at present, does not scem to be understood only by the global geometrical
(topological) analysis. This is related to the above fact. Therefore we can expect
the Weyl anomaly contains richer dynamical information than other anomalies.

Motivated by this expectation, we newly formulate the general anomaly problem.
It is based on ( the coordinate version of ) the propagator approach in the ordinary
perturbative field theory[3]. All explanation is done by the familiar field theory
language. We take the heat-kernel regularization for the ultraviolet divergences.
General formulac of anomalies are obtained. Many applications are presented. Weyl
anomalies, chiral anomalies(in the flat and curved space), local Lorentz anomaly and
gravitational anomaly are explicitly derived by the paper[2]. Practical usefulness is
stressed.

IThis work is a collaboration with Shoichi ICHINOSE. address: Department of Physics, Uni-
versity of Shizuoka, Yada 52-1, Shizuoka 422, Japan



Generally anomaly terms ( especially Weyl anomaly terms), including their
coefficients, arc fixed by calculating (1-loop) quantum fluctuation in the pertur-
bative expansion. The explicit calculation becomes more and more complicated
as we increase the space(-time) dimension. In n-dim gravitational theories, we
must treat complicated higher-rank global SO(n) covariants and invariants such
as 9,0,hap, 0,0,hys - 0,0,hy,, etc. in the weak-gravity expansion: g,z = 8,5 +
hop, lhagl € 1, (a,8,+- = 1,2,---,n). In order to get rid of the obstacle, we
introduce a graphical representation to treat those terms systematically. The detail
of this representation appears in [2]. The representation makes it so easy to list up
all independent terms. Although the present paper deals with n = 4 cases only,
in order to clearly show the usefulness, it is applicable to higher-dimensional cases.
The application to six dimensional Weyl anomaly is discussed by a next paper[4].

The anomaly terms are often compared with the counter-terms. The former is
independent of gauge whereas the latter is not. The former is related with the con-
sistency of the theory whereas the latter is related with the renormalization of the
theory. Although both come from the ultra-violet divergences, their most appropri-
ate regularizations are different: the anomaly terms are commonly calculated by use
of Pauli-Villars regularization (or its variants) whereas the counter-terms are usu-
ally calculated by use of the dimensional regularization. We will obtain some direct
connection between the two quantities through the anomaly formula calcnlated by
the heat-kernel regularization. The formula is very powerful as in the case of the
counter-term formula by 'tHooft[5]. It is demonstrated that various anomalies of
various theories are derived by the fornulac.

2 New Formulation of Anomaly and Heat-Kernel
Regularization

Let us explain the present formulation of anomalies taking a simiple example : Weyl
anomaly in n-dim Euclidean gravity-scalar coupled system.

‘C[guus ¢] \/— _g;wa ¢au¢ + - qR¢’2) ’
n-—2

-1 W

9=

where g,,, and ¢ are the metric field and the scalar field. This Lagrangian is invariant
under the local Wey! transformation:

g(z) = ePEgi(z) | Ga) =" ToEg(z) , a) = e @) , (2)

where a(a:) is the parameter of the local Weyl transformation, ¢ = det g,,, and we
introduce ¢ = V9 ¢ for the measure D¢ to be general coordinate invariant [6]. The
partition function ,on the external gravitational field g,, , is given by

Zou) = [Dé exp{ ~Slgwdl} , Slowndl = [aLlgrd] . ()
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G(x,y;t) appears in both sides above. We can iteratively solve (16) as

Gla,yit) = Go(m—y;t)+/st7(;o+/5't7/s'ﬁc;'o+--- :

Gz, y3t) = /SV’GO = /(["*dsb(l' -zt —s5)} ( VGo(z — y38)
- fd" / dsGo(z — ;1 — $)P(2)Golz — wi8) (17)
Gz, yit) = /bV/bVGu = /d":’(ls'S(I - M= WV(2)

jd"’dsb( —-z8 - s)l7(z)Go(z —¥;8)
/d":’/ ds'Go(x — '3t — $")V ()
0
x /d":/a dsGo(=' — =18 — 8)V(2)Gol= = : )
(1]

Higher-order terms are similarly obtained. Generally, in n-dim, the terms up to G,
are practically sufficient for the anomaly calculation. The trace-part of (4) is given
by putting £ = y in the above equations. where we introduice some scaled integration
variables which are dimension-less: r = %, w* = (z 2 )"/ vt . Furthermore Further
analysis will be done for each dimension.

3 Anomaly Formula in 4 Dimension

In this section we will obtain a formula for anomalies in 4 din.

3.1 Go(0;t),Gy(x, ;1)

From (13) with n = 4, we obtain

In . (18)

From (17),

1 1 1 w? w2
ENEN I —:—————/[" s/ [p————— T T V(o ! -
(o5 t) e dhw [ di = ")7'}2f Vo + Viw)e 3 (19)

We notice (°-terms only contribute to the anomalics. They correspond to log-
divergent terms in the effective action: I' = [[*%G(x,z;t). ( t*™-terms (m =

1,2,--) contribute to power- -divergences, {*™-terms vanish as ¢ — +0 .) External
fields, W,,, NV, and M in 1 (x + fw) are expanded around { = 0 as,

W, (z + Viw) W, (x) + VIuwTd, W, (2 )+ %wf*wﬁaaaﬁw,w(x) 4o
Ny (z +Viw) = N,(2)+ Viw d,N,(z) + —w WP, 03N () + -+ - (20)

M(z + Viw)

M(z) + Viw* 9, M(x) + —w “wPd, M () +
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Then we can pick up t%-part of (19) as follows.

(‘v e — 1 14 ! l. 1 —4ru1’2_,-)
Jl(.r,.l',t)ho = _4/( IU/ uﬁe

5;“/ w*
2r 42

+;§7w w u"()\() 0 1\" ’I‘) )+ %w, w 3,\36:"1(1') } (21)

: r 5
1 O ‘ '

= % W, (x - AW (.

(47)24! 50 W, () + 5() 9, 0,W,,(x)

—20%9, N, (x) + 40° M (z) )

x{ —w\w”wrw“’()\a 9,9, H,“,(l)(

This is one part of the 4 dim anomaly formula. Let us derive the other part.

3.2 Gz, z;t)

From (17), we have

Gy(z,xyt) = /d'vd‘u/ dL/ di T k) _11}2 -~

]_ . N (v — ) (v —u)*
. fl""'(’l+ﬁ')( 2(A-—l)+ T

| (v—u) .
+7N,,(x + ‘ﬁ”)("'(k—"ﬁ) + M(z + Viv) } (22)

6o wru’
x { H\[,1+\/-u Tl 412)-{\/_ x+\/-u +Ul+\/—u

For the comparison with the (1-loop) counter-term formula, we first consider the
case of 'flat’ space: W, = 0 . In this case the t%part of (22) is given as

G, e ) = [___()z (N, Ny)
+ﬁ(0“N NN+ (M 1 AN . (23)

Combining the above result and (21) for W, =0 , Gﬂ‘"(x,m; t)|e is expressed, up
to the present approximation, as

1 .1 1 1
Gz, 2;t)|o 51 EBQ(M - 5-8,,1\’“ - ZN“ N, 1+ ALy + O((N, MYy

(4ny

1 1
ALy = N, - d,N,)* + 5(M - 58,,1\',, 2], (24)

W[ 280
where AL,y is 'tHooft’s 1-loop counter-lerm formula [5] at the present approxi-
mation. This anomaly formula should be compared with the counter-term formula
in the following points: 1) The total derivative terms have meaning in the anomaly
formula; 2) Because the present approximation is weak-field expansion (of the 1-
loop part) up to G, the cubic and quartic terms with respect to the external ficlds
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(N, M) do not appear and will appear in (5 and (74 ; 3) The linear terms appear
as total derivatives; 4) Symmetries, with respect to interchange of suffixes, are not
assumed for the external fields N, and M; 3) The counter-term formula is ob-
tained using the dimensional regularization, whereas the present anomaly formula is
obtained using the heat-kernel regularization. Although conformal anomalies were
discussed in connection with the 1-loop counter-term formula[l1], such a direct re-
lation as above has not been known so far.

For the anomaly calculation of gravitational theories. we must consider the gen-
eral case of W,,,.. From the dimensional counting ([, ]=(Mass)? , [N,]|=(Mass)'
. [M]=(Mass)? | [d.])=(Mass)' ). we see the t°-part of Gio(x,x;t) has three types
of terms: 1) W x (d22IW, JdQIN, dIM) ; 2) (W, N) x (909W,80N,aM) ; 3)
(QOW,ON, M) x (JOW,IN,M). Among them, the most useful ones are type 3)
terms, i.e. those terms which are composed only of (Mass)?-dimensional quantities:
(00W,0N, M) because they are sufficient to determine all anomaly terms[2]. Other
types, 1) and 2), are also similarly evaluated, but practically they are not necessary
for the anomaly calculation.

3.3 Graphical Representation of Anomaly Formula

Further evaluation of (22) is straightforward, but we need to treat many teris.
Here we introduce a graphical method to express those terms. Recently it has been
shown that the graphical representation is practically useful to treat invariants and
covariants in general relativity[12]. Because the connectivity of suffixes is visually
expressed, it is very casy to discriminate between independent terms and dependent
ones. Here we apply the technique to the present case: to represent global SO(n)
(r = 4 in the present case) covariants and invariants. We define the following
graphical representation for 9,9;W,, . d,N,,.

* L ]
* L 2
* L J
* L 2
.
—— N . .
L 4 . * »
L . * *

('),\é),, H "‘“, 0.\ Nu
Fig.1

All independent terms which could appear in (22) are graphically listed up in
[2]. They are those terms which satisfy the following conditions: 1) Invariants with
respect to the global SO(n) (n = 4 in this section) transformation of the coordinate;
2) Dimension of (Mass)*; 3) They are composed only of 93W , N and M . Totally
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26 terms appear. The final evaluation of (22) is given by Table 1 where the coeffi-
cients for all independent terms ,except the overall factor 1/(47)?, are listed. The

result (21) for Gy and the result of Table 1 for GG, constitute the anomaly formula
in 4 dim.

Graph Expression Coell. || Graph Expression Coefl.
Al [ 8,00\W,, -8,0,W,\ | 1/45 | E1 [9,00W,,-9,N, | 1/12
A2 | 8,0W,,-0,0,W,, | -2/45 | E2 |9,00W\,-9,N, | 1/12
A3 | 9,00W,,-0,0,W,, | -2/45 | E3 |[8,0,W\-8,N,| 0
Bl | 30,0\W,, - \8,W,, | -1/90 | E4 P*W,,-9,N, 0
B2 Wy, - oW, |1/180 | QR |3.0W,, -0\Ny\| -1/6
B3 |0,0W,,-8,0,W,, |L/180| PR | 8*W,,-9,N, | 1/24
B4 | 3,0,W,, -09,W,, | 1/180 | F1 aN,-9,N, |-1/24
Q? (8,0,W,.,)? 1/18 | F2 N, -O,N, |-1/24
Cl |9,0,Wir-0,0,W,, |1/360 | RR (0, N,)? 1/8
C2 W, - 0*W,, |1/144 || MP M-PW,, |-1/12
C3 0,0,Wyy W, |-1/90 | MQ | M-9,0W,, | 1/3
PO | W\ -9,0,W,, |-1/36 | MR M 9,N, -1/2
p? (9 Wyy)? 1/288 || MM M- M 1/2

Table | Anomaly Formula for (DOW, N, M )E-part of Gyla.xit)|p
The overall factor is 1/(47)% Graph names are defined in [2].

3.4 Weyl Anomaly in 4 Dimension

We apply the formula (21) and Table 1 to the Weyl anomaly calculation of the
present example (1) with n = 4. Here we introduce another graphical representation
for the terms appearing in the weak-gravity expansion: g, = 6,,+h,,,.. We represent
0,0, h,p as follows.

* L ]
* *
* L 4
* = IQ
L) *

L} *

L 4 *
L L

Fig.2

We focus on (93h)*-terms in the anomaly because this type terms come only
from Gy(z,z;t)|p and (9OW,IN, M)-part of Gy(w, x; t)|,e. All possible terms that
could appear in the Weyl anomaly, are graphically listed up in [2]. Totally 13
independent terms appear as listed in Table 2. Inserting the above expressions(10)
into (98W, N, M)%-part of G(z,z;t)|,0(Table 1) we obtain G,-Coeff. of Table
2, where the overall factor 1/(47)? is omitted. Inserting h*-part of (W, Ny, M),
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defined in (10), into Gy (x,2;1)|e(21) and picking up (9dk)*-terms, we obtain G-

Coefl. of Table 2.

Graph Expression Gs-Cocfl, | G,-Coefl. G+ Gy
Al DaOrhyy « 50,00 1/45 -T7/180 -1/60
A2 | ,0zhy, - 0,00, | —1/45-8 -1/90 -1/72
A3 | Denhy, - 0,000, | —1/45-8 0 —-1/360
Bl | 0,0zhge - NOh, | —1/90 2/3-24 1/60
32 Phy, - KoL, /180 | —4/15-24 —~1/180
B3 | 3,0,hy - 0,0,h, 1/180 1/5-24 -1/72
Ba | ,8,hy, - WOk, | 1/180 0 1/180
Q? (8,000, )° 0 0 0
Cl | 8,8,har-0,0,he0 | 17360 | —1/144 —1/240
2 Ph,, - Bh,, /144 | =1/15-24 1/240
C3 | 8,dhay-3h,, | —1/90 | 1/3.2 1/360
PQ 02}l,\,\ . f),,f),,h,w 0 0 0
[ﬂ (th_\‘\ )2 0 0 0

Table 2 Weyl Anomaly of 4 Dim Gravity-Scalar Theory: (9&h)*-part
The overall factor is 1/(4#)?.

We consider the general properties of the solution G, ;). Its mass dimension
is [M]" and is a general coordinate scalar densily. We also consider Bianchi identities.
This condition determines the anomaly terms as

Weyl Anomaly = “—i)—,z\/.(j(n|'€"2[i’ + 304 3, R, B* 4 348, R#vAe), (25)

in four dimension, where ay, 4y, 32, 43 and = are constants to be determined,
Now we have cvaluated the (99h)3-part of the Weyl anomaly completely. They
are expressed by the (9dh)*-part of the invariant quantities 26. The coefficients
are obtained by the weak gravity expansion of the right-hand side and equating the
result with that of Table 2. The result is
= —— i = - l

w - =0 % =
Here we comment on the reason why the present formulac are sufficient to de-
termine the anomaly terms completely. In » = 4 dim case, the number of inde-
pendent (general coordinate) invariants which could appear in the Weyl anomaly
is 4 as shown in (26). Whereas the number of independent (global SO(4)) invari-
ants of (38h)* is 13. Since each term of (89h)? gives an independent constraint,
(89h)*-terms are sufficient to determine the Weyl anomaly. Generally, in n-dim, the
number of independent terms which appear in the Weyl anomaly is far less than
that of (88h)*/2-terms. Hence the formulac up to Gy ze is sufficient. Furthermore
we need not all terms contained in G i =1,2,---,%. Inn =4 dim case, we
have obtained only (daW,8N, M)?-type of (/3. Other types do not contribute to
(00h)*-terms. This is the same situation in the gencral n-dim case. Although we
explain for the case of the Weyl anomaly, it is valid for other anomalies.

(26)
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4 Discussions

We have presented a systematic approach to general anomaly calculation. It is based
on the propagator theory. Fujikawa’s general standpoint about anomaly is taken.
In the evaluation of the Jacobian due to the change of the path-integral measure,
we take the heat-kernel regularization. The 4 dim general anomaly formulae are
obtained. The known various anomalies and some relations between them are ex-
plicitly derived from the formulae. We have also presented the graphical technique
for the representation of (global SO(n)) invariants and covariants appearing in the
weak field expansion calculation. For the flat space(-time) case, the 4 dim anomaly
formula reduces to the 'tHooft’s 1-loop counter-term formula except total derivative
terms.

Renormalization and anomaly are two outstandingly important aspects of quan-
tum field theory. They have been giving us various rich information and helping us
to understand the field theory. The direct relation between the 1-loop counter-term
formula and the anomaly formula clearly shows the intimate relation between them.
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TOPOLOGICALLY TWISTED 2-D CONFORMAL SUPERGRAVITY
AND BRST GUAUGE FIXING f{

Noriaki Ano *

Department of Physics, Rikkyo University,
Nishi-Tkebukuro, Tokyo171, Japan

ABSTRACT

It is mentioned that there exists a moduli space intrinsic to topologically twisted osp(2|2)®
o0sp(2[2)algebra in two dimensions through Noether current approach recently proposed by
the auther. This means that N=2 ‘pure’ conformal supergravity theory in two dimensions
can be under twisting procedure.

1 Introduction

We know two typical stand points for constructing the cohomological field theory
[1][2], i.e. topological twisting and BRST gauge fixing. The theory which we refer to
as TFT deals with topological invariants, that is, a kind of the topological field theories
[3]. Both approaches, topological twisting and BRST gauge fixing, result in the so-called
moduli problem [2){4]. In the BRST approach, the relation between the moduli problem
and TFT may be comparatively clear owing to the intrinsic constructing procedure where
some moduli problem can be settled as the gauge fixing condition. In the topological
twisting formalism, the above relation is not much clear, on the contrary. It seems that
there has not been a common recognition on what the topological twist is really doing.

In the recent publication(5], it is shown that the topological twist is related to moduli
problem intrinsic to the topologically twisted superalgebra, i.e. the so-called topological
algebra [6]. To obtain the algebra, we perform topological twist of 0sp(2[2)® 0sp(2|2)which
can be identified to the finite N=2 conformal superalgebra in two dimensions [7]. The
derivation of the moduli space inherent in the topological algebra is elaborated through a

t Talk given at workshop on General Relativity and Gravitation’95, Jan. 1996, Nagoya(Japan)
* E-mail: nano@rikkyo.ac.jp
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gauge system of osp(2|2) & osp(2|2)and vanishing Noether current with aid of induction
of Lagrangians of the topological field theory found in the twisted algebra. In case of
considering matter systems, it is known that there exist the different models with different
moduli problems from the same supersymmetric system, i.e. the so-called A- and B-
twisted models (for detailed explanation of A- and B-twist, see Ref.[8]). It is necessary
to emphasize that we are indeed interested in the geometrical object of the topological
algebra, i.e. gauge connections configuration alone, not the configuration associated with
non geometrical objects. The vanishing Noether current is a resultant under the weak
coupling limit on the path-integration with the TFT Lagrangians found in the topological
algebra. It is claimed that the obtained relation between the topological twist and the
moduli proble inherent in the twisted algebra seems a new characteristic of TFT, through
considering the pure gauge system of interest as geometrical object.

We can see that the above mentioned characteristic enables us to be under twisting
procedure for N=2 ‘pure’ conformal supergravity theory in two dimensions [9], moreover.
The above ‘pure’ means that the theory is composed of the gauge fields alone, i.e., with-
out non geometrical objects. It is well-known that such a gravity theory is trivial, and
there seems no way to twist the theory. In Ref.[9], notwithstanding, it is argued that a
twisting procedure of 0sp(2|2) & osp(2|2)theory results in twisting of N=2 ‘pure’ conformal
supergravity in two dimensions associated with osp(2[2) @ osp(2[2)gauge symmetry via
coupling of two well-known constructing approaches for TFT, i.e., both the twisting and
the BRST gauge fixing. Hence we will be confirmed in the above argument through the
following contexts reviewing the twisted osp(2[2) & osp(2|2)theory in Ref.[5], and this is
just the chief aim, here.

2 ' Specific Relation Between Twisting and Moduli Prob-
lem

Now let us review the twited osp(2|2) ® osp(2|2)theory presented in Ref.[5]. Here,
the topological twist means mixing of the representation space of internal symmetry
of supersymmetry group with that of the symmetry group with respect to the space-
time, i.e. spinor space. Practically speaking, the twisting results in identification of
the representation space of internal group of N=2 supersymmetry with that of the local
Lorentz group. Therefore, it is easy to perform twisting of 0sp(2|2) @ osp(2(2)algebra
in table(1) to get the topological algebra. Notations adapted here are as follows: The
2-d Lorentzian metric is gas = ¢*® = —(=)%0s. The gamma matrics and the ¢ sim-
bol are ¥° = i0? 7! = o', 7° = 0>, € = ¢ and ' = 1. The spinor metric reads
- =np = -1, 77t =n4- =land g*t = 97" =944 = n__ =0, from the charge
conjugation matrix:C = 4°. The algebra associated with osp(2|2) @ osp(2|2)after the twist
is presented in table(2). To obtain the twisted algebra, what we have to do mainly is to
replace complex super chrages @, @, S and S with Q*, @~, S* and S-, respectively, and
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to make the modiﬁed algebra closed.
The indices "+, =" are raised and lowerd with the metric of the spinor space Tap- The

complex Weyl spinors @q, @q are substituted for o}, o7, that is, ¢, = 7-(,% 1Pa = 5P -
In relation to the above replacement of the super charges, remaining manipulations are
the modification of the definitions of local Lorentz M and Weyl D generators so that
the four (0,0)-form fermionic generators Q,*, S,*, have no charges with respect to M
and D. The representation space accompanied with the internal symmetry group have
been put upon the spinor space. Therefore, the modified M, D generators must be direct
sums with so(2) @ so(2) genrators V and A. The solution to this constraint then resolves
uniquely into M = M +2iV and D = D + 2iA. As can be seen from table(2), the step
for closure of the algebra have been taken to obtain either left- or right-chiral part. The
left-chiral part is the case in table(2). Here note that Q, S denote Q = RQF+Q.~, 5=
S,* 4+ S_7, respectively. The internal SO(2) @ SO(2) symmetry still remains as global
internal symmetry whose charge is the so-called ghost-number, the generators of which
are defined by G = 2i(A - V), G = 2i(A + V). We can see that @ and S, ~ increase the
ghost number by one unit, while Q,~ and § decrease it by the same quantity.

Let us next pay attention to the connection fields associated with the topological
algebra: h, = e’ P, + [2K. +w,M+b,D - Qe t+ 5,7, T +9,Q + ¢,S5), where
¢#+ =0= ¢u+_’ e =0= fu’ l”n+ = _wu- _d)“ and ¢u++ = —¢n— = —¢,. The
parameters areasfollows h, = EpP.+Ep Ko+ MM+ XD - Qe “e_t+eQ+kS).
The connections a,, v, which are intrinsic to the generators A, V, respectlvely, of the
internal symmetry so(2) @ so(2) have been also under modification as follows: a, =
2iwy, v, = 2ib,. The above connections obey the transformation laws (table(3)) where
Due t = (0, ~wu+b.)e_t, Dun_t = (Ou —w, — by )r_t, Duép = (0u —w, + b,)¢p and
Dy = (8, — w, — b,)€. Using the above gauge connections, a moduli space associated
with the topological algebra can be derived just through discussion about the Lagrangian
which will be found in the twisted algebra. We will be able to see that a moduli space
of flat connections: My, = {R* = 0}/G* is indeed derived from the algebra presented
in table(2). Here, x denotes the label of the generators in table(2). Moreover, we can see

that Mﬂat Mo:

Mo ={R™ =0}/G"", (1)
where the double star +* means the label of the generators M, D, @, S. These four

generators are the intersection of the left- and right-chiral part of the twisted algebra.

Let us then introduce the three (quasi-) Lagrangians of TFT in explanation of the
derivation of M:

‘CQ = {Q’Q-'.-}, ES = {S, S+-}’ EQS = {Qas}' (2)

We see that the relations are defined on 2-manifold with boundary owing to the Stokes’
theorem and it is possible for the corresponding theory to be in the case of 2-manifold
without boundary. We can make the formulation on manifold without boundary by means
of the inner product of the path-integrals as “in” and “out” states [10][11]. At the quantum
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level, the three (quasi-) Lagrangians are invariant under the symmetry generated by the
topological algebra A*, because, if the Lagrangian is the exact form of BRST-like operator
Q, the path-integral of the Q@-exact form are trivial. The path-integral with the Q-exact
Lagrangian is independent of the coupling factor because of the same reason. Therefore,
the zero coupling condition materializes a leading contribution to the path-integral, that is,
the reduction to the moduli space. Such a limit induces vanishing Lagrangian condition
which also means vanishing Noether current in the present case with the Lagrangians
composed of the generators of the topological algebra.

Let us adopt Lgs as Lagrangian. We then see that J,?-! = 0 after the limitation on the
path-integration with Los, where J7, is obtained from the Noether current associated with
the 0sp(2|2) ® osp(2]2) Yang-Mills action through the procedure of the topological twist.
The point to be made is that the adequate informations to prescribe for the derivation of
the moduli space of flat connections can be derived from the Noether current owing to the
ambiguity of the current, so that we are free to add to J%, the following terms: 8,04 R4
We can define that 84" = D'§a?”, where a*” is a connection 1-form associated with the
topological algebra and D' = *D+ on 2-manifold. Therefore, the informations:

RY =0, Dlsa?” =0, (3)

are obtained as conditions for the moduli space: M. As mentioned above, we can
see that M,y = Mp. After the collapse of the gauge orbits, the nilpotent fermionic
operators: @, Q,”, S, S, which are the ghost number carriers retain on the moduli
space M g,;. Let us next introduce the total Lagrangian:

Liotat = Lo+ Ls + Lgs = {QS, Qst}, (4)

where Q8 = Q + 5, and QS' = Q,~ + S. Under the weak coupling limit, the vanishing
Lagrangian condition means that Ly = 0. jFrom the standpoint of the operation of
Liotat 0N M 14, the components: ex, [ “_*", ¢,_t are not in Myq;. The fact is also
supported by the relation: {@,S} ~ M. That is, the following two relations:

bt o [ et (5)
are on the gauge orbits, and then this connections are collapsed together with the gauge
orbits under the weak coupling limit. Therefore, My, is reduced to My. We then claim
that the moduli space intrinsic to the topologically twisted osp(2|2) & osp(2|2)is really
Mo.

Clearly, our discussions, from which some geometrical informations associated with the
topological algebra can be read, have been tacitly based on the path-integral recipe. The
important question is then whether the path-integral under consideration is trivial or not.
In TFT, the triviality depends on the details of the moduli space (or rigorously speaking,
the classical configuration under the weak coupling limit on the path-integration). If the
classical configuration corresponds to the full Mg, the path-integral measure would be free
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from the ghost number anomaly and contains the Grassman factors: d¢ diy. We can see
that there exists a TI'T observable O which assure that the path-integral is non-trivial:

0= [ UNU==2 [ diitodrins, (6)

where U = ¥ A ¢ and djir means 2-dimensional measure which is determined by a 2-
dimensional metric: gq. It is easy to see that O is not dependent on gu3 (or rather, dj
dependence) and is gauge-invariant modulo Q- and S-exact, which also means that O is
gauge invariant on the path-integration.

3 Conclusion

Let us make concluding remarks. We have reviewed the twisted osp(2|2)® osp(2|2)theory
in Ref.anol. The twisted algebra includes the appropriate TFT’s Lagrangians composed
of the fermionic operators: @, S, @,~ and S,~. They lead us to My under the weak
coupling limit. The fact which have been clarified in the above discussions shows that
the twisted algebra have a relation with a certain moduli problem, and that such a ge-
ometrical feature of the algebra is one of the interesting characteristics inherent in the
topological twist. Hence we must learn that the above mentioned twisting approach upon .
0sp(2]2) & osp(2]2)theory is just regarded as the twisting of N=2 ‘pure’ conformal super-
gravity theory in two dimensions.

Acknowledgment: The author would like to thank Professor H. Fujisaki for encourage-
ment and enlightening discossions.
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Consistency of matter field equations
in Ashtekar formulation
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Abstract

The chiral Lagrangian including more than two spin-3/2 fields he-
comes complex in general when the sell-dual connection satisfies its equa-
tion of motion, and the imaginary part of the chiral Lagrangian gives the
additional equation flor spin-3/2 fields which gives rise to the inconsis-
tency. This inconsistency can be removed by taking the tetrad to he
complex and defining the total Lagrangian which is the sum of the chi-
ral Lagrangian and its complex conjugate. It is possible to establish the
right (left)-handed supersymmetry in its total Lagrangian as in the case
of the chiral Lagrangian. We also comment on the canonical formulation
of the total Lagrangian.

The Ashtekar refomulation of canonical gravity [1]-[4] can be derived from the
chiral Lagrangian in which a tetrad and a complex self-dual connection are regarded
as independent variables. Although the chiral Lagrangian is complex, its imaginary
part vanishes in the source-free case when the tetrad is assumed to be real and the
equation of sclf-dual connection is satisfied: The chiral Lagrangian then reduces to
the Einstcin-Hilbert Lagrangian. If the matier terms of integer spin fields exist,
the chiral Lagrangian also becomes real as in the source-free case, because the La-
grangian of integer spin ficlds does not contain the self-dual connection. Moreover,
it has been shown for spin-1/2 fields [4, 5] and simple supergravity 3, 6, 7} that the
imaginary part of the chiral Lagrangian vanishes (up to a total divergence term).
But in general, the chiral Lagrangian becomes complex for more than two spin-3/2
ficlds, and its imaginary part gives the additional equation for spin-3/2 fields which
gives rise to the inconsistency [8]. We suggest in this letter one of the possible ways
to evade the inconsistency of matter field equations.

We consider a spacetime manifold with a metric g, constructed from a tetrad ef‘

via g,, = €/.eln;;, and denote a self-dual connection by .fls;:‘) = AET])” which satisfy
1
He Ko+ : 4+
/lgj“) = ‘—)'C,'J' A}:‘“) = I,Agj“), (]_)
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! In order

where the * operation means the duality operation in Lorentz indices.
to see the inconsistency of matter field equations, let us take N-(Majorana) Rarita-
Schwinger fields ¥, (:= #] with / running from 1 to N) as example. The chiral

Lagrangian density £) including N-(Majorana) Rarita-Schwinger ficlds is
£ = L(+) +£(+). (2)

Here £4 is the chiral gravitational Lagrangian density constructed from the tetrad
and the self-dual connection:

L = —Zc o R, (3)
2

&

where the unit with 87G = ¢ = 1 is used, ¢ denotes det(e!) and the curvature of
self-dual connection RUF¥/ , is

RH‘)U,W = 2(8["/'1(4-)“;:] + o‘l(+]ik[[;/l(+)k'ju])- (‘l)
On the other hand, 1:‘,;“5’ is the chiral Lagrangian density of N-(Majorana) Rarita-

Schwinger fields, which is obtained by assuming that the fields #, are minimally
coupled to gravity and that the Lagrangian is described by using only the self-dual

connection:
L = —e "y, 7, DM, (3)
where P = (1/2)(1 + 75)¥ and D{H) denotes the covariant derivative with respect
to Aff):
D =8, + Aff,,)S" (6)

with §;; standing for the Lorentz generator.

When the self-dual connection satisfies its equation of motion, the imaginary
part of £{+) vanishes for N = 1, while it does not vanish for N > 2. To see this,

vary the L) of (2) with respect to 1&,’ to obtain

e DY W, = Lo (o Tl — Sk Fates) (1)

! Greek letters i, v, - - - are space-time indices, and Latin letters i, j, - - - are local Lorentz indices.
We denote the Mml\owsl\l metric by 1; = diag(—~1,+1,+1,+1). The lotally antisymmetric tensor
€;jxt is normalized as eyi23 = +1. The antisymmetrization of a tensor is denotled by Agj =

(1/2)(Aij = Aji).

—-114—



with HH¥ | being defined by H#+)J | = cf“ei] —(i/2)ehqckel, and Dl = @i +

AV el Equation (7) can be solved with respect to Af;,’ as
+ A+
AFY = AB o)+ k5, (8)

where .»‘\fz,’ (¢) is the sell-dual part of the Ricei rotation cocflicients A;,,(c), while
I\'fj:) is that of A, given by

. i . - -

Kiju = I(‘-’f'f?}'fff} oMo + f Py, — ¢ W ). (9
If the tetrad is real, substituing the solution of (8) back into the £} of (2) gives
the imaginary part of £) as follows:

1 _ -
ImLH) = 3 zC“"""(b”i‘ri'ﬁi)(‘/’,{‘?"/’g)a (10)
“1d

where we denote the indices /,J explicitly. Now the ImLH) of (10) does not van-
ish except for N = 1. This non-vanishing ImL™) yiclds the additional equation
ImLH) /3! = 0in general, besides the Einstein equation and the Rarita-Schwinger
cquation obtained by taking variation of ReL™) with respect to the tetrad and the
(Majorana) Rarita-Schwinger fields. Therefore the difficulty of overdetermination

for "‘{ arises and the matter ficld equations generally become inconsistent, 2

In order to remove this inconsistency of matter ficld equations, one could take
L) to be analytic for all fields; namely, the complex tetrad, the self-dual connection,
the independent complex spinor fields 5 and ¥g. If we follow this procedure and
lake the tetrad to be complex in the Lagrangian of spin-1/2 fields, we have to take ¥
and ¥ to be independent in order to keep the matter field equations consistent. But
¥ and % cannot be independent in QED or QCD, because if they are independent,
the electric current, for example, will become complex.

So we adopt the following procedure as a simplest way to climinate the term of
(10): Namely, we add the complex conjugate of the chiral Lagrangian density, £L+),
to the Lagrangian density £, and definc a total Lagrangian density £'* by

L= LW L 200, (11)

2 This inconsistency cannot be removed only by taking the tetrad to be complex in £{*), because
all terms in £+) (up to the term of (10)) merely becomes to be complex, and so the additional
equations of l,”," also appear as in the case of the real tetrad.
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Here we take the tetrad to be complex, because if the tetrad is real, £** reduces
to the Lagrangian for ordinary Einstein gravity. The basic variables in £¢+) are the
complex tetrad, the self-dual connection, the spinor ficlds ¢ and its Dirac conjugate
#, while the basic variables in the £ of (11) are the set of Q@ = (e, A, ) and
their complex conjugate (.

From the definition of (11), the total gravitational Lagrangian density, £, is

written by

Lot = —%c c‘“’""ef‘e{;RE;,L + c.c., (12)

" means “the complex conjugate of the preceding term”. It can be shown

where “c.c.’
that £ describes the sum of complex general relativity and its complex conjugate
when the sclf-dual connection (and its complex conjugate) satisfies its equations
of motion. In the case of N-(Majorana) Rarita-Schwinger fields coupling, since the
term of (10) does not contain the tetrad, it cancels with its complex conjugate in £,
Accordingly, the inconsistency of matter field equations disappears. Furthermore we
can show that £ describes the sum of complex Einstein gravity with four-fermion
contact terms and its complex conjugate, alter the equation of self-dual connection

(and its complex conjugate) is solved.

The right (left)-handed supersymmetry in the chiral Lagrangian for N = 1 su-
pergravity has been established [3, 6, 7). In the same way, it is possible to establish
right (left)-handed supersymmetry in £ for N = 1, if we now take ¥, and ¥p,
in (5) to be independent and define the total Lagrangian density of (Majorana)

Rarita-Schwinger fields by £i% := £ + £42; namely
Ligh = —e i, 7, Db, + c.c. (13)

with %5)?,, and $p, being independent. Note that in special relativistic limit, the
Lg% of (13) becomes 3
LRS = €4, 95700 ¥y (14)

which can be diagonalized as
Lot — cuveo A 9 1 _ 7t 9. 1? 15
ks = (W, 15700, — ¥,757,0: 1), (15)

with ¥, == (1/2)(¥, +1,) and P2 = (1/2) (¥, — $,). The minus sign in (13) means
the appearance of negative energy states.
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Since we take g, and g, in (3) to be independent as stated above, we need
two anticommuting Majorana spinor parameters « and & which generate the super-
symmetry transformation. The total Lagrangian density £, which is the sum of
(12) and (13), is invariant under the ¥-supersymmetry transformation generated by

a,
§tbry = 2DMag 5$Rﬂ =0,
61y, = oo<+)(,«1(+))a,, &% L= 0 (16)
66:: npﬁuﬁf QR 56:; TULJL’Y a[n

and the ¢-supersymmetry transformation generated by &,

(§¢R‘, =0 3‘1‘!;]@“ = 21.)1(‘—)3}2,
$ibr, =0 8y, =204, (17)
el = i vaL b€, = —ipp, Y an,

when we usc the cquation of self-dual connection (and its complex conjugate). * Hero
D( ) denotes the covariant derivative with respect to antiself-dual connection, A,J"
and we assume that A% is the solution derived from the Lagrangian, £) 4 £

ijn
with £0) being

£02) = %‘, VP9 i o R( ) +e cuupa 7pD( )ULv (18)

wu i hijpe

where R(-¥, is the curvature of antiself-dual connection. The commutator algebra
of the above supersymmetry on the complex tetrad, for example, is easily calculated

as
[61,62]8:‘ =0= [5] 2]8;;,
41, 52]6:; = 2iD,(&rv 01p). (19)
Therefore, we have
(6, 65")el, = 2D, (Gany crp + Tar v éur), (20)

where §% := §+46. If the tetrad is real and YRy = ‘:;'7);;,“ the algebra of (20) coincides
with that of N = 1 supergravity [9]. The commutator algebra on (Majorana) Rarita-
Schwinger fields is now being calculated.

3 We denote the covariant derivative with respect to As_;-” by D(+)(A(+)) =d, + JAE;I;‘)S"
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Finally we comment on the canonical formulation of £*! in the source-free case.
Although the Lagrangian £** involves Lthe complex conjugate connection'Afj;,) , the
canonical formulation of £ in the source-free case can be expressed by using real
canonical variables in a simple form. We assume spacetime manifold to be topologi-
cally £ x R, for some space-like submanifold E. Performing the Legendre transform,

the ££° of (12) can be written in canonical form:
L8 = —Tr(xHAM) — Te(AFFIGH) = NoH - NHM doce,,  (21)

where the first four terms of right hand side of (21) just come from £&), Here N*
is the complex shift vector, N is a density of weight —1 representing the complex
lapse, and

GUNI .= D(Pgltlide _ g olide 4 (AR Z(H) g (22)
HI = —Tr(z®PR) ~ 0 (23)
H) := Tr(rlHegtHe R » 0 (24)

are the Gauss, vector and Hamiltonian constraint, respectively, with 7+ the
densitized momenta conjugate to Ag’;’ 4 The trace in (21) to (24) is defined as

Te(XY) = X7V, Te(XYZ):= XY 2 (25)

Il we define real canonical variables A;;, and 7* from the Af;;) and its conjugate

:Ja

momenta ()

Ajjo 1= AE;) + Asj;l)’ (26)
xiie = p(H)ija W(+)Uﬂ, (27)

and split the N* and N into the real and imaginary part as Ny +iNJ and Ny +iN;,
then the £ of (21) becomes

L8 = —Tr(x°Ag) — Tr(AcG) — NoH, — NEHE — NyH — NpH-, (28)

where

Gl 1= G 4 cc. = Dyr'it = ' + [Ag, 7] (29)

4 Latin letters a, b, - - - are spatial indices on 2.
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Ha = H) 4 ceo = =Tr(w*Ry) = 0 (30)

H, = i(HP) —ce) = —Tr(w°R,) = 0 (31
H = HM 4 cc. = Te(w"7* Rap) = 0 (82)
H = i(HY) ~cc) = Te(z" 7t R,) = 0 (33)

with the * operation meaning the duality operation in Lorentz mdices. These con-
straints of (29) to (33) form a first-class set, because the constraints of (22) to (24)
are first-class. The canonical formulation of (28) is just the SO(3, 1; R) theory which

is derived from a viewpoint of generalization of the S0(3; C) Ashtekar formulation
[10].

In the source-free case, the canonical formulation of £ is cquivalent to that of
L), When (Majorana) Rarita-Schwinger fields are coupled, however, the canonical
formulation of £ may possibly differ from that of £+, because the term of (10)
has canceled with its complex conjugate in £, The canonical formulation of £
including (Majorana) Rarita-Schwinger fields is under study.

We would like to thank the members of Physics Department at Saitama Univer-
sity for discussions and encouragement.
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Abstract

We examine the advantages of the SO(3)-ADM (Ashtekar) formulation of general rela-
tivity, from the point of following the dynamics of the spacetime for the case of a vacuum
with/without a cosmological constant. In the first part of this paper, we show how to treat
the constraints and reality conditions, and propose new slicing conditions for evolving three-
hypersurfaces. In the second part, we consider the mechanism for passing a degenerate point,
which is one of the advantages in the Ashtekar formulation, and show that a ‘deformed slice’
approach enables us to ‘pass’ such point.

1 Introduction

A decade has passed since the proposal of the new formulation of general relativity by Ashtekar
[1]. By using the special pair of variables, the framework has many advantages in the treatment
of gravity. That is, the constraint equations which appear in the theory become low-order
polynomials and do not contain the inverses of the variables, which enables us to treat the
degenerate points. The theory also has the correct form for gauge theoretical features, and
suggests possibilities for treating a quantum description of gravity nonperturbatively.

We examine these advantages of the SO(3)- ADM (Ashtekar) formulation of general relativity,
from the point of following the dynamics of the spacetime for the case of a vacuum with/without
a cosmological constant. We concentrate our attention on the dynamics of the classical (real
Lorenzian) spacetime, which are often treated as the evolution of the three-hypersurfaces using
the ADM formulation. In order to apply the Ashtekar formalism in classical general relativity,
we need to solve the reality conditions for the metric and the extrinsic curvature additionally.
We examined those in detail in [2] and proposed a new pair of variables which enables us to
treat constraint equations differently.

In this paper, we discuss two features. The first one is the framework of the evolution schemes,
especially keeping in mind the applications to numerical relativity. Our strategy is a “combined
scheme” of ADM and Ashtekar (or modified Ashtekar) formulations, which are explained in
detail in §3. We also discuss some expected advantages in applying this formulation to classical
numerical relativity.

The second one is the possibility of passing degenerate points in the theory. Assuming that
both all dynamical variables and the calculation time are finite, we seek the condition which
enables us to ‘pass’ degenerate points. We take two approaches, named ‘intersecting slice’ and
‘deformed slice’, and those are described in §4.

*Electronic address: shinkai@cfi.wascda.ac.jp
tElectronic address: yoneda@cfi.waseda.ac.jp
!Electronic address: akika@®cfi.waseda.ac.jp
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We use greek letters (u,,p, - - +), which range over the four spacetime coordinates 0,---, 3,
while uppercase Latin letters from the middle of the alphabet (I, J, K, - --) range over the four
internal SO(1,3) indices (0),---,(3). Lower case latin indices from the middle of the alphabet
(i,4,k,...) range over the three spatial indices 1,--,3, while lower case latin indices from the
beginning of the alphabet (a,,¢,...) range over the three internal SO(3) indices (1),---,(3)*.
We use volume forms €,.; €abc€®® = 3!,

2 Brief review of the Ashtekar formulation

The key feature of Ashtekar’s formulation of general relativity {1] is the introduction of a self-
dual connection as one of the basic dynamical variables. Let us write the metric g,, using the
tetrad, e,", and define its inverse, E}, by g, = e{,eif)u and Ef := eJg"nr;. We define a
SO(3,C) self-dual connection

— 08 _%a b
AL =w® - -2-e“bcw“", (1)

where w{f is a spin connection 1-form (Ricci connection), w{," = EI"V,,c,{. Note that the
extrinsic curvature, K;; = ‘(6i' + n;n')VmJ in the ADM formalism, where V is a covariant
derivative on I, satisfies the relation — K;; E’* = w?®, when the gauge condition E% = 0 s fixed.
So Af{ is also expressed by )
A = =Ky B - Sl (2)
The lapse function, N, and shift vector, N', are expressed as E} = (f',-%'-). Ashtekar
treated the set (A7, E?) as basic dynamical variables, where E: is an inverse of the densitized
triad defined by E! := eE?’, and where e := dete? is a density.
The Hilbert action takes the form
S= / d*elAg B + 5 N ELE{Fge®, - 20N det £ - NF3E] + ASDEd) @3)

where N := e~ 1N, A is the cosmological constant, 'D.-E-'fl = B;E."‘; - iea,fA?E;, and where Fj,, is

the curvature 2-form, defined as Fjj, := 8,47 — 3, A, — ée“,,c(Ab A A%y, and detE is defined
to be detE = %e“b‘sgjkE:El{Ef, where ? €ijk = e,,bce?e;?

Varying the action with respect to the non-dynamical variables N, N * and A2 yields the
constraint equations,

ef and €k := e‘le;jk.

i e -
Cq = -2-5“"CE,‘,E{, F—2Adet E =0, (4a)
Cui = -F3Ej~0, (4b)
Cca = DiEi=0. (4c)
The equations of motion for the dynamical variables (A and E}) are
At = —ie®® NE]FE + NIFj + DiAj + 2ANE, (58)
B = -iDj(e2, NEiE) +2D;(NUED) + iAbe, S EL, (5b)

‘We raisc and lower 4, v, p by ¢** and g,.(Lorenzian metric); I, J, K by '’ = diag(—~1,1,1,1) and n1s; 1,3,k
by 1" and 7;;(3-metric).
2

€oyr =€ Eoys = 1,6 = et @ =1,
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where D;TJ" := §;TJ" — ie},"APTY, for T/ + TJ' = 0, and & is also expressed as & =
%eabcé,'jkEg Ef

3 Procedure for evolving three-hypersurfaces

In this section, we discuss the framework of the evolution schemes, especially keeping in mind
the applications to numerical relativity. §3.1 and §3.2 are digest version of [2).

3.1 Reality conditions

To ensure that the metric is real-valued, we need to impose two conditions; the first is that the
doubly densitized contravariant metric 57 := e?y" is real,

X(ELEM) =0, metric reality condition (6a)
and the second condition is that the time derivative of 3 is real,
8{8,(E;E-j“)} =0. second metric reality condition (6b)

We denote these the “metric reality condition” and the “second metric reality condition”
(extrinsic curvature reality condition), hereafter. Ashtekar et al. [3] discovered that, with the
second metric reality condition (6b), the reality of the 3-metric and extrinsic curvature are
automatically preserved under time evolution, as a consequence of the equations of motion.
This means we need only solve both reality conditions (6a) and (6b) on the initial hypersurface.

Using the equations of motion for E‘; (5b), the gauge constraint (4c) and the first reality
condition (6a), we can replace the second reality condition (6b) with a different constraint

WY = R(e™EXEVDLED) ~ 0, (7)
which fixes six components of A? and E’; Moreover, in order to recover the original lapse
function N := Ne, we demand S(N/e) = 0, i.e. the density e be real and positive. This requires
that €2 be positive, i.e.

detE > 0. (8)

Note that this condition does not remove any degrees of freedom for the variables and is analo-
gous to making the implicit assumption of det 7¥ij > 0 in the ADM formulation. In [2], we show
the secondary condition of (8) is automatically satisfied.

Next, we show that rather stronger reality conditions are also useful in Ashtekar’s formalism
for recovering the real 3-metric and extrinsic curvature. These conditions are

8(5‘,‘; =0 first triad reality condition (9a)
and S(Ei) = 0 second triad reality condition. (9b)

Using the equations of motion of £}, the gauge constraint (4c), the metric reality conditions
(6a), (6b) and the first condition (9a), we see that (9b) is equivalent to

Re(AZ) = Si(N)E + %e-‘efzyéﬁ'a,-i:g + NPR(A). (10)
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From this expression we see that the second triad reality condition restricts the three components
of the “triad lapse™® vector .A3. Therefore (10) is not a restriction on the dynamical variables
(Af and E;) but on a part of the slicing, which we should impose on each hypersurface. Thus
the second triad reality condition does not restrict the dynamical variables any further than the
second metric condition does.

3.2 Alternative treatment of constraint equations

The equations we need to solve for A? and E! are the constraints (4a), (4b), (4c) and the
reality conditions (7), (9a). Capovilla-Jacobson-Dell(CDJ)[4] solved Cy and Cjps by introducing
new variables. These reduced the 36 (real) independent components of A? and ES to 28, or in
CDJ’s variables the 18 (real) independent components of 1, are reduced to 10 (a symmetric
and traceless tensor), which corresponds to the Weyl curvature ¥;. These are again restricted
by Ce and the reality condition.

In contrast to CDJ's method, we make an alternative treatment of the gauge constraint
(4c) and the second metric reality condition (7). For convenience, we assume that E’; is real.
This assumption (9a) restricts our choice of triad, but this constraint is not difficult to satisfy.
We introduce the connection with double internal indices (note that here we do not use the
densitized triad),

A% = AZE®, (11)
and express all the constraints with (A%, E) as the basic pair of variables [2). The 6 real
constraints of Cg are automatically satisfied if we impose the following conditions on the anti-
symmetric part of A%,

am(Ale) = -2lee°bca.-i:;. (12)
Re(AlY) = 0 (13)

Moreover, the second metric reality condition (7) is written as
(D) = L{B](¢Heh + Bee)6; B — 6% Bieh, o656 i), (14)

where ¢f is the inverse of E:. From these expressions, we see that (4c) and (7) are satisfied if and

only if A% satisfies (12), (13) and (14), after assuming (9a). We note that the imaginary part of

A% consists of the triad and its spatial differential and that the real part of .A®® is symmetric.

These results become clearer if we compare e(.A%) and the extrinsic curvature K;; through
the definition of A}, (2). From (2) we derive

Re(A®) = —K;;E°E, (15a)

Sm(A®) ; @ weAlE®, (15b)

I
|
!
™
€

Since the extrinsic curvature is symmetric, we see Re(A%) is also symmetric [(15a)]. After
some calculation, we can see that (15b) is equivalent to (12) and (14). Moreover, we find from
(2) that )

i
T2

3This “iriad lapse” was named by A.Ashtekar in private communication.

Kij = —Aleja eM?"’e;’,
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ADM Ashtekar Ashtekar-CDJ[4) | Ashtekar-YS[2]
el Nk | A A5 W Rel D), B}
5:;§ilf::lng N’ Ni N’ Ni’ 'Aa() N: Ni’ Aao N) Niy AﬂO
Cu,C
constraints Cx,Cym Cu,Cpm,Co Ce (CG i .zfab])
it metric triad metric triad 1st
rea ;.y. (none) st 1st 1st metric 2ud
conditions ond ond ond - S‘m[A(“b)]

Table 1: A list of alternative approaches for time evolution of the three-hypersurfaces.

so the reality of the extrinsic curvature, Sm(K;;) = 0, is equivalent to (15b). Consequently,
Re(Cc) = 0{(12)] and W' = 0 [(14)] indicate that the extrinsic curvature is real and Sm(Cg) = 0
[(13)] indicates that the extrinsic curvature is symmetric.

When one has solved the 12 equations Cg = 0 and W% = 0 for the 27 variables A¢(complex)
and E}(real), 15 degrees of freedom remain. Introducing A clarifies this remaining freedom;
these are 6 degrees of freedom for Re(A®) and 9 for EX. Our task is now reduced to solving
the other constraints (4a) and (4b) for the variables Re(.A®Y) and E‘f,, and the imaginary parts
of (4a) and (4b) are trivially zero. The constraints Cy and Cp; in terms of Re(A(®) and Ei
are shown in [2].

We expect that our variables are convenient for expressing the data on each hypersurface
if we impose a reality condition. However, we remark that, like CDJ’s variables, our variables
(Re(Ab), E3) are not canonical. Therefore, when we describe the equations of motion of our
variables, we transform those of the canonical pair [e.g., (5a) and (5b)] into ours. Also note
that the formulation is not polynomial. Consequently, our full set of equations consists of four
constraint equations Cpy,Cp: [together with definitions (12), (13) and (14)], and the equations
of motion (5a), (5b).

3.3 Expected advantages in numerical relativity

In this subsection, we comment on the expected advantages in the applications for numerical
relativity. Recently, Salisbury et al. [5) proposed the use of Ashtekar’s and CDJ’s formula-
tions in the numerical treatment of general relativity. They showed a full set of equations using
Ashtekar’s connection and Newman-Penrose’s Weyl scalar as dynamical variables. Their for-
mulation is based on Ashtekar’s variables and has the merit of showing the evolution of the
Weyl scalar directly. However, it is not convenient for general numerical relativists, because the
evolution of Ashtekar’s connection does not give us a direct geometrical understanding.

We set our strategy such that we focus upon the ADM variables and use connection variables
only when we have some advantages in developing the time slices. That is, we prepare the initial
data within the ADM framework and use the Ashtekar or modified Ashtekar formulation (such
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as CDJ, our variables discussed in the previous subsection, etc) for determining the slicing
conditions and for evolving slices. By this procedure, we do not need to solve reality conditions,
because the reality is guaranteed in the initial ADM slice and is preserved during the evolution
as we denoted in §3.1. In Table.1, we summarize the variables, constraints and reality conditions
in the Ashtekar or modified Ashtekar formulation, together with the ADM formulation.

Next, we give some comments on the slicing conditions in the Ashtekar formulation. Since
we have the additional gauge freedom of ‘triad lapse’ A§, there are wide varieties in choosing a
slicing condition. Here, as an example, we take a constant-mean-curvature (CMC) or maximal
slicing condition and its analogous slicing condition.

Let us define two scalars

A = AE;, (16a)
A = AE:, (16b)

and consider a condition of ./i =0or A = 0 as a slicing condition. When the triad reality
condition is imposed, Re(A®) represents the extrinsic curvature. Therefore the latter condition
is expected to have the properties of the CMC slicing condition.
The condition A = 0 becomes ’

i0;(N)eMEIA® = N[i(8;E})e ELAT + A% — A% Aac + BeA]
+N[(&ED)A? - ie e ALA™] — (8;N*)ELA? + EL0, A an

The real part of this (17) gives us the same CMC slicing condition in the ADM formulation (but
in a rather complicated form for calculation). If we assume the triad reality condition (9a) and
(9b) in treating the real part of (17), then we see the ‘triad lapse’ Aj contributes only in the
EiRe(8;A3) term, which is fixed by the condition (10). The fact of this disappearance of the
A2 contribution is because the original CMC condition is free from the choice of Aj. However,
the imaginary part of (17) restricts a freedom of AG.

Similarly, the condition A = 0 becomes

(O N)est BIA® = NIi(8; E)e BiA? + A% — A% Auc + 8e?A] + NI[(0; EL)AS — iearcALA)

+HB;N) A~ (B;N)ELAS + (BiAD) B (18)

Since the definition of .4 is a contraction of the canonical pair, (18) is regarded as an analogy of

the CMC slicing condition. The real part of (18) means /det7;; K =const. in terms of ADM
variables, and the imaginary part restricts a component of the triad lapse.

The determination of which slicing condition works properly depends on the particular phys-

ical model. Further proposals and experiments of these slicing conditions in the Schwarzschild
spacetime are now under preparation|6].
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4 How can we pass a degenerate point?

In this section, we consider the possibilities of passing a degenerate point, which is one of the
advantages in Ashtekar’s formulation. After we describe our definitions of ‘passing’ degenerate
point in §4.1, we consider two approaches; intersecting slice approach (§4.2) and deformed slice
approach (§4.3).

4.1 Our definitions of ‘passing’ degenerate point

In the beginning, let us clarify some terminologies. A ‘degenerate point’ is the point in the
spacetime where the density e of 3-space vanishes 4. In the Ashtekar formulation, the density
is defined as e = y/det Ei, and all the equations remain finite at points e = 0. From the point
of dynamics, this fact suggests to us that we can ‘pass’ such a degenerate point. Here, we make
clear the meaning of this possibility of ‘passing’.

Note that, in the ADM formulation, this is impossible because the equations in the ADM
include an inverse of the variables. We also remark that we can not transform the Ashtekar
variables onto the ADM three-hypersurface ¥ at the degenerate point. This is because the 3-
metric v;; is given by ¥ := eje}, where ef := (E)~! and E} := E’;/e, and the last quantity
diverges as e — 0. Therefore the degenerate points in the Ashtekar formulation do not cover
the real manifold.

In order to say ‘pass’ degenerate points, we demand the following four conditions: (a)
Ashtekar variables E.,';,A;',]y ,N‘,.Ag must remain finite throughout the calculation, (b) the
spatial derivatives of them must also be finite throughout the calculation (because they appear
in the equations of motion) (c) the time differentiation of dynamical variables E-',';, .A;’ must also
be finite throughout the calculation, and (d) the calculation must be finished in finite coordinate
time.

We take mainly two approaches. The first one, named ‘intersecting slice approach’, passes a
degenerate point directly, and the second one, ‘deformed slice approach’ takes a complex path
around a real degenerate point. The former is divided into two cases from the point whether we
impose the reality conditions or not, while the latter assumes the complex values necessarily.

4.2 Intersecting slice approaches

For a while, let’s consider first the case that we impose reality conditions. The problem is
whether we can find a solution under our assumptions of (a)-(d) above. To say our conclusion
first, we face at least two problems; degenerate lapse and divergence of connection w?, and those
may make this approach impossible, unfortunately.

First we discuss the degenerate lapse problem. The troublesome variable is the (inverse)
densitized lapse ¥ := N/eg, where ex = (/det;;. Since N is held finite [condition (a)], the
ADM lapse N = Neg vanishes at the degenerate point ez = 0. Notice that the ratio of the

proper time to the coordinate time is not N but N. Thus we are afraid that the calculation
exhausts an infinite amount of time, i.e., the condition (d) is violated. Let us take a parameter
of coordinate time t which becomes t = 0 at the degenerate point ey = 0. Then the condition

‘Here we assume that degenerate arca is a point. Another cases are commented on in §5.
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(d) is denoted by
t n dr
§t = dit = < 0.5
—to -n N(7)
Here the range of the integral is arbitrary but includes the zero point N(0) = 0. Note that
N > 0 since it is a lapse function. Compatibility of (19) and N(0) = 0 will be considerably
restrictive. Let us call this condition the degenerate lapse passing condition (DLPC).

For a continuous ?bn:cs N(t) : R — [0, 00) satisfying N(0) = 0, what are the conditions

(19)

for N to satisfy \. N Qv < oo? If N(2) exists for 0 < t, we see limsup N (t) = oo as follows.
t—0+
Put k = limsup N(t). ® For any € > 0, there exists § > 0 such that N(t) < k+efor 0 < ¢ < 6.
t—0+
We have N(t) < (k+¢) for 0 < t < 6. Thus N(t) < (k +¢€)t for 0 < ¢t < 6. Then we see

oo >

v

¢ dt 6 dt 1 fdt o
N(t) .\_w Qn+a: (k+e)Jo t Qn+mv
If & < oo then the last term goes to infinity, it causes contradiction. Thus k = oo.

Since N(t) > 0, if we assume N(t) is smooth, then N(0) = 0. Thus smooth N(t) does not
satisfy the DLPC. If we assume N(t) = |t]* where s is constant, then the condition is 0 < s < 1.
For example, N(t) = /[¢] satisfies the DLPC.

Furthermore we will see that the density |¢| should also satisfy the DLPC as follows. We
assume e(0) = 0 and |N(¢)] < M (bounded). Since N(t) > 0, we have e(t)N (t) = le(t) N (t)| =
le(t)] |N(2)]. Then we see

1 dt 1
o N(t) -\., CON® o @IV \c le(®)l’

0o >

Note that the integral is bounded and monotonically increasing. Thus |e(t)| also satisfies the
DLPC 7. Totally we see that N and |e| satisfies DLPC which is considerably restrictive.

Secondly we discuss the problem divergence of connection. The connection variable 4%
includes

wi® = —K;; B* = ng ——(%ij = DiNj -~ D; N:) E3.

In order to examine this finiteness, we prepare

Oaji  _ P Q.AQNVI £y _ 7 P @.Anwv|®u‘ﬁm»v
Wi = |2 D;(N*) — D;(N7) =< - L

~ ~

- 26;(NY) ).

Let us evaluate the last one. The term 1/ is bounded below since N is finite, 1/N > 1/M. Note
m.?»v 9; ?3

-L2-_Z N7 diverges. This is because,

m.?d .&?J

that f'(t)/f(t) diverges when f(0) =0. The term

we take a parameter s whose direction is normal vector {1, ~-N ..v. then N7 equals

SStrictly, this is an improper Riemann integral.
®There are other possibilities than lim—o+ N(f) = oc. A counter-example is N(2) = (2 + sin(1/t)).
"The region satisfying ¢ > 0 and the region satisfying ¢ < 0 are SE_E:Z«. when the manifold is divided by
the region satisfying e = 0. Note also that e* is time differentiable, since e* = det E.. So if we assume e(t) = ¢*,
reg !
then 1/2 < s < 1 must be satisfied.
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(de?/ds)/e?, which diverges. The term 8;(N*) is finite since we assume (b). Thus we see that
wPE > H(divergent + finite), so W E} diverges. If we assume w® is finite, then wf*E}
must be finite. Therefore we see that w®® diverges.

92 is a part of A?. At least, if we assume triad reality,
we have Re(A?) = wl?, so divergence of w?® contradicts the finiteness of A?. Even if we relax
be

i

This is a serious problem, since w
the reality to metric reality condition, then ie®p.w® must diverge in order to cancel out the
divergence of w?®.

Next, let’s consider the case without the reality conditions, i.e., apart from the Einstein
frame and seek the possibilities of ‘passing’ within a complex manifold. In this situation, we
naturally assume that the gauge variables (N, N* and A3) which define the foliation of slices
are complex. However, if we also assume that the slice goes across the degenerate point, then
the above two problems arise and remain impractical as follows.

As for the degenerate lapse problem, if N(7) is complex, the integral of (19) is also complex-
valued. The real and imaginary parts of the integral must finitely converge (complex DLPC).
We see that, as same as the above, the smooth complex N does not satisfy the complex DLPC.
When we assume the form N () = |t|P+:|i|? where p, ¢ are constants, then the condition becomes
0 < min(p,q) < 1. As for the connection divergence, the fact that w?® diverges does not depend
on the reality. Thus w?® diverges here. Since the two problems remain in this way, we conclude
that our ‘passing’ conditions (a)-(d) are difficult to satisfy using the ‘intersecting slice’ approach.

4.3 Deformed slice approaches

The second approach, we call the ‘deformed slicing approach’, in which we make time slicing to
avoid the degenerate point, by using complexibility of the Ashtekar variables 8, We extend our
slice to be in a complex manifold as in the second case in the previous approach, but here we do
not intersect a degenerate point but avoid such points in the real section. In other words, the
slice approaches the degenerate point, though it just goes around the point.

In general, when we take a detour in the complex plane, the uniqueness of the time evolution
is not guaranteed. In order to discuss a physically meaningful path (recover the Einstein system
in the far region), we concentrate on the path which starts from the real section, and evolves in
the complex manifold only in the vicinity of a degenerate point. That is, imposing an ‘asymptotic
reality condition’, such as Sm(N) — 0,9m(N*) — 0 and Sm(ELE]) — 0 both for spatial and
time far limit, is expected to work and determine the dynamics properly. Here, we define an
asymptotic region naively. When we apply this idea to a case of one degenerate point, we can
easily define time in the far region as ¢t — Zoo0.

When a coordinate position of a degenerate point is given, such as a caustic of a null fluid,
this ‘asymptotic reality condition’ can be translated into ‘time-reversal slicing condition'. This
slicing condition is described by K = 0 in the ADM formulation. In the Ashtekar formalism,
this condition is equivalent to Ef = 0. It consists of two individual conditions; Re(Ei) = 0 and
Im(Ei) = 0, where we remark that the second equation is the ‘second triad reality condition’. If
we take real-valued lapse N and take a detour by using complex shift vector N then the residual
gauge freedom A§ is determined by this additional ‘time-reversal slicing’ condition. Since the

*We assume that the degenerate points exist only in the real manifold.
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path does not cross a degenerate point directly in this approach, we do not face the finite-time
passing problem.

5 Discussions

We have studied the SO(3)-Ashtekar formulation from the point of pursuing the dynamics of
spacetime, using evolutions of time-constant slices. We examined the difference between the
reality conditions on the metric and on the triad, and demonstrated that the latter condition
restricts a part of the gauge freedoms [Re(.43)). When we apply this condition in time evolution
problems (based on 3+1 decompositions), this restriction of gauge variables must be imposed at
every time step. Having assumed the triad reality condition, we find a new variable, allowing us
to solve Cg and the reality conditions simultaneously. Our variable clarifies the meanings of the
additional constraint and the second reality condition, which express the symmetry and reality
of the extrinsic curvature, respectively.

In the second part, we considered mechanisms for passing a degenerate point, which is one of
the advantages in the Ashtekar formulation, and showed that a deformed slice approach enables
us to ‘pass’ such points. Here we comment on a case in which a timelike degenerate area exists,
like a black hole formed by a dyamical collapse of spacetime. To avoid such a degenerate line (or
plane), we may make a deformed slice continuously for every step in time evolution assuming
an asymptotic reality only in the spatially far region. However, we do not know yet whether
we can avoid such a curvature singularity by deforming a slice into the complex plane. We can
not reject the possibility that a degenerate area spreads over a deformed slice also. A detailed
discussion will be reported elsewhere.

We thank Paul Haines and Richard Easther for their careful reading of our manuscript. This
work was supported partially by the Grant-in-Aid for Scientific Research Fund of the Ministry
of Education, Science, Sports and Culture No. 07854014, by the Grant-in-Aid for JSPS Fellow
(No. 3327) and by a Waseda University Grant for Special Research Projects.
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How natural is a small but nonzero cosmological constant?

Yasunori Fujii~
Nihon Fukushi University, Handa, Aichi, 475 Japan
and
Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo, 188
Japan

Abstract

Based on our previous attempt, we propose a better way to understand
a small but nonzero cosmological constant, as indicated by a number of
recent observational studies. We re-examine the assumptions of our model
of two scalar fields, trying to explain the basic mechanism resulting in a
series of mini-inflations occuring nearly periodically with respect to Int
with ¢ the cosmic time. We also discuss how likely the solution of this type
would be, depending on the choice of the parameters.

A growing number of different observations, notably the recent determination of
the Hubble constant Hy [1], seem to point to a suggestion that there is a pos-
sible small but nonzero cosmological constant A [2], with Q4 = A/p..L1, where
per = (3/87G)H3. This may not, however, be readily acceptable from a theo-
retical point of view, because introducing A has been considered to be highly ad
hoc. Contrary to this long-held prejudice, on the other hand, it is widely recog-
nized that a cosmological constant is an indispensable ingredient in many of the
theoretical models of unification.! Unfortunately, they tend to predict A larger
than the observed value, or its upper bound, by as much as 120 or so orders
of magnitude. One of the possible ways out is to devise a theory in which the
cosmological constant is not a truc constant but decays like ~ {72, with ¢ the
cosmic time [4,3].

Notice that the theoretically natural size of A is of the order one in the Planck-
ian unit system with 87(' = 1,} while the present age of the Universe {5 ~ 10!y
being of the order of 10%. In this scenario of “a decaying cosmological constant,”
today’s cosmological “constant” is small $107'%° only because our Universe is
old. No unnaturally extreme fine-tuning of parameters is called for.

The scenario has been often formulated based on the models in which a scalar
field plays a role; the time-dependent effective cosmological constant A.g(?) is in
fact the energy density of this scalar ficld that couples to the ordinary matter
only as weakly as gravity.

*E-mail address: ysfujii@tansci.cc.u-tokyo.ac.jp

tSome authors [3] assume A = 0 in the starting Lagrangian. ‘This is protected, however, by
no known symmetries against any likely perturbations.

!By also choosing A = ¢ = 1, the units of length, time and the encrgy are 8.09x10~3%cm
2.70x10~%3sec, and 2.44x10'8GeV, respectively.
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This model implies, however, a complete absence of the cosmological constant.
What is indicated by the observation is, on the contrary, the presence of a flat
portion in the energy density as a function of ¢, a deviation from a smooth falling-
off ~ 1=2. We came across, however, to a model which, by introducing another
scalar field, would result in occasional flattenings of A.r(¢) thanks to a nonlinear
nature of the cosmological equations [6]). The purpose of this note is to provide a
simpler understanding of the mechanism.

It seems appropriate here to state our attitude. In view of the lack of the
complete theoretical framework to derive all the details of the final results, we
follow a heuristic approach, trying to see what the effective theory in 4 dimensions
should be like, if it is to fit to what appears to be the effect of a small but nonzero
cosmological constant. As it turns out, this is highly nontrivial, if the model
is somehow related to modern unification theories. We list some of the main
assumptions in Ref. [6].

First we assume the presence of a scalar field ¢ of the dilaton-type, having a
non-minimal coupling, which is chosen, for the sake of simplicity, to be a Brans-
Dicke type; ¢?R.5 We then apply a conformal transformation (Weyl rescaling)
to remove the non-minimal coupling. We do this for the technical convenience,
at the moment, though the correct conformal frame (CF) should be selected
according to what clock we use to describe the evolution of the Universe. In
this connection we should notice that none of the realistic theories of gravity is
conformally invariant, and that our conclusion remains true also in the original
CF in which the non-minimal coupling is present.

As an important consequence of this transformation the A term in the original
CT is converted to a potential of ¢ of the type Ae~?/* where & is a constant?
while ¢ is a transformed scalar field appropriate in the new CF. The ¢ field rolls
down the slope toward infinity, ensuring the A, essentially the energy of o, to
fall off like ~ =2 after the inflationary era.

As a next step we introduce another scalar field & which has a specific in-
teraction with & but couples to conventional matter fields also as weakly as the
gravitational interaction. We discovered an example of the interaction such that
Aem, which is now the total energy density of the o -® system, shows a repeated
occurrence of leveling-off superimposed on the overall smooth fall-off ~ ¢=2, com-
ing barely to exceed the normal matter density, hence acting as a cosmological
constant. In accordance with this the scale factor a(?) exhibits an extra accel-
cration deviating from the overall smooth behavior ~ t1/2 or ~ /3, A typical
solution of the cosmological cquations was shown in Fig. 3 of Ref. [6].

The basic cosmological equations are (k = 0) [6]

31]2 =pﬁ+pnn (l)

$0ur ¢ is, following the standard notation in the conventional relativistic field theory, related
to the original notation ¢ in Ref. [7] by ¢ = ¢°/8w.

USec Ref. [5] on how & is constrained in order for the results to be consistent with realistic
cosmology.
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&+ 3Hd — exp(—a/K) [% + %m’@’ (2 - d—U)] =0, 2)

£ do
& + 3H + exp(—o/x)m*Ud = 0, (3)
where 1 1
_ 1.2, Li2
pe=30 +2<I> +V, (4)
and )
V(®,0) = exp(~0/x) [A + 5m2d)2U(a)] , (5)
with
U(e) = 1 + Bsin(wo). (6)

Here x,m, B and w are constants. The exponential factor exp(—a/k) (~ ¢~%)
comes typically from the Weyl rescaling, thus transforming the A-term into the
potential, as mentioned before. The sinusoidal dependence in (6), on the other
hand, has been introduced on the try-and-error basis. We later discuss how this
specific form is favored. It is crucial to assume that the conformal transformation
property of @ is such that the same factor exp(—o/x) appears in front of the
20 (o) term.

For the matter density p, we assume the mixture of relativistic and non-
relativistic matters: .

Pm = Pra-" + Pm‘a_a- (7)

We admit that the result depends heavily on these assumptions. In view of
the huge discrepancy of 120 orders of magnitude between conventional theory
and the observation, however, variety of models seem to deserve consideration as
working hypothescs. Notice that all of our parameters are essentially of the order
one in Planckian units, appealing to theorelical naturalness.

Onc might still argue that we arc introducing as much as what we want to
come up with. We emphasize, however, that it is far from trivial to make a right
choice on what to be introduced; otherwise it will not make sense no matter how
much we bring in.

On using the new time variable 7 delined by

T = In¢,
and also defining b(7) by
_ b
a=¢’,
eqgs. (1)~(3) are put into
3b'2=%a"2+%‘l"2+t2(v+pm), (8)

" + (3 — 1)o' — t*exp(—0/k) [% + %m"’tl)2 (y— - dU)] =0, (9)

x  do

" + (35’ — 1)’ + t2exp(—0/k)m*Ud = 0, (10)
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where ' means differentiation with respect to 7. Notice the explicit occurrence of
the time variable ¢° on the right-hand sides.

It is also worth noticing that (8)-(10) allow the asymptotic solution for t — oo
if U is chosen to be constant, namely B = 0:

a(t) = 1*3 or b(r):%r, (11)
aln [ AL

a(t) = 2xln (\/—;R), (12)

®(r) = Ae sin(inr), (13)

where A is an integration constant while

. 28tm? 1
m= \/ - -
A 4

We learn that the @ field, if decoupled from o, would play no role in the
asymptotic era and that 7 might be a useful variable. From the solution (12) also
follows that the combination

F(t,0) = *exp(—0/x)

tends to a constant (= 2x2/A) if U = 1. This implies that with non-constant
U(o) this combination might be nontrivial. We show that this is indeed the case.

A typical solution obtained numerically is shown in Fig. 1, another example
with parameters somewhat different from those used in Fig. 3 in Ref. [6]. Notice
that we chose the “initial time” t, = 10", because, though the real classical
cosmology had begun much earlier, we can conveniently avoid more details on
the inflation era and the ensuing reheating process.

We first find in the plot (a), as already alluded, the scale factor a(t) shows a
series of “mini-inflations,” each implying a rapid increase lasting during an opoch
which is “short” in terms of 7, but could be quite “long” if it is measured in
the ordinary time t; nearly as comparable as ¢ itself. One of such epochs has
been chosen to include the present time with A = log¢ =60, corresponding to
t 2 10"y. (The scale factor resumes a usual expansion immediately beyond the
frame.)

In the plot (b) we notice that p,, the total energy of the o-® system, and
Pm, the ordinary matter energy density, fall off like ~ ¢=2 as an over-all behavior,
but interwinding each other. A closer look reveals that a mini-inflation occurs
whenever p, exceeds pm.

Fig. 2 is the same plot as Fig. 1 (b) presented in a magnified scale around
the present time; showing that p, surpasses py, remaining nearly constant for a
while, hence imitating a cosmological constant with the size basically of the same
order of magnilude as t=% ~ p,,.
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We also notice in Fig. 1(a) that each of these anomalous behaviors takes place
toward the end of the “dormant period,” during which both of the scalar fields
come almost to standstill. To understand this behavior we first point out that
the dormant period and its repetition are primarily due to the dynamics of the
o-® system; the “back-reaction” from the cosmological expansion has a rather
minor effect.

Fig. 3 shows an example in which the cosmological part is cut off with the
same parameters but with 35 — 1 replaced by 0.5. In spite of some differences,
which, representing how much the cosmological effect could be, will be discussed
shortly, comparing Fig. 1(a) and Fig. 3 is sufficient to convince ourselves that
the “recycled dormant periods” could take place even without cosmological effect.
From this point of view, we now focus upon more detailed analysis of the solution
in the isolated o -® system as a simplified mathematical model.

The initial value oy = 6.75442 implies that wo; = 27 x 10.75; the o field
starts at onc of the potential minima as given by sin(wo) if viewed in the &
direction (see Fig. 2 of Rel. [6]), but on the slope in the direction of ®. Also the
“initial time” chosen to be ¢; = 10'° implies 27y = 46.052, and hence F(t),0) =
t2exp(—o1/k) = exp(2r; — 01/k) = exp(3.303) = 27.19, which is quite large. As
a result, o is pushed forward strongly. In this sense the system started from a
“catapulting stage.” The rapid increase of o, however, makes F(t,0) small, as
will be found by comparing the curve of o and the straight line 2x7, also shown in
Fig. 3. Soon ¢ is nearly free, going further until it is decelerated by the frictional
term 3b' — 1 = 0.5, finally to be trapped to another minimum of sin(we).

On the other hand, the ¢ field, having pearched on the middle of the potential
slope, is also catapulted downward, passing the central valley & = 0 past, until the
force dwindling again due to the decrease of F(t,0) and the cosmological friction
stop it to an almost complete halt, hence the dormant period. The energy density
ps still continues to decrease according to ~ ¢ before it stays constant.!

Now with a virtually unchanging o, the increasing 7 makes F(t,o) non-
negligible again, bringing the system back to the catapulting stage from which we
started before. In this way the dormant period may repeat itself nearly periodi-
cally with respect to 7 (instead of ), if the field configurations match suffciently
close to the previous values.

The “recycling,” however, may fail if the matching turns out incomplete. Fig.
3 is in fact one of the patterns of such “short” recycling encountered most com-
monly. Toward the end of a dormant period, o is “released” off the track before
it is kicked hard by the force which has been building up. The system enters
into an asymptotic behavior in which ¢ grows linearly while ¢ decreases slowly
toward & = 0. If the same behavior occurs in the cosmological setting, the scale
factor increases smoothly, resulting in no effective cosmological constant today.

On the other hand, much “longer” recycling is also rather common, as shown
in Fig. 4. Suppose a recycling process lasts suffciently long in the cosmological
system. Then, as in the isolated o-® system, p, would stay nearly constant

ISee also Ref. [8] for a similar behavior.
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toward the end of the dormant period, surpassing p,,, hence playing the role of a
cosmological constant. When the scalar ficlds start moving as the factor F(¢,0)
increases, however, p, begins to decrease, eventually nosediving beneath p,,. The
Universe resumes an ordinary expansion again. This explains the behaviors shown
in Figs. 1-2.

A question then arises how likely the solutions of sufficiently long recycling
could be. Aun idea on the answer may be obtained again by studying the isolated
o-® model. We surveyed solutions of the isolated o-¢ system by changing one
of the initial values, @, for example, keeping other parameters and initial values
fixed.™ Solutions with shorter recycling exhibit basically the same patterns as in
Fig. 3, while Fig. 4 is an example of sufficiently long recycling. Combining the
solutions, we plotted in Fig. 5, the time of the end of recycling, ¢., against @,
varied discretely. In spite of apparently rampant variation, we obtain solutions
of long recycling (A. > 62) for 8 out of 23 choices of ®,. This, together with
other limited but similar examples, secems to be an cncouraging sign that the
occurrence of the continued recycling is reasonably likely. The same “optimistic”
view applies also if the cosmological cffects are fully included.

We emphasize that the presence of minima of the potential as a funciton of ¢
is crucial. The leveling-off hehavior is triggered by trapping o. The form sin(wo)
is favored because it is ready to trap ¢ virtually at any time. Any other potential
will probably be acceptable, from a “phenomenological” point of view, if it shares
this property.

We have shown that a small but nonzero cosmological constant as required
by the observations could result rather naturally due to a nonlinear nature of
the scalar field equations. As a favored coupling, we tentativiey suggested a
Sine-Gordon-like interaction, though its real origin is yet to be discussed [6].
Furthermore having introduced two scalar fields, we have too many parameters,
including the initial conditions, to allow unique predictions, or even a systematic
survey of the solutions. In this sense our conclusion is still preliminary. The
example in Figs. 1-2 merely illustrates how the results can be realistic, leaving
many dctails yet to be worked out. We nevertheless have promising indications
that the desired result comes about quite likely.

We certainly have to adjust some of the parameters in order to bring a mini-
infaltion to the epoch including the present time, for example. The extent to
which we are supposed to fine-tune them is rather mild, however.™ In other words,
detailed analyses of various cosmological parameters at present, like Ho, lo, Q4
and qo, will serve to constrain the parameters of the theory, as will be discussed
clsewhere,

As one of the generic consequences of the present mechanism, we anticipate
some past epochs to have emerged with significant amount of Q4. In the solution

**Presentation of the result has been made simpler by choosing parameters different from
those used in Figs. 1-3, but the same as in Fig. 1 except for &,.

HChanging @, from 0.212 to 0.210 in the solution of Figs. 1-2 would shift Q4 = 0.67 at
A=60.15 (¢ = 1.21 x 10'%) to 0.71. However, d; = 0.200 gives Q5 ~ 1 — 10~29. On the other
hand, & = 0.2115 yields Q4 = 0.73, Ho =79 km/sec/Mpc at { = 1.5 x 1010y,
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of Figs. 1-2, for example, we find Q4 > 1 for 2751539, while we have avoided the
same at the epoch of primordial nucleo-synthesis (A ~ 45). This may illustrate
how the parameters and the initial conditions can be determined, in principle, also
by looking into details of the past cosmological histories, which should deserve
future studies.

We confined ourselves to the “primordial” cosmological constant prepared
in the starting Lagrangian. It is yet to be seen if the same mechanism applies
successfully to the vacuum encrgies associated with cosmological phase transitions
at later times.
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Figure 1: An example of the solution of (8)-(10). (a) Upper plot: b = Ina
(solid), o (dotted) and 2& (broken) are plotted against A = log?t = 0.4347.
The present age of the Universe supposed to be (1.0-1.5)x10'y corresponds to
60.0-60.2 of A in units of the Planck time. The parameters were chosen to be
A =1,k =0.158,m = 4.75, B = 0.8,w = 10 in the Planckian units. The initial
values chosen conveniently at ¢, = 10 are @ = 1,0, = 6.75442,6, = 0,®, =
0.212, d, = 0, Pr1 =204 x 1072 p,; =4.46 x 10~ i, ; the last two being adjusted
to give the “equal time” A.q ~ 35. The value of o, corlesponds to starting at a
minimum of sin(weo). (b) Lower plot: p, (solid), the total energy density of ¢ and
®, and pp, (dotted), the matter energy density, against A = log .
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Figure 2: The same plot as in Fig. 1(b) but in a magnified scale of A around
the present time. We find Q4 = 0.67 and Hy = S8lkm/sec/Mpc at A = 60.15
(1 =1.21 x 10'%).
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Figure 3: An example of the solution in the isolated o-® system, in which re-
cycling of the dormant periods ends prematually at A = 41. & (solid) and 2@
(dotted) are shown against A = log {. Also shown is 2«7 (broken) to be compared
with o. All the parameters remain the same as in Figs. 1-2, except for 35’ — 1
replaced by 0.5.
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Figure 4: An example of the solution in the isolated o-® system, showing long
recycling. We choose m = 5.0 with other parameters as well as the symbols the
same as in Fig. 3. The initial values at A\, = 10 are oy = 8.0,6, = 0,®, =
2.1,$, =0.19, somewhat different from those in Fig. 3.
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plotted against one of the initial valucs ®,, varied with spacing 0.05. The other

initial values and the parameters are the same as in Fig. 4. The arrows indicate
Ae > 62.
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A MECHANISM FOR A SMALL BUT NONZERO COSMOLOGICAL
CONSTANT

Yasunori FUJIT
Nihon Fukushi University, Handa, 470-32 Japan, and
Institute for Cosmic Ray Research, University of Tokyo, Tanashi, Tokyo, 188 Japan

I start with assuming that we do have a cosmological constant which is nearly as large as
the critical density [1];
_ A
AT 2
3¢
How can it be so in the context of unified theories? ‘This is the cosmological constant problem,
which is in fact a 2-fold riddle:

~ 1.

¢ In almost any of the unification theories, we have a nonzero cosmological constant. Un-
fortunately the observed value of A is about 120 orders smaller than what we expect naturally
from a theoretical point of view. This is the first part of the 2-fold riddle. If the above result
on the size of A were only an upper bound, it might be sufficient to invent a theory in such
a way that the cosmological constant goes away entirely at least today. An example is the
simplest version of the decaying cosmological constant scenario [2].

» Suppose, however, A is in fact nonzero finite. Then we would face a tougher problem.
We have so small a number that we find it almost impossible to keep it undisturbed by any
perturbation no matter how small. This is the second part of the riddle.

The cosmological constant seems to be a very tiny but potentially extremely dangerous
stumbling block on the road toward unification. 1 will try to outline how I can evade it by
proposing a theoretical model which 1 believe is not entirely unnatural. I support the view
that there is a final theory that unifies everything at the Planck scale. But I do not like to
base my argument on the exact details of unified theories which are still yet to be fully worked
out. Instead I start with assuming an effective theory in 4 dimensions, expecting in particular
‘that some scalar fields would play an important role.

In many of the models of unified theories we find scalar fields which couple to the ordinary
matter as weakly as gravitation; they are different from Higgs fields having stronger interac-
tions. An example is the so-called dilaton field. Another example is the scalar field representing
a size of internal compactified space, a remmant of higher-dimensional spacetime. ‘These scalar
ficlds are characterized by the “nonminimal” coupling. For the sake of illustration I give a
simplified Lagrangian in 4-dimensions, as a reasonably good starting theory:

L=y=7 Gm)n - %(a.ta)ﬂ A+ me,) : (1)

where ¢ is the scalar field. F(¢) multiplied with R is the nonminimal coupling, and F(¢) = £¢°
is the simplest choice due originally to Brans and Dicke, with £ a constant related to BD’s w
by &w = 1/4 (also vy, = €6%/2). T introduce A at this level of the theory. This imples that I
focus upon the primordial cosmological constant, rather than the vacuum energies due to the
cosmological phase transitions in the later epochs.

Also [ use a unit system with ¢ = h = 87G = 1. The present age of the Universe considered
to be somewhere around 10 Gy is nearly 10%° in units of the Planck time ~ 2.7 x 10~%3sec.

Now we have to go through some of the complications concerning conformal transformations
and conformal frames. But I will skip all of them. At the moment I simply apply a particular
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conformal transformation to remove the nonminimal coupling, so that the original Lagrangian
is put into the new form:

£=yT5 (%n - 5(00) — Aeol" 4 mee,) . @

There are a number of remarks relevant here.
Notice first the absence of the nonminimal coupling just as was designed. Secondly, as a
consequence, the canonical scalar ficld in this new conformal frame is & which is different from

but is related to the original ¢ by
é= ea/flu’

with x a constant given by £. Thirdly, the A-term is multiplied by ¢4 = e=?/%, This
implies that the A-term now acts us a poiential of o. We may expect that ¢ would fall off
the exponential slope toward infinity. This would signal that any effect of A will decrease with
time.

That this is indeed the case can be shown by integrating the cosmological equations:

34 = Ps + P (3)
v gy . AV

0+-iHa+d0—0, 4)
Pm +1Hp, =0, (5)

where p,,, is the matter density, while p, is the density of the scalar field;

1.,
ps = §o‘+V,

with
Vie) = AF(¢)~".

1 here choose the nonminimal coupling F(¢) = 14 £¢? which is a little more complicated
than BD’s original suggestion; 1/ is now slightly flatter near the origin (sce Fig. 1 of Ref.
[2]). This has an effect to bring about sufficient amount of the inflationary expansion of the
primordial Universe.

The numerical integration gives in fact solutions in which the scale factor a(?) starts with
an exponential growth but followed by the power-law behavior (see Fig. 2 of Ref. [2]). This
implies that there is no trace of the truly constant A in the asymptotic era.

Eq. (3) suggests that p,(¢) may be interpreted as the effective cosmological constant A e
We also find that this A_ behaves asymptotically like ~ =2, the same behavior as p,,,, hence
giving Ay ~ 107120 today (¢ ~ 10°). This may provide an answer to the first part of the
riddle, but certainly short of replying the second part. The observations seem to tell us that p,
must decrease like £=2 as an overall behavior to ensure the size ~ 10-2%, but should deviate
from the smooth fall-off, hopefully as a leveling-off behavior, which would imifate the constant
A at least locally.

But what kind of theory can do the job? Without any clear clue, we decided to introduce
another scalar field, called & [3]. But I soon realized that mercly introducing @ is not enough;
nothing spectacular will happen unless 4 is coupled to @ in a nontrivial way. Again without
any useful guide, we tried several candidates based on a try-and-error basis. Then we came
across to an interction of the form

V(es, &) =¢~o/* [A + %m"l""U(U)] , (©)

with
U(e) = 1 + Bsin(wa), 7N
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where B, w and m are constants. This may look rather awkward. If B were zero, the second
term of (6) would be simply a mass term of the ® field multiplied by e~¢/* expected to come
from the conformal transformation.

With nonzero B, we find a parabolic slope in the # dircction, whereas V falls off exponen-
tially in the o direction with the oscillation superimposed (see Fig. 4 of Ref. [3]). We may
expect to roll down the potential slope toward ¢ — oo probably with some smooth meandering
behavior. However, quite surprisingly, the solution shows something striking. An cxample is
shown in Fig. 1 {4].

The horizontal axis is log, . f in units of Planck time, so that we are now around 60. I also
gave initial conditions of the classical cosmology at ¢, which I tentativly chose = 10'. Also
as an important rule of the game, I assume that all the constants in the theory as well as the
initial values of the scalar ficlds are essentially of the order 1 in Planckian units.

Then as we find, p, behaves as we wanted to see; an overall behavior ~ ¢=2 and step-like
leveling-offs. Corresponding to cach of them, we have a mini-inflation; a rapid but temporary
rise of the scale factor. [ have two of them in this example.

I have adjusted parameters such that one of the mini-infiations shows up arcund the present
epoch, as shwon in the zoomed-up view in Fig. 2. We have A ;. which is small today because
our Universe is old, nof becausc of a fine-tuning. 1 obtained the values t,=12.1 Gy, h = 0.81
and @, = 0.67, just as an illustration.

I will discuss more about the characteristics of the solution. We have two mini-inflations
before the present epoch in this solution. This number depends on the choice of paramelers,
however. For somewhat different values of parameters, [ have five of them, for example. We
also find that the whole behavior is a nearly cyelic repetition of the same pattern. It is nearly
periodical if we plot them against Int rather than ¢ itself. This is a highly nonlinear effect, but
I will try to give intuitive explanations.

Each pattern consists basically of two phases. First a “catapulting phase,” in which both
of the scalar fields are driven by the forces coming from the potential V. o is pushed forward
toward infinity while & toward the central valley at & = 0. The increase of o, however, makes
the potential dwindle very quickly because of the factor exp(—~a/x). For this reason and also
due to the “cosmological frictional forces” provided by —3H o and —3H®, the scalar fields are
soon decelerated.

Now the o slowed down suffciently is trapped by the sinusoidal potential given by sin{we).
In this way, the system enters cventually the “dormant phase,” during which both of the scalar
fields come to almost complete stop, and p, stays constant, hence it is as if we had a truly
constant A. This is the key of our mechanism for a small but nonzero cosmological constant.

Interestingly, this leveling-off does not last forever. The forces which once dwindled begin
to build up again, bringing the system, rather likely, back again to the catapulting phase. In
this way, a set of the two phases would repeat itself, a process called “recycling.”

In this connection I point out that the real origin of the recycling behavior lies in the
dynamics of the system of Lwo scalar fields coupled to cahe other; the cosmological environment
plays only minor roles.

In fact in the isolated o-& system, I find typical solutions as in Fig. 3, showing many
repetitions indeed. If the same behavior takes place in the cosmological setting, then we would
have mini-inflations, and consequently the effect of a small but nonzero A.

For some other parameters, however, I find solutions as in Fig. 4. Recycling ends premat-
ually. This is because the values of the scalar fields and their time-derivatives do not match
sufficiently close to the previous values. If this premature “derailing” occurs in the cosmolog-
ical environment, the Universe would evolve just smoothly; no anomalous effect. These two
behaviors are the typical ones though there are some other variants as well.

The question is then how likely we get sufficiently long recyeling. Frankly speaking this is a
hard question because I have too many parameters; in addition to the constants of the theory
itself, like B and w, I have at least four initial values of the two scalar fields. Nevertheless 1
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have an impression that the chances of having a long recycling are rather high.

With the same model of the isolated a-& model, I varied one of the initial values @, with
other values and constants held fixed. In one such attempt, I changed &, from 1.5 to 2.6 with
equal spacing 0.03, obtaining 8 solutions (out of 23) showing sufficiently long recycling (see
Fig. 5 of Ref. [4]). This is a fair reflection of the gencral trend as far as I have tried.

To conclude we add a few more comments. My story may have sounded somewhat compli-
cated and messy. But I point out that this mechanism has something in common with what
is widely known as “rclaxation oscillation,” which is happening in everyday life. In playing
violin, for example, onc moves the bow rather slowly, still producing sounds of much higher
frequencies. Friction is obviously crucial. There is no reason why something should not happen
in Nature simply because it is complicated. The same should be true also in the Unjverse.

As a generic feature of our solutions, 1 have several mini-inflations. On this basis, I predict
backward that the Universe may have experienced several A-dominated epochs. This can be
dangerous. Suppose a calculation gives p, which is non-negligible compared with p,, at the
time of nucleosynthesis, for example. It may jeopardize the success of the standard theory.
‘This has to be avoided. This is in fact what T did when I seleted out the cxamples shown
before. In Fig. 1, for example, p, is kept below p,, at log,, t ~ 45, though p, may be dominant
at other epochs, This illustrates how 1 can constrain the theory by studying the past history
of the Universe. The same argument can be applied 1o the valucs of H, and 2, at the present
epoch. In any case my result at this moment is still away from the goal in terms of numerical
fits.

I also admit that [ have made several assumptions which 1 myself am not sure how to
derive from more fundamental theories. In this respect I emphasize that my approach is
phenomenological. I am asking what the fundamental theory should be like if the cosmological
constant ccases to be a problem. 1 hope with Weinberg [5] that challenging the cosmological -
constant will open up a new breakthrough in our effort toward unification.

[1] See, for example, J.P. Ostriker and P.J. Steinhardt, Cosmic Concordance, and papers
cited therein. These authors suggest a set of representative values; I, = 65 kn/sec/Mpc
and Q, = 0.65.

[2] Y. Fujii and T. Nishioka, Phys. Rev. D42, 361(1990), and papers cited therein.
[3] Y. Fujii and T. Nishioka, Phys. Lett. B254, 347(1991).

{4] Y. Fujii, How natural is a small but nonzero cosmological constant? preprint, gr-
qc/9508029; to be published in Particle Astrophysics.

(5] S. Weinberg, Rev. Mod. Phys. 61, 1{1989).
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Figure 1: An example of the solution of (3)-(5). (a) Upper plot: b = Ina (solid), & (dotted)
and 2% (broken) are plotted against A = log,,f. The present age of the Universe supposed to
be (1.0-1.5)x 10'% corresponds to 60.0-60.2 of A in units of the Planck time. The parameters
were chosen to be A = 1,x = 0.158,m = 4.75, B = 0.8,w = 10 in Planckian units. The initjal
values chosen conveniently at ¢, = 10'° are a = 1,0, = 6.75442,6, = 0,®, = 0.212,&, =
0,p, =204x 1077, p | =4.46 x 10~*; the last two being adjusted to give the “equal time”
Aeq ~ 55. The value of &, corresponds to starting at a minimum of sin{we). (b) Lower plot:
ps (solid), the total energy density of o and @, and p,, (dotted), the matter energy density,
against A.
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Figure 2: The same plot as in Fig. 1(b) but in a magnified scale of A around the present time.
We find Q, = 0.67 and /i = 81km/sec/Mpc at A = 60.15 (f = 1.21 x 10'%y).
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Figure 3: An example of the solutions in the isolated o-& system, showing long recycling. We

choose m = 5.0 with other constants as well as the symbols the same as in Fig. 1{(a), except

for 3%’ — 1 replaced by 0.5, and the added broken line for 287 1o be compared with ¢. The
initial values at 4\1 = 10 are c,=80,6 = 0,¢ = 2.l,¢1 = 0.19.
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of points of space-time. We investigate compact hyperbolic Friedmann-
Robertson-Walker universe in an inflationary phase. Such models can be
presented by time x compact hyperbolic homogeneous hypersurfaces.

A compact hyperbolic manifold is given as the quotient space of H3 by the
discrete subgroup I of its isometry group SO(3,1) which acts on H® properly
discontinuously. In general, the action of a group I’ on a manifold M must
be properly discontinuous so that the quotient space AM//T’ be a Hausdorff
manifold. We call an action of ' on M properly discontinuous if it satisfies
the following conditions [3, 4];

(1) cach point ¢ € M has a neighbourhood U such that v(U')NU = @ for
each 74 € T" which is not the identity element, and

(2) if ¢, r € M are such that there is no v € I' with 4(q) = r. then there are
neighbourhoods U and U’ of ¢ and r respectively such that thereisno 5 € T
with (L) N U # 0.

Condition (1) implies that the quotient M/I" is a manifold, and condi-
tion (2) implies that it is Hausdorff.

The universal covering manifold of the concerning compact universe is
a hyperbolic inflationary universe, of which the maximal extension has a
Cauchy horizon. When we assume that the actions of the covering trans-
formation group analytically continue to the extended regions, we expect
that the topology change takes place and closed timelike curves appear due
to rearrangements of homogeneous slices by the extension and compactifica-
tion. This is suggested by the work on the Lorentzian topology change of
(24+1)-dimensional compact black hole geometry by Siino [2].

We naturally ask whether or not we can construct compact hypersurfaces
as the quotient submanifold in the extended region because the homogeneous
hypersurface becomes a Lorentzian submanifold dS3. More precisely. does
the I' act on 3-de Sitter hypersurfaces properly discontinuously?

The Misner universe is a simple example of a compact universe and its
extension, which is given as a quotient manifold in (1+1)-dimensions [3]. The
maximally extended covering manifold is given by a part of 2-dimensional
Minkowski space-time (M \ {0},7). We must subtract the point {o} from
whole the Minkowski space-time (.M, i}) so that the quotient space become
a manifold. Because of subtracting the point {0} from (A{.7)), all causal
curves which direct to {0} are incomplete. We define singularity as non-
spacelike incomplete curve according to the definition in [3] and therefore,
the maximally extended Misner universe has a singularity. In this paper, we
call such type of singularity a topological singularity.

In case of the compact hyperbolic inflationary universe model, however,
we will observe in the next section that singularities densely appear on the
hypersurfaces dS? and the extended regions are no longer space-time man-
ifolds. This concludes that one cannot analytically extend the space-time
by extending both the universal cover and the action of I' C Isom(.M) on
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it. If one regards this anomalous occurrence of singularities serious. one can
say that the spatially compact hyperbolic inflationary universe cannot be
extended beyond the Cauchy horizon. Then we have an interpretation for
this anomalous phenomena such that this is an example which holds up the
strong cosmic censorship conjecture, which. roughly speaking, states that a
physical space-time is globally hyperbolic.

As the scenario about a birth of hyperbolic universe, one-bubble infla-
tionary universe model [1] is an appealing one. However, it cannot be a
covering manifold of a compact hyperbolic inflationary universe, since such
a model has a past Cauchy horizon inside the bubble. Thus we conclude
one-bubble inflationary hyperbolic universe scenario cannot be compatible
with a compact hyperbolic inflationary universe model.

One also can attribute this anomaly to the high degrees of a given space-
time symmetries. Then one can expect that, in this situation, topology
change takes place owing to space-time extensions and compactifications be-
cause there is no isometry in realistic universe. In this case, physical impli-
cations of the extended regions are farther problems.

2 Anomalous occurrence of singularities

In this section, we show that an anomalous occurrence of topological singu-
larities in the extended space-time.

To investigate what happen by the action of T in the extended region, for
simplicity. we consider the (2 + 1)-dimensional case. Then the homogencous
isotropic hypersurfaces in the concernig universe model correspond to 2-
hyperboile space H? inside the Cauchy horizon and 2-de Sitter space-time d5?
in the extended region. H? is imbedded in 3-Minkowski space-time (E* p)
as: =(XN) 2+ (X')2 4+ (X2)2 = =1, by an imbedding f : H? — E2! with the
induced metric gy := f*1). dS? is described as; ~(X'0)? 4 (XD)2+ (X322 =1.
Here the curvature radii are normalized to unity,

We assume that the action of a discrete subgroup T of Isom(H?) on
the H? is analytically continued to the extended regions and acts on the
Lorentzian manifolds dS2. When there exist at most finite number of ac-
cumulation points of {7"(x)}. we can subtract these points from dS? and
obtain a quotient manifold, {dS? - {accumulation points}} /T as secing in
the construction of the Misner universe. Therefore, we want to know how
densely the accumulation points exist.

The Isom(H?) consists of boosts and space-rotations of Isom(dS?). Each
element of the subgroup ' must contain one of the boosts because the element
consisted of only space-rotations has fixed points. First, we consider the
actions of the simplest element 7, € " on dS?, where Yo is represented in the
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Figure 1: Geodesic flows of +," are schematically depicted.

coordinate system {X? X', X?} as the following matrix;

cosh( 0 sinh( '
1 (€)== 0 1 0 , € = constant. (1)
sinh¢ 0 cosh(

This 4, has three eigenvectors,

1 1 0.
ao:=(0), bo:=(0), c.,:=(1). 3]
-1 1 0

Two eigenvectors a, and b, are lying on the light cone; —(X°)? + (X1)? +
(X%)? = 0, and ¢, points the point ¢, on dS? described by eq.(2). Thus we
observe that any points s on the null line through the point ¢, converge to
Co by the action of 9," illustrated in Figure(1), that is, the infinite sequence
{7."(s)} has an accumulation point at the point c,. For %(# %) € T,
Yi(co) is one of the eigenvectors of 4,09, 0 %,~! € T and so the point on
the dS? pointed by the vector v;{c,) is also an accumulation point of the
sequence {(7;© 7, 07i"!)"(7i(s))}. Therefore, there exist many, countable
infinite, accumulation points of {y"(s)} on dS2.

Now we show that the accumulation points, that are topological singu-
larities, densely occur on dS2, More precisely, we will show that;

If we assume that the actions of the covering transformation group T' on
H? are analytically continued on dS? in the extended region, then, for every
neighbourhood O, of an arbitrary point ¢ on the dS2, there exist vy € T and
point s € dS® such that an accumulation point ¢ of the infinite sequence
{7"(s)} is contained in O..
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Figure 2:

We will prove this statement according to the following steps.

First. for every point ¢ on d$2. there exist an element 7 € SO(2,1) such
that ¢ is one of the eigenvectors of .

If 7 € T, there exists s € dS? such that c is the accumulation point of
{7"(s)}. So, we only have to consider the case that 5 ¢r.

The other two eigenvectors, « and b, are lying on the null cone. These
two vectors uniquely determine a geodesic on the H2. In fact, these two
eigenvectors span a plane II and the intersection of I1 N H2? is an geodesic
curve X in the H2. The geodesic A is projected to a straight line [I N Dy
on Klein Disk : Dg := {X® = 1,(X')? + (X?)? < 1}. The projection
7 EY 5 (NO XY X?) = (ky,k)) € Dy is defined as k; := &, ko=
(k12 4+ k9%)1/2 with the induced metric: ds? = (1 = ko?)dby® 4+ (1 = ky2)dhr? +
2k kodkydko) /(1 — k)2, We can identify H? and Dy by the diffeomorphism
7o f. This projection = maps a geodesic curve of H2 which is a hyperboloid
in the E! to a straight line in the E2! and doesn't preserve inner product.

The eigenvectors, a, b, direct to the points a, b, respectively, on the
boundary 8Dg := {X° = 1, (X' + (X?)2 = 1}. We can see that the
straight line from b to @ on Dy := Dy U 8Dy is the geodesic ().

As long as considering the case that 4 ¢ T, the geodesic A does not close
on H?/T. Moreover, every line terminated at @ and b on Dr does not close
on H?/T because if there exist a closed line which terminates at a and b on
Dy, there must exist an element of T corresponding to the closed curve and
it is just v itself, but now y ¢ I

It can be observed that X := 9Dy x Dy \ Agp « 18 one-to-one correspon-
dence with the set of all geodesics on Dy, where Aapy; = {(p,p)| p € Dy }.
Namely, a pair (a,b(# «)) € X can be identified to the geodesic on Dy
terminated at a.b € 8Dy,.

It is also confirmed that the positions of each eigenvector are closely
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5 4D,

o‘u. dsH

Figure 3:

related to each other. * Therefore, one can correspond an unique geodesic
on H? to the point ¢ on the d52. °

Second, choose a Riemannian metric e := (dX9) + (dX')? + (dX?)?
on E!. Take an open ball B(c,6,E*') i= {zx € E¥||x - ¢lle < 6}
with radius é respected to e and define a neighbourhood of ¢ on the dS?
as 0,(6.dS?) := B(e,6, E*') N dS*. Similarly, define neighbourhoods of a
and b respectively on the 8Dy as 0,(8,8Dg) := B(a,6,E*1) N 3Dy and
0(6,0Dy) := B(b,5, E*') n 3Dy, corresponding to O(6,dS?) (see Figure
(3))-

Now, what we want to show is reduced to the following lemma;

Lemma
Y(a,b) € X\Y6(> 0),

tFor example, choosing an appropriate coordinate systemn and a constant a, the eigen-

vector ¢ can be represented as
sinha
c=1| cosha |. (3)
0

Then, the other two are uniquely determined as

cosha cosh o
a=| sinha |, b= sinha |. (4)
=1 1

*f we constrain the point ¢ on the part ({X° > 0}JU{X° = 0,(X")Z+(X?)P* =1L, X! >
0} U{X% = X! = 0,X?% = 1}) of 5%, the point ¢ has one-to-one correspondence with a
pair of points {(a,b) on Dy,.
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: Non-closed geodesic A
: Aline segument

r—+ p —q —r :Closed curve

Figure 4: A compact Riemann surface with genus p = 2 is illustrated. A is a
non-closed geodesic and a is a line segment which is connecting two points ¢
and r on the A. Then, one can sce a closed line {r — p — g = r} composed
of the line segment {r — p — ¢} of the geodesic A and the line segment g :

{g—r}.

%' € 04(6,0Dk),2V € 0,(6.0Dy) 3y €T 3pe Dy
sit. limg_oe 7"(p) =: @' € 0a(6,0D ) limy—_oo 7™(p) =: &' € O4(6,dDy)

We show that there exists a closed line on the compact Riemann surface
H?/T which directs to points a’ € 0,(6,8Dg), b’ € Oy(8,3D) on QDy; (see
Figure (3) and Figure (4)). We can do make such a closed line by using a non-
closed geodesic A(v) := 1N Dy, affinely parameterized by v and ergodicity of
geodesic flow on a compact Riemann surface(see Appendix). In Figure (4),
a non-closed geodesic curve A on a H%/T is illustrated. Let p be a point on
A at v = 0 and take an arbitrary small open desk O, whose radius ¢ € 1 as
a neighbourhood of p. From the ergodicity of geodesic A, we can always find
points ¢ = A(I),1 > 1 and r = A(k),k < 0,]k| > 1 on A such that each of
them is contained in O, and the tangent vectors of \ at these points r, 4,
are sufficiently parallel to each other as depicted in Figure (4). Connecting
the points r and ¢ by a suitable line segment g, we obtain a closed line
{r = p— ¢ — r} on the H?/T. Corresponding to this closed line, there
exists an element v € T,

It is shown in Figure (3) that the images of Op, p,g,7. AN O, and p
by 4 on the Klein desk Dy which is the universal cover of H%/T. On Dy,
there are as many images of O, as the number of the clements of . Each
of the images of O, which contains the portion of the geodsic () can be
transformed each other by . Since ¢ is determined by the metric gy on
H?, so the radii of its images on the Klein desk which are determined by the
Euclid metric e on R? become smaller and smaller by the projection =, far
and far the image aparts from the origin {k; = ky = 0}.

The ergodic theory of geodesic flow on H?/T', we can taking the affine dis-
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by 0,G,dDp

0Ss,dD,)
kl

Figure 5:

tances [ and & be sufficiently large so that lim,_. v"(p) =: @’ € 0,(6,0Dg)
and lim,—_7%(p) =: ¥ € Oy(6.0Dk). Then, we have the two eigenvec-
tors of 7, @’ and ¥'. We can obtain the third eigenvector ¢ of 4 directing
to a point ¢ in the é—neighbourhood O,(6,dS?). That is, the point ¢’ is an
accumulation point of {y"(s)}.

In (3 + 1)-dimensional case, the discrete subgroup of Isom(dS*) space-
time has four eigenvectors. Two of them are null vectors corresponding to a
and b in the (2 + 1) case. The other two are spacelike corresponding to ¢ and
point to points on the hypersurfaces dS®. In addition, we can also observe
the ergodicity of geodesic flows on three compact hyperbolic Riemannian
manifold H3/T [5] (see Appendix A). Therefore, we obtain the same results

as the (2 + 1)-dimensional case; topological singularities densely occur on the
dss.
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Appendix: Ergodic theory [

Abstract Dynamical system:(M, i, &)

Let (M, ;) be a measure space with measure y and ¢, : M — M be an
one-parameter transformation group which is measure-preserving. Then a
set (M, pu, @) is called dynamical system.

Definition

Let f be a complex valued function on M.
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The time-average: f* is defined as
- im L[ d M, teR
Fa)=lim 2 [ faenat, seM, tek.
The space-average: f is defined as
Fi= [ S

Definition: _
A dynamical system (M, u, &) is ergodic if almost everywhere f*(x) = f, for
any f which is integrable with p(ie. f € Li(M,p)).

In our case, the dynamical system (H?/T, gy, T) is ergodic. One can ob-
tain the following statement from crgodicity of (H2/ Tygy,T).
Let a, : [0,00) 53— a,(7) € H?/T be a geodesic determined by the starting
point a,(0) = x € H%/T and the tangent vector 6:(0). Define the length of
a, by its affine parameter 7. Let A be @ measurable subset of H*/T and I be
a total length of the intersections of o (7)and A,ie. I ;= Urer{a-(T)N A}
Take f(xr),r € H*/T. in the definition above, as;

I
7 : the length of a, of interval [0,7]

frla):

Then, there exists a time-average:
. 1
fre)=lim =,
T— T

aud a space-average:
= measure of A

~ measure of H?T’

so that f*(x) = f for any A and almost every (r,a.(0)).

Theorem(Labatchevsky-Hadamard theorem [5, p62 + p77))

Let Af be a compact, connected, negative-curvature Riemannan surface with
genus p(2 2) and T1.M be a unit tangent bundle of Af. Then, the geodesic
flows on T\ M are ergodic.

From this theorem, if one want, one can always find two points on a non-
closed geodesic on compact Riemannian manifold H 2/T such that each point
is arbitrary close to the other and the tangents at these points are arbitrary
parallel to each other.

These ergodic characters of geodesic flows on compact Riemann surface
are also observed in a three-dimensional compact Riemannian manifold as
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summarized following theorem;

Theorem (Auslander, Green and Hahn [6])

Let V' be an n-dimensional vector space over C and let G be a real Lie sub-
group of GL{(n,C).

Suppose that cither

a) G2 SL(n,C),n>1,0r

b) G D Sp(n,C), n even.

Let T be a discrete subgroup of G with compact factor space I' \ G. Then if
v €V, v#0, the orbit [(v) is dense in V.
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ABSTRACT

A general method of construction are given for compact locally homogeneous universes. A
concrete example is presented with careful counting of dynamical degrees of freedom and explicit
calculation of the Teichmiiller parameters as time-dependent functions. We finally show that
the dynamical system for the example, which includes the Teichmiiller parameters as dynamical
variables, possesses a Hamiltonian structure.

1 Introduction

Compact homogeneous universe (()M, g,;) is a four-dimensional Lorentzian manifold which ad-
mits a foliation by leaves of compact locally homogeneous Riemannian three-manifold. This
article is to give a detailed analysis of dynamics of such compact homogeneous universes in the
context of general relativity. It is less known but of great importance that compact (locally)
homogeneous Riemannian manifolds can be different even if they have same topology and same
local geometry. Such “global” differences of geometry are known as the Teichmiiller deforma-
lions, parametrized by the Teichmiiller parameters, which are also dynamical variables of the
compact homogeneous universe.

In Ref.[1] we presented a treatment of three-dimensional compact homogeneous Riemannian
manifolds, where we (1) gave the possible eight types (a~h) of homogeneous universal covers,
which are closely related to Thurston’s eight geometries[2, 3}, (2) classified compact quotients
(a1/1,b/1,etc.), and (3) gave Teichmiiller spaces, spanned by the Teichmiiller parameters, by
explicitly finding embeddings of covering groups in the isometry groups of the universal cov-
ers, which enable us to perform explicit calculations. Hence, we here first need to show how
to “adapt” such knowledge of compact homogeneous three-manifolds in the context of relativ-
ity in four-dimensions. To this, we begin with considering a four-dimensional universal cover
(“M,ga), and then make identifications in (97, &,;) so as to make each three-surface (M, hap)

—-161—



compact. In order to utilize our knowledge about compact homogeneous three-manifolds, this
operation is translated into the condition that we make (M,, l-z,,b) compact by the action of a
discrete subgroup of the eztendible isometries EsomM,, which are defined with respect to having
natural extension as a subgroup of Isom{(4)¥4, the isometries of (M1, £ab). The four-dimensional
universal cover (WM +Eab) is chosen so that it satisfies Einstein’s equation.

According to the method that we shall provide, we then construct an example of compact
Bianchi 1l (the b/1 model), and show calculations of giving the time-development of the Te-
ichmiiller parameters. We then further develop our theory through the example of the b/1
model. We show that all the dynamical variables including the Teichmiiller parameters can be
transformed into a metric of the form of Bianchi II. We therefore find that the system possesses
the natural Hamiltonian structure induced from the Einstein-Hilbert action.

We employ the abstract index notation [4] throughout this article.

2 Universal covers and identifications

In this section, we explore possible form of metric of a compact homogeneous universe, establish
a method of construction of compact homogeneous universes, and discuss generic feature of the
global deformations of compact homogeneous spatial sections of the universe.

We denote the universal cover of a compact homogeneous universe (M, g,3) as (M, g.s).
Note that it comes from a property of covering map that a compact homogeneous universe
inherits a natural metric from the universal cover (M, g.;) (and the converse is also true). We
thus first consider the universal cover metric gap.

In the case of a Bianchi minimal geometry [1], we can take the 4-metric as

ds? = =N3(t,x)dt? + hap(t)(N°(t,x)dt + 0°)( NO(t,x)dt + 07), (1)

where (2, x) are local coordinates, o* the invariant 1-forms, and e, 8,...run from 1 to 3. Indeed,
the spatial metric hog(t)0®0? is homogeneous on each surface ¢t =const.. But, of course, the
three killing vectors k, of the homogeneous 3-metric do, in general, not act on the 4-metric, i.e.

Li,(ds?) # 0. (2)

In (2), k, is regarded as the vector induced by the embeddings of the homogeneous 3-manifolds
in (M. Although we cannot exclude this general class of metrics by the method of “compact-
ification” which we shall explain later, we in this article consider only the case where k, acts
four-dimensionally, i.e. the case £y, (ds?) = 0. In fact, such a subclass of metrics can express
the most variety of compact universes. Hence, our metric is of the form

ds? = = N3()dt? + hap(t)(N(t)dt + o°)(NP(t)dt + oP). (3)
This metric becomes without loss of generality the following form
ds? = —dt? + hap(t)o®o”P. (4)

For Bianchi class A and type V, we can diagonalize the metric components h,g’s in Eq.(4) in
vacuum with respect to an invariant basis 0 which is defined in appropriate local coordinates. In
some cases, the components can become simpler than being diagonal. Note that even in spatially
compact cases, we can find such local coordinates simplifying the metric in a neibourhood of
any point in ()M, and can use these coordinates to find solutions of local equations such as the
Einstein equation R,, = 0. Also, for the universal cover, this is the case. We can therefore say
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that the dynamical degrees of freedom carried by the universal cover coincides with those of the
open model. That is, as for the open case, we need to exclude the degrees of freedom of HPDs
(6, 1] from the universal cover to exclude the “gauge” freedom.

We express compact (UM by taking identifications in ()M. The identifications act on each
homogeneous 3-surface (M,, 71.,1,) of t =const.. Let IsomM, be the isometries of (Mg, hqp). Then,
we may make the homogeneous 3-manifold (M, h,;) compact by the action of a discrete subgroup
T'of IsomM,, where possible I'’s of various universal covers are already given in Ref.[1]. Although
this seems to be enough to specify the initial identifications, we should remark some subtle
points to avoid possible confusions. Before elucidating them, we define the extendible isometries
of (M,, izab), EsomM, C IsomM,, as follows.

Definition 1 (Extendible isometry group) Let (Mg,ilab) be a spatial section of (M, g,s).
An extendible isometry is the restriction on M, of an isometry of (M y8ab) which preserves
M,. They form a subgroup of IsomM,. We call it the eztendible isometry group, and denote it
as Esom(M,, (UM ), or simply EsomM,. Obviously, an eztendible isometry a € EsomM, has the
natural extension on (‘UM which is an element of Isom )M and preserves M;. We call such the

natural extension on (WM the eztended isometry of a, or simply the eztension of a.

The first point to remark is that our compact universes are obtained by taking identifications
in four dimensional universal covers, and so that, for any two points which are identified, there
should exist an isometry of ("M, g,) (not of (M, has)) which maps one to the other. For on
(M,,iz,,b), this fact is interpreted as saying simply that the identifications must be implemented
in the extendible isometries EsomM;. Moreover, when we are concerned with the dynamical
degrees of freedom of the system, we must take conjugations for the identifications to exclude
“gauge” freedom again, and it is now clear that the conjugations must also be taken by Esom ;.
In view of initial value formulation, we may be able to summarize the above facts as follows; !

Proposition 1 The identifications on an initial surface ( My, i-zab) must be implemented in EsomM,,
' C EsomM,, (5)

to gel a compact homogeneous universe out of the four-dimensional universal cover ((‘)M +Eab),
and the conjugations also must be taken by EsomM,. Moreover, the identiﬁcatioqs acting on
whole (‘IM yEab) are determined by the action of the extended isometry of T on (M.

Note that we can take conjugations for (M,, k) only by EsomM;, whereas the Teichmiiller
parameters are defined with respect to conjugations by full IsomM;. Roughly speaking, the
difference between freedom of EsomM, and IsomM, appears as the freedom of giving initial
‘velocities’ of Teichmiiller parameters. We will see this effect more explicitly in the example of
compact Bianchi II in the next section.

(The reader may find in Ref.[9) more a detailed account to the subject discussed in this
section.)

! Although proposition 1 is sufficient to prescribe how to make a compact homogeneous universe, one another
view of how to “evolve” the identifications on an initial surface (M:,hap) is worth noting. To this, we first note
that the normal geodesics emerging from M for a fixed value of ¢ are unique, provided that they are parametrized
by the proper time r. We refer to the exponential map exp tn%(t) which is defined with respect to the normal
vector field n°(2) on M, as the normal map. It is easy to see that, to maintain consistency, any two points mapped
by the normal maps from identified two points on an initial surface should continue to be identified. An advantage
of this view is that once given a four-dimensional universal cover metric Jab, we can determine how to evolve
the identifications even if we do not know the isometries of the universal cover. Specifically with the metric (4),
since the hypersurface-orthogonal geodesics are along the t-axes, we can say that Jn terms of the globally defined
coordinates (t,x) of metric (§), if at the initial surface t = to an identification is specified as (to0,x) ~ (%, ax),
where a is a free action on the coordinate space, then at any time t we must have (t,x) = (t,ax). This may be
useful as an alternative of the latter half of proposition 1.
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3 Time-development of Teichmiiller parameters

To get the Teichmiiller parameters of a compact section (M, i4p), we need to compare two math-
ematical representations, i.e., (My, hgs) with the covering group T, and the standard universal
cover (l’fd , h:‘,,d) 2 with the covering group, A, parametrized by the Teichmiiller parameters. T
and A are generated by the same number, n, of generators, {g;} and {¢;} (i = 1,.--,n), respec-
tively. {¢;} and {a;} satisfy the same multiplication rule of an extendible isometry group. We
can get the Teichmiiller parameters by finding the automorphism of EsomM which relates the
two sets of generators.

We shall do this for compact Bianchi II (the b/1 model), where we can see the most typ-
ical calculation to get Teichmiiller parameters. Although similar calculations are applicable
straightforwardly to other types, e.g. compact Bianchi I, VI, VIly, we will concentrate on the
b/1 model to present a concrete example in a way as complete as possible.

Our universal cover metrics are synchronous (Eq.(4)) and diagonal.

The b/1 model: a compact model on Bianchi II geometry
We start with the multiplication rule of Nil (=Bianchi II group);

gl hl gl +hl
g2 h2 = g2 + h2 , (6)
93 h3 ga + h3 + glh2

where g,h € Nil, and we shall use superscripts to denote the components of a group element.
We use the same components (z!,2%,2%) = (,y, 2) as coordinates of M;. The action of Nil on
M, is defined by the left action on (z,y, z) €Nil. A Nil-invariant (diagonal) metric is given by

di? = hy1dz? + hopdy® + has(dz — zdy)?, (7

where b, (@ = 1 ~ 3) are constants, i.e. independent of (z, y, z). The four dimensional universal
cover metric of our concern is of the form

ds® = —dt? + d? (8)

with hqq being functions of ¢. The vacuum solution is, of course, known, but we proceed with
calculation, leaving A, free, since they are complicated functions in the synchronous gauge and,
moreover, it enable us to apply the result also to models other than the vacuum model.

We consider manifold “b/1 (n = 1)”, classified in Ref.[1], which is probably the most stereo-
typical compact manifold modeled on Bianchi II geometry. The fundamental group 7, is given
by (See Eq.(118) in Ref.[1])

11 = (91,02,95: (91, 92005, [91, 93], [92, 93] ) - (9)
To represent the generators of my, gi’s, in EsomM, = Nil, we put them as
g

gi=| 9
gi

(i=1~3), (10)

w ™

In Ref.[1], they were called the representative metrics.
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and substitute these in the relations of m; (Eq.(9)). We then get the following;

a' 92! 0
a=|a%],90=] 9| a=| 0 |, (11)
a° 9> §3°

where §3° = g1'g2% - g1%g2' # 0. .
We then consider the possible conjugations by EsomM; = Nil. For the conjugation of g;’s by
h = (h', k%, k%) € Nil 3, we have

1 1
n g2
hgih™! = n® yhgoh™! = 92° yhgsh™! = g3. (12)
a1+ hlg? - g} 92> + h'gy? — h%gy!

We can make the third components of g; and g; zero if we take h as h' = (g;3g2' — 91'92°)/34°,
h? = (913¢2% — :1%923)/§3%. After all, our representation of 7, in Nil reduces to

o' g2! 0
a=| o, 02=|9*]| 6=} 0 |. (13)
0 0 §3°

The nonvanishing four independent components in these g;’s determine the initial identifications
in the universal cover with metric (8).

To proceed further calculations, we here cite the definition given in Ref.[1] of the Teichmiiller
parameters for b/1 and some related properties. We denote the standard universal cover as
(R3, k%), where the standard metric k% is given by (Eq.(75) in Ref.[1])

di? = dz? + dy? + (dz — zdy)>. (14)

Any compact homogeneous 3-manifold classified in b/1 is globally conformally isometric to

manifold (R3,71§‘bd) /A, where A is a covering group whose generators are given by

all a'zl 0
a) = 0 y 2 = 022 , 83 = 0 . (15)
0 0 alay?

Then, the Teichmiiller parameters are 7 = (e, a,', 22?) (Eq.(129) in Ref.[1]). We can see that

the map
z z
R
so: |y | = "(y) (16)

z 2+ Go(z,y)

is a l-parameter isometry for (R3, ﬁi‘bd), where Ry is the rotation matrix by angle 8, and (p is
defined by

Co(z,y) = %((:o:2 - y*)cos# — 2zysin #) sin 6. (17)
We he.re remark that sg is not an element of EsomM; but of IsomA;, and therefore EsomM, #
Isom M, in the b/1 model. For an element A €Nil, conjugation by sy is given by
h! h!
se| B® |s;' = Rol pe . (18)
h® h3 4 Go(h!, h?)

3For typographical convenience, we sometimes write components of group horizontally.
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Note that metric (7) is rewritten as

a2 = %(dz'z +dy'? + (d2' - 2'dy')?) (19)
33
with
zr i—:—;z

!

= A
v Viay |, (20)
7,-‘-3-).—" z
11122
where h,, are regarded as constants. If we view this coordinate transformation as a diffeo-
morphism and drop the constant conformal factor of metric (19), the resulting metric coincides
with the standard metric (14). This diffeomorphism is obviously an element of the HPDs [6, 1),
from the form of metric (19), so that the transformation (z,y,2) — (z',¥’,2’) is an (outer-)
automorphism of Nil. The image of g;’s, which acts on metric (19) (or metric (14)), is

N

glll 92“
an=|a%|.a=]| ¥ |. (21)
0 0

Here,

h A h [h
o= ‘/—3391’, a¥= \/—33-912,92" = \/—”gz‘, 0 = 20" (22)
h22 hll h22 hll

Generator g3 is automatically determined by g; and g; (see Eq.(13)), so we will concentrate on 91,
g2 and the images of them by automorphisms. Since Eq.(21) is not of the form of Eq.(15), it does
not yet give the Teichmiiller parameters. To get them, we take a conjugation of Eq.(21) by the
(full) isometry of Nil, which is given by Nil itself with s;. We can “rotate” the two-dimensional
vectors (g;'', ;%) (i = 1,2) by conjugations by sy (Eq.(18)), leaving the third components zero
by a conjugation by Nil like the way we obtained Eq.(13). So, we arrive at

Vg + (g 7)?

ay = hsg, 155 h7! = 0 (23)
0
and
gg:' cos by — g2:’ sin 6, 1 gli'!lz;' + 91:'92:'
az=| g:!'sin0; + g, costy | = nl'g* -a¥e" |, (24)
0 Vi) + (a1¥)? 0
where iy 2
g] . _gl (25)

cos 8 = e sin ) = ,
T V0 + (07)? YT V@ R F (@)

and h is an element of Nil. Using Eq.(22), we obtain the final form of the Teichmiiller parameters;

h h
a' = \/_33(!]1’)2 + (@),
ha, hn
1

h h
(. 33 1,1, 833 2 2
az = a]l (h22gl g2 + h“yl 92 )1
5.3
0 = B _In (26)

all 111422
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In Eq.(26), parameters g1, 912, 92!, 92 and hence §3® are constants, and h,,'s are functions
of t. The metric components hjq, ko2, and ka3 are determined by Einstein’s equation, and we
must exclude the degrees of freedom of HPDs from them. Hence, the number of free parameters
that the metric components can have coincides with the known number of degrees of freedom
of the conventional (open) Bianchi models [7]. For the vacuum Bianchi II, the number of free
parameters in the metric components is two. With the four parameters specifying the initial
identifications, the total number of dynamical degrees of freedom of the present vacuum b/1
model is six. The dynamical variables are the Teichmiiller parameters a;!, a2!, and a;2, and the

total volume
v = (§5°)* Vhinhashas. (27)

Remember that the Teichmiiller parameters are defined with respect to the standard universal
cover which is isometric to the universal cover {M;, isp) up to a global conformal factor. In fact,
it is clear that, if we know the values of them, we can completely construct the original compact
3-manifold.

4 Metric components as dynamical variables

In the first subsection, we present a heuristic argument to show that the dynamical variables of
the b/1 model can be embedded into the solution of Einstein’s equation, and thus possess the
Hamiltonian structure. This argument will provide a firm ground for the geometrical interpre-
tation in the second subsection.

4.1 The case of the b/1 model

Consider an HPD, ¢: (4 — (M, of Bianchi IL Then, the pullback of the invariant basis, o
(a =1~ 3), of Bianchi II group is given by

o! M fla 0 o!
d:| o | = | A 0 o |, (28)
o® 2 Py Mff- o®

where f®g’s are constants, and
o! = dz, 0® = dy, 0% = dz - zdy. (29)

In fact, the Maurer-Cartan relation is invariant under Eq.(28).

If we have a solution of the universal cover which satisfies Einstein’s equation, then the pullback
of it by Eq.(28) is also a solution of Einstein’s equation. Such a solution would have the
maximal number of arbitrary parameters. In the parameters, we can check that f3, and f3,
span the gauge orbits generated by the two momentum constraints which would come out if all
six metric components k.5 were supposed. However, the remaining four parameters in Eq.(28)
are independent of the momentum constraints. What we would like to ask in the following is
whether we can regard the four parameters as the four parameters, g;%’s, specifying the initial
identifications.

Suppose that

ds? = —dt? + hyy(01)? + haa(02)? + haz(03)? (30)

is the solution of the universal cover which does not contain the freedom of HPDs. Thus, the
metric (30) possesses two arbitrary parameters. (See the last paragraph of the last section.) We
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write the metric possessing “extra” four parameters due to Eq.(28) with f3; = f3; =0 as
ds? = —dt? + H,go%0P. (31)
Then, by direct substitution, we see that

Hy = ha(fM1)? +h2(fH)%
Hyp = ha(f'2)? + k(%)
Hiz = hafYafla+ hafi /%,
Hys = (M- ['af*1)*has,
H = det(Hop) = (1112 - fl2f21)'h, (h = hiihasha). (32)
Note that, while this solution of Einstein’s equation possesses six parameters, the solution of
dynamical variables Eqs.(26) and (27) also has six parameters. Do these two “solutions” have

explicit correspondence? Or more restrictively, are the four parameters f1y, f13, f%; and f2;
functions of the four parameters ¢!, 8,2, g2! and g;?? The answer is yes. In fact, if we suppose

=gl =g ffi=a0c =g’ (33)

then metric components (32) and the dynamical variables (26),(27) have the following explicit
correspondence;

2/3

Hll ((01])2(‘122)2) (al »
2/3

H22 ((011)2(022)2) ((02 + (022)2)
2/3

Hiz ((all)z(azzv) ar'as’,
2/3

s = (Grpis) @ (34

Or the inverse is;
Huy HazHyp Hyz
all=H33\/ ,a' = = 7HEC as? = 'iI_II"’=‘/F' (35)

Note that hag, f5 and g;7, which are “parts” of the two solutions (26), (27), and (32), do not
appear in these relations explicitly.

Since metric components H,g are solutions of Einstein’s equation, we have found the embed-
dings of the dynamical variables into the Einstein’s equation. Since the Bianchi II model belongs
to class A that Ellis and MacCallum classified [5], the present dynamical variables do have the
Hamiltonian structure induced from the reduced Einstein-Hilbert action. The Hamiltonian in
terms of the Teichmiiller parameters and the volume are given by explicit calculations as

1
" = 5 {(‘111“22”)4/3 +(a")?(p'1)7 + ((a2')? + (@27)")(P*1)* + (a2)’(p%2)°
3
+201 a2’ ptap?s + ar e 1p%2 + 02 0P | - P (36)

Here p‘j and p, are the conjugate momenta of a;/ and v, respectively. The Hamiltonian con-
straint H = 0 reduces the number of degrees of freedom of the system by two, so that we again
get 4 X 2 — 2 = 6 as the total number of degrees of freedom in the phase space.



4.2 The geometrical interpretation of the metric components

As we have seen, we can now view the metric components H,g as dynamical variables, or in
other words, the Teichmiiller parameters have been “absorbed” in the universal cover metric.
In this subsection, we give how we can geometrically interpret the absorption.

First, we make general discussion. Let 7 = (7,---,7,) and I'; be the Teichmiiller parameters,
and the covering group acting on the standard universal cover (M ,izz',,d), respectively. For
convenience, we choose the origin in the Teichmiiller space arbitrarily, and denote it by 7 or
simply 0. The projection map 7, : M — M is defined with respect to the action of T'; on M. We
denote the image of (M ,it:‘bd) by 7, by (M, hasl;). Information of the Teichmiiller deformations
is contained in the projection map 7, in this view.

On the other hand, for a ', we can define a diffeomorphism ¢, : M — M such that

Va, €., a;, = ¢, 0a90 ¢!, 37)

We refer to ¢, as a Teichmiiller diffeomorphism (TD). Obviously, ¢, maps the fundamental
region of mg to that of .. Hence, if we consider a universal cover (M ,¢,.h:‘bd), then the image
of the new universal cover by the projection mg coincides with (M, hs|;). One thus find

hablr = W(;;l(ﬁf-il:tbd- (38)

With this view, the projection map is fixed, while the universal cover varies with 7. Note that
this meets with that, in the b/1 model, the metric components H,g of universal cover varies with
the Teichmiiller parameters as Eq.(34). Similar treatment has also been taken in (24+1)-gravity
(8]

In general, there are many possibilities of TDs for a universal cover and a T',. Moreover, if
we choose TDs arbitrarily and make spatial part of the four dimensional universal cover metric
with Teichmiiller parameters being functions of ¢, then the extrinsic curvature fails to have the
necessary homogeneity that would extract a consistent slice out of the full phase space. One way
to extract a consistent slice is to implement the TDs in a subgroup of HPDs.* (HPDs themselves
comprise a group.) We call such TDs the homogeneity preserving Teichmiller diffeomorphisms
(HPTDs).

Now we are in a position to apply our argument to the b/1 model. The standard universal
cover metric is given by

di? = (¢')* + (62) + (0°)%, (39)
where 0 are defined in Eq.(29) with coordinates (z,y,z). Let T = (a,,a2!,a5%) and 7 =
(1,0,1). Then, appropriate HPTDs are

z a'z + axly
é:: | v | - az’y ; (40)
z 1as'ar?y® + ay'ay?2
which induce the map
a! ! ay! 0 o!
Gre: | 2| =] 0 a2 0 a? (41)
a’ 0 0 0.11022 a

*Another ways might be possible if non-trivial lapse and shifts are allowed. T hey may correspond to the way
to employ metric (1) as a universal cover metric.
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It is easy to observe that the diffeomorphisms of Eq.(41) certainly comprise a subgroup of HPDs.
Also, we can check that the unit cube (0 < < 1,0< y < 1,0 < z < 1), which is a fundamental
region of o, is mapped to a fundamental region of =, showing ¢, certainly comprises HPTDs.
The induced metric of Eq.(39) by ¢ is given by the direct substitution of Eq.(41). Normalizing
the induced metric to give v? as determinant, we again obtain the metric (31) with Eq.(34).

5 Conclusions

We have given two methods for constructing compact homogeneous universes. In the first one,
we began with considering the four dimensional universal covers, and then took identifications
and conjugations in it. Following this method, we also gave explicit calculations giving the
time-development of the Teichmiiller parameters for the b/1 model on the Bianchi II geometry.
(Some other examples are presented in Ref.[9].)

In the second one, Teichmiiller deformations were implemented into variations of the universal
covers, and the four dimensional universal cover metric was written in terms of the Teichmiiller
parameters. As Ashtekar and Samuel first pointed out [6], the lack of Teichmiiller parameters in
open Bianchi models gives rise to discrepancies in counting the numbers of dynamical degrees of
freedom, however the compact model treated in this article has no discrepancies, as we have seen.
Moreover, while they did not mention how the metrics relate to the Teichmiiller parameters,
now that is manifest.
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Quantum Stability of (2+41)-Spacetimes with Non-Trivial Topology: Negative
Curvature Cases

Masaru Siino*
Department of Physics, Kyoto University
Kitashirakawa, Sakyoku, Kyoto 606-01, Japan

Quantum fields are investigated in the (2+1)-open-universes with non-trivial topologies by the
method of images. The universes are locally de Sitter spacetime and anti-de Sitter spacetime. In the
present article we study spacetimes whose spatial topologies are a torus with a cusp and a sphere
with three cusps as a step toward the more general case. A quantum energy momentum tensor is
obtained by the point stripping method. Though the cusps are no singularities, the latter cusps
cause the divergence of the quantum field. This suggests that only the latter cusps are quantum
mechanically unstable. Of course at the singularity of the background spacetime the quantum field
diverges. Also the possibility of the divergence of topological effect by a negative spatial curvature
is discussed. Since the volume of the negatively curved space is larger than that of the flat space,
one see so many images of a single source by the non-trivial topology. It is confirmed that this
divergence does not appear in our models of topologies. The results will be applicable to the case
of three dimensional multi black hole [9].

I. INTRODUCTION

When we consider matter fields in a spacetime with a non-trivial topology, the boundary effects of quantum fields
appear. This is one of main targets in quantum field theory in curved spacetimes. Such effects have been studied well
in spatially flat spacetimes [1], but not so well in spatially curved spacetimes. This is because of the complexity of
the topology which is allowed in such curved spatial section. In other words, there will be new topological effects of
quantum field in the curved spatial section with a little complex topology.

To construct a space with a non-trivial topology, we identify the points of covering space by the discrete subgroup
of the isometry of the space. Then we want to consider the covering space with an appropriately simple isometry
group such that the topology has some interesting characteristics. As the space with simple isometry, there are S,
R" and H™, s0 called closed-, flat- and open-universe. Furthermore, we decide to treat H" since this hyperbolic space
allows various topologies possessing interesting characteristics.

To treat this open-universe as a background spacetime, we determine its time evolution. For simplicity we consider
maximally symmetric spacetimes of de Sitter spacetime with a hyperbolic chart or anti de Sitter spacetime in a
Robertson-Walker coordinate. Their spatial sections are H". The de Sitter spacetime with the hyperbolic chart
may be important in a cosmological sense. It is believed that the global feature of our universe is homogeneous
and isotropic. If our observation suggests that the spatial curvature of our universe is negative, the background
spacetime is locally open-universe. In the inflation, the de Sitter spacetime with a hyperbolic chart is a good model
for cosmology [2]. If we prefer a universe with a finite volume, the de Sitter spacetime with a hyperbolic chart with
non-trivial topology will become important.

The topology of the open-universe (in the present article, the ‘open-universe’ means not an open topology but
only a negatively curved space) is well known in a two dimensional space. Then we construct the simple example
of a two dimensional open-universe with intetesting topology in (2+1)-de Sitter spacetimes and (2+1)-anti de Sitter
spacetimes. Quantum scalar field is studied in these spacetimes using point stripping manner. The divergences of the
quantum fields will be discussed.

In the section 2, we prepare simple model of the universes with interesting topologies in the (2+1)-de Sitter spacetime
and the (2+1)-anti de Sitter spacetime. The quantum field is investigated in the section 3. The last section is devoted
to a summary and discussions.

*e-mail: msiino@tap.scphys.kyoto-u.ac.jp, JSPS fellow
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I1. (2+1) OPEN-UNIVERSE WITH NON-TRIVIAL TOPOLOGY
A. Two Dimensional Universe

First of all, we develop topologies of two-dimensional spatial sections. For the simplicity of topologies we treat
(2+1)-spacetime in the present article. For a cosmological reason and a further simplicity, spatial two-dimensional
sections are assumed to be S?, R? or H? corresponding to closed-, flat- or open-universe, respectively. In a two-
dimensional space, the topologies of complete manifolds are classified by Euler numbers. This is calculated from the
number of handles and cusps (see Fig.1). The cusp is a point at infinity with a needle-like structure. Here it should
be emphasized that the cusp is no unnatural or artificial. These points at infinity are no singularity. There is no
reason to avoid them in classical physics [3). Furthermore, the role of the cusp might be rather essential as discussed
in [4] [3].

From the Gauss-Bonnet theorem for a complete 2-manifold, the Euler number y is given by

%ﬂ / dv®R = x = 2 — 2N(handle) — N(cusp), (1)

where ()R is a two-dimensional scalar curvature and N(#) is the number of . The signature of ()R restricts the
variety of the topology. Since the Euler number is less than 2 (x = 2 is for a sphere), the case of negative curvature
allows various topologies (various numbets of handles and cusps). In such negative curvature space, we expect new
topological effects of a quantum field. Since the cusp is an infinitely small structure, it may cause the divergence of
the quantum field. The negative curvature space has a crucial characteristic that the volume of the space is larger
than that of the flat space at a distant region. Then one will see so many images of sources because of a non-trivial
topology. The method of images may suffer the difficulty of a divergence. To discuss these speculations, we must
treat general topologies of the negative curvature space H2. In the present article, however, only two simple cases of
them can be investigated since these cases possess the cusps and the above mentioned characteristic.

To construct a non-trivial topology of the negative curvature space, we draw a polygon surrounded by geodesics
on a hyperbolic space H2 as a fundamental region and identify the geodesics. Poincaré model is one of the models of
the hyperbolic space, which is conformally flat and a compact chart. The metric of the Poincaré model is

2 _ 4(dr? + r2dg?)

ds® = = (2)
whose spatial curvature is —1. In this model, geodesics are circles crossing a circle with r = 1 at right angles. This
circle with r = 1 is a sphere at infinity corresponding to the infinity of H2.

Now we give simple topologies including cusps. The simplest polygon producing non-trivial topology is a tetragon.
Drawing the tetragon OABCD of a fundamental region as in Fig.2, the tessellation of H? by this tetragon becomes
simplest. In Fig.2, a half of the tetragon, AABC and AACD, is a regular triangle and its vertices A, B, C, D are on
the sphere at infinity. H? are tessellated by parallel transformations of these triangles. The tessellation turns out to be
a series of regular polygons whose centers are the origin of the Poincaré model. The triangles form a self-homothetic
structure. Requiring orientability, there are two pairs of identifications for geodesics contained by the triangles, which
provide complete manifold. One is

AABC — ADCG by ASL. (3)
AABC — ALAD by AY),, AW €50(2,1). @)
They generate a discrete subgroup I'* of SO(2, 1). By these identifications, the topology of H?/T')) becomes a torus

having a point at infinity, which is a cusp (see Fig.(3)). Of course, the Gauss-Bonnet theorem gives its Euler number
as

X = 2—-2N(handle) — N(cusp) =2-2-1=-1= L dvdR. (5)
47 "2/[‘())
The other is
AABC — AGDC by A%). (6)
AABC — AADL by AY),, A® e 50(2,1). )
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They generate ['2) C SO(2,1). A resultant topology H?/T'?) is a sphere with three cusps (Fig.3). The Euler number
of it is
1

x=2—2N(handle)—N(cusp)=2—0—3:—1=—/ dv®R. (8)
47 Jyare

It is noted that these manifolds #2/T¢Y) and H2/T(® are easier to handie than the double-torus which is a well known
example of hyperbolic manifolds. For instance, though the fundamental group of our manifolds is (a, b), that of the
double torus is (a,d,¢,d : aba='b"'edc='d~! = 1) [5). o

Here we express all elements of ') in an appropriate form for the rest of the present article. Using {A(,'), A(,'),Ag)}
acting as

AABC — ADCG by AV (9)

— ABIE by A (10)

— AKFA by AY (11)

— AGDC by AP (12)

— AEBI by AY (13)

— AAKF by AD, (14)

Y1) € T is given by

T = R(6;)(AP)". (15)

For example, T{) transform AABC to AA’B'C’ in Fig.2. AABC is transformed to a 2n-th outward position of
triangles by (Aii))“ and rotated around the origin by R(#;) with an appropriate angle 6;. k is selected from 1 ~ 3 so
that the orders of the vertices match between AABC and AA'B'C'.

For the rest of the article, we give A(ll) in terms of the Poincaré model. Using z = re'®, this representation of the
isometry of H? becomes a subgroup of SL(2,C) in the coordinate of the Poincaré model and is given by

az+b ad
z—»f(z)=-—bz+ﬁ, (5 ﬁ)ESL(ZC). (16)
A‘,l) is given by
_agz+by
[(z) = bos 1 0o (17)
1 , roe'*/8 — | 1 ree'™/®
ag = i - , b= _— 18
° V1-rZ\ ree-it/é -1 0 Vi-r2 a0 (1)
_l—sing
ro = W (19)

Here we should note that A(*)’s and A(®)’s are in the different category of the Lorentz group SO(2,1). It is known
that all elements of SO(2, 1) are SO(2, 1)-conjugate to an element of the following forms. We call them as standard
forms. In the SL(2, C) representation (16),

e 1) An elliptic element is conjugate to

) 902,
T.: f(z)=¢%2= o7 (20)
with one fixed point on H2.
o 2) A parabolic element is conjugate to
. _ (A +id)z+i
Lo Jo)= St (21

with one fixed point on the sphere at infinity.
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¢ 3) A hyperbolic element is conjugate to

zcosh 8 + sinh 8

Th: J2) = o T oo §"

(22)

with two fixed point on the sphere at infinity.

These angle parameters 0,5 are real numbers. Though A(!)’s are conjugate the category 3), A(’s are parabolic.
We note that the fixed point of a parabolic element corresponds to a cusp produced by the parabolic element. It is
revealed in the next section that these facts affect the quantum field.

B. de Sitter and anti de Sitter Spacetime with Non-trivial Topology

Now we consider (2+1)-spacetime whose certain spatial sections have above mentioned topologies. For simplicity,
Teichmiiller deformation [6] is not considered and every identifications are supposed to be done on the spatial 2-
sections of the synchronous gauge. Then the local geometry of the spacetime is that of the open FRW-universe.
For further simplicity, we assume the spacetime is maximally symmetric. Such (241)-spacetimes allowing spatial
H?-gections are Minkowski spacetime, de Sitter spacetime dS3 and anti de Sitter spacetime AdS3. Though we treat
only dS*® and AdS® in the present article, the investigation of the present article is easily applicable to the case of the
Minkowski spacetime.

The isometry groups of dS* and AdS® are SO(3,1) and SO(2,2), respectively. The open chart of dS® and the
RW(Robertson-Walker)-coordinate of AdS® determine the natural extension of SO(2, 1) which is the isometry of
H? to SO(3,1) or SO(2,2) so that the extended action of SO(2,1) preserves their time-slicing, respectively. The
identifications T' C SO(2,1) on H? also extended to v C SO(3,1), SO(2,2) on dS® and AdS3, which preserves the
time-slicing.  provides non-trivial topology d$3/y or AdS?®/~ to the spacetimes.

For the next section, we imbed dS® and AdS® as a covering spacetime of the concerning spacetime with non-trivial
topology into four dimensional flat spacetimes with signatures (— + ++) and (— — ++), respectively. Using the
coordinate of the Poincaré model for spatial sections, .

ds? = dX? 4+ dY? - dz’{’_'}dw2 (23)
X= {fg:ltt}%cosﬂ (24)

= {sciz:t‘} 1 :"_'rz sind (25)

W= {‘::t‘ } (27)

= ds’ = —dt’+ {sci:::tt} 4(d(r]7j_ r.-_:)ﬁ:_gz)’ (28)

where the upper case is dS% and the lower case is AdS®. We treat only the spacetime with a unit curvature radius
for simplicity because the absolute value of the curvature is not essential for the following investigation.

III. QUANTUM FIELD

In this section Quantum field is investigated in the spacetime with non-trivial topology whose covering spacetime
is dS3 or AdS®. We introduce conformally coupled massless scalar field ¢, with the action

S=- / d=3 /g (%8”:#8,.«# + %Rd”) , (29)

where R is the scalar curvature. The field equation in dS® or AdS® with R,,, = *2g,, is
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(v"v" ¥ %) 4=0 (30)

with R = +6 for our dS® or AdS? with a unit curvature radius.
Now we consider the Hadamard Green functions in the covering spacetime dS® or AdS®. According to Steif 7,
they are given by
1 1

4?‘_ Iz_yl’ (31)

G(z,y) =
where |z — y| is a chordal distance between z and y in the four dimensional imbedding spacetime (24)~(27) and not
a proper distance in dS® or AdS3. :

The Hadamard functions for spacetimes with non-trivial topologies dS3/7(), AdS3/4() can be obtained from the
Hadamard function for their covering spacetime (31) by the method of images. Since the images of y are generated
by elements of 1), the Green function is

Gz, y) = Z G(z, TW o y). (32)
TWeyD T gid

where the summation is over all elements of 4(*) except for identity. The identity is excluded to subtract all local
contributions of the quantum field. This procedure ought to regularize the energy-momentum tensor of the quantum
field.

When 1 is Abelian group, the summation can be easily evaluated like the three dimensional black hole case [7) (for
example, AdS%/ygH : vgH = (Agl))" is equivalent to the three dimensional black hole). On the other hand, our

non-Abelian <y makes rigorous evaluations impossible. The simple universe shown in the previous section, however,
allows us to evaluate some divergences. The abstract summation of (32) is decomposed into

o 34! 3
¢z, ) =Y 3 Y Gz, ROHAPY o) (33)
n=1 j=1 &

by ¢q.(15) A quantum energy-momentum tensor is given by

< T >= im Dy Gz, ), (34)

in the point stripping method, where D,,, is a certain differential operator (see [7), for example). Hence, investigating
the zero of the distance |z — TY(z)| and the summations of (33), we can discuss the divergences of < T,y > since the
divergences of < T, > come out from the divergences of the Green function.

First of all we discuss the characteristics of ¥(*). As stated in the previous section, 7} € 4(1) can be written as
T = A7'THA

by an appropriate A € SO(2,1), where A corresponds to an isometric coordinate transformation of § — ¢ and
r —r' in eq.(28). 7, in (22) corresponds to a Lorentz boost about X-Z direction in the imbedding spacetime. From
imbedding equation (24)~(27), a chordal distance |z — T{1)(2)] is given by

lt— A" ThAoz| = |2’ = T o 2| (35)
= /(2cosh 2y — 1)(X7 = Z72) (36)
_ fsinht 4r2cos? @ — (1 + r2)?
= { cos! }\/(2 cosh2y — 1) =y ) (37

where {X',Y”,2', W'’} is an imbedding coordinate for ' = A(z). T} in the imbedding spacetime {X.Y,Z,W}is
given by the matrix,

coshx 0 sinhx 0
0 1 0 0
sinhy 0 coshy 0
0 0 0 1

(38)
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From (24)~(27), x is given by the parameter 8 of (22) as
x = 26. (39)
In the SL(2, C) representation (16), for a hyperbolic element T¢!)

T () i
X= 2 cosh™? "SL+)()_ = 2cosh™? ‘12&, (40)

where Trsp(2,c) is a trace about SL(2,C) matrix. Especially, by the rotational symmetry of Agl,,)s’s, all x’s of A(ll,za’s
are the same. We write it as xo = 2cosh™!((ao + d0)/2).

On the contrary, T(?) has a different standard form (21). With appropriate B € SO(2,1) and Tp in (21), T is
written as B(~1T, B. We dare express the distance in the coordinate of the Poincaré model (24)~(27) to evaluate it
at infinity. |z — T(®)(z)| becomes

z— B 'T,Boz|=[z"-T,02" 41
P P
- (ZII + Yll) (42)
_ [sinht] 2r"siné"” + 1 + 72
- { cost } 1—p2 ’ (43)

where {X”,Y", 2", W"} and r”, 6" are coordinates for 2 = B(z). When 6" is 3n/2, the distance vanishes at infinity
(r" — 1). This point (r* = 1,8 = 37/2) is a fixed point of T, corresponding to a cusp. T¢?) forms a cusp at z,
with B(z.) = (" = 1,6" = 37/2). Then |z — T(*)(z)| should vanish at the cusp on each timeslice, while |z ~ T(})(z)|
never approaches to zero except for the initial or final singularity.

There are three possibilities of divergences for the quantum field. The quantum field will diverge at the singularity
of the background spacetime as in the case of three dimensional black hole [7]. Also the infinitely small structure of
cusps will cause the divergence of the quantum field though the cusp is not a singularity. Furthermore, the summation
of the images in the method of images is expected to diverge since the volume of the hyperbolic space is larger than
that of the flat space at a distant region. One will see so many images of a source.

First two possibilities are investigated in the following. For T(}) € ¥(1), eq.(37) tells that |z — T{!)(z)| vanishes
at the planes X? — 2'2 = (. Since A € SO(2,1) is a proper-Lorentz group in a part of the imbedding spacetime
{X,Y,Z,W = %1}, the planes X'?— 22 = 0 cannot invade into the inside of a light cone at {0,0,0, £1} which is initial
or final singularity of dS® and AdS3. Moreover, one or two pairs of null geodesic, {X'? ~ Z* = 0,Y' = 0, W’ = %1},
lie on the singularities. Since the quantum field diverges on these planes < T}, > diverge when one approaches to
the singularity of the background spacetimes by the topological effect.

On the other hand, T? € 4(?) has a different characteristic about cusps. From eq.(43), |z —T(?)(z)| vanishes at the
cusps on each time-slice, while | — T(})(z)| never vanishes on each time-slice even at their cusps. Therefore < T, >
is singular at the cusps of d$3/9(?) and AdS3/7(?) and regular at the cusps of d$3/4(!) and AdS3/+(V),

Finally we discuss the third possibility of the divergences estimating the summation over all transformations in
(33). From a rotational symmetry around the origin of each time-slice (X =Y =0,Z = {";2:"}, W = {ht]y,

|z - R(ﬂ)(Aﬁl))" 0 Tlrzorigin = [T — (Aﬁl))" 0 Z|z=origin (44)

sinh ¢
= — 1
{ o5t }\/2 cosh(2nye) — 1 (45)
where we use A"1A"A = (A~AA)". If we consider the point z = zo,
{S::::} 2C05h(2nxO) -t 2'.’!:0' < |:|.‘ e R(o)(A(kl))nI-’.:zo (46)
inht
< {scl:st },/2 cosh(2nxo) — 1 + 2|z¢| (47)

For a sufficiently large n, \/2cosh(2nxo) — 1 and |z~ R(8)(AL")?(z)| behaves as e"lxel. Furthermore, |z— R(6)(A)" |
also behaves as e™lXsl for a large n, since the tessellation of 42 is the same tessellation as 4(1). From (17)(18)(19)(40)
the summation about j and k in (33) is estimated as
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347! 3 n n
lim >~ 3Gz, REG)T) 09) ~ i = (ﬁ) = 0.8438", (48)
k

z
y= j=1

Though a rigorous estimation may be possible, it is too complicated and will give us no essential information. <
Tuw >~ O(3_, 0.843") barely converge because of the exact value of xo. If the investigation could be done in other
topology with negative curvature, a different value of x might cause the divergences of the summation.

IV. SUMMARY AND DISCUSSION

In the present article, we have investigated new topological effects of a quantum field in a torus universe with a cusp
and a sphere universe with three cusps. Their coveting spacetime is de Sitter spacetime or anti de Sitter spacetime.
The cusp is a point at infinity with regular local structure and needle-like global structure. The role of the cusp is
discussed in [4] [3]. Three possibilities of divergences of the energy-momentum tensor have been studied.

First, a divergence appears on the coordinate singularity of the classical background spacetime, which is initial or
final singularity in cosmological sense. This is similar to the case of the three dimensional black hole [7].

Next possibility is a divergence at the cusps. In the present article, we show there are two types of the cusps. One
is a cusp made by hyperbolic transformations of SO(2, 1) and the other is made by a parabolic transformation. We
observed that < T},, > diverge at the latter cusps, which are included in the sphere with three cusps. This aspect
means that the latter cusp induce a quantum instability. Only the latter cusps will require a treatment in quantum
gravity.

The last possibility is the divergence of the summation of images. This corresponds to the effect that we see more
images of a source in a negatively curved universe than in a flat universe at a distant region. The summation, however,
converges in the spacetimes given in the present article. The convergence of the image summation strongly depends
on the values of a boost angle |x| and the shape of a tessellation in the covering space. Though elXl is 4.74, if elxol
were less than 4 with the same tessellation, < T, > would diverge everywhere and the divergence is hard to remove.
In the case of other topology, other elX! and other tessellation may make the summation diverge. If so, it will turn out
that there are topologies accepting quantum field and not accepting. When we consider a compact (without a cusp)
topology with a negative curvature, such situation may occur, though the compact topology is very difficult to treat.

Recently Brill [9] shows that a three dimensional multi-black hole solution can be constructed in the three dimen-
sional anti-de Sitter spacetime. It is easily found that AdS3/y(®) with a larger boost angle |x’| than |xo| is regarded
as a two-black hole solution. Of course, the summation of images converges in this solution.

By a regularization performed in the present article, we perfectly subtract local divergences. We, however, have
observed the topological divergences. They cannot be regularized and will have physical meanings.

Can we carry out a similar investigation in other topology with a negative curvature. A compact topology (without
a cusp) seems impossible since the tessellation is so complicated. On the other hand, it may be possible to treat
other topologies with cusps. At least, we can decide whether each cusp causes a divergence of quantum field or not,
knowing whether the identification providing the cusp is parabolic or hyperbolic. The divergence of summation of
images sensitively depends on the shape of the tessellation in the covering space and will be difficult to treat without
a sufficient symmetry. In (3+1)-dimension the similar investigation may be possible. There will be convenient models
of non-trivial topology.
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X=2-6*2-5%¥1=-15

FIG. 1. A example of a two dimensional sphere with a finite volume is shown. There are six handles and five cusps. Its
Euler numberis y =2—-226—-1+5=15.
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sphel:e at infinity

FIG. 2. Poincaré model and its tessellation are shown. A bold circle r = 1 is a sphere at infinity. A shaded region is a
fundamental region of a torus with a cusp or a sphere with three cusps. AABC is transformed to a n-th outward position by
(A)™. Furthermore, R(8) transform it to AA'B'C".
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FIG. 3. The upper shows that a torus with a cusp is constructed from a tetragon. The lower shows a tetragon becomes a
sphere with three cusps.
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Causality violation and singularities
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ABSTRACT

We show that singularities necessarily occur when a boundary of causality
violating set exists in a space-time under the physically suitable assumptions
except the global causality condition in the Hawking-Penrose singularity theo-
rems. Instead of the global causality condition, we impose some restrictions on
the causality violating sets to show the occurrence of singularities.

1 Introduction

Space-time singularities have been discussed for a long time in general relativity.
In 1970, Hawking and Penrose[l] showed that singularities, which mean causal
geodesic incompleteness, could occur in a space-time under seemingly reason-
able conditions in classical gravity. Their singularity theorem has an important
implication that our universe has an initial singularity if we do not consider
quantum effects. However, this theorem is physically unsatisfactory in the sense
that the causality requirement everywhere in a space-time seems too restrictive.
We can only experience local events and there is no guarantee that the causal-
ity holds in the entire universe. As is well known, Kerr type black holes have
causality violating sets if the space-lime is maximally extended. Therefore, it
will be important to investigate occurrence of singularities in a space-time in
which the global causality condition is violated.

There are some works on a causality violation concerned with the occurrence
of singularity. Tipler[2,3] showed that any attempt to evolve closed timelike
curves from an initial regular Cauchy data would cause singularities to form in
a space-time. He presented a singularity theorem in which the global causal-
ity condition in the Hawking-Penrose theorem is replaced by the weaker one
and adding the stronger energy condition. In his theorem his stronger energy
condition is essential to the occurrence of singularities.

Kriele presented his singularity theorems in which causality violating sets
are restricted but with usual energy condition in the Hawking-Penrose theorem
instead of Tipler’s energy condition. He showed that the causality violating
set has incomplete null geodesics if its boundary is compact [4]. Kriele[5) also
presented a generalization of the Hawking-Penrose singularity theorem. In his
paper he showed that singularities would occur provided that causality holds at
least in the future endpoints of the trapped set.

le-mail:maeda@th.phys.titech.ac.jp
Ze-mail:akihiroGth.phys.titech.ac.jp

—-181—



Newman[6] found a black hole solution which had no singularities. This
black hole solution is obtained by a suitable conformal transformation of the
Gédel universe: One might consider his conclusion would suggest that causal-
ity violating set can prevent singularities from occurring. However, his case
seems too special and even unphysical, because causality is violated in the en-
tire space-time. It is physically more acceptable to assume that at least there
must be causality preserving regions in a space-time. One can pick up the
Taub-NUT universe as an example which contains both causality violating and
preserving sets. In this universe, there exist singularities on the boundary of
causality violating sets. This suggests that the boundary generates a geodesic
incompleteness.

In this paper we shall show that the boundary of causality violating sets are
essential to occurrence of singularities. We also discuss relation between our
theorems and the Hawking-Penrose theorem.

In the next section, we briefly review Tipler’s and Kriele’s singularity theo-
rems. In section 3, the definitions and the lemmas for discussing causal structure
and singularities are listed up. We present our singularity theorems for partially
causality violating space-times in section 4. Section 5 is devoted to summary.

2 Tipler’s and Kriele’s theorems

We review Tipler’s and Kriele’s theorems in this section. In addition, we discuss
how causality violation is related to singularities in these theorems.
First, we quote Tipler’s theorem.

Tipler’s theorem(1977)

A space-time (M, g} cannot be null geodesically complete if

(1) Rgp K3 K* > 0 for all null vectors K9;

(2) there is a closed trapped surface in M;

(3) the space-time is asymptotically deterministic, and the Einstein equations
hold;

(4) the partial Cauchy surface defined by (3) is non-compact.

Here the asymptotically deterministic condition in the condition (3) is defined
as follows.

Definition

A space-time (M, g) is said to be asymptotically deterministic if
(i) (M, g) contains a partial Cauchy surface S such that

(ii) either H(S) = H*(S) U H~(S) is empty, or if not, then

lim [inf Top K° K] > 0

on at least one of the null geodesic generators y(s) of H(S), where a is the
past limit of the affine parameter along 7y if ¥ € H*(S), and the future limit if
v € H=(S). (K*? is the tangent vector to v.)

This condition has been introduced by following reasons. In the case that the
formation of a Cauchy horizon H*(S) is due to causality violation, one would
expect that the region where H+(S) begins would contain enough matter (the
condition (ii)) which causes gravitational field sufficiently strong so as to tip
over the light cones and eventually leads to causality violation. We can regard
this condition as a special type of energy condition which dispenses with the
causality condition in the Hawking-Penrose singularity theorem.
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In the following sections, we shall impose some conditions on causality vio-
lating sets to replace global causality condition in the Hawking-Penrose theorem
instead of imposing this energy condition.

Next, we quote some definitions and Kriele’s theorems [4, 5].

Definition

efocal point

Let S be a locally spacelike surface ( not necessary achronal surface) and let us
consider a future directed null geodesic, 8(t), from S parameterized by t. If for
any point 3(¢) such that ¢ > t,, there exists an arbitrarily close timelike curve
from S to the point 3(¢), then 3 is called a focal point 1o S.

oGeneralized fulure hortsmos of S

Generalized fulure horismos of S, denoted by e* (S, M), is a closure of all future
null geodesics 8 from S which have no focal points. (The future end points of
e* (S, A1) correspond to the focal points.)

scut locus: cl(S, M, +)
The set of future end points of e*(S, ).

ealmost closed causal curve

Choose an arbitrary Riemannian metric  of M. Let a be a curve and 3 be a
reparametrization of a with h(8',3') = 1. Then a is called almost closed if there
exists an .X € J'(t) such that for every neighbourhood U of X in the tangent
bundle, TAf, there exists a deformation v of 3 in mpar(U) which yields a closed
curve and satisfies 3(¢) € n(U) = v'(t) € U.

Kriele’s theorem

Theorem 1(1990)

(M, g) is causal geodesically incomplete if:

(1) Ra/X®K® > 0 for every causal vector K% and the generic condition is sat-
isfied.

(2) (a) there exists a closed locally spacelike but not necessarily achronal trapped
surface S or (b) there exists a point r such that on every past (or every future)
null geodesic from r the divergence @ of the null geodesics from r becomes neg-
ative or (c) there exists a compact achronal set S without edge.

(3) neither cl(S, M, +) (respectively cl(r, M, +)) nor any el(D, M, -}, where D
is a compact topological submanifold (possibly with boundary) with DNS £ 0
(respectively r € D), contains any almost closed causal curve that is a limit
curve of a sequence of closed timelike curves.

This theorem is the maximum generalization of the Hawking-Penrose theo-
rem in the sense that causality may be violated in the almost all regions except
the cut locus. In this theorem causality violation seems to play a role of keeping
the space-time under consideration from having singularities.

In theorem 2 below it is shown that there exist singularities when the causal-
ity violating set is compact even if there is no trapped surface. However, one
cannot see which causes singularities, the compactness of the causality violating
set or causality violation itself.

Theorem 2(1989)

Let (M, g) be a space-time with chronology violating set V that satisfies

(1) Ras K2 K* > 0 for every null vector K® and the generic condition is satisfied.
(2) V has a compact closure but M —V £ .
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Then V is emply or V is generated by almost closed but incomplete nuil
geodesics.

3 Preliminaries

We consider a space-time (M, g), where M is a four-dimensional connected dif-
ferentiable manifold and g is a Lorentzian and suitably differentiable metric. In
this section, we quote some definitions and useful lemmas from (HE)(1]} for the
discussion of causal structure and space-time singularities.

Definition (HE)

A point p is said 1o be a limit poinl of an infinite sequence of non-spacelike
curves {, if every neighbourfood of p intersects an infinite number of the {,,’s.
A non-spacelike curve { is said to be a limit curve of the sequence [, if there is
a subsequence {j, of the /, such that for every p €1, I/, converges to p.

Proposition ! (HE 6.4.1)
‘The chronology violating set V of Af is the disjoint union of the form I¥(g) N
I“{g),qe M.

Lemma 1 (HE 6.2.1)

Let O be an open set and let I, be an infinite sequence of non-spacelike curves
in O which are [uture-inextendible in 0. If p € O is a limit point of 1,, then
through p there is a non-spacelike curve I which is future-inextendible in O and
which is a limit curve of the I,,.

Proposition 2 (HE 4.5.10)
If p and ¢ are joined by a non-spacelike curve I(v) which is not a null geodesic
they can also be joined by a timelike curve.

Proposition 3 (HE 4.4.5)

If R KO K > 0 everywhere and ifat p = (1), K<K 4 Ko Ryjeds K ) is non-zero,
there will be vp and vz such that ¢ = (o) and r = y(vs) will be conjugate
along 4(v) provided 4(v) can be extended to these values.

Proposition § (HE 4.5.12)
If there is a point r in (g, p) conjugate to ¢ along v(t) then there will be a vari-
ation of 4(t) which will give a timelike curve from q to p.

Proposition § (HE 6.4.6)

If M is null geodesically complete, every inextendible null geodesic curve has a
pair of conjugate points, and chronology condition holds on M, then the strong
causality condition holds on M.

Proposition 6 (HE 6.4.7)
If the strong causality condition holds on a compact set p, there can be no
past-inextendible non-spacelike curve totally or partially past imprisoned in ¢.

Prop.& physically means that the chronology condition is equivalent to the strong
causality condition if energy conditions are satisfied.
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4 The theorem

Generally, one can consider either of the following two cases in which causality
violating sets and their boundaries exist. Oune is that there are closed null
geodesic curves lying on the boundary or closed non-spacelike curves which
pass through at least one point on the boundary. 3 ‘The other is that there is no
closed non-spacelike curve which passes through a point on the boundary. Here
we have used the word closed curve in a specific sense that the curve is closed
and moreover one lap length of the curve does not diverge.

We will show in each case that such a space-time has singularities in what
follows.

Theorem 1

If a space-time (M, g) is null geodesically complete, then the following three
conditions cannot be all satisfied together:

(a) There exists a chronology violating region V which does not coincide with
the whole space-time, i.e. M -V # §,

(b) every inextendible non-spacelike geodesic in (M, g) contains a pair of con-
jugate points,

(c) there exists at least one point p on the boundary of V such that each closed
timelike curve through a point in the V N ¢ can be entirely contained in some
compact set K. (€ is an arbitrary small neighbourhood of p.)

As mentioned above, if the condition (c) is satisfied, roughly speaking, one
can always pick out an infinite sequence such that the one lap length of each
closed timelike curve does not diverge and their shape does not change abruptly
when a point on each closed curve approaches to the boundary of V.

This condition (c) is satisfied, for example, on the causality violating sets
which cause compactly generated Cauchy horizons [7). Causality violating sets of
the Taub-NUT universe also satisfy the condition (c) because whose boundaries
contain closed null geodesics. Therefore we can apply Theorem 1 to the Taub-
NUT universe, which indeed has singularities. .

This condition (c) does not require that the boundary V is compact. Thus
Theorem 1 is essentially different from the Kriele’s theorem 2.

Proof.
‘The chronology violating set V is an open set by Prop 1. If V # @, from the con-
dition (a), we can find a boundary set V in M — V. Let us consider a sequence
of points g, in V N ¢ which converges to p (limp—o gn = p). By the definition
of V there is a closed timelike curve I, through g,. From the condition (o),
there exists a compact set K such that each I, is entirely contained in K N V.
Let I be a limit curve of the sequence l,, which passes through the limit point
p- Choosing a suitable parameter of each I, so that I, is inextendible, the limit
curve ! is also non-spacelike inextendible curve in i n V by Lemma 1.

Let us consider the case that the limit point p € J*(g), g € V without loss
of generality. This limit curve must also be contained in K N V because of the
condition (c). Therefore ! is totally past and future imprisoned in K N V. If

3The case that whole null generators of the boundary are closed or imprisoned is similar
to the situation which Hawking considered [7). When he discussed the chronology violating
sets appearing in a bounded region of general space-time without curvature singularities, he
introduced the notion of the compactly generated Cauchy horizon defined as a Cauchy horizon
such that all the past directed null geodesic generators enter and remain within a compact set.
This is analogous to the existence of closed null curves on the boundary of V. He asserted
that one cannot make such a Cauchy horizon while the weak energy condition is satisfied.
This also supports cur claims.
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some point p' of I which is in the past of p is contained in V, there exists a
closed non-spacelike curve but not null geodesic through p. Because one can
connect the limit point p to some point ¢ in V in the future of the p with some
non-spacelike curve A, one can always find a closed non-spacelike curve but not
a null geodesic one such that p = ¢ = ¢ = p’ = p as depicted in Figure 1.
This curve can be varied to a closed timelike curve phrough p by Prop.2. This
contradicts with the achronality of the boundary V in which p is contained.

Therefore any point of { in the past of p is not contained in V, but in the com-
pact set J*(¢g)N K. If the null geodesic generator ! of J*(q) through p is closed,

this generator has no future and past end points. Then ! has pair conjugate
points from Prop.3 if | is complete. This contradicts with the achronality of
the boundary V. Therefore this null geodesic generator ! is not closed but past
imprisoned in the compact set J*(g)NK. Let p, € {K N(M —V)} be an infinite
sequence which converges to p € and r, € {K N (M — V)} be another infinite
sequence such that r,, € J=(p,) and converges to the point r(# p) on I. Then
one can take an infinite sequence of curves A, such that each of which is an in-
extendible null geodesic through p, and r,. If M is null geodesically complete,
each A, can be extended into the open region {J=(pa) N I~ (K)} because each
A, is entirely contained in M — V where the strong causality condition holds
by using Prop. §. Therefore, the limit curve ) of A,, which is an inextendible
null geodesic curve through p and r from Lemma I, is not imprisoned in the
compact set {I\ NJ¥(q)} C {K N(M —=V)}. However, this contradicts the fact
that X coincides with ! by reparametrization of affine parameter since both of
them are null geodesics through the two points p and r. Otherwise, there exists
a null curve broken at p and r which is lying on V, and it can be deformed to
a timelike curve. This contradicts the achronality of V. (n}

Combining Theorem [ and the Hawking-Penrose theorem [1], we immedi-
ately get the following corollary.

Corollary

If a space-time (M, g) is causally complete, then the following conditions cannot
all hold:

(1) every inextendible non-spacelike geodesic contains a pair of conjugate points,
(2) the chronology condition holds everywhere on (A, g) or even if chronology
condition is violated somewhere, such a region satisfies the condition (c),

(3) there exists a future-(or past-)trapped set S.

We have considered the case that a chronology violating set satisfies the
condition {c). However, the causality violating sets in the Kerr black hole do
not satisly the condition (c). So we cannot apply our Theorem 1 to the Kerr
solution. However, we could still prove the existence of singularities if a given
space-time satisfies the condition below.

Condition ()
Let each chronology violating set be V;. Any V; is causally separated from V; 4,
ie (J*(qQud- (9))NVjzi =D forall g€ V;.

For a space-time (M, g) which satisfies this condition (¢/) but not the con-
dition (c), we can apply Kriele’s theorem 1, taking a set S in his theorem 2
as J*(g)nJ- (). In usual, we expect that the set Jj*+(g) N J- () is compact,
whlch may have the topology 5?. However, there is a case that J*(q) NnJ=(q)
has non-compact topology. For example, in the case that J*(g) N J=(q) has
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topology S? x R, we can regard the quotient space e* (J+(g) N J~(q))/R as the
e*(S) in the Kriele’s theorem 1, because the relevant thing in his theorem is
that et (S) is compact.

We obtain the following theorem.

Theorem 2
A space-time (M, g) which satisfies the conditions (a), (b), and either (c) or (¢')
is null or timelike geodesically incomplete.

As easily verified from the Penrose diagram of the Kerr solution, the con-
dition (¢’) is satisfied for the Kerr solution. This theorem is applicable to the
Kerr solution which indeed has singularities.

proof.
We suppose that (M, g) is null or timelike geadesically complete. We only have
to prove the case that the condition (¢') hold but the condition (c) does not. In
such a space-time (M, g), every null geodesic generator on V is not closed.
Now we consider a non-closed null geodesic on V. This null geodesic belongs
to J*(g) or J=(q) ,as V is I*(g) N1~ (g) (¢ € V). Let this null geodesic belong
to J*(g) without losing generality. If this null geodesic has a past end point,
it must be g. Let us take a point p(# ¢) on this null geodesic and also let it
be on the V. Because ¢ € V, there is a closed timelike curve through ¢. This
means that a timelike curve from ¢ to p exists by Prop.2. Therefore, p belongs
to I*(g). This contradicts p € V. If this null geodesic has no past end point,
it is inextendible in the past. If the boundary of V contains this null geodesic
entirely, from the condition (b), this boundary can be connected by timelike
curves by Prop.{. This is also contradiction to the achronality of V. Hence, let
us consider the case that the boundary of V does not contain the whole segment
of this null geodesic, that is, the null geodesic has an end point on the compact
surface S := J*(g) N J=(q). Extending this null gecdesic beyond the future
end point, we obtain an inextendible null geodesic lying on J+(g) and call it
outgoing. We also obtain an inextendible null geodesic belongs to J={(g) and
call it ingoing. The outgoing null geodesic has a pair of conjugate points from
the condition (b). One of the conjugate points is on the segment lying on the V.
The other is on the segment lying on the J*(g) — V. The ingoing null gecdesic
on the J=(g) also has a pair of conjugate points in the same way as the outgoing
case. Thus, S plays the same role as the trapped surface in the Kriele’s theorem
1. From the condition (¢’), the condition (3) of Kriele’s theorem 1 is satisfied
in the cut locuses of S, intersections of outgoing and ingoing null geodesics,
because the condition (c) is not satisfied (if the condition (c) is satisfied, there
exists an almost closed causal curve.). Therefore we can show the existence of
singularities from Kriele’s theorem 1. o

5 Conclusions and discussion

We have shown that the boundaries of causality preserving and violating regions
cause singularities in a physical space-time.

We would like Lo emphasize that Theorem I supplements the Hawking-
Penrose theorem in the sense that the global causality condition is relaxed to
some degree and instead, the condition (c) or the condition (¢’) is imposed on
chronology violating sets. Roughly speaking, it is possible for observers to talk
about the existence of singularities assuming that our space-time has a causality
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preserving region, which conforms to our experience.

Whether the quasi-global condition (¢/) is removable or not is still an open
question.

As well as the Hawking-Penrose theorem, our theorem cannot predict where
singularities exist and how strong they are, which are left for future investiga-
tions.
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Figure 1: In the case that the past points of the limit curve ! go into the V, we
can find a closed non-spacelike non-geodesic curve likeap ¢ —¢—p' = p,
which is the union of A and a segment p' — p.

(A) i : removed point (B)

: closed timelike
curve

Figure 2: Examples of the space-time in which the limit curve of infinite sequence
of closed timelike curves do not close.
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Construction of gravitional equation system
using a non-coordinate base.

National Space Development Agency of fapan,
Office of Research and Development, Noriki [wanaga™

Abstract
By examining the Jacobi identity using a non-coordinate base, we derive a support equation which
replaces Bianchi identities. [t makes possible to show that gravitational field has an effect similar to Faraday's
electromagnetic inducting phenomena. And, it also makes possible to constitute a Lagrangian density and a
source equation according to the line of gauge theoretical discussion. From this fact, it is understood that
gravitational equation system of general relativity originally has a quasi-gauge theoretical structure.

1. Introduction

Generally the system of equation of the gauge fields, e.g. electromagnetic field, Yan-Mills field and
gravitational field, are composed of source equation and support equation. Reviewing the derivation processes
and the physical contents of the two kinds of field equations themselves, we make clear the problems on the
formulation of the gravitional equation system.

To begin with, we focus on the support equations of each field. They are all derived by the same
procedure viewing from the framework of gauge theory. That is, we have only to substitute commutation
relation of the covariant differentiation into the Jacobi identity (1]. The support equations thus obtained have
the same forms except for the difference in the differential order of the ficld strengths.

Next, we focus on the source equations of each field. They are derived by applying the variational
principle to the action integral used the quadratic Lagrangian density on the field strengths {2]. Neither the
source equation of the electromagnetic field nor that of the Yan-Mills field are the exceptions. However, the
source equation of the general relativistic gravitational field, i.e. Einstein equation. is not subject to this rule.
The reason why we have said so is as follows: [n general relativity Riemann curvature tensor is regarded as
the intensity of the gravitational field. The Lagrangian density which leads to Einstein equation is called scalar
curvature density and is the first quantity on the curvature tensor. [t follows from this reason that the system
of equation of the general relativistic gravitational field is composed of gauge theoretical support equation and
non-gauge theoretical source equation. This shows that there exists the lack of unity between two kinds of field
equations in their theoretical background.

To clear this lack of unity, we may choose a quadratic Lagrangian density on the curvature tensor [3|.
If we use an action integral with such a Lagrangian density, we can derive a gauge theoretical source equation
through the variation principle. The source equation thus obtained becomes the differential equation of the
fourth order with respect to field variable, i.e. metric tensor, while Einstein equation is of the second order. In
addition to the difference of tne order, the solutions of the former source equation are considerably different
from those of the latter in property. While Einstein equation explains many experimental facts, the gauge
theoretical source equation of the fourth order doesn't. Therefore. the gauge theoretical source equation must
not be considered as physically valid. This shows that the conventional way of constructing the gravitational
equation system unified from the gauge theoretical point of view. That is, it is not a right direction to regard
the curvature tensor as the field strength, to constitute the quadratic Lagrangian density on it and to deduce
the gauge theoretical source equation of the gravitional field instead of Einstein equation. This conclusion is

justified by a difficulty in the quantization of the R2 theory {4]. The difficulty is that, in the theory using the
quadratic Lagrangian density on the curvature tensor, the ghost of Planck mass appears and the unitarity
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breaks perturbationally.

In addition to the problem on the formulation, the system of equation of the general relativistic
gravitational field has another difficulty. Another difficulty is the hardness to grasp of the physical content of
the equations themselves.

It roughly says that the field equations give two kinds of information. One is information about the
behaviour of the field in giving the distribution of the conservative quantities ( charge and mass, etc. ) as a
source. Another is information read directly from the forms of the field equations. This information is proper
to the fields themselves, not relevant for the way of the distribution of the conservative quantity. The contents
are, for example, the way of the interaction with other objects and/or the dynamical behaviour of the fields
themselves. The system of equation of the electromagnetic field has a sufficient form to give us both
information. However, though the system of equation of the general relativistic gravitational field can tell us the
first information, it can not tell us the second. For example, Faraday's electromagnetic inducting phenomena
can be read directly from Maxwell’s magnetic equation. On the other hand. similar inducting phenomena can
not be read directly from the gravitational support equation, i.e. Bianchi identities.

Here again, we mention clearly the problems on the conventional formulation on the gravitational
equation system :

(1) General relativistic source equation, i.e. Einstein equation, is not derived from the Lagrangian density
constructed along the gauge theory. The source equation, which is made from the quadratic Lagrangian density
on the field strength in order to overcome above mentioned defect, does not have the physical validity.

(2) Neither the general relativistic equation system nor the equation system constituted within the framework
of the gauge theory can foretells the physical property of the gravitational field directly from their forms.

To begin with, we consider the method of solving the problem (1). We know that the graviational field
is invariant under translation and local Lorentz transformation. Since tetrad vector is covariant under both
transformations, we regard it as a basic variable of the field [5]. And. we shall maintain the gauge theoretical
principle that the Lagrangian density has quadratic part of the field strength and the part gives the source
equations. Then the freedom left us is the way of selecting the field strength and divergence term which should
be added to the Lagrangian density. The way of selecting the field strength is limited to the quantity of the first
order lower than the curvature tensor such as non-holonomic object and Ricei’s coefficient. [t is because the
appropriate source equation is of second order from the fact that though Einstein equation of the second order
has physical validity, the fourth order differential equation mentioned above doesn’t have it. Then we make a
quadratic expression using such a quantity selected as the field strength and add some divergence terms to the
expression in order to recover the broken invariance. Further if we request to an action integral using such a
Lagrangian density on the invariance, we will obtain the Lagrangian density that leads to the source equation
with physical validity. Therefore, the key point is a possibility to discuss the innevitable derivation of the field
strength desired.

Next, we consider the method of solving the problem (2). It is not reasonable that while the Maxwell's
magnetic equation can tell us the behaviour of the electromagnetic field. only the system of equation of the
gravitational field equation systen can not sufficiently do. If we aquire the appropriate forms of every field
equation system, we should be able to read the dynamical behaviour of every field directly from it. Therefore,
we should rewrite the conventional form of the gravitational field equation system into a desired form. The
reasons for thinking above is as follows ; First, the electromagnetic field is considered as one physical aspect
belonged to space-time itself which appears when a consarvative quaatity of charge is put in space-time.
Similarily the gravitational field is considered as another physical aspect belonged to space-time itself which
appears when a conservative quantity of energy is put in space-time. [t is possible, therefore, to regard each
field as an embodiment of the different physical properties belonged to one and the only space-time
respevtively. From this, we intuitively imagine that the field equation systems should be able to formulated in
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such forms as the common property in both fields remains. To put it concretely, if we adopt an adequate
quantities of the gravitational field and reconstitute the field equation system in a form which is similar to that
of the electromagnetic equation system, then directly from it we should be able to read the dynamical behaviour
of the gravitational field. This expectation is backed up from the viewpoint of the quantum-theorety on the
gauge field. [n a series of paper [6] on the covariant canonical quantization of the gravitational field, Nakanishi
shows that the gravitational field equation system has a mathematical structure analogous not to that of the
Yan-Mills field but to that of the electromagnetic field. This fact can be considered to suggest that the
possibility of constituting the gravitational field equation system in the same way of constituting the
electromagnetic one before the quantization.

The guiding principles of solving the problem (1) and (2) are as follows: First, we extract from the
theoretical structure the quantity which is regarded as the field strength and only first order lower than the
curvature tensor. Second, we constitute a Lagrangian density which has quadratic part of this quantity as well
as divergence part and is invariant under the translation and the local Lorentz transformation. Third, we
complete the formulation by deriving the source equation with a form similar to that of the electromagnetic
equation system.

To begin with, we priorly look for the quantity which is considered as the field strength and has a
Faraday tensor-like form. [t will be good to discuss using a base vector in which the desired geometric
quantities covariant under two transformations, e.g. tetrad vector, appear naturally. (The tetrad vector is a
basic quantity of the field). Such a base is called non-coordinate base and reduces to a usunal coordinate base
in the limit [7|. Then in the starting point in deriving the field equation system, we shall introduce the non-
coordinate base. Namely, we formulate the gravitational field equation system using the non-coordinate base
from the begining.

{n chapter 2, the derivation process of the Bianchi identities as a support equation is analized. Since
the Bianchi identities are originated from the Jacobi identity, we examine the latter identity using the non-
coordinate base. As a result, a new support equation is expected to deduce whose form is similar to that of
Maxwell's magnetic equation. By rewriting it in the three-dimensional vector form, it becomes possible to
direcly foretell the inducting behavior of the gravitational field. And, that expression tells us that the non-
holonomic object plays an important role as a quantity which reflects some property of the gravitationa! field.

In chapter 3, we reset the way of deciding the field strength in reference to the result of chapter 2 and
adopt the non-holonomic object as the field strength, and then start the formulation. By applying invariant
variational theory to a Lagrangian density constituted by the non-holonomic object, we decide the form of the
Lagrangian density with the invariance under translation and local Lorentz transformation. Further we derive
the source equation from the variational principle and make a comparison with Einstein equation. As a result,
it is found that our formulation with appropriate parameters agrees with that of the general relativity. That is
to say. our formulation is found to be physically valid.

2-1. Derivation of support equation

Viewing the derivation process of Bianchi identities from the gauge theoretical point of view. we can
recognize that they are derived from the Jacobi identity

O (D,(D, DIy +[D,[D,D]y +(D,(D,DIiw -

Here the ¥ is supposed to be any vector field and the D be its covariant differentiation in convenience. The
First and second Bianchi identities described with the component of a coordinate base,

Rowr” =0 (2-2)
ﬁ -3
DllRﬂlﬂ Y 2-3),

are deduced from the Jacobi identity shown with the component of the coordinate base
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Ow [DA-[DF »Dv]]#’a +[Dp’[Dv'DA]]¢a + [DV'[DA'DMIhpa

where
Duwa = (6;0» + {";})wp
The first important point is that (2-1) holds on a special base called local Lorentz base. This base
constitutes some local Lorentz systems with Minkowski metric tensor through the relation : e; . €; =7;;, and
that the base is in a cathegory of non-coordinate basis.
Even more important is that (2-1) holds on any non-coordinate basis ¢;= (bjm Oqp) (i.j.m=0123)as

well as on the local Lorentz basis. Therefore, we examine the derivation process of the Bianchi identities from
the Jacobi identity on a non-coordinate base.

Before turning to a closer examination, we look over the properties of the non-coordinate basis briefly.
Since a non-coordinate base reduces to a coordinate base in the limit, the former has more menerality than tha
latter. And the former gives the geometrical objects called metric tensor and non-holonomic object :

v
g =¢-e, g =e-e
t i
qu = a(#e"l
The non-coordinate base under consideration is assumed to the following orthogormal relation in convenience.
I )
e'e'r=d], e epady

Let us now return to the subject. Using the non-coordinate base, (2-1) gives
0a(D,(D,D,y" + (D.[D, D,Iy" +(D,.[D,.D Iy
where
DJP‘ = (6,3, + T, ' '
[f we substitute Ricci's relation ‘
(D.D* =Ry’
into above equation, we obtain

08 Ry D" + DuRyp' "

(2-4).
Usually we make use of independency of y™and me.ph here and extract from (2-4) the Bianchi
identities
m a 0
RWI ) (2-5)
Dll RI m = 0 (2-6)

written with the component of the non-coordinate base. However, we do not take such a usual procedure but
proceed to calculate {2-4). First, we substitute

Ry =24,T " +21,,'T,} +2Q,°T. !

into (2-4) and make an expression with respect to a connection coefficient rjik- Secondly, substituting
F;h = {,t} ".Q;h +g’gu Qa’ "'gagug,'t'

into the result derived above, we obtain

O= “2(‘3[1 A,]N - 2Q[M“'Qm")au¢ *

From above expression, we obtain
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Gy’ — 29 Q' = 0

or equivalently,

0!@ Qvnl‘ a0 (2-7).

These are the identities deduced from the Jacobi ideutity. They also become a necessary and sufficient
condition for (2-8) and (2-9) mathematically. Therefore, they can play a role of support equation instead of the
Bianchi tdentities.

It is very difficult to know the behaviour of the gravitational field directly from the Bianchi identity.
However, since the form of the support equation {2-7) is similar to that of Maxwell's magnetic equation
O, F =0
(A% pv) (2-8)

which is the support equation of the electromagnetic field, it is easy to investigate the physical content of the
gravitational field. [f we substitute the definition of the non-holonomic object

@[T, Q] L[O -a
By anh Qaﬂh 2¢? |a'® s B o 29)
into (2-7) and act a quantity
1
Eraﬂ & —0
J}T rap
Soado
Yy =del(y )  Yop = 8as __ng;g,
we obtain
divb™ = 0
(2-10)
J_ 2 (J_ b™) + rora™ = 0
cot @-11),
Here
b(h) (b(’l)ﬂ) ( s@! b(")p' b(h)ﬁ)

—,J_ uﬂy

. 1 1 h)
rota®™ = (rot"a™) = ( "’"(a a®s - 3,a™a ) n( 1508 )
> 8 By e

rota® = (rot’ ‘“)n(%e“’”(aaa""a -a,a""c) (7_—6 590" )

Since both (2-10) and (2-11) are have considerably similar to the three-dimensional vector equations of (2-8)
divB =0
L) +rotE =0
cat
in their forms, the same physical content between the gravitational field and the electromagnetic field is
expected.
The bt} field in (2-10) corresponds to magnetic flux density field B. (2-10) means that there exists no
material source which gives the divergence of the b® field. However, as is seen from the source equation (3-
20), material energy-momentum which corresponds to the flow state of real material source gives b} as well
as a®). From this fact, (2-10) shows that gravitional monopole does not exist in the sense that the “static™
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state of real material source which gives the b® field by itself does not exist .

(2-11) means that the spatial change of the al®) field is induced by the time variation of the b® field.
This makes us expect that in the matter system moving in the gravitational field there appears the gravitational

effect due to the b® and a® fields. This is similar kind of phenomena to Faraday's electromagnetic induction
appered in the matter system moving in electromagnetic field .

(2-7) or (2-10) and (2-11) give us the direct physical meanings above mentioned thanks to the style
analogous to that of Maxwell's magnetic equation. In addition to it, however, they indirectly indicate the
possibility to exist lecal energy-momentum of the gravitational field. We can derive the Maxwell's magnetic
equation as a necessary condition to hold the energy conservation law when the energy distribution of the
magnetic field changes in a space region under consideration and some mount of energy outgoes(8]. From this
fact, (2-7) may be considered to become the necessary condition to hold the conservation law when we examine
the conservation law under the premise of the local energy-momentum tensor of the gravitational field®=being
defined. That is to say. (2-7) indicates that the flow of energy requested by the conservation law exists when
the energy of the gravitational field changes with time. To put it the other way round, the existence of (2-7)
shows the possibility of giving the definition of the local energy-momentum tensor which satisfies the energy-
momentum conservation law of the gravitational field.

[f there supposed to exist a resemblance of physical meanings between (2-7) and (2-8), there should
exist a resemblance of physical meanings between the Qwi (or ald and b ) field in (2-7) and the F;:v {or

electric field E and magnetic flux density field B ) field in (2-8). In order to confirm this. we compare the
equation of motion of a charged particle moving in the electromagnetic field

d—E s e(E-v)
dt (2:12)
d
®. e(E + I B)
ar ¢ (2-13)
with that of a particle moving in the gravitational field
dE o
—a-ma v
dt (2-14)
o _ my(-a*® - Lxb®)+ mo(—l xa+a,)
dt c c 2-15).
where
ay 1 v
a=(a )=(Ee"”an,) 2, =(a,4) = (@apn )

The particles above introduced have 4-momentum P;=({-E/c. p) and 4-velosity Ui=(c, v). We can derive (2-14)

and (2-15) by three steps: The first step is to substitute (2-9) into the following expression

dP, ‘
-"i-; =2Q‘,U_MPAU'

This is an equation of motion described on a Lorentz base stated before. The second step is to carry out a weak
approximation such as

l"%ls 1

eundy+hy where lh',.l sl

53 N .. . . .
As we see in chapter 3, (2:7) becomes a necessary condition to derive the Lagrangian density and the source
equation when we reconstitute the general relativity according to the step of gauge theory.
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The third step is to obtain the following 3-D vector version using a symmetrization:
dE )
— gy -moa(O)avc
dt

dp, v v
-5 —) d My (=, g+ A, 1 —
dr 0 (=17 + )

{2-14) and (2-15) are arised from these equations.

The E and v/c XB terms in (2-12) and (2-13) indicata electric force and Lorentz force respactively
acting on the charged particle which is moving in the electromagnetic field. On the other hand, the a{®} and

v/e X b0} terms indicate two kinds of meanings respectively. One is Newtonian force and gravitional magnetic
force { i.e. Lense-Thiring effect ) when the particle is moving in the gravitational field. Another is centrifugal

force and Corioli's force when the particle exists in a noninertial frame. The a(amvﬁlc term indicates the
shearing and expanding effacts on the particle. This can be understood if 3(ap) is resolved into a traceless part
and a trace part '

n 1
Qapy = Qap ¥ gagd

&aa =0 a= a°a
The gravitational effect due to the a(a p) term can not be extracted explicitly when the equation of motion is

handlied with metric tensor as a field variable.

Now we find that Qwo { 2(® and b®)) corresponds to F( Eand B),but @, al®) and b)) does

not correspond to any quantity with respect to the electromagnetic field. And that, while the relations
divb‘°’ =0

J_ cor

correspond to Maxwell's magnetic equation {2-8), the relatoins
divb“’ =0

J_cat Jrb@)+ rota* = 0

don't correspond to any relations about electromagnetic field. The Q¢ {alc) and bic)) show that the dynamic

(J— b®) +rota'” =0

effect of the gravitational field is more various than that of the electromagnetic field. However, it is interesting

that the behaviour of Q¢ is regulated by the same equation as that of QWO {a{0) and b{0)) in their forms.

Finally we mention the usability of the newly obtained support equation. We have discussed that the
non-holonomic object describes the electromagnetic-like effect of the gravitational field. However, the discussion
on the electromagnetic-like effect of the other quantities has been done in the past. For example, the content of
a paper |9] is recollected which is written by Christian and Sachs et al. The following is pointed out there.
(1)If there is the Wyle curvature tensor in a cosmological model, the shadow of the light source which
globularly spreads should traject elliptically not circularlly.

(2) There exists an observational evidence to support this in our space.
And then, electric field and magnetic field part of the Wyle curvature tensor are introduced as the quantity
which explains this strain effect.
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It is physically interesting to investigate the possibility to describe the strain effect without the
electric field and magnetic field part of the Wyle curvature tensor by using the quantity Qwo appeared in

expression

9,8

s

OEO

3. Derivation of source equation

As we mentioned in chapter 1, Einstein equation
uv pv
G* = kT (3-1)
has a physical validity but doesn’t have a status as a source equation followed to the gauge theory, if we regard

the curvature tensor Rm" as a field strength through the conventional support equation. i.e. Bianchi
identities. It is because that the Einstein equation is derived from Scalar curvature density
R= 63"1/'_88“&-«:3
which is the linear Lagrangian density on the curvatur tensor.
On the other hand, the source equation derived from the quadratic Lagrangian density on the curvatur

tensor such as

L={-g(aR + bR™R,, + cR" ‘""RM‘, TR )

has a status as a source equation which is constituted according to the gauge theory. However, it doesn't have
physical validity oppsite to the Einstein equation. The aim of this chapter is thus to clear this contradiction.
Namely, we derive a source equation which is constructed according to the step of gauge theory and is also
physically valid.

As we showed in chapter 2, we derived the support equation (2-13) which replaces the Bianchi
identities as a result of consideration on the Jacobi identity using the non-coordinate base. This equation

represents us a viewpoint to regard the tetrad vector eil and non-holonomic object ka as a basic variable

and a field strength respectively. Thus we change the conditions that (1) the field strength satisfies the support
equation derived from the Jacobi identity and (2) it is defined by commutation relation between the covariant
differential operators and (3) it is covariant under the general coordinate transformations, to those that (1) the
field strength satisfies the support equation derived from the Jacobi identity and (2)" it is defined by
commutation relation between the "non-holonomic” differential operators and (3)’ it is invariant under the
“holonomic” coordinate transformations. After that, we formulate the Lgrangian density and the source

equation on the standpoint that the field strength is the non-holonomic object quk .

To begin with, we constitute a Lagrangian density such as

Ly =L +d,d"
L = E(aQ%Q, + BQ*Q, +1Q'Q)

3-2)

d" = Ee’ (eQ'1 +p8"' Q)

according to the gauge theoretical procedure in the sense mentioned in chapter 1. Here a, B, v, €, p are constant
parameters. (3-2) includes quadratic part Lg and divergence part of the field strength, i.e. non-holonomic

object ka . Since we adopt the non-holonomic object as the field strength, the L term itself is not invariant

under the local Lorentz transformation. The divergence part should be added to L in order to recover this
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destroyed invariance and constitute a desired Lagrangian density Lg. Why is then the added term limited to

the form of divergence? It is because we intend to recover the invariance according to the gauge theoretical rule
that the source equation should be derived from the quadratic part of the Lagrangian density.

Next, we request to the Lagrangian density (3-2) the invariance under the parity transformation of the
gravitational field. Then (3-2) may be replaced by
Lg=Lg+4d,d"

d¥ = eEQ"

Furthermore, we deduce the condition between constant parameter a, B, y, ¢ in order to make (3-3) a
more suitable Lagrangian density. For this purpose. we use groups of identities which are derived from the
invariance under translation and local Lorentz transformation of the gravitational field. The groups of
identities are obtained from the request the invariance of action integral

S= fLRd‘.r

(3-3)

under the Poincare gauge transformation{10]®
ot = x* - X" agf(x)

dets = —efacty +w“"i:§-($'m)t:e';.

As a result of calculation, we obtain the following identities:

¢: D °B’=0

{3-4)
™: °B, =0 | 35)
£: 4,B%a0 (3-6)
e'w: BAH+9,C*L a0 3
o”: 3P'mol 3:8)
0™ PP +9,Q% " =0 39)

where

B =Ll - 5

(3-10}

1 -
D, = a,,-:;s'mr,,

B%=°B*+°t." + 4,26 d")

u a* d*
a a,L“ e‘v+a(i et + 4 ¢ 9 t
de an de s

A
Cc*

s eM(x) and @™{x} = - wWM(x) are the infinitesimal functions related to translation and rotation respectively.
The quantity (S! ;)% is defined by
1 I 4 } k
(S IM) 1 ==§20 [mTIn"

—-198=-



dL | gd* .1 4 o« d9d" ;, 1 4 .
oo S A ai= (8" ) + —— i =(5 —ari—=(S )t
PV aek;..pe“2(s )z+6e,)'euz( )l+aetkvek 2( )
. ad* .1
QP‘ m = o"ekx.v etll‘i(slm)‘l

(3-4). (3-6) and (3-7) are the identities originated from the translational invariance of the gravitational field.
while (3-5), (3-8) and (3-9) are originated from the local Lorentz invariance. If we use field equation
GB $oTH
v v (3:11),

we obtain conservation laws of energy-momentum and angular-momentum of matter from (3-4) (or (3-6)) and (3-
5) (or (3-8)) respectively.

In order to fix the parameters a~¢, we use the relation

-2a-B)Q w1+ (B - ;l Q. (v + 8)6i[nQn) =0

(3-12)
calculated from (3-9), and the relation
E{~QQa- BX3, +2Q,)Q= - (2B + Y)9.82,} =0 (313
calculated from (3-5) (or (3-8)). Since (3-12) gives
2a+f+3y +2e=0
and (3-13) gives
2a-8=0 2B+y =0
we can fix the following ratio between the parameters:
=2 ’) o2 e £~ 3
B =2a Y = -4a £ =+da (3-14)
From (3-3) and (3-14), we obtain a poincare-gauge invariant Lagrangian density
[ L i ]
L; = aE(Q Q,A +2Q Q,.A -4Q'Q) +4a¢9”(EQ ) (3-15).

If we fix the parameter a, we must compare the source equation to be derived below with Newtonian
approximated equation or experimental result.

Substituting (3-15) into (3-10) and (3-11), we obtain a source equation
Mooy YH M AT LA
3”H, +_QF, H, e L=T, (3-16)
from variational principle. This is the same source equation as the Riemannian limit of that which has been
derived in the conventional Poincare-gauge theory|3]. (3-16) is gained from the variational equation

61:“ alil-av 6[“ =0
o'y Je'u ad.e

with tetrad vector as a basic variable. On the other hand, if we use the variational equation
oL JL aL
i p—(db+2Qb) F-O
de e, dd,e,
with the reciprocal vector as a basic variable, we obtain

O H" + H'Q,™ +2H™(Q,) + Q8/)-6"L=T"

(3-17)
where

H =2a(-Q'+2QY1 - 45'Q/",)

It is natural that (3-16) and (3-17) are equivalent.

(3-18).

Because of the tetrad being the basic variable, (3-17) can be resolved into antisymmetrized equation
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0=T
) (3-19)

and symmetrized equation

4a{(9, +2Q)Q () — N6, + )R + 3,2,

- %Q"',Qm +2Q,_ Q0% -y L=T,,
(3-20).
It is easy to understand from (3-5) that the left handside of (3-19) vanish. This means that angular-
momentum of matter doesn't reflect the geometry of space-time.
Both (3-20) and Einstein equation are the differential equations with the second order. Therefore, as a
first step to examine the physical validity of {3-20), it is important to compare it with Einstein equation. Tetrad
formed Einstein equation is

Gw = =24 kaW! - 2a(iQi)- 491“9,-(;:) + Quigu; = 49‘(? )Qk
+1,(28,Q" +2Q"'Q, + }Q”“Q,,,, + Q,, Q™) =«T,,.,,

Therefore, if we adopt

o 1 1 2
= ——— =3 - Y-—
2% K K

{3-21),

both equations agree with in their forms and have the same physical contents. This shows that the souce
equation (3-20) with (3-21) is constructed according to the gauge theoretical procedure in the sense mentioned
in Chapter 1, and has physical validity. To put it the other way round. this means that the general relativistic
equation system itself, i.e. the support equation (2-13) plus Einstein equation (3-1), is originally constructed
according to the quasi-gauge syructure in the same sense,

4. Concluding remarks

As a result of examining the Jacobi identity by introducing the non-coordinate base, we obtained the
support equation {2-13) which replaced the Bianchi identities. With respect to (2-13), we investigated two
kinds of things stated below.

First, we intended to examine the gravitational effect which were deduced from (2-13). For this
purpose, we gave the 3-D vector forms of (2-13) and equation of motion of a particle to compare with the
corresponding electromagnetic equations. [t followed from this comparison that as there existed an inducting
effect in the electromagnetic field, so did in the gravitational field. This is important in that we found a
gravitational behaviour from the support equation itself without examining the solution of the source equation.

Secondly, we took the standpoint to regard the tetrad vector and the non-holonomic object as a basic
variable and a field strength respectively on the grounds of the support equation (2-13) and we formulated the
Laglangian density and the source equation according to the step of gauge theory. To put it concretely, after
deriving the invariant Lgrangian density under Parity, translational and local Lorentz transformations of
space-time from the candidates which were constructed by quadratic and divergence part of the non-holonomic
object, we obtained the source equation {3-20) from variational principle. Since symmetrical part of this
equation agrees with Einstein equation, our gravitational equation system, i.e. the support equation (2-13) plus
the source equation (3-20), has a physical validity and a gauge thoretical structure in the sence mentioned in
this paper. This means that the field equation system of general relativity also has a quasi-gauge theoretical
structure in the same sence. ‘
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Dynamical torsion and torsion potential

HoNG-JUN XIE and TAKESHI SHIRAFUII

Physics Department, Saitama University

Urawa, Saitama 338, Japan

Abstract

We find a generalized tetrad which plays the role of a potential for
torsion and makes torsion dynamic. Starting from the Einstein-Cartan
action with torsion, we get two field equations, Einstein equation and
torsion field equation by using metric tensor and torsion potential as
independent variables; in the former equation torsion plays the role of
a matter field, and the latter shows that torsion is a field which can
propagate in vacuum. We also discuss properties of local transformations
of torsion potential and give a simple example in which torsion potential
is described by a scalar field.

1. Introduction

The gauge theory of gravitational field was first proposed by Utiyama [1] and
later developed by Kibble [2] and Sciama {3]. The Einstein-Cartan-Sciama-Kibble
(ECSK) theory of gravity uses Einstein-Cartan Lagrangian /=g R made of the spin
connection, but it does not require torsion to vanish. Rather, the torsion is treated
as an independent variable along with the metric. The torsion is not dynamic in
the ECSK theory, however, being algebraically determined by the local spin density:
Namely, the torsion is always a pointwise function of the source field, and it is usually
called frozen torsion.

Two approaches have been proposed to construct the theory of dynamical torsion.
One is the quadratic Lagrangian approach to Poincaré gauge field theory initiated
by Hayashi [4] in 1968. Further Hayashi and Shirafuji [5,6], and Hehl and Von
der Heyde (7] pursued this approach. In this theory torsion satisfies second-order
differential equations and can propagate in vacuum. The other is the theory of
new general relativity studied from geometrical and observational point of view by
Hayashi and Shirafuji [8]. In this theory the concept called absolute palallelism plays
the fundemental role: It requires vanishing local connection and hence vanishing
curvature, and attributes gravity to torsion instead of to curvature.
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In this paper we propose a new approach to dynamical torsion. Introducing the
sixteen variables that we call “torsion potential”, we require symmetric condition
for the local connection. Then we find that torsion can be expressed in terms of
first-order derivatives of the torsion potential. The curvature is not vanishing in the
present theory in contrast with new general relativity based on absolute palallelism.
Starting from the Einstein-Cartan action with torsion, but regarding metric tensor
and the torsion potential as independent variables, we obtain the Einstein equation
and the torsion field equation.

In Sec.2 we show how to introduce torsion potential and how to represent torsion
and connection by it. In Sec.3 we give field equations for metric tensor and torsion
potential. In Sec.4 we discuss properties of local transformations of torsion potential,
which differ from local Lorentz transformations. In the final section we give a simple
example in which torsion potential is constructed from a scalar field.

2. Torsion potential

We consider connection I'*,, with torsion
" 3
Fupa = F‘ po '+' Smpa ) (2.1)

Qo
where I'*,, is torsionless connection coefficients and S*,, is a contorsion tensor
defined by torsion T'*,, (=I'*,,—I'*,,) in the form

" |
Spupa 1= 5 (Tupo + Toop + Topy) - (2.2)

When one takes the variation of the Einstein-Cartan action with torsion, one usually
regards metric tensor g,, and contorsion S**, as independent variables. This is
unnatural, however, because these two tensors are different in nature from cach
other: In fact, the metric tensor plays the role of a potential, while contorsion is a
quantity like a force.

In order to find the potential of torsion, let us define a linear transformation

E./\ = t”A 5;4 ’ HA = tAM dlf“ L] (2'3)
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where @, is the natural basis and €, an arbitrary one with 64 being the 1-form dual
to €, (A = 0 ~ 3). Here t4, and its inverse t*, are some arbitrary functions of
coordinates satisfying the condition that the determinant ¢ = det(¢",) is non zero.
Obviously they satisfy

thath, = 8, 1" = 63. (2.4)
On this new basis the metric tensor becomes
gaB = EA " EB = t"A t"B G - (2'5)

Here we do not assume that g,p coincides with the Minkowski metric n45. Accord-
ingly, the field {1, is not a tetrad in the ordinary sense.

Now we define connection coefficients with respect to the bases J, and €, as
follows:
va,=r+3a,, Vey = 045¢, (2.6)

with the connection 1-forms I'*, and 045 being

M, = oadet = 1, 07, .7)

9’13 = 0"50 o¢ = 015, da? . (2.8)

respectively. The two connection coeflicients are related to each other by
0pc = i",, t'glic I, —t'ptichi?,. (2.9)

In conformity with this, the total covariant derivative of ¢4, with respect to indices
A and g is vanishing:

Dath, = Ohtt, = T 510, + 052 tB, =0,
{ A ) Al + 07 (2.10)

Dytrg = Dtlg+ Tt — 045 144 = 0.

The commutator of base vectors €, and the exterior derivative of 1-form 04 are
respectively given by

— A - ! .
[CB ,ecl=f‘gccA, do? = —EfABCOB/\OC, (2.11)
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where f45¢, which are called Ricci rotation coefficients in the uaual tetrad case, are
f'lgc = (t“Btuc =t tug)a, tA“. (212)

On the basis €, the torsion 2-form T4 and the curvature 2-form 24 g are defined by

T.ol = do? + 0’13/\ oB —_ _% TABC 98/\ 00 , (213)

1
R"B : d0"3 + 9"(; N 003 =3 R.ABCD 0% A OD, (2.14)

where the torsion tensor and the curvature tensor are respectively given by

Thpe = 4, t'g ¢ "3 = 0 pc — 0ca + f5e, (2.15)

Rigep = t", g t°ctp R*po . (2.16)

We note that g4p5 # n4p by assumption, therefore 8,5c # —0g4¢, indicating that
045c is not a spin connection. In order to compare with the torsionless case and for

convenience of later use, let us separate curvature tensor R*,,, into torsionless part
and torsion part

0 ~
R"vpa = R"upa + R"vpa ' (2.1 t)
o o~
where R*,,, is the Riemannian curvature tensor, and R*,,, is the torsion part of
curvature tensor which is defined by

R o 1= V,5% 0 = V,5% 0, + 53550 — 510500, (2.18)

-] e
Here V, denotes the covariant derivative defined by using I"*,,,.

Until now we have not yet imposed any restriction on ¢4, and 84 g¢. From now
on, however, we suppose that the following two conditions are satisfied:

(i) The metric condition
'D)\g;w =0, (219)

(ii) and the symmetric condition
0'gc =0%cp or equivalently 04gA 0% =0. (2.20)

)
The condition (i) implies that I'*,, is nothing but the Christoffel symbol. The
condition (ii} is a generalization of the absolute palallelism: In fact, in the latter

—205—



4. Local transformation properties of the torsion potential

In this section we consider properties of the torsion potential under local trans-
formations other than coordinate transformations. Let L# g be some transformation
functions,

i1, = LApt8,, frg=L1g¢t4,. (4.1)

The 1-form 64 and connection 8% g are then transformed like
04 = LAg o8, (4.2)
é"g = LAc L™ DBOCD—FLAch-I Cg. (4.3)

Here 645 (= 6*5c6) is a new connection, which we require to satisfy the condition
(ii); namely,

04 e =0%cp or equivalently 6 g A 08 =0. (4.4)
Then we see that transformation functions L4 g must satisfy the constraint
dBL'lc = chAB or LBcdDL_l AB = LBDch_l AB (4.5)

with dg = t#5 8,. Under the transformation (4.1) satisfying (4.5), the torsion and
curvature 2-forms transform as follows:

T4 = LA TE, (4.6)

Rig =L*:L'PgRCp. (4.7)

However, the torsion equation (3.8) is not invariant under local transformations with
the constraint (4.5). The invariance of (3.8) requires a new condition

LAngL_l Mc = LADdBL_l Mc . (4.8)

This constraint is stronger than (4.5). To see this, we consider an infinitesimal
transformation ‘

LAB = 53 + EAB (4.9)

with |e4 5| <« 1. The metric tensor gyp transforms as

JAB = gAB —€AB —€Ba - (4.10)
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Here we lower the index of e using g4p. If the transformation (4.9) satisfies the
constraint (4.8), we have that
dpeic =0, (4.11)

namely, e*p must be some constant parameters. Therefore we see that transfor-
mations {L4g} make a globe general linear group GL(4, R) which keep the field
equation (3.8) being invariant. This situation is similar to the theory of new general
relativity in which only the globe Lorentz transformations have been allowed.

5. Scalar field as the torsion potential

Now we consider as a simple example the torsion potential made of a scalar field.
Namely, let us assume that the torsion potential takes the form

t,‘u = 5:}9’; 4= 6?199-1 (51)

with ¢ being a nonvanishing scalar field. Due to Kronecker's 87 in (5.1), the index A
is assumed to undergo the transformation LAp = §26% (82" /02") under coordinate
transformations, and accordingly we need not distinguish indices A from pu. The
metric tensor is given by

9aB =97 638594, (5.2)
which can be identified with a conformal rescaling. The torsion and contorsion
tensors are expressed by

:ruw\ = g,_w(p—la,\(p - gu)&o_lau‘P, (53)
s = (98 - g8%) o™ Oy (5.4)
If we substitute S** of (5.4) to the full equation (3.5), we will encounter a difficulty,
because 16 equations cannot be satisfied by only one unknow function ¢. Thus, we

will choose a different way: Namely, we substitute $**) to the Lagrangian (3.1).
Then we have

Lo = V=g (R - 69"¢"20,00,) . (5.5)
Taking variation of (5.5) with respect to g, and @, we get

° 6 1

G* = ] (g“”g”” - 59“"9"”) 90 Bop (5.6)

° 1

Oy - p 9" 0updp =0. (5.7)

—209—




But we expect to violate this conjecture when black holes completely
evaporate. Since black hole evaporation is semi-classical theory, this has not
been a object of cosmic censorship conjecture till now.

We want to believe that this conjecture is true in semi-classical level.
Our purpose is to prove, under reasonable conditions, the non-existence of
the naked s The essence of the proof is that space time which contains the
completely evaporating black hole does not satisfy the reflecting condition

Our notation and fundamental definitions will be as those of Hawking

and Ellis[2].

2 Preliminaries

By space time we mean a pair (M,g) where M is a connected orientable
four dimensional Hausdorff C* manifold and g is a C* Lorentz met By a
partial Cauchy surface S we mean a spacelike hypersurface in (M, g) which
no nonspacelike curve intersects more than once. In the following several
conditions are defined.

(a) causality condition

Definition 1 We say that strong causality condition holds at a point p € M
if every neighborhood of p contains a neighborhood of p which no nonspacelike

curve inters

Definition 2 We say that strong causalilty condition holds in space time

(M, g) if it holds for every point of M.
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Roughly speaking, the strong causality condition implies that there exist no
almost closed causal curve.

(b) convergence condition

The usual convergence conditions are required for all region of space time.
In semi-classical theory these conditions does not hold. Here we define the

new convergence condition.

Definition 3 We say that the partially null convergence condition holds if
Rapk®k® > 0 for every null vector whose direction is parallel to the null

geodesic generators of the event horizon (This is defined below).

Above condition together with the Raychaudhuri equation|2] that relates
Ricci curvature and the expansion of a null geodesic congruence implies

(c) event horizon and evaporation condition

For defining the event horizon and its complete evaporation we must sup-
pose a few conditions for space time. To do this we recall Wald’s theorem
which implies that space time is not globally hyperbolic if black holes com-

pletely evaporate.

Theorem 1 [6] Let (M, g.) be a time-oriented space time, and let S, and
Sy be partial Cauchy surfaces. Suppose that

(1) there is a point p € D*(S) such that p ¢ (J~(S2) U J*(S2)),
(2) J*(K) N S; has compact closure, where K = S — (D=(S;) N §y).

Then S, ¢ D*(S,).
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iFrom above theorem we can define the black hole, the event horizon and

complete evaporation of the black hole.

Definition 4 We say a black hole evaporation completely between S, and S,
that, under the above theorem’s assumption, B= M — {(J*(S)UJ~(5;)) N
(whereJ=(S1)NJ*(S,2) = 0 and we call a black hole, B, and a event horizon,
B. Further a ezpansion § of every null geodesic generator of the event horizon

is negattve and lim;,, , 0(t) = —oo.
We call above condition the completely evaporating condition.

Remarks 1 We know that the order of differentiability becomes a problem
for the evaporating black hole. But we assume thal the metric is C*®, i.e.
the Raychaudhuri equation and the expansion are useful since it seems that
differentiability is not importa

For example, Hawking and Ellis say:[2]

“.., the order of differentiability of the metric is probably not physically
significant. Since one can never measure the metric ezactly, but only with
some margin of error, one could never determine that there was an actual

discontinuity in its der

3 Theorem

In the proof of the our main theorem it is important that space time which
contains the complete evaporating black hole is not only non-globally hy-
perbolic but also non-reflecting. Therefore we must recall the reflecting

condition{3] before the theorem.
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Definition 5 Call space time (M,g) reflecting if the following condition
holds: for all events = and y in (M,g), I*(y) 2 I*(z) if and only if
I=(z) 2 I"(y)-

Clarke and Joshi said the above definition in another way that is require-

ment for achronal boundaries.

Proposition 1 [I] The following are equivalent:
(a) (M, g) is reflecting,
(b) y € I*(z) iff z € I~ (y).

Hereafter we use the above proposition 1 (b) to require the reflecting

condition.

Theorem 2 Space time that black holes evaporate completely does not hold

the reflecting condition.

Sketch of proof : By definition there exist points that are in i_(Sg) and
that are not connected by causal curves with S;. This implies that the
reflecting condition violates. o

iFrom theorem 2 the following corollary holds.

Corollary 1 Every null geodesic generator of the event horizon is future

incomplete.

By the above mentioned facts we prove the main theorem.
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Theorem 3 Let S, and S, be partial Cauchy surfaces in time-orientable
space time (M, g). the following three conditions cannot hold synchronously.
(1) the partially null convergence condition,
(2) the strong causality condition,

(8) the completely evaporation condition.

Sketch of proof : Since space time we consider violates the reflecting
condition, by corollary 1, on the same achronal boundary there exist a
past incomplete null geodesic and a future incomplete null geodesic that is a
generator of the black hole event horizon. We can construct a null geodesic
sequence that has limit curves which are the above null geodesics. By the
partially null convergence condition the expansion of each null geodesics of
this sequence is strictly decreasing function. This fact and the completely
evaporation condition are contradict by continuity. See [4] for details. 0

Finally we conclude the following corollary.

Corollary 2 Black holes cannot completely evaporate.
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Dilatonic Black Holes with Gauss-Bonnet Term
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Abstract

We discuss black holes in an effective theory of a superstring model, which includes a dilaton
field, a gauge field and the Gauss-Bonnet(GB) term. Assuming U(1) or SU(2) symmetry as a gauge
field, we find four types of spherically symmetric solutions, i.e., a neutral, an electrically charged, a
magnetically charged and a “colored” black hole. For each black hole there is a critical mass below
which no solution exists. The curvature at the horizon diverges in the limit of the critical mass
and a naked singularity appears there. We also study the thermodynamical properties of those
solutions. Since the temperature is finite even in the limit of the critical mass, the black hole may
eventually evolve into a naked singularity via the Hawking evaporation process.

(a) electronic mail: 64L514@cfi.waseda.ac.jp, (b) electronic mail: maeda@cfi.waseda.ac.jp
(c) electronic mail: 695L1079@cfi.waseda.ac.jp

1 Introduction

One of the most fascinating dreams for all physicists is the unification of all fundamental forces,
i.e., electromagnetic, weak, strong and gravitational interactions. The electromagnetic and weak
interactions are successfully unified as the Weinberg-Salam theory. The strong interaction is described
by quantum chromodynamics (QCD) and is likely to be unified with the Weinberg-Salam theory into
a grand unified theory in the context of gauge theory. The gravitational interaction, however, is not
yet included, in spite of a great deal of effort. The most promising candidate for a unified theory of
all interactions is a superstring theory, which may unify everything without any divergences.

String theory should be studied in extreme situations, since the difference from the conventional
field theory appears notably at very high energy scales. Most of the work on such applications, so far,
has been performed by using an effective field theory derived from a string theory which contains the
leading or next leading order of the inverse string tension a’. One such application is string cosmology.
It is shown that some puzzles in Einstein cosmology might be solved with a string theory. For example
the singularity theorem demands the initial singularity of the universe in the Einstein gravity, while a
string inspired model can remove it and provide a non-singular cosmology(1, 2].

Another application is a black hole physics. The first study was made by Gibbons and one of the
present authors in the Einstein-Maxwell-Dilaton (EMD) system[3] and the same solution was discussed
in the different coordinate system[4]. They found a static spherically symmetric black hole solution
(GM-GHS solution) with a dilaton hair. Since the dilaton hair cannot appear without electromagnetic
hair, it is classified as secondary hair. After this work, many solutions were discussed in various models
and the following question may arose. How are the black hole solutions affected if the Lagrangian
contains the higher-curvature term, which comes from the next leading order of a’? Callan et al.[5]

—218—



discussed black hole solutions in the theory with both the higher-curvature term Ryypo B¥¥#7 and the
dilaton field, and Mignemi and Stewart[6] took both the GB (Gauss-Bonnet) term and the dilaton
field in account. In their work field variables were expanded by the inverse string tension ¢/ and the
first order term of o’ are taken into account and by using this perturbative method they found analytic
solutions. Campbell et al., Mignemi and Stewart tried to clarify the effect of the axion field(7, 8, 9.
In all these models containing the higher-curvature term they used perturbative methods. In this
paper we present the black hole solutions obtained without any perturbative method, assuming the
GB higher curvature term, and we clarify the effect of the higher curvature term.

A new black hole solution called a colored black hole, which has a non-Abelian hair, was discovered
in Einstein-Yang-Mills system[10] soon after the existence of a particle-like Bartnik-McKinnon(BM)
solution had been pointed out in the same system{11]. These solutions are governed by a balance
between the attractive force of gravity and the repulsive force of the Yang-Mills(YM) field. Hence if
gravity is absent these objects cannot exist. In this sense those structures are of a new type. Although
both the BM particle and the colored black hole were found to be unstable against radial linear
perturbation([12], they showed us a new aspect of black hole physics and forced us to reconsider the
black hole no-hair conjecture.

After these solutions, a variety of self-gravitating structures and black hole solutions with a non-
Abelian field were found in static spherically symmetric spacetime[13, 14, 15]. One of them is a
dilatonic BM particle and a dilatonic colored black hole solution in the Einstein-Yang-Mills-Dilaton
(EYMD) system([16, 17). They are direct extensions of the GM-GHS solution. Non-Abelian black
holes are expected to be very small, so we have to discuss other contributions, for example the GB
term and/or the moduli field, if the fundamental theory is described by a string model. Donets and
Gal’tsov showed that a particle-like solution does not exist in the EYMD system with the GB term[19].
Then, they put a numerical factor 8 in front of the GB term, where B = 1 correspond to the effective
sting theory. They showed that there is a critical value 8, = 0.37 beyond which no particle-like
solution exists. However, we expect that the black hole solution may exist in the same system, so we
also discuss the case of the SU(2) Yang-Mills field.

This paper is organized as follows. We show a model and field equations in section 2, and present
various types of new solutions (neutral, electrically charged, magnetically charged and “colored” black
holes) in section 3. In section 4 we study the thermodynamical properties of those black holes. Section
5 includes discussions and some remarks.

2 A Model and Field Equations
We shall consider the static spherically symmetric black holes is the model
= —l1lp_ 1 2_ L cmepge, @ _yefnp2_ 2]
S= /d‘*z,/—g [wR 5z (V) — ge A 4 e (BR? - TvF?) (1)

where x2 = 87G. This type of action comes from the low-energy limit of the heterotic string theory,
where ¢ is a dilaton field, ¥ = /2« is its coupling constant and H is a three form which can be
expressed by a pseudo-scalar field, or axion. When a solution does not have a dyon and the spacetime
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is static and spherically symmetric, which is the case we will consider, the axion field H vanishes. F
is the field strength of the gauge field expressed by its potential A. We adopt the following form

A = a(r)7T,dt — [1 + w(r)] T4d8 + [1 + w(r)] T4 sin8d¢, (2)

which is the most generic form of a spherically symmetric and static one. Comparing (2) with the
potential of the U(1) gauge field, we find that a and w play the roll of an electric and a magnetic field
potential, respectively. For U(1) gauge field, we set 7. = 1 and 74 = 74 = 0 formally after calculating
the field strength.
The GB term, R?, is
R? = R,,,c R**° — 4R, R* + R%. (3)

This combination is introduced to cancel anomalies and has the advantage that the higher derivatives
of metric functions do not appear in the field equations. Setting o' = 167G/g?, g denotes a gauge
coupling constant. 8 is a numerical factor adopted in Ref. [19], but we fix 8 = 1.

We assume a static spherically symmetric ansatz, and we use the Schwarzschild type metric written

-1
ds? = - (1 - &’;‘(fl) 25 gs2 4 (1 - ﬁ:‘ﬂ) dr? + 12(d6? + sin? 0dg?). 4)
Varying the action (1) and substituting ansitze (2), (4), we derive the field equations,
—vé
§=hn"! |:____~¢I2 e4r { 263—2a2w2 + w’ + (72¢I2 ¢Ir)}] , (5)
—vé 2y2
h—l[ BR¢? 4+ {26( a? + 2818w )+2Bw +( “’)
M 2412 _ Ll m o m
+BZ (7 7¢)+87¢r.2 (2-3)}]. ®)
1o a2w? -
[e—6f23¢l]’ e8 5 7e—6-2 [ 26 {612_‘_ 2aFw B} _ {gw—B (1 = ) }
4 4
+a {2+ BES+ )+ 565 -1) =0, ™
e‘size‘wa']' - 2%~ B taw? = 0, (8)
a2
[e‘5Be"74’w']’ +efe~B-13"%w + e“e""*w(lf—,‘,w) =0, (9)

Here we have used the dimensionless variables ¥ = r/va!, i = Gm/Va’, &= afVa'. A prime in
the field equations denotes the derivative with respect to #, and

s — w2)2

f o= A [_ _B~¢'2_1_g;.{25( i _2B‘1&2w2)—23w’2+%}], (10)
—é =,

o= 1+%;_7¢,(B_$), (11)

B = 1-@. (12)
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As for boundary conditions on the event horizon and at spatial infinity, for the metric functions,
we impose following three conditions: (i) Asymptotic flatness at spatial infinity. (ii) The existence of
a regular horizon ry, (iii) The nonexistence of singularities outside the event horizon, and for the field
functions, we set

¢ — 0, (13)

a — 0, (14)

w — +1 (globally magnetically charged solution). (15)
0 (globally magnetically uncharged solution),

as r — o0, These conditions guarantee the total energy of the present system to be finite.

3 Dilatonic Black Hole with Gauss-Bonnet Term
3.1 Neutral Black Hole

First we consider the neutral solution, which is the simplest case. The neutral black hole solution can
be obtained by setting a = 0 and w = %1, which satisfy the field equations (8) and (9). From Eq. (7)
we find the following relation on the event horizon, i.e.,

¢ 3

2 =
¢"—A_7+F—Oa (16)

where A = e~ /47,2, Hence if we choose ¢(ry) for the fixed radius of event horizon 5, we obtain
¢4(rs). We integrate the field equations (5)~(9) from the horizon. We show the behavior of the field
functions of neutral black holes in Fig. 1. We find the solutions with a regular horizon only when we
choose ¢'(r4) = ¢/, which is the larger root of equation (16).

The dilaton field of the smaller black holes varies more rapidly than that of the larger black holes.
This means that the string effect becomes more important for the smaller black hole. Since we have
normalized the radial coordinate by o/, then, large 7, has two possibilities, either r;, is large or o is
small. In the former case, a black hole becomes so large that we can treat it macroscopically and the
next-leading term in o' does not affect its structure. In the latter case, the O(a’) term is obviously
negligible.

We see that the mass function decreases near the horizon, i.e., there is a region where the effective
energy density becomes negative (see Fig.1(b)). On the event horizon the first derivative of  is

2
" K? / 72 )
m’ = —m (1 41— 12.‘12? . (17)

The right hand side of this equation is negative definite, hence the function m always decreases in the
vicinity of the horizon. It is an essential point for existence of the neutral black holes that the energy
density becomes negative[18]. If the dominant energy condition is satisfied, no non-trivial solution can
exist by the no-hair theorem for a scalar field. However in our situation this is not the case. When
the radius of the event horizon gets small, the lapse function 6 decreases rapidly around the horizon.
This behavior will become important in the later discussion.
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3.2 Electrically Charged Black Hole

Electrically charged black hole solutions are obtained by setting w = +1 and dw = 0. The latter
corresponds to the vanishing of the self-interaction terms which arise from the non-Abelian effect. In
this case equation (8) can be integrated as

- —5,46¢
i'=e e""f—;, (18)

where Q. is a constant of integration and corresponds to an electric charge.

The behaviors of the field functions are almost same as those of the neutral case. We show M —r),
relations of black holes with Q. = 0.0(neutral), 0.4, 1.0 in Fig. 2. Note that there is a critical mass
M,,, below which no solution exists, for each branch. The existence of the critical mass is also known
in Reissner-Nordstrom black holes with a fixed charge. In that case the event and the inner horizon
coincide and the black hole becomes extreme at the critical mass. However our black holes are found
not to be extreme but to appear a naked singularity at the critical points[18]. We also find that ¢'(rs)
is a multiple root of Eq. (16) at the critical mass. With this fact we can show that ¢"(r;) and &(r})
diverge. We have also checked that I = R, ., R*“?° diverges at the horizon. A naked singularity
appears as a result. '

3.3 Magnetically Charged Black Hole

Next we turn to the magnetically charged solutions. They can be obtained by putting @ = 0 and
w = 0. Note that they are not the 'tHooft-Polyakov type solution in Ref. [15] but only have a U(1)
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charge like the dual solution of U(1) electrically charged one. In this case the value of the magnetic
charge is quantized as Q,, = 1.0 from the theory. The behavior of the field equations is similar to
that of the uncharged and electrically charged solutions. We plot the M — rj, relation in Fig. 3. We
discuss the properties of this black hole in the next subsection together with the “colored” case.

3.4 Dilatonic Colored Black Hole with Gauss-Bonnet Term

In this subsection we extend the gauge field from U(1) gauge group to assume SU(2) one. Here we
set the "tHooft-Polyakov ansatz @ = 0, i.e., purely magnetic YM field strength exists. Although the
no-hair theorem for spherical monopole and dyons in SU(2) Einstein-Yang-Mills was proved[20), it is
not clear whether this kind of no hair theorem holds in our model.

Since w'(ry) is determined by ¢(rs) and w(ry), we have only one shooting parameter, w(ry), which
should be fixed by an iterative integration. Here we assume w(r;) > 0 without loss of generality.

Under the above conditions we find a discrete family of regular black hole solutions which are
characterized by the node number n of the YM potential, just as for the colored black hole. We call
those solutions “colored” black holes as well. Since the YM field damps faster than ~ 1/r?, those
black holes have no global color charge related to the gauge field, like other non-Abelian black holes,
with the exception of a monopole black hole. Hence we use double-quotation marks to imply that the
new solutions are not globally charged but locally charged. The dilaton field and metric functions are
similar to those of other solutions. For example there is a region where the effective energy density
becomes negative.

The characteristic feature is that the YM potential w is almost scale invariant. In the limit of
s — oo the YM field equations decouple from the Einstein equations and Eq. (9) becomes

F(F — 2M)w" + 2M ' + w(l — w?) = 0, (19)

Which is the field equation in a fixed Schwarzschild background spacetime. The YM field can have a
nontrivial configuration although it makes no contribution to the black hole structure. The solution
of this differential equation w = w*(7) = w” (r/r4), becomes scale invariant. This scale invariance can
be seen approximately in our numerical solutions. The configuration of the YM potentials appears
to be almost the same when they are drawn as the function of r/r;. A similar behavior is found for

—223-



17 .

16| s
ER neutral Fig. 3: The mass-horizon radius diagram for the
LS ..-*" Schwarzschiid bh. .
2.5l | neutral black holes, the magnetically charged black
g holes (Q,, = 1.0) and “colored” black holes (n = 1).
o There is a critical mass, where radius of event hori-
14k " colorod” ] zon keeps finite. We can see that each curves is not
magretically charged
vertical at the critical mass. This is due to the non-
1.3 L 1 trivial transformation between the electrically and
0.75 0.8 0.85 0.9 .
OM K N6m'? the magnetically charged black holes

large black holes in the EYMD system[16]. It turns out that this approximation becomes valid at the
almost same horizon radius.

We show the M — r;, relation of neutral black holes, magnetically charged black holes (@, = 1.0)
and “colored” black holes with node number n = 1 in Fig. 3. There is also critical mass M, for each
branches. We expect that naked singularities appear at the these critical points as neutral solutions.

Although the neutral and the electrically charged branches in Fig. 2 become vertical at critical
points, we can see the magnetically charged and “colored” branches are not vertical but have finite
inclination. The reason seems to be understood as follows. The magnetically charged black hole is
obtained by setting Q@ = 1 — w? = 1. If we set

.e = e-‘me ’ (20)

in the field equation (5)~(9), we can recover the electrically charged solutions with the “electric
charge” Q.. Note that the duality transformation of Ref. [3, 4]

F=—e™4F, §=-4, (21)

does not applied in our model because of existence of the GB term. Suppose that there are several
magnetically charged black holes in the same branch. Then we perform the transformation (20), we
can obtain the black holes with the “electric charge” Q.. Since this transformation contains the dilaton
field, which is the function of the radial coordinate r, the “electric charge” Q. also depends on r. This
dependence is different for each black hole, because the dilaton fields are non-trivial. Although each
black hole has the same “electric charge” ¢, = Q. at the infinity, each has different “electric charge”
Q. = e~7¢(")Q,, at the horizon. While the black hole mass is defined at infinity, the radius of event
horizon is determined near the origin where Q. has different value for each black hole. This is the
reason why the branch of magnetically charged black holes is not vertical at the critical point. We
expect that the same mechanism works although the structure of the “colored” black hole is different
from that of magnetic case .
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4 Thermodynamical properties

In this section we investigate the thermodynamical properties of the dilatonic black holes with the GB
term. There are several reasons why we are interested in this topic. As we know, Kerr-Newman black
hole is regarded as a thermodynamical object. Its thermodynamical properties are confirmed when
we take into account quantum effects, which may become important for small black holes. Although
black hole thermodynamics in the non-Einstein theories is not well understood, we can define the
temperature of the black holes in our model and show that they obey the first low of thermodynamics.
We can also discuss the evolution of our black holes via the evaporation processes. Then we have two
possible scenarios. One possibility is that the temperature of the black hole vanishes at finite critical
mass and the state of the black hole cannot reach this critical point by finite physical processes. This
scenario is similar to that of the Reissner-Nordstrom black hole. Another possible scenario is that the
temperature stays finite and the black hole’s mass approaches the critical mass, and finally a naked
singularity appears in the hypersurface where the event horizon was located. Which scenario descrives
our new black holes?

The GM-GHS solutions and the non-Abelian black holes have a characteristic thermodynamical
property. That is, a discontinuity of the heat capacity of the GM-GHS solution appears, depending
on the coupling constant of the dilaton field 4. Its critical value is just what we use in this paper(3).
Similar properties were obtained in the EYMD system[16]. This is another reason why we investigate
the thermodynamical properties of our new black holes.

The Hawking temperature is given as

1
47T

T=

e [1— 2m(ry)] (22)

for the metric (4). The inverse temperature 8 = 1 /T versus the gravitational mass is shown in Fig.
4. We show the branches of neutral, electrically charged (@ = 1.0) and “colored” black holes. All
branches have finite temperatures for all mass range. Hence if a new black hole exists, its evaporation
process does not stop and a naked singularity may be formed in any case.

This is physically undesirable, so we should investigate the evaporation process carefully. Recall
that the extreme black hole with 4 > /2x in the EMD system shows an infinite temperature. Holzhey
and Wilczek showed that the potential, through which created particles travel away to infinity, grows
infinitely high in the extreme limit. They expected that the emission rate may be suppressed to a finite
value[21], but this was shown to be incorrect[22]. In our case if the potential barrier becomes infinitely
large at the critical point, the emission rate might be suppressed to zero though the temperature of
the black hole remains finite, as they expected in their case. Then evaporation stops and no naked
singularity will be realized. We performed the same analysis and calculated the potential barrier in the
background of the new solutions. However the potential remains finite against our expectation, even
when the solutions approach to the critical point. Hence we conclude that the evaporating process
does not stop and we must eventually be faced with a naked singularity.

The temperatures of all new black holes are always higher than that of a Schwarzschild black hole,
even if the new solution is charged. This is because of the GB term, which has tendency to make the
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temperature of the black hole higher. The dominance of the GB term also appears when we discuss
the heat capacity. It is always negative for all new black holes in spite of the existence of the gauge
field. Hence we can conclude that most on the thermodynamical properties of the new black hole are
dominated by the GB term.

5 Concluding Remarks

We investigate the dilatonic black holes with GB term and found four types of solutions, i.e., neutral,
electrically charged, magnetically charged and “colored” black holes. The behaviors of field functions
of those black holes are almost all the same. This may be because the gravitational structure is
dominated by the GB term. Several previously unknown properties are found by putting the GB term
in the action. For example, the effective energy density becomes negative near the event horizon. All
types of dilatonic black holes with the GB term have critical masses below which no solution exists.
At this critical point a naked singularity appears. From the study of their thermodynamical properties
and the effective potential for massless scalar field, the evaporation process will not be stopped, and
hence it seems inevitable that naked singularity will appeare. The heat capacity is always negative,
like the Schwarzschild black hole, even if the black hole has a global charge.

However we have to note that these results are obtained by using the model (1) which includes only
the leading terms of the expansion parameter a’. This expansion is not valid for solutions near the
critical point. Hence there is a possibility that a naked singularity is removed by taking into account
the higher or all orders in o’.

There is also a difference determined by the metric frame. In this paper we have worked only in
the Einstein frame. However some results may change if we go into the string frame since the confor-
mal transformation includes a nontrivial dilaton field. In particular if the conformal transformation
becomes singular at the critical point, a naked singularity might be removed. Therefore we studied
the system again in the string frame, but this gives no qualitative difference from Einstein frame.

Several problems are still left. One of them is the black hole entropy. In the model including the
higher curvature term the entropy is not described by a quarter of the area of the event horizon. We
are interested to know whether the entropy vanishes or not when the mass of the black hole approaches
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the critical mass. This is under investigation. Another problem is the stability of the new black holes.
We leave this as an open question.
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Abstract

We study the cosmological implications of the one-loop terms in the string expan-
sion. In particular, we present non-singular solutions which interpolate between a
contracting universe and an expanding universe. We demonstrate the existence of a
class of solutions which are marginally inflationary near the Planck scale, providing a
mechanism for alleviating the initial conditions problems peculiar to a closed FRLW
universe.

1 Introduction

The study of cosmology leads inexorably to an epoch in which the energy density
of the universe approaches the Planck scale. While superstring theory is the leading
candidate for a description of fundamental physics valid at these energies, it has not
developed to the point where it can be used to construct detailed cosmological sce-
narios. Despite this, the generic properties of superstring models may be extracted,
and their cosmological consequences investigated. In particular, since string theory
has the ability to tame the infinities inherent in low-energy physics, it is reasonable
to expect that the singularity associated with the big bang in general relativistic cos-
mology will be absent from a stringy cosmological model. Furthermore, the dualities
associated with the full superstring action have been used by Gasperini, Veneziano
and others to motivate the “pre-big-bang scenario” [1, 2]. This is a non-singular
cosmology in which many of the problems associated with the “standard” big bang
are alleviated by a period of accelerated contraction. The fundamental requirement
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for such a theory is the existence of non-singular or “branch-changing” (3] solutions
which smoothly interpolate between a contracting universe and an expanding one
without passing through a singularity.

At the same time, many cosmologists have adopted an alternative strategy, which
is to approximate the full string action with the first terms of the perturbative string
expansion. When taking this route the non-perturbative features of string theory
are implicitly discarded, so this approach will clearly break down at the highest
energies. The lowest order, or “tree-level”, action [4, 3, 6] has received the most

attention.'

In particular, Easther, Maeda and Wands (7] analyze the cosmological
solutions derived from the tree-level action, including contributions from the dilaton,
central charge and axion, with the assumption of a four dimensional maximally
symmetric spacetime and conclude that all solutions of this system are singular at
either or both early and late times. Furthermore, Kaloper, Madden and Olive have
constructed no-go theorems for branch changing solutions in generic tree-level actions
(8, 9]. Consequently, it is highly likely that solutions of the tree-level sting action
are all singular, and that this approximation omits too much to adequately describe
stringy cosmological models.

However, two features of the tree-level solutions offer hope that the picture may
look very different at higher orders in the string expansion. Firstly, as solutions
to the tree-level equations of motion approach a singularity the dilaton, ¢, always
becomes arbitrarily large. The contribution of the n-th loop terms to the action is
proportional to e™® so as the tree-level solution becomes singular the higher order
terms will dominate and these have the potential to remove the singularities present in
the tree-level solutions. Secondly, even at tree-level we find solutions where the scale
factor makes non-singular oscillations, implying that the strong energy condition
is violated by the string matter. While this does require the existence of globally
non-singular solutions, the violation of the strong energy condition is a necessary
condition for the construction of branch changing solutions.

Clearly, the next step in the study of the low-energy string action is to add the
one-loop order terms. These have received less attention than the tree-level case.
However, Antoniadis, Rizos and Tamvakis [10] have demonstrated the existence of
non-singular solutions with one loop string and moduli corrections with a spatially
flat background in which the scale factor increases monotonically from a (non-zero)
constant value. Note, these do not constitute branch-changing solutions as there is
no transition between contraction and expansion.

In this paper we extend the work of Antoniadis, Rizos and Tamvakis to Robertson-
Walker metrics with non-zero spatial curvature. With this extension we will be able
to demonstrate the existence of branch changing solutions which connect a contract-
ing universe to an expanding one. Furthermore, we consider the possibility of infla-
tionary solutions to the one-loop equations of motion. Any non-singular solution is

'See ref. {7) for a full list of references.
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necessarily inflationary, in the sense that at some time the growth of the scale factor
will be accelerating at some time. However, we find a new class of marginally infla-
tionary solutions in spacetimes with positive spatial curvature, which may provide
a mechanism for solving the initial conditions problem inlerent to spatially closed
Robertson-Walker spacetimes. A longer account of this work is contained in [11).

2 Action and Equations of Motion

We take as our starting point the action [0, 12, 13)
1 1 3 1
S= / d'zy/=g {-2-R +7(D8)? +3(Do) + 1 [re? - 66(0)] Rfm}. (1)

where R is the Ricci scalar, ¢ is the dilaton and ¢ is a modulus field and R%; is the
Gauss-Bonnet combination,

Ry = Ry R*™™ = 4R, R™ + R®. ()

Terms which do not contribute to the equations of motion for a Robertson-Walker
metric have been dropped. The co-efficient A is a positive quantity, related to the
four dimensional string coupling, while § is fixed by the trace anomaly of the N =2
sectors of the theory. It will be important that & can take both positive and negative
values. The potential, £(0) is defined in terms of the Dedekind n function,

£(0) = In [26°7"(ie”)] ®

where 1 is

n(r)=¢" 2 J[(t-¢g), q=é". (4)
n=l1

Anticipating that only first and second derivatives of § appear in the equations of
motion, we note that

, e’ . o0 E-Znﬂc"
€(0)=1- ——+8ne ) = (5)
n=1

Despite its appearance, this is an odd function of ¢ and is well approximated by
&~ —27;- ginh (o). (6)

where a prime denotes differentiation with respect to . We have used this approx-
imate form of £ in our numerical calculations, as it preserves the symmetries and
asymptotic form of the full potential but is much faster to compute.

Previously Antoniadis, Rizos and Tamvakis examined the cosmological solutions
for this system that have a spatially flat Robertson Walker metric. We now extend
their work to include the possibility that the spatial hypersurfaces have non-zero
curvature, and so the appropriate ansatz for the line element is

1 _lk.-z 412 (d6? +sin2(o)d¢2)] . )

ds? = dt? - > [
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The equations of motion are

302+ 3k — 167 — 367 4 24fud 4 L =, (8)
2% + 307 + 5 + L7 4 367 4 16/ + 8? + 16fow + 8L = 0, (9)
é+30é - 24 R2, =0, (10)
3 +3wo - 2R, =0, (11)

where a dot denotes differentiation with respect to t. The Gauss-Bonnet term is
12, =24 (0 +0%) (&:2 + ;T) (12)

and f is defined to be

f = 75 [pet - 8800 (13)

By setting k = 0 we recover the system studied by Antoniadis, Rizos and Tamvakis.
If f vanishes the system reduces to two free scalar fields, minimally coupled to gravity.

The equations above consist of three second order equations and a constraint,
giving a total of five degrees of freedom. In order to facilitate the analysis we isolate
each of the second derivative terms (remembering that f implicitly contains ¢ and
@), on the left hand side, giving the following system

5 o= —ot- (aﬂ + c%) Xs (14)

. . A k\?

o = -30¢-3A° (a2+c—2w-) X (15)
’\7 2

& = =306 +6(0) <a;2+ 83) X (16)

where .
8 + /\026‘5 - 562611

= - . 17
4+ 2(Age?® — 608w + (w2 + ke~ 2)2(3N2e2¢ 4 §2£12) (17)
If we wish, we can eliminate any one of the variables by inserting the constraint. How-

X

ever, it will be more convenient to work with the equations as they are given above,
and retain the constraint for checking the consistency of our numerical calculations.

We now turn to the analysis of the possible types of solution which these equations
possess. We begin with a discussion of the different asymptotic forms of the solutions,
and in the next section use numerical techniques to investigate the general solution
properties.

3 Asymptotic Solutions

In general this system of equations must be solved numerically. However, consider-
able insight into the late-time behavior of this system can be gained solely through
analytic considerations.

We are particularly interested in “branch changing” solutions, where a large con-
tracting universe is smoothly converted into an expanding one and so the scale factor
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passes through a local minimum. Hence we begin our investigation by considering
the possible extrema of w. When the scale factor, a = ¢“, passes through a local
minimum, its second derivative, 4, must be positive. Since & > 0 is the defining con-
dition for inflation it follows that any branch changing solution is also inflationary.
Note, this is the minimal requirement for inflation and the astrophysical constraints
that must be satisfied by a successful inflationary model are much more stringent.

To show that it is possible for w (and therefore a) to pass through a local mini-
mum, consider the constraint in the form,

3 («;ﬂ + ;f;-) (1+8fw) - %és’ - %&2 =0 (18)
For k = 0 with © = 0 we must have & = ¢ = 0 as well. This is an exact, unstable,
static solution to the equations of motion where the values of w, o and ¢ are all
arbitrary constants. The non-singular solutions of Antoniadis, Rizos and Tamkvakis
can be regarded as the consequence of making a small perturbation to this exact
solution. If the spatial hypersurfaces have negative curvature, k = —1 and the
constraint cannot be satisfied when @ = 0. Consequently, the scale factor is again
monotonic, but the constant solution no longer exists.
Lastly, if & = 1 the constraint may be satisfied with @ = 0 and é,6 # 0, and go
the scale factor can possess extremal values. The type of extrema follows from the
sign of & when w = 0. When & = 0 the denominator of x must be positive, so

Sign(@],—o) = —Sign(8 + A¢%e® - 82¢"). (19)

While A is physically restricted to positive values, é is not. Since §” is negative for
all values of o, it follows that if é > 0, & will be positive at an extremum of w, but
can take either sign if § < 0. Thus when & = 1 and & < 0 the scale factor can possess
local minima, and therefore make one or more non-singular oscillations. However,
this does not establish the existence of globally non-singular solutions. In the next
section, however, we will display a specific non-singular solution and probe the region
of “initial conditions space” for which the universe is non-singular.

Consider the possible asymptotic forms of the solutions to the equations of mo-

tion. For k = —1 we know that w is monotonic. There is a trivial exact solution,
w = Int, (20)
do, (21)
g = J0p. (22)

This describes an empty, curvature dominated universe. It is of limited physical
interest, and since it applies when both A and & are zero it is not related to the
one-loop terms we are considering here.

Now consider the evolution of a spacetime with positive spatial curvature, or
k = 1. In this case the scale factor need not be monotonic, raising the possibility
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of branch-changing solutions. In order to investigate the possible solutions that can
grow to arbitrarily large sizes when & = 1, consider three possible types of late time
behavior:

Typel id(t) > e, t>T,
Type 1l 6(t) < —¢,t > T,
Type lll d(t) = 0,t = =,

where ¢ is a positive real number. Type [ describes a universe that inflates forever. In
this case, the curvature terms will become negligible and the universe will asymptot-
ically resemble the k = 0 case already analyzed by Antoniadis, Rizos and Tamvakis.
However, their work shows that there are no solutions for & = 0 which inflate for-
ever, and we therefore deduce that when k = 1 there are no solutions which have the
asymptotic form of Type I, since their existence would lead to a contradiction with
the results derived when k = 0. The second case describes non-inflationary expan-
sion. However in this case the curvature term will dominate, and the universe will
reach a maximum size and recontract. Such a solution does not necessarily approach
a singularity, since the scale factor could evolve through a local minimum, but it
cannot expand indefinitely in this manner.

Thus we are left with Type IIl. If @ was exactly proportional to time, then & = 0
and the Gauss-Bonnet term would vanish identically. This linear solution is not a
feature of the tree level equations of motion, and cannot exist at one-loop either.
However, there is class of solutions which has the asymptotic behavior

i(t) — o,
o) = oo, (23)
a(t) = aox2loglt

where ag, o and o¢ are constants and we have assumed that ¢ (and hence ¢?) is not
large. The properties of this solution can be investigated via numerical integration
(which is done in the following section). An analytic discussion of the asymptotic
form of a(t) requires us to consider terms of the form ¢(In t) whose second derivative
tends to zero at late times, while allowing the Gauss-Bonnet term to remain non-
trivial. We do not present this work here, but note that from a qualitative point of
view the growth of £'(0) as |o| becomes large means the one-loop corrections have
a major impact on the evolution of the modulus, even as the Gauss-Bonnet term
becomes very small.

4 Numerical Results

The asymptotic solution, equation (23), was presented without a detailed derivation.
However, in Fig. (1) we show a specific example of a solution which has this asymp-
totic form as t — too. This solution represents a specific example of a non-singular,
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Figure 1: A particular non-singular solution is displayed, where § = —64 x 3/~ and A = 1.
The chosen initial values are ¢ = 0, 6 = —=3,6 = —5x10~%, ¢ = 0.08and & = 0.0}, with the
constraint requiring wo = 3.2115. The scale factor has a minimum value of approximately
12.5, and approaches linear expansion as { — +oo.

branch-changing solution. Other solutions exist that interpolate between an initially
singular solution and eventual linear expansion. At tree level, all solutions to the
equations of motion with &£ =1 are singular in the past and in the future.

Having demonstrated the existence of a specific non-singular solution, however,
we wish to determine whether these solutions are generic, or correspond to a special
(measure-zero) region of parameter space. For the k& = 0 case Antoniadis, Rizos and
Tamvakis gave a phase-space analysis. However, the additional complexity intro-
duced by allowing non-zero spatial curvature makes this problem less tractable when
k=1 and we employ a different method.

Specifically, we want to study the basin of attraction for the non-singular so-
lutions, which is the volume of “initial conditions space” that evolves towards the
linearly expanding solution (in either the past or the future), rather than a singular
collapse. This approach was recently used by Cornish and Levin [14] to study the
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t — 00 t = —00

Figure 2: These plots show the asymptotic form of the solutions to the equations of motion
when the dilaton and modulus have the initial values ¢p and ap, and the other parameters
are the same as for the solution depicted in Fig. 1. Points where a — oo approach the linearly
expanding solution (white), while a = 0 imply the existence of a singularity (grey). Choices
of initial conditions which would require k¥ £ 1 are not plotted (black). The structure shown
in the Lop right of the t = —oc panel is “real”, but it corresponds to the strong coupling
(8 > 0) region where the one-loop action is unlikely to hold. The numerical integrations
were carried out at 240 x 240 equally spaced points in the (¢o, o) plane.

basins of attraction for two field inflation.

Since the initial conditions space is five dimensional, it is most convenient to
consider two dimensional slices through it. In practice we take a 240 x 240 grid of
points in the (¢o, o9) plane, with the other parameters fixed, solve the equations of
motion numerically for each choice of initial data and deduce the asymptotic form in
the past and future. In Fig. 2 a piece of the (¢g, 0g) plane is shown, and the choices
of initial conditions which lead to linear expansion in both the past and future are
apparent.

In Fig 3 the initial values of (¢, o¢) for which a non-singular solution results are
plotted. This is just the intersection of the values of (¢y, 09) which lead to a linearly
expanding solution in the past and in the future. In addition, the subset of initial
conditions space in which the higher loop terms are expected to be smaller than the
terms included in the action (on the basis of dimensional analysis) are superimposed.
This region is defined heuristically, and the definition adopted here is that the one-
loop approximation is trusted if the scale factor is always greater than unity and the
kinetic terms (w, ¢) and & are always less than unity (in Planckian units) for a given
solution,
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Figure 3: This plot shows the initial conditions which lead to a non-singular universe, with
the parameter values used in Fig. 2. All of the non-singular solutions cotrespond to a large,
contracting universe that smoothly evolves into an expanding solution. Initial conditions
leading to a singular solution are given in black. The remaining set is divided into the
grey region for solutions which are non-singular, but where the higher-loop terms may be
significant, and the white region where the one-loop terms are probably dominant.

Interestingly, this region appears to possess a fractal structure (which is not
displayed in detail here), indicating the presence of a strange attractor and chaos
in the equations of motion derived for this one-loop superstring cosmology. This
will be the subject of a future publication, and we will not consider it further here.
For our present purposes, we merely wish to point out that the region of parameter
space in which the one-loop terms are not dominated by higher order solutions is a
non-trivial one, lending support to the belief that the non-singular solutions found
here are unlikely to be removed by higher order corrections.

5 Discussion

In this paper we have demonstrated the existence of non-singular cosmological models
derived from the one-loop approximation to the superstring action. In addition, we
have estimated the likely impact of higher order terms by dimensional analysis and
can have confidence that these solutions correspond to regions of parameter space
where the one-loop action will not be dominated by higher order corrections.
 While the inflationary scenario is typically invoked to provide the initial condi-
tions required by the standard model of a hot big bang, one problem not addressed
by inflation is that a spatially closed FLRW universe typically has a lifetime on the
order of the Planck scale, which may not allow enough time for inflation to begin.
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However, the linearly expanding solution displayed here for the k = 1 case alleviates
this problem, as it allows a closed universe to expand indefinitely. At some point
there must be a transition to “normal” inflation, which cannot be described by the
model being studied here.

The model presented here provides interesting new examples of non-singular su-
perstring cosmologies, and for the first time we have found cosmological solutions
derived from the perturbative superstring action which smoothly interpolate between
a contracting universe and an expanding one. Such solutions have applications to
the pre-big-bang cosmological scenario and the suppression of singularities in string
motivated theories of gravitation.
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SPACE-BASED GRAVITATIONAL WAVE ASTRONOMY
Nobuki Kawashima (ISAS), Ryutaro Takahashi (NAO) and Seiji Kawamura (Caltech)
ABSTRACT

Space-based gravitational wave astronomy is reviewed, particularly based on LISA
(Laser Interferometer Space Antenna) which ESA (European Space Agnecy) has chosen as
one of 3 candidates for the Comerstone missions whith be launched in 2010-2020.
Comparing with the ground based antenna, it is pointed out that the space-based antenna
has an advantage of much more target objects inace and also better S/N and it can be a
short cut to the gravitational wave astronomy. The comparison is also made between the
space orbital antenna and the one on the lunar base.

1. Importance of Gravitational Wave Detection
The importance of gravitational wave detection is summarized as follows :
Establish Gravitational Wave Astronomy
-—--Open a new window to the universe
1) World of 10 ® tons / cm * (Center of neutron stars)
2) Birth and evolution of the universe before it became clear to the
electromagnetic wave astronomy

2. Development of Laser Interferometer Gravitational Wave Antenna on the  Ground

Extensive efforts are going on the ground for the detection of the gravitational wave on
the earth aiming for the first detection :
i) Proto-type Antenna
1) Fabry-Perot Type 40m : CALTECH(U.S.A.) 10m : Univ. of Glasgow(England)
20m : National Astron. Obs.(NAO)(Japan)
2) Delay-line Type  30m : Max Planck Inst.(Germany)
100m(TENKO-100) : Inst. Space Astronautical Sci. (ISAS)
(Yapan)
i) Construction of km class GW Observatories has started:
They will start to operate from 2000.
1) LIGO (U.S.A.): 4 km x 2 (Hanford Washington, Livingston Louisiana)
2) VIRGO(French-Italian collaboration): 3 km(Pisa, Italy)
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At the same time, GEO-600(German-English Collaboration) and TAMA-300(Japan) are

aiming to be completed before LIGO and VIRGO.

3. Strong Support to the - \ ® 10°Mgy BH binary coalescence

Gravitational Wave o 10 o iBoo @ 10°Mg BH formation

Detector Development § X q,;;\ » 16 Mg BH binary

To establish the gravi- & .ol ‘e;; 5 3

tational wave astronomy is ; ‘
supported not only by the :;'
science community  of § 1072 o
gravitational physics but ,g a'}‘::%\
also by communities of & w02k
elementary particle n-enpigy &
physics, high  energy | ! 1 1 ]
physics, accelerators, 1073 107" 107° 1072 107" 10
cosmology etc. It s frequency (Hz)
anticipated that the
gravitational wave Fig.l. Target objects and its signal level for space-based

gravitational
astronomy may do some-

wave observation [1]

thing which neither electromagetic wave astronomy nor high energy accelerators can do.

One of the evidence is that in LIGO, the total

budget recently inflated from M$250 to

M3$360 and it has been able to survive approved by NSF.

4. Development into Space------—-21st Century
Objects which the space laser interferometer

gravitational wave antenna aims :

Objects

Ground Coalescence of binaru pulsars

Supemovae
Space (Orbital)

Binary pulsar in our galaxy
Coalescence of giant black holes

Background radiation
(The world from the Big Bang within
seen by the electromagnetic waves)
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5. Moon or Orbital ?

5-1 Advantages for the Lunar
Laser Interferometer Gravi-
tational Wave Antenna
i) Vacuum : No vacuum tanks
and tubes and pumping system
which occupy the major
part of the construction cost

on the ground is
needed

ii) No scattering light
effect

iii) Craters : Naturally provided Fig.2. laser interferometer gravitational wave antenna
. on the lunar surface which utilizes the
most suitable structure for naturally provided advantageous structure
the interferometer free from

the effect of the lunar curvature for km-class interferometers so that no heavy civil
engineering work is required,
which occupies another major part  Seismic Activity

of the construction cost on the Amplitude
(m/(Hz) )

ground.

4-2 Disadvantage 10t

The lunar surface is not so quiet
in respect of seimic noises. Seismic 10
noises arising from the internal activity
of the moon and the thermal change of 10
lunar surface material at he boundary of s .
day and night due to its large 10 Moo NN

temperature change [2]. NN

. \ \
1013 ~ N

From the discussion above, it is clear 10 . 10 102 10
that the orbital antenna is much superior Frequency (Hz)

to the lunar one so long as it is

discussed from only the scientific point Fig.3. Seismic noise environment on the lunar

of view surface

6. Background and Past Progress of Space-based Antenna
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From the fall of 1993 till the fall of
1994, ESA(European Space Agency)
investigated possible missions of M 3
{ M 4(Medium scale mission to be
launched in around 2003) and
Comerstone  mission(Large  scale
mission to be done in 2010) [3].

A space orbital laser interfero-meter
gravitational antenna LISA (Laser
Interferometer Space An-tenna) has
been selected as one of 3 candidates
for the corner stone mission(Other 2
are Mercury Orbiter and
Spectrometric Survey of the Sky) [4].

7. LISA (Laser Interferometer Space
Antenna)

7-1 Configuration
LISA places 4-6 spacecrafis in the

solar orbit with the  separate

HORIZON 2000 PLUS
BT =

Fig4. Space science missions scheduled/planned
in early 21st century [3]

. 6
ar difference of 5 10 km. In the center, 2

spacecrafis(c-1,c-2) are placed and 1 or 2 are at the ends. The angle between 2 arms is 60

Fig.5. LISA (Laser Interferometer Space Antenna) one of candidates for the
cornerstone mission around 2010-2020 [4]
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degrees. In space mission, once launched, it is impossible to repair so that one spacecraft
among 4 spacecrafts works as a redundancy and two spacecrafis for the 6 spacecraft
configuration.

7-2 Orbit

The main orbital plane of LISA 4-6 spacecrafts lies on the earth’s orbit around the sun(l
AU) and 20 degrees behind the earth. It is inclined 60 degrees to the ecliptic plane and
there the interferometer is formed with an arm length of 5 million km.

This orbit has been selected that the time variation of the relative distance between
spacecrafts are minimum,

Distance between the center and the end(arm length) 5x 106 km
Distance between the center spacecrafts 10 km
Accuracy of the arm length < 1 km
Accuracy of the difference of the arm length < 20 m
Time variation of the difference of the arm length < 7 mm/fs

Table 1 Parameters of LISA[4]

7-3 Interferometer and
Optical Components
The interferometer is
an Michelson type and
a laser oscillator is
installed in each of
two central
space-crafts C-1 and
C-2 for redundancy.
One of the difference
in the space antenna
from the ground one is
that the laser light
emitted from the
center comes back not
reflected by a mirror
but a transponder.
Very weak light
received at the end Fig. 6. Orbit of LISA system
spacecraft is amplified
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in phased-locked in the laser light frequency and sent back to the center.
Mirror : 38cm ¢ Cassegrain telescope Surface roughness < 1 /30
Laser : Diode laser-pumped Nd-YAG 2 W  single frequency, single mode

1/2 . .
Frequency stability<10 Hz/(Hz) (limited by the temperature
change)
Tabel 2 Laser and mirror in LISA

7-4 Drag-free Configuration

Another important requirement to the space orbit laser interferometer is the drag-free
configuration in which any drag force(non-gravitational force) to the spacecraft such as the
solar radiation pressure should be compensated.

-15 -2 12
The requirement is < 1.5:10 ms /(Hz)

The drag-free control is realized by placing a reference sphere at the center gravity of the
spacecraft free from any drag forces and by controlling the relative location of the
spacecraft with respect to the reference sphere unchanged.

7-5 Nano-radian Control A
The attitude control and the alignment control of the laser beam is so severe as
nano-radian(10 ~° rad).

Alignment control : nano —rad control
Pointing error{Abs.) < 0.006 arcsec

. - oge /
Pointing stability < 0.001 arcsec/(}izﬁ

Table 3 Requirement to the attitude in LISA

7-6 Micro-thruster

A micro-thruster is required to realize the control described above. In order for it, Cs
electric field emission type micro-thruster called FEEP has been developed and partially
verified in the lab. for nano-radian control [5].

7-7 Thermal Control

Furthermore, very severe thermal control is also one of key technologies in the space laser
interferometer gravitational wave antenna. The thermal deformation of optical components
and support structure should be kept as small as possible.
The thermal control level required is :
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in Section 5, the space antenna has an advantage of much more objects in space and S/N is
also much better than the ground based antenna even in its advanced stage. Therefore, from
the view point of the establishment of gravitational wave astronomy, it can be said that the
space antenna is much nearer to it.

In Sec.4, we compared the space orbital antenna and the one on the lunar surface.
There, it was concluded that from only purely scientific point of view, the orbital antenna
is much superior, however, which will be realized earlier is not self-evident. In both cases,
it is a big project and is subject to other non-scientific factors. The orbital antenna can only
be constructed for its own and purely scientific. It should compete with science missions of
other disciplines. It is not easy in a severe environment surrounding space program. Some
says it is more than the age of Winter and "the ice age."

While, the laser interferometer on the lunar surface is solely dependent how the human
lunar activity is developed in future. Though the Apollo mission was so great that right
now a further development is forgotten, the recent movement of "Return to the moon" in
Japan [6] and Europe cannot be neglected. In Japan, the lunar exploration has been chosen
as one of important future space missions in the recent 4-th amendment of Space Policy of
Japan. This is in the scope of an unmanned construction of a manned lunar base in future.
ESA has also started the lunar exploration program.

It will not be a dream to construction of a laser interferometer on the lunar surface in
2010s if these movement is accelerated further.
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Some theoretical issues in gravitational wave physics and the

black-hole perturbation approach

Misao Sasaki
Department of Earth and Space Science, Osaka University, Toyonaka, Osaka 560, Japan

(February 1996)

Abstract

There are now several on-going projects to detect gravitational waves from
possible astrophysical sources and gravitational wave physics has become one
of the important fields of research in cosmology and astrophysics. However,
our understanding of gravitational waves is still very premature at present.
In this talk, I discuss two different matters in gravitational wave physics.
In the first part, I present my personal view on several important theoretical
problems which prevent us from clear understanding of physics of gravitational
waves. In the second part, I report on recent progress made in the black-hole
perturbation approach, by which we may gain more insights into physics of

gravitational waves in relativistic situatjons.

I. SOME THEORETICAL PROBLEMS

Gravitational waves are the propagating mode of the spacetime metric. The existence of
them was pointed out soon after Einstein discovered general relativity. In the weak gravity
limit, gravitational waves are described by the tranceverse-traceless (TT) components of the
metric and propagate with the speed of light. They are generated whenever matter distri-
bution changes dynamically except for perfectly spherically symmetric motion. This simple

picture of gravitational waves is qualitatively valid in many realistic situations. However,
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once we try to quantify phenomena associated with gravitational waves in good accuracy,

there are many unsolved problems. In the following, I point out some of them.

A. Fundamental difficulties

The above picture of gravitational waves is valid only at the linear level. That is, if we

write the metric as

gull:qpv'l'huvy (1-1)

where 1,,, is the flat metric, the TT components of h,, (= hIT) describe gravitational waves
only when the magnitude of h,, is much smaller than unity. The difficulty arises when the
linear approximation breaks down. Because of the non-linear nature of the Einstein equa-
tions, it is not at all trivial to separate out the part of the metric that describes gravitational
waves. Furthermore, the intrinsic difficulty is due to the covariance of the Einstein equa-
tions, which is the essential part of the theory. Because of covariance, it is known that the
spacetime metric can be always put in the form of the flat metric locally at any spacetime

point, which is a mathematical expression for the equivalence principle. This implies that

even in the linear approximation limit, one cannot ascribe physical meaning to hIT locally.

B. Generation problem

Since the notion of gravitational waves is not locally defined, there is no well-defined
energy momentum tensor of gravitational waves Tj;,. Nevertheless, T4}, can be defined
if averaged over a spacetime region with linear length scale several times the characteristic

wavelength of the waves [1]. Thus a system will lose energy if gravitational waves are

generated.
Consider a system with mass M, length scale R and characteristic matter velocity v.
The gravity is weak if GM/Rc? < 1 and the system is said to be a slow motion source of

gravitational waves if v < c. For a system approximately in virial equilibrium, we have
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GM/R =~ v®. In the weak gravity, slow motion source limit, the linear approximation is
valid and the TT components of the metric at distance far away from the source (r 3> R)

are known to be given by the so-called quadrupole formula (see e.g., [2]):
2G 13 TT
kT = a [t —r/)] ", (1.2)

where I;;(t) is the quadrupole moment of the system and the superscript TT on the square
parenthesis denotes the TT projection of the quantity. Then the energy loss rate of the

system is determined by the energy carried out by gravitational waves given by

dE G /o @
(8).)-£()

where +;; = I;; — %6.51";, and (---) denotes time averaging over several periods of gravita-
tional waves,

The above formulas for 1T and ((dE/dt)gw) are valid in the leading order in v?/c?. It is
possible to include higher order corrections to these formulas in the so-called post-Newtonian
approach to gravitational waves [3]. However, the post-Newtonian approach is intrinsically
incapable of dealing with fully relativistic sources of gravitational waves, i.e., for sources
with strong gravity and/or fast motion. In such a situation, there are no known formula

that describes the generation of gravitational waves.

C. Propagation problem

The picture that gravitational waves propagate with speed of light is only valid when
the spacetime curvature can be neglected over linear scale of many wavelengths. Thus if we
denote the characteristic wavelength by A and the characteristic curvature radius by L, it is
valid only when A < L. If one considers an isolated source, this holds only in the wave zone
where r > ). However, it does not hold for the whole range of the wave zone to infinity,
not to mention the region near the source [3].

To see this in a little more detail, let us consider the Einstein equations in vacuum. If

—248—



we chose the harmonic gauge (v/=g¢**), = 0, the vacuum Einstein equations are written

in the form,
Oftae * = A*(h), (14)

where (14 is the flat spacetime d’Alembertian, h# = h#¥ — 1/20*"h*, and A" is the non-
linear term that contains quadratic and higher order terms in k,,. Thus the picture that
gravitational waves propagate with speed of light along the flat spacetime light cone is valid
only when the non-linear corrections can be neglected. Such a situation holds in the wave
zone. However, it will not hold if one considers the wave zone to infinity. This is because A,
contains not only the gravitational wave part but also the non-propagating longitudinal part
like that describes the Newtonian potential of the source. Since the Newtonian potential
decreases only as 1/r, it gives rise to the famous Coulomb logarithmic correction to the
waves. This is usually called the tail effect. In more explicit terms, it is the effect of
curvature scattering. Of course, as one becomes closer to the source, there exist not only
the effect of curvature scattering but also the effect of non-linear wave-wave interactions.
Thus gravitational waves do not propagate only along the light cone. They also permeate
into the region inside the light cone.

Again, these non-linear effects can be studied in the post-Newtonian approach if the
source satisfies the weak gravity, slow motion source condition. However, not much is known

or studied in the case of strong gravity source.

D. Radiation reaction

When a system emits gravitational waves, there will be radiation reaction to the system.
In the weak gravity, slow motion limit, it is known that one can choose a gauge in which the
metric takes the Newtonian form and the reaction is described by a single reaction potential

@react- It is given by

GO . ;
¢r¢act = 5_‘;"1'1'_7'3 z, (1.5)
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where z' are the locally Cartesian coordinates with z* = 0 being the center-of-mass of the
system [2].

However, the notion of locally defined reaction force as given in the above cannot exists
in fully relativistic situations, simply because it is against the very nature of covariance or
of the equivalence principle; the reaction must be necessarily non-local in nature. One case
in which this non-locality of the reaction force can be made manifest is the test particle
limit of particle motion in a given background spacetime. In this case, apart from a subtlety
associated with the divergence arising from the self-gravity of the particle, it can be shown

that the first order correction to the equation of motion takes the form [4,5],
m2ue(r) = & = / dr' v® ., (2(7), 2(r")) w*(+')u(7) (1.6)
dT By k] ? M

where m is the mass of the particle, 2#(7) is its world line with 7 being the proper time, u* =
dz*/dr and v®,,(2,r) is a certain bi-tensor constructed from the tensor Green function of
the background spacetime, which hence depends on the background curvature. Apparently,
the deviation from the geodesic motion due to the radiation reaction depends on the entire
history of the particle motion.

For general cases, it is completely unknown if there exists a covariant formula such as

above which describes the radiation reaction even in a formal level.

II. BLACK-HOLE PERTURBATION APPROACH

Now let us turn to the black-hole perturbation approach. Black holes are most relativistic
astronomical objects and we have exact solutions of the Einstein equations that describe
black holes. Hence black holes are often used to examine various relativistic astrophysical
phenomena as well as to test various theories. As for gravitational wave physics, studies of
the perturbations of black-hole spacetimes will give us insight into the nature of gravitational
waves in the case of strong gravity such as the effect of curvature scattering in fully non-linear

regime. Furthermore, the existence of the so-called quasi-normal modes of black holes [6]
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enables us to study the intrinsic physical properties of black holes in detail and perhaps has
profound implications to the radiation reaction problem. Thus it is hoped that the black-
hole perturbation approach can (at least partially) solve some of the unsolved problems
discussed in the first part of this talk.

In the following, however, we do not consider these issues but confine our attention to a
topic of gravitational radiation from coalescing compact binaries. Recently this has became
a subject of great interest because one of the most promising targets of the planned future
gravitational wave detectors such as LIGO [7,8]/VIRGO (9] is the gravitational radiation

from compact binaries just before their coalescence, the so-called “last three minutes” [10).

A. Dawn of Gravitational Wave Physics

Recently, many gravitational wave experiment groups over the world are aiming to con-
struct long arm-length interferometric gravitational wave detectors. Among such projects
are LIGO (7,8] and VIRGO (9]. These detectors are expected to have sensitivity of k < 10~
over a broad frequency band (10 ~ 1000 Hz) and will be in operation by the beginning of
the next century.

Among the possible sources of gravitational waves which can be detected by these detec-
tors, coalescing compact binaries at their final stage of a few minutes are the most promising
candidates. One reason is that we expect such events to occur ~ 3/yr within 200Mpc [11].
Another reason is that the amplitude of gravitational waves from an inspiraling binary at
distance of r Mpc will be A ~ 10~2(100Mpc/r), hence can be detected by LIGO and
VIRGO if such events occur. Finally, since most of the binaries are expected to be settled
down to quasi-circular orbits due to the radiation reaction by the time they come into the
LIGO/VIRGO frequency band, it is relatively easy to make accurate theoretical predictions
of the gravitational waveforms.

Gravitational radiation from coalescing compact binaries at its inspiral stage have a

characteristic waveform, called a “chirp” signal, with both the frequency and amplitude
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increasing rapidly until the final coalescing stage begins [8]. The last few milliseconds of
coalescence are the stage which is not yet well-understood and is an issue of numerical
relativity. But after that stage when the coalesced object is expected to become a black
hole, the gravitational radiation will again have a characteristic waveform of a damped
oscillation with frequency and decay rate determined by the mass and angular momentum
of the black hole, the so-called quasi-normal mode oscillations [6)].

Turning back to the inspiral state, since how the chirp signal develops in time depends
on the rate of gravitational radiation, which further depends on orbital parameters of a
binary, it brings us rich information about mass, spin and other physical quantities of the
binary stars. In addition, together with the detected amplitude of gravitational waves, we
will have an accurate measurement of the distance to the source, by which we may be able
to determine cosmological parameters of the universe. Furthermore, provided we have an
accurate theoretical prediction of the evolutionary behavior of inspiraling binaries based on
general relativity, the observed data can be used to test the validity of general relativity or
constrain alternative theories of gravity.

Also we may be able to obtain direct information about physics of high density matter
such as the equation of state of neutron stars from the observed waveforms of the coalescing
stage. The detection of quasi-normal mode oscillations of a coalesced object will be a direct
evidence of the existence of a black hole.

All of these anticipations make us feel that the next century is an era of gravitational
wave physics and astronomy. However, as mentioned in the above, it is necessary for us
to have a definite and accurate theory of gravitational radiation from inspiraling compact
binaries to realize these anticipations.

Observationally, physical information contained in the detected gravitational radiation is
extracted out by the matched filtering technique, that is, by cross-correlating the incoming
noisy signal with theoretical templates. If the signal and templates get out of phase with
each other by one cycle as the waves sweep through the LIGO/VIRGO band, their cross cor-

relation will be significantly reduced. This means that it is essential to construct theoretical
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templates which are accurate to better than one cycle during entire frequency sweep through
the LIGO/VIRGO band in order to make optimal use of the observed interferometric data.
In a very inspiring paper by Cutler et al. [10], entitled “The last three minutes”, this point
was clearly emphasized. Thus, much effort has been recently made to construct accurate
theoretical templates [12].

To construct theoretical templates, the post-Newtonian approximations are usually em-
ployed to solve the Einstein equations. Up to now, the gravitational wave luminosity from
a binary in quasi-circular orbits has been calculated up through 2.5PN order, i.e, O(v®)
beyond Newtonian quadrupole formula where v is the orbital velocity of the binary [13,14].
However, based on numerical calculations of the gravitational radiation from a particle in
circular orbit around a non-rotating black hole, Cutler et al. [15] showed that evaluation
of the gravitational wave luminosity to a post-Newtonian order much higher than presently
achieved level might be required. Then in order to find out the necessary post-Newtonian
order, the same problem was investigated by Tagoshi and Nakamura {16] with much higher
accuracy, to 4PN order and concluded that the accuracy to at least 3PN order is required
for the construction of effective theoretical templates. In addition, they found logarithmic
terms in the luminosity at 3PN and 4PN orders.

These previous studies using the perturbation equation of a black hole show its power-
fulness to the problem. Although restricted by the condition that ¢ <« M, where g and
M are the reduced mass and total mass, respectively, of the system, because it takes full
account of relativistic effects by nature, we can spell out the relevant post-Newtonian effects
from perturbation calculations in a rather straightforward manner. Hence it plays a com-
plementary role to the standard post-Newtonian approach and provides a useful guideline
for higher post-Newtonian calculations.

To strengthen the black hole perturbation approach further, it is then much desirable

to develop an analytical method in which coefficients of the post-Newtonian expansion of
the luminosity, for example, are evaluated exactly so that the results can be compared with

those by the standard post-Newtonian calculations without any ambiguity. Poisson [17]
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first developed such a method and calculated the luminosity to 2PN order from a particle in
circular orbits around a non-rotating black hole. Then extending Poisson’s method, a more
systematic method was developed by Sasaki [18] and analytical waveforms and luminosity
up through 4PN order were analytically derived by Tagoshi and Sasaki (19]). The results
were in excellent agreement with those of Tagoshi and Nakamura (16]. Recently, the method
has been extended to the case of a rotating black hole by Shibata et al. [20). They have
obtained the energy and angular momentum luminosities to 2.5PN order from a particle
in circular orbits with small inclination angle, which hence clarified the next leading order
effects of spin-orbit coupling. For slightly eccentric orbits around a Kerr black hole, Tagoshi
has done the calculation to 2.5PN order [21]. For circular orbits around a Kerr black hole,
the calculation to 4PN order has been done by Tagoshi et al. [22]. Furthermore, extention
of the method to the case of a spinning particle has been done by Tanaka et al. [23] and the
luminosity to 2.5PN order has been obtained for circular orbits, which includes the effect of
spin-spin coupling.

In the next subsection, I review the black-hole perturbation approach based on the
Teukolsky [24] and Regge-Wheeler equations [25]. (Due to limitation of space, however, I
focus on the case of a non-rotating black hole in this talk.) Then in the proceeding subsec-
tions, I summarize these recent results and discuss future issues. For notational simplicity,

we set ¢ = G = 1 in the following.

B. Regge-Wheeler-Teukolsky formalism

Let us consider the case when a particle of mass p is in a circular orbit around a
Schwarzschild black hole of mass M » u. The gravitational waves radiated out to in-
finity from the system is then described by the fourth Newman-Penrose quantity v, [24],
which is related to the two independent modes of gravitational waves h, and hy at infinity

as

Y= %(71.,. — ihy). (2.1)
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On the Schwarzschild background, it can be decomposed as

Z lew -2Ylm(0 ‘P)e-w‘y (22)
lmw
where _,Y,, are the s = —2 spin-weighted spherical harmonics. The radial function Rem.

satisfies the inhomogeneous Teukolsky equation [24],

[A ;’r (i; ) _ U(r)] Romo(r) = Temo(r), (23)

where
U(r)= —[wzr —diw(r =3M)]| - (£-1)(£+2), A=r(r-2M), (2.4)

and Tym. is the source term determined by the energy momentum tensor of the particle.
To solve Eq.(2.3), we employ the Green function method. Then Ry, at r — oo takes

the form,

lew(r - °°)

-2
2w R / dr R (1) Tomu(r) A"
=T elm Zlmun (2‘5)

where Ri(r) is a homogeneous solution which satisfies the boundary condition,

) Dy, A for r* = -0,

(r)= - o (2.6)
r3Bg:le|wr + r-lB;:e-wf fOl’ re— +00 ,

where r* = r 4+ 2M In(r/2M — 1). In the case of a circular orbit with radius r = ro, Tym.(r)

takes the form,
Ttmw ~ [a0b(r — ro) + a18'(r — 1) + a26"(r = ro)] §(w — mQ), (2.7)

where (0 is the orbital angular frequency. Hence what we need to know are the behavior of
Rim. around r = ro and its incident amplitude Bj3. Also because of Eq.(2.7), the amplitude

ngw takes the form,

Ztmw = Zimb(w — mQ). (2.8)
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In terms of Z;n, the gravitational wave form at infinity is given by

. 2 1 . .
hy —ihy = - 3 :,'Ztm —2Yem (0, p)e~ "), (2.9)
im

and the luminosity is given by

o !
= IZ Zl | Zew I* /2%, (2.10)
=2 m=

where w = m{).

Now since the radius of the orbit and the angular velocity are related as

M—(rﬂ = v?, (2.11)
To

where v is the orbital velocity, we have the small non-dimensional parameters of the prob-
lem, row = O(v) and Mw = O(v®). Originally the parameter row represents the slowness of
the particle motion, hence plays a role of the post-Newtonian expansion parameter. The pa-
rameter Mw represents the strength of the gravity, hence plays a role of the post-Minkowski
parameter. In the present case, since the particle is in bound orbits, these parameters are
related to each other as shown above through the orbital velocity of the particle.

Thus our task reduces to calculating the ingoing-wave Teukolsky function R{® at rw =
O(v) < 1 as well as to extracting out its incident amplitude Bj%, to a required order of
Mw = O(v?).

For technical reasons, however, it is much easier to deal with the Regge-Wheeler equation,

rather than the Teukolsky equation, by the transformation [26,27],

n in d rz d N
v — Rlu =A (d -+ tw) A (-‘F + zw) rXe. (212)

Then X, satisfies the homogeneous Regge-Wheeler equation [25),

[+ - vt Kesr) =0, (213)
where
Vi(r) = (1 - %) (ﬁe-}l—) - %i) . (2.14)
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Corresponding to Eq.(2.6), we have the asymptotic forms of X} as
. Croe™ ™", r" — —00
Xu(r) = S (2.15)
Afitewr 4 Alfe~w | r* = to00.

where A", AY and C,, are respectively related to Bj", Bg"! and D,, defined in Eq.(2.6) as

0 Lin
By = — 201 At
Bou! = _4w2A¢;:t’
Dy, = 2 Co, (2.16)

16(1 - 2iMw)(1 — 4iMw)M?
where ¢o = (£ —~ 1)¢(€ + 1){(£ + 2) — 12iMw.
To make the structure of the equation more transparent, we rescale the independent

variable r to z = rw and rewrite the homogeneous Regge-Wheeler equation as

[—+1 Z) (M 3‘)] Xin (2.17)

z? 23

where 2* = z +¢ln(z — ¢) = r*w+ eln e with ¢ = 2Mw, and we have suppressed the index w
since it is trivially absorbed in € and z. As noted previously, the post-Newtonian expansion
corresponds to expanding X;* with respect to ¢ and evaluating X" at z < 1 as well as A}
to required orders in €. This procedure to the first order of ¢ was carried out by Poisson [17].
However, as can be seen from the structure of Eq.(2.17), the equation would become very
complicated if we go beyond the first order in this procedure. Further, it becomes rather
unclear how to impose the correct boundary condition that Xj* o e~**" at horizon (z — ¢)
if we expand the equation naively in powers of ¢, since z* involves € in itself.

These difficulties were then resolved by Sasaki [18] by the following choice of the depen-

dent variable. Setting
Xjp = im0, (2), (218)

we find that Eq.(2.17) becomes

d 2d e Ld[1d
[M +i4 (1 _X ; 1))] b= e [?E (e'*z’e,(z))] : (2.19)
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Since ¢ appears only as an overall factor on the r.h.s., this form of the equation is most

suited for an iterative treatment. Thus expanding £, with respect to ¢ as

oo

&(z) = 3 e (2), (2.20)
n=0
we obtain the recursive equations,
d 24 (D] oy e d [Ld (s ioy
[dzz +oot (1 - )]e, (2) = ee™— |5 (=226 2)|, (221
with the lowest order solution given by
€9 = o), 4 g0, (2.22)

where j, and n, are the usual spherical Bessel functions. The boundary condition is that
£ be regular at z =0 [17,18]. Hence 8 = 0 and for convenience we set ol” = 1.

Putting the Regge-Wheeler equation in the above form helped us a lot to calculate the
first and second order solutions by iteration {18]. Using a similar transformation of the
Teukolsky equation [28], one obtains similar iterative equations for a Kerr black hole and
the first and second order solutions are expressed also in closed analytical form [20], which
are sufficient to calculate the gravitational wave luminosity to 4PN order.

However, after the present workshop, we were informed that Mano and Takasugi [29] have
succeeded in developing a much better systematic method to obtain the solution by using the
Coulomb wave functions and the hypergeometric functions. In their method, calculations
to a very high order, including the effect of black hole absorption, are straightforward and

surprisingly simple. Since this makes the original method absurd, we will not go into the

details of it, but just present the results.

C. Gravitational Wave Luminosity up through 4PN Order

Here we only show the final result of the luminosity to 4PN order for circular orbits
around a Kerr black hole by summarizing the results obtained in [19,20,22,23]). The orbits

are assumed to be on the equatorial plane with the angular frequency Q. The black hole
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has mass M and the angular momentum Jpy. For the case of spinning particle, the z-
component of the spin angular momentum is j,, and the spin-dependent part is calculated
only to 2.5PN order in the first order in the magnitude of spin [23]. Further in this case,
we note the orbit precesses slightly with inclination proportional to the radial component of

the spin, but it does not affect the luminosity. The result is

dE\ (dE 1247 , 11 5\ 4
(Z)- (E)N{l-m” +(ar-Fe-33) v
4711 33 , 31 .\ ,  (-8191x 59 13\
+('W+Eq +_s"’3)” +( 672 _ﬁ"—ﬁs) Y
6643739519 17127 1672 3424 In2
(69854400 5 T3 T T
1712, 657 611 ,) /8

LLLLY P

105 6 915047
(—162857r 162035 657 , 71

_ s\ o
500t 3sss ¢T3 24")”
_ 328105549467 2325077 _1369+7 39931 In2 _ 47385 In3
3178375200 T 4410 126 294 1568

232597, 3597 22667 , 17 4) ,,,}

Inv —_

3410 VRN TIT AT (2.23)

where

dE 32\ .0

(%) =2 (&) (224
and

v = (M), q:= Ll §:= ”J—z- (2.25)

D. Future Issues

Here I discuss several issues of the Regge-Wheeler-Teukolsky approach to be solved in
order to make this approach more realistic and physically more fruitful.

We have succeeded in obtaining the luminosity to 4PN order in the post-Newtonian ex-
pansion by the Regge- Wheeler-Teukolsky approach. In the first place, it is of interest to

proceed the calculation to a much higher order, including the effect of black hole absorption.
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In one respect, it will clarify the convergence property of the post-Newtonian approxima-
tion much better than what we know now and will give us more insight into the problem
of matching the post-Newtonian spacetime with the fully relativistic spacetime, which is
necessarily solved in order to give reasonable initial data of a coalescing compact binary
to be used in numerical relativity. In another respect, it will give us detailed information
of how the black hole’s spacetime geometry affects the luminosity and waveforms of the
gravitational radiation emitted by a small mass particle, hence will helps us to understand
necessary ingredients to reconstruct the geometry out of the information contained in the
waves [30].

However our approach is limited by the condition that one of the binary stars has a much
smaller mass than the other, i.e., 4 € M. In order to make this approach more fruitful, it
is then necessary to extend it so that it can take account of finite /M effects. Concerning
this point, it is important to include the effect of radiation reaction in this approach. At the
moment, our approach relies on the adiabatic approximation of the reaction. But even if we
accept this approximation, there remains one important problem; that is the backreaction
to the Carter constant. In the case of a non-rotating black hole, we may assume the orbit to
be in the equatorial plane without loss of generality. Then the energy and the z-component
of the angular momentum completely determines the orbit. Hence knowing the energy and
angular momentum fluxes averaged over several orbital periods is enough to solve the adia-
batic evolution of the orbit. But this will not be the case once we consider a rotating black
hole, since the inclination of the orbit away from the equatorial plane becomes meaning-
ful, which is represented by a non-zero value of the Carter constant. The problem is that
the Carter constant is not associated with a Killing vector of the geometry, hence no field
quantity representing the Carter constant has been known. Thus one cannot calculate the
backreaction to the Carter constant by just evaluating the gravitational waves at infinity. In
this sense, a simple adiabatic approximation scheme seems to break down anyway as scon
as we take the rotation into account. Furthermore, if we take into account spin of the small

mass particle, the situation gets worse; the equation of motion is not integrable in this case
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from the beginning. In order to clarify the validity limit of the adiabatic approximation, as
well as to find out the backreaction to the Carter constant, we need to formulate a method
in which the non-adiabatic backreaction can be taken into account. In other words, we need
to derive a backreaction force term in the equation of motion for the particle. This will be
analogous to the post-Newtonian formulation which includes the back-reaction potential to
a required order of accuracy.

Whether such a backreaction force term can be obtained for general orbits is very
non-trivial. However, at least for a Kerr black hole, we know from the classic work by
Chrzanowski [31] that the tensor Green function can be obtained in a separable form. Hence
we may calculate the perturbed metric at any spacetime point. Then once we obtain a reli-
able method of regularizing the self-energy, we will be able to derive the backreaction force
term. In this connection, for quasi-periodic orbits, it may be possible to justify the earlier
work of Gal'tsov [32], in which the backreaction force term is assumed to be derivable from
the radiative Green function, i.e., the retarded minus advanced Green functions. Recently,
Ori has proposed another way of deriving the reaction force [33]. He has shown that the
reaction force calculated solely in terms of the retarded Green function but averaged over
many periods gives the same result as that of Gal'tsov as long as the energy and angular
momentum are concerned. Finally, DeWitt-Brehme's covariant approach [4,5] suggests that
one should use the radiative Green function but with the integral domain bounded to the
past lightcone of the world point of the particle, see Eq.(1.6). However, It is not clear at all
at present which approach gives the correct answer for the Carter constant, if ever.

Another important but difficult problems is to take into account the effect non-linear in
#/M in the equation of motion. In the post-Newtonian approach, we know this effect appears
already in 2PN order in the luminosity formula [12], well before the radiation reaction comes

into play. To my knowledge, however, no serious attempt has been made in this direction

so far.
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III. SUMMARY

We will have a new era of gravitational physics and astronomy in the next century.
Gravitational waves will be detected, the data will be taken by detectors at various places in
the world, and will be carefully analyzed through the international networks of the detectors.
In order to optimize the use of such data, it is essential that we understand physics of
gravitational waves as deep as possible. In the light of this present situation, I first reviewed
some of unsolved conceptual as well as technical problems in gravitational wave physics.
Then I reported on some recent progress made in the black-hole perturbation approach. It

is hoped that this approach will fill some gaps in our knowledge and lead us to a better

understanding of gravitational waves.
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Using the post-Newtonian expansion technique of the gravitational
wave perturbation around a Schwarzshild black hole, we calculate the
energy flux of gravitational waves induced by a particle moving in circu-
lar orbits. We calculate the energy flux emitted as gravitational waves
up to v'! order beyond Newtonian, where v = (M/ro)"/?

I. INTRODUCTION

As was reported in the contribution by Sasaki in this proceedings, gravitational waves
from the coalescing compact binaries are the most promising candidates which will be able
to be detected by the near-future, ground based laser interferometric gravitational wave
detectors such as LIGO and VIRGO.

If a neutron star or a small black hole spirals into a massive black hole with mass
< 300Mp, the inspiral wave form will be detected by above detectors. When a signal of
gravitational waves is detected, we will try to extract parameters of binaries, such as masses
and spins etc., from inspiral wave forms by matched filtering technique [1]. In this method,
parameters of binaries are determined by cross-correlating the noisy signal from detectors
with theoretical templates. If the signal and the templates lose phase with each other by
one cycle over ~ 10° — 10* cycles as the waves sweep through the LIGO/VIRGO band,
their cross correlation will be significantly reduced. This means that, in order to extract the
information optimally, we need to make theoretical templates which are accurate to better
than one cycle during entire sweep through the LIGO/VIRGO band [1].

To calculate inspiraling wave forms from coalescing binaries, the standard method is
the post-Newtonian expansion of the Einstein equations, in which the orbital velocity v
of binaries is assumed to be small compared to the speed of light. Although the post-
Newtonian calculation technique will be developed to apply to the higher order calculation,
it will become more and more difficult and complicated. Thus, it would be very helpful if we
could have another reliable method to calculate the higher order post-Newtonian corrections.
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As an alternative method, the post-Newtonian expansion of the black hole perturbation
was developed as was reported in Sasaki’s contribution. There one considers gravitational
waves from a particle of mass g orbiting a black hole of mass M assuming y < M. Although
this method is restricted to the case of g € M, we can calculate very high order post-
Newtonian corrections of gravitational waves by means of relatively simple analysis compared
to the standard post-Newtonian analysis.

Since LIGO and VIRGO will be able to detect a signal of gravitational waves from
binaries of mass less than ~ 300 Mg, it is important to make a template for such a binary. The
frequency of gravitational waves for such a massive binary, however, comes into the frequency
band for LIGO and VIRGO at r/M ~ 16(100Mg/M)??, i.e., highly relativistic region. We
do not know whether the convergence property of the post-Newtonian approximation is good
or not in such a highly relativistic motion. As was reported by Tagoshi and Sasaki [2], the
post-Newtonian convergence of the total orbital phase during the detectable frequency band
for LIGO and VIRGO can be very slow for these binaries. Hence, it is an urgent problem to
clarify up to what point the convergence property of the post-Newtonian expansion is good.
For this purpose, we study the energy loss rate of the binary up to v'! order in this paper.

The present small contribution is organized as follows. In section 2, we show the general
formulas and conventions used in this paper very briefly. The full description of the formalism
will be found in Tagoshi and Sasaki [2] and references therein. In section 3, we show the
expressions of the energy flux extended to O(v'!). In section 4, we briefly discuss the
implication of our results.

Throughout this paper we use the units of c =G = 1.

II. GENERAL FORMULATION

For the reader’s convenience, we attach a minimum amount of the explanation about
the black hole perturbation formalism in order to make the convention definite. For the
reader who wants to know the details, see the reference [2]. (Some typographical errors in
the formulas in this reference are corrected here.) We consider the case when a particle of
small mass u travels a circular orbit around a Schwarzschild black hole of mass M < p.

To calculate the gravitational luminosity, we consider the inhomogeneous Teukolsky
equation,

d
[Aza? (‘i—%) - U(r)] leu(r) = Tlmw(r)a (2'1)

where

U(r) = g [w’r2 — diw(r - 3M)] - (€=-1)¢+1), A=r(r-2M), (2:2)

—-267—



and Tym, is the source term which reflects the energy momentum tensor of the small particle.
We omit the explicit form of Ty, (r) here.

We solve Eq. (2.1) by the Green function method. For this purpose, we need a homoge-
neous solution R} of Eq. (2.1) which satisfies the following boundary condition,

Rin Dy, A%ewr’ for r* = —oo, 23)
to = . ) o .
Byt A" 4 ro1Bin A2~ for r* — +00,

where r* =r + 2M In(r/2M — 1). Then the outgoing-wave solution of Eq. (2.1) at infinity
with the appropriate boundary condition at horizon is given by

3ewr' 00 i 2
nn -
FBE /2 AR Tin ()

=:r%¢"" Zimo- (2.4)

Rmu(r = o0) =

In the case of a circular orbit, the specific energy £ and angular momentum L of the particle

are given by
E = (ro — 2M)/y[ro(ro — 3M), (2.5)

and

L = /Mro/\/1 - 3M/r,, (2.6)

where rg is the orbital radius. The angular frequency is given by Q = (M/r3)"/2. Defining
abem by
obtm = % [(€ = 1)e(€ + 1)(€ + 2]/ oYem (go) Ero/(ro — 2M),
b = [(€ = D(E+ 2" Yo (5,0) Lo,

—abem = —2¥im (3 o) i, @2.7)

2 )
where ,Yi (0, ) are the spin-weighted spherical harmonics, Z,,, is found to take the form,

Zimw = Zmb(w — mQ), (2.8)

where

T
Zlm =

{[ obem — 2i_1bem (1 + —wro/(ro - 2M))
lwroB"‘
+z_2b¢mwro(1 - 2M/7‘0)(-2) (1 - M/T‘o + 52‘(07'0)] ;:‘

. 1
+ [i-1bem —-2 bem (14 iwrd/(ro — 2M))] ro ;3’(r.,)+§_,b,,,,ro .r."(,.o)} . (29)
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In terms of the amplitudes ng, the gravitational wave luminosity is given by

i Y | Zim 2007, (2.10)

2 m={
where w = mQ. Thus the only remaining task is to calculate the series expansion of the
ingoing-wave Teukolsky function R in terms of r and the Wronskian Bi",.
In the next section we give the explicit expressions of these quantities.

III. RESULTS

As noted in the Sasaki’s contribution, a new method to calculate the Teukolsky function
in post-Newtonian expansion was found by Suzuki, Mano and Takasugi [3]. We have derived
the following results by using the old formalism developed by Sasaki [4] but the details of
derivation is too complicated and seems less valuable to be noted here after a new powerful
method was developed. Thus here will be the final results only. '

The post-Newtonian expansion of the Teukolsky function in the near zone, where z := wr
is small, is given by

R,Jn=(4_z“_ 8i o _222° 2i 7+23z8+2_i29_Lz"’
v 5 157 T 105 35° " 1890 ' 945° 21580
i 4, . 592" : 13 83 214 i 5
~24948 © T 12972960 ' 2162160 ° 1945944000 ~ 277992000 - )

+ —8243_ﬁ2,1 82° 13 8 109z7+ 341
5 5 63 00 1890 " 22680 -
94032° 293 ,, 389632 75529 12)

T3118500 594000 ° T 567567000 T 9081072000 °

(£+123317z“ 231479¢ /5 889954 26 _454499: 7

5 7 736750 ' 110250 ° 1157625 2315250 -
215321483 :° | 35106811i , 2142 log:
5501034000 5501034000 525
_428i 25 log 7 4 1177 z®logz 1074 2" log _2612%logz  107i ] 2
1575 - 6 11025 ' 3675 - 396900 99225~ 87
. ( ~668235 _ 99851i , 504569:° 2488639 , 428" logz
12250 55125 694575 3969000 525
1071 A 428z° logz 13914
— 1 6 3
*350 © 187+ 615 * Tg000° 1% z) ¢
4714872  263i 2 22 logz\ ,
220500 1260 - 525 ’
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log2)® i
__E;_ﬂ_, (v +log2) — (7+l 2)2+7"(‘Y_'|:1<7_8_)_+%(7+10g2)3)1’
B, = — = gmiclonze+) (15- %ic) [1 +e (% -2 —i(y+log2))
-261 57 52 (v +log2) (v + log2)?
2 bl geAl T e el 2 AT VS AT
e\ "ty 2 T3 "(7+l°g ) -3
3623 1697  48li , =° 169 397 (v +log?2)
3 2 _ - —_—— 0 1
e ( 1080 T 504 1008 ST “3) + 555 (Y12 28
log 2
-2-4# ('1+log2)——-(7+l 2)’+”(“’#—)- + (7 +log?2) )]

In the expression of Bj",

we have assumed that w is positive. The expression corresponding
to negative w can be obtained by using the relation that Bj* , = Bir*. For £ > 4, we only

need the forms of Bi® valid up to O(e), which can be found in Tagoshi and Sasaki [2].
Then it is straightforward to obtain the luminosity of the gravitational waves. We just

give the total luminosity here:

dE _ gg L7, Ml 481917
dt  \dt 336 9072 672
6643739519 1712y  1712logw N 167% 3424 log2 o 162857 ;
69854400 105 105 3 105 504
(323105549467 232507  232597logv
3178375200 4410 4410
136972 , 3o931 log2 47385 log3) ,
126 204 1568
2659786675197  6848ym  6848logvrw 136967 log2) ,
745113600 105 105 105 v
N (_ 2500861660823683 9166284677 916628467 logv _ 4242232
2831932303200 7858620 7858620 6804
83217611 log2 | 47385 log3\ |,
1122660 196 /)’
8399309750401 7  177293y7  177293logv
101708006400 1176 1176

8521283 7 log2

1421557 log 3

17640

dE

dt

784

)U“

= (-—) [l — 3.711309523809524 v? + 12.56637061435917 v°
N

—4.928461199294533 v* — 38.29283545469344 v°
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+(115.7317166756113 — 16.3047619047619 log v) v°

—101.5095959597416 v”+

(—117.5043907226773 + 52.74308390022676 log v) v°
+(719.1283422334299 — 204.8916808741229 log v) v°

+(—1216.906991317042 + 116.6398765941094 log v) v'°
+(958.934970119567 + 473.6244781742307 log v) v'! + - ] , (3.3)

where (dE/dt)y = (32/5)(p/M)*v'° is the luminosity given by using the well-known
quadrupole formula.

IV. DISCUSSION

We calculated the energy flux induced by a particle of small mass in a circular orbit
around a Schwarzschild black hole up to O(v'") beyond the quadrupole formula analytically.

We first compare our results with the numerical estimate given by Tagoshi and Nakamura
[5). The relative difference log,q |((dE/dt)(™ — (dE/dt)nym)/(dE/dt)num|, where (dE/dt)™
is the energy flux calculated by the formula (3.3) truncated at v™ order and (dE/dt),um
is that obtained by Tagoshi and Nakamura numerically, is plotted in figure 1. The axis of
abscissas represents the radius of the orbit of the small mass particle. The numbers on the
lines in figure 1 are the post-Newtonian order, n, in (dE/dt)™. This comparison shows
that the convergence is monotonic in the presented range (ro > 100) and that the numerical
estimate given by Tagoshi and Nakamura is very accurate. For smaller radius we compared
our present results with the data used in Tagoshi et. al. [6]. It was plotted in figure 2,
which is the same plot as figure 1 but is plotted for smaller ro. From these plots, we can see
that the series with n = 3m — 1, where m is an integer, seems steadily converging. Several
spikes observed in these figures are nothing but the points at which (dE/dt)™ coincides
with (dE/dt)uum.

For the innermost stable circular orbit (rp = 6), at which the post-Newtonian correction
becomes most important. the convergence is slow. Even the formula valid up to O(v!?) still
has relative error of 4%. As was pointed out by Tagoshi and Sasaki, this fact leads to a
relatively large error in the estimate of N, where N is the total cycle of the gravitational
waves from an inspiraling compact binary during sweep through the LIGO detection band,
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ri  QdE/dr
= —_ 4.1

N /r, o B ] (4.1)
Here r; and r; is the initial and final orbital separations of binary, respectively. When
# € M, dE/dr can be evaluated by the relation (2.5) and|dE/dt| by the energy loss rate
(3.3). To examine the effect on N due to the error in the estimate of the energy loss rate by
using the present black hole perturbation analysis, we introduce AN which is defined by

5

AN=32_7r

Mfr i
/ ! gp%nY ’ (4.2)

v
Mfr; v8

where a, is the coefficient of the O(v®) term in the gravitational wave luminosity, i.e.,
T axv* = (dE/dt)/(dE/dt)n.
For (1.4Mq, 10Mp) binary, r; ~ 7T0M and r; = 6M. Then we obtain

AN©® ~ 20, ANT ~4, AN® ~ 1,
AN® ~ 2, ANGO 1 ANUD 4. (4.3)

Here we have confirmed again that the convergence in this case is not rapid. However, in
this case, as u/M is small, the standard post-Newtonian calculation, in which the both
stars are supposed to have comparable masses, will be improved much when the leading
order correction in u/M which can be obtained by the black hole perturbation is taken
into account. In the case of nearly equal mass binary, such as (1.4Mg, 1.4Mg) neutron star
binary, the next order correction in /M can be large. But, fortunately, the convergence
with respect to the post-Newtonian expansion is not so bad in this case. Thus the standard
post-Newtonian calculation with the correction obtained by the black hole perturbation will
give a rather good template in both cases. As the standard post-Newtonian calculation has
been already completed up to O(v®) by Blanchet, in order to improve the template, it will
be important to examine the next order correction both in #/M beyond the linear order
and in v beyond O(v®).
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Fl g 1 The relative error of the post-Newtonian formula
' of the energy flux versus the orbital radius. The
numbers in the figure show the post-Newtonian
order taken in the estimate of the energy flux.

lo 8.8,
F] g2 The same plots for smaller orbital radius.
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ABSTRACT

The post-Newtonian(PN) hydrodynamic equations in the (3+1) formalism are obtained
up through the 2.5PN order including the quadrupole gravitational radiation reaction. These
equations are valid in the various slice conditions although we adopt a kind of transverse
gauge condition to determine the shift vector. In particular, we describe methods to solve
the 2PN tensor potential which arises from the spatial 3-metric. Our formulaton in the PN
approximation using the (3+1) formalism will be useful for simulations providing an initial

data for the final merging phase of coalescing binary neutron stars which can be treated only

by fully general relativistic simulations.

* This is based on H. Asada, M. Shibata and T Futamase, Post-Newtonian Hydrodynamic FEquations Using

the (§+1) Formalism in General Relativity, submitted to Prog. Theor. Phys.
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1. Introduction

Kilometer-size interferometric gravitational wave detectors, such as LIGO"and VIRGO™,
are now in construction aiming at direct detection of gravitational waves from relativistic
astrophysical objects. Coalescing binary neutron stars are the most promising sources of
gravitational waves for such detectors. After a long time emission of gravitational waves, the
orbital separation of binary becomes comparable to the radius of the neutron star. Then, each
of binary neutron stars begins to behave as a hydrodynamic object, not as a point particle,
because they are tidally coupled each other. Recently, Lai, Rasio and Shapiromhave pointed
out that such a tidal coupling of binary neutron stars is very important for their evolution in
the final merging phase because the tidal effect causes the instability to the circular motion of
them. Also important is the general relativistic gravity because in such a phase, the orbital
separation is larger than ~ 10% of the Schwarzschild radius of the system. Thus, we need not
only a hydrodynamic treatment, but also general relativistic one to study the final phase of
binary neutron stars.

Fully general relativistic simulation is sure to be the best method, but it is also one of the
most difficult ones. Although much effort has been focused and much progress can be expected
therem, it will take a long time until numerical relativistic calculations become reliable. One
of the main reasons is that we do not know the behavior of the geometric variables in the
strong field around coalescing binary neutron stars. Owing to this, we do not know what sort
of gauge condition is useful and how to give an appropriate general relativistic initial condition
for coalescing binary neutron stars.

The other reason is a technical one: In numerical relativistic simulations, gravitational
waves are generated when we need to cover a region L > A ~ the wavelength in order to
perform accurate simulations. This is in contrast with the case of Newtonian and/or PN
simulations, in which we only need to cover a region (A >)L > R ~ the orbital separation. At
present, we had better search other methods to prepare an initial condition for binary neutron
stars.

The PN approximation in the fuid was pioneered by Chandrasekhar et. al'who obtained
the equation of motion up to the 2.5PN order. However, their expressions include potentials for
non-compact sources which should be solved rather carefully in practical cases. On the other
hand, using the ADM gauge, Blanchet et. al. obtained the (1+2.5)PN formulawhich only
consists of potentials for compact sources. Their formula actually works well in simulations of
the coalescing binary neutron stars!”Our aim is to establish the formulation up to the 2.5PN
hydrodynamic equation for a fairly wide class of gauge conditions and, in particular, to provide
methods to solve the 2PN tensor potential which was not treated by Blanchet et. al’,

We use the units of ¢ = G = 1 in this paper. Greek and Latin indices take 0,1,2,3 and
1,2, 3, respectively.
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2. (3+41) Formalism for Post-Newtonian Approximation
2.1 (3+1) FORMALISM
In the (3+1) formalism, the metric is split as
Guv = Yuv — Ruliy, (2.1)
where #i; = (—a, 0). Then the line element is written as

ds? = —(a® - Bif')dt? + 2Bidtdz’ + vijdz'dz’. (2.2)

To distinguish the wave part from the non-wave part(for example, Newtonian potential)
in the metric, we use %;; = ¥~ *v;; instead of ¥ij where ¢ = det('/;,')l/l2 so that det(%;;) = 1is
satisfied. Using the extrinsic curvature, K;;, we define A;; as

- _ 1
Ajj = ¢_4A.'j =y 4(K¢j - 57.','1(). (2.3)

The Einstein equation is split into the constraint equations and the evolution equations. The
formers are the so-called Hamiltonian and momentum constraints which respectively become

A = Lo s ¥ (4 a2
Ay = ctrRy —2mpyy® - & (A,,A ~K ) (2.4)
- s 2 ..
Dj(y84%) - §;p"’DiK = 8nySJ;, (2.5)
where we introduce py = Tyyn#n” and J; = —-T,wn“'y;-’, and D;, A and trR are the covariant

derivative, Laplacian and the scalar curvature with respect to %i5. Evolution equations for the
spatial metric and extrinsic curvature are respectively

d . - ot _ap 2 o
B i = —20 i + Fag— + Yitgm — 3Vigon (2.6)
o - 1 1 P 1. - 2 2 .
5-4-'1 =-¢—4[a (Rc’j - §’ﬁjtrR) - (DiDjQ - 37.','Aa) ~% (¢‘,i0.j +¢a, - 57.',"7"'1/),1:0.1)]
s iy 0B 8™ . 29fm . a 1
.. 4 Al . . ..
+0(KA,J - 2A,[A J) + e AmJ + Y Ami — gax_mAu - 87T$ (SU - 57,"'511) ,
(2.7)
9 ¢ ap'
2v=t(-ex+ B =
a - - 1 1. 2 .
&K = a( ijAY + §K2) - t-[:TAa - $7H¢,ka,; +47a(S'; + o), (2.9)

where R;;, v, Sij and 3’?,; denote, respectively, the Ricci tensor with respect of ¥, determinant
of vij, Tur%y'; and § - fig.
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In order to clarify the wave property of ¥;;, we impose a kind of transverse ga.uge. to Ay
as

hij; = 0. (2.10)

Finally, we consider the matter as the perfect fluid, T* = (p + pe + P)u”u” + Pg#", where

u¥, p, € and P are the four velocity, the mass density, the specific internal energy and the
pressure.

2.2 POST-NEWTONIAN APPROXIMATION

Each metric variable, which is relevant to the present paper, is expanded as

v=1+ ¥+ +eEev+mv+.-.,
U2
a=1-U+ (?+X) +eE@atmat...,
B = 3B+ 5)Bi + @B+ mBi + @i + .-, (2.11)
hij = (yhij + @syhij + -+,
A= (3)/1.',' + (5)4&5,' + (s)fiij +
K=gpK+5K+@gkK+...,

where subscripts denote the PN order(¢™") and U is the Newtonian potential satisfying

AgiaU = —4mp. (2.12)

From Eqs.(2.6) and (2.7), the wave equation for h;; is written as

fbﬁ'[ 7 (DtD: 'MA)'” Ty (D""D"” - §TDrDt)

- (b.-ﬁ,- - g:ﬁ,'A)a - ;(Ds'ﬁDja + DjyDia - §‘YiiD '“3"")] (2.13)

- - . - - 2 -
+2a? (KA.-,- — 24,4 ,-) + 20 (ﬁ"‘-A,,,,- + 8™ Ami — §ﬁ"_‘,,.A.-,-)
da

2 .
=B ,m’Yij) + 26 Ajj

- 167"‘1)4 ( %7,',‘5',) (ﬂ iTmj + B, ,J'le 3

=Ti5,

where (] = —gx + Afiat-

+ Hereafter, we call this condition merely the transverse gauge.
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Thus, (4)hi; is determined from

Afiayayhi = (@)Tijs (2.14)

while (5)h;; is derived from
shij(t) = / @it y)d’y. (2.15)

Up to the 2.5PN order, the hydrodynamic equations become

Si 3(51') 5 2 .
E_l_ 927 (1+2U+4U +6(4)¢'+X)P,,
, P 3, 5 4 2 32 P ")
+p.[U',{1+E+7+§v —U+§v +4v°U 4+ (2v U)(e+ p) +3(3)ﬂ,v’}
P 2
- X,.'(l +e+ ; + 22-) + 202(4)4’,& —(6)%i — ()X,
- P v?
+ v’ {(3)ﬂ,-,.-(1 +e+ > +5 +3U ) + (5)B5.i + (e)ﬂj,i} + )8 (3)Pi.i
1. -
+§v’v"((4)hjk'.'+(5)h,-k,,')+0(c 8)], (2.16)
OH O(Hv)  _r; 8 d ; s
W+T"—P[v'f+at(2 +3U) 32 {( v +3U) }+O(c )], (2.17)

where S; = a¥%(p + pe + P)uly;, S® = a¥S(p + pe + P)(u°)? and H = ay®peu®.

3. Strategy to obtain 2PN tensor potential

In this section, we describe methods to solve the equation for the 2PN tensor potential
(4yhij. Although Eq.(2.14) is formally solved as

1ii(t,y)
@hij(t,x) =~ / “;x" 7] d*y (3.1)

it seems difficult to estimate this integral in practice since (4y7;; — O(r~3) for r — oo and
the integral is taken all over the space. Thus it is desirable to replace this equation by some
tractable forms in numerical evaluation. In the following, we show two approaches: In section
3.1, we change Eq.(3.1) into the form in which the integration is performed only over the
matter distribution like as in the Newtonian potential. In section 3.2, we propose a method
to solve Eq.(2.14) as the boundary value problem.
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3.1 DIRECT INTEGRATION METHOD

The explicit form of (4)T;; is

~ R R |
W™ = = 20;(X +2(4)¥) + U9;U — 3UU,; + 6;UsUx ~ 167 (pv'v’ - 356!’"2)

. . 2 . (3.2)
- ((3)/?:'.1' + 3)B5i — §5ij(3)ﬂk,k)y
where é,-j = az—?fr,i - %6,-,-Aﬂ,,,. Since (3),3,- is written as
2
. pv° + 3P — pU/2)
i=pi— (X +2 i — ( .

the source term, (4)Tij» is split into five parts @7 = (4)Ti; 8 )+(4) 34 )+(4) (c )+(4) (”)+(4) '(J ),
where we introduce

(4)1-( )= — 167 (pvivj - l6.-,-pv2)
@) =UU; - -6.,UAﬂa,U 3UU;+ 6;UsUp,

()_, (pv’) 3 / (pv?) 3y 8 (pv
O =45 | oy Pyt Y~ BiizaE =y (3.4)

4)7i; ‘aljjplx Y|d3ya

pv +3P—pU/2) R

Thus it becomes clear that (4)hi; and (s5)h;; as well as (4)7;; are expressed in terms of matter vari-

ables only and thus do not depend on slicing conditions. Then, we define (4)h$J) =A7} Tlat(4) T, ,() ,
where the symbol ‘*' denotes S, U, C, p and V.

(5) +

First, since (477" is a compact source, we immediately obtain

i) 16,22
h(s) - 4/ (pv v §6lJP” )day.

Ix -yl
Second, we consider the following equation

1
Ix - y1{lx — y2|’

AﬂatG(X,)’l,}%) = (35)

It is pos31ble to write (4)h( ) as integrals over the matter using this function, G. Eq.(3.5) has
solutions™, In(ry +r; % r12), where r; = |x — y1|,r2 = |x — y2|,r12 = |y1 — y2|. Note that
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In(ry + r2 — ry2) is not regular on the interval between y; and yz, while In(r; + r2 + rn.) is
regular on the matter. Thus we use In(r; + r + r)2) as a Green function. Using this function,
UU,;; and U;U ; are rewritten as

32
UU,j =Aflat /d’y,d"’yzp(yl)p(yz)ayl. oy In(ry + r2 + r12),
52 ! (3.6)
UiU,j =Aflar /dsyldsyzp()'l)ﬂ(h)ayi o0 In(ry + ra + r12).
1¥92
Thus we can express (4)hg-j) using the integral over the matter as
(4)"2,"” = / dy1d*y20(y1)p(y2)
(3.7)

[(ay?;y{ - %6‘JA‘) - 3(3y?;y%- - %%‘Alz)] In(ry 4 ro + r12),

2 . .
where we introduce Ay = =& and Ay = 2. Using relations &fj|x — y| = 2/|x - y|
dyy dy; dyydy;

|4
and Agpqlx — y* = 12}x - y|, (4)h§f), (4)’13’) and (4)th ) are solved as

2] . a ixe 4 .
whly) = 255 / (p2?) |x — yld®y + 255 / (') Ix — yld®y + 3% [ Alx - yld’y, (3.8)
1 9 . 1 "
@ = 55508 / blx —yPd'y - 365 [ bix ~ yldy, (3.9)

24+3P - pU/2)
vy _ & 2 _eUy 2. (pv+ P 3
@hi; ' = ax"axi/(”” + 3P 3 )|x yld®y 36,, =yl d’y. (3.10)

. | 4
As a result, we obtain (yhij = (yhl;) + gh)) + @A + hE + @h).

3.2 TREATMENT AS A BOUNDARY VALUE PROBLEM

The above expression for (4yhij is quite interesting because it only consists of integrals over
the matter. However, in actual numerical simulations, it will take a very long time to perform
the direct integration. Therefore, we also propose other strategies where Eq.(2.14) is solved as
the boundary value problem. Here, we would like to emphasize that the boundary condition
should be imposed at r(= |x]) > |y1], |y2|, but r does not have to be greater than )\, where A
is a typical wave length of gravitational waves. We only need to impose r > R(a typical size
of matter). This means that we do not need a large amount of grid numbers compared with
the case of fully general relativistic simulations, in which we require r > A > R.
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First of all, we consider the equation
s v
Aflat ((4)’15,') + (h )) =@ + @ (3.11)

Since its source term behaves as O(r=) at r — oo, this equation can be accurately solved
under the boundary condition at r > R as

(4)h( ) + (4)h( ) = —(I,j - -6,,]&;;)
+ _2_(,,k1. 4 — L6k + 20k (Sa; + Syi) — 35.,,,k5'm) +0(-Y)
372 ik = 3% iky T Ogki) = 30 )
o - o (3.12)
where I;j = [ pz*z?d’z, Lijp = fpm‘a:’m"d% and S;jx = [ p(v'z? — vizt)hdPz.

(4)h§jc), (4)h,(-'-’) and (4)h$‘~/) can be rewritten as

4 2k — gt
Sy — =6y ky dy, (3.13
v=3 [ Tl @19)

|x

(4)"( )= 2/(Pv’) T d"y+2/(pv yld

k { k
w_1_& / k 1(zF = ) -y)da -1-6/ kT =Y
4 )hu 43,;:'3_1-1' pvy |x -yl i (v) [x -y

+1 _3__/P,(x’—y’) &£ /P,(x —y)da}
2| 62! |x— 8z1 |x —y| (3.14)
_1{2/A Uizt —y)+U(x’—y’)d3
8 r Ix -yl
20 [ Vs =)y k0 / Ma}
te oz' |x -yl v+t 51 | ° [x =yl I

v _119 A At = [ p_tUyE =y
(hi; 28‘]( +3P 2)|x—y|dy+61 (o0 +3 2)|x—y| v)

2
2, (o +3P-pu2)
3 x -yl ’

(3.15)
where P' = P 4 pv?/4 + pU 1y’ /4. From the above relations, (4)th ), (4)h§p) and (4)h( ) become
(4)’15)-0) =2z’ (3 P? + 2/ (3)P' - Qi5) + §5,’j (Qé’i‘- - mk(;,)Pk) ) (3.16)
o? Qi
W) = arar (Vi ate! e 4 VO0) 4 263 (ot B - )
109 (v(P,i_yPY 4 0 (viP),i_ (P
(i) + 2y () -

8 ] s i) ji

+x"£—;(zjV,;(pU) V(pu))+:c 82( V(pv) Vlgpv))},
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1
o) =3 oo - o) eovs, o

where

Afiar(z)Ps = —4mpv’,

Ap1aiQij = —4m {2 (pv') + (ool },
1

AtatQD = —an(pv? + 3P - 5pU),

AﬂMQ(” = —4r (pv2 + 3P - %pU)z‘,
Aﬂa‘V(p v = —41rpvivj,

Aﬂa,Vi(" ") = —41rpvivjxj, (3.19)
AptatVP) = —4mp(v?2)?,

AV (P) = 4P,

Aflatv( )= —4nP'zt ,

Aﬂo:V(" ) = —4npU;,

ApatVEY) = ~ampU el

Therefore, (4)h51 ), (4)h(p ) and “ )h can be derived from the above potentials which satisfy

the Poisson equations with compact sources.

We note that, instead of the above procedure, we may solve the Poisson equation for @hi;
carefully imposing the boundary condition for r » R as

- gn n’Im + -3-nin’ 11(2) + -1-5.,1(2) - —6,,n n! (?)}
1 ,
+ 3 [{~ 5 1) - o n LB + L) 4 Snbndni 1) + i D)

7 inink 1‘2’ mp® k 7(2) m (2) (3.20)
—gnn’ gnn’nnnl 6 kr 6,nnnI }

+5g8um Iy —
+ {snk(gik;‘ + Sjki) - —(n ik + 10 Sing)
+ 2nknl(niSin + I Si) + 2n'nink Sy + §5ij""3ku}] +0(r73).

It should be noticed that (4)hij obtained in this way becomes meaningless at the far zone
because Eq.(2.14), from which (4)h;; is derived, is valid only in the near zone.
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4. Summary

We have developed a formalism for the hydrodynamic equation accurate up to 2.5PN
order. For the sake of an actual numerical simulation, we carefully consider methods to solve
the various metric quantities, especially, the 2PN tensor potential (4yhij. We found it possible
to solve them by using standard numerical methods. Thus, the formalism developed here will
be useful also in numerical calculations.

Moreover, we would like to emphasize that, from the 2PN order, the tensor part of the
3-metric, ¥;j, cannot be neglected even if we ignore gravitational waves. Recently, Wilson
and Mathews“olpresented numerical equilibrium configurations of binary neutron stars using
a semi-relativistic approximation, in which they assume the spatially conformal flat metric as
the spatial 3-metric, i.e., %; = §j. Thus, in their method, a 2PN term, hi;, was completely
neglected. This means that their results unavoidably have an error of the 2PN order which
will become ~ (M/R)* ~ 1 -10%. If we hope to obtain a general relativistic eqiulibrium
configuration of binary neutron stars with a better accuracy(say less than 1%), we should take
into account the tensor part of the 3-metric.
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Abstract

We have calculated evolution of neutron star binaries towards the coalescence
driven by gravitational radiation. The hydrodynamical effects as well as the general
relativistic effects are important in the final phase. All corrections up to post?*.
Newtonian order as well as the tidal effect are included in the orbital motion. The
star is approximated by a simple Newtonian stellar model called the affine star
model. Stellar spins and angular momentum are assumed to be aligned, but the
magnitude of initial spins are assumed to be variable. We have showed how the
internal stellar structure affects variations of the spins, and the orbital motion of
the binary just before the contact. The gravitational wave forms from the last a
few revolutions significantly depend on the stellar structure.

1 Introduction

For direct detection of gravitational waves by the laser interferometers such as LIGO
[1], the most promising sources are coalescing neutron star binaries. If we can observe
up to a few hundred Mpc, we have a few events by a year. Theoretically, it is important
to understand the final phase of the binary coalescence, because the preparation of the
gravitational wave forms as the template is necessary for the matched filter analysis.
When the separation L of the binary is much larger than the stellar radius R, cach star
can be regarded as a point mass. The study to get the matched filter is currently in
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progress using the higher order post-Newtonian approximation {2, 3]. In particular, the
test particle limit is extensively studied by the perturbation of the black hole space-time
(See e.g., Ref. [4,5]). When L is a few times R, hydrodynamical effects become important
as well as higher post-Newtonian effects. The only method to examine the final stage may
be solving the Einstein equations numerically [6, 7].

One of hydrodynamical effects before the contact of the binary is tidal force. Lai, Rasio
& Shapiro (Ref.[8, 9, 10]) calculated the dynamical evolution of the binary of simplified
stellar models under the Newtonian gravity. They showed that the orbit significantly
deviates from that of two point masses. The reason is that there is additional contribution
from the stellar quadrupole moment, which causes marginally stable circular orbit at
L = (2 ~ 3)R. When the separation becomes below the critical distance, the radial infall
velocity significantly accelerates as well as the radiation reaction force. However, since the
tidal potential depends on L%, the effect is significant only for close binary evolved with
higher post-Newtonian correction. Natural question is whether the contribution is still
significant, when other post-Newtonian corrections are included. The efect of the spinning
star, i.e., spin-orbit and spin-spin interaction, may be also important since the tidal
torque changes the spin. They are respectively post!®-Newtonian and post®-Newtonian
order in the magnitude. We take all these corrections and the radiation reaction force
into consideration, and study how the binary evolves at L < 15R. We adopt simplified
stellar models called affine star models. In this approximation, the fluid displacement is
limited to a certain class of the motion, i.e., uniform expansion, rotation and quadrupole
oscillation. The dynamical degrees of freedom of a star are reduced to finite number, and
the equations of motion are not partial differential equations, but ordinary differential
equations. Using this approximation, we can easily simulate the final phase of the binary
with various effects concerning spin and quadrupole moment.

2 Numerical Methods

2.1 Orbital motion

In order to solve orbital motion of the binary, we use the Hamiltonian formalism
(Ref.[11]). Regarding the star as a point mass with My(a = 1,2), we will examine the
relative orbital motion described by the total mass My and reduced mass u. We choose
the orbital plane as the equatorial plane of the polar coordinate (r,0, ¢). The Newtonian,
the first and second post-Newtonian equations of motion are determined by the following
Hamiltonians.

1 P2 GuM.
Hy = E(P?‘f‘r_z) ___Ir___T, (1)
2 2 2, A2
Hey = 8c?ud (p,. + 2] T2 @+v) i+ r? tupegt 2c?r? ’ (2)
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16c*u®

2 2
GMr (.2, Pb 22( 2, P8\ 224
+W{(5‘3°"—3”)(Pr+rz —wi et 3 - ()

G*M? . P 2 G3(1 + 3v) uM3
+_2C41"‘2 {(5 + 8v) (p, +)+ 3vp?y — ppo ,

3
1 -5v+ 502 P
HP’N = —-—mn—m— (Pz <+ —ri)

where v = u/Mr.

If the star has mass quadrupole moment, then the Newtonian gravitational potential
has an additional contribution (~ 1/r%). The relative motion is affected by the monopole-
quadrupole interaction,

Hy = _% (3n‘nj - 6‘-’) {Mg (L),; + My (I2)ij} ) )

where n = r/r and (L), is mass quadrupole moment of star a (a=1,2).
The spin-orbit and the spin-spin interaction in appropriate coordinate system can be

written as
G 3M, 3M, .
Hso = Cﬁ,jL.v-{(?+m)Jn+(2+—2M2)Jz}, (5)
G
Hss = 22,—,3{3(31‘n)(Jz'n)—(Jl'Jz)}a (6)

where J, is spin angular momentum of star a and Ly is orbital angular momentum of
the Newtonian order, i.e., Ly = r x p.

2.2 Affine star model

Because the spin and the quadrupole moment, that are determined by the stellar struc-
ture, appeared in the hamiltonians as seen in the previous section, we adopted so-called
the affine star for the stellar model. (See Ref.[12, 13]) The binary consists of two affine
stars (a =1,2). For simplicity, we omit the suffix ¢ and use the Cartesian coordinate
system, whose origin is the mass center of a single star.

The position of a fluid element inside the star, z;(t) is specified by the Lagrangian map
from its initial position #; as

zi(t) = qia(t)Za, (7)

where g, is 3 X 3 matrix and ¢;,(0) = §;,. The initial sphere of radius R is transformed
into an ellipsoid as

Si;l.’l“:[j = R2, (8)
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where S'-;l is the inverse of a symmetric matrix, Si; = giaqja- The eigenvalues of Sij
determine three principal axes of the ellipsoid.

The dynamics of the fluid motion can be determined in the Hamiltonian formalism by
the generalized coordinate ¢;, and its conjugate momentum p;, = ly§;s, where the inertial
moment Iy is described Iy = 1 fZ,2,dM. We assume a polytropic equation of state,
P = gp'*(1/7) Then, the initial state is a spherically symmetric star with mass M and
radius R, so that we have Ip = $k, M R?, where &, is a constant relating with polytropic
index n. The Hamiltonian concerning the internal fluid motion is,

H=T+U+49. (9)

The kinetic energy T is a function of p;, given by

; 1 1

T = §/v,~v.~dM = Ep.',,p,'u. (10)
The internal energy U is a function of ¢;, described by

U= /%d;\l = Uplq)="™, (11)

where |q| is determinant of g;,, and Uy is the initial internal energy. The self-gravitational
energy ® can be calculated by an elliptical integral (e.g., Ref.[14] )

> du, (12)

&~

1 S + ué)y!
d=-0, .‘k/wﬂ)—'f
» S + udl?

where @, is the self-gravity of spherically symmetric star. Since the pressure force and
self-gravity assumed to balance at the initial state, we have

b GM?
bo=-3=G-mk (13)

The quadrupole moment and the spin of the affine star model are the function of ¢;,
and p;, given by,

Ii; = Ilogiagja, (14)
Ji €ijkqjaPka- (15)

2.3 Equations of motion and gravitational radiation

The dynamical degrees of freedom of the system are reduced to finite number in our
approximation. The variables are fluid variables (qi;, pi;) and orbital variables (r, ¢, p,, pg).
The system is determined by the following Hamiltonian,

H=Hn+Hp+Hy+ Hpy + Hpey + Hr + Hso + Hss. (16)
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Then,the evolution of J, (a=1,2) is governed by the following formula,

dJ, G IM,
i = 2ot p) Iy = den 1300 du)nf .
—§§i;["—'”-(n x (I : n)), (17)

where the subscript a + 1 = 3 means a = 1. The first term of the right hand side of
eq.(17) represents the precession due to the spin-orbit and spin-spin coupling. When the
spins and angular momentum are aligned in the same direction, this term vanishes and
the direction of the spins is fixed. The second term shows that the magnitude of the spin
changes through the tidal torque. The system (16) is conserved one. We add the effect of
the gravitational radiation by the lowest quadrupole formula, which is post?*-Newtonian
order (e.g., Ref.[15] [16])).

We describe two polarization modes of gravitational waves by h, and Ax. They are
written by the distance to the source D and the directional angle ©. Here, we show the
case of © = 0 such as follows.

b = 0.8 [ﬂrzcos?% T {(Ic)]_(la)z}c052(¢+0,,)j|, (18)

c'Dde? a=1,2

G d* . .
hy = [;Lr251n2¢+ z {(T), — (I.),} sin2(¢ + 0,) , (19)

c'Dde? a=1,2

where (I, ), are the principal inertial momentum and 0, is the lag angle of the ellipsoid a,
which is defined by the angle between the major axis of the ellipsoid and the direction to
the companion star. Tidally locked state corresponds to 0, = 0.

3 Results

We have calculated the evolution of close binary from a circular orbit with the separation
r =~ 15R to the contact, using two identical affine stars. The most natural orbit near r ~
I5R is circular one, because the cccentricity is diminished by the gravitational radiation
as the binary orbit shrinks. As for the internal structure subject to the tidal force, we
adopt the irrotational Roche-Riemann ellipsoids. The solution basically represents tidally
locked, static figure in the inertial frame, and additionally includes tidally locked, but
spinning figure such as the Maclaurin-Jacobi-Roche solutions (Ref.[17]). The stellar model
is set up as GM/(Rc?) ~ 0.2 with polytropicindexn =0.50rn = 1, corresponding to the
typical neutron star of M ~ 1.4Mg and R ~ 10.4Km. Both stellar spins are assumed to
be parallel to the orbital angular momentum, but the initial magnitude of spin is variable.
This magnitude are parametlized by x = (|3,|/ |(1,)s] Q,),_,1sr» and we have numerically
calculated the subsequent evolution with y = =2, —1, -0.5,0,0.5,1,2.

—289—



3.1 Tidal distortion

From our simulations, the minimum separation distance is r ~ 24 R for n = 0.5, and
r ~ 23R for n = 1. The axes a; and a; are located on the orbital plane, while a3 is
the direction of the orbital angular momentum. The @,-axis is initially chosen as the
separation direction n of the binary, but the direction does not exactly follow the orbital
motion during the dynamical evolution. The orbital revolution at small r becomes so fast
that the principal axis slightly deviates from the direction n, i.e., there is a time lag in
the angle. However, the lag angle is small, so that the star is elongated almost in the
separation direction and compressed in other two directions. The quadrupole deformation
becomes significant for r < 4R and grows as |a; — R| o« r~3. The internal structure also
affects the shape of the ellipsoids. The model with # = 1 is more centrally condensed
than that with n = 0.5, so that the shape is less deformed. The difference is, however, a
few percent in the magnitude for all y values.

3.2 Orbital motions

The binary evolution driven by the gravitational radiation is calculated in terms of
three approximations to estimate various forces. (1) All post?-Newtonian, spin effects
and tidal effects are included. (2) The post?-Newtonian effects are included, but the stars
are regarded as point masses. (3)Purely Newtonian gravity is used, but the tidal effects
is included. Though the spin-spin effects for any x and spin-orbit force with negative y
are repulsion, but post-Newtonian corrections and tidal force are dominative attraction
forces. So that they significantly change the final approaching velocity. In particular, tidal
force determines the minimum critical separation distance and therefore is important.

The absolute magnitude of the velocity shifts, when the post-Newtonian corrections
are included. The ratio, i.e., the direction of colliding stars, may be more useful than
the absolute values as the initial conditions of the hydrodynamical simulation after the
coalescence. The approaching velocity increases up to 20 percent of the orbital angular
velocity, i.e., the velocity ratio —V,/Vy > 0.2 at contact. The ratio further increases with
decrease of the polytropic index n, because the tidal force is larger.

When the binary separation is large enough, the binary evolves at much longer time-
scale compared with that of the internal motions. The stellar figure is tidally locked at
this stage. As the time-scale of the orbital motion decreases, the tidal lock becomes loose
and the lag angle becomes non-zero. The lag angles amount to a few degrees just before
the contact. This suggests that both stars at the coalescence touch each other not in the
longest axis of the ellipsoid, but the direction slightly deviates.

3.3 Gravitational wave forms
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The tidal correction is a small correction in the amplitude, but it also causes the phase
lag. As the time proceeds, the wave form deviates from that of point masses. The
deviation of the n = 0.5 model is larger than that of the n = 1 model, because of larger
tidal deformation. The phase shift becomes significant only for the last a few revolutions,
and the amount of the phase shift is less than #. The spin effects also cause the phase
shifts, and the amount of the phase shift is more than =.

3.4 Evolution of spin

The stellar spin is modified through the tidal torque, ¢q.(17). We have calculated the
evolution of the spin from various initial states, as seen in Figure 1. The variations of
spins are quite small for at large separation, but monotonically grow only in the final
stage, r < 4R. The stars significantly deviate from the spherical state there, and then
tidal torque becomes quite large. The final spin depends on the the initial conditions, but
some stars are spun up to almost maximumly rotating state. We show the total change
of spins AJ = Jyinat — Jiniriat With all x, in Figure 2.

4 Discussion

The final state of the binary corresponds to vy ~ 0.3c, so that the tidal correction seems
to be (0.3)° ~ 0.002, but is much large in the actual problem. The discrepancy comes
from the existence of the marginal circular radius, which is the hydrodynamical instability
point (Ref.[8]). Two stars significantly accelerate in the radial direction below the critical
radius. The tidal effects at the last a few cycles cause large radial infall velocity, lag angle
and spin-up. The higher post-Newtonian corrections or fully relativistic hydrodynamical
calculation will be required to study much more correct final phase. The topic treated
here is preliminary, but will be useful as the guide for the future theoretical work and the
observations by the advanced type of the laser interferometer. Our paper is in preparation.
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On the stability of synchronized binary neutron stars
in post-Newtonian approximation of general relativity
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ABSTRACT

We investigate stability property of binary neutron stars(BNSs) just before the merging
in the post-Newtonian(PN) approximation. Stability analysis is performed making use of
numerical solutions of the equilibrium configuration of synchronized BNSs which are obtained
by means of the numerical scheme developed in a previous paper. NSs are modeled by means
of the polytropic equation of state with the polytropic exponent I' = 2 or 3. From numerical
calculations, we find that like in the Newtonian case, in the PN approximation, the secular
instability will occur for synchronized BNSs at a critical angular velocity €.,y before the
surfaces of each star of BNSs come into contact. It is also found that §; in the PN
approximation is ~ 10 — 15% larger than that in the Newtonian case for a realistic NS of
mass M ~ 1.4Mg and radius R ~ 10 — 20km. Implication of this property to the orbital
evolution of BNSs just before merging is discussed.
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1. Introduction

The last stage of coalescing binary neutron stars(BNSs), which emits gravitational waves
of frequency 10 — 1000Hz, is one of the most promising sources of gravitational waves for
kilo-meter size laser interferometric detectors such as LIGO"and VIRGO™. Evolutions of
these compact BNSs are as follows: When the orbital separation of BNSs is sufficiently large
compared with the NS radius, BNSs evolve in the adiabatic manner radiating gravitational
waves in much longer time scale than the orbital period because the general relativistic(GR)
gravity is not so strong. In such an inspiraling phase, they can also be regarded approximately
as two point masses because the hydrodynamic effect is not important 1. On the other hand,
when the orbital separation of BNSs becomes comparable to the NS radius, the hydrodynamic
effect becomes important for the evolution of BNSs, and also the GR gravity becomes very
strong. In such a merging phase, each NS of binaries does not behave as a point mass, and
also the binary evolves not in the adiabatic manner, but in the dynamical manner to merge.

These evolution scenarios mean that the nature of the signal of gravitational waves
changes around a transition region between the inspiraling and merging phases. Gravita-
tional waves emitted at this transition region have an important information about the NS
radius'"® which can be used to determine the equation of state(EOS) of the NS matter™.
Thus, investigations of gravitational waves in the merging phase, in particular, around the
transition region from the inspiraling phase to the merging phase are very important. The
purpose of this paper is to investigate the transition region incorporating the GR effect as
well as the hydrodynamic one.

As a trigger of the transition, recently, the tidal effect was pointed out by Lai et al™!
They showed that when the orbital separation of BNSs becomes small, each star of binary is
significantly deformed by the tidal force of the companion star. In such a case, the tidal field
due to the deformation of each star is generated”and as a result, the circular orbit of BNSs
becomes unstable.

In the case when we consider the tidal effect in the binary system, we need to know the
structure of each star because the tidal effect to each star depends on its structure. Thus,
when we consider the tidal effect on BNSs, we need to take into account the GR effects because
the GR gravity plays an important role to determine the structure of NS. This means that in
order to know whether the tidal effect is important or not, we must investigate the evolution
of BNSs just before the merging taking into account not only the hydrodynamic effect, but
also the effect of the GR gravity to each star of binary. For this purpose, we perform the
PN calculation to obtain equilibrium solution for synchronized BNSs in circular orbits, and
investigate the stability property of BNSs.

As pointed out by Kochanek or Bildsten and Cutler"”, the synchronized binaries are
realized only when the viscosity of the NS matter is extremely large. Hence, to know the
stability property for realistic BNSs, we need to investigate BNSs in non-synchronized orbits
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taking into account the case where the circulation of the system conserves. However, we do
not have a numerical method to obtain the equilibrium configuration of non-synchronized
BNSs accurately, in contrast with the case of synchronized BNSs. Fortunately, the stability
property of the non-synchronized binary seems to be similar to that of the synchronized one
in the Newtonian case as shown by Lai et al'™, Therefore, investigation of the stability
property of synchronized BNSs would be a guideline of that for the other types of BNSs.

The paper is organized as follows. In section 2, we review the basic equations to obtain
the PN configuration of uniformly rotating bodies, and define the various quantities in the
first PN approximation. In section 3, we show numerical results for synchronized BNSs in
circular orbits. Paying attention to the angular momentum and energy of the binary systems
as a function of the orbital separation, we consider the stability of BNSs just before the
merging, and the GR effect to it. Throughout of this paper, ¢ and G, respectively, denote
the speed of light and the gravitational constant.

2. Basic equations

As shown in a previous paperm], in the first PN approximation, the equilibrium configu-
ration of a uniformly rotating body of a polytropic equation of state(EOS),

P=('-1)pe = Kp', (2.1)

is obtained from the following sets of equations("’"];

KL jra L (KD e U_§+{R—2+l(mzu-x9+ﬁ¢)}92+ R 04+ Const.,

r-1 2¢2\T -1 2 2 4c?
(2.2)
and
AU = —47Gp, (2.3)
AP = —47Gpz (2.4)
APy = —47xGpy , (2.5)
AXp = 41er(5 +2U + §p£), (2.6)
AXq = 87GpR?, 2.7

where p, €, P, K, T and Q denote the mass density, the specific internal energy, the pressure,
the polytropic constant, the polytropic exponent and the angular velocity(dy/dt), respec-
tively. R? denotes z2 + y?, and ﬁ¢ becomes

. T/ = . 1 - - 5 5
Bp=— [E (:L'Pl +yP) + 3 (:tzPZ,y + !IzPl,z —zyPyy — 3yP2.I)] . (2.8)

In this paper, we will obtain the equilibrium configuration of BNSs of equal masses. So that,
the numerical method to obtain them is the same as that in a previous paperm].
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In the PN approximation, we have the following conserved equantities;

(1)The conseved mass

M, = / oz, (2.9)

where p* is the conserved mass density, which is defined as

. 1 /v?
p —p{l+c—2(~§'+3U)}. (2.10)
(2)The ADM mass
1/, 5 3

= - - . 2.11
Mupu /P{H'cz(” +2U+€)}dI (2.11)

(3)The total energy(m

2

1 1/5 P,
E= p{e+%—§U+c (-8-v += v2U+—ﬂ.v +ev? +=v +25U—-U2)}d3x. (2.12)

(4) The total angular momentum"”

J=/p[v¢,{1+cl(v +6U +e+ — )} ﬂ"’] (2.13)

M, conserves throughout the whole evolution of the system even if there exists a dissipation
process such as the emission of gravitational waves. Thus, in the case when we consider a
sequence of a constant M,, it may be regarded as an evolution sequence of the system. We
note that E is derived from M4pjs — M, in the second PN calculation. In the following, we
use these quantities to argue the stability property of BNSs. For the sake of convenience, we
also define the position of the mass center for each star of binary as

z; = ML/p'a:'.da:r. (2.14)

It should be noted that the above expressions of M 1ps, E and J are not unique expres-
sions for the ADM mass, energy and angular momentum in the first PN approximation. For
example, these may be written as

Mypy = /p’{l + -:7(%2 - lU + e)}d3x = Mapy + O(c™),

2
Y Y SN T 5,2 1 f —_ )14
E.../p{e+2 2U+C(8v-+- U+ - ,B,v+ ev+ v —eU U)}d:n

-E+O(c"),
J'=/p'[v¢{l+cl —+3W+e+=— )} ﬂ"’]d“x-J+O(“‘)
(2.15)

In the following section, we use Eqs.(2.12) and (2.13) instead of Eqs.(2.15), and substitute
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the numerical results of p, U, and so on, directly into Eqs.(2.12) and (2.13) to estimate E and
J. In this case, numerical values of E and J depend on their definitions because the higher
order PN terms are unavoidably involved in unexpected forms. Thus, E and J defined above
are the conserved quantities only in the limit, v?/c?,U/c?, e/c? < 1, and otherwise they are
not.

It is also appropriate to note that a solution obtained from Eq.(2.2) is the good approx-
imation of a GR solution only in the case when the PN correction is small. This is because
we solve Eq.(2.2) without using the PN expansion in contrast with the treatment by Chan-
drasekha.r["', and as a result, the solution involves not only correct first PN terms, but also
extra higher PN terms, which are not correct terms in general. Thus, the solutions obtained
from Eq.(2.2) by the above procedure are the correct approximate solutions of a GR solution
only in the limiting case, v2/c?,U/c*,e/c? < 1. In other cases, it is not the approximate

solution in the strict sense.
Finally, we define the physical units for the sake of convenience as

GM,

R
3 C2

M,
=1477km and p, = }Tf =6.173 x 10'"g/cm?®, (2.16)
3

where Mg = 1.989 x 1033g is the solar mass.

3. Numerical Results

In this paper, we choose I' = 2 or 3 as the polytropic exponent. According to models of
the EOS for NSs, T becomes 2 < T < 3", so that this assumption is reasonable. In each
case, we define the polytropic constant as

_ 27r‘lGr% forT' =2, (3.1)
2.524GM3'r] forT =3,

where r; and r3 are parameters. If we consider a spherical star in the Newtonian theory, r;
and @ = r3(M/Mg)/%, where M is the mass of the spherical star, become radii of polytropic
stars of the polytrope exponents I' = 2 and 3, respectively.

! we showed various numerical results of BNSs of I' = 2, we

Since in a previous paperm
mainly present numerical results for I' = 3 polytrope in this paper. First of all, in figs.1, we
show the total energy and angular momentum as a function of the orbital separation ry/a,
where rg denotes the distance between two center of masses, for the Newtonian configuration.
In the figures, E and J are shown in units of E/(GM?/4a) and J/(G(M/2)%?a'/?). Innermost
circles(i.e., the circles of the minimum r,/a) denote the case in which the surfaces of each

star of BNSs come into contact. Like in the case of I’ = 2""*'¥
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of E and J appear at a critical point r..j. As pointed out by Lai et al."'", this indicates that
the secular instability occurs at r.p. Since this is not the dynamical instability point, it does
not mean that r.; is the radius of the innermost stable orbit(ISCO), and it only means that
BNSs cannot maintain uniformly rotating orbits for r < r;. However, as shown by Lai et
al™, the dynamical instability point will always appear very near the secular instability one,
so that we may expect that the ISCO locates at < rpi.

Then, we discuss about the stability property of the PN configurations. First of all, in
Table 1, we show the several quantities of spherical stars in the PN approximation: r,4 is the
areal radius which is defined as

ra= rcood{l + U(rcaod)}v (3°2)

where ro04 is the coordinate radius. From Table 1, we can find that the PN effect makes
the radius of spherical stars small, and this effect is stronger for smaller r3(i.e., softer EOS).
This property plays an important role in the following discussions. In fig.2, we show relations
between J and ry/a, for BNSs of mass M, = 1.4Mg and r3/R, = 8,10, 15 and 40(filled circles,
open circles, filled squares and open squares) in the PN cases as well as the Newtonian
sequence(dotted circles). Note that the Newtonian sequence may be regarded as the case
r3/R; — oo in the PN approximation. Here, ry = 2|z;|(x; is defined in Eq.(2.14)) and
a, =r3(M,/Mg)/3. E and J are shown in units of E/(GM?/4a,) and J/(G(J\/I./2)3/zai/2).
Fig.2 shows that the minimums exist at some critical separations, r. Like in the case of
= 2[”], rcrit for the PN configurations is ~ 10—20% smaller than that in the Newtonian case
for realistic models of NSs. The reason is mainly that in the PN approximation, the radius
of each star of BNSs becomes small due to the PN correction compared with the Newtonian
case. From Table 1, we find that r.,q4/a is ~ 85% for r3 = 8R, and ~ 90% for r3 = 15R,.
This is consistent with the results shown in fig.2.

Let us investigate the influence of this property to Qcpit. In fig.3(a), we show the relation
between f = Qcpit /7, which is the frequency of gravitaitonal waves at reri¢, and r4c2/GMapyy,
which denotes the compactness of spherical stars, for BNSs of M, = 2.8Mg. Filled circles
and squares denote f for I' = 3 and 2 in the PN approximation, respectively, and dotted and
dashed lines are those in the Newtonian case for ' = 3 and 2, respectively. Note that in the
Newtonian cases, Qcpir scales as r=3/2, In fig.3(b), we also show f = Qcpi/7m as a function
of r3/R, for the case of I' = 3. It is soon found that when we compare . in the PN
approximation with that in the Newtonian case fixing the compactness of NSs or the EOS, the
former is always larger than the latter, and for realistic models of 5 < rsc?/GMapy S 10,
the deviation becomes about 2 100Hz. Let us argue the reason for this property in the
following.

In the first PN approximation, the angular frequency of two point masses in circular
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. 3]
orbits becomes"”

_ [GM 3-nGM
= rd (1_ 2 rcz)’ (3.3)

where M and 75 are the total mass of system and the ratio of the reduced mass to the total
mass, respectively. In this paper, = 1/4. Thus, we may write Q,;; as

GM 11 GM
Q o= 1 — — .
crit rzr“ ( 8 rorre ) + 41, (3 4)

where 6§ denotes corrections due to the tidal filed, the spin angular momentum of each star,
and so on'”. In the following, we regard it as a small quantity because in the Newtonian case,
8Q/Qris is at most a few %.

Since r¢pi¢ in the PN approximation is smaller than that in the Newtonian case, we write
it as repip = rerit,¥(1 — 8), where re, e v denotes r,; for a Newtonian sequence and 6 is a
constant ~ 0.1 — 0.2. Using this expression, Eq.(3.4) is rewritten as

3 11 GM
Qe = Qeriw (14 36— 57—
cry

) +é9, (3.5)

where Qcrit, ¥ is Qcrit for a Newtonian sequence. Present numerical calculations show that
the second term in the bracket is always larger than the third term. If we assume that 692 in
the PN approximation is small corrections like in the Newtonian case and it may be safely
neglected, Qpit/7 is always larger than Qg v/7: For 5 S rac?/GMapy S 10, Qi is
~ 10 — 15% larger than Q. y. Although this argument is very rough, this seems to explain
the quantitative difference Qcrit — Qeri, ¥ essentially.

Finally, we briefly discuss the implication of this result to the location of the ISCO. As
mentioned above, r..;; denotes the point where the secular instability occurs, so it does not
denote the point of the ISCO. The ISCO will be determined by the dynamical instability
point. However, the above simple argument for the frequency shift due to the PN correction
seems to hold for the frequency at which the dynamical instability occurs, fgyn. Thus, we

may conjecture that the PN correction will increase fayy.
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Table 1

Various quantities of spherical stars of mass M, = 1.4M, for I = 3 polytrope with different
polytropic exponents(i.e., different r3)in the PN approximation. r, and r,,q are the areal
radius and the coordinate radius, respectively.
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r3/ R, 8 9 10 12 15 20

ra4/Rs 8.035 9.087 10.14 12.27 15.45 20.75
Tcood/ Rs 7.115 8.1356 9.170 11.23 14.37 19.61
Mapy [Mg 1.343 1.346 1.348 1.353 1.358 1.365

ract/GMapy 5.982 6.752 7.523 9.068 11.37 15.20

Table 2

Critical angular velocities(€.ri/7) and separations(re,it/a,) for I' = 3 polytrope with differ-
ent polytropic exponents(i.e., different r3)in the PN approximation. £y; /7 is shown in units

of Hz. Note that each value involves an error of order 10~2.

Figs.1

Fig.2

Figs.3(a)

r3/Rs 8 9 10 12 15 20 40
Qerit/™ 970 798 675 504 350 222 77
Terit/as 2.73 278 | 281 | 2.87 | 295 3.02 | 3.6

Figure captions

The energy(E) and the angular momentum(J) as a function of ry/a for BNSs of T' = 3
in the Newtonian case. The energy and the angular momentum are shown in units of
E/(GM?/4a) and J/(G(M[2)*/*a!/?). Here, M and a are the total mass of the system
and r3(M/2Mgp)Y/3, respectively.

The angular momentum as a function of ry/a, for BNSs of I' = 3 and several EOSs in the
PN approximation. The angular momentum is shown in units of J/(G(M,/2)%/ zail 2),
where M, = 2.8M and a, = r3(M./2My)!/3, respectively. Filled circles, open circles,
filled squares, and open squares denote the PN sequence of r3/R, = 8, 10, 15, and 40,
respectively. Dotted circles denote the Newtonian sequence, which may be regarded as
the case r3/R; — oo.

The frequency of gravitational waves at a critical separation rep, f = Qpit/7, as a
function of the compactness of the spherical NS, r4c?/GM py. Filled circles and
squares denote f of the PN sequences for I' = 3 and 2, respectively. Dotted and dashed
lines show f of the Newtonian sequences for I = 3 and 2, respectively.

Figs.3(b) f = Qcrit/™ as a function of r3/R,. Filled circles and dotted line denote f of the PN

and Newtonian sequences, respectively.
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Black Hole Thermodynamics

Osamu Kaburaki
Astronomical Institute, Graduate School of Science, Tohoku University,

Acba, Sendar 980-77, Japan

The emergence and development of the black hole thermodynamics are
briefly reviewed. As a selected topic of recent interest in this field, the critical
behavior of Kerr-Newman holes is discussed in some detail. The scaling laws
of the “first kind” are all satisfied at the extremal limit. The scaling laws
of the “second kind” suggest a long-time correlation among the evaporating
particles.

1. Emergence of Black Hole Thermodynamics (Introduction)

The analogy between the area of a black hole and entropy was first taken seriously
by Bekenstein [1]. According to the area theorem by Hawking [2], the total area of black
holes in a system under consideration does not decrease in time. This is reminiscent of the
second law of thermodynamics: the entropy of an isolated system never decreases. Based
on various considerations on the reasonability of regarding this analogy as physically
meaningful, Bekenstein proposed a proportionality between the two quantities. He also
derived the corresponding first law of black hole thermodynamics from the expression of
the area A of a black hole in terms of ils mass M, angular momentum J (the norm of
the vector J and hence is positive or zero) and charge Q (this can be positive, zero or

negative):
dM = g;dA +QdJ + dQ, (1)

where x, @ and @ are the surface gravity, angular velocity and electrostatic potential,
respectively, of the hole. A similar equation was also derived through more sophisticated
technics in the black hole mechanics [3].

From this equation, it turns out that if a black hole has entropy proportional to its

area then it has a temperature proportional to its surface gravity. There seemed, however,
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that a serious problem existed in this interpretation. If the hole is a thermal body whose
temperature is specified by its surface gravity then it must emit thermal radiation, but
this is impossible since nothing can come out from inside of the horizon. This dilemma was
resolved when Hawking discovered [4] through his quantum field theoretical calculation
that there are particles evaporating from the black hole. The distributions of such particles

are characterized by a temperature
h
K, (2)

T =
27I'kgc
now called the Bekenstein-Hawking temperature, where c is the light velocity, and 4 and

kg are Planck’s and Boltzmann’s constants, respectively. Then the relation between the
y

area and entropy is determined as

k303 ICB A
S= (45(;) A= PR 7 (3)

where G is Newton’s gravitational constant and Ip is the Planck length.

The temperature given above becomes zero for extremal black holes, i.e. when a® +
@* = M? with a = J/M. There are many circumstantial evidence for the unattainability
of this state by any finite series of quasi-stationary processes. Although this fact suggests
the validity of the third law also in the black hole case, there is no rigorous proof so
far. The third “law” may be regarded as a restricted version of the cosmic censorship
hypothesis [5] which inhibits the production of naked singularity in our universe by any
process. The readers are referred to the review papers [6] for these early stages of the
development of black hole thermodynamics.

Black hole thermodynamics is essentially a standpoint of distant observers. The
Bekenstein-Hawking temperature is proportional to the redshifted surface gravity mea-
sured by a distant observer but it is different from the locally measured temperature
at an arbitrary distance from a black hole. The “membrane paradigm” [7]) provides a
powerful conceptual foundation in dealing with a black hole from the standpoint of such
an observer. By slightly stretching the horizon of a hole one can ignore the complicated
past history of infalling matter which is piling up just above the horizon owing to the
time dilatation, as well as the interior of the horizon. Thus the stretched horizon forms
a boundary of the spacetime relevant to the distant observer. Surprisingly enough, care-

ful examinations of the boundary conditions on such a stretched horizon show that, in
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the 3 + 1 decomposition of the spacetime by a distant observer, the boundary behaves
like a 2-dimensional membrane with various physical properties such as viscosity, elec-
tric resistivity and surface pressure. All the thermodynamic quantities can be attributed
consistently also to the membrane.

A serious objection to the above membrane viewpoint may be that for a freely falling
observer there is no object like a membrane and the spacetime extends all the way to
the central singularity. Therefore, the former viewpoint could be misleading or at least
incomplete. However, a recently proposed concept of “black hole complimentarity” (8, 9]
seems to overcome the above objection and provide a powerful support to the membrane
paradigm. This asserts that the above viewpoints are both correct and are in fact comple-
mentary to each other in the sense used in quantum mechanics. Actually, the impossibility
of communicating each other what they had observed has recently been demonstrated [10]

confirming the validity of this idea.

2. Development of Black Hole Thermodynamics

Nowadays it is very difficult to look over the whole range of black hole thermodynamics
and give a comprehensive summary or review, since the related topics spread over many
branches of black hole physics. Another source of the difficulties is how far should we
include the topics under the name of black hole thermodynamics. For these reasons, only
a superficial introduction is given of the recent developments in this field. Interested
readers are recommended to consult the original papers, though the references given here
are also incomplete. Some review papers dealing with somewhat different aspects of the

black hole thermodynamics can be found in the proceedings cited as ref. [11].

A. Equilibrium States and Their Stabilities

1) Formulation of equilibrium states
The formulation of the black hole thermodynamics based on the Euclidian actions was
proposed by Gibbons and Hawking [12] in which the partition function was calculated
from the saddle point contribution. This method was later used extensively by York
and his collaborators [13] in discussing the formulation and stability of the black hole

solutions as thermodynamic states. They specified the relations of the reduced action to
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various thermodynamic potentials and showed the equivalence of thermodynamic stability
to mechanical one.

Although the above works are restricted to the case of Kerr-Newman holes (almost
to Schwarzschild holes), the black hole solutions of Einstein’s equation coupled to various
fields other than the electromagnetic field were also found. They are the dilaton [14],
Yang-Mills [15], Skyrme [16], Proca [17] fields and so on. Except the delaton case, there
appear the “exotic hairs” in addition to the Kerr-Newman hairs. The thermodynamic
expressions of these solutions are possible as expected. It was pointed out in a series
of solutions coupled with modified dilaton fields [18] that the extremal Kerr-Newman
holes shows a peculiarity. Indeed, in the limit of extremal holes entropy tends to zero
but temperature remains finite for non-Kerr-Newman cases (specified by a continuous
parameter a # 1) while temperature tends to zero but entropy remains finite in the Kerr-
Newman case (@ = 1). As another kind of hairs, the possibility of the “quantum hair” on
black holes due to quantum interference was discussed in ref. [19].

2) Stability
The stability of Kerr-Newman states were systematically examined under various ther-
modynamic environments [20], through the turning point method. A change of stability
occurs at a turning point where the tangent of the curve of an equilibrium series plotted
in a two-dimensional plane of a conjugate pair of thermodynamic variables changes sign
through +00. The essential result of these stability analyses is that the stability of the
same equilibrium series can be different under different thermodynamic environments.
The independence of different modes associated with different hairs were demonstrated
in the Kerr-Newman case [21]. The general expressions for the variances of fluctuating
variables were given in the same paper. These results can be extended to the cases of
arbitrary number of hairs as far as the equilibrium states are specified only by such hairs
or by an equivalent set of the same number of parameters.

The stability analyses from a viewpoint of catastrophe theory were also developed.
The correspondence of a turning point to a cusp-type catastrophe was pointed out in
ref. [21]. The extensive applications of higher-dimensional catastrophes to the stability
problems can be seen in the cases of exotic black holes where the equilibrium states need

other parameters than their hairs to be specified [22].
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B. Extremal Kerr-Newman Holes and Critical Phenomenon

1) Limit of thermodynamic description
The heat capacity of a Kerr-Newman black holes at constant angular momentum and
charge, C;q, becomes zero in the limit of extremality. This means that the temperature
rises (or decreases) infinitely associated with the absorption (or emission) of infinitesimal
amount of heat and therefore the break down of thermodynamic description of the process
[18). Reflecting this fact, the variance of the temperature fluctuation diverges, i.e. <
(AT)? > /T = kg/Cjq — oo. The break down of thermodynamics in this limit is, in
fact, due to the presence of a critical point there (see below). Therefore another scheme
such as the scaling laws or renormalization groups should be employed. The quantum
effects too becomes non-negligible in this limit since Aw > k5T, where w is for example
the characteristic frequency of thermodynamic fluctuations.

2) Critical phenomenon
The divergences of thermodynamic fluctuations in some kind of quantities were interpreted
repeatedly as the presence of a second-order phase transition in the series of Kerr-Newman
black hole states. These divergences are classified into two classes in each of which the
state where this divergence occur is different and further the origin of the divergence is also
different. In the first class [23, 24], the fluctuation in entropy < (AS)? > = kpCjyg, for
example, diverges at the state where C;q diverges in the midway from the Schwarzschild
state to the extremal state. In the second class [25, 26], the divergence is due to the
vanishing of, e.g., Cjq at the extremal limit as seen in the previous paragraph. Of the
two classes of divergence, however, the first one corresponds in fact to that at a turning
point under the canonical environment while the second, to a real critical point [26]. The
appearance of divergent fluctuations at a turning point were discussed in ref. [21]. Some
possible interpretations of this critical phenomenon in the latter case were discussed in
ref. [27, 26).

Lousto [24] interpreted the divergences of the first class as the indication of a critical
phenomenon of black holes and claimed that he had shown the validity of various scaling
laws among various critical exponents. He also claimed that the effective dimension of a
black hole as a thermodynamic system is 2 as determined from the scaling laws and that

this confirms the hole’s membrane aspect. The idea and results are interesting enough but
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unfortunately the divergences here do not correspond to a critical phenomenon. Therefore,
it is of great interest to apply the same idea to the real critical phenomenon appearing at

the extremal limit. This will be done in section 5.

C. Black Hole Entropy

1) Entropy proportional to area
The proportionality of black hole entropy to the area was a great surprise in the common
sense of physics and various efforts have been devoted to understand this fact. Wald and
others [28] have interpreted black hole entropy as a Nother charge corresponding to the
Killing field on the horizon. A merit of this interpretation is the applicability of the same
idea also to dynamical holes. Bafiados et al. [29] have tried to understand it from the
topological viewpoint of the Euler class of the Euclidian black holes. Another interesting
work in this connection is that of Srendnicki [30] in which a virtual sphere is placed in a
massless scalar field. He showed that averaging over the freedom of a subsystem which
occupies either inside or outside the sphere yields the entropy proportional to its area.

2) One-loop quantum corrections
Quantum corrections to the classical entropy discussed above have been calculated at the
one-loop level by many authors, for example, through semi-classical Einstein equation [31]
or the Euclidian action [32). Most of these works agree in that the quantum corrections
at this level give the results of the form, S = 4xM? —¢InM and T = (87M)7'[1 +
o(87M?)™!] for a Schwarzschild hole, where o is a constant.

3) Statistical mechanical foundations
Most of the considerations of black hole entropy in the framework of statistical mechanics
were given from the membrane viewpoint of black holes. Zurek and Thorne [33] have
introduced the concept of thermal atmosphere [7] around the stretched horizon. They
regarded the entropy as residing in this atmosphere. Recently the entropy has been
interpreted as the logarithm of the number of degrees of freedom on the membrane which
are to be quantized [34).

4) Entropy of extremal holes
As discussed in the subsection of black hole equilibrium states, the non-zero entropy of
extremal Kerr-Newman holes seems somewhat peculiar. The assertions have appeared

recently [35, 36] that the entropy of an extremal Kerr-Newman hole is actually zero. This
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result is obtained in ref. {36] by introducing an inner boundary and thereby changing the

topology of the spacetime.

D. Evaporation of Black Holes

1) Problem of information loss
A serious problem associated with the black hole evaporation has been pointed out by
Hawking [37) soon after the discovery of his own radiation. If the particles evaporating
from a Schwarzschild hole is completely thermal and the evaporation process continues
until the whole black hole vanishes, the information carried by infalling matter to form
a black hole is lost from the universe since the thermal state is the most random state
coceivable. In order to make the calculations much simpler, this problem has been treated
mainly in the lower-dimensional (i.e., 141 or 2+1) black hole models. However, a question
always hangs around such calculations as for to what extent they reflect the case of 4-
dimensional black holes. A compact review of lower-dimensional black holes can be found
in ref. [38].

Although many papers have appeared in the literature, the present status of this
problem is still controversial. The possible ways of resolution may be summarized as

follows.

o The loss of information actually occurs. This is the most drastic case among others.

The predictability of quantum mechanics is then imperfect.

e The complete evaporation of a black hole does not occur. In this case, the lost

information can be considered as remaining in the remnant [39, 8].

o The complete evaporation does occur but evaporated particles are not perfectly
thermal. Therefore a long-time correlation remains in the radiation carrying infor-
mation. This case is supported by some considerations from the membrane paradigm

[40].
o Other than the above.

2) Non-equilibrium thermodynamics
Black holes in a vacuum are not in equilibrium states when the presence of evaporating

particles are taken into account, however slow the process may be. The first paper written
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from this viewpoint is that of Candelas and Sciama [41]. They showed that the emission
of thermal particles by a Schwarzschild hole in the gravitational-wave mode can be un-
derstood in terms of the fluctuation-dissipation theorem. After a long interval, this idea
has been revived by Crescimanno [42] in the case of weakly charged Reissner-Nordstrom
holes. The power spectrum of charge-charge correlation has been calculated there and
the validity of the fluctuation-dissipation theorem has been pointed out also in this case.

The generalization of these results to the case of arbitrary Kerr-Newman holes and the
construction of irreversible black-hole thermodynamics have been performed recently by
the present author [43]. The evaporation process of a Kerr-Newman hole can be regarded
as a relaxation process to its Schwarzschild counterpart with nearly the same mass, in
which angular momentum and charge are mainly emitted. The Langevin equations de-
scribing the evolutions of angular momentum and charge are derived on the grounds of
thermodynamic considerations. The dynamic response functions of a general black hole
and the spectra of fluctuating quantities are both derived from these equations of evo-
lution. Comparing the latter with the imaginary part of the former, on can confirm the
validity of the fluctuation-dissipation theorem for the evaporation process of a general
hole, in the classical limit.

3) Back reaction of evaporating particles
The back reaction of the evaporating particles to the Kerr-Newman geometry is usually
calculated through the semi-classical approach in which the Einstein equation is solved
by including the source term arising from the expectation values of the quantum fields of
evaporating particles. The reactions has been calculated to one-loop level and the resulting
correction to the thermodynamic quantities are mentioned in the previous subsection.
However, the calculations in this approach are fairly complicated and hence they are
almost restricted to Schwarzschild holes.

Recently, another method called the “black-hole seismology” has been proposed in
ref. [42]. According to this paper, the random-force term due to the back reaction of
evaporating particles is added on the left-hand side of the Einstein equation and, corre-
sponding to this, the energy-momentum tensor of the evaporating fields itself appears on
the right-hand side. Such equations will be discussed being reduced to the Langevin-type

equations but, at present, no paper along this line has been published yet.
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3. Basic Properties of Equilibrium Kerr-Newman States

Before going into the discussion of the critical phenomenon of black holes, we sum-
marize the parameter expressions [20, 43] of the equilibrium thermodynamic quantities.
They are indispensable to a perspective discussion of arbitrary Kerr-Newman states.

In Boyer-Lindquist coordinates (r, 8, ¢), the metric of a general Kerr-Newman black

hole is written as

ds® = ——g—(dt — asin’ 4 dp)? + %[(r2 +a)dp — a di)* + %dr‘2 + I dé?, (4)
where

A=r*—2Mr+a®+ Q2 T =14 a’cos® 4, a=J/M>0. (5)

We use Planck units in which ¢ = G = h = 87kp = 1 hereafter in this paper. However,
kp and h are sometimes written explicitly, instead of 1/87 and 1, when it is convenient
to do so.

The location of the horizon, ry = M £ /M? — a? — Q% = ry, is obtained from the
equation A = 0, with the larger and smaller roots, r, and r_, being the outer and inner
horizons, respectively. It is convenient for many purposes to introduce non-dimensional
parameters, j = a/ry > 0, ¢ = Q/ry and h = v/a® + Q%/ry. Of the three parameters,
only two are independent since they satisfy j° + ¢? = h%. Reminding the definition of ry,
one can see that h describes a series of the Kerr-Newman states: starting from the extremal
limit h = 1 (i.e., a® + Q> = M?) where the outer and inner horizons coincide, & decreases
on the outer horizons and increases on the inner horizons toward the Schwarzschild limit
where h = 0 and h = oo, respectively, (i.e., a® + Q% = 0). As a more convenient second
parameter, we introduce a such that j = hcosa and ¢ = hsina (—7/2 < o < 7/2). This
parameter measures the ratio of the charge to angular momentum since tano = @Q/a.

In terms of these parameters, the relation A = 0 is rewritten as

2
hz—Z—Aé-hcosoz+1=h2—2%hsina+l=O. (6)

From these expressions, we have

2hcos o M2 2hsina (7)

I=Tie M Q=715
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Further, we summarize below the definitions of other thermodynamic quantities and their

parameter expressions:

_ Az 1 2 _ 1+ hcos’a o
_H16r/MT =¥ —Q*  1-Ah' 21 — o1
T= Ax _l+h2coszaM =F ©)
Q= 47J _ h(1+h*)cosa , _, b= 47Qry _ hsina (10)
T MAy  2(1+ h3cos?a) ' T A 1+ h2cos?a’
hcosa hsina
#—ﬁﬂ—m, ¢—ﬂ‘1’—m;M, (11)

where Ay, S, T, Q and @ are the horizon areas, entropy, temperature, angular velocity and
electrostatic potential, respectively, of the black hole. Thus all thermodynamic quantities
are expressed in terms of three parameters, h, a and M. Note that these expressions are
valid not only for the outer horizons (h < 1) but also for the inner horizons (h > 1). At
present, however, the direct relevance of the inner horizon thermodynamics to a distant
observer remains rather unclear.

The mass formula of a Kerr-Newman black hole is the equation of state from the
thermodynamic viewpoint. There are two different expressions of this equation. One is
Christodoulou’s expression [44)

J? 2 1 11/2

M= 2S+§+T+3—2—§ , (12)

and the other is Smarr’s expression [45]
M =2TS +20J + ¢Q. (13)

From the former expression, we can verify that the entropy S = S(M, J, Q) is a gener-

alized homogeneous function, i.e.,
SOM2M, M, N12Q) = AS(M, J, Q) (14)

where A is an arbitrary positive number.
There are three kinds of susceptibilities for a Kerr-Newman black hole. Each kind cor-

responds to a mode of energy exchange, i.e., thermal, mechanical or electrostatic mode.
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Each kind of susceptibility can take different values according to different boundary con-
ditions. The boundary conditions are specified by the presence or absence of the contact
to a reservoir of each mode. Therefore, for a selected kind of susceptibility whose value
is to be determined, there are four possibilities as for the remaining two channels: (c, c),
(o, €), (¢, o) and (o, o) where c and o stand for “closed” and “open”, respectively.

The susceptibilities in thermal, mechanical and electrostatic modes are heat capacity
C,, moment of inertia I, and electric capacitance K, respectively, where a, b and ¢
represent the set of the fixed quantities under different boundary conditions. Their explicit

expressions are

__ﬁz(aM) - —pM (B, B; B; 34)

26/, A’ A A A,
sp(2) 2 (B b B e

Ib—ﬁ(aﬂ)b_Q(Bz’ 2’ 34, A4 ’ (15)
_a[9@ Q(Bl ﬁ & Az

K°—ﬂ(r’)¢)c_¢1> By’ A’ By 4)

with

{a} ={(J, Q), (1, Q), (J, 9), (1, 9)},
{8} ={(M, Q), (8, Q), (M, ¢), (8, $)}, (16)
{c} ={(A'I: J)x (:B: J): (M: I-‘): (ﬁ: I‘)}x

where

A= (1+ 7)1 - 2(h% + 25%) — 3h%],
Az = (14121 - 3K + (5+ k)7,
Az =1—=h* = (5+ 10h% + 9k")7? + 2(1 + 3K%)*,
Ay = (14 R%)[1 = A%+ 301 + £)7% = 244), (17)
By = (1+ 7)1 - 1?),
By = (1+ )1 - K +47°],
= (14 7)1+ 3k* — 2(1 + A7),
By = (1+ 7)1 + 3h* +2(1 - k?);7).
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4. Critical Behavior (Lousto’s Work)

In a series of papers [24] Lousto examined the so called critical behavior of Kerr-
Newman black holes at the point where C;q, I74 and K7} diverge. As is pointed out
in section 2-B, however, this point is actually a turning point instead of a critical point
associated with a second-order phase transition. Nevertheless, the outline of his work is
described here because it contains some important ideas.

The above susceptibilities are written explicitly as,

) MTS® B

Coa=T (ﬁ) sq T+ (n/4)Q - T?5° x4, (18)

- o0 m(20Q — M)(1 - 42T M) A,

; = a7 —
f1e = (3J )TQ * S = 2T M + 4m*T2(6 M + Q)] - Ay’ (19)

il A
-1 _ o= _3

KTJ - (6Q) - o A . (20)

In the above equations, the last terms are expressions in terms of our A’s and B’s given
in the previous section. (His units here are ¢ = G = A = kp = 1.) The divergence of
these quantities occurs simultaneously at the zero of A;. Although he did not distinguish
the meaning of his Krg and K7, they are in fact the susceptibilities in different modes
and, respectively, proportional to our I'rg and Kr,.

Regarding these divergences as indications of the presence of a second-order phase

transition in the black hole states, he calculated various critical exponents defined as

follows:
€ for2=0
Cro~ 21
e {Q“’ for ¢ = 0, (21)
- €7 for =0
Iig ~ { Q157" for ¢ =0, (22)
e forQ=0

J~ -

{ 5 fore=0, (23)

where € =T — T, with T, being the critical temperature. Although it is difficult to trace
all of his calculations (mainly due to the ambiguity in the identification of his # and M

in general cases with  and J adopted here, respectively), the claimed results are
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a*=1, f'=0, =1 §1=0. (24)

These exponents satisfy the scaling laws of the “first kind”,

a*+28*+ v=2 (Essam and Fisher),
gr6-1)=« (Widom), (25)
p(B*+7) =0,
provided that the additional condition §*6 = 1 holds. The justification of the last condi-
tion, however, has not been given.
Other critical exponents associated with spatial correlations are further defined as
follows. Usually the two-point correlation function at a large distance is written in the

form [46],

G(r) ~ ZBTIE, (26)

where ( is Fisher’s exponent, d is the effective dimension of the system under consideration

and £ is the correlation length which also diverges like
E~e™, therefore G(r) ~ r~{4-2+0), @)

at the critical point. The scaling laws of the “second kind” contains the exponents related
to the correlation:
v(2-¢ =9 (Kadanoff),
vd=2-a" (hyperscaling law), (28)
W +y)=v
The last equation does not appear in Lousto’s work since the exponent p” is not defined
there. It will appear in the next section.

Lousto has used, as a correlation function, the Green function of a scalar field which
is in thermal equilibrium with a Schwarzschild black hole. In the Hartle-Hawking vacuum
state, it is written at a large distance as [47]

w
27 [exp (%‘:) - l]

where w is the angular frequency of the mode considered. Since this is independent of the

G, ~ , (29)

distance r, we have

d—2+¢=0, (30)
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from Eq. (27). The exponent v has been obtained from the above expression as

2 __ _i 620(""’) ~ -1 . — l 31
&= 2w\ o ), €, ie, v=o. (31)
Substituting these results into the above two of Eq. (28), we obtain
d=2, ¢=0. (32)

Thus the effective dimension of a black hole is derived to be 2 as expected from the
membrane viewpoint.

Unfortunately, however, there are some problems in Lousto’s treatments as well as
the fact that the zero of A, is in fact not a critical point. He has not considered the
critical exponents associated with K7} which must satisfy other scaling laws. The argu-
ment for justifying the relation 5°6 = 1 has not been given. The definition of any order
parameter has not been given explicitly, which is however indispensable for the physical
understanding of a second-order phase transition. Since the exponent 8° is usually in-
troduced to describe the critical behavior of such a parameter, Eq. (23) means that the
angular momentum is regarded as an order parameter. However, J is not necessarily be

zero on either side of the zero of A,.

5. Critical Behavior (Original Work)

In Lousto’s work, the point where C;q diverges is considered as a critical of a second-
order phase transition. The relevant thermodynamic environment (i.e., the boundary
conditions) is called canonical in which the system is allowed to exchange heat with a
heat reservoir but is inhibited to exchange energy with both of a mechanical and an
electric reservoirs, so that J and Q are kept constant. The fact that there is no contact
with mechanical and electric reservoirs is reflected also in the point that the relevant
quantities (generally called the response coefficients) in the respective modes are I'7; and
K7} instead of susceptibilities themselves.

In the canonical environment, the intrinsic variables (expressed as z; in general) are
f =T, J and Q and their conjugates (expressed as X; in general) are —M, —u and
—¢. The definition of the response coefficients is x;(0) = (8X,/9z;)s, where Z, represents
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the set of intrinsic variables excluding z; itself. Their explicit forms are

oM C B M
wm- () 2G5
JQ

o B AR’

__[(o\ __B __Ap
w0 =-(5) =-fo=-%5 (39)

(98 __B _ A9

X3(0)——(-@)ﬁ1_ Km_ AQ

Each coefficient gives the slope of a tangent to the equilibrium curve drawn in the two-
dimensional plane relevant for each mode. Since these tangents change their signs through
+00 at a continuous part of each equilibrium curve these points of divergent tangents are
all turning points [20]. In fact these points correspond to the same one state where A,
vanishes. Thus a change of stability occurs in each mode simultaneously. The nature of
these instabilities are trivial. Namely, all are associated with the thermal instability in a
heat bath of a system with negative heat capacity.

The stability of a series of equilibrium states changes from stable (the part of C;q > 0)
to unstable (the part of C;g < 0) when J and/or Q are decreased for a given M from the
extremal limit to the Schwarzschild limit. Corresponding to this change, the entropy of
the equilibrium series changes from locus of local maxima to that of local minima. Thus,
at the turning point, the entropy becomes locally flat in the directions of off-equilibrium
displacements, resulting in the vanishment of restoring forces. This is the origin of the
divergent fluctuations at a turning point mentioned in section 2-B. On the other hand, the
origin of the divergent fluctuations at a critical point is slightly different. For example,
suppose the coexistence curve of water and vapor in the temperature vs. pressure plane.
Away from the critical point where this curve terminates, there are two local maxima
of the same height in the relevant Massieu function (or equivalently, two minima in the
Helmholtz free energy) representing the liquid and gas phases of water. As the critical
point is approached, these maxima become closer to each other and finally merge together
resulting in a locally flat configuration.

The critical point in Kerr-Newman states is located in fact at the extremal black hole
states. This can be derived from a physical consideration. As shown in section 3, for a
given set of (M, J, Q) there are two different series of thermodynamic states corresponding

to the outer and inner horizons. According to Curir [27], we regard these series as different
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phases of the black hole states with different intensive variables. For a given J and Q, the
line of coexistence (i.e., the black hole solution) terminates at the extremal limit where
M = My with M} = (Q?+ Q¥+ 4J%)/2. From the analogy with the case of water, one
can guess the extremal limit is a critical point. Indeed, the differences of the two phases
vanishes as the two horizons merge together.

The existence of a critical point at this limit has also been confirmed from the occur-
rence of diverging fluctuations at a point other than a turning point [26]. The intrinsic
variables are now M, J and Q, and their conjugates are 8, —u and —¢. Therfore, the

response coefficients in this microcanonical environment are

w0 (25) Lkt
' oM?},,” Ciq BM
8*s B Byp
(0 = (-—) = —— = -, (34)
x(0) = {57 wo  Ime  BJ
0=(23) b b
Xt = 0Q%) i, Kuy B, Q

All these quantities diverge at h = 1 (the extremal states) where B, becomes zero.

The order parameter for the present case may be [26] Ty — T, Q_ — Qiord_—-0,,
These are all positive for non-extremal Kerr-Newman states (hence the ordered states)
and become zero at the critical point. Since we have to discuss the scaling laws for black
hole cases, however, the definition of the critical exponents should be given following a
systematic scheme which is common to the cases of usual matter. The scheme we adopt
here is that the variables common to the two phases are regarded as intrinsic variables
and the difference of each conjugate variable between the two phases is defined as an order
parameter. Then, the critical exponents are introduced to describe the behavior of the
response coefficients and these order parameters near the critical point. Thus we have
been led to adopt the order parameters, my = 8, — S, ny = H-— py and ng = ¢- — ¢y,
for the thermal, mechanical and electrostatic modes, respectively. It must be noted here
that these parameters do not go to zero at the critical limit but diverge. This is due to
the special circumstances of black holes that the temperature goes to zero at this limit.
Reflecting this fact, §*’s and §’s become negative for black holes.

Our definitions of various critical exponents are as follows:
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& (J=0orQ=0)
;%' (Q # 0, a =const.) (35)
" (J #0, a=const.),

|
{ ' (@=0)
|

O~ g @r0) (36)
x3(0) :?-,z 8 : g; (37)
(& oo
nQ ~ { :%:' 8 : g; (39)
{2 8
o {E U,

where €’s are defined by the relations M = Mx(1+¢y), J = Jx(l —¢;) and Q =
Qx(1 — €q), and are mutually related like ¢, = e/ cos® @ and €g = €p/sin’@. When
¢ = 0 in particular, we have the relations [46],

1 1
E x Xllz = v= 571 /1‘ = 501 (42)

for each mode.

It is well expected that the scaling laws hold even for the case of black holes, because
([46]) the entropy as a function of M, J and Q is a generalized homogeneous function.
We obtain for black holes

=3 m=mn=} e=p=3 (43)
Bi=B==-% b=68=-2 oa=0=]1,
and these values actually satisfy the scaling laws of the first kind. The validity of the laws
of the second kind, however, cannot be confirmed directly because of lack of information.
It can only be derived from the third relation in Eq. (28) that u* = v. We therefore

examine some possibilities individually.
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1)d—2+(=0
This is the case in which the correlation function has no r-dependence as expected from
the exact thermality of evaporated particles. Different from the case of Lousto, however,
the assumption is not compatible with the scaling laws. The first relation in Eq. (28)
yields vd = 3/2 while the second does vd = 1/2. Thus the scaling laws predict the
non-thermality of evaporating particles.

2)¢(=0
The first and second relations yield 4 = v = 3/4 and d = 2/3, respectively. However,
Eq. (42) gives u* = 1/2 and v = 3/4. This is a contradiction.

3)d=2
From the standpoint of the membrane paradigm, it is rather trivial that the effective
dimension of a black hole is 2. Then the scaling laws predict that u* = v = 1/4, { = —4,
and therfore that

G(r)  r* exp [— g] . (44)

To summarize, the scaling laws predict the presence of a long-time correlation in
the evaporating particles since a large r means a long time separation. This fact might
shed new light on the problem of information loss. It must also be mentioned that the

superradiance dominates over the Hawking radiation near the extremal limit.
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On the ergoregion instability — a new and general method for
numerical mode analysis of classical massless scalar field

Shin’ichirou Yoshida®
and
Yoshiharu Eriguchit

Jan. 24, 1996

1 Introduction

In general relativity, systems with sufficiently strong self-gravity and considerably large angular momenta
can have the ergoregion where the time-time component of the metric satisfies the condition goo > 0'.

The Kerr black hole is the well-known example of the spacetime having the ergoregion. Also rotating
dense stellar models without an event horizon can have the ergoregion as numerically shown by Butter-
worth & Ipser [1]. In the ergoregion, the dragging of inertial frames is too strong for counter-rotating
timelike or null geodesics against the system to exist. One interesting and important nature of the ergore-
gion is that particles or ficlds within that region can be in negative energy states viewed from a stationary
observer at infinity. Fricdman [7) showed that, because of the existence of negative energy states, stars
with the ergoregion suffer an instability driven by radiation fields such as scalar or electromagnetic ones
(and also gravitational fields, as commented by Friedman). The mechanism of this instability can be
explained as follows: Negative energy perturbations of the field trapped in the ergoregion couple with a
radiation field having a positive flux of energy at infinity. This coupling reduces the field's energy in the
ergoregion and results in growth of amplitudes of the perturbations.

Comins & Schutz [5] studied this instability for classical massless scalar fields in the spacetime of
rotating general relativistic stars. 2 Although there were several numerically exact solutions of rapidly
rotating and general relativistic stars they used the slow-rotation approximation developed by Hartle &
Thorne [9] because the problem can be reduced to simplified one dimensional one. As dynamics of the
massless scalar perturbation is described by a scalar wave equation on the curved background, it was
examined by using the WKBJ approximation. They found that the e-folding times of unstable modes
are several orders of magnitude longer than the age of the universe. Consequently, even if the ergoregion
arises in realistic compact objects such as neutron or quark stars, it has little effect on the star.

As for the instability of rotating stars, we need to consider another kind of instability different from
that related to the ergoregion. Rapidly rotating stars, with or without the ergoregion, suffer an instability
driven by gravitational radiation, which was found by Chandrasckhar [2] and proved to exist universally
by Friedman & Schutz [8] and Friedman [6]. Since this instability is much stronger in its effect than the

* Department of Astronomy, School of Science, University of Tokyo (E-mail: yoshida@astron.s.u-tokyo.ac.jp)
tDepartment of Earth Science and Astronomy, Graduate School of Arts and Sciences, University of Tokyo

!In this paper we adopt the convention of Misner, Thorne & Wheeler [14) and units c =G = 1.

2Sato & Maeda (16} analyzed a similar problem with quantized massive scalar field on Kerr-Schild type interior metric.
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where prime means differentiation with respect to r-coordinate. By introducing a new variable \ defined
as:
¢ = yel-3@+a)], (5)

this equation is transformed to,
X +miA TV (S -V )y =0, (6)

where £ = ¢/m, and V. are factored potentials defined in Comins & Schutz. It should be noted that in
the high-m limit, the last term in T can be neglected. This approximation gives us the basic equation
for the WKBJ analysis (Appendix A).

In our new formulation we reorganize the equation to an inhomogeneous Helmholtz equation in one
dimensional space as follows:

[Aa1+ 0% ¢=—p, (7
where 2
A] = F, (8)

and this is essentially the Laplacian operator in one dimension and

A +1)e T4
r

p= [(a +muw)?e? AP _ 42 =

] ¢+ [2 +a]¢ (9

2.2 New method for the eigenvalue problem

In our new method, we treat the inhomogeneous Helmholtz equation, Eq.(14), as our basic equation for the
problem. At the region far from the stars, i.e. at the vacuum and flat spacetime, this equation describes
simply propagation of the scalar wave. In this sense, the physical meaning of the solution becomes simple
and moreover it is easy to treat the boundary condition for the wave at infinity. However, since the
curved background spacetime (1) approaches to a flat spacetime only asymptotically, i.e. as r — oo, the
existence of the source term of Eq.(14) in a region near the star distorts this simple view because this
source term behaves in a complicated manner due to strong gravity even if we treat the vacuum region.

In order to get rid of this ill-behaviour of the source term, we divide the space into two regions in our
present numerical treatment. In the inner region we use Eq.(8) as our basic equation, while in the outer
region we transform Eq.(14) to an integral equation by taking suitable boundary conditions into account.
The conditions which we need to impose are (i) the continuity of the scalar field at the boundary between
the inner region and the outer region and (ii) the so-called outgoing radiation condition at infinity, i.e.
no incoming wave from infinity exists. These two boundary conditions can be expressed as,

aC+5g5 =7, (10)

where a, 3 and 7 are, in general, functions of coordinates at the boundary and 8/n denotes a directional
derivative normal to the boundary.

Applying these conditions, we can express a formal integral “solution” of Eq.(14) as follows. First,
let us introduce Green's function satisfying the following equation:

(A +6%)GH (2, 2') = —4(z, 2'), (11)
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where G (x, r') and d(x, 2') are Green’s function and Dirac’s delta function, respectively. Then Eq.(14)
can be expressed as the following integral form,

() = / p(#)G* (z, ')V’ + }{ G (s )“;: ; ds'. (12)
where V and 9V denote the region covered by the integral, i.e. the whole space in general and its
boundary, respectively. It should be noted that this form does not give a “solution”, for the source term
of Eq.(14) involves an unknown function ¢ and its spatial derivatives. However this expression is useful
because we can include the boundary conditions explicitly in this form.

The outgoing wave boundary condition can be expressed at infinity as,

(Oi:; + ia) (=0, (z = x). (13)

Although strictly speaking this condition must. be satisfied at infinity, we now impose this condition at
some finite distance and regard that place as the "infinity”. Therefore we can choose 3 =1 and v = 0.
As seen from numerical results in §3 and the appendix. this approximation works fairly well despite of
its simplicity.

Concerning the numerical scheine to solve eigenvalue problems. we adopt the method developed by
Yoshida & Eriguchi [18] for escillating newtonian rotating stars. According to their scheme, differential
and integral equations of two regions are discretized on finite grid points, each equation of which is reduced
to a linear equation. An eigenvalue and a corresponding eigenfunction are simultancously calculated by
Newton-Raphson method by imposing a normalization condition of the cigenfunction as a supplementary
equation.

3 Results
3.1 Reliability of the new method

Since numerical analysis by Comins & Schutz [5] is the only work which has treated the same problem
discussed in this paper, we have to compare our results here with theirs. However we could not obtain
the same results as theirs. After we have tried to find the cause of the discrepancies, we have found that,
in their paper, there are some strange treatments about unperturbed models if the parameters cited in
their paper were correct.

As unperturbed stellar models are assumed te have a homogeneous density distribution and rotate
uniformly, models can be specified by two parameters, i.e. a dimensionless rotational period P and
strength of gravity y. Here the dimensionless rotational period is defined by

P=P/M, (14)
and strength of gravity is measured by the following quantity:
#=2M[R, (15)

where M and R are the mass and the radius of the model, respectively. Even if we choose exactly the
same parameters as those used in Comins & Schutz's paper [5), we have apparently different potentials
Vi for which positions of extrema of potentials are different and the size of ergoregion is different and so
on (However we can reproduce the same quantitative characters of the equilibrium ergoregion with those
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Figure 1: Three eigenfunctions of different modes for m = 3. Model parameters are P = 30 and ys = 0.88.
Horizontal axis denotes the nondimensional distance r/R, whereas the vertical axis is the absolute value
of the complex eigenfunctions. The dotted, dashed and solid curves correspond to modes with no node,
one node and two nodes, respectively.

by Schutz & Comins {17].). This discrepancy of the unperturbed models makes it difficult to compare
our results obtained from our new method with their results. Therefore, in order to check our own results
we have carried out the WKBJ analysis numerically by coding equations for the WKBJ approximation
as mentioned in Appendix. *

In Table 1 results obtained by two different methods, i.e. our new scheme explained before and our
WKBI code, are given. It should be noted that in the WWKBJ approximation the term in Eq.(8) which
becomes very small in high-m approximation is neglected.

As seen from the table, results agree well each other, in particular for models with strong gravity and
rapid rotation. It implies that our new method can give satisfactory values. In order to check our results
further, we have tested our code as follows. As is explained in the previous chapter, we divide the space
into two regions. Thus we can choose different mesh sizes for the two regions. Furthermore, as the outer
boundary condition is imposed at a finite distance from the center of the star, we need to check the effect
of this distance, i.e. the cutoff distance, on the eigenvalues. We have computed eigenvalues by changing
these quantities for the model with P = 30 and ;1 = 0.88. The investigated mode is m = 3.

When we double the cutoff distance by keeping the mesh size unchanged, the change of the eigenvalue
is a fraction of 10™* for the real part and a few percent for the imaginary part. The influence of the
size of the region to be used for the integral representation, i.e. the size of the outer region is also very
small to eigenvalues. It causes a very tiny change of the imaginary part, i.e. only a fraction of 10~1. The
most influential factor to results is the mesh size in the stellar interior. This can be expected from the
behavior of the scalar wave in the ergoregion as seen in Fig.1. If we make the mesh size half, the change

4Numerical calculations here were performed mainly on a DEC 30600 AXP workstation at the Department of Astronomy
and partially on a HP8000 workstation at the Department of Earth Science and Astronormy.
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WKBJ our new method
Model 1  -0.138 - ;- 2.60E-19 -0.138 - i- 3.6GE-19
Model 2 -9.94E-2 - i- T.64E-22 -9.92E-2 - i- 1.12E-21
Model 3 -5.61E-2 - i- 4.31E-26 -5.59E-2 - i- 6.22E-26

Table 1: Comparison of the results obtained by using the WKBJ analysis and our new method is shown
here. Eigenvalues of I = m = 7 fundamental mode (n = 0 mode in eq.(A2)) calculated with two methods
are compared. Each model has the same strength of gravity, 4 = 0.88, and rotational periods of them
are P = 30.0,37.0,50.0 for model 1,2,3.

of cigenvalues amounts to a fraction of 1073 for the real part and about ten percent for the imaginary
part.

3.2 Modes with small azimuthal numbers m

In the WKBJ analysis by Comins & Schutz [5] e-folding times of unstable high m modes are shown to grow
exponentially as m increases. Since these e-folding times are much longer than the age of the universe,
the instability seems to be too weak to have any effect in this large mn limit. They also have investigated
the lowest unstable modes of particular models (as small as m = 4), the results of which show that the
unstable modes grow with much longer time than the age of the universe. However lower modes, which
are expected to have shorter e-folding times, cannot be investigated by the WKBJ analysis precisely.
Thus it is important to study these lower modes by our new code exactly. We here have analyzed these
lower modes with models having stronger gravity than theirs, where the effect of ergoregion would be
more prominent.

Figure 2 shows how the real part of the eigenfrequency and the e-folding time of unstable modes
change with azimuthal number m for three models with different parameters, i.e. (P = 30,4 = 0.88),
(P = 40,4 = 0.88) and (P = 30, = 0.85). It is clear that differences between the results of the WKBJ
method and those of our method increases with decreasing m. We can see that e-folding times obtained
by the WKBJ method are larger for the same m’s. However the differences are at most in factors of ten.
Thus, even if the inaccuracy of WKBJ method is taken into consideration, the results obtained here do
not contradict qualitatively the conclusion by Comins & Schutz [5] that the unstable mode grow very
slowly comparing the age of the universe, which assumed weaker gravity.

In Figure 3 the e-folding times of unstable modes for different values of m are plotted against the
rotational period. These e-folding times are computed for the model with ¢ = 0.88. We can see from
this figure that the shorter the rotation period becomes, the more unstable the model becomes. This is
because the ergoregion becomes wider and deeper as the rotation becomes faster and so the ergoregion
instability works efficiently. Times are measured in a unit of M, so dimensionless time 7 corresponds to:

i [% = st - 4.9 x 10™%(sec) (16)

for a & solar mass model. For example the model with P = 40 rotates with period of 0.3msec for 1.4M,.

It is remarkable that as shown in Figure 3 lower unstable modes can have much shorter e-folding time
than the age of the universe for stellar models with the mass range of ordinary compact stars.
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Figure 2: For comparison of WKBJ and our new method, e-folding times of unstable modes are plotted
against the real part of the corresponding eigenfrequencies. Triangles denote the present results obtained
by using our new method. Crosses are results of the WKBJ method. Three pairs of parameters (P.p)
are selected, i.e. (P = 30,4 = 0.88),(P = 40,4 = 0.88) and (P = 30,4 = 0.85), which form three
sequences. Integers beside each points are the mode numbers m. Eigenfrequencies are normalized by
using the stellar mass M.

4 Concluding remarks

We have reanalyzed the ergoregion instability of the scalar field by developing a new method totally
different from the WKBJ analysis. Results obtained by our new method agree very well with those of
the WKBJ analysis for high m’s. Furthermore this methed can also be used to investigate modes with
low m’s which give shorter e-folding times than the age of the universe.

Models investigated in this paper are, however, nol realistic in two points. First, models have a
homeogeneous density and extremely strong gravity up to pu = 0.88. It should be reminded that there
exists no equilibrium state of the star with a uniform density for 4 > 8/9. Realistic stellar matters
are inferred to be inhomogeneous and no equation of state currently known cannot support such strong
gravity. Second, although the stars rotate rapidly, deformation from spherical shapes has not been taken
into consideration at all.

Concerning the second point, the deformation is expected to have non-negligible effects on the eigenval-
ues. However, it is almost impossible to take this deformation into consideration by the WKBJ approach.
Thus we need to investigate the problem by a full two dimensional formulation. Moreover it is shown that
there are toroid-star systems with the ergoregion due to strong self gravity of toroids (Komatsu et al. [13],
Nishida & Eriguchi [15]). Since these toroids with the ergoregion can consist of realistic nuclear matter,
they are more interesting objects from the astrophysical point of view. Stability of these configurations
have to be also treated as a full 2-D problem. Our new methed has an advantage in this respect since
the formulation does not depend on special nature of spherical symmetry. The main and essential point
of our formulation is to reorganize basic equations into “wave equations” which becomes inhomogenecous
Helmholtz equations asymptotically. Since this scheme is independent of the dimension of the space, our
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Figure 3: With m fixed dimensionless e-folding times of unstable modes are shown as a function of
dimensionless rotation period P. Strength of gravity is fixed as g1 = 0.88. Dotted lines correspond to
1y1(A),1Gyr(B) and 10Gyr(C) for 1.4\ model.

formulation can be easily extended to higher dimensions and will be applied to two dimensional problems
in the near future,
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A WKBJ analysis

If an eigenvalue ¥ satisfies the condition Vi (r+) < £ < 0 where r, denotes the radius at which the
potential V; becomes minimum, this mode is unstable one which grows in time. In this case, the
equation V. = T has two roots, say r = r¢ and r;, while V_ = T has one root, say r = ra. These values
satisfy the relation rq < r; < ra. According to the WKBJ analysis, the real part of this ecigenvalue is
determined by the so-called “quantization condition of Bohr-Somierfeld”,

1 1
m/ VTdr = (n+-2-) 7. (n=012..)) (17)
o

This condition implies that eigenstates are quasi-stationary states of the potential V.. Furthermore
imaginary parts (1/7) are given by the following integral,
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r
0y, = i ["1/ ﬁd"] 9 (18)
do ro o=a,
and re
A=exp [m/ \/|T|dr] (19)
ry

o=0y,

As 7 = 4)ap, A is regarded as a wave transparency cocfficient through the evanescent region (r; < r <
Tz).

Thus if one unperturbed model of a star is specified, unstable modes can be calculated with these
formulae.

B Axial modes of non-rotating ultra-compact stars

In general, nonradial perturbations of relativistic spherical stars can be decomposed into two classes of
different parities by using tensor spherical harmonics. One is the polar or even-parity perturbation and
the other is the azial or odd-parity perturbation. Perturbations of the latter class are disturbances of
pure gravitational field without dynamical degrees of freedom for stellar matter. This perturbation has no
counterpart in the Newtonian dynamics. This class of perturbations can be investigated with ease because
of its mathematical and numerical simplicity. The equation describing this class of perturbations can be
written as follows with an appropriate gauge choice and by expanding in terms of spherical harmonics
(Kokkotas [11]):

—— +(e* = V(r)Z(r) =0 (20)

where r. is the “tortoise™ coordinate defined as

r.=/ ” g-ﬂ-dr, (21)
° oo

and the function Z represents the gravitational field and the time-dependence is assumed as ~ ¢'9¢,

An extremely dense and compact stellar model has a potential V' with “dip”. This dip enables
“resonance modes™to exist similar to quasi-stable states of nuclei. This resonance has been analyzed by
Chandrasekhar & Ferrari ([3, 4]) and Kokkotas [11]. We have investigated the same problem using the
method developed in this paper.® As for the boundary conditions, we impose that the variable Z is
regular at the origin and that it satisfies the outgoing radiation condition at infinity.

In Table A1 eigenfrequencies of axial modes with I = 2 of ultra-compact stars are given. Here K(1994)
and C&F(1991) denote resuits of Kokkotas [11] and Chandrasekhar & Ferrari ([4]), respectively. Three
results agree well.® In our formulation, since we must solve a system of linear equations whose dimension
is [(number of variables) x (mesh number))?, it is much harder to increase mesh numbers than the former
calculations. However, considering the agreement of our results to others, our new method can be said
to give satisfactory results.

S1In our numerical computation r coordinate is used instead of r..
8 Kokkotas recently presented errratum of his results.[12] These values shown here are the corrected ones.
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Table 2: Eigenfrequencies of axial modes with I = 2 of ultra-compact homogeneous stars.

R/IM K(1994) C&F(1991) Present
226 0.2139+i-2.430E-9  0.214+4i-2.3E-9  0.2144-2.58E-9
0.2910+4-7.747E-8 — 0.290+i-8.04E-8
2.28  0.3690+i-1.231E-6  0.369+i-1.2E-6  0.369+:-1.27E-6
0.5008+i-5.294E-5 - 0.5004:-5.37E-5
230  0.4735+i-2.503E-5 0.474+i-2.6E-5 0.473+i-2.56E-5
0.6372+4i-1.156E-3 — 0.637+i-1.12E-3

Eigenfrequencies of modes with different radial quantum numbers n = 0 (upper row for each stellar
model) and n = 1 (lower row for cach stellar model) are displayed. The eigenfrequencies are shown in

units of (3AM/R*)1/2.
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The quasinormal modes of the extremal Reissner-Nordstréom black hole
are accurately calculated by a continued fraction method and the curious
behavior of the quasinormal frequencies in the extremal limit is reported.

Introduction

The determination of the quasinormal frequencies of black holes has for sev-
eral years been of interest and is related to experiments which aim at detect-
ing gravitational waves from supernovae or coalescences of binary neutron
stars, which are thought to eventually form a black hole. In the late stage
of the process of black hole formation, a certain mode of the gravitational
wave dominates the emission. This is called the quasinormal mode of a black
hole.

The quasinormal frequencies of the Schwarzschild black holes were first
computed by Chandrasekhar and Detweiler[1], who treated it as a boundary
value problem of the second order ordinary differential equation of Regge-
Wheeler.

d? 2
E}?+w —Vs(r)] Zs(r) = 0. (1)

The boundary conditions are given by

Zs~e P as r.— o0, (2)

Zs ~ e as T —, —00, (3)

which mean there only exists purely outgoing wave at the infinity and purely
ingoing wave at the horizon. Integration of the Regge-Wheeler equation
under these conditions is numerically unstable. To avoid the instability,
Leaver[2] presents the numerically stable continued fraction method for

!This talk was based on the preprint “TIT/HEP-311/COSMO-61"
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Schwarzschild and Kerr black holes. Here, a quasinormal mode function cor-
responds to a minimal solution of the recurrence relations which are satisfied
by the coefficients of a series expansion of a wave function. The minimal
solution of the three-term recurrence relation is obtained by calculating the
corresponding continued fraction. The continued fraction method can give
the values of frequencies with high numerical precision because it uses no
approximation, as is the case in the semi-analytic WKB method. Leaver(3]
also generalizes the continued fraction method to calculate accurate values
of the quasinormal frequencies of Reissner-Nordstrém black holes.

In the extremal limit, however, the wave equation has an irregular sin-
gular point at the horizon, which makes the series expansion of a solution
there invalid, and thus a continued fraction method does not seem to work.
In this paper we show that a continued fraction method is applicable even to
the extremal black holes if we expand a solution about a suitable ordinary
point.

Continued Fraction Method for Extremal Cases

The idea. is as follows: Since we can not expand a solution about the horizon,
we expand it about the middle point between the horizon and the infinity
to get a recurrence relation of the expansion coefficients (a,). The expan-
sion about the middle point makes us possible to simultaneously examine the
convergences of the expansion at both boundaries (the horizon and infinity).
The convergence at the infinity puts the condition Za, < 0o and that at the
horizon puts the condition £(—)"a,, < ~. These two conditions are satisfied
if both aa,, and a2, 4, are convergent. Then, we need to divide the sequence
into an odd sequence and an even sequence to examine convergence of both
series. The quasinormal boundary conditions are satisfied if each separated
sequence is minimal. The ratio of successive terms of each sequence is given
by a continued fraction. Consequently, the eigenvalue equation, which cor-
responds to the matching condition at the middle point, is constructed by
substituting the continued fraction into the ratio of successive recurrence
relations

The Results and Conclusion

The eigenvalue equation was solved using a nonlinear root search code. We
compared our results with Leaver’s results(3] of nearly maximally charged
case and the third order WKB quasinormal frequencies of the extremal
Reissner-Nordstrém black hole. The WKB quasinormal frequencies were
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obtained using the same formula of Kokkotas and Schutz[4]. Our results
were in agreement with these results within the accuracy of a few percent.
The difference between WKB frequencies and ours is ascribed to the fact that
the WKB method gives only the approximate values. Indeed, the tendency
that the discrepancy grows with the mode number suggests the breakdown
of the WKB approximation for higher n. The difference between Leaver’s
results and ours is from the numerical error caused by the breakdown of his
series expansion at the limit of maximal charge. Thus we are sure that our
quasinormal frequencies of the extremal Reissner-Nordstrom black hole are
the most accurate.

We numerically find a remarkable coincidence in the quasinormal fre-
quencies of the gravitational waves of multi-pole index ! and those of elec-
tromagnetic waves of { — 1 for a wide rage of multipole indices, 2 < ! < 10.
This can be explicitly seen in Fig.1, where the trajectories of the first four
lowest modes: of gravitational quasinormal frequencies of | = 2,3,4,5 and
those of electromagnetic quasinormal frequencies of I = 1,2, 3, 4 are plotted.
The quasinormal frequencies of the gravitational waves surprisingly coincide
with those of the electromagnetic waves in the limit of maximal charge.

These two modes are completely decoupled but they have the same res-
onant frequencies. The situation is very similar to the coincidence between
the quasinormal frequencies of odd parity pertrubation and those of even
parity perturbation. At present there is no easy way to understand the hith-
erto unobserved coincidence but it is interesting that it occurs only in the
extremal limit, where the black hole may have an unknown symmetry.

References

[1] S. Chandrasekhar and S. Detweiler, Proc. Roy. Soc. London A344
(1975) 441.

(2] E. Leaver, Proc. Roy. Soc. London A402 (1985) 285.
[3] E. Leaver, Phys. Rev. D 41 (1990) 2986.
(4] K. Kokkotas and B. Schutz, Phys. Rev. D 37 (1988) 3378.

—338-—



0.8 T T T T T T

06 F 4

05} T e e . T

" ™ NN

imaginary part of omega
-]
»H
]
L

o3l so=gy (1.2) L (1.9)
’ =t N N e —
2.2) @3 (2.9 (2.5)
02} ]
0.1} n=0 - — e — e —— — R
0 1 1 L 1 1 1
0 0.2 0.4 06 08 1 12

real ;iart of omega
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a corresponding dashed line, which is a trajectory of the electromagnetic
quasinormal frequencies belonging to lower multi-pole index by one.
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Abstract

The thermodynamic second law in the evaporating black hole space-time is examined in
the context of two-dimensional dilatonic black hole. For most general semi-classical action
which admit the linear dilatonic vacuum solution, the black hole entropy proposed by Wald is
calculated by using the analytical perturbation method and numerical method. It is shown that
the thermodynamic second law holds in the vicinity of infalling shell and in the region far from
the infalling shell in the case of semi-classical CGHS model. The analysis of the general models
is also presented and its implication is discussed.

1 Introduction

At present, the thorough understanding of quantum gravity has not been achieved yet. To
reveal the nature of quantum gravity, it is important to figure out the quantum aspects of
black hole. The existence of the non-trivial causal space-time structure such as black holes
gives a profound insight into the character of gravity. Curiously, the geometry of black
hole is intimately related to thermodynamics [?]. The discovery of Hawking radiation
[?] stressed the role of the black hole thermodynamics. It also gives the picture of an
evaporating black holes. Recently, the problem of information loss for the evaporating
black hole has been discussed widely. Originally, the thermodynamic laws of black hole
were proved in a stationary situation. Hawking’s calculation was performed on a fixed
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stationary black hole. However, Hawking radiation naturally leads us to the evaporating
black hole picture. Hence, it is legitimate to ask how the thermodynamic laws are modified.

In this paper, we shall investigate these problems in the context of two-dimensional
dilaton gravity. The two-dimensional CGHS model [?] provides an interesting toy-model
for the study of black hole thermodynamics. For this model, it is easy to give the classical
general solution. There exists a black hole solution. Moreover, the thermodynamic laws
hold in this model[?] and the standard calculation yields the Hawking radiation with
temperature -2% [t was shown that the effective action in which the backreaction of the
Hawking radiations included gives the evaporating black hole picture. On the other hand,
using the Noether charge technique invented by Wald {?], Myers has given a dynamical
entropy and shows the existence of the thermodynamic second law in the RST model
[?1{?]. The question we would like to address is whether the proposed dynamical entropy
is really “entropy® in the sense that the second law holds. Myers has shown that this
is true in the special model, i.c., RST model. However, RST model is too special to
conclude that the thermodynamic second law holds in general. We would like to consider
the most general models which have freedom in choosing cocfficients for local counter
terms. Because we are considering the evaporating black hole picture, we restrict the
models to have the linear dilaton vacuum solution.

2 Two dimensional dilaton gravity model

To make this paper self-contained, we start from classical CGHS model. The classical
CGHS action is

‘\7
o= 5= [ /TG R + (V) + 10 - l, >4 (1)

where ¢ is dilaton field, R is 2d Ricci scalar, A is a positive constant, V is the covariant
derivative associated with 2d metric g,,,, and f; are N massless scalar fields. In conformal
gauge, g4 = —3¢%, g, =g__ =0, r*¥ = { £ r, exact solution of this model can be
obtained easily. Vacuum solution of this model in ¢ = p gauge is

T =2 = MIX = Nxbem, (2)

It can be easily shown that the Penrose diagram of this spacetime is the same as that of
Schwarzschild’s spacetime. This fact shows that CGHS model has a black hole solution.
The solution for A = 0 is called Linear Dilaton Vacuum(LDV), which is flat solution.

Let us consider the matter falling along the null line, 2% = z. Then the energy-
momentum tensor of the scalar fields becomes

504 fidefi = %«w —at), (3)
50-10_fi = 50, fi0_fi = . (4)

The solution for this situation is
e = e = _ Mot _atyp(at — at) — Niaten, ()
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where M is the ADM mass of black hole.

Now we turn to the quantum theory. Though we cannot perform the full quantization
of gravity, we can calculate matter contribution and obtain effective action. In covariant
non-local form, quantum correction which is called Liouville action is

L et B
h=-g / zy/=gR; R (6)

where £ = N/12. Other covariant local counter terms can be added to the action because
of ambiguity in defining measures used in the functional integral [?]. Combinations of
these counter terms make different models. Possible local counter terms which can be
added to the action are

I = -Siﬁ / Pry/=g{adR + B(VS)?), (7)
[ —- K d2 N nR b n—-1 v 2 8
1= =57 [ EoVTT L led R + 6,57 (V6. (8)

Because we will consider the black hole solutions which are asymptotically flat, it is
reasonable to require that models include the LDV solution. This requirement lcads
a, = b, = 0. Thus the action I3 will not be considered below. As particular cases, it is
known that the models arc exactly soluble if a/2 + 3/4 — 1 = 0. For example, the case
of a =2, 8 =0is known as RST model, and the case of a = 4, 8 = —4 was studied
by Bose et.al [?]. In the cases a/2 + 8/4 — 1 > 0, there is no singularity. As we would
like to consider the entropy of the evaporating black holes, this case is excluded from our
consideration.

3 Entropy as Noether charge

In this section, we briefly review the Nocther charge approach to black hole entropy
invented by Wald [?] and, following the work by Myers [?], apply it to the two-dimensional
dilaton gravity models.

Wald presented a new way to look at the entropy of black hole as a Noether charge
associated with diffeomorphism invariance of a theory. In particular, the first law of black
hole mechanics is a general relation between “boundary terms™at event horizon and spatial
infinity in a stationary asymptotically flat space-time.

Assumption made in Wald’s analysis is the presence of a bifurcation surface on a
Killing horizon in a stationary space-time. A Killing horizon is a null hypersurface whose
null generators are orbits of a Killing ficld. A bifurcation surface is a spacelike cross
section in the Killing horizon, where the Killing field vanishes. It is a set of fixed points
of the isometry generated by the Killing vector and is at the intersection of two Killing
horizons. Another essential ingredient is the assumption that the global charges such
as mass and angular momentum are well defined. This is usually guaranteed by some
appropriate boundary conditions of asymptotic flatness. Both of these assumptions arc
valid in the classical theory of the dilaton gravity models, as we can directly check for
the exact solutions of black holes. On the other hand, First law valid for quantum black
holes?
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The first law of black hole mechanics takes the general form:

2%53 = 6M —Q6J ©)
where L is the surface gravity, and M, J and § are the mass, angular momentum and
angular velocity of the black hole. The entropy S is given by a local geometrical ex-
pression over the bifurcation surface. Iyer and Wald derives an inductive algorithm for
general diffeomorphism invariant theories (?]. Especially, for a Lagrangian of the form
L = L{f,V.f, gab, Rasea) involving only second derivatives of the metric gqp and the first
derivatives of the matter field f, the expression is given by

4z OL
V=g R’

The integral is evaluated over the bifurcation surface. (Actually it may be evaluated
at any cross scction of the Killing horizon and yields the same value provided that the
hifurcation surface is regular.) It is understood that the intcgration is done with respect
to the naturally induced volume element in the bifurcation surface. For the classical
two-dimensional dilaton gravity, the action (??) gives the classical entropy expression as

S =

(10)

Sp =2¢% (11}

where the right hand side is cvaluated on the event horizon (which is a killing horizon)
for the black hole solution (?7?).

Let us now turn to the semi-classical theories. Since the local action fits into the above
frame work, the correction term /; of the action yields

Sy = _%¢ (12)

On the other hand, the nonlocal action needs careful argument in the Noether charge
analysis. Myers showed that such a nonlocal term actually can be handled. The result is
a nonlocal expression for the entropy:

$i = =& [ dy=g(y) Glan, 1) R(5) (13)

where G(z, y) is the Green function, that is,
ViG(z,y) = &(z,y) (14)
We have to specify the boundary condition for the Green function G(z,y) in order to

make the expression (??) give definite value.
Thus entropy of the generalized model is

S§=2e"% 4 2p - %qﬂ + klog(—Aatz™), (15)

second line is written in conformal gauge, and last extra term came from boundary con-
dition of (?7).
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4 Time evolution of entropy on apparent horizon

4.1 Analytic Approach

Time evolution of entropy on apparent horizon is studied in this section. We consider
the dynamical situation in which infalling matters make black hole just like as classical
situation, but also with the back reaction of Hawking radiation. We would like to evaluate
the entropy along the apparent horizon. Unfortunately, in most cases of a and 8, exact
solution cannot be found, so that the behavior of entropy on apparent horizon is difficult
to study. Instead we calculate the gradient of the entropy at the vicinity of the matter
shell. At the point where apparent horizon starts, the derivative of eniropy in 2% direction
is
dS dz~

dx—,f_a+3+d 2|28, (16)

where

3.5 253+p+i+, (17)

—e (+ ) (18)

0.5
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on apparent horizon which is defined as 9, ¢ = 0. 2E¢|, » is the gradient of the apparent
horizon, and can be calculated from equations of motxon["],

()?,_¢

©3,0-9

dzr~

So, we must have d,p, d1¢ and 9,0_¢ on the apparent horizon. First we lead 0,p and
evaluate 4, S.

On the shell line (z* = af), we define £ = d,¢, Z=dyp,and w=e ¥ =¢~% =
—A2rd =, which is LDV solution on z* = r. Boundary conditions for ¢ and p is such
that they asymptotically coincide with the classical solution because quantum correction
would be negligible in asymptotic region. The equations of motion in terms of ¥ and =
are

(2w = (T + DILE - v =@+ HIAE = 0, (19)
K'awE - (211’ -+ ;-)3.”2 —2¥ — —l+- = 0, (20)
4 z]

By eliminating 4,=, we have

(')wE[{Qw+~(%— 1} - &1 -—%—ﬁl |+ = V[8w+ An( ——l)]

The solution of this equation can be casily obtained as,

1 1 a
L =—-—+const.—=. A={2w+x(~ -
P 7 (2w x(g
Integration constant in (??) must be determined by the boundary condition that ¢
asymptotically approach to the classical solution. Thus

\:
£ L+" ‘ (23)

Arg \/_

In the case of 1 — § — g > 0 there are several solutions, but we are interested in the
largest one because the other solutions are behind singularity. So, we take the largest one
as the only solution, wy. By solving & =0, we have

Dy -e0-3-5) (22)

K a 1 a f 20
wo=—=(=—-1)+ /8] — = — =) + (—). 24
Y T I (21)
Another caseis 1 - % —% < 0. which always gives positive A for every w. This fact implies
that (?7) is always regular, so singularity is absent even in our matter infalling situation.
Detail of this case will not be analyzed here because we are now interested in black hole
entropy.

Equation for = is given by using (??), and the solution satisfying the boundary con-
dition is

M

o
AKzxg

a 1 a
== __, 9 (= -1} -
G+ D8+ g (20 4+ 5(5 - 1))
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Figure 2: This figure shows the entropy of semi-classical CGHS model for parameters
A=1,08 =0(z§ =1), x = M = 1. Solid curve is numerically calculated entropy, and
dashed strait line is analytically calculated one.
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In the case of a = 3 = 0 which is called semi-classical CGHS model, it can be shown that
the gradient of the entropy is always positive at the vicinity of the infalling shell. In other
case, the sign of dS/dr* surely depends on a and 3. For example, a = 12, 3 = —20.1 at
A =1, 2§ =1 leads negative value of dS/dr* near » = M. Therefore there exist some
models which have decreasing entropy with Wald’s scheme in 2 dimension.
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4.2 Numerical Approach

To know the behavior of entropy along the apparent horizon far from the shell, we must
perform numerical calculation for some values of the parameters & and M. Although we
cannot cover all values of the parameters in numerical calculation, it is necessary to know
information which cannot be obtained from the above analytic approach.

Numerical calculation was performed on ¢ coordinate, and we fix the parameters,
A =1, 05 =0 (zf =1)[?]. Equations for ¢ and p are second order partial differential
cquations. We have used the numerical schemes invented in [?]. The range of ¢* is from
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the infalling shell to the merging point of the apparent horizon and singularity. One
of the typical numerical results is shown in Figure 2. The result is for k = M =1 in
semi-classical CGHS model. Solid curve is numerically calculated entropy, and dashed
strait line is analytically calculated one. In the latter one, the value of entropy on the
infalling shell is evaluated by using the LDV solution, and gradient of entropy is calculated
with analytic scheme presented in above subsection. This result shows that the entropy
grows still even in the region far from the infalling shell. The range in which analytic
approximation is good is not so wide in this case, it shows the higher order effects make
the growing rate more rapidly. We also calculated the evolution of the entropy for other
parameters. All of the results show the same feature.

5 Conclusion

In this paper, we have investigated the dynamical evolution of the entropy proposed by
Wald along the apparent horizon in the context of the 2-dimensional dilaton gravita-
tional theory. In particular, we have considered the quantum backreaction and then the
evaporating spacetimes. In the case of the semi-classical CGHS model, we have shown
analytically that the thermodynamic second law holds along the apparent horizon in the
vicinity of the infalling shell. Furthermore, the numerical calculation is also presented,
which suggest that the thermodynamic second law holds even in the region far from the
infalling shell. Myers’s result on the RST model and analysis on the semi-classical CGHS
model are very impressive, however, they are yel special models. Hence, we have also
studied the general models which seem physically natural in our judge. Analytic calcu-
lation shows that, even in the vicinity of the infalling shell, the thermodynamic law does
not hold in certain models. There are two possible choices here. One is to use this fact
for restrictions of models. Another is to modify the entropy formula. In the latter case,
the statistical interpretation of the entropy would be necessary. However, this interesting
subject is beyond the scope of this paper. Further implications of our analysis should be
considered in the future.
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Abstract

We study some quantum aspects of the Einstein gravity with two commuting Killing
vectors. The theory is formulated as a SL(2,R)/U(1) nonlinear o-model with a
coordinate-dependent coupling coupled to gravity in two dimensions. The quantum
analysis of the nonlinear o-model part, which includes all the dynamical degrees of
freedom, can be carried out consistently in a parallel way to ordinary nonlinear o-
models. We calculate the effective action, and obtain the forms of the beta functions
to all orders up to numerical coefficients. As an application, we consider the quantum
effects on the Kerr black hole, and find that the asymptotically flat region remains
intact and stable, while, in a certain approximation, the inner geometry undergoes
a considerable change however small the quantum effects may be.

1. INTRODUCTION

Quantum aspects of Einstein gravity have been investigated intensively for a long time.
As is well known, there are, however, many difficulties both conceptually and technically.
One of the most outstanding ones is its nonrenormalizability. Due to this, we have no
consistent way to investigate its quantum theory. In spite of that, many attempts have
been made, for example, by using semiclassical [1] or 1/N [2] approximation. Unfortu-
nately, in these approaches, we encounter the instability of flat space-time. The models
with higher derivative terms also have been investigated as low-energy effective models
of more fundamental theory such as string theory [3]. In these cases, we perform weak-
curvature expansion, and thus we cannot deal with the strong-curvature region where
quantum effects may become important. In a much more simplified setting, the quantum
mechanics of minisuperspace [4] or the Schwarzschild black hole [5] has been studied, but

it seems still difficult to extract definite physical consequences.

te-mail address: ysatoh@hepl.c.u-tokyo.ac.jp

—350—



The above argument indicates the necessity of understanding more fundamental theory
of gravity. In this direction, intensive studies have been made. However, together with
this, it seems to be still important to accumulate certain pieces of knowledge of quantum
aspects of Einstein gravity even if in a simplified setting. In this talk, we shall investigate
some quantum analysis of Einstein gravity from such a point of view.

The Einstein gravity with two commuting Killing vectors ( for instance, the stationary
and axisymmetric case ) are known to be formulated as a SL(2,R)/U(1) non-linear o-
model coupled to gravity in two dimensions. The quantum theory of non-linear o-models
is well studied, and we can expect to make use of such knowledge for studying quantum
aspects of the Einstein gravity in our case.

Therefore, our aims here are (i) to study a quantum theory of the Einstein gravity
with two commuting Killing vectors, (ii) to investigate its quantum effects on geometry,

and (jii) get some insights into quantum aspects of Einstein gravity. For details, see [6].

2. DIMENSIONALLY REDUCED EINSTEIN GRAVITY

When there exist two commuting Killing vectors, all the fields in the theory become
independent of these directions. We denote them by the coordinates z° and z?, and,
for definiteness, we assume that z° is time-like and z® is space-like as in the case of
stationary and axisymmetric geometry. Consequently, the theory can be regarded as that
in two dimensions represented by z! and z?. There are several ways to perform this
dimensional reduction, here we adopt the method using vielbein (7).
Let us begin with the following vierbein in a triangular gauge,

EA, = ( A—lgz €2, A‘A/f}g,,. ) ’ ()
where M(=0 - 3) and m(= 1 - 3) refer to the space-time indices , A(=0 - 3) and a(= 1
- 3) to those of its tangent space and all the components are independent of z°, Then we

change the variables from A, to B by a dual transformation,
A’Fpy = —€mm @B, (2)

where €m,n is the volume element defined by the dreibein ey, Furthermore, we drop all

the dependence of the fields on z* and set €2, to be of the form,

e = (,\5;; o)’ 3)

0 »
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where u,a = 1,2. We then get the following expression of the action,

1 1
- = — )
= SEn . / d'z ERY(E)

v 1 i
~ o[z [ ¢eR® _ §(s""g.-,-(qs)a“qm,ﬂ:w] , (4)
P

where & = G/c% V is the "volume” of (z° z%) space-time and [, is the Planck length.
The curvature with respect to (z!,2?) space is given by eR® = —26#§,8, In A, while
¢' and g;; are by ¢f = (B, A) and 9ij = A~%5;;. They are identified with the coordinates
and the metric of SL(2, R)/U(1) manifold, respectively. Therefore, we see that the above
action describes a SL(2,R)/ U (1) nonlinear 6-model coupled to two dimensional gravity.
Note that, in the above expression, the model can be regarded as the one in flat space.
Thus in the following, it is understood that the indices p, v are raised and lowered by the
flat metric.

The independent equations of motion derived from (4) are

8,0"p=0 (5)
AO* (08,E) = p 8,EDE (6)
8pdIn A~ 36%p = 3P ATRERE, (7)

where ¢ = z! +iz? and £ = A +iB. £ and the second equation, (6), are called the
Ernst potential and the Ernst equation, respectively [8]. In our parametrization, the dual

transformation (2) takes the form
A%9:A = ipdB, (8)
and the line element becomes
ds? = A7[N((dz))? + (d2?)?) + pP(ds)7] - A (da® + A ) ©)

where we have set A;, = 0 and A3 = A (this is possible because we are working in two
dimensions).

The model has many interesting properties and has been investigated extensively
mainly by relativists (see, e.g., [9, 7]). For example, it has an infinite dimensional sym-
metry called Geroch group [10, 11], and the similarity between this symmetry and those
in dimensionally reduced supergravity has been recognized [12]. Recently, the relation

between these symmetries and dual symmetries in string theory has been discussed [13)].
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Furthermore, the model is integrable [14, 15], and has a large class of solutions called the

Tomimatsu-Sato class [16] ( the Kerr solution is the simplest one in this class ).

3. QUANTUM THEORY

Now let us consider the quantum theory. From the action, we see that all the dynamical
degrees of freedom are included in the nonlinear ¢ -model part. Thus we shall investigate
the quantum theory of that part and its effects on geometry. In other words, we shall
incorporate the quantum fluctuations depending only on z' and z? and study its physical
effects. The quantization including the gravity part is the subject of two dimensional
quantum gravity, but we do not yet have any way to deal with our model in this context
because, for instance, the dynamical degrees of freedom exceeds 1. From a different point
of view, a quantization of the entire system has been discussed [17].

Here a comment may be in order. Since the fluctuations to z° and z* directions are
ignored, our analysis is not enough to know the full quantum properties of Einstein gravity,
of course. However, we have at present no consistent way to investigate the full quantum
theory of Einstein gravity because of its nonrenormalizability and various difficulties. Our
attitude here is a modest one. Although only a part of the quantum fluctuations can be
incorporated, in this simplified setting we can carry out a consistent quantum analysis
of Einstein gravity and extract some quantum effects on geometry. We believe that our
analysis gives some insights into quantum aspects of general relativity.

Please recall that the action of the nonlinear o-model part was
1 1 . .
’—.lSNL = _'5/dszo-l(m)gij((b)ap‘#aud’]’ (10)

where Ty = e2/p(z), €} = 12/V, and To(z) is regarded as a coordinate-dependent coupling
like dilaton field. This is the difference between our model and ordinary nonlinear o-
models, where the couplings are constant.

First, we define the quantum theory by the above action and the SL(2, R)/U (1) invari-
ant measure maintaining the covariance of the target space. The model is renormalizable
since it is regarded as the one in two dimensions. Next, we calculate the effective action
perturbatively. In this calculation, we adopt the background field method [18] and the
dimensional regularization. In spite of the existence of the anomalous coupling, Ty(z), we

find that we can deal with our model in a parallel way to ordinary cases by some change
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of variables. However, since the actual calculation is rather technical and complicated,
we display only the result here.

The calculation is quite simplified by making use of the facts that SL(2, R)/U(1) has
a negative constant curvature, i.e., RSLZRVU() = _9 and all the quantities with the
indices of the target manifold are proportional to the metric, e.g., Rij('l'R)/ v gij. We

then get the effective action of the form
1 . 1 _ :
-5 S0 = 5 [ T\ @ n)es(9)0,8' 0"
+ %/dzx U™(z;4) 8,10 p8*Inp + (H.D.T). (11)

Here T(z;p) is the renormalized coupling, and g refers to the renormalization point.
The term including U = U(T(z; p)) arises from the renormalization, which is absent in
ordinary nonlinear o-models, and (H.D.T) represents the higher derivative terms. Since
we are interested in global geometry of space-time, their effects are expected to be small.
Thus we shall henceforth focus on the quadratic derivative terms.

Furthermore, following the standard procedure, we get the forms of the beta functions
for T'(z; 1) and U(z; u) to all orders :

= 97 _1 © N1
br(T) = np.T = ZWA,E::INaNT ; (12)
8 1
Bu(T) = i U ~z=x (Nby, + Br iU - bQ) T, (13)

where a‘,:?) and bSS) are some numbers determined by the explicit loop calculations. For
example, they are o{” = -1, a{ = 1/2x (18, 19}, and 5” = 1/2 .

4. QUANTUM EFFECTS ON THE KERR GEOMETRY

In the previous section, we carried out the renormalization of our model. Then let us
study its effects on geometry. The equations of motion derived from the effective action
and the dual relation are given by
8,8"p = 0, (14)
88, (T 8€) = T7! g,€0%¢, (15)
Bcpdcln A — %agp = %J(go) (T7'A~20,£0E + U™ oI piInp) ,  (16)
AA = ipdB, (17)
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where pq is the scale of the classical theory and e%(10) = T(z; utp)/0(z). Note that the
quantum effects are represented by the renormalized coupling T'(z; ) and the additional
term including U(z; ;2). For later use, we adopt a specific coordinate system called Weyl’s
canonical coordinate system. Since p(z) is a free field in two dimensions, we can take it

as a coordinate. Then introducing another free field, z, conjugate to p(x), we set

' = Lp, 2=z, (18)

where, on dimensional grounds, we have multiplied p and z by I, which is the only constant
with dimension of length in our theory.
As an interesting example, in the following we shall consider the Kerr geometry. In-

troducing new coordinates, r and 8, ( Boyer-Lindquest coordinates ) defined by
lp = Vr2=2mr+a?sin@, Lz = (r—m)cosd, (19)

and denoting z° and z® by ¢ and w, respectively, the line element of the Kerr solution is

written as
2mr dr?
2 = - o 2 - d02
ds (1 ¥ )dt +E(D +
4mar _ , 2. 2 2malr _, \ ., 2
-5 sin“f dw dt+ | 7°+a® + sin®@ ) sin® 8 dw?®,  (20)

where D = r? — 2mr + a?, £ = 2 + a®cos?#, and m and a represent the mass and the
angular momentum per unit mass of the Kerr black hole, respectively. Notice that zeros of
D( we denote them by r; ) correspond to the horizons and the outer zero of D — a?sin? 6
to the outer boundary of the ergosphere.

Now let us discuss the quantum effects on the geometry. First it is easy to see the
behavior of the renormalized coupling T(z; ). It tends to blow up as we approach the
horizons (7 — 74) or the axis of the rotation of the black hole (sin # — 0), while it tends
to vanish as we go to infinity (r — o00). Therefore we find that the asymptotically flat
region has no quantum effects and remains stable.

Second, we find also that the effects of the term including U(x; u) are absorbed into a
factor of A. Indeed, defining Ar by A = f(p; u)Ar and f(p; 1) = exp[(e?(10)/4) [°dp'
P U YT (p'; )] , the equation (16) becomes

1 1 -
8:pd; In Ar — 5agp = 4—e2(u0)T"‘A‘28C86¢8, (21)
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in which U disappears.

Third, in order to get the geometry including the quantum effects, we have to solve
Eqs. (15),(21) and (17). However this is a hard task at a generic loop order, and hence we
concentrate on one loop order and consider only the deviation from the classical solution

in the neighborhood p(z) = pg. At one loop order, we have

(o) T~ (z: 1) = p(x){l—%ez(uo)ﬁ'"(ﬂf)ln(#/uo)}- (22)

Moreover we approximate this by a(po)p(z), where a(po)=1 — (e*(u0)/27)p5 " In(12/ 110) ~

const. . Note that at the classical scale, i.e., 4 = o, we have a(py) = 1. Since d,1p~! =

— I5'p? and 8,2p™! = 0 hold, this approximation is valid where p(z) = (/% — 2mr + a?

sin 6}/, >> 1, namely, in the region far from the horizons or the rotation axis measured

by the Planck unit. In this approximation, the quantum effects on the geometry are

represented by a factor in front of X (dr?/D + d6?), and we get the following geometry,
ds? = - (1 - 2—;") d? + f2(po) (%)aw 's (%—z + d02)

4dmar 2mar
z

sin? 8 dw dt + (r’ +a’+ sin’ 0) sin @ dw?, (23)
where F; = D —a?sin?0 and F; = D+ (m? - a?)sin? . Therefore we find that additional
zeros and singularities appear in the metric where F} or F, vanishes unless a(gp) = 1.
After some calculations, we find also that they are zeros or singularities of curvature
invariants. Furthermore, we see that the most outside one among them develops at the
outer boundary of the ergosphere in which several unusual phenomena can take place. We
remark that our approximation still valid there as long as m and a are large enough. We
do not know whether or not we take the existence of such zeros and singularities seriously.
However, our result indicates that the inner geometry of the Kerr black hole undergoes
a considerable change due to quantum effects no matter how small the quantum effects

may be.

5. DiscussION

In this talk, we dealt with the Einstein gravity with two commuting Killing vectors and
formulated it as a SL(2,R)/U(1) nonlinear s-model coupled to gravity in two dimen-

sions. We then quantized the nonlinear s-model part, which included all the dynamical
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degrees of freedom and renormalizable, and calculated the effective action and the beta
functions. The quantum effects of our analysis on geometry, i.e., the effects of the quan-
tum fluctuations depending only on two coordinates, were investigates by taking the Kerr
geometry as an interesting example. As a result, we found that the asymptotically flat
region had no quantum effects and remained stable, while the inner geometry underwent
a considerable change however small the quantum effects might be.

Admittedly, our analysis is not enough to know quantum aspects of full Einstein
gravity. We can not consider the effects of the truncated degrees of freedom and statistical
aspects of Einstein gravity. In our simplified setting, however, we can carry out some
quantum analysis consistently. Moreover, we can confirm that there certainly exist the
quantum fluctuations by which the quantum effects become more and more important
as we approach the inner region of the Kerr geometry, as expected. We believe that our
results give useful insights into quantum aspects of Einstein gravity.

Finally, we make two comments. First, we can perform a similar analysis also in the
Einstein-Maxwell system. In this case, the extension is straightforward and the target
manifold of the nonlinear o-model part becomes SU(2;1)/(SU(2) x U(1)) or SU(2;1)/
(SU(1;1) x U(1)) according to the signatures of the Killing vectors [20, 9]. Second, Ein-
stein gravity is already formulated as a SL(2, R)/U(1) nonlinear o-model coupled to grav-
ity in three dimension just by dropping the dependence on one Killing direction. Thus
it may be possible to investigate quantum aspects of the Einstein gravity with only one

Killing vector by making use of the knowledge of three dimensional nonlinear o-models.
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Abstract

Two dimensional quantum R2-gravity is studied in the semiclassical method.
The thermodynamic properties, such as the equation of state, the temperature and
the entropy, are examined. The classical solutions (vacua) of R2-Liouville equation
are obtained by making use of the well-known solution of the ordinary Liouville
equation. They are constant curvature solutions. The positive constant curvature
solution and the negative one are, after proper infrared regularization, *dual’ each
other. Each solution has two branches(+). We characterize all phases appearing
in all solutions and branches. The lopology constraint and the area constrajnt are
properly taken into account. A total derivative term and an infrared regularization
play important roles. The topology of a sphere is mainly considered.

1 Introduction

In the recent analysis of two dimensional(2d) quantum gravity(QG), the conformal
approach or the matrix model approach have been intensively done. Those approaches are
nonperturbative ones and it is expected that some non-perturbative features are impor-
tant to understand the theory. At the same lime, however, it is known that an orthodox
perturbative approach, the semiclassical approach, is also useful in 2d QG[1, 2). We
present a close examination of 2d R2-gravity using the latter approach. A key point in
the analysis of 2d QG is how to treat the area constraint and the topology constraint.
The regularization of infrared divergence (and ultraviolet divergence in the quantum eval-
uation) is also important. The semiclassical treatments of 2d QG so far are insufficient
in these points. We present a new analysis.

Despite the long period of rescarch, the physical picture of the Liouville theory, in
relation to 2d QG, still remains obscure. It shows the delicacy or the subtlety of the
theory and requires some other proper formalism and regularization. So far as the popular
formalism based on the conformal field theory is taken, the barrier ¢m = 1 does not seem
to be overcome. The computer simulations, however, seem to no special difficulty for

*Talk at Workshop on General Relativity and Gravitation, Jan.22-25,1996, Nagoya Univ.,Japan.
VE-mail address:ichinose@u-shiznokm—kcn.ac‘jp
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the prohibitted region of c,[3, 4]. This conflict seems gradually serious. Although the
problem is examined from different approaches, it is fair to say the true situation is not
known at present. Recently it has been shown that the semiclassical results nicely explain
the simulation data[s, 6).

1t is well known, in the lattice QG, that the higher-derivative term, SR?, regularizes
the lattice system very well (for a proper sigh of #). It has the effect of smoothing
or roughening the surface. We can expect a rich phase structure. The importance of
the term is also stressed in the continuum context[7]. From the simple power-counting
argument, we see the ultra-violet behaviour becomes well regularized. We can take two
standpoints about the R?-term: 1) We are considering the 2d R2-QG as one gravitational
model; 2) We regard R*-term as a regularization to define the § = 0 theory and expect its
effect disappears when some averaging (renormalization) procedure is taken. Although
1) is mainly taken in the present paper, both standpoints are important at this time of
development.

In the semiclassical analysis of 2d R*-QGin [5, 6], one of the classical solutions (positive
curvature solution) is analysed. In the present paper we present the full structure of the
classical vacua. We will see an interesting fact that the positive and negative solutions are ,
after doing infrared regularization differently for each solution, symmetric by a reflection
in the coupling f-space. Each solution has two (+) branches. —branch solutions are
continuous over all real 8, whereas +branch ones live in the half real region of 8. The
explanation is self-contained.

It is well known, in gravitational systems, that the macroscopic quantities, such as
the entropy, the volunie and the temperature, obey the laws of thermodynamics. Those
quantites are thermodynamic state variables of an equilibrium state. We will find those
properties in the present 2d model of QG. Especially we can characterize all phases,
appearing in the theory, by the #-dependence of the temperature.

2 Semiclassical Approach

We analyse the simulation data by the semiclassical approach. The R?- gravity interacting
with c,,-components scalar matter fields is described by

S=IJII\/§(%;'R_/9R2-“—% .?:laaq)i'gnb'alh@i) ’ (d,b=1,2 ’ 1
(1)

where G is the gravitaional coupling constant, # is the cosmological constant , g is the
coupling strength for R*-term and ® is the Cm- components scalar matter fields. The
signature is Euclidean. The partition function » under the fixed area condilion A =
Jd&z,/3 and with the conformal-flat Bauge gap = €¥ by , is written as [8),

AA) = | B2 ezpi S} 6(J) /G — A) = eaph(2U0) _ 4y x Z14]
Z[A] = [ Dp e*kSlel 5(f 2z ev — 4) (2)
Sole] = [ Pz (900 — § e=*(8%)? + 20:(vp) ) , L= 1(2-c.) , (3)

where A is the number of handles !. Vg is the gauge volume due to the general coordinate
Invariance. § is a free parameter. The total derivative term generally appears wlhen

"The sign for the action is different from the usual convention as seen in (2).
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integrating out the anomaly equation 8S;.4[¢}/6¢ = %6290 . 'This term turns out to be
very important. 2 We consider the manifold of a fixed topology of the sphere ,h = 0 and
the case ¥ > 0 (¢,, < 26). h is Planck constant. 3

Z[A] is rewritten as[5), alter the Laplace transformation and the inverse Laplace one,

214 = [ % [ Dpexp 2l Solgl - M [ dze” - )
= [Rebt [Dperp (1Slel)
Silel = Solw}— A / &z ¢

= [ (oo - @0 + Lolle) <A e) L ()

where the A-integral should be carried out along an appropriate contour parallel to the
imaginary axis in the complex A-plane. Note that the §-function constraint (area condi-

tion) in (2) is substiluted by the M-integral. The leading order configuration is given by
the stationary minimum.

6—5"&]- = -1—3290 + B{e™?(0%0)* — 20%(e ¥ D%p)} — Xe?| =0
6(P Pe Y Ve
Loa+sie| = o (5)
d/\ [ Ac H
2[A] = -!-e:rp 1{Ac/l + Sleld) = le:r:p -l-[“”
h h ‘ h h <

Generally this approximation is valid for a large system. In the present case, the system
size is proportional to ‘T" = e because all quantitative variables are proportinal {o the
factor. We expect the approximation is valid unless it is too near the region: c,, ~ 26.
The valid region is the same as stated in Sect.1.

The solution ¢ and A, ,which describes the positive-constant curvature solution and
is continuous at B = 0, are given by(5)

= —in (& ﬁz 2 _ (1)2 2y2
edr) = - (FU+ 20}, P=@Pe@E)

ac=%{w+l—vw’+l—2£w} ’ w=167rﬂ'7 ’ ﬂ'Eg ' (6)

w
'7AcA = m(aﬂ:)2 - Q¢

where £ must satisfy —1 < £ < +1 for the realness of a. (z',2?) are the flat coordinates
of the plane on which the sphere , which the above classical configuration represents, is
slereographically projected. The partition function at the classical level is given by

T = In Z[A)|ye = XA+ (1 + L Ing - 2w + C(A)
C(A) = Q) 4 85 n(12/0) — 1} + O(A/L?)
£»1,

)

, (7)

2The uniqueness of this term, among all possible total derivatives, is shown in (s}.

3In this section only,we explicitly write (Planck constant) in order to show the perturbation structure
clearly.
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where L is the infrared cut-off (r? < L?) introduced for the divergent volume integral of
the total derivative term. Note that C(A) does not depend on f (or w) but on ¢, (or
7) and A. In addition to the above branch ( we call it — branch), there is + branch (
for the positive-constant curvature solution ) where the solution lives only in the positive
real region of w[5}.

Similarly we can obtain the negative-constant curvature solution[9].

3 Physical Quantities of R2-Gravity

We list here the obtained result of important physical quantites for the positive
curvature case. They are expreesed by three physical parameters § ,v ,A and one free
parameter §.

Curvature of =%{y41 + wi+1-2fw} ,
Classical Action Si[pc) = (1 + €)% In § — Za + C(A) ,

String Tension A A= ;&;(Gczw - 167a.) (8)
An Expect. Value —-A< ]d%\/ﬁll’ >le= Qr'—;;;!ﬂl
= —167a. + a2 +Z x :—c%%.t ,
Free Energy =TI, = =Sy\[p) = AA

where w = 167y and C(A) is given in (7) * . Nole that = =0.

The curvaturex A (= R(p;)x A = a(w) ), the classical valueof A < [ d?z/GR? >
(= —%ﬂl) and the string tensionxyA = yA A are plotted, for the —branch solu-
tion, in Fig.1,2 and 3 respectively. In the figures we take £ = 0.99 whose meaning is
explained in [9, 10], and the curves for the negative curvature solution are also plotted.

The asymptotic behaviours of these quantities will be listed in Sec.4.
¥

o1(1,9.99) —
olH(x,3.99) - i

a
t{ N o

190

-10

-0

.30 N N N " 5 N "
-9 -8 -8 -4 -2 ° 2 4 [ ] 19
we 10 wyf}

Fig.1 Ax Curvature = a(w) , Positive and Negative Curv. Sols., —Branch

b

‘Because of the term —\(fd?z e? — A) in {4), we see A can be interpreted as the string
(surface) tension.
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of the classical open manifold, not to absorb the ultraviolet divergence in the quantum
theory. Note that the constant-curvature sign remains negative after the rescaling and the
Euler number [ d®z,/gR is negatively divergent. These facts make us envisage Fig.4 as
the rescaled manifold. It describes a sphere punctured everywhere on the surface. Fach
puncture absorbs the infrared divergence.

Fig.4 Punctured sphere absorbing infrared divergence

4 Phases and Asymptotic Behaviours

The asymptotic behaviours of the physical quantites, for the positive curvature case,
are listed in Table 1.
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w -1 -1€w<0 O<wgl l<€w
Phase / / (E) (D)
o <0, <0, E{2+w(1-¢) 4m{2+ =5
not allowed | not allowed +0(w?)} +0(w=?)}
+ -G [ | -%O-0+ow| er{i+g
+0(w?)} +0(w~?)}
YATA / / Z{-14+0-w 4rw{l
+0(w?)} +0(w™")}
/ / Z{1+ 2w drw{l
—yref! +(1+8winw +0(w™")})
+0(w?)} — vC(A) —1C(4)
Phase (C) (B) (A)
a; 8r 47(1 + €){1 ﬂi—*—u
+0(lwl™)) -} + 0(w?) +0(w™?)
- -5 | strr4 g 1672(1 + €){3 — € sr’(14¢)
+0(w™?) —(1 - 8w} + O(w?) +0(w™?)
1AZA | —4rlw|{1 4n(1+ £){-1 -s(1+6(3-¢)
+0(i)} + 3w} + O(w?) +0(w™?)
—4n|w}{1 dn(1+€){1 - In 2H¥ (1 +€) nw
| etd +O(|%')} + 3w} + O(w?) +const
—1C(4) —1C(4) —1C(4)

R>0,w=16nf'y,v=

Table 1 Asymp. behaviour of physical quantities.

48x
26=cm

>0 (cm < 26). C(A) is given by (7).

Due to the 'reflection symmetry’, each phase of the negative-curvature solution
is characterzed in the similar way as in the positive-curvature case. We list the phase

characterization in Table 2. ('Primes’ in Table 2 mean modification due to the sign
difference.)

v -1|-1€w<0|0<w] l€w
+] (D) (E) / /
-1 (W) (B’) (<)

Table 2 Phases of Negative Curvature Solution. w = 167f'.

All phases are explained in [5] using the above asymptotic behaviour. In the
present paper we will characterize each phase by the equation of state in Sec.5.

5  Phases, Thermodynamic Properties and Equa-

tion of State

In this section we examine the thermodynamic properties of the system using the
obtained analytic expression. We consider the positive curvature solution. The partition
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function is given by

Z[A) = /cb\ ezp { [[\] + A4 } = exp {[[A] + A}

di'[A )
dA.

Under the variation of the total area: A = A+ AA, In Z[A] changes by A(In Z[A)) =

Ae- DA+ AA - %1‘ . % + A)ls. = Ac - AA . Because the free energy F is given by
F = —In Z[A] , the pressure P is obtained as

=—ZF=2mh Z[A]=), . (10)

S, = S0, 4o (9)

The pressure is the same as the string tension.
We define the temerature T'(w) , imitating the Boyle-Charles’ law, as follows.

P-A=T(w) , T(w)=24= L(e 0w~ 16ma,) , (11)

(w) = i={fw+1 +|w—-1]} for + branch solution
elw) = %{w +1 —|w—=1]} for ~branch solution

N = 4n/y = (26 - c,,)/12 corresponds to the 'mol number’. The temperature is the

(dimensionless) string tension per a unit mol. The final analytic form of the temperature
is given by

iy
+branch solution T(w) = { w2 ::zlf_ [1) : :]’ <l
—branch solution T(w) = { ':’I 2 {z: 111!<Sul} (12)

The behaviour of T'(w) is plotted in Fig.5.

4 (Relln-2e-l/x ) — .
{nel?-1/2:0-2) =~

T(w) 2l /

-Dranch

-4

-8 |

w

Fig.5 Temperature 7' = T(w), Pos. Curv. Sol.

The asymptotic form of temperature in each phase is given by,
1

Phase (A) w» 1 | P-A=-%2 | T(,,,=—; ,
Phase (B) |wj€1 , P.-A= —81—"(1 +0(w)) , Tp=-2 ,
Phase (C) w<« -1 , P. A= Lu(1+0(w™) |, Tig~w , (13)
Phase (D) w»1 , P.A =Lw(1+0w™) , Tipy~w ,
Phase () 0<w1 , P-A=-L21 7‘(5)=—$
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The negativeness of temperature, in Phase (A),(B) and (C), says the ’gass particles’
attract each other. The small absolute value of T{,y says the 'gass particles’ move almost
freely. We can do the same analysis for the negative curvature solution. The corresponding
temperture is obtained by ’'reflecting’ the graph of Fig.5. It is interesting that the 'gass
parlicles’ attracting each other on an open manifold can be regarded as the repulsive
particles on a regularized closed manifold.

The entropy is similarly obtained. Using the relation: Aw|pfized = w- B8

m )
AT\ ppized = w|w . Ewum , il is given as

ar 10w _ 8 1 dw 2
Sent = Iﬁ%r = +.~u% mwﬂ.: AV ERS 60737 A< \%a/\m: > . (14)

We see the entropy is related to the expectation value: A < J&z,/GR? > considered in
Sec.3, as above. Using the follwoing results from (8) (€ = 1is taken),

. 2o )] B(E-%) forocw<
+branch solution A< [d2 fGR? >= +(8n)? 7 tor 1 <w )
B . 2o _ | +(8n)? forw<1
branch solution A< [dz R >= (8m)2(2 — L) forl<w ° (15)

we obtain the expression for the entropy.

I.qlaﬁmslc for0<w<

+branch solution Sent = I...u for 1 < w )
. —ix forw<1
- = F] =
branch solution Sent I.MGE 1) forl<w - (16)

The graph of S, is plotted in F ig.6. .:...Sw_. ) Entrony per Unit bol, Pos. Corv. Sol.

k]

(xel?-17-2°20)) —
b o (rel?-2%xe3:.1) = 1

I Branch

-Braneh

Fig.6 Entropy per unit mol, Sent(w)/(47/7), Pos.Curv.Sol.
The largeness of the absolute value of Sent in Phase (A) shows the much amount of

freedom of the system, whereas the fixed value in Phase (B) and (C) shows the possible
configurations are restricted.
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In Fig.7, all phases above are pictorially depicted.

¢

Fig. 14C Fig. 14B Fig. 14A

Fig.7 Schematic image of surface in each phase. The dotted sphere represents the
effective sphere of (6).

6 Discussions and Conclusions

In conclusion, we have clarified the following properties of 2d R*-gravity using the
semiclassical formalism.

1). All classical vacua correponding to the constant curvature configuration are obtained.

2). All phases appearing in the oblained solutions are characterized by the asymplotic
behaviours.

3). Thermodynamic properties are clarified. Especially the equation of states, the tem-
perature and the entropy are obtained. They are macroscopic properties of the
fully-quantum system.

We have some comments as follows.

¢ Among two branches, the — branch (of the positive curvature) solution appears in
the lattice simulation(5, 6]. It is consistent with the present analysis, where — branch
is energetically prefarable to + branch. Some features of + branch are the same as
those obtained in [11] using the conformal field approach(5]. It seems important to
analyse the relation between the present semiclassical approach and the conformal
field approach.
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o The semiclassical approach can easily provide the physical image of a system through
its thermodynamic properties. The present system can be regarded as a thermody-
namic system where many scalar-matter particles and gravitons move with gravita-
tional interaction and whose macroscopic configuration is thermally in an equilib-
rium state. The temperalure depends on the R? coupling, w (or § ). The phase
difference can be thermodynamically interpreted as the difference of w-dependence
of the temperature.

The present approach is valid for the higher-dimensional quantuimn gravity. The 3
dim QG has been recently 'measured’ in the Lattice simulation with a high statistics[12].
The semiclassical analysis of the data will soon become an urgent work to be done. The
success of the perturbative 2d QG using the semiclassical method is strongly encouraging
for the further progress of the perturbative quantum gravity in the realistic dimensions.
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Analysis of the Back-Reaction on the Global Degrees of Freedom
in (2+1)-Dimensional Spacetime

Masafumi Seriut

Yukawa Institute for Theoretical Physics
Kyoto Universily, Kyoto 606, Japan

Abstract

We investigate the back-reaction effect of a quantum scalar field on
the global degrees of freedom in (2+1)-dimensional toroidal universe.

We construct a homogeneous model of the toroidal universe, M ~
T? x R, and examine explicitly the back-reaction effect of the Casimir
energy of a massless, conformally coupled scalar field, with a con-
formal vacuum. The system reduces to the Hamiltonian system for
three canonical pairs, (V, ), (t!,p1) and (72, ps), where V is the 2-
volume (area) of the torus, and (7!,72) are the Teichmiiller parame-
ters describing the global shape of the torus. The Casimir energy of
the matter field is represented as a modular-invariant function of V
and (7!, 72), which causes non-trivial back-reaction effects. The back-
reaction causes an instability of the universe: The torus becomes thin-
ner and thinner as it evolves, while its total 2-volume becomes smaller
and smaller.

The back-reaction caused by the Casimir energy can be compared
with the influence of the negative cosmological constant: Both of them
make the system unstable and the torus becomes thinner and thinner
in shape. On the other hand, the Casimir energy is a complicated
function of the Teichmiiller parameters (7!,72) causing highly non-
trivial dynamical evolutions, while the cosmological constant is simply
a constant.

We also analyze the asymptotic properties of the canonical equa-
tions as t — oo, and show that the instability of the torus due to
back-reaction is universal irrespective of the initial conditions.

tResearch Fellow of the Japan Society for the Promotion of Science.
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1 Introduction

General Relativity in the Hamiltonian form describes the dynamics of the
geometry of a spatial hypersurface. The geometrical information possessed
by the hypersurface can be classified into two categories: Local geometry
and global geometry. Here, the local geometry is typically represented by
the spatial metric hq, while the global geometry consists of topology and
other global properties such as moduli! . So far, most of the efforts have
been focused on the analysis of the dynamics of the local geometry, and the
dynamics of the global geometry has rarely been investigated.

Let us look at the semiclassical gravity from this standpoint. One of the
basic subjects to be investigated in semiclassical gravity is the analysis of the
back-reaction from quantum matter fields on the spacetime structures. We
are naturally led to the concept of the ‘back-reaction on the global geometry’,
in view of the intensive investigations of the back-reaction effects on the local
geometry. For instance, from the viewpoint of the scale-dependent topology
(physical topology) [1], it is of great importance to describe the dynamics
of a topological handle, possibly driven by the back-reaction from quantum
matter: Whether the handle becomes bigger in size, whether it ‘combines’
with other handles to make another kind of handle, and so on. However, such
a problem has seldom been analyzed so far. One reason for this situation
is the difficulty in constructing models of topological handles as a solution
of the initial value problem. Another reason is the lack of the analytical,
quantitative representation of the global geometrical structures. It may be
said that we have not found an appropriate language to speak in the arena
of physics of global spacetime structures [1, 2].

As the first attempt in this direction, we set up and analyze a tractable
model, which yields many interesting results [3]: We here consider a (2 + 1)-
dimensional spacetime M =~ ¥ x R, with ¥ ~ T2, a torus. As a matter field,
we take a massless conformally coupled scalar field with a conformal vacuum.
Then, we investigate explicitly the back-reaction effect, resulting from the
Casimir energy of matter, on the global degrees of freedom of the torus.

It should be noted that such a classification cannot be done without any ambiguity.
Needless to say, these two categories are deeply linked with each other. It is most clearly
illustrated by the Gauss-Bonnet theorem, or more general index theorems. Causal struc-
tures, which are characteristic in pseudo-Riemannian geometry, may be on the border
between two categories.
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There are several advantages in reducing the number of spacetime dimension
from 4 to 3: In the case of dimension 3, only the finite global modes and a
spatial volume remain dynamical in pure gravity [4, 5, 6). Choosing a matter
field in a vacuum state preserves this nice property. Another advantage of the
reduction of dimension is that the treatment of the quantum field becomes
simplified. For instance, no trace anomaly appears in our model, which
simplifies the manipulations. One of other advantages of dimension 3 is that
we can fix the path-integral measure by the use of the techniques developed
in string theories, though it is beyond the scope of this brief report [3].

2 The model

We consider a model of (2+1)-dimensional spacetime with topology T? x R,
where the space £ =~ T? is locally flat. A metric is given as 2

di? = —dt? + Vhgde®de® | (1)
where L1 |
- T

hay = 2 (7.1 |T|2) . (2)

Both of the coordinates £! and &2 are identified with period 1 to get a torus.
Here 3, (7!, 72) are the Teichmiiller parameters independent of spatial coor-
dinates (£,£2), and 7 := 7! +47%, 72 > 0. In Eq.(1), V is also independent
of (£},£?), and it is interpreted as a 2-volume (area) of the torus.

Although our torus is a locally flat surface, its global geometry is non-
trivial: The parameter 72 characterizes the thinness of the torus, and the
limits 72 | 0 or 72 — oo correspond to the thin-limit of the torus. On
the other hand, the parameter 7' characterizes, in a sense, the ‘twisting’ of
the torus, which can be represented by the number of intersections of two
mutually-orthogonal geodesics.

As a background spacetime, we take a flat spacetime for which V' and
(!, 72) are constants w.r.t. the time parameter t. Therefore, our background

2Throughout this report, we choose appropriate units such that ¢ = 1, and that the
Einstein-Hilbert action becomes S = [ d*z \/=g R.

3Throughout this report, 72 always indicates the second component of (7!,72), and
not the square of 7. The latter never appears in the formulas.
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spacetime is conformally flat. What we shall observe is that the back-reaction
of matter causes non-trivial evolutions of V and (7!, 7%).
As a matter field, we choose a massless conformally coupled scalar field

,
Sn = =5 [P 0ub050 + SRV =G5 ©

We choose the conformal vacuum as a vacuum state for the matter field.
Because our background spacetime is conformally flat, only we have to do is
to compute < T,4(n) > using the metric ds? = —dt? + hq,d€¢d€®, which can
most easily be done by the method of images. (Here enters into discussions
the information of torus-topology, or the periodicity w.r.t. (£!,€2).) Then
we obtain < To4(g) >, which we really need, by the relation

< Taplg) >= V12 < Top(n) > . (4)

Note that this simplification occurs, because the trace anomaly < T2(g) >
vanishes when the spacetime dimension is odd. It is also useful to note that
the basic modes of the field w.r.t. the metric ds? = —dt? + ilabdfndfb are
given as

Wnynp = 27:(1'2)"/2(|T|2nf — 27l n, + 'ng)'/2 (ny,n, €Z) . (5)

At this stage, we should keep in mind the limitation of our analysis, which
all of the back-reaction problems more or less share in common: Since the
back-reaction causes the time-evolution of (£',£?), the spacetime does not
remain as conformally flat. Therefore, < T2(g) > calculated as above should
be regarded as an approximate one. In other words, we should look at the
results of the analysis in an adiabatic sense, which are valid when terms
including 7! and 72 are not dominant in the formulas. We shall see in §4
that, in our present model, this adiabatic treatment is a good approximation
because 7! and 72 turn out to be sufficiently small.

3 The back-reaction on the global geometry
of a torus

The action describing the back-reaction effect is given by

S = / dz¥(nPhgy — NH — N°M,) (6)
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where the Hamiltonian and momentum constraints are *, respectively,
H={(KupK® — K? = ®R)+ < Tap > n°nP}Vh (1)

Ho/Vh = —2Dy(K,b — 6.°K)— < Tog > nf . (8)

It turns out that, in our background spacetime, < T,5 > n? = 0, and that
o := —K =spatially constant (York’s time slicing). Therefore, Eq.(8) boils
down to

Ho/Vh=-2D,K =0 (9)

where K? := K,* — w?i« . It is a standard result in the theory of Riemann
surfaces that there are two independent solutions to Eq.(9) on & ~ T2,
so that K can be represented as a linear combination of the solutions,
AG\GJ\.N_.M 6], Kt =32 _, ﬁ\,e\:&. It can also be shown that, on ¥ ~ T2,
the lapse function NV can be chosen as N = N(t) without any contradiction
with the York’s slice [6]. Now, it is straightforward to see that our system
reduces to (3]

dV 2 dr4
mn\&?ﬂJr MEQIE&S , (10)
A=1

where (r2)? .

Ql r - —_—

H= 3@l =50V —hrlpmy =0 . ()
Here, .
1 X 1
R T
flr, ) = 4w ::SMMUIS |ny + 7043

1 W 1
T drm (n? + 27in ny + |7|2n3)3/2

ny,ne=—00

(12)

It is obvious that f(—7!,72) = f(71,72), f(r' + n,7%) = f(=',7?), f(n +
a,7®) = f(n — a,7%) (n: integer, a: real) and that f(r',7%) is singular
at (7',7%) = (n,0). Furthermore, the combination 27(7%)*2f(r!,7%) on

iHere, n® = (1/N,—N°®/N) is the normal unit vector of the spatial surface T, K, is
the extrinsic curvature of 3, K := K2, (2)R is the scalar curvature on £, and D, is the
covariant derivative w.r.t. the spatial metric (see Eqs.(1) and (2)).
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the L.H.S. of Eq.(11) is known as the non-holomorphic Eisenstein series
G(7,3/2), whose modular invariance can be shown easily . The first term
on the L.H.S. of Eq.(11) is also modular invariant. Thus, the Hamiltonian
constraint Eq.(11) is modular invariant as it should be. The last term in
Eq.(11) comes from < T,s > n°nf in Eq.(7). This negative contribution
to the Hamiltonian constraint is understood as the Casimir energy, which
reflects the torus-topology of . Note that it is O(h).

Now, we analyze the back-reaction effect. From Egs.(10) and (7), we have

Vo= _GV (13)
= 20 +(212/)22(”1+p2) SV (14)
"= ll/( R (15)
= h(#)"ﬂ%g)v-l/z , (16)
o= l(72)2172 , a7
pr = _—7'2(P1+P2) i”g('r"’)’/?f(f)v—l/z

+ h(#)”z%f-glv-‘/? , (18)

We can see that the time evolution becomes trivial in a sense when there
is no matter field, f(7) = 0: In this case, Eqs.(11), (13) and (14) allow a
solution, V =constant, ¢ = 0, p; = p, = 0. Then, Eqs.(11) and (15)-(18)
do not allow any solution, compatible with V' =constant, ¢ = 0, other than
7! =constant, 72 =constant. The spacetime corresponding to this solution is
the static one constructed from 3-dimensional Minkowski space in the stan-
dard coordinates (T, X!, X'?) with suitable identifications in spatial section
(X1, X?) described by (7!,72). (Of course, the same static spacetime can
also be represented in the Hamiltonian form using different time slices: The
initial condition ¢ # 0 allows (7!, 72) to evolve in time.)

The back-reaction of the quantum field causes a non-trivial evolution of
(r!,7?), i.e. global deformations of the torus. Duc to the negativity of the

5The modular invariance is defined as the invariance under the transformation T +—

7' = ¢48 where (‘Cl 2) € SL(2,Z)/{1,-1}.
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term —A(72)%2f(7)V =12 in Eq.(11), a non-trivial evolution of (7}, 72) occurs,
even when ¢ = 0 initially so that the term —30?V in Eq.(11) is negligible.
The choice V =constant, ¢ = 0 is not allowed as a solution any more, as is
seen from Eqs.(13) and (14).

Let us see Figures 1,2,3 which show a typical example of the evolution of
(r1,7%), (p1,p2) and (V, o), respectively. Units s.t. i = 1 have been chosen.
The initial conditions are V' = 1.000, ¢ = 0.000, (7!, 72) = (0.500, 0.500) and
p1 = 1.000. The initial condition for p,, py = 2.175, has been determined by
the constraint equation Eq.(11). The typical points A-E and Z have been
shown in Figures to give an idea of the time-evolution. (The point A is the
initial point and the point Z is the final point of the calculation. For instance,
the point C in Figure 1 and the point C in Figure 2 correspond to the same
instant of time.)

We observe the same asymptotic behavior of the system due to the back-
reaction irrespective of the initial conditions: The back-reaction drives the
system into the direction corresponding to a thinner torus, i.e. 72 — 0 while
7! — finite. At the same time, the 2-volume V asymptotically approaches
zero. We find out that this behavior is universal by setting various generic
initial conditions. This universal behavior can also be understood by inves-
tigating the asymptotic characteristics of Eqs. (11)-(18) as t — oo, which
shall be discussed in the next section.

4 The asymptotic analysis of the evolutions

Our treatment is based on the adiabatic approximation as is noted at the
end of §2. Thus, the results should be taken with a caveat. In the present
case, there are good reasons to regard the unstable behavior as a real one.
Let us discuss on this point.

We can analyze the general asymptotic behavior of the system, by inves-
tigating Eqs.(11)-(18). We can show that [3],

(a) Vo0,0 > 00,0V 50 (n=1,2,3,--).

(b) (72)%(p? + p3) increases, at least as ® 02V2,

8Here, ‘y(t) increases at least as z(t)’ means that, |z(t)/y(t)] — ¢, 0 < c < oo when
t — oo.
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(c) 7210, or 72 — oo.

(d) p17! + po7? increases at least as 02V, and iy ((71)? + (7%)?) increases

at least as ¢2.

The asymptotic behavior of the generic trajectories shows that 7! — 0,
#2 — 0 (and V ~ o(0)) although p, — —oco. This comes from the fact
that 7! Lﬂ‘;&’ 72 gﬁ‘);”—?, and 72 becomes a strong suppression (stronger
than expot), while 1/V is at most ~ ¢. Thus, the adiabatic treatment for
7! and 72 becomes better and better as 72 — 0: From Eq.(5), Wn,n, /w2 ,,
(72)3/2-(% = (72)Y2.(%;) — 0. Furthermore, V does not harm the adiabatic
treatment because of the conformal invariance of the matter field.

It is interesting to compare our model with the case of the negative cos-
mological constant without matter field, which also serves as another support
for our results.

Looking at Eq.(7), the A-term can be introduced with ease:

_ (72)2 2 2 __1_ ‘ZV' AV =

H - 2‘/ (pl+p2) 20 - _0 H (19)
V = —oV (20)
i 1., (7%)?

o = §Uz+—2v—2(lﬁ+l)§)+1\ ) (21)
) 1

Ho= S (22)
n =0, (23)
. 1

# o= S (24)
. 1

P = -+ (25)

Here, —A corresponds to the cosmological constant (A > 0). The negativity
of the last term in Eq.(19) causes the same kind of the evolution for (7!, 72)
as in the case of the matter field. It strongly suggests that the instabil-
ity in our model is a real one independent of the adiabatic treatment. We
should also note the essential difference between our case and the case of
the negative cosmological constant: The difference between (16) and (23)
is prominent in particular. Furthermore, h(72)%%f(7)V =32, corresponding
to A (compare (11) with (19)), depends on (7!,7%) and V, causing a highly
non-trivial evolution.
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5 Concluding remarks

We have focussed on the dynamics of the global geometry of a spatial sur-
face. As the first step in this direction, we have posed the concept of the
‘back-reaction on the global structures’. Setting a (2+1)-dimensional toroidal
spacetime, ¥ ~ T2 x R, we have investigated the back-reaction of a quantum
matter field on the moduli of the torus. We have seen the non-trivial evo-
lutions of the moduli caused by the back-reaction. Our results suggest that
the back-reactions play a very important role to understand the semiclassical
dynamics of the global structures of the universe.

At the same time, to go beyond the present analysis, we feel the need for
a suitable representation of the global structures, which can be handled by
the analytic schemes [2]. Only after doing this, we may get the whole view
on the theory of the spacetime structures.
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Quantum Harmonic Oscillators in the expanding universe
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Abstract

We comment on the decoherence of the density perturbation concerning the
structure formation of our universe. We show that the cosmic expansion plays
an important role in the quantum-classical transition. To clarify the effect of
the cosmic expansion quantitatively, we use the two-coupled harmonic oscil-
lators as a toy model. We derive the master equation by tracing out the
environment and analyze the reduced density matrix for an arbitrary expan-
sion rate. The preliminary analysis indicates that the cosmic expansion with

the small expansion rate does not affect so much the quantum decoherence.

I. INTRODUCTION

The structure formation of our universe is one of the most important issue in cosmology.
We believe that due to the gravitational instability, the small density inhomogeneities grew
into the present large scale structure such as the voids and the filaments etc. Inflation ex-
plains the origin of such the density inhomogeneities although it is an idea which resolves
the problems of the homogeneity and flatness. That is, the fluctuation of the quantum field

(inflaton field) was produced during inflation and evolved into the classical density pertur-

*e-mail address: ataruya@allegro.phys.nagoya-u.ac.jp

te-mail address: nambu@allegro.phys.nagoya-u.ac.jp
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bation. We should remark that this process includes the classicalization of the quantum
system. It has been argued that at least two condition are necessary for the classicalization,

i.e,
o The classical correlation is realized,
¢ The quantum coherence is lost (decoherence) .

The former corresponds that the Wigner function has the strong peak along the classical
trajectory. The latter means that the off-diagonal element (the interference part) of the
density matrix vanishes. Because quantum mechanics itself satisfies the unitary evolution,
we need a description of irreversible evolution for the quantum-classical transition of the
density perturbation. In order to implement such the description, it is necessary to take a
coarse-graining.

The coarse-graining is a method that is often used in the paradigm of the quantum
brownian motion(QBM), which explains the friction and the random force kinematically.
Consider the system interacting with the external degree of freedom which refers to the
environment. Ignoring the environmental degree of freedom, the system could obey so-
called master equation which represents the evolution of the reduced density matrix [1]-
(3].

By introducing such the coarse-graining, several authors discuss the decoherence of the
density perturbation at the inflationary era [5)- [9]. Projecting out the environment, similar
results are obtained: when the scale of the fluctuation exceeds the Hubble horizon, the quan-
tum coherence of the scalar field is lost. However, we should carefully treat the decoherence
in the expanding universe. We can show that it is quite different from the decoherence on
QBM. This means that the cosmic expansion strongly affects the decoherence of density
perturbation. Recently, there is a remarkable discussion that due to the cosmic expansion,
the decoherence without environment is also possible [10]. In order to discuss this issue, it is

necessary to understand the role of the cosmic expansion clearly.
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In this article, we treat the decoherence of the density perturbation and consider the
effect of the cosmic expansion. In sec.ll, we explain the coarse-graining in QBM and the
necessary condition for the decoherence. We point out that the decoherence of the density
perturbation is different from that on QBM. In sec.Ill, in order to clarify the role of the
cosmic expansion, we use two-coupled harmonic oscillators and analyze the master equation.

The last section 1V is devoted to summary and discussion.

II. THE COARSE-GRAINING IN QBM AND THE DECOHERENCE OF THE
DENSITY PERTURBATION

A. Quantum brownian motion

QBM is a paradigm of the quantum open system. The main motivation is to provide the
quantum-mechanical representation for a brownian particle described by Langevin equation

such as

Q+TQ+V'(Q =£@), (€ =0, (EEW)) =v(t-1), (1)

where T, v denote the friction and the noise coeflicients, respectively. The essential point
to represent the brownian motion is to introduce the external degrees of freedom {environ-
ment). When the system(Q) interacts with the environmental degrees of freedom({g,}), the

Lagrangian can be written in the form

L= Lays(Q) + Lenu({']n}) + Lint(Q; {q"})' (2)

To get the irreversibility of the brownian particle, it is necessary to coarse-grain the environ-
ment. In terms of the density matrix, it corresponds to trace out the environmental degrees

of freedom:

prea(@, Q) =] / dgndq,8(g, — 4;)0(Q, Q'; {Gn, g })- (3)
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The reduced density matrix p,.s, which describe the evolution of the system, obeys the
master equation. We should remark that it contains some additional terms except for the

Liouville term of the system :

Prea(@, Q') = Lprea — (Q Q) ( D(Q ~ Q@) preq+ -+ (4)

aQ BQ’) Pred —
where L is Liouville operator and F , D are the dissipation and the diffusion coefficients
respectively, which relate with ', » in eq.(1). We observe that the third term of RHS in
eq.(4) could lead to the decoherence.

Howéver, we must require the further condition to the quantum decoherence: the envi-
ronment must have infinite degrees of freedom. Unless this condition holds, the coherence of
the system cannot be lost. In other words, in the case of the environment with finite degrees
of freedom, information about the off-diagonal part of p,.4 does return in finite characteristic

time even though it is transferred to the environment. !

B. decoherence of the density perturbation

Using the treatment of the coarse-graining in QBM (introducing and tracing out the
environment), several authors use the toy models and discuss the docoherence of the density
perturbation. Some of them pay an attention to the stochastic dynamics due to the short-
wavelength mode of quantum field [5] [6] [7]. They treat the long-wavelength mode (k/aH <
1) of the scalar field as the system and the short-wavelength mode as the environment.
Others consider the two-interacting scalar fields and regards one of them as the environment
(8] [9). Both authors analyze the density matrix in the inflationary era by tracing out the
environment. Here, we specifically focus on the model discussed by Brandenberger et al. [9)],

which adopts the latter approach. They use the two massless scalar fields (¢, x) with the

!There is an interesting discussion that the non-linearity(chaos) also plays a sufficient role to the

diagonalization of pyeq. [4]
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gradient interaction(d,¢8*x). The important point is that this model is equivalent to the

two-coupled harmonic oscillators. When we put the metric
ds? = a%(n)[—dn® + d7?), (5)

the action can be written in the Fourier representation as follows:

I=[dt [&h{ch, + b +Lh} ©)

where ¢ is coupling constant. Although the model has infinite degrees of freedom, the system
¢ interacts only with the same k-mode of the environment x;. Accordingly this model can
be regarded as infinite sets of the two-coupled oscillators. From the analysis of the density
matrix in de Sitter space, they conclude that the coherence of the long-wavelength mode ¢
is rapidly lost. It seems that the decoherence may occur even when the environment has
finite degrees of freedom. Remember that it is necessary for the decoherence in QBM (flat
space) to have the infinite degrees of freedom. Comparing both results, we recognize that
the cosmic expansion plays an important role in the decoherence of the density perturbation.

Recently, Polarski and Starobinsky use the single massless scalar field and consider the
decoherence without environment taking into account the cosmic expansion [10]. Since the
massless scalar field can be regarded as an upside-down harmonic oscillator, the solution of its
mode function has the growing-mode and the decaying mode. They say that the decoherence
without environment corresponds to neglecting the decaying mode. This coarse-graining is
different from that in QBM. Therefore it is difficult to understand in terms of the density
matrix and we think it needs another formulation. However, we should investigate further
the nature of the decoherence in the expanding universe. Keeping in mind that most of

the discussions about the decoherence are restricted in the stage of the inflation. In order
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to investigate how the cosmic expansion affects the decoherence, we should analyze the

quantum coherence under an arbitrary expansion rate.

III. MASTER EQUATION FOR THE QUANTUM HARMONIC OSCILLATORS

In sec.Il, we saw that the cosmic expansion seems to play an important role for the
quantum decoherence of the density perturbation. In this section, using a toy model, we
will investigate more precisely how the cosmic expansion affect the decoherence. Following
Brandenberger et al. [9], we adopt the two-coupled harmonic oscillators, which is the simplest
model to study the nature of the decoherence in the expanding universe. Tracing out one-
side degree of freedom, we derive the master equation. By varying the expansion rate, we

shall analyze behavior of the reduced density matrix.

A. Master equation

Consider the two-coupled harmonic oscillators @, ¢ with ¢Q-interaction. When we choose

the synchronous time-slicing (ds? = —dt?® +a*(t)dz?), the Lagrangian density takes the form
. 1
_ .3 2 _ 022 {52 — ,292) —
L=a[5 (@ - 2Q%) + 3 (¢ - ") - 0], ™

where Q, w denote the constant frequency. Similar to Ref. [9], this model has only two degrees
of freedom. Note that we can also regard (7) as the massive scalar fields in long-wavelength

limit. The canonical momenta become
P=d'Q, p=cd%. (8)

Following the method described in sec.ll A, we shall derive the master equation. We regard
the variable @ as the system and g as the environment. The starting point is the evolution
equation of the total density matrix p(q,¢’; Q,@’). Using the Schrodinger equation, we

obtain

—=385—



.0 1 0? 62
’a’”[‘ﬁi (TQ? 6Q0)+ Qz(Qz'Qa)]”

t |- (5 2) + 5@ - )] o a0 0@ @
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where the first and the second brackets of RHS represent the Liouville terms for the system
and environment, respectively. The last term denotes the interaction. Because we are
specifically interested in the time evolution of the system, we trace out the environment ¢

(see eq.(3)). Assuming that the system and the environment are initially uncorrelated, we

derive the following master equation (for detail derivation, see [2] [3]):
.0 1 {82 d? a_, @ — Q*
z&ﬂred = [_53 (TQ2 6Q'2) + 5 04Q" — Q)| prea

@ [P0 - @) - D@~ Q) (aQ +35)

~$F0Q-@) (5 - 575 - 0@ - Q| s (0

Q  oQ
The terms contained in the second bracket are appeared by the coarse-graining. Each of
them are as follows: the first term means frequency-shift. The second term is t anomalous
diffusion term. The third and forth terms are the dissipation and diffusion term respectively.
We should keep in mind that these coefficients 602, F, Dy, D, are time-dependent in general.
Putting the initial state of the environment, we can get these coefficients by using the

solution to the equation of motion of (7). For simplicity, we shall put the vacuum state of

the flat case as the initial state of the environment. Writing down the solutions as
Q(t) = vQ(to) + vP(to) + walto) + zp(to), (11)
q(t) = 2Q(t) + vP(t) + wq(to) + Zp(to), (12)
where u,v,w,z,%,5,w,F are the time-dependent variables and ¢y is an initial time. The

coefficients of the master equation can be obtained uniquely (for more detail determination,

see [2]):

0Q2(t) = e, F(t) = ev, (13)
€

D)) = -5 (% + wxi) , Duft) = —2a() (“;—“’ + w:i:i) . (14)

—386—



B. Analysis

We proceed to investigate the nature of quantum decoherence by varying the expansion
rate. We wish to evaluate whether the reduced density matrix p,.4(Q, Q') diagonalizes or
not. To discuss quantitatively, it is convenient to introduce the degree of decoherence dgp.
Taking the Gaussian ansatz, the density matrix can be written due to the symmetry of the

master equation (10) as follows:
Prea(@Q) = N7'exp [-(Q - Q) - BQ+ QY - i7(Q - Q)Q+Q)], (1)
where N denotes normalization. The degree of decoherence dgp can be defined as

dop = \/g (16)

When égp becomes 0, we find that the quantum coherence of the system is lost. As for the

real functions a, 3, v, we get the evolution equations from (10):

&= “ai;’ — & (2aF () + 2vDy(2) = Da(t)), (17)
=2 (18)
¥ = %(4&[3 -7)-a {% (92 + 692(t)) — yF(t) + 4ﬂD1(t)} . (19)

Therefore we can solve a, 3,y after obtaining the coefficients 6Q2, F, Dy, D,.
We shall analyze the decoherence in an arbitrary expansion rate. We put the form of

the scale factor as

a(t) = (%),,; (p = constant), (20)

where {y denotes an initial time and we set o = 1. As a first step, we evaluate the degree
of decoherence dgp in the non-inflating case, i.e, 0 < p < 1. Because we want to study

the effect of the cosmic expansion, we restrict the analysis to the weak-coupling case, i.e,

Qw2 -l > e
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We firstly examine the flat case(p = 0). In this case, we find that energy in the system is
partially iransferred into and recovered from the environment periodically. We can expect
that information about the off-diagonal elements of p,.; may also goes out and back peri-
odically and never be lost. The diffusion coefficient D,, which affects the diagonalization
of preq (see eq.(10)), helps us to understand the behavior of dgp. We see that it strongly
relates with the energy flow from eq.(14). By the weakly coupling approximation, D,(t) can

be evaluated as

Da(t) ~ % [sin(Q g :)g — 1) + sin(Q 5 f)it —tp) . 1)

Accordingly the diffusion coefficient becomes oscillatory behavior and its recurrence time

Trec Can be estimated as
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(22)

We also obtained D,(¢) numerically (sce Fig.1-a). The results is agreement with the ap-
proximation (21). §gp can be evaluated numerically by solving (17)(18)(19). The results is
shown in Figl-b, where we set the initial condition as dgp = 1. The graph says that dop
oscillates and never vanishes. We conclude that in the flat case, the system cannot lose the
quantum coherence.

Next, we investigate the decoherence in the expanding universe (0 < p < 1). Using the
same parameters w, {1, € in the flat case, we calculated D,, §op numerically (see Fig.2). The

graphs are drawn in the cases with the power indices p = 1/2(radiation-dominated era),
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2/3(matter-dominated era) and 1, which correspond to the real, dashed and dotted lines
respectively. Compared with the flat case, we observe that there is not so great difference in
the diffusion coefficients. We can also check the behavior by the weakly coupling approxima-
tion and obtain the same recurrence time as eq.(22). Thus we understand that the degree of
decoherence dgp does also become the similar behavior to the flat case and that the reduced
density matrix cannot diagonalize. This indicates that the cosmic expansion with the small

expansion rate does not affect so much the decoherence of the density perturbation.

IV. SUMMARY AND DISCUSSION

In this article, we have discussed the decoherence of the density perturbation on the
structure formation of our universe. In order to investigate the effect of the cosmic expan-
sion to the quantum decoherence quantitatively, we have treated the two-coupled harmonic
oscillators as a toy model. Applying the coarse-graining approach in QBM, we derived the
master equation and investigated the reduced density matrix in the non-inflating case. We
showed that there is not so remarkable difference between the flat and the expanding cases.
It indicates that the cosmic expansion with the small expansion rate does not affect so much
the decoherence of the density perturbation.

The most important point in the problem of decoherence of the density perturbation is
to clarify what is essential for the quantum-classical transition in the expanding universe.
According to Polarski and Starobinsky, who suggest the decoherence without environment,
it seems to be essential for the decoherence that the system can be regarded as an upside-
down oscillator. In the case of the harmonic oscillator such as the model (7), using the
ratio of the frequency(2) to the Hubble parameter(H = &/a), we can examine whether the
oscillator has the upside-down nature. That is, when Q/H S 1, the system can be reduced
to the upside-down oscillator. In the non-inflating universe, i.e, a ox t7;0 < p < 1, we can
show that the nature of the upside-down oscillator is realized only during the early period.

Accordingly we think that the expanding universe with the small expansion rate does not
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play an important role to the decoherence of the density perturbation. This is consistent
with our preliminary result. During the inflation(p > 1), however, the system could have the
upside-down nature for longer period as the power index p in the Hubble parameter becomes
larger. We can expect that the inflating universe affects the quantum decoherence of the
density perturbation effectively. We wish to confirm this thing quantitatively by varying
the expansion rate. Remember that the self-reproducing fluctuation of the quantum field
during inflation becomes the origin of the large-scale structure of our universe. It is also
necessary to discuss how the quantum coherence of such the fluctuation evolves after the
inflation. Therefore we should extend the analysis from the inflation to the post-inflation
continuously. We think that it is possible to investigate the decoherence after inflation by
modifying the model (7) to the scalar fields.

Keep in mind that the result obtained here is just preliminary and it is necessary to
analyze another model with the different interaction in order to exclude model-dependence.

To clarify the role of the cosmic expansion, we shall develop research further.
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Low-Energy Interaction of a Cosmic String and an Extreme

Dilatonic Black Hole * !
Kiyoshi Shiraishi? $
Akite Junior College

Shimokitade-sakura, Akita-shi, Akita 010, Japan

We construct the solitonic solution in Einstein-Maxwell-dilaton theory on the conical
spacetime and investigate the motion of the solitouic object at a low velocity. In the follow-
ing, using the method of images, we obtain a solitonic solution on a conical space and the

low-energy interaction.!

1. WHAT IS A “COSMIC STRING™?

The spacetime outside of a straight, thin cosmic string is described by the metric [2]
2
ds® = —dt?® + dr? + l—/;dﬂ"’ +dz?, (1)

with » = (1 ~ 4Gp)~', where p is the mass density per unit length.

If we use a new coordinate

*Talk given at the fifth workshop on GRG, Nagoya University, 1/22-25/1996.

tThis talk is based on the work gr-qc/9512001.

$Address after April 1, 1996: Faculty of Science, Yamaguchi Universiry, Yoshida, Yamaguchi-shi,
Yamaguchi 753, Japan.

Ye-mail: g003450sinet.ad. jp

'The multi-soliton system in Einstein-Maxwell-dilaton theory on the spacetime with torus com-
pactification has been studied by obtaining exact solutions and low energy interactions in a similar

method [1].
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the metric (1) reduces to the one of the flat spacetime
ds? = —dt® + dr? + r¥dv? + d2* . (3)
Then the deficit angle A is defined as [2]

AE21r(l—;l;) =8aGy . (4)

II. WHAT IS AN “EXTREME DILATONIC BLACK HOLE™?

We consider a model described by the following action:

_ v—=g
§ _/d'r 167G

[R -2(Vo)? - e'“Fz] + (surface terms) . (5)

where R is the scalar curvature, ¢ a dilaton, and F,, = 0,4, — 0,A, is the abelian gauge
field strength.
We assume that the electric solution in the Einstein-Maxwell-dilaton theory takes the

form [3.,4]

h:——M+Vh Awﬂ-he-%yme=v. (6)

S

Then V satisfies
vV =0, (7)

up to a number of delta functions in the right hand side of Eq. (7)

For example, one can find a solution:

2Gm,
—1+1>Z| =
EEREND

(8)

By studying the relation among the electric and dilatonic charge and mass of each solitonic
object, we find that the solution describes the configuration that the a-th nonrotating,

charged dilatonic black hole in the extreme limit with mass m, located at ¢ = =, [3.4].
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Now let us construct the black hole solution on a conical space. [5] 2

When the string parameter v is equal to an integer p = 1,2,3,..., we can derive the
solution for V', which corresponds to the static configuration of one extreme dilatonic black
hole and a cosmic string at the origin, by the method of images [6]. The function I,(z,z’')
satisfying Eq. (7) and having periodicity 27 /p in 9 and ¥’ can be expressed by the summation
of p images of ['(2,z'), which is a solution of Eq. (7) in the Minkowski space:

..] 1

x.x —Zl"z \"g') = —,
P( ) (! )= n-ol _I\nz"

n=0

(9)

where A means the rotation by 27 /p around the origin. Using the integral representation,

we then obtain the solution for V as follows:

p=1 1
r (:c. :B') =
’ nz=:0 r? 4 r'? = 21y cos(d — ' — 2anfp) + (2 - 2')?
1 o0 du psinh pu (10)
7V2rr' Juy /coshu — cosh ug cosh pu — cos p(d — ')’
where
rP4rit(z-2)2
coshug = Cy . (11)
We have the solution of V' which corresponds to asymptotically flat space:
V =14+2GMT(z,2'), (12)

where M is a constant. Note that V" is a solution of Eq. (7) even if p is replaced by an
arbitrary real number v. Consequently, we have the solution of V corresponding to an

extreme dilatonic black hole located at &' = (#,#, 2') in the conical space:

VeVos =1+ 2GM /°° vsinh vu

7V 2rr \/cosh u-— cosh tg cosh vu — cos(6 — &) ° (13)

*The cosmic string-extreme black hole solution in a general Einstein-Maxwell-dilaton model with

an arbitrary dilaton coupling [4] can be constructed in the same manner.
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This result can be extracted by using the mode expansion in terms of the Legendre functions.

Ves can be equivalently expressed as the sum of the Legendre functions:

2GMy & o gt
Ves =1+ e FZ_:OO Quini-172{cosh ug) e'™Mo-6) (14)

In the limit of ¥ — 1, Vs is reduced to V" in the flat space [3,4]. On the other hand, in

the limit of ' — 0, Vs is reduced to

Vel+ 2GMv 1 (15)
r24(z~2")2

which gives the metric representing a cosmic string trapped by a black hole. Thus the

constant M is identified to the black hole mass {7].

IIL. WHAT IS “LOW-ENERGY INTERACTION"?

Next we will present the low-energy interaction in the cosmic string-extreme black hole
system.

The interaction energy of the maximally charged dilatonic black holes in R* at low
velocities has been calculated without a long-distance approximation by makiug use of the
exact, static solution (6) with (8) [8,9). Since there are only two-body velocity-dependent
forces in the multi-black hole system in this case, the general expression for the interaction
energy of O(v?) of an arbitrary number of extreme dilatonic black holes can be obtained

as: [8-10]

1 ) mymglv, — vg|? 2GM
H=3sMV +:L;, vy 1+|:ea—m,;| , (16)

where v, is the velocity of the extreme dilatonic black hole with mass m,. M is the total
mass, M = ,m,. V is the velocity of the center of mass; V= mav, /M.

We use the method of images to obtain the interaction energy of extreme dilatonic black
holes. We must note that the images of a certain black hole are located at A"z and have the

same mass M and the velocity A"v. We also note that the sum of the interaction energy
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must be divided by the number of the images. The number p is extended to a real number
v after completing the calculation.

Finally we get the following interaction energy up to O(v?) of the extreme dilatonic black
hole with the mass M and the velocity v on the conical space:?

Hes = %vaﬁ + 11"[

[ 2GM A] ,
2

1+—p—tan; vy, (17)

where p is the distance between the cosmic string and the extreme black hole. v is the z
component of the velocity of the extreme dilatonic black hole, while v, is the component of
the velocity perpendicular to the cosmic string. It is quite reasonable that the interaction

energy diverges in the limit of A — 27.

IV. SCATTERING OF AN EXTREME DILATONIC BLACK HOLE BY A
COSMIC STRING

We consider the scattering of a maximally charged dilatonic black hole by a cosmic string
by using the metric of moduli space [11].

We assume that the black holes move in a plane which is perpendicular to the string.
Therefore the moduli space of this configuration is reduced to be a two-dimensional space
parameterized by the distance p, the azimuthal angle ¢. For this two-body system, the
metric on moduli space which spanned by the coordinate £ can be read from Eq. (17) as

dskis = 1€ = (o) (e + ds?) | )
with

M
‘)'(p)=l+%£tané=l+2—pg.

2 (19)

3For a case of a general dilaton coupling, since the interaction contains many-body, velocity-

dependent forces (810}, the expression will be more complicated.
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Here ¢ stands for the azimuthal angle which has a range 0 < ¢ < 2.
The path of the moving extreme black hole is determined by the geodesic equation on the
moduli space [11}, because the geodesic on the metric (18, 19) realizes the path of minimal

energy. We find that the scattering trajectory satisfies the following differential equation:

du\® 2 1
s + vu =§(1+2pou), (20)

where u = 1/p and b is the impact parameter.

The scattering angle © can be obtained by solving the equation (20) and expressed as:

© =2 4 2arctan (2
Pl +2dr(,tan( 3 J . (21)

The angle of deflection is written as the sum of the contributions from the deficit angle [2]
and the Rutherford scattering [9].

The quantum mechanical approach to the study of the scattering process is also possible
by using the moduli space metric {12,9]. The Schrédinger equation on the moduli space,
which is spanned by the coordinates (p, ¢, Z), can be read as [12,9]

P G SR s w7 LA P (22)
ot . oM '_det ™ k 1557 O¢ EYE .
When we assume the wave function ¥ can be decomposed as
= g(p,p) e HlH (23)

we get the following wave equation:

18 8 v & 2( 2@)}
e pat S+ 1+ =] v=0, 24
{pa,,”ap 2og? 1 P v @)

where ¢> = 2ME/h? — k?. The equation (24) is the same as Eq. (4.2) in the paper on the
Coulomb problem on a cone by Gibbons, Ruiz and Vachaspati [13], if we replace p — r, ¢ —
vé, g — k and ¢®py — pK. Thus we do not repeat the calculations on the scattering problem
here. One can find that the differential cross-section diverges in the forward direction, but
the divergence is shifted due to the presence of deficit angle of the spacetime {13]. This

nature agrees with that of the classical scattering.
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BREMSSTRAHLUNG INDUCED BY
THE COSMIC EXPANSION

Masahiro HOTTA
Department of Physics, Tohoku University, Sendai 980-77, JAPAN
in collaboration with T.Futamase, H.Inoue and M. Yamaguchi

Abstract

We shall argue that the cosmic expansion may enhance intereaction rates of elementary
particles enormously. For example, 1/2 helicity component of gravitino decays with decay
rate I' > my/2 H(t = production time)/Mp,.

1. Introduction

Particles in the expanding Universe are decelerated and lose their physical momentum.
Thus it is surely expected that such particles can emanate radition or massless particles
due to the bremsstrahlung process by the external gravitational field. We show that such
geometric bremsstrahlung process works effectively especially for gravitino decay in the
early Universe.

This paper is based on a work[1] and more detailed analysis can be seen in it.

2. Transition Probability in the Expanding Universe

Spacetime we consider is spacially flat Robertson-Walker Universe with Minkowskian
in- and out- regions. The scale factor a(t) is arbitrary function of time ¢ except that
a(t ~o00) =1 and a(t = —00) = b < 1, where b = a;/a;.
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Let us discuss a decay process of gravitino ¥, with conformal momentum p'into photon
A, with F and photino A with §. The invariant amplitude is

i
Amp = —i/d‘:\/—gSiMp‘

where M) is the Planck mass. From this we get transition probability W such that

(BaAp (K, 2) — Op AL (K, 2))A(d, )7 v, ¥*1¥ (P, 2)

92 3
W= % / Bqd*k|Ampl?, 1)

where V is conformal volume of the space.

In the early Universe momentum of particles is much larger than the Hubble parameter
and their masses. In such situation the WKB amplitudes are available and partly analytic
calculations can be performed. For forward emission with 8 ~ m/p we get the following
useful estimate for W. For 1/2 helicity components of gravitino,

W(Iﬁ]»m,osﬂs %) ”0([1%]2)1% (b~0).

Notably this estimate does not depend on details of the function a(t).

3. Conclusion

The decay occurs when W(b) ~ 1 and the radiation dominant Universe expands like

3
ay 1 (7
z=3=(2)" @

where 7;(7y) is initial(final) proper time in the comoving frame. Therefore we get

1 m
Fop = — ~ —H;
gb 1_! MGHH (3)

where H; = 1/(27;) is the Hubble parameter at the production time of the gravitino. On
the other hand ordinary nongravitational decay process gives us its rate,

o~ (i) ;

Taking the mass m ~ 1 — 0.1 TeV, the lifetime 1/T, is estimated as 10° — 10° sec, while
the geometrobremsstrahlung process gives much shorter lifetime 1/ Tgs < 10~19 sec for the
production temperature of the gravitino higher than 10'5GeV. Thus the gravitinos with
1/2 helicity decay during the epoch when they are relativistic, as opposed to arguments
so far which insist that they decay after becoming dust matter.

4. References

1. T.Futamase, M.Hotta, H.Inoue and M.Yamaguchi,1995,
Geometrobremsstrahlung in the Early Universe, gr-qc/9508053, TU-490

—401—-



On Perturbations in a Self-Similar Spacetime

Kenji ToMITA
Yukawa Institute for Theoretical Physics,

Kyoto University, Kyoto 606-01

E-mail : tomita@yukawa.kyoto-u.ac.jp

Abstract
Gravitational instability is studied in a self-similar spacetime, which appears in one of three
regions in the super-horizon-scale inhomogeneous cosmological model (Tomita 1995). In this
region the spacetime is spherically symmetric but locally anisotropic, so that three modes of
perturbations are coupled, and their behaviors of these perturbations are similar to those in

anisotropic homogeneous cosmological models.

1. Introduction

If we assume the original Einstein theory of gravitation without cosmological constant and
the existence of inflation at the very early stage of our Universe, it is natural that its present
mean status is represented by the Einstein-de Sitter model which is spatially flat (€ = 1.0).
The comparison of the observable CMB anisotropy with the theoretical CDM models supports
the Einstein-de Sitter model as the background model (Sugiyama and Silk 1994; Bunn and
Sugiyama 1995). On the other hand, it has been shown by the observational studies about
the spatial distributions of galaxies and clusters (Bahcall and Cen 1993) that the Universe
is locally represented well by the low-density CDM model (€2 = 0.2). This contradictory

situation is not compatible with the homogeneous cosmological models which have only weak
perturbations on large-scales.

To avoid this dilemma, a spherically-symmetric inhomogeneous model with nonlinear struc-
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ture was recently proposed (Tomita 1995), in which the Universe consists of three regions —
the inner low-density homogeneous region, the self-similar region, and the outer nearly-flat
homogeneous region. The boundaries between first two regions and second two regions are
specified by the redshifts z, (= 1.5 ~ 2.0) and z, (> 5.0), respectively. Since matter is
assumed to be pressureless, the model is described by the Tolman-Bondi solution with the
line-element

ds? = —c*dt® + g, (t, r)dr? + S*(t, r)r?dQ>. (1.1)

In the self-similar region (r; < r < r;), the scale-factor S depends only on £ = ct/r and
grr = S%(€)(1+£5'/5)%/(1 4+ agri?), where oy is a constant, and (7, ;) corresponds to (z;, zo).

Using z = Inr, we can rewrite the line-element as

ds? = e¥ds?, (1.2)
ds® = —d€? — 26dE + M?(€)dz? + S*(€)dQ?, (1.3)

where
M= -£+ grr(€)- (1.4)

These relations mean that this spacetime is conformal to a homogeneous spacetime 32, which
has a translational invariance z — z + const.
The implications of the above inhomogeneous model in the problems of bulk motions and

quasar lensing statistics were discussed in recent two papers (Tomita 1966a, b).

2. Gauge-invariant perturbations in general spherically-symmetric spacetimes
The perturbations in general spherically-symmetric spacetimes were treated by Gerlach and
Sengupta (1979), extending the Regge-Wheeler formalism for the Schwarzschild spacetime.

When we put the background line-element and energy-momentum tensor in the forms:
ds® = gapdz?dz®? + R*(z€)dQ?, (2.1)

tdztdz” = typdzidz? (2.2)
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with suffices A,B = 0,1 and @¢,b = 2,3, their perturbations in the forms h,,dz#dz* and
At,,dzPdz” are classified into two types as follows according to their parities in the 8, ¢

transformation:

2.1. Odd parity
hypdztdz’ = 2h4(2€)S 4(8, $)dzdz® + 2h(2C)S g pdzdz?, (2.3)
Aty dz*dz’ = 20t 4(zC)Sa (8, ¢)dzdze. | (2.4)
_The corresponding gauge-invariant quantities are
ko= ha— R}(h/R?) 4, and L = Aty. (2.5)
2.2, Even parity

hydztde’ = hap(zC)Y (0, $)dzds® + 2hAY .dztds®

+RK(2°)Y Yap + G(aC)Y,gp]dzd2®, (2.6)
Aty drtdz” = Atap(zC)Ydztdz? + 2At, Y,dztdz®. (2.7

The corresponding gauge-invariant quantities are
kap = hap — (paB + ppja) and k = K — 20%p,, (2.8)

Tap = Atap — tas'® pc — toa P — top pf and Ty = At — 15 pe, (2.9)
where PaA = hA - -;-RzG',‘ and Va = R'A/R.
3. ‘Self-simila'r spacetime
Because of the conformality and the flatness in the = direction of the conformal space, the

perturbed quantities are expanded using the factor ¢** and the Fourier component e***, where

k is a wave number.
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3.1. Odd parity

The metric components &, is expanded as
ka =¥k (€), (3.1)
and the matter components are L = L! =0 and
L° = e L), (3.2)

In this case the perturbations include rotational motions (vector perturbations) and gravita-
tional waves (tensor perturbations), and L° represents the momentum of the rotational motion.

The dynamical equations reduce to the following ordinary differential equations with respect
to &:

($°NL*) = o, (3.3)

o (NE®)
T @+RN G4

k
AN S N .M 20+ik)E](FY
(5) = P55 25 (5)

(oS _NY 24k ik (ike oM\ (5 N
S N M? M? M S N

+( - 1)+ 2)(%)2] (%) + (M]LS)ZKI/O, (3.5)

where a dot denotes the derivative with respect to &, N(£) = (M2(£)+£2)/? = S(€)(1+€S'/S)/

(1 + apry?), and k = 167G /c*. Eq.(3.3) can be integrated as
L’ = (L°):/(5°N), (3.6)

where (L®); is an integration constant. If this momentum vanishes, we have only free gravita-
tional waves. In the non-vanishing case there are coupled perturbations of rotational motions
and gravitational waves. This situation is similar to that in the anisotropic and homoge-
neous cosmological model of Bianch type I, which was studied by Perko et al.(1972) in the
synchronous coordinate condition and by Tomita and Den (1986) and Den (1988) in the gauge-

invariant formalism.
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3.2. Even parity
In this case we have density (scalar) perturbations, rotational (vector) perturbations, and
gravitational-wave (tensor) perturbations. They are coupled in the same way as in the odd

parity. Dynamical variables are expanded as
k =e*e*k(€), kap = ek p(£) (3.7

and the components of energy-momentum tensor are related to the density perturbation A

and velocities V,U as
T®=pA, T"=pV, =50, T"=T"'=0 (3.8)

for the pressureless matter, where p is the unperturbed density, V and U are the velocities
in the radial and transverse directions, respectively. The fluid-dynamical equations for A,V
and U and the equations of gravitational potentials k and k5 are derived from the Einstein
equations. Their lengthy expressions are omitted here, but can be easily solvable because all

of them are ordinary differential equations with respect to £.

4. Concluding remarks

There remain following several problems to be done: 1. In the above treatment the metric
perturbations include two or three mixed modes. It is necessary to decompose them in an
invariant manner, 2. Next we should solve the above equations and adjust the solutions with
the solutions in other homogeneous regions, and 3. we should study the Sachs-Wolfe effect
in the self-similar region to analyze the CMB anisotropy in the present cosmological model.

The observational validity of the present cosmological model will be clarified through var-
ious optical high-redshift observations by the digital sky survey, HST, large telescopes and so

on in the future.
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Gravitational Collapse in Szekeres Universes

Hiraku Mutoh, Toshinari Hirai and Kei-ichi Maeda
Department of physics, Waseda University, Shinjuku-ku, Tokyo 169, Japan

Abstract

We study the stability of attractor spacetimes of silent universes, in which the
magnetic part of the Weyl tensor Hyy is assumed to vanish. We find that a spindle
attractor is unstable against the perturbations of Hgp, while a pancake attractor is
stable. We conclude that the H,; = 0 ansatz is not valid in generic dust gravitational

collapse.

1 Introduction

The recent observations of the large scale structure in the universe show that quite non-
linear wall-like structures or filament-like structures seem to exist. Such structures may
give us important information about the structure formation process in the universe. It
may be important to study nonlinear dynamics in order to know what kind of structure
is formed on large scales.

In Newtonian gravity, the Zel’dovich approximation [1], which describes the evolution
of inhomogeneities well even into the weakly nonlinear regime, predicts a pancake collapse.
The analysis of a homogeneous ellipsoid in an expanding universe also supports such a
pancake collapse [2].

In general relativity, the analysis of nonlinear dynamics is quite difficult because the
Einstein equations are nonlinear partial differential equations. It has been restricted
to very simple cases such as the spherically symmetric Tolman-Bondi model ([3], [4)).
Recently the nonlinear dynamics of irrotational dust with vanishing magnetic part of the
Weyl tensor ( Hyp = 0) has been examined ([5]—[10]). Under this condition, these systems
are described by nonlinear ordinary differential equations, and each fluid element evolves
independently. Such systems have no freedom of gravitational waves, and no information
transfer. Therefore these models are called silent universes. Bruni et al. [9] found the
attractor solutions in these systems and showed that the generic gravitational collapse

leads to a triaxial spindle-like configuration.
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However the assumption H,, = 0 is controversial. It is not necessarily justified for the
general cosmological case. Therefore we consider the perturbations of silent universes,
taking into account the effect of non-vanishing H,;. Analyzing the stability of the attractor
solution (Kasner-type spacetime) and some particular Szekeres solution [11], we discuss
whether the analysis of the silent universe [9] is valid or not and what kind of configuration
is more probable in the nonlinear regime of structure formation in general relativity.

We take ¢ = 87G = 1, and the signature (—, +, +, +).

2 Silent Universes

First, we give a short review of the silent universe [9). The dynamics of an irrotational
dust fluid is described by the following variables: the mass density p, the expansion scalar
0, the shear tensor o, of the fluid, and the electric and magnetic parts of the Weyl tensor
Eg, Hy [12).

The stlent universe is obtained by assuming, (i) the fluid is collisionless dust (p=0),
(ii) it has no vorticity (w,s = 0), and (iii) the magnetic part of the Weyl tensor vanishes
(Hgp = 0). The traceless 0,4 and E,; are diagonalized under this condition as shown by
[5]. Their independent components are then ¢y, 032 and E), , E;;. The metric is written

as

3
ds® = —dt* + Z I:(zat)(dxa)z’ (1)
a=1
and, .
i, 1
E =04q + 50, (2)

where the [,’s represent the scale factors in the a-direction (a = 1,2,3).

Next, we define dimensionless variables, 2, 3, and E,;, (Z4, E;) as,
p= %Ql)’, Oap = Xapl, Eg = e.,b{)’, (3)

and,

1 1
Zi = 5(211 + 222), €y = -2'(511 + 622). (4)

Then the evolution equations of silent universes (for collapse) are described by the

following nonlinear ordinary differential equations.
¢ = 0|r+652 4282 410
= 3 + 6%, +2%° + Y (5)
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Q = —%Q 3622 —1+1252 + 0], (6)

B, = %, [§-2+(1 +63,) - 252 -%n] +%22_+s+, )
T o= % [% —25,(3%, ~1) - 252 — %a] te, (8)
&, = e [% —35,(45, — 1) — 432 — %n] - Se 4250, )
¢ = e [% ~35,(45, +1) — 452 — %n] _3%.c, + %2_9, (10)
where prime (‘) denotes the derivative with respect to 7, (1 = — f0dt). Because of

the absence of spatial derivatives in the evolution equations, each fluid element evolves
without influence of the environment. Thus, we call such a system a silent universe. It
includes not only homogeneous Bianchi I spacetimes, but also inhomogeneous spacetimes
such as spherically symmetric Tolman-Bondi spacetimes and Szekeres solutions.

We see the evolution equation for @ is decoupled from the others. Then the rest
of the equations are 5 first-order differential equations. Bruni et al. [9] analyze the
behavior of the solutions and find attractor solutions in 5-dimensional “phase” space
{QLE2,,E_E, E_}.

The attractors in the collapsing case (§ < 0), correspond to a family of vacuum
Kasner spacetimes locally. The attractor family is the circle in Fig. 1; only three points
of the attractors correspond to pancake collapse (two of the I, stay finite but the other
one vanishes), and the rest of the attractors correspond to spindle collapse (two of [,'s
vanish but the other one diverges). Bruni et al. [9] have concluded that collapsing regions

generally tend to be spindle-like configurations in silent universes.

3 Perturbations of Silent Universes

In order to generalize the analysis by Bruni et al. {9], we consider linear perturbations
of a silent universe with non-zero H,;. We study two cases, the background solutions
are (i) the attractor solutions of collapsing silent universes (Kasner-type spacetimes), and
(ii) inhomogeneous Szekeres solutions which approach the particular attractor solutions
in the former case. Here the background quantities are represented with bar (), and the

perturbed ones with tilde (7).
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3.1 Perturbations of the Attractor Solutions

The attractor solutions of silent universes are homogeneous vacuum Kasner-type space-

times, which are characterized by the value of £, (-1/3 < X, < +1/3), as

Q = 0, (11)
1

L. = —=4/1-9%2, 12
\/5\/ : (12)
1 1

£y = §2+(62++1)—§, (13)

e. = —?(62+—1)\/1—922+. (14)

We analyze linear perturbations of this solution with non-zero H,. Applying the
Fourier expansion, we consider only a single plane wave mode with a wave number k =

(k, 0, 0). The spatial gradient is replaced with,
Q, = ikQ. (15)

Then we integrate the perturbation equations for various background quantities (£, ) and
the scale of the perturbations (k~!).

The characteristic behavior of the perturbations is shown in Fig. 2. The evolution of
perturbations is quite different depending on whether the background is spindle-like or
pancake-like. In the case of spindle-like background, the perturbations of the magnetic
part grow larger and larger, i.e., the silence is broken. Other variables such as £y, &4 also
diverge. This behavior is qualitatively independent of the wave number and background
parameters. On the other hand, in the case of pancake-like background, the perturbations
do not grow for any wave number or any wave direction.

Therefore we conclude that for generic perturbation with H,, the pancake-like attrac-

tor is still stable, but the spindle-like attractor becomes unstable.

3.2 Perturbations of the Szekeres Solutions

In the above analysis, since the background spacetime is the homogeneous attractor solu-
tion, our result might not be generic. It is possible that the evolution of the perturbations
in inhomogeneous backgrounds is different from that in the homogeneous background.
Therefore we consider the following particular Szekeres solution ([11], [13]) as an inhomo-

geneous background silent universe:
ds® = —di? + (1 — t.)43 {dm’ +dyt 4 L= (- t.)“ﬂ_(z)]zdzz} (16)
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where B_(z) represents an inhomogeneity in the z-direction and ¢, is a constant. When
B-(z)=0, the spacetime is the flat Friedmann-Robertson-Walker (FRW) dust universe.

For these solutions, the dimensionless variables defined above are represented as,

Q = 1-9%3, (17)
. =0, (18)
e. = 0, (19)
€y = Z+(E++%), (20)
where,
z A (21)

YT RB 20 -t
These Szekeres solutions, characterized by #_(z) and t., are not stationary points in
the “phase” space (see Fig. 1). In the collapsing case, even if the Szekeres universe is
located initially near the isotropic FRW point (£, = 0), according to the sign of £, the
spacetime falls into a pancake-like attractor (¥, < 0), or falls into a spindle-like attractor
(Z4 >0).

Since the z-dependent inhomogeneities are included in the background exact Szekeres
solutions, we focus only on z, y-dependence of the perturbations. Hence, we expand z,
y-dependent perturbations on a ¢t = const, z = const surface by plane waves in the same
way as in the case of the Kasner-type background.

The results are shown in Fig. 3. For the spindle-like background (£, > 0), the pertur-
bation of the magnetic part of the Weyl tensor grows infinitely and the silence is broken,
and the electric part and its shear also grow. But for the pancake-like background, the
perturbations do not grow. Such characteristic behavior depends only on the collapsing
configurations (the sign of £, of the background), but does not depend on the other
factors such as the spatial scale of perturbations.

For these Szekeres backgrounds, the behavior of the perturbations is very similar to the
Kasner-type background case. Our analysis shows that the pancake-like collapse is stable
while the spindle-like collapse is unstable. One can see that isotropic collapse (FRW) is
also unstable against a perturbation with magnetic part H,, (what is called the tensor

mode).
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4 Conclusion

We have studied the perturbations of a silent universe with non-zero Hg;. The analysis of
the silent universe [9] shows the gravitational collapse tends to form spindle-like configu-
rations. However, considering the more realistic case, the ansatz of Ha, = 0 may be too
strong, then one should take into account the contribution of Ha. We have considered
two cases: the background solutions are (i) the attractors of the silent universe, and (ii)
particular Szekeres solutions. In both cases the behavior of the evolution of perturbations
are qualitatively the same. It is interesting that the stability clearly depends on whether
the configurations of the background spacetime are pancake-like or spindle-like. In the
case of a spindle-like background, whose perturbations grow, the silence is broken and
the spacetime approaches the most generic homogeneous spacetime, that is, the locally
Bianchi IX universe. On the other hand, the perturbations do not grow in the case of a
pancake-like background. Neglecting Hy,; is not justified in generic gravitational collapse.

In general relativity, taking into account the effect of H,, the spindle collapse is
destabilized. This meets with the fact that the Newtonian collapse suggests a pancake-like
configuration. The magnetic part of the Weyl tensor has influence on structure formation,

and its effect cannot be ignored.
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Fig. 1: The attractor family of silent universes (in collapse) in the {£4, £_} plane; dots
represent the pancake-like attractors. The line - = 0, —1/3 < £, < 1/3 shows the particular
Szekeres solutions we use as the background solutions in §3.2.
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Fig. 2: The evolution of perturbations of the attractor solutions of silent universes. The
upper panels are in the case of pancake background, the lower panels are in the case of spindle
background. 'Ft.,. =(Hn + sz)/202, Ha3 = Haz/0%. The solid lines show the case of initial
dimensionless wave number k/l;0 = 10, the dashed lines show the case of k/1;8 = 1. The initial
value of the perturbations are taken to be of order unity.
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ASCA Observations of Clusters of Galaxies

Koujun Yamashita
Department of Physics, Nagoya University
Furo-cho, Chikusa-ku, Nagoya 464-01, Japan

X-ray images and spatially-resolved spectra of nearly 150 clusters of galaxies in
the cosmological redshift up to 0.5 have been observed in the energy range of 0.5 - 10
keV by Japanese X-ray astronomy satellite ASCA. Those clusters include group of
galaxies, poor clusters, nearby rich clusters(z<0.1) and distant clusters(z>0.1). Their
plasma temperatures and abundances relative to the cosmic value were obtained to be 1-
10 keV and 0.1-0.5 over whole clusters, respectively. Spatially-resolved spectra make it
possible to derive their distribution in an intracluster medium(ICM), from which the
merging and cooling flow are directly deduced. Detailed analysis of emission lines
from highly ionized atoms allows to determine elemental abundance and ionization
temperature. These results give a great insight into the origin of ICM, the formation and
evolution of clusters. Some of S-Z effect and gravitational lensing clusters were also
observed to investigate cosmological problems.

1. Introduction

Clusters of galaxies are the largest gravitationally-bound ensemble in the
universe. containing hundreds of galaxies and hot intracluster gas. They are identified
as isolated objects by X-ray observations. X-ray emissions from clusters are most likely
originated from a thin hot plasma in a collisional ionization equilibrium. The optical
depth of continuum component is order of 10-3, whereas that of emission lines is
around unity. Present emisssion models used for spectral fitting can not estimate this
effect, so that the determination of elemental abundances includes large uncertainty.
The spatially-resolved spectroscopy with ASCA gives a clue to investigate the physical
state of hot intracluster gas and a impact to reconsider the basic atomic processes. This
is an important issue to deeply understand the structure, formation and evolution of
clusters, and the origin of intracluster gas.

Jones and Forman(1] classified X-ray images observed by Einstein into scven
group. called single symmetric, offset center, elliptical, complex multiple structures.
double, primary with small secondary and primarily galaxy emission. According to
physical processes of cluster formation and evolution, their morphologies are roughly
divided into two categories, they are, centrally concentrated and spherically symmetric
clusters with small core radii having cD galaxy at the center associated with cooling
flows and largely extended clusters with large core radii and merging substructures.
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ROSAT all sky survey detected thousands of clusters with the high angular
resolution[2]. These results are complimentary for ASCA data, since the angular
resolution of ASCA is not good enough for detailed analysis of x-ray images, especially
for distant clusters,

David et al. compiled temperatures of 104 clusters ever observed[3]. Ginga
obscrvations obtained temperatures and abundances of 45 clusters[4]. The X-ray
properties of clusters are represented by the morphological parameters of core radii and
radial gradient of gas density distribution, spectral parametes of temperature, abundance
and luminosity, and the cosmological redshift. ASCA makes it possible to derive these
parameters from the spatially-resolved spectroscopic observations[5].

The Hubble constant(Hp) was derived to be less than 50 km/sec/Mpc by
combining x-ray image and spectra with Sunyaev-Zeldovich(hereafter S-Z) effect in
microwave region. We have proposed new method for Ho detemination making use of
resonant scattering of emission lines in an intracluster gas

Here we present the observational results of ASCA and discuss the cooling flow
and merging of clusters. and the Hubble constant determination.

2. Observations

ASCA has already observed nearly 150 clusters of galaxies in the energy range of
0.5 - 10 keV and in the redshift range up to 0.5, including group of galaxics. poor
clusters, nearby rich clusters (z<0.1), distant clusters (z>0.1) and superclusters. Some of
S-Z effect clusters and gravitational lensing clusters were also observed. ASCA puts on
board four sets of multi-nested thin foil conical mirror X-ray telescope (XRT)
incorporated with two X-ray CCDs(SIS) and imaging gas scintillation proportional
counters(GIS) for each two sets[6]. The angular resolution and field of view are 3’
(HPD), 22'x22' for SIS and 50' in diameter for GIS, respectively. The energy
resolutions are 2% and 8% at 6keV for SIS and GIS, respectively. ASCA
instrumentations are described in detail by Serlemitsos et al.[7]. The standard
observation time is 40ksec/target corresponding to onc day observation. Multiple
pointings were carried out for largely extended clusters to completely cover the whole
cluster. In table 1 there are listed 48 clusters in the redshift order for each category
together with X-ray intensities, plasma temperatures and abundances derived from the

spectral analysis.

3. Data analysis

The spectral analysis of observed data can be done by fitting model spectra of
thermal emissions from a thin hot plasma in an collisional ionization equilibrium like
Raymond-Smith(R-S) or MEKA model, taking into account the absorption of neutral
hydrogen in the line of sight. The expected spectra of R-S model folded with the
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Table 1 Clusters of galaxies observed with ASCA

Name Redshift kT(keV) Abundance Ix(c/s)
Group of Galaxies (GIS)
NGC1399(For) 0.00445 1.04 +/-0.05 0.45 +/-0.20
NGC2300 0.0076 0.87 +0.05/-0.04 0.09 +0.06/-0.02
WP23(NGC5044) 0.06087 1.0 +/-0.05 0.40 +/-0.20
HCG42 0.0133 0.37 +/-0.04 -
HCG62 0.0137 0.86 +/-0.01 0.30 +/-0.10
HCGS51 0.0258 1.1 +/-0.1 0.30 +/-0.10
Poor Clusters
AWM?7 0.0179 4.0 +/-0.3 0.40 +/-0,05 30
MKW4 0.0196 20 +/-0.2 0.37 +/-0.08
3A0336+09 0.0349 32 +/-03 0.45 +/-0.05
MKW9 0.03978 24 +/-0.2 0.29 +/-0.09
MKW3s 0.0434 3.5 +/03 0.33 +/.0.03 0.8
Hvd A 0.0522 3.8 +/-0.3 0.40 +/-0.04 0.8
Nearby Rich Clusters (z<0.1)
Vir(M87)(r<10') 0.0038 1.73 4/-0,02 0.63 +/-0.08 52
Vir(r=10'-20) 2.66 +/-0.05 0.34 +/-0.05
CenC] 0.0107 38 +/.0.3 0.30 +/-0.05 3.0
Al06D 00114 33 +/02 0.37 +/-0.04 1.4
A262 0.0163 22 402 0.32 +/-0.04
A426{Per)(r<15") 0.0183 5.04 +/.0.05 0.42 +/-0.02 20
Al656(Coma)(r<10') 0.0235 88 +/-0.3 0.25 +/-0.05 5.1
Oph Cl(1<6') 0.028 98 +0.5-04 0.28 +/-0.04 99
A2199 0.0305 45 +/-0.5 0.35 +/-0.05 20
AJ634 0.0312 35 +/40.2 0.30 +/-0.05
A496 0.0316 4.03 +/-0.06 0.38 +/-0.03 3.0
PKS2354-35 0.046 3.8 +/-0.2 0.43 +/-0.05
A2319 0.0529 9.1 +/-0.3 0.19 +/-0.04 20
A3266 0.0590 80 +/-04 0.22 +/-0.06 1.36
A2256 0.0601 7.0 +/-0.3 0.22 +/-0.04 14
Al795 0.0621 55 +/-0.5 0.35 +/-0.05 1.5
Abd4 0.0704 6.5 +/-0.2 0.30 +/-0.03 0.63
A3921 0.0936 5.7 +/.0.3 0.27 +/-0.07 0.32
AL750(S-W) 0.09%4 43 +/.0.3 0.30 +/-0.13
AL750 (N-E) 0.094 35 +4.0.2 0.46 +/-0.18
A2440 (S-W) 0.093 4.'_’ +/-0.3 0.18 +/-0.12
A23440 (N-E) 0.097 +/-0.3 0.39 +/.0.19
Distant Clusters (z>0.1) (<8
Aldl13 0.1427 7.2 +-03 0.26 +/-0.06 0.412
Al204 0.1710 40 +/-0.3 0.21 +0.12/-0.11 0.117
A2218 0.1710 6.8 +/-0.5 0.20 +/-0.08 0.191
AS586 0.171 64 +/-0.6 0.26 +/-0.12 0.196
Al689 0.181 89 +/-04 0.26 +/-0.05 0.499
A665 0.1816 81 +/.0.6 0.24 +/-0.08 0.232
MS0440+0204 0.1900 5.1 +0.7/:0.6 0.11 +0.18/-0.11 0.056
A2163 0.203 125 +1.0/-0.8 0.24 +/-0.08 0.509
A963 0.206 6.3 +0.5/-0.6 0.33 +/-0.11 0.134
Al246 0.216 6.0 +0.6/-0.3 0.22 +/-0.10 0.106
A7T3 0.2170 79 +/-0.5 0.21 +/-0,07
Al942 0.224 3.9 +40.6/-04 0.12 +0.27/-0.12 0.045
Zw3146 0.2906 63 +/-0.4 0.26 +/-0.08 0.212
Al722 0.328 5.8 +0.8/.0.6 0.42 +0.19/-0.17 0.058
A370 0.373 6.5 +1.1/-0.9 0.33 +0.21/-0.20 0.049
3C295 0.4961 5.83-7.02 0.28 -0.53
Cl0016+16 0.545 7.4 +1.2/-1.0 0.10 +0.18/-0.10 0.052

abundance relative 1o cosmic values( [FefH]=4.68x10'5 )
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telescope response are shown for plasma temperatures(kT) of 1-10keV and abundance
of 0.5 relative to cosmic values in Fig.1. They are less sensitive to kT above 10keV.
Intensities of emission lines depend upon elemental abundance, ionization states and
KT. There shows distinct difference of the energy resolution between SIS and GIS. The
equivalent width (indicator of line intensity) of He-like and H-like emission lines of Si
and Fe-K is shown against kT in Fig.2. Thus the plasma temperature(kT) and
abundance of each cluster corrected for the cosmological redshift(z) were derived by
fitting R-S model(Fig.1) to observed spectra integrated over whole angular extent of
clusters, as shown in Fig.3 and summerized in table 1.

Raymand=Smutn Wocer (SI5) Raymond =Smin Model (G15)
LHaev)= 1. 2, 3, 4, 8, 8, 10 035 2= 0. 1 bi{kev)e 1. 2, 3, 4, 8. 8. 10. A 03. 7o 0.

counts /secshev
counts/sec/nav

2
Energy (sev) Energy (vev)

Fig.1 Expected spectra of R-S model folded with telescope response for SIS(left) and
GIS(right)
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Fig.2 Equivalent width(eV) of He-like and H-like emission lines of Si(left) and
Fe(right) against plasma temperature(keV)

It is also important to fit a model of thermal bremsstrahlung and Gaussian lines as
free parameters of kT, line intensities and energies. In this case we can derive an
electron temperature from the continuum component, an ionization temperature from
intensity ratio of H-like and He-like ions, abundance from line intensities of each
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element and the redshift from line energies. This procedure is very useful to qualify
observed data. SIS has a capability to resolve emission lines of H-like and He-like ions
of heavy elements, whereas GIS can distinguish Ka and Kg emission lines. Furthermore
the optical depth of cach line in an intracluster medium can be estimated from the
intensity ratio of Ka and Kg. In Fig.4 there is shown an SIS spectrum of
M87(z=0.0038) within the radius of 2.5' fitted with a thermal bremsstrahlung of
kT=1.9keV. Residuals clearly show the existence of several emission lines, such as O.
Si. S, Ar, Ca and Fe. If we introduce number of emission lines at expected encrgies of
each clement. we can get satisfactory fitting. The intensity ratio of H- and He-like
emission lines of Si and S gives consistent temperature to that of the continuum. Strong
cnhancement around 1keV is due to Fe-L line complex mixed with Ne and Mg lines. R-
S model with a single temperature does not fit well to these data, so that we need at
least two temperature components, otherwise we have to take into account uncertainty
of calculated intensities of emission lines. If kT>4keV, only Fe-K lines are dominant
and other elements are fully ionized. GIS spectrum of A644(z=0.0704) fitted with a
thermal bremsstrahlung of kT=6.5keV is shown in Fig.5. Fe-Ka and Kg arc clearly
recognized in the residuals.

The image processing can be done by folding the point spread function.
vignetting and instrumental image distortion, which is rather complicated for cxtended
objects like clusters. Raw image of A644 observed in 1-10keV for 50 ksec by GIS is
shown in Fig.6, which is completely covered in the GIS field of view. The surface
brightness distribution against the projected radius is fitted by a standard {3-model,
[(r):I(O)(1+(r/‘rc)2)'3B+1/2, where r¢ is core radius, assuming spherical symmetric
distribution. r¢ and f of this cluster are obtained to be 3 arcmin and 0.68. respectively.
The image deconvolution is still under way in order to apply to nearby clusters with
large angular extent. Some of results for distant clusters with small radius have been
published.

-7°1500"
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Fig.6 X-ray image of A644 observed by GIS
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4. Cooling flow

Well relaxed clusters with a central dominant galaxy(cD) show an evidence of
cooling flow which are observationally recognized as excess emissions and absorption
in the central core region and radially decreasing temperature distribution to the cluster
center. These clusters are shown in Fig.3, having temperature lower than 7keV and
abundance higher than 0.2. Most of poor clusters have temperature in the range of 2-
4keV. Spectro-imaging observations with ASCA clearly revealed the radial gradient of
temperatures in many clusters as well as the abundance gradient in some cases.
Abundance should be determined by taking into account resonant scattering effect of
emission lines and physical process of recombining plasma in an intracluster gas. In this
sensc it seems that presently known abundance has large uncertainty. In Fig.7 the
temperature distribution of M87/Vir, A496, the Per cluster and A644 is shown against
the projected radius(Mpc) with Ho=50 km/sec/Mpc. Angular radius of these clusters are
divided into annular ring of 2.5', 5,' 10' and 15'. Generally speaking, low temperature
clusters show steep distribution which reflects the potential given by dark matter in the
cluster. The radiative cooling is more effective in the central core region within the
cosmic time scale, since the emission measure is proportional to square of clectron
density. The cooling radius could be defined by temperature gradient. though outer
boundaries of clusters are not well defined due to the poor statistics.
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Fig.7 Plasma temperature vs. projected radius

5. Merging

Spherically symmetric clusters without a central dominant galaxy classified as
nXD scem to be isothermal and in the hydrostatic equilibrium. These clusters have
relatively high temperature, low abundance and less central concentration than cooling
flow clusters. The temperature of the Coma cluster averaged over whole cluster was
obtained to be 8.09keV by Ginga. ASCA observed spatially resolved spectra within the
radius of 40 arcmin. They show inhomogeneous temperature distribution in the range of
5.7-12keV as shown in Fig.8. The Coma accompanies a subcluster which shows low
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temperature[8]. This fact indicates that different temperature component corresponds to
different substructure going to merge in a cluster potential. It is also possible to
consider that shock heating during merging produces patchy temperature structure, This
problem is related to top down or bottom up senario in the formation of galaxies and
clusters, since the mass of intracluster gas is several times higher than that of all the
member galaxies in this type of clusters. Low abundance suggests that the fraction of
primordial gas is larger than that of processed gas probably ejected from galaxies. We
have to wait for further detailed analysis of ASCA data combining with ROSAT data,

Fig.8 X-ray image of the Coma cluster made of 14 pointed observations by GIS.
Temperarures(keV) of region by region are written in the figure

6. Determination of the Hubble constant

Combining the decrement of the brightness temperature of the cosmic microwave
background through an intracluster gas with plasma temperature obtained bv ASCA
and the surface brightness profile observed by Einstein, we have derived Hg to be less
than 50 km/s/Mpc for A665(z=0.1816) and CL0016+16 (z=0.545)[5]. The Hubble
space telescope observations of galaxies in the distance up to the Coma cluster
(2z=0.0235) gave the value to be 80(+/-17) km/s/Mpc[9]. These results are summerized
in Fig.9. We have proposed another method by means of resonant scattering effect of
Fe-K emission lines in an intracluster gas, as Ho is expressed as,

H=73(km/sec/Mpc)(T/108K)1/2(8/mrad)(<ne>/5x10"3cm3) (Ab(Fe)/t(K ) )((2/0.1),
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where T is plasma temperature, 8 angular size, <n¢> mean electron density, Ab(Fe) iron
abundance and ©(Ka) optical depth of Fe-Ka emission lines. This method using ASCA
data is applicable to spherically symmetric isothermal clusters in z=0.01-0.1. We expect
that it would be possible to derive the z dependence of Ho. Data analysis is now going
on to derive the definite value with selected clusters.
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Fig.9 The Hubble constant vs, cosmological redshift

7. Summary

Spatially resolved X-ray spectra of clusters of galaxies have been observed in the
energy range of 0.5 - 10 keV and in the redshift range up to 0.5 by ASCA. The
evidence of cooling flow and merging in clusters are observationally deduced from the
temperature and abundance distribution in an intracluster medium. It is suggested that
the derivation of abundance is not so confirmative by means of present method and
ASCA data seemingly gives an impact to basic atomic processes. The determination of
the Hubble constant is discussed by means of Sunyaev-Zeldovich effect and resonant
scattering effect of Fe-K emission lines.
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Thermal Inflation, the Moduli (Polonyi) Problem
and Baryogenesis

Ewan D. Stewart
Research Center for the Early Universe
University of Tokyo

Supersymmetric Scalar Potentials

It is generally believed that the world is supersymmetric with the supersymmetry
breaking scale
Meysy ~ 10° to 10° GeV

Scalar potentials of the form

¢4+2n

V(¢) = VO - m2¢2 + M:{n

+...

with m ~ Mgusy, Mx ~ Mgur ~ 2 X 10! GeV or Mx ~ Mp = 2.4 x 10'8 GeV,
and n 2> 1, occur naturally in supersymmetric theories; a combination of super-
symmetry and gauge symmetries forbidding a significant quartic term.

Such a potential has its minimum at

¢ =M ~m/t) /) 5
and in order to cancel the cosmological constant we require
Vo ~ m2M?

For n =1 or 2 we get
M ~ 10° to 10" GeV

and
Vo /* ~ 10 to 108 GeV
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Thermal Inflation

The finite temperature effective potential has the form
V(T) ~ (Vo + T*) + (T* = m?) 6 + ..

for ¢ < T <« M and couplings of order one. Thus, in the early Universe, ¢ can
be trapped at ¢ = 0 with V; dominating the energy density when

m < T <V~ VmM

We therefore get

N~ln(TL"iLal) ~ln(—m—M) ~ 10
Thinal m
e-folds of ‘thermal’ inflation.

We still require ordinary inflation to occur before thermal inflation in order
to solve the horizon, flatness and homogeneity problems and to generate density

perturbations. So what does thermal inflation do?

Moduli

Moduli are predicted by superstring theory. They are scalar fields with gravita-
tional strength interactions and, neglecting supersymmetry breaking, exactly flat
potentials.

In the true vacuum with supersymmetry breaking they have potentials of the
form o

Mp)
where f is some generic function and me¢ ~ mgyey.

In the early Universe, the energy density also breaks supersymmetry and gives
an additional contribution

‘/t.rue(q)) = mzusyMlgl f ( ) = m?b (Q - @gme)z + ..

o
Viean(®) = HMZ, g <ﬁp—|) = aH? (® = Begm)? + - ..

where a ~ 1 and ®cosm — Perve ~ Mp). The precise values of a and ®osm depend
on the composition of the Universe.

The total potential is then very crudely given by
H? :
2 2
V((S(I))N (m,,-l—H ) [(5‘1)— (m) q)o] +...

where 6® = ® — ®,,,c and ®g = Proemn — Prrue ~ Mp.
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The Moduli (Polonyi) Problem

Thus when H > mg
0d = (I)o ~ 1\’1p|

and so when H falls below mg,
V(6®) ~ m3sd?
with
00 ~ ®g ~ Mp
initially. This corresponds to an abundance of moduli particles

ne
S

~ 107
However, the nucleosynthesis constraint is
n
=2 <1072 ¢t0 1071
s

Thus about 10%° times too many moduli particles are produced at H ~ mg.

Thermal Inflation and the Moduli Problem

Ordinary inflation occurs at too high an energy scale to be able to dilute the
moduli produced at H ~ mg. However, thermal inflation occurs at a relatively
low energy scale corresponding to

mM
H~—
Moy ST

and so thermal inflation can dilute the moduli produced at H ~ mg. There is
enough dilution if roughly

M 2,10' to 10'2 GeV

However during thermal inflation

2 2
V(5®) ~ m? [5@ - (5{7) @0] +...
mg

and so 6® ~ (H?/m%)®y ~ M?/Mp). Thus moduli are produced at the end of
thermal inflation. Their abundance is not too big if roughly

M < 10'% to 10'3 GeV
Thus thermal inflation can solve the moduli problem if

10'° to 10'? GeV < M < 10'2 to 10'3 GeV
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Baryogenesis

Big Bang nucleosynthesis requires

BB L3x1071
S

Any baryons formed before thermal inflation will be diluted to nothing.

The temperature after thermal inflation will be high enough for electroweak
baryogenesis, but there will be entropy production after the electroweak phase

- transition and so electroweak baryogenesis will not work either.

However, if the scalar field that gives rise to thermal inflation also gives right-
handed neutrinos their mass, then a lepton asymmetry can be generated at the end
of thermal inflation which would then be transformed into a baryon asymmetry
by electroweak processes.

Ordinary Inflation and Thermal Inflation

Ordinary Thermal
Inflation Inflation
slowly rolling
clock scalar field | temperature
e-folds > 40 ~ 10
energy scale
V1/4/GeV 10% to 10'© | 10° to 10°
H/GeV 10" to 102 | 1073 to 107
theory difficult natural
horizon, flatness
and homogeneity yes no
problems
density
perturbations yes no
moduli
problem no yes
baryogenesis no yes
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Abstract

The mexican hat function is used to model a compensated (in density) gravitational lens. First
we discuss the need for compensation. Then we integrate photon orbits to construct wavefronts.
One consequence of underdensities is an off-axis caustic. We report the structure of the critical
curves and caustics using the thin lens approximation, both for the mexican hat and for a perturbed
mexican hat. We discuss the nonlocal effect of shear.

1 Introduction

Gravitational lensing of distant galaxies by foreground clusters of galaxies is a recent and powerful
new tool for observational cosmology. For example, the HST image of the Abell Cluster A2218
dramatically illustrates that images of background galaxies are distorted [8). Lensing can be used
either as a powerful telescope to observe very distant galaxies, or to investigate the distribution of
matter around the lensing c