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Construction of KAGRA started in January, 2012. 

Takaaki Kajita   “Status of KAGRA” 

 
Francesco Fidecaro  “Virgo: design, results  
                              and perspectives” 
David Reitze      “LIGO: Recent Results, 
                         Plans, and Prospects” 



RESCEU Projects 

jointly organized 

KAGRA data 

analysis school 

@RESCEU 

Yousuke Itoh 
@RESCEU 



70 students/researchers 
attended the school ! 

Lectures by Dr. H. Tagoshi 

Programming  
Practice 

Until very 
late at night! 
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Social Events 
Reception:  Today from 18:30 @ Sanjo Conference Hall 
 
Poster & Beer: Tomorrow from 16:30 here 
                      (Beer will be served after 17:00) 
 
Self-service Excursion and Banquet: Thursday evening 
     @Ooedo Onsen Monogatari in Odaiba 
        (Hot springs with Edo-era(1603-1867) Style) 
      
     A free shuttle bus is available for non-Japanese 
     speaking participants and invited speakers. 
      
     Japanese participants, please come by yourselves. 
     丸ノ内線本郷三丁目から新橋乗り換えゆりかもめでテレコム 
     センター下車徒歩2分。 
  
     Please show your name tag at the entrance 



Dress code:  Since you will be requested 
to wear a Edo-era style Yukata robe in the 
premise, please come in casual clothes. 
Wearing neckties and jackets is discouraged. 



A New Attempt in the 22 years’ history of JGRG 

Participants who attended until the end of each parallel session 
have a right to vote for one talk in the session. 

For the poster award, participants who participated in the discussion  
until 18:30 on Tuesday have a right to vote for one poster  
presentation. 

Based on the results of the votes and recommendation by parallel  
session chairs, the selection committee consisting of the organizing  
committee members will decide who will be awarded. 

In case you wish to move from one parallel room to the other? 
No problem, just vote for one of the talks you attended regardless 
of the room where you are at the end of the day. 



MEXT Grant-in-Aid for Scientific Research on Innovative Areas No. 21111006 

“Quest for the Ultimate Theory on the Basis of Direct Observations of the Evolution  

 of the Early Universe”  (Kodama & JY) 

 

MEXT Grant-in-Aid for Scientific Research on Innovative Areas, No. 24103006 

"Theoretical study for astrophysics through multimessenger observations  

 of gravitational wave sources"  (Nakamura & Tanaka) 

 

JSPS Grant-in-Aid for Scientific Research (A) No. 21244033 

“Cosmological nonlinear, nonperturbative gravitational phenomena" (Sasaki) 

 

JSPS Grant-in-Aid for Scientific Research No. 23540282 

“Theoretical Study on Gravitational Waves from Fast Moving Sources, Strong  

 Gravitating Sources and Early Universe”  (Futamase) 

Supported by 

Our new assistant professor  

Teruaki Suyama 



Where to have lunch (A campus map is available.) 



 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Abhey Ashtekar, JGRG 22(2012)111201 

“The pre-inflationary dynamics of loop quantum cosmology: 

Confronting quantum gravity with observations” 

 



The pre-inflationary dynamics of LQC
Confronting quantum gravity with observations

Abhay Ashtekar
Institute for Gravitation and the Cosmos, Penn State

Dedicated with Pleasure to

Hideo Kodama, Misao Sasaki & Toshi Futamase

Friends, Colleagues and Creative Scientists,
Who Have Enriched us With So Many Insights!

RESCEU Symposium on GRG, 12-16 November, 2012
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Organization

1. Introduction: Successes and Limitations of Inflation
Overcoming the limitations:
2. Singularity Resolution in Loop Quantum Cosmology
3. Cosmological Perturbations on quantum FLRW Space-times
4. Extracting Physics: Power Spectra & Non-Gaussiantity.
5. Summary and Discussion

Understanding emerged from the work of many researchers, especially:
Agullo, Barrau, Bojowald, Cailleatau, Campiglia, Corichi, Grain,

Kaminski, Lewandowski, Mielczarek, Nelson, Pawlowski, Singh, Sloan, ...

For summary, see AA, Agullo & Nelson 1209.1609 PRL (at Press); More complete
references: AA, Agullo & Nelson 1211:1354; AA Sloan GRG (2011), PLB (2009), GRG
(2011); AA, Corichi & Singh PRD (2008); Pawlowski, Singh, PRL & PRD (2006).
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Inflationary Paradigm

• Major success: Prediction of inhomogeneities in CMB which serve as
seeds for structure formation. Observationally relevant wave numbers in
the range ∼ (ko, 2000ko) (radius of the observable CMB surface ∼ λo).

• Rather minimal assumptions:
1. Some time in its early history, the universe underwent a phase of accelerated expansion
during which the Hubble parameter H was nearly constant.

2. Starting from this phase till the CMB era, the universe is well-described by a FLRW
background with linear perturbations. Only matter: inflaton in a suitable potential.

3. At the onset of this ‘slow roll inflationary phase’ Fourier modes of quantum fields
describing perturbations were in the Bunch-Davis vacuum (at least for co-moving wave
numbers in the range ∼ (ko, 2000ko)); and,

4. Soon after a mode exited the Hubble radius, its quantum fluctuation can be regarded as a
classical perturbation and evolved via linearized Einstein’s equations.

• Then QFT on FLRW space-times (and classical GR) implies the
existence of tiny inhomogeneities in CMB seen by the 7 year WMAP data.
All large scale structure emerged from vacuum fluctuations!

– p. 3



Inflationary Paradigm: Incompleteness

Particle Physics Issues:
• Where from the inflaton? A single inflaton or multi-inflatons? Interactions between
inflatons? How are particles/fields of the standard model created during ‘reheating’ at the
end of inflation? ...

Quantum Gravity Issues:
• Big bang singularity also in the inflationary models (Borde, Guth & Vilenkin).
Is it resolved by quantum gravity as has been hoped since the 1970’s?
What is the nature of the quantum space-time that replaces Einstein’s
continuum in the Planck regime?
• Does the slow-roll inflation used to explain the WMAP data naturally
arise from natural initial conditions ‘at the Beginning’ that replaces the big
bang in quantum gravity?
• In classical GR, if we evolve the modes of interest back in time, they
become trans-Planckian. Is there a QFT on quantum cosmological
space-times needed to adequately handle physics at that stage?
• Can one arrive at the Bunch-Davis vacuum (at the onset of the WMAP
slow roll) from more fundamental considerations?

– p. 4



‘Standard’ View & its limitations

Why Planck scale physics could affect the scenario?

– p. 5



Inflationary Scenario: Incompleteness

Quantum Gravity Issues:

• Big bang singularity also in the inflationary models (Borde, Guth & Vilenkin).
Is it resolved by quantum gravity as has been hoped? Nature of the
quantum space-time that replaces Einstein’s continuum in the Planck
regime?

"One may not assume the validity of field equations at very high
density of field and matter and one may not conclude that the
beginning of the expansion should be a singularity in the
mathematical sense." A. Einstein, 1945

• Does the slow-roll inflation used to explain the WMAP data naturally arise from natural
initial conditions ‘at the Beginning’ that replaces the big bang in quantum gravity?

• In classical GR, if we evolve the modes of interest back in time, they become
trans-Planckian. Is there a QFT on quantum cosmological space-times needed to
adequately handle physics at that stage?

• Can one arrive at the Bunch-Davis vacuum (at the onset of the WMAP slow roll) from
more fundamental considerations?

– p. 6



2. Singularity Resolution
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v
Expectations values and dispersions of V̂ |φ for a massive inflaton φ with
phenomenologically preferred parameters (AA, Pawlowski, Singh). The Big Bang is
replaced by a Big Bounce. Similar resolution in a wide class of cosmological models.
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What is behind singularity resolution?

• In full LQG, we have a mathematically rigorous kinematical framework
uniquely selected by the requirement of background independence
(Lewandowski, Okolow, Sahlmann, Thiemann; Fleishchhack). This descends to LQC
in a well defined manner (AA, Campiglia).

• This kinematics is distinct from the Schrödinger representation used in
the WDW theory. In particular, the differential operator of the WDW
equation, ∂2Ψo(v,φ)/∂v2 = #2P ĤφΨo(v,φ) fails to be well-defined on the
LQC Hilbert space and is naturally replaced by a difference operator:
C+(v)Ψo(v + 4, φ) + Co(v)Ψo(v,φ) + C−(v)Ψo(v − 4, φ) = #2P ĤφΨo(v,φ)
(The Step size is determined by the area gap of Riemannian quantum
geometry underlying LQG)

• Good agreement with the WDW equation at low curvatures but drastic
departures in the Planck regime precisely because the WDW theory
ignores quantum geometry (the area gap).

– p. 8



Singularity Resolution in LQC: k=0

• No unphysical matter. All energy conditions satisfied. But the left side
of Einstein’s equations modified because of quantum geometry effects
(discreteness of eigenvalues of geometric operators.)

• Effective Equations: To compare with the standard Friedmann equation,
convenient to do an algebraic manipulation and move the quantum
geometry effect to the right side. Then:

(ȧ/a)2 = (8πGρ/3)[1− ρ/ρcrit] where ρcrit ∼ 0.41ρPl.
Big Bang replaced by a quantum bounce. Effective equations are surprisingly
effective even in the Planck regime.

• Observables: The matter density operator ρ̂ has an absolute upper
bound on the physical Hilbert space (AA, Corichi, Singh):

ρsup =
√
3/16π2γ3G2! ≈ 0.41ρPl!

Provides a precise sense in which the singularity is resolved.

• Mechanism: Quantum geometry creates a brand new repulsive force in
the Planck regime, neatly encoded in the difference equation. Replaces
the big-bang by a quantum bounce.

– p. 9



Inflationary Paradigm: Incompleteness

Quantum Gravity Issues:

• Big bang singularity also in the inflationary models (Borde, Guth & Vilenkin). Is it resolved
by quantum gravity as had been long hoped? What is the nature of the quantum space-time
that replaces Einstein’s continuum in the Planck regime?

• Does the slow-roll inflation used to explain the WMAP data naturally
arise from natural initial conditions ‘at the Beginning’ that replaces the big
bang in quantum gravity?

• In classical GR, if we evolve the modes of interest back in time, they become
trans-Planckian. Is there a QFT on quantum cosmological space-times needed to
adequately handle physics at that stage?

• In the more complete theory, is the Bunch-Davis vacuum at the onset of the slow roll
compatible with WMAP generic or does it need enormous fine tuning?

– p. 10



3. Cosmological Perturbations on Quantum Space-times

• LQG Strategy: Focus on the appropriate truncation/sector of classical GR
and pass to quantum gravity using LQG techniques. Sector of interest for
inflation: Linear Perturbations off FLRW background with an inflaton φ in a
suitable potential as matter. Includes inhomogeneities, but as
perturbations. In detailed calculations, V (φ) = (1/2)m2φ2.

Truncated Phase Space " {(v,φ; δhab(x), δφ(x)) and their conjugate momenta}
Quantum Theory: Start with Ψ(v,φ; δhab(x), δφ(x)) and proceed to the quantum theory
using LQG techniques.

• Test field approximation: Ψ = Ψo(v,φ)⊗ ψ(δhab,φ). Linearized
constraints ⇒ ψ(δhab,φ) = ψ(T (1), T (2),R; φ), where T (1), T (2) are the
tensor modes and R the scalar mode. In the Planck regime of interest, φ
serves as the ‘internal/relational time’.

• Idea: Choose Ψo(v,φ) to be sharply peaked at an effective LQC
solution goab. Such ‘coherent states’ exist. ψ propagates on the quantum
geometry determined by Ψo: QFT on QST a la AA, Lewandowski, Kaminski.

– p. 11



Choice of the Cosmological Background Ψo

• Let us start with generic data at the bounce in the effective theory and
evolve. Will the solution enter slow roll at energy scale
ρ ≈ 7.32× 10−12m4

Pl determined from the 7 year WMAP data ? Note: 11
orders of magnitude from the bounce to the onset of the desired slow roll!

• Answer: YES. In LQC, |φB| ∈ (0, 7.47× 105). If |φB| ≥ 1.05mPl, the
data evolves to a solution that encounters the slow roll compatible with the
7 year WMAP data sometime in the future. In this sense, ‘almost every’
initial data at the bounce evolves to a solution that encounters the desired
slow roll sometime in the future. (AA & Sloan, Corichi & Karami)

• Result much stronger than the ‘attractor’ idea
because it refers to the slow roll compatible
with WMAP.

• Hence, for the background quantum geometry,
we can choose a ‘coherent’ state Ψo sharply peaked
at a ‘generic’ effective trajectory at the bounce and
evolve using LQC. Slow roll phase ensured!

– p. 12



Inflationary Paradigm: Incompleteness

Quantum Gravity Issues:

• Big bang singularity also in the inflationary models (Borde, Guth & Vilenkin). Is it resolved
by quantum gravity as had been long hoped? What is the nature of the quantum space-time
that replaces Einstein’s continuum in the Planck regime?

• In the systematic evolution from the Planck regime in the more complete theory, does a
slow roll phase compatible with the WMAP data arise generically or is an enormous fine
tuning needed?

• In classical GR, if we evolve the modes of interest back in time, they
become trans-Planckian. Is there a QFT on quantum cosmological
space-times needed to adequately handle physics at that stage? Yes!
Can the basic ideas in AA, Lewandowski, Kaminski be developed to obtain
well-defined stress energy operators in this new theory? Can one justify
the truncation procedure even in the Planck regime?

• Can one arrive at the Bunch-Davis vacuum (at the onset of the WMAP
slow roll) from more fundamental considerations?

– p. 13



4. Extracting Physics

First, thanks to the background quantum geometry, trans-Planckian
modes pose no problem, provided the test field approximation holds:
ρPert * ρBG all the way from the bounce to the onset of slow roll.

• Second, surprisingly, truncated dynamics of T̂ (1), T̂ (2), R̂ on the
quantum geometry of Ψo is mathematically equivalent to that of T̂ (1), T̂ (2),
R̂ as quantum fields on a smooth space-time with a ‘dressed’ effective,
c-number metric ḡab (whose coefficients depend on !):

ḡabdxadxb = ā2(−dη̄2 + d*x2)
with

dη̄ = 〈Ĥ−1/2
o 〉 [〈Ĥ−1/2

o â4Ĥ
−1/2
o 〉]1/2 dφ; ā4 = (〈Ĥ−1/2

o â4Ĥ
−1/2
o 〉)/〈Ĥ−1

o 〉

where Ho is the Hamiltonian governing dynamics of Ψo. Analogy with light
propagating in a medium.

• Because of this, the mathematical machinery of adiabatic states,
regularization and renormalization of the Hamiltonian can be lifted to the
QFT on cosmological QSTs under consideration. Result: Mathematical
control to compute the CMB power spectrum, and spectral indices starting
from the bounce.

– p. 14



Initial conditions

• Hilbert space: H of perturbations ψ on the quantum geometry Ψo is
spanned by 4th adiabatic order states on the smooth Friedmann metric
ḡab. Excellent control.

• Symmetries: Ψo (and hence ḡab) homogeneous and isotropic. Preferred
states: ψ ∈ H also invariant under translations and rotations. Far from
unique. However, Can narrow it down by:

• Physical Considerations: State Ψo ⊗ ψ at the bounce ⇒ Initial quantum
homogeneity! Can be qualitatively justified as follows. Because of inflation,
the observable universe has size of ≤ 10#Pl at the bounce. The repulsive
force of quantum geometry dilutes all inhomogeneities at this scale. So
universe is as homogeneous and isotropic as the uncertainty principle
allows it to be!

• Renormalized energy density is well-defined on these states. For
T̂ (1), T̂ (2), and R̂ to be test fields on the quantum geometry Ψo we also
require that the stress energy in ψ be negligible compared that in Ψo at
the bounce time.

– p. 15



Key Questions

1. Does the back-reaction remain negligible as ψ evolves all the way to
the onset of the slow roll compatible with WMAP (so that our truncation
strategy is justified by self-consistency)?
Answer: YES

2. At the end of the WMAP compatible slow roll, do we recover the observed power
spectrum: ∆2

R(k, tk!) ≈ H2(tk! )

πm2
Plε(tk! )

? (tk! is the time the reference mode k$ ≈ 8.58ko exits
the Hubble horizon during slow roll)
Answer: YES provided φB ≥ 1.14mPl. Thus, we have arrived at a quantum gravity
completion of the inflationary paradigm.

3. Does ψ(T (1)
k̄

, T (2)
k̄

,Rk̄; φB) evolve to a state which is indistinguishable from the Bunch
Davis vacuum at the onset of slow roll or are there deviations with observable consequences
for more refined future observations (e.g. non-Gaussianitities in the bispectrum)?
(Agullo & Shandera; Ganc & Komatsu)

Answer: There ARE deviations if φB lies in a small window just after φB = 1.14mPl.

– p. 16



Self-consistency of Truncation: ρPert/ρBG vs time
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Renormalized energy density in ψ is negligible compared to that in Ψo all the way from the
bounce to the onset of slow roll. Here φB = 1.15mPl.
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Key Questions

1. Does the back-reaction remain negligible as ψ evolves all the way to the onset of the slow
roll compatible with WMAP (so that our truncation strategy is justified by self-consistency)?
Answer: YES

2. At the end of the WMAP compatible slow roll, do we recover the
observed power spectrum: ∆2

R(k, tk!) ≈ H2(tk! )
πm2

Plε(tk! )? (tk! is the time the
reference mode k$ ≈ 8.58ko exits the Hubble horizon during slow roll)
Answer: YES provided φB ≥ 1.14mPl. Thus, we have arrived at a quantum
gravity completion of the inflationary paradigm.

3. Does ψ(T (1)
k̄

, T (2)
k̄

,Rk̄; φB) evolve to a state which is indistinguishable
from the Bunch Davis vacuum at the onset of slow roll or are there
deviations with observable consequences for more refined future
observations (e.g. non-Gaussianitities in the bispectrum)?
(Agullo & Shandera; Ganc & Komatsu)

Answer: There ARE deviations if φB lies in a small window just after
φB = 1.14mPl.

– p. 18



The Scalar Power spectrum: Ratio (PLQG/PBD)
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Ratio of the LQC and the standard BD power spectrum for the scalar mode. Blue: Raw data
points. Red: Average. LQC prediction is within observational errors for φB ≥ 1.14mPl.
For φB = 1.2mPl, WMAP kmin = 9mPl. Complete agreement with BD vacuum for
φB ≥ 1.2mPl. For φB < 1.2mPl: Certain non-Gaussiainities for future observations.
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The LQC Tensor Power spectrum
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Understanding the Power Spectrum

Modes with λ > R−1/2, the curvature radius, in the pre-inflationary era are
excited and populated at the onset of inflation. Can occur in a narrow
window for φB ≤ 1.2mPl.

– p. 21



5. Summary: Framework

• The early universe provides an ideal setting to test quantum gravity
ideas. The inflationary paradigm provides a telescope to peer into the
Planck regime. Furthermore, it has been extremely successful with
structure formation. Can one provide a quantum gravity completion of the
inflationary paradigm thereby overcoming some of its limitations?
In LQG the answer is YES in the following precise sense:

• Background geometry: Singularity Resolution and precise quantum
geometry for the Planck regime. √

• Perturbations: Since they propagate on quantum geometry, using QFT
on cosmological quantum geometries (AA, Lewandowski, Kaminski),
trans-Planckian issues can be handled systematically provided the test
field approximation holds. Analyzed in detail using the renormalized
stress-energy of T̂ (1), T̂ (2), R̂ on the quantum geometry of Ψo. Detailed
numerics show that the approximation does hold if φB > 1.14mPl.
(Agullo, AA, Nelson)

– p. 22



Summary: Implications

• Extension: If ΦB > 1.14mPl & ψ is a ‘permissible vacuum,’ modes of
observational interest are all in the Bunch Davis vacuum at the onset of
the WMAP slow roll ⇒ Predictions of the standard inflationary scenario
for the power spectra, spectral indices & ratio of tensor to scalar modes
are recovered starting from the deep Planck era. (Agullo, AA, Nelson)

• Non-Gaussianity: There is a small window in φB for which at the onset
of inflation ψ has excitations over the Bunch-Davis vacuum. These give
rise to specific 3-point functions (‘bi-spectrum’) which are important for the
‘halo bias’. Could be observed in principle: Link between observations
and the initial state! A window to probe the Planck era around the LQC
bounce. (Agullo, AA, Nelson, Shandera, Ganc, Komatsu)

• Note: LQG does not imply that inflation must have occurred because it
does not address particle physics issues. The analysis simply assumes
that there is an inflaton with a suitable potential. But it does show
concretely that many of the standard criticisms (e.g. due to Brandenberger) of
inflation can be addressed in LQG by facing the Planck regime squarely.

– p. 23
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Why alternative gravity theories? 

http://map.gsfc.nasa.gov/ 

Dark Energy 

Dark Matter 

Inflation 

Big Bang 

“Singularity” 



Three conditions for good 

alternative theories of gravity 
(my personal viewpoint) 

1. Theoretically consistent 

e.g. no ghost instability 

2. Experimentally viable 

solar system / table top experiments 

3. Predictable 

e.g. protected by symmetry 



Some examples 

I. Ghost condensation 

IR modification of gravity 

motivation: dark energy/matter 

II. Nonlinear massive gravity 

IR modification of gravity 

motivation: “Can graviton have mass?” 

III. Horava-Lifshitz gravity 

UV modification of gravity 

motivation: quantum gravity 

IV. Superstring theory 

UV modification of gravity 

motivation: quantum gravity, unified theory 



A motivation for IR modification 

• Gravity at long distances  

Flattening galaxy rotation curves 

                    extra gravity  

Dimming supernovae 

                    accelerating universe 

• Usual explanation: new forms of matter 

(DARK MATTER) and energy (DARK 

ENERGY).  



Dark component in the solar system? 

Precession of perihelion 

observed in 1800’s… 

But the right answer wasn’t “dark planet”, it was 
“change gravity” from Newton to GR. 

which people tried to 

explain with a “dark 

planet”, Vulcan,  Mercury 

 Sun 

 Mercury 

 Sun 



Can we change gravity in IR? 

Change Theory? 
Massive gravity     Fierz-Pauli 1939 

DGP model     Dvali-Gabadadze-Porrati 2000 

 

Change State? 
Higgs phase of gravity 
The simplest: Ghost condensation 
 Arkani-Hamed, Cheng, Luty and Mukohyama, JHEP 0405:074,2004. 



Massive gravity: history 

Yes? No? 

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 



Massive gravity: history 
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Fierz-Pauli theory (1939) 

Unique linear theory 
without instabilities 

(ghosts) 

van Dam-Veltman-
Zhakharov discontinuity 

(1970) 

Massless limit ≠ 
General Relativity 

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 



Massive gravity: history 

Yes? No? 

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 



Massive gravity: history 

Yes? No? 

van Dam-Veltman-
Zhakharov discontinuity 

(1970) 

Massless limit ≠ 
General Relativity 

Boulware-Deser ghost 
(1972) 

6th d.o.f.@Nonlinear level 
 Instability (ghost) 

Fierz-Pauli theory (1939) 

Unique linear theory 
without instabilities 

(ghosts) 

Vainshtein mechanism 
(1972) 

Nonlinearity  Massless 
limit = General Relativity  

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 



Nonlinear massive gravity 
de Rham, Gabadadze 2010 

• First example of fully nonlinear massive 

gravity without BD ghost since 1972! 

• Purely classical 

• Properties of 5 d.o.f. depend on background 

 

• 4 scalar fields fa (a=0,1,2,3) 

• Poincare symmetry in the field space: 

 

   

 

Pullback of  

Minkowski metric in field space 

to spacetime 



Systematic resummation 
de Rham, Gabadadze & Tolley 2010 

No helicity-0 ghost, i.e. no BD ghost, in decoupling limit 

K

No BD ghost away from decoupling limit (Hassan&Rosen) 



Massive gravity: history 

Yes? No? 

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 



No FLRW universe? 
D’Amico, de Rham, Dubovsky, Gabadadze, Pirtshalava, Tolley (2011) 

• Flat FLRW ansatz in “Unitary gauge” 
gmndxmdxn = -N2(t)dt2 + a2(t)(dx2+dy2+dz2) 
fa = xa           fmn = hmn

 

• Bianchi “identity”  a(t) = const. 
        c.f. 
 no non-trivial flat FLRW cosmology 

• “Our conclusions on the absence of the homogeneous 
and isotropic solutions do not change if we allow for a 
more general maximally symmetric 3-space” 



Yes? No? 

van Dam-Veltman-
Zhakharov discontinuity 

(1970) 

Massless limit ≠ 
General Relativity 

Boulware-Deser ghost 
(1972) 

6th d.o.f.@Nonlinear level 
 Instability (ghost) 

D’Amico, et.al. (2011) 
Non-existence of flat 
FRW (homogeneous 
isotropic) universe! 

Fierz-Pauli theory (1939) 

Unique linear theory 
without instabilities 

(ghosts) 

Vainshtein mechanism 
(1972) 

Nonlinearity  Massless 
limit = General Relativity  

de Rham-Gabadadze-
Tolley (2010) 

First example of nonlinear 
massive gravity without 
BD ghost since 1972 

Simple question: Can graviton have mass? 

May lead to acceleration without dark energy 

Consistent Theory 

found in 2010 but  

No Viable Cosmology?  

Massive gravity: history 



Open FLRW solutions 
Gumrukcuoglu, Lin, Mukohyama, arXiv: 1109.3845 [hep-th] 

•  fmu spontaneously breaks diffeo. 

• Both gmu and fmu must respect FLRW symmetry 

• Need FLRW coordinates of Minkowski fmu 

• No closed FLRW chart 

• Open FLRW ansatz 



Open FLRW solutions 
Gumrukcuoglu, Lin, Mukohyama, arXiv: 1109.3845 [hep-th] 

• EOM for fa (a=0,1,2,3) 
 

• The first sol                   implies gmu is Minkowski 
 we consider other solutions 
 

• Latter solutions do not exist if K=0 

• Metric EOM  self-acceleration 
 



Self-acceleration 

0X  

0X  

0 0 

0 
0 

0 

0 



General fiducial metric 
Appendix of Gumrukcuoglu, Lin, Mukohyama, arXiv: 1111.4107 [hep-th] 

• Poincare symmetry in the field space 
   

•  de Sitter symmetry in the field space 
  

• FRW symmetry in the field space 
 
 

Flat/closed/open FLRW cosmology allowed 
if “fiducial metric” fmn is de Sitter (or FRW) 
 Friedmann equation with the same effective cc 

( ) a b

abf deSittermn m nf f  

( ) a b

abf Minkowskimn m nf f  

( ) a b

abf FLRWmn m nf f  



Cosmological perturbation with any matter 
Gumrukcuoglu, Lin, Mukohyama, arXiv: 1111.4107 [hep-th] 

• GR&matter part + graviton mass term 

• Separately gauge-invariant 
Common ingredient is gij only 

• Integrate out yp, Ep and Fp
i  I(2)

s,v = I(2)
GR s,v  

• Difference from GR is in the tensor sector only 



Summary so far 
• Nonlinear massive gravity 

free from BD ghost  

• FLRW background 
No closed/flat universe 
Open universes with self-acceleration! 

• More general fiducial metric fmu 
closed/flat/open FLRW universes allowed 
Friedmann eq does not depend on fmu 

• Cosmological linear perturbations 
Scalar/vector sectors  same as in GR 
Tensor sector  time-dependent mass 

 



Nonlinear instability 
DeFelice, Gumrukcuoglu, Mukohyama, arXiv: 1206.2080 [hep-th] 

•  de Sitter or FLRW fiducial metric 

• Pure gravity + bare cc  FLRW sol = de Sitter 

• Bianchi I universe with axisymmetry + linear 
perturbation (without decoupling limit) 

• Small anisotropy expansion of Bianchi I + linear 
perturbation  
 nonlinear perturbation around flat FLRW 

• Odd-sector:  
1 healthy mode + 1 healthy or ghosty mode 

• Even-sector:  
2 healthy modes + 1 ghosty mode 

• This is not BD ghost nor Higuchi ghost. 



Higgs mechanism Ghost condensate 

Order 

parameter 

Instability Tachyon Ghost 

Condensate V’=0, V’’>0 P’=0, P’’>0 

Broken 

symmetry 

Gauge symmetry Time translational 

symmetry 

Force to be 

modified 

Gauge force Gravity 

New force 

law 

Yukawa type Newton+Oscillation 


mf

2 2m  2f

 2( )P f

f

(| |)V 





New class of cosmological solution 
Gumrukcuoglu, Lin, Mukohyama, arXiv: 1206.2723 [hep-th] 

• Healthy regions with (relatively) large anisotropy 

• Are there attractors in healthy region?  

• Classification of fixed points 

• Local stability analysis 

• Global stability analysis 
 
At attractors, physical metric is isotropic but 
fiducial metric is anisotropic. 
 Anisotropic FLRW universe! 
     statistical anisotropy expected 
     (suppressed by small mg

2) 

 



New class of cosmological solution 
Gumrukcuoglu, Lin, Mukohyama, arXiv: 1206.2723 [hep-th] 

Anisotropy 
in 

Expansion 

Anisotropy in fiducial metric 



Summary 
• Nonlinear massive gravity 

free from BD ghost  

• FLRW background 
No closed/flat universe 
Open universes with self-acceleration! 

• More general fiducial metric fmu 
closed/flat/open FLRW universes allowed 
Friedmann eq does not depend on fmu 

• Cosmological linear perturbations 
Scalar/vector sectors  same as in GR 
Tensor sector  time-dependent mass 

• All homogeneous and isotropic FLRW solutions 
have ghost 

• New class of cosmological solution:  
anisotropic FLRW  statistical anisotropy 
(suppressed by small mg

2) 
• Analogue of Ghost Condensate! 



Why alternative gravity theories? 

http://map.gsfc.nasa.gov/ 

Dark Energy 

Dark Matter 

Inflation 

Big Bang 

“Singularity” 



 



BACKUP SLIDES 



Linear massive gravity (Fierz-Pauli 1939) 

• Simple question: Can spin-2 field have mass? 

• L = LEH[h] + mg
2[hmrhnshmnhrs-(hmnhmn)2] 

gmn = hmn + hmn 

• Unique linear theory without ghosts 

• Broken diffeomorphism 
 no momentum constraint 
 5 d.o.f. (2 tensor + 2 vector + 1 scalar) 

 



vDVZ vs Vainshtein 

•  van Dam-Veltman-Zhakharov (1970) 
Massless limit ≠ Massless theory = GR 
5 d.o.f remain  PPN parameter g = ½ ≠ 1 

• Vainshtein (1972) 
Linear theory breaks down in the limit. 
Nonlinear analysis shows continuity and GR is 
recovered @ r < rV=(rg/mg

4)1/5 . 

Continuity is not uniform w.r.t. distance. 

 



Naïve nonlinear theory and BD ghost 

• FP theory with hmn  gmn 
L = LEH[h] + mg

2[gmrgnshmnhrs-(gmnhmn)2] 
gmn = hmn + hmn 

• Vainshtein effect (1972) 

• Boulware-Deser ghost (1972) 
No Hamiltonian constraint @ nonlinear level 
 6 d.o.f. = 5 d.o.f. of massive spin-2 + 1 ghost 



Stuckelberg fields & Decoupling limit 
Arkani-Hamed, Georgi & Schwarz (2003) 

• Stuckelberg scalar fields fa (a=0,1,2,3) 
 
Hmu: covariant version of hmu = gmn - hmn  

• Decoupling limit 
mg  0 , MPl  ∞ with 5 = (mg

4MPl)
1/5 fixed 

• Helicity-0 part p: 

sufficient for analysis of would-be BD ghost 

a b

abg Hmn m n mnh f f   
a a axf p 

b

ab ah p p 



Would-be BD ghost vs fine-tuning 
Creminelli, Nicolis, Papucci & Trincherini 2005 

de Rham, Gabadadze 2010 

• Fierz-Pauli theory 
Hmu

2 - H2 
no ghost 

• 3rd order 
c1Hmu

3 + c2HHmu
2 + c3H3 

no ghost if fine-tuned 

• … 

• any order 
no ghost if fine-tuned 

0, b

ab ahmn h p p  2H r

mn m n m r np p p        

Decoupling 
limit 

Helicity-0 
part 
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Higgs discovery and 
BSM 

Mihoko M. Nojiri

12年11月12日月曜日



Higgs discovery 
at the LHC  

• Higgs boson: The Last missing particle of the SM 
particles 

• Probably starting point of “the Beyond the stard 
model” 

• why we think so, and how it conflicts with data 

12年11月12日月曜日



Standard model of particle physics
history  

• Discover the symmetry “SU(3)xSU(2)xU(1)” out 
from interactions involving  mesons, leptons, 
and baryons 

• finding  “the three generation in the matter 
sector”  

• The SM identify “universal forces” to the gauge 
symmetry, representation (charge) difference 
leads interaction difference. 

• putting origin of the symmetry breaking (“mass”)   
to nature of the spin 0 sector ( Higgs boson ).   

H ?

12年11月12日月曜日



discovery summary 
• Higgs couples to massive objects in 

the tree level,  tt, bb, ZZ, WW... 

• discovery in photon and lepton 
channel H→γγ　H→ ZZ and H→ 

WW. We can only measure 
(procution) x (branching ratio)   at 
LHC. 

• production gg→ H dominant, 
subdominant WW, ZZ→ H 
contribution is seen. The two 
process overlap significantly.  

12年11月12日月曜日



question on the mass value 

in a single measurement; a statistical accuracy of ∆αs = 0.0004 is for instance quoted in
Ref. [49]. This can be done either in e+e− → qq̄ events on the Z-resonance (the so-called
GigaZ option) or at high energies [43] or in a combined fit with the top quark mass and
total width in a scan around the tt̄ threshold [48].

Assuming for instance that accuracies of about ∆mt ≈ 200 MeV and ∆αs ≈ 0.0004 can
be achieved at the ILC, a (quadratically) combined uncertainty of less than ∆MH ≈ 0.5
GeV on the Higgs mass bound eq. (1) could be reached. This would be of the same order
as the experimental uncertainty, ∆MH

<∼ 100 MeV, that is expected on the Higgs mass.
At this stage we will be then mostly limited by the theoretical uncertainty in the

determination of the stability bound eq. (1) which is about ±1 GeV. The major part of
this uncertainty originates from the the QCD threshold corrections to the coupling λ which
are known at the two-loop accuracy [6, 7]. It is conceivable that, by the time the ILC will
be operating, the theoretical uncertainty will decrease provided more refined calculations
of these threshold corrections beyond NNLO are performed.

The situation is illustrated in Fig. 1 where the areas for absolute stability, metastability8

and instability of the electroweak vacuum are displayed in the [MH , m
pole
t ] plane at the 95%

confidence level. The boundaries are taken from Ref. [6] but we do not include additional
lines to account for the theoretical uncertainty of ∆MH = ±1 GeV (which could be reduced
in the future) and ignore for simplicity the additional error from the αs coupling.
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Figure 1: The 2σ ellipses in the [MH ,m
pole
t ] plane that one obtains from the current top quark

and Higgs mass measurements at the Tevatron and LHC and which can be expected in future
measurements at the LHC and at the ILC, when confronted with the areas in which the SM
vacuum is absolutely stable, metastable and unstable up to the Planck scale.

As can be seen, the 2σ blue–dashed ellipse for the present situation with the current
Higgs and top quark masses of MH = 126 ± 2 GeV and mpole

t = 173.3 ± 2.8 GeV, and in

8This situation occurs when the true minimum of the scalar potential is deeper than the standard
electroweak minimum but the latter has a lifetime that is larger than the age of the universe [5]. The
boundary for this region is also taken from Ref. [6].

9

Are we in meta stable vacuum or there are new physics 
in between? is this consistent with cosmology?

V(φ)=-m2φ2+λφ4

but λ get negative 
correction at large φ

M. Sizer, Electroweak Higgs potentials and vacuum stability 333
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Fig. 17. The renormalization group_improved potential for ma,,,, Fig. 18. The temperature dependent potential form~,55,= 50 GeV and
= 10 GeV and m, = 125 GeV. Here, V 8V/m~,,,and units of o~= I for m,= 240 0eV. Here, V 8V/m~1~~,and units of o’ = 1 are used.
are used.

that if the final condition (that the false vacuum have a lifetime exceeding ten billion years) is satisfied,
then the second condition is also satisfied, since the barrier is much larger and the time scale much
shorter.
The third condition is that the Universe go into the false vacuum during the electroweak transition.

It might seem quite likely that the field could “roll over the hill” and into the true vacuum. In most
cases, however, the barrier, even at zero temperature, is much above the SU(3) x SU(2) x U(1)
vacuum, and thus energy conservation precludes this possibility. Even if the zero temperature barrier is
lower than the SU(3) x SU(2) x U(1) vacuum, it will be much higher at the finite temperature at which
the electroweak transition takes place. The only region of parameter space in which the field might roll
over the hill is if the electroweak transition temperature is very low. This only occurs if the Higgs is very
near its Coleman—Weinberg value, but since B is negative, it cannot be near its Coleman—Weinberg
value unless B is very close to zero. The resulting region of parameter space which might have the field
rolling over the hill is that with a Higgs mass below 1 GeV, and a top quark within 1 GeV of its
minimum value (for which the vacuum is unstable). This region is much smaller than the uncertainties
in the calculation, and so this third condition can be considered to be satisfied.
Thus, the only significant constraint is the requirement that the false vacuum have a lifetime in excess

of ten billion years. In units of the electroweak scale, the age of the Universe is e’°’.As discussed in the
previous chapter, the nucleation rate per unit volume, f, in units of the electroweak scale, is e~0,where
B0 is the bounce action. Guth and E. Weinberg [180]show that the fraction of space ifiled with bubbles

We are on the meta stable vacuum? 
or there is something between 100GeV to 1019GeV 

12年11月12日月曜日



question on the mass value 

in a single measurement; a statistical accuracy of ∆αs = 0.0004 is for instance quoted in
Ref. [49]. This can be done either in e+e− → qq̄ events on the Z-resonance (the so-called
GigaZ option) or at high energies [43] or in a combined fit with the top quark mass and
total width in a scan around the tt̄ threshold [48].

Assuming for instance that accuracies of about ∆mt ≈ 200 MeV and ∆αs ≈ 0.0004 can
be achieved at the ILC, a (quadratically) combined uncertainty of less than ∆MH ≈ 0.5
GeV on the Higgs mass bound eq. (1) could be reached. This would be of the same order
as the experimental uncertainty, ∆MH

<∼ 100 MeV, that is expected on the Higgs mass.
At this stage we will be then mostly limited by the theoretical uncertainty in the

determination of the stability bound eq. (1) which is about ±1 GeV. The major part of
this uncertainty originates from the the QCD threshold corrections to the coupling λ which
are known at the two-loop accuracy [6, 7]. It is conceivable that, by the time the ILC will
be operating, the theoretical uncertainty will decrease provided more refined calculations
of these threshold corrections beyond NNLO are performed.

The situation is illustrated in Fig. 1 where the areas for absolute stability, metastability8

and instability of the electroweak vacuum are displayed in the [MH , m
pole
t ] plane at the 95%

confidence level. The boundaries are taken from Ref. [6] but we do not include additional
lines to account for the theoretical uncertainty of ∆MH = ±1 GeV (which could be reduced
in the future) and ignore for simplicity the additional error from the αs coupling.
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Figure 1: The 2σ ellipses in the [MH ,m
pole
t ] plane that one obtains from the current top quark

and Higgs mass measurements at the Tevatron and LHC and which can be expected in future
measurements at the LHC and at the ILC, when confronted with the areas in which the SM
vacuum is absolutely stable, metastable and unstable up to the Planck scale.

As can be seen, the 2σ blue–dashed ellipse for the present situation with the current
Higgs and top quark masses of MH = 126 ± 2 GeV and mpole

t = 173.3 ± 2.8 GeV, and in

8This situation occurs when the true minimum of the scalar potential is deeper than the standard
electroweak minimum but the latter has a lifetime that is larger than the age of the universe [5]. The
boundary for this region is also taken from Ref. [6].
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Are we in meta stable vacuum or there are new physics 
in between? is this consistent with cosmology?
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but λ get negative 
correction at large φ
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are used.

that if the final condition (that the false vacuum have a lifetime exceeding ten billion years) is satisfied,
then the second condition is also satisfied, since the barrier is much larger and the time scale much
shorter.
The third condition is that the Universe go into the false vacuum during the electroweak transition.

It might seem quite likely that the field could “roll over the hill” and into the true vacuum. In most
cases, however, the barrier, even at zero temperature, is much above the SU(3) x SU(2) x U(1)
vacuum, and thus energy conservation precludes this possibility. Even if the zero temperature barrier is
lower than the SU(3) x SU(2) x U(1) vacuum, it will be much higher at the finite temperature at which
the electroweak transition takes place. The only region of parameter space in which the field might roll
over the hill is if the electroweak transition temperature is very low. This only occurs if the Higgs is very
near its Coleman—Weinberg value, but since B is negative, it cannot be near its Coleman—Weinberg
value unless B is very close to zero. The resulting region of parameter space which might have the field
rolling over the hill is that with a Higgs mass below 1 GeV, and a top quark within 1 GeV of its
minimum value (for which the vacuum is unstable). This region is much smaller than the uncertainties
in the calculation, and so this third condition can be considered to be satisfied.
Thus, the only significant constraint is the requirement that the false vacuum have a lifetime in excess

of ten billion years. In units of the electroweak scale, the age of the Universe is e’°’.As discussed in the
previous chapter, the nucleation rate per unit volume, f, in units of the electroweak scale, is e~0,where
B0 is the bounce action. Guth and E. Weinberg [180]show that the fraction of space ifiled with bubbles

We are on the meta stable vacuum? 
or there is something between 100GeV to 1019GeV 
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New Physics, Clue 
γW,Z, higgstop

Figure 1: The most significant quadratically divergent contributions to the
Higgs mass in the Standard Model.

give

top loop − 3
8π2 λ2

tΛ
2 ∼ −(2 TeV)2

SU(2) gauge boson loops 9
64π2 g2Λ2 ∼ (700 GeV)2

Higgs loop 1
16π2 λ2Λ2 ∼ (500 GeV)2.

The total Higgs mass-squared includes the sum of these loop contributions and
a tree-level mass-squared parameter.

To obtain a weak-scale expectation value for the Higgs without worse than
10% fine tuning, the top, gauge, and Higgs loops must be cut off at scales
satisfying

Λtop
<
∼ 2 TeV Λgauge

<
∼ 5 TeV ΛHiggs

<
∼ 10 TeV. (1)

We see that the Standard Model with a cut-off near the maximum attainable
energy at the Tevatron (∼ 1 TeV) is natural, and we should not be surprised
that we have not observed any new physics. However, the Standard Model with
a cut-off of order the LHC energy would be fine tuned, and so we should expect
to see new physics at the LHC.

More specifically, we expect new physics that cuts off the divergent top
loop at or below 2 TeV. In a weakly coupled theory this implies that there are
new particles with masses at or below 2 TeV. These particles must couple to the
Higgs, giving rise to a new loop diagram that cancels the quadratically divergent
contribution from the top loop. For this cancellation to be natural, the new
particles must be related to the top quark by some symmetry, implying that the
new particles have similar quantum numbers to top quarks. Thus naturalness
arguments predict a new multiplet of colored particles with mass below 2 TeV,
particles that would be easily produced at the LHC. In supersymmetry these
new particles are of course the top squarks.

Similarly, the contributions from SU(2) gauge loops must be canceled by
new particles related to the Standard Model SU(2) gauge bosons by symmetry,
and the masses of these particles must be at or below 5 TeV for the cancellation
to be natural. Finally, the Higgs loop requires new particles related to the Higgs
itself at or below 10 TeV. Given the LHC’s 14 TeV center-of-mass energy, these
predictions are very exciting, and encourage us to explore different possibilities
for what the new particles could be.
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• exchange  boson and fermion. 

• sfermions(0), gaugino(1/2), higgsinos(1/2)

• boson and fermion are in the same multiplet; chiral symmetry 
extended to bosons. No quadratic divergence 

• No new dimensionless coupling and  no quadratic divergence 

• Higgs 4 point coupling is written by gauge coupling. (no 
negative 4 point coupling. )

• gauge coupling unification 

• R parity in MSSM . New stable particle→ DM candidate. 

Classic Solution:Supersymmetry 

φ↔ ψ
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Higgs 4 point coupling at low energy 
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Higgs mass vs SUSY

Figure 5: Maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB,
an a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV.

have been adopted). The outcome is shown in Fig. 6 where the maximal h mass value obtained
by scanning the basic input parameters of the model over the appropriate ranges. In the left–
hand side, Mmax

h is displayed as a function of tan� and in the right–hand side as a function
of MS. As the lower bound Mmax

h � 123 GeV is the same as in our previous analysis, the
mASMB, mGMSB and some variants of the mSUGRA model such as the constrained NMSSM
(cNMSSM), the no-scale model and the very constrained MSSM (VCMSSM) scenarios are still
disfavoured. However, for mSUGRA and the non–universal Higgs mass model (NUHM), all
values of tan � >⇠ 3 and 1 TeV <⇠ MS <⇠ 3 TeV lead to an appropriate value of Mh when
including the uncertainty band.

Figure 6: The maximal hmass value Mmax

h as functions of tan� (left) andMS (right) in the mASMB,
mGMSB as well as in mSUGRA and some of its variants. The basic parameters of the models are
varied within the ranges given in Ref. [4]; the top quark mass is fixed to mt = 173 GeV.
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3.5.4 Impact of the LHC data

Now, it is interesting to perform a first assessment of the compatibility of the LHC and Tevatron
data with the MSSM and analyse the region of parameter favoured by the observed boson mass
and rate pattern (see also [5, 62]). Despite the preliminary character of the results reported
by the LHC collaborations and the limited statistical accuracy of these first results, the study
is a template for future analyses. In this analysis, we computing the �2 probability on the
observable of Table 1 for each accepted pMSSM points. For the bb̄ and ⌧+⌧� channels, in which
no evidence has been obtained at the LHC, we add the channel contribution to the total �2 only
when their respective µ value exceeded 1.5 and the pMSSM point becomes increasingly less
consistent to the limits reported by CMS. In order to investigate the sensitivity to the inputs,
we also compare the results by including or not the bb̄, for which a tension exists between
the CMS limit and Tevatron results, and the ⌧+⌧� rate. Figure 12 shows the region of the
[Xt,m˜t1 ], [Xb,m˜b1

] and [MA, tan �] parameter space where pMSSM points are compatible with
the input h boson mass and observed yields. In particular, we observe an almost complete
suppression for low values of the sbottom mixing parameter Xb.

Figure 12: Distributions of the pMSSM points in the [Xt,m˜t1
] (left), [Xb,m˜b1

] (centre) and [MA,
tan�] (right) parameter space. The black dots show the selected pMSSM points, those in light (dark)
grey the same points compatible at 68% (90%) C.L. with the the Higgs constraints of Table 1.

The distributions for some individual parameters which manifest a sensitivity are pre-
sented in Figure 13, where each pMSSM point enters with a weight equal to its �2 probability.
Points having a probability below 0.15 are not included. The probability weighted distri-
butions obtained from this analysis are compared to the normalised frequency distribution
for the same observables obtained for accepted points within the allowed mass region 122.5
< MH <127.5 GeV. We observe that some variables are significantly a↵ected by the constraints
applied. Not surprisingly, the observable which exhibits the largest e↵ect is the product µ tan �,
for which the data favours large positive values, where the �� branching fraction increases and
the bb̄ decreases as discussed above. On the contrary, it appears di�cult to reconcile an en-
hancement of both µ�� and µb¯b, as would be suggested by the central large value of µb¯b =
1.97±0.72 recently reported by the Tevatron experiments [3]. Such an enhancement is not
observed by the CMS collaboration and the issue is awaiting the first significant evidence of a
boson signal in the bb̄ final state at the LHC and the subsequent rate determination. The tan �
distribution is also shifted towards larger value as an e↵ect of the Higgs mass and rate values.
We also observe a significant suppression of pMSSM points with the pseudo-scalar A boson
mass below ⇠450 GeV. This is due to the combined e↵ect of the A ! ⌧+⌧� direct searches
and Bs ! µ+µ� rate, which constrain the [MA � tan �] plane to low tan � value for light A
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large stop mixing required for 
light stop mass  in model 
independent approach 

large SUSY scale required 
in simple gauge and 
anomaly mediation 
=> Huge  Tension  

with the SUSY–breaking scale or common squark mass MS; the trilinear coupling in the stop
sector At plays also an important role. The leading part of these corrections reads [12]
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We have defined the SUSY–breaking scale MS to be the geometric average of the two stop
masses (that we take <⇠ 3 TeV not to introduce excessive fine-tuning)

MS =
p
m

˜t1m˜t2 (2)

and introduced the mixing parameter Xt in the stop sector (that we assume <⇠ 3MS),

Xt = At � µ cot �. (3)

The radiative corrections have a much larger impact and maximise the h boson mass in the
so–called “maximal mixing” scenario, where the trilinear stop coupling in the DR scheme is

maximal mixing scenario : Xt =
p
6MS. (4)

In turn, the radiative corrections are much smaller for small values of Xt, i.e. in the

no mixing scenario : Xt = 0. (5)

An intermediate scenario is when Xt is of the same order as MS which is sometimes called the

typical mixing scenario : Xt = MS. (6)

These mixing scenarios have been very often used as benchmarks for the analysis of MSSM
Higgs phenomenology [13]. The maximal mixing scenario has been particularly privileged since
it gives a reasonable estimate of the upper bound on the h boson mass, Mmax

h . We will discuss
these scenarios but, compared to the work of Ref. [13], we choose here to vary the scale MS.
Together with the requirements on Xt in eqs. (4–6), we adopt the following values for the
parameters entering the pMSSM Higgs sector,

At = Ab , M
2

' 2M
1

= |µ| = 1

5
MS , M

3

= 0.8MS , (7)

and vary the basic inputs tan � and MA. For the values tan � = 60 and MA = MS = 3 TeV
and a top quark pole of mass of mt = 173 GeV, we would obtain a maximal Higgs mass value
Mmax

h ⇡ 135 GeV for maximal mixing once the full set of known radiative corrections up to
two loops is implemented [14]. In the no–mixing and typical mixing scenarios, one obtains
much smaller values, Mmax

h ⇡ 120 GeV and Mmax

h ⇡ 125 GeV, respectively. Scanning over the
soft SUSY–breaking parameters, one may increase these Mmax

h values by up to a few GeV.
It is important to note that the dominant two–loop corrections have been calculated in

the DR scheme [15] and implemented in the codes Suspect [16] and SOFTSUSY [17] that we
will use here for the MSSM spectrum, but also in the on–shell scheme [18] as implemented in
FeynHiggs [19]. In general, the results for Mh in the two scheme di↵er by at most 2 GeV,
which we take as a measure of the missing higher order e↵ects. Quite recently, the dominant
three–loop contribution to Mh has been calculated and found to be below 1 GeV [20]. Thus,
the mass of the lightest h boson can be predicted with an accuracy of �Mh ⇠ 3 GeV and this
is the theoretical uncertainty on Mh that we assume.
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Higgs mass vs SUSY

Figure 5: Maximal Higgs mass in the constrained MSSM scenarios mSUGRA, mAMSB and mGMSB,
an a function of the scale MS when the top quark mass is varied in the range mt = 170–176 GeV.

have been adopted). The outcome is shown in Fig. 6 where the maximal h mass value obtained
by scanning the basic input parameters of the model over the appropriate ranges. In the left–
hand side, Mmax

h is displayed as a function of tan� and in the right–hand side as a function
of MS. As the lower bound Mmax

h � 123 GeV is the same as in our previous analysis, the
mASMB, mGMSB and some variants of the mSUGRA model such as the constrained NMSSM
(cNMSSM), the no-scale model and the very constrained MSSM (VCMSSM) scenarios are still
disfavoured. However, for mSUGRA and the non–universal Higgs mass model (NUHM), all
values of tan � >⇠ 3 and 1 TeV <⇠ MS <⇠ 3 TeV lead to an appropriate value of Mh when
including the uncertainty band.

Figure 6: The maximal hmass value Mmax

h as functions of tan� (left) andMS (right) in the mASMB,
mGMSB as well as in mSUGRA and some of its variants. The basic parameters of the models are
varied within the ranges given in Ref. [4]; the top quark mass is fixed to mt = 173 GeV.
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We have defined the SUSY–breaking scale MS to be the geometric average of the two stop
masses (that we take <⇠ 3 TeV not to introduce excessive fine-tuning)
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and introduced the mixing parameter Xt in the stop sector (that we assume <⇠ 3MS),

Xt = At � µ cot �. (3)

The radiative corrections have a much larger impact and maximise the h boson mass in the
so–called “maximal mixing” scenario, where the trilinear stop coupling in the DR scheme is
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In turn, the radiative corrections are much smaller for small values of Xt, i.e. in the

no mixing scenario : Xt = 0. (5)

An intermediate scenario is when Xt is of the same order as MS which is sometimes called the
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and vary the basic inputs tan � and MA. For the values tan � = 60 and MA = MS = 3 TeV
and a top quark pole of mass of mt = 173 GeV, we would obtain a maximal Higgs mass value
Mmax

h ⇡ 135 GeV for maximal mixing once the full set of known radiative corrections up to
two loops is implemented [14]. In the no–mixing and typical mixing scenarios, one obtains
much smaller values, Mmax
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h ⇡ 125 GeV, respectively. Scanning over the
soft SUSY–breaking parameters, one may increase these Mmax

h values by up to a few GeV.
It is important to note that the dominant two–loop corrections have been calculated in

the DR scheme [15] and implemented in the codes Suspect [16] and SOFTSUSY [17] that we
will use here for the MSSM spectrum, but also in the on–shell scheme [18] as implemented in
FeynHiggs [19]. In general, the results for Mh in the two scheme di↵er by at most 2 GeV,
which we take as a measure of the missing higher order e↵ects. Quite recently, the dominant
three–loop contribution to Mh has been calculated and found to be below 1 GeV [20]. Thus,
the mass of the lightest h boson can be predicted with an accuracy of �Mh ⇠ 3 GeV and this
is the theoretical uncertainty on Mh that we assume.

4

of
f d

ia
go

na
l p

ar
t 

The difference comes from model constraint 
to A parameters 

large stop 
mixing 

12年11月12日月曜日



limit at 8TeV (from recent ATLAS) 

SUSY > (or maybe >>)  1TeV,  Does this cause fine turning? 

under the assumption of universal SUSY breaking(MSUGRA) , 
sleptons are  much above 300 GeV   
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really SUSY particles are so heavy? 
• Too large fine turning?  Correction to the higgs mass 

exceed higgs mass 

• Is  this such a big problem? GUT/weak scale fine 
turning has been  solved. We have fine turning in 
vacuum energy anyway.. 

• By extending model to Next Minimal SUSY, higgs 
masses upper limit increase→ allowing light SUSY 
particles.  

•   contribution from 4th generation can also 
contribute
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Figure 1: Upper bound on the lightest Higgs mass in the NMSSM for mtop = 178 GeV
(thick full line: mA arbitrary, thick dotted line: mA = 1 TeV) and mtop = 171.4 GeV
(thin full line: mA arbitrary, thick dotted line: mA = 1 TeV) and in the MSSM (with
mA = 1 TeV) for mtop = 178 GeV (thick dashed line) and mtop = 171.4 GeV (thin dashed
line) as obtained with NMHDECAY as a function of tanβ. Squark and gluino masses are
1 TeV and Atop = 2.5 TeV.

fig. 1. Now we get an upper bound of 130.1 GeV for mtop = 178 GeV (resp. 124.7 GeV for

mtop = 171.4 GeV) at tanβ = 10. For larger values of tanβ, the upper bound on mh remains

essentially the same as in the MSSM.

Hence, our main result is that the upper bound on mh is ∼ 12 GeV (for mtop = 178 GeV)

or ∼ 16 GeV (for mtop = 171.4 GeV) larger in the NMSSM as compared to the MSSM, and

is obtained for small tanβ. For very large tanβ, the difference between the upper bound on

mh in NMSSM and in the MSSM vanishes, if mA is assumed to remain smaller than a few

TeV.

Let us compare this bound on mh to earlier work: it is about 6 GeV larger than the

one obtained from fig. 4 in ref. [7] (for the corresponding values for mtop). Also the value of

tanβ, where this bound is reached, is now smaller (∼ 2 compared to ∼ 3 in ref. [7]). These
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Extra Vector-like Matter

• introduce 10 + 10   [10:(Q’,U’,E’)]

• extra ‘top’ couples to Higgs
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• muon g-2 is accommodated to 
Higgs mass ~125GeV

• upper bound on gluino mass 
from muon g-2 and stability

• upper bound on vector mass 
from Higgs mass

Extra Vector-like Matter

[ME,Hamaguchi,Iwamoto,Yokozaki]

LHC search!

Vector-like matter で g-2 + 125GeV : GMSB framework 

[44] 
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stop search 

more gain for 
0 lepton channel 

toward low pT 
with a lepton 

2 lepton is 
too small 

to
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Direct search limit are actually not so strong
allows for relatively light stop for NMSSM   
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if light stop is found 

• stop mixing makes the lighter stop 
light

• model is NMSSM so that stop is 
need not to be light. 

• stop mixing → top polarization 
from stop decay(visible at LHC) 
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FIG. 12: The 95% CLs exclusion limits on simplified models assuming direct production of (a) gluino pairs with decoupled
squarks or (b) squark pairs with decoupled gluinos, each decaying to two jets, or one jet, respectively, and a neutralino LSP.
95% Exclusion limits are obtained by using the signal region with the best expected sensitivity at each point. The black dashed
lines show the expected limits, with the light (yellow) bands indicating the 1σ excursions due to experimental uncertainties.
Observed limits are indicated by medium (maroon) curves, where the solid contour represents the nominal limit, and the dotted
lines are obtained by varying the cross section by the theoretical scale and PDF uncertainties. The 95% CLs upper limit on
the cross section times branching ratio (in fb) is printed for each model point.

masses below 860 GeV and 1320 GeV respectively are
excluded at the 95% confidence level for squark or gluino
masses below 2 TeV. When assuming their masses to be
equal, squarks and gluinos with masses below 1410 GeV
are excluded. In the MSUGRA/CMSSM case, the limit
onm1/2 reaches 300 GeV at highm0 and 640 GeV for low
values of m0. Squarks and gluinos with equal masses be-
low 1360 GeV are excluded in this scenario. These results
are shown to be relatively insensitive to the assumption
of a light LSP, up to LSP masses of about 400 GeV.
Limits are also placed in the parameter space of a SUSY
model with a compressed mass spectrum.
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model independent gluino and squark mass could be 
much lighter (stop still needs to be heavy in MSSM)   

The previous plot assumes universal 
scalar and gaugino mass at GUT scale. 

=> large mass splitting between QCD and EW SUSY particles 
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How about the EW SUSYparticle ? 
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Figure 2: The value of RXX for the H → γγ and ZZ final states given by the ATLAS and CMS
collaborations, as well as their combination, compared to the theoretical uncertainty bands.

due to the presently limited statistics, is of the same order of the theory uncertainty in
the best case. We believe that this “paradox” will be resolved if the approach that we
advocate, that is comparing the data for the cross sections including only the experimental
uncertainties to the theoretical prediction with the uncertainty bands.

In conclusion, we have first recalled that there are substantial theoretical uncertainties
in the cross section for the dominant Higgs production channel at the LHC, gluon–gluon
fusion, stemming from the scale dependence, the parton distribution functions and the
use of an effective field theory approach to evaluate some higher order corrections. They
are about 10% each and if they are combined according to the LHCHWG, they reach the
level of 30% when the EFT uncertainty is also included. However, in the experimental
analyses, these theoretical uncertainties in σ(gg → H) are treated as nuisance parameters
rather than a bias. As they are still individually smaller than the experimental (statistical)
errors, the net result is as if they were not included in the total errors given by the ATLAS
and CMS collaborations. If the experimental results for the production cross sections
times decay branching ratios in the various analysed channels are confronted with the
theoretical prediction, including the theoretical uncertainty band, added linearly on top
of the experimental error the discrepancy between the measurements and the prediction
becomes smaller. This is particularly the case for σ(gg → H)× BR(H → γγ), where the
≈ 2σ discrepancy with the SM prediction reduces to the level of ≈ 1σ if the 30% theory
uncertainty is properly considered.

Acknowledgements: AD and RMG thank the CERN theory division for its hospitality
during which this project was completed. RMG acknowledges the project SR/S2/JCB64
DST (India) and JB acknowledges the support from the Deutsche Forschungsgemeinschaft
via the Sonder-forschungsbereich/Transregio SFB/TR-9 Computational Particle Physics.
We thank Marco Battaglia for a discussion on the data.
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Maybe sleptons are light at least?  
muon g-2 
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• muon g-2 is enhanced

- small soft mass
- large tanβ

• tension against Higgs mass

Large coupling: SUSY

tanβ = vu/vd = O(1-10)

Today’s Topic

M.J. Ramsey-Musolf, S. Su / Physics Reports 456 (2008) 1–88 17

Fig. 4. The one-loop SUSY diagrams contributing to the muon magnetic moment.

Fig. 5. (a) Sample two-loop supersymmetric diagrams with a closed chargino/neutralino or sfermion loop, contributing to a� ,2L
µ and a f̃ ,2L

µ . Here
V = � , Z , W denotes gauge bosons, H = h0, H0, A0, H± denotes physical MSSM Higgs bosons, and G0,± denotes Goldstone bosons. (b)
Sample two-loop supersymmetric diagrams contributing to the large QED-logarithms in aSUSY,2L(b)

µ . The external photon can be attached to all
charged internal lines.

assumption that all the SUSY particle masses are taken to be m̃ and that M1,2 follow the GUT relation, an approximate
expression for the dominant SUSY one-loop contribution is given by [10]:

aSUSY, 1L
µ ⇡ 13 ⇥ 10�10

✓

100 GeV
m̃

◆2

tan � sign(µM2). (61)

For moderate or large tan �, these contributions can easily be larger than the electroweak SM contributions for values
of m̃ that are not too large.

There are also two classes of MSSM two-loop diagrams: (a) two-loop corrections to the SM one-loop diagram
where the µ-lepton number is carried only by µ or ⌫µ, and (b) two-loop corrections to SUSY one-loop diagrams
where the µ-number is carried by smuon or sneutrino. SUSY contributions for class (a) can further be split into four
parts:

aSUSY,2L(a)
µ = a� ,2L

µ + a f̃ ,2L
µ + aSUSY,ferm,2L

µ + aSUSY,bos,2L
µ . (62)

The first two terms correspond to diagrams involving a closed chargino/neutralino or sfermion loop, as shown in
Fig. 5(a). The dominant contributions from this type of diagram arise from the ones involving a closed chargino or
stop/sbottom loop and a photon and Higgs that are attached to the external muon line. The approximate formulae for
aX� H
µ , X = � , t̃, b̃, are [10]
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where Xt = At �µ cos �. The contributions from loops involving other squarks and sleptons are small due to the small
Yukawa couplings. Such two loop diagrams could become relatively more important when the one-loop contributions
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where the µ-lepton number is carried only by µ or ⌫µ, and (b) two-loop corrections to SUSY one-loop diagrams
where the µ-number is carried by smuon or sneutrino. SUSY contributions for class (a) can further be split into four
parts:

aSUSY,2L(a)
µ = a� ,2L

µ + a f̃ ,2L
µ + aSUSY,ferm,2L

µ + aSUSY,bos,2L
µ . (62)

The first two terms correspond to diagrams involving a closed chargino/neutralino or sfermion loop, as shown in
Fig. 5(a). The dominant contributions from this type of diagram arise from the ones involving a closed chargino or
stop/sbottom loop and a photon and Higgs that are attached to the external muon line. The approximate formulae for
aX� H
µ , X = � , t̃, b̃, are [10]

a�� H
µ ⇡ 11 ⇥ 10�10

✓

tan �

50

◆ ✓

100 GeV
m̃

◆2

sign(µM2), (63)

at̃� H
µ ⇡ �13 ⇥ 10�10

✓

tan �

50

◆ ✓

mt

mt̃

◆ ✓

µ

20MH

◆

sign(Xt ), (64)

ab̃� H
µ ⇡ �3.2 ⇥ 10�10

✓

tan �

50

◆ ✓

mb tan �

mb̃

◆ ✓

Ab

20MH

◆

sign(µ), (65)

where Xt = At �µ cos �. The contributions from loops involving other squarks and sleptons are small due to the small
Yukawa couplings. Such two loop diagrams could become relatively more important when the one-loop contributions

chargino-sneutrino

neutralino-smuon Figure 3: Contours of the Higgs mass and the muon g� 2 are shown. The Higgs mass are
maximized by choosing A

0

and Au appropriately under the Br(B̄ ! Xs�) constraint in the
CMSSM models (left) and the extension (right), respectively (“mh-max scenario”). In the
dark green region, the Higgs mass is 124 – 126GeV, and it becomes larger than 124GeV in
the light green region once the uncertainties are included. In the orange (yellow) regions,
the muon g � 2 is explained at the 1� (2�) level. The LSP is the (lighter) stau in the
upper-left shaded region, while the lightest neutralino in the rest.
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Appendix

In this appendix we discuss the CMSSM models and their extension. The CMSSM

models have five input parameters, (m
0

,m
1/2, tan �, sign(µ), A0

). We consider an ex-

tended CMSSM framework where the trilinear couplings of the up-type squarks, Au, are
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Endo, Hamaguchi, Iwamoto, Nakayama Yokozaki 
need light EW SUSY particle 
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Other new physics?  
• Ex Randall Sundrums model 

+mixing between  radion(the  5th direction mode  ) 
 and higgs boson  

huge contribution to gg→h and h→γγ process 

gauge�

higgs�

The���������	
��������������������  far���������	
��������������������  
side 

matters 
in the bulk 

Higgs���������	
��������������������  at���������	
��������������������  
the���������	
��������������������  IR���������	
��������������������  brane���������	
��������������������  ���������	
��������������������  
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degenerate 
SUSY 

Mind of some theorists 

Higgs mass
and MSSM  

current SUSY search 

dev in higgs 
branching ratio 

NMSSM 

extra 
matter 

FCNC 

R parity 
violation 

little hierarchy problem 

muon g-2 

Heavy Supersymmery Light Supersymmetry 

Lot’s of Model building here..  
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“really nothing so far
(except the SM higgs boson )  ” 

“Is this a dead end of particle 
physics?”

My impression is different 
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Hadron collider searches:past and now 
• To calculate SUSY background, we need to know W, t, Z with multiple 

jets in the final state.  In 90’s: we did not know  how to calculate the 
processes appropriately for the hadron collider.   “I do not trust hadron 
collider physics” was typical attitudes in e+e-collider funs.  

• It took very long time to get limit from hadron collider data, and 
there were fake discovery as well (famous SPS1a...)   

• Progress in “Matching” and NLO, 
we have better background 
prediction now.  

• We can “exclude” the model 
parameters rather convincingly , and 
we do not “discover” much unless 
we comes to  the point to discover. 

photo 1972 
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Parton shower and hard process Lecture 1: QCD

Plan of the lectures

Introduction: The
big picture

Infrared Behaviour
of QCD

Jet Definitions

Parton Showers

Parton branchings

Evolution
equations and
parton densities

Logarithmic
resummation

Sudakov form
factors

Angular ordering

NLL Sudakovs

Parton showers in
Monte Carlos

Evolution equations and parton densities

In the relation between the cross-section before and after a splitting is a factor
dt/t =)logarithmic divergence after integration

These divergences can be resummed through evolution equations.

Consider successive small-angle gluon emission in deep inelastic scattering
(hadron-virtual photon collisions):

Assume that the quark is found in the hadron with a initial probability f0 at a
virtuality scale t0 = �p

2
0 > 0. After one gluon emission, the probability to find

the quark at a virtuality t > t0 will be:

f (x , t) = f0(x) +

Z
t

t0

dt

0

t

0
↵

s

2⇡

Z 1

x

dz

z

P̂(z) f0

“
x

z

”

At every gluon emission, the incoming quark moves to higher virtual mass t and
lower momentum fraction x .
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of QCD
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Parton Showers

Parton branchings

Evolution
equations and
parton densities

Logarithmic
resummation

Sudakov form
factors

Angular ordering

NLL Sudakovs

Parton showers in
Monte Carlos

Summary of splitting functions

b
P

qq

(z) = C

F

»
1 + z

2

1� z

–
,

b
P

gq

(z) = C

F

»
1 + (1� z)2

z

–
,

b
P

qg

(z) = T

R

ˆ
z

2 + (1� z)2
˜
,

b
P

gg

(z) = C

A

»
1� z

z

+
z

1� z

+ z(1� z)

–

where C

F

= 4
3 , C

A

= 3, T
R

= 1
2 .

Note that these are unregulated splitting probabilities, since they contain
singularities at z = 1 and z = 0.

The cross-sections before and after splitting are related by

d�
n+1 = d�

n

dt

t

dz

↵
s

2⇡
b
P

ba

(z)

after integration over the azimuthal angle �.
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tt 
tt+njet 

• MC simulation for hadron collider roughly 
divided into three parts 

• “hard process”  gg→H,　gg, qq→SUSY..   

• Initial/final  state radiation: multiple emission 
of collinear gluon and quarks. often treated 
by parton shower approximation (multiple 
emission summed. 

• Background: QCD process with multiple hard 
jets.  ex:  process of W+n hard parton:  some 
of the hard partons overlap with parton 
showers.   “double counting problem” 

• “Maching” is a consitent treatment to veto the 
overlap between hard and soft process. 
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W+jets (leading SUSY BG at 7TeV )
Data vs Theory in 2003 

This allows  estimate of background with  “confidence “
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W+jets (leading SUSY BG at 7TeV )
Data vs Theory in 2011

This allows  estimate of background with  “confidence “
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cross section at 13TeV run

S.Asai 2003　JPS meeting

LHC at 13TeV  max total cross section 
is around 
100 fb-1→1000 events 

Max reach will be around 10fb to 1fb 
2.5TeV 

If nature takes supersymmetry, 
significant parameter space will be 
covered by the 13TeV run 

 
Study of Higgs sector is also very 
important O(10%) measurement of 
Branches  
e+e- collider  O(1%)  
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Latest News: XENON100 XENON100: New Spin-Independent Results

Upper Limit (90% C.L.) is 2 x 10-45 cm2  for 55 GeV/c2 WIMP

Wednesday, July 18, 2012

Figure from slide by Aprile at DarkAttack, Ascona, July 18, 2012

Direct search will be serious constraint this year
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waiting for new data to decide the direction 

To where? 

 with LHC at 13TeV,  it will  have  a great fall ... 
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waiting for new data to decide the direction 

To where? 

 with LHC at 13TeV,  it will  have  a great fall ... 
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Bubble nucleation during slow-roll 
inflation�
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Curvaton evolution in the universe 
with a bubble�
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How to calculate 3pt function 
in the universe with a bubble�
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From curvaton fluctuation to δT�
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Conclusions�
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RTSel parameters�
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Non-Gaussian bubbles in the sky

soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as

4

9

(

H

2πφ0

)4

&
32π

27
λ sin3(HRW)

(

3H2H

8π2m2φ0

)3

F (te). (16)

This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8
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〈δφ3(r, te)〉
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, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have
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where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional
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cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30
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One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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with radius !W(0) (≈RW for HRW" 1) expands to the
Hubble horizon scale within one or two e-folds of time,
∆t∼H−1, and then expands comovingly as !W(t)∼ a(t).
It should be noted that models with multiple nucleation

are possible. If those bubbles do not interact with each
other, we can take into account the effect of all bubbles
by summing up the effect of each bubble. Hereafter, we
consider a model with a single bubble for simplicity.

Non-Gaussianity generation. –

Effective action on instanton background. Here we
calculate the skewness in the curvaton fluctuations on the
single-bubble background. We consider the Lagrangian for
the curvaton φ as

Lφ =−
√
−g
(

1

2
gµν∂µφ∂νφ+

m2

2
φ2+Vint(σ,φ)

)

, (5)

where m2"H2. We expand the above by setting φ=
φ0+ δφ, where φ0 is a homogeneous classical part and
δφ is a quantum fluctuation. We assume that φ0 is
approximately constant during inflation, and we concen-
trate on the evolution of δφ. Further, for simplicity, we
assume Vint(σ,φ) is non-vanishing only on the wall. Hence
we approximate it as Vint(σ,φ) = λφ3H δ(χ−HRW) with
λH =

∫ π
0 dχλ̃(σ̄(χ)). Then the Lagrangian for δφ is given

as Lδφ =L0+LI , where L0 is the free part and LI is the
interaction part,

L0 = −
√
−g
(

1

2
gµν∂µδφ ∂νδφ +

1

2

(

m2+ δm2
)

δφ2
)

,

LI = −
√
−g λHδ (χ−HRW) δφ3, (6)

where δm2 ≡ 6λHφ0δ(χ−HRW).
Quantum field theory on the instanton background.

To calculate the quantum fluctuations on the instanton
background, we extend the in-in formalism to Euclidean
spacetime, which we call the tunneling in-in formalism.
This formalism is based on the WKB analysis of a
tunneling wave function for free theory [15,16] to the case
with nonlinear interactions. A detailed derivation will be
given elsewhere [17]2.
The tunneling in-in formalism tells us that the N -point

function of δφ is given by

〈

δφ(x1)δφ(x2) · · · δφ(xN )
〉

=

〈

0
∣

∣

∣
P δφ(x1)δφ(x2) · · · δφ(xN )ei

∫
C×Σt

dtd3xLI
∣

∣

∣
0
〉

〈

0
∣

∣

∣
Pei

∫
C×Σt

dtd3xLI
∣

∣

∣
0
〉 , (7)

where the tunneling in-in path C and t= const surfaces
Σt are as shown in fig. 2. The first half of C (the arrowed

2A similar formalism is used in [18]. However, the motivation
of [18] was to show a theoretical relation called the FLRW-CFT
correspondence and hence it is quite different from ours.

Σ

Σ

Fig. 2: (Color online) The same as fig. 1, but with all domains
of integration given in eq. (7).

green line in fig. 2) goes from one end of the Euclidean
region to future infinity in the Lorentzian region through
the bubble nucleation surface. The second half of C (the
arrowed blue line in fig. 2) goes back from future infinity
through the nucleation surface to the other end of the
Euclidean region. The slicing C ×Σt covers the whole
Euclidean region and the future half of the Lorentzian
region twice. In the Lorentzian region any Σt is a Cauchy
surface. The operator P in eq. (7) is the path-ordering
operator. In the Lorentzian region, P reduces to the time-
ordering and anti-time-ordering operators T and T̄ on
the first and second halves of C, respectively. It should
be noted that eq. (7) is independent of the choice of
coordinates.
Equation (7) is evaluated in the same way as in the usual

perturbation theory. After expanding the interaction part
perturbatively, operators are transformed to products of
the free correlation function G(x, x′) = 〈0|δφ(x)δφ(x′)|0〉
using Wick’s theorem. We note that G(x, x′) is not the
correlation function for the Bunch-Davies vacuum due
to the non-trivial nature of L0. It may be obtained by
studying the “evolution” of the mode functions in the
Euclidean space [3].
While G(x, x′) is a single-valued function when x and

x′ are in space-like separation, when they are in time-
like separation, T or T̄ in the expression singles out
the Feynman or anti-Feynman propagator, respectively.
A branch of G(x, x′), when x′ is in the Euclidean region,
is determined by analyticity on x′ along C. It may be
noted that by this way of choosing branches the expression
in eq. (7) is equivalent to that obtained by analytical
continuation of Euclidean quantum field theory [18], and
O(4)(O(3,1))-symmetry of the result is guaranteed.

Skewness from bubble nucleation. Now we evaluate
the skewness 〈δφ3(x)〉 by substituting Lδφ in eq. (6) to
the tunneling in-in formula in eq. (7). In the following
calculations, we approximate G(x, x′) by that of the
Bunch-Davies vacuum, by neglecting corrections due to
the non-trivial part of L0 in eq. (6). This effect may
affect the value of the skewness, but since it only induces
a statistically homogeneous non-Gaussianity, we simply
ignore it here.
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which being responsible for the curvature perturbation of
the universe (that is, for the formation of the large-scale
structure) and the other for quantum tunneling via a CDL
instanton, induces an anisotropic non-Gaussianity. To be
specific, we introduce an inflaton field Φ that realizes slow-
roll inflation, a tunneling field σ that governs the tunneling
dynamics, and a curvaton field φ that contributes to the
curvature perturbation of the universe [12,13].
The inflaton dominates the energy density of the

universe during inflation but rapidly decays to radiation
after the end of inflation. On the other hand, the energy
density of the curvaton field is negligible during inflation
but its decay is delayed after inflation so that it gradually
begins to dominate the universe.
Approximating the universe during inflation by an exact

de Sitter spacetime, the inflaton behaves as a cosmic
clock and determines an appropriate time-slicing, namely,
a spatially flat time-slicing of the de Sitter spacetime. In
this setup, assuming that the energy scale associated with
the tunneling field is much smaller than the energy scale of
inflation, the bubble nucleation can be well described by
a single-field CDL instanton with no backreaction to the
geometry, that is, on the exact de Sitter background [3,5].
The curvaton φ is affected by the background bubble

through a coupling with the tunneling field σ. For
simplicity and definiteness, we consider a potential of
the form, Vint(σ,φ) = λ̃(σ)φ3. Assuming that Vint(σ,φ) is
non-vanishing only at or inside the bubble wall, we expect
that φ may have a spatially localized, bubble-shaped
non-Gaussianity due to the background bubble-shaped
configuration of σ. This leads to an anisotropic, bubble-
shaped skewness of the CMB temperature anisotropy.
This paper is organized as follows. We first illustrate the

background spacetime and the configuration of the bubble.
Next, we briefly review a useful formalism for computing
the equal-time N -point functions, the tunneling in-in
formalism, and calculate the skewness of the curvaton
fluctuations. Then we demonstrate that a sky map of an
anisotropic non-Gaussian parameter fNL in our model.
Finally, we end with a few concluding remarks.

Background evolution. – Let us start from a brief
description of de Sitter spacetime [3,14]. A Lorentzian
4-dimensional de Sitter spacetime is O(4,1)-symmetric,
which is obtained by analytical continuation of an O(5)-
symmetric 4-dimensional Euclidean sphere, as illustrated
in fig. 1. Among various coordinatization of the spacetime,
the uniform tunneling field slicing is most appropriate to
see O(4)(O(3,1))-symmetry of the CDL instanton, which
corresponds to the time-slicing inside the bubble that
describes a spatially homogeneous and isotropic open
universe. For brevity, let us call it open slicing. Open
slicing in the C-region in fig. 1 is a time-like slicing, and
the metric in the C-region may be expressed as

ds2 =
1

H2

(

dχ2+sin2 χ
(

−dτ2+cosh2 τ dΩ22
)

)

, (1)

Fig. 1: (Color online) Penrose-like diagram of the bubble
nucleating universe, where a half of the Euclidean region
(bottom) and the Lorentzian region after bubble nucleation
(top) are shown. The blue dot-dashed lines are surfaces of
constant cosmic time, the green solid lines those of uniform
tunneling field, and the red solid line the location of the bubble
wall.

where −∞< τ <∞ and 0! χ! π, and dΩ22 is the metric
on the unit 2-sphere. Theses coordinates can be extended
to the other regions of the spacetime by analytical
continuation:

τ = rR− iπ/2 = rL− iπ/2 = irE,

χ = itR =−itL+π= tE, (2)

where (tR, rR), (tL, rL) and (tE, rE) are the coordinates for
the R, L, and E regions, respectively, in fig. 1.
The metric for the flat time-slicing is

ds2 =−dt2+ a2(t)
(

dr2+ r2dΩ22
)

; a(t) =H−1eHt. (3)

As mentioned in the introduction, the t= const slices are
on which the inflaton is uniform, and give the cosmic rest
frame of our universe.
Let us briefly describe the bubble configuration of σ

under the thin-wall approximation. The O(4)-symmetric
CDL instanton for σ can be described as a function of χ,
which we denote by σ̄(χ) hereafter. We denote the wall
radius by RW. Hence

σ̄(χ) =

{

σT for 0! χ<HRW,

σF for HRW < χ! π.
(4)

Though σ̄ is homogeneous in the R or L regions, the
physical bubble radius 'W(t) on flat slices increases
as time goes on. We take the origin r= t= 0 of
the flat slicing metric (3) to be the center of the
bubble at the time of nucleation. Then the relations
between the coordinates in the metrics (1) and (3) are
cosχ= coshHt− (1/2)eHtr2 and sinχ cosh τ = eHtr,

which gives 'W(t) = a(t)
√

1+ e−2Ht− 2e−Ht cos HRW.
As seen from this expression, a bubble once nucleated
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〈δφ2〉 ≈ (H/2π)2 when m/H$ 1, this assumption is
justified if (2rφ/3)2(H/2πφ0)2$A2ζ , which is marginally
satisfied in the above example.
The typical value of fNL at the center of the bubble

when the parameters satisfy the above conditions is
estimated as

f (cen)NL ≈
3×10−4 λ r3φ sin

3(HRW)

A4ζ exp
(

(mH )
2Hte

)

(

H

m

)6(H

φ0

)3

. (17)

This gives f (cen)NL ≈ 15 for the parameters given above and
agrees with the result in fig. 6 within the errors shown in
fig. 5. From this estimation, we find that the resultant fNL
is rather sensitive to the values of m/H and H/φ0. It is
enhanced for smaller m/H and larger H/φ0.

Conclusion. – In this paper, we calculated the skew-
ness in the CMB temperature anisotropy in a model with
bubble nucleation during inflation, motivated by the string
theory landscape. We considered bubble nucleation in
the curvaton scenario of inflation in which the curvaton
vacuum fluctuations are affected by the bubble nucleation
through interaction with the tunneling field. The calcu-
lation was done by extending the in-in formalism to the
instanton background [17]. We found that there can be
spatially localized, bubble-shaped skewness which is large
inside the bubble.
As far as we know, bubble-shaped non-Gaussianities

have not been studied carefully yet in observation. So
it seems interesting to look for such a non-Gaussianity
already in the current observational data. As suggested
by Byrnes et al. [19], a technique based on the needlet
formalism [20], which has an ability to test non-
Gaussianity in selected regions of the sky, may be very
useful for this purpose. As pointed out by Komatsu
and Spergel [9], the bispectrum, corresponding to the
3-point function, contains much more information than
the single value of the skewness. Thus, analysis beyond
skewness may improve the observability of bubble-shaped
non-Gaussianities. We hope to come back to this issue in
a future publication.
Since the string theory landscape gives a strong moti-

vation for inflation models with bubble nucleation, stud-
ies of such inflation models may be regarded as testing
string theory using the universe as a laboratory. In any
case, if any signature of bubble nucleation during infla-
tion is found in observation, it gives a huge impact on the
physics of the early universe, including string theory.
Finally, we note that in the evaluation of the skewness

we neglected the effect of deviations from the Bunch-
Davies vacuum. This may affect the details of our result,
though generic features are expected to remain the same.
This effect can be evaluated by studying the evolution of
the mode function on the instanton background [3]. We
plan to come back to this issue in the near future.
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Fig. 2: Same figure as Fig. 1, but with all domain of integration
in eq. (4). P orders operators based on the order of argument
t of C.

where v ≡
√

9/4 − m2/H2. Z(x′, x) is defined as
Z(x′, x) = cos(Hd(x′, x)), where d(x′, x) is geodesic dis-
tance between x′ and x, and Z > 1, Z = 1 and Z < 1,
correspond to timelike, null, and spacelike separation, re-
spectively. As was mentioned before, branch of G(x′, x) =
G(Z(x′, x)) should be specified for Z > 1 and it can
be done by adding small imaginary part ±iε to Z as
G(Z(x′, x) ± iε).

Perturbative expansion of eq. (4) in λ is allowed when
contribution from higher order term is smaller than lower
order. This is the case when λ # (H/m)3, which comes
from rough estimation of

∫
d4xLI ∼ λ(H/m)3 using φ ∼

H2/m and
∫

d4x
√
−gλ̃ ∼ λ/H3, and we assume this con-

dition in the followings.
Finally, we get

〈
δφ3(x1)

〉
= −iH3

∫

C
dτ

∫ π

0

dχ

∫
dΩ

× sin3 χ sinh2 τλHδ(χ − HRW )G3(x1, x). (6)

where C : −iπ
2
→ 0 − iε → ∞ → 0 + iε → iπ

2
as shown in

Fig. 3. Among the domain of integral, τ ∈ (−iπ/2, iπ/2)
and τ ∈ (0 ± iε,∞) corresponds to E- and C-region, re-
spectively. Integration in R- or L-region is not needed,
since LI in eq. (3) vanishes in those region. Small imag-
inary part when τ ∈ (0 ± iε,∞) play a role in choosing
Feynman and anti-Feynman propagator on the first and
second half of integration, respectively, by adding a small
imaginary part to Z(x1, x).

Evaluation of eq. (6) is straightforward in a sense that it
is just c-number integration, but the evaluation gets much
easier if we use O(4)-symmetric property of N -point func-
tion in the tunneling in-in formalism. Just for illustration,
we assume that x1 is in R-region, though the same argu-
ment is valid when x1 is in C- or L-region. In this case,
calculation of 〈δφ3(x1)〉 for points with rR1 = 0 where in-
tegration by χ and Ω in eq. (6) is trivial, is enough since
the value at any other point in R-region can be known
from O(4)-symmetry.

After integration by χ andΩ, integration by τ along C is
left. As in Fig. 3, since C originally goes beside a singular-
ity and breaks numerical evaluation, integral is evaluated

Re τ

Im τ

0
×

τ

i π/2

- i π/2

C
C’

Fig. 3: The structure of integrand and integration path in
eq. (6). Wavy line: branch cut, doted line: original path C,
solid line: detoured path for numerical calculation C′.

numerically along a new path C ′ by detouring C without
crossing branch cut or poles of the integrand. The result-
ing 〈δφ3〉 is first given in open slice coordinates, but the
expression for 〈δφ3〉 on flat slices is easily obtained from
the coordinate transformation between open slices and flat
slices.

Finally, we obtain 〈δφ3〉 on a flat slice. We plot 〈δφ3(r)〉
in Fig. 4 with parameters Ht = 50,HRW = 0.2π and
m/H = 0.1, 0.3, 0.5, normalized by the value at the
center 〈δφ3(0)〉 ≡ F (m/H) × λ(H/m)6(H/2π)3. Sup-
pression factor at the center of bubble F (m/H) is plot-
ted in Fig. 5, where F (m/H) is well approximated as

F (m/H) ∼ 2e−Htm2/H2
. You can see that the skew-

ness is large inside the bubble and gets decreased as get-
ting away from the bubble, and its radial dependence is
stronger when m/H is larger. Those dependencies can be
understood from the fact that when m/H is small G(x′, x)

asymptotically proportional to |1 − Z|−m2/(3H2
). Appar-

ent divergent behavior near the bubble wall is unphysical,
since when we coarse grain δφ in finite volume this diver-
gence vanishes. This bubble-shaped distribution of 〈δφ3〉
is a consequence of interactions with a background nucle-
ated bubble.

Non-Gaussian Bubbles in the Sky. – Here, we
discuss observational feature of our toy model. In our toy
model, evolution of the universe after the first reheating,
when the inflaton and the tunneling field decays, is exactly
the same as the ordinary curvaton scenario. Thus, δφ at
the first reheating affect δT/T in the CMB sky in usual
manner [13, 14], and bubble-shaped 〈δφ3(r)〉 obtained in
the previous section will be transformed to bubble-shaped
skewness in CMB anisotropies 〈(δT (θ,ϕ)/T )3〉 in the end.

Let us briefly see how δφ is transformed to δT/T . φ’s
curvature perturbation ζφ given by ζφ = 2(δφ/φ0) +
(δφ2/φ2

0), is conserved in large scale during the time be-
tween the first and the second reheating. At the sec-
ond reheating, ζφ affects ζ according to a formula ζ =
(1 − rφ)ζr + rζφ, where rφ = 3ρφ/(4ρr + 3ρφ) is relative
contribution of curvaton to the total curvature perturba-
tion, and ζr is curvature perturbation produced by the in-
flaton. After the second reheating ζ is conserved in large
scale, and in Sachs-Wolfe regime temperature anisotropies
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separated by bubble wall with radius RW . In this case,
σ̄(x) = σF when HRW < !χ ≤ π and σ̄(x) = σT when
0 ≤ !χ < HRW . Though σ̄(x) seems homogeneous in R-
or L-region coordinates, physical bubble radius rW (t) in-
creases as time goes on when we measure it on flat slices.
We take the origin of flat slice coordinates to be the cen-
ter of the bubble at the nucleation, and then the relations
between C-region coordinates and flat slice coordinates
are cos χ = coshHt − (1/2)eHtr2 and sin χ cosh τ = eHtr,

which gives rW (t) = a(t)
√

1 + e−2Ht − 2e−Ht cos HRW .
A bubble once nucleated with radius rW (0), which is ap-
proximately RW when HRW $ 1, expands to the horizon
scale in the first one e-folding, and then almost comovingly
expands as rW (t) ∼ a(t) until the first reheating when σ
decays.

Non-Gaussianity Generation. –

Effective Action on Instanton Background. In this sec-
tion, we will calculate skewness in fluctuation of the cur-
vaton δφ on the bubble nucleation background illustrated
in the previous section, and bubble-shaped skewness will
be obtained at the end. Let us start from explanation of
effective Lagrangian Lδφ which δφ effectively obeys. We
decompose φ as φ = φ0 + δφ, where φ0 is a homogeneous
classical part and δφ is quantum fluctuation. As was men-
tioned before, we assume that φ0 is approximately con-
stant during inflation, and we concentrate on the evolution
of δφ from now on. In our toy model, we consider interac-
tion potential as Vint(σ,φ) = λ̃(σ)φ3 where σ-dependent
coupling constant λ̃(σ) vanishes around σF or σT . Then,
Lδφ = L0 +LI , where L0 is free part and LI is interaction
part, is obtained by substituting a background instanton
σ̄(x) to L(φ; σ) in eq. (1). As a result, we obtain

L0 = −
√
−g

(
1

2
(∂δφ)2+

m2+ 6λHφ0δ(χ − HRW )

2
δφ2

)
,

LI = −
√
−g λHφ0δ(χ − HRW ))δφ3. (3)

where λH =
∫ π
0

dχλ̃(σ̄(χ)) and gµν is background de Sitter
spacetime metric. In eq. (3), it is obvious that Lδφ is
inhomogeneous.

QFT on Instanton Background. In this paper, we will
calculate quantum fluctuation on instanton background
using the tunneling in-in formalism, which describes evo-
lution of quantum fluctuation with interaction both dur-
ing and after tunneling. Roughly speaking, this formalism
is derived by extending WKB analysis of tunneling wave
function for free theory [16,17] to a case with interaction,
but full derivation will be shown in other place [18] and
here we just assume the resulting formula. Similar formula
is used in [19], however, the motivation of the work to show
a theoretical relation called FRW-CFT correspondence is
totally different from ours.

The tunneling in-in formalism tells us that N -point

function of δφ obeying Lφ is given by

〈
δφ(x1)δφ(x2) · · · δφ(xN )

〉

=

〈
0
∣∣∣P δφ(x1)δφ(x2) · · · δφ(xN )ei

R
C×Σt

dtd3xLI

∣∣∣ 0
〉

〈
0
∣∣∣Pei

R
C×Σt

dtd3xLI

∣∣∣ 0
〉 , (4)

where tunneling in-in path C and time constant surface Σt

is shown in Fig. 2. The first half of C(green line in Fig. 2)
goes from one end of the Euclidean region to future in-
finity in Lorentzian region through bubble nucleation sur-
face. The second half of C(blue line in Fig. 2) goes almost
reversely but reaches at the other end of the Euclidean
region. As is shown in Fig. 2, C × Σt covers whole Eu-
clidean region and Lorentzian region twice. In Lorentzian
region Σt is taken as Cauchy surface at time t. Path-
ordering operator P in eq. (4), reorders δφ(t,x)s based on
the order of t. In Lorentzian region, P plays a role of time-
ordering operator T and anti-time-ordering operator T̄ on
the first half and second half of C, respectively. It should
be noted that eq. (4) is independent of coordinate choice,
since the redefinition of Σt doesn’t change order of oper-
ators in time-like separation but these are only possible
operators which do not commute each other.

Eq. (4) is evaluated in the same way as the usual per-
turbative quantum field theory(QFT) calculation. Af-
ter expanding the expression perturbatively, operators
are transformed to products of free correlation func-
tion G(x′, x) = 〈0 |δφ(x′)δφ(x)| 0〉 using Wick’s theorem.
G(x′, x) is not correlation function for Bunch-Davies vac-
uum due to the non-trivial background, and is obtained
by analysis of the evolution of mode functions [8]. While
G(x′, x) is single-valued function when x′ and x are in
space-like separation, when they are in time-like separa-
tion T or T̄ in the expression specifies one of branches and
Feynman or anti-Feynman propagator are chosen, respec-
tively. A branch of G(x′, x), when x is in Euclidean region,
is determined by analyticity on x along C. It should be
noted that by this way of choosing branch eq. (4) is equiva-
lent to the expression obtained by analytical continuation
of Euclidean QFT [19], and O(4)(O(3.1)) symmetry of the
result is guaranteed.

Skewness from Bubble Nucleation. Here we evaluate
skewness 〈δφ3〉 by substituting Lδφ in eq. (3) to the tunnel-
ing in-in formula in eq. (4). In the following calculations,
we use G(x′, x) of Bunch-Davies vacuum for simplicity in-
stead of G(x′, x) obtained by analysis of mode functions,
because it is expected that the modification of G(x′, x)
doesn’t change generic feature of 〈δφ3〉, though it might
change a detail. For example, it is known that the devi-
ation of G(x′, x) from that of Bunch-Davies vacuum may
induce orthogonal type non-Gaussianity [20]. G(x′, x) of
Bunch-Davies vacuum is given by

G(x′, x)=
H2( 1

4
− v2)

16π cos πv
2F1

[
3

2
+ v, 3

2
− v

2
;
1+Z(x′, x)

2

]
, (5)
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σ̄(x) = σF when HRW < !χ ≤ π and σ̄(x) = σT when
0 ≤ !χ < HRW . Though σ̄(x) seems homogeneous in R-
or L-region coordinates, physical bubble radius rW (t) in-
creases as time goes on when we measure it on flat slices.
We take the origin of flat slice coordinates to be the cen-
ter of the bubble at the nucleation, and then the relations
between C-region coordinates and flat slice coordinates
are cos χ = coshHt − (1/2)eHtr2 and sin χ cosh τ = eHtr,

which gives rW (t) = a(t)
√

1 + e−2Ht − 2e−Ht cos HRW .
A bubble once nucleated with radius rW (0), which is ap-
proximately RW when HRW $ 1, expands to the horizon
scale in the first one e-folding, and then almost comovingly
expands as rW (t) ∼ a(t) until the first reheating when σ
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Effective Action on Instanton Background. In this sec-
tion, we will calculate skewness in fluctuation of the cur-
vaton δφ on the bubble nucleation background illustrated
in the previous section, and bubble-shaped skewness will
be obtained at the end. Let us start from explanation of
effective Lagrangian Lδφ which δφ effectively obeys. We
decompose φ as φ = φ0 + δφ, where φ0 is a homogeneous
classical part and δφ is quantum fluctuation. As was men-
tioned before, we assume that φ0 is approximately con-
stant during inflation, and we concentrate on the evolution
of δφ from now on. In our toy model, we consider interac-
tion potential as Vint(σ,φ) = λ̃(σ)φ3 where σ-dependent
coupling constant λ̃(σ) vanishes around σF or σT . Then,
Lδφ = L0 +LI , where L0 is free part and LI is interaction
part, is obtained by substituting a background instanton
σ̄(x) to L(φ; σ) in eq. (1). As a result, we obtain

L0 = −
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−g

(
1

2
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2
δφ2

)
,

LI = −
√
−g λHφ0δ(χ − HRW ))δφ3. (3)

where λH =
∫ π
0

dχλ̃(σ̄(χ)) and gµν is background de Sitter
spacetime metric. In eq. (3), it is obvious that Lδφ is
inhomogeneous.

QFT on Instanton Background. In this paper, we will
calculate quantum fluctuation on instanton background
using the tunneling in-in formalism, which describes evo-
lution of quantum fluctuation with interaction both dur-
ing and after tunneling. Roughly speaking, this formalism
is derived by extending WKB analysis of tunneling wave
function for free theory [16,17] to a case with interaction,
but full derivation will be shown in other place [18] and
here we just assume the resulting formula. Similar formula
is used in [19], however, the motivation of the work to show
a theoretical relation called FRW-CFT correspondence is
totally different from ours.

The tunneling in-in formalism tells us that N -point

function of δφ obeying Lφ is given by

〈
δφ(x1)δφ(x2) · · · δφ(xN )

〉

=

〈
0
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dtd3xLI
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〉

〈
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〉 , (4)

where tunneling in-in path C and time constant surface Σt

is shown in Fig. 2. The first half of C(green line in Fig. 2)
goes from one end of the Euclidean region to future in-
finity in Lorentzian region through bubble nucleation sur-
face. The second half of C(blue line in Fig. 2) goes almost
reversely but reaches at the other end of the Euclidean
region. As is shown in Fig. 2, C × Σt covers whole Eu-
clidean region and Lorentzian region twice. In Lorentzian
region Σt is taken as Cauchy surface at time t. Path-
ordering operator P in eq. (4), reorders δφ(t,x)s based on
the order of t. In Lorentzian region, P plays a role of time-
ordering operator T and anti-time-ordering operator T̄ on
the first half and second half of C, respectively. It should
be noted that eq. (4) is independent of coordinate choice,
since the redefinition of Σt doesn’t change order of oper-
ators in time-like separation but these are only possible
operators which do not commute each other.

Eq. (4) is evaluated in the same way as the usual per-
turbative quantum field theory(QFT) calculation. Af-
ter expanding the expression perturbatively, operators
are transformed to products of free correlation func-
tion G(x′, x) = 〈0 |δφ(x′)δφ(x)| 0〉 using Wick’s theorem.
G(x′, x) is not correlation function for Bunch-Davies vac-
uum due to the non-trivial background, and is obtained
by analysis of the evolution of mode functions [8]. While
G(x′, x) is single-valued function when x′ and x are in
space-like separation, when they are in time-like separa-
tion T or T̄ in the expression specifies one of branches and
Feynman or anti-Feynman propagator are chosen, respec-
tively. A branch of G(x′, x), when x is in Euclidean region,
is determined by analyticity on x along C. It should be
noted that by this way of choosing branch eq. (4) is equiva-
lent to the expression obtained by analytical continuation
of Euclidean QFT [19], and O(4)(O(3.1)) symmetry of the
result is guaranteed.

Skewness from Bubble Nucleation. Here we evaluate
skewness 〈δφ3〉 by substituting Lδφ in eq. (3) to the tunnel-
ing in-in formula in eq. (4). In the following calculations,
we use G(x′, x) of Bunch-Davies vacuum for simplicity in-
stead of G(x′, x) obtained by analysis of mode functions,
because it is expected that the modification of G(x′, x)
doesn’t change generic feature of 〈δφ3〉, though it might
change a detail. For example, it is known that the devi-
ation of G(x′, x) from that of Bunch-Davies vacuum may
induce orthogonal type non-Gaussianity [20]. G(x′, x) of
Bunch-Davies vacuum is given by
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2
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2
;
1+Z(x′, x)
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Scenario and Background Evolution. – First of
all, let us briefly describe outline of the scenario in our toy
model. This model consists of three scalar fields, an infla-
ton Φ, a tunneling field σ and a curvaton φ, which play
their own roles in our scenario, as is guessed from their
name. Firstly, the inflaton Φ causes slow-roll inflation.
We assume that the energy density of Φ is much larger
than that of σ and φ and that they don’t affect slow-roll
inflation. Φ sets cosmic time in approximate de Sitter
spacetime, which corresponds to the time of flat slices of
de Sitter spacetime. Secondly, the tunneling field σ tun-
nels via bubble nucleation during slow-roll inflation by Φ
from a false vacuum σF to a true vacuum σT through po-
tential barrier around σW . We assume that energy density
of σ is much larger than that of φ and that it doesn’t affect
bubble nucleation. We also assume that slow-roll limit can
be taken where motion of Φ and deviation from de Sitter
spacetime is negligible. Then the bubble nucleation of σ
is expected to described by a CDL instanton on de Sitter
spacetime [5, 8], though tunneling on slightly non-static
background has not been fully understood yet. Thirdly,
the curvaton φ affect curvature perturbation of the uni-
verse when it decays at the second reheating, which comes
after the first reheating when Φ and σ decays. After the
second reheating, the universe evolves in the same way as
the standard cosmological model.

Then, let us briefly describe how bubble-shaped non-
Gaussianity is generated in our toy model. Lagrangian
density of φ is

L(φ; σ) = −
√
−g

(
1

2
(∂φ)2 +

m2

2
φ2 + Vint(σ,φ)

)
, (1)

where the mass m is smaller than Hubble parameter H
during inflation, and the classical motion of φ during in-
flation can be negligible. φ’s fluctuation δφ is affected by
a background bubble through a coupling with σ in the in-
teraction potential Vint(σ,φ). We assume that Vint(σ,φ)
contains non-linear self interaction term of φ which is large
only when σ ∼ σW . Then non-Gaussianity in δφ is gen-
erated with bubble-shaped statistical distribution, due to
the background bubble-shaped configuration of σ. At the
second reheating, δφ is transformed to a part of ζ in usual
manner [13,14], and ζ, which is constant outside the hori-
zon, finally becomes temperature anisotropies δT/T in the
CMB sky, where T is CMB temperature in average and
δT is deviation from it. The relation between δT/T and
ζ on the last scattering surface(LSS) of CMB is given by
the Sachs-Wolfe formula, which can be applicable except
for small scale observations. In this model, we consider
the case that powerspectrum of curvature perturbation
ζ is mainly produced by the fluctuation of Φ, but non-
Gaussian part of ζ is mainly produced by δφ. Then, the
skewness of δT/T , which also originates in the bubble-
shaped skewness of δφ, will have bubble-shaped configu-
ration. We will see this as non-Gaussian bubble in the
CMB sky. It should be noted that models with multiple

R-region
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E-region

reheating

bubble nucleation

bubble wall

Fig. 1: Penrose-like diagram of bubble nucleating universe,
where a half of Euclidean region(bottom) and Lorentzian re-
gion after bubble nucleation(top) are shown. Blue dot-dashed
line: cosmic time constant surface, green line: instanton con-
stant surface, red line: bubble wall of thin-wall instanton.

bubble nucleation is possible. If those bubbles do not in-
teract each other, we can taken into account the effect of
all bubbles by summing up the effect of each bubble. In
this paper, we consider a model with one bubble nucle-
ation for simplicity.

Before moving on to the calculation of non-Gaussianity
in δφ, we would like to review σ’s tunneling described
by a CDL instanton. Let us start from a brief review of
de Sitter spacetime [15]. Lorentzian 4D-de Sitter space-
time is O(4.1)-symmetric spacetime, which is obtained by
analytical continuation of O(5)-symmetric 4D-Euclidean
sphere as illustrated in Fig. 1. Open slices is suitable to
see O(4)(O(3.1))-symmetry of CDL instanton, while time
of flat slices correspond to the cosmic time determined by
Φ’s value. Open slice coordinates in C-region (τ, χ, Ω2)
with Ω2 coordinates for S2, originally covers limited re-
gion of de Sitter spacetime shown in Fig. 1. However, this
coordinate set can be extended to the whole spacetime by
analytical continuation τ = rR + iπ/2 = rL − iπ/2 = irE

and χ = itR = −itL = tE, where (tR, rR), (tR, rR) and
(tE, rE) are coordinate set of R-, L-, and E-region in Fig. 1,
respectively. Metric written in C-region coordinates is

ds2 =
1

H2

(
dχ2 + sin2 χ

(
−dτ2 + cosh2 τdΩ2

2

))
, (2)

and those written in R-, L-, and E-region coordinates are
given by its analytical continuation. Metric written in
flat slice coordinates (t, r,Ω2) is given as ds2 = −dt2 +
a2(t)

(
dr2 + r2dΩ2

2

)
, where scale factor a(t) = H−1eHt.

With this knowledge about de Sitter spacetime, descrip-
tion of σ’s instanton σ̄(x) is very simple. From O(4)-
symmetry, σ̄(x) is described as a function of χ in all
de Sitter spacetime with the analytical continuation of
C-region coordinates. In our toy model, we consider a
thin-wall instanton whose inside and out side is strictly
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Non-Gaussian bubbles in the sky

soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as

4

9

(

H

2πφ0

)4

&
32π

27
λ sin3(HRW)

(

3H2H

8π2m2φ0

)3

F (te). (16)

This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as
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where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
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, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as
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This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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Non-Gaussian bubbles in the sky

soon as the finite resolution of observations or renormal-
ization of the theory is taken into account.

Non-Gaussian bubbles in the sky. – Now we study
signatures of our model in the CMB anisotropy. In our
model, the evolution of the universe after the inflaton
and the tunneling field decay, is exactly the same as the
ordinary curvaton scenario [12]. Here, we estimate the
curvature perturbation after the curvaton decay by using
the sudden-decay approximation [13].
After inflation the curvaton starts to roll down the

potential and undergoes damped oscillations when the
Hubble parameter becomes smaller than m. The curvaton
energy density behaves like a pressureless matter during
this stage of damped oscillations. At the time t= tcurv
when the curvatons decay, the energy density of the
universe consists of that of radiation ρr generated from
the decay of the inflatons and that of the curvaton ρφ.
The contribution of each component to the total curva-
ture perturbation of the universe may be conveniently
expressed in terms of ζr and ζφ, which are defined as
the curvature perturbations on the uniform energy density
slices of the radiation and the curvaton, respectively.
It is known that each of them is separately conserved

on superhorizon scales at t < tcurv. As for ζφ, it may
be evaluated by the energy density fluctuations on
the uniform inflaton field slice at the end of inflation,
δρφ/ρφ, as

ζφ =
1

3

δρφ
ρφ

∣

∣

∣

∣

te

=
1

3

(

2
δφ

φ0
+
δφ2

φ20

)
∣

∣

∣

∣

te

, (12)

where te is the time at the end of inflation.
After the curvaton decay, the total curvature pertur-

bation on the slices of uniform total energy density, ζ, is
conserved on superhorizon scales. It is given by

ζ = (1− rφ)ζr + rφζφ , (13)

where rφ = 3ρφ/(4ρr +3ρφ)|tcurv .
For the moment, we ignore the contribution from δφ2/φ20

and concentrate on the skewness generated by the nonlin-
ear interaction with the tunneling field. Then we have

〈ζ3(r)〉 ≈ r3φ〈ζ3φ(r, te)〉 ≈
8

27
r3φ
〈δφ3(r, te)〉
φ30

, (14)

where 〈δφ3〉 is given by eq. (9). An important feature is
that the skewness of the curvature perturbation depends
on the position of the bubble due to the spatial dependence
of 〈δφ3〉.
To proceed, we focus only on the large angular scale

CMB anisotropy for which the Sachs-Wolfe effect domi-
nates. In this regime, the CMB temperature anisotropy
can be written in terms of the curvature perturbation as
(δT/T )(n̂) = (1/5) ζ(x0+ r∗n̂, t∗), where x0 is the comov-
ing position of the observer measured from the bubble
center, n̂= (sin θ cosϕ, sin θ sinϕ, cos θ) is the directional

Fig. 6: (Color online) Non-Gaussianity map in the CMB sky,
for the model parameters given in the text. Colors correspond
to the values of fNL.

cosine of the sky seen by the observer, r∗ is the comov-
ing distance from the observer to the last scattering
surface and t∗ is the time at the last scattering surface.
Then, defining the non-Gaussianity parameter fNL as
(3/5)fNL(n̂)≡ 〈ζ3(x0+ r∗n̂, t∗)〉/〈ζ2〉2, we have

fNL(n̂)≈
40r3φ
81〈ζ2〉2

〈δφ3(|x0+ r∗n̂|, t∗)〉
φ30

. (15)

One explicitly sees that the dependence on the position of
the bubble center breaks the statistical isotropy.
For completeness, let us discuss the additional contri-

butions to fNL which we have ignored. The contribution
of ζr to non-Gaussianity is known to be very small as
long as the vacuum is in the Bunch-Davies vacuum [8].
A deviation from the Bunch-Davies vacuum may give rise
to a non-zero non-Gaussianity. It is expected to be statis-
tically homogeneous and isotropic but scale-dependent (in
the Fourier space). It may be detected by the templates
of the equilateral or orthogonal types. The contribution
from the part of ζφ quadratic in δφ/φ0 gives rise to a local
type non-Gaussianity which is again statistically homoge-
neous and isotropic, and which may be detected by the
squeezed-type templates.
This contribution from the nonlinearity of δφ/φ0 in ζφ

may be estimated as follows. Roughly speaking, 〈δφ4〉 ≈
〈δφ2〉2 ≈ (H/2π)4 for m/H& 1, and the contribution to
〈ζ3φ〉 is about (4/9)(H/2πφ0)4. Thus, the condition that
fNL is dominated by the nonlinear interaction with the
bubble is given as

4

9

(

H

2πφ0

)4

&
32π

27
λ sin3(HRW)

(

3H2H

8π2m2φ0

)3

F (te). (16)

This is satisfied in an example we compute below.
For illustration, we plot fNL(n̂) in the CMB sky in

fig. 6. The parameters are m/H = 0.3, HRW = 0.2π
H/φ0 = 0.001 λ= 0.005, rφ = 0.1, |x0|= r∗ = 2, Hte = 50.
For the variance 〈ζ2〉 we simply impose the observa-
tional result, 〈ζ2〉=A2ζ ≡ 6.25× 10−10 [7], assuming

that it is dominated by ζr (see footnote 3). Since

3In this case, it may not be appropriate to call φ a curvaton,
since it never dominates the curvature perturbations. Nevertheless,
we call it a curvaton for notational convenience.
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Abstract
We develop a theory of nonlinear cosmological perturbations on superhorizon scales
for a multi-component scalar field with a general kinetic term and a general form of
the potential in the context of inflationary cosmology. We employ the ADM formalism
and the spatial gradient expansion approach valid up to second-order in the expansion.
We provide a formalism to obtain the solution in the multi-field case and also derive
fully nonlinear gauge transformation rules valid through second-order. These fully
nonlinear gauge transformation rules can be used to derive the solution in a desired
gauge from the one in a gauge where computations are much simpler.

1 Introduction
Recent observations of the cosmic microwave background anisotropy show a very good agreement of
the observational data with the predictions of conventional, single-field slow-roll models of inflation,
that is, adiabatic Gaussian random primordial fluctuations with an almost scale-invariant spectrum.
Nevertheless, possible non-Gaussianities from inflation has been a focus of much attention in recent
years. To study possible origins of non-Gaussianity, one must go beyond the linear perturbation theory.
In particular, in the classical production on superhorizon scales case, the δN formalism [1] turned out to be
a powerful tool for computing non-Gaussianities thanks to its full non-linear nature, where one can employ
the spatial gradient expansion approach. The length scale of the perturbation is longer than the Hubble
radius. In the context of inflation, based on the leading order in gradient expansion, the δN formalism
[1] was developed. This leading order in the expansion provides a general conclusion for the evolution on
superhorizon scales that the adiabatic growing mode is conserved on the comoving hypersurface. In multi-
field inflation, a non-slow-roll stage may appear when there is a change in the dominating component
of the scalar field. The previous analyses are essentially based on the δN formalism and it is in general
necessary to extend it to second-order in the expansion, that is, to the beyond δN formalism. As for a
single scalar field, it has been developed in [2]. We focus on the case of a multi-component scalar field
following recent our paper [3].

2 Basics
We develop a theory of nonlinear cosmological perturbations on superhorizon scales. For this purpose
we employ the ADM formalism and the gradient expansion approach. In the ADM decomposition,
the metric is expressed as ds2 = −α2dt2 + γ̂ij(dx

i + βidt)(dxj + βjdt), where α is the lapse function,
βi is the shift vector and Latin indices run over 1,2 and 3. We introduce the extrinsic curvature Kij

defined by Kij = (∂tγ̂ij − D̂iβj − D̂jβi)/2α, where D̂ is the covariant derivative with respect to the
spatial metric γ̂ij . In addition to the standard ADM decomposition, the spatial metric and the extrinsic
curvature are further decomposed so as to separate trace and trace-free parts γ̂ij = a2(t)e2ψγij and
Kij = a2(t)e2ψ(Kγij/3+Aij), where a(t) is the scale factor of a fiducial homogeneous FLRW spacetime,
the determinant of γij is normalised to be unity and Aij is trace free. As for a matter field, let us focus
on a minimally-coupled multi-component scalar field, described by Sm =

∫
d4x

√
−gP (XIJ , ϕK), XIJ ≡

−gµν∂µϕI∂νϕJ , with ϕK denoting the K-th component of the scalar field. Note that we do not assume a
specific form of both the kinetic term and potential, which are arbitrary functions of XIJ and ϕK . The

1Email address: takamizu@yukawa.kyoto-u.ac.jp
2Email address: naruko@apc.univ-paris7.fr
3Email address: misao@yukawa.kyoto-u.ac.jp



2 Nonlinear superhorizon perturbation

equation of motion for the scalar field is given by 2√
−g∂µ

(√
−gP(IJ)g

µν∂νϕ
J
)
+PI = 0, where the subscript

I in PI represents a derivative with respect to ϕI and P(IJ) is defined as P(IJ) = ( ∂P
∂XIJ

+ ∂P
∂XJI

)/2. Now
we write down the Einstein equations. In the ADM decomposition, the Einstein equations are separated
into four constraints, the Hamiltonian constraint and three momentum constraints, and six dynamical
equations for the spatial metric.

In the gradient expansion approach we suppose that the characteristic length scale L of a perturbation
is longer than the Hubble length scale 1/H of the background, i.e. HL ≫ 1. Therefore, ϵ ≡ 1/(HL) is
regarded as a small parameter and we can systematically expand equations in the order of ϵ, identifying
a spatial derivative is of order ϵ, ∂iQ = O(ϵ)Q. To clarify the order of gradient expansion, we introduce
the superscript (n). For example, (2)α means the lapse function at second order in gradient expansion.
As a background spacetime, we consider a FLRW universe. This leads to the following condition on the
spatial metric: ∂tγij = O(ϵ2). Since we adopt this assumption, the spatial metric at leading order is given
by an arbitrary spatial function of the spatial coordinates. Throughout this paper, in order to simplify
the equations, we set the shift vector to zero up to second order in gradient expansion, βi = O(ϵ3). Let
us call this choice of the spatial coordinates as the time-slice-orthogonal threading.

2.1 Leading order in gradient expansion

In this subsection, we study the leading order gradient expansion and make clear the correspondence
between the leading order equations and background equations. This correspondence can be used to
construct the solution at leading order in gradient expansion in terms of the background solution. We
will introduce the proper time τ by τ(t, xi) ≡

∫
xi=const.

dt α(t, xi). In terms of τ , the expression of

K is simplified under the time-slice-orthogonal threading condition K = 1
α
∂t(a

3e3ψ)
a3e3ψ

= 3∂τ (ae
ψ)

aeψ
. Under

the identification, aeψ ⇔ a and τ ⇔ t, one also has the correspondence, K ⇔ 3H. This means that
the basic equations at leading order take exactly the same form as those in the background modulo
above identifications. Namely, given a background solution, ϕI(t)

∣∣
background

= ϕIBG

[
t, ϕI0(t0)

]
, one can

construct the solution at leading order in gradient expansion as ϕI(t, xi)
∣∣
gradient

= ϕIBG

[
τ, ϕI0(τ0)

]
. All

the information of inhomogeneities is contained in the initial condition as well as in the proper time τ .
Thus it is sufficient to solve the background equations to obtain the solution at leading order in gradient
expansion. In passing, we note that the e-folding number is often used as the time coordinate to describe
the background evolution. For convenience, we define it as the number of e-folds counted backward in
time from a fixed final time. That is, N =

∫ t0
t
dt′H(t′). Accordingly, the scale factor is expressed as

a(N) = a0e
−(N−N0). By replacing t with τ and H with K/3 we can generalise the e-fold number to the

one defined locally in space as N ≡
∫ t0
t
α(t′, xi)dt′ 1

3K(t, xi)
∣∣
xi=const.

. Again one can check the validity
of the above correspondence in terms of N as the time coordinate.

2.2 Towards the next-to-leading order in gradient expansion

One needs to specify the gauge condition to study perturbations in perturbation theory or in gradient
expansion. Since spatial coordinates have been already fixed by the time-slice-orthogonal threading, one
has to determine the time-slicing condition. Here, let us list various slicings and their definitions, Uniform
expansion; K(t, xi) = 3H(t), Uniform e-folding number; N (t, xi) = N(t). Hereinafter, we call the uniform
expansion and uniform e-folding number slicings as the uniform K and uniform N slicings, respectively.
We mention that there is a remaining gauge degree of freedom in the synchronous or uniform N slicing,
while the time slices are completely fixed in the uniform K slicing. As for the uniform N slicing, the
gauge condition demands ∂tψ to vanish. As we have seen in subsection 2.1, the leading order solutions
are given by functions of τ in terms of the background solutions. At next-to-leading order in gradient
expansion, terms with spatial derivatives of the leading order solution appear in the evolution equations.
To evaluate those terms, one needs to calculate the spatial derivative of the lapse function, for example in
∂iϕ, ∂iϕBG(τ) = ∂τϕBG(τ) ∂iτ = ∂τϕBG(τ)

∫
dt∂iα. However the leading order (0)α is in general given

explicitly only after solving the following equation for α:

α = f
[
t, ϕ(τ)

]
= f

[
t, ϕ
(∫

αdt
)]
. (1)
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It is clearly shown that it is almost impossible to solve this equation, at least in an analytical way.
This problem did not appear in the single-field case. It is because one can show that various different
slicings become identical at leading order in gradient expansion. It means that for all the slicings, we may
set α = 1 if desired. On the other hand, one has to face this problem in the case of multi-field inflation.
We overcome this problem by uniform N slicing, which gives us a homogeneous time coordinate. On
these slicings, one can evaluate the spatial derivatives of the leading order solution which appear as source
terms and construct a solution to next-to-leading order in gradient expansion by integrating those terms.

3 Nonlinear gauge transformation
We derive the gauge transformation rules for the metric, its derivative (K and Aij) and the scalar field.
We consider a nonlinear gauge transformation from a coordinate system with vanishing shift vector
βi = 0, to another coordinate system in which the new shift vector also vanishes, β̃i = 0. We note that
once the time slicing is changed, the shift vector appears in the new slicing in general. So the spatial
coordinates also need to be changed to eliminate thus appeared shift vector. We use the background e-
folding number N as the time coordinate and define the temporal and spatial shift, n and Li, respectively,
Ñ + ñ(Ñ , x̃i) = N , x̃i + L̃i(Ñ , x̃i) = xi. Under the change of the coordinates, the line element should

remain invariant, ds2 = − α2

H2(N)dN
2+a2(N)e2ψγijdx

idxj = − α̃2

H2(Ñ)
dÑ2+a2(Ñ)e2ψ̃γ̃ijdx̃

idx̃j . Equating

the coefficients of dÑ2, dÑdx̃i, and dx̃idx̃j on both sides of the above, we obtain the nonlinear gauge
transformation rules. As a result, let us summarize the derived rules. The leading order transformation
rules are

α̃(Ñ , x̃i) =
H(Ñ)

H((0)Ñ)
(1 + ∂Ñ

(0)ñ) α+O(ϵ2) , ψ̃(Ñ , x̃i) = ψ − (0)ñ+O(ϵ2) , (2)

γ̃ij(Ñ , x̃
i) = γij +O(ϵ2) , K̃(Ñ , x̃i) = K +O(ϵ2) , ϕ̃(Ñ , x̃i) = ϕ+O(ϵ2) . (3)

The next-to-leading order transformation rules are

(2)α̃(Ñ , x̃i) =
αH(Ñ)

H((0)Ñ)
(1 + ∂Ñ

(0)ñ)

(
(2)α

α
+ (2)ñ

∂Nα

α
− (2)ñ

∂NH((0)Ñ)

H((0)Ñ)
+

∂Ñ
(2)ñ

1 + ∂Ñ
(0)ñ

)

− 1

2

α3H(Ñ)(1 + ∂Ñ
(0)ñ)

a2((0)Ñ)e2ψH3((0)Ñ)
γij∂ĩ

(0)ñ∂j̃
(0)ñ+ L̃i(∂ĩα)

H(Ñ)

H((0)Ñ)
(1 + ∂Ñ

(0)ñ) +O(ϵ4) ,

(4)

(2)ψ̃(Ñ , x̃i) = (2)ψ − (2)ñ+ (2)ñ∂Nψ + L̃i∂ĩψ +
1

3
∂ĩL̃

i − 1

6

α2γij∂ĩ
(0)ñ∂j̃

(0)ñ

a2((0)Ñ)e2ψH2((0)Ñ)
+O(ϵ4) , (5)

(2)γ̃ij(Ñ , x̃
i) = (2)γij +

(2)ñ∂Ñγij + L̃k∂k̃γij + γjk∂ĩL̃
k + γik∂j̃L̃

k − 2

3
∂k̃L̃

kγij

− α2

a2((0)Ñ)e2ψH2((0)Ñ)

(
∂ĩ

(0)ñ∂j̃
(0)ñ− 1

3
γkl∂k̃

(0)ñ∂l̃
(0)ñγij

)
+O(ϵ4) , (6)

and

(2)K̃(Ñ , x̃i) = (2)K + (2)ñ∂N
(0)K + L̃i∂ĩ

(0)K +
3H((0)Ñ)

(1 + ∂Ñ
(0)n)α

(
∂Ñ

(0)ñ
(2)α

α
−

∂Ñ
(2)ñ

1 + ∂Ñ
(0)ñ

)
+

3αγij∂ĩ
(0)ñ∂j̃

(0)ñ

2(1 + ∂Ñ
(0)n)a2((0)Ñ)e2ψH((0)Ñ)

+
∂ĩ

(0)ñ∂j̃
(0)ñ

2αa2((0)Ñ)H((0)Ñ)
∂N

(
α2

e2ψ
γij
)

+
3H((0)Ñ)

(1 + ∂Ñ
(0)n)α

[
∂Ñ

(2)ñ(1− ∂Nψ)− (∂Ñ L̃
i)∂ĩψ − 1

3
∂ĩ∂Ñ L̃

i

]
+

H((0)Ñ)αγij

2(1 + ∂Ñ
(0)n)e2ψ

∂Ñ

(
∂ĩ

(0)ñ∂j̃
(0)ñ

a2((0)Ñ)H2((0)Ñ)

)
+O(ϵ4) , (7)

Ãij(Ñ , x̃
i) = Aij −

H((0)Ñ)

2(1 + ∂Ñ
(0)ñ)α

(
∂Ñ L̃

k∂k̃γij + γjk∂ĩ∂Ñ L̃
k + γik∂j̃∂Ñ L̃

k
)TF

− H((0)Ñ)

2(1 + ∂Ñ
(0)ñ)α

∂Ñ

[
α2

a2((0)Ñ)e2ψH2((0)Ñ)

(
∂ĩ

(0)ñ∂j̃
(0)ñ

)TF]
+O(ϵ4) , (8)

(2)ϕ̃(Ñ , x̃i) = (2)ϕ+ (2)ñ∂N
(0)ϕ+ L̃i∂ĩ

(0)ϕ+O(ϵ2) , (9)
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where L̃i is given by

L̃i = li(x̃i) +

∫ Ñ

Ñ0

dN̂
α2(1 + ∂N̂ ñ)

a2((0)N̂)e2ψH2((0)N̂)
γij∂j̃ ñ+O(ϵ3) . (10)

4 Beyond δN formalism

Let us briefly summarise the five steps in the Beyond δN formalism.

1. Write down the basic equations (the Einstein equations and scalar field equation) in the uniform
N slicing with the time-slice-orthogonal threading. For convenience let us call the choice of the
coordinates in which one adopts the uniform X slicing with the time-slice-orthogonal threading the
X gauge. So the above choice is the N gauge. In this gauge the metric components at leading
order are trivial since both ψ and γij are independent of time.

2. First solve the leading order scalar field equation under an appropriate initial condition and then
the next-to-leading order scalar field equation which involves spatial gradients of the leading order
solution.

3. Solve the next-to-leading order Einstein equations for the metric components and their derivatives.

4. Determine the gauge transformation from the N gauge to the K gauge and apply the gauge trans-
formation rules to obtained the solution the obtained solution in the K gauge.

5. Evaluate the curvature perturbation R = ψ+χ/3 in the K gauge, where χ is to be extracted from
γij .

5 Summary and discussion

In this paper, we developed a theory of nonlinear cosmological perturbations on superhorizon scales in the
context of inflationary cosmology. We considered a multi-component scalar field with a general kinetic
term and a general form of the potential. To discuss the superhorizon dynamics, we employed the ADM
formalism and the spatial gradient expansion approach.

Different from the single-field case, there is a difficulty in solving the equations in the multi-field
case. At leading-order, the equations take the same form as those for the homogeneous and isotropic
FLRW background with suitable identifications of variables. In cosmological perturbation theory, the
most important quantity to be evaluated is the curvature perturbation on the comoving slices which
is conserved on superhorizon scales after the universe has reached the adiabatic limit. This quantity
accurate to next-to-leading order may be relatively easily obtained in the single-field case because of the
above mentioned coincidence among several temporal slicings. On the other hand, in the multi-field case,
such a coincidence between different slicings does not hold.

In this paper, we developed a formalism to go beyond the leading order which avoids the problem.
Namely, we first solve the field equations in a slicing in which the lapse function is trivial. The synchronous
slicing is one of such slicings, but we adopt the uniform e-folding number slicing in which the time slices
are chosen in such a way that the number of e-folds along each orbit orthogonal to the time slices, N ,
is spatially homogeneous on each time slice. In this slicing we can solve the equations to next-to-leading
order without encountering the above mentioned problem. After the solution to next-to-leading order is
obtained, we transform it to the one in the uniform expansion slicing which is known to be identical to
the comoving slicing on superhorizon scales in the adiabatic limit. Thus the gauge transformation laws
play an essential role in our formalism. We derived them which are accurate to next-to-leading order.
Note that they are fully nonlinear in nature in the language of the standard perturbation approach.

References

[1] M. Sasaki and E. D. Stewart, Prog. Theor. Phys. 95, 71 (1996).

[2] Y. Takamizu, S. Mukohyama, M. Sasaki, and Y. Tanaka, JCAP 1006, 019 (2010).

[3] A. Naruko, Y. Takamizu and M. Sasaki, arXiv: 1210.6525, which has been determined to be published
as PTEP (2013).

http://dx.doi.org/10.1143/PTP.95.71
http://dx.doi.org/10.1088/1475-7516/2010/06/019
http://arxiv.org/abs/arXiv:1210.6525


 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Shi Pi, JGRG 22(2012)111206 

“Curvature perturbation spectrum in two-field inflation with a 

turning trajectory” 

 



Heavy Isocurvaton

Curvature Perturbation Spectrum in Two-field

Inflation with a Turning Trajectory

Shi Pi(��)

Physics Department,

Peking University

November 12th, 2012

Collaborate with Misao Sasaki,

based on arXiv:1205.0161,

JGRG 2012, RESCUE, University of Tokyo.



Heavy Isocurvaton

Outline

1 Introduction

2 Quasi-single Field Inflation with Large Isocurvaton Mass

3 Non-Gaussianity of Equilateral Shape

4 Conclusion



Heavy Isocurvaton

Introduction

Primary Parameters

Define the parameters

Slow-roll parameter along the trajectory ǫ and η.

Angular speed of rotation in field space θ̇ ∼ Vs.

Effective mass perpendicular to the trajectory Meff = Vss+3θ̇.
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Introduction

Classification

The ordinary 2-field inflation can be classified by these parameters

in the slow-roll region as

1 θ̇ ≪ H, Meff ≪ H: 2-field inflation with a negligible coupling

between adiabatic and curvature perturbations inside the

horizon. Gordon 2001.

2 θ̇ ≪ H, Meff ∼ H: Quasi-single field inflation in the original

form. Chen 2010.

3 θ̇ ≪ H, Meff ≫ H: After integrating the heavy field out, one

can get an effective single field with a corrective speed of

sound. Achucarro 2011,2012. Cespedes 2012.
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Introduction

Classification

The ordinary 2-field inflation can be classified by these parameters

in the slow-roll region as

1 θ̇ ≪ H, Meff ≪ H: 2-field inflation with a negligible coupling

between adiabatic and curvature perturbations inside the

horizon. Gordon 2001.

2 θ̇ ≪ H, Meff ∼ H: Quasi-single field inflation in the original

form. Chen 2010.

3 θ̇ ≪ H, Meff ≫ H: After integrating the heavy field out, one

can get an effective single field with a corrective speed of

sound. Achucarro 2011,2012. Cespedes 2012.

We are suppose to connect 2 and 3.
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“Massless” Slowball
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Coaster with “Large Isocurvaton Mass”.
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Introduction

EFT result

In EFT, after integrating out the heavy field (σ in our case), one

have an effective single field inflation with an effective speed of

sound cs which is

c−2
s = 1 +

4H2

M̃2
eff

(

θ̇

H

)2

, (1)

Finally we got via EFT that

δPR ∝ c−1
s − 1 ∼ 2

(

θ̇

M̃eff

)2

.

Our main task is to verify this relation by in-in formulism.
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Quasi-single Field Inflation with Large Isocurvaton Mass

Lagrangian

The action for the fields can be decomposed into

Sm =

∫

d4x
√
−g

[

−
1

2
(R̃+ σ)2gµν∂µθ∂νθ −

1

2
gµν∂µσ∂νσ − Vsr(θ)− V (σ)

]

,

where

Rθ(tangent field) and σ(radial field),

Vsr(θ) is a slow-roll potential along the valley,

V (σ) is a potential that forms the valley and traps the isocurvaton

at σ = σ0,

R̃ denotes the radius of the minima valley,

R = R̃ + σ0 is the constant radius where the trajectory is trapped

with the centripetal force under consideration.
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Quasi-single Field Inflation with Large Isocurvaton Mass

EOM

The Hubble equations and equations of motion are

3M2
pH

2 =
1

2
R2θ̇20 + V + Vsr,

−2M2
p Ḣ = R2θ̇20,

0 = R2θ̈0 + 3R2Hθ̇0 + V ′
sr,

0 = σ̈0 + 3Hσ̇0 + V ′ −R2θ̇20 ,

We can see in the tangent direction of the trajectory, field Rθ

obeys the ordinary equation of motion for single-field inflation.
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Perturbative Hamiltonian

Hamiltionian density in interaction picture (spatially flat gauge)

H0 = a3
[

1

2
R2δ̇θ

2
+

R2

2a2
(∂iδθ)

2 +
1

2
˙δσ
2
+

1

2a2
(∂iδσ)

2 +
1

2
M2

effδσ
2

]

,

HI
2 = −c2a

3δσδ̇θ, c2 = 2Rθ̇,

HI
3 = −a3Rδσδ̇θ

2
− a3θ̇δ̇θδσ2 + aRδσ (∂iδθ)

2 +
a3

6
V ′′′δσ3,

M2
eff = V ′′ + 3θ̇2,

Our method is valid when

(

θ̇

H

)2

≪ 1,
|V ′′′|
H

≪ 1. (2)
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Perturbative Hamiltonian

Hamiltionian density in interaction picture (spatially flat gauge)

H0 = a3
[

1

2
R2δ̇θ

2
+

R2

2a2
(∂iδθ)

2 +
1

2
˙δσ
2
+

1

2a2
(∂iδσ)

2 +
1

2
M2

effδσ
2

]

,

HI
2 = −c2a

3δσδ̇θ, c2 = 2Rθ̇ = constant,

HI
3 = −a3Rδσδ̇θ

2
− a3θ̇δ̇θδσ2 + aRδσ (∂iδθ)

2 +
a3

6
V ′′′δσ3,

M2
eff = V ′′ + 3θ̇2 = constant,

In a constant turn case!
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Illustrative Explanation

Figure: The second order

interacting vertex

H2 = −c2a
3δσθ̇, while

c2 = 2Rθ̇.

Figure: The 2-pt func with a

heavy isocurvaton mediation.

And the curvature perturbation R is connected to θ via

R = −
H

θ̇
δθ.
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Quantization

Quantize the Fourier components

δθIk = ukak + u∗−ka
†

−k
,

δσI
k = vkbk + v∗−kb

†

−k
.

The commutators

[ak, a
†

−k′ ] = (2π)3δ3(k+ k′), [bk, b
†

−k′ ] = (2π)3δ3(k+ k′).
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Quantization

The equation for mode functions,

u′′k −
2

τ
u′k + k2uk = 0,

v′′k −
2

τ
v′k + k2vk +

M2
eff

H2τ2
vk = 0.

Solve The EOMs by setting the initial conditions

Ruk , vk → i
H√
2k

τe−ikτ ,

when k ≫ Ha.
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Solution

The solution is

uk =
H

R
√
2k3

(1 + ikτ)e−ikτ ,

and

vk = −iei(ν+
1

2
)π
2

√
π

2
H(−τ)3/2H(1)

ν (−kτ), for M2
eff/H

2 ≤ 9/4,

where ν =
√

9/4 −M2
eff/H

2, or

vk = −ie−
π

2
µ+iπ

4

√
π

2
H(−τ)3/2H(1)

iµ (−kτ), for M2
eff/H

2 > 9/4,

where µ =
√

M2
eff/H

2 − 9/4.
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2-point function

We use in-in formulism to calculate the 2-point function of δθ2

〈δθ2〉 ≡ 〈0|
[

T̄ exp

(

i

∫ t

t0

dt′HI(t
′)

)]

δθ2I(t)

[

T exp

(

−i

∫ t

t0

dt′HI(t
′)

)]

|0〉

∼ PR
(0) + δPR

=
H4

4π2R2θ̇2

[

1 +
δPR

PR
(0)

]

.
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Feynman Rules

u(k)

u*(k) v*(k)

v(k)

u(k)v’(k)
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Calculating α

t=∞
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t=∞



Heavy Isocurvaton
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Interchange the momenta

t=∞ t=∞

+ +
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“Split” the integral

t=∞ t=∞

+ + =

t=∞

2

The Cut-in-the-Middle integral α is

α =

∣

∣

∣

∣

∫

∞

0
dx x−1/2H

(1)
iµ (x)eix

∣

∣

∣

∣

2

.
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Calculating β

t=∞ t=∞

- -
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Take the Conjugate

t=∞ t=∞

- -

*
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Quasi-single Field Inflation with Large Isocurvaton Mass

Sum the Integral

t=∞ t=∞

- -

*

=

t=∞

-2Re

The Cut-in-the-Side integral β is

β = 2Re

∫

∞

0
dx1 x

−1/2
1 H

(1)
iµ (x1)e

−ix1

∫

∞

x1

dx2 x
−1/2
2 (H(1)

iµ (x2))
∗e−ix2 .
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The Correction to Power Spectrum

δPR

P(0)
R

= π

(

θ̇

H

)2

e−µπ(α− β),

α− β =

t=∞

2
t=∞

-2Re
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The Correction to Power Spectrum

δPR

P(0)
R

= π

(

θ̇

H

)2

e−µπ(α− β),

α− β =

t=∞

2
t=∞

-2Re
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Calculating α

α can be directly integrated,

α =
1

π

∣

∣

∣

∣

∣

eµπ/2

2
−

√
2

sinhµπ
+ i

(

e−µπ

2
+

√
2 coth µπ

)

∣

∣

∣

∣

∣

2

→ 1,

when µ → ∞.

CIM is exponentially suppressed!
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Calculating β

Use the asymptotic formula of Hankel function when x ≪ µ:

H
(1)
iµ →

1

eiµ(lnµ−1)

√

2
eπµ

µ
exp

[

−
x2

4µ
e−iπ

4

]

(x

2

)iµ
.

The main contribution to β comes from infrared x ≪ 1. The result

is

β = −2
eµπ

πµ2

[

1 +O
(

1

µ2

)]

.
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The Power Spectrum

We have the final result (SP & Sasaki 2012, Chen & Wang

2012, Noumi et. al. 2012)

C(µ) ≈
1

4µ2
,

PR ≈ P(0)
R



1 + 2
H2

M2
eff

(

θ̇

H

)2


 .

This result coincide with that from Effective Single Field

Approach. (Tolley 2010, Achucarro 2011 & 2012, Sebastian

2012)



Heavy Isocurvaton

Non-Gaussianity of Equilateral Shape

Outline

1 Introduction

2 Quasi-single Field Inflation with Large Isocurvaton Mass

3 Non-Gaussianity of Equilateral Shape

4 Conclusion



Heavy Isocurvaton

Non-Gaussianity of Equilateral Shape

Bad News

There are O(10) terms of 3-p vertices.

There are 10 integrals for each vertex (with 6 momenta

permutations).

There is an integral of quadruple product of Hankel functions.



Heavy Isocurvaton

Non-Gaussianity of Equilateral Shape

Good News

There are O(10) terms of 3-p vertices. But the only vertex

that is possible to generate large Non-Gaussianity is V ′′′.

There are 10 integrals for each vertex (with 6 momenta

permutations).

There is an integral of quadruple product of Hankel functions.



Heavy Isocurvaton

Non-Gaussianity of Equilateral Shape

Good News

There are O(10) terms of 3-p vertices. But the only vertex

that is possible to generate large Non-Gaussianity is V ′′′.

There are 10 integrals for each vertex (with 6 momenta

permutations). But the integrals have similar structures.

There is an integral of quadruple product of Hankel functions.



Heavy Isocurvaton

Non-Gaussianity of Equilateral Shape

Good News

There are O(10) terms of 3-p vertices. But the only vertex

that is possible to generate large Non-Gaussianity is V ′′′.

There are 10 integrals for each vertex (with 6 momenta

permutations). But the integrals have similar structures.

There is an integral of quadruple product of Hankel functions.

But we are free to use the asymptotic forms.
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Non-Gaussianity of Equilateral Shape

This is the only vertex that can generate large

non-Gaussianity. And we calculate one integral

〈δθ3〉 ⊇ −12up1up2up3(0)c
3
2c3

× Re

[
∫ 0

−∞

dτ a4vp1vp2vp3(τ)

∫ τ

−∞

dτ1 a
3v∗p1u

′∗
p1(τ1)

∫ τ1

−∞

dτ2 a
3v∗p2u

′∗
p2(τ2)

∫ τ2

−∞

dτ3 a
3v∗p3u

′∗
p3(τ3)

]

× (2π)3δ3(
∑

i

pi) + 5 perms.
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Non-Gaussianity of Equilateral Shape

The result is

〈δθ3〉 ⊇ −
1√
2

θ̇3V ′′′

HR3µ4

k1 + k2 + k3

k1k2k3
(

k21 + k22 + k23
)2 .
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Conclusion

Our Conclusion

Effective Single Field Approach ≡ In-in Formulism

(But it seems only hold for 2-point function and at leading order...)
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Conclusion

Comments

1 Non-constant turn case.

2 Non-adiabatic turn. Shiu 2011, Gao2012.

3 To embed the QSI into a segment of inflationary trajectory.

4 Loop corrections. Chen 2012.

5 Effective field theory of QSI. Noumi 2012.

6 Non-Gaussianities with (1)large mass limit and (2)small mass

limit.
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Conclusion

Figure: “New star near

Antares”, record of a

possible supernova in Shang

Dynasty, 1600-1046 B.C.

Thank you!
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# classification of inflation models w.r.t. relevant dof

relevant dof

single field adiabatic mode    (massless)ζ

multiple field adiabatic + isocurvatures

“multi field” light isocurvatures (m<<H)

quasi-single field isocurvatures m ～ H

- well motivated by model building

- phenomenologically interesting
(string inspired, supergravity based, ... )

(characteristic signatures in primordial perturbations)

modulus in string theory
(landscape)

curvature coupling
in supergravity

Quasi-single field inflation
1/10
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※ sensitive to the mass of σ
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Motivation

would like to discuss QSI - in general settings

- in a systematic way

effective field theory approach!

quasi-single field inflation:
- naturally realized in supergravity
- characteristic signatures in non-Gaussianities
(between local & equilateral, scaling in squeezed limit)

3/10
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- systematic expansions in fluctuations and derivatives
- simplification in the dynamics of Goldstone boson π
- relations between physics and non-Gaussianities are clear!

advantages:

EFT approach
# effective field theory approach [Cheung et al ’07]
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# general action of quasi-single field inflation

relevant dof = three physical modes of graviton
+ additional massive scalar field σ

schematically written as S = Sgrav + Sσ + Smix

−β1

�
π̇2 − (∂iπ)2

a2

�
σ + 3β2π̇

2σ̇ − 2β2
∂iπ∂iσ

a2
π̇ − β2

(∂iπ)2

a2
σ̇ + . . .

�
Smix =

�
d4x a3

�
−2β1π̇σ + (2β2 − β3)π̇σ̇ + β3

∂iπ∂iσ

a2

Smix =
�

d4x
√
−g

�
β1(t)δg00σ + β2(t)δg00∂0σ

+β3(t)∂0
σ − (β̇3(t) + 3Hβ3(t))σ

�
ex.

General action

Stuckelberg method
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# general action of quasi-single field inflation

relevant dof = three physical modes of graviton
+ additional massive scalar field σ

schematically written as S = Sgrav + Sσ + Smix

large non-Gaussianitis from mixings    and   1β1 β2

−β1

�
π̇2 − (∂iπ)2

a2

�
σ + 3β2π̇

2σ̇ − 2β2
∂iπ∂iσ

a2
π̇ − β2

(∂iπ)2

a2
σ̇ + . . .

�
Smix =

�
d4x a3

�
−2β1π̇σ + (2β2 − β3)π̇σ̇ + β3

∂iπ∂iσ

a2

Smix =
�

d4x
√
−g

�
β1(t)δg00σ + β2(t)δg00∂0σ

+β3(t)∂0
σ − (β̇3(t) + 3Hβ3(t))σ

�
ex.

General action

ζ ∼ −Hπ
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# power spectrum

Smix =
�

d4x a3

�
−2β1π̇σ + (2β2 − β3)π̇σ̇ + β3

∂iπ∂iσ

a2

�

β̃1 β̃2 β̃3

Power spectrum
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# power spectrum

�ζk ζk�� = H
2 �πk πk��
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�
−2β1π̇σ + (2β2 − β3)π̇σ̇ + β3

∂iπ∂iσ

a2

�
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# power spectrum

�ζk ζk�� = H
2 �πk πk��

Smix =
�

d4x a3

�
−2β1π̇σ + (2β2 − β3)π̇σ̇ + β3

∂iπ∂iσ

a2

�

β̃1 β̃2 β̃3
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FIG. 1: Cij ’s for fixed rs = cσ/cπ. The dots are numerical results for rs = 0.1 (red), 0.3 (orange), 1 (yellow), 3 (green), and 10
(blue). The curves are analytic results for rs = 1 obtained in the next subsection.

2. A class of analytically calculable models: cπ = cσ

Let us then consider the case rs = cσ/cπ = 1. For this class of models, we can analytically calculate the integrals Iij ’s
by extending the results in [20]. We first introduce a function A(!, ν, x) defined by

A(!, ν, x) = x− 1
2+#eixH(1)

ν (x) . (118)

In terms of A, Ai can be written as

A1(x) = A(0, ν, x) , A2(x) = A(1, ν − 1, x) , A3(x) = iA(1, ν, x) , (119)

The dots are numerical results for rs = 0.1 (red), 0.3 (orange), 1 (yellow), 3 (green), and 10 (blue).

The curve is an analytic result for rs = 1.

Power spectrum

※     does not vanish even in the heavy mass limitC22

β̃2π̇σ̇
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Cij(mσ/H, cσ/cπ) for fixed rs = cσ/cπ
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three point vertices momentum dependence

π̇3, π̇
(∂iπ)2

a2
κ−1k−6

π̇2σ, π̇σ̇, π̇σ2, π̇σσ̇, π̇σ̇2, π̈σσ̇,

σ3, σ2σ̇, σσ̇2, σ
(∂iσ)2

a2
, σ̇3, σ̇

(∂iσ)2

a2






κ−3/2−νk−6 for mσ <
3
2
H

κ−3/2k−6 sin[iν log κ + δν ] for mσ >
3
2
H

π̇
∂iπ∂iσ

a2
κ−2k−6

(∂iπ)2

a2
σ,

(∂iπ)2

a2
σ̇,

∂iπ∂iσ

a2
σ,

∂iπ∂iσ

a2
σ̇





κ−3/2−νk−6 for mσ <

√
2H

κ−2k−6 for mσ >
√

2H

π̇
(∂iσ)2

a2





κ−1/2−νk−6 for mσ <

√
2H

κ−1k−6 for mσ >
√

2H

Here we note that although the contribution from the π̇
(∂iπ)2

a2
vertex seems to be proportional to κ−2k−6 apparently,

explicit calculations show that this kind of leading contribution vanishes and the three point functions start from
terms proportional to κ−1k−6.

As we have seen, the momentum dependence of scalar three point functions in the squeezed limit has robust
information about mass of σ and three point vertices.

VI. SUMMARY AND DISCUSSION

In this paper we developed the effective field theory approach to quasi-single field inflation. We constructed the
most generic action in the unitary gauge for quasi-single field inflation based on the unbroken time-dependent spatial
diffeomorphism. We then constructed the action for the Goldstone boson by the Stückelberg method and discussed
its decoupling regime, where interactions between Goldstone boson and graviton become irrelevant inside the horizon.
As a first step, we considered two classes of models: the constant turning trajectory and sharp turning trajectory....

APPENDIX A: ASYMPTOTIC BEHAVIOR OF D(!, ν, x)

In this appendix we derive the asymptotic behavior (122) in the limit x → ∞ of the function D(', ν, x):

D(', ν x) =
2νx

1
2+#−νΓ(ν)

iπ( 1
2 + ' − ν) 2F2

(1
2
− ν,

1
2

+ ' − ν;
3
2

+ ' − ν, 1 − 2ν; 2ix
)

+ e−iπν 2νx
1
2+#+νΓ(−ν)

iπ( 1
2 + ' + ν) 2F2

(1
2

+ ν,
1
2

+ ' + ν;
3
2

+ ' + ν, 1 + 2ν; 2ix
)

. (A1)

We use the following asymptotic expansion of hypergeometric functions:

2F2(a1, a2; b1, b2; z) =
Γ(b1)Γ(b2)
Γ(a1)Γ(a2)

ezza1+a2−b1−b2

∞∑

k=0

z−k

+
Γ(b1)Γ(b2)Γ(a2 − a1)

Γ(a2)Γ(b1 − a1)Γ(b2 − a1)
(−z)−a1

3F1(a1, a1 − b1 + 1, a1 − b2 + 1; a1 − a2 + 1;−1/z)

+
Γ(b1)Γ(b2)Γ(a1 − a2)

Γ(a1)Γ(b1 − a2)Γ(b2 − a2)
(−z)−a2

3F1(a2, a2 − b1 + 1, a2 − b2 + 1; a2 − a1 + 1;−1/z) .

(A2)

ν =
�

9/4−m2
σ/H2 0 < ν < 3/2 or ν = pure imaginary

non-trivial scaling in the squeezed limit when mixing is relevant!
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# summary
applied EFT approach to QSI
- systematic expansions in fluctuations and derivatives
- simplification of action for π in decoupling regime
- relation between physics & non-Gaussianities is clear

calculated power spectrum for constant mixing
discussed scaling of 3-pt functions in squeezed limit
- sensitive to # of fields and their mass

also discussed effects of heavy particles, sharp turning

# prospects
full non-Gaussianities, detectability, ...
EFT for sugra based inflation,
more on sharp turning, ...

10/10
Summary and prospects
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Abstract
We revisit the issue on signatures of pre-inflationary background anisotropy by con-
sidering the quantization of a massless and minimally coupled scalar field in an axially
symmetric Kasner background, mimicking cosmological perturbations. We show that
the power spectrum of the scalar field fluctuation has a negligible difference from
the standard inflation in the non-planar directions, but it has a sharp peak around
the symmetry plane. For the non-planar high-momentum modes, we use the WKB
approximation for the first period and the asymptotic approximation based on the
de Sitter solution for the next period. At the boundary, two mode functions have
the same accuracy with error of O(Hi/k). We calculate the approximation up to the
order of (Hi/k)

6 and show that the power spectrum of the scalar field fails to get
corrections until we execute the approximation up to 6th order. This note is based
on our recent paper [1].

1 Introduction

Inflation has become one of the paradigms of modern cosmology. First of all, inflation elegantly solves
many problems which are present in the standard Big-Bang model such as the horizon and flatness
problems. Second, it accounts for the origin of the large scale structure of the universe in terms of the
quantum fluctuations originating from the adiabatic vacuum structure in early universe. Remarkably, the
nature of the primordial fluctuations is understood in terms of symmetries of the de Sitter spacetime. In
general, we need n-point correlation functions to characterize the statistical nature of primordial fluctu-
ations. However, these symmetries lead the power spectrum of a scale invariant form. These predictions
from symmetries are robust and universal in inflationary scenarios. In fact, the above predictions have
been confirmed, e.g., by the measurements of cosmic microwave background (CMB). As the observational
precision increases, we have to go beyond the power spectrum to look at fine structure of the primordial
fluctuations. Since in the realistic inflationary universe the symmetries of the de Sitter spacetime do not
hold exactly, violation of them provides a measurable effect. One possibility is introducing spatially ho-
mogeneous models violating the spatial isotropy [2–4], where the Copernican principle is kept since there
is no privileged positions in the universe. The universe has a privileged direction. From the observational
point of view, a lot of anomalies indicating the statistical anisotropy are reported although its statistical
significance is uncertain.

We start from the discussion on the evolution of anisotropic universe in the Einstein gravity minimally
coupled to a massive scalar field, where the scalar field plays the role of the inflaton. To obtain a
sufficiently long period of inflation, one usually imposes the slow rolling condition, ϕ0 ≫ MP , where ϕ0
is the initial value of the inflaton. Under the assumption, as discussed in Ref. [5], the background metric
can be approximated by the Kasner spacetime with a positive cosmological constant, Λ(= 3Hi

2). Among
all, we are mainly interested in the the regular Kasner spacetimes with two dimensional axial symmetry
with metric,

ds2 = −dτ2 + sinh
2
3 (3Hiτ)

[
tanh−

2
3

(3Hiτ

2

)
(dx21 + dx22) + tanh

4
3

(3Hiτ

2

)
dx23

]
. (1)

1Email address: hckim@ut.ac.kr
2Email address: masato@yukawa.kyoto-u.ac.jp



2 Revisiting the perturbations of a scalar field in an anisotropic universe

The spacetime has a privileged axis x3 orthogonal to the symmetry plane. The spacetime has a Rindler-
like event horizon at τ = 0 since g11(= g22) approaches to a finite value and g33 goes to zero linearly.
This spacetime is a good testing ground in analyzing the properties of anisotropic universes because of a
couple of reasons. First, it bears various important features of the whole anisotropic universes including
large anisotropy at τ = 0. Second, only in this symmetric case of all anisotropic expansions, we can
impose proper anisotropic vacuum state in terms of the zeroth order WKB approximation [6].

If one uses the Sasaki-Mukhanov variable, except for the complication due to the mixing of tensor-
scalar modes, the evolutions of the metric perturbations are not much different from that of a massless
scalar field [7]. In Ref. [5], it was also shown that the mode mixing modifies the power spectrum only
by a proportionality factor with a small correction term of order m/Hi, where m is the mass of the
inflaton. Therefore, as a formulation level, it is good to deal with the scalar field rather than the metric
perturbation itself. Hence in this work, we are interested in the evolution of a massless, minimally coupled
scalar field propagating on the background anisotropic universe (1) with action

Sϕ = −1

2

∫
d4x

√
−g
(
gµν∂µϕ∂νϕ

)
. (2)

This scalar field is not the inflaton but just a mimic of metric perturbations.

2 Quantization of the Scalar field on anisotropic vacuum

The canonical quantization of the minimally coupled massless scalar field with the action (2) in the
anisotropic spacetime (1) is done in the standard manner:

ϕ =

∫
d3k
(
ukak + u∗ka

†
k

)
, (3)

where the creation and annihilation operators satisfy the commutation relations
[
ak1 , a

†
k2

]
= δ(k1 − k2)

(others are zero) and uk = eikxϕk/(2π)
3/2. The details of the quantization process depend on the choice

of the mode function uk. We normalize the mode function as ϕk∂τϕ
∗
k −

(
∂τϕk

)
ϕ∗k = i

e3α .

For the later convenience, we introduce a dimensionless time x by sinh(εx) = 1
sinh(3Hiτ)

= e−3α, where

ε denotes a small expansion parameter which will be specified later. The arrow of time for x is inverted
since it varies from ∞ to 0+ as the comoving time τ increases from 0+ to ∞.

The equation of motion for the scalar field is written in the form of a time-dependent oscillator( d2
dx2

+Ωk(x)
2
)
ϕk = 0 , (4)

where the dimensionless frequency squared is

Ω2
k(x) =

(
ε

3Hi

)2 24/3
(
k2⊥e

−2εx + k23
)

(1− e−2εx)4/3
=

2(k̄ε2/3)2

9

(
eεx

sinh εx

)1/3(
1

e2εx − 1
+ r2

)
. (5)

Here we define a scaled wave-number and a measure of planarity of a given mode by k̄ = ε1/3 k
Hi
, r =

k3
k , where k

2 := k21 + k22 + k23 = k2⊥ + k23. Later in this paper, we omit k in the frequency squared Ω2
k for

simplicity. The power spectrum is defined by

⟨
0|ϕ2|0

⟩
:=

∫
d ln k

∫
dθk
2
P, P =

k3

2π2

∣∣ϕk∣∣2. (6)

In contrast to the case of the standard de Sitter universe the direction dependence would be included in
the power spectrum. The vacuum is chosen at the initial anisotropic era: τ → +0 to satisfy ak|0⟩ = 0.
For this purpose, we choose the solution to be purely positive frequency mode with respect to τ at the
early stage.
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3 Non-planar high-momentum modes

As mentioned in the introduction, we use the WKB solution at early times (x > x∗) and asymptotic
solution at later times (x < x∗). At the matching time x = x∗, the accuracies of the two are equal. Later
in this paper, we set x∗ = 1 by choosing ε appropriately. We also assume that k̄ is larger than one, which
will be satisfied with the modes we are interested in at the present approximation.

The WKB approximation is if ϵ(x) :=

∣∣∣∣ dΩ2(x)
dx

Ω3(x)

∣∣∣∣ ≪ 1. For the early times, the WKB wavefunction

is expanded up to an enough adiabatic order, to validate our matching scheme with the solutions in
the asymptotic region. The next order of the approximation will improve the accuracy by the order
EWKB(x) ∼ ϵ(x)2 ≃ 1

k̄2 x2/3 .

In the later time limit, the space-time approaches that of the de Sitter spacetime. Therefore, it is
natural that the zeroth order solution is just the well-known scalar field mode solution in the de Sitter
spacetime. The higher order corrections are based on the asymptotic approximation based on the limit
εx≪ 1. By series expanding the frequency squared, we approximate the equation of motion (4) to be(

d2

dx2
+

∞∑
n=0

εnVn

)
ϕ = 0 , (7)

where the order by order corrections of the frequency squared are the same order for x ∼ 1. The general
solution to the differential equation (7) is given by ϕ = A+u(x)+A−v(x) , where u and v are the positive
and negative frequency modes, respectively. We get the approximate solution by series expanding the
modes u = u0 + εu1 + ε2u2 + · · · and v = v0 + εv1 + ε2v2 + · · · and then solving the equation of
motions order by order. To determine the time when the WKB and the asymptotic approximations
will be matched, we need to know the size of the error of the zeroth order solution for a given x. The
relative ratio of the correction term to the zeroth order solution gives the error, Easym(x) ∼ εk̄ x4/3. The
approximation will be best if we choose the intermediate time x∗ so that the accuracies of the two solution
match: EWKB = Easym, which gives x∗ = (εk̄3)−1. For simplicity, we choose to set x∗ = 1. Therefore,

the small expansion parameter becomes ε = k̄−3 =
(
Hi
k

)3/2
. Now, the size of error at x = x∗ becomes

Easym = k̄−2 = Hi/k, which ensures that the present approximation works well for high momentum
modes.

After the matching, we find that the power spectrum acquires corrections only when we calculate to
the adiabatic order O(k̄−12). The power spectrum including the corrections becomes

P =
Hi

2

4π2

{
1 +

9(11− 90r2 + 99r4)

32

(
Hi

k

)6

+O

((Hi

k

)7)}
. (8)

For mode with k ∼ 10Hi, the relative size of the correction term is of O(10−6). The isotropy violation
at initial stage of the universe is not small but its effects on the spectrum for the non-planar modes are
suppressed by the long duration of inflation and high momentum effect. The correction O((Hi/k)

6) is
highly dependent on k to suppress the anisotropy effect.

4 Planar modes

For the planar modes r2 ∼ 0, there appears a region where the WKB approximation may not be valid
during a period in εx ≫ 1. We divide the time into three separate regions divided by the times x1 and
x∗ (See Fig. 1). In the region x1 > x > x∗ the WKB approximation is valid. For other two regions, we
may find approximate solutions. In the case of r = 0 exactly, the adiabaticity parameter diverges in the
limit of x→ ∞ and there is no anisotropic vacuum state. The mode r = 0 would behave classically, not
quantum mechanically, and will be out of scope.

The characteristic behavior of ϵ(x) is shown in Fig. 1.

Matching the solutions in the three regions yields the final amplitude and hence the power spectrum
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ϵ(x)

x∗x1xtop

x→ ∞ x = 0

Bessel solutions WKB de Sitter

Figure 1: The behavior of the adiabatic parameter in the case of a planar mode. The left hand side
(x→ ∞) corresponds to the past. The WKB approximation is temporary violated around x ≃ xtop.

obtained in the isotropic limit:

P =
(Hi

2π

)2(
cothπr̄ −

cos
(
2Ψ
)

sinhπr̄

)
, (9)

where Ψ(k) = k̄x
1/3
∗ −

∫ x∗
x1

Ω(x)dx+ q̄e−εx1 − π
4 . The explicit value of the correction term becomes order

of 10−3 for r̄ ∼ 3. In the planar limit, the deviation of the power spectrum from the ansatz in Ref. [2] is
quite clear.

5 Conclusion

We have reinvestigated the quantization of a massless and minimally coupled scalar field as a way to probe
the signature of pre-inflationary background anisotropy in the spectrum of cosmological perturbations.

We first dealt the non-planar modes. We have shown that the power spectrum of the scalar field
acquires non-vanishing corrections only when we execute the approximation up to 6th order. Hence, the
direction dependence appears only at the order O((Hi/k)

6).
For the planar mode, we have obtained essentially the same result as that in our previous analysis

[5, 6], but was confirmed by a more accurate matching. For such a mode, the temporal breaking of the
WKB approximation relatively enhances the effects of the primordial anisotropy in the power spectrum.
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Dark radiation

Ne� = 3.68+0.80
�0.70 (2�)Helium abundance 

Izotov, Thuan , 1001.4440

WMAP+ACT+BAO Ne� = 4.56±0.75 (68%)

WMAP+SPT+BAO Ne� = 3.86±0.42 (68%)

Ne� = 4.08+0.71
�0.68 (95%)WMAP+ACT+SPT+BAO

Archidiacono, Calabrese, Melchiorri, 1109.2767

�rad =

�
1 + Ne�

7
8

�
4
11

�4/3
�

��Radiation energy density

Ne� = 3.04 in the standard model

Dunkley et al., 1009.0866

Keiser et al., 1105.3182
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Dark radiation

�Ne� � 1 Dark radiation ?

Dark radiation (X) should satisfy :

X interaction is negligibly small

X is relativistic at the CMB epoch

Many models are proposed so far...

What is unique signature of dark radiation ?

Ichikawa, Kawasaki, KN, Senami, Takahashi (2007), KN, Takahashi, Yanagida (2010),
Fischler, Meyers (2011), Kawasaki, Kitajima, KN (2011), Hasenkamp (2011)

Menestrina, Scherrer (2011), Jeong, Takahashi (2012), K.Choi et al (2012) and many others
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Inflationary GWs
Inflation generates primordial GWs as quantum 

tensor fluctuations in de-Sitter spacetime

hij =
1

MP

�

�=+,�

�
d3k

(2�)3/2
h�

k(t)eikxe�
ij

�h�
kh��

k� � =
H2

inf

2k3
�3(k � k�)����

Quantization

�2
h(k) =

�
Hinf

2�MP

�2
Dimensionless power 

spectrum almost scale invariant

ds2 = a2(t)[�d�2 + (�ij + hij)dxidxj ]
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Evolution of GW
Eq.of.m of GW

ḧ� + 3Hḣ� + (k/a)2h� = 0

(without dark radiation)
h� � const for k � aH

h� � a(t)�1 for k � aH

GW energy density at horizon entry

�GW(k) �M2
P �2

h(k)(k/a)2 �M2
P Hin(k)2�2

h(k)

�tot �M2
P Hin(k)2

�GW(k) =
�GW(k)

�tot
� �2

h(k) � const at horizon entry

�0
GW(k) � �0

rad�2
h(k) at present for k � keq
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Figure 1: (Top) Spectra of the gravitational wave background for inflationary scale Hinf =
1014 GeV and 1013 GeV. Here we have taken TR = 107 GeV. Also shown are sensitivities
of planned space-based gravitational wave detectors, DECIGO with a correlation analysis
(blue dashed line), ultimate-DECIGO (purple dotted line), and correlation of analysis of
ultimate-DECIGO (red dot-dashed line). (Bottom) Same as the top panel for the dilution
factor F = 10 for Tσ=10 GeV and TR = 107 GeV.

5

horizon entry
at R.D. era

horizon entry
at M.D. era

horizon entry
at M.D. era

(inflaton oscillation)

GW spectrum traces thermal history of the Universe !

KN, J.Yokoyama (2010)

N.Seto, J.Yokoyama (2003), Boyle, Steinhardt (2005), KN, Saito, Suwa, Yokoyama (2008)

12年11月11日日曜日



Dark radiation and GW

ḧij + 3Hḣij + (k/a)2hij = 16�G�ij

Dark radiation affects GW spectrum in two ways

Modified expansion rate Anisotropic stress of X

S.Weinberg (2003), Y.Watanabe, E.Komatsu (2005)

cf ) For standard neutinos, see

Modified expansion rate by parent field of X 

Anisotropic stress is turned on after X production

Modification on GW spectrum at high frequency

Modification on GW spectrum at low frequency
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot

3M2
P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [
ρX

ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ

. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�

��

�X

BX = 1
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot

3M2
P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [
ρX

ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ

. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1

ttdec

�rad

�
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A model
A scalar field � decays into X at H � ��

with branching ratio BX

2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot

3M2
P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [
ρX

ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ

. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Background evolution :

Example) � : saxion
X : axion

� nearly dominate at
decay for �Ne� � 1
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�
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A model 2

confirming the dark radiation produced thermally and
decoupled at some epoch in the early Universe.
This paper is organized as follows. In Sec. II we re-

view a model of dark radiation produced by decaying
particles. In Sec. III we calculate the evolution of grav-
itational waves in the presence of anisotropic stress in-
duced by dark radiation, and show that characteristic
signatures appear in the spectrum. Sec. IV is devoted to
conclusions and discussion.

II. DARK RADIATION PRODUCTION BY
DECAYING PARTICLES

A. Background evolution

We consider the case where the non-relativistic matter
φ decays into X particle which plays the role of dark
radiation. Thus X is assumed to be massless and has
no interaction with other fields. To be more precise, X
must be relativistic until the recombination epoch and its
interaction must be so weak that remains to be decoupled
from thermal bath after the production by φ decay. The
evolution equations of components are given by

ρ̇φ + 3Hρφ = −Γφρφ, (2)

ρ̇rad + 4Hρrad = Γφ(1−BX)ρφ, (3)

ρ̇X + 4HρX = ΓφBXρφ, (4)

where the dot represents time derivative, and the Fried-
mann equation,

H2 =
ρtot

3M2
P

=
ρφ + ρrad + ρX

3M2
P

, (5)

where ρφ, ρrad and ρX are energy densities of φ, visible
radiation and dark radiation, respectively, MP is the re-
duced Planck scale, Γφ is the decay rate of φ, and BX

denotes its branching fraction into X .
The extra effective number of neutrino species is given

by

∆Neff =
43

7

[

10.75

g∗s(Tφ)

]1/3 [
ρX

ρrad

]

H"Γφ

, (6)

where g∗s(Tφ) denotes the relativistic degrees of freedom
at T = Tφ where the φ decays, and ρX and ρrad are
evaluated well after the φ decay. In our numerical study,
we take the standard-model value of g∗s(Tφ) = 106.75.
In order to obtain ∆Neff " 1, the energy density of φ

should nearly dominate the Universe at the decay. There-
fore, the expansion rate of the Universe around the φ de-
cay epoch is modified. Fig. 1 shows the product tH as a
function of cosmic time t normalized by tdec, defined by

tdec ≡
1

Γφ

. (7)

Here we have fixed initial conditions of ρφ and ρrad so
that ∆Neff = 1 is realized. Solid (red), long-dashed
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FIG. 1: Evolution of the product tH as a function of cosmic
time (normalized by tdec) for BX = 0.26 (red solid), 0.5 (green
dashed), 0.7 (blue dotted) and 1.0 (magenta dot-dashed) for
explaining ∆Neff = 1.

(green), short-dashed (blue) and dotted (magenta) lines
correspond to BX = 0.26, 0.5, 0.7 and 1.0, respectively.
It is seen that φ has significant energy fraction around
its decay and the expansion rate is modified from the
radiation-dominated one (tH = 1/2). In the limit of φ
domination, we need BX " 0.26 for ∆Neff = 1. Thus
BX ! 0.26 is required in order to realize ∆Neff = 1.
Since the background expansion rate is imprinted in the
GW spectrum [35–50], a particular shape in the GW
spectrum is expected if dark radiation is produced by
decaying matter, as we sill see.

B. Model

As one of the motivated models of φ and X , we con-
sider the saxion and axion in a supersymmetric axion
model [51]. This possibility was studied in Refs. [12, 16,
19, 23, 26] in the context of dark radiation.

The axion is a pseudo Nambu-Goldstone boson as-
sociated with the spontaneous breakdown of the global
U(1)PQ symmetry [52]. It solves the strong CP problem
in the quantum chromodynamics. The axion has interac-
tions suppressed by the U(1)PQ breaking scale, fa. The
value of fa is phenomenologically constrained as 109GeV
" fa " 1012GeV, and the axion mass is ∼ 10−2–10−5 eV
for this range of fa [53]. Thus the axion is a good candi-
date of dark radiation.

In a supersymmetric extension of the axion model,
there appears a scalar partner of the axion, called saxion,
which is massless in supersymmetric limit but obtains a
mass from supersymmetry breaking effects. Writing the
saxion mass as mφ, the saxion decay rate into the axion

Deviation from R.D., tH=0.5, around Φdecay
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

anisotropic
stress
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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FIG. 6: Same as Fig. 3 but for BX = 1.0.

diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.

Acknowledgments

This work is supported by Grant-in-Aid for Scientific
research from the Ministry of Education, Science, Sports,
and Culture (MEXT), Japan, No. 22540263 (T.M.), No.
22244021 (T.M.), No. 23104001 (T.M.), No. 21111006
(K.N.), and No. 22244030 (K.N.).

Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 1

Numerical result
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on Φ lifetime
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depends on 

inflation scale

Detectable at DECIGO for r � 10�3 T� � 107 GeVand
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FIG. 3: ΩGW(k)/Ω(SM)

GW (k) as a function of k (normalized by
kdec) for BX = 0.26. The green (dotted) line is the full result,
taking account of the effect of anisotropic stress. For compar-
ison, in the solid line (red), we also plot ΩGW(k)/Ω(SM)

GW (k)
without the effect of anisotropic stress.

C. Results

In Figs. 3 – 6, we plot the GW spectrum normalized

by Ω(SM)
GW (k) predicted in the present scenario, varying

BX from 0.26 to 1.0. The horizontal axis is normalized
by kdec. For comparison, we have also plotted the GW
spectrum without the effect of anisotropic stress. As one
can see, the spectrum of the GWs has a characteristic
change at k ∼ kdec if the dark radiation (with ∆Neff ∼
1) is produced by the decay of massive particle. Thus,
once the GW spectrum is precisely measured, we have a
chance to extract the information on the mechanism of
dark-radiation production.
There are several effects on the GW spectrum in the

presence of dark radiation. First, since φ (nearly) dom-
inates the Universe at the decay in order to realize
∆Neff ∼ 1, ΩGW decreases at k ! kdec. This is due to the
change of equation of state of the Universe. As a result,
as one can see, ΩGW is suppressed for high frequency
modes which enter the horizon before the φ-domination.
In addition, most importantly, the effect of anisotropic

stress caused by dark radiation dissipates the GW en-
ergy density of the mode with k " kdec. Consequently,
together with the effect of the change of equation of state,
a dip in the spectrum may appear at k ∼ kdec. In partic-
ular, the dip becomes more apparent when BX is close
to 1. Such a dip provides a smoking-gun signature of the
dark-radiation production by the decay of massive par-
ticles. If φ and X are completely sequestered from the
standard-model sector, for example, BX = 1 may be re-
alized. Then, such a model provides a striking signature
in the GW spectrum.
Note that, in the low frequency limit k " kdec, we have
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numerically confirmed the suppression factor C2 caused

by dark radiation. As a result, ΩGW/Ω(SM)
GW at k " kdec

is close to one as shown in Fig. 2.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the spectrum of infla-
tionary GW background in the presence of dark radia-
tion, motivated by recent observational preferences for
∆Neff ∼ 1. We have assumed that the dark radiation is
non-thermally produced by decay of massive particles φ.
There are several effects on the GW spectrum. First, the
equation of state of the Universe is modified due to the φ
energy density and it changes the shape of the GW spec-
trum. Second, the anisotropic stress carried by dark ra-
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is close to one as shown in Fig. 2.

IV. CONCLUSIONS AND DISCUSSION

In this paper we have studied the spectrum of infla-
tionary GW background in the presence of dark radia-
tion, motivated by recent observational preferences for
∆Neff ∼ 1. We have assumed that the dark radiation is
non-thermally produced by decay of massive particles φ.
There are several effects on the GW spectrum. First, the
equation of state of the Universe is modified due to the φ
energy density and it changes the shape of the GW spec-
trum. Second, the anisotropic stress carried by dark ra-
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diation dissipates the GW amplitude for modes entering
the horizon around and after φ decay. Numerical results
show that there may appear a characteristic dip around
k ∼ kdec, which is a smoking-gun signature of dark radi-
ation. It not only provides an evidence of dark radiation,
but also sheds light on its production mechanism.
Some notes are in order. We have assumed that the

dark radiation anisotropic stress is induced only by the
primordial GWs. This is not in general true in the sec-
ond order perturbation theory. Free-streaming particles
(as well as other fluids) contribute to GWs at the second
order in the scalar perturbation even if there is no pri-
mordial tensor perturbation. However, this contribution
is negligible for r ! 10−6 [68, 69].
So far, we have considered dark radiation produced by

the decay of φ. However, it is possible that the dark
radiation was once in thermal equilibrium and decoupled
from thermal bath at the temperature Tdec. In this case,
the extra effective number of neutrino species is given by

∆Neff =
4

7
εNX

[

10.75

g∗s(Tdec)

]4/3

, (29)

where

ε =

{

1 for a real scalar,

7/4 for a chiral fermion,
(30)

and NX counts the number of X species. If the de-
coupling temperature is higher than the weak scale,
we need NX ! 20 for explaining ∆Neff " 1. The
modulation in the GW spectrum, similar to the effect
caused by of neutrinos apparent at the GW frequency of
10−10Hz [28, 30], appears at the frequency inside the
range of DECIGO/BBO sensitivities for Tdec ∼ 107–
109GeV. If the decoupling temperature is O(1)MeV,
NX ∼ 1 is sufficient in order to obtain ∆Neff " 1 but

the dip in the GW spectrum cannot be seen in the GW
detectors. Instead, overall normalization of the GW spec-
trum at the observable frequency range, inferred from the
measured tensor-to-scalar ratio, is enhanced by the fac-
tor C1 ∼ 1.3. (At this epoch, dark radiation took part
in thermal bath and there is no anisotropic stress damp-
ing on GW amplitudes with corresponding modes.) This
provides another indirect evidence of dark radiation.
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Appendix A: Equation of motion of gravitational
waves with dark radiation

In this Appendix we derive Eq. (17), the equation
of motion of GWs with dark radiation. We follow
Refs. [28, 30] but the result is slightly different because
X is continuously produced by the decay of φ so that the
number of X in the comoving volume is not constant.
Throughout this appendix, we use the synchronous

gauge and consider tensor perturbations defined in
Eq. (11).
The equation of motion for tensor perturbations in

Fourier space is

h
′′

ij + 2Huh
′

ij + hij = 16πG
(a

k

)2

Πij , (A1)

where the prime denotes the derivative with respect to
u ≡ k

∫

dt/a and Πij is defined by using the total energy
momentum tensor as

T
(tot)
ij = Pgij + a2Πij , (A2)

P ≡
1

3
T

i(tot)
i . (A3)

Our goal in this appendix is to express the RHS of
Eq. (A1) in terms of metric perturbations. In what fol-
lows, use the fact that only the collisionless particle (i.e.,
X) contributes to the anisotropic stress Πij .
We first introduce the distribution function of the rela-

tivistic components F (tot)(t, xi, pi), with which the total
number of relativistic particles with particular momen-
tum range contained in the volume element is given by
F (tot)dx1dx2dx3dp1dp2dp3. (Here and hereafter, xi is the
comoving coordinate, while pi is the comoving momen-
tum.) Note that F (tot) is a scalar under general coor-
dinate transformations which preserve the synchronous
gauge. The distribution function can be decomposed as

F (tot)(t, xi, pi) = F (X)(t, xi, pi) + F (rad)(t, xi, pi), (A4)

BX = 0.26 BX = 0.5

BX = 0.7 BX = 1
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Summary

• Recent observation suggest extra light 
species : dark radiation

• Dark radiation leaves characteristic 
signature in primordial GW spectrum

• It also contains information on the 
production mechanism of dark radiation.
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GW normalization
4

where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡

8

M2
P

(

Hinf

2π

)2(
k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =

[

g∗(Tin(k))

g
(SM)
∗0

][

g
(SM)
∗s0

g∗s(Tin(k))

]4/3

, (21)

where g(SM)
∗0 = 3.36 and g

(SM)
∗s0 = 3.91, and Tin(k) denotes

the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1

)

(

k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g
(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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the temperature at which the mode k enters the hori-
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by
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kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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pair is typically [54]
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a
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Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be
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[
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(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as
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where ε
(λ)
ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation
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where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0

a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
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, (18)
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and
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where g(SM)
∗0 = 3.36 and g

(SM)
∗s0 = 3.91, and Tin(k) denotes

the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g
(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
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the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g
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∗0 ) with

g∗0 = 2
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
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zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1

)

(

k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find
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where Ωrad = Ω(SM)
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We find g∗0 # 3.82 for Neff = 4. The factor γ is given by
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[

1 +Neff
7

8

(

4

11

)4/3
]

. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
1 + 7

43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

1/γ(SM) + 7
43

(

g∗s(Tφ)

10.75

)1/3
∆Neff

, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g
(SM)
∗0

, (26)
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Radiation
density :

Overall normalization is affected

Standard model plus dark radiation
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GW normalization
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where r denotes the tensor-to-scalar ratio, nt is the tensor
spectral index, k0 = 0.002Mpc−1 is the pivot scale and

∆2
h(k) ≡
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Hinf
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)2(
k

k0

)nt

, (19)

with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by

Ω(SM)
GW (k) = γ(SM)Ω(SM)

rad × ΩGW(k = aH), (20)

where Ω(SM)
rad = 4.2× 10−5h−2 with h parameterizing the

present Hubble parameter as H0 = 100hkm/s/Mpc and

γ(SM) =
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]4/3

, (21)

where g(SM)
∗0 = 3.36 and g

(SM)
∗s0 = 3.91, and Tin(k) denotes

the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1
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k

k0

)nt
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106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
rad × (g∗0/g

(SM)
∗0 ) with

g∗0 = 2

[
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8

(

4

11
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. (24)

We find g∗0 # 3.82 for Neff = 4. The factor γ is given by

γ =
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1/γ(SM) + 7
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, (25)

where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g
(SM)
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, (26)
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kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
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∗0 ) with
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where we have used the relation (6). Therefore, the over-
all enhancement factor for the GW spectrum is given by

C1 ≡
γ

γ(SM)

g∗0

g
(SM)
∗0

, (26)

 0.4
 0.6
 0.8

 1
 1.2
 1.4
 1.6
 1.8

 2
 2.2

 0  0.5  1  1.5  2  2.5  3

C

ΔNeff

C1xC2C1C2

FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Parameterize normalization 4
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with Hinf being the Hubble scale during inflation and we
have assumed the WMAP normalization on the curva-
ture perturbation on large scale [3]. In this subsection,
we consider the modes which enter the horizon in the
radiation-dominated era, since we are interested in the
high-frequency GWs which may be observed by space-
based GW detectors.
First, in the standard model without dark radiation,

the present spectrum of GW is given by
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the temperature at which the mode k enters the hori-
zon. We have γ(SM) # 0.39 for g∗(Tin(k)) = 106.75. The
present GW spectrum per log frequency is then given by

Ω(SM)
GW (k) # 3.3× 10−16

×
( r

0.1

)

(

k

k0

)nt
[

106.75

g∗(Tin(k))

]1/3

. (22)

In the presence of dark radiation, the overall normal-
ization of the GW spectrum is modified due to the change
of expansion rate. Neglecting the effect of anisotropic
stress, we find

ΩGW(k) = γΩrad × ΩGW(k = aH), (23)

where Ωrad = Ω(SM)
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∗0 ) with
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where we have used the relation (6). Therefore, the over-
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FIG. 2: Relative normalization of the GW spectrum for
kEW ! k ! kdec as a function of ∆Neff . C1 (green dashed) :
the enhancement factor due to the modified background evo-
lution. C2 (blue dotted) : the suppression factor due to the
anisotropic stress caused by dark radiation. Their product
C1 × C2 (red solid) determines the resulting overall normal-
ization for the modes kEW ! k ! kdec.

which is 1.35 for ∆Neff = 1. The first factor comes from
the modified expansion rate between the horizon-in and
matter-radiation equality, and the second factor comes
from the change of the epoch of matter-radiation equal-
ity. Thus, without the effect of anisotropic stress, the
GW amplitudes at high frequencies inferred from the
measured tensor-to-scalar ratio at the CMB scales are
enhanced in the presence of dark radiation.
Such an enhancement is compensated by the dissipa-

tion of GWs caused by the anisotropic stress of dark ra-
diation. The suppression factor due to the anisotropic
stress, which we express here by C2, was analytically de-
rived in Ref. [29, 38] as a function of energy fraction of
relativistic free-streaming particles. The relative normal-
ization for the GW spectrum is then given by the product
of them,

ΩGW(k)

Ω(SM)
GW (k)

= C1 × C2, (27)

for k $ kdec, where kdec denotes the comoving Hubble
scale at t = tdec :

kdec ≡ a(tdec)H(tdec). (28)

Fig. 2 shows C1, C2 and their product as functions of
∆Neff for kEW $ k $ kdec where kEW denotes the co-
moving Hubble scale around the electroweak phase tran-
sition. It is seen that there is a cancellation between C1

and C2, and the result is close to one for ∆Neff = O(1).
Although Eq. (27) gives normalization of the GW spec-
trum for kEW $ k $ kdec, the precise shape of the
GW spectrum around k ∼ kdec needs to be investigated
numerically. Detailed results are shown in the next sub-
section.

Modified BG by X :

Anisotropic stress X :

C2
analytically 
derived in

Dicus, Repko (2004)
C1xC2 accidentally close to unity
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F : distribution function of X

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp

µpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi

dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi

dt
=

1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i

a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0

dτ ′
1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

cf) Geodesic eq.
GW effect here
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get
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∂t
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p̂i
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∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as
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In Fourier space,
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∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =
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0

dτ ′
1

2

∂hij
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(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Boltzmann eq. for X
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp

µpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
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where we used

dxi

dt
=

pi

p0
, (A7)

dpi

dt
=

1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
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δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)
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(A9)
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
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length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
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anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
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=
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where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp
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hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi

dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi

dt
=

1

2
gjk,i

pjpk

p0
. (A8)
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Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
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decompose δF into two terms δF1 and δF2 for later con-
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i, pi) ≡ F̄ (t, (gijpipj)
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∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get
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+

p̂i
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∂δF2

∂xi
=
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In terms of conformal time τ =
∫

dt/a, this equation is
expressed as
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In Fourier space,
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+ ikµδF2 =
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where
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i, pi) =

∫
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, (A19)
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We can use line-of-sight integral to get the solution of
Eq. (A18):
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∫ τ

0

dτ ′
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2
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∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

Perturbed :

Anisotropic stress
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:
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=
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)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp

µpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
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+
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where we used
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=
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=
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
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2

)

, (A11)

and the first-order one
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+
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+
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2
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p̄j p̄k
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∂pi
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1
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Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i
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=
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In terms of conformal time τ =
∫

dt/a, this equation is
expressed as
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=
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where
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∫
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pipi should not be confused with

the pressure, and the perturbed part δF . We further
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i

a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0

dτ ′
1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)

7

where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp

µpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
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Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one
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In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction
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4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:
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length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
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We start with the effect of dark radiation on the
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pair is typically [54]

Γφ =
1

64π

m3
φ

f2
a

. (8)

Assuming that the saxion decays in the radiation dom-
inated era, the temperature at the saxion decay is esti-
mated to be

Tφ ∼ 3× 106GeV
( mφ

103TeV

)3/2
(

1010GeV

fa

)

. (9)

The saxion with mass of O(103)TeV is plausible by tak-
ing account of the preference for high-supersymmetry
breaking scale [55] in light of the recent discovery of the
Higgs boson mass of 125GeV [56]. The saxion often dom-
inantly decays into the axion pair (BX # 1). The pro-
duced axions are never thermalized below the tempera-
ture ∼ 107GeV for fa ! 1010GeV [57]. The abundance
of relativistic axion after the φ decay is then estimated
to be

[

ρX

ρrad

]

H!Γφ

∼ BX

[

ρφ

ρtot

]

H=Γφ

#
BX

6

TR

Tφ

(

φi

MP

)2

,

(10)
where TR is the reheating temperature after inflation and
φi is the saxion initial amplitude. Therefore, for appro-
priate choices of TR and φi, the axion abundance pro-
duced by the saxion decay can account for the dark ra-
diation : ∆Neff # 1.

III. SPECTRUM OF GRAVITATIONAL WAVE
BACKGROUND WITH DARK RADIATION

A. Evolution equations

Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as

hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε
(λ)
ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0

a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0

a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24
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k

k0

)nt

, (18)
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Now let us study the evolution of primordial GWs un-
der the presence of dark radiation. The GW corresponds
to the tensor perturbation of the metric. We define the
line element as

ds2 = −dt2 + a2(t)(δij + hij)dx
idxj , (11)

where hij is the transverse and traceless part of the met-
ric perturbation, and the Fourier amplitude of hij as

hij(t,x) =

∫

d3k

(2π)3
hij(t,k)e

ikx

=
∑

λ=+,×

∫

d3k

(2π)3
h(λ)(t,k)ε(λ)ij eikx,

(12)

where ε
(λ)
ij denotes the polarization tensor. As shown in

Appendix, h(λ)(t,k) satisfies the following equation

ḧ(λ) + 3Hḣ(λ) +
k2

a2
h(λ)

=− 24H2 1

a4(t)ρtot(t)

×
∫ t

0

a4(t′)ρX(t′)K

(

k

∫ t

t′

dt′′

a(t′′)

)

ḣ(λ)(t′,k)dt′,

(13)

where

K(u) ≡
j2(u)

u2
= −

sin(u)

u3
−

3 cos(u)

u4
+

3 sin(u)

u5
, (14)

with j2 being the second-order spherical Bessel function.
Contrary to the case of neutrinos studied in Refs. [28, 30],
ρX(t′) is inside the time integral since ρX does not scale
as a−4 while X is produced by the φ decay. In terms of
u and u′ defined as

u = k

∫ t

0

dt′

a(t′)
, (15)

u′ = k

∫ t′

0

dt′′

a(t′′)
, (16)

Eq. (13) becomes

h′′(λ) + 2Huh
′(λ) + h(λ)

=− 24H2
u

1

a4(u)ρtot(u)

×
∫ u

0

a4(u′)ρX(u′)K(u− u′)h′(λ)(u′,k)du′,

(17)

where the prime denotes the derivative with respect to u
and Hu ≡ a′/a. We have solved Eq. (17) together with
the background evolution (2) – (4) to derive the present
GW spectrum.

B. Overall normalization

Before showing the detailed results, we here comment
on the normalization of the present GW energy den-
sity. During inflation, quantum fluctuations of the tensor
perturbation is continuously generated which turn into
stochastic GW background in the present Universe af-
ter the horizon-in [58]. It predicts nearly scale invariant
GW spectrum for the GW modes entering in the horizon
in the radiation-dominated era [59–66]. The GW energy
density per log frequency at the horizon crossing k = aH ,
normalized by the critical energy density, is given by [67]

ΩGW(k = aH) =
∆2

h(k)

24
#

2.43× 10−9r

24

(

k

k0

)nt

, (18)

Eq.of.m of GW (with dark radiation)

Anisotropic stress of X induced by GWs
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where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν

p0
, (A23)

δT
(X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj

p̄0
+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT
(X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF
(rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT
(rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT
(φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT
(tot)
ij = δP · ḡij + P̄ · δgij + a2Πij

=
1

3
a2hij(ρX + ρrad) + a2Πij , (A30)

where we used Eq. (A13) – Eq. (A15), Eq. (A22),
Eq. (A26), hii = 0 and δP = 0. The last condi-
tion comes from the fact that tensor perturbations can-
not produce perturbations in scalar variables. Using
Eq. (A25), Eq. (A28), Eq. (A29), and Eq. (A30), we ob-
tain

a2Πij =
1

a2

∫

d3pδF2pp̂ip̂j . (A31)

Substituting Eq. (A31) into the RHS of Eq. (A1), we
obtain

h
′′

ij + 2Huh
′

ij + hij

= 16πG
(a

k

)2 1

a4

∫

d3ppp̂ip̂j

×
∫ τ

0

dτ ′
1

2

∂hkl

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂kp̂le

−ikµ(τ−τ ′)

= −8πG
1

k2a2

∫ τ

0

dτ ′
∂hkl

∂τ
∫

dΩp
1

π
a4ρX p̂ip̂j p̂kp̂le

−ikµ(τ−τ ′)

= −24H2
u

1

a4ρtot(u)

∫ u

0

du′a4ρX
∂hij

∂u
(u′)

j2(u − u′)

(u− u′)2
,

(A32)

where we used partial integration, Eq. (A26) and Fried-
mann equationH2

u = 8πGρtota
2/3k2. After decomposing

hij using Eq. (12), we finally obtain Eq. (17).
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where we have used δF2(τ = 0) = 0 because there is no
X in the beginning.
We take the first-order perturbation of the energy-

momentum tensor of X :

T (X)
µν =

1
√

−detgµν

∫

d3pF
pµpν

p0
, (A23)

δT
(X)
ij =

1

a3

∫

d3p

[

(δF1 + δF2)
pipj

p̄0
+ F̄ pipjδ

(

1

p0

)]

.

(A24)

Note that energy momentum tensor defined above trans-
forms as a tensor under general coordinate transforma-
tions since

∫

d3p/p0 ∝ d4pδ(gµνpµpν). Using Eq. (A13)
– Eq. (A15), we get

δT
(X)
ij =

1

a3

∫

d3p
[

δF2app̂ip̂j

−
1

2
ahklp

2p̂ip̂j p̂kp̂l
∂F̄

∂p
+

1

2
ahklpp̂ip̂j p̂kp̂lF̄

]

=
1

a3

∫

d3pδF2app̂ip̂j

+
1

a3

∫

dpp2
[

−
1

2
ahklp

2 ∂F̄

∂p
+

1

2
ahklpF̄

]

×
4π

15
(δijδkl + δikδjl + δilδjk)

=
1

a2

∫

d3pδF2pp̂ip̂j +
1

3
a2hijρX . (A25)

Here, we used
∫

dΩpp̂ip̂j p̂kp̂le
−ip̂ik̂iu

= 4π

[

j4(u)k̂ik̂j k̂k k̂l −
j3(u)

u
(k̂ik̂jδkl + 5 perms)

+
j2(u)

u2
(δijδkl + 2 perms)

]

(A26)

and
∫

dp4πp3F̄ = a4ρX , (A27)

where ρX is the energy density of X and jn is the n-th
spherical Bessel function.
Next, we consider the effect of F (rad), for which

δF
(rad)
2 = 0 because the free-streaming length is very

short. Then, we obtain

δT
(rad)
ij =

1

3
a2hijρrad. (A28)

We also note that perturbation in the energy momentum
tensor of φ vanishes since it behaves as non-relativistic
matter :

δT
(φ)
ij = 0. (A29)

Taking the first-order perturbation of Eq. (A3), we ob-
tain

δT
(tot)
ij = δP · ḡij + P̄ · δgij + a2Πij

=
1

3
a2hij(ρX + ρrad) + a2Πij , (A30)

where we used Eq. (A13) – Eq. (A15), Eq. (A22),
Eq. (A26), hii = 0 and δP = 0. The last condi-
tion comes from the fact that tensor perturbations can-
not produce perturbations in scalar variables. Using
Eq. (A25), Eq. (A28), Eq. (A29), and Eq. (A30), we ob-
tain

a2Πij =
1

a2

∫

d3pδF2pp̂ip̂j . (A31)

Substituting Eq. (A31) into the RHS of Eq. (A1), we
obtain

h
′′

ij + 2Huh
′

ij + hij

= 16πG
(a

k

)2 1

a4

∫

d3ppp̂ip̂j

×
∫ τ

0

dτ ′
1

2

∂hkl

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂kp̂le

−ikµ(τ−τ ′)

= −8πG
1

k2a2

∫ τ

0

dτ ′
∂hkl

∂τ
∫

dΩp
1

π
a4ρX p̂ip̂j p̂kp̂le

−ikµ(τ−τ ′)

= −24H2
u

1

a4ρtot(u)

∫ u

0

du′a4ρX
∂hij

∂u
(u′)

j2(u − u′)

(u− u′)2
,

(A32)

where we used partial integration, Eq. (A26) and Fried-
mann equationH2

u = 8πGρtota
2/3k2. After decomposing
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where F (X) and F (rad) are distribution functions of the
dark radiation X and that of ordinary radiation (like
photon, gluon, and so on) with very short free-streaming
length, respectively. Hereafter, we omit the superscript
X for the distribution function of X for notational sim-
plicity : F (t, xi, pi) ≡ F (X)(t, xi, pi).
We start with the effect of dark radiation on the

anisotropic stress. The distribution function of X obeys
the collisionless Boltzmann equation with source from
non-relativistic decaying particle φ:

dF

dt
=

BX

4π(p0)3
Γφρφδ

(

p0 −
mφ

2

)

, (A5)

where p0 is the energy ofX , and we assume that φ decays
into two Xs. Also note that p0 and pi should be regarded
as functions of pi through gµνp

µpν = −(p0)2 + a2(δij +
hij)pipj = 0 and pi = gijpj = a−2(δij −hij)pj . The LHS
of Eq. (A5) is

dF

dt
=

∂F

∂t
+

dxi

dt

∂F

∂xi
+

dpi

dt

∂F

∂pi

=
∂F

∂t
+

pi

p0
∂F

∂xi
+

1

2
gij,k

pipj

p0
∂F

∂pk
,

(A6)

where we used

dxi

dt
=

pi

p0
, (A7)

dpi

dt
=

1

2
gjk,i

pjpk

p0
. (A8)

Eq. (A8) is obtained from the geodesic equation.
Next we decompose F into the unperturbed part

F̄ (t, p), where p ≡ √
pipi should not be confused with

the pressure, and the perturbed part δF . We further
decompose δF into two terms δF1 and δF2 for later con-
venience:

δF1(t, x
i, pi) ≡ F̄ (t, (gijpipj)

1/2/a)− F̄ (t, p),

(A9)

δF2(t, x
i, pi) ≡ F − F̄ − δF1. (A10)

We get from Eq. (A5) the zeroth-order equation

∂F̄

∂t
=

BX

4π(p̄0)3
Γφρφδ

(

p̄0 −
mφ

2

)

, (A11)

and the first-order one

∂(δF1 + δF2)

∂t
+

p̄i

p̄0
∂(δF1 + δF2)

∂xi

+
1

2
(δgjk),i

p̄j p̄k

p̄0
∂F̄

∂pi
= a

∂2F̄

∂p∂t
δp0. (A12)

In Fig. 7, we show 4πp3F̄ as a function of p/pdec, where
pdec ≡ a(tdec)mφ/2 is the comoving momentum of X
produced at t = tdec. We can see that the energy fraction

 1
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itr
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FIG. 7: 4πp3F̄ as functions of p (normalized by pdec ≡

a(tdec)mφ/2). Each line corresponds to t " tdec (red solid),
t = 10−4tdec (green long-dashed), 10−2tdec (blue short-
dotted) and tdec(magenta dotted).

4πp3F̄ is mostly carried by X produced at t $ tdec. Then
we use the following equations:

δF1 = −
1

2
hij

pipj

p

∂F̄

∂p
, (A13)

δp0 = −
1

2a

hijpipj

p
, (A14)

δpi = −
1

a2
hijpj . (A15)

Using p̂i ≡ pi/p and substituting Eq. (A13) – Eq. (A15)
into Eq. (A12), we get

∂δF2

∂t
+

p̂i

a

∂δF2

∂xi
=

1

2

∂hij

∂t

∂F̄

∂p
pp̂ip̂j. (A16)

In terms of conformal time τ =
∫

dt/a, this equation is
expressed as

∂δF2

∂τ
+ p̂i

∂δF2

∂xi
=

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j. (A17)

In Fourier space,

∂δF2

∂τ
+ ikµδF2 =

1

2

∂hij

∂τ

∂F̄

∂p
pp̂ip̂j , (A18)

where

δF2(τ, x
i, pi) =

∫

d3k

(2π)3
δF2(τ, ki, pi)e

ikix
i

, (A19)

hij(τ, x
i) =

∫

d3k

(2π)3
hij(τ, ki)e

ikix
i

, (A20)

µ ≡ k̂ip̂i. (A21)

We can use line-of-sight integral to get the solution of
Eq. (A18):

δF2 =

∫ τ

0

dτ ′
1

2

∂hij

∂τ
(τ ′)

∂F̄

∂p
(τ ′)pp̂ip̂je

−ikµ(τ−τ ′), (A22)From Boltzmann eq :
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Introduction
At the early universe, a scalar field may condensate 
homogeneously w/ a far from equilibrium value.

It begins to oscillate coherently at H ~ m and 
behaves as “Matter”.

‣Examples: Inflaton, Moduli, Curvaton, Affleck-Dine field...

To avoid the “overclosure”, the scalar condensate 
should decay to the “Radiation” sector at an 
appropriate epoch.

➡ Interaction btw the scalar and radiation
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Introduction
Such interactions btw scalar and radiation induce 
various effects that make the scalar dynamics 
complicated:

‣Thermal Effects
-Thermally modified effective potential of the scalar field
-Dissipation of scalar condensate into the radiation sector

‣Non-perturbative particle production

‣(possible) non-topological soliton formation

➡We included these effects simultaneously.

e.g., [J. Yokoyama; M. Drewes; A. Berera et al.]

e.g., [L. Kofman, A. Linde, A. Starobinsky]

e.g., [E. Copeland et al.; S. Kasuya et al.]
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Set Up
Let us consider the following simplest set up:

�2�2�̃2���̄�, �

�̃

�

Thermal Plasma

�
Scalar 

Condensate Gauge Int.

χ Sector
✴ w/ “free” quadratic potential

↵T ⇠ �th � HV(�) =
1
2

m�2�2
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Outline
Introduction

Closed Time Path Formalism

Thermal Effects

Non-perturbative Particle Production

Numerical Results
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Thermal Effects
Typically, there are two effects from thermal plasma.

‣Force from thermal plasma

‣Dissipation to thermal plasma

✴If the Bkg plasma remains in thermal equilibrium.

➡Reduced to Coarse-Grained EOM of Φ:

0 =
�S
��
+
��̃
��
=
�S
��
� @F
@�
�⇧ret ⇤ �� + · · ·

' �S
��
� @F
@�
� ���̇; �� ' lim

!!0

⇧J(!, 0)
2!

.

e.g., [A. Berera et al., hep-ph/9803394]
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Thermal Effects
Typically, there are two effects from thermal plasma.

‣Force from thermal plasma:

Free Energy of thermal plasma w/ the background 

�̈ + (3H + ��)�̇ +m2
�� = �

@F
@�

�.
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Typically, there are two effects from thermal plasma.

‣Force from thermal plasma:

Free Energy of thermal plasma w/ the background 

�̈ + (3H + ��)�̇ +m2
�� = �

@F
@�

-Small amplitude ⇒ Thermal mass

-Large amplitude ⇒ Thermal log

[A. Anisimov, M. Dine]

�.

Thermal Effects

F / ↵2T4 ln(�2�2/T2); ��� T

F / �2T2�2; ��⌧ T
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Typically, there are two effects from thermal plasma.

‣Dissipation to thermal plasma:

�̈ + (3H + ��)�̇ +m2
�� = �

@F
@�

Friction coefficient from Kubo-formula �� ' lim
!!0

⇧J(!, 0)
2!

.

Thermal Effects
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Typically, there are two effects from thermal plasma.

‣Dissipation to thermal plasma:

�̈ + (3H + ��)�̇ +m2
�� = �

@F
@�

Friction coefficient from Kubo-formula

-Small amplitude: processes including χ.

-Large amplitude: multiple scattering by gauge bosons.

[D. Bodeker; M. Laine]

�� ⇠ �2↵T

�� ⇠
↵2

ln↵�1
T3

�2

�� ' lim
!!0

⇧J(!, 0)
2!

.

Thermal Effects
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Non-perturb. Production
The adiabaticity of χ particles can be broken down 
when the scalar passes through the origin.

14

‣Adiabaticity is broken if ✏� 1.

✏ :=

������
!̇�
!2
�

������ ; !� =
q

k2 +m�e↵(T)2 + �2�2(t)

[L. Kofman, A. Linde, A. Starobinsky, hep-ph/9704452]
➡Efficient χ production can occur at Φ~0.
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If Φ oscillates w/ the finite T potential (free-energy), 

If Φ oscillates w/ the zero T potential, the efficient 
particle production occurs @

15

8>><>>:
�⌧ ↵
�� ↵

: No efficient prod.
: Complicated...

|�| .
h
m��̃/�

i1/2
.

Non-perturb. Production

n� ⇠
k3
⇤

(2⇡)3 ; k⇤ =
q
��̃m�

[�̃ : amplitude]
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The produced χ may decay @

The Φ’s energy is partially converted to the 
radiation, and it is estimated as

16

Non-perturb. Production
tdec ��(�(tdec)) ⇠ 1.

�⇢�
⇢�
⇠ �2

4⇡3↵1/2 ; @ every one oscillation.

[Otherwise the parametric resonance may occur]

Here we assumed that the decay rate of χ is given by

�� ⇠ ↵m�(�).
[Felder, Kofman, Linde, “Instant preheating”,hep-ph/9812289]
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Numerical Results
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Contour plot of 
m2

��̃
2/2

⇢rad + ⇢inf

�������
H=��

.
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Coupling 
btw Φ & radiation:

↵ = 0.05;

TR = 10
9

GeV;

m� = 1 TeV.

[�̃ : amplitude]
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Summary
Interactions btw scalar and radiation are often 
introduced to avoid overclosure.

Such interactions induce various effects that make 
the dynamics of scalar condensate complicated.

We take into account all these effects properly, and 
show that such effects can change the abundance of 
scalar condensate by orders in a broad range of 
parameters.
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Back Up
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CTP formalism
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Closed Time Path (CTP) formalism gives us useful 
tools to study an evolution of expectation value.

Fig. from M. Garny et al., 0904.3600

‣An expectation  value 
can be obtained from CTP 
integral:

e.g., [J. Berges, hep-ph/0409233]

h ˆOH(t)i = tr

"
ˆ⇢TC exp

 
�i

Z

C
dt0HI(t0)

!
ˆOI(t)

#

⇢ : density matrix

ÔH(t) : Heisenberg Picture

ÔI(t) : Interaction Picture

TC : contour C ordering

CTP Formalism
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It is useful to consider n-point functions on CTP.

23

� = tr

h
⇢̂ ˆ�
i

G = tr

h
ˆ⇢TC ˆ� ˆ�

i
con

Vn = tr

h
ˆ⇢TC ˆ� · · · ˆ�

i
con

TC : contour C ordering

[con. stands for connected part]

‣Kadanoff-Baym: Follow the evolution of Φ and G self-consistently.

➡Schwinger Dyson equations on CTP [w/ skeleton diagram expansion]

G�1 = G�1
0 +⇧[�,G]; ⇧ = �2i

��̃[�,G]
�G

0 =
�S
��
+
��̃[�,G]
��

[Cornwall, Jackiw, Tomboulis,1974]

CTP Formalism
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CTP Formalism
Top-down approach:

24

Kadanoff-Baym eqs.

Coarse-grained eq. for Φ

‣Some fields may be kept in thermal 
equilibrium during the course of Φ’s dynamics.

�

�̃

�
Thermal Plasma

�

Reduce

‣Propagators of these fields

➡ Thermal Propagators
-Thermal mass
-Thermal width
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Coherent Oscillation

25

Scalar condensate is obtained from one point func.

If the scalar oscillates adiabatically w.r.t. thermal 
plasma...

‣Propagators in thermal bath → thermal ones

➡Reduced to Coarse-Grained EOM of Φ:

0 =
�S
��
+
��̃
��
=
�S
��
� @F
@�
�⇧ret ⇤ �� + · · ·

' �S
��
� @F
@�
� ���̇; �� ' lim

!!0

⇧J(!, 0)
2!

.

e.g., [A. Berera et al., hep-ph/9803394]



Coleman-Weinberg 
potential
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CW potential

27

In non-SUSY, there exists Coleman Weinberg (CW) 
potential:

In SUSY, such radiative corrections to flat directions 
are suppressed and remain only small logs due to 
the SUSY breaking effects.

VCW =
X

F

✏F
m4
�(�)

64⇡2

2
66664ln

m2
�(�)

µ2
� 3

2

3
77775

✏F :=

8>><>>:
+1 for real scalar

�2 for Weyl fermion
.
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Numerical Results

29

The beginning of oscillation:

�i [GeV] �i [GeV]Initial amplitude: Initial amplitude:

�
Coupling 
btw Φ & radiation:

(a): thermal log, (b): thermal mass, (c): zero T mass

TR =109 GeV

m� =103 GeV

TR =109 GeV

m� =106 GeV
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Numerical Results
Oscillation w/ thermal log:

30
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Numerical Results

31

Oscillation w/ thermal mass:

H [GeV]
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Numerical Results

32

Oscillation w/ zero T mass:

H [GeV]
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Oscillon
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Oscillon (I-ball)

34

A coherently oscillating scalar with a potential 
flatter than the quadratic one has an instability and 
may fragment into classical lumps.

Even if there is no conserved charge, their stability is 
guaranteed by the adiabatic invariant.

Such a non-topological soliton is dubbed as oscillon 
or I-ball. e.g., [Copeland, Gleiser, Muller, hep-ph/9503217]

[Kasuya, Kawasaki, Takahashi, hep-ph/0209358]

[Kasuya, Kawasaki, Takahashi, hep-ph/0209358]
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Oscillon (I-ball)
The region where the I-ball may be formed.

35

Coupling 
btw Φ & radiation:�

�i [GeV]Initial amplitude:
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Oscillon (I-ball)
The region where the I-ball may be formed.

36

Coupling 
btw Φ & radiation:�

�i [GeV]Initial amplitude:

‣It is also possible that the scalar 
condensation evaporates due to the 
dissipation before the formation of oscillon.

‣Even if this is the case, the delayed type 
oscillon may be formed.

➡ Further study is needed to 
say something conclusively.



Bulk Viscosity
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Bulk Viscosity

38

The dissipation rate at large amplitude regime is 
directly related to the bulk viscosity of Yang-Mills 
plasma.

�� = lim
!!0

⇧J(!, 0)
2!

= lim
!!0

1
2!

Z
d4x e�i!th[Ô(t, x), Ô(0)]i; Ô(x) =

A
8⇡2�

Faµ⌫(x)Fa
µ⌫(x)

Bulk Viscosity: ⇣ =
1

9

Z
d

4

x e

�i!th[Tµµ(t, x),T⌫⌫(0, 0)]i

[D. Bodeker; M. Laine]

⇣ ⇠ ↵2T3

ln[1/↵]

; @ weak coupling

[Arnold, Dogan. Moore, hep-ph/0608012]



 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Taro Kunimitsu, JGRG 22(2012)111211 

“Higgs Condensation in the inflationary universe” 

 



Research Center for the Early Universe (RESCEU) 

Taro Kunimitsu 

PRD 86, 083541 (2012) 

with Jun’ichi Yokoyama 



July 4, 2012 

ATLAS Collaboration 

 

arXiv:1207.7214 

 CMS Collaboration 

 

arXiv:1207.7235 Phys.Lett. B 716, 1 (2012)  Phys.Lett. B 716, 30 (2012)  



Could the Higgs field 

have dominated the 

Universe？ 



Could the Higgs field 

have dominated the 

Universe？ 

(within the SM + Inflaton framework) 



Higgs Field during inflation 



Higgs Field during inflation 



“Higgs  

Condensation" 



Stochastic Inflation 
Starobinsky (1984,1986) 

short-wave part 

long-wave part 



Stochastic Inflation 
Starobinsky (1984,1986) 

short-wave part 

long-wave part 



Fokker-Planck equation 



Fokker-Planck equation 

→ An equilibrium state exists 

for 



Probability distribution 



Probability distribution 



Inflation Model 



Model : k-inflation 
Armendariz-Picon, et al. (1999) 



k-inflation with Higgs 



Primordial 

Fluctuations 



Fluctuations 

We want 



Fluctuations 



Fourier 

Transform 

Fluctuations 



We get 

Too Large! 

Fluctuations 



Summar

y 
Higgs condensation 

→We Showed that the fluctuations 

 are too large 

→Dominates the Universe in k-

inflation 





backups 



Fokker-Planck equation 



Probability Distribution Function 

→ An equilibrium state exists 

for 

Starobinsky, Yokoyama (1994) 



Correlation 

time/length 



During inflation 



When does 

Oscillation start? 



Gravitational 

 particle production 



Energy 

density 
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strings from future CMB, pulsar 
timing and gravitational wave 
direct detection experiments

Sachiko Kuroyanagi 
Univ. of Tokyo

RESCEU 
(RESearch Center for the Early Universe)

12 Nov 2012
Based on 

S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, J. Silk, 
PRD 86, 023503 (2012) + arXiv:1210.2829 [astro-ph]



Cosmic string？
One dimensional topological defect 

generated in the early universe

2: Cosmic superstrings

Generation mechanism 

→ could provide some insight into fundamental physics

1: Phase transition

Cosmological size D-strings or F-strings remains after inflation 

spontaneous symmetry breaking



Cosmic strings become 
loops via reconnection.

Scaling law

Loops lose energy 
by emitting gravitational waves.

Evolution of cosmic strings

Cosmic String Networks approach a self-
similar solution, which always looks same 
at the Hubble scale.

energy density

a: scale factor 

∝a-4 

∝a-3 

∝a-2 X

Cosmic strings

The energy density of cosmic strings ∝a-2 ? 



Observational Probe 

1. Direct detection
     Ground：Advanced-LIGO、KAGRA、

Virgo、IndIGO (2017-)

     Space：eLISA/NGO (2022?)、DECIGO (2027)

eLISA image (http://elisa-ngo.org/)

KAGRA image (http://gwcenter.icrr.u-tokyo.ac.jp/)

2. Pulsar timing :  SKA (2020)

PTA image (NRAO)

3. CMB temperature fluctuation 
    +B-mode polarization :  Planck, CMBpol

DECIGO image, S. Kawamura et al, 
J. Phys.: Conf. Ser. 122, 012006 (2006)

http://gwcenter.icrr.u-tokyo.ac.jp
http://gwcenter.icrr.u-tokyo.ac.jp


Current constraints on cosmic string parameters

・CMB temperature fluctuation:  Gμ<~10-7

Pulsar timing:  Gμ<~10 -9

Direct detection (LIGO GWB):  Gμ<~10-6

3 parameters to characterize cosmic string

・Gμ(= μ/Mpl
2)：tension (line density)

・α：initial loop size L～αH-1

・p：reconnection probability

for loopsα=0.1, p=1

What about future constraints？

for infinite strings・Gravitational lensing:  Gμ<~10-6

・Gravitational waves

Phase transition origin:  p=1
Cosmic superstring: p<<1



Gravitational wave signals
Strong GW emission from singular points 

called kinks and cusps

kink cusp

Gravitational wave background 
(GWB): superposition of small GWs 
coming from the early epoch

Rare Burst: GWs with large 
amplitude coming from close loops

→ direct detection + pulsar timing

→ direct detection



Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)
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 (
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→



Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)

← amplitudera
te

 (
pe

r 
ye

ar
) 
→

LIGO～220Hz

220 oscillations per second
= 7×109 oscillations per year



Gμ=10-7, α=10-16, p=1

GWB

small amplitude
but numerous

Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)

ra
te

 (
pe

r 
ye

ar
) 
→

← amplitude

LIGO～220Hz

220 oscillations per second
= 7×109 oscillations per year



Gμ=10-7, α=10-16, p=1

GWB

Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)

← amplitude

LIGO
h～10-25@ f ～220Hz

ra
te

 (
pe

r 
ye

ar
) 
→



GWB

Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)

← amplitude

LIGO
h～10-25@ f ～220Hz

rare burst

ra
te

 (
pe

r 
ye

ar
) 
→



GWB

Gμ=10-7, α=10-16, p=1

How many cosmic string bursts are coming to the earth per year?
(plotted as a function of the amplitude for the fixed frequency @220Hz)

← amplitude

LIGO
h～10-25@ f ～220Hz

rare burst

distant (old)

near (new)

ra
te

 (
pe

r 
ye

ar
) 
→



Parameter dependences of the rate
Gμ↑

α↓

p ↓ number density ↑

lifetime↓ number density ↓

amplitude of GWs ↑

GW power

Γ: numerical constant ～50-100

（initial loop energy）
（energy release rate per time）

Lifetime of loops ＝

lifetime↓ number density ↓

＝



Parameter dependences of the rate
Gμ

α

p

The parameter dependences of the 
large burst (rare burst) and small 
burst (GWB) are different
because they are looking at 
different epoch of the Universe

→ give different information on 
cosmic string parameters

GWB

rare burst



        

Gμ

α

p

frequency frequency

frequency

frequency

        
Spectrum of the GWB



Accessible parameter region (for p=1)

dotted：Burst

solid：GWB



dotted：Burst

solid：GWB

Advanced-LIGO can detect both rare bursts and GWB

★
Gμ=10-7, α=10-16, p=1



black ：Burst only

red：Burst + GWB

Example: Gμ=10-7, α=10-16, p=1
Adv-LIGO 3year 

Constraint from 
direct detection experiments

Kuroyanagi et. al. PRD 86, 023503 (2012)different parameter dependence
= different constraints on 
parameters



log10 Gµ

log10 

-7.05

-7

-6.95

-16.2 -16 -15.8

log10 

log10 p

-16.2

-16

-15.8

-0.08 -0.06 -0.04 -0.02  0

log10 Gµ

log10 p

-7.05

-7

-6.95

-0.08 -0.06 -0.04 -0.02  0

Before marginalized over

        

Strong degeneracy seen in 
constraint from GWB 

since the observable is only ΩGW

Kuroyanagi et. al. arXiv:1202.3032

black ：Burst only

dotted: GWB only

red：Burst + GWB

Kuroyanagi et. al. PRD 86, 023503 (2012)

Example: Gμ=10-7, α=10-16, p=1
Adv-LIGO 3year 

Constraint from 
direct detection experiments



Signals in the CMB
B-mode polarizationtemperature fluctuation

Gμ Gμ

p p



black : LIGO Burst only
red : LIGO Burst + GWB

blue: LIGO +Planck
green: LIGO+CMBpol
orange: CMB pol only

Gμ=10-7, α=10-16, p=1
Adv-LIGO 3year 
+ CMB B-mode

If we combine CMB constraints...

Kuroyanagi et al. arXiv:1210.2829



Constraints from pulsar timing and space direct detection mission

        

frequency

am
pl

itu
de

  o
f G

W
B

inflation
cusps on loops   kinks on infinite strings

cosmic string

        

pulsar 
timing

direct detection

oldnew

observing GWs 
from different epochs



dotted：Burst

solid：GWB

Pulsar timing (SKA) + Advanced-LIGO burst search

★
Gμ=10-9, α=10-9, p=1



Direct detection + Pulsar timing Gμ=10-9, α=10-9, p=1
Adv-LIGO 3year (burst only)

+ SKA 10year 
Kuroyanagi et al. arXiv:1210.2829



Parameter constraint by eLISA Gμ=10-9, α=10-9, p=1
eLISA 3year
(burst only)

Kuroyanagi et al. arXiv:1210.2829



Summary
• Future CMB and GW experiments can be a powerful tool to 

probe cosmic strings.

• If signals are detected, it would determine cosmic string 
parameters, which can provide us with hints of fundamental 
physics such as particle physics or superstring theory.

• Two different kinds of GW observation (rare burst and GWB) 
provide different constraints on cosmic string parameters and 
lead to better accuracy in determining parameters.

• Combination of different experiments (CMB, Pulser timing, 
direct detection) also helps to get stronger constraints. 

• Space GW missions are more powerful to prove cosmic strings.







Initial number density of loops

Estimation of the GW burst rate

depends on α and p

Evolution of infinite strings
・velocity-dependent one-scale model

energy conservation

energy discarded to loops
for small p:  c → cp

＝
（length of infinite string discarded to loops）

(initial length of loops = αti）

length L, velocity v

random walk of 
straight strings

acceleration due to the curvature of the strings

damping due to the expansion

momentum parameter:



i

GW power

Initial loop length＝

（initial loop energy）
（energy release rate per time）Lifetime of the loop ＝

loop evolution

Γ: numerical constant ～50-100

＝

Loop length at time t

（energy of loop at time t =μl）
      ＝（initial energy of the loop =μαti）ー（enegry released to GWs =PΔt）

From the energy conservation law

ti： time when the loop formed

Estimation of the GW burst rate

i

depends on Gμ and α



GW burst rate emitted at t～t+dt from loops formed at ti～ti+dti

θm

Beaming

∝(loop length at t)1/3

∝(loop length at t)-1
Time interval of GW emission Loop number

GW amplitude from loop of length l

Estimation of the GW burst rate



Generation mechanism 1: phase transition
The Universe has experienced symmetry breakings.

If you consider U(1) symmetry breaking...

High energy vacuum remains at the center

π

π/2π/2

3π/2

3π/2

3π/2

π
π

0

0

Hubble volume
= causal region

03π/2

π/2π

Tension Gμ~ the energy scale of the phase transition



Cosmological size D-strings or F-strings remains after inflation 
in superstring theory 

→ Cosmic strings could give some 
insight into fundamental physics

  Difference from phase transition origin
・low reconnection probability (p) because of the extra dimension

D-string:        p=0.1-1
F-string:         p=10-3-1

・broad values of Gμ depending on the inflation scale and the extra 

internal degrees of freedom
(・Y-junction　・mixed strings with different Gμ)

Phase transition origin:  p=1

Generation mechanism 2: Cosmic superstrings



Cosmic strings become loops when they 
collide and form a network composed by 
loops and infinite strings

Scaling law

Loss of infinite string length 
by generation of loops 

Loops lose energy by emitting gravitational 
waves and shrink

Evolution of cosmic strings

Increase of infinite string length 
by the Hubble expansion

Higher reconnection rate 
more efficient generation of loops

more energy release by the emission of GWs



Evolution of cosmic strings

energy density

a: scale factor 

∝a-4 

∝a-3 

∝a-2 

The network keeps O(1) number of infinite strings in the Hubble horizon

X

α：initial loop size L～αH-1

p：reconnection probability

→ cosmic strings does not dominate the energy density of the Universe.



Initial number density of loops

Loop number generated per unit time
To satisfy the scaling law, infinite strings should lose O(1) Hubble length 
per 1 Hubble time. So they should reconnect O(1) times per Hubble 
time

To reconnect O(1) times per Hubble time, number of infinite strings per 
Hubble volume should be ~ p-1

→total length of infinite strings ~p-1H-1~p-1t

Number of loops＝

N =
p−1t

αt
=

1
pα

（length to lose）
(initial length of loops）

L~H-1

V~H-3

Estimation of the GW burst rate



Fisher information matrix

 Burst

log(Likelihood)

αー

N

h

Observable：amplitude  vs number    

N is predictable by the rate  dR/dh

If	  the	  likelihood	  shape	  is	  sensi5ve	  to	  the	  parameter
	  	  	  	  =	  easy	  to	  es5mate	  the	  parameter

Constraint on parameters



Constraint on parameters
Fisher information matrix

 GWB Observable：ΩGW

log(Likelihood)

αー

If	  the	  likelihood	  shape	  is	  sensi5ve	  to	  the	  parameter
	  	  	  	  =	  easy	  to	  es5mate	  the	  parameter
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• Results 
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Introduction 

• From Equation of state 

 

 

 

 

 

 

• But, the accelerated expansion requires 

P w

4 

Matter  
(non-relativistic particles) 

0matterw 

Radiation  
(relativistic particles and photons) 

1

3
radiationw 

1

3
w  



Introduction 

• Quintessence 
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Energy density and pressure density 

+  Friedmann acceleration equation 

 4 1

2
S d x g V

  
 

      
 



 28

3

a G
V

a


     

Accelerated expansion requires 

 2 V  Flat potential  
(in late time) 

3 0
V

H 



  



Equation of motion 

Friction term 

Driving term 



Introduction 

• Quintessence 
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Equation of state 

 

 

2

2

2

2

P V
w

V







 

  


 



Slow-roll limit :  
2

2
V




1w  
Power-law potential 

 
4 n

n

M
V 







(Original quintessence  
                        models) 



Introduction 

• Quintessence 
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Problem 
The slow-roll limit (overdamping) will occur if 

H m

Mass of scalar-field is very tiny 

 33

0 10H eV

Long range force 



? 
(Why have we never detected it before?) 



Chameleon Dark Energy Model 

• Action in the Einstein frame 
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4 4 ( ) ( ),
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m
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M
S d x g R V d x g


 

 
     

 
 

  L

matter fields couple to a metric 

2 /( ) i PlMig e g
 

 

Conformal rescaling 

3 0
effV

H 



  



    / PlM

e f mfV V e
   

Equation of motion 

(Cosmological scale) 

Einstein frame metric 
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Chameleon Dark Energy Model 

The effective potential 
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Profile          

Chameleon Dark Energy Model 
Equation of motion (full-form) 
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In cosmological scale 
(neglect the gradient term) 

On a spherically symmetric object 
(neglect the time-dependent term) 
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In the chameleon model 

But, the slow-roll limit  
still occurs  
(arXiv:astro-ph/0408415v2) 
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and 
inside an object 

Chameleon Dark Energy Model 

11 

Thin-shell regime 
(large object) 

Thick-shell regime 
(small object) 

Since        and       depend on local matter density 

(Homogeneous density) 

min m

min m and 
outside an object 

The scalar field has to roll out minimum to  
satisfy continuous conditions (    and       ) 

min m

(Thin-shell regime) 

2 types of profile 

 d

dr



(Divided by size of object) 



Chameleon Dark Energy Model 

Pl

F M
M




  

12 

Proved by Conformal transformation  
+ Geodesics equation 

Scalar field acts as a potential for the force 

Fifth force Since scalar field couples to matter 

0x x x
x

   

 







  



We have profile           from  

the thin-shell or thick-shell  
of an object. 
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Effects on Rotation Curves 

13 

     

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Galaxy_rotation_curve 

What will happen on a rotation curve if  
we have chameleon scalar field in our universe? 

We need dark matter 

Observational data (B) 

 

 
Theoretical prediction (A) 

Rotation curve 



NFW profile ISO profile Parametrized 
model 

Effects on Rotation Curves 

• Dark matter halo profiles for investigating are as the 

following 

 

 

 

 

 

 

• We suppose that dark matter halo is a spherical 

symmetric object 
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Effects on Rotation Curves 

• Chameleon profile inside a dark matter halo 

 

 

 

 

 

– Thick-shell regime : density of DM halo is a function of radius 

 

– Power-law potential :  
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Effects on Rotation Curves 

• Numerical solution 
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3 types of solution 
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- Diverge at origin 

- Finite at origin 
- Truncate before origin 



Effects on Rotation Curves 

• Analytic solution 
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Effects on Rotation Curves 

• Constraint  on the matter-chameleon coupling  
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Effects on Rotation Curves 

• Analytic solution (NFW profile) 

 

 

 

 

• Analytic solution (ISO profile) 
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Effects on Rotation Curves 

• Analytic solution (PM profile) 
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Effects on Rotation Curves 
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Late-type low surface  

brightness (LSB) galaxies 

Reference: 

de Blok, W.J.G., and Bosma, A. High-resolution rotation curves of Low Surface 
Brightness galaxies. Astron. Astrophys. 385 (2002): 816 

 
 

c

Pl

GM r r d
v r

r M dr

 
 

Circular velocity + Fifth force 

Only DM halo profile Numerical solution 

Mainly effect on rotation curve 
comes from dark matter halo 



Results 

• Rotation curves of U5005 
      

22 

Red lines 

Error bar: 
http://vizier.cfa.harvard.edu/viz-bin/VizieR?-source=J/A+A/385/816/ 

No chameleon effect 



Results 
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Conclusion 

• We investigate effects of chameleon scalar field on 

rotation curves by adding the fifth force 

 

• Analytic solution + Normal boundary conditions 

       Constraint on coupling constant 

       cannot occur in some DM halo profiles 

 

• Divergent profile 

       Rotation curves are steeper around center of galaxy 

       Upper bound on coupling constant from observational data   
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25 Int. J. Mod. Phys. D Vol. 21, No. 5 (2012) 1250041, arXiv:hep-ph/1103.1198v2 
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Introduction 

・ Large-amplitude inhomogeneities in the early 
universe collapse to form Primordial Black Holes. 

 

・Some inflationary models predict large-amplitude   
curvature perturbation on small scales,  

leading to production of PBHs. 

 

・CMB or LSS probes primordial perturbation on large 
scales, while information about that on small scales  

is scarce.                                                                  

 

 



・Abundance of PBHs has been constrained by  

gravitational lensing, gravitational waves, etc… 
 

・By investigating the condition for PBH formation 

 in detail, PBH abundance can be correctly predicted  

assuming some inflationary model.  
 

・Combined with observational data,  

the prediction can be used to probe  

primordial perturbation on small scales. 

 



scale of pert. 

Hubble radius 

radiation domination 
time 

inflation 

curv. pert.→density pert. δ 

If δ> 𝛿𝑐, PBH is formed 

outline of PBH formation 

analytic calc. numerical calc. 

    PBH  
formation 

curv. pert. is  
time-independent 



・When 𝜖 ≡ Hubble radius

scale of pert.
→ 0, pert. is time-independent. 

So, initial curv. pert. profile is represented by 𝐾𝑖 𝑟 . 

When 𝜖 ≪ 1, the solution of the Einstein eqs.  

can be obtained by asymptotic expansion over 𝜖.  

   

・first order asymptotic expansion: Polnarev, Musco 2007  

 

・We have obtained higher order expansion. 

   Polnarev,  Nakama, Yokoyama,  JCAP09(2012)027 

 



scale of pert. 

Hubble radius 

radiation domination 
time 

inflation 

analytic calc. numerical calc. 
first order 

higher order 

 P
B

H
 fo

rm
atio

n
 

   fast 
accurate 

Benefits of higher order expansion 



 

•                    (definition of 𝑢) 

Einstein eqs. (Misner＆Sharp, 1964) 

 

 

 

 

 

 



・consider perturbed region surrounded by the flat FLRW univ. 

 𝑑𝑠2 = −𝑑𝑡2+𝑑(𝑆𝑟)2 + (𝑆𝑟)2(𝑑𝜗2 + sin2𝜗𝑑𝜑2) 

 

・definition of curvature profile 𝐾 𝑡, 𝑟 : 

𝑑𝑠2 = −𝑎2𝑑𝑡2+
𝑑𝑅2

1−𝐾(𝑡,𝑟)𝑟2
+ 𝑅2(𝑑𝜗2 + sin2𝜗𝑑𝜑2) 

 

・initial curvature profile:𝐾(0, 𝑟) ≡ 𝐾𝑖(𝑟)(<
1

𝑟2
) 

 

・boundary condition: 𝐾(𝑡,∞)  = 0  

The metric above coincides with the flat FLRW metric  
at spatial infinity. 

 

 

 

 



example of initial curvature profile 

central large curvature region 

flat FLRW universe 
at spatial infinity 

r 

(𝐵, 𝜎) = (1,0.7) 



・decompose all the quantities                        

                                     𝑋 𝑡, 𝑟 = 𝑋0(𝑡, 𝑟)𝑋 (𝑡, 𝑟) 
 

 

 

 

 

・expansion parameter：𝜖 ≡
𝐻0

−1

𝑆(𝑡)𝑟𝑖

2

∝ 𝑡 (R. D.) 

 

 

 

 

 

・Rewriting the Einstein eqs. in terms of  𝑋   and  plugging 

                                                        

   

 recurrence relations to calculate 𝑋 𝑛  are obtained. 

FLRW solution deviation from FLRW solution 

comoving  radius of perturbed region 



 𝜌 𝑡, 𝑟  up to second order in 𝜖 

first order 

second order 



 

 

 

 

・Letting  Δ be the required accuracy,   

 

 

 
        

   The maximum of 𝜖𝑁+1𝑋 𝑁+1 (𝑟) 

accuracy of asymptotic expansion 



 

Higher order expansions are accurate  
            even when 𝜖~1 

Time dependence of errors 
𝐵, 𝜎 = (1,0.7) 

𝜖 



 Letting  Δ be the required accuracy, 

 

 

      The maximum of 𝜖𝑁+1𝑋 𝑁+1 (𝑟) 

 

The error is less than   Δ if  

 

 

 

 



 

When to start numerical computation 
( 𝐵, 𝜎 = 0,0.7 ) 

We can delay when to start numerical calc.  
until 𝜖 = 0.51, maintaining the accuracy of 10−5 
with 7th order asymptotic expansion 



𝜖 = 0.9 

𝜖 = 0.5 

𝜖 = 0.1 

Density pert. grows in the central large curv. region. 
If initial curv. is large enough, a PBH is formed. 

time evolution of density pert. profile 

 ((B,σ)=(1,0.7),7th order expansion is used) 
 



summary 

• Spherically symmetric large amplitude perturbation 
embedded in the flat FLRW universe is investigated.  

• The solution of the Einstein eqs. is obtained  

    by asymptotic expansion over 𝜖.   

• The solution is valid while the perturbed region is 
outside the horizon. 

• Initial curvature profile, 𝐾𝑖 𝑟 , generates the 
solution. 

• Since the solution is accurate even when 𝜖~1, we 
can delay the time when numerical computation is 
started. 

work in progress 



backups 

 



• define 𝐾  , which describes time evolution of K 

 

 

 

• 𝐾 (𝑡,∞)=1   since   𝐾 𝑡,∞ = 0, 𝐾𝑖 ∞ = 0. 

 

• 𝐾 (0, 𝑟)=1    since    𝐾 0, 𝑟 ≡ 𝐾𝑖(𝑟). 

 

• 𝐾 > 0, so we can define 𝐾 ≡ log𝐾  

 



 The Einstein equations are rewitten in terms of 𝑋 , 𝑋  . 



・  construct solution by asymptotic expansion 

  𝑋 𝑡, 𝑟 =  ∈𝑛 (𝑡)𝑋 𝑛 (𝑟) 

∞

𝑛=0

  

𝑋 𝑡, 𝑟 =  ∈𝑛 (𝑡)𝑋 𝑛 (𝑟) 

∞

𝑛=0

 

 

• by definition, 𝑋 (0) = 1, 𝑋 (0)= 0. 

 

 



• By plugging the expansions into the Einstein 
eqs, recurrence relations  to calculate the 

expansion coefficients  𝑋 (𝑛) are obtained.  

 

• example of recurrence relations 

 

 

 

 



• By plugging these expansions into the Einstein 
equations, we can obtain recursive relations  

to calculate  𝑋 (𝑛) . 

• We define 

 

 

 

 

• 𝑆(𝑛), 𝑆
∗
(𝑛) depend only on the expansion 

coefficients of up to n-1 order. 

 

some function of 𝑋   







 

B=1 → sharper 
σ=0.7→ wider   
 

B=0 → smoother 
σ=0.7→ wider   
 



 
B=0 → smoother 
σ=0.3→ narrower   
 

B=1 → sharper 
σ=0.3→ narrower   
 



𝑟𝑖  is defined as 𝑟𝒐𝒅  
at an sufficiently early time. 

δ(t, 𝑟𝒐𝒅)=0 

𝛿 1 (𝑡, 𝑟𝑖)=
(1+𝛾)𝑟𝑖

2(3𝐾𝑖 𝑟 +𝑟𝐾𝑖
′(𝑟)) 

5+3𝛾
𝜖=0 



time evolution of density pert. profile 

 ((B,σ)=(1,0.7),7th order expansion is used) 
 

𝛿 > 0: overdense 𝛿 < 0: underdense 

𝑟od 



𝜹 > 𝟎, overdense 

𝜹 < 𝟎, underdense 

(B,σ)=(1,0.7) 



Time evolution of averaged overdensity 

 
A wider, steeper profile is  
more likely to collapse to a PBH. 
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Inflation in string theory

Precision Cosmology

String theory: candidate for unifying all gauge interactions

•formulated in 10/11 dimensions

•based on supersymmetry

CMB data strongly implies inflation

not fully successful due to moduli 
stabilization, ! problem... 

KKLT, KKLMMT, 
axion monodromy,...
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Why N=8 supergravity

�	���
����##����'�"!&
������'�)��'��"%+�"�����%�!�&

���!�&��#���"%�&'%�!��)��(�

ideal playground for exploring string theory dynamics
independent of SUSY breaking objects

N=8 supergravity fails to describe unified gauge interactions, but...

‣N=8 SUGRA is the restrictive than N<8 theories

‣direct relation to fundamental theories

•IIA, IIB, M-theory : N=8

creditable guide toward quantum gravity

•UV finite? (consensus: up to 7 loops)



Our work

We want to reveal full moduli space structure of N=8 supergravity

•classifying vacua (Mink/AdS/dS)

•stability of vacua

‣�+�
•embedding tensor formalism

•homogeneous scalar manifold E7(7)/SU(8)

‣�"�(&�

‣	�&'%��'�"��"(%�%�&(�'&�
•an exhaustive list of SL(8,R)-type vacua  

•an analytic expression of full mass spectra

‣�"'�)�'�"!&�
•more realistic construction of string inflation

•extract universal features of gravity sector of string theory
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‣gauged supergravity

‣embedding tensor



N=8 ungauged supergravity

 Maximal (N=8) ungauged supergravity

‣unique multiplet: 28=128 bosons+128 fermions

Cremmer & Julia 78

graviton gravitino vector gaugino scalar

# of fields 1 8 28 56 70

dof 2 2x8=16 2x28=56 2x56=112 1x70

•obtained via T7 compactification of M-theory

•no scalar potential, no nonabelian gauge fields

•70 scalars parametrize E7(7)/SU(8)

‣N=8 is the maximal # of SUSYs for spin≦2

SL(8,R), the embedding tensor has to belong to 36 and/or 36′, on which we will concentrate in
the rest of the paper.

The scalar potential arises from the O(g2) corrections of supersymmetry transformations. In
terms of XM , it is given by [19]

V =
g2

672

(

XMN
RXPQ

SMMPMNQMRS + 7XMN
QXPQ

NMMP
)

, (2.7)

where MMN is a real and symmetric matrix with the inverse MMN and defined by

M = L · TL , MMN = (M)MN . (2.8)

Here L = L(φ) is the coset representative in the Sp(56,R) representation. From the higher dimen-
sional point of view, the four dimensional scalar potential encodes the internal geometry and the
flux contributions. For generic gaugings, the potential is unbounded both below and above, and
fails to have any extrema.

For later convenience, let us recapitulate some coset representations. Cremmer and Julia intro-
duced the Usp(56) representation, in which the diagonal element of E7(7) algebra is SU(8) [2]. In
the Usp(56) representation the coset representatives take the form,

L(φ)M
N = exp

(

0 φijkl

φijkl 0

)

, φijkl = φ[ijkl] = η(#φ̄)ijkl , (2.9)

where the underlined indices refer to 28 + 28 of SU(8), and η = ±1 corresponds to the chirality
of the spinor representation of SO(8) below. Here i, j, ... are 8 and 8̄ of SU(8), and are raised and
lowered via complex conjugation, as usual. The change of basis can be done via gamma matrices
in the real Weyl spinor representation of SO(8),

LM
N = SM

PLP
Q(S−1)Q

N , SM
N =

i

4
√
2

(

Γij
ab iΓijab

Γijab −iΓij
ab

)

, (2.10)

where (Γij)ab = (Γab)ij =: Γab
ij , and there is no need to distinguish their upper and lower indices.

In particular, we denote by V to describe the coset representative in a mixed basis,

VM
N = LM

P (S−1)P
N . (2.11)

2.2 Mass matrix

The seventy scalars parametrize the homogeneous (and moreover symmetric) coset spaceE7(7)/SU(8).
The homogeneity means that every point on the (Riemannian) manifold can be mapped into any
other point via a global transformation (isometry). In other words, the manifold admits the tran-
sitive group of motions.

What is important here is that the scalar potential is invariant under the simultaneous trans-
formations of the coset representative and of the embedding tensor. Indeed, the potential depends
on a single tensorial combination L−1Θ. To see this, let us define

Θ̃M
αtα := (L−1)M

NΘN
αL−1tαL . (2.12)

This is the analogue of T -tensor in the Sp(56,R) representation. In terms of Θ̃M
α, the potential (2.7)

can be expressed as

V =
g2

672
Θ̃M

αΘ̃N
β(δαβ + 7ηαβ) , (2.13)

– 4 –

coset representative: 56x56 matrix
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The homogeneity means that every point on the (Riemannian) manifold can be mapped into any
other point via a global transformation (isometry). In other words, the manifold admits the tran-
sitive group of motions.

What is important here is that the scalar potential is invariant under the simultaneous trans-
formations of the coset representative and of the embedding tensor. Indeed, the potential depends
on a single tensorial combination L−1Θ. To see this, let us define

Θ̃M
αtα := (L−1)M

NΘN
αL−1tαL . (2.12)

This is the analogue of T -tensor in the Sp(56,R) representation. In terms of Θ̃M
α, the potential (2.7)

can be expressed as

V =
g2

672
Θ̃M

αΘ̃N
β(δαβ + 7ηαβ) , (2.13)
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i,j,...= 8 of SU(8)



Gauged supergravity

 N=8 gauged supergravity a la embedding tensor formalism 

✓O(g): SUSY transformation rules for fermions

✓O(g2): scalar potential

✓O(g): mass terms for fermions

Gauging: enhances global symmetry G⊂E7(7) to local symmetry

XM: generators of G
t!: generators of E7(7)

"=1,..,133: adjoint of E7(7) 
M=1,..,56: fundamental of E7(7) 

(i) Gauge group G satisfies dimG≦28

•Consistency 

(ii) G must form a closed subgroup

(iii) SUSY

ΩMNΘM
αΘN

β = 0

ΘM
α ∈ 912 ⊂ 56× 133

deWit-Samtleben-Trigiante 03

#: Sp(56,R)⊃E7(7) metric

de Wit & Nicolai 81✓simplest ex: SO(8) gauging

∂µ → Dµ = ∂µ − gAµ
MXM . g: gauge coupling

": embedding tensor



Scalar potential

L=L($ijkl): coset rep. of E7(7)/SU(8)

CHAPTER 9. N = 8 GAUGED SUPERGRAVITY

このとき，

A1ij =
1

7
iΩMNQMk

iVN
kl , A2i

jkl = iΩMNPM
jklmVNim . (9.48)

SU(8)共変微分を次のように定義する
DµVM

ij = ∂µVM
ij −Qµkl

ijVM
kl − gAµ

PXPM
NVN

ij , (9.49)

ここでQµ は SU(8) 接続であり，

Qµij
kl = δ[i

[kQµj]
l] , Qµi

j = −Qµ
j
i , Qµi

i = 0 . (9.50)

ここで

ΩMNVMijDµVN
kl = 0 =⇒ Qµi

j =
2

3
i(VΛik∂µVΛjk − VΛ

ik∂µVΛ
jk)− gAµ

MQMi
j . (9.51)

同様に，SU(8)共変テンソルを

Pµijkl = iΩMNVMijDµVNkl , Pµ
ijkl =

η

24
εijklmnpqPµmnpq , (9.52)

とすると，次の関係式が成り立つ
Pµijkl = i(VΛij∂µV

Λ
kl − VΛ

ij∂µVΛkl)− gAµ
MPMijkl . (9.53)

Pµ はスカラーの運動項を定める．
無矛盾なゲージ化では 912に属するΘM

α は 2次の拘束条件 0 = ΩMNΘM
αΘN

β を満たす必要がある．
これは T テンソルを用いて次のように表せる
ΩMN = i

[
(V−1)ij

M (V−1)ijN − (V−1)ijM (V−1)ij
N
]

=⇒ T ij
M

NTijP
Q − TijM

NT ij
P
Q = 0 . (9.54)

これを様々な成分に射影することにより，T テンソルに対する 2次の条件式を得る．
T k

lijTn
mij − Tl

kijTm
nij = 0 , (9.55a)

T k
lijTmnpq

ij +
1

24
εmnpqrstuTl

kijT rstu
ij = 0 , (9.55b)

Tirst
vwT jrst

vw − 1

8
δjiTrstu

vwT rstu
vw = 0 , (9.55c)

Tijkr
vwTmnpr

vw − 9

4
δ[m[iTjk]rs

vwTnp]rs
vw +

1

16
δi[mδjnδ

k
p]Trstu

vwT rstu
vw = 0 . (9.55d)

9.2.2 ポテンシャル
ポテンシャルは T テンソルを用いて次のように表せる

V = g2
(

1

24
|A2i

jkl|2 − 3

4
|Aij

1 |2
)

. (9.56)

ここで 56× 56対称行列M = TM を次のように定義する
MMN := VM

ijVNij + VMijVN
ij , MMN = (M−1)MN = ΩMPΩNQMPQ . (9.57)

このとき，VM
ijVNij =

1
2 (MMN + iΩMN )，ΩMNΩPQ = 2δM [P δ

N
Q] および

PM
ijklPNijkl ±QMij

klQN
ij

kl = PM
ijklPNijkl ∓ 3

2QMj
iQMi

j , (9.58)

より，次の関係式が成立する
XMN

RXPQ
SMMPMNQMRS = MMN (2PM

ijklPNijkl − 3QMi
jQNj

i) ,

XMN
QXPQ

NMMP = MMN (2PM
ijklPNijkl + 3QMi

jQNj
i)

MMNPM
ijklPNijkl = 4|A2l

ijk|2 ,
MMNQNi

jQNj
i = −2|A2i

jkl|2 − 28|Aij
1 |2 . (9.59)

これらを合わせると，ポテンシャルはゲージ構造定数で定まる：

V =
g2

672

(
XMN

PXPQ
SMMPMNQMRS + 7XMN

QXPQ
NMMP

)
. (9.60)
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Mink/AdS/dS ⇒ Einstein-70scalar system E7(7)/SU(8)

•we can move critical pts to origin of scalar mfd

-(!�"(!�����%" ����"*��!����")����!��!"!��!��%��(!��"��$ijkl

Dall’Agata-Inverso’11

At the origin, $ijkl=0, L($)=156 

∂ρV ∝ tρM
NΘM

αΘN
β(δαβ + 7ηαβ) +ΘM

αΘM
βfρβ

γδαγ

just solve a set of quadratic eqs. for "

+

combined with closure condition ΩMNΘM
αΘN

β = 0

‣homogeneity of scalar mfd E7(7)/SU(8)

‣V is invariant under



Dall’Agata-Inverso considered gaugings ⊂SL(8,R)⊂E7(7)

for which "∈912=36+36’+420+420’

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

Θab
c
d = δ[a

cθb]d , Θabc
d = δ[adξ

b]c , (4.1)

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic
charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (4.2)

where

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] . (4.3)

The value of the potential at the origin gives the cosmological constant,

Vc =
g2

8

[
1

4
Tr(θ2)− 1

8
Tr(θ)2 +

1

4
Tr(ξ2)− 1

8
Tr(ξ)2

]
. (4.4)

4.1 Vacua

The extremum condition boils down to [20]

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2aI8 , (4.5)

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

ξ = cθ−1 (c ∈ R) , or ξθ = 0 . (4.6)

These cases will be discussed separately in the following.

(I) θ ∝ ξ−1. We start with the discussion for the case in which both θ and ξ are invertible. Letting

x :=
1

2
Tr(θ) , y :=

1

2
Tr(θ−1) , (4.7)

the stationary point condition (4.5) can be equivalently written as

θ4 − xθ3 − aθ2 + c2yθ − c2I8 = 0 . (4.8)

Since equation (4.8) is invariant under the similarity transformation θ → PθP−1, we can restrict
to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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SL(8,R) vacua

# Ggauge Gres Λ m2 (multipl.)

vi SO(2, 6) SO(2) × SO(6)

CSO(2, 0, 6) SO(2)
Mink 2(2), 12

(20)
, 0(48)

xii SO(4)× SO(2, 2)� T 16 SO(2)2× SO(4)
Mink 4(4), 2(12), 1(16), 0(38)

xiii SO(2)2 � T 20 SO(2)2

i SO(8)

iii SO(7, 1) SO(7) AdS 2(1),−4
5

(27)
,−2

5

(35)
, 0(7)

viii SO(7)� T 7

ii SO(8)

SO(6) AdS 2(2),−1(20),−1
4

(20)
, 0(28)

iv SO(7, 1)

ix SO(7)� T 7

x SO(6)× SO(1, 1)� T 12

v SO(7, 1)

xi SO(6)× SO(1, 1)� T 12
SO(5) AdS 2(3),−4

3

(14)
, 23

(5)
, 0(48)

vii SO(3, 5) SO(3) × SO(5) dS −2(1), 4(5), 2(30), 43
(14)

,−2
3

(5)
, 0(15)

Table 4: mass spectra and residual symmetries for the new vacua. Known solutions of

CSO(2, 0, 6) and SO(8) theories are given for reference. When Λ �= 0, masses are normalized

with respect to it.

constant of a given vacuum for a specific gauging has been fixed, other vacua will keep the

same normalization with respect to that only for fixed combinations of the various rescalings,

which, however, generically depend on the gauging. For instance, in addition to the vacua

in Table 3, we also find an SO(4,4) vacuum in this class, whose cosmological constant can

be normalized to the same value as the one of the vacuum obtained with only θ �= 0.

In fact we can show that this new vacuum constructed with both θ �= 0 and ξ �= 0 is

equivalent to the previous one. This can be done by performing a symplectic rotation of a

form analogous to the one used for the SO(8) gauging, namely (4.19). The relevant matrix

can be constructed using a real representation for the Γab
AB matrices, with (ΓA)

ab and (Γa)AB

elements in Cliff(4,4), satisfying self-duality conditions (4.18) where the indices are raised

and lowered using θ. Unfortunately, it is not easy to envisage the explicit form of a similar

transformation for the other cases, where the corresponding Γ matrices cannot be chosen

to be real and the transformation itself must include a non-compact element of E7(7). This

is the reason why we simply decided to fix c = 1 in all the remaining examples and report

26

gauging residual sym. m2/|Vc|Vc

(%,&): 8x8 matrices 

- �&&�&#��'%���"�!��������%�&��(�����(���&+  �'%��&��%���$(�)���!'�

•assumed ansatz on (%,&) and found several vacua (Mink/AdS/dS)

✓diagonalized 70x70 mass matrix by computers
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‣all SL(8,R) type vacua

‣stability of vacua



SL(8,R) vacua

We can list all possible SL(8,R) vacua by 
obtaining all 8x8 matrices (%,&) satisfying
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Kodama-MN ‘12

a, c : constants

•SL(8,R) vacua are exhausted by list of Dall’agata-Inverso

Gauging Greg Λ m2
S m2

U

SO(4, 4) SO(4)× SO(4) dS −2(×1), 2(×18), 0(×16) 2(×18), 1(×16),−2(×1)

SO(5, 3) SO(5)× SO(3) dS −2(×1),
4
3 (×14)

, 4(×5), 0(×15) 2(×30), − 2
3 (×5)

SO(8)

SO(7, 1) SO(7) AdS 2(×1), − 4
5 (×27)

, 0(×7) − 2
5 (×35)

SO(7)! T7

SO(8)

SO(6) AdS −1(×20), 2(×2), 0(×13) 0(×15), − 1
4 (×20)

SO(7, 1)

SO(7)! T7

SO(6)× SO(1, 1)! T12

SO(7, 1)
SO(5) AdS − 4

3 (×14)
, 2(×3), 0(×18)

2
3 (×5)

, 0(×30)
SO(6)× SO(1, 1)! T12

SO(6, 2) SO(2)4 Mink. Eq. (4.54) Eq. (4.55)

SO(4)× SO(2, 2)! T16 SO(2)4 Mink. Eq. (4.68) Eq. (4.69)

SO(2)× SO(2)! T20 SO(2)2 Mink. Eq. (4.70) Eq. (4.71)

Table 2: Mass spectrum for dyonic gaugings. Except for the Minkowski vacua, mass eigenvalues are

normalized by the absolute value of cosmological constant. Supersymmetries are completely broken.

vacua, due to the restrictive property of maximal supergravity. In particular, the result of this
vacuum search can have significant implications to the construction of inflationary universe models
on the base of string/M theory, because the maximal gauged supergravity may describe the gravity
sector very well, including non-perturbative effects in the 10/11-dimensional framework. In addition
it is also useful for the phenomenological applications to the condensed matter physics.

Utilizing the fact that the scalar fields parametrize the homogeneous space, we can analyze the
70 scalar mass spectrum at the origin of scalar space as argued in [20]. Specializing to the gaugings
contained in SL(8,R), we were able to enumerate all the possible vacua. We also developed a new
formulation which allows us to obtain the analytic expression of mass spectra in terms of eigenvalues
of the embedding tensor. We established an interesting structure about the moduli space of vacua:
when the cosmological constant is nonvanishing, the mass spectrum is only sensitive to the residual
gauge symmetry at the vacua. Namely, the mass spectra have to be coincident among the different
theories as long as their residual gauge symmetries are identical. This resolved the issue which
remained open in [20].

In some cases of dyonic gaugings, we are left with a deformation parameter s. It turns out
that the mass spectrum is nevertheless insensitive to the parameter s in units of the cosmological
constant. This means that SO(4, 4) and SO(5, 3) dS maxima do not provide sufficient e-foldings
in the standard potential-driven inflation scenario even in the deformed theory, since the slow-roll
parameter η is of order unity. We can also verify that the fraction of residual supersymmetries is
not dependent on the deformation parameter, i.e., all vacua except the maximally supersymmetric
AdS totally break supersymmetries.

We have also shown that the generic Minkowski vacua found in this paper do not have stable
mass spectra unless the remaining continuous parameters are finely tuned. This aspect seems a
new feature unnoticed in the literature.

The obvious next step is to explore the vacuum classifications for gaugings contained in other
subgroup of E7(7), such as E6(6) and SU∗(8). We believe that the techniques developed in this paper
could be used in other frames. It is interesting to see whether the characteristic features exposed
here are universal, i.e., whether the mass spectrum is insensitive to the deformation parameter and
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a, c : constants

•SL(8,R) vacua are exhausted by list of Dall’agata-Inverso

•For some vacua (#!0), a single parameter remains

•Minkowski vacua are parametrized by continuous parameters

e.g., dS vacua with SO(4,4)!SO(4)xSO(4) gauging

implying 1parameter deformation of the theory

possible and the (4, 0, 3, 1), (3, 1, 3, 1) types have no fixed points. Equation (4.13) is now solved to
give λ1 = −λ3 ≡ λ ∈ R. This solution corresponds to the SO(4, 4) dS vacua,

θ = λI4 ⊕ (−λ)I4 , V =
g2

4

(

λ2 + λ−2
)

, detθ = λ8 > 0 . (4.17)

At the vacua, the noncompact gauge symmetry is spontaneously broken to SO(4)× SO(4).

Up to this point, we are left with a single parameter λ. Usually we set detθ = ±1, giving
λ = 1 and V = g2/2. Previous studies which did not employ the embedding tensor formalism
have imposed this relation, so any particular attention has been paid to this freedom. However,
it appears that this remaining freedom implies that we have a one-parameter family of SO(4, 4)
deformed theories. This is in sharp contrast with the case (i), for which detθ = 1 is always fulfilled.
Now detθ = ±1 is not satisfied, hence it cannot be transformed by the SL(8,R) action to detθ̃ = ±1,
implying the deformation of the theory.

Although it is important to show which parameter region corresponds to the equivalent theories,
this issue is in general difficult and beyond the scope of the present article.4 Hence, we will
simply specify the allowed range of deformation parameter. However, as far as the stability issue is
concerned, the mass spectrum is nevertheless insensitive to the deformation parameter as we will
prove in the next subsection.

(III) p3 = p4(&= 0). We next discuss the p3 = p4 case, viz, (n1, n2, n3, n4) = (8, 0, 0, 0), (7, 1, 0, 0),
(5, 3, 0, 0), (6, 0, 1, 1) and (5, 1, 1, 1). We take the plus sign in (4.14) and (4.15), the solution of
which can be most conveniently parametrized as

λ1 =

√

−
s(p2s2 + p1)

p1s2 + p2
, λ2 =

s

λ1
, (4.18)

where s(&= 0,±
√

−p2/p1,±
√

−p1/p2) is a real parameter (it leads to the contradiction if s is
complex). In this case, the cosmological constant (4.12) reduces to

Vc = −
g2p1p2(p1 + p2)(1 + s2)3

16s(p1s2 + p2)(p2s2 + p1)
. (4.19)

We now take a closer look at each vacuum.

(8,0,0,0): The θ tensor and the potential are given by

θ = λI8 , Vc = −
3g2(1 + λ4)

4λ2
. (4.20)

λ ∈ R is a deformation parameter. If we require detθ = 1, we have λ = 1 as usual. This is the
well-known maximally supersymmetric AdS vacua at which all (pseudo)scalars vanish.

(7,1,0,0): The θ tensor and the potential are given by

θ = λI7 ⊕
s

λ
I1 , λ =

√

s(s2 − 5)

5s2 − 1
,

V = −
5g2(1 + s2)3

4s(−5 + s2)(−1 + 5s2)
, detθ =

s4(−5 + s2)3

(−1 + 5s2)3
. (4.21)

4Recently it has been conjectured that the different theories may be distinguished according to the eigenvalues of
tensor classifier constructed from a quartic invariant of E7(7), in analogy with the black hole geometry [1].
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ξ = θ−1 ,

c.f.  Dall’Agata-Inverso-Trigiante ’12 for SO(8)



SL(8,R) vacua

Mass spectra are analytically determined Kodama-MN ‘12

where

Tr(tαt
†
β) = δαβ , Tr(tαtβ) = ηαβ . (2.14)

In this form, one notices that the potential depends (quadratically) only on Θ̃M
α, as we desired

to show. Since any point on the scalar manifold can be mapped to any other point, the optimal
setup is to move the critical point to the origin (φijkl = 0), where L(φ) = I56. At the origin, the
extremum condition amounts to the quadratic conditions on ΘM

α.
To take the first variation of the potential, we first note that every variation of the coset repre-

sentative can be written in a form of an E7(7) transformation from the right. In the Sp(56,R) rep-
resentation we have

∂ρL = −Ltρ , (2.15)

where index ρ refers exclusively to 70 noncompact elements of e7(7). This implies

∂ρL
−1 = tρL

−1 , ∂ρM = −L(tρ +
Ttρ)

TL , ∂ρM
−1 = (TL)−1(tρ +

Ttρ)L
−1 . (2.16)

Because of the relation

∂ρ(Θ̃M
αtαN

P ) = tρM
QΘ̃Q

αtαN
P + Θ̃M

αfρα
γtγN

P , (2.17)

the first derivative of V is obtained as

∂ρV =
g2

336

[
tρM

N Θ̃M
αΘ̃N

β(δαβ + 7ηαβ) + Θ̃M
αΘ̃M

βfρβ
γδαγ

]
. (2.18)

At the origin, ∂ρV = 0 imposes a quadratic restriction upon ΘM
α, which should be combined to

be solved with (2.3) and (2.4). It turns out that we can scan the critical points and underlying
gaugings at the same time, as demonstrated in [20].

We can furthermore discuss the mass spectrum at the same time. By virtue of (2.15)–(2.18),
we can likewise obtain the second derivatives of the potential2

∂σ∂ρV =
g2

336

[
(tρ +

Ttρ)M
N tσM

P Θ̃P
αΘ̃N

β(δαβ + 7ηαβ)

+ Θ̃M
αΘ̃M

β(fρα
γfσβ

δδγδ + (fρfσ)α
γδβγ)

+ 2(tρM
Nfσα

γ + tσM
Nfρα

γ)δβγΘ̃M
(αΘ̃N

β)
]
. (2.19)

In order to reduce (2.19) to a more tractable form, we rely on the observation [Ttα, tβ ] ∈ e7(7),
which suggests that there exist constants cαβγ such that [Ttα, tβ ] = cαβγtγ . Applying the Jacobi
identity to (Ttα, tβ , tγ), we have

c(ρσ)
γfγα

δδβδ = −cβ(ρ
γcσ)α

γ − fα(ρ
γfσ)β

δδγδ . (2.20)

Using this relation, a simple computation shows that (2.19) can be cast into

∂ρ∂σV = (M2)ρσ +
1

2
c(ρσ)

γ∂γV , (2.21)

where M2 describes the mass matrix at the extrema,

(M2)ρσ :=
g2

168

[
(s(ρsσ))M

NTr(XM
TXN + 7XMXN ) + 2(s(ρ)M

NTr(sσ)[X(M , TXN)])

−Tr([s(ρ, XM ][sσ),
TXM ])

]
. (2.22)

Here we have defined 56× 56 symmetric matrices,

sρ :=
1

2
(tρ +

Ttρ) . (2.23)

2This expression differs from that obtained in [20], which seems to have a typo.
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Sab:35 scalars

Uabcd:35 pseudoscalars

4. Dyonic gaugings

We move on to the case where additional 36 charges are turned on,

Θab
c
d = δ[a

cθb]d , Θabc
d = δ[adξ

b]c , (4.1)

where θ and ξ are (possibly noninvertible) symmetric tensors. Since both electric and magnetic
charges are introduced, we shall refer to it as dyonic. The gauge generators are now given by

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (4.2)

where

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] . (4.3)

The value of the potential at the origin gives the cosmological constant,

Vc =
g2

8

[
1

4
Tr(θ2)− 1

8
Tr(θ)2 +

1

4
Tr(ξ2)− 1

8
Tr(ξ)2

]
. (4.4)

4.1 Vacua

The extremum condition boils down to [20]

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2aI8 , (4.5)

where a is an arbitrary real constant. The solution for the quadratic constraint is given by

ξ = cθ−1 (c ∈ R) , or ξθ = 0 . (4.6)

These cases will be discussed separately in the following.

(I) θ ∝ ξ−1. We start with the discussion for the case in which both θ and ξ are invertible. Letting

x :=
1

2
Tr(θ) , y :=

1

2
Tr(θ−1) , (4.7)

the stationary point condition (4.5) can be equivalently written as

θ4 − xθ3 − aθ2 + c2yθ − c2I8 = 0 . (4.8)

Since equation (4.8) is invariant under the similarity transformation θ → PθP−1, we can restrict
to diagonal θ. Moreover equations (4.4) and (4.8) are invariant under the rescaling θ → eαθ with
c → e2αc, g → e−αg (α ∈ R). Noticing that the embedding tensor arises together with the coupling
constant, we can achieve c = 1 without loss of generality.

Since θ obeys a quartic polynomial, it has four eigenvalues λi (i = 1, ..., 4) with degeneracy
ni(≥ 0),

θ = λ1In1 ⊕ λ2In2 ⊕ λ3In3 ⊕ λ4In4 ,
∑

i

ni = 8 . (4.9)

From (4.8) one can easily derive

x =
∑

i

λi , y = −
∑

i<j<k

λiλjλk , a = −
∑

i<j

λiλj ,
∏

i

λi = −1 . (4.10)
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sρ =
1

2
(tρ +

Ttρ) =

�
2Sρ ∧ I Uρ

�Uρ −2Sρ ∧ I

�

3.2 Mass spectrum

We now move on to the main part of this paper and determine analytically the full mass spectrum
of 70 scalars. Let sρ = (tρ + T tρ)/2 decompose into

sρ =

(
sρ[ab]

[cd] sρ[abcd]
sρ[abcd] sρ[cd][ab]

)
, (3.9)

where

sρ[ab]
[cd] = −sρ

[cd]
[ab] = 2(Sρ)[a

[cδb]
d] , (sρ)[abcd] = (sρ)

[abcd] = (Uρ)[abcd] . (3.10)

Each of real tensors (S,U) has 35 components and satisfies

S = TS , Tr(S) = 0 , U = "U . (3.11)

Substituting (3.2) and (3.9) into (2.22), we are led to

M2 = M2
(1)(θ) +M2

(2)(θ) , (3.12)

with

M2
(1)(θ) =

1

8
g2

[
−Tr(θ)Tr(S2θ)− [Tr(θS)]2 + 2Tr(S2θ2) + 2Tr(SθSθ)

]
, (3.13)

M2
(2)(θ) =

1

8
g2

[
−U2

[ab][cd]θacθbd +
1

24
U · UTr(θ2)

]
. (3.14)

Here we have introduced the abbreviation

U · U = UabcdUabcd , (U2)[ab][cd] = UabefUcdef , (U2)ab = UacdeUbcde =
1

8
U · Uδab , (3.15)

where the final expression follows from the self-duality of U .
We now split the matrix S into n1 and n2 blocks

S =

(
A11 A12
TA12 A22

)
, θ =

(
λ1In1

λ2In2

)
, (3.16)

and define

A11 =
1

n1
Tr(A11)In1 + Â1 , A22 = − 1

n2
Tr(A11)In2 + Â2 , (3.17)

where Â1 and Â2 are trace-free parts of A11 and A22, respectively.
In order to achieve the correct mass spectrum we need to canonically normalize the scalar

kinetic function. According to (2.10), the fluctuations of scalar fields δφijkl are given by

2S[a
[cδb]

d] + iUabcd =
1

16
Γij
abΓ

kl
cdδφijkl , (3.18)

Then the scalar kinetic term reads

1

12
PµijklPµijkl =

1

12
|∂µφijkl|2 =

1

2
Tr((∂S)2) +

1

12
∂U · ∂U . (3.19)

It follows that

1

2
Tr((∂S)2) =

1

2

[
8

n1n2
(∂TrA11)

2 +Tr((∂Â1)
2) + Tr((∂Â2)

2) + 2Tr(∂TA12∂A12)

]
. (3.20)
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CHAPTER 9. N = 8 GAUGED SUPERGRAVITY

ゲージ群 残存ゲージ群 v = 4g−2V θ SUSY m2/|Vc|
SO(4, 4) SO(4)× SO(4) 1 14 ⊕ (−14) none 0(16), 1(16), 2(36),−2(2)
SO(5, 3) SO(5)× SO(3) 31/4 35/813 ⊕ (−3−3/8)15 none 0(15), 4(5),−2(1), 2(30),

4
3 (14)

,− 2
3 (5)

SO(8) SO(7) −53/4 57/811 ⊕ 5−1/817 none 0(7), 2(1),− 4
5 (27)

,− 2
5 (35)

SO(8) SO(8) −3 18 N = 8 − 2
3 (70)

CSO(2, 6) SO(2)× SO(4) 0 λ12 ⊕ 06 none 0(48),
1
2 (20)

, 2(2)

Table 9.1: Critical points for electric gaugings．

λi ∈ Rとなるのは表 9.1の場合に限られる．また，detθ = 0のときは

n1 = 2 =⇒ V = 0 . (9.95)

次にモジュライの質量行列を陽に求める．sα = (tα + T tα)/2 を次のように分解する：

s =

(
s[ab]

[cd] s[abcd]

s[abcd] s[cd][ab]

)
. (9.96)

ここで

sα[ab]
[cd] = −sα

[cd]
[ab] = 2(Sα)[a

[cδb]
d] , (sα)[abcd] = (sα)

[abcd] = (Uα)[abcd] . (9.97)

(S,U)はそれぞれ 35成分を持つ実テンソルである．

S = TS , Tr(S) = 0 , U = $U . (9.98)

このとき，

(s2)M
NTr(XM

TXN + 7XMXN ) =− 21Tr(θ)Tr(S2θ)− 21[Tr(Sθ)]2 + 3
2Tr(θ

2)Tr(S2) + 27Tr(S2θ2)

+ 21Tr(SθSθ) + 3(U2)ab(θ
2)ab − 21U2

abcdθacθbd , (9.99a)

2sM
NTr(s[X(M , TXN)]) =− 3Tr(θ2)Tr(S2) + 6Tr(S2θ2) + 18Tr(SθSθ) , (9.99b)

−Tr([s,XM ][s, TXM ]) = 3
2Tr(θ

2)Tr(S2) + 9Tr(S2θ2) + 3Tr(SθSθ) + 1
2U · UTr(θ2) .

(9.99c)

ここで

U · U = UabcdUabcd , (U2)[ab][cd] = UabefUcdef , (U2)ab = UacdeUbcde =
1
8U · Uδab . (9.100)

(M2)ρσ = (M2
(1))ρσ + (M2

(2))ρσ , (9.101)

M2
(1) =

1
8g

2
[
−Tr(θ)Tr(S2θ)− [Tr(θS)]2 + 2Tr(S2θ2) + 2Tr(SθSθ)

]
,

M2
(2) =

1
8g

2
[
−U2

[ab][cd]θacθbd +
1
24U · UTr(θ2)

]
. (9.102)

今，場のゆらぎは

(2S ∧ 1+ iU)abcd = 1
16Γ

ij
abΓ

kl
cdδφijkl , (9.103)

とすると，
1

12
PµijklP

µijkl =
1

12
|∂µφijkl|2 =

1

2
Tr((∂S)2) +

1

12
∂U · ∂U . (9.104)

ここで行列 S を n1 + n2 分解する：

S =

(
A B
TB D

)
, θ =

(
λ1In1

λ2In2

)
. (9.105)
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e.g. electric gaugings (&=0) & Vc !0: cosmological constant

decompose into
SL(8,R) irrep



SL(8,R) vacua

Mass spectra for #!0 vacua Kodama-MN ‘12

With reference to (3.13) and (3.16), the mass matrix M2
(1) can be expressed in terms of fields

(A11, Â1, Â2, A12). The canonical mass eigenvalues can be read off in such a way that each coefficient
of these fields agrees with (3.20), thereby

M2
(1) =

8

n1n2
m2

0(1,1)Tr(A11)
2 +m2

1(N1,1)Tr(Â
2
1) +m2

2(1,N2)Tr(Â
2
2) + 2m2

∗(n1,n2)Tr(
TA12A12) ,

(3.21)

where

N1 =
1

2
(n1 − 1)(n1 + 2) , N2 =

1

2
(n2 − 1)(n2 + 2) , (3.22)

and

m2
0(1,1) =

g2

64
[2n2(2− n1)λ

2
1 + 2n1(2− n2)λ

2
2 − (n1 − n2)

2λ1λ2] , (3.23a)

m2
1(N1,1) =

g2

8
λ1[(4− n1)λ1 − n2λ2] , (3.23b)

m2
2(1,N2) =

g2

8
λ2[(4− n2)λ2 − n1λ2] , (3.23c)

m2
∗(n1,n2) =

g2

16
(λ1 + λ2)[(2− n1)λ1 + (2− n2)λ2] = 0 . (3.23d)

At the last equality we have used the stationary point condition (3.7). It follows that the A12 field
is always massless. Boldface letters in the subscript denote the representations of SO(n1)×SO(n2).
This notation manifests multiplicities explicitly, i.e., m2

(k1,k2)
represents the mass spectrum for fields

with k1k2 degeneracies. Note that fluctuations of Tr(A11) and A12 exist for n1n2 > 0, while Â1

(Â2) exists for n1 > 1 (n2 > 1).
When n1 #= 2, 6, the cosmological constant is nonvanishing. So we can normalize the mass

spectra in a unit of the cosmological constant (3.8) and obtain a more comprehensive form

m2
0(1,1) = −2Vc , m2

1(N1,1) =
4Vc

n1 − 2
, m2

2(1,N2) =
4Vc

n2 − 2
. (3.24)

Whereas, for n1 = 2 we have

m2
0(1,1) = m2

2(1,20) = m2
∗(2,6) = 0 , m2

1(2,1) =
1

4
g2λ2

1 . (3.25)

The n1 = 6 case can be deduced similarly.
Let us turn to determine the mass spectrum of pseudoscalars U . We decompose the eight

indices into n1 and n2 blocks,

S1 = {1, ..., n1} , S2 = {n1 + 1, ..., n1 + n2} . (3.26)

Let " be a non-negative integer taking values in the range 0 ≤ " ≤ 4, 0 ≤ 4 − " ≤ n2. Then the
basis of antisymmetric four-form is labeled by pairs I1, I2, where I1 (I2) is a set of " (4− ") indices
belonging to S1 (S2). For any four-form Zabcd, we find

θr [aθ
s
bZcd]rs =

1

12

[
"("− 1)λ2

1 + 2"(4− ")λ1λ2 + (4− ")(3− ")λ2
2

]
Zabcd , (3.27)

from which we are led to

(1 + $)θr [aθ
s
bUcd]rs = 2µ!Uabcd , (3.28)
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(Â2) exists for n1 > 1 (n2 > 1).
When n1 #= 2, 6, the cosmological constant is nonvanishing. So we can normalize the mass

spectra in a unit of the cosmological constant (3.8) and obtain a more comprehensive form

m2
0(1,1) = −2Vc , m2

1(N1,1) =
4Vc

n1 − 2
, m2

2(1,N2) =
4Vc

n2 − 2
. (3.24)

Whereas, for n1 = 2 we have

m2
0(1,1) = m2

2(1,20) = m2
∗(2,6) = 0 , m2

1(2,1) =
1

4
g2λ2

1 . (3.25)

The n1 = 6 case can be deduced similarly.
Let us turn to determine the mass spectrum of pseudoscalars U . We decompose the eight

indices into n1 and n2 blocks,

S1 = {1, ..., n1} , S2 = {n1 + 1, ..., n1 + n2} . (3.26)

Let " be a non-negative integer taking values in the range 0 ≤ " ≤ 4, 0 ≤ 4 − " ≤ n2. Then the
basis of antisymmetric four-form is labeled by pairs I1, I2, where I1 (I2) is a set of " (4− ") indices
belonging to S1 (S2). For any four-form Zabcd, we find

θr [aθ
s
bZcd]rs =

1

12

[
"("− 1)λ2

1 + 2"(4− ")λ1λ2 + (4− ")(3− ")λ2
2

]
Zabcd , (3.27)

from which we are led to

(1 + $)θr [aθ
s
bUcd]rs = 2µ!Uabcd , (3.28)

– 8 –

With reference to (3.13) and (3.16), the mass matrix M2
(1) can be expressed in terms of fields
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m*=0: NG directions
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質量固有値は

m2
U [!] =

g2

32

[
{n1 − !(!− 1)− (n1 − !)(n1 − !− 1)}λ2

1 − 2{!(4− !) + (n1 − !)(4 + !− n1)}λ1λ2

+{n2 − (4− !)(3− !)− (4 + !− n1)(3 + !− n1)}λ2
2

]
. (9.117)

n1 "= 2, 6のとき停留点のポテンシャル値で割ると，

m2
U [!] =

2[2!2 − 2n1!+ (n1 − 2)2]

(n1 − 6)(n1 − 2)
Vc . (9.118)

n1 = 2のとき

m2
U [!=1](×20) =

1
16g

2λ2
1 : (2,20)+ , m2

U [!=2](×15) = 0 : (1,15) . (9.119)

9.3.2 Dyonic gauging

埋め込みテンソルを次のように採る

Θab
c
d = δ[a

cθb]d , Θabc
d = δd

[aξb]c . (9.120)

X テンソルは

X[ab] =

(
X[ab][cd]

[ef ] 0
0 X[ab]

[cd]
[ef ]

)
, X [ab] =

(
X [ab]

[cd]
[ef ] 0

0 X [ab][cd]
[ef ]

)
, (9.121)

ここで

X[ab][cd]
[ef ] = δ[a

[eθb][cδd]
f ] , X[ab]

[cd]
[ef ] = −δ[a

[cθb][eδf ]
d]

X [ab]
[cd]

[ef ] = −δ[c
[aξb][eδd]

f ] , X [ab][cd]
[ef ] = δ[e

[aξb][cδf ]
d] (9.122)

原点におけるポテンシャルの値は

V =
g2

4

[
1

8
Tr(θ2)− 1

16
Tr(θ)2 +

1

8
Tr(ξ2)− 1

16
Tr(ξ)2

]
. (9.123)

このとき 2次の拘束条件は

0 = ΩMNΘM
αΘN

β = Θab
αΘab

β −Θab
αΘabβ =⇒ 0 = δcf (θξ)d

e − δed(θξ)f
c =⇒ θξ ∝ I8 . (9.124)

埋め込みテンソルの 2次の拘束条件の解は

(I) : ξ = cθ−1 , c ∈ R , (II) : ξθ = 0 . (9.125)

停留点条件

2(θ2 − ξ2)− (θTrθ − ξTrξ) = 2a18×8 . (9.126)

aは比例定数．

(I) ξ = cθ−1.
ここで

x := 1
2Tr(θ) , y := 1

2Tr(θ
−1) , (9.127)

とおくと，(9.126)は

θ4 − xθ3 − aθ2 + c2yθ − c218×8 = 0 . (9.128)
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Mass of pseudoscalars can be obtained similarly

l: labeling index

,��!&�!&�'�)��'"�"%���!�����(��!�&������"% �'�"!�#�%� �'�%&

SO(n1,n2)! SO(n1)xSO(n2) θ =

�
λ1In1 0
0 λ2In2

�

�n1, n2���"%%�&#"!��'"�'���(!�%"��!���(���&+  �'%��&

N1 = 1
2 (n1 − 1)(n1 + 2)m2

(p,q) : (p,q) irrp of SO(n1)xSO(n2)



SL(8,R) vacua

Minkowski vacua

where !i’s are nonnegative integers. The multiplicities belonging to the same "! are given by

n1C!1 × · · ·× nmC!m : !1 > n1/2 or !1 = n1/2, !2 > n2/2 or, ... ,

!1 = n1/2, !2 = n2/2, ..., !m > nm/2 . (4.48a)

1

2
n1Cn1/2 × · · ·× nmCnm/2 : !i = ni/2 (i = 1, ...,m) . (4.48b)

We can easily verify

(1 + #)(θr [aθ
s
b + κr

[aκ
s
b)Ucd]rs = 2µ"!Uabcd , (4.49)

where

µ"! =
1

24




(
∑

i

!iλi

)2

+

(
∑

i

(ni − !i)λi

)2

+

(
∑

i

!iκi

)2

+

(
∑

i

(ni − !i)κi

)2

−
∑

i

ni(λ
2
i + κ2

i )



 .

(4.50)

Hence we obtain the mass eigenvalues

M2
(2) =

1

6
m2

["!]
U · U , (4.51)

with

m2
["!]

=
g2
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2
∑

i

ni(λ
2
i + κ2

i )−
(
∑

i

!iλi

)2

−
(
∑

i

(ni − !i)λi

)2

−
(
∑

i

!iκi

)2

−
(
∑

i

(ni − !i)κi

)2


 , (4.52)

which is specified by nonnegative integers !i satisfying

0 ≤ !i ≤ ni ,
m∑

i

!i = 4 . (4.53)

Since the kinetic term for scalars is given by (3.19), m2
["!]

denotes the canonical mass eigenvalues.

We are now armed with necessary tools to demonstrate mass spectra in the dyonic case.

(I) θ ∝ ξ−1. Let us begin with the θ ∝ ξ−1 case.

(i) ni = 2. This case corresponds to the Minkowski vacua of SO(6, 2) gauging, which spontaneously
breaks down to SO(2) × SO(2) × SO(2) × SO(2). Taking the θ tensor as (4.13), equations (4.43)
and (4.46) yield

m2
(1,1,1)(×3) = 0 , m2

∗(×24) = 0 : (2,2,1,1) + · · · ,

m2
i(×8) =

g2

16r2s2t2
×






4st(r − s)(r − t)(1 + r2st) , : (2,1,1,1)
4rt(s− r)(s− t)(1 + rs2t) , : (1,2,1,1)
4rs(r − t)(s− t)(1 + rst2) , : (1,1,2,1)
4(1 + r2st)(1 + rs2t)(1 + rst2) , : (1,1,1,2)

. (4.54)
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SO(6,2), SO(4)xSO(2,2) T16, SO(2)xSO(2) T20 admit Minkowski vacua

e.g., 35 scalar mass eigenvalues for SO(6,2)!SO(2)4 gauging

Unless (r,s,t) are pairwise equal, m2 will be negative

��!�%�����!�"*&���)��(���%��(!&'����

Hence λi’s satisfying the following relation correspond to the critical point,

∑

i

(ni − 2)λi = 0 ,
∑

i

ni − 2

λi
= 0 ,

∏

i

λi = −1 (4.11)

Substitution of (4.11) into (4.4) yields

Vc =
g2

32

∑

i

(ni − 2)(λ2
i + λ−2

i ) . (4.12)

Therefore neither the ordering of λi nor the overall sign flip λi → −λi affect the scalar potential.
We are now going to classify all critical points satisfying (4.11). Letting us denote pi := ni − 2,∑

i pi = 0 and −2 ≤ pi ≤ 6 must be satisfied. Hence there are 15 possible combinations of {pi},
which can be categorized into the following 3 groups,

(i) :{(4,−2,−2, 0), (3,−2,−1, 0), (3,−2, 1, 0), (2,−2, 0, 0), (2,−1,−1, 0), (1,−1, 0, 0), (0, 0, 0, 0)},
(ii) :{(2,−2, 1,−1), (1,−1, 1,−1), (2,−2, 2,−2)} ,
(iii) :{(6,−2,−2,−2), (5,−1,−2,−2), (3, 1,−2,−2), (4,−2,−1,−1), (3,−1,−1,−1)} .

Since the ordering of pi’s is irrelevant, we can take (i) p4 = 0, (ii) p1 = −p2 with p3 = −p4 and
(iii) p3 = p4, respectively without losing generality. In the following, we shall discuss separately
these cases.

(i) p4 = 0. Equation (4.11) implies that all cases belonging to this family can be identified as
degenerate cases of pi = 0 (i = 1, ..., 4). Hence the θ tensor can be written as

θ = rI2 ⊕ sI2 ⊕ tI2 ⊕
(
− 1

rst

)
I2 , detθ = 1 , (4.13)

where r, s and t are real parameters. We find that the cosmological constant (4.12) vanishes and
one of the eigenvalues must have opposite sign from others, since the overall sign flip has no effect.
Hence these vacua correspond to the SO(6, 2) gauging, which spontaneously breaks down to a
compact group SO(2)× SO(2)× SO(2)× SO(2) at the vacua. The residual gauge symmetry would
be enhanced to SO(4)× SO(2)× SO(2) for s = r and to SO(6)× SO(2) for r = s = t.

As we have seen, these vacua are parametrized by 3 continuous parameters. It is noted that
the determinant remains invariant detθ̃ = detθ under the SL(8,R) transformation θ → θ̃ = TUθU
(detU = 1). If detθ = ±1 had not been satisfied, it would correspond to the deformation of the
theory. This is not the case now, since detθ = 1 is always satisfied. This is consistent with the fact
that the moduli mass matrix vanishes exactly in the directions corresponding to the variation of
these parameters, as we will see later.

(ii) p1 = −p2 and p3 = −p4(pi &= 0). In this case, (n1, n2, n3, n4) = (4, 0, 3, 1), (3, 1, 3, 1), (4, 0, 4, 0)
are relevant. Inserting λ4 = −1/(λ1λ2λ3) into the first two equations of (4.11), we get two quadratic
equations for λ3,

p3λ1λ2λ
2
3 + p1λ1λ2(λ1 − λ2)λ3 + p3 = 0 , p3λ1λ2λ

2
3 + p1(λ

−1
1 − λ−1

2 )λ3 + p3 = 0 . (4.14)

These equations imply [(λ1λ2)2 + 1](λ1 − λ2) = 0, giving λ2 = λ1, ±iλ1. In the λ2 = λ1 case,
equation (4.14) implies that λi cannot be all real, so that only the (n1, n2, n3, n4) = (4, 0, 4, 0) case
is possible. The λ2 = ±i/λ1 case amounts to the permutations of eigenvalues for the λ2 = λ1 case.
Hence, the (4, 0, 3, 1), (3, 1, 3, 1) types have no fixed points and this class of solution corresponds to
the SO(4, 4) dS vacua,

θ = λI4 ⊕ (−λ)I4 , V =
g2

4

(
λ2 + λ−2

)
, detθ = λ8 > 0 , λ ∈ R . (4.15)

– 13 –

:specified by 3 continuous parameters



SL(8,R) vacua

Gauging Greg Λ m2
S m2

U

SO(4, 4) SO(4)× SO(4) dS −2(×1), 2(×18), 0(×16) 2(×18), 1(×16),−2(×1)

SO(5, 3) SO(5)× SO(3) dS −2(×1),
4
3 (×14)

, 4(×5), 0(×15) 2(×30), − 2
3 (×5)

SO(8)

SO(7, 1) SO(7) AdS 2(×1), − 4
5 (×27)

, 0(×7) − 2
5 (×35)

SO(7)! T7

SO(8)

SO(6) AdS −1(×20), 2(×2), 0(×13) 0(×15), − 1
4 (×20)

SO(7, 1)

SO(7)! T7

SO(6)× SO(1, 1)! T12

SO(7, 1)
SO(5) AdS − 4

3 (×14)
, 2(×3), 0(×18)

2
3 (×5)

, 0(×30)
SO(6)× SO(1, 1)! T12

SO(6, 2) SO(2)4 Mink. Eq. (4.54) Eq. (4.55)

SO(4)× SO(2, 2)! T16 SO(2)4 Mink. Eq. (4.68) Eq. (4.69)

SO(2)× SO(2)! T20 SO(2)2 Mink. Eq. (4.70) Eq. (4.71)

Table 2: Mass spectrum for dyonic gaugings. Except for the Minkowski vacua, mass eigenvalues are

normalized by the absolute value of cosmological constant. Supersymmetries are completely broken.

vacua, due to the restrictive property of maximal supergravity. In particular, the result of this
vacuum search can have significant implications to the construction of inflationary universe models
on the base of string/M theory, because the maximal gauged supergravity may describe the gravity
sector very well, including non-perturbative effects in the 10/11-dimensional framework. In addition
it is also useful for the phenomenological applications to the condensed matter physics.

Utilizing the fact that the scalar fields parametrize the homogeneous space, we can analyze the
70 scalar mass spectrum at the origin of scalar space as argued in [20]. Specializing to the gaugings
contained in SL(8,R), we were able to enumerate all the possible vacua. We also developed a new
formulation which allows us to obtain the analytic expression of mass spectra in terms of eigenvalues
of the embedding tensor. We established an interesting structure about the moduli space of vacua:
when the cosmological constant is nonvanishing, the mass spectrum is only sensitive to the residual
gauge symmetry at the vacua. Namely, the mass spectra have to be coincident among the different
theories as long as their residual gauge symmetries are identical. This resolved the issue which
remained open in [20].

In some cases of dyonic gaugings, we are left with a deformation parameter s. It turns out
that the mass spectrum is nevertheless insensitive to the parameter s in units of the cosmological
constant. This means that SO(4, 4) and SO(5, 3) dS maxima do not provide sufficient e-foldings
in the standard potential-driven inflation scenario even in the deformed theory, since the slow-roll
parameter η is of order unity. We can also verify that the fraction of residual supersymmetries is
not dependent on the deformation parameter, i.e., all vacua except the maximally supersymmetric
AdS totally break supersymmetries.

We have also shown that the generic Minkowski vacua found in this paper do not have stable
mass spectra unless the remaining continuous parameters are finely tuned. This aspect seems a
new feature unnoticed in the literature.

The obvious next step is to explore the vacuum classifications for gaugings contained in other
subgroup of E7(7), such as E6(6) and SU∗(8). We believe that the techniques developed in this paper
could be used in other frames. It is interesting to see whether the characteristic features exposed
here are universal, i.e., whether the mass spectrum is insensitive to the deformation parameter and

– 24 –
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Summary

  What we have done

•complete classification of vacua for gauge group contained in SL(8,R)

•obtained analytic expressions of mass eigenvalues

✓all vacua are generically unstable

✓many vacua (#"0) contain deformation parameter

✓insensitive to underlying gaugings & deformation parameter

  Future prospects

•explore other gaugings ⊄ SL(8,R)

•construct inflationary models

✓except N=8 AdS vacua, all SUSYs are broken

•find higher dimensional flux vacua description
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The Inflationary Universe

• Inflation solves flatness, horizon, monopole problems 
of the big bang theory.

• At the same time, it provides the initial seed of 
density fluctuations that develop to cosmic structures 
like galaxies. Since the density fluctuations come from 
quantum vacuum fluctuations, they obey Gaussian 
statistics. 

• From observations of CMB temperature anisotropy, 
the amplitude and tilt of the power-spectrum are 
given by Pζ ~ 10-9, ns ~ 0.96. It is consistent with 
Gaussian fluctuations: -10 < fNL < 74. 



The Standard Model Higgs

• The SM of elementary particles is composed of 
quarks, leptons, neutrinos, gauge bosons, and Higgs 
boson. 

• The vev of Higgs gives rise to mass to all particles 
except photons, gluons, and neutrinos.

• From experiments of LHC, the SM Higgs seems to 
be detected.  ATLAS: m ~ 126.5 GeV (5σ); CMS: m 
~ 125.3 ± 0.6 GeV (4.9σ)



Is the inflaton Higgs?

• No, if gravity is minimally coupled to the Higgs.    
Pζ ~ 104 λ ~ 102  too big! 

• Yes, if gravity is non-minimally coupled to the Higgs. 
[Futamase & Maeda 89; Komatsu & Futamase 99; Bezrukov & Shaposhnikov 
08; Barbinsky, Kamenshchik & Starobinsky 08; Germani & Kehagias 10; 
Germani & YW 11; Kamada, Kobayashi, Yamaguchi & Yokoyama 12; ...]        

Pζ ~ λ/ξ2 ~ 10-9 for ξ ~ 5x103 

• How to reheat the Universe? [YW & Komatsu 07; Bezrukov, 
Gorbunov & Shaposhnikov 09; Garcia-Bellido et al 09;  YW 11]



Is the inflaton Higgs?

• No, if gravity is minimally coupled to the Higgs.    
Pζ ~ 104 λ ~ 102  too big! 

• Yes, if gravity is non-minimally coupled to the Higgs. 
[Futamase & Maeda 89; Komatsu & Futamase 99; Bezrukov & Shaposhnikov 
08; Barbinsky, Kamenshchik & Starobinsky 08; Germani & Kehagias 10; 
Germani & YW 11; Kamada, Kobayashi, Yamaguchi & Yokoyama 12; ...]        

Pζ ~ 10-4 λM2/H2 ~ 10-9 for H/M ~ 50 

• How to reheat the Universe? [YW & Komatsu 07; Bezrukov, 
Gorbunov & Shaposhnikov 09; Garcia-Bellido et al 09;  YW 11]



Is the inflaton Higgs?

• No, if gravity is minimally coupled to the Higgs.    
Pζ ~ 104 λ ~ 102  too big! 

• Yes, if gravity is non-minimally coupled to the Higgs. 
[Futamase & Maeda 89; Komatsu & Futamase 99; Bezrukov & Shaposhnikov 
08; Barbinsky, Kamenshchik & Starobinsky 08; Germani & Kehagias 10; 
Germani & YW 11; Kamada, Kobayashi, Yamaguchi & Yokoyama 12; ...]        

Pζ ~ λ/ξ2 ~ 10-9 for ξ ~ 5x103 

• How to reheat the Universe? → gravitational 
inflaton decay [YW & Komatsu 07; 08; Bezrukov, Gorbunov & 
Shaposhnikov 09; Garcia-Bellido et al 09;  YW 11]



SM Higgs as the inflaton

• SM Higgs inflation [Bezrukov & Shaposhnikov 08; Barbinsky, 
Kamenshchik & Starobinsky 08; ...]

• Minimalistic to explain both CMB spectra and LHC 
data

• Higgs gives masses to gauge bosons and quarks. → 
Parametric resonance of W, Z happens during 
oscillations and reheats the Universe [Bezrukov, Gorbunov & 
Shaposhnikov 09; Garcia-Bellido et al 09]



Meta-stability of SM vacuum at high energy? 
[J. Elias-Miro et al 12]

• RG running of λ is sensitive to top mass and strong 
coupling constant.

• Need additional d.o.f? Bosons change the running of λ 
positively while fermions do it negatively.
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Any other classical condensates during Higgs inflation?

• Scalar condensate: 

• Heavy → integrated out; It may leave features on CMB 
spectra.

• Light → frozen but affect inflationary dynamics later; It may 
become Dark Matter (if stable) after inflation.

• Vector condensate → anisotropy [M. Watanabe, Kanno & Soda 
09; ...]

• Can they be curvatons?

• Do they change dynamics and reheating process? 



“Spontaneous symmetry breakdown” due to gravity

• Light scalar dominates energy density after inflation. → Higgs 
acquires non-trivial vev due to negative mass term. It diminishes 
the amplitude of Higgs oscillations, and reheating proceeds 
perturbatively. 

h

Φ

V



• Decay channels: Φ, W, Z, top → kinematically allowed? 
If not, Higgs decays mainly into Φ (tree), γ, gluon (loop) 
gravitationally. [YW 11] 

• Light scalars become Dark Matter if they are stable. If 
unstable, they must decay before BBN. 

Reheating with light scalar condensates



Gravitational inflaton decay [YW 11]

€ 

gµν (x) → ˆ g µν (x) =Ω2(x)gµν (x)

≈ gµν + gµν

F(v)σ
MPl

2

€ 

Tm
µ

µ[ ˆ g µν ] = −
Ω

− ˆ g 
δSm[ ˆ g µν ]
δΩ

Conformal invariance: local scale invariance 
Mass term explicitly breaks scale invariance.

Conformal invariant field:
• Massless spin-½ fields
• Conformally coupled massless spin-0 fields
• Gauge fields (classical level)

AA

g g
ψ

ψ

at the classical level

Lint =
⇥
�g

F1(v)⇥
2M2

Pl

Tµ
mµ

Tµ
mµ =

N��

s=1

2 [�(Dµ⇤s)�Dµ⇤s + 2U(⇤�
s⇤s)] +

N��

f=1

mf ⌅̄f⌅f +
�h(g)

2g
Fµ�Fµ�



Gauge trace anomaly: lowest order decay channel to photons
two-photon decay of the Higgs



Summery of decay rates 

Femions

Scalars

Gauge fields

Probably most 
efficient.
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Preheating with light scalar condensates?

• Gravitationally induced couplings cannot be so 
large since they are essentially Planck-suppressed. 

• Direct couplings to the scalar are assumed to be 
small. Of course, yes in principle.



Conclusions and future work...

• SM Higgs inflation can be saved by additional scalars. 

• However, SSB due to gravity may occur after inflation if 
the scalar dominates energy density.

• Reheating occurs naturally.

• Works left: Dark Matter abundance, Baryogenesis, ...
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Motivation �
¡ Resolution of singularity 

¡ String inspired 
¡  non-BPS D2/D0-system 

¡  2-dimensional space with constant magnetic flux 

¡ (an effective theory of ) quantum gravity 



Realization of 
Noncommutativity�
¡ Noncommutativity between space coordinates 

                                            : constant parameter 

¡  a realization: Wick-Voros product 

[x, y] = i✓, ✓

✓
z =

x+ iyp
2✓

, z̄ =
x� iyp

2✓

◆

(f ? g)(z, z̄) = exp

✓
@

@z̄0
@

@z00

◆
f(z0, z̄0)g(z00, z̄00)

���
z0=z00=z

[z, z̄] = z ? z̄ � z̄ ? z = 1



Field Theory on 
noncommutative space�

S =

Z
dtd

2
x

⇣
@z�@z̄�+

m

2
�

2 + · · ·
⌘

S =

Z
dtd

2
x

⇣
@z� ? @z̄�+

m

2
� ? �+ · · ·

⌘

commutative:�

noncommutative:�



Fuzzy Objects �
Nontrivial Solutions  

in Noncommutative Geometry�



Noncommutative Solitons  �
¡  scalar field theory on NC plane: GMS solitons 

[Gopakumar- Minwalla- Strominger, Kraus-Larsen, …] 

¡  circular symmetric, connection to D-branes �

E =

Z

D
d2zV?(�)

V?(�) =
b2
2
� ? �+

b3
3
� ? � ? �+ · · ·

-2

0

2
-2

0

2

0
2
4
6
8

10

-2
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2



Weyl-Wigner 
Correspondence�

Weyl projection�

function�

operator �

f(z̄, z) =
1X

n=0

fTay
mnz̄

mzn

f̂(â†, â) =
1X

n=0

fTay
mnâ

†mân



Weyl-Wigner 
Correspondence�

function:  
 
star product:   

operators which act  
on the Fock space  
of a harmonic oscillator �

f(x, y)

[x, y] = i✓

f̂(x̂, ŷ)

algebra�

f ? g

operator:  
 
product 
with an ordering:   

algebra�

f̂ · ĝ

[x̂, ŷ] = i✓

[â, â†] = 1



Weyl-Wigner 
Correspondence�

Weyl projection�

function�

operator �

f(z̄, z) =
1X

n=0

fTay
mnz̄

mzn

f̂(â†, â) =
1X

n=0

fTay
mnâ

†mân



Weyl-Wigner 
Correspondence�

inverse Weyl projection�

function�

operator � f̂(â†, â) =
1X

n=0

fTay
mnâ

†mân

f(z̄, z) = h z | f̂ | z i

â | z i = z | z i : coherent state�



Weyl-Wigner 
Correspondence�
In operator formalism: 

  
 

 

N̂ |n i = n |n i



Projection operators 
as NC solitons�
¡  EOM: 

¡  non-trivial sln:                          with 

0 =
@V?

@�
= b2�+ b3� ? �+ b4� ? � ? �+ · · ·

projection operator�
p̂n = |n i hn |

� = �⇤pn(z, z̄) p2n(z, z̄) = pn(z, z̄)

pn(r) = h z | n i h n | z i = e�
r2

2✓
r2n

n!(2✓)n
:circular symmetric�

[GMS (2000)] �



Fuzzy Disc    [Lizzi,  Vitale,  Zampini (2003)] �
¡ Def.: finite dim. truncation of a noncommutative plane 

 

¡  Two parameters:  
¡  noncommutativity: θ 

¡  fuzzyness : N 

¡  applications: 
¡  matrix model 

¡  quantum Hall effect 



A Fuzzy Disc 
(N=10, θ =1) �

p0 + p1 + · · ·+ p9

=
9X

n=0

e�
r2

2✓
r2n

n!(2✓)n

Â10 = P̂10ÂP̂10

P̂10 = p̂0 + p̂1 + · · ·+ p̂9



N=4 case�

GMS solitons and fuzzy disc�

p̂0 = | 0 i h 0 |

p̂1 p̂2 p̂3



Another orthonormal basis 
: angle states? �
¡  number basis: concentric cutting of space 
¡      ~ radius 

¡  another basis: radial cutting of space 
¡      ~ angle 

N̂

'̂

(N̂ ⇠
p

x̂

2 + ŷ

2)



Angles in the 
fuzzy disc�

SK-Asakawa, arXiv:1206.6602 �



Angle Operator and States�
¡  The angle operator:  

¡  Eigen states of the angle operator: 

¡  Relation to the number state 

¡  Orthonormality: 

¡  Angular projection operators: 

      → angular “delta function” peaked at �

h 'm | 'n i = �mn

'̂ |'m i = 'm |'m i

'̂ =
N�1X

m=0

'm |'m i h'm |

'm =
2⇡

N
m

⇡̂m = |'m i h'm |

|'m i = 1p
N

N�1X

n=0

ein'm |n i

with help of 
Pegg-Barnett  
phase operator�



¡  baum-kuchen  vs  shortcake 

�

Two descriptions of fuzzy disc�

p̂0

p̂1
p̂2

p̂3
⇡̂3

⇡̂2

⇡̂1

⇡̂0

N�1X

n=0

p̂n =
N�1X

m=0

⇡̂m



angular projection operators�

⇡(N)
k (r,') =

1

N

N�1X

m,n=0

e�
r2

2✓
rm+n

p
m!n!(2✓)m+n

e�i(m�n)('�'k)

⇡̂3

⇡̂2

⇡̂1

⇡̂0

not concentric, but fan-shaped, like pieces of cake �

N=4 case�



Other fuzzy objects:  
e.g.) fuzzy Annulus �

P̂M
N := p̂M + p̂M+1 + · · ·+ p̂M+N�1

any set of N orthonormal operators is allowed for truncation�



Noncommutative Solitons  
as D0-branes �
¡  scalar field on the NC plane 

= tachyon filed on a non-BPS D2-brane 

¡  The solution  
= a D0-brane (rank             →  same tension) 

¡  Same thing can be said to our case: 
the solution                  also can be seen as a D0-brane, 
with very different shape (fan-shaped) 

¡ Commutative limit (with Nθ fixed),  
angular NC soliton becomes thinner and thinner 
(A D0-brane is twisted into a string!) 

� = �⇤p̂n
p̂n = 1

� = �⇤⇡̂m
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2
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Angular NC Solitons in Gravity�

Figure 12: The ordinary (commutative) Ricci scalar and the Kretchmann invariant for the line

element (4.13). We set ↵0 = ↵1 = ↵2 = 1 and ✓ = 1.
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⇡
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. (4.14)

Note that ⇡(N)
i is idempotent with respect to the Wick-Voros product. Considering this metric

as an ordinary (that is, commutative) one, one can formally construct several quantities such as

the Riemann tensor. This is possible because the function (4.14) is non-zero everywhere, and

the ordinary commutative product is written by using the Wick-Voros product [2]. On the other

hand, the metric itself (4.13) is not invertible with respect to the Wick-Voros product. Figure 12

shows the ordinary Ricci scalar and the Kretchmann invariant for the metric (4.13), respectively.

Both quantities are almost flat in the disc region but diverge outside the disc, which suggest

that the spacetime corresponding to this solution is a fuzzy disc with radius R =
p
6✓. They

also diverge around three points, where ⇡
(3)
0 ,⇡

(3)
1 and ⇡

(3)
2 have their peaks. These divergences

would be artifacts due to the bad choices of the observables, and would be resolved if we define

more admissible quantities. We emphasize that a fuzzy disc is a emergent space in this model,

that is, its size N is not a parameter of the theory but a parameter of a solution.

5 Conclusion and Discussion

In this paper, we investigated the fuzzy disc by introducing the concept of angles. By defining

the angle states |'m i and the angle operator '̂, which are known as the phase states and the

phase operator in quantum optics, we reformulate the N ⇥N matrix algebra for the fuzzy disc

as the commutation relations among the operators '̂, N̂ , Û and V̂ . The angle states were also
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Experiment with laser�
¡ Gaussian beam�



Experiment with laser�
¡  Laguerre-Gaussian beam�

GMS solitons �

angular NC solitons�



Noncommutative Solitons 
with Time-Dependence�



Weyl-Wigner 
Correspondence�

function:  
 
star product:   

operators which act  
on the Fock space  
of a harmonic oscillator �

f(x, y)

[x, y] = i✓

f̂(x̂, ŷ)

algebra�

f ? g

operator:  
 
product 
with an ordering:   

algebra�

f̂ · ĝ

[x̂, ŷ] = i✓

[â, â†] = 1

no restriction as long as � [x̂, ŷ] = i✓



Noncommutative Solitons 
with Time-Dependence�
¡  Time-dependent Harmonic Oscillator 

   e.g.,  

 

 

 → we can solve this system analytically by the LR method �

Ĥ(x, p, t) =
p̂2

2m(t)
+

1

2
m(t)!2(t)x̂2



Lewis-Reisenfeld Method�
¡  Time-dependent Schroedinger equation 

¡  Invariant operator  

¡  Eigenvalue problem 

i~ @
@t
 = Ĥ 

 (x, p, t) = e

i✏(t)
�(x, p, t)

Î
dÎ

dt
=

@Î
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+

1

i~ [Î , Ĥ] = 0

Î�n(x, p, t) = �n�n(x, p, t)

~✏̇ = h�n(t) |
✓
i~ @

@t
� Ĥ

◆
|�n(t) i



Time-Dependent NC Solitons �
¡  general, quadratic, time-dependent Hamiltonian 

 
→ apply to NC solitons 

¡  creation and annihilation operator�

Ĥ(x̂, ŷ, t)

= A(t)x̂2 +B(t)(x̂ŷ + ŷx̂) + C(t)ŷ2 +D(t)x̂+ E(t)ŷ + F (t)

[Choi-Gweon (2004)] �
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Time-Dependent NC Solitons �
¡  time-dependent circular symmetric solitons� [SK, in progress]�

|�n, t i h�n, t |

e�|⇣(t)|2 |⇣(t)|2
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Time-Dependent NC Solitons �
e.g., Caldirola-Kanai oscillator 

[SK, in progress]�

Ĥ = e�tx̂2 + e��tŷ2

t = 1/�



Summary �
¡  The fuzzy disc:  

¡  a disc-shaped, finite region in the NC plane 
¡  a fuzzy approximation by θ 

¡  Introduction of angles to the fuzzy disc 
¡  angle projection operator and angle states 
¡  directly relates the boundary to the bulk 

¡ Application 
¡  angular NC scalar solitons & fan-shaped D-branes 
¡  angular NC gravitational solitons   
¡  laser physics 

¡  Time-dependent noncommutative solitons exist 
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Critical exponents of gravity with 
quantum perturbations 

张宏升 
Center for Astrophysics, 

Shanghai Normal University 
Prime ref: H Zhang (张宏升), X Li, arXiv:1208.0106 



Outline 

• 1. Introduction to thermo dynamical gravity 
• 2. Critical exponents of RN-AdS black hole  
• 3. Quantum perturbations included 

2012/11/9 JGRG 2002 2 



Introduction to thermo dynamical 
gravity 

• Temperature: 1/(8πM) 
• Entropy: A/4 
• Energy: M 
• Event horizon: r+=2M, A=4 πr+  

2012/11/9 JGRG 2002 3 



Van der Waals-Maxwell gas-liquid 
system 

2012/11/9 JGRG 2002 4 

Equation of state 

Critical point 



Critical isotherm  

2012/11/9 JGRG 2002 5 

Critical isotherm  



• Critical exponents of RN black 
hole 
 

2012/11/9 JGRG 2002 6 



RN-AdS space time 

2012/11/9 JGRG 2002 7 



Entropy, temperature, and potential 

2012/11/9 JGRG 2002 8 



Equation of state of RN-AdS 

2012/11/9 JGRG 2002 9 



Critical point 

2012/11/9 JGRG 2002 10 



Critical exponents 

2012/11/9 JGRG 2002 11 

Definition 



N-dimensional case 

• For n-dim RN-AdS black hole, the critical 
exponents take the same values as that of 4-
dim case, ie, 
 

   C Niu, Y Tian, X Wu, Phys.Rev.D85:024017,2012 

• This is a distinctive property of MFT( mean 
field theory). 

2012/11/9 JGRG 2002 12 



• Quantum perturbations 
included 

2012/11/9 JGRG 2002 13 



Temperature correction of Hawking 
radiation 

2012/11/9 JGRG 2002 14 

This equation includes the total effects of the 
quantum perturbations to all orders. 

R. Banerjee and B. R. Majhi, JHEP 0806, 095 (2008) 



Critical point for corrected 
temperature 

2012/11/9 JGRG 2002 15 



Values of critical quantities  

• A special method to solve the above equation. 
• The essential condition is that two roots of 

degenerates to one. Under this condition, and  
     

2012/11/9 JGRG 2002 16 



The simplified equation 

2012/11/9 JGRG 2002 17 



The simplified equation 

2012/11/9 JGRG 2002 18 

8 variables in the above set  



The critical isotherm 

2012/11/9 JGRG 2002 19 



Result of critical exponents 

2012/11/9 JGRG 2002 20 



Physical interpretations 
• For ordinary matter, MFT and RGT present different critical 
     exponents. Theoretically, MFT omits the perturbations 

around the critical point, while RGT carefully considers the 
     perturbation effects at the critical point. In RGT, the whole 

system at the critical point is length scale free, that is, 
     there is no special length scale in this system. In a gravity 

system, there is an inherent length scale G^(-1/2), which 
     makes the RGT cannot do its work in a gravity system. A 

popular result is that the G^(-1/2) with a length scale 
     hinders us to renormalize gravity. Here it hinders us to 

apply RGT in gravity, which makes the perturbed gravity 
     and unperturbed gravity share the same critical exponents, 

though the perturbation shifts the critical point. 

2012/11/9 JGRG 2002 21 



•Thank you for your 
attention. 

2012/11/9 JGRG 2002 22 
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Three-body problem
Particular solutions to the three-body problem

Euler’s collinear solution (1765)
&

Lagrange’s equilateral triangular solution (1772)

J. L. Lagrange



Equilateral triangular solution

C
C : the center of  mass
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60�

60�
L1 L2L3

L4

L5

Lagrange points

Trojan asteroids
Jupiter

Sun

What happens in the general relativity (GR)?



GR effects of  Solar system

Three-body systems: ?

Two-body systems:
(e.g. the perihelion precession of  Mercury)

It is interesting as a new test of  GR



EIH equation of  motion
Einstein-Infeld-Hoffman (EIH) equation of  motion for N bodies

We look for an equilibrium solution in a circular motion

Newtonian term

GR correction by mass

GR correction by velocity
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Equilateral triangular configuration

Equilateral triangle
rIJ = a (I, J = 1, 2, 3)

a

a

a

r1

r2

r3

m2

m3

m1

v3

v2

v1



Center of  mass at 1PN

In general, this is different from the Newtonian one
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Center of  mass at 1PN

In general, this is different from the Newtonian one
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Equilateral triangular solution at the 1PN
At 1PN order, EOM for       becomesm1

n1n�1 is normal ton1 � r1/|r1|, n�1 � v1/|v1|,

� : angular velocity, �I � mI/M, M =
�

I

mI (I = 1, 2, 3)
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Equilateral triangular solution at the 1PN
At 1PN order, EOM for       becomesm1
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Equilateral triangular solution at the 1PN
At 1PN order, EOM for       becomesm1

n1n�1 is normal ton1 � r1/|r1|, n�1 � v1/|v1|,

� : angular velocity, �I � mI/M, M =
�

I

mI (I = 1, 2, 3)

gPN1 =
�

16(⌫22 + ⌫2⌫3 + ⌫23)

M

a3

⇥
h
48(⌫22 + ⌫2⌫3 + ⌫23)� 2(8⌫32 + 7⌫22⌫3 + 7⌫2⌫

2
3 + 8⌫33)

+ (16⌫42 + 41⌫32⌫3 + 84⌫22⌫
2
3 + 41⌫2⌫

3
3 + 16⌫43)

i

�!2n1 = �M

a3
n1 + gPN1n1

+

p
3

16

M

a3
⌫2⌫3(⌫2 � ⌫3)

⌫22 + ⌫2⌫3 + ⌫23

⇥
6 + 9

�
⌫2 + ⌫3

�⇤
�n?1



In only 2 cases, bodies satisfy EOM;
● mass ratio 1 : 1 : 1　 ● mass ratio 0 : 0 : 1

Equilateral triangular solution at the 1PN
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In only 2 cases, bodies satisfy EOM;
● mass ratio 1 : 1 : 1　 ● mass ratio 0 : 0 : 1

This solution does not always exist in GR

Equilateral triangular solution at the 1PN

[Ichita, KY & Asada, PRD 83, 084026 (2011)]
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Equilateral triangular solution at the 1PN
For the arbitrary mass ratio,

a solution exists?

cf. [Krefetz, Astron. J. 72, 471 (1967)] 
for restricted 3-body problem,

used by [Seto & Muto, PRD 81, 103004 (2010)]

?
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m3

Corrections of  distance

a(1 + �31)

a(1 + �12)

a(1 + �23)

m2
m1

PN inequilateral triangle
rIJ = a(1 + �IJ), �IJ = O(1PN)

! = !N

We can ignore the 1PN correction to the center of  mass



Triangular solution at the 1PN
EOM for       becomesm1
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Triangular solution at the 1PN
EOM for       becomesm1
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Triangular solution at the 1PN
EOM for       becomesm1
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Triangular solution at the 1PN

Triangular solution for the arbitrary mass ratio at 1PN

[KY & Asada, submitted]

As a result, we could uniquely express �IJ
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Application for Solar system

Planet Sun-Planet Sun-L4 (L5) Planet-L4 (L5)

Earth -1477 -1477 -1477 -923

Jupiter -1477 -1477 -1477 -922

Corrections for L4 (L5) of  Solar system [m]

The sign + denotes increase of  distance
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Summary

• We found a triangular solution 
at the 1PN order

• The PN triangle is smaller than 
the Newtonian one (for same mass ratio),
and changed from an equilateral triangle

• This solution may also be applied to 
near SMBHs and compact binaries

• Future observations are needed



Ongoing & Future works

• The Stability

• The Gravitational wave

• Higher order PN approximation

• An elliptical motion

• Four (or more) body systems



Thank you for your attention
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Research of the celestial objects by gravitational lensing

Naoki Tsukamoto,1(a) Tomohiro Harada(a) and Kohji Yajima(a)

(a)Department of Physics, Rikkyo University, Tokyo 171-8501, Japan

Abstract
We will suggest two methods to detect Ellis wormholes which is an example of
traversable wormholes of the Morris-Thorne class the with Einstein ring systems
and with the double images. We show that, given the configuration of the gravita-
tional lensing and the radii of the Einstein ring and relativistic Einstein rings, we can
distinguish between a black hole and Ellis wormhole in principle. We also discuss
the signed magnification sums of general spherical lens models including the singular
isothermal sphere, the Schwarzschild lens and the Ellis wormhole. We show that the
signed magnification sums are a very useful tool to distinguish exotic lens objects.

1 Comparison between wormholes and black holes with their
Einstein ring and relativistic Einstein rings

The Ellis spacetime was investigated as a geodesically complete particle model by Ellis [1] and turned
out to describe a wormhole connecting two Minkowski spacetimes. The Ellis wormhole spacetime is a
static, spherically symmetric, asymptotically flat solution of the Einstein equation with a massless scalar
field with a wrong sign as a matter field. Although such a matter field violates energy conditions, it
could represent the negative energy density from the quantum effects, such as the Casimir effect. This
spacetime is a typical and simplest example of wormholes proposed by Morris and Thorne [2, 3]. This is
a traversable wormhole in the sense that an observer can cross this wormhole in both directions.

The deflection angle of light in the Ellis wormhole geometry was studied by Chetouani and Clement
[4] and recently Nakajima and Asada [5]. The gravitational lensing on the Ellis geometry was studied
by Dey and Sen [6], Abe [7] and Toki et al. [8] in the weak gravitational field and Perlick [9], Nandi et
al. [10] and Tejeiro and Larranaga [11] in the strong gravitational field (see Virbhadra and Keeton [12],
Virbhadra [13], Bozza [14], Bozza and Mancini [15] and references therein for the strong field limit).

Recently, Abe suggests to detect the Ellis wormholes with the light curves [7] and Toki et al. suggest
a method to detect the Ellis wormholes with the astrometric image centroid displacements [8]. We will
suggest two methods to detect them with Einstein ring systems [16] and with double images [17]. In this
section, we consider the Einstein ring system.

The line element in the Ellis wormhole solution is given by

ds2 = −dt2 + dr2 + (r2 + a2)(dθ2 + sin2 θdϕ2), (1)

where a is a positive constant corresponding the radius of the wormhole throat at r = 0. The photon is
scattered if |b| > a, while reaches the throat if |b| ≤ a, where b is the impact parameter of the photon.
Since we are interested in the scattering problem, we assume |b| > a. Chetouani and Clement [4] derived
the exact deflection angle α of light on the Ellis wormhole geometry as follows:

α = 2K
(a
b

)
− π, (2)

where K is the complete elliptic integral of the first kind. The deflection angle is diverging in the limit

|b| → a, while it is approximately given in the weak-field regime |b| ≫ a by α ≈ ±π
4

(
a
b

)2
.

Now we will consider the case that both the observer and the source object are far from the lensing
object, or Dl ≫ b and Dls ≫ b, where Dl and Dls are the separations between the observer and lens and
between the lens and source, respectively. The configuration of the gravitational lensing is given in FIG
1.

1Email address: 11ra001t@rikkyo.ac.jp
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Figure 1: The configuration of the gravitational lensing. The light rays emitted by the source S are
deflected by the lens L (a wormhole or a black hole) and reach the observer O with the angle of the
lensed image θ, instead of the real angle ϕ. b and ᾱ are the impact parameter and the effective deflection
angle, respectively. Dl and Dls are the separations between the observer and the lens and between the
lens and the source, respectively.

The lens equation is given by
Dlsᾱ = Ds(θ − ϕ), (3)

where ᾱ = (α mod 2π) is the effective deflection angle, θ and ϕ are the angles of the lensed image and the
real image from the observer, respectively, and Ds = Dl+Dls is the separation between the observer and
source. Note that we have assumed |ᾱ| ≪ 1, |θ| ≪ 1 and |ϕ| ≪ 1. The deflection angle can be expressed
α = ᾱ+2πN , where N is a non-negative integer, denoting the winding number of the light ray. The ring
image corresponds to the image angle θ for vanishing real angle ϕ = 0. By the symmetry, the image is
necessarily a ring with the diameter angle θ.

Since b = Dlθ, we find that the ring image is given by θN = a/(DlkN ), where kN ∈ (0, 1) is a unique
root of the transcendental equation

2K(k)− η

k
= (2n+ 1)π, (4)

where η = (Dsa)/(DlDls). We should note that 2K(k)− η/k is monotonically increasing with respect to
k and changes from −∞ to ∞ as k increases from 0 to 1. The uniqueness of the root follows from the
monotonicity. Moreover, we can conclude that kN monotonically increases and approaches 1 as N → ∞
and hence the image angle θN monotonically decreases and approaches a/Dl.

In the weak-field regime |b| ≫ a, the winding number N should be N = 0. Using the deflection angle

α ≈ ±π
4

(
a
b

)2
, we can solve the equation (4) approximately and get the diameter angle of the Einstein

ring

θ0 ≃
(
π

4

Dls

DsD2
l

a2
) 1

3

≃ 2.0 arcsecond

(
Dls

10Mpc

) 1
3
(
20Mpc

Ds

) 1
3
(
10Mpc

Dl

) 2
3
(

a

0.5pc

) 2
3

. (5)

This approximation is good for Dl ≫ a and Dls ≫ a. The relative error is ∼ 10−2 for a = 0.5pc and
Dl = Dls = 10 Mpc.
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In the especially strong-field regime, where the winding number N becomes N ≥ 1, we can easily
check that a ≃ b or kN ≃ 1 satisfies the transcendental equation (4) in numerical calculations. Physically
this means that the light rays which wind around the wormhole nearly on the photon sphere make
the relativistic Einstein rings [9, 18]. Then the diameter angles of the relativistic Einstein rings are
approximately given by

θN≥1 ≃ a

Dl
≃ 1.0× 10−2 arcsecond

(
10Mpc

Dl

)(
a

0.5pc

)
. (6)

If we are given the distance Ds to the source from the observer, the distance Dl to the lens from the
observer and the radius θ0 of the Einstein ring, we can determine the radius of the throat a from Eq.
(5). Then, we can use θN≥1 (6) to test the assumption that the lens object is a wormhole. From Eqs.
(5) and (6) we obtain the relation between θ0 and θN≥1 by

θN≥1 ≃
(
4

π

Ds

Dls

) 1
2

θ
3
2
0 . (7)

This relation generally holds in astrophysical situations, as long as a≪ Dl and a≪ Dls are satisfied.
The relation between θ0 and θN≥1 for the Schwarzschild spacetime (, see [19, 20, 21],)

θN≥1 ≃ 3
√
3

4

Ds

Dls
θ20 (8)

is different from that on the Ellis spacetime (7). FIG. 2 shows the angle of the relativistic Einstein ring
θN≥1 versus the angle of the Einstein ring θ0 for Dl = Dls = 10Mpc. Thus, we can distinguish between
black holes and wormholes in principle if we are given Ds/Dl, θ0 and θN≥1. We consider the experimental

10�1610�1410�1210�1010�810�610�410�2

10�5 10�4 10�3 10�2 10�1 100 101
� n�1[arseo
nd℄

�0[arseond℄WormholeBlak hole
Figure 2: The angle of the relativistic Einstein ring θN≥1 versus the angle of the Einstein ring θ0 for
Dl = Dls = 10Mpc. The broken (green) and solid (red) lines plot the cases where the lens objects are a
wormhole and a black hole, respectively.

situation where we know the separation Ds between the observer and the source and the separation Dl

between the observer and the lens. We assume that we do not know whether the lens object is a black
bole or a wormhole and do not its parameter, i.e., the mass M or the radius a of the throat in advance.

We need at least two observable quantities to determine whether the lens object is a black hole or
wormhole since the lens system has one parameter in this situation. First, we observe an Einstein ring
and determine the parameter for both possibilities. Second, we observe relativistic Einstein rings and
tell the wormhole from the black hole. If the predicted relativistic ring angles by the black hole and by
the wormhole were of similar size, we could not discern the difference. However, Eqs. (7), (8) and Fig. 2
show that we do not confuse them.
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We conclude that we can detect the relativistic Einstein rings by wormholes which have a ≃ 0.5pc
at a galactic center with the distance Dl = Dls = 10Mpc and which have a ≃ 10AU in our galaxy with
the distance Dl = Dls = 10kpc using the most powerful modern instruments which have the resolution
of 10−2arcsecond such as a 10-meter optical-infrared telescope. Note that the corresponding black holes
which have the Einstein rings of the same size are galactic supermassive black holes with 1010M⊙ and
107M⊙, respectively, and that the relativistic Einstein rings by these black holes are too small to measure
with the current technology.

2 The signed magnification sums of the general spherical lens

In this section, we will show that the signed magnification sum would be a powerful tool to research
the lens objects as well as the total magnification and the magnification ratio if we observe a multiple
image. In particular, we will show that one can distinguish between the Ellis wormhole lens and the
Schwarzschild lens with the signed magnification sums.

We consider the general spherical lens model with the deflection angle in the weak field approximation,
parametrized by

α = ±Cb−n = ± C

Dn
l

θ−n, (9)

where C is a positive constant and n is a non-negative integer and we have used the relation b = Dlθ. If
n is odd, then the sign is only the upper one, while if n is even, then the sign is the upper one for θ > 0
and the lower one for θ < 0. Thus, we have to treat two lens equations when n is even. This lens model
describes the singular isothermal sphere, the Schwarzschild lens and the Ellis wormhole for n = 0, 1 and
2, respectively. The case where n ≥ 3 would describe some exotic lens objects and the gravitational lens
effect of modified gravitational theories. We do not consider the case n = 0 below for simplification. The
following discussion does not depend on the value of C.

The lens equation is given by

θ̂n+1 − ϕ̂θ̂n ∓ 1 = 0, (10)

where θ̂ ≡ θ/θ0 and ϕ̂ ≡ ϕ/θ0 and θ0 ≡
(
DlsC
DsDnl

) 1
n+1

is the Einstein ring angle. The lens equation (10)

has symmetry with respect to the point ϕ̂ = θ̂ = 0, We can concentrate ourselves on the case where
the source angle ϕ is positive for symmetry. The solutions θ̂1, θ̂2, · · · , θ̂n+1 of the lens equation (10) of
(n+ 1)-th degree satisfy

n+1∑
i=1

θ̂i

ϕ̂

dθ̂i

dϕ̂
= 1. (11)

Note that these solutions θ̂i may be complex and not all the magnifications are always physical and that
Eq. (11) is satisfied regardless of the sign of Eq. (10). We realize the number of the real solutions

(θ̂+ > 0 and θ̂− < 0) is always two , regardless of the value of n. Thus, the magnification invariant (11)
is a observable quantity only when n = 1.

The signed magnifications of the images in the weak field limit are given by

µ0±(ϕ̂) ≡
θ̂±(ϕ̂)

ϕ̂

dθ̂±

dϕ̂
(ϕ̂). (12)

Figure 3 shows that one can distinguish the general spherical lens models with their signed magnification
sums µ0+ + µ0− which are less than unity. The lower bound of the total magnification |µ0+| + |µ0−| is
given by

2

1 + n
≤ µ0+ + µ0− ≤ |µ0+|+ |µ0−| . (13)
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Figure 3: The singed magnification sums of some general spherical lens models. The solid, broken, dot
and dot-dashed lines are the general spherical lens models for n = 1, 2, 3 and 4, respectively. This shows
that we can distinguish each models from the others.

Therefore, gravitational lensing necessarily gives amplified light curves for n = 1, while it does not
necessarily for n > 1. Recently, Kitamura et al. investigated the demagnified light curves [22].

The signed magnification sum is a powerful tool to find exotic lens objects because it only depends
on the deduced source angle ϕ̂ and n and we just have to observe the images for ϕ̂ ≲ 1 and for ϕ̂ ≫ 1
to determine the signed magnification sum. However, we need a high resolution to observe the double
images. We would also distinguish the lens objects with the ratio of magnifications of the double images
and the total magnification. If we also measure the difference θ+ − θ− of the image angles, one can
determine the Einstein ring angle θ0 and the source angle ϕ = θ0ϕ̂.

Our method with the signed magnification sums is complementary to the methods to detect exotic
lens objects with the light curves [7, 22] and the astrometric image centroid displacements [8]. To observe
double images are much more feasible than to observe relativistic Einstein rings [16] because relativistic
images are faint and small and because relativistic rings are rare sights.
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Dark Matter and Dark Energy as a 

possible manifestation of a fundamental 

scale. 

Ivan Arraut 
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Motivation 

2 

Question in GR:  

1). Why is the cosmological constant so small? 

2). Why the velocity of rotation in galaxies is bigger than 

what is normally expected and what about the 

Gravitational Lenses? 

 → The project 
– Find some intermediate interesting scales. 

– Analyze the importance of such scales. 

– Find the Einstein’s equations in a new 

formalism (in process, 3 different paths). 

– For now the evolution of the parameters is not 

my bussiness.  



Standard GR with Ʌ 
The Einstein’s eqs. with a Cosmological Constant. 

•The vacuum solution: 

•With an effective potential: 



•At astrophysical scales. 



•Special scale: 

•The same scale used by Bousso and Hawking for the time-

like Killing vector normalization (Hawking radiation). This is 

not a new scale at all!!! 

•What about Dark Matter effects? 

Absent until now. What can we do? 

 
•MOND has something to tell us: 

The fundamental scale in MOND is:  

•One interesting prediction of MOND: 

 •Low surface brightness galaxies shows 

higher discrepancy in the mass content. 

•Only one fit parameter. 



•What can we do? 

 → Problems with MOND 
– Violation of energy-momentum conservation. 

– It does not predict gravitational lenses effects. 

– Problems with the cluster of galaxies. 

 → Possible Solution 
– Relativistic version derivable from an action 

principle (many candidates). 

– Among the possibilities we have: 

A). Non-localities which can screen the 

Cosmological Constant but also can create 

Dark Matter effects. (Sasaki and colleagues. 

Mashoon).  



B). But locality is relative in agreement with 

Amelino-Camelia, Lee Smolin, Freidel and 

Kowalzky. Should we pay attention to it? 

C). But if there is Relative Locality, there should 

be Relative Co-locality which is a 

manifestation of the spacetime curvature 

(Arraut 2012, paper to be submitted soon). 

D). Another path can be taken with gravity as a 

gauge theory (in process).  

  •The MOND formula is: 



In the full MONDIAN regime, we have: 

•I am including the repulsive effect due to Ʌ in 

order to find the bound for the rotation curve. 

•We can translate the problem. The MOND fit 

parameter is equivalent to say that the Dark 

matter scale is: 



•Additionally, it is equivalent to say that the Tully-Fisher 

law in its mass version is valid: 

•If: 

•What I propose: Is there any formalism where you 

can introduce at least 2 scales, one very large and 

another very small, such that those scales become 

dual? Rta: q-Bargmann Fock (Quantum groups).  



•In the simplest case, the Bosonic algebra is deformed 
in agreement with: 

•If we impose as an UV cut-off the 

Planck scale and as an IR cut-off the 

Cosmological Constant scale, then: 



Minimum, maximum and mix scale 

•The minimum scales in this model is: Kempf 1994. 

•The total extremal condition is: 

•IR-UV mix scale. 



The same but taking into account 

Relative Locality. 

•Extending the relative locality to the momentum 

space (the fundamental scale in momentum space 

taken as Ʌ: 



Relative Co-locality (extending the 

Majid ideas). 

•The correction to the observed momentum looks like the Tully 

Fisher law explained before. Can be Dark Matter only an UV-IR 

mix effect when we extend the Relativity principle to the phase 

space with a minimum scale in position and momentum? 



Open problem and Conclusions. 

Still we have to verify if this is in reality a 
manifestation of the Tully-Fisher law and 
not a mere coincidence. 

Nex Step (in process). Derive the 
Einstein’s equations inside this formalism. 
You should obtain: The standard GR with 
a Cosmological Constant + some 
contribution for DM due to UV-IR effect. 
For now it looks promising. 
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Contents

3D Quantum Gravity defined by CDT 
(Causal dynamical triangulation)

     We consider
     space-time with a spatial boundary.

We measure
the dynamics of spatial volume

and
whether spatial geometry is homogeneous.

2012年11月12日月曜日



Path integral and 
Wave function

trajectory（quantum mechanics）
→metric（quantum gravity）

 metric of  a spatial boundary

path integral representation of a wave function

2012年11月12日月曜日



The ground state wave function is given by a path 
integral over all compact Euclidean geometries which 
have a boundary.

Hartle&Hawking(1983) 

Euclidean path integral

Wick rotation

2012年11月12日月曜日



→ a discrete regularization method 
for gravitational path integral

 
The space-time is discretized by simplices.

        
  

                                                       

Advantage ・functional integral    finite summation

                    ・avoid conformal divergence

Causal dynamical triangulation

2012年11月12日月曜日



Discretization of Lorentzian
 space-time & Wick rotation in CDT

t+1

t

・
・
・

・
・
・

discretized 3D Lorentzian space-time

squared length of space-like links

squared length of time-like links

Wick rotation

(We choose                )
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正曲率（５枚）　平坦（６枚）　負曲率（８枚）

Curvature of discretized 
space-time

positive(5)    flat(6)     negative(8)

coordination number
(number of simplices around
a hinge(2d vertex, 3d link) )

 curvature
flat space coordination number 6(2d), 5.104...(3d)

e. g.  2D

2012年11月12日月曜日



Wave function in CDT
discretized wave function

  sum over all discretized space-time

gravitational constant

cosmological constant

coupling constant of a 
boundary term

total number of vertices

total number of simplices

total number of triangles on 
a boundary

Definition of boundary term in 3d DT:      S. Warner, S. Catterall, R. Renken, Phase diagram of three- 
dimensional dynamical triangulations with a boundary, Phys. Lett. B 442 (1998) 266–272, hep-lat/9808006.
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Simulation set-up
・topology　　

・pure gravity

・fix volume of the spatial boundary

・fix space-time volume for technical reason

・We set

・We set gravitational constant 

We perform Markov chain Monte Carlo simulation.

spatial slice
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Results
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Typical configuration

time

spacial volume
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Spatial volume dynamics

In DT classical space-time didn’t emerge. 

In CDT the averaged spacial volume              at 
Euclidean time     can be described by de Sitter 
instanton.

constant
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de Sitter
measured value
standard deviation

time

boundary

14 16 18 20 22

100

200

300

400

500

600
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de Sitter
measured value
standard deviation

time boundary

de Sitter
measured value
standard deviation

time boundary

12 14 16 18 20 22

100

200
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400
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0
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400
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800

1000
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Homogeneity of spacial slice

coordination number(local curvature)

number of hinges which have same curvature

1 2 3 4 5 6 7 8 9 10 15 20 25 30
0
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20
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40
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Homogeneity of spacial slice

coordination number(local curvature)

number of hinges which have same curvature
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Summary

・CDT is a discrete regularization method for   

   gravitational path integral.

・The emergent space-time in                 

   corresponds to de Sitter instanon and the 
   spatial slices are homogenous.
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Typical configuration
time

spacial volume

2012年11月12日月曜日



Homogeneity of space-time
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curvature0
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Abstract
Blackfold approach can be used as a perturbative method to construct higher dimen-
sional black hole solutions. We develop this blackfold approach to higher order and
investigate the physical effects of higher order solutions such as self-gravity effects.

1 Introduction

The blackfold approach has been at first proposed as the worldvolume theory for the dynamical black
branes by Emparan et. al [1], and it is supposed that the blackfold approach can be also used to construct
the higher dimensional black hole solutions perturbatively. The construction of the higher dimensional
black hole by the blackfold approach is based on the fact that the black hole solutions in d ≥ 6 dimensions
can have two different scales, R ≫ r0. Here R is the largest curvature scale of the black hole and r0 is
a thickness of the black holes. The black hole with the large angular momentum can have much bigger
curvature R than its horizon thickness of r0. Thus we can expect that the blackfold represents the
black holes with large angular momentum in higher dimensions. From this speculation, Emparan et.al.
constructed the higher dimensional black ring solutions with a large angular momentum perturbatively
[2] and discussed phase diagrams of the various higher dimensional black holes [3]. To obtain further
insight into the higher dimensional black holes, we should investigate the blackfold approach in detail
and develop to higher order perturbation solutions.

In the blackfold approach, black hole solutions are constructed by matching two perturbation solutions
in two different regions, far and near region. In Ref. [2], the Newtonian solutions corresponding to higher
dimensional black ring was constructed and computed the first order correction to the metric in the
near region by matching the Newtonian solution. In Ref [3], the Newtonian solutions corresponding to
the various higher dimensional black holes were constructed and phase diagram of each solutions were
proposed. In these researches, the properties of the blackfold were derived from the linear perturbation
solutions. But, the effect of its backreaction has not been considered. In this sense it seems to be fair to
say that we have not obtained the definite properties of higher dimensional black holes and not understood
the essential property of them. In this paper we consider backreaction effects, that is, self-gravity effects,
of the blackfold and investigate the properties of the higher dimensional black holes more accurately.

To study the self-gravity effects precisely, we must solve the higher order perturbation equation. The
linear solution has the singular behavior on the source. The higher order perturbation equation contains
the linear order solution in the source term. Thus, to solve the higher order perturbation equation, we
should perform the appropriate regularization and specify the proper boundary conditions on the source.
We use the technique of matched asymptotic expansion (MAE) to treat this problem. The MAE was used
to compute the first correction to the metric around the near region in the original paper of the blackfold
[2]. In the MAE method, we can calculate the self-gravity effects of the blackfold. The purpose of this
paper is to clarify the matching ladder structure of the blackfold approach and compute the self-gravity
effects.

2 Matching ladder structure

The blackfold has two separated scales R ≫ r0. Thus there are two different regimes of the geometry
of the blackfold. In the far region r ≫ r0, the geometry of the blackfold can be well approximated with

1Email address: ktanabe@ffn.ub.edu



2 Self-gravity effects of blackfold

the perturbations by the energy-momentum tensor of the blackfold around the flat spacetimes. In the
near region R ≫ r, we can regard the geometry as the perturbation around the black p-branes. These
two perturbation solutions are matched in the matching region R≫ r ≫ r0 and we obtain the geometry
produced by the blackfold. In the MAE method, we can obtain the self-gravity corrections not only to the
geometry in the far region, but also to the metric in the near region. Thus, we can check the regularity of
the perturbative black hole solution including the self-gravity corrections. In this paper, we consider the
blackfold which describes the d dimensional black ring solution. It is a simple task to extend our analysis
to other blackfold solutions.

To clarify the matching ladder structure, we should study solutions in far and near region. In the far
region, the geometry can be treated as the Newton theory and the corresponding Newton potential is
produced by the energy-momentum tensor of the blackfold. In the black ring case, we find the solution
at far region as

ds2 = (−1 + Ψ)dt2 − 2Adtdϕ+

(
1 +

Ψ

d− 3

)
ds2E , (1)

where ds2E is the ring coordinate as

ds2E = dr21 + r21dΩ
2
d−3 + dr22 + r22dϕ

2. (2)

Ψ and A can be written as

Ψ = Rrd−4
0

∫ 2π

0

dϕ

(r21 + (R cosϕ− r2)2 +R2 sin2 ϕ)d−3/2
, (3)

and

A =
Rrd−4

0√
d− 3

∫ 2π

0

r2 cosϕdϕ

(r21 + (R cosϕ− r2)2 +R2 sin2 ϕ)d−3/2
. (4)

This Newton solution is produced by the following energy-momentum tensor

Ttt =
d− 2

16πG
Rrd−4

0 δ(r) , Ttϕ =

√
d− 3

16πG
R2rd−4

0 δ(r). (5)

r = 0 represents the location of a blackfold. This energy-momentum tensor comes from Brown-York
energy-momentum tensor of boosted black string. A boost parameter is determined by the blackfold
equation.

This far region solution determines boundary conditions on the perturbation at near region. The
geometry at near region is described by perturbations around d − 1 dimensional boosted black string.
The perturbation around this black string can be decomposed by spherical harmonics on Sd−3. By
expanding te far region solution Eq. (1) at matching region R ≫ r ≫ r0, we can see that the expansion
parameter is r0/R and the l mode perturbation with respect to spherical harmonics on Sd−1 has (r0/R)

l

order. Therefore the near region geometry gnearµν can be represented as

gnearµν = gstringµν + hµν , (6)

where gstringµν is a metric of boosted black string, background geometry. hµν is a perturbation metric
which can be written as

hµν =
∑
l

(r0
R

)l
Y lClµν , (7)

where Y l is a spherical harmonics on Sd−3. The amplitude of the perturbation Clµν is determined by the
far region solution. Furthermore, using this corrected near region geometry as a boundary condition, we
can compute the correction to the far region solution Eq. (1). This matching structure can be shown in
Figure.1 up to self-gravity order. Here we call the correction to mass, angular momentum and area of
black ring self-gravity effects. These corrections can be read from the corrections to Brown-York energy
momentum tensor. As seen in Fig.1, there are two contribution to the self-gravity corrections. One is
coming from l = 0 mode perturbation on black string. Another is from the non linear contribution of
l > 0 mode perturbation. For instance, in d = 6 dimensions case, self-gravity corrections have (r0/R)

2

order. l = 1 mode perturbation has r0/R order and its quadratic contribution can be source of l = 0
mode perturbation with (r0/R)

2 order.
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Figure 1: The matching ladder structure up to self-gravity order is shown. The red line represents the
ladder of l = 0 mode perturbation. The blue line corresponds to l > 0 mode perturbation matching.
The dashed red line describes the non linear contribution of l > 0 mode perturbation to l = 0 mode
perturbation.

3 Self-gravity effects

To see self-gravity effects of blackfold, we study the second order solution at far region. The Newton
solution Eq. (1) is the first order solution. The metric gfarµν at far region can be written up to the second
order as

gfarµν = ηµν + h(1)µν + h(2)µν , (8)

where ηµν is a flat metric and h
(1)
µν is the first order solution. ηµν + h

(1)
µν corresponds to the Newton

solution Eq. (1). Then, the equation for the second order metric h
(2)
µν can be derived from the Einstein

equation as

1

2
∆h(2)µν =

1

2
h(1)ρσ∇µ∇νh

(1)
ρσ +

1

4
∇µh

(1)ρσ∇νh
(1)
ρσ +

1

2
(∇ρh(1)σµ −∇σh(1)ρµ)∇ρh

(1)
σν

− 1

2
h(1)ρσ(∇ρ∇µh

(1)
σν +∇ρ∇νh

(1)
σµ −∇ρ∇σh

(1)
µν ), (9)

where ∇µ is a covariant derivative with respect to ηµν . Solving this second order equation, we can obtain
the corrections to the mass, angular momentum and are of black ring solutions. The boundary conditions
for the second order solutions can be read from the perturbed metric at near region (see Fig. 1). It is
useful for understanding the physical meaning of corrections to draw the phase diagram of black ring
solutions. To do this, we define the normalized area s and angular j momentum by the mass as

jd−3 =
Ωd−3

2d+1

(d− 2)d−2

(d− 3)d−3/2

Jd−3

GMd−2
, (10)

sd−3 =
Ωd−3

2(16π)d−3
(d− 2)d−2

(
d− 4

d− 3

)d−3/2
Sd−3

(GM)d−2
. (11)

Here M , J and S is a mass, angular momentum and are of black ring solution respectively.
In d = 6 dimensional case, the phase diagram of black ring up to the second order solutions is

described in Fig. 2. Compared with the first order solutions, the area of the second order solutions is



4 Self-gravity effects of blackfold
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Figure 2: The blue line is the phase diagram up to first order, and the green line represents the phase
diagram up to the second order solutions. This diagram shows the self-gravity effects of blackfold works
attractively and its form is shrinking.

decreasing. This is because the self-gravity effects work attractively and the solutions becomes shrinking.
This behavior does not depend on its dimensions, and in more higher dimensions d > 6, same behavior
of the second order solutions can be confirmed.

4 Summary

The blackfold approach is very useful approach to investigate the physical properties of higher dimensional
black holes. To develop the idea of blackfold, we should understand more precisely how black hole
solutions can be constructed by this approach. In this paper, we clarify the matching ladder structure
of the blackfold approach. Using this matching ladder, self-gravity effects of black ring solutions can be
computed, and its attractiveness is shown explicitly.
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Black hole in Higher Dimension
 No uniqueness, No topology theorem

-Black String, Brane ( KK spacetime )
-Black Ring, Black Saturn, etc…

Characteristic in extended black object ( sting, brane,…)
Long wave length instability ~ hydrodynamic instability

Gregory-Laflamme Instability

Why higher dimension ?
String theory  spacetime dimension > 4

-Various compactification

-Large extra dimension    higher dimensional gravity

1/10



 In 1993, Gregory and Laflamme found a long 
wave length instability of black string (brane)

Gregory, Laflamme, 1994

-Universal property for extended objects
-Determine Phase Diagram in KK spacetime

threshold :  thickness ~ wave length

UniformBS – NUBS – (caged) Black hole

2/10

Importance
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Kol, Sorkin(2004), Asnin, et.al.(2007)

solved analytically the threshold mode in large D limit

Sorkin (2004) studied the threshold mode numerically up to D=50

and observed

dimensionless mass



agree with Sorkin(2004)

Matched asymptotic expansion

near horizon

asymptotic

new coordinate
expand with1/n

expand with 
3/10

Numerical Analysis

Large D limit



 Camps et.al(2010) studied the instability in long 
wave length limit  Narvier-Stokes Eq. +viscosity

valid up to k^3

highly coincident with numerical data
even k is large !

Camps, Emparan, Nidal (2010)

they proposed at large D

Question
Can we prove this dispersion relation analytically ?

dispersion relation

4/10
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Master equation for 

 Same equation  in GL94

Black String background n = D - 4

Scalar Perturbation with Transverse-Traceless gauge

Large D  Large n

Assumption

5/10



“Good” coordinate in Large D (used in Asnin et. al. (2007))

up to 1/n 

leading solution

 require up to in asymptotic region

6/10

the effect of the horizon correctly incorporated
at large D expansion



f(r)  1



modified Bessel of 2nd kind

regularity at the infinity

Leading order 

Next to Leading modified Bessel Eq. with source term

Using Green function

Expansion with



just contribute to ovarall scaling
7/10

(up to 1/n)



Asymptotic solution

Leading at near horizon



Sub-leading at near horizon

and

8/10





At X -> 1, the regular solution is
large n limit

matched solution





Leading order matching

Expected growing mode !!

9/10
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 We analytically solved the scalar perturbation on 
black brane in large D limit and obtained the 
expected dispersion relation.

 Our calculation shows that large D expansion 
should be useful analytic approximation

in higher dimension.

Application to another situation seems possible in 
the similar way.

10/10





Master Eq has a singular point between horizon and the infinity

We first attempted to do matching at the singular point
as Kol, Sorkin (2004)

B.C

LO 

NLO


NNLO



trivial…

trivial…….

trivial.



As B.C. for asymptotic sols, Kol,Sorkin(2004) used 

But, since 1/r^n ~ 1/n at r_s, NLO should affect the matching.      

We calculated the next order and … 

Trivial matching !!



because master Eq. is singular at

they say since

canceled



coincidence or
reflecting some physics ?





 

 

 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Makoto Narita, JGRG 22(2012)111225 

“Global properties of solutions to the Einstein-matter equation” 
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Abstract
We investigate global properties of magnetic Gowdy spacetimes. First, a global in
time existence theorem for the Einstein-Maxwell equations with Gowdy symmetry.
Second, for polarized magnetic Gowdy case, asymptotically velocity terms dominated
singular solutions are constructed by using the Fuchsian technique.

1 Introduction

1.1 Singularity theorems and two conjectures

Singularity theorems are the most fundamental and important theorems in classical general relativity,
which are proved by Penrose and Hawking in 1960’s [6].

Theorem 1 (Penrose) Suppose the following conditions hold: (1) a Cauchy surface Σ is noncompact,
(2) the null convergence condition, (3) Σ contains a closed trapped surface. Then the corresponding
maxmal future development D+(Σ) is incomplete.

Theorem 2 (Hawking) Suppose the following conditions hold: (1) a Cauchy surface Σ is compact, (2)
the timelike convergence condition, (3) the generic condition. Then the corresponding maxmal Cauchy
development D(Σ) is incomplete.

These theorems say physically reasonable spacetimes have singularities in general. However, (1) the
theorems do not say us nature of singularity and (2) predictability is breakdown if singularity can be seen.
For problem (1), a conjecture has been proposed:

Conjecture 1 (Belinskii-Khalatnikov-Lifshitz (BKL) conjecture) Solutions to the Einstein(-matter)
equations should be Kasner-like ones near spacetime singularity.

For (2), there should not exist naked singularity physically, that is,

Conjecture 2 (Strong cosmic censorship (SCC) conjecture) Generic Cauchy data sets have max-
imal Cauchy developments which are locally inextendible as Lorentzian manifolds.

To prove these conjectures, we need to show

• global existence theorems of solutions to the Einstein(-matter) equations in suitable coordinates,

• existence of Kasner-like solutions near spacetime singularity in generic,

• and inextendibility of spacetimes.

There are some results for these problems (see [2, 5, 10, 11]). To solve global problems for the Einstein(-
matter) equations, some assumptions will be needed, because the equations are very complicated nonlinear
PDEs and then we have less mathematical tools to analyze such equations. In this work, we assume

• Existence of some spacelike Killing vectors will be assumed (so called Gowdy spacetimes, which are
the most simplest inhomogeneous ones including dynamical degree of freedom of gravity) and

• Maxwell field as matter will be assumed.
1E-mail:narita@okinawa-ct.ac.jp
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2 Einstein-Maxwell system in Gowdy symmetric spacetimes

2.1 Einstein equations in the areal coordinate

The action we will consider is

S =
∫

d4x
√
−g
[
−R + F 2

]
. (1)

Varying this action, we have the Einstein-Maxwell equations as follows:

Rµν = 2FµρF
ρ
ν − 1

2
gµνF

2, (2)

∇µ(F̃µν) = 0, (3)
∇µF

µν = 0, (4)

where Fµν := 2∇[µAν], F̃µν := 1
2

√
−gϵµνδρF

δρ. The metric for Gowdy symmetric spacetimes, whose
spacial topology is T 3 is given by

g = −e2(η−U)αdt2 + e2(η−U)dθ2 + e2U (dx + Ady)2 + e−2U t2dy2, (5)

where η, α, U and A are functions of t ∈ (0,∞) and θ ∈ T 1. We call this areal coordinate. We assume
that the field strength of the Maxwell field is

F = Bdx ∧ dy.

From the Maxwell equations, B should be a constant. Under these conditions, Einstein equations are as
follows:
Constraint equations

η̇

t
= U̇2 + αU ′2 +

e4U

4t2
(Ȧ2 + αA′2) +

αe2(η−U)B2

t4
, (6)

η′

t
= 2U̇U ′ +

e4U

2t2
ȦA′ − α′

2tα
, (7)

α̇ = −4α2e2(η−U)B2

t3
. (8)

Dot and prime denote derivative with respect to t and θ, respectively.
Evolution equations

Ü − αU ′′ = − U̇

t
+

α̇U̇

2α
+

α′U ′

2
+

e4U

2t2
(Ȧ2 − αA′2) +

αe2(η−U)B2

t4
, (9)

Ä − αA′′ =
Ȧ

t
+

α̇Ȧ

2α
+

α′A′

2
− 4(ȦU̇ − αA′U ′), (10)

We also use the following auxiliary equation for P

P̈ − αP ′′ =
(
−1

t
+

α̇

2α

)
U̇ +

α′P ′

2
+ e2P (Ȧ2 − αA′2), (11)

where P = 2U − ln t. We call this system magnetic Gowdy system [13].

2



2.2 Wave map

The system of the evolution equations is equivalent with the following system of nonlinear wave equations
(wave map u : (M2+1, G) 7→ (N 2, h)):

SMG =
∫
S1

dtdθ
√
−G

(
GαβhAB∂αuA∂βu

B +
αe2(η−U)B2

t4

)
, (12)

where
G = −dt2 +

1
α

dθ2 + t2dψ2, 0 ≤ θ, ψ ≤ 2π,

and

h = dU2 +
e4U

4t2
dA2.

Every functions depend on time t and θ. Note that the evolution parts in the Einstein equations is
obtained by varying this action. The energy-momentum tensor Tαβ for this system is given of the form:

Tαβ = hAB

(
∂αuA∂βu

B − 1
2
Gαβ∂λu

A∂λuB
)
− Gαβ

αe2(η−U)B2

2t4
. (13)

Now, we can define the energy is defined as follows:

E(t) =
∫
S1

Ttt
dθ√
α

=
1
2

∫
S1

[
hAB

(
∂tu

A∂tu
B + ∂θu

A∂θu
B
)

+
αe2(η−U)B2

t4

]
dθ√
α

=
∫
S1

[
E +

αe2(η−U)B2

2t4

]
dθ√
α

.

2.3 Global existence

Theorem 3 (N.[9]) Let (M, g) be the maximal Cauchy development of C∞ initial data for the magnetic
Gowdy system. Then, M can be covered by compact Cauchy surfaces of constant areal time t with each
value in the range (0,∞). ⋄

To prove this theorem, monotonicity for the energy is shown and the light cone estimate is used
(see [3, 7, 8, 12]).

3 Existence of Kasner-like solutions near spacetime singularity

Recently, a new Fuchsian technique has been develoved by Ames-Beyer-Isenberg-LeFloch [1] (see also [4]).
By using this technique, we can construct Kasner-like solutions to the Einstein equations. For our
problem, the leading-order term for Kasner-like solution:

U =
1
2

(1 − k(θ)) ln t + U∗∗(θ) + · · · = U0 + · · · , (14)

A = A∗(θ) + t2k(θ)A∗∗(θ) + · · · = A0 + · · · , (15)

η =
1
4

(1 − k(θ))2 ln t + η∗(θ) + · · · = η0 + · · · , (16)

α = α∗(θ) + · · · = α0 + · · · , (17)

Then we have the following theorem, which means that there exists a Kasner-like solution to the Einstein-
Maxwell equations in polarized magnetic Gowdy spacetimes.
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Theorem 4 (N. [9]) Suppose that an asymptotic data constant A∗ and a set of asymptotic data func-
tions k, U∗∗, α∗(> 0), A∗∗ ∈ C∞(T 1) which satisfy the integrability condition∫ 2π

0

(
(1 − k(θ))U ′

∗∗(θ) −
1
2
(lnα∗)′(θ)

)
dθ = 0

with either

1. k(θ) > 3 for arbitrary A∗∗(θ), or

2. k(θ) > 3 or k(θ) < −3 for A∗∗(θ) ≡ 0,

at each point θ ∈ T 1 Then, there is a δ > 0, and a magnetic Gowdy solution U,A, η, α of the Einstein-
maxwell equations of the form

(U,A, η, α) = (U0, A0, η0, α0) + W,

where the leading-order terms (U0, A0, η0, α0) is given by equations (16)-(15) and

η∗(θ) := η0 +
∫ θ

0

(
(1 − k(θ))U ′

∗∗(Θ) − 1
2
(lnα∗)′(Θ)

)
dΘ.

The remainder W is contained in Xδ,µ,∞ for some exponent vector µ = (µ1, µ2, µ3, µ4) with µ1, µ2 −
2k, µ3, µ4 > 0. This solution is unique among all solutions with the same leading-order term and with the
remainder W ∈ Xδ,µ,∞.

3.1 Function spaces

In this section, we define some function spaces. Fix a smooth vector valued function µ : T 1 → Rd with
the corresponding diagonal matrix

R[µ](t, θ) := diag(t−µ1(θ), · · · , t−µd(θ)),

and then define the norm
∥ w ∥δ,µ,q:= sup

0<t≤δ
∥ R[µ](t, ·)w(t, ·) ∥Hq(T 1),

for vecor-valued function w(t, θ) ∈ Cl((0, δ], Hm(U)). Here, ∥ · ∥Hq(T 1) denotes the standard q-order
Sobolev norm on T 1. From this, we define the Banach space Xδ,µ,q(T 1) = Xδ,µ,q. We also define the
space

Xδ,µ,∞ :=
l∩

p=0

Xδ,µ,q.
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A SIMPLE MODEL OF INFLATION...

Model with potential

V (φ,χ) =
λ

4
φ4+

g 2

2
φ2χ2

is invariant under

gµν 7→ a−2 gµν ,

φ 7→ aφ,

χ 7→ aχ

equation of state is 1/3
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... ENDING VIA BROAD PARAMETRIC RESONANCE

Model with potential

V (φ,χ) =
λ
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DEVELOPMENT OF LINEAR INSTABILITY

g 2/λ= 2.99, κ2 = 0 g 2/λ= 3.01, κ2 = 0
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PARAMETRIC RESONANCE IS A GENERIC FEATURE

χ ′′k +
�

κ2+q cos2(τ)
�

χk = 0 χ ′′k +
�

κ2+q cn2
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��
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κ
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k
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/(

m
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DEFROST: A NEW 3D NUMERICAL SOLVER

c0 c1

c1

c1
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6
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4
isotropic B 1
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0 2

3
14
3

isotropic C 1
30

1
10

7
15

64
15

http://www.sfu.ca/physics/cosmology/defrost

[Fortran-90, 600 lines, very fast, instrumented for 3D]
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FIELD EVOLUTION AS A CHAOTIC BILLIARD
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billiard-none.avi
Media File (video/avi)



DENSITY EVOLUTION [V (φ,χ) = 1
4 λφ

4+ 1
2 g 2φ2χ2]
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L4G22-3D-480-rho.avi
Media File (video/avi)



DENSITY EVOLUTION [V (φ,χ) = 1
2 m 2φ2+ 1

2 g 2φ2χ2]
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M2G22-3D-480-rho.avi
Media File (video/avi)



DENSITY EVOLUTION [V (φ,χ) = 1
2 m 2φ2+ 1

2σφχ
2+ 1

4 λχ
4]
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M2S12L4-3D-480-rho.avi
Media File (video/avi)



HERE IS HOW INSTABILITY DEVELOPS!
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IN FACT, IT’S QUITE LOG-NORMAL!

V (φ,χ) =
1

4
λφ4+

1

2
g 2φ2χ2
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IN FACT, IT’S UNIVERSALLY LOG-NORMAL!
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IN FACT, IT’S UNIVERSALLY LOG-NORMAL!

V (φ,ψ) =
1

2
m 2φ2+

1
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(NON-THERMAL) SCALAR FIELD FIXED POINT?

V (φ,χ) =
1

4
λ
�

φ2+χ2−v 2
�2
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THIS SIMPLY CAN’T BE JUST A COINCIDENCE...

A universal characteristic of
random scalar field evolution?!

What’s Going On Here?

Very tempting to blame
scalar field turbulence!..
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ARE WE GOING TO EVER SEE ANY OF THIS?

Thermal Bath
Wipes Out Everything?!

Scales Too Small?!

WE SHOULD LOOK FOR THINGS THAT CAN SURVIVE THERMALIZATION:
1 stable relics (primordial black holes)
2 decoupled fields (gravitational waves)
3 anomalies in expansion history (non-gaussianity)
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CAN PRIMORIDAL BLACK HOLES FORM? NO...
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GRAVITATIONAL WAVES FROM PREHEATING?

Dufaux, Felder, Kofman & Navros (2009)
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NON-GAUSSIANITY FROM PREHEATING?

CMB and Reheating scales different by 50+ e-folds!
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DIFFERENCES IN EXPANSION CAN MODULATE CMB
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MODULATION COMES FROM ISOCURVATURE MODE
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EVOLUTION DEPENDS ON INITIAL ISOCON VALUE
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SYMPLECTIC INTEGRATOR TO THE RESCUE!

Problem:
long-term oscillator evolution

H =
p 2

2
+

q 4

4

4th order Runge-Kutta
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SYMPLECTIC INTEGRATOR TO THE RESCUE!

Problem: Solution:
long-term oscillator evolution enforce energy conservation

H =
p 2

2
+

q 4

4
e A t /2e B t e A t /2 = e (A+B )t+O(t 3)

4th order Runge-Kutta 4th order Symplectic
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ISOCURVATURE MODE CONVERTS TO CURVATURE
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Are these peaks Real? Yes...
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PRIMORDIAL NON-GAUSSIANITY IS PRODUCED!
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Φ(~x ) = ΦG(~x )+ FNL(χG)
very different from f NL parametrization!
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HERE IS A TRAJECTORY FROM THE PEAK
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billiard-peak.avi
Media File (video/avi)



A SIMPLE ANALYTICAL MODEL
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TIME EVOLUTION OF EFFECTIVE POTENTIAL
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effpot.mp4
Media File (video/mp4)



THIS EXPLAINS WHY PEAKS ARE LOG-PERIODIC!
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µ0T periodicity and its harmonics

φ(t +T ) = φ(t )

χ(t +T ) = χ(t )e µ0T
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LET’S EXPLORE THE PARAMETER SPACE...

11 10 9 8 7
ln(χ0/φ0 )/µ0T
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χ(t +T ) = χ(t )e µ0T
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... AND HERE’S HOW PEAKS SPLIT & MULTIPLY!
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PREHEATING CAN LEAVE A SIGNATURE IN CMB SKY!

the way inflation ends
can lead to a new signal:

usual non-Gaussianity:
Φ(~x ) = ΦG(~x )+ f NLΦ2

G(~x )

new from preheating:
Φ(~x ) = ΦG(~x )+ FNL(χG)

FNL can be a very
non-trivial function:
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realization of excursion set
can naturally give cold spots!
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HOW WOULD IT LOOK LIKE ON THE SKY?
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HOW WOULD IT LOOK LIKE ON THE SKY?
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ERR, THERE IS A COLD SPOT ON CMB SKY!..
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ERR, THERE IS A COLD SPOT ON CMB SKY!..
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POLARIZATION WILL TELL IF IT’S PRIMORDIAL!

Komatsu et. al. (2010)
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Introduction Effects of non-trivial speed of sound Bispectrum in general slow-roll Running of fNL Summary

General single field inflation

S =
∫

d4x
p−g

[
m2

Pl

2
R+P(X ,φ)

]
with X ≡−1

2
gµν∂µφ∂νφ

Originated from multi-field setup: light R and heavy F

!0
a (t)

! aa (t, x) = !0
a (t +! )+ Na (t +! )F

aN

background 
trajectory  !0

a t +! (t, x)( )

Trajectory along the lightest direction

Effects of heavy physics in curved traj

Can we find universal features of
“heavy” physics?

1 Write the action in terms of R (along traj) and F (off traj)

2 Integrate out F : eSeff[R] = ∫
[DF ]eS[R,F ][

= equiv to plugging linear sol:
(−2+M2

eff

)
F =−2θ̇

(
φ̇0/H

)
Ṙ

]
3 Effective single field action Seff[R]

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Effects of heavy physics as non-trivial cs

Effects of heavy physics in “speed of sound”

c−2
s ≡ 1+ 4θ̇2

M2
eff

(
θ̇ : angular velocity of traj

) 

Single field theory with non-trivial c2
s : Footprint of heavy physics

(Achucarro et al. 2012a)

F borrows kinetic energy of R → propagation speed cs reduced

EFT in 2/M2
eff: universal footprint of heavy physics

Many scalar fields in BSM, e.g. moduli

New observables poorly constrained → to be tested in next
decades

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Splitting canonical action

EFT = canonical (cs = 1) + (occasional) departure from cs = 1

S =
∫

d4xa3εm2
Pl

[
Ṙ2

c2
s

− (∇R)2

a2

]
︸ ︷︷ ︸

=S2 , “free” part

+S3 +·· ·

=S2,canonical︸ ︷︷ ︸
cs=1 part

+
∫

d4xa3εm2
Pl

(
1

c2
s
−1

)
Ṙ2

︸ ︷︷ ︸
≡S2,int

+S3 +·· ·

Well known, accurate Green’s function
(For example, JG & Stewart 2001, Choe, JG & Stewart 2004)

Interaction valid for a limited interval (c.f. Chen & Wang 2010)

c.f. Using dy ≡ csdτ= csdt/a, q2 ≡ a2ε/cs and v =p
2qR (Baumann, Senatore & Zaldarriaga 2011)

S2 =
∫

d4x
m2

Pl

2

[
(v′)2 − (∇v)2 + q′′

q
v2

]

But see later parts of this presentation

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Features in the power spectrum

Interaction Hamiltonian at quadratic order

H(2)
int (t) =

∫
d3x

(
∂L (2)

int

∂Ṙ
Ṙ−L (2)

int

)
=

∫
d3xa3εm2

Pl

(
1

c2
s
−1

)
︸ ︷︷ ︸
≡−u(t)

Ṙ2

Features in the power spectrum〈
R̂k(τ)R̂q(τ)

〉
=− i

∫ τ

τin

a(τ′)dτ′
〈

0
∣∣∣[R̂k(τ)R̂q(τ),H(2)

int (τ′)
]∣∣∣0

〉
= (2π)3δ(3)(k+q)

2π2

k3
∆PR

→ ∆PR

PR
=κ

∫ ∞
0

dtu(t)sin(2κt) with PR = H2

8π2m2
Plε

, t ≡ τ

τ?
,κ≡ k

k?

Inverting this relation to write u in terms of observable ∆PR/PR

u(t) = 2i

π

∫ ∞
−∞

dκ

κ

∆PR

PR

(κ
2

)
eiκτ

Correlated bispectrum and power spectrum: BR = ∫
(· · ·∆PR/PR)

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Leading bispectrum for varying cs

Leading order action in terms of u(t)

S3 ⊃
∫

d4xa3m2
Plε

[
3uṘ2R− (u+2s)R(∇R)2

] (
s ≡ ċs

Hcs

)
Assumption: H , ε and η∥ approximately constant (K ≡ k1 +k2 +k3)

BR (k1,k2,k3) = 2ℜ
2iR̂k1

(0)R̂k2
(0)R̂k3

(0)

3ε
m2

Pl

H2

∫ 0

−∞
dτ

u

τ2

dR̂∗
k1

(τ)

dτ

dR̂∗
k2

(τ)

dτ
R̂∗

k3
(τ)+2 perm

+ε
m2

Pl

H2

(
k1 ·k2 +2 perm

)∫ 0

−∞
dτ

u+2s

τ2
R̂∗

k1
(τ)R̂∗

k2
(τ)R̂∗

k3
(τ)

]}

=
(2π)4P 2

R

(k1k2k3)3

[
3

2
(k1k2)2

{
1

K

∆PR

PR

(
K

2k?

)
−k3

d

dk

[
1

k

∆PR

PR

(
k

2k?

)]∣∣∣∣
k=K

}
+2 perm

+ 1

2

(
k1 ·k2 +2 perm

){ K 2 − (
k1k2 +2 perm

)
K

∆PR

PR

(
K

2k?

)
+k1k2k3

d

dk

[
1

k

∆PR

PR

(
k

2k?

)]∣∣∣∣
k=K

−(
k1k2 +2 perm

) d

dk

[
∆PR

PR

(
k

2k?

)]∣∣∣∣
k=K

+k1k2k3
d2

dk2

[
∆PR

PR

(
k

2k?

)]∣∣∣∣∣
k=K

}]
(Achucarro, JG, Palma & Patil, to appear)

Correlation between spectra is manifest!
Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Modeling curvilinear trajectory

A cosh turn in otherwise straight trajectory in 2-field system

φ1

φ2

η⊥ > 0

η⊥ = 0 η⊥ = 0

η⊥ = θ̇

H
= η⊥,max

cosh2 [2(N −N?)/∆N]
(Equations of motion: see Achucarro et al. 2011)

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Features from smooth curvilinear trajectory
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General slow-roll approximation

R̂k(τ) = de Sitter piece + higher order corrections
No guarantee for the hierarchy between slow-roll parameters
Up to 1st order corrections in the standard SR known (Chen et al. 2007)

Consistent account in more general contexts
Mode equation: z2 ≡ 2a2m2

Plε, y ≡p
2kzR̂k , dx =≡−kcsdt/a, f ≡ 2πxz/k

d2y

dx2
+

(
1− 2

x2

)
y︸ ︷︷ ︸

de Sitter solution

= 1

x2

f ′′−3f ′
f︸ ︷︷ ︸

≡g(logx)

y

︸ ︷︷ ︸
departure from dS

(
f ′ ≡ df

d logx

)
→ y0(x) =

(
1+ i

x

)
eix

Green’s function solution (JG & Stewart 2001)

y(x) =y0(x)+ i

2

∫ ∞
x

du

u2
g(logu)

[
y∗0 (u)y0(x)−y∗0 (x)y0(u)

]
y(u)

≡y0(x)+L(x,u)y(u)

=y0(x)+L(x,u)y0(u)+L(x,u)L(u,v)y0(v)+·· ·

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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3rd order action reprocessed

Ṙ3 and Ṙ2R : cumbersome to compute with many derivatives∫
Ṙ3 ∼

∫ (
ẏ0 + L̇y0 +Lẏ0 +·· ·)3 ∼/

Using partial int and linear eq to reduce the # of derivatives

δL

δR

∣∣∣∣
1
≡a3ε

c2
s

{
R̈+

[
c2

s

a2ε

d

dt

(
a2ε

c2
s

)
+H︸ ︷︷ ︸

≡C=H(3+η−2s)

]
Ṙ− ∆

a2
R

}

∫
AṘ3 =

∫
Ä−3ȦC −2AĊ +2AC2

2

d

dt

(
R3)

3
+·· ·+ δL

δR

∣∣∣∣
1

c2
s

a3ε

(
Ȧ−2AC

2
R2 +·· ·

)
∫

BṘ2R =
∫ −Ḃ+BC

2

d

dt

(
R3)

3
+·· ·+ δL

δR

∣∣∣∣
1

c2
s

a3ε

B

2
R2

Field redefinition with more terms involved (JG, Schalm & Shiu, to appear)

S3 =
∫

dτd3x
m2

Pl

3

a2ε

cs

[
−csaH

(
3s+ εη

2
+εs+9us−2s2

)
− 1

2

d

dτ

(
η

c2
s

)]
︸ ︷︷ ︸

≡C

d

dτ

(
R3

)
+(higher SR terms)
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1st order bispectrum in GSR

“Source” for the bispectrum

gB(logτ) = cs

a2m2
Plε

−τ
f
C= 1

f

[
csaH

(
3s+ εη

2
+εs+9us−2s2

)
+ 1

2

d

d logτ

(η
s

)]

Window functions constructed from homogeneous solution

y0(k1τ)y0(k2τ)y0(k3τ) = WB(k1,k2,k3;τ)+ iXB(k1,k2,k3;τ)

y0(k1τ)y0(k2τ)y∗0 (k3τ) = WB(k1,k2,−k3;τ)+ iXB(k1,k2,−k3;τ) ≡ WB3 + iXB3

Bispectrum up to 1st correction [i.e. O (g)] (c.f. Adshead et al. 2011)

BR (k1,k2,k3) = (2π)4

4

√
PR (k1)

k2
1

√
PR (k2)

k2
2

√
PR (k3)

k2
3

∫ ∞
0

dτ

τ
gB(logτ)

×
{(

dτ−3
f ′
f

)
WB + 1

3
dτ (XB +XB3)

∫ ∞
0

dτ̃

τ̃
g(log τ̃)X(k3τ̃)+2 perm

− 1

3
dτWB3

∫ ∞
τ

dτ̃

τ̃
g(log τ̃)W (k3τ̃)− 1

3
dτXB3

∫ τ

0

dτ̃

τ̃
g(log τ̃)X(k3τ̃)+2 perm

− 1

2
dτ (XB +XB3)

∫ ∞
τ

dτ̃

τ̃
g(log τ̃)

(
1

k3τ̃
+ 1

k3
3 τ̃

3

)
+2 perm

} (
dτ ≡ d

d logτ
+3

)
(JG, Schalm & Shiu, to appear)
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Example: Starobinsky model

Starobinsky model: linear V (φ) + sudden slope change (Starobinsky 1992)

V (φ) = V0 ×


[
1−A(φ−φ0)

]
for φ<φ0[

1− (A+∆A)(φ−φ0)
]

for φ>φ0

de Sitter approx: f ′
f

=− φ̈

Hφ̇
, g =−3

V ′′
V

, gB = 1

f
d

d logτ

(
φ̈

Hφ̇

)
(Choe, JG & Stewart 2004)
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(cf. Arroja & Sasaki 2012)
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Example: Starobinsky model

Starobinsky model: linear V (φ) + sudden slope change (Starobinsky 1992)

V (φ) = V0 ×


[
1−A(φ−φ0)

]
for φ<φ0[

1− (A+∆A)(φ−φ0)
]

for φ>φ0

de Sitter approx: f ′
f

=− φ̈

Hφ̇
, g =−3

V ′′
V

, gB = 1

f
d

d logτ

(
φ̈

Hφ̇

)
(Choe, JG & Stewart 2004)
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(cf. Arroja & Sasaki 2012)
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Evolution of field fluctuations

N0 Ni Nf

∆Nk

1 Ni: initial slice (flat) for the δN formalism, δφa
flat ≡ Qa

2 Nf : final slice (comoving) for the δN formalism
3 N0: horizon crossing of a mode k

Qa(N0) =Gaussian → Qa(Ni = N0 +∆Nk) =non-Gaussian

∆Nk = log

(
ai

a0

)
≈ log

[
(aH)i

k

]
→ k-dependence

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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Power spectrum and its running

Evolution equation of Qa on large scales (Elliston, Seery & Tavakol 2012)

DN Qa =wa
bQb + 1

2
wa

bcQbQc +·· ·

wab =u(a;b) +
Rc(ab)d

3

φ̇c
0

H

φ̇d
0

H

(
ua =− V;a

3H2

)

wabc =u(a;bc) +
1

3

[
R(a|de|b;c)

φ̇d
0

H

φ̇e
0

H
−4Ra(bc)d

φ̇d
0

H

]

Qa(Ni = N0 +∆Nk) = Qa(N0)+∆Nk

(
wa

bQb + 1

2
wa

bcQbQc +·· ·
)
+·· ·

Power spectrum and the spectral index〈
Rk(tf )Rq(tf )

〉
= (2π)3δ(3)(k+q)

2π2

k3
PR (k) = Na(ti)Nb(ti)

〈
Qa

k(ti)Qb
q(ti)

〉
〈

Qa
k(ti)Qb

q(ti)
〉
=

〈
Qa

k(t0)Qb
q(t0)

〉
+2∆Nkwa

c

〈
Qb

k(t0)Qc
q(t0)

〉
〈

Qa
kQb

q

〉
= H2

2k3
δ(3)(k+q)

(
γab +εab

)
nR −1 = D logPR

d logk
=−2ε−2

NaNbwab

NcNc (Sasaki & Stewart 1996)
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General formula for the running of fNL

〈
Rk1

(tf )Rk2
(tf )Rk3

(tf )
〉
= (2π)3δ(3)(k123)BR (k1,k2,k3)

= NaNbNc

〈
Qa

k1
Qb

k2
Qc

k3

〉
+ 1

2

{
NabNcNd

〈[
Qa ?Qb

]
k1

Qc
k2

Qd
k3

〉
+2 perm

}
1 1st term: NL evolution between horizon crossing & initial slice

Na(ti)Nb(ti)Nc(ti)
〈

Qa
k1

(ti)Qb
k2

(ti)Qc
k3

(ti)
〉

= (2π)3δ(3)(k123)Na(ti)Nb(ti)Nc(ti)
H4(t0)

4k3
1k3

2k3
3

wabc
(
k3

1∆Nk1
+2 perm

)
2 2nd term: NL evolution between initial & final slices

1

2
Nab(ti)Nc(ti)Nd(ti)

〈[
Qa(ti)?Qb(ti)

]
k1

Qc
k2

(ti)Qd
k3

(ti)

〉
= (2π)3δ(3)(k123)Nab(ti)Nc(ti)Nd(ti)

H4(t0)

4k3
1k3

2

(
γacγbd +2∆Nk1

wacγbd +2∆Nk2
γacwbd

)
6

5
fNL = NabNaNb

(NcNc)2

{
1−∆Nk

[
−NaNbNcwabc

NdeNdNe
+4wab

(
NaNb

NdNd
− NacNbNc

NdeNdNe

)
︸ ︷︷ ︸

≡nfNL

]}

(Byrnes & JG 2012)
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Summary

General single field inflation
1 From multi-field setup: by integrating out heavy field
2 Non-trivial cs: footprint of heavy physics

Features in the power spectrum (S2,int) and bispectrum (S3)
1 Heavy quanta extract kinetic energy
2 Non-trivial, oscillatory, correlated features

General slow-roll scheme
1 Terms with more derivatives → field redefinition
2 More complete 1st order bispectrum

Running of fNL
1 Sensitive probe of early universe physics
2 Non-trivial evolution after horizon crossing

Towards more precise estimates of the primordial bispectrum Jinn-Ouk Gong
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WE WANT YOU!!!

APCTP cosmology groups (Ki Young Choi, JG and Arman Shafieloo)
are looking for up to 5 post-doctoral fellows to start in 2013.

CV, list of publications, research statements + 3 reference letters to
cosmopd2012@apctp.org

For further information, please consult APCTP homepage
(http://www.apctp.org).
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Testing the origin of primordial 

perturbations 

               -Use of bi and tri-spectrum- 

Teruaki Suyama (RESCEU, Univ. of Tokyo) 
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Primordial fluctuation 

• matter fluctuation = fluctuation of spacetime 
(=curvature perturbation) 

(WMAP data) 

• From observations, we already know it does exist. 

• It is a source of the current cosmic structure. 

13 billion yrs 
300,000yrs 

Primordial 
fluctuation 

• But we don’t know its origin. 



Basic paradigm 

Generation of the primordial fluctuation 

Inflation happened in the early Universe. During the inflationary 
stage, any light scalar field acquires fluctuations that are 
eventually stretched to cosmological scales. 

When such a scalar field affects the expansion of the Universe, its 
fluctuating energy density creates the curvature perturbation 
through the Einstein equations. 



• Minimal scenario 

Inflaton fluctuations create the curvature perturbations. 

• Good in the sense that it is simple, economical and consistent with all 
the observations so far. But this is just an assumption rather than a 
prediction. 

• Almost scale invariant and almost Gaussian. 

Generation of the primordial fluctuation 



• Non-minimal scenario 

Generation of the primordial fluctuations 

Non-vacuum state, higher derivative interactions(DBI, Galileon, 
etc. ), self-interactions, features in potential, conversion of 
isocurvature after inflation (multi-field models, curvaton, 
modulated reheating, multi-brid, inhomogeneous end of 
inflation, etc.), …. 

Anything else 

Now, there are many models for the generation of the primordial 
fluctuation. We want to get useful information regarding its nature. 

Over the last decade, many non-minimal scenario have 
been proposed. 



How can we reveal the origin of perturbations? 

• Power spectrum 

All the models predict nearly scale invariant spectrum. 

P is not enough to disentangle the degeneracy. 



How can we reveal the origin of perturbations? 

Is there another way other than the power spectrum? 

3- and 4-point functions could be useful!! 

• Useful in the sense that they can provide us what 
cannot be probed by means of the power spectrum. 

• Potentially observable in the near future. 

(non-Gaussianity) 

Bi-spectrum: 3-point function 
Tri-spectrum: 4-point function 

• Any deviation from the minimal scenario generically 
leads to the detectable level of non-Gaussianity. 



Various shapes of bi-spectrum 

Detection of primordial non-gaussianity and distinction of the 
scale dependence allows to constrain the models. 

• Local type (Komatsu&Spergel 2001) 

• Equilateral type (Creminelli et al 2005) 

• Orthogonal type (Senatore et al 2009) 



From now on, I will focus on the so-called local type perturbation. 

How can we reveal the origin of perturbations? 

The curvature perturbation is generated from field perturbations 
on super-horizon scales. (curvaton, modulated reheating, 
inhomogeneous end of inflation, multi-brid, etc.) 



How can we reveal the origin of perturbations? 

Separate universe approach 

Each Hubble region evolves like FLRW universe 
with different energy density and pressure. 

(Kodama&Hamazaki 1998, Nambu&Taruya 1998, 
Wands et al 2000) 

Perturbation is obtained by differentiating the 
background solutions. 

A B 



δN formalism 
(e.g. Starobinsky 1985, Salopek&Bond 1980, Sasaki&Stewart 1996, 
Sasaki&Tanaka 1998, Malik, Lyth&Sasaki 2004, 
Sugiyama,Komatsu&Futamase 2012) 



Intuitive understanding of the δN formalism 

Wisdom by T.Tanaka 

expand 

Curvature = Expansion 



How can we reveal the origin of perturbations? 

This type of perturbation is realized if the focused scales are 
super-horizon at the time of its generation. 

Same position : Gaussian(assumption) 



How can we reveal the origin of perturbations? 

Two sources for non-Gaussianity of the curvature perturbation 

• Non-gaussianity of field fluctuations 

• Non-linear relation between field fluctuations and  



(Byrnes, Sasaki and Wands, 2006) 

Non-Gaussianity(non-linearity) parameters 

Bi-spectrum 

Tri-spectrum 

Three non-linearity parameters that are observables. 



(Komatsu et al., 2010) 

(Smidt et al., 2010) 

Planck is expected to give us                        and                       . 
(Kogo and Komatsu, 2006) 

Non-Gaussianity parameters 

Current observational bounds on the non-linearity parameters 

More stringent bound may be obtained by using other 
cosmological probes. (e.g. Pajer&Zaldarriaga 2012) 



Non-Gaussianity parameters 

Bispectrum can be useful to disentangle the degeneracy of 
models. 

• Standard canonical inflaton fluctuation 

• Non-inflaton scenarios   

depending on the model 

What can we say if we also include the trispectrum? 

(e.g. Maldacena 2002) 



Detection of fnl >20 means we surely detect            as well.  

(TS and M.Yamaguchi, 2008) 

This inequality also suggests a possibility that         is small but      
can be very large. 

This is universal in the sense that it is independent of the 
underlying models. 

Local-type inequality 



More general statement (Smith, Lo Verde&Zaldarriaga 2011) 

Local-type inequality 



More general statement (Sugiyama 2012) 

Local-type inequality 

Inclusion of the loop corrections still leads to 



• Single source case (e.g. curvaton model) 

A consistency relation for the single source case 

Local-type inequality 



Local-type inequality 

• Multi-source case (for example, inflaton and curvaton) 

(Ichikawa et al. 2008) 

If the non-gaussian part is subdominant, the ratio 
becomes much larger than 1. 

Gaussian  Non-Gaussian 

A ratio                  is a good indicator to get information of 
number of fields that contribute to the curvature 
perturbation.   



(TS et al. 2010) 



Basic strategy to test the origin of perturbation 

observation 
       data 

Detection  
   of   

Non-detection  
     of  

New idea needed 

Detection  
   of   

Non-detection  
   of   

multiple sources 

Maybe, the 
minimal scenario 

single source 

Non-detection  
     of  

Detection  
   of   



What about gnl? 

This is not directly related to fnl and taunl. Thus, it brings another 
information specific to each model.  

Example: self-interacting curvaton (e.g. Engvist&Nurmi 2005) 

without self-interaction 

with self-interaction 

gnl is sesitive to the shape of the field potential. 





What about gnl? 

We find gnl is model dependent. But, we can classify the 
models into three types: 



Consistency relations among non-linearity parameters 

(TS et al. 2010) 

Different consistency relations for different models. 



3-point function 

4-point function 

5-point function 

6-point function 

# of Non-linearity parameters=# of graphs with different topologies 

General formula of # for arbitrary n is known. (Fry 1984) 

Higher order correlators 



The local type inequalities for n-point function (n:even) 

General method to derive the local type inequalities 
(TS and Yokoyama, 2011) 

Example: 6-point function 

Five independent inequalities 



suggests significant contribution 
of non-inflaton source. 

clarifies if the perturbation is 
sourced by a single field or not. 

probes interactions(parameters) 
of the candidate model. 

「束矢の訓」毛利元就一代絵（高増径草筆） 

Motonari Mouri and his three sons 
(lord) 



But, I do hope this is not the case for the following three persons. 
Individuals are already awesome for me.    



Summary  

Test of non-gaussianity can be useful to reveal the origin of 
primordial perturbations. 

We can obtain information about number of fields 
contributing to the curvature perturbation by using fnl and 
taunl. 

Detection of all the non-linearity parameters greatly helps us 
constrain the model of the early Universe. 

Very soon, Planck results will tell us something. 
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Some recent developments in
gravitational lensing

お誕生日おめでとうございます
to professors

Toshi Futamase, Hideo Kodama and Misao Sasaki

Matthias Bartelmann, Heidelberg University, Institute for Theoretical Astrophysics
JGRG22, Tokyo, Nov. 13, 2012



  

Ingredients:

1. Equation of geodesic
  deviation
2. Field equations: relations
  Between mass and curvature

[cf. MB, CQGr 27 (2010) w3001]

Lensing From Relativity



  

Lensing Quantities

convergence shear

spin-1 flexion spin-3 flexion

edth operator (in flat space)

effective lensing potential



  

Cold Dark Matter Haloes

4

Simulation: Springel et al., profile: Navarro et al. 1997,
Substructure: Boylan-Kolchin et al. 2009



  

Concentration Parameter

[Broadhurst
et al.]



  

Cluster Lensing

CLASH MCT Programme:
25 clusters in 16 bands
(HST and ground based)

MACS J 1206
[Umetsu et al. ApJ 755 (2012) 56]



  

Cluster Lensing: Example

Abell 383
[Zitrin et al.
ApJ 742 (2011) 117]



  

Strong and Weak Lensing Combined

MB et al. ApJ 464 (1996) L115
Cacciato et al. A&A 458 (2006) 349
Merten et al. A&A 500 (2009) 681

[Bradač et al.
ApJ 706 (2009) 1201]



  

Adaptive Reconstruction: Simulation

[Meneghetti et al. A&A 514 (2010) A93]



  

Strong and Weak Lensing Combined: Abell 2744

Abell 2744
[Merten et al. MNRAS 417 (2011), 333]



  

Recovered Density Profiles

Abell 2261
[Coe et al. ApJ 757 (2012) 22]

Abell 383
[Zitrin et al. ApJ 742 (2011) 117]



  

Constraints on Concentration Parameter

Expected significance with
cluster sample
[from CLASH proposal]

Concentration bias: 1.5 – 2 typically
[Meneghetti et al. A&A 519 (2010) 90]



  

Meaasured Concentration Parameters

Abell 2261
[Coe et al. ApJ 757 (2012) 22]

MACS J 1206
[Umetsu et al. ApJ 755 (2012) 56]



  

Combined Results so Far

[Coe et al.
ApJ 757 (2012) 22]



  

Mass Reconstruction

MACS J 1206
[Umetsu et al. ApJ 755 (2012) 56]

Lensing (left),
Lensing and X-ray emission (right)



  

Extreme Lenses?

MACS J 1206
[Zitrin et al. ApJ 749 (2012) 97]

M 0416 [Zitrin et al. in prep.]



  

Extreme Lenses?

MACS
J 0717

[Zitrin et al. ApJ 707 (2009) L102]



  

Expectation of Large Critical Curves?

[Redlich et al.
A&A 547 (2012) A66]



  

Expectation of Large Critical Curves?

[Redlich et al. A&A 547 (2012) A66]



  

Extreme-Value Statistics

[Waizmann et al. A&A 547 (2012) A67]



  

Extreme-Value Statistics

[Waizmann et al.
MNRAS (2012)
submitted]

extreme SZ
and
X-ray clusters



  

Gravitational Flexion

Gravitational flexion
Pioneering work by
T. Futamase, N. Okabe, Y. Okura, K. Umetsu



  

Flexion Measurement

DEIMOS
[Melchior et al.
MNRAS 412 (2011) 1552]

[Viola et al. MNRAS 419 (2012) 2215]



  

Shear-Flexion Cross-Talk

[M. Viola
PhD
thesis,
2010]



  

Combining Lensing and X-ray Data

[Konrad et al.
A&A (2012) submitted]
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Meszaros 2002

 Energy release form central engine 
 Radiation from relativistic jet  Lorents factor ~ 100 
 interaction between shell and interstellar medium

The simplest picture of long gamma-ray bursts 

Meszaros 2001



Time scale of GRBs

Complex time profile

Two population
Long: core collapse

Short: merger?

20 sec 40 sec 

100 sec 400 sec 

2 sec 

short long



Energy and distance of GRBs

Butler & Kocevski 2007



Spectra - Luminosity correlation 

νFν  

∝ Eα 

∝ Eβ 

Peak energy(Ep) 

GRB z<1.7

GRBs are “standardizable candles” 

Yonetoku et. al., 2004



Sun 1033 erg/s

Luminosity of objects in the sky

Type Ia Supernovae 1043 erg/s

Gamma ray bursts 1053 erg/s
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    Redshift     

Distance measurement with GRBs
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■ GRB (z>1.4)
＋ Type Ia SNe

  (Ωm, ΩΛ) = (0, 1)

z = 8.2
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(0.3, 0.7)

(1, 0)

Kodama, RT + 2008



Kodama, RT + 2008



Major origin of error

×4(1σ)

The upper  dashed 
line is 4 times 

brighter than the 
lower one. 

This means that we 
have two times 
uncertainty in 

distance 
measurement with 

Ep-Lp relation.



What means “Four times”

×4(1σ)

The difference between 
two P-L relations for 

Cepheid is  comparable  
with dispersion of the 
Ep-Lp relation for long 

GRBs.



Result of the classification 
of Cepheid variable

Discovery of two populations
result in 

accurate determination 
of H0 



Clues for the existence of 
sub-classes of long GRBs I

Some long GRB are 
associated with Type Ic SN, 

but some does not.
These events may result in 
sub structure in the Ep-Lp 

relation.



Clues for the existence of 
sub-classes for long GRBs II

X
-r

ay
 C

ou
nt

 r
at

e

Diversity of X-ray AG light 
curve (t~100-106 sec)

The most difficult 
problem which GRB 

study is facing.
This suggests that 
there are some 

populations of long 
GRB.
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Toward accurate candles

• The use of accurate data. 

• Redefinition of Lp in GRB rest frame time.

• The use of robust statistics and outlier 
rejection

• The second parameter :  TL=Eiso/Lp

Yonetoku, RT, + PASJ, 2010
RT, + PASJ, 2011



Two separate populations 
of long GRBs

RT. PASJ in press

TL=Eiso/Lp 



Prompt-afterglow 
connection

no breaks

steep-shallow
normal

slow-shallow
normal

Preliminary



A new scaling law of 
Type II long GRBs

Division into sub classes 
reveals a beautiful scaling 
law of Type II long GRBs.
 This relation implies a 
universal mechanism 

which governing both of 
prompt and afterglow 

emissions.

Preliminary



Two separate populations 
of long GRBs

RT. PASJ in press

TL=Eiso/Lp 



SNe Ia
GRBs
outliers

�̄µ,SNeIa = 0.26
�̄µ,GRBs = 0.31

The error of 
LGRBs becomes as 
small as those of 

SNe Ia.

Hubble diagram for 
Type I long GRBs

  (Ωm, ΩΛ) = (0, 1)



preliminary
Constraint from Type I 

long GRBs



Future mission

X-ray Imager (4-100keV)
Gamma-ray spectrometer 

(50-1000keV) 
Opt-NearIR Telescope

 (0.3-1.7μm) 

80 events/year (40 events for cosmology?)

HiZ-GUNDAM (High-z Gamma-ray bursts for Unraveling the Dark Ages Mission)



Hubble diagram for Type I 
long GRBs

σΩm～0.01 for 100 

Type I long GRBs. 



Hi-Z GUNDAM 
Project has nothing 
to do with a famous 
japanese animation 

GUMDAM

GUNDAM @ ODAIBA

If you go to Odedo-onsen by  subway and monorail, 
you can find big gundam from monorail. 



Summary 

• We have found sub classes of long GRBs. 

• Division into two classes drastically improve 
accuracy of distance measurement.







BAND model

Cut off power law model

CPL Ep is alway higher than Band Ep

Two distinct spectral model



1 sec in observer frame 
→2.7 sec in GRB rest fram

τ ≈ 2.7 sec is the best resolution for Lp

How to define Lp
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In this talk… 

1. Introduction 

2. Universality of NFW?  

3. Introduce the Hough transform as a semi-

non-parametric method for the purpose 2. 

2 



Introduction 

• One big mystery in astronomy: late time 

accelerated expansion of the universe. 

 

• Possible solutions: Modified gravity or new 

form of matter (or …). 

 

 

 

3 

𝐺 =   8𝜋 (𝑇𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 + 𝑇𝑛𝑒𝑤) 

𝐺 + δ𝐺 =   8𝜋 𝑇𝑜𝑟𝑑𝑖𝑛𝑎𝑟𝑦 

or 



Introduction (cont’d) 

• Assume modified gravity. It should coincide 

with the Newtonian grav. at smaller scale. 

 

 

 

 

4 

Small scale: 

Solar system test.  

Newtonian or GR. 

Large scale: 

Acceleration.  

Modified Gravity. 

Transition 



New test of modified gravity 
Narikawa & Yamamoto (2012). 

Narikawa’s talk Wednesday afternoon for details. 

• At the cluster of galaxies scale, scalar 

degrees of freedom may be apparent 

through, e.g., gravitational lensing.  

 

5 

Convergence 

= dimensionless 

surface mass 

density 

Effect of Scalar dof  Conventional part. 

Assuming NFW, 

gNFW, or Einasto. 



New test of modified gravity (cont’d) 
Narikawa & Yamamoto (2012). 

Narikawa’s talk Wednesday afternoon for details. 

• In principle, it seems work…, but.  

6 

Difference between 

the galileon gravity 

and GR is very small.  

Need a sufficiently 

accurate measurement 

of the cluster profile. 



Stacking clusters of galaxies 

• Need a sufficiently accurate measurement 

of the cluster profile. 

• Stacking many signals from clusters. 

• Averaging out “personalities” of clusters. 

(asymmetry, clumps, environment, …) 

• Subtlity: 

• Even if the NFW (or other) is universal, it 

contains scaling radius/density.   

 

7 

After all, is NFW really universal? 



Reminder: NFW 
• NFW: Navarro, Frenk & White ApJ (1996). 

• ``Universal’’ profile of a dark matter halo 

around a cluster of galaxies. 

 

 

• Two parameters fimily: ρs and rs  

• In reality, each one may be deviated from 

NFW (environment, evolution history, 

asymmetry…). 

• If stacking many ρ(r)’s, ….  
8 



Toy model for stacking experiment. 

9 

• NFW Cluster mass function (Mps = 5x1014 solar masses) 

• Cluster redshift distribution (z0 = 0.45) 

• Concentration parameter (From Duffy 2011 Nbody simulation):  𝑐 = 𝑐 +  𝛿𝑐 



Toy model 

10 

Parameters of 100 toy NFW clusters. 

CMBCG catalogue contains over 55,000 clusters, 

though the number of known lensing clusters are 

much smaller than it at this moment…. 



With or Without scaling 

11 

𝜌𝑤.𝑜 𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑟; {𝑀𝑖 , 𝑐𝑖}𝑖) =  
1

𝑁
 𝜌

𝑁

𝑖

(𝑟;𝑀𝑖 , 𝑐𝑖) 𝜌 𝑤 𝑠𝑐𝑎𝑙𝑖𝑛𝑔(𝑥; 𝛿𝑐𝑖 𝑖) =  
1

𝑁
 
𝜌(𝑥 𝑟𝑠𝑖;𝑀𝑖 , 𝑐𝑖 ) 

𝜌𝑠𝑖

𝑁

𝑖

 

Blue: 100 cluster radial profiles (left: un-scaled, right: scaled) 

Red: left: Averated, right: Scaled using true (M,𝑐 ) then Averaged.  



Estimating α : without noise. 

We estimate the 

inner power 

index α using 

25 clusters and 

do it 100 times. 

 

12 

Ok, just small difference… 

1 1.08 

Spread 

due to 𝛿𝑐.  



Toy model Including noise… 

13 

• Adding noise term to the NFW radial profile. 

(ri is the inner edge of the “observed” NFW 

profile.) 

At each radal bin, random noises ζ(r) follow 
Gaussian distribution with mean zero and variance 1. 



Toy model Including noise… 

14 

• Adding noise term to the NFW radial profile. 

(ri is the inner edge of the “observed” NFW 

profile.) 

At each radal bin, random noises ζ(r) follow 
Gaussian distribution with mean zero and variance 1. 



Estimating α : with noise. 

15 

Large bias for α from the constraint ρ(r)>0. 
Noise is larger at smaller radius. 

1 1.5 1.8 1.3 

From 25 

clusters 

estimate α, 
do it 1000 
times. 



Concerns 

16 

• We do not know a priori the true NFW 

parameters ρs and rs . 

• How can we scale ρ(r) if we do not know 

scaling parameters ρs and rs ? 

• Estimating ρs and rs for each cluster may bias 
results (e.g., test of modified gravity) if the 
NFW profile is not “the universal” profile in 
the first place. 



Hough Transform (used in GW community as well) 

• Assume a master equation 𝑦 = 𝑓(𝑥; 𝑝𝑖) with M 

parameters 𝑝𝑖. (For explanation’s sake, let’s 

assume a curve for the master equation.) 

• Given N>M pair of “data” (𝑥𝑘 , 𝑦𝑘), we obtain N 

curves in the M-dim param. space. 

• If there is no noise, and if the master equation 

is correct, we get a solution as an intersection 

of the curves in the parameter space. 

• When there is noise, there may be no solution. 

Yet, there may be a region where many 

intersections between two curves cluster.    
17 



Hough Transform (cont’d) 
Straight line master eq.  

18 

Given  3 “data”. 



Hough Transform (cont’d) 
Straight line master eq.  

19 

This “data” is 

actually on  

y = 0.2 x + 0.1  

line. 



Hough Transform (cont’d) 
Straight line master eq.  

20 

For the rightmost 

data, plot a 

master equation 

(straight line in 

this example) that 

pass through the 

data. 



Hough Transform (cont’d) 
Straight line master eq.  

21 

Do the same 

for the second 

data. 



Hough Transform (cont’d) 
Straight line master eq.  

22 

Move on to the 

parameter space. 

 

If there is no noise, 

we have “the” 

solution. 

 

NOTE: 

Correct equation is 

 y = 0.2 x + 0.1  



Hough Transform (cont’d) 
Straight line master eq.  

23 

In reality, 

there is noise. 



Hough Transform (cont’d) 
Straight line master eq.  

24 

There is no 

“solution”.  

Yet the intersections 

cluster (hopefully) 

around the true 

value. 



Do it many times…. 

25 

a 

b 



Even when b is random variable 

26 

a 

b 



Semi-non-parametric HT  

on NFW profile. 

27 

log(radial distance) 

d
e
n
s
it
y
 

Should give 

  log ρ = -log r + const.   

Should give 

  log ρ = -3log r + const.   

Master equation: 



Re-examining Toy model using 

Hough Transform 
Fit 1000 log10ρ(r) toy-data using a master equation  

Out skirts 
Inner cusp 



Conclusion: Stacking 

29 

• In the case of finding “the” cluster “universal” 

profile. 

• Without scaling, stacking gives biased results. 

• Introduce Hough transform. 

• It seems useful in many fields including 

testing power-law indices of the averaged 

cluster radial profiles.  



Appendix 

30 



Power of Stacking 

Gravitational wave: Cutler & Schutz 2005. 

“We show that gravitational waves from collection of the 

few brightest (in gravitational waves) neutron stars could 

perhaps be detected before the single brightest source, 

… ” (Cutler & Schutz PRD 2005). 

31 

  



New test of modified gravity (cont’d) 
Narikawa & Yamamoto (2012). 

Narikawa’s talk Wednesday afternoon for details. 

• Assuming Navarro-Frenk-White (NFW), 

gNFW, or Einasto for the cluster density 

profile, the lensing potential becomes 

different from that of GR, due to the scalar 

DOF. 

• At the outer-skirt of the lensing cluster 

observed, compare the observed tangential 

shear radial profile with the assumed one 

expected from the NFW density profile 

under GR.  32 



New test of modified gravity (cont’d) 
Narikawa & Yamamoto (2012). 

Narikawa’s talk Wednesday afternoon for details. 

• Determine two parameters:  

• The strength of the modification to the 

Newtonian Gravity: 

• And the length scale smaller than which 

the  Newtonian gravity is recovered. 

 

 

 

 

• Need a sufficiently accurate determination 

of the tangential shear radial profile.  

 

33 
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Why modifications of gravityWhy modifications of gravityWhy modifications of gravityWhy modifications of gravity？？？？

Probing alternative theories of gravity 
using compact binaries

(I) ProblemsProblemsProblemsProblems within GR can be naturally solvednaturally solvednaturally solvednaturally solved.

(II) Classical gravitational theory as a lowlowlowlow----energy energy energy energy 
effective theoryeffective theoryeffective theoryeffective theory of a more fundamental theory

e.g. superstring theory Chern-Simons, Gauss-Bonnet,

Scalar-tensor theories



Testing GRTesting GRTesting GRTesting GR

(I) Weak field, non-dynamical regime:

Solar System

Binary Pulsar

(II) Strong field, 
dynamical regime:

Gravitational 
Waves



Dynamical Dynamical Dynamical Dynamical ChernChernChernChern----Simons GravitySimons GravitySimons GravitySimons Gravity

-Superstring Theory -Inflation
-Standard Model -Loop Quantum Gravity



� Action:

Dynamical Dynamical Dynamical Dynamical ChernChernChernChern----Simons GravitySimons GravitySimons GravitySimons Gravity

-Superstring Theory -Inflation
-Standard Model -Loop Quantum Gravity



� Action:

� Field Eqs.:

Dynamical Dynamical Dynamical Dynamical ChernChernChernChern----Simons GravitySimons GravitySimons GravitySimons Gravity

-Superstring Theory -Inflation
-Standard Model -Loop Quantum Gravity



� Action:

� Field Eqs.:

� Characteristic Length 

Scale:

Dynamical Dynamical Dynamical Dynamical ChernChernChernChern----Simons GravitySimons GravitySimons GravitySimons Gravity

-Superstring Theory -Inflation
-Standard Model -Loop Quantum Gravity



-Superstring Theory -Inflation

� Action:

� Field Eqs.:

� Small coupling approximation

Dimensionless 
coupling constant: 

For simplicity, 
we set

� Characteristic Length 

Scale:

Dynamical Dynamical Dynamical Dynamical ChernChernChernChern----Simons GravitySimons GravitySimons GravitySimons Gravity

-Standard Model -Loop Quantum Gravity



Corrections to GWs from BH BinariesCorrections to GWs from BH BinariesCorrections to GWs from BH BinariesCorrections to GWs from BH Binaries

(I) Dissipative

Scalar & Gravitational 

Radiation

Modifies the orbital 

evolution

(II) Conservative

Modified BH Solution

Modifies the binding 

energy
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Now, we need to compute the conservative one.
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Gauss-Bonnet braneworld redux:
A novel scenario for the bouncing universe

Hideki Maeda1

Centro de Estudios Cient́ıficos (CECs), Casilla 1469, Valdivia, Chile

Abstract
We propose a new scenario for the bouncing universe in a simple five-dimensional
braneworld model in the framework of Einstein-Gauss-Bonnet gravity, which works
even with ordinary matter on the brane. In this scenario, the so-called branch singu-
larity located at a finite physical radius in the bulk spacetime plays an essential role.
We show that a three-brane moving in the bulk may reach and pass through it in spite
of the fact that it is a curvature singularity. The bulk spacetime is extended beyond
the branch singularity in the C0 sense and then the branch singularity is identified
as a massive thin shell. From the bulk point of view, this process is the collision of
the three-brane with the shell of branch singularity. From the point of view on the
brane, this process is a sudden transition from the collapsing phase to the expanding
phase of the universe. This manuscript is based on [1].

1 Preliminaries

We consider the following five-dimensional action for the bulk spacetime:

I =
1

2κ25

∫
d5x

√
−g
(
R− 2Λ + αLGB

)
, (1)

where the Gauss-Bonnet term LGB is defined by

LGB := R2 − 4RµνR
µν +RµνρσR

µνρσ, (2)

which does not give any higher-derivative term in the field equations. The constant α allows the GR
limit α→ 0. The gravitational equation given from the action (1) is

Gµν + αHµ
ν + Λδµν = 0, (3)

where

Hµν :=2
(
RRµν − 2RµαR

α
ν − 2RαβRµανβ +Rµ

αβγRναβγ

)
− 1

2
gµνLGB. (4)

The Gauss-Bonnet term in the action is obtained in the low-energy limit of heterotic superstring theory
together with a dilaton in ten dimensions, in which case α is regarded as the inverse string tension
and positive definite. We therefore assume α > 0 throughout this paper. We also assume Λ < 0 and
1+4αΛ/3 > 0 in addition, the latter of which ensures the existence of nondegenerate maximally symmetric
vacuum solutions.

1.1 Bulk solution

In this system, a vacuum solution is obtained as a warped product manifold M5 ≈M2×K3, where K3 is
a three-dimensional space of constant curvature. In the equations which follow, k denotes the curvature

1Email address: hideki@cecs.cl



2 Gauss-Bonnet braneworld redux

of K3 and takes the values 1 (positive curvature), 0 (zero curvature), and −1 (negative curvature). The
metric of the vacuum solution is given by

ds25 =gµνdx
µdxν = −h(r)dt2 + dr2

h(r)
+ r2

[
dχ2 + fk(χ)

2(dθ2 + sin2 θdϕ2)
]
, (5)

h(r) :=k +
r2

4α

(
1∓

√
1 +

αµ

r4
+

4

3
αΛ

)
, (6)

where µ is constant, f0(χ) := χ, f1(χ) := sinχ, and f−1(χ) := sinhχ [2, 3].
It is seen that the solution has two branches corresponding to the sign in the metric function h(r).

We call the family with the minus (plus) sign the GR branch (non-GR branch). Only the GR branch
solution has the general relativistic limit. The maximally symmetric vacuum in the non-GR branch was
shown to be unstable [2] and so we only consider the solution in the GR branch in the present paper.

The global structures of this spacetime depending on the parameters have been clarified [4]. In this
spacetime, there are two classes of curvature singularity for µ ̸= 0. One is the central singularity at r = 0
and the other is the branch singularity at r = rb(> 0), where the term inside the square-root in the
metric function (6) vanishes. rb is explicitly given by

rb :=

(
− 3αµ

3 + 4αΛ

)1/4

. (7)

The branch singularity exists if µ is negative. The metric and its inverse are finite at r = rb (but their
derivatives blow up) and the metric becomes complex and hence unphysical at r < rb.

k=1 k=0 k=-1

r
O

µ

µc

µ0

µex

Figure 1: Thin curves show the relations between the mass parameter and the horizon radius for each k.
A thick curve shows to the relation between the mass parameter and the branch-singularity radius. The
metric becomes complex and unphysical below the thick curve.

Near the branch singularity, the metric function behaves as

h(r) ≃
(
k +

r2b
4α

)
−
r
3/2
b

2α

√
1 +

4

3
αΛ(r − rb)

1/2. (8)

Therefore, the branch singularity is timelike and spacelike for k + r2b/(4α) > 0 and k + r2b/(4α) ≤ 0,
respectively.

1.2 Friedmann equation on the brane

We consider a three-brane in the bulk spacetime (5), which is a timlike hypersurface described by r = a(τ)
and t = T (τ), where the parameter τ is the proper time on the brane. The induced metric of the three-
brane ḡab is given by

ds24 = ḡabdy
adyb = −dτ2 + a(τ)2

[
dχ2 + fk(χ)

2(dθ2 + sin2 θdϕ2)
]
. (9)
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This is the FRW metric with the spatial curvature k.

The dynamics of the three-brane, namely the behavior of the scale factor a(τ) on the brane, is
determined by the junction condition. Here we simply assume the Z2-symmetry of reflection with respect
to the brane; we take two copies of the bulk spacetime with r < a(τ) and paste them at r = a(τ). Using
the junction condition in Einstein-Gauss-Bonnet gravity [5, 6] with the following form of the energy-
momentum tensor Sab on the brane;

Sab = diag(−ρ, p, p, p) + diag(−σ,−σ,−σ,−σ, ), (10)

we obtain the modified Friedmann equation for the brane universe as

κ45
36

(ρ+ σ)2 =

(
h(a)

a2
+H2

)[
1 +

4α

3

(
3k − h(a)

a2
+ 2H2

)]2
, (11)

where H := ȧ/a and a dot denotes the differentiation with respect to τ [5, 7]. Here ρ and p are the energy
density and pressure of a perfect fluid on the brane, and the constant σ is the brane tension.

We assume the following linear equation of state p = (γ − 1)ρ and then the energy-conservation
equation on the brane is integrated to give

ρ =
ρ0
a3γ

, (12)

where a constant ρ0 is assumed to be positive. Because γ = 0 is equivalent to the cosmological constant,
we assume 0 < γ ≤ 2 which satisfies the dominant energy condition.

For α > 0, Eq. (11) is solved to give the following modified Friedmann equation on the brane:

H2 =V (a), (13)

V (a) :=
1

8α

[
−8kα

a2
− 2 +

{
A3/2 + 256α3P 2 + 16

√
2α3P 2

(
128α3P 2 +A3/2

)}1/3

+A

{
A3/2 + 256α3P 2 + 16

√
2α3P 2

(
128α3P 2 +A3/2

)}−1/3]
, (14)

where

A := 1 +
αµ

a4
+

4

3
αΛ, P 2 :=

κ45
256α2

(
ρ0
a3γ

+ σ

)2

. (15)

Here V (a) denotes the effective potential and the region with V (a) > 0 is the allowed region for dynamics.
Now we have a one-dimensional potential problem with one dynamical degree of freedom a(τ) and the
qualitative behavior of a is completely understood by the form of the potential V .

2 Bouncing Gauss-Bonnet braneworld

The bouncing solution is characterized by the transition from the contracting phase (ȧ < 0) to the
expanding one (ȧ > 0) of the universe. The bounce in a conventional sense occurs at the lower bound
of this domain a = aB satisfying V (aB) = 0. The evolution of the contracting universe in the domain
a > aB momentarily stops at a = aB and then starts to expand in the domain a > aB. Therefore, the
sufficient condition for this conventional bounce is V (0) < 0.

It is shown that the conventional bounce may occur in some cases in the Gauss-Bonnet braneworld
with µ > 0. In contrast, the situation in the Gauss-Bonnet braneworld with µ < 0 is very different. The
primary reason is that there is a branch singularity in the bulk and a < rb is not in the physical domain
of a. We will see what happens when the brane hits the branch singularity in the bulk.
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2.1 Novel bounce for µ < 0

For µ < 0, a < rb is not in the physical domain of a and so we focus on the behavior of the potential
around a = rb. If the potential is non-negative, the brane reaches a = rb. If the potential is negative
near a = rb, the bounce (in the conventional sense) occurs or a singularity appears at some a > rb.

First we present the condition that the brane hits the branch singularity in the bulk spacetime. The
behavior of V (a) around a = rb is given by

V (a) ≃V (rb) +O(a− rb), (16)

where

V (rb) =− k

r2b
− 1

4α
+ P (rb)

2/3. (17)

Therefore, the brane reaches the branch singularity if V (rb) ≥ 0. This condition is satisfied if

h(rb) = k +
r2b
4α

≤ 0. (18)

Therefore, if the branch singularity is spacelike, which is realized only for k = −1, the brane reaches
there. If the branch singularity is timelike, the condition V (rb) ≥ 0 gives

σ ≥ 16α

κ25

(
k

r2b
+

1

4α

)3/2

− ρ0

r3γb
. (19)

It is noted that this condition is not so sensitive about γ and realized even with positive pressure (γ > 1).
On the other hand, if

σ <
16α

κ25

(
k

r2b
+

1

4α

)3/2

− ρ0

r3γb
(20)

is satisfied, a = rb is not in the physical domains of a and hence the conventional bounce occurs or a
singularity appears at some a > rb instead.

We have seen the condition under which the brane hits the branch singularity in the bulk. Let us see
what happens then. Now the important fact is that the curvature invariants on the brane do not blow
up even when the brane approaches the branch singularity in the bulk. In fact, the behavior of the scale
factor a(τ) near the branch singularity is obtained as

a(τ) ≃ rb + a1(τ − τb) +O((τ − τb)
2), (21)

a21 := r2bV (rb), (22)

where τb is the cosmological time on the brane to reach the branch singularity. This is the Taylor series
around τ = τb and hence the curvature invariants are all finite around there. However, because the
allowed domain of a is a ≥ rb, we must take the minus and plus signs of a1 for τ < τb and τ > τb,
respectively. As a result, the evolution near τ = τb represents the transition from the collapsing phase
(τ < τb) to the expanding phase (τ > τb). Thus, the bouncing universe is realized on the brane.

From the bulk point of view, this process is that the brane reaches the branch singularity and passes
across it. It is emphasized that the spacetime on the brane is not free of singularities then, but there
appears just a shell-type instantaneous singularity. In the generic case, the derivative of a(τ) (velocity)
is not continuous and the metric on the brane is C0 at τ = τb. The junction condition on the brane then
shows that there is a matter distribution on the spacelike hypersurface τ = τb on the brane. This means
that a shell-type singularity appears instantaneously on the brane at τ = τb but it is rather harmless
since it stems from the thin-shell approximation of the brane as well as the branch singularity. With a
fine-tuning giving a1 ≡ 0, in contrast, the metric on the brane becomes analytic around τ = τb and there
is no shell-type singularity.

In summary, our claim is that the brane can reach the branch singularity and pass through it safely.
In order to support this claim, we will show in the next subsections that the branch singularity is indeed
harmless for a finite body moving radially and can be considered as a massive thin shell. From the bulk
point of view, this novel bouncing process is the collision of the three-brane with the shell of branch
singularity.
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2.2 Branch singularity is weak

In this subsection, we show that the branch singularity is a weak singularity. The physical consequence
of this property is that a finite body may reach there safely.

There are several definitions of the strength of a singularity. We first present the definition by
Tipler [8]. Let γ̄ : [λ0, λs) →M be an affinely parametrized causal geodesic which approaches a singularity
as λ → λ−s , where λ is an affine parameter. Define Jλ1(γ̄) for λ1 ∈ [λ0, λs) to be a set of maps Z(I) :
[λ0, λs) → TM (TM means the tangent bundle and I = 1, 2, 3, 4 (I = 1, 2, 3) for timelike (null) γ̄)
satisfying the following four:

Zµ(I)(λ) ∈Tγ̄(λ)M, (23)

Zµ(I)(λ1) =0, (24)

Z̈µ(I) =−Rµ νρσZ
ρ
(I)k

νkσ, (25)

Zµ(I)kµ =0. (26)

where kµ is the tangent of γ̄. Equation (25) is called the Jacobi equation (or geodesic deviation equation).
Along a timelike geodesic, four independent Jacobi fields define a volume element V (λ) along γ̄ by the
exterior product. Along a null geodesic, three such fields define an area element which we also denote
V (λ). A singularity is called Tipler strong if

lim
λ→λ−

s

inf V (λ) = 0 (27)

is satisfied for all λ1 ∈ [λ0, λs) and all four (three) linearly independent Jacobi fields Z ∈ Jλ1(γ̄) [8]. The
singularity is called Tipler weak if it is not Tipler strong. This definition of the Tipler strong singularity
intuitively says that any object that hits a strong singularity is crushed to zero volume (area).

The above definition ignores the case where V (λ) blows up in the approach to the singularity. Also,
V (λ) may remain finite overall when some of the elements of Jλ1(γ̄) blow up but some others converge to
zero. In order to include such situations, Ori defined deformationally strong singularity [9]. A singularity
is called deformationally strong if it is either (i) Tipler strong, or (ii) if there exists an element of Jλ1(γ̄)
that has infinite norm for λ → λ−s for all λ1 ∈ [λ0, λs) [9]. A singularity is called deformationally weak
if it is not deformationally strong. A singularity is Tipler weak if it is deformationally weak. Actually,
it is shown by direct calculations that the branch singularity is deformationally weak along radial causal
geodesics [1].

2.3 C0 extension of the bulk beyond the branch singularity

In the previous subsection, we have seen that the branch singularity is harmless for radially moving finite
bodies, which strongly supports our main claim. Then, the subsequent natural question is what the bulk
spacetime on the other side of the branch singularity is. In order to answer to this question, we consider
the extension of the bulk spacetime beyond r = rb.

It is seen in (5) that the metric and its inverse are finite at the branch singularity. This implies
that the spacetime can be extended beyond r = rb in the C0 sense. The C0 extension is not unique
in general; however, thanks to the Birkhoff’s theorem in the system [7], there are only two candidates
for the extended spacetime, namely the GR and non-GR branches of the vacuum solution (5). Among
these two, the GR branch should be chosen because of its dynamical stability. By attaching another
the vacuum solution (5) in the GR-branch with the same mass parameter at the position of the branch
singularity, we construct the C0-extended bulk spacetime.

Now let us study the branch singularity in this extended spacetime in more detail. The induced metric
on r = rb is given by

ds24 = ḡabdy
adyb = −h(rb)dt2 + r2b

[
dχ2 + fk(χ)

2(dθ2 + sin2 θdϕ2)
]
. (28)

We know that the derivatives of h are not finite at r = rb. The component of the extrinsic curvature
Kab of the hypersurface r =constant diverges in the limit r → rb. Nevertheless, the junction condition
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provides a finite value of the energy-momentum tensor on r = rb. This implies that the branch singularity
can be identified as a massive shell in the extended bulk spacetime. We consider the cases where r = rb
is timelike (h(rb) > 0) and spacelike (h(rb) < 0), separately. (A more careful treatment is required in
the case of h(rb) = 0.)

First we consider the case where r = rb is timelike. Then, we have

h(rb) = k +
r2b
4α

(> 0) (29)

and the junction condition shows that Sab on the hypersurface remains finite for r → rb as

lim
r→rb

Sab = diag(−ρb, pb, pb, pb), (30)

where

ρb = −16α
h(rb)

3/2

r3b
, pb =

8h(rb)r
4
b − µ

2
√
h(rb)r5b

. (31)

Thus, the branch singularity can be considered as a massive thin shell. Since ρb < 0, the matter on
r = rb violates the weak energy condition.

Next we consider the case where r = rb is spacelike. Then the junction condition gives the energy-
momentum tensor Sab on the spacelike hypersurface as

lim
r→rb

Sab = diag(Pb(r), Pb(t), Pb(t), Pb(t)), (32)

where

Pb(r) = 16α
(−h(rb))3/2

r3b
, Pb(t) =

8h(rb)r
4
b + µ

2
√
−h(rb)r5b

. (33)

They are finite and hence the branch singularity may be considered as a massive spacelike thin shell.
Since this is a spacelike shell, it is difficult to discuss the energy condition for the matter field there.

3 Summary and discussions

In this paper, we have presented a novel scenario for the bouncing universe in the five-dimensional
braneworld in the framework of Einstein-Gauss-Bonnet gravity. In this scenario, the branch singularity
located at the finite physical radius in the bulk, which appears for the negative mass parameter, plays an
essential role. We have shown that the bulk spacetime is extended beyond the branch singularity in the
C0 sense and the branch singularity is identified as a massive thin shell. A three-brane may pass through
the shell of branch singularity and then the bouncing universe is realized on the brane. This claim is
strongly supported by the fact that the branch singularity is radially deformationally weak, which implies
that the singularity is harmless for a finite body moving radially.

The present result opens a completely new possibility to achieve the bouncing brane universe as
an effect of the higher-curvature terms. Our scenario is not sensitive about the equation of state for
the matter on the brane and does work even with ordinary matter. Since the existence of the branch
singularity stems from the quadratic nature of the theory, such a singularity is characteristic and must
be quite generic in higher-curvature theories. In Lovelock higher-curvature gravity [10], which contains
general relativity and Einstein-Gauss-Bonnet gravity as special cases, such a singularity appears in this
class of vacuum solutions rather generically [11]. Interestingly, the central singularity is totally absent
and the branch singularity is generic independent of the mass paraeter µ if there is a U(1) gauge field in
the bulk spacetime in Einstein-Gauss-Bonnet gravity [12]. Undoubtedly, the effect of such singularities
in cosmology is an interesting problem and should be investigated further.
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Instability of Charged Lovelock Black Holes

Tomohiro Takahashi1(a)
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Abstract
We study stability of charged black hole solutions in Lovelock theory that is a natu-
ral higher dimensional extension of 4-dimensional Einstein theory. In the Lovelock-
Maxwell system, there exist black hole solutions with two parameters, i.e., mass and
charge. We examine the linear stability of this solution and construct master equa-
tions. We present the criterion for instability using these equations. By checking
these criterion numerically, we show that nearly extreme black holes show instability
in high frequency modes.

1 Introduction

In higher dimensional gravitational theory, when we adopt brane world scenarios, black holes might be
created at colliders [1]. Thus it is important to examine the properties of higher dimensional black holes.
There exist many properties, but linear stability is one of the most important property. This is because
black holes with instability must not be created.

When we consider higher dimension, we must extend 4-dimensional Einstein theory into higher di-
mensional gravitational theory. In 4-dimensions, Einstein theory is constructed on the basis of two as-
sumptions: the covariance and no higher derivative term. Thus, it is natural to extend the 4-dimensional
gravitational theory keeping these assumptions. When we extend like this, the most general gravitational
theory is not Einstein theory. It is Lovelock theory [2]. Therefore, it is important to examine stability of
black hole solutions in Lovelock theory.

In Lovelock theory, there exist black hole solution with mass and stability of this solution has been
already examined in [4]. However, it is supposed that black holes in colliders have charge because such
objects result from proton-proton collisions. Thus we must regard Maxwell charge in examining stability.
In the Lovelock-Maxwell system, there exist black holes with mass and charge, namely charged Lovelock
black hole solutions. Here, we examine these solutions.

The organization is as follows. In section 2, we present charged Lovelock black hole solutions. In
section 3, we examine the stability. The background solution has the spherical symmetry, so we can
discuss tensor-type, vector-type and scalar-type perturbations separately. Thus we present the criteria
for instability separately. Furthermore, we present a numerical result for 5-dimensional case. In section
4, we summarize the discussions.

2 Charged Lovelock Black Holes

In this section, we present charged Lovelock black hole as the solution of the Lovelock-Maxwell system.
This system is governed by the action∫

dDx
√
�g
[
LLovelock �

1
4
F��F

��

]
(1)

where F�� is the field strength of Maxwell field A� and LLovelock is

LLovelock = β1R+
k∑

m=2

βm(2m)!
2mm

∏2m�2
p=1 (n� p)

�[�1
κ1
�σ1
�1 �

�2
κ2

� � � �σm]
�m

R�1σ1
κ1�1 � � �R�mσm

κm�m . (2)
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2 Instability of Charged Lovelock Black Holes

Here n is related to the dimension D as n = D � 2 and βms are arbitrary constants which are called
Lovelock coefficients. And k corresponds to the maximum order defined as k � [(D � 1)/2].

In this system, there exist spherically symmetric solutions. We here start from the ansatz

ds2 = �f(r)dt2 + 1/f(r)dr2 + r2γijdx
idxj , (3)

F tr = E(r), other components = 0 . (4)

Substituting these into the equations of motion derived from the above action, we obtain the following
solution:

f(r) = 1 � r2 (r) ,

P[ ] �
k∑

m=2

[
βm
m
 m
]

+  =
M
rn+1

� Q2

r2n
, (5)

and

E(r) =
√
n(n� 1)Q/rn . (6)

Here M is a mass parameter of a black hole and Q corresponds to charge. In order to gain the explicit
form, we must solve the k-th order polynomial equation (5). This equation has at most k roots, but there
must only an asymptotically flat root. Here we call this asymptotic flat root charged Lovelock black hole.

3 Stability Analysis

In this section, we check the stability of this charged Lovelock black hole solution [3]. This solution has
the spherical symmetry, so we can classify the first order perturbations into tensor-type, vector-type and
scalar-type and we can treat these separately.

3.1 Tensor-type Perturbations

Firstly, we discuss the tensor-type perturbations. The Maxwell field A� has no tensorial perturbations
and then we only consider the gravitational perturbations

�gtt = �gtr = �gti = �grr = �gri = 0, �gij = r2φ(r)eiωtTij . (7)

Here, Tij is tensor harmonics which is characterized by Tij |k|k = �(`(`+n� 1)� 2)Tij . Using this metric
perturbation, we can obtain (

�∂2
r∗ + Vg(r)

)
Ψ = ω2Ψ , (8)

where

Ψ = φ(r)r
√
T ′(r), dr�/dr = 1/f , T (r) = rn�1∂ψP ,

Vg(r) =
`(`+ n� 1)f

(n� 2)r
T ′′

T ′ +
1

r
√
T ′
∂2
r∗(r

√
T ′) . (9)

This is a Schrödinger-type equation and its eigenvalue is ω2 and we decompose like eiωt. Thus, if there
exist negative eigenvalue states, charged Lovelock black holes are unstable. The effective potential for
this equation is characterized by the function T (r) and the constant `. Then , for instance, negative
eigenvalue states may exist if T (r) behaves peculiar. Indeed, as is shown In [5], we can show that the
Schrödinger equation for large ` modes has negative eigenvalue states if T ′ or T ′′ have negative regions.
Thus what we have to do next is checking these criteria and we will do in subsection 3.4.
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3.2 Vector-type Perturbations

For vector-type perturbations, we take the Regge-Wheeler gauge in which perturbative variables are
expressed as

�At = �Ar = 0, �Ai = CeiωtVi
�gti = weiωtVi, �gri = veiωtVi, otherwise = 0 , (10)

where Vi is the vector harmonics which is characterized by Vi|l|l = �κvVi. Substituting these into
equation of motion and using suitable variables, we can gain the following master equation:(

�∂2
r∗ +

(
Vg(r) Vc(r)
Vc(r) Vem(r)

))(
Ψ
ζ

)
= ω2

(
Ψ
ζ

)
, (11)

where

Vg(r) =
κv � (n� 1)

n� 1
fT ′

rT
+ r

√
T ′∂2

r∗
1

r
√
T ′

,

Vc(r) = �2(Ern)

√
κv � (n� 1)

2(n� 1)
f
√
T ′

r(n+2)/2T
,

Vem(r) = (κv + (n� 1))
f

r2
+ 2(Ern)2

f

rn+1T
+ r�(n�2)/2∂2

r∗r
(n�2)/2 . (12)

This is a Schrödinger equation with two components and ω2 is its eigenvalue. In the same way as tensor-
type, if the above Schrödinger equation has negative eigenstates, black holes are unstable. However, as
is shown in [5], the Schrödinger operator is positive-definite. Therefore, there is no negative eigenstate in
the above system.

3.3 Scalar-type Perturbations

Finally, we consider the scalar-type perturbations. In the Zerilli gauge, perturbative variables are ex-
pressed as

�gtt = fH0Y, �gtr = H1Y, �grr = HY/f, �gij = r2KYγij ,
�Ftr = XY, �Fti = Y Y|i, �Fri = ZY|i, otherwise = 0 , (13)

where Y is the scalar harmonics which is characterized by Y|l
|l = �κsY. Substituting these into equa-

tion of motion and using suitable variables which is discussed in [5], the perturbative equation can be
summarized as (

�∂2
r∗ +

(
Vg(r) Vc(r)
Vc(r) Vem(r)

))(
Ψ
ζ

)
= ω2

(
Ψ
ζ

)
, (14)

where

Vg(r) = κs
f

nr

(
4(κs � n)
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+
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Vc(r) =

√
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,
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A = 2κs + nrf ′ � 2nf . (15)
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The above equation is Schrödinger equation. Thus, in the same way as tensor-type perturbations, whether
negative energy states exist or not determines the stability of the background solutions. For this, as is
shown in [5], we can prove that “if T ′ or 2T ′2 �TT ′′ have negative regions, black holes show instability”.
Thus what we have to do next is checking the behaviors of the above functions and we examine these in
the next subsection.

3.4 Numerical Result in 5-dimensions

Here, we check the behaviors of three function T ′, T ′′ and 2T ′2 � TT ′′ numerically. For instance, we
present the result for the 5-dimensional case. Fig.1 corresponds to this result.
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Figure 1: We show the unstable parameters in 5-dimensions. The horizontal axis correspond charge and
the vertical one is mass. From this figure, there exist instability for nearly extreme black holes.

From this figure, we can easily see that nearly extreme black hole show instability. Note that this
property is common to the other dimensions. Therefore, we can say that nearly extreme black holes are
unstable in the Lovelock-Maxwell system.

4 Conclusion

We have studied the stability of charged black holes in Lovelock black holes. we have presented the master
equation for each type of perturbations and shown the criteria for instability. We have also examined the
criteria numerically and shown that nearly extreme black holes are unstable. These result indicates that
black hole with nearly extreme mass are not created and very high energy is needed to produce black
holes in colliders if Lovelock theory is true.
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Abstract:We discuss criteria for bound (or unbound) orbits of a test particle

in the Kottler (Shcwarzschild-de Sitter) spacetime.

1 The equation of motion

The equation of motion for a test particle in Kottler spacetime:
(
dr

dτ

)2

=
Λ

3
r2 + E +

Λ

3
j2 +

rg

r
−

j2

r2
+

rgj
2

r3
(1)

where E , j2 are constants defined by

E =

(
1−

rg

r
−

Λ

3
r2
)2

ṫ2 − 1

j2 = r2φ̇.

They are the energy per unit mass and angular momentum from correspondence
with Newtonian mechanics, respectively.
And rg is Schwarzschild radius, Λ is cosmological constant.

d2r

dτ2
=

Λ

3
r −

rg

2r2
+

j2

4r3
−

rgj
2

6r4
(2)

2 Criterion for bound (or unbound) orbits

2.1 Sch

Well-known criterion for bound orbits near Schwarzschild blackhole.

(k =
3r2g
j2 < 1)

j2 < 3r2g

Unbound

3r2g ≤ j2 < 4r2g

−2(1− k)3/2 + 2− 3k

9k
< E <

2(1− k)3/2 + 2− 3k

9k

4r2g ≤ j2

−2(1− k)3/2 + 2− 3k

9k
< E < 0.

2.2 Kottler

Since we do not have a quintic formula, we cannot solve equation (1) nor equation
(2), either. Then, Strum’s theorem is applied.
equation (1) to six inequalities were obtained and equation (2) to three inequalities
were obtained. Criterion for bound orbits in Kottler spacetime are found
(λ = r2gΛ � 1)

j2 < 3r2g(1−18λ)

Unbound

3r2g(1−18λ) < j2 < 4r2g [1− (10λ)1/3]

−2(1− k)3/2 + 2− 3k

9k
− λA

−
< E <

2(1− k)3/2 + 2− 3k

9k
+ λA+

(
A±=2

16−60k+69k2−15k3−12k4±√
1−k(16−52k+45k2+2k3−8k4)

k{±2(1−k)3/2+2−3k}3

)

4r2g [1−(10λ)1/3] < j2 <
3

16
r2g

(
3

λ

)1/3

−2(1− k)3/2 + 2− 3k

9k
− λA

−
< E < X1/3

−

10Λj2

27X1/3
−

Λj2

8

⎛
⎝X=

5Λ

√
6561r4g+

2560Λj6

3
648 −

5r2gΛ

8

⎞
⎠

3

16
r2g

(
3

λ

)1/3

< j2

Unbound

The upper limit of angular momentum is new criterion.

j2 < 3r2g(1− 18λ)

3r2g(1− 18λ) <j2 <
3

16
r2g

(
3

λ

)1/3

3

16
r2g

(
3

λ

)1/3

<j2

r

(ε2 − 1 +
Λ

3
j2 = 0,Λ = 10−5, rg = 1)

−

(
dr

dτ

)2

(E = 0,Λ = 10−5, rg = 1)

3 Outermost orbit

In equation (2), the fourth item loses its effect at the distant place. it changes into:

d2r

dτ2
�

Λ

3
r −

rg

2r2
+

j2

4r3
. (3)

On the boundary line at the distant place which changes from bound to unbound,
it is required that the solution for r should become a multiple solution. Therefore,
angular momentum is obtained as

j2 =
3

16
r2g

(
3

λ

)1/3

.

and r is obtained as

r =
rg

2

(
3

λ

)1/3

. (4)

This is outermost orbit.

4 Conclusion

We obtained criteria for bound (or unbound) orbits of a test particle.
Then substituting a suitable parameter value into obtained equation (4),

r ∼ 1018[m]. (5)
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2 

     The higher order perturbation theory in general relativity 
has very wide physical motivation. 

 
– Cosmological perturbation theory 

• Expansion law of inhomogeneous universe  
    (ΛCDM v.s. inhomogeneous cosmology) 
• Non-Gaussianity in CMB (beyond WMAP) 

 
– Black hole perturbations 

• Radiation reaction effects due to the gravitational wave emission. 
 

– Perturbation of a star (Neutron star) 
• Rotation – pulsation coupling (Kojima 1997) 

 
 
 

    There are many physical situations to which higher order 
perturbation theory should be applied. 

I. Introduction 
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However, general relativistic perturbation theory  
requires very delicate treatments of “gauges”. 

    It is worthwhile to formulate the  
higher-order gauge-invariant perturbation  
theory from general point of view. 

• According to this motivation, we have been formulating the general 
relativistic second-order perturbation theory in a gauge-invariant 
manner.  
– General formulation :  

• Framework of higher-order gauge-invariant perturbations : 
• K.N. PTP110 (2003), 723; ibid. 113 (2005), 413.  

• Construction of gauge-invariant variables for the linear order metric perturbation : 
• K.N. CQG28 (2011), 122001; 1105.4007[gr-qc]; IJMPD21 (2012), 1242004. 

• The nth-order extension of the definitions of gauge-invariant variables : 
• K.N. in progress. (I am trying to resolve this issue.) 

 
– Application to cosmological perturbation theory : 

• Einstein equations :  K.N. PRD74 (2006), 101301R; PTP117 (2007), 17. 
• Equations of motion for matter fields :  K.N. PRD80 (2009), 124021. 
• Consistency of the 2nd order Einstein equations :  K.N. PTP121 (2009), 1321. 
• Summary of current status of this formulation :  K.N. Adv. in Astron. 2010 (2010), 576273. 
• Comparison with a different formulation :  A.J. Christopherson, et al., CQG28 (2011), 225024. 



• In this poster presentation, 
– We propose an outline to define the gauge-invariant 

variables for nth-order general-relativistic perturbations. 
– Some problems to complete this outline are summarized. 
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• The first kind “gauge” is a coordinate system on a 
single spacetime manifold. 
 

• The second kind “gauge” appears in the perturbation 
theory. 

    This is a point identification between the physical 
spacetime and the background spacetime. 
– To explain this second kind “gauge”, we have to remind 

what we are doing in perturbation theory. 

II. “Gauge” in general relativity  

• There are two kinds of “gauge” in general relativity. 
– The concepts of these two “gauge” are closely related to the 

general covariance. 
– “General covariance” :  
        There is no preferred coordinate system in nature.  

(R.K. Sachs (1964).) 



III. The second kind gauge in GR. 

    “Gauge degree of freedom” in  
general relativistic perturbations 
arises due to general covariance. 
 
    In any perturbation theories, we  
always treat two spacetimes : 

– Physical Spacetime (PS); 
– Background Spacetime (BGS). 

Physical spacetime (PS) 

Background spacetime (BGS) 

 
 

(Stewart and Walker, PRSL A341 (1974), 49.) 

     In perturbation theories, we always write equations like 
 
 
     Through this equation, we always identify the points  
on these two spacetimes and this identification is called  
“gauge choice” in perturbation theory. 
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•  Expansion of gauge choices : 
We assume that each gauge choice is an exponential map.  
 
 
 
 

                                      ------->    
 

• Expansion of the variable : 
 
 

• Order by order gauge transformation rules : 
 

 
     

     Gauge transformation rules to second order 

(Sonego and Bruni, CMP, 193 (1998), 209.) 
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•  Representation of general diffeomorphism :  
 
 
 

  
 

 
• Expansion of the variable : 

 
• Order by order gauge transformation rules : 

 
 

 
   To develop nth-order gauge-invariant perturbation theory, we have to construct gauge- 
invariant variables for each order perturbation through this gauge-transformation rule. 
 

• Problem 1 :  
General diffeomorphism should form a group. How to prove? 

 

 

     Gauge transformation rules for nth-order 
perturbations (Sonego and Bruni, CMP, 193 (1998), 209.) 

8 

where , : the exponential map generated by            .  



III. Construction of gauge invariant variables in 
higher order perturbations 

    Our general framework of the second-order gauge invariant 
perturbation theory is based on a single assumption. 
linear order (decomposition conjecture) : 

metric expansion :  

,  metric perturbation :  metric on PS :  metric on BGS :  

   Suppose that the linear order perturbation        is decomposed as  
 
so that the variable         and       are the gauge invariant and the  
gauge variant parts of        , respectively. 
   These variables are transformed as  
 
under the gauge transformation                        .  

9 

   This conjecture is almost proved but is still a conjecture  
due to the “zero-mode problem” !! (Problem 2) 
[See K.N. CQG 28 (2011), 122001; arXiv:1105.4007[gr-qc];  
  IJMPD 21 (2012), 1242004.]  



is gauge invariant part and is gauge variant part. where 
   Under the gauge transformation                           , the vector field          
is transformed as 

Second order : 
   Once we accept the above assumption for the linear order metric  
perturbation       , we can always decompose the second order  
metric perturbations       as follows : 

10 

 Using gauge variant part of the metric perturbation of each  
order, gauge invariant variables for an arbitrary tensor fields  
Q other than metric are defined by   

First order perturbation of Q : 

Second order perturbation of Q : 

Perturbations of an arbitrary matter field Q : 



     The essence of the above construction of gauge-
invariant variables is to find gauge-variant variables for 
each-order metric perturbations.  

11 

---> The definitions of gauge-invariant variables for an arbitrary 
matter field are automatically given through the gauge-variant 
variables for each-order metric perturbation. 

     We may concentrate on each-order metric perturbation.  

The metric expansion : 

     We denote the gauge-variant parts of the first- and the 
second-order metric perturbation as 



12 

Third-order metric perturbation [K.N. (2003)] 
Gauge transformation rule : 

  Inspecting this gauge-transformation rule, we define the variable           
by 

   We can check that the gauge-transformation rule for          is given by 

     Applying the above decomposition conjecture, we can decompose 
the variable           into its gauge-invariant and gauge-variant parts as 

     This implies that we have decomposed         as 

: gauge-invariant part,  : gauge-variant part.  
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Fourth-order metric perturbation :  
Gauge transformation rule : 

  Inspecting this gauge-transformation rule, we define the variable           by 

   We can check that the gauge-transformation rule for          is given by 

     Applying the above decomposition conjecture, we can decompose the 
variable           into its gauge-invariant and gauge-variant parts as 

     This implies that we have decomposed         as 

: gauge-invariant part,  : gauge-variant part.  



14 

Problem 3 : nth-order metric perturbation :  

     When the proof of the above statement is accomplished, we may apply the 
decomposition conjecture and we can decompose the variable           into its 
gauge-invariant and gauge-variant parts as 

     This implies that we have decomposed          as 

: gauge-invariant part,  : gauge-variant part.  

Gauge transformation rule : 

  Inspecting this gauge-transformation rule, we define the variable           by 

   We have to prove the following statement :  
      There exists a vector field          such that the gauge-transformation rule 
for the variable           is given by 



    We have summarized three problems in the nth-order extension  
of our general relativistic gauge-invariant perturbation theory. 

15 

IV. Summary 

    Of course, the higher-order perturbation theory requires tough  
calculations to develop. However, we mainly focus on the essential  
problems in our formulation, i.e., the construction of gauge- 
invariant variables.  
 

     Problems that we pointed out are as follows: 
1. Group properties of general diffeomorphisms; 
2. Decomposition conjecture for linear metric perturbations; 
3. Construction of nth-order gauge-invariant variables. 
 
 

     I am now trying to show the extendibility of our construction of  
gauge-invariant variables to nth-order perturbations by induction.  
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Abstract

Possible effects of Chern-Simons (CS) gravity on a quantum interferometer
turn out to be dependent on the latitude and direction of the interferometer
on the Earth in orbital motion around the Sun.

1 Chern-Simons (CS) gravity

CS gravity modifies GR via the addition of a correction

SCS =
1

16πG

∫

d4x
1

4
fR!R, (1)

Following [1], let us consider a system of nearly spherical bodies in the standard
PPN point-particle approximation. The CS correction to the metric becomes

δCSg0i =
2G

c3

∑

A

ḟ

rA

[

mA

rA
(#vA × #nA)

i − J i
A

2r2A
+

3

2

( #JA · #nA)

r2A
ni
A

]

. (2)

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $

√
S. Hence,

∆CS = 2ḟ
mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(

R(t)−1#vE
)T
[

3(#nE0 · #NI0)#nE0 − #NI0

]

, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)





vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ

ḟ induces the phase shift

|∆CS | ∼ 10−3s−1 ×
(

mc2

1GeV

)

(

ḟ

c

)

(

S

0.4m2

)

. (8)

Current O(10−3) → ḟ c−1 < 100s bound
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s

Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

• Daily and seasonal variations in phase shifts are predicted with an estimate of
the size of the effects

• Neutron interferometry with ∼ 5 meters arm length and ∼ 10−4 phase mea-
surement accuracy would place a bound on a CS parameter comparable to
Gravity Probe B satellite [2].
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Current O(10−3) → ḟ c−1 < 100s bound
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s
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mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(

R(t)−1#vE
)T
[

3(#nE0 · #NI0)#nE0 − #NI0

]

, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)





vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ
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mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(

R(t)−1#vE
)T
[

3(#nE0 · #NI0)#nE0 − #NI0

]

, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)





vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ
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Current O(10−3) → ḟ c−1 < 100s bound
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s
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Current O(10−3) → ḟ c−1 < 100s bound
GPB (Gravity Probe B), LAGEOS space mission → ḟ c−1 < 10−3s
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第10章 中緯度の式

10.1 CS gravity

CS補正による計量は、

δCSg0i =
2G

c3

∑

A

ḟ

rA

[

mA

rA
("vA × "nA)

i − J i
A

2r2A
+

3

2

( "JA · "nA)

r2A
ni
A

]

(10.1)

となる。

10.2 Phase shifts

位相差は、

∆ =
1

!

∮

C

δHdt

=
mc

!

∮

C

"g · d"r (10.2)

となる。ただし、"g = (g01, g02, g03), m denotes the quantum particle mass,

! ∼ h/2π denotes Dirac’s constant である。ストークスの定理から、位
相差は次のようになる。

∆ =
mc

!

∫

S

("∇× "g) · d"S (10.3)

したがって、CS重力による位相差∆CSは、

∆CS =
2m

!c2

∫

S

ḟ
GME

r3
[3("vE · "nE)"nE − "vE] · "NIdS

= 2ḟ
mGMES

!c2r3E
[3("vE · "nE)"nE − "vE] · "NI (10.4)
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mGMES

!c2r3E
∆̃CS , (4)

∆̃CS = [3(#vE · #nE)#nE − #vE ] · #NI . (5)

Eq. (5) depends on the latitude and direction, and changes with the Earth’s spin
and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
∆̃CS is rewritten in the rotating matrix R(t)

∆̃CS =
(

R(t)−1#vE
)T
[

3(#nE0 · #NI0)#nE0 − #NI0

]

, (6)

R(t)−1#vE = {R(φ)}−1{R(ωEt)}−1{R(ΩEt)}−1R(IE)R(ΩEt)





vE
0
0



 . (7)

Figure 2: Daily variation in phase differences by CS effects. The red, green, and
blue curves correspond to #NI for a horizontal plane and two vertical ones (one
facing the East and the other facing the North), respectively.

5 Possible constraint on ḟ
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ḟ

rA

[

mA

rA
(#vA × #nA)

i − J i
A

2r2A
+

3

2

( #JA · #nA)

r2A
ni
A

]

. (2)

2 Phase shifts in a quantum interferometer

We consider a quantum interferometer that consists of a closed path C (its area S)
on the Earth, as shown by Fig 1. ∆ is a phase difference induced by g0i .
By using Stokes theorem, ∆ is rewritten in the surface integral form over S

∆ =
mc

!

∮

C
#g · d#r =

mc

!

∫

S
(#∇× #g). (3)

Figure 1: Quantum interferometer on the Earth orbiting around the Sun.

3 Phase shifts for Chern-Simons (CS) gravity

Let us substitute the CS term of Eq. (2) into Eq. (3) to obtain ∆ for CS gravity.
We focus on the Earth mass in CS gravity and use rE $
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S. Hence,

∆CS = 2ḟ
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and orbital motion.

4 Time variation and the latitude

By using the coordinate rotation #NI(t) = R(ωEt) #NI0,#nE(t) = R(ωEt)#nE0,
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Figure 3: Seasonal variation in phase differences by CS effects. The green solid is
full data points.

6 Conclusion

We considered effects of CS gravity on a quantum interferometer.

• Daily and seasonal variations in phase shifts are predicted with an estimate of
the size of the effects.

• Neutron interferometry with ∼ 5 meters arm length and ∼ 10−4 phase mea-
surement accuracy would place a bound on a CS parameter comparable to
Gravity Probe B satellite [2].
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Possible effects of Chern-Simons (CS) gravity on a quantum interferometer
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Abstract
We investigate the application of the Hilbert-Huang transform (HHT) to search for
gravitational waves. The HHT is a novel and adaptive approach to time-series anal-
ysis. The HHT consists of an empirical mode decomposition and Hilbert spectral
analysis. It can be applied to the analysis of gravitational-wave bursts, because this
analysis does not assume the waveform. Thus, in this paper, we propose the excess
power method with the HHT and estimate the detection efficiency of the proposed
method.

1 Introduction

The Hilbert-Huang transform (HHT) [1, 2, 3] is a novel analysis of time series data which contain physical
oscillatory modes. It is used to detect the signal in the noise and characterize physical oscillatory modes.
The HHT consists of an empirical mode decomposition (EMD), followed by a Hilbert spectral analysis
(HSA). It has a higher resolution of time-frequency than traditional analysis methods, because the EMD
is an adaptive time-frequency decomposition. Thus, the HHT can be applied to non-linear and non-
stationary time series data. On the other hand, traditional analysis methods such as the Fourier transform
and wavelet transform also assume that the data is linear and stationary.

The HHT has been applied to various fields; biomedical engineering, financial engineering, image
processing, seismic studies, ocean engineering, etc.

In this paper, we investigate the excess power method with the HHT to detect gravitational-wave
bursts. This analysis does not require any knowledge of gravitational wave, for example, waveform etc.
We also estimate the detection efficiency of the proposed method.

2 Hilbert spectral analysis and empirical mode decomposition

The Hilbert transform of function u(t) is defined by

v(t) =
1

π
P

∫ ∞

−∞

u(t′)

t− t′
dt′, (1)

where P indicates the Cauchy principal value. If the function u(t) ∈ Lp(R) for 1 < p < ∞, v(t) is
imaginary part of analytic function F (t) = u(t) + iv(t) = a(t)eiθ(t). Then, an instantaneous amplitude
(IA) a(t) and instantaneous frequency (IF) f(t) is defined by

a(t) =
√
u2(t) + v2(t), (2)

θ(t) = tan−1
( v(t)
u(t)

)
, (3)

f(t) =
1

2π

dθ(t)

dt
. (4)
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2 Method of gravitational-wave detection with Hilbert-Huang transform

Generally, it is not guaranteed that we obtain the physically meaningful IF. In order to obtain the
meaningful IF, Huang et al. [2] showed that the data u(t) should be satisfy the following two conditions:
(I) A number of extrema and number of zero crossing equal or differ at most by one, (II) The mean value
of the envelope defined using the local maxima and the envelope defined using the local minima is zero.

To satisfy the above conditions, we perform the EMD which is a series of high-pass filters in a sense.
The EMD decomposes the data u(t) to intrinsic mode functions (IMFs) and residual r(t),

u(t) =
∑
i

IMFi+ r(t). (5)

Then, each IMF has a locally monochromatic frequency scale that is obtained empirically. The EMD
algorithm is as follows:

• h1(t) = u(t)

• for i = 1 to imax

▷ hi,1(t) = hi(t)

▷ for k = 1 to kmax

◦ Identify the local maxima and minima of hi,k(t)

◦ Ui,k(t) = the upper envelope joining the local maxima using a cubic spline

◦ Li,k(t) = the lower envelope joining the local minima using a cubic spline

◦ mi,k(t) = (Ui,k(t) + Li,k(t))/2

◦ hi,k+1(t) = hi,k(t)−mi,k(t)

Exit from the loop k if a stoppage criterion

∑
j |mi,k(tj)|∑
j |hi,k(tj)|

< ϵ

▷ IMFi = ci(t) = hi,k(t)

▷ hi+1(t) = hi(t)− ci(t)

• residual: r(t) = himax+1(t)

The EMD frequently occurs mode mixing which is defined as a single IMF either consisting of signals
of widely desperate scales or a signal of a similar scale residing in different IMF components. To suppress
mode mixing, we perform the ensemble EMD (EEMD) [4],
(1) Add a white noise series to data,
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(2) Decompose the data with added white noise into IMFs,
(3) Repeat step (1) and (2) in many times with different white noise series each time,
(4) Obtain the ensemble means of corresponding IMFs of the decompositions as the final result.

To perform the EMD, we must be set the empirical EMD parameters which depend on the charac-
teristic of the data [5]. End-of-loop-i condition is that residual becomes monotonic functions. We set the
stoppage criterion ϵ = 10−4, consequently, kmax is almost equal to or lower than 100 in our simulations.
The parameters for the EEMD are the size of ensemble Ne and standard deviation of white noise σe. We
set Ne = 200 and σe = 1.0. We tried other values of σe but we found that this values is optimal. As for
Ne, we verified that the results hardly change even with Ne > 100 but the value Ne = 50 is too small.

We apply the HHT to the sine-Gauss signal

h(t) = aexp[− (t/τ)2]sin(2πft). (6)

We set frequency of signal f = 600 Hz and τ = 0.1 sec/2π = 0.016 sec. Moreover, we use a white-
Gaussian noise with zero mean µ = 0 and standard deviation σ = 1.0. Figure 1 plots the data used in
our simulations. The signal-to-noise ratio (SNR) is defined by

SNR =

√∑
j

h2(tj)/σ. (7)

The sampling frequency and data length is 4096 Hz and 1.0 sec, respectively. The results of EMD are
showed in Fig. 2. The signal appears only in IMF2, because the sine-Gauss signal used in this case has
a single frequency component.

3 Excess power methods

We propose an excess power method with the HHT to detect gravitational-wave bursts. If the IA >
IAc for a duration δtc in some IMF, then we define the candidate of the detection for gravitational-wave
bursts. Figure 3 plots the IAs for each IMF1, 2 and 3. The blue line represent the maxinum IA of noise
only data. We evaluate the detection efficiency by using the receiver operating characteristics (ROC)
curve, which shows the detection rate (DR) as a function of the false alarm rate (FAR). We perform the
EEMD procedure for 1000 samples of each data which generated noise with a different seed.

Figure 4 plots the ROC curves for IMF1, 2 and 3 (δtc = 0 msec). In IMF1 and IMF3, it does not
detect gravtational-wave bursts for SNR = 10 and 15. We found that we obtatined the high detection
efficiency in IMF2 : DR > 0.95 and FAR < 0.05 for SNR = 10.

Figure 5 plots the ROC curves of IMF2 for each SNR = 10, 15 and 20 and different δtc. For SNR =
15 and 20, we obtain better detection efficiency for any δtc. When δtc = 4 msec, we find DR > 0.97 and
FAR < 0.05 for SNR = 10.
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4 Conclusion

We investigated the property of excess power method with the HHT for gravitational-wave bursts. We
found the high detection efficiency only in IMF2. The signal almost appeared in IMF2, since the sine-
Gauss signal used this paper had a single frequency component (f = 600 Hz).

Even if SNR = 10, we obtained DR > 0.95 and the FAR < 0.05. Moreover, when the duration time
was δtc = 4 msec, DR and FAR were better than that of δtc = 0 msec.

We used the signal which had constant frequency. However, the real gravitational waves have com-
plicate and large-scale frequency modulation. Since we expect to appear the signal in multiple IMFs, it
is possible for us to obtain the better detection efficiency. We will report elsewhere.
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Potential‐driven inflation with Galileon term

Junko Ohashi  and  Shinji Tsujikawa  , Tokyo University of Science

Conclusion

Potential‐driven Galileon inflation

Results

Introduction
 For the models of inflation driven by the potential energy of an inflaton field    , the covariant Galileon Lagrangian                 generally works to 
slow down the evolution of the field. On the other hand, if the Galileon self‐interaction is dominant relative to the standard kinetic term, we 
show that there is no oscillatory regime of inflaton after the end of inflation. This is typically accompanied by the appearance of the negative 
propagation speed squared     of a scalar mode, which leads to the instability of small‐scale perturbations. For chaotic inflation and natural 
inflation we clarify the parameter space in which inflaton oscillates coherently during reheating. We also place observational constraints on the 
inflaton potentials from the information of the scalar spectral index       and the tensor‐to‐scalar ratio    .  

φ (∂φ)2!φ

c2
s

ns r

3M2
plH

2 ! V 3Hφ̇(1 +A) + V,φ ! 0

ε = − Ḣ

H2
" εφ

1 +A

Mc = 2−n/3n(n−1)/3M (n−1)/3
pl λ1/3

M > 2.5× 10−4Mpl

M > 9.5× 10−5Mpl

S =
∫

d4x
√
−g

[
M2

pl

2
R + X − V (φ)−G3(φ, X)!φ + L4 + L5

]
L4 = G4(φ, X)R + G4,X

[
(!φ)2 − (∇µ∇νφ)(∇µ∇νφ)

]
We start with the following action

where L5 = G5(φ, X)Gµν(∇µ∇νφ)− 1
6
G5,X

[
(!φ)3

−3(!φ)(∇µ∇νφ)(∇µ∇νφ) + 2(∇µ∇αφ)(∇α∇βφ)(∇β∇µφ)
]

 For simplicity, we study the covariant Galileon theory in which only the       term is present in the above actionG3
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For smaller     ,     gets smaller whereas       increases. 
The quartic potential can be compatible with the  
current observations in the presence of the Galileon term.  
The model is within the       contour for                                  
with       e‐foldings.                                      

M r ns

2σ M < 7.7× 10−4Mpl

(※1)

(※2)

In terms of the parameter     the conditions (※1) and (※2) 
translate into                                                                              .

λ
3.4× 10−13 < λ< 3.1× 10−10

viable parameter  
space of     λNatural inflationV (φ) = Λ4[1 + cos(φ/f)]

In standard natural inflation
                      for the consistency with the WMAP constraints. 
However,                 is not generally realized in particle physics. 
f ! 3.5Mpl

f > Mpl

In the presence of the Galileon termX!φ/M

10
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!

f/Mpl

(i) WMAP constraint

(ii) field oscillation during reheating

f/Mpl

γ

(i) WMAP constraints

(ii) inflaton  
     oscillations

For the compatibility of two 
constraints we require that    is 
bounded to be                       .f > 1.7Mpl

f

γ = Λ4/(M3Mpl)where

Hence the problem of the super‐
Planckian values of     in stan‐
dard inflation is not improved 
significantly. 

f

  We have studied the viability of potential‐driven Galileon inflation. The Galileon self‐interactions generally lead to the slow down for the 
evolution of the field, which allows the possibility to accommodate steep inflaton potentials. The dominance of the Galileon self‐interactions 
relative to the standard kinetic term     can modify the dynamics of reheating after inflation. In order to clarify this issue, we numerically solved 
the background equations for chaotic inflation and natural inflation. We found that, depending on the couplings                            and their 
associated mass scales     , there is no oscillatory regime of inflaton. Moreover the dominance of the Galileon terms generally gives rise to the 
negative scalar propagation speed squared      during reheating, which leads to the instability of small‐scale density perturbations.

X
Gi (i = 3 , 4 , 5)

M

JCAP 1210, 035 (2012)
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Abstract

• Discuss the possibility that QCD axions 

form a Bose-Einstein condensate (BEC)

• Calculate time evolution of occupation 
number of axions in the condensed regime

• Derive a formula for thermalization rate

• Revisit axion cosmology

2/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



• Non-thermal production

• Large occupation number

(                                             : number density of axions)

“cold” dark matter (               )

Peculiarities of axion dark matter

c.f.                                 for WIMPs

3/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



Do axions form a BEC ?
• Bose-Einstein condensate

• Large fraction of bosons are in the lowest-
energy state 

• Critical temperature

• Assumptions

!

1. Particles are bosons

2. Number is conserved
3. Large occupation number
4. In thermal equilibrium

For axions
satisfied
satisfied
satisfied

???

4/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



• Thermalize if 

• WIMPs : classical particle limit

• axions : classical field limit

Axions vs WIMPs

collection of classical “point particles”
evolution : use Boltzmann eq.

while fixed

while fixed

“wavy field”

cannot use Boltzmann eq.
→ consider quantum mechanics

5/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



In quantum mechanics...
• We consider transitions between different 

quantum states.

• Two different regimes

• WIMPs

• axions 

energy exchanged 
in the transitions

transition rate

“particle kinetic regime”

“condensed regime”

A transition makes sense if

6/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



• Time evolution of quantum operators in the 
Heisenberg picture

• What about the quantum-mechanical 
averages           ? 

Previous study
Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012)

Leading contribution
in the condensed regime

reduce to Boltzmann 
eq. in the particle 
kinetic regime

: label of the state (momentum)

7/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



(obs.                    )

Effects on cosmological parameters ?

• Thermalization rate is enhanced in the condensed 
regime → leads to axion BEC

• Thermalization rate with other species is also 
enhanced (?)

• axions and photons have thermal contact

• Is it true ? Does axion BEC conflict with standard 
cosmology?

baryon-to-photon ratio at BBN

effective # of neutrino d.o.f.

Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012); PRL108, 061304 (2012)

8/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



In-in formalism

• Calculate expectation value of a quantum operator 
via perturbative expansion

Weinberg, PRD72, 043514 (2005)

(ignore axion # violating process)

(1) scalar self-coupling

(2) gravity

: number operator
(label becomes discrete)

November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo) 9/16



•       = a state which represents the coherent 
oscillation of axions

• Use a coherent state

• Field amplitude

• Mean square deviation
( inside the horizon                  )

(assuming a mode with                        )

In state

classical field trajectory

vacuum fluctuation

with

10/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



“Zero modes”
• Assume plural (say     ) oscillating modes

• number density

• Question : how these plural oscillating modes 
(“zero modes”) reach thermal equilibrium ?

• decoupled axions                                                
= each of K modes oscillates independently

• thermalized axions                                                        
= transition between plural modes becomes significant                                                       

for

11/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



Evolution of occupation number

• First order term is relevant if                               

(1) condensed regime                                             

(c.f.                    for particle kinetic regime                )                                        

(2) coherent state representation

for

coherent state

for
number state

12/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



Thermalization rate

• Recover the previous estimation

Using and

we obtain

: number density 
of axions

Erken, Sikivie, Tam, Yang, PRD85, 063520 (2012)

scalar phi^4

gravity

13/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



Formation of axion BEC
• Axions form a BEC when

• At this time, axions enter into thermal equilibrium 
with temperature

• Almost all axions stay in the lowest energy state.

corresponding to the photon temperature

thermally excited modes

14/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



No photon cooling
• Interaction with other species

• Assume     particles are represented as a number state

• First order term exactly vanishes

• Thermalization with other species is second order effect.

• BEC axions do not have thermal contact with photons 
→ does not affect cosmological parameters

while

15/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)



Summary

• Derive the formula for thermalization rate in the 
condensed regime by using

• in-in formalism

• coherent state representation

• Formation of axion BEC occurs at

• It does not conflict with standard cosmology 

• Future directions

• Extend the formalism including general relativistic 
corrections

• Seek for other observable effects

16/16November 12-16, 2012, JGRG22 (RESCEU, Univ. of Tokyo)
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1. Introduction

Recently, the ghost problem in non-linear massive gravity has been solved.

Massive gravity : a challenge to give mass to graviton in general relativity 

linear level : Pauli-Fiertz mass term・・・ no problem
non linear level : a serious difficulty emerges

graviton has  spin 2・・・mssless :  2 degrees of freedom
massive :  5 degrees of freedom

In linear level, there are certainly 5 degrees of freedom.
However, in non-linear level, extra 6th degree of freedom emerges 
and turns out to be a ghost particle.  

ghost particle：a particle having negative kinetic energy 

BD ghost

For the consistency of the theory, ghost particles must be excluded. 1



Extension to bimetric gravity 

In non-linear massive gravity, metric is always decomposed into backgroundand and fluctuation.

The background metric can be promoted to a dynamical variable.

a theory of two dynamical metrics

It has been shown that no BD ghost is contained.

Can we construct ghost-free theories with more than two metrics？

①：Trimetric case as a naïve extension of bimetric gravity is proposed.  (2012, N. Khosravi et al)

The problem of BD ghost is unsolved.
②：Ghost-free multimetric gravity with vielbeins is proposed.  (2012, K. Hinterbichler and R. A. Rosen)

Question 

② dose not contain ①.

We solve the ghost problem in ①, and further develop
our analysis to more general multimetric gravity. 

2



2. Bimetric gravity

 :A

:, fg metric

  ][det][det 4242 fRfxdMgRgxdMS fgbi

 
 fggxda 14 det

Einstein Hilbert term

Interaction term

:, fg MM :][],[ fRgR :aPlanck mass , curvature , coupling constant

),(ATr ),....()( 22 ATrTrA 
(up to fourth order in A)

linear combination of

No BD-ghost is contained, 
and  there exist one massless and one massive graviton.

degrees of freedom :２＋５＝７ 3



3. Trimetric gravity

  ][det][det][det 424242 hRhxdMfRfxdMgRgxdMS hfgtri

     
  ghhahffafgga 1

33

1

22

1

11 detdetdet

g

f h

1a

2a

3a

g

f h

1a

02 a

3a

:,, hfg metric

a nive extension of bimetric case

In this case, we verified the exsistence of 
a BD-ghost.

cutting one of interactions

Ghost-freedom is already shown in the vielbein formalism.

4



We perform the Hamiltonian analysis in homogeneous model. 

ji

ij dxdxtdttNdxdxg )()( 22 
 

ji

ij dxdxtdttLdxdxf )()( 22 
 

ji

ij dxdxtdttQdxdxh )()( 22 
 

One of the metrics can be diagonalized through spacial rotations. 

QLN QCLCNCH Hamiltonian : 

:,, QLN Laglange multipliers

0,0,0  QLN CCCConstraints :

Degrees of freedom : 15663 
5



Constraints must be preserved in the time evolution.

0},{},{},{  QCCLCCHCC QNLNNN


0},{},{},{  QCCNCCHCC QLNLLL


0},{},{},{  LCCNCCHCC LQNQQQ


3},{ aCC QN ,},{ 1aCC LN  ,},{ 2aCC QL 

0

0

0

0

23

21

31






































Q

L

N

aa

aa

aa
We must determine the Lagrange multipliers
to satisfy this condition.
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g

f h

1a

02 a

3a
0

00

00

0

3

1

31






































Q

L

N

a

a

aa

,0},{1  LN CCa 0},{3  QN CCaSecondary Constraints

0},{ ,,,  QNLLNLNNLLN QCLCNCdtCCd

0},{ ,,,  QNQLNQNNQQN QCLCNCdtCCd

・One of the Lagrange multipliers is left undetermined.  (one gauge freedom）
・The total number of constraints is five.

Total degrees of freedom :  122/)15215( 

Masless graviton : 1
Massive graviton : 2
BD ghost：0

Case 1:

consistency in the time evolution
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aa
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,
1

2 Q
a

a
N  ,

1

3 Q
a

a
L  Q：arbitrary

Constraints ：3
Gauge freedom ：1

Total degrees of freedom :  132/)13215( 

Masless graviton : 1
Massive graviton : 2
BD ghost : 1

Case 2:

No seconday constraint
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4. More general Multimetric gravity

   









n

k

kkkkk

n

k

kkkn gggxdagRgxdMS
1

1

14

1

42 det][det

1g

2g

3g

4g

ng
1g

2g

3g

4g

ng

BD ghost：0 2/)1( nBD ghost： 個 (n:odd）

2/)2( n 個 (n:even）

:,...,, 21 nggg metrics
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5. summary

・We showed that there exists a BD-ghost in the trimetric gravity
as a naive extension of the recently proposed ghost-free bimetric
gravity.

・We also studied more general multi metric gravity,
and showed there always exist BD-ghosts if loop type 
interactions are contained. 

10
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~use	  of	  integrated	  Perturba1on	  Theory~	

Shuichiro	  Yokoyama	  (ICRR,	  the	  Univ.	  of	  Tokyo)	  
	  with	  Taka	  Matsubara	  (KMI,	  Nagoya	  Univ.)	  
arXiv:1210.2495,	  in	  prep.	



Simplest	  parameteriza1on	  
• Focusing	  on	  Local	  type	  non-‐Gaussianity	

(Komatsu	  &	  Spergel(2001),	  Byrnes,	  Sasaki	  &	  Wands(2006),	  …)	

non-‐linearity	  parameters	Gaussian	  fluc.	  

leadingly,	  …	

• 	  Bispectrum	  	  (3-‐point	  corr.	  func.)	  	  

• 	  Trispectrum	  (4-‐point	  corr.	  func.)	

primordial	  curvature	  fluctua1ons	

-‐	  Introduc1on	  -‐	



Importance	  of	  trispcetrum	  

• Trispectrum	 (Byrnes,	  Sasaki	  &	  Wands(2006),	  Boubekeur	  &	  Lyth(2006)	  …)	

We	  can	  generalize	  …	

e.g.)	

Suyama	  and	  Yamaguchi	  (2008),	  …	



fNL vs tauNL	 fNL vs gNL	

How	  accuracy	  can	  we	  measure	  these	  parameters	  with	  	  
using	  cosmological	  observa6ons?	

(Suyama,	  Takahashi,	  Yamguchi	  and	  SY	  (2010))	

dis1nguishing	  models	  !!!	



Integrated	  Perturba1on	  Theory	  (iPT)	
Matsubara	  (2011),	  Matsubara	  (2012)	

ini1al	  mass	  density	  field	

final	  mass	  density	  field	

ini1al	  number	  density	  field	

non-‐linear	  
evolu1on	

final	  number	  density	  field	

forma1on	

Lagrangian	  bias	

Eulerian	  bias	

Non-‐linear	  perturba/on	  theory	  integrated	  with	  non-‐local	  bias,	  redshi8-‐distorsions,	  
and	  primordial	  non-‐Gaussianity	

non-‐local	  process	

ini1al	  mass	  density	  field;	  

ini1al	  number	  density	  field;	  

final	  mass	  density	  field;	  

final	  number	  density	  field;	

Without	  high	  peak	  limit	  and	  peak-‐background	  split	  picture	  	



•  Introducing	  mul1-‐point	  propagators	  

•  Power	  spectrum	  of	  the	  biased	  objects	  	  
with	  primordial	  non-‐Gaussianity	  

(without	  any	  high	  peak	  approxima1on,	  peak-‐backgroud	  picture,	  …)	
Matsubara(2012)	

including	  growth	  factor,	  
transfer	  func1on,	  
Poisson	  equa1on,	  ..	



•  Diagramma1cally,	  …	  

•  Introducing	  renormalized	  bias	  func1ons	  

	  depend	  on	  the	  mass	  func1on	  of	  the	  biased	  objects	  	

mul1plicity	  func1on	

non-‐linear	  evolu1on	  
of	  the	  maeer	  density	  field	

(on	  large	  scales)	



•  Mul1plicity	  func1on	

number	  density	  
of	  the	  biased	  objects	

mul1plicity	  func1on	

variance	  of	  	

Press-‐Schechter	  formalism,	  
Sheth-‐Tormen	  fifng	  formula,	  ..	

Then,	

bias	  parameter	  
can	  be	  evaluated!	

cri1cal	  density	



Scale-‐dependent	  bias	
• 	  Bias	  parameter	

k^-‐2-‐dependence	

k^-‐2-‐dependence	

K^-‐4-‐dependence	

Matsubara(2012),	  Yokoyama	  and	  Matsubara(2012)	

Scale-‐dependent	  part;	



•  fNL	  vs	  gNL	  	  ;	  same	  k-‐dependence…	

	  Different	  redshii-‐dependence	  !	

gNL=5x10^5	

fNL=40	

Higher	  redshi9	  objects	  	  <ghter	  constraints	  for	  gNL?	



•  fNL	  vs	  tauNL	  	  ;	  inequality	
Introducing	  a	  stochas1city	  parameter;	

;	  maeer	  density	  field	  –	  biased	  objects	  	  
	  	  	  cross	  power	  spectrum	
;	  maeer	  density	  field	  	  	  
	  	  	  power	  spectrum	

On	  large	  scales,	

Directly	  dependent	  on	  the	  inequality	  !	

ANL=2	

5	

10	

r(k)	  =	  0,	  or	  <	  0,	  or	  >	  0	  ??	

fNL=40	



•  Higher	  order	  from	  non-‐Gaussian	  mass	  func1on	

b	  ?	

negligible	  for	  not	  so	  high	  peak	  objects..	

fNL=40	

gNL=5x10^5	
ANL=10	  (fNL=40)	



•  Higher	  order	  contribu1on	  (from	  b2,	  b3,	  …)	



•  Higher	  order	  in	  stochas1city	  parameter	
1.	

2.	

3.	

x	4.	

1.	
2.	
3.	

4.	

-‐term	

For	  “primordial	  stochas/city”,	  	

is	  needed	  ??	



•  Equilateral	  ?	

fNL^eq	  =	  200	

gNL^eq	  =	  4x10^4	  
	  	  	  	  	  	  	  	  	  	  	  	  	  (	  =	  (fNL^eq)^2)	

Negligibly	  small	  contribu/on	See	  e.g.,	  Mizuno	  and	  Koyama	  (2010)	

z=0	

z=1.5	



Summary	  and	  Discussion	

•  Derive	  an	  accurate	  formula	  for	  the	  bias	  parameter	  with	  primordial	  
non-‐Gaussianity	  by	  using	  integrated	  Perturba1on	  Theory	  

•  wide	  (large	  scales)	  and	  deep	  (redshii-‐dependence)	  surveys	  are	  
needed.	  

•  Galaxy	  bispectrum?	  
•  Forecast	  for	  the	  constraints	  on	  fNL,	  gNL	  and	  tauNL?	  (HSC,	  …)	  



•  preliminary	

with	  Y.	  Takeuchi	  in	  prep.	



•  Bispectrum	  of	  the	  biased	  objects	
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Gravitational lensing by modified lens gravity

Takao Kitamura

Hirosaki University, Japan
with H. Asada (Hirosaki), K. Nakajima (Hirosaki)

JGRG22 in Tokyo Nov. 12 - 16, 2021
Abstract: IS DEMAGNIFICATION AN EVIDENCE FOR WORMHOLES ??

1 Deflection angle of light in the modified space-

time metric (inverce power form)

In weak field limit, We consider a modified space-time metric as

ds2 = −(1− ε1
rn

)dt2 + (1 +
ε2
rn

)dr2 + r2(dθ2 + sin2 θdφ). (1)

This metric is rewritten up to O(ε) by comformal transformation as

ds2 = (
1

1− ε1
rn

)d̃s
2
, (2)

where

d̃s
2 ≈ −dt2 + (1 +

ε

Rn
)dR2 +R2(dθ2 + sin2 θdφ2) (3)

with R ≡ r2/(1− ε1
rn ) and ε ≡ nε1 + ε2. We derivated deflection angle of light

in this space-time as with method of schwartzchild case.
Derivated deflection angle is

α =
ε

bn
·
∫ π

2

0

cosn θdθ. (4)

Especially, Equation (4) is rewritten as

α =
ε

bn
· (n− 1)!!

n!!

π

2
(n is even), (5)

α =
ε

bn
· (n− 1)!!

n!!
(n is odd). (6)

b is impact parameter.
The Equation (4) coinside with schwarzschild case with n = 1 and Ellis wormhole

case with n = 2.

2 Modified lens equation

Lens equation for modified space-time is

β = θ − 1

θn
(θ > 0), (7)

β = θ +
1

(−θ)n (θ < 0), (8)

in the units of θE = ε
1

n+1 that is Einstein ring radius with β = 0. We call this
equation as Modified lens equation.
We want to obtain analytical solution for modified lens equations. But no fo-

mula of solution for fifth-order(or higher) equation. Therefore, we solve it using
asymptotic expansion.

Then we consider source object pass through nearzone in proportion with Ein-
stein ring radius (β $ |θE |).For β < 1, Equation [7,8] are iteratively solved as

θ+ = 1 +
1

n+ 1
β +

1

2

n

(n+ 1)2
β2 (θ > 0), (9)

θ− = −1 +
1

n+ 1
β − 1

2

n

(n+ 1)2
β2 (θ < 0). (10)

3 Approximate prediction for amplification

Total amplification is

A ≡
∣

∣

∣

θ+
β

dθ+
dβ

∣

∣

∣
+
∣

∣

∣

θ−
β

dθ−
dβ

∣

∣

∣
. (11)

substitute Equations [9,10] in Equation (11):

A =
1

n+ 1

2

β
. (12)

Thus, magnifying condition (A > 1) is rewritten as

2

n+ 1
> β. (13)

The meaning of Equation (13) is changing from magnification to demagnification
with β = 2/(n+ 1).
e.g. n = 10, β = 0.182

4 Light curve by numerical calculations

Blue line is light curve, and Red line is the brightness of source.
β0 is the closest position from lens to source in units of θE .

Demagnified by 10 %, 60 % from source brightness with n = 3, n =
10. The second figure shows β in the point which changes from magnification to
demagnification is 0.187, this value is close to value of approximate prediction for
foregoing section.

5 Conclusion

• We obtained light curve for modified space-time metric

• Demagnification is an evidance EWH. But not always prove it !!

Future work...
• Applying to modified gravity and exotic matter
• Mechanism of demagnification
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n  Black	  hole	  perturba/on	  (1st	  order)	  
p  mass ratio (source/BH) as  

the small parameter	

n  “Black	  hole	  ＋	  moving	  point	  mass”	  perturbed	  metric	  
→　Self-‐force,	  gravita/onal	  wave	  	  

p  For Kerr BH, it is very difficult to calculate hαβ 	

n  Illuminating the method available with Kerr spacetime	  

Method	

n  Schwarzschild	  black	  hole	  ＋	  Rota/ng	  circular	  ring	  
p  Ring:	  a	  set	  of	  point	  par/cles	  in	  circular	  geode/c	  mo/on	  
p  Axisymmetric	  &	  steady	  problem	  

n  Energy-‐momentum	  tensor	  of	  the	  ring⬇	  
p  2πm: 	  rest	  mass	  
p  uα: 	  four	  velocity	  
p  r0： 	  radius	  

Hertz	  poten-al	  =  P + H

We	  calculated	  the	  perturbed	  space	  /me	  metric	  of	  a	  Schwarzschild	  black	  hole	  (BH)	  and	  a	  rota/ng	  mass	  ring	  	  
using	  Teukolsky	  equa/on	  and	  CCK	  (Chrzanowski,	  Cohen	  &	  Kegeles)	  formalism.	  We	  also	  visualized	  the	  result	  with	  
tendex	  line	  and	  vortex	  line.	  

P19	

Introduc-on	

Se4ng	 M

n  Finding hαβ via Hertz potential Ψ	

n  Weyl	  scalar:	  Components	  of	  the	  Weyl	  tensor	  
p  ５	  complex	  components	  （ψ0，ψ1，ψ2，ψ3，ψ4）	  

n  ＣＣＫ:	  Chrzanowski	  (‘75),	  Cohen	  &	  Kegeles	  (‘79)	  
In	  “Radia/on	  gauge”,	  the	  perturba/on	  hαβ  is given by 
2nd order partial derivative of Hertz potential	

p  Hertz potential satisfies source free Teukolsky Eq.	  

BH	  metric⬆　　	

T↵�
=

mu↵u�

utr02
�(r � r0)�(cos ✓)

g↵� = g(0)↵� + h↵�

Mode	  expansion	  using	  	  
spin-‐weighted	  spherical	  harmonics	

 4(r, ✓) =
1

r4

1X

l=2

Rl(r) �2Yl(✓)

Energy-‐Momentum	  Tensor	  
Source	  of	  perturba/on	

Weyl	  Scalar	  (perturba/on)	

h↵�

CCK 
Formalism	  

Teukolsky
Eq.	

T↵�

Hertz	  Poten/al	

Metric	  Perturba/on	

 4
 4 =

sin

2 ✓

8r4

✓
@

@ cos ✓

◆4

sin

2 ✓ 

separable	  	  
2nd	  order	  PDE	

Radiation	  Gauge	

n  Assuming Hertz potential in the same mode expansion as Weyl scalar (　　　 ）, 
Eq.② reduces to algebraic Eq. 	 	➡ The particular solution ΨP obtained easily	

p  HOWEVER, ΨP　gives singular Weyl tensor field, that is not continuous at the ring radius 	

n  Determination of the Homogeneous solution ΨH	
p  Some of degrees of freedom in ΨH are physical parameters (mass and angular momentum)　　　(　　　　　   mode) 

➡　By computing the mass and angular momentum, one can determine those parameters	

p  Ｊring completed the imaginary parts of all Weyl scalars, cancelling the discontinuities	

p  Ｍring , on the other hand, unexpectedly not cancelled the discontinuities of real parts of Weyl scalars  	

	

l � 2

l = 0, 1

n  A	  tensor	  represen/ng	  frame-‐dragging	  effect	  	  
p  Weyl	  tensor	  Ｃαβγδ	  projected	  

onto	  a	  ３ dimensional	  space	  

n  Draw	  integral	  curves	  of	  the	  eigen	  vector	  field	   
n  Ex. １:　Kerr BH	

p  Outward curves in polar region	

n  Ex. ２:　Line mass flow	
p  Spiral around the  

(See only blue or red)	

Visualizing (vortex line)	

Bîĵ = �1

2
✏îp̂q̂C0̂ĵ

p̂q̂

Result	  with	  only	  par/cular	  solu/on　　With	  angular	  momentum	

⇠↵ =

✓
@

@t

◆↵

 ↵ =

✓
@

@�

◆↵

：Killing vectors	

Not	  con/nuous	  at	  the	  ring	  radius	  
Outward	  curves	  upside	  down	  in	  color	

Spiral	  pafern	  around	  the	  ring	  
Con/nuous	  and	  interpretable	
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Yasumichi	  SANO,	  Hideyuki	  TAGOSHI	  (Osaka	  University)	
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⬆：BH’s	  angular	  
momentum	
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posi/ve/nega/ve	
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Effect of the cosmological constant on the bending of light
and the cosmological lens equation

Hideyoshi Arakida1(a), Masumi Kasai(b)

(a)Graduate School of Education, Iwate University
(b)Graduate School of Science and Technology, Hirosaki University

Abstract
We revisit the effect of cosmological constant Λ on the light deflection and its role
in the cosmological lens equation. First, we re-examine the motion of photon in
the Schwarzschild spacetime, and explicitly describe the trajectory of photon and
deflection angle α up to the second-order in G. Then the discussion is extended
to the contribution of the cosmological constant Λ in the Schwarzschild-de Sitter or
Kottler spacetime. Contrary to the previous arguments, we emphasize the following
points: (a) the cosmological constant Λ does appear in the orbital equation of light,
(b) nevertheless the bending angle of light α does not change its form even if Λ ̸= 0
since the contribution of Λ is thoroughly absorbed into the definition of the impact
parameter, and (c) the effect of Λ is completely involved in the angular diameter
distance DA.

1 Introduction

Nowadays, it is widely regarded that the cosmological constant Λ or more generally dark energy is the
most responsible candidate which explains accelerating expansion of Universe. Nonetheless the details
of cosmological constant Λ or dark energy are still far from clear, then it is preferable and worthy to
clarify the validity of this hypothesis by means of not only cosmological observations but also another
astronomical/astrophysical ones.

Among such attempts, it would be the most natural idea to investigate the role of cosmological
constant Λ in the classical tests of general relativity, e.g. the perihelion advance of planetary orbit and
the bending of light path. So far, it was shown that the cosmological constant Λ causes the perihelion
shift of planets at least in principle, even though its contribution is too small to detect in the current
measurement technique (see [1, 2, 3] and the references therein).

While it has been believed for a long time that Λ does not contribute to the light deflection because
there is no Λ in the second-order ordinary differential equation (ODE) of photon. However recently,
Rindler and Ishak [4] pointed out that Λ does affect the bending angle by using the Schwarzschild-de
Sitter or Kottler metric and the invariant formula of cosine. Subsequently many authors argued its
appearance in diverse ways and generality assisted the fact that there appears Λ in the deflection angle
α, see [5] for review and the references therein and also [6, 7, 8, 9, 10, 11, 12]. However, it seems that the
conclusion has not converged yet; for instance whether the leading order effect of Λ is coupled with the
mass of central body M or not and so on. In order to clear up the confusion, we will revisit the effect of
the cosmological constant on the light deflection and its role in the cosmological lens equation.

2 Photon trajectory in Schwarzschild spacetime

Before discussing the influence of Λ on bending angle α, we shall begin with re-considering the solution
of photon trajectory in the Schwarzschild spacetime. From the Schwarzschild metric in the Schwarzschild
coordinates,

ds2 = −
(
1− rg

r

)
c2dt2 +

(
1− rg

r

)−1

dr2 + r2(dθ2 + sin2 θdϕ2), rg =
2GM

c2
, (1)

1Email address: arakida@iwate-u.ac.jp
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and the condition for null geodesic ds2 = 0, we have the geodesic equation for equatorial plane (θ = π/2),(
du

dϕ

)2

=
1

b2
− u2 + rgu

3, u ≡ 1

r
,

1

b2
≡ E2

c2L2
, (2)

in which the two constants of motion, E and L are total energy and angular momentum, respectively.
Alternatively, Eq. (2) can be expressed in the form of second-order ODE as,

d2u

dϕ2
= −u+

3

2
rgu

2, (3)

nevertheless, hereinafter we use Eq. (2) instead of Eq. (3).
In order to obtain the photon trajectory up to the second-order in G, let us put the solution of Eq. (2)

u as,

u =
1

b

(
sinϕ+ rgu1 + r2gu2

)
, (4)

where u1 and u2 are, respectively, first O(G) and second O(G2) order correction to zeroth-order solution
u0 = sinϕ/b (straight line). Hence u1 and u2 satisfy the following differential equations,

du1
dϕ

= − sinϕ

cosϕ
u1 +

1

2b

sin3 ϕ

cosϕ
, (5)

du2
dϕ

= − sinϕ

cosϕ
u2 −

1

2 cosϕ

[(
du1
dϕ

)2

+ u21 −
3

b
u1 sin

2 ϕ

]
. (6)

Noting that the integration constants of Eqs. (5) and (6) are chosen such that maximizing u (or minimizing
r) for ϕ = π/2, then we obtain the trajectory of photon up to the second-order in G as,

1

r
=

1

b
sinϕ+

rg
4b2

(3 + cos 2ϕ) +
r2g
64b3

(
37 sinϕ+ 30 (π − 2ϕ) cosϕ− 3 sin 3ϕ

)
, (7)

where b is the impact parameter which represents the minimum value of r-coordinate for the undeflected
light ray, i.e., rg = 0. The bending angle α is shortly derived from Eq. (7) and it coincides with the
famous formula by [13],

α = 2
rg
b

+
15π

16

(rg
b

)2
=

4GM

c2b
+

15π

4

(GM)2

c4b2
+O(G3). (8)

It should be mentioned about the validity of the solution for light trajectory. The appropriateness of our
solution, Eq. (7) can be verified readily by the direct substitution into Eq. (2) and it is found that the
residual terms are order O(G3), then it is perfectly valid up to the order of G2. However, the photon
trajectory given in previous works such as Eq. (18) of [14] and Eq. (16) of [5] are incorrect; in fact, there
appears O(G2) order residual term in the solution of photon trajectory in [5, 14].

3 Contribution of the cosmological constant

Now, let us investigate the contribution of Λ on light ray. For this purpose, we adopt the Schwarzschild-de
Sitter or Kottler metric [15],

ds2 = −
(
1− rg

r
− Λ

3
r2
)
c2dt2 +

(
1− rg

r
− Λ

3
r2
)−1

dr2 + r2(dθ2 + sin2 θdϕ2). (9)

In the same way as the Schwarzschild case, the differential equation of light is given by(
du

dϕ

)2

=
1

b2
− u2 + rgu

3 +
Λ

3
. (10)
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It should be emphasized here that the geodesic equation of light Eq. (10) does obviously include Λ.
Therefore, previous arguments, such as “Λ does not appear in the geodesic equation of light”, would
be overstated. Actually, the second-order ODE derived from Eq. (10) reduces to Eq. (3), nevertheless
its solution of light trajectory should be obtained in such a way that the integration constants satisfy
Eq. (10).

Furthermore, the impact parameter is the minimum value of the coordinate r if the light ray were
undeflected, i.e., rg = 0. It is obvious from Eq. (10) that the impact parameter B in this case is defined
by

1

B2
≡ 1

b2
+

Λ

3
. (11)

Then, the form of Eq. (10) completely coincides with Eq. (2), except that the impact parameter b is
replaced by B. Therefore, the solution of Eq. (10) becomes,

1

r
=

1

B
sinϕ+

rg
4B2

(3 + cos 2ϕ) +
r2g

64B3

(
37 sinϕ+ 30(π − 2ϕ) cosϕ− 3 sin 3ϕ

)
, (12)

and deflection angle is,

α = 2
rg
B

+
15π

16

(rg
B

)2
=

4GM

c2B
+

15π

4

(GM)2

c4B2
+O(G3). (13)

It is worthy to note that the contribution of Λ is incorporated in Eqs. (12) and (13) through Eq. (11). As
a consequence, it is found that the cosmological constant Λ does appears in both the geodesic equation
and its solution, that is the trajectory of photon. However, the effect of Λ is completely absorbed into
the definition of the the impact parameter (see Eq. (11)). Hence it is difficult to distinguish the influence
of Λ from the observed deflection angle.

When we expand Eq. (13) by using 1/B = (1/b)
√

1 + Λb2/3 ≃ (1/b)(1+Λb2/6) and remainO(M,MΛ)
terms, it follows that

α ≃ 4GM

c2b
+

2GMbΛ

3c2
, (14)

in which second term coincides with the previous results, e.g. Eq. (5) and below in [16] and the third
term of Eq. (15) in [10]. Hence it is found that these results are included in Eq. (13) as a limiting case.

It is clear that the trajectory of photon Eq. (12) strictly satisfies Eq. (10) up to the second-order in
G based on the result in previous section.

4 Cosmological lens equation

Finally, we consider the contribution of Λ in the cosmological lens equation. Under the assumption that
the thin lens approximation is valid, the lens equation relates the observed image position angle θ to the
unlensed position angle β of the source as

β = θ − DA(zL, zS)

DA(0, zS)
α, (15)

where DA(z1, z2) denotes the angular diameter distance from the redshift z1 to z2, and the arguments
zL and zS are the redshift of the lens and the source, rwespectively. For the distance formula DA in the
unperturbed Friedmann-Lemâıtre-Robertson-Walker (FLRW) universe with Λ, see, e.g., [17].

Up to the first order in G, the bending angle α in the present case is

α =
4GM

c2B
. (16)

The impact parameter B is related to the image position angle θ by

B = DA(0, zL)θ. (17)
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Then, from Eqs. (15), (16), and (17), the lens equation is finally

β = θ − 4GMDA(zL, zS)

c2DA(0, zL)DA(0, zS)

1

θ
. (18)

Therefore, the contribution of Λ is completely involved in the form of the angular diameter distance DA.
No modifications due to Λ appear even if the term of O(G2) in α is included. It should also be noted
that Eq. (18) is exactly the same form appeared in [17, 18], where the authors have shown that the
gravitational lensing effects are strongly dependent on the value of the cosmological constant and hence
they provide us with useful means to test the cosmological constant.

Here, we mention that in paper [16], Sereno introduced the relation, b0 = Ddϑ (see Eq. (8) below of
[16]) where b0 is the impact factor of “Schwarzschild lens” (see Eq. (8) of [16]), Dd is the angular-diameter
distance, and ϑ is the angular separation. Since in the case of cosmological lens, the cosmological distance,
such as the angular diameter distance, is defined with Λ, then b0 should be replaced by B, instead.
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ABSTRACT
   Recently a large number of studies have focused on the question of higher 
dimensions. One of the reasons for this is the fascinating new picture of our 
Universe called the braneworld universe. Because the fundamental scale could 
be about TeV in this senario, these models suggest that creation of tiny black 
holes in the upcoming large hadron collider will be possible. The braneworld 
model is an underlying fundamental theory, superstring/M-theory. Although 
superstring/M-theory has been highly elaborated, it is not enough to 
understand black hole physics in the string context. Hence at present to take 
string effects perturbatively into classical gravity is one approach to the study 
of quantum gravity effects. 
   With the restriction that the tension of a string be large as compared to 
the energy scale of other variables, i.e., in the α-expansion, the Gauss-Bonnet 
terms appear as the first curvature correction term to general relativity. 
Though many complicated combinations may appear for the higher order 
corrections, here we will adopt Lovelock gravitational theory expecting some 
aspects of higher curvature corrections are obtained. Lovelock gravitational 
theory is the most general theory which gives the e.o.m. with up to the second 
order derivative. In this theory we investigate the black hole solution and the 
spacetimes with product metric which are Nariai and Bertotti-Robinson types. 
The study of the black hole solution is the direct extension of the works by 
Whitt (1988) and Myers & Simon (1988). The study of the product metric 
will be applied to the spontaneous compactification mechanism without fluxes.



❖ black hole solutions
　In the first part of the poster we investigate black hole solutions in Lovelock 
gravity. Under the static ansatz the gravitational equation of motion becomes 
algebraic equation of the single metric function. Although it can not be solved 
analytically except for some simple cases, we show a technique to find the 
spacetime structure of the solution. We also consider the topological black hole 
solution whose submanifold has curvature k=0, -1. As some examples we study 
the solution in Gauss-Bonnet gravity and“M-theory”model.

 

❖ Nariai and Bertotti-Robinson solutions
　In the second part of the poster we investigate the solution with product 
metric in Lovelock gravity. Under the decomposition into 2-dim. Riemaninan 
manifold and (n-2)-dim. Euclidean submanifold with maximal symmetry, the 
gravitational equation of motion becomes algebraic equation of the single 
metric function. We will give the way to analyze such equation and to classify 
the solution into Nariai, anti-Nariai, Bertotti-Robindon, and Plebanski-Hachyan 
solutions. As some examples we study the solution in general relativity and 
Gauss-Bonnet gravity.



❖ Lagrangian　
◆ We consider the Lovelock lagrangian up to Nth

    order, which gives a quasi-linear 2nd order  

    gravitational equation
 

MODEL

L =
N∑

p=0

αp

(n − 2p)(n − 2)!
Lp

Lp = 2
−p

δ
µ1ν1···µpνp

ρ1σ1···ρpσp
R

ρ1σ1

µ1ν1
· · ·R

ρpσp

µpνp
.

ds2 = −f(r)e−2δ(r)dt2 + f−1(r)dr2 + R(r)2dΩ2
n−2,

k = 1, 0,−1

N ≤
n − 1

2

α : coefficients

L0 : cosmological constant

L1 : Einstein-Hilbelt action

L2 : Gauss-Bonnet term

(n-2)-dim maximally sym. space

❖ Metric
　◆ We assume the n-dimensional static spacetime whose metric is descrived by
 



❖ vacuum: U(F ) = 0

BLACK HOLE SOLUTION
❖ gravitational equation

f(r) = k − r2F (r)

R != const. R = r
gauge

U(F∞) = 0❖ infnity:

F∞ = 0

F∞ > 0

F∞ < 0

:  asymptotically flat

:  asymptotically de Sitter

:  asymptotically anti-de Sitter

δ ≡ 0U(F ) :=
N∑

p=0

αpF
p =

µ

rn−1

mass x

x

x
x

①

②

③

④

⑤

⑥

adS Min. dS

center

center

infinity

infinity

µ/rn−1

U(F )

F



❖ singularity:

◆ central singularity: r → 0

・ n-1 > 2N

　　①　　　　　: spacelike

　　⑥　　　　　: timelike

F0 > 0

F0 < 0

・ n-1 = 2N

　　　　　　　　: timelike

　　　　　　　　: null

　　　　　　　　: spacelike

k̄ > 0

k̄ = 0

k̄ < 0

k̄ := k ±

( µ

αp

)
1

p

k̄ := k −

( µ

αp

)
1

p

even N odd N

  ②　　　　　　　 　 : outer branch sing.

③-⑤　　　　　　　　: inner branch sing.

◆ branch singularity: r → rb > 0

|r| → |rb|−0

|r| → |rb|+0

k + r
2

bFb

> 0

< 0

: timelike

: spacelike

= 0
: timelike

: spacelike

F-U diagram



U(F )

F

µ > 0, k = −1 µ > 0, k = 1

µ < 0, k = 1µ < 0, k = −1

U(Fh)

f < 0

f < 0

f < 0

f < 0

f > 0

f > 0

f > 0

f > 0

BH

CH

CH

BH

U(F )

F

k = 0

f < 0f > 0

CH

BH

❖ event horizon

f(rh) = k − r2

hFh = 0

k = 0 : Fh = 0

k != 0 : µ

(

Fh

k

)

n−1

2

= 0

◆ Only the adS-branch solution has BH for k=0, -1.



❖ Example 1: Gauss-Bonnet gravity
α0 != 0, α1,α2 > 0

U(F )

F

α0 > 0

α0 = 0

α0 < 0

+ branch - branch

◆ 　　　　　　　 for the existence of 

    relevant vacuum.

◆ Solutions in minus branch are 

    asymptotically Mincowski/dS/adS  

    for zero/negative/positive α0, 

    respectively.

◆ Solutions in plus branch are 

    asymptotically adS.

◆ Negative mass solutions have 

    branch singularity.

◆ Solutions in plus branch have BH 

    horizons for k=-1.

α
2

1 − 4α0α2 > 0

◆ For details see

    TT & Maeda, PRD71, 124002 (2005)



❖ Example 2: “M-theory” model
α1 > 0,α4 != 0, n = 10

U(F )

F

adS branch Min. branch

◆ Minkowski and adS branch exist.

◆ For positive mass, Minkowski-branch 

    solution has spacetime central 

    singularity, while adS-branch solution has 

    timelike one.

◆ For positive mass, properties of the 

    branch singularity depends on   . 

◆ Horizon

  ・Minkowski branch, positive mass:

　　There is one BEH for k=1.

  ・Minkowski branch, negative mass:

　　There is one CEH for k=-1.

  ・adS branch, positive mass:

　　There are at least 2 horizons for k=-1.

  ・adS branch, positive mass:

　　There is at least 1 horizon for k=-1.

k̃

Curvature corrections to M-theory 
consist  of Lovelock part and other 
terms which gives higher derivative 
equation of motion. Here we consider 
only the Lovelock part.



NARIAI & BERTOTTI-ROBINSON 
SOLUTION

❖ gravitational equation
R(r) ≡ B

2 = const.

δ ≡ 0 (gauge)

x

x

x
x

B̃
2

V (B̃2)

−α0

B̃
2

1 B̃
2

2 B̃
2

3 B̃
2

4B̃
2

5f = 1 − ζir
2

V (B̃2) :=
N∑

p=1

αp(kB̃
2)p = −α0

ζi := −

∑N
p=0

αp(n − 2)2p+2(kB̃−2
i )p

∑N
p=0

αp(n − 2)2p(kB̃−2
i )p−1

B̃ := B
−1

(n − p)q = (n − p)(n − p − 1) · · · (n − q)

In general, there are up 
to N solutions, The sign 
of zeta_i changes at the 
extremum points of V.



❖ Example 1: general relativity
αo != 0, α1 > 0

f = 1 +
2αo

(n − 2)α1

r2

B
2

= −

α1

α0

k α0k < 0

k=1 and positive c.c. : 

     Nariai

k=-1 and negative c.c. : 

     anti-Nariai

(dS2 × Sn−2)

(adS2 × Hn−2)

B̃
2

V (B̃2)

−α0

k = 1

k = −1

Nariai

anti-Nariai



❖ Example 2: Gauss-Bonnet gravity
αo != 0, α1,α2 > 0

V (B̃2) = α1kB̃
2 + α2B̃

4

B̃
2

V (B̃2)

−α0

k = 1

k = −1

Nariai

anti-Nariai

adS Bertotti-Robinson

Plebanski-Hacyan

◆ Bertotti-Robinson solution exist

    for k=-1 case.

◆ These solution corresponds to 

    extreme black hole solutions in the 

    same system. There are certain 

    coordinate transformation from 

    them.
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Abstract
According to the large extra dimension model, a deviation from Newtonian inverse
square law is expected at sub millimeter scale. We have developed an experimen-
tal method using a torsion balance pendulum with an online digital image analysis
system, aiming to test the Newton’s gravitational law in a laboratory experiment.

1 Physics motivation

A question why gravity is extraordinary weak comparing to other three gauge interactions, is known as
hierarchy problem, which prevent us to build a unified theory. A large extra dimension scenario was
proposed to solve the hierarchy problem in a geometrical understandings, by assuming an existence of
additional spacial dimensional world outside of our four dimensional space-time, where only gravitational
field can propagate into the bulk space. In the ADD (N. Arkani-Hamed, S. Dimopoulos, G. Dvali) model
[1], the extra dimensions are predicted to exist at below millimeter scale. As a result, modification of the
Newtonian inverse square law is expected at the size of the extra dimensional space of below mm. In this
scenario, form of gravitational force should be modified as;{

Fr≥λ = GMm
r2 ,

Fr≤λ = G4+d
Mm
r2+d

,
(1)

, where λ is interaction length corresponding to the size of the extra dimension, and d is the number of
the large extra dimension. According to the ADD model, λ = 0.1mm at d = 2 is predicted, if modified
Planck scale in the higher dimensional world is Eedpl = 1 TeV. Modified form of the gravitational potential
is often expressed in a Yukawa interaction form as;

V = −GMm

r

(
1 + αe−

r
λ

)
(2)

, where α is a coupling constant for the additional non-Newtonian potential. Newton’s inverse square law
has been experimentally tested in numbers of experiments, however, high precision tests of the inverse
square law are limited only at astronomical scales [2]. Present study is aiming to perform a precision test
of the inverse square law at below mm scale, where only poor experimental data exist.

2 Experimental principle

In our experiment, gravitational force is measured using a torsion pendulum and an online digital image
analyzing system [3, 4]. The torsion pendulum is composed of two columns (targets) which attached
to the ends of an aluminum bar. It is hanged by a 40µm thick tungsten wire. Motion of the torsion
pendulum can be described with Hooke’s law;

τ = −κ∆θ (3)

1Email address: hrn@rikkyo.ac.jp



2 Short-range gravity experiment searching for a large extra dimension

, where τ is torque, κ is the torsional spring constant and ∆θ is angular displacement. The torsion spring
constant κ can be estimated using relationship between measured oscillation period T and kappa with
inertia moment I as;

κ = 4π
I

T 2
(4)

Figure 1 shows the experimental principle of the measurement.

Figure 1: Principle of the measurement using torsion pendulum.

By changing the setting position of the gravity source (attractor) at around the torsion pendulum in a
short time, a jumping gravitational signal is obtained as an twisting angular displacement of the torsion
pendulum. Two copper attractors are set on a rotating table which rotation is driven by a stepping
motor. The attractors are covered by an electrostatic shield made by copper. The entire system is set
in a vacuum chamber, which vacuum level is maintained at below 1 Pa without keeping vacuum pump
operation.

In addition to the jumping balanced position measurement using the torsion balance bar, we also tried
an another method named ”following measurement”. In this measurement, the attractor continuously
rotates very slowly comparing to the harmonic oscillation period, around the torsion pendulum. The
balanced position dose not jumped, but continuously moved in this method. As a result, the torsion
balance bar moves in the moving gravitational potential, which typical movements are shown in figure 2
.

Figure 2: A typical result from the following measurement.
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The motion of the torsion balance bar is monitored by a conventional digital video camera set on the
top of the vacuum chamber, which captures movie information. The position and angular information
of the torsion balance bar is extracted via a digital image analysis. The digital image analysis system
used in this experiment is based on an optical alignment system (OASys) [3] developed for the PHENIX
experiment at RHIC (Relativistic Heavy Ion Collider) which position resolution is about 10 nanometer.
The present experiment utilized an dedicated position monitoring system developed using the OASys
technique for the short range gravity experiment, achieving angular resolution of about 10−6 degrees [4].

3 Results

The experimental device, which consists of the torsion balance bar together with the digital image analysis
system, are set on the forth basement of KEK-B Fuji experimental hall at KEK. It is because experi-
mental environment considering mechanical vibration and temperature changing are relatively small at
the basement hall. The data taking was performed with the following measurement method. Because
of the 180 degrees symmetry of the device, two identical pattern is observed during a full 360 degrees
rotation of the attractor. Ten cycles of this pattern were measured, and averaged. The obtained result
is shown in figure 3, which is almost consistent with the Newtonian prediction, however, some points
around 50 and 140 degree do not agree with the prediction. This systematic deviation can be understood
as a misalignment effect.

Figure 3: Observed gravity signal. Blue line is experiment data and red line is Newtonian prediction.

Figure 4: α-λ plot.

The obtained results are interpreted in the Yukawa potential expression (equation(2)). In this exper-
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iment, distance between centers of objects ranges from 4.5mm to 74.5mm. Corresponding upper limit on
the α-λ plot is shown in figure 4.

In conclusion, we have performed a short range gravity experiment motivated to test the Newtonian
inverse square law at around mm scale, using a torsion balance bar device combined with our digital image
analysis technique. A clear gravitational signal was observed, which are consistent with the Newtonian
prediction. We are now developing the next generation device with higher symmetries which can reduce
the systematic effects. The data taking has already been started in 2012, and will be reported in near
future.
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Curvature perturbation in conformally related frames

Jonathan White,1 Masato Minamitsuji2 and Misao Sasaki3
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Abstract
We consider the curvature perturbation resulting from multi-field inflation models
in which potentially all fields are non-minimally coupled to the Ricci scalar. We
confirm that, unlike in the single field case, the curvature perturbations associated
with the Jordan and Einstein frames are not the same, and that the difference is a
direct consequence of the isocurvature perturbations inherent to multi-field models.
Using the δN formalism, and focusing on analytically soluble examples, we see how
the statistical properties of the two curvature perturbations are also not necessarily
the same.

1 Introduction

Despite the agreement of predictions from single-field inflation models with current observational data, in
the context of unifying and higher-dimensional theories it is natural to consider the presence of multiple
fields during inflation. Moreover, as a consequence of the compactification of higher dimensions, or
following renormalisation arguments, it is expected that these multiple fields be non-minimally coupled
to the Ricci scalar [1]. It is therefore very important to determine any possible observational signatures
that such multi-field models with non-minimal coupling might give rise to. The type of model that we
are considering takes an action of the form

S =

∫
d4x
√
−g
{
f(φ)R− 1

2
hab(φ)gµν∂µφ

a∂νφ
b − V (φ)

}
, (1)

In determining the observational predictions of different inflation models, we are largely interested in
the statistical properties of the primordial fluctuations they produce. In particular, we are interested in
determining the curvature perturbation on constant density hypersurfaces, ζ, and its statistical properties.
In order to make calculations more tractable for an action of the form (1) it is common practise to make
the conformal transformation gµν = Ωg̃µν in order to bring the gravity part of the action into the canonical
Einstein-Hilbert form, namely

S =

∫
d4x
√
−g̃

{
R̃

2
− 1

2
Sab(φ)g̃µν∂µφ

a∂νφ
b − Ṽ (φ)

}
, (2)

with

Sab =
1

2f

(
hab +

3fafb
f

)
and Ṽ (φ) =

V

4f2
. (3)

The action in its original form is referred to as being in the Jordan frame, and the transformed form
as being in the Einstein frame. However, we see that we need to be careful to consider which metric
matter is minimally coupled to, and if it is minimally to the original metric then we must be careful to
relate ζ̃ calculated in the Einstein frame back to the original ζ of the Jordan frame. In the case of a
single non-minimally coupled field it is known that the two curvature perturbations are the same to all
orders, and thus their statistical properties too, but this is no longer the case when multiple fields are
considered [2]. The difference is a consequence of the isocurvature modes inherent to multi-field models

1Email address: jwhite@yukawa.kyoto-u.ac.jp
2Email address: masato@yukawa.kyoto-u.ac.jp
3Email address: misao@yukawa.kyoto-u.ac.jp



2 Curvature perturbation in conformally related frames

that are absent in the single-field case. Despite the difference in the curvature perturbations, however,
it is important to note that any observable quantities will be independent of the frame in which they are
calculated [3].

In this work we try to clarify the relation between the two curvature perturbations in the case of
multiple non-minimally coupled fields. Using linear perturbation theory we first find that the notion of
adiabaticity is not common to both frames. Namely, even if the curvature perturbation is conserved in
one frame, it is not necessarily conserved in the other. We also find that the two curvature perturbations
are of different magnitude. We then use the δN formalism, applied to analytically soluble examples, to
confirm that predictions for the power spectrum, its tilt and non-gaussianity are in general different for ζ
and ζ̃ if one does not assume the vanishing of isocurvature modes before the end of inflation. If we expect
that the isocurvature modes do eventually decay before the radiation domination era, where ζ = ζ̃, then
this begs the question how is the ζ = ζ̃ limit reached, and how is the final curvature perturbation related
to that at the end of inflation. The details of reheating therefore have to be considered more carefully.

2 Linear perturbations

In each frame we consider perturbations around a FLRW background of the form

ds2 = −(1 + 2AY )dt2 − 2aBYidtdx
i + a2

[
(1 + 2R) δij + 2HT

1

k2
Y,ij

]
dxidxj , (4)

The curvature perturbation on constant density hypersurfaces in the Jordan frame is given as

ζ = R− H

ρ̇
δρ (5)

and similarly in the Einstein frame.
The non-conservtion of ζ on super horizon scales is given as

ζ̇ ' − H

ρ+ p
δpnad (6)

where δpnad = δp− ṗ
ρ̇δρ. The explicit expressions for δp, δρ etc are given in terms of perturbations of the

fields. It is useful to decompose these field perturbations into components along and perpendicular to the
background trajectory - adiabatic and isocurvature modes respectively. On making this decomposition
in the canonical two-field case, one finds that the isocurvature perturbations source the curvature pertur-
bation when there is a turn in the background trajectory, thus leading to its non-conservation [4]. In the
single-field case there is no such isocurvature component (on super-horizon scales) and thus the curvature
perturbation is conserved. In our case we have N fields, meaning that there are N − 1 isocurvature
modes. These can be expressed in terms of the combination

Kab = δφaφ̇b − δφbφ̇a, (7)

which we see will vanish for an adiabatic mode where δφa ∝ φ̇a.
Making the metric decomposition (4) in the Jordan and Einstein frames we find the relation

R̃ = R− δΩ

2Ω
. (8)

We thus see that the two curvature perturbations would be the same in a gauge corresponding to δΩ = 0.
In the single field case, as Ω = Ω(φ), δΩ = 0 ⇒ δφ = 0, which coincides with the constant energy
and comoving gauge conditions in both frames. As such, one finds that the curvature perturbation on
constant density hypersurfaces is the same in the two frames. More generally, however, the gauge δΩ = 0
does not coincide with the comoving or constant energy density gauges of either frame. Moreover, if
Ω is only a function of isocurvature modes, then there is no gauge for which δΩ = 0, as isocurvature
perturbations are gauge invariant.



J. White, M. Minamitsuji and M. Sasaki 3

Explicitly, on super horizon scales we find that the difference in the curvature perturbations on
constant density hypersurfaces as defined in the two frames is of the form [5]

ζ − ζ̃ ≈ AabKab + BabK̇ab, (9)

where Aab and Bab take some complex form in terms of background quantities. The important thing to
note is that the difference is given in terms of the isocurvature modes Kab and their derivatives. As such,
in the absence of isocurvature modes, i.e. δφa ∝ φ̇a, the two curvature perturbations do coincide.

With a non-zero difference between the two curvature perturbations we might also expect that their
evolutions be different. In particular, it may be possible that despite being conserved in one frame, the
curvature perturbation continues to evolve in the other.

In the Einstein frame we find that

δp̃nad = − 2Sabφ
′a

(2κ2f)2(ρ̃+ p̃)
Scd

D(S)φ′d

dt̃
K̃bc, (10)

where a prime denotes a derivative with respect to t̃ (dt̃ =
√

2fdt), K̃ab is defined as in (7) but with dots
replaced by primes and D(S)/dt̃ is the covariant derivative with respect to the field-space metric Sab.
The curvature perturbation is thus sourced by the isocurvature modes when the background trajectory
deviates from a geodesic of the field-space. This is the intuitive generalisation of the canonical two-field
example given above.

Unfortunately, in the Jordan frame there seems to be no such intuitive interpretation as to when the
curvature perturbations is conserved. However, with the difference between the two frames (9) given in
terms of Kab, it is clear that the non-conservation in the Jordan frame will also be a result of sourcing
from the isocurvature modes.

One interesting scenario would arise if the curvature perturbations in both frames were conserved but
with a non-zero difference in their magnitudes. The first property might naively lead us to believe the
evolution to be effectively single-field, but this would then be in disagreement with the second property.
Using a two-field example we show that such a scenario is indeed possible [5].

We consider two fields φ and χ and require that χ̇ = 0 and f = f(χ). This means that the χ field
corresponds to the isocurvature mode and that the non-minimal coupling function only depends on this
component. On imposing conservation of the curvature perturbation in the Einstein frame we find that
the curvature perturbation in the Jordan frame is not necessarily conserved. However, if we further
impose that the effective mass of the χ field be O(ε) then we find

1

H

d

dt
ln(ζ − ζ̃) ∼ O(ε) and ζ − ζ̃ =

fχ
2fε

H√
2k3

(1 + 3f2χ/f)−1/2, (11)

so that to zeroth order in slow roll we also have conservation of ζ whilst maintaining a non-zero ζ − ζ̃.
Comparing this expression with standard slow-roll expressions, we see that in order for ζ and ζ̃ to be of
the correct order of magnitude we require fχ/

√
f ∼ O(ε1/2).

The above two-field example indicates that we have a scenario such as that sketched in Figure 1.
During inflation the two curvature perturbations are not equivalent, but both are conserved. The fact
that we eventually require them to agree (under the assumption that an adiabatic limit is reached) then
means that there must be an intermediate phase where the evolution of the curvature perturbation in
the two frames is very different.

3 δN formalism

In applying the δN formalism we expand the total number of e-foldings between an initial flat hypersurface
shortly after horizon crossing and a final constant energy hypersurface as a function of the initial field
values on the flat hypersurface [6]. In the Jordan and Einstein frames we have

ζ = δN = N,aδφ
a
f +

1

2
N,abδφ

a
fδφ

b
f + ... and ζ̃ = δÑ = Ñaδφ

a
f̃

+
1

2
Ñabδφ

a
f̃
δφb

f̃
+ ... (12)
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t

  ζ
,ζ

 
ζ

ζ

≈

≈

Figure 1:

respectively. Comparing these expansions we see that any difference between the curvature perturbations
in the two frames comes from differences in the derivatives of N and Ñ with respect to the initial
conditions and differences in the definition of the flat-gauge field perturbations δφaf and δφa

f̃
.

By considering the definition of δφaf and δφa
f̃

at first order we see that

δφaf ≡ δφa −
φ′a

H
R = (δab +

φ′af,b
2fH

)δφb
f̃
, (13)

where we have used R̃ = R+
f,aδφ

a

2f , H̃ = H+ f ′

2f and here a prime denotes a derivative with respect to

conformal time. A similar relation can be found at second order [7][8].
Turning to the derivatives of N and Ñ , the integral expressions for N and Ñ are given as

N =

∫ ∗
E

Hdη and Ñ =

∫ ∗
Ẽ

H̃dη =

∫ ∗
Ẽ

Hdη +
1

2
ln

(
f∗
fẼ

)
(14)

respectively, where ∗ denotes the initial conditions, E = const. specifies the final constant energy surface
in the Jordan frame and Ẽ = const. the final constant energy surface in the Einstein frame. We see that
the differences thus come from the additional log term in the Einstein frame and the difference in the
definition of the final constant energy surface.

Combining the results up to second order we find [8]

ζ − ζ̃ = (Na −N Ẽ
a )δφa

f̃
+

1

2
(Nab −N Ẽ

ab)δφ
a
f̃(1)

δφb
f̃(1)

(15)

+
fb
2f

∣∣∣∣
Ẽ

∂φb
Ẽ

∂φa∗
δφa

f̃
+

(
fcd
2f

∣∣∣∣
Ẽ

∂φc
Ẽ

∂φa∗

∂φd
Ẽ

∂φb∗
− fcfd

2f2

∣∣∣∣
Ẽ

∂φc
Ẽ

∂φa∗

∂φd
Ẽ

∂φb∗
+

fc
2f

∣∣∣∣
Ẽ

∂2φc
Ẽ

∂φa∗∂φ
b
∗

)
δφa

f̃(1)
δφb

f̃(1)
,

where

N Ẽ
a =

∂

∂φa∗

(∫ ∗
Ẽ

Hdη
)
. (16)

It turns out that contributions to this difference coming from the relation between δφaf and δφa
f̃

cancel

with those from the ln(f∗) term in (14), meaning that it is the difference in definition of the final constant
energy surface that is important. If we consider an adiabatic limit, where final field values are independent
of the initial conditions (∂φa

Ẽ
/∂φb∗ = 0) and the surfaces E = const. and Ẽ = const. coincide, then we

see that ζ = ζ̃ is recovered.
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To determine the power-spectrum, its tilt and non-gaussianity in the Jordan frame we can exploit
relation (13) between δφaf and δφa

f̃
and our knowledge of the correlation functions of δφa

f̃

〈δφa
f̃k
δφb

f̃k′
〉 = (2π)3δ3(k + k′)

H̃2

2k3
Sab. (17)

Defining

Na = Na +
fa
2f

and Nab = ∇a∇bN +
∇a∇bf

2f
− fafb

2f2
, (18)

we find

Pζ(k) = NaNbSab
(
H̃

2π

)2

and fNL =
NaNbNcdSacSbd

[NeNfSef ]
2 . (19)

These are to be compared to the Einstein frame results

Pζ̃(k) = ÑaÑbS
ab

(
H̃

2π

)2

and f̃NL =
ÑaÑb∇c∇dÑSacSbd[

ÑeÑfSef
]2 . (20)

In general the derivatives of the total number of e-foldings with respect to the initial conditions must
be calculated numerically. However, even in the case of non-minimal coupling there are cases where it
can be done analytically. In the slow-roll approximation the equations of motion in the Jordan frame are
of the form

dφa

dN
= 2fhab

Wb

W
, (21)

where W = V/f2. These can be solved analytically if hab = δab and W is either product or sum separable.
Taking the product separable case, in the Jordan frame E = fW/2 and we find [8]

Nc =
1

2f

∣∣∣∣
E

gcE
gc∗

(
fc
f

∣∣∣
E

+ gcE

)
∑
a

(
fa
f

∣∣∣
E

+ gaE

)
gaE

−
∫ φa

∗

φa
E

fc
2f2

gc

gc∗

dφa

ga
(22)

whilst in the Einstein frame we have Ẽ = W/4, which gives

Ñc =
1

2f

∣∣∣∣
Ẽ

gc
Ẽ

gc∗

gc
Ẽ∑

a g
a
Ẽ
ga
Ẽ

−
∫ φa

∗

φa
Ẽ

fc
2f2

gc

gc∗

dφa

ga
, (23)

where ga = Wa/W .

Returning to the two-field example considered at linear order, but no longer imposing the conservation
of ζ̃, at linear level we find

δN − δÑ ' fχ
2fεE

δχf̃ , (24)

which is in agreement with the previous result. Making the same argument as before that fχ/
√
f should

be O(
√
ε), and making some order of magnitude estimates, we find that f̃NL ∼ O(1) × fχχ and that

(fNL− f̃NL)/f̃NL ∼ O(1). As such, the difference in non-gaussianity of ζ and ζ̃ is potentially significant.

On a more general note, we see that at second order fχχ contributes to possible discrepancies between

ζ and ζ̃. This means that even if fχ gives a negligible difference between the results at linear order, a
large fχχ could still potentially give a significant difference at the level of non-gaussianity. Indeed, a well
motivated form for the non-minimal coupling would be f = 1 + ξχ2. In such a case, if the background
trajectory is along χ = 0, we would have fχ = 0 but fχχ = 2ξ. The consideration of specific forms for f
and V and the resulting spectrum parameters is currently under way.



6 Curvature perturbation in conformally related frames

4 Conclusions

We have explored the relation between the Jordan and Einstein frame curvature perturbations on constant
energy density hypersurfaces in the presence of multiple fields and non-minimal coupling. At linear
order we saw explicitly that they are not the same and that the difference is a direct consequence of
the isocurvature perturbations inherent to multi-field models. We also saw that conservation of the
curvature perturbation in one frame does not imply conservation in the other, but that it is also possible
that both are conserved with a non-zero difference in their magnitudes. At non-linear order we were
able to implement the δN formalism in the Jordan and Einstein frames and saw explicitly that the non-
gaussianity of the two curvature perturbations may also differ in the case that an adiabatic limit has
not been reached. It was clear that the source of the difference is the difference in definition of the final
constant energy surface in the Jordan and Einstein frames. These results highlight the non-observable
nature of ζ itself, and the importance of knowing how both curvature perturbations evolve through
reheating and are related to the temperature anisotropies of the Cosmic Microwave Background. Work
in this direction is currently under way.
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The simplest model of inflation:	

Single-field slow-roll inflation	

Predictions (with more technical assumptions)	

- are adiabatic 
- are nearly Gaussian-distributed 
- have a nearly scale-invariant power spectrum 

The primordial fluctuations 

No strong evidence to show that the Universe is described 
in a more complicated way.  

�2
R(k) = �2

R(k0)(k/k0)ns�1



“Single-field” does not mean that there is no field other than inflaton. 
 
From a model-building point of view, in general, there are 
 
many (scalar) degrees of freedom other than inflaton, 
 
especially in models embedded in supergravity/string theory: 
Moduli fields, Kaluza-Klein modes, Scalar SUSY-partner of inflaton,.. 
 
Usually, they are so heavy,             , that the models are treated  
effectively as single-field models. 
 

The power spectrum is calculated by a single-field analysis with  
a reduced potential assuming heavy fields are stuck to their  
potential minima. [Yokoyama & Yamaguchi] 

m� H

Is there any chance to probe heavy fields? 



Heavy fields are not necessarily stuck to their potential minima 
and can affect the correlation functions. 
 
They are displaced from their minima if they 

- happen to be excited at the beginning of inflation.  
    [Burgess, Cline, Lemieux, & Holman]	

	

- are dynamically excited by e.g. turns of the inflaton trajectory.  
    [Achucarro et al.], [Shiu & Xu], [Chen & Wang], [Sespedes et al.], [Pi & Sasaki],	

    [Gao, Langlois, & Mizuno], [Burgess et al.],.. 	

 Heavy fields are displaced from their minima 
due to a centrifugal force. 
	
 When the turn is very sharp, the oscillation  
along the heavy direction can be excited after  
the turn. 



 What kind of effects are expected when heavy fields are excited  
from the potential minima? 

- Large mixing between the light and heavy modes. 
   [Achucarro et al.], [Shiu & Xu], [Chen & Wang], [Sespedes et al.], [Pi & Sasaki],	

   [Gao, Langlois, & Mizuno],.. 	

	
- Resonance between the excited oscillation and the fluctuations. 
   [Chen] [RS, Nakashima, Takamizu, & Yokoyama]	

The correction becomes larger for larger mass. 

It opens a possibility to probe heavy physics during inflation.  



Basic idea 

Physical scale	

time	

� � H

Resonance occurs between the oscillation 
of a heavy scalar field and the fluctuations.	

� = k/a

Oscillation 

�(t) � e��t cos(mt)

Derivative couplings           efficient enhancement  

resonance band � � m
Cf. Chen (2011) considered the gravitational couplings.	

[Chen] [RS, Nakashima, Takamizu, & Yokoyama]	



Kn �
�n

2�n
�(��)2

Kd �
�d1

4�4
d

(��)2(��)2 +
�d2

4�4
d

(�� · ��)2

Action: inflaton + a heavy scalar field with derivative couplings	

where	

Decay rate of �: �

Sm � �
�

dx4��g

�
1
2
(��)2 + V (�) +

1
2
(��)2 +

m2

2
�2 + Kn + Kd

�
,

Model 



Kn & Kd from the effective-field-theory point of view 
[Weinberg] 	

is just the first term of the derivative expansion in a generic 
effective field theory. 
 
Kn & Kd are next corrections to       : most general ones  
if we assume parity & shift symmetry for the inflaton field. 
 
They are usually unimportant, but could play an important role 
in the resonance region, which is deep inside the horizon and 
the heavy scalar field rapidly oscillates and then the derivatives 
are large. 

L0

L0 � �
�
1
2
(��)2 + V (�) +

1
2
(��)2 +

m2

2
�2

�
,



Kn in specific models 

Kd in specific models 

- A heavy scalar field with a non-minimal coupling  
(incl. a model with higher curvature terms), 
-  A pseudo-NG boson + a symmetry breaking field, 
-  Supergravity + higher order terms in the Kahler potential,.. 

- DBI action (Dp-brane): 

heavy scalar field = brane coordinates other than inflaton, KK modes 
Kd couplings appear expanding the square root in the action. 

SDBI = �T

�
d4x

�
dp�3�

�
�det (GMN�m�M�n�N ) (M,N = 0, . . . , D � 1)



Setup 

•  Hierarchy of the energy scales 

•  Higher order terms are negligible 

•  The heavy scalar field is subdominant 

•  Flat potential 

f� �
��

�
� �̇2 + m2�2

6M2
p H2

� 1

�V �
M2

p

2

�
V �

V

�2

� 1, �V �M2
p

V ��

V
� 1

H < � < m < �n,�d

� < �n, �̇, �̇ < �2
d



We can make some simplifications (in the flat gauge):  

The resonance takes place deep inside the horizon. 
The gravitational effects are not important.  
 

(The metric perturbations can be neglected.) 

Small couplings & Large mass. 
The fluctuations for the heavy field are smaller than  
those in the inflaton field and also do not satisfy the  
resonance condition (                                     ).  
 

(The perturbations in the heavy field can be neglected.) 

Only the inflaton perturbations are relevant:  � = �0 + �

Power spectrum 

� =
�

m2 + (k/a)2 > m



Second-order action (flat gauge):	

where	

(the speed of sound)	

S2 �
�

dtd3x
z2
�

2
�
�̇2 � c2

s(��)2/a2
�

z2
� = a3

�
1 + �n

�

�n
+ (�d1 + �d2)

�̇2

2�4
d

�

c2
s � 1� �d2�̇2

2�4
d

+ O

�
�̇4

�8
d

�



Equation of motion (on subhorizon scales):	

where	

d2vk

dz2
+ [Ak � 2q cos(2z)] vk = 0

Form of the Mathieu equation Parametric resonance 

z � mt,

vk � z��,

Ak �
�

k

am

�2

,

q � e�2�t

�
�d2

m2�2
0

8�4
d

�
k

am

�2

+ (�d1 + �d2)
m2�2

0

�4
d

�

A similar equation for the Kn-coupling case: 	

m� m/2, �� �/2, q � �nqne��t � �n
�0

�n
e��t

qd



Condition for the parametric resonance 

Narrow resonance 

q � e�2�t

�
�d2

m2�2
0

8�4
d

�
k

am

�2

+ (�d1 + �d2)
m2�2

0

�4
d

�
< 1

|Ak � 1| < q (1� q̃/2)m < k/a < (1 + q̃/2)m

where	

Number of resonance periods: 

�z � m

H
min(q̃, H/�)  The resonance is more efficient  

for larger mass. 

q̃ � (2�d1 + 3�d2)
qd

8
e�2�t �

�
V 1/4

�d

�4

f�



Spectra for different values of the mass  

Larger mass induces 
a larger feature. 



Bispectrum 

The oscillation can also affect the higher-order correlation  
functions (non-Gaussianity, NG). 

Resonant non-Gaussianity 
 

 [Chen, Easther, & Lim], [Flauger & Pajer], [Chen], 
 [Behbahani et al.], [Gwyn Rummel, & Westphal],...	

NG from the resonance 

e.g., Bispectrum 

��k1(t)�k2(t)�k3(t)� = (2�)7�3(k1 + k2 + k3)F (k1,k2,k3)(P�)2



Relevant interactions  

-  contains an oscillatory component 
-  contains more derivatives 
(The mixing with the fluctuations in the heavy field can be neglected.) 

Kn couplings 

Kd couplings 

L3 � �
�d1�̇2

2�4
d

�̇

2M2
p H

�
1
2
�

�
�̇2 +

1
a2

(��)2
�
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�
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2�4
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p H
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Ck1k2k3 � Cn
k1k2k3

e��t cos(mt) + Cd
k1k2k3

e�2�t sin2(mt),

Cn
k1k2k3

� �n

�
1 + k̂2 · k̂3

�
1� k1

k2

��
qn,

Cd
k1k2k3

�
�

�d1

2

�
1 + k̂2 · k̂3

�
1� k1

k2

��
� �d2

�
qd,

where	

H int =
�1/2
�

2
�

2a2(2�)6Mp

���
d3k1d3k2d3k3 k2k3Ck1k2k3�k1�k2�k3�

3(k1 + k2 + k3),

Interaction Hamiltonian	



The Bispectrum can be estimated by using the in-in formalism: 

��k1(t)�k2(t)�k3(t)� = i

�
dt��[H int(t�),�k1(t)�k2(t)�k3(t)]�

= Re
�

i

�
dt��H int(t�)�k1(t)�k2(t)�k3(t)�

�

(K = k1 + k2 + k3)

H int(t�) � cos(mt�)�k1(t
�)�k2(t

�)�k3(t
�) � cos(mt�)e�iK��

Resonance  
 

         An additional contribution from the oscillatory region. 

(There is no contribution from the subhorizon region in the usual case.) 

Resonance at K/a� � m



Using the method of the steepest descent,  	

Analytic estimation 

A similar equation for the Kn-coupling case: 	

m� m/2, �� �/2, Cd
k1k2k3

� Cn
k1k2k3

Dimensionless	

F (k1,k2,k3)k2
1k

2
2k

2
3

= � ��

16H

� �

0
dt�

k2k3

a5
Ck1k2k3 cos(K��) + cyclic

�
�

2���

16
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��3�2�/H

cos
�

2m

H

�
ln

�
K

2m

�
+ 1

��
Cd

k1k2k3
+ cyclic

The time of the excitation 

* We set the lower limit of integration as          instead of 0 to obtain the final expression. 
The function F is suppressed for K<m if we use 0 as the lower limit properly.  
(by a few factor for K=m) 

��

A very large feature also appears in the Bispectrum.  

� ��q
�m

H

�3/2
at K � m (for Kn), 2m (for Kd)



Summary 

 
-  We could obtain some hints on heavy physics during inflation 
by analyzing the local features of the CMB power spectrum.  
  
-  A heavy scalar field could leave non-negligible signatures in  
the CMB spectrum through parametric resonance between its  
background oscillations and the inflaton fluctuations. 
 
-  A large features could be induced in the higher-correlation  
functions, Non-Gaussianity, even when the feature in the power  
Spectrum is too small to be observed. 

-  If they are detected, they will improve our understanding of  
physics behind inflation. 
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High frequency limit for gravitational perturbations
of cosmological models in modified gravity theories

Keiki Saito1(a) and Akihiro Ishibashi(b)

(a)Department of Particles and Nuclear Physics, The Graduate University for Advanced Studies
(SOKENDAI), 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan

(b)Department of Physics, Kinki University, Higashi-Osaka 577-8502, Japan

Abstract
We study the effective gravitational stress-energy tensor for short-wavelength per-
turbations in modified gravity theories in the cosmological context. We consider
f(R) gravity theories on the assumptions that (i) the background has the Friedmann-
Lemâıtre-Robertson-Walker symmetry and that (ii) when our f(R) theory reduces
to Einstein gravity. We show by explicit computation that the effective stress-energy
tensor for a cosmological model in our f(R) theories, as well as that obtained in the
corresponding scalar-tensor theory, takes a similar form to that in general relativity
and is in fact traceless, hence acting again like a radiation fluid. If the assumption
(ii) above is dropped, then an undetermined integration constant appears and the
resultant effective stress-energy tensor acquires a term that is in proportion to the
background metric, hence being able to describe a cosmological constant. Whether
this effective cosmological constant term is positive and whether it has the right
magnitude as dark energy depends upon the value of the integration constant.

1 Introduction

Our observable universe appears to be homogeneous and isotropic on large scales, but highly inhomoge-
neous on small scales. It is therefore considerably interesting to consider whether the local inhomogeneities
can have any effects on the global dynamics of our universe, in particular, any effect that corresponds
to a positive cosmological constant or dark energy. A number of authors have explored this possibility
of explaining the present cosmic accelerating expansion by some backreaction effects of the local inho-
mogeneities. Such a backreaction effect may be described in terms of an effective stress-energy tensor
arising from metric as well as matter perturbations.

In general relativity, a consistent expansion scheme for short-wavelength perturbations and the cor-
responding effective stress-energy tensor were largely developed by Isaacson [1, 2], in which the small
parameter, say ϵ, corresponds to the amplitude and at the same time the wavelength of perturbations.
Isaacson’s expansion scheme is called the high frequency limit or the short-wavelength approximation. It
has been shown that this effective stress-energy tensor is traceless and satisfies the weak energy condition,
i.e. acts like radiation [3, 4], and thus cannot provide any effects like dark energy in general relativity.

However, it is far from obvious if this traceless property of the effective stress-energy tensor is a nature
specific only to the Einstein gravity or not. The purpose of this paper is to address this question in a
simple, concrete model in the cosmological context. Among many, one of the simplest of modified theories
so far proposed is the so called f(R) theory. Since f(R) gravity contains higher order derivative terms,
we can anticipate the effective stress-energy tensor to be generally modified in the high frequency limit.

It is well-known that f(R) gravity is equivalent to a scalar-tensor theory, which contains the coupling
of the scalar curvature R to a scalar field ϕ in a certain way. The Brans-Dicke theory is one of the simplest
examples. Therefore, our analysis can be performed, in principle, either (i) by first translating a given
f(R) theory into the corresponding scalar-tensor theory and then inspecting the stress-energy tensor for
the scalar field ϕ, or (ii) by directly dealing with metric perturbations of the f(R) theory. We may expect
that the former approach is much easier than the latter metric approach, as one has to deal with metric
perturbations of complicated combinations of the curvature tensors in the latter case. Nevertheless we

1Email address: saitok@post.kek.jp



2 High frequency limit in modified gravity theories

will take the both approaches. In fact, in the metric approach, by directly taking up perturbations of the
scalar curvature R, the Ricci tensor Rab and the Riemann tensor Rabcd involved in a given f(R) theory,
we can learn how to generalize our present analysis of a specific class of f(R) gravity to analyses of other,
different types of modified gravity theories that cannot even be translated into a scalar-tensor theory.

In the next section, we consider the high frequency limit in f(R) gravity theory. Based on the
Isaacson’s scheme we expand the field equations for f(R) = R + cR2 theory and first derive the general
expression of the effective stress-energy tensor for gravitational perturbations in our f(R) gravity. Then,
assuming that our background metric has the FLRW symmetry and also that the resulting equations
reduce to the corresponding equations for the Einstein gravity in the limit c→ 0, we see that the effective
stress-energy tensor whose expression is significantly simplified, is in fact traceless as in the Einstein
gravity case. As briefly mentioned above, when a given f(R) gravity is translated into the corresponding
scalar-tensor theory, the scalar field ϕ, which expresses an extra-degree of freedom in the f(R) theory,
possess a non-trivial potential term. In Sec. 3, we will make sure that the effective stress-energy tensor in
Brans-Dicke theory is consistent with that in our f(R) gravity. We will also see that in the Einstein frame,
the traceless property of the effective stress-energy tensor is shown to hold in more generic circumstances.
Section 4 is devoted to a summary and points to future research.

2 High frequency limit in f(R) gravity

The field equations in the f(R) gravity have terms consisting of higher order derivatives of R, and the
order of those derivatives are higher than that of R: ∇a1∇a2 · · · ∇amR

(n)[h] ∼ O
(
ϵn−2−m). Therefore

it is expected that the effect of the short-wavelength approximation would be enhanced. In order to
see whether this is the case, from now on we restrict our attention to the following concrete model
f(R) = R+ cR2, where c is a constant. The field equations are

G
f(R)
ab ≡ Gab + 2c

(
RRab −

1

4
gabR

2 −∇a∇bR+ gabg
cd∇c∇dR

)
= κ2T

(0)
ab . (1)

As in Isaacson’s formula, we expand the above equations with respect to the small parameter ϵ. From
now on, we consider the cosmological context. We assume that our background is spatially homogeneous
and isotropic, that is, our background metric possesses the FLRW symmetry. Then, thanks to this
background symmetry we can explicitly solve equations of the form ∇a∇bS(t, x⃗) = 0. The equations
of motion of O

(
ϵ−3
)
is solved to yield R(1)[h] = const. Taking the average, we find R(1)[h] = const. =

⟨const.⟩ =
⟨
R(1)[h]

⟩
= 0. Then, those of O

(
ϵ−2
)
become ∇a∇bR

(2)[h] = 0. We find R(2)[h] ≡ S1 =

const. By using above equations, the equation of O
(
ϵ−1
)
immediately yields

□R(3)[h]−Rab[g
(0)]□hab = 0 , (2)(

1 + 2cR[g(0)] + 2cS1

)
R

(1)
ab [h] = 2c

(
∇a∇bR

(3)[h]−Rcd[g
(0)]∇a∇bh

cd
)
. (3)

The effective stress-energy tensor is then expressed as

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h]−

1

2
g
(0)
ab S1

+2c
{(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h] + S1

(
Rab[g

(0)] +R
(2)
ab

)}
− c
2
g
(0)
ab

(
2R[g(0)] + S1

)
S1

+2c
(
−g(0)ab h

cd
)(

∇c∇dR
(3)[h]−Ref [g

(0)]∇c∇dh
ef
)⟩

. (4)

This is the most general expression of our effective stress-energy tensor.
We immediately notice that our expression (4) contains the integration constant S1. There does not

seem to be a definite way to determine S1 within the framework of the present f(R) theory itself. As a
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sensible way to specify S1, let us assume in the following that the effective stress-energy tensor (4) in the
R2 model should reduce to that in general relativity when c = 0, and accordingly choose S1 (= R(2)[h])
to be 0. Then, (4) becomes

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h] + 2c

(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]

⟩
, (5)

where we have used (3) in the first equality above, and
⟨
hcdR

(1)
cd [h]

⟩
= 0 in the second equality so as to

make the above expression compatible with that of general relativity in the c = 0 case. Then using this
and R(1)[h] = 0, we can find that κ2T eff

ab is in fact traceless:

κ2T effa
a = 0 . (6)

It should be stressed that as mentioned above, there is a prior no way to determine S1 by the theory
itself. If we choose S1 to be, instead, a non-zero constant, then the effective stress-energy tensor, (4), has
a term proportional to the background metric, that is, a cosmological-constant-looking term, even in the
limit to the Einstein gravity.

3 The high frequency limit in scalar-tensor theory

In the previous section, the scalar curvature R and the Ricci tensor Rab are taken up directly in the
metric formalism of the f(R) gravity. It is well-known that any f(R) gravity theory is included in Brans-
Dicke theory, which is one of the simplest examples of scalar-tensor theory. In this section, we will see
that the results obtained in the previous section are indeed consistent with those obtained within the
corresponding scalar-tensor theory.

In the Jordan frame, the f(R) gravity of the metric formalism can be cast into the form of the above
Brans-Dicke theory by setting ϕ = F (R) ≡ df(R)/dR, ωBD = 0 and V = (FR − f)/2. In this case, as
one can find R− 2∂ϕV = 0, the equations of motion for ϕ and gab just given above become, respectively

□ϕ− 1

2ϕ
∇aϕ∇aϕ = κ2T

(0)
ϕ ab , (7)

GST
ab ≡ ϕ

(
Rab −

1

2
gabR

)
−∇a∇bϕ+ gab

(
gcd∇c∇dϕ+ V (ϕ)

)
= κ2T

(0)
ab . (8)

From now we consider short-wavelength perturbations for ϕ: ϕ = ϕ0 + δϕ. We also assume that there
is no coupling of matter fields with the second-order derivatives of ϕ, so that there are no non-vanishing
terms of order O(ϵ−1) in the stress-energy tensor for matter fields. Then, the equation of motion for ϕ
of O

(
ϵ−1
)
is □δϕ = 0. and the equations of motion for gab of O

(
ϵ−1
)
are

ϕ0

(
R

(1)
ab [h]−

1

2
g
(0)
ab R

(1)[h]

)
= ∇a∇bδϕ− g

(0)
ab □δϕ . (9)

Contracting with g(0)ab, we have R(1)[h] = 3□δϕ/ϕ0 = 0. From this, we can immediately find R
(1)
ab [h] =

1∇a∇bδϕ/ϕ0. The equations of motion in O (1) are given by GST
ab [g

(0), ϕ0] = κ2T
(0)
ab + κ2T eff

ab , where

κ2T eff
ab ≡ −

⟨
ϕ0R

(2)
ab [h] + δϕR

(1)
ab [h]− g

(0)
ab h

cd∇c∇dδϕ
⟩
. (10)

Here we would like to emphasise that so far we have made no assumptions concerning the form of f(R)

or the symmetry of our background metric g
(0)
ab ; the above expression, (10), applies to the generic f(R)

theory with an arbitrary background metric.
If we restrict the form of f(R) to be f(R) = R+cR2, then by inspecting the expansions ϕ = ϕ0+δϕ+· · ·

and F (R) = 1+ 2cR =
(
1 + 2cR[g(0)]

)
+2c

(
R(3)[h]− hcdRcd[g

(0)]
)
+ · · · , we find ϕ0 = 1+ 2cR[g(0)] and

δϕ = 2c
(
R(3)[h]− hcdRcd[g

(0)]
)
. Using these, we have

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h]

+2c
(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]− g

(0)
ab ϕ0h

cdR
(1)
cd [h]

⟩
. (11)



4 High frequency limit in modified gravity theories

Now we work on the cosmological situation so that the background metric has the FLRW symmetry.
Provided that the limit c → 0 should reproduce results in the case of the Einstein gravity, we finally
obtain

κ2T eff
ab = −

⟨(
1 + 2cR[g(0)]

)
R

(2)
ab [h] + 2c

(
R(3)[h]− hcdRcd[g

(0)]
)
R

(1)
ab [h]

⟩
. (12)

We see that the expression (12) above is precisely the same as (5) derived within the metric formalism
of the f(R) gravity. This verifies our methods of Sec. 2 for dealing with short-wavelength perturbations
of the f(R) gravity within the metric formalism.

In the Einstein frame, the action becomes SE =
∫
d4x

√
−g̃{R̃ − (∇̃ϕ̃)2 − Ṽ (ϕ̃)}/(2κ2), where g̃ab ≡

Fgab, ϕ̃ ∝ lnϕ and Ṽ ≡ V/F 2. From this action, one can find that the equation of motion of O
(
ϵ−1
)

is □δϕ̃ = 0 and the effective stress-energy tensor is κ2T eff
ab =

⟨
∇̃aδϕ̃∇̃bδϕ̃

⟩
. It then immediately follows

that the effective stress-energy tensor must be traceless, i.e., T effa
a = 0. This can be shown only on the

assumption of the FLRW symmetry.

4 Summary

We have addressed the effective gravitational stress-energy tensor for short-wavelength perturbations in
the simple class of f(R) gravity of R2 type in the cosmological context. By imposing that our background
has the FLRW symmetry, we have derived our effective stress-energy tensor for short-wavelength metric
perturbations in cosmological models. At this point, thanks to the background FLRW symmetry, the
spacetime averaging over several wavelengths and our choice of the constant S1 = 0, the expression of our
effective stress-energy tensor has been significantly reduced to have the simple form, (5). We have also
shown that the obtained effective stress-energy tensor is traceless, so that it acts like a radiation fluid as
in the Einstein gravity case and thus, in particular, cannot mimic dark energy.

We would like to stress that in order to obtain the traceless feature of our effective stress-energy tensor,
we have set S1 = 0. However, the field equations for the Einstein gravity need not be, a prior, reproduced
in the limit to the Einstein gravity: c → 0. In that case S1 could take a non-vanishing value and give
rise to a cosmological-constant looking term in our effective stress-energy (4). It would be interesting to
consider the question of whether there exists any sensible way to provide the right sign and magnitude
for S1 so that (4) can mimic dark energy within the framework of our modified gravity theory.

Our formulas derived in Sec. 2 deal directly with the scalar curvature R and the Ricci tensor Rab,
and therefore should be able to apply to similar analyses of other modified gravity theories which contain
higher order curvature terms composed of R, Rab, and R

a
bcd and which cannot even be cast in the form

of a scalar-tensor theory. It would be interesting to consider an extension of our present work to a wide
class of modified gravity theories with high-rank curvatures.
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Abstract

We know numerically the four-dimensional Ellis wormhole solution (the so-called
Morris-Thorne’s traversable wormhole) is unstable against an input of scalar-pulse
from one side. We investigate this feature for higher-dimensional versions, both in n-
dimensional general relativity and in 5-dimensional Gauss-Bonnet gravity. We derived
Ellis wormhole solutions in n-dimensional general relativity, and evolved it numer-
ically in dual-null coordinate with/without Gauss-Bonnet corrections. Preliminary
results show that those are also unstable. We also find that the throat of wormhole
in Gauss-Bonnet gravity tends to expand (or shrink) after an input of ghost-scalar
pulse if the coupling constant α is positive (negative).

1 Introduction

Wormholes are popular tools in science fictions as a way for rapid interstellar travel, time machines and
warp drives. However, wormholes are also a scientific topic after the influential study of traversable
wormholes by Morris & Thorne [1]. They considered “traversable conditions” for human travel through
wormholes responding to Carl Sagan’s idea for his novel (Contact), and concluded that such a wormhole
solution is available if we allow “exotic matter” (negative-energy matter).

The introduction of exotic matter sounds to be unusual for the first time, but such matter appears in
quantum field theory and in alternative gravitational theories such as scalar-tensor theories. The Morris-
Thorne solution is constructed with a massless Klein-Gordon field whose gravitational coupling takes the
opposite sign to normal, which appears in Ellis’s earlier work [2], who called it a drainhole.

Ellis (Morris-Thorne) wormhole solution was studied in many contexts. Among them, we focus its
dynamical features. The first numerical simulation on its stability behavior was reported by one of
the authors [3]. They use a dual-null formulation for spherically symmetric space-time integration, and
observed that the wormhole is unstable against Gaussian pulses in either exotic or normal massless
Klein-Gordon fields. The wormhole throat suffers a bifurcation of horizons and either explodes to form
an inflationary universe or collapses to a black hole, if the total input energy is negative or positive,
respectively. These basic behaviors were repeatedly confirmed by other groups [4, 5]. 3

The changes of wormhole either to a black hole or an expanding throat supports an unified under-
standing of black holes and traversable wormholes proposed by Hayward [8]. His proposal is that the
two are dynamically interconvertible, and that traversable wormholes are understandable as black holes
under negative energy density.

In this article, we introduce our extensional works of [3]; (a) constructing Ellis solutions in higher-
dimensional general relativity, (b) dynamical effects of Gauss-Bonnet coupling constant in 5-dimensional
wormhole solution.

1Email address: shinkai@is.oit.ac.jp
2Email address: torii@ge.oit.ac.jp
3Note that Armendariz-Picon[6] reports that the Ellis wormhole is stable using perturbation analysis. However, the

conclusion is obtained with fixing the throat of wormhole and not the same situation with above numerical works[7].



2 Wormholes in higher-dimensional gravity

2 Wormhole solutions in higher-dimensional general relativity

2.1 Field equations

We consider the following n-dimensional Einstein-Klein-Gordon system

S =
∫
dnx

√
−g
[

1
2κ2

n

R− 1
2
�(∂φ)2 − V (φ)

]
, (1)

where κ2
n is a n-dimensional gravitational constant, � = 1 (or −1) for the normal (ghost) field.

We consider the static and spherically symmetric space-time with the metric

ds2D = −f(r)dt2 + f(r)−1dr2 +R(r)2hijdxidxj (2)

where hijdxidxj represents the line element of a (n − 2)-dimensional constant curvature space S(n−2)

with curvature k = ±1, 0.
The Einstein tensor becomes

Gtt = −n− 2
2

f2

[
2R′′

R
+
f ′R′

fR
+ (n− 3)

R′2

R2

]
+

f

2R2
(n−2)R, (3)

Grr =
n− 2

2
R′

R

[
f ′

f
+ (n− 3)

R′

R

]
− 1

2fR2
(n−2)R, (4)

Gij =

[
f ′′

2
+ (n− 3)f

(
R′′

R
+
f ′R′

fR
+
n− 4

2
R′2

R2

)]
gij + (n−2)Rij −

1
2R2

(n−2)Rgij , (5)

where (n−2)R is the scalar curvature of S(n−2) and is obtained as
(n−2)Rijkl = k(hikhjl − hilhjk), (6)

(n−2)Rij = (n− 3)khij , (7)

(n−2)R = (n− 2)(n− 3)k. (8)

The non-zero components of the energy-momentum tensors

T�� = �φ,�φ,� − g��

[ 1
2
�(∇φ)2 + V (φ)

]
, (9)

are

Ttt = f
[ 1

2
�fφ′2 + V (φ)

]
, (10)

Trr = f−1
[ 1

2
�fφ′2 − V (φ)

]
, (11)

Tij =
[ 1

2
�fφ′2 + V (φ)

]
R2hij . (12)

The Einstein equation, G�� = κ2
nT�� , becomes

(t, t) : −n− 2
2

f2

[
2R′′

R
+
f ′R′

fR
+ (n− 3)

R′2

R2

]
+

(n− 2)(n− 3)kf
2R2

= κ2
nf
[ 1

2
�fφ′2 + V (φ)

]
, (13)

(r, r) :
n− 2

2
R′

R

[
f ′

f
+ (n− 3)

R′

R

]
− (n− 2)(n− 3)k

2fR2
=
κ2
n

f

[ 1
2
�fφ′2 − V (φ)

]
, (14)

(i, j) :

[
f ′′

2
+ (n− 3)f

(
R′′

R
+
f ′R′

fR
+
n− 4

2
R′2

R2

)]
− (n− 3)(n− 4)k

2R2
= κ2

n

[ 1
2
�fφ′2 + V (φ)

]
.(15)
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The Klein-Gordon equation

�φ = −�dV
dφ

(16)

becomes
1

Rn−2

(
Rn−2fφ′

)′ = −�dV
dφ

. (17)

Hereafter, we assume that the scalar field is ghost, � = −1.

2.2 Wormhole solution with massless scalar field in spacetime k = 1

We show the simplest solution, under the assumptions of the massless scalar field, V (φ) = 0, in the closed
universe, k = 1. Other cases are presented elsewhere [7]. The Klein-Gordon equation (17) is integrated
as

φ′ =
C

fRn−2
, (18)

where C is an integration constant. The Einstein equations, then, are reduced to

(n− 2)R′

R

[ (n− 3)R′

R
+
f ′

f

]
− (n− 2)(n− 3)

fR2
= − κ2

nC
2

f2R2(n−2)
(19)

(n− 2)R′′

R
=

κ2
nC

2

f2R2(n−2)
(20)

We impose that the wormhole has a throat radius, a, at the coordinate r = 0. Then the regularity
conditions are

R = a, R′ = 0, f = f0 f ′ = 0, (21)

where f0 is a constant. We can assume a = 1 and f0 = 1 without loss of generality, but we keep a in the
equations for a while. Eq. (19) gives

κ2
nC

2 = (n− 2)(n− 3)a2(n−3) (22)

The solution of Eqs. (18)-(20) is

f ≡ 1, (23)

R′ =

√
1 −

( a
R

)2(n−3)

, (24)

φ =

√
(n− 2)(n− 3)

κn
an−3

∫
1

Rn−2
dr. (25)

The Eq. (24) is integrated to give

r(R) = −mBRm

(
−m, 1

2

)
−

√
�Γ[1 −m]

Γ[m(n− 4)]
, (26)

where m = 1
2(n−3) , and Bz(p, q) is an incomplete beta function defined by

Bz(p, q) :=
∫ z

0

tp−1(1 − t)q−1dt (27)

which can be expressed with the hypergeometric function F (�, β, γ; z) as

Bz(p, q) =
zp

p
F (p, 1 − q, p+ 1; z). (28)

Although Eq. (26) is implicit with respect to R, it is rewritten in the explicit form by using the inverse
incomplete beta function.

For n = 4, this solution reduces to Ellis’s wormhole solution. For n → ∞, the function becomes
R = r + a and φ behaves like a step-function approaching φ→ �/2.
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Figure 1: The n-dimensional wormhole solution. The circumference radius R (left panel) and the scalar
field φ (right panel) are plotted as a function of radial coordinate r. The cases of n = 4–10 are shown.

3 Effects of Gauss-Bonnet coupling constant in 5-dimensional
wormhole evolution

3.1 Gauss-Bonnet gravity

Gauss-Bonnet gravity is derived from the superstring theory, with additional higher-order curvature
correction terms to general relativity. Such higher-order corrections can be treated as an expansion of R
in the action, but the Gauss-Bonnet term,

LGB = R2 − 4R��R�� + R���σR���σ, (29)

has nice properties such that it is ghost-free combinations[9] and does not give higher derivative equa-
tions but an ordinary set of equations with up to the second derivative in spite of the higher curvature
combinations.

The Einstein-Gauss-Bonnet action in (N + 1)-dimensional spacetime (M, g��) is described as

S =
∫
M
dN+1X

√
−g
[

1
2κ2

{�GR (R− 2Λ) + �GBLGB} + Lmatter

]
, (30)

where κ2 is the (N + 1)-dimensional gravitational constant, R, R�� , R���σ and Lmatter are the (N + 1)-
dimensional scalar curvature, Ricci tensor, Riemann curvature and the matter Lagrangian, respectively.
This action reproduces the standard (N +1)-dimensional Einstein gravity, if we set the coupling constant
�GB (≥ 0) equals to zero.

The action (30) gives the gravitational equation as

�GRG�� + �GBH�� = κ2 T�� , (31)

where

G�� = R�� −
1
2
g��R + g��Λ, (32)

H�� = 2
[
RR�� − 2R��R�

� − 2R��R���� + R ��γ
� R���γ

]
− 1

2
g��LGB, (33)

T�� = −2
�Lmatter

�g��
+ g��Lmatter. (34)

The higher-order curvature terms are considered as correction terms from string theory. These terms
are known to produce two solution branches normally, only one of which has general-relativity limit. The
theory is expected to have singularity-avoidance features in the context of gravitational collapses and/or
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cosmology, but as far as we know there is no studies so far using fully numerical evolutions. (Numerical
studies on critical phenomena are recently reported for small �GB [10, 11, 12]).

Studies on wormholes in Gauss-Bonnet gravity have long histories. Several solutions and their classi-
fications are reported in [13, 14], while their energy conditions are considered in [15]. Similar researches
are extended to the Lovelock gravity[16], and also to the Dilatonic Gauss-Bonnet system [17]. Our aim
is to investigate their dynamical features.

3.2 Dual-null evolution system

In this article, we report our two initial numerical results. One is the evolution of 5D wormhole in general
relativity. The other is its evolution in Gauss-Bonnet gravity.

We implemented our 4D dual-null evolution code [3] to 5D evolution code with Gauss-Bonnet terms.
The system we consider is spherical symmetry, and expressed using dual-null coordinate

ds2 = −2e−f(x
+,x−)dx+ dx− + r2(x+, x−)dΩ2

3. (35)

Wormhole is constructed with ghost scalar field φ(x+, x−), but we also include normal scalar field
 (x+, x−) contribution. The energy-momentum tensor is written as

T�� = Tψ�� + Tφ�� (36)

=
[
 ,� ,� − g��

(
1
2
(∇ )2 + V1( )

)]
+
[
�φ,�φ,� − g��

(
1
2
�(∇φ)2 + V2(φ)

)]
,

where � = −1. This derives Klein-Gordon equations

� =
dV1

d 
, �φ = −�dV2

dφ
. (37)

Following [3], we introduce the conformal factor Ω, expansion ϑ±, in-affinity ν±, and scalar momentum
�±, p± as

Ω =
1
r
, (38)

ϑ± ≡ 3∂±r, (39)
ν± ≡ ∂±f, (40)

�± ≡ r∂± =
1
Ω
∂± , (41)

p± ≡ r∂±φ =
1
Ω
∂±φ. (42)

We also define

� = Ω2

(
e−f +

2
9
ϑ+ϑ−

)
, (43)

Ã = �GR + 4�GB�e
f , (44)

B = κ2T+− + e−fΛ. (45)

The set of evolution equations (x+ and x−-directions), then, are

∂±Ω = −1
3
ϑ±Ω2 (46)

∂±ϑ± = −ν±ϑ± − 1
ÃΩ

κ2T±± (47)

∂±ϑ∓ =
1
ÃΩ

(−3�GR� +B) (48)

∂±f = ν± (49)

∂±ν∓ =
�GR

Ã

{
� − 4 (3�GR� −B)

3Ã

}
+

(κ2TzzΩ2 − Λ)
Ãef

+
8�GB

9Ã3

{
ef (3�GR� −B)2 − κ4T++T−−

}
(50)
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together with Klein-Gordon equations

∂± = Ω�±, (51)
∂±φ = Ωp±, (52)

∂+�− = −1
6
Ωϑ+�− − 1

2
Ωϑ−�+ − 1

2efΩ
dV1

d 
, (53)

∂+p− = −1
6
Ωϑ+p− − 1

2
Ωϑ−p+ − 1

2efΩ
dV2

dφ
, (54)

∂−�+ = −1
2
Ωϑ+�− − 1

6
Ωϑ−�+ − 1

2efΩ
dV1

d 
, (55)

∂−p+ = −1
2
Ωϑ+p− − 1

6
Ωϑ−p+ − 1

2efΩ
dV2

dφ
, (56)

where the energy momentum tensor is written as

T++ = Ω2(�2
+ − p2

+), (57)
T−− = Ω2(�2

− − p2
−), (58)

T+− = e−f (V1( ) + V2(φ)) , (59)

Tzz = ef (�+�− − p+p−) − 1
Ω2

(V1( ) + V2(φ)) . (60)

3.3 Preliminal results

We prepare the solution obtained in §2.2 as our initial data on (x+, x−) = (x+, 0) hypersurface, and
integrate along to x−-direction using the set of equations above. Numerical integration techniques are
the same with [3].

The preliminal results show that the wormhole throat is unstable, the expansion ϑ± go splitting soon
after the evolution begins. Fig. 2 shows their locations in (x+, x−) plane. If the location of ϑ+ is outer
(in x+-direction) than that of ϑ−, then the region ϑ− < x < ϑ+ is judged as a black-hole. Otherwise the
region ϑ+ < x < ϑ− can be judged as an expanding throat. Fig. 2 indicates the throat begins expanding,
then turns to be a black hole. We also evolve the same initial data with Gauss-Bonnet terms �GB 6= 0
and study their effects to the evolutions. We see if �GB > 0 the throat expansion becomes slower. On
the contrary, if �GB < 0, then the throat expansion is accelerated in the initial stage.
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Figure 2: Location of the expansion ϑ+ (red lines) and ϑ− (blue lines) for evolutions of a solution in §2.2
as a function of (x+, x−). The throat begins expanding, then turns to be a black hole. When �GB > 0
(left panel), expansions are slightly slowing down and �GB > 0 affects to black hole formation earlier,
while when �GB < 0 (right panel) we see Gauss-Bonnet term accelerates expansion.
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Abstract
Five-dimensional black-hole and black-ring formation are investigated numerically.
We model the initial matter distribution in homogeneous spheroidal and toroidal
configurations under the momentarily static assumption and express the matter with
collisionless particles. Evolutions of space-time and particles are followed by us-
ing ADM formalism (4 + 1 decomposition) and solving the geodesic equation. For
spheroidal configurations, we repeat the simulation performed by Shapiro and Teukol-
sky (1991) that announced an appearance of a naked singularity, and also find similar
results in the 5D version. For toroidal configurations in U(1)× U(1) symmetry, we
consider the rotating collisionless particles which consist of equal numbers co-rotating
and counter-rotating under a certain rotational law. We search both spherical(S3)
and ring-shaped(S2 × S1) horizons, and show topology change of apparent horizon
from ring-shaped to spherical shape during its evolution. We also discuss whether an
observer at the origin of the ring-horizon can escape out or not.

1 Introduction

For a decade, higher-dimensional black-holes are extensively studied linked with the so-called “large extra-
dimensional models”. The discovery of black-ring solution[1] with horizon of S2 × S1 topology in U(1)×
U(1) space, and its associated Saturn-type “black objects” reveal new features of higher-dimensional
space-time. However, non-linear dynamical features, such as formation process, generality, and stability
of black-objects, are not yet known. We plan to investigate these outstanding problems using numerical
simulations. In this article, we report two models.

First topic is on the naked singularity formation. Shapiro and Teukolsky[2] (ST91) numerically
showed that in four-dimensional(4D) space-time, collisionless matter particles in spheroidal distribution
will collapse to singularity, without forming apparent horizon(AH) when the spheroids are highly prolate.
We report their simulations and compare them with those in 5D(§3)[3].

Second topic is the formation of black-ring in 5D(§4). We distributed collisionless matter particles
in toroidal configuration, and evolve them with/without their rotations. As the first step, we assume
particles are counter-rotating and the system’s net angular momentum is zero. We search both AH of
spherical and ring-shaped during time evolution.

2 Our numerical code

For the simulation of spheroidal collapses, we evolve five-dimensional axisymmetric [symmetric on z-axis,
SO(3)] or doubly-axisymmetric [symmetric both on x and z-axes, U(1)×U(1)], asymptotically flat space-
time (see Figure 1). For the comparison, we also performed four-dimensional axisymmetric space-time
evolutions.

We start our simulation from time symmetric and conformally flat initial data, which are obtained
by solving the Hamiltonian constraint equations [4]. The asymptotical flatness is imposed throughout

1Email address: yamada@is.oit.ac.jp
2Email address: shinkai@is.oit.ac.jp
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the evolution, which settles the fall-off condition to the metric as ∼ 1/r for 4D cases and ∼ 1/r2 for 5D
cases.

The matter is described with 5000 collisionless particles, which move along the geodesic equations.
We smooth out the matter by expressing each particle with Gaussian density distribution function with
its typical width is twice as much as the numerical grid. The particles are homogeneously distributed in
a spheroidal shape, parametrized with a and b (Figure 1), or eccentricity e =

√
1− a2/b2.

By imposing axisymmetry or double-axisymmetry, our model becomes practically a (2+1)-dimensional
problem. We construct our numerical grids with the Cartesian coordinate (x, z), and apply the so-called
Cartoon method [5] to recover the symmetry of space-time.

The space-time is evolved using the Arnowitt-Deser-Misner (ADM) evolution equations. It is known
that the ADM evolution equations excite an unstable mode (constraint-violation mode) in long-term
simulations [6, 7]. However, we are free from this problem since gravitational collapse occurs within quite
short time. By monitoring the violation of constraint equations during evolutions, we confirm that our
numerical code has second-order convergence, and also that the simulation continues in stable manner.
The results shown in this report are obtained with numerical grids, 129×129×2×2. We confirmed that
higher resolution runs do not change the physical results.

We use the maximal slicing condition for the lapse function α, and the minimal strain condition for
the shift vectors βi. Both conditions are proposed for avoiding the singularity in numerical evolutions
[8], and the behavior of α and βi roughly indicates the strength of gravity, conversely. The iterative
Crank-Nicholson method is used for integrating ADM evolution equations, and the Runge-Kutta method
is used for matter evolution equations.

For discussing physics, we search the location of apparent horizon (AH), calculate the Kretschmann
invariant (I = RabcdR

abcd) on the spacial hypersurface.

 

 

z 

φ1, φ2 

R (x, y, w) 

(a) 

θ1 

(b) 

θ2 

Z (z, w) 

a 

b b 

X (x, y) a 

Figure 1: We evolve five-dimensional (a) axisymmetric [SO(3)] or (b) double-axisymmetric [U(1)× U(1)],
asymptotically flat space-time using the Cartesian grid. The initial matter configuration is expressed
with parameters a and b.

For the simulation of toroidal collapses, we evolve doubly-axisymmetric [symmetric both on x and
z-axes, U(1)×U(1)], asymptotically flat space-time (see Figure 2). We use the maximal slicing condition
for the lapse function α, and the zero shift condition for the shift vectors βi.

In this paper, we consider the toroidal configuration which consist of equal number corotating and
counter-rotating particles under the Kepler like law V (r) ∝ ξ/r where ξ is the arbitrary rotational
parameter. Although each particles move on the x-z section, there are no net angular momentum. Hence
we only solve the Hamiltonian constraint equation for preparing the initial data.

 

θ1 

Z (w, z) 

Rc 
X 

Rr 
(x, y) 

θ2 

Figure 2: We evolve double-axisymmetric [U(1)× U(1)], asymptotically flat space-time using the Carte-
sian grid. The initial matter configuration is expressed with parameters Rc and Rr.
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3 Results of spheroidal collapses

We prepare several initial data keeping the total ADM mass and the eccentricity of distribution, e = 0.9.
By changing the initial matter distribution sizes, we observe the different final structures. Figure 3 shows
snapshots of 5D axisymmetric evolutions of model b/M = 4 and 10 (model 5DSβ and 5DSδ, respectively;
see Table 1); the former collapses to a black hole while the latter collapses without AH formation.

b/M (t = 0) 2.50 4.00 6.25 10.00

4D axisym. 4Dα 4Dβ 4Dγ 4Dδ
AH-formed no no no
eAH = 0.90
ef = 0.92 ef = 0.89 ef = 0.92 ef = 0.96

5D axisym. 5DSα 5DSβ 5DSγ 5DSδ
SO(3) AH-formed AH-formed no no

eAH = 0.88 eAH = 0.88
ef = 0.82 ef = 0.84 ef = 0.88 ef = 0.96

5D double 5DUα 5DUβ 5DUγ 5DUδ
axisym. AH-formed AH-formed AH-formed no

U(1)×U(1) eAH = 0.86 eAH = 0.87 eAH = 0.92
ef = 0.79 ef = 0.81 ef = 0.90 ef = 0.98

Table 1: (above) Model-names and the results of their evolu-
tions whether we observed AH or not. The eccentricity e the
collapsed matter configurations is also shown; eAH and ef are
at the time of AH formed (if formed), and on the numerically
obtained final hypersurface, respectively.

Figure 3: (right) Snapshots of 5D axisymmetric evolution with
the initial matter distribution of b/M = 4 [Fig.(a1) and (a2);
model 5DSβ in Table 1] and 10 [Fig.(b1) and (b2); model
5DSδ]. The big circle indicates the location of the maximum
Kretschmann invariant Imax at the final time at each evolu-
tion.

All the models we tried result in forming a singularity (i.e., diverging I). We stop our numerical
evolutions when the shift vector is not obtained with sufficient accuracy due to the large curvature. For
model 5DSδ, we integrated up to the coordinate time t/M = 15.4 and the maximum of the Kretschmann
invariant Imax becomes O(1000) on z-axis (see Figure 3), but AH is not formed.

When the initial matter is highly prolated, AH is not observed. This is consistent with 4D cases [2],
and matches with the predictions from initial data analysis in 5D cases [4, 9]. The location of Imax is on
z-axis, and just outside of the matter. This is again the same with 4D cases [2]. The absence of AH with
diverging I suggests a formation of naked singularity in 5D.

In order to compare the results with 4D and 5D, we reproduce the results of ST91. We then find that
the e = 0.9 initial data with b/M = 10 (model 4Dδ) collapses without forming AH, and the code stops at
the coordinate time t = 20.91 with Imax = 84.3 on the z-axis (z/M = 6.1); all the numbers match quite
well with ST91. (Note that our slicing conditions and coordinate structure is not the same with ST91.)

We also performed 5D collapses with doubly-axisymmetric [U(1)×U(1)] space-time. The matter
and space-time evolve quite similar to 5D and 4D axisymmetric cases, but we find that the critical
configurations for forming AH is different. Table 1 summarizes the main results of 4D and two 5D cases.
We find that AH in 5D is formed in larger b initial data than 4D cases. This result is consistent with
our prediction from the sequence of initial data [4]. AH criteria with initial b is loosened for 5D doubly-
axisymmetric cases. We show the eccentricity, eAH and ef , which tell us that the doubly-axisymmetric
assumption makes collapse less sharp when it forms AH, and makes collapse similar to 4D cases when it
does not form AH. Table 1 indicates that the eccentricity itself is not a guiding measure for AH formation.

In Figure 4, we plotted I at the point which gives Imax on the final hypersurface as a function of
proper time. We see that 5D-collapse is proceeding rapidly than 4D collapses. We also see that collapses
in doubly-axisymmetric space-time is proceeding slowly than single axisymmetric cases.



4 Numerical Study of Five-dimensional Gravitational Collapses

0
2

4
6

8
10

R�M

0

2

4

6

8

10

z�M
0

200

400

600

800

Figure 4: Kretschmann invariant I for model
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4 Results of toroidal matter collapses

Figure 6 shows that snapshots of evolutions of the non-rotating toroidal matter of which initial radius are
(a) Rc/rs = 0.6 and (b) 0.8, respectively. We observe a formation of spheroidal AH (common horizon)
in upper panels, while we see a formation of toroidal AH (ring horizon) in a moment then it switches to
common horizon in lower panels. Figure 7 shows the area of AHs as a function of coordinate time. Red
and blue lines show the AH area during time evolutions of non-rotating and counter-rotating particles,
respectively. We find that the area of horizon increases gradually during time evolution. We also find
that for rotating-cases the appearance of AH delays and the area of horizon is smaller comparing to the
non-rotating cases. These behavior are thought to be due to the delay of collapse by rotation effect.
Furthermore, we show a numerical solution that the area of ring AH stays constant during time evolution
(panel (b) in Fig.7). For the case of initial ring radius Rc/rs = 0.8, AH is not formed during time
evolution when parameter ξ is ξ ≥ 0.5(the ratio of rotating energy to the total energy, T/W = 0.19).
While for the case of initial ring radius Rc/rs = 1.5, AH is not formed during time evolution when
parameter ξ is greater than 0.2(T/W = 0.07).

For the case of Rc(t = 0) = 0.8rs and ξ = 0 (panel (a) in Fig.7), we check whether the observer
at the origin who observed the appearance of the ring AH can escape outside or not. Fig.8 shows the
snapshots of the hypersurfaces on x and z axis with the proper-time. In Fig.8, solid lines colored by red,
blue and orange express a ring AH and common AH and light ray, respectively. For this case, the light
ray which emitted from the inner ring AH reaches to the origin at proper-time t = 0.75 (left panel in
Fig.8). Even if the observer tries to escape with the speed of light along to the Z-axis just after that
time, he/she can not move outside of the common AH. We obtained the same result for the case of
Rc(t = 0) = 0.8rs and ξ = 0.3(T/W = 0.01). Our results indicate that when AH topology changes from
ring-shaped to spherical, the observer cannot escape from these region. On the other hand, for the case
of Rc(t = 0) = 1.5rs and ξ = 0.1(T/W = 0.05) (panel (b) in Fig.7), as shown in Fig.9, the observer can
escape from these region because of common AH is not formed.

5 Summary

In this article, we reported gravitational collapses of non-rotating spheroidal configurations, and non-
rotating/counter-rotating toroidal configurations in 5D space-time. For time evolution of spheroidal
configurations, we found the possibility of naked singularity formation. For time evolution of toroidal
configurations, we see the formation of AH, and always we also found that topological transition of AH
during the ring matter collapses where we observed monotonically increases of the area of AHs both
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Figure 6: Snapshots of time evolutions, plotting particles and locations of AHs. We set initial ring
radius Rc/rs = 0.6 (upper panels), Rc/rs = 0.8 (lower panels) and rotation parameter ξ = 0. We see that
a common AH is directly formed at t/M = 0.56 in the panel (a2), while we see a topological transition
of AHs from ring-shape to spherical at t/M = 1.68 in the panel (b3).

common and ring AHs.
Up to this moment, we only checked the existence of apparent horizons, and not the event horizons.

The system does not include any net angular momentum. We are implementing our code to cover these
studies.

This work was supported partially by the Grant-in-Aid for Scientific Research Fund of Japan Society
of the Promotion of Science, No. 22540293. Numerical computations were carried out on SR16000 at
YITP in Kyoto University, and on the RIKEN Integrated Cluster of Clusters (RICC).
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Figure 7: Area of AHs of both common and ring-shaped. The panels (a) and (b) show the results of time
evolution for initial ring radius Rc/rs = 0.8 and 1.5, respectively. Red and blue lines show AHs area
during time evolution of non-rotating and counter-rotating particles, respectively. We see that the area
of horizon increase gradually during time evolution. We also find that for rotating-cases the appearance
of AH delays and the area of horizon is smaller comparing to the non-rotating cases.

Figure 8: The snapshots of the hypersurfaces on x and z axis in the proper-time τ . The arrow indicates
the path of light starting from the appearance of the ring horizon (left panel), and starting from the
moment of such information arrives on the Z-axis. The arrow hits the common AH on Z-axis, which
indicates the observer at the origin cannot escape if he/she observes the appearance of a ring-shaped
horizon.
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Figure 9: The same with Fig.8 for the case of Rc(t = 0) = 1.5rs and ξ = 0.1(T/W = 0.05). This case
shows the observer at the origin can escape even if he/she observes the appearance of a ring-shaped
horizon, since the common AH is not formed.
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1.5D STM Universe 1) 

 ★ Field equations of the 5D Space（123）-Time（0）-Matter（4） Universe   

(A bar over any quantity denotes its unperturbed value) 
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★ The solutions determine the properties of matter of the 4D Universe through the 

unperturbed energy-momentum tensor for the perfect fluid    
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Abstract
The MTV-G experiment is a new unique experiment, aiming to search a large electron
spin-precession in electron-nuclear scattering produced by a possible strong gravita-
tional field around nuclei, which is predicted by the large extra-dimension model.
This research is started at TRIUMF from 2011. The possible strong gravitational
field can be detected as a large spin precession effect caused by the Geodetic pre-
cession predicted by the general relativity theory as a result of warped space-time
around the nuclear mass. We utilize this phenomenon as a tool to explore the strong
gravitational field using the MTV experimental setup.

1 Introduction

For particle and nuclear physicists, gravity has been regarded to be completely negligible in their
observing phenomena. Needless to say, it is because the Newtonian gravity is about 10−38 weaker
than other three gauge interactions. However, if we seriously consider about the possibility of strong
gravitational field predicted by so called large extra dimension model which is known as ADD (N. Arkani-
Hamed, S. Dimopoulos, G. Dvali) model [1], a small correction in nuclear phenomena coming from the
enforced gravitational field should be carefully investigated. In fact, gravity is the most mysterious
interaction among the four fundamental interactions. Its extreme weakness prevents particle theorists
from building unified theories. Recently, a possible existence of very strong gravitational field at a
microscopic scale is discussed based on the large extra dimension model. According to the ADD model,
gravitational inverse square law can be modified due to existence of additional spatial dimensions. In
order to naturally resolve the hierarchy problem unifying the Planck energy at around 1TeV in the higher
dimensional world, at least two extra dimensions with its size of as large as a millimeter is requested,
where no precision test of the inverse square law has been performed. Two possible ways to test the large
extra dimension scenario were proposed. One way is to perform a direct laboratory test of gravitational
law at below millimeter scale, using torsion balance pendulum or similar Cavendish-type devices [2].
Another way is based on a high energy collider experiment, trying to search quantum gravity related
phenomena such as mono jet events and micro black hole creation [1, 3].

In the present study, we aim to investigate a possible strong gravitational field around nuclei as a
new approach to search the large extra dimension. If there are two large extra dimension with 0.1 mm
size, we can expect to see 1022 times stronger gravitational field comparing to the original Newtonian
prediction. It can be shown in higher dimensional gravitational potential in 4 + n dimension as;

V4+n(r) = −λnGMm

r1+n
=

(
λ

r

)n
VNewton(r). (1)

If we assume that the size of the extra dimension is λ = 0.1mm and the number of extra dimensions are
n = 2, 3, and 4 cases, gravitational potential strength are modified as V4+2,3,4(r = 1fm) = 1022,33,44 ×
VNewton(r = 1fm)

1Email address: saki t@rikkyo.ac.jp
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Figure 1: Summary of experimental search of the Yukawa term. Excluded region is illustrated as the
green area. Region where present study aims to explore is indicated at around 100 fm.

Figure 1 shows summary of experimental tests of the Newtonian inverse square law at various length
scales λ [4]. Vertical axis is coupling constant α of an additional Yukawa term defined in a modified
gravitational potential with Yukawa term as;

V (r) = −GMm

r

(
1 + αe−r/λ

)
. (2)

Shaded area of this figure indicates experimentally excluded region in the α− λ parameter space. It can
be noticed that very little is known at below atomic scale. The length scale where α(λ) > 1 indicates that
even existence of the Newtonian gravity has not been confirmed in the current experimental precision. If
we assume that the inverse square law is tested with 100% relative precision above 0.1 mm, i.e. α < 1
at λ > 0.1mm, gravity can be as large as 1022, 1033, 1044 strength of the original Newtonian predictions
for n = 2, 3, 4 cases, respectively. In the present study, we are aiming to test the inverse square law at a
precision of around α ∼ 1037 at around 100 fm scale.

2 Principle

An electron scattering experiment is performed in the present study as a tool to explore the possible
strong gravitational field around nuclei. In a beta-decay process, emitted electrons are naturally polarized
in its longitudinal direction because of parity violating nature of the weak interaction. Spin precession
effects due to gravitational geodetic precession from the strong gravitational field around nuclei are
examined in this experiment. The geodetic precession is a processioning effect of a spinning particle
travelling in a warped spacetime produced as a gravitational field, which is predicted by the general
relativity theory [5]. Existence of the geodetic precession phenomena itself is confirmed in 2011 by a
NASA satellite Gravity Probe B as a precession of a gyroscope on the orbit around the Earth [6]. As
shown in Figure 2, in our experiment, we regard the nuclei as the Earth, and the polarized electron as
the gyroscope on the satellite.

We utilize an experimental device designed for the MTV experiment (Mott polarimetry for T-Violation
experiment), which aims to search a large time reversal symmetry violation in nuclear beta decay [7],
to measure a tiny transverse polarization of electrons using Mott scattering analyzing power. The MTV
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experiment is measuring a transverse polarization of electrons emitted from spin-polarized 8Li nuclei,
which must be negligible in the standard model, in as well as 0.1% polarization precision. In this Mott-
analyzer, backscattering left-right asymmetry from a Mott scattering at a thin lead foil is used as a
measurement of the transverse polarization.

Newton Gravity = Flat Space Time

Nucleus Nucleus

Strong Gravity = Warped Space Time

spinning particle

spinning particle

electromagnetic Thomas precession

large geodetic precession

(+ Thomas precession)

Figure 2: Probing principle using geodetic precession of spinning electron scattered by a nuclei.

For the present project aims to examine gravitational phenomena utilizing the MTV experimental
device, it is named as MTV-G (MTV-Gravity) experiment. As shown in Figure 3, the MTV-G experiment
consists of 90Sr radiation source, primary scattering lead foil, and the MTV polarimeter with secondary
scattering foil and electron tracking chamber. Existence of strong precession effects at the primary
scattering foil is examined with the MTV polarimeter in the secondary scattering asymmetry.

q

MTV-G 2011

Figure 3: Setup of the MTV-G experiment.

3 Experiment and Results in 2011

The experiment was performed at TRIUMF in 2011 (Figure 3 and 4), at the MTV experimental
beam line with 37MBq 90Sr source for about two weeks of data taking. Relative setting angle of the
radiation source and the primary scattering foil θ can be changed in order to see scattering angular
dependence. By changing this scattering angle, we can measure the distance dependence from the nuclei.
Secondary scattering left-right asymmetry defined as Asymmetry = (Nleft − Nright)/(Nleft + Nright)
are measured as functions of the primary scattering angle θ. In order to cancel out detector intrinsic
efficiency deference, source configuration flipping between UP/DOWN position settings are performed.
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geodetic precession

Figure 4: Experimental setup of the MTV-G experiment at TRIUMF in 2011.

In Figure 5, typical counting yield distributions are plotted as functions of secondary Mott scattering
angle, for UP and DOWN configuration. The shape difference between UP and DOWN indicates the
pure scattering asymmetry without suffering from detector efficiency difference. Here, we can see a clear
evidence of transverse polarization as the non-zero asymmetry. The left-right asymmetry, which can be
interpreted as the transverse polarization P , in Asymmetry = P × A, using known analyzing power A
of the Mott scattering. The analyzing power A includes de-polarization effects inside the scattering foils.

Secondary Mott Scattering Angle [rad]

C
o

u
n

t 

Source Up Position

Source Down Position

Leftward Scattering Rightward Scattering

1 2 3 4 5 61
0

40k

80k

120k

MTV-G 2011 q = 90deg.

Figure 5: Example of backscattering angular distribution. A clear parity violating asymmetry can be
noticed.

The obtained results are compared with possible Yukawa type interaction. In the Coulomb scattering,
electron spin precession is dominated from electromagnetic Thomas precession, which exists even in zero
magnetic fields. Contribution from the Thomas precession is estimated using a numerical simulation.
After subtracting the Thomas precession contributions, maximum allowed strength α is estimated sup-
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Figure 6: Constraint on the α− λ plot from the present result.

posing classical geodetic precession formula. We set a possible constraint on the α − λ parameter space
using the obtained results, as shown in Figure 6. In the Figure 6, experimental limit at atomic scale
is taken from an analysis of anti-protonic atom [? ]. It can be seen that the present study set a new
constraint at the shortest scale.

Present analysis supposes a classical geodetic precession expressed as

Ω⃗G =
3

2

GM

r3
r⃗ × v⃗, (3)

which suppose the trajectory of the spinning particle obeying in a free fall motion in the gravitational
field [5]. Here, M is mass of the nuclei, r is radius of electron orbit, v⃗ is electron velocity. The real
situation is not a free fall, but dominated by the Coulomb potential. In addition, the phenomena is
in a microscopic scale, therefore, classical treatment might not possible to be applied. Calculation of
the present study based on quantum gravitational treatment with Coulomb field must be theoretically
interesting and challenging subject for theorists.

The results shown in this paper is based on a first stage experiment with many parameter ambiguities,
such as de-polarization factor, precision estimation of electromagnetic Thomas precession etc. We are
now switching to a next generation experiment using cylindrical drift chamber (CDC) shown in Figure
7, which may provide a better results with increased precision.

4 Progress of 2012

Figure 7 and 8 show the experimental setup using the CDC. The radiation source is set at the center
position of the CDC, together with the primary scattering foil. The secondary Mott analyzing foil is
set outside of the CDC, followed by stopping scintillation counters. By measuring the azimuthal angular
dependence around the symmetry axis of the CDC setup, experimental reliability is significantly improved
from the previous setup with the planer drift chamber shown in Figure 3.

We have just performed the measurement using the CDC at TRIUMF in December 2012. Physics data
taking was planned similar to the previous experiment using MWDC, by flipping the source direction in
order to cancel the detector’s intrinsic asymmetries. In addition to the statistical improvement because of
the increased solid angle, we can expect to reduce systematic effects thanks to the detector’s symmetric
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geodetic precession

Figure 7: New MTV-G setup using CDC

source primary scattering foil

secondary scattering foil

scattering angle slit (q selection)

MTV-G 2012 with CDC

Figure 8: New setup and the image of electron scattering

geometry. Obtained data are now under analysis, which will be completed soon. Final data taking is
schedule in 2013 summer, where our experience in this measurement in 2012 will be considered.

5 Conclusion and Future plan

In 2011, we have successfully performed the first gravity experiment, by applying an electron-nuclear
scattering measurement. This is the first trial to search a strong gravitational field at an unexplored
region of a nuclear scale. We succeeded to examine the existence of the strong gravity using electron spin
direction changing which may include the Geodetic precession effect. As a result, we have succeeded to set
a new constraint on the shortest length scale of around 100 fm on the α− λ plot, where no gravitational
experimental test has been ever been performed.

In addition to the present study focusing on the 100 fm scale, we are interested to explore a wide field
of physics in a scope of gravity. For an example, re-analysis of spectroscopic data of excited atoms is a
good subject, which has not been analyzed as gravity data. If there are a strong gravitational force in
addition to the Coulomb force, energy levels of the atomic states will be modified, which can be detected
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FG

DF

Figure 9: Measurement principle using exotic atom. Modification of the bounding potential can be
detected as the frequency shifts.

as a wave length shift of the emitted photons. We will examine these atomic data and summarize them
in the alpha-lambda plot, together with our original results obtained in the MTV-G experiment.
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1. Intro.

• I want to see black hole : Directly observe the black hole horizon

→ We suggest,

⋄ The observable verifying the existence of BH horizon

⋄ The observable measuring the surface gravity

of BH horizon

• Note: Our observable is realized in any wave propagating

on BH spacetime (GW, EM waves, and so on),

and independent of details of BH environments.



2. Set up a situation : a simple example

• Consider the radially alinged situation
Black hole : Schwarzschild → radius RBH

Source : radial free fall (time like geodesic)

Wave : propagate on a radial null geodesic

Observer : rest at a distant point

observer
BH

      source
(ex. a gas cloud)

null ray

⋄ Note: It is found observationally that, in next summer 2013, a gas cloud

is going to fall into the BH candidate at the center of our galaxy.



3. The observable verifying the existence of BH horizon

• The source is falling into BH

→ The wave length of wave emitted by this source is

prolonged infinitely by the Grav. Doppler (redshift) due to BH horizon.

→ The infinite prolongation of wave length can

verify the existence of BH horizon.

⇓

The freezing of wave

should be observed.

(Numerical example is shown next)

ct

rRBH

Si
ng

ul
ar

ity
O

Trapped Region
   (Black Hole)

source

world sheet
 of a wave

Grav. Doppler
Light Cone



• Ex.Freezing oscillation of observed wave ( ↓ ”Gas’s” = ”Source’s” ↓ )
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→ The freezing oscillation appears in observation,

when the source approaches BH horizon (r ∼ 3M).



4. The observable measuring the mass

and angular momentum of BH horizon

• Look precisely at the freezing ocsillation of observed wave:

Time eovlution of the phase of observed oscillation (wave)

Θ(tobs) =

∫
ωobs dtobs ∼ ω0 exp

[
− c tobs
2RBH

]
,

{
ω0 = const.

tobs = observer’s time

→ Power spectrum of this time evolution ∝ Planckian distribution
Typical oscillation：Ψ(tobs) = A(ω0) exp[ iΘ(tobs) ]

Fourier trans. ： F (Ω, ω0) =

∫ ∞

−∞
e−iΩ tobsΨ(tobs) dtobs

∴ P (Ω) :=
∣∣F (Ω, ω0)

∣∣2 ∼ 4πRBH|A|2

c

1

Ω

1

e4πRBHΩ/c − 1



→ [ ”Temperature”
ℏ c

4πRBH
shown in time evolution ]

= [ Hawking temperature
κ

2π
] (κ : surface gravity of BH)

for Kerr BH, κ =

√
M2 − a2

2
(
M2 +M

√
M2 − a2

)
→ This gives a relation of M and a

indepndent of details of BH environment.

→ Combining with the other observation,

M and a will be determined observationally.

• But there is a point of notice w.r.t. observation · · ·

Real observation detects the wave as an oscillation of

”real number”. ( Ψ(tobs) should be a wave in real number.)

· · · continued to next page



→ Wave in real number: ΨR(tobs) := A(ωemit) cosΘ(tobs)

→ Fourier trans.: FR(Ω, ωemit) =

∫ ∞

−∞
e−iΩ tobsΨR(tobs) dtobs

→ Power spectrum of time variation:

PR(Ω) :=
∣∣FR(Ω, ωemit)

∣∣2 ∼ πRBHA(ωemit)
2

c

h(Ω)

Ω

1

e4πRBHΩ/c − 1

where

{
h(Ω) = e4πRBHΩ/c + 2 [cosΘ∞] e2πRBHΩ/c + 1

Θ∞ = Θ(tobs → ∞) ：“Frozen” Phase

Note 1: In real observation, the frozen phase Θ∞ is required

in odrde to describe the curve fitting to observed data.

Note 2: A(ωemit) is a constant depending only on the source,

not on the mass and angular momentum of BH.



5. Summary

• The observable verifying the existence of BH horizon

→ The freezing oscillation found in

time evolution of observed wave

• The observable measuring the surface gravity of BH horizon

→ The planckian distribution found in the power spectrum

of time evolution of freezing oscillation

(Combining with the other observations, M and a will be determined.)

• Next issue (under consideration):

⋄ Application to gravitational collapse

⋄ Observation time required to obtain the Planckian distribution

with good precision



 

 

 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Kotaro Fujisawa, JGRG 22(2012)111342 

“Equilibrium states of magnetized disc-central compact object 

systems” 

 



K. Fujisawa 1

Equilibrium states of magnetized disc-central compact object
systems

Kotaro Fujisawa1(a), Rohta Takahashi(b),(c), Shijun Yoshida(d) and Yoshiharu Eriguchi(a)

(a)Department of Earth Science and Astronomy, Graduate School of Arts and Sciences, University of
Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan

(b) Department of Natural and Physical Sciences, Tomakomai National College of Technology,
Tomakomai 059-1275, Japan

(c) High Energy Astrophysics Laboratory, The Institute of Physical and Chemical Research (RIKEN),
Saitama 351-0198, Japan

(d) Astronomical Institute, Tohoku University, Sendai 980-8578, Japan

Abstract
We have obtained equilibrium states of magnetized disc-central compact object sys-
tems. Under the assumption of stationary and axisymmetry, we have derived gen-
eralized Grad-Shafranov equation (GS equation). We have succeed in solving GS
equation and including not only poloidal but also toroidal magnetic fields under the
ideal MHD approximation. We have obtained a toroid which sustains the extreme
strong poloidal magnetic field near the central compact object.

1 Introduction

Recent GR simulations show that a few-solar-mass black hole and a highly dense toroid whose maximum
density can reach 1010 − 1011g/cm3 around the black hole can be formed after the merging of binary
neutron stars [1], the merging of a neutron and BH binary [2] and the collapsing of a massive star [3].
Therefore, dense toroids and central compact objects could be formed after collapsing or merging of com-
pact objects. If the compact objects have strong magnetic fields such as a magneter, the toroid can also
sustain the strong magnetic fields. Although, in order to understand the origin and dynamical formation
processes of these systems, we must take into account many realistic physics and compute stationary
configurations with magnetic fields in GR, nobody has yet succeeded in solving stationary states both
with poloidal and toroidal magnetic fields in GR at present. Therefore, we explore such stationary states
of axisymmetric magnetized barotropic systems in the framework of Newtonian gravity. Although there
were many papers to obtain magnetized stationary states of discs/toroids only with poloidal magnetic
fields (e.g. [4]) and discs/toroids only with toroidal magnetic fields inside the disks/toroids (e.g. [5]), no
solutions both with poloidal and toroidal components of magnetic fields have been obtained yet. This
is because it has been difficult to solve the Grad-Shafranov equation as well as the equations of motion
consistently by some means.

Recently, Otani et al.[6] have obtained magnetized self-gravitating equilibrium states both with
poloidal and toroidal magnetic fields self-consistently in the framework of Newtonian gravity. In this
study we have extended the method employed in Otani’s work. We calculate the equilibrium states of
magnetized disc-central compact object systems with very strong magnetic field. We study what kind of
magnetic configurations can sustain larger magnetic field energy.

2 Formulation and settings

Our formulation is essentially the same as that of Otani’s work [6]. In order to obtain magnetized
equilibrium states self-consistently, we solve the Euler equation,

1

ρ
∇p = −∇ϕg +∇

(
GMc

r

)
+RΩ2eR +

1

ρ

(
j

c
×B

)
(1)

1Email address: fujisawa@ea.c.u-tokyo.ac.jp
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and GS equation,

R
∂

∂R

(
1

R

∂Ψ

∂R

)
+
∂2Ψ

∂z2
= −4πR

jφ(Ψ)

c
, (2)

self-consistently. Where, ρ, p, ϕg,Mc, Ω, B, j, G and c are mass density, pressure, gravitational potential
of a toroid, mass of the central compact object, angular velocity of a toroid, magnetic field, current density,
the gravitational constant and the speed of light. Ψ is a magnetic flux function defined as below:

Bp = ∇Ψ×∇φ. (3)

Bp denotes a poloidal magnetic field. We solve GS equation by using Green function as below

Ψ(r) sinφ

R
=

1

c

∫
V

jφ(r
′)

|r − r′|
dV ′. (4)

The φ component of current density is expressed as an arbitrary function of flux function in our formu-
lation as below:

jφ
c

=
κ′(Ψ)κ(Ψ)

4πR
+ ρRµ(Ψ), (5)

where κ(Ψ) and µ(Ψ) are arbitrary functions of flux function Ψ. We can change the magnetic field
structure by changing these arbitrary function forms [7]. We can integrate the Euler equation by using
these arbitrary functions and obtain the first integral as below:∫

dp

ρ
= −ϕg +

GMc

r
+

1

2
R2Ω2(Ψ) +

∫
Ψ

µ(Ψ) dΨ+ C. (6)

C is a integral constant. In order to obtain the magnetized equilibrium state self-consistently, we fix one
functional form and solve Eq.(4) and Eq.(6) iteratively until the system becomes convergence. Then, we
obtain one magnetized equilibrium states after this iteration process.

In order to explore the magnetic field structure which sustains the large magnetic field energy, we
calculate the critical equilibrium states of such systems beyond which no equilibrium states are allowed
to exist when we fix one arbitrary functional forms set [6]. The critical model can sustain the largest
magnetic filed energy with one functional form. A toroid can reach the central compact the most closely
when the system is critical equilibrium state.

We assume that the mass of the central compact object, the toroid and the maximum density as
below:

Mc = 5.0M⊙, (7)

Mt = 0.1M⊙, (8)

ρc = 1011g/cm3. (9)

These values of physical quantities are typical ones obtained by the recent GR simulations [3].

3 Numerical Result

We show two critical configurations by changing the functional form of µ(Ψ) [7]. We set Ω(Ψ) = 0 in
these calculations for simplicity. Therefore, these toroids are sustained by the magnetic pressure. mainly.
Fig.1 shows the structures of the toroid (blue and red thick curves), the poloidal magnetic field lines
(black curves) and the distributions of log10 |B | (G) (color maps). The blue toroid (the left panel in
Fig.1) has the largest magnetic fields among critical models in our parameter space, while the red has
the smallest magnetic fields. Fig.2 shows the density distribution of each toroid in critical configuration.
Both toroids have cusp structures at the inner edge. The blue toroid is stretched inward by the strong
gravitational force of the central compact object.
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Figure 1: The magnetic field configuration and its magnitude (log10 |B| G). The curves denote magnetic
field lines. The blue toroid (left) can approach near the central object because the magnetic pressure is
larger than that of the red toroid (right).
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Figure 2: The density contours of toroids in the critical configuration. The blue toroid is stretched inward
by the strong gravitational force of the central compact object.



4 Equilibrium states of magnetized disc-central compact object systems

4 Discussion and Conclusion

These toroids are sustained by the extreme strong magnetic pressure. As we have seen Fig.1 and Fig.2,
the blue model can approach near the central compact object, because the strong magnetic fields pressure
inside the toroid can balance the stronger gravity force of the central object. The distributions of magnetic
fields of these models are different from each other. As seem from Fig.1, the magnetic field becomes
maximum near the inner edge in the blue toroid model, while in the red toroid model, the magnetic
fields become maximum near the center of the toroid. The magnitude of the magnetic fields of the blue
model can reach about 1016 G near the inner edge of the toroid. The total magnetic field energy of the
blue toroid is about three times as large as red toroid. Therefore, we conclude that the larger magnetic
energy can be sustained in the toroid whose magnetic field is highly localized around the inner edge of
the toroids and which locate closer to the central compact object.

Our model is, however, formulated in Newtonian gravity. The inner edge of the red toroid is located
near the innermost stable circular orbit of the 5.0 M⊙ central compact object. Since the Newtonian
approximation near the region is invalid, we must treat this system by general relativistic formulation.
We will extend our model to the general relativistic framework in the future.
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1. 1 Introduction 

Goal: Verify the Cosmic Censorship Conjecture 

Cosmic Censorship Conjecture 
No naked singularities form under physically reasonable condition. 

Event horizon 
Cauchy horizon 

singularity 

Naked  singular spacetime 

● Which is the final state of gravitational collapse ? 



● It is important to study the gravitational collapse in higher  
   dimensional spacetime in generalized Einstein gravity and  
   verify whether  the Cosmic Censorship Conjecture holds  
   or not. 

1. 2 Introduction 

● Gravitational collapse and singularity formation are high  
    energetic phenomena 

● String theory is formulated in higher dimensional spacetime 
    and predicts higher curvature correction to Einstein theory.  

● Here we consider the Lovelock gravity as the generalized  
    Einstein gravity theory  



2.1 Lovelock gravity 

Lovelock gravity is the natural extension  of Einstein gravity  
to higher dimension and the most general theory which  
satisfies 3 conditions  

●Field equation is second rank tensor 

●Field equation is divergence free 

●Field equation contains the derivatives of metric tensor up 
   to second order 

Einstein gravity is uniquely characterized by above conditions 



: arbitrary constants 

: totally anti-symmetric tensor 

2.2 Action for Lovelock gravity 

●  The most general action which satisfies abone 3 condition is 

where 



3. 1 Collapse of Einstein Cluster  

● Dust cloud, however,  is not the realistic matter model.  It is important  
    to include the pressure.   
    Here we consider the gravitational collapse of Einstein cluster.  
    Einstein cluster is counter rotating  dust cloud, which is equivalent to  
    fluid which has tangential pressure. 

● We consider the gravitational collapse with spherical symmetry. 
 In the previous paper , we study the spherical dust collapse in the  
     Lovelock gravity . 

Even dimensional case Odd dimensional case 

Only central singularity can  
be naked 

Singularity at finite radius 
as well as central one 
can be naked 

Summary of dust case 



：mass function 

：specific angular momentum （J=0 corresponds to dust） 

3.2 Metrics and Field equation 

● Metric for Einstein cluster 

● Field equation  for Einstein cluster 



3.3 Singularity, apparent horizon and bounce point 

Condition for Singularity formation  

Odd dim 

Even dim 

Apparent horizon  

Apparent horizon  

Bounce  

Bounce  



3.4 Result : EVEN dimension 

● All the singularities are covered 
    by apparent horizon and cannot  
    be naked 

● If J is sufficiently small, 
    has local maximum and shell can 
  Bounce 

case 

case 

shell bounces 

shell does not bounce and  
singularity can be naked 



3.5 Result : ODD dimension 

● The other shells hit the singularity 
    which cannot be naked 

● The shells which satisfy 

 case 

case 

inevitably bounce 

shell bounces 

shell does not bounce and  
singularity can be naked 



4. Summary 

● We consider the gravitational collapse of Einstein cluster in Lovelock gravity, 
    and investigate the effect of angular momentum (or pressure) on the  
    Cosmic Censorship conjecture. 

Even dimension Odd dimension 

shell bounces 

shell does not bounce and  
singularity can be naked 

 bounce 

Other shell hit the singularity , 
but cannot be naked. 

J is sufficiently small      bounce 

No singularity can be naked. 
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Abstract
We investigate the applications of the Einstein equation of state to cosmological prob-
lems. In order to apply the cosmology, we expand the shear term in higher orders
and find that the leading part of them are described in terms of the Weyl curvature
. Consequently, the Penrose’s Weyl curvature conjecture has been formulated from
spacetime thermodynamical aspect.

1 Introduction

Recent cosmological observations suggest the cosmological scenario that the Universe has evolved from
an almost homogeneous state to the present inhomogeneous state due to formation of the astronomical
objects. If the Universe can be regarded as a system of the gravity theory, how can we describe evolution
of the system? For this question, R.Penrose has proposed the following conjecture [1, 2], namely, ’The
entropy of gravitational filed should be somehow related to the Weyl curvature’ and ’The entropy,
defined as a functional of the Weyl curvature, should be increasing in time.’ The Wely curvature is
traceless part of Riemann curvature tensor Rαβγδ , which defined as

Cαβγδ := Rαβγδ − gα[γRδ]β + gβ[γRδ]α +
1
3

Rgα[γgδ]β, (1)

Namly, this Penrose’s Weyl curvature hypothesis means that gravitational field itself should carry an
entropy, and it may be related to the Weyl tensor In this context, the Universe can be regard as a physical
system with the following property, i.e. it has an almost homogeneous initial state that the gravitational
entropy is nearly zero, After the formation of very inhomogeneous large scale structure, a final (present)
state with large gravitational entropy. Then the gravitational entropy continues increasing globally from
a initial equilibrium, Ricci dominant state to a final npn-equilibrium Weyl dominant state.
The entropy function mentioned above has been not clear to be defined by the fundamental gravity theory
in spite of previous investigations, e.g. Grøn and Hervik(2001) by minisperspace model[3], Rudjord et.
al(2012) introduce the gravitational entropy density s(x) through examining the possibility to explain
some kind of black hole entropy[4]. However these are just only phenomenological approach. Thus
one of our aim of this report, we obtain more directly the conjecture from the fundamental gravitational
theory. In this research, we study the cosmological applications of spacetime thermodynamics. This
approach of gravity has recently been remarkably evolved and suggest the alternative of gravitational
degree of freedom (detail in the next section). And we point out that the Penrose’s Weyl curvature
conjecture can be formulated naturally by expanding the shear term.

2 What is the Gravity?

The gravitational theory given by A. Einstein deduced by the principle of ’general relativity’ and ’equiv-
alent principle., in which the gravitational interaction is expressed by the Riemannian Manifold. Though

1Email address: maki@jwcpe.ac.jp
2Email address: morita@
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the cosmological application has been successful, the quantization has difficulties due to the divergence
of quantum renormalizations. However, it is widely known that the black hole thermodynamics seems
to be related the quantum gravity. One of them so-called, ’Area theorem’ has been studied from the
quantum gravity aspects, e.g.D-brane, which states that the black hole entropy Sis propotional to the
stational black hole area A

S =
1

4G
A (2)

Recently T. Jacobson (1995) give the alternative description to the gravity, namely, he has derive the
Einstein equation from the Clausius’s low and the area theorem applying to the local Rindler horizon
at any point of any spacetime[5]. This gravity of approach seems to reviel the problem what the
physical degree of freedom of gravity. Although the approach seems to be successful to the black hole
thermodynamics, the cosmological applications have some problems due to just the construction.

3 Einstein equation of state

First we briefly review the Jacobson’s derivation of the Einstein equation of state.
#1 Equivalence Principe
We can take a local inertial frame near any point in a spacetime manifold.

gµν(X)dXµdXν =
[
ηµν +O(ℓ2)

]
dXµdXν, (3)

We take a pacetime area ∆A(P) including P that is tangent to the light (here X1 at P.
#2 Local Rindler frame
We consider the local Rindler flame (χ, η,X2,X3) from the local inertial flame Xi(i = 0, 1, 2, 3) by the
following transformation as

X0 = χ sinh(κη), (4)
X1 = −χ cosh(κη), (5)

where κ is a constant. Then the line element is given by

ds2 = −κ2χ2dη2 + dχ2 + dℓ2⊥, (6)

#3 The observer and thermal system
Consider an uniformally accelerating observer running away from the point near P in spatial direction
of the light wavefront (X1), whose trajectory is χ = const.. Define χµ as a unit vector of this trajectory.
#4 The local Rindler horizon Then, for this observer, the null-geodesics X0 − X1 = 0 is a causal horizon
which is parametrized by a affine parameter λ, X2 and X3.
When a unit vector kµ of the null-geodesics with X2 = const. and X3 = const., thenχµ i always approximate
near the causal horizon as

χµ ≈ −κλkµ (7)

Thus we can regard the inside of the causal horizon as the thermal system for the observers.
#5 The Clausius’s low and construction of Einstein equation of state
The Clausius’s low is expressed in terms of the temperature T, entropy change δS and heat flow δQ of
the thermodynamical system by

TδS ≥ δQ (8)

We can obtain the Einstein equation using the Area theorem δS = αδA for the entropy change, the Unruh
temperature Tu

√−g = ~κ
2π [7] from the local Rindler horizon as the temperatureT and the energy flow

through the horizon into the system as δQ.The energy flow is

δQ =
∫ ∆η

0

∫
∆A(η)

λTµνχµkνdλdA = −κ
∫
∆λ
λTµνkµkνdλdA (9)
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In the last step, we need to the change of the horizon area, i.e.

δA =
∫
S
θdλdℓ2⊥, (10)

where the expansion θ of null congruence defined as θ = − 1
∆A

d∆A
dλ and ∆A is infinitesimal cross section to

the null congruence at P. The change of expansion θ obeys at P with respect to λwith the Rauchaudhri’s
equation given by

dθ
dλ
= −1

2
θ2 − σ2 − Rµνkµkν (11)

and of shear σ[8]:
dσµν
dλ
= −θσµν − Cανµβkαkβ. (12)

Now, under the preparation above, if we make a assumption θ
∣∣∣
P= 0, σµν

∣∣∣
P= 0,, then

TδS − δQ = 0

= −κ
∫
λdλ

∫
S(λ)

dℓ2⊥
{
α
~

2π

[
θ/λ −

(1
2
θ2 + σµνσ

µν + Rµνkµkν
)]

P
− Tµνkµkν

}
. (13)

up to O(λ2). Since this derivation is not depend on the point P, Eq.(??) yields the Einstein equation with
cosmological constant by using the Bianchi identity and setting α = 1

4G~ . This result means that thermal
equilibrium condition of the system, i.e. TδS = δQ with θ

∣∣∣
P
= 0, σµν

∣∣∣
P
= 0,,is equivalent to the Einstein

equation.

4 Expansions of the shear term and the cosmological applications

Can the spacetime thermodynamics be applied to cosmological problems? How can we do it? The
derivation of the Einstein equation of state is supposed that the evolution of the expansion θ and the
shear σµν depend on the point P in the spite of the independence of choice of P in the manifold. In order
to apply the discussion above to any point on any geodesics parametrized by λ, we expand the θ and
σµν as

θ = θ
∣∣∣
P
+λ

dθ
dλ

∣∣∣
P
+

1
2!
λ2 d2θ

dλ2

∣∣∣
P
+

1
3!
λ3 d3θ

dλ3

∣∣∣
P
+ · · · (14)

σµν = σµν
∣∣∣
P
+λ

dσµν
dλ

∣∣∣
P
+

1
2!
λ2 d2σµν

dλ2

∣∣∣
P
+

1
3!
λ3 d3σµν

dλ3

∣∣∣
P
+ · ·· (15)

With conditions.(ref), the expansion θ at P (λ = 0) is expressed as

θ = θ
∣∣∣
P+λ

dθ
dλ

∣∣∣
P+λ

2 d2θ

dλ2

∣∣∣
P+ · · · +λ

n dnθ
dλn

∣∣∣
P+ · · · (16)

= 0 0th order
+
(
−λRµνkµkν

)∣∣∣
P

1st order

+λ2 1
2!

(
− d

dλ
Rµνkµkν

)∣∣∣
P

2nd order

+λ3 1
3!

(
− d2

dλ2 Rµνkµkν
)∣∣∣

P
+λ3 1

3!

(
−Eαγδβkγkδkαkβ

)∣∣∣
P

3rd order

+ · · ·

+λn 1
n!

(
− dn−1

dλn−1 Rµνkµkν
)∣∣∣

P
+λn 1

n!

( dn−3

dλn−3 (−Eαγδβkγkδkαkβ
)∣∣∣

P
+Qn(Rµν,Cανµβ) n − th order

+ · ·· (17)

where
Eαµνβ := RµνRαβ + 2CαγδβCµγδν. (18)
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In Eq.(17), we focus on the 1st and 2nd terms of each order O(λn) and sum up these 1st terms and
similarly the 2nd terms, The remaining terms Qn(Rµν,Cανµβ) have the leading term of higher order than
those two terms. The summation of the two terms can be considered as the Taylor expansions of a
functional given by integrating −Rµνkµkν and Eαµνβkγkδkαkβ with respect to λ.Then it is available at any
point λ = λ1 , 0 on the null geodesics by the analytical continuation. Therefore it is expected that
spacetime thermodynamics can apply the discussions on a certain cosmological area. Thus we obtain
the following inequality:

TδS − δQ

= κ

∫
λdλ

∫
S(λ)

dℓ2⊥
[
α
~

2π
(Rµνkµkν + Eαγδβkγkδkαkβ) − Tµνkµkν

)]
P
+O(λ5)

}
≥ 0. (19)

The The 2nd term in the integrands is contributed from the shear term. We should note that this leading
term is O(λ4). Comparing the derivation of the Einstein equation of state, this result can be interpreted
as the case with non-equilibrium condition T(δS+ δSi) = δQ instead of the Clausius’s low [6]and then Si
is regarded as the internal entropy production term:

δSi =

∫
λdλ

∫
S(λ)

dℓ2⊥
{
(Eαγδβ)kγkδkαkβ

}
≥ 0 (20)

Consequently, we formulate the Penrose’s Weyl curvature conjecture from spacetime thermodynamical
point of view.

5 Summary and Outlook

·An attempt to define a gravitational entropy has been made elaborating Jacobson‘ s spacetime thermo-
dynamics.
·We have taken into account the higher orders of θ and σµν with respect to an affine parameter λ, and
then we obtained the non-equilibrium thermodynamical inequality which is satisfied at any λ　 on a
light curve by the analytic continuation.
·The Weyl curvature naturally arises in the inequality of entropy variation associated with matter, and
the intrinsic one. Consequently, we formulate the Penrose Conjecture from spacetime thermodynamical
aspect.
·Now trying to extend the formula, defined only locally, to global one in order to apply to cosmological
situations.
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Abstract
We obtain two kinds of special solutions of test strings in the black hole spacetime

because it is too difficult to obtain the general solutions of test string. One is the
cosmic wiggly string of arc configuration which exhibits open string lying along the
circular orbit in the equatorial plane outside the horizon. The other is the cosmic
wiggly string of radial configuration which exhibits open string pointing toward the
origin in the equatorial plane outside the horizon.

1 Introduction

A phase transition in the early Universe produced topological defects such as domain walls, strings
and monopoles when the U(1) symmetry breaks down in the unified theories. Topological defects are
necessarily created due to the spontaneous symmetry breaking of vacuum state[see 1-4]. If the existence
of the cosmic strings which are one of topological defects is confirmed, it is a strong evidence of vacuum
phase transition in the universe. Besides the interests from the unified theories, it was proposed that
cosmic strings can generate cosmological density fluctuations as seeds of the structure formation which
can subsequently evolve into galaxies and large-scale structure[5,6]. However, this scenario was rejected
due to the confliction with the precise observational data of cosmic microwave backgrounds[7,8].

Recently cosmic strings have been studied in the context of the superstring theories because fun-
damental strings and other string-like solitons such as D-strings could exist in the Universe as cosmic
strings[9]. If such cosmic strings existin the Universe, it is an interesting subject how cosmic strings
behave in the curved spacetime in general relativety. They have been investigatedby H. J. de Vega, N. G.
Sánchez, V. P. Frolov and B. Carter[10-20]. The configuration of cosmic string in black hole spacetime is
an interesting problem. It is well known how a test particle behaves in black hole spacetime. However,
the motion of a test string in black hole spacetime is not known because the test string problem is sig-
nificantly non-trivial due to the constraints. So we study the test string in detail. For the simplicity, we
neglect the gravitational effects of string and assume that its thickness is zero.

We obtain two kinds of special solutions of test strings in the black hole spacetime because it is too
difficult to obtain the general solutions of test string. One is the cosmic wiggly string of arc configuration
which exhibits open string lying along the circular orbit in the equatorial plane outside the horizon. The
other is the cosmic wiggly string of radial configuration which exhibits open string pointing toward the
origin in the equatorial plane outside the horizon. We obtain interesting solutions though they are not
the general solutions of test string.

Traditionally cosmic strings have been treated as fundamental strings and described by Nambu-
Goto actionSN−G =

∫
dτdσ 1

2πα′

√
gabGµν∂aXµ∂bXν . However, some literatures claim that the so-called

cosmic wiggly string is more favorable than the standard Nambu-Goto string to explain the possible
role of extended cosmic string in cosmology or astronomy[21-27]. For the Nambu-Goto string the energy
density and the tension are equal, while their relation in the wiggly string model is more relaxed to the
extent that the energy density and the tension are not equal. In particular, it is known that the wiggly
string of which the product of the energy density and the tension is constant behaves well. If the energy
density is much larger than the string tension, its shape tends to wiggle. We mainly treat cosmic wiggly
strings as cosmic strings.

1Email address: suzukihi@lab.twcu.ac.jp
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2 Basic Equation of Cosmic Wiggly String

The induced metric on cosmic string is

hab(τ, σ) = ∂aX
µ∂bX

νGµν , (a, b = τ, σ), (1)

where τ and σ are the string coordinates, Xν is the background coordinate and Gµν is the background
metric.

The two-dimensional energy-momentum tensor is given by

tab = (µ − T̃ )uaub + T̃ hab, (2)

where µ(τ, σ) is the energy per unit length of string, T̃ (τ, σ) is its tension, and ua(τ, σ) is the fluid
velocity parallel to the string with the normalization:uaua = −1. The string has the energy density and
the tension. This can be covariantly described by the energy-momentum tensor localized at the string
as Eq. (2) introducing the velocity field. The physical reason for the energy-momentum tensor tab is not
the issue of the present paper. It may come from the configurations of Higgs and gauge fields or just
particles depending on the model.

The four-dimensional energy-momentum tensor by a cosmic string configuration is given by

Tµν(x) =
∫

dτdσ
√
−htab(τ, σ)∂aXµ(τ, σ)∂bXν(τ, σ)

δ4(x − X(τ, σ))√
−G(X)

, (3)

where h = det(hab) and G = det(Gµν).
We derive the basic equation of motion of the cosmic wiggly string. The motion of the string is

dictated by DµT
µν(x) = 0 i.e., the conservation of energy and momentum.

We differentiate Eq. (3) by xµ and sum over µ :

∂Tµν

∂xµ
=

∫
dτdσ

√
−htab(τ, σ)∂aXµ(τ, σ)∂bXν(τ, σ)

∂δ4(x − X(τ, σ))
∂xµ

1√
−G(X)

,

=
∫

dτdσ
∂

∂ξa

(
√
−htab(τ, σ)∂bXν(τ, σ)

1√
−G(X)

)
δ4(x − X(τ, σ)),

=
∫

dτdσ

(
∂(
√
−htab∂bX

ν)
∂ξa

1√
−G(X)

+
√
−htab∂bX

ν ∂

∂ξa

(
1√

−G(x)

))
δ4(x − X),

=
∫

dτdσ

(
∂(
√
−htab∂bX

ν)
∂ξa

+
√
−htab∂bX

ν
√
−G(x)

∂

∂ξa

(
1√

−G(x)

))
δ4(x − X)√

−G(x)
,

=
∫

dτdσ

(
∂a(

√
−htab∂bX

ν) − Γρµρ
∂Xµ

∂ξa

√
−htab∂bX

ν

)
δ4(x − X)√

−G(x)
,

=
∫

dτdσ∂a(
√
−htab∂bX

ν)
δ4(x − X)√

−G(x)
− Γρµρ

∫
dτdσ

√
−htab∂aX

µ∂bX
ν δ4(x − X)√

−G(x)
,

=
∫

dτdσ∂a(
√
−htab∂bX

ν)
δ4(x − X)√

−G(x)
− ΓρµρT

µν . (4)

The covariant derivative of tensor Tµν is defined by

DµT
µν =

∂Tµν

∂xµ
+ ΓµmµT

mν + ΓνmµT
mµ. (5)

From Eqs.(3),(4), Eq.(5) becomes

DµT
µν =

∫
dτdσ∂a(

√
−htab∂bX

ν)
δ4(x − X)√

−G(x)
+ ΓµνλT

νλ

=
∫

dτdσ

(
∂a(

√
−htab∂bX

ν) +
√
−hΓµνλt

ab∂aX
ν∂bX

λ

)
δ4(x − X)√

−G(x)
.

(6)
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The conservation of energy and momentum is equivalent to

1√
−h

∂a

(√
−htab(τ, σ)∂bXµ

)
+ Γµνλ∂aX

ν∂bX
λtab = 0, (µ = 0, 1, 2, 3). (7)

Here Γµνλ is the affine connection computed from the background metric. This has to be solved for Xµ

and ua.
The covariant derivative of Einstein Eq. is given by

Dµ(Rµν −
1
2
gµνR) = 8πGDµTµν , (8)

where the conservation of energy and momentum DµTµν = 0 is derived because the left hand of Eq. (8)
is zero by the Bianchi identity. The conservation law gives the equation of motion for topological defects
which are either a particle or a string. If we consider a particle and a string as a small defect of spacetime,
its motion is given by the motion of background spacetime. This concept is the characteristic of general
relativity and was discussed in detail by Einstein, Infeld and Hoffmann[28].

3 Cosmic wiggly strings of arc configuration in black hole space-
time

It is well known that the minimal radius of stable circular orbit for a test particle around the
Schwarzschild black hole is three times the Schwarzschild radius. We concerns with the minimal radius
of stable circular orbit for a test string around the black holes. We study the classical motion of cosmic
wiggly strings of arc configuration in the various black holes and obtain the new special solutions of
them. The cosmic wiggly strings exhibit open strings lying along the circular orbit in the equatorial
plane outside horizon in the various black holes. The solutions in the various black holes are compared
with them in the Schwarzschild black hole.

At first, because of the simplicity of the equations, we study the cosmic wiggly string in the Schwarzschild
black hole. In the presence of small scale wiggles the macroscopically average value of the energy density
µ would exceed its Nambu-Goto value, while the tension T̃ decreases. The particular case of equation of
state for a wiggly cosmic string

µT̃ = µ0
2, (µ0 : const.) (9)

is simple in the analysis.
We make the ansatz

θ =
π

2
, (10)

r = const., (11)
ct = dτ + eσ, (12)
φ = mτ + nσ, (13)

where d, e,m and n are constants to be determined in what follows.
The conservation of energy and momentum (7) becomes

1√
−h

∂τ

(√
−
(
1 − 2MG

r

)
e2 + n2r2

−
(
1 − 2MG

r

)
d2 − m2r2

(
−µ(τ) + 2

µ0
2

µ(τ)

)
Ẋµ

)
+Γrtt∂at∂btt

ab + Γrφφ∂aφ∂bφtab = 0. (14)

As we can choose the off-diagonal element of the induced metric hτ,σ in Eq. (1) to be zero, the solution
of Eq. (14) for an open string must satisfy the following condition:

−
(

1 − 2MG

r

)
de + mnr2 = 0. (15)



4

The condition for the solution of Eq. (15) to be outside the horizon r > 2MG reads

de

mn
≥ 27(MG)2. (16)

From Eqs.(12)-(15), we obtain a particular solution[29]

r =
µ(dn + 2em) − 3µ0

2

µ em

µem + µ02

µ (dn − 2em)
MG, (17)

where the solution is outside the horizon if the tension µ0
2

µ of string is zero or the average value of energy
density µ of string is zero and 2 > em

dn > 1/2 (Fig.1). The angular velocity ω, the angular momentum
Mxy and the energy P 0 are generally defined by

ω :=
dφ

dt
=

m

d
, (18)

Mxy :=
∫

(xT y0 − yT x0)dxdydz = π
√

ωen(µ − 3
µ0

2

µ
)r2, (19)

P 0 :=
∫

T 00dxdydz = π(
√

en

ω
(µ − 2

µ0
2

µ
) − e

√
eω

n

µ0
2

µ
). (20)

In the strongly wiggly case(µ ≫ µ0), we have a simple expression for the radius r in terms of the angular
velocity ω from Eqs. (15), (17) and (18),

r =
1

ω2/3
(MG)1/3. (21)

We can determine the parameters d, e,m, n if the angular velocity ω, the energy P 0 and the angular mo-
mentum Mxy are given, except for the overall magnitude of d and m, which comes from the arbitrariness
of the scale of τ .

We have obtained the solutions for open cosmic wiggly strings of circular configuration in the Schwarzs-
child black hole. For a closed cosmic string we can obtain a circular solution by restricting the parameter
n = 2. The extended solutions for open cosmic wiggly strings of circular configuration outside the horizon
have been found. The Nambu-Goto limit of the cosmic string has only a point-like solution, while the
fundamental generic string has only a null particle solution. This is because the freedom of Nambu-Goto
cosmic string is more than the one of the fundamental string. In contrast to our present work, Frolov
and the co-authors got open string solutions lying in the radial direction and Ishihara and co-authors
classified closed string solutions in Minkowski spacetime. We have obtained the solutions around the
Schwarzschild black holes under the gauge condition ct ∝ (τ ±ασ) while usually people choose the gauge
condition ct = τ . It remains to be clarified why only this particular class of gauge fixing condition works.

In the case of the Reisner-Nordström black hole, the open cosmic wiggly string lies in the equatorial
plane and rotates along a circular orbit of a shorter radius outside the horizon comparing with the circular
orbit in the Schwarzschild spacetime because of the existence of charge[30]. One might be interested in
the string configuration in the extreme case (Q=M). However, no qualitatively distinctive feature arises
in the extreme limit. On the other hand, there are only point-like solutions for the Nambu-Goto cosmic
string because of its high symmetry, i.e. more constraints than the cosmic wiggly string.

In the case of the Kerr black hole, the open cosmic wiggly string lies in the equatorial plane and
rotates in the same direction as the Kerr spacetime along a circular orbit of a smaller radius outside
the horizon comparing with the circular orbit in the Schwarzschild spacetime because of the existence of
the angular momentum[31]. We have compared the strongly wiggly string solution in the case of small
Kerr parameter with the one in the Schwarzschild spacetime. In the case of positive Kerr parameter, the
obtained radius is smaller than that of the solution for the Schwarzschild spacetime, while it is larger in
the case of the negative Kerr parameter. This feature of stable circular orbit of a test string conforms
with that of a test particle in the Kerr spacetime. The parameter regions for the wiggly string solution
to be outside of the horizon have been indicated(Fig.2).
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Figure 1: The string solution of arc configuration is shown. The dotted circle shows the horizon of
spherically symmetric black hole, while the solid curve shows the string of arc configuration parametrized
by the world sheet coordinate σ.
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Figure 2: The shaded are parameter regions allowed in the case of a = 1, where the horizontal and
vertical coordinate axes indicate d/m and e/n, respectively.

We have studied the relation of the string radius and the angular momentum in the case of a constant
energy. The radius is larger with the decrease of the angular momentum for the positive Kerr parameter,
while for the negative Kerr parameter the radius is smaller with the decrease of the angular momentum.
The mechanism behind this phenomenon seems complicated and has not been fully understood. One
might be interested in the string configuration in the expreme case(a = M). However, no qualitatively
distinctive feature arises in the extreme limit. On the other hand there are only point-like solutions for
the Nambu-Goto cosmic string because of its high symmetry, i.e., more constraints. But we do not have
any intuitive explanation for the existence of the extended solution in the case of the wiggly string. For
example, we have found a curious but not fully understood phenomenon that the radius of the strongly
wiggly string approaches the horizon as the angular velocity becomes larger.

We have obtained the solutions for open cosmic wiggly string in the Kerr-Newman black hole[32]. It
is theoretically important to study the wiggly string solutions in the Kerr-Newman spacetime because
the Kerr-Newman black hole is the most general stationary black hole. However, most of the black holes
in the universe are generically rotating but there are no observational evidence that a black hole has a
charge. We have showed that the solutions for the cosmic wiggly string reduced to a string-like extended
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Figure 3: In the case of a = 0.15.
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Figure 4: In the case of a = 0.1.

configuration in the Kerr-Newman spacetime and compared the solution with the cases of the Reisner-
Nordström spacetime and the Kerr spacetime. We have found a new special solution of open wiggly
strings in the (3+1)-dimensional stationally axially symmetric charged rotating black hole, though we
cannot find any extended solution for the Nambu-Goto open string.

4 Cosmic wiggly strings of radial configuration in black hole
spacetime

We have obtained the classical new special solutions of cosmic wiggly string of arc configuration in
Sec. 3. Here we study classical motion of cosmic wiggly strings of radial configuration in the black holes
as the extension of cosmic wiggly strings of arc configuration. The cosmic wiggly strings exhibit open
strings pointing toward the origin in the equatorial plane outside the horizon in the various black holes.
We show that there are two kinds of solutions : static and stationary solutions.

At first, because of the simplicity of the equations, we study classical motion of a string in (3+1)-
dimensional spherically symmetric neutral black holes. We make the ansatz

θ =
π

2
, (22)

ϕ = const., (23)
ct = τ, (24)

where we first study the static cosmic wiggly string by Eq. (23) for simplicity. Our string can be considered
as an open string because our string solutions satisfy the free boundary condition at the end points σ = 0
and π,

∂X⊥
µ

∂σ
|0,π = 0, (25)

where X⊥
µ is the radial coordinate of the string, because ϕ = const. in our case.

As we can choose the off-diagonal element of the induced metric hτσ in Eq. (2) to be zero while the
two-dimensional energy-momentum tensor tσσ has a finite value, the solution for a static string is given
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Figure 5: In the case of a = −0.15.

by the following equation:
ṙ = 0. (26)

The essence of the dynamics of cosmic string can be described as the conservation of energy and
stress. The conservation of energy and momentum (7) becomes

µMr′
2 +

µ0
2

µ

(
−5Mr′2 + r(r − 2M)r′′

)
= 0, (27)

where ′ is the derivative with respect to σ.

 

 

Figure 6: The string solution of radial configuration is shown. As the same as Fig. 1, the dotted circle
shows the horizon of spherically symmetric black hole, while the solid line shows the string of radial
configuration parametrized by the world sheet coordinate σ.

From Eq. (27), we obtain the solution of equation[33] (Fig. 6) as

σ =
1
b

∫ r

r0

dr
( r

r − 2M

) 1
2 (5− µ2

µ02 )

, (0 < σ < π) (28)
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where b is a constant that is defined by the following equation

b = r′
( r

r − 2M

) 1
2 (5−µ0

2

µ2 )

. (29)

In the special case of the ratio µ2

µ02 = 4 of the energy density to the tension we obtain the solution of
equation as

σ(r = 2) = 0, (30)

σ = 2
(√(r

2
− 1
)r

2
+ log

(√r

2
+
√

r

2
− 1
))

. (31)

The obtained cosmic wiggly string lies in the radial direction in the equatorial plane outside horizon
and the string gets longer as the ratio µ2

µ02 of the energy density to the tension increases.
The energy P 0 is explicitly evaluated as

P 0 : =
∫

T 00dxdydz

=
1
c

(
µ − 2

µ0
2

µ

)(
r + 2M log(r − 2M) + A

)
, (32)

where Tµν is the four-dimensional energy-momentum tensor given by Eq. (3) and A is an integral constant.
we study a slowly stationary rotating cosmic wiggly string solution in the radial direction in the

equatorial plane outside horizon in the Schwarzschild black hole.
We make the ansatz

θ =
π

2
, (33)

ϕ = βτ, (34)
ct = τ, (35)

where β is a constant. Note that Eq. (34) implies a stationary rotation in contrast to Eq. (23).
The conservation of energy and momentum (7) becomes

µ(−β2r4 + 2Mβ2r3 + Mr − 2M2)r′2

+
µ0

2

µ

(
(3β2r4 − 4Mβ2r3 − 5Mr + 10M2)r′2 + r(−β2r3 + r − 2M)(r − 2M)r′′

)
= 0, (36)

where ′ is the derivative with respect to σ and which corresponds to Eq. (27) in the case of β = 0.
The obtained cosmic wiggly string is rotating very slowly outside horizon[33]. The maximum angular

velocity of the cosmic wiggly string which starts from r(σ = 0) = 2.01 is about β = 0.03509 where the
cosmic wiggly string shrinks to a point. In the case of the ratio µ2

µ02≤11 of the energy density to the
tension the maximum angular velocity of the cosmic wiggly string which starts from r(σ = 0) = 2.1 is
about β = 0.10391 where the cosmic wiggly string shrinks to a point. In the case of the ratio µ2

µ02≥11.9 of
the energy density to the tension the cosmic wiggly string which starts from r(σ = 0) = 2.1 gets longer
as the angular velocity β increases and the wiggly string solution suddenly disappears. In the case of the
intermediate ratio µ2

µ02 = 11.5 of the energy density to the tension for example the cosmic wiggly string
which starts from r(σ = 0) = 2.1 gets longer until the angular velocity β reaches 0.045. and gets shorter
and shrinks to a point at about β = 0.10391.

The energy P 0 is generally defined by Eq. (32). The angular momentum Mxy is given by

Mxy :=
∫

dxdydz(xT y0 − yT x0)

= (µ − 2
µ0

2

µ
)β
∫

dr
r3√

(r − 2M)(−β2r3 + r − 2M)
.

(37)
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The solutions for open cosmic wiggly strings of radial configuration in the Reisner-Nordström black
hole have been obtained in [33]. We have obtained the special solution of open cosmic wiggly string in
the radial direction in a black hole spacetime which gets shorter with the increase of the charge. With
the increase of the angular velocity the cosmic string gets longer or shorter depending on the strong or
weak wiggliness. We can observe a curious behavior for the marginally wiggly case that is a little smaller
than a certain value. The cosmic wiggly string gets shorter with the increase of the angular velocity
and becomes a point when the ratio of the energy density to the tension is very smaller than the certain
value (Fig. 7). In Figure 7, the flat regions indicate the regions where the cosmic wiggly string becomes
a point. With the increase of charge the flat region shrinks and the maximum value of angular velocity
βmax becomes larger.

Figure 7: The relations between the ratio of the enaergy density to the tension µ2

µ02 and the maximum
value of angular velocity βmax are shown in the cases of the charge Q = 0, 0.5, 0.8, where the horizontal
and vertical coordinate axes indicate µ2

µ02 , βmax, respectively.

The solutions for open cosmic wiggly strings of radial configuration in the Kerr spacetime have been
obtained[34]. We have obtained the special solution of open cosmic wiggly string in the radial direction
in the Kerr spacetime which gets longer with the increase of the ratio of the energy density to the tension
and shorter with the increase of the absolute of the Kerr parameter. With the increase of the angular
velocity the cosmic string gets longer or shorter depending on the strong or weak wiggliness. We can
observe a curious behavior for the marginally wiggly case that is slightly smaller than a certain value.
The cosmic wiggly string gets shorter with the increase of the angular velocity and becomes a point when
the ratio of the energy density to the tension is very smaller than the certain value (Fig. 8). Especially in
the case of βa < 0 the behavior is more complicated comparing the case of the Schwarzschild spacetime.
In Figure 8, the flat regions indicate the regions where the cosmic wiggly string becomes a point. With
the increase of Kerr parameter a the flat region is enlarged and the maximum value of angular velocity
βmax becomes smaller. In the case of negative Kerr parameter, the flat region is larger than that of the
case of positive Kerr parameter and the maximum value of angular velocity βmax takes the same value.
One might be interested in the wiggly string configuration in the extreme case(a = 1). However, nothing
qualitatively distinctive feature arises in the extreme limit.

The solutions for open cosmic wiggly strings of radial configuration in the Kerr-Newman spacetime
have been obtained[35]. The difference is the critical values of µ2

µ02 where the behavior of the string con-
figuration drastically changes;shrinking to a point or the total disappearance after reaching the maximum
radius. We have obtained the special solution of open cosmic wiggly string in the radial direction in the
Kerr-Newman spacetime which gets longer with the increase of the ratio of the energy density to the
tension, slightly shorter with the increase of the charge and shorter with the increase of the absolute of
the Kerr parameter. This conclusion corresponds to the one in the Reisner-Nordström black hole and the
Kerr black hole. With the increase of the angular velocity the cosmic wiggly string gets longer or shorter
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Figure 8: The relations between the ratio of the energy density to the tension µ2

µ02 and the maximum
value of angular velocity βmax in the cases of the Kerr parameter a = 0, 0.5, 1,−0.5,−1

depending on the strong or weak wiggliness. We can observe a curious behavior for the marginally wiggly
case that is a little smaller than a certain value. The cosmic wiggly string gets shorter with the increase
of the angular velocity and becomes a point when the ratio of the energy density to the tension is very
smaller than the certain value. Especially in the case of βa < 0 the behavior is more complicated compar-
ing the case of the Schwarzschild spacetime. One might be interested in the wiggly string configuration
in the extreme case(a = 1). However, nothing qualitatively distinctive feature arises in the extreme limit.

In contrast to our present work, V. Frolov et al. got rigidly rotating open string solutions lying
in the radial direction which are the curved strings and not straight[19]. H. J. de Vega et al. got a
straight nonoscillating string, radially disposed which rotates uniformly around the symmetry axis of
the spacetime and which becomes an infinite static fundamental string from the horizon to infinity as
the angular velocity approaches to zero[15]. H. Ishihara and H. Kozaki classified string solutions with
geometrical symmetries in Minkowski spacetime[21].

In view of other solutions found by Frolov, de Vega and Ishihara et al. we suspect there will be rich
variety of wiggly string solutions in a black hole background. The evolution of wiggly cosmic strings will
be more interesting if they are trapped by black holes. However, its cosmological significance remains to
be studied.

5 Conclusion

The cosmic wiggly string solutions have been obtained outside the horizon in all stationary black
hole spacetimes. One is the cosmic wiggly string solutions of arc configuration. The other is the cosmic
wiggly string solution of radial configuration in black hole spacetime, which exhibits finite open strings
pointing toward the origin in the equatorial plane outside the horizon. The test string can exist near the
horizon of black hole though the test particle cannot exist near the horizon of black hole. We hope that
this investigation of test string as a probe further enchances the understanding of black holes.
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IMBHs formation and their property 
  The purpose of this work is to estimate the effect of a dark matter (DM) halo 

around an intermediate mass black hole (IMBH) on GW. According to Ref.[3], 
there are two different IMBH formation scenarios. The first scenario is that IMBH 

is a remnant of collapse of a Pop III star. The second scenario is that IMBH is 
formed by  cold gas within the early forming halos. Both scenarios predict that 
IMBH in the present is surrounded by dark matter mini-halo. (See Fig.1). 

Dark matter mini-halo distribution 
 The DM profile of a mini-halo can be well approximated by Navarro, Frenk,  

and White (NFW) profile. But for simplicity, we assume that the DM density is 

distributed in a spherically symmetric manner around  the IMBH and that the radial 

distribution is described by a power law between rmin and rmax, 

 

  

where ρ0 500 M⦿ /pc^3 and r0 is 1.6 pc according to Ref[2]. rmin is a minimum 

value of the radial distance beyond which stable circular orbits are no longer 

allowed, that is, an Innermost Stable Circular Orbit (ISCO). So rmin = rISCO = 

6GMBH/c^2. rmax is the size of the DM mini-halo. 

Conclusions 
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Dark matter mini-halo distribution 
 We consider the binary systems which consist of a IMBH which has MBH~10^3 

M⦿ and a star which has μ~1 M⦿. The IMBH is surrounded by a DM halo  which 

has a spherical density distribution and exists between rmax and rmin. We suppose 

that the DM density is still unperturbed even when the star orbits in the DM halo, 

which is justified by the fact that the DM total mass~10^6 M⦿ is much larger than 

the star mass. In other words, we treat the star as a test-particle and we call it a 

“particle” in the following. The system that we examine here is idealized in 

comparison with the real astrophysical sources. However this idealization allows us 

to estimate the order of magnitude of DM effects on GW. In this situation, the 

equation of motion for the particle can be written as 

  

 

where l is the angular momentum of the particle per its mass, and Meff and F is  

 

 

 

 

 In the first term of the right hand side of this equation of motion, the dark matter 

mini-halo modifies the effective mass of the central BH. The second term contains 

interesting information of the DM halo radial distribution. The third term is 

regarded as a centrifugal force. We assume that the second term is much smaller 

than the first term,  

 

 

 that is,  we can treat the term which involves DM halo as a perturbation. When the 

particle orbits circularly around the IMBH, the left hand side of the equation of 

motion vanishes, and we get the circular orbit radius F. Computing the GW 

waveforms, we obtain the amplitudes for h＋ and h☓, 

 

 

 

 

 where ι is the inclination  which is the angle between the normal to the orbit and 

the line-of-sight, and 2ωs is the GW frequency. 

Waveforms including GW back-reaction 
 Then we include the effect of the GW back-reaction within linearized theory. The 

orbital radius and frequency is not constant any longer, because GW radiation 

energy EGW is taken from the rotational energy Eorbit of the particle. 

 

 

 This differential equation of time gives the relation between the orbital radius R 

and the time. Using this relation, we can compute the orbital frequency ωs 

depending on time. So we replace ωs and R in time-independent waveforms with        

time-dependent ωs and R to get the waveform including the GW back-reaction. 

 

 

 

     We assume that eLISA observes the GW for 5.0 years until the coalescence, then the 

interval of the frequency integration is from 22.7 mHz to infinity. P is defined as S/N 

in which a template is calculated including both the IMBH and the DM mini-halo 

gravitational potential and Q is defined as S/N in which a template is calculated 

including only IMBH. According to Ref [3], the power law index is α=7/3. So, 

           P/Q = 1.6×10^-3 

     This result means that in order to detect the GW from a binary where a star orbits 

around an intermediate mass black hole surrounded by a mini-halo  in practice we 

must calculate the template including the effect of the DM halo. P/Q strongly depends 

on the power law index α. So if the GW is detected, the power law index would be 

determined very accurately. 

Introduction 
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Fig.1: IMBH surrounded by DM mini-

halo 
Fig.2: Sensitivity of eLISA 

  In order to compare the theoretical waveforms with the experimental sensitivities, 

we must perform the Fourier transform of the waveforms. Using the stationary phase 

method with which only the slowly varying term in the Fourier integral can survive , 

we express the amplitude in Fourier space as expansions in ε, 

 

 

 

 

 

 

 

 

 

 

where tc is the retarded time at coalescence, Φ0 is the value of the phase at 

coalescence, Mc is the chirp mass, and Ψ± is the phase of the waveform h±. These 

expansions are valid for the frequency f in which the higher order terms are 

negligible. 

Definition of signal-to-noise ratio 
  To estimate the detectability, we must compute the signal-to-noise ratio, which is 

defined as S/N, 

 

 

 

 

where h(f) is the GW signal that is coming in the detector, ht(f) is the template which 

is the GW signal we infer in advance, and S(f) is the spectral density that depends on 

the detector. We consider that the GW is detected by the evolved Laser 

Interferometer Space Antenna (eLISA). According to Ref [4], the sensitivity of 

eLISA is shown in Fig.2, which is the square root of the spectral density S(f). 
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Motivation 

→We must consider all the sources of GWs. 

→How about GWs from phase transition? 

    GW property depends on the types of phase transition. 

    (1st/2nd  order?  strong /weak 1st order?) 

 

Our ultimate aim: 
observational exploration of the early Universe 

(mainly by using Gravitational Waves) 

Question: 
“How the fields affect the dynamics of  

the scalar field?” 
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Previous study 
• Effects from scalar bosons and a fermion have already studied. 

  [Yamaguchi and Yokoyama, 97; Yokoyama, 04] 

    → their contribution is interpreted as  

           non-local memory terms and noise terms in the EoM of the scalar field. 

 

 

 

 

 

 
Question: 

How about gauge fields? 
Is their effect similar to that of scalar boson? 

 
 

additive/multiplicative 
noise 

 
 

non-local terms 
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settings 

As a first step, we consider U(1) gauge field Aμ and complex scalar 
field Φ, whose interaction is determined by gauge principle. 

Lagrangian density is as follows. 
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Finite Temperature Field Theory 
• Path integral expression for the generating functional            

 

 

 
           J and Φ are defined on path c. 

           on “plus contour” and “minus contour”, 

           we use                            . 

 

 

• We have 4 propagators with additional term  

      representing finite temperature effect. 

      ex) scalar propagator in momentum space 

    (σ=0) 

         “plus contour” 

     “minus contour” 
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Effective Action 
To describe the evolution of the expectation value of the scalar field, 
we use effective action. 

 

Related quantyties: 

            : Generating functional of correlation functions 

            : Generating functional of connected correlation functions 

 

            : Legendre transformation of     (variable: J→Φ) 

 

               Only 1PI(one particle irreducible) diagrams contribute to          . 
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Perturbative expansion 

• It seems impossible to obtain full effective action. 

   →Loop expansion also seems impossible. 

   →perturbative expansion w.r.t. coupling constant 

• The lowest order (order e2)1PI diagrams are… 

 

 

 

 

                    diagram  1                                                      diagram  2 
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Finite temperature effective action 
• The diagram 1 corresponds to the following effective action. 

 

 

 

 

 

 

 

 

 
 

 

• The diagram 2 corresponds to the following effective action. 
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calculation of the effective action  
• After some calculation, we can see there is an IMAGINARY PART in 

the effective action. 

• imaginary part contains the following term. 
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Interpretation of imaginary part 
• We would like to rewrite the imaginary part. 

• According to previous studies, we hope to rewrite it as follows. 
      

 

 

 

 

 

 

  

      

        formula of  

        Gaussian integral: 
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Difficulties in interpretation 

• There seems to be a mathematical problem… 

• The real part of eigenvalues of M should be POSITIVE to 
perform the Gaussian integral. 

     → Re[γ(k)] should be always negative! 

 

• But we find Re[γ](k) takes both positive and negative value. 

• We can not rewrite the imaginary part of effective action!? 
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Remaining issue and work in progress 
• Is it possible to rewrite the imaginary part of the effective action 

and interpret it as noise? 

 

• One possibility: partial integral 

      ex.)  

 

    → EoM for φ contains not only ξ but also ∂ξ term?  

 

• If we could obtain noise term, what property does it have? How 
much effect does it give to the scalar field? Does it behave like 
scalar boson? 
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TAMA 300m
CLIO 100m
                          3km

LIGO (Livingston) 4km

Virgo 3km
advanced Virgo

GEO 600m

IndIGO
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Genera.on	  of	  gravita.onal	  waves	  

• Time variation of mass distribution	

• Non-spherically symmetric variation （time variation of  quadrupole moment）	

 and/or 

high speed	 strong gravity field	

In order to produce strong gravitational waves, we need	

These factors restrict the source of strong gravitational waves	



Sources	  of	  LIGO,	  Virgo,	  KAGRA	
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•  Compact binary coalescence (CBC)  
     neutron star (NS) and/or black hole(BH) 
     inspiral, merger, ringdown 
 
•  Burst waves 
     stellar core collapse 
     pulsar glitches  

 
•  Continuous waves 

rotating neutron stars 
 

•  Stochastic background 
 early universe origin, astrophysical origin	
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Galactic merger rate 	

A current official LCGT design (VRSE-D) 
gives horizon distance (@S/N=8)  
= 280Mpc (z=0.065) 
 
 
Event rate for LCGT :   	

118+174
�79 Myr�1

(Kim (’08), Lorimer (‘08))	

9.8+14
�6.6 yr�1

However, systematic errors which are not 
included in this evaluation may be large.	

See also： Abadie et al. CQG27, 173001(2010) 	



Physics	  in	  Compact	  Binary	  Coalescence	

specific values a5 ¼ 0, a6 ¼ "20 (to which correspond,
when ! ¼ 1=4, a1 ¼ "0:036 347, a2 ¼ 1:2468). We
henceforth use M as a time unit.

Figure 1 compares (the real part of) our analyticalmetric
quadrupolar waveform !EOB

22 =! to the corresponding
(Caltech-Cornell) NR metric waveform !NR

22 =! (obtained
by a double time-integration, à la [20], from the original
NR curvature waveform c 22

4 ). [We used the ‘‘two-
frequency pinching technique’’ of [19] with !1 ¼ 0:047
and !2 ¼ 0:31.] The agreement between the analytical
prediction and the NR result is striking, even around the
merger (see the close-up on the right). The phasing agree-
ment is excellent over the full time span of the simulation
(which covers 32 cycles of inspiral and about 6 cycles of
ringdown), while the modulus agreement is excellent over
the full span, apart from two cycles after merger where one
can notice a difference. A more quantitative assessment of
the phase agreement is given in Fig. 2, which plots the
(!1-!2-pinched) phase difference"" ¼ "EOB

metric ""NR
metric.

"" remains remarkably small (#$0:02 radians) during
the entire inspiral and plunge (!2 ¼ 0:31 being quite near
the merger, see inset). By comparison, the root-sum of the
various numerical errors on the phase (numerical trunca-
tion, outer boundary, extrapolation to infinity) is about
0.023 radians during the inspiral [6]. At the merger, and
during the ringdown, "" takes somewhat larger values
(#$0:1 radians), but it oscillates around zero, so that, on
average, it stays very well in phase with the NR waveform
(as is clear on Fig. 1). By comparison, we note that [6]
mentions that the phase error linked to the extrapolation to
infinity doubles during ringdown. We also found that the
NR signal after merger is contaminated by unphysical
oscillations. We then note that the total ‘‘two-sigma’’ NR
error level estimated in [6] rises to 0.05 radians during
ringdown, which is comparable to the EOB-NR phase
disagreement. Figure 3 compares the analytical and nu-
merical metric moduli, j!22j=!. Again our (Padé-re-
summed, NQC-corrected) analytical waveform yields a
remarkably accurate description of the inspiral NR wave-
form. During the early inspiral the fractional agreement

between the moduli is at the 3% 10"3 level; as late as time
t ¼ 3900, which corresponds to 1.5 GW cycles before
merger, the agreement is better than 1% 10"3. The dis-
crepancy between the two moduli starts being visible only
just before and just after merger (where it remains at the
2:5% 10"2 level). This very nice agreement should be
compared with the previously considered EOB waveforms
(which had a more primitive NQC factor, with a2 ¼ 0
[19,20]) which led to large moduli disagreements
(# 20%, see Fig. 9 in [20]) at merger. By contrast, the
present moduli disagreement is comparable to the esti-
mated NR modulus fractional error (whose two-sigma
level is 2:2% 10"2 after merger [6]).
We also explored another aspect of the physical sound-

ness of our analytical formalism: the triple comparison
between (i) the NR GW energy flux at infinity (which
was computed in [21]); (ii) the corresponding analytically
predicted GW energy flux at infinity (computed by sum-
ming j _h‘mj2 over (‘, m)); and (iii) (minus) the mechanical
energy loss of the system, as predicted by the general EOB

FIG. 1 (color online). Equal-mass case: agreement between NR (black online) and EOB-based (red online) ‘ ¼ m ¼ 2 metric
waveforms.

FIG. 2 (color online). Phase difference between the analytical
and numerical (metric) waveforms of Fig. 1.

IMPROVED ANALYTICAL DESCRIPTION OF . . . PHYSICAL REVIEW D 79, 081503(R) (2009)
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081503-3
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Ringdown 
(BH oscilation) 

Merger	

inspiral	

merger	

ringdown	

(PN approximation)	

(BH perturbation)	

Numerical Relativity	

Inspiral	



Basic	  value	  for	  the	  inspiral	  waveform	
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	  (m1,m2)	  [Msolar]	 (1.4,	  1.4)	 (10,	  1.4)	 (10,	  10)	 (100,	  1.4)	

frequency@ISCO[Hz]	 1570	  Hz	 386	  Hz	 220	  Hz	 43	  Hz	

dura.on(10Hz-‐ISCO)[sec]	 1002	  sec	 224	  sec	 38	  sec	 46	  sec	

cycle(10Hz-‐ISCO)	 16038	 3585	  	 605	 743	  	

orb.	  radius@10Hz[Mt]	 174	  Mt	 68	  Mt	 47	  Mt	 16	  Mt	

Mt=m1+m2	

ISCO: Inner most stable circular orbit.	



NS-‐NS	  coalescence	  &	  HMNS	
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NS-‐NS	  for	  KAGRA	
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iKAGRA   29Mpc              bKAGRA  280Mpc 
(In LIGO's definition, 18Mpc)                                      (173Mpc)	

NS-NS binary coalescence 
Horizon distance (S/N=8, optimal direction, face-on) 

(LIGO's definition)=(KAGRA's definition)x(       )x(0.44) 
(Assuming phase is measured.  Averaged over the sky and inclination angle.) Major milestones of KAGRA 

LCGT Face to Face meeting (Feb. 2 2012, Kashiwa, Chiba) 

2019 2012 2013 2014 2015 2016 2017 

bLCGT 
 
 
 

iLCGT 
 
 
 

OBS 
 
 
 Tunnel and Facility  

             (2014.3) 
Vacuum  
 (2015.3) 

2018 

Type-A+Cryo    
      (2016.9) 

FPMI (2015.12) 

obs. 

Sapphire test mass (2016.3) 

installation 

DRMI (2016.9) 

obs. 

obs. 

RSE (2017.8) 

Cryo RSE (2018.3) 

First 
Science 
run 

Tuning and 
  observation 

Event rate for bKAGRA :   	9.8+14
�6.6 yr�1

(based on Kim (’08), Lorimer (‘08))	



Supernova	  (Gravita.onal	  Collapse)	
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Various possible gravitational wave emission mechanism. 
 
•  Core collapse and bounce 
•  Rotational non-axisymmetric instabilities of proto-neutron star 
•  Post-bounce convection 
•  Non-radial pulsations of proto-neutron star 
•  Anisotropic neutrino emission 
  etc.	

Review articles: Ott, CQG, 26, 063001 (2009), Fryer and New, LRR, 14, 1 (2011)	

Related to the explosion 
mechanism 	

Collapse and bounce wave form from  
Dimmelmeier et al. 2008 [PRD 78, 064056] 	
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Dimmelmeier et al. (‘08) 
PRD 78, 064056 	

Location of characteristic frequency and amplitude	

〜several 100kpc can be seen by KAGRA	
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f max = 715 Hz

2
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FIG. 17: Location of the gravitational wave burst signals from
core bounce for all models (including the e15/e20 models) in
the hc–fc plane relative to the sensitivity curves of the LIGO,
assuming at a distance of 10 kpc. The meaning of the arrows
1, 2, and 3 as well as area 4 are explained in the main text.
The dotted line marks the average f̄max of the frequency at the
maximum of the waveform spectrum. The progenitor model,
the EoS, the initial rotation parameter A, and the collapse
dynamics are encoded as in Fig. 3.

curve.
For rapid rotation, the influence of centrifugal forces

on the collapse dynamics manifests itself as a centrifugal
barrier that limits the characteristic amplitude hc (see
also the discussion in Section VII A and Fig. 11). Simul-
taneously, the characteristic frequency fc moves to in-
creasingly lower values as faster rotation slows down the
collapse (along arrow 3). Models that rotate so rapidly
that they undergo a purely centrifugal bounce (marked
by cross symbols in Fig. 17) constitute a practically sepa-
rate class (area 4) in the hc–fc diagram somewhat below
the maximum value of the amplitude hc, but at consid-
erably lower frequencies fc.

For very rapidly rotating models the imprint of cen-
trifugal effects on various waveform characteristics (such
as fmax, fc, |h|max, or hc) is quite pronounced and per-
mits one to infer on the precollapse rotational config-
uration in the case of a successful detection of gravita-
tional waves from a core collapse event. As already noted
in [18], in the case of moderate or slow rotation, which
is the astrophysically most probable case [31, 59], the in-
sensitivity of the waveform’s frequency characteristics to
variations in the precollapse configuration significantly
obstructs the “inversion problem” of gravitational wave
detection, i.e., the constraining of physical parameters of
the precollapse core or of the nascent proto-neutron star
from a detected waveform, leaving only the (e.g., maxi-
mum or integrated characteristic) amplitude as an indi-
cator of the rotational configuration. In addition, Fig. 16
also implies that it will be very hard, if not impossible,
to constrain other possibly unknown model parameters

100 1000
fc [Hz]

10-25

10-24

10-23

10-22

10-21

10-20
h c

LIGO
Advanced LIGO
EURO in xylo-
phone mode

f max,LS = 758 Hz

f max,Shen = 718 Hz

FIG. 18: Location of the gravitational wave burst signals
from core bounce in the hc–fc plane relative to the sensitivity
curves of various interferometer detectors (as color-coded) for
an extended set of models with the progenitor s20 using the
Shen EoS (dark hues) or LS EoS (light hues). The sources
are at a distance of 10 kpc for LIGO, 0.8 Mpc for Advanced
LIGO, and 15 Mpc for EURO. The dotted lines mark the av-
erage f̄max of the frequency at the maximum of the waveform
spectrum for the models when using the Shen EoS or LS EoS.
Only the EoS and the collapse dynamics are encoded as in
Fig. 3, but not the precollapse differential rotation parameter
A.

aside from rotation (such as EoS or progenitor mass) from
the gravitational waveform of the burst signal from core
bounce alone, since their effect on the burst waveform is
small and no clear trends or systematics are discernible,
which adds to the degeneracy of the inversion problem.

As an example, we again single out the impact of the
EoS on the waveform frequency while keeping the progen-
itor model s20 fixed. For the particular, extended set of
models with many precollapse rotation rates already dis-
cussed in Section VC, we show in Fig. 18 the location of
the waveform signals in the hc–fc plane for initial LIGO
at a distance of 10 kpc, Advanced LIGO in broadband
tuning [72] at a distance of 0.8 Mpc, and the projected
EURO detector in xylophone mode [73] at a distance of
15 Mpc (cf. Fig. 4 in [18]). All 54 s20 models of [18]
using the Shen EoS along with the newly computed cor-
responding models with the LS EoS are shown.

It is obvious that the spread within the group of models
with either the Shen EoS or the LS EoS is larger than the
variation due to a change in the EoS, since the effect of
the EoS on the characteristic signal frequency fc is small
(comparable to ∆f̄max,rel, corresponding to a change of
a few percent). The two EoSs considered here bracket
the range from rather soft (LS EoS) to rather stiff (Shen
EoS), and therefore it is unlikely that employing a larger
variety of nonzero-temperature nuclear EoSs would lead
to any more optimistic conclusions.

Based on the relative positions of the models with re-

Dimmelmeier et al. PRD 78, 064056  (‘08) 
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the center. In the Newtonian limit, this reduces to

Ω = Ωc,i

A
2

A2 + r2 sin2 θ
, (19)

with r sin θ being the distance to the rotation axis.

In order to determine the influence of different angu-
lar momentum distributions on the collapse dynamics,
we parameterize the precollapse rotation of our models
in terms of A (A1: A = 50, 000 km, almost uniform; A2:
A = 1, 000 km, moderately differential; A3: A = 500 km,
strongly differential) and Ωc,i. The model nomenclature
for the precollapse rotation parameters is shown in Ta-
ble II. We have selected the rotational configuration of
the models in such a way that for the s20 progenitor
they are a representative subset of the models investi-
gated in [18, 41]. They reflect different properties of the
collapse dynamics and the gravitational radiation wave-
form discussed in that work, namely pressure-dominated
bounce with or without significant postbounce convective
overturn as well as single centrifugal bounce.

Note that models with the same rotation specification
(but different progenitor mass or EoS) have an identical
angular velocity profile, while the precollapse rotation
rate βi = Ti/|W |i, which is the precollapse ratio of ro-
tational energy to gravitational energy, varies. We have
decided to compare models with identical initial angu-
lar velocity Ωc,i and not precollapse rotation rate βi, as
the latter quantity is rather sensitive to the chosen core
radius Rcore in the case of (almost) uniform rotation.

The models that are based on progenitor calculations
including rotation (core models e15a, e15b, e20a, and
e20b) are mapped onto our computational grids under
the assumption of constant rotation on cylindrical shells
of constant distance to the rotation axis. We also point
out that due to the one-dimensional nature, none of the
considered models are in rotational equilibrium. Still,
in slowly rotating initial models this effect is small and
thus negligible. For more rapidly rotating models, which
exhibits the strongest deviation from rotational equilib-
rium, the collapse proceeds more slowly due to stabilizing
centrifugal forces, and hence the star has more time for
the adjustment to the appropriate angular stratifications
for its rate of rotation.

In this study, we focus on the collapse of massive
presupernova iron cores with at most moderate differ-
ential rotation and precollapse rotation rates that ex-
cept for the most slowly rotating models lead to proto-
neutron stars that are probably spinning too fast to yield
spin periods of cold neutron stars in agreement with ob-
servationally inferred injection periods of young pulsars
into the P/Ṗ diagram [31, 59]. However, they may be
highly relevant in the collapsar-type gamma-ray burst
scenario [9, 59, 60].

F. Gravitational wave extraction

We employ the Newtonian quadrupole formula in the
first-moment of momentum density formulation as dis-
cussed, e.g., in [14, 61, 62] to extract the gravitational
waves generated by nonspherical accelerated fluid mo-
tions. It yields the quadrupole wave amplitude A

E2
20 as

the lowest order term in a multipole expansion of the ra-
diation field into pure-spin tensor harmonics [63]. The
wave amplitude is related to the dimensionless gravita-
tional wave strain h in the equatorial plane by

h =
1

8

√
15

π

A
E2
20

r
= 8.8524 × 10−21

A
E2
20

103 cm

10 kpc

r
, (20)

where r is the distance to the emitting source.
We point out that although the quadrupole formula is

not gauge invariant and is only valid in the Newtonian
slow-motion limit, for gravitational waves emitted by pul-
sations of rotating NSs (i.e., in astrophysical situations
comparable to collapsing stellar cores at bounce in terms
of compactness and rotation rates) it yields results that
agree very well in phase and to ∼ 10 – 20% in amplitude
with more sophisticated methods [61, 64].

In order to assess the prospects for detection by current
and planned interferometer detectors and to specifically
address the issue of detection range and expected event
rates, we calculate the dimensionless characteristic grav-
itational wave strain hc of the signal according to [65].
We first perform a Fourier transform of the gravitational
wave strain h,

ĥ =

∫ ∞

−∞

e
2πift

h dt. (21)

To obtain the (detector dependent) integrated character-
istic signal frequency

fc =

(∫ ∞

0

〈ĥ2〉

Sh

f df

)(∫ ∞

0

〈ĥ2〉

Sh

df

)−1

(22)

and the integrated characteristic signal strain

hc =

(
3

∫ ∞

0

Sh c

Sh

〈ĥ
2
〉f df

)1/2

, (23)

the power spectral density Sh of the detector is needed
(with Sh c = Sh(fc)). We approximate the average 〈ĥ2〉

over randomly distributed angles by ĥ
2, assuming op-

timal orientation of the interferometer detector. From
Eqs. (22, 23) the signal-to-noise ratio can be computed
as SNR = hc/[hrms(fc)], where hrms =

√
fSh is the value

of the rms strain noise (i.e., the theoretical sensitivity
window) for the detector.

III. NUMERICAL METHODS

We perform all simulations using the CoCoNuT code
described in detail in [14, 62]. The equations of general
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Gravita.onal	  wave	  data	  analysis	  methods	  are	  categorized	  in	  various	  ways.	  
	  
Characteris.c	  of	  the	  sources	  
	  
p Well-‐known	  waveform	  (expressed	  by	  a	  small	  number	  of	  parameters)	  

CBC(inspiral,	  ringdown),	  Con.nuous	  wave	  	  (rota.on	  neutron	  stars),	  …	  
	  

p Unknown	  waveform	  (need	  complicated	  numerical	  simula.ons)	  
Burst	  （Core	  collapse	  supernovae,	  merger	  phase	  of	  CBC,	  …)	  
	  

p Random	  waveform	  (characterized	  only	  sta.s.cally)	  
Stochas.c	  background	  

	  
Other	  factors:	  
	  
•  Short	  dura.on	  .me	  （a	  few	  10	  minutes）	  	  	  rota.on	  of	  the	  earth	  can	  be	  ignored	  

CBC,	  Burst	  
•  Long	  dura.on	  .me	  （more	  than	  a	  few	  10	  minutes)	  	  rota.on	  of	  the	  earth	  affects	  

Con.nuous	  waves	  
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•  Know waveform 
"Matched filter" 
Cross-correlate data and templates with weight of inverse of noise 
power spectrum density 
Look for the parameter which realize the maximum of cross correlation. 
                 

•  Unknown waveform 
"Excess power" 
Judge the presence of signal from the power excess of data. 
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•  Know waveform 
"Matched filter" 
Cross-correlate data and templates with weight of inverse of noise 
power spectrum density 
Look for the parameter which realize the maximum of cross correlation. 
              multiple detectors' case 
"Coherent matched filter" (Maximum likelihood method) 

•  Unknown waveform 
"Excess power" 
Judge the presence of signal from the power excess of data. 
              multiple detectors' case 

"Coherent excess power" (Maximum likelihood method)  
•  Random waveform 
     "Cross correlation" 
       Cross correlation of data from different detectors. 

Multiple detectors' case	

e.g., "Coherent WaveBurst" of LSC.	



Noise	  veto	
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In any laser interferometer detectors，the presence of 
non-stationary, non-Gaussian noise can not be ignored 
(at least so far, and probably in the future too). 

In order to veto the fake 
events produced by such 
noise, noise veto scheme 
are introduced  
(case by case). 

Non Gaussianity of TAMA data	

skewness	

kurtosis	
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Importance	  of	  network	

Why network?	

・Improvement of S/N 
・Improvement of reliability of detection 
 
at the same time 
 
・To determine the direction of the source, 
・To determine two polarization mode of GW, 
・To cover whole sky, 
we need global network of (3 or more) detectors. 

needless to say but	

For the gravitational wave astronomy, multiple detector 
network is important. 	



Accuracy	  of	  direc.on	
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NS-NS coalescence  @180Mpc	

median	  of	  δΩ	  [Deg2]	 LHV	 LHVK	 LHVI	

(1.4,	  1.4)	  Msolar	 30.25	 9.5	 9.0	

L:LIGO-Livingston 
H:LIGO-Hanford 
V: Virgo 
K: KAGRA 
I:LIGO-India 

direc.on，inclina.on，polariza.on	  angle	  
are	  given	  randomly	  

Source localization accuracy is 10 - 30 Deg2 (@180Mpc, 95%CI). 

see also Wen and Chen (2010) 
                Fairhurst (2011) 

e.g., J.Veitch et al., PRD85, 104045 (2012) 
(Fisher matrix & simulation ) 

(95%CI)	
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• Triggered search 
If we know the time and direction from other astronomical 
observation (EM, neutrino), it is a great benefit to the detection of 
the gravitational wave signal, since we can reduce the threshold. 

(e.g., Kochanek,Piran (1993)) 
e.g,：GRB: Core collapse or CBC 
        Neutrino from Supernovae in nearby galaxies 
　　   Wide field optical/IR telescope monitoring SNe and GRB 
 
•  In fact, in the LIGO-Virgo analysis of 2009-2010 data,  
the triggered search using 154 GRBs information (time and 
direction), the threshold becomes 2 times lower than that which 
does not use such information.  
This means 2 times longer distance of detection range. 
                                                                       (arXiv:1205.2216) 



Importance	  of	  astronomical	  observa.on	

22	  

•  Follow up observation by astronomical telescopes 
 
This is more challenging. 
First, we detect GW signal.   
Next, with the informaiton of time and direction,  
astronomical observation are done. 
 
•  This useful for the improvement of the significance of 

detection, and for the detailed investigation of the physical 
process of the source. 

 
•  Since gravitational wave detectors are extremely wide 

fieldtelescope, this approach should also be a standard tool as 
a multi-messenger astronomy. 



Low	  latency	
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For the follow-up search by the EM observatories,  
low latency analysis is important. 
 
For inspiral analysis, if we have 1Tflops computing power,  
we can finish the analysis within 10 minutes (=length of template). 
 
But 10 minutes are not very short if we consider, e.g., short gamma 
ray burst (the earlier, the better!).   
 
In such case, we can reduce the mass range for the search. 
 
If mass range between 1-2Msolar, the number of template is around 5000. 
Then, if computing power is 1Tflops,  
the computation time is less than1 second. 
This is only for matched filtering computation.  
Data transfer, calibration etc. must be tuned for this special purpose. 
 
(See Kanda-san’s talk) 
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Ref. A&A 539, 124 (2012), A&A 541, 155 (2012)	

LIGO S6, Virgo VSR2 ( 12/17/2009-1/8/2010,  9/2-10/20/2010) 

LSC+Virgo+others: First prompt search for EM counterparts to GW transients 6

3.2.1. Optical Instruments

The Palomar Transient Factory (PTF) (Law et al. 2009;
Rau et al. 2009) operates a 7.3 square degree FOV camera
mounted on the 1.2 mOschin Telescope at Palomar Observatory.
A typical 60 s exposure detects objects with a limiting magni-
tude R = 20.5. For the autumn observing period, the PTF team
devoted ten fields over several nights at a target rate of 1 trigger
for every three weeks.

Pi of the Sky (Malek et al. 2009) observed using a camera
with a 400 square degree FOV and exposures to limiting mag-
nitude 11–12. It was located in Koczargi Stare, near Warsaw.
The camera was a prototype for a planned system that will si-
multaneously image two steradians of sky. The target rate was
approximately 1 per week in the autumn run, followed up with
hundreds of 10 s exposures over several nights.

The QUEST camera (Baltay et al. 2007), currently mounted
on the 1 m ESO Schmidt Telescope at La Silla Observatory,
views 9.4 square degrees of sky in each exposure. The telescope
is capable of viewing to a limiting magnitude of R ∼ 20. The
QUEST team devoted twelve 60 s exposures over several nights
for each trigger in both the winter and autumn periods, with a
target rate of 1 trigger per week.

ROTSE III (Akerlof et al. 2003) is a collection of four robotic
telescopes spread around the world, each with a 0.45 m aperture
and 3.4 square degree FOV. No filters are used, so the spectral
response is that of the CCDs, spanning roughly 400 to 900 nm.
The equivalent R band limiting magnitude is about 17 in a 20 s
exposure. The ROTSE team arranged for a series of thirty images
for the first night, and several images on following nights, for
each autumn run trigger, with a target rate of 1 trigger per week.

SkyMapper (Keller et al. 2007) is a survey telescope located
at Siding Spring observatory in Australia. The mosaic camera
covers 5.7 square degrees of sky in each field, and is mounted
on a 1.35 m telescope with a collecting area equivalent to an
unobscured 1.01 m aperture. It is designed to reach a limiting
magnitude g ∼ 21 (>7 sigma) in a 110 s exposure. SkyMapper
accepted triggers in the autumn run with a target rate of 1 per
week, with several fields collected for each trigger.

TAROT (Klotz et al. 2009a) operates two robotic 25 cm tele-
scopes, one at La Silla in Chile and one in Calern, France. Like
the ROTSE III system, each TAROT instrument has a 3.4 square
degree FOV. A 180 second image with TAROT in ideal condi-
tions has a limiting R magnitude of 17.5. During the winter run,
TAROT observed a single field during one night for each trig-
ger. In the autumn run, the field selected for each trigger was
observed over several nights. TAROT accepted triggers with a
target rate of 1 per week.

Zadko Telescope (Coward et al. 2010) is a 1 m telescope lo-
cated in Western Australia. The current CCD imager observes
fields of 0.15 square degrees down to magnitude ∼ 20 in the
R band for a typical 180 s exposure. For each accepted trigger
in the autumn run, Zadko repeatedly observed the five galaxies
consideredmost likely to host the source over several nights. The
target trigger rate for Zadko was one trigger per week.

The Liverpool telescope (Steele et al. 2004) is a 2 m
robotic telescope situated at the Observatorio del Roque de Los
Muchachos on La Palma. For this project the RATCam instru-
ment, with a 21 square arcminute field of view, was used. This
instrumentation allows a five minute exposure to reach magni-
tude r′ = 21. This project was awarded 8 hours of target-of-
opportunity time, which was split into 8 observations of 1 hour
each, with a target rate of 1 trigger per week.

Fig. 1. A map showing the approximate positions of telescopes
that participated in the project. The Swift satellite observatory is
noted at an arbitrary location. The image is adapted from a blank
world map placed in the public domain by P. Dlouhý.

3.2.2. Radio and X-ray Instruments

LOFAR (Fender et al. 2006; de Vos et al. 2009; Stappers et al.
2011) is a dipole array radio telescope based in the Netherlands
but with stations across Europe. The array is sensitive to fre-
quencies in the range of 30 to 80 MHz and 110 to 240 MHz, and
can observe multiple simultaneous beams, each with a FWHM
varying with frequency up to a maximum of around 23o. During
the autumn run, LOFAR accepted triggers at a target rate of 1
per week and followed up each with a four-hour observation in
its higher frequency band, providing a ∼25 square degree field
of view.

Although not used in the prompt search during the science
run, the Expanded Very Large Array (Perley et al. 2011) was
used to follow up a few triggers after the run with latencies of
3 and 5 weeks.

The Swift satellite (Gehrels et al. 2004) carries three instru-
ments, each in different bands. Swift granted several target of
opportunity observations with two of these, the X-ray Telescope
(XRT) and UV/Optical Telescope (UVOT), for the winter and
autumn observing periods. The XRT is an imaging instrument
with a 0.15 square degree FOV, sensitive to fluxes around 10−13
ergs/cm2/s in the 0.5-10 keV band. A few fields were imaged for
each trigger that Swift accepted.

4. Trigger Selection

The online analysis process which produced GW candidate trig-
gers to be sent to telescopes is outlined in Fig. 2. After data and
information on data quality were copied from the interferome-
ter sites to computing centers, three different data analysis algo-
rithms identified triggers and determined probability skymaps.
The process of downselecting this large collection of triggers to
the few event candidates that received EM follow-up is described
in this section.

After event candidates were placed in a central archive, addi-
tional software used the locations of nearby galaxies and Milky
Way globular clusters to select likely source positions (Sect. 5).
Triggers were manually vetted, then the selected targets were
passed to partner observatories which imaged the sky in an at-
tempt to find an associated EM transient. Studies demonstrating
the performance of this pipeline on simulated GWs are presented
in Sect. 6.

Participated observatories	
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Fig. 2.A simplified flowchart of the online analysis with approx-
imate time requirements for each stage. Data and information
on data quality were generated at the Hanford, Livingston, and
Virgo interferometers (H1, L1, and V1) and copied to central-
ized computer centers. The online event trigger generators pro-
duced coincident triggers which were written into the GraCEDb
archive. The LUMIN and GEM algorithms selected statistically
significant triggers from the archive and chose pointing loca-
tions. Significant triggers generated alerts, and were validated
manually. If no obvious problem was found, the trigger’s esti-
mated coordinates were sent to telescopes for potential follow-
up.

4.1. Trigger Generation

Sending GW triggers to observatories with less than an hour la-
tency represents a major shift from past LIGO/Virgo data anal-
yses, which were reported outside the collaboration at soonest
several months after the data collection. Reconstructing source
positions requires combining the data streams from the LIGO-
Virgo network using either fully coherent analysis or a coinci-
dence analysis of single-detector trigger times. A key step in la-
tency reduction was the rapid data replication process, in which
data from all three GW observatory sites were copied to several
computing centers within a minute of collection.

For the EM follow-up program, three independent GW de-
tection algorithms (trigger generators), ran promptly as data
became available, generating candidate triggers with latencies
between five and eight minutes. Omega Pipeline and coherent
WaveBurst (cWB), which are both described in Abadie et al.
(2010a), searched for transients (bursts) without assuming a spe-
cific waveform morphology. The Multi-Band Template Analysis
(MBTA) (Marion 2004), searched for signals from coalesc-
ing compact binaries. Triggers were ranked by their “detection
statistic”, a figure of merit for each analysis, known as Ω, η, and
ρcombined, respectively. The statistics η for cWB and ρcombined for
MBTA are related to the amplitude SNR of the signal across
all interferometers while Ω is related to the Bayesian likelihood
of a GW signal being present. Triggers with a detection statis-
tic above a nominal threshold, and occurring in times where all
three detectors were operating normally, were recorded in the
Gravitational-wave Candidate Event Database (GraCEDb).

The trigger generators also produced likelihood maps over
the sky (skymaps), indicating the location from which the signal
was most likely to have originated. A brief introduction to each
trigger generator is presented in Sects. 4.1.1 – 4.1.3.

4.1.1. Coherent WaveBurst

Coherent WaveBurst has been used in previous searches for GW
bursts, such as Abbott et al. (2009b) and Abadie et al. (2010a).

The algorithm performs a time-frequency analysis of data in the
wavelet domain. It coherently combines data from all detectors
to reconstruct the two GW polarization waveforms h+(t) and
h×(t) and the source coordinates on the sky. A statistic is con-
structed from the coherent terms of the maximum likelihood ra-
tio functional (Flanagan & Hughes 1998; Klimenko et al. 2005)
for each possible sky location, and is used to rank each lo-
cation in a grid that covers the sky (skymap). A detailed de-
scription of the likelihood analysis, the sky localization statistic
and the performance of the cWB algorithm is published else-
where (Klimenko et al. 2011).

The search was run in two configurations which differ in
their assumptions about the GW signal. The “unconstrained”
search places minimal assumptions on the GW waveform, while
the “linear” search assumes the signal is dominated by a single
GW polarization state (Klimenko et al. 2011). While the uncon-
strained search is more general, and is the configuration that was
used in previous burst analyses, the linear search has been shown
to better estimate source positions for some classes of signals.
For the online analysis, the two searches were run in parallel.

4.1.2. Omega Pipeline

In the Omega Pipeline search (Abadie et al. 2010a), triggers
are first identified by performing a matched filter search with
a bank of basis waveforms which are approximately (co)sine-
Gaussians. The search assumes that a GW signal can be de-
composed into a small number of these basis waveforms.
Coincidence criteria are then applied, requiring a trigger with
consistent frequency in another interferometer within a physi-
cally consistent time window. A coherent Bayesian position re-
construction code (Searle et al. 2008, 2009) is then applied to
remaining candidates. The code performs Bayesian marginaliza-
tion over all parameters (time of arrival, amplitude and polariza-
tion) other than direction. This results in a skymap providing the
probability that a signal arrived at any time, with any amplitude
and polarization, as a function of direction. Further marginaliza-
tion is performed over this entire probability skymap to arrive at
a single number, the estimated probability that a signal arrived
from any direction. TheΩ statistic is constructed from this num-
ber and other trigger properties.

4.1.3. MBTA

The Multi-Band Template Analysis (MBTA) is a low-latency
implementation of the matched filter search that is typically used
to search for compact binary inspirals (Marion 2004; Buskulic
2010). In contrast to burst searches which do not assume any
particular waveform morphology,MBTA specifically targets the
waveforms expected from NS-NS, NS-BH and BH-BH inspi-
rals. In this way it provides complementary coverage to the burst
searches described above.

The search uses templates computed from a second order
post-Newtonian approximation for the phase evolution of the
signal, with component masses in the range 1–34M" and a total
mass of < 35M". However, triggers generated from templates
with both componentmasses larger than the plausible limit of the
NS mass—conservatively taken to be 3.5M" for this check—
were not considered for EM follow-up, since the optical emis-
sion is thought to be associated with the merger of two neutron
stars or with the disruption of a neutron star by a stellar-mass
black hole.

25	

Check by 
human 	

重力波探査	 位置決定	

Automated part of MBTA(CBC) 
analysis was finished in 4 minutes 
typically.	

A&A 541, 155 (2012)	
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•  Source localization accuracy is several 10〜100sq. deg. 
(since these are by initial LIGO,Virgo)． 
Bigger than FOV of astronomical instruments. 
 
 
•  Use galactic catelog (GWGC) 
and restrict the search region (up to 3-4deg2)． 
 
 
GWGC: The Gravitational Wave Galaxy Catalog  



Low	  latency	  search	  in	  KAGRA	
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•  In KAGRA, we also plan to develop the high speed data 
analysis system and to establish the alert system to the 
astronomical observatories. 

 
•  Possible source direction must be restricted by using galactic 

catalog? 
 
•  In order to do this, we need to collaborate LIGO and Virgo. 

Figure 2. Main steps in processing data from the GW detector network and rapidly generating alerts for follow-up
observations. (Swift image credit: NASA E/PO, Sonoma State University, Aurore Simonnet.)

which produce only moderately relativistic jets (“failed GRBs”), may still be detectable in the optical or radio
bands as “orphan afterglows”.53,54 Neutron star mergers are likely to also produce fainter, isotropic “kilonova”
light curves in the optical band which are powered by the radioactive decay of elements produced by r-process
nucleosynthesis.55 Because only a small fraction of the sky is viewed at any given time by sensitive optical and
radio instruments, these transient signatures would only be caught serendipitously—unless gravitational wave
(or high-energy neutrino) detectors can identify these events promptly and accurately enough to tell telescopes
where to point.

Data from the GW detector network can, in fact, be analyzed within minutes to identify candidate events
and reconstruct a sky map of the likely position of each candidate. This information can then be passed to
astronomers for follow-up imaging. (The general strategy is sometimes called “LOOC-UP” after an early pilot
study.56) We developed and tested such a system during the 2009–10 LIGO-Virgo joint science runs, and will
support and improve this capability for observing with the advanced GW detector network. Below, we discuss
the main characteristics of the past system as well as some improvements envisioned for the future.

4. OPERATIONAL CONSIDERATIONS FOR PROMPT FOLLOW-UP
OBSERVATIONS

The overall goal is to identify transient events in the GW data quickly, determine their sky positions as well
as possible, and communicate that information to observers with access to telescopes for capturing images of
the appropriate region(s) in the sky. It is desirable to minimize the latencies of all of those steps so that the
telescopes can catch a fading afterglow (if there is one) as early as possible. It should be noted, though, that
other types of EM emissions would take some time to appear, such as a kilonova light curve which peaks after
⇠1 day,55 or synchrotron emission in the radio band57 which would spread over weeks to months. Therefore,
rapid alerts can support both rapid and delayed follow-up observations.

For the 2009–10 LIGO-Virgo science run, we implemented a complete mostly-automated data analysis, event
selection and alert distribution system, and passed alerts to several partner observers. That system and eval-
uations of its performance are described in Refs. 58 and 59. Figure 2 shows the main elements and general
data flow through the system, illustrated with the future network of advanced GW detectors. In this section we
discuss a number of operational considerations based on our experience with the past system, along with some
notes about changes envisioned for the future.

4.1 Data collection

First of all, we need to have multiple GW detectors collecting data at the same time with comparable sensitivity,
because it is mainly the di↵erence in arrival times which tells us about the sky position of the source. (More

taken from 
arxiv:1206.6163	
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"Real detection"	

Global network analysis 
Collaboration of astronomers	

"GW astronomy and astrophysics" will begin  
as soon as GW is detected. 
 
For astronomy and astrophysics, extraction of  
physical parameters are necessary.	

all of these are good  
for the detection	



Parameter	  es.ma.on	
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•  Known waveform (matched filter):                    
Since theoretical waveform is done for the 
detection, parameter estimation is basically done at 
the same time of detection.  

 
•  Unknown waveform                                    

Theoretical waveform is not used. Reconstruction 
of buried signals, and extraction of physical 
parameters are necessary. This requires multiple 
detectors' data.  

     GW signal reconstruction・・・Gursel, Tinto (1989), Klimenko+ ('05,'08) 
       Supernova waveform model selection 
       ・・・Summerscales+ (2008), Rover+ (2009), Logue+ (2012).  
 	



Time	  frequency	  analysis	
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For unmodeled burst signals, because of the lack of the accurate 
theoretical waveform, it also seems to be useful to employ some   
time-frequency representation of the data itself.  
 
"plot of the energy distribution on the time-frequency plane" 

•  Spectrogram with STFT 
•  Wigner-Ville distribution 
•  Wavelet transform 
•  etc. 
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"Hilbert-Huang transform" (Huang+ ('98)) 
Empirical mode decomposition  
+ instantaneous frequency by Hilbert transform 
 
J.B.Camp et al.  
H.Takahashi, K.Oohara et al. 	

3

FIG. 2: Illustration of Empirical Mode Decomposition (from
Ref.[4]). (a) time series. (b) average of envelope formed by
fitting extrema. (c) subtraction of average from time-series.
Because the result is not vertically symmetric, the waveform
will be re-sifted until an IMF is identified.
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FIG. 3: HHT of 20 solar mass black hole binary merger sig-
nal in white noise. (a) merger signal. (b) signal in noise
with SN=10. (c),(d),(e) IMFs 2,3,4. (f),(g) instantaneous
frequency and power derived from the Hilbert Transform of
IMF3 show the time-frequency-power structure of the merger.

a time duration of 5 msec into white noise at 16 kHz
sampling rate. The merger signal is shown in Fig.3-(a)
and the time-series of signal in noise is shown in Fig.3-
(b). Figures 3-(c),-(d),-(e) show the sifted IMFs; in the
3rd IMF the signal can be seen, largely separate from the
noise.

Figures 3-(f) and 3-(g) show the instantaneous fre-
quency and power derived from the Hilbert Transform
of IMF3. The signal frequency and power are clearly
visible in the Hilbert Transform of IMF3: the frequency
shows a ramp during the merger and levels off to a con-
stant during the ringdown, while the power shows the ex-
pected rise and decay. This level of detail will aid signal
identification, allowing comparison of signals from mul-
tiple detectors. This may be contrasted with the Fourier
Transform of the merger, which would give the power of
only 1 point with a 200 Hz frequency spread for the en-
tire 5 msec. Finally, we note that further noise reduction
through averaging of the IF and IA over time is possible,
as they are oversampled: the plots of Fig.3 are sampled
at the LIGO data rate of 16 kHz while the frequencies of
interest for LIGO analysis are typically below 1 kHz.

In analogy with an FFT-based search algorithm that
looks for excess power in the Fourier power spectrum
[14], the HHT can be used to search for excess power in
the time domain. For a given time record, the summed
power is computed, and compared to the background
level; thus clear evidence of a signal is seen in Fig.3-
(g), the power associated with IMF3. In comparison to
an FFT-based search, the HHT is most effective for short
signals (< 20msec), where FFT analysis tends to lose sen-
sitivity from time-frequency spreading. Thus the HHT is
a useful tool, for example, in searching for black hole
binary merger signals up to 100 solar masses.

Analysis of Spectral Shapes — To facilitate the analysis
of data spectral shapes, we use the HHT analogy of the
power spectrum, called the ”marginal spectrum.” The
marginal spectrum is defined as:

M(ω) =
∑

i

∫ T

0

|ai(ω, t)|2dt (4)

where ai(ω, t) is the amplitude as a function of the in-
stantaneous frequency at a given point in time and i is
an IMF summation index. Thus the marginal spectrum
is a measure of the total power present at a frequency ω
over the time interval T .

Figure 4 shows the marginal spectrum of a time-series
of length 1/16 second with the following Fourier power
spectral shapes: flat, proportional to frequency, and in-
versely proportional to frequency. The marginal spectra
are seen to have the expected shapes. Since the shape of
the marginal spectrum does not depend on the integra-
tion time, it may be used to examine the detector noise
stationarity in fine detail.

Application of HHT to GW detector characterization
— The LIGO detector includes a large number of me-
chanical resonators, servos, cavity optical resonances,

J.B.Camp+ ('07)	

Instantaneous frequency	

Analysis of HMNS is now underway.	
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•  We need to have our own data analysis software in order to 
perform data analysis smoothly.  

•  We just started the development of the data analysis package 
for KAGRA.  

•  This should be compatible with existing software package of 
LIGO and Virgo.  

•  At the same time, we have to develop the package better than 
those of LIGO and Virgo's package at, at least, some points, 
since we develop new one from now. 

 
incorporate new technology, 
faster computation speed, 
better accuracy, … 

e.g., Fast computation with GPGPU  
        (K.Tanaka, N.Kanda,…) 	
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•  Core members: H.Tagoshi, Y.Itoh, H. Takahashi, 
              N.Kanda (DMG), K.Hayama(DetChar), K.Oohara 
 
  + graduate students 
 
Clearly, we need more man power.  
 
There are 4 postdoc positions at Osaka U. (2) and Osaka City 
U. (2).  
If you are interested in, please contact us. 



End	
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OutlineOutline

• General Introduction

• Overview of KAGRA

・Key features

・Science examples p
• Status of construction 

• Global GW network

• Summary
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General Introduction: Why do we want to General Introduction: Why do we want to 
observe Gravitational Waves?observe Gravitational Waves?

• Physics
◆ Confirming Gravitational wave (GW) directly.

(GW was predicted in 1916. But it has never been detected 
directly. )

◆Testing general relativity in strong field.

Status of KAGRA ‐‐ Takaaki Kajita 3

• Astronomy, Astrophysics
◆ Studying compact / massive objects.

• black‐hole, neuron star, supernova, GRB, etc...
Gravitational Wave Astronomy

• Cosmology
◆Cosmic background radiation of GW



Key requirements for high sensitivity (Key requirements for high sensitivity (L/L < 10L/L < 10‐‐2222))

Longer baseline 
 3km baseline
 optical cavity to increase the 
effective baseline length 

Reduced ground motion
The interferometer should 
be build on a stable place
 Advanced seismic 
attenuation system

Reduced thermal noise
 C i i

Status of KAGRA ‐‐ Takaaki Kajita 4

Reduced photon fluctuation
 High power, stable laser

 Cryogenic mirrors



Key features ofKey features of KAGRAKAGRA

Status of KAGRA ‐‐ Takaaki Kajita 5

The detector will be constructed 
underground Kamioka. 
 Reduction of seismic noise (to 
approximately 1/100). 

 Very high sensitivity.

Cryogenic mirrors will 
be used to reduce the 
thermal noise (in the 2nd

phase). 



Kamioka
Observatory, ICRR

Super‐
Kamiokande

LocationLocation
Mozumi

Status of KAGRA ‐‐ Takaaki Kajita 6

Present mine entrance

Toyama airport

40min.
by car New 

Atotsu



Sources of Gravitational WavesSources of Gravitational Waves

1. Coalescence of neutron star binaries
2. Coalescence of black hole binaries
3. Core collapse of massive stars (Supernova)
(good location; Super‐Kamiokande at the same site)

4. Rotation of pulsars
Merger 

inspiral
(H. Tagoshi)

Status of KAGRA ‐‐ Takaaki Kajita 7

Blackhole
quasi‐normal 
mode

inspiral

msec



Sensitivities Sensitivities 
GWIC report (2010)

Ad.‐LIGO (USA), Ad‐Virgo (Europe), KAGRA similar design sensitivities

KAGRA

Status of KAGRA ‐‐ Takaaki Kajita 8



Expected NSExpected NS‐‐NS NS Coalescence signalCoalescence signal

Status of KAGRA ‐‐ Takaaki Kajita 9

9

BH Ringdown (2.8MSun)

Expected signal rate : ~10 / year



SupernovaSupernova
Various possible gravitational wave emission mechanism:
• Core collapse and bounce
• Rotational non‐axisymmetric instabilities of proto‐neutron star
• Post‐bounce convection
• Anisotropic neutrino emission
• … Neutrino (Super‐K)

Status of KAGRA ‐‐ Takaaki Kajita 10

Example collapse and bounce 
wave form with 2 different EoS
Dimmelmeier et al. 2008 [PRD 78, 064056] 

msec



Expected SN signal Expected SN signal 

SN@Galactic
Center

Status of KAGRA ‐‐ Takaaki Kajita 11
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Center



Time line Time line 
(Construction(Construction and Observation)and Observation)

2010 2011 2012 2013 2014 2015 2016 2017 2018Calendar year

Project start

Tunnel excavation

initial‐KAGRA

iKAGRA obs.

(~1 year delay…)

Status of KAGRA ‐‐ Takaaki Kajita 12

The construction/observation plan is in 2 stages: 
In 2015, non‐cryogenic observation (iKAGRA).   
Operation with cryogenic system in 2017 (bKAGRA). 
(High sensitivity operation in 2018?)

baseline‐KAGRA

Observation

Adv. Optics system and tests
Cryogenic system



iKAGRAiKAGRA and and bKAGRAbKAGRA
iKAGRA ( ~ 2015) bKAGRA (2016  ~ )

Status of KAGRA ‐‐ Takaaki Kajita 13

◆Simple interferometer with:
room temperature operation,
10W class laser, and
no power and signal recycling

◆ However, full end‐to‐end  
(relatively short) observation, in 
order to experience the operation 
and to understand the potential 
problems as soon as possible.

◆Advanced interferometer with:
power and signal recycling, but still 
room temperature operation.

◆ Full bKAGRA with;
power and signal recycling,   
cryogenic sapphire mirrors, 
and >150W laser.



Status of the KAGRA ProjectStatus of the KAGRA Project
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Tunnel excavationTunnel excavation

• The blasting started on May 22, 2012.

• Excavation is carried out from the 
Mozumi and New‐Atotsu entrances.
 The excavated area are shown by red.

2012/11/06 (Uchiyama)

Status of KAGRA ‐‐ Takaaki Kajita 15

~450m/3km



Tunnel excavationTunnel excavation

End of April, 2012

Mid June, 2012

New Atotsu entrance

Status of KAGRA ‐‐ Takaaki Kajita 16



Y‐end & Y‐arm

Excavation status (YExcavation status (Y‐‐end)end)

Status of KAGRA ‐‐ Takaaki Kajita 17

(Rotated by 
180 deg.)



Excavation statusExcavation status (Center room)(Center room)

(Rotated 
by 90 deg.)

Status of KAGRA ‐‐ Takaaki Kajita 18

Center room



Status of construction: Surface buildingStatus of construction: Surface building
• The refurbishment was finished in early Aug. We have just moved to this office.

Early June 2012 Aug.6, 2012

(Miyakawa, Uchiyama)

Status of KAGRA ‐‐ Takaaki Kajita 19



Status of preparation: Vacuum Status of preparation: Vacuum 
• More than 70% of the pipes 

(total 6km) are produced and 
delivered to Kamioka. 

• A mockup tunnel has been prepared at 
a factory near Kashiwa.

20

(Saito)

Status of KAGRA ‐‐ Takaaki Kajita 20



Status of construction: Status of construction: 
Seismic AttenuationSeismic Attenuation

~1
3m

Top filter

Inverted
pendulum

Top filter

4 stage GASF-  

Rock Rock

2nd Floor 

Pr
ot
ot
yp
es
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Standard
filter

Mirror

Rock

1st Floor 
P

(Takahashi et al)



Status of preparation: Seismic Attenuation  Status of preparation: Seismic Attenuation  
Storage & 

Assembling in 
Akeno 

Observatory 
(ICRR)

GAS filters deliveredClean booth @Akeno

22

Test of Pre‐isolator (with 
the digital control 
system) at ICRR 

@

Status of KAGRA ‐‐ Takaaki Kajita 22



Status of construction: Cryogenic systemStatus of construction: Cryogenic system
to Seismic Attenuation system

Low vibration
cryo‐cooler units
(4 units)

Cryostat
Stainless steel t20mm
Diameter 2.4m
Height ~3.8m
M ~ 10 ton

Double radiation
shield 
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Status of construction: Cryogenic systemStatus of construction: Cryogenic system

Cryostat construction 
@Toshiba

Status of KAGRA ‐‐ Takaaki Kajita 24

Diameter 2.4m
Height ~3.8m
M ~ 10 ton



Status of construction: Cryogenic systemStatus of construction: Cryogenic system
Cryostat (Vacuum chamber)
@Toshiba

Status of KAGRA ‐‐ Takaaki Kajita 25

Shield structure



Status of construction: Cryogenic systemStatus of construction: Cryogenic system
Cryo‐cooler unit

Vibration 
measurement is in 
progress

Status of KAGRA ‐‐ Takaaki Kajita 26



Status of preparation: Sapphire mirror  Status of preparation: Sapphire mirror  
• First and second Sapphire crystal (C‐axis, 22cm, 15cm t) were delivered to 

Kashiwa in Aug. and Sep. 2012. (We do not know the quality yet…)

(Mio, Hirose)
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Joining the global GW networkJoining the global GW network

Ad. Virgo

KAGRA
Ad. LIGO GEO‐HF

Status of KAGRA ‐‐ Takaaki Kajita 28

◆The scientific output will be maximized by the global network.
◆KAGRA has to learn various experiences / technologies from the existing 
interferometers.
◆KAGRA will join the worldwide network of gravitational wave detection / astronomy. 
MOU between LSC/Virgo/KAGRA (3 parties agreed.)

LIGO‐Australia



Importance of Global GW Network: Sky coverageImportance of Global GW Network: Sky coverage
B. Schutz (Fijuwara Seminar, May 2009)
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Much wider angular coverage !

KAGRA



Importance of Global GW Network: Angular res.Importance of Global GW Network: Angular res.

Determination of source sky position: 95%CL, supernova, S/N =10 
Wen and Chen, arXiv: 1003:2504

LIGO (L+H) 
+ Virgo

LIGO (L+H) 
+ Virgo
+KAGRA

Status of KAGRA ‐‐ Takaaki Kajita 30

LIGO(L+H)+Virgo



MultiMulti‐‐messenger astronomy:messenger astronomy:
Example: Short Gamma Ray BurstExample: Short Gamma Ray Burst

Gravitational wave
(KAGRA, Adv.LIGO, 

Adv.Vergo, …) 

NS‐NS binary might be a progenitor of Short‐GRB ?

Status of KAGRA ‐‐ Takaaki Kajita 31

Gamma ray and 
optical 
observations

(H. Tagoshi)



SummarySummary

• KAGRA is a unique GW interferometer with the 
underground site and the cryogenic technology.

• The KAGRA detector construction is in progress.

• Initial operation (iKAGRA) in late 2015.

P ti f th i t i l i
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• Preparation for the cryogenic system is also in 
progress.

• We plan to start the full cryogenic observation in 
2017.

• KAGRA will join the global network of 
gravitational wave detection/astronomy.  



 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Francesco Fidecaro, JGRG 22(2012)111403 

“Virgo: design, results and perspectives” 

 



Virgo: design, results and perspective   

 

Francesco Fidecaro 

For the Virgo Collaboration, the LSC and ET 

Tokyo, November 14, 2012 



Outline 

• GW detection peculiarities 

• Gravitational wave spectrum 

• The Virgo interferometer 

• Some LSC-Virgo results (LSC and Virgo collaborations) 

• Advanced Virgo 

• The ET perspective (ET study group and science team) 

2 



GW detection 

3 



GW detection 

• Need to measure changes in space time metric due to Tmn variations 

• The shape of the signal is given by the 2nd time derivative of Qij   

• By measuring fields, and not energy, the signal amplitude varies as 1/R , 

distance from the source 

• The amplitude of the detected signal depends smoothly on the incoming 

direction, due to the quadrupolar nature of the wave 

• It scales as L, the size of the detector 

 

4 

• Type of astrophysical / cosmological process identified by the signal shape 

(frequency components, phase) 

• The number of observed sources, or recorded events, will raise as the 

distance (horizon) the detector is able to reach, to the 3rd power.  

•  Fixing the position of the source in the sky requires to measure the phase 

of the signal in more than one detector 

• For long deterministic signals a single detector can be used (it moves !) 

• The size of the detector determines the detectable GW wavelength 

Consequences 



The reality 

• Different detectors operate in different frequency bands, making 

their best to reduce noise 

• Looking for amplitude one prefers massive compact astrophysical 

objects. The heavier the slower, but also the louder 

• Studying the details of the process require higher spatial resolution, 

this translates into high frequency 

• Options (remember that effects on single masses scale as 1/L) 

– Ground based, km size 

– Space based detectors 

– Galaxy based detectors 

– Universe based 

– No scale (stochastic background) 

• Correspond to different sources 

– Compact binary systems 

– Binaries, massive black holes 

– Supermassive black holes 

– Stochastic background 

5 
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The GW spectrum 



Gravitational wave spectrum 
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The violent Universe 

CMB 

polarization 



The violent Universe 
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• Ground based km scale interferometers will listen to the violent 

Universe, where gravity is strong over short distances 
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The Virgo detector 
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The Virgo Collaboration 
• Early efforts 

– Brillet (optics) 

– Giazotto (suspensions) 

• Collaboration started in 1992 

• LAPP Annecy 

• EGO Cascina 

• Firenze-Urbino 

• Genova 

• Napoli 

• OCA Nice 

• NIKHEF Amsterdam 

• LAL Orsay 

• LMA Lyon 

• APC Paris – ESPCI Paris 

• Perugia 

• Pisa 

• Roma La Sapienza 

• Roma Tor Vergata 

• Trento-Padova 

• IM PAN Warsaw 

• RMKI Budapest 

• LKB Paris 

• 18 groups 

• About 200 authors 
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Noise in mass position 



12 

marionetta 

mirror 

Superattenuator performance 

• Excitation at top 

• Use Virgo sensitivity 
and stability 

• Integrate for several 
hours 

• Upper limit for TF at 
32 Hz:1,7 10-12 

• In some 
configurations a 
signal was found, 
but also along a 
direction 
perpendicular to 
excitation: 
compatible with 
magnetic cross talk 
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Issues in sensitivity (Virgo example) 
• h ~ 3 x 10-21 Hz-1/2  @ 10 Hz 

• h ~ 7 x 10-23 Hz-1/2  @ 100 Hz 
 

200 mm fused silica 

suspension fibre 

pioneered by 

Glasgow/GEO600 

Mirror coating 

Beam size 

High power laser 

Mirror thermal lensing 

compensation for high power 

Signal recycling 

Use of non standard light 

Seismic attenuation 

Local gravity 

fluctuations 
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Virgo site in Cascina 



Noise understanding 

• Noise sources and coupling are well understood 

• Low frequency shows more structures 

• Noise reduction in advanced detectors achieved with proper design  

15 



The noise budget. For frequency lower than about 300 Hz the sensitivity 

calculated as the quadratic sum of all noises - violet curve -  does not 

explain the actual sensitivity - black curve. 

Lines   

10.28 & arm (NI) 

13-14 Cal 

14.8 vert_rm 

17 Mich 

18.6 Env_Inj 

20.1 Tz_rm 

37 DET 

78-82 Dihedron 

130 (?) 

166 Bs_violin 

166 M1 

210 M2 

 

 

The noise budget 

 
12.9 Mpc 



Environmental noises studies 

Investigations to understand the sources and the path to dark fringe 

 Coupling (paths) to dark fringe 

 -  diffused light from in air optical benches  

 -  diffused light related to Brewster window  

 -  beam jitter on injection bench 

 Sources of environmental noise:  

 - air conditioning 

 - electronic racks 

 

 

Laser 

Brewster window 

End  benches 

External  bench 

Injection  bench 

Detection 

suspended bench 

Beam jitter 

DAQ room 

Need to work both on: 

- reduction of coupling 

- reduction of environmental noise 

Elec 

racks 
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Virgo sensitivity progress 



ROBUSTNESS 

• Excellent robustness (and very good duty cycles) 

obtained by 1st generation detectors 

• Not just sensitive instruments, but reliable ones! 
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Science time: 85.85% 
Locked time:  92.42% 

GEO:  Nov 07 – Jun 09  

VIRGO VSR2 

Virgo: Jul 09 – Jan 10 

Science time: 80.4% 
Locked time:  85.2% 
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The global network 



Motivation for a Global GW Detector Network 

• Source location:  
– Ability to triangulate (or ‘N-angulate’) and more accurately pinpoint source locations in the 

sky 

– More detectors provides better source localization  Multi-messenger astronomy 

 

• Network Sky Coverage: 
– GW interferometers have a limited antenna pattern; a globally distributed network allows for 

maximal sky coverage 

 

• Detection confidence:  
– Redundancy – signals in multiple detectors 

 

• Maximum Time Coverage - ‘Always listening’:  
– Ability to be ‘on the air’ with one or more detectors 

 

• Source parameter estimation: 
– More accurate estimates of amplitude and phase 

– Polarization - array of oriented detectors is sensitive to two polarizations 

 

• Coherent analysis:  
– Combining data streams coherently leads to better sensitivity ‘digging deeper into the noise’ 

– Also, optimal waveform and coordinate reconstruction 

source  

location 
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World wide GW network: LV agreement 

• “Among the scientific benefits we hope to achieve from 

the collaborative search are: 

– better confidence in detection of signals, better duty cycle and 

sky coverage for searches, and better source position 

localization and waveform reconstruction. In addition, we believe 

that the intensified sharing of ideas will also offer additional 

benefits.” 

• Collaborations keep their identities and independent 

governance 

 



LV Agreement (I) 

• “All data analysis activities will be open to all members of 

the LSC and Virgo Collaborations, in a spirit of 

cooperation, open access, full disclosure and full 

transparency with the goal of best exploiting the full 

scientific potential of the data.” 

 

• Joint committees set up to coordinate data analysis, 

review results, run planning, and computing. The 

makeup of these committees decided by mutual 

agreement between the projects. 

 

• Joint publication of observational data whether data from 

Virgo, or LIGO (GEO) or both 
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Some results from L-V 
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Horizon and event rate 

> 1 ev/yr: we did our best 

Predictions for the rates of compact binary coalescences observable … CQG, 10.1088/0264-9381/27/17/173001 
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VSR2 sensitivity for CW searches 

Targeted searches. 

Vela 



Vela pulsar spin down limit 

• Spin down limit amplitude: 3.3 10-24 for VSR2 

• Upper limit (known period, phase, orientation) < 2.2 10-24 

95% CL 

• Local vibration disturbance (laser cooling pump) 

• Improvements expected with VSR3 and VSR4 

27 
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The Crab Pulsar: Beating the Spin Down Limit! 
• Remnant from supernova in year 1054 

• Spin frequency nEM = 29.8 Hz 

 ngw = 2 nEM = 59.6 Hz 

• observed luminosity of the Crab nebula  

accounts for < 1/2 spin down power  

•spin down due to:  

• electromagnetic braking 

• particle acceleration 

• GW emission? 

• early S5 result: h < 3.9 x 10-25  ~ 4X below 

 the spin down limit (assuming restricted priors) 

• ellipticity upper limit: e < 2.1 x 10-4  

• GW energy upper limit < 6% of radiated energy is in GWs  

 

Abbott, et al., “Beating the spin-down limit on gravitational wave  

emission from the Crab pulsar,” Ap. J. Lett. 683, L45-L49, (2008). 



Searches for GWs from known pulsars 

• Continuous gravitational-wave emission due to asymmetry rotation axis  
– elastic deformations of the solid crust or core  

– Distortion an extremely strong misaligned magnetic field 

– Weak emitters  

• Spin-down limit: 

• Crab pulsar (using LIGO data): 

– h0 < hsd/7, EGW < 0.02Etotal 

• Vela pulsar (using Virgo data): 

– h0 < 0.66hsd, EGW < 0.45Etotal 

• S5 search of 116 pulsars 
 Lowest upper-limit h

0
: 2.3 x 10-26  

(PSR J1603-7202) 

 Lowest upper-limit ellipticity: 7 x 10-8 (PSR J2124-3358) 
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LIGO Scientific and Virgo Collaborations, “Searches For 

Gravitational Waves From Known Pulsars With Science 

Run 5 LIGO Data”, Astrophys. J. 713 (2010) 671 

LIGO Scientific and Virgo Collaborations, “First search for 

gravitational waves from the youngest known neutron star”, 

Astrophys. J. 722 (2010) 1504 

LIGO Scientific and Virgo Collaborations, “Beating the spin-

down limit on gravitational wave emission from the Vela 

pulsar,” Astrophys. J. 737 (2011) 93 

LIGO Scientific and Virgo Collaborations, “Beating the spin-

down limit on gravitational wave emission from the Crab 

pulsar”, Astrophys. J. Lett. 683 (2008) 45 
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Isotropic search: results 
• Now we are 

beyond indirect 

BBN and CMB 

bounds 

• We are beginning 

to probe models 



Pulsar Timing Array 

Monthly Notices of the Royal Astronomical Society 

Volume 414, Issue 4, pages 3117-3128, 20 APR 2011 DOI: 10.1111/j.1365-2966.2011.18613.x 

http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.18613.x/full#f5 

Placing limits on the stochastic gravitational‐wave background using European 

Pulsar Timing Array data (2011 GWIC prize thesis) 

 11
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http://onlinelibrary.wiley.com/doi/10.1111/mnr.2011.414.issue-4/issuetoc
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.18613.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.18613.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.18613.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1365-2966.2011.18613.x/full
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Advanced Virgo 
Slides by PL Giovanni Losurdo 



ADVANCED VIRGO – ID CARD 

 Advanced Virgo: upgrade of the Virgo interferometric 
detector of gravitational waves 

 Goals:  
– improve the detection rate by ~1000 

– Participate to the early detections  

– Start the GW astronomy 

 Funded by INFN, CNRS, EGO, Nikhef in Dec 2009: 23.8 
ME 

– With some contributions from Poland and Hungary 

 First light expected: fall 2015 

Seminario CdS - Oct 31, 2011 G Losurdo - INFN Firenze 34 



Advanced detectors 

 2nd generation detectors 

– BNS inspiral range >10x better than Virgo 

– Detection rate: ~1000x better 

– 1 day of Adv data ≈ 3 yrs of data 

35 35 

Measured spectrum from  
http://www.ligo.caltech.edu/~jzweizig/distribution/LSC_Data/ Measured spectrum courtesy of the Virgo Coll. 
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Advanced Virgo baseline design 

• Plan to be back in 2015 with LIGO 

Signal Recycling (SR) 

Non degenerate  

rec. cavities 

High power laser 

High finesse 
3km FP cavities  

Heavier mirrors 

Large spot size on TM 

Larger central links 

Cryotraps  

Monolithic 

suspensions  

DC readout 



STAC, May 30, 2012 G Losurdo - AdV Project Leader 37 



OPTICAL LAYOUT 

 MAIN CHANGES 
– Signal recycling 

– Larger beam 

– 200W rod laser 

– heavier mirrors 

G Losurdo - INFN Firenze 38 



MIRRORS – SUBSTRATES 

39 G Losurdo - INFN Firenze 

 Large high quality mirrors: 35cm diameter, 
20cm thick, 42 kg 

 Large beam splitter: 55cm diameter 

 Manufacturer = HERAEUS (like in VIRGO), 
leader in low absorption silica 

 New fused silica grade (Suprasil 3002): 
- Better bulk absorption (0.2 ppm/cm measured at 

LMA): better for thermal lensing 

- Good mechanical properties (High quality factor, > 
107)  



POLISHING 

 Optical losses must be minimized to 
– Maximize the circulating power (and thus the sensitivity) 

– Minimize the scattered light (and the associated noise…) 

 

 

 

 

 

 

 AdV requirement: round-trip losses <50ppm  

  mirror flatness < 0.5 nm rms 

 Standard polishing may achieve flatness ~2 nm rms 

 To reach specifications we apply “corrective coating” to polished 
mirrors 

 

G Losurdo - INFN Firenze 40 



CORRECTIVE  
COATING 

 Interferometric sensing of surface 
imperfections and correction by sputtering 
of silica molecules 

 Mirror moved with respect to the silica 
beam by a robot (42kg mirror positioned 
with accuracy ~200 um)  

 

Seminario CdS - Oct 31, 2011 G Losurdo - INFN Firenze 41 

Exp. result: 
RMS = 0.36 nm 



COATINGS 

 Coating thermal noise is THE noise limiting sensitivity in the mid-range 
(dissipation dominated by the high refractive index layer)  

 Doping Ta2O5 with Ti has improved it, but losses are still O(10-4) 

 Advanced LIGO/Virgo use large spot size (~5cm) on the test masses 

G Losurdo - INFN Firenze 42 



THERMAL COMPENSATION 

 Aberrations (intrinsic mirror defects or 
thermal deformations of the mirrors) spoil 
the beam quality 

 A set of sensors and thermal actuators 
has been conceived to get an “aberration 
free” interferometer  

Seminario CdS - Oct 31, 2011 G Losurdo - INFN Firenze 43 

Heating rings around 
mirrors to tune RoC  
(accuracy: ~1m over 1500m) 

CO2 laser 

CO2 laser shined on the mirror:  
heat deposition where needed 
to compensate for aberrations  

Effect of RoC asymmetry in Virgo+ 



STRAY LIGHT 

 Scattered light has been one of the main issues 
of Virgo+ 

– limiting the sensitivity in a wide frequency range 

– a lot of commissioning time used to mitigate it 

 Thorough risk mitigation approach in AdV (large 
investment) 

 

G Losurdo - AdV Project Leader 44 

stray light on 
the output bench 

SiC baffles added 
(+ other changes)  

horizon more stable 
and higher 



STRAY LIGHT MITIGATION 

 Baffles to shield mirrors, pipes, vacuum chambers exposed to scattered 
light 

Seminario CdS - Oct 31, 2011 G Losurdo - INFN Firenze 45 



STRAY LIGHT MITIGATION 

STAC, May 30, 2012 G Losurdo - AdV Project Leader 46 

All photodiodes 

seismically isolated  

and In vacuum 

HVAC relocation halls re-arrangements 

for hosting minitowers large suspended baffles 

+ 

payloads/superattenuators/va

cuum modifications 

for the large baffles 

suspension 

+ superpolished optics on 

suspended benches 

+ … 



CRUCIAL DATES 

 About 1 year of commissioning on parts of the interferometer before the 
end of installation 

– Allows speeding up the time needed for the first full lock 

– Requires early organization of the commissioning activities  

Seminario CdS - Oct 31, 2011 G Losurdo - INFN Firenze 47 
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Perspective 



49 

Sensitivity future evolution 



Conceptual Design Document 

 ET conceptual design 

document released: 

 https://tds.ego-

gw.it/ql/?c=7954  

 ~400 pages describing 

the main characteristics of 

the observatory 

 To be sent to the 

European Commission at 

the end of September 

 To be published on CQG 

50 

https://tds.ego-gw.it/ql/?c=7954
https://tds.ego-gw.it/ql/?c=7954
https://tds.ego-gw.it/ql/?c=7954


Artistic/Schematic views 

Astro-GR@Mallorca  51 

http://www.et-gw.eu/etimages 
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Hardware production 

ET Observatory Funding 
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The ET Science  
 Summary by B. Sathyaprakash, chair of ET WG 4 

Astrophysics issues 
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Conclusions 

• We are at the edge of starting a new, fascinating field of 

science 

• After “first words”, there is room for a large expansion in 

observations 

• Room for unexpected 

• In spite of the size, the instrument can be run by a single 

(clever) person 

• New developments will be first by table top experiments 

• High interdisciplinary views required 

• Will reward junior and senior scientists 

 



59 

Thank you ! 
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Topics 

Initial LIGO 

Selected Science Results from LIGO’s S5 

and S6 Science Runs 

Advanced LIGO – Status and Progress 

The Global Gravitational Wave Network 

LIGO-India: Status and Prospects 
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LIGO Laboratory  

LIGO Livingston 

 

LIGO Hanford 

 

LIGO Observatories are operated  

by Caltech and MIT 

Caltech 

MIT 
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Initial LIGO Concept 

5 W 

250 W 

10 kW 10 kW 

Power-recycled Michelson 

interferometer 

4 km long Fabry-Perot arm 

cavites  

Passive seismic isolation  

10 kg mirrors figured to 

l/1000  

10 W  30 W pre-stabilized 

laser operating at 1064 nm 

 

Passing GWs modulate the 

time-of-flight of light between 

the end test mass and the 

beam splitter 

The interferometer acts as a 

transducer, turning GWs into 

photocurrent  
» A coherent detector 

h =
2DL

L
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Initial LIGO Concept 

L
h

l
~

roundtripN

1
x 

storagephotonN 
1

x 

Putting in numbers:  

 h ~ 10-21 

5 W 

250 W 

10 kW 10 kW 

l=1.06 mm 

L = 4000 m 

Nroundtrip = 40 
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LIGO History 

1989: LIGO Project proposed to NSF 

1992: LIGO Project funded by NSF 

1995 – 1999: LIGO facilities construction at Hanford and Livingston 

1998 – 2002: Installation/integration of initial LIGO interferometers 

2002 - 2005: Interferometer commissioning interleaved with science 

runs (S1-S4) 

Nov 4, 2005 – Sept 31, 2007: S5 science run 

» Design sensitivity reached; 15 Mpc range; > 1 year of triple coincidence data   

2007 – 2009: Enhanced LIGO instrument upgrade 

» Low cost upgrade, tests key Advanced LIGO technologies 

April 2008: Advanced LIGO Construction begins 

July 7, 2009 – Oct 20, 2010: S6 science run 

» 18 Mpc range to merging binary neutron stars 
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Recent LIGO/Virgo/GEO 

science results 

9 

All LSC/Virgo Observational Papers: https://www.lsc-

group.phys.uwm.edu/ppcomm/Papers.html 

https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
https://www.lsc-group.phys.uwm.edu/ppcomm/Papers.html
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Astrophysical Sources of Gravitational 

Waves 

Casey Reed, Penn State  

Credit: AEI, CCT, LSU 

Coalescing 

Compact Binary 

Systems: 

Neutron Star-NS, 

Black Hole-NS, 

BH-BH 

- Strong emitters, 

well-modeled,  

- (effectively) 

transient 

Credit: Chandra X-ray Observatory  

Asymmetric Core 

Collapse 

Supernovae 

- Weak emitters, 

not well-modeled 

(‘bursts’), transient  

- Cosmic strings, soft 

gamma repeaters, 

pulsar glitches also in 

‘burst’ class  

NASA/WMAP Science Team  

Cosmic Gravitational-

wave Background 

- Residue of the Big 
Bang, long duration 

- Long duration,  
stochastic background 

Spinning neutron 

stars 

- (effectively) 
monotonic waveform 

- Long duration 
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Astrophysical Sources of Gravitational 

Waves 

In addition to these known  

sources, there may be surprising 

sources of gravitational waves. 
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Compact binary  

inspiral, merger, ringdown 

There’s a lot of 

physics and 

astrophysics in 

the waveforms! 

Waveform 

reconstruction 

(often buried in 

detector noise). 

Inspiral                            Merger Ringdown 

12 
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Searches for Binary Mergers 

Binary BH-BH system 

This source: 

“Chirp” waveform 

h 

Produces this waveform: 

Buried in this noise stream: 

We use different 

methods (in this case 

optimal Wiener filtering 

using matched 

templates) to pull these 

signals from the noise:    

The problem is that non-astrophysical sources also produces signals (false positives) 
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14 14 14 

The Current GW Detector Network 

GEO600 

LIGO  

Hanford   

LIGO  

Livingston   Virgo 
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Global gravitational-wave detector 

network 

GW science is greatly 

enhanced by having 

distribution of global 

interferometers.  

Advantages include: 
» Source localization 

» Enhanced Network Sky 
Coverage 

» Maximum Time 
Coverage -‘Always 
listening’ 

» Detection confidence  

 

Since May 2007, 

LIGO, Virgo, and 

GEO600 has operated 

jointly as a global 

network 
 

 

15 

S5 

S5 

S5 

S6 

VSR3 

S6 

VSR2 VSR1 

VSR4 

Astrowatch 

GEO600 

LIGO 

LIGO 

LIGO 

Virgo 
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Expected detection rates for compact 

binary mergers 

Binary coalescences rates  
» neutron star (NS) = 1.4 M


, Black Hole (BH) = 10 M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The error bar is large and important! 

LIGO Scientific and Virgo Collaborations,“Predictions for the Rates of 

Compact Binary Coalescences Observable by Ground-based Gravitational-

wave Detectors” Class. Quantum Grav. 27 (2010) 173001 

Initial  

LIGO 

Advanced 

LIGO 
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Searching for Low Mass Compact 

Binary Coalescences 

17 

Predicted rates 

Latest LIGO-Virgo  

upper limits 

LIGO Scientific and Virgo Collaborations, “Search for Gravitational Waves from Low Mass Compact Binary Coalescence in LIGO's 

Sixth Science Run and Virgo's Science Runs 2 and 3”, Phys. Rev D85 (2012) 082002 



Marcel Grossman 13, Stockholm, 4 July 2012 

‘Event’ GW100916 – A Blind Injection  

18 

http://www.ligo.org/science/GW100916/ 

Hanford Livingston Virgo 
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Triggered searches for gamma-ray 

bursts 

GRBs are good candidates for GW 

emission 

GRB progenitor models 
» Long GRB  Core collapse SN of a massively 

spinning star 

» Short GRB  coalescence of a neutron star and a 

compact object 

– ≤ 15% from neutron star quakes 

Compact, relativistic, asymmetric! 
» But measured red shifts  10 Gpc 

19 

Credit: Ute Kraus 
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Searches for GWs from nearby 

GRB sources 

GRB050311, GRB070201: short GRBs with 

sky localizations that overlap nearby galaxies 
» GRB050311 overlap with M81 (3.6 Mpc) 

» GRB070201 overlap with M31 (770 kpc) 

Binary coalescence in M31 excluded at >99% 

confidence level 

BNS coalescence in M81 excluded at 98% 

confidence level 

20 

M81 

GRB 051103 

M31, GRB 070201 

LIGO Scientific Collaboration, K. Hurley, 

“Implications for the Origin of GRB 070201 

from LIGO Observations”, Astrophys. J. 681 

(2008) 1419  

LIGO Scientific Collaboration, “Implications for the 

Origin of GRB 051103 from LIGO Observations”, 

arXiv:1201.4413 

GRB051103 
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Enabling multi-messenger astronomy 

with gravitational waves 

Many GWs sources are 

likely to radiate in the 

electromagnetic spectrum  

We want to see them via 

different observational 

methods simultaneously 

GW ‘Aperture synthesis’ 
» Crude estimate of angular 

resolution 

 

 

 wide field telescopes 
+ Image tiling 

+ Galaxy weighting 

 Neutrino observatories 
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Swift 

LIGO  

Livingston 

Virgo 
t1 

t2 t3 

LIGO  

Hanford 

X-ray, g-ray  

follow-up   

Optical  

follow-up 

Coherent  

Detector 

Network 

qGW ~lGW / d ~ few degrees

Image: 

http://earthobservatory.nasa.gov/ 

Swift 
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EM follow up of gravitational-wave 

triggers from S5, VSR1 

 

22 
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Observing Partners During 2009–2010 

Mostly (but not all) robotic wide-field optical telescopes 
» Many of them used for following up GRBs and/or hunting for supernovae 

Nine event candidates in S6/VSR2,3 followed up by at least one scope 

X-ray and 
UV/Optical 

Radio 

LIGO Scientific and Virgo Collaborations,  "Implementation and 

testing of the first prompt search for gravitational wave 

transients with electromagnetic counterparts", A&A 539, A124 

(2012) 

LIGO Scientific and Virgo Collaborations, “First Low-Latency LIGO+Virgo 

Search for Binary Inspirals and their Electromagnetic Counterparts”, 

arXiv:1112.6005 

http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201118219&Itemid=129
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201118219&Itemid=129
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201118219&Itemid=129
http://www.aanda.org/index.php?option=com_article&access=doi&doi=10.1051/0004-6361/201118219&Itemid=129
http://arxiv.org/abs/1112.6005
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Example: GW100916 Skymap 

LIGO-Virgo source localization ~ O(100 

deg2)  

» Disconnected regions 

Top probability pixels imaged by Swift 

and other ground-based optical 

telescopes  

Swift pixels maximized probability on 

NGC2380 and ESO492-010 

24 

NGC2380  

(Credit: Las Cumbras  

Observatory www.lcogt.net) 

nearby  
galaxies 

TAROT, 
ROTSE 

Swift SkyMapper 

Zadko 

Zadko 

Skymap for 100916 ‘event’ 

LIGO Scientific and Virgo Collaborations, “Swift Follow-

Up Observations Of Candidate Gravitational-Wave 

Transient Events” arXiv:1205.1124 
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Advanced LIGO 

25 
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Rochus Vogt, Ron Drever,  

Kip Thorne, Rai Weiss 

1987 
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Rochus Vogt, Ron Drever,  

Kip Thorne, Rai Weiss 

1987 
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Advanced LIGO 

Advanced LIGO – a complete 

upgrade of the LIGO 

interferometers 

Advanced LIGO is designed to 

increase the distance probed 

(‘reach’) by ~ 10X  

» Leads to 1000X increase in volume  

1000X increase in event rate   

Expect 10s of detections per year 

at design sensitivity 

» 1 aLIGO observational day = a few 

years of iLIGO  
Image courtesy of Beverly Berger 

Cluster map by Richard Powell 

Initial LIGO 
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Expected detection rates for compact 

binary mergers 

Binary coalescences rates  
» neutron star (NS) = 1.4 M


, Black Hole (BH) = 10 M

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The error bar is large and important! 

LIGO Scientific and Virgo Collaborations,“Predictions for the Rates of 

Compact Binary Coalescences Observable by Ground-based Gravitational-

wave Detectors” Class. Quantum Grav. 27 (2010) 173001 

Initial  

LIGO 

Advanced 

LIGO 
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Latest low mass CBC search results 

30 

1 yr aLIGO @ design  

sensitivity 

Predicted rates 

Latest LIGO-Virgo  

upper limits 
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(30 M
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SRM 
150 Mpc 1.60 Gpc 

0-det 

low P 
145 Mpc 1.65 Gpc 

0-det 

high P 
190 Mpc 1.85 Gpc 

NS-NS 

tuned 
200 Mpc 1.65 Gpc 
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Advanced LIGO overview 

What is Advanced? 

EO

M 
Laser 

Parameter Initial LIGO Advanced  

LIGO 

Input Laser 

Power 

10 W  

(10 kW arm) 

180 W 

 (>700 kW arm) 

Mirror Mass  10 kg 40 kg 

Interferometer 

Topology 

Power-

recycled 

Fabry-Perot 

arm cavity 

Michelson  

Dual-recycled 

Fabry-Perot 

arm cavity 

Michelson 

(stable 

recycling 

cavities) 

GW Readout 

Method 

RF heterodyne DC homodyne 

Optimal Strain 

Sensitivity  

3 x 10-23 /  rHz Tunable, better 

than 5 x 10-24 /  

rHz in 

broadband 

Seismic 

Isolation 

Performance 

flow ~ 50 Hz flow ~ 13 Hz 

Mirror 

Suspensions 

Single 

Pendulum 

Quadruple 

pendulum 
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Advanced LIGO schedule 

35 

   
2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

S5 data run 
e-LIGO installation 

and commissioning S6 data run Dark period 

Advanced LIGO Project 

Commissioning & initial data  

With Advanced LIGO  

now 

Adv LIGO 

Installation 

begins 

 Fabrication, 
subsystem assembly, 
and installation ~ 80% 
complete 

 Interferometers 
operational in 2014 

 First science data 
expected in 2015 
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A Possible Upgrade: Squeezed 

Interferometry 

36 

Dx1Dx2≥1 

Dx1 

Dx2 

x1 

x2 

Coherent State 

x1 

x2 
Coherent Vacuum  

State 

x1 

x2 
Phase Squeezing 

x1 

x2 
Amplitude Squeezing 

Dx2 

Dx1 

x1 

x2 
Squeezed Vacuum  

State 

Quantum Optics in service of Astrophysics!  
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First Demonstration of Squeezed Interferometry in a 

Gravitational-wave Detector 

37 

LIGO Scientific Collaboration, “A gravitational wave 

observatory operating beyond the quantum shot-noise 

limit”, Nature Physics 7, 962–965 (2011) 

GEO600 
GEO600 

3.5 dB 

reduction in noise 

http://www.nature.com/nphys/journal/v7/n12/full/nphys2083.html
http://www.nature.com/nphys/journal/v7/n12/full/nphys2083.html
http://www.nature.com/nphys/journal/v7/n12/full/nphys2083.html
http://www.nature.com/nphys/journal/v7/n12/full/nphys2083.html
http://www.nature.com/nphys/journal/v7/n12/full/nphys2083.html
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Using Squeezed Light to Improve 

LIGO Sensitivity 

38 

Improved sensitivity above 150 Hz 

 2.1 dB above 500 Hz 

LSC, "Enhancing the astrophysical reach of the LIGO gravitational  

wave detector by using squeezed states of light”, in preparation   
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LIGO-India 

The idea in a nutshell–  

A direct partnership 
between LIGO 
Laboratory and India to 
build a LIGO 
interferometer on Indian 
soil 

 

Follows from earlier 
attempt to locate a 
LIGO detector in 
Australia 

 

 

 39 
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LIGO-India 

LIGO Lab (with its UK, German and Australian partners) provides components 
for one Advanced LIGO interferometer (H2) from the Advanced LIGO project 

India provides the infrastructure (site, roads, building, vacuum system), “shipping 
& handling,” staff for installation & commissioning, operating costs 

 

Indian Institutional Participants:  
» Inter-University Centre for Astronomy and Astrophysics (Astrophysics, Site Selection, Computing)  

» Raja Ramanna Centre for Advanced Technology (Detector Development) 

» Institute for Plasma Research (Facility and Vacuum construction, control systems) 

» + IndIGO Consortium (broader scientific community in India) 

 

Indian funding – LIGO-India is a Mega-science Project    
» Total request of ~ $230M to fund construction and operations 

» Funding status: approved by DAE/DST, referred to Cabinet of the Prime Minister of India for 
approval 

US funding – funding for aLIGO components through MREFC (no new costs)  
» Total contribution $140M (includes aLIGO components, designs, documentation) 

 

40 
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Binary Neutron Star Merger 

Localization: Hanford-Livingston-Virgo 

41 

3 site network 

x denotes blind spots 

S. Fairhurst, “Improved source localization with  

LIGO India”, arXiv:1205.6611v1  

http://arxiv.org/pdf/1205.6611v1.pdf
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Binary Neutron Star Merger Localization: 

Hanford-Livingston-Virgo-India 

42 

4 site network 

S. Fairhurst, “Improved source localization with  

LIGO India”, arXiv:1205.6611v1  

http://arxiv.org/pdf/1205.6611v1.pdf
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Binary Neutron Star Merger Localization: 

Hanford-Livingston-Virgo-KAGRA 

43 

4 site network 

S. Fairhurst, “Improved source localization with  

LIGO India”, arXiv:1205.6611v1  

http://arxiv.org/pdf/1205.6611v1.pdf
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Binary Neutron Star Merger Localization: 

Hanford-Livingston-Virgo-India-KAGRA 

44 

5 site network 

S. Fairhurst, “Improved source localization with  

LIGO India”, arXiv:1205.6611v1  

http://arxiv.org/pdf/1205.6611v1.pdf
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LIGO Laboratory 45 

For Binary Neutron Star  

Coalesence 
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LIGO-India Status 

Status in the US: -- the National Science Board has given 

permission to NSF, at its discretion, “to approve the 

proposed aLIGO Project in scope, enabling plans for the 

relocation of an advanced detector to India”  

Status in India – awaiting Cabinet approval and beginning 

of seed funding for facility design work 

Major activities in India are now focused on site 

evaluation/selection as well as development of a Tier 2 

computing center @ IUCAA  

 

Expect LIGO-India to begin operations in 2020 or 2021 

46 
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Conclusion 

 

 

These are exciting times for 

gravitational wave physicists and 

astronomers!  

49 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

photodiode 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

photodiode 

Seismic Noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

photodiode 

Seismic Noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

Wavelength 

& amplitude 

fluctuations photodiode 

Quantum Noise 

"Shot" noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

Wavelength 

& amplitude 

fluctuations photodiode 

Quantum Noise 

"Shot" noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

Thermal 

(Brownian) 

Noise 

LASER 

test mass (mirror) 

beamsplitter 

photodiode 

Radiation 

pressure 

Quantum Noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

Thermal 

(Brownian) 

Noise 

LASER 

test mass (mirror) 

beamsplitter 

photodiode 

Radiation 

pressure 

Quantum Noise 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

Residual gas scattering 

photodiode 



Marcel Grossman 13, Stockholm, 4 July 2012 

Reducing the interferometer noises 

LASER 

test mass (mirror) 

beamsplitter 

Residual gas scattering 

photodiode 



Marcel Grossman 13, Stockholm, 4 July 2012 

LIGO 

59 

LIGO Livingston Observatory  

LIGO Hanford Observatory  
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60 

Initial LIGO 

4 km long 

Louisiana, 

USA 

2002-2010 

 

Initial LIGO 

4 km, 2 km long 

Washington, 

USA 

2002-2010 

 

 

Initial GEO600 

600 m long 

Germany 

2002 - 2010 

Initial VIRGO 

3  km  long 

Italy 

2007 - 2011 

First Generation Interferometers 
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Gravitational-wave interferometers 

Enhanced Michelson 

interferometers 
» LIGO, Virgo, and GEO600 use 

variations  

Passing GWs modulate the 

distance between the end 

test mass and the beam 

splitter 

The interferometer acts as a 

transducer, turning GWs 

into photocurrent  
» A coherent detector 

61 
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Searches for GWs from known 

pulsars 

Continuous gravitational-wave emission 

due to asymmetry rotation axis  
» elastic deformations of the solid crust or core  

» Distortion an extremely strong misaligned 

magnetic field 

» Weak emitters  

Spin-down limit: 

Crab pulsar (using LIGO data): 

» h0 < hsd/7, EGW < 0.02Etotal 

Vela pulsar (using Virgo data): 

» h0 < 0.66hsd, EGW < 0.45Etotal 

S5 search of 116 pulsars 
 Lowest upper-limit h

0
: 2.3 x 10-26  

(PSR J1603-7202) 

 Lowest upper-limit ellipticity: 7 x 10-8 (PSR J2124-

3358) 
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LIGO Scientific and Virgo Collaborations, “Searches For 

Gravitational Waves From Known Pulsars With Science 

Run 5 LIGO Data”, Astrophys. J. 713 (2010) 671 

LIGO Scientific and Virgo Collaborations, “First search for 

gravitational waves from the youngest known neutron star”, 

Astrophys. J. 722 (2010) 1504 

LIGO Scientific and Virgo Collaborations, “Beating the spin-

down limit on gravitational wave emission from the Vela 

pulsar,” Astrophys. J. 737 (2011) 93 

LIGO Scientific and Virgo Collaborations, “Beating the spin-

down limit on gravitational wave emission from the Crab 

pulsar”, Astrophys. J. Lett. 683 (2008) 45 
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Searches for stochastic 

gravitational waves 

Stochastic sources - primordial GWs or ensemble of 

incoherent point-like or extended emitters 

LIGO/Virgo S5 isotropic stochastic GW upper limit: W0 < 6.9 x 

10-6 

» Beats inferred upper limit from BBN: W0
BBN < 1.1 x 10-5 

LIGO/Virgo S5  directional search for point-like/extended 

emitters 
» New: spherical harmonic decomposition for arbitrary angular distributions  

63 

LIGO Scientific and Virgo Collaborations, 

“Directional Limits on Persistent Gravitational 

Waves Using LIGO S5 Science Data”, Phys. Rev. 

Lett. 107 (2011) 271102 

LIGO Scientific and Virgo Collaborations, “An 

upper limit on the stochastic gravitational-

wave background of cosmological origin”, 

Nature, 460: 990 (2009).  

SHD b = -3 SHD b = 0 Radiometer b = 0 

http://www.nature.com/nature/journal/v460/n7258/pdf/nature08278.pdf
http://www.nature.com/nature/journal/v460/n7258/pdf/nature08278.pdf
http://www.nature.com/nature/journal/v460/n7258/pdf/nature08278.pdf
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Joint GW-high energy neutrino 

searches with ANTARES 
Several plausible astrophysical 

joint GW-HEn emission sources 
» Conventional: soft gamma repeaters, 

GRBs, choked GRBs 

» More exotic: cosmic strings 

Both GWs and HEns are very 

weakly interacting  information 

preserving, traveling unimpeded 

for cosmological distances 

Co-analysis with ANTARES 

Neutrino Telescope  
» undersea, 40 km off  southern coast of 

France 

» 3D array of PMTs  n position 

reconstruction   

154 HEn triggers followed up with 

X-pipeline  
» No candidates  exclusion distance 

64 

ANTARES, LIGO, AND Virgo Collaborations, “A first search for coincident 

gravitational waves and high energy neutrinos using LIGO, Virgo and 

ANTARES data from 2007”, arXiv:1205.3018 

HEn candidates 
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       LIGO Hanford 2010-05-15 

       LIGO Livingston 2010-05-31 

       Virgo 2011-05-22 

       GEO 2012-03-22 

LIGO Scientific Collaboration, “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, 

Rep. Prog. Phys. 72 (2009) 076901 

H. Grote (for the LSC), “The Upgrade of GEO600”, Class. Quantum Grav. 27, 084003 (2010) 

T. Accadia, et al., “Virgo: a laser interferometer to detect gravitational waves”, J. Instrumentation 7, 

P03012 (2012) 

http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/1748-0221/7/03/P03012/
http://iopscience.iop.org/1748-0221/7/03/P03012/
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       LIGO Hanford 2010-05-15 

       LIGO Livingston 2010-05-31 

       Virgo 2011-05-22 

       GEO 2012-03-22 

Df 

h 2 = S( f )
2
df

f1

f2

ò
h = 2 x 10-22 

DL = hL = 8 x 10 -19 m 

LIGO Scientific Collaboration, “LIGO: The Laser Interferometer Gravitational-Wave Observatory”, 

Rep. Prog. Phys. 72 (2009) 076901 

H. Grote (for the LSC), “The Upgrade of GEO600”, Class. Quantum Grav. 27, 084003 (2010) 

T. Accadia, et al., “Virgo: a laser interferometer to detect gravitational waves”, J. Instrumentation 7, 

P03012 (2012) 

http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/0264-9381/27/8/084003
http://iopscience.iop.org/1748-0221/7/03/P03012/
http://iopscience.iop.org/1748-0221/7/03/P03012/
http://iopscience.iop.org/1748-0221/7/03/P03012/
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Triggered searches for gamma-ray 

bursts 

Data from LIGO S6 and Virgo VSR 

2,3 

Modeled search for NS-NS, NS-

BH coalescences 

» TaylorF2 3.5 PN order templates, 

[2, 40) M


 total mass range 

Unmodeled search for GW 

bursts 

» Coherent network analysis (‘X-

pipeline’); time-frequency 

clustering 

404 GRBs from Swift, Fermi, 

MAXI, SuperAGILE, INTEGRAL 

Require 2 detectors in science 

mode  154 GRB triggers 

analyzed 

» 10% with redshift; well beyond 

LIGO/Virgo range 69 

LIGO Scientific and Virgo Collaborations, Briggs, et al., “Search For 

Gravitational Waves Associated With Gamma-Ray Bursts During Ligo 

Science Run 6 And Virgo Science Runs 2 And 3”, arXiv:1205.2216 
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Exclusion distance 

70 

Exclusion Distance vs. Jet Angle Cumulative Redshift Distribution 

LIGO Scientific and Virgo Collaborations, Briggs, et al., “Search For Gravitational Waves Associated With Gamma-

Ray Bursts During Ligo Science Run 6 And Virgo Science Runs 2 And 3”, arXiv:1205.2216 
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Gravitational waves are propagating solutions to the Einstein Field 

Equations in GR (‘ripples’ in space-time)  
» Emissions from rapidly accelerating mass distributions 

Practically, need astrophysical objects moving near the speed of light  

 

 

 
 

 

 

» According to GR, GWs propagate at the speed of light 

» Quadrapolar radiation; two polarizations: h+ and hx 

Physically, gravitational waves are strains:  

 

Sense of scale: strain from a binary neutron star pair 
» M = 1.4 M, r = 1023 m (15 Mpc, Virgo), R = 20 km, forb = 400 Hz  

       

 71 

Gravitational waves 

h »
4p 2GMR2 forb

2

c4r
Þ h ~10-21

h =
DL( f )

L
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Initial LIGO 
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Searching for High Mass Compact 

Binary Coalescences  
IMBH formation proposed to complete BH mass hierarchy… 

» Via stellar collision in globular clusters, stalled supernovae of early pop III stars, progressive accumulation into higher 

mass  

…but their existence is uncertain 

» Stellar winds suppression of runaway accumulation, merger recoil ejection of BH from GC 

Candidates exist: ultraluminous x-ray sources M82 X-1, NGC 1313 X-2  

S5/VSR1 search using constrained unmodelled waveform (Coherent WaveBurst algorithm)  

73 

LIGO Scientific and Virgo Collaborations, “Search for gravitational waves from intermediate mass 

binary black holes”, Phys. Rev. D85, 102004 (2012) 

Effective Range (Mpc) for H1H2L1V1 Rate Density Upper Limit (Mpc-3 Myr-1) 

http://prd.aps.org/abstract/PRD/v85/i10/e102004
http://prd.aps.org/abstract/PRD/v85/i10/e102004
http://prd.aps.org/abstract/PRD/v85/i10/e102004
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Squeezed Interferometry 

74 

Dx1Dx2≥1 

Dx1 

Dx2 

x1 

x2 

Coherent State 

x1 

x2 
Coherent Vacuum  

State 

x1 

x2 
Phase Squeezing 

x1 

x2 
Amplitude Squeezing 

Dx2 

Dx1 

x1 

x2 
Squeezed Vacuum  

State 

Shot noise and radiation pressure come from statistical fluctuations ultimately 

arising from the Heisenberg uncertainty principle  
» These fluctuations exist in the vacuum state. They enter the interferometer at the output port. 

A noise reduction in one quadrature can be achieved at the expense of the 

other quadrature  ‘squeezed light’ 
» 3 dB injected squeezed vacuum reduces noise by √ 2 

» Possible to achieve 10 dB  
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Advanced LIGO schedule 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 

S5 data run 
e-LIGO installation 

and commissioning S6 data run Dark period 

S6 data analysis & preparations  

for Advanced LIGO commissioning and open data 

Advanced LIGO Project 

Commissioning & initial data  

With Advanced LIGO  

now 

Adv LIGO 

Installation 

begins 
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Electromagnetic counterparts 
to binary neutron star mergers 

Koutarou Kyutoku (KEK) 
Collaborators: 

Kunihito Ioka (KEK), Masaru Shibata (YITP) 



Summary 

Electromagnetic counterparts to gravitational waves 
from binary neutron star mergers will be important, 
and we still have no “perfect” counterpart model 
 

We propose a possibility of ultra-relativistic outflows 
and associated X-ray-to-radio bands, second-to-day 
timescale emission from the shock breakout at the 
binary merger, ejecta-ISM shock, and synchrotron 
 

This model is bright enough and has tight association 
with GWs, but it will be challenging to observe 



Binary neutron star mergers 

The most promising sources of gravitational waves 

 - neutron star masses, spins (if any), and radii 

 - supranuclear-density matter equations of state 

 - a way to (purely) gravitational-wave cosmology 
 

Many electromagnetic signals are also expected 

 - short-hard gamma-ray bursts and afterglows 

 - radioactive decays of rapid-process elements 

 - interaction with surrounding interstellar media 



Electromagnetic counterparts 

The neutron star merger must be highly energetic 
 

                                                  EM emission with GWs 

                                                    are naturally expected 
 

                                                  - detectable strength 

                                                  - frequent association 

                                                  - unique feature 

                                                  - accurate localization 

                                                      and so on are desired 
Metzger&Berger (2012) 



Short-hard gamma-ray burst 

The most energetic explosion 
 

 “Binary merger hypothesis” 

should be tested by 

 simultaneous detection  

 (or its absence) of GWs and 

  short-hard gamma-ray bursts 
 

Afterglows will localize events 

 with sufficient accuracy 

From encyclopedia of science 



Problem: jet opening angle 

Not necessarily accompany GWs due to the beaming 
 

                                                              Two events suggest 

                                                                jet angle < 10 deg. 
 

                                                              A few % of mergers 

                                                               accompany GRBs 

                                                              even if all mergers 

                                                               leads to the bursts 

Fong+ (2012) 

The light curve 
 and the jet break 



Mass ejection from the merger 

 - tidal torques by the rapidly (differentially) rotating,  
non-axisymmetric hypermassive neutron star 

 - heating by shocks generated at/after the merger 
 

Nearly spherical: 

   “4𝜋-counterpart” 
 

mass: 10−2 − 10−3𝑀⨀ 

velocity: 0.15 − 0.25𝑐 

kinetic E: ~1050 erg 
Hotokezaka, KK+ (submitted) 
      Movies made by Kenta Hotokezaka 

Meridional plane 

log g/cc 



Emission mechanisms 

1. ejecta-ISM shock radio flare (Nakar&Piran 2011) 

  synchrotron radiation like GRB afterglow and SNR 

  O(year) to the peak: loose association with GWs 
 

2. kilonova/macronova (Li&Paczynski 1992, Metger+ 2010) 

  radioactive decay of r-process elements 

  O(day) optical transients: many contaminations 
 

No emission mechanism is perfect as counterparts 

We need yet another electromagnetic counterpart! 



Shock breakouts just at the merger 

A contact surface is heated up to ~50MeV, so that 
hot material escape into the cold, low-density crust 

The shock breakout should result unavoidably 



Shock and post-shock acceleration 

A smaller mass is accelerated to a higher velocity 
                    (Whitham 1958, Sakurai 1960, Johnson&Mckee 1971) 
 

Shock acceleration 

 the acceleration of shock waves as they descend 
the density gradient = the neutron star crust 
 

Post-shock acceleration 

 the acceleration of ejected material by                        
converting thermal E. to kinetic. E and                          
by the pressure gradient inside them 

ln 𝜌 

ln 𝑟 

𝑣 ∝ 𝜌−0.2 



Ultra-relativistic outflows 

Based on a spherical SNe model (Tan, Matzner, Mckee  

2001) 

𝛽Γ 

Kinetic E in erg 
           above 𝛽Γ 

Though ~10−9𝑀⨀ , 
 more than 1046 erg 
  is expected tor Γ > 10 

Ejecta mass is 

~10−4 − 10−5𝑀⨀ 



Blast waves and synchrotron emission 

Ultra-relativistic -> fast and high-energy emission 

 

How to 

 observe in 

  practice? 

 - GW alert 

 - galaxy 

    monitor 

time after the merger in seconds 

100Mpc Light curves 

ISM density 



Summary 

Electromagnetic counterparts to gravitational waves 
from binary neutron star mergers will be important, 
and we still have no “perfect” counterpart model 
 

We propose a possibility of ultra-relativistic outflows 
and associated X-ray-to-radio bands, second-to-day 
timescale emission from the shock breakout at the 
binary merger, ejecta-ISM shock, and synchrotron 
 

This model is bright enough and has tight association 
with GWs, but it will be challenging to observe 



 



appendix 



Horizon distance/detection rate 

The signal-to-noise ratio threshold is taken to be ~8 

For a best-oriented binaries (face-on to the detector), 

 445/927/2187Mpc for NSNS/BHNS/BHBH binaries 

 

 

Detection rates 

 are estimated 

  with models 

Abadie+ (2010) 



Why we need counterparts? 

One/two GW detectors cannot localize GW sources 

O(10 degrees^2) for future GW detector networks 
 

EM detection helps 

 - param. estimation 

 - host galaxy search 
 

+ EM mechanisms 

+ (psychologically) 

   add GW evidences 

Fairhurst 
(2012) 

H: Hanford LIGO 
L: Livingston LIGO 
V: VIRGO 
I: LIGO India 
K: KAGRA 



How to localize by GWs? 

Triangulation by time delays between GW detectors  

For three detectors, we obtain two crosses of circles 

The fourth detector=KAGRA improves the situation 

𝜃 

𝑑 

𝑡delay =
𝑑 cos 𝜃

𝑐
 

Detector 1 

Detector 2 

Detector 3 

Source position 
 candidate circle 

On the sky 



Radio flare 

Ejecta forms blast waves colliding the ISM, and 
magnetic fields amplified & electrons accelerated 
 

Radio synchrotron 
 

O(year) to the peak… 

Can we really declare 

 association with GWs? 

Piran+ (2012) 



macronova/kilonova 

Neutron-rich ejecta may accompany the r-process 
nucleosynthesis and radioactive nuclei formation 

 similar to SNe, only 1000 times brighter than novae 
 

Shine in optical/UV 

O(<day) to the peak 
 

Uncertainty in r-process 

 reaction, opacity… 

Metzger+ (2010) 

Li&Paczynski (1998) blackbody model 
                                         in Metzger+ (2010) 



Shock acceleration in the envelope 

Newtonian 

 

 

 

Semi-analytic 

Tan+ (2001) 

stellar surface                       ejecta base 

change in 
 the density gradient 



Post-shock acceleration 

Rankine-Hugonoit relation at the strong shock 

𝛽𝑠 𝛽2 = 7 6   for non-rela, Γ𝑠 Γ2 = 2  for ultra-rela 

After converting internal energy to thermal energy 

𝛽𝑓 𝛽𝑠 = 6 2 7 = 1.21  for non-rela 

Γ𝑓 = 2Γ𝑠
2 3  for ultra-rela (Blandford&Mckee(1976)) 

But post-shock acceleration is more efficient 

𝛽𝑓 𝛽𝑠 = 2.04  (Sakurai 1960) 

Γ𝑓 ≃ Γ𝑠 2 
1+ 3

 (Johnson&Mckee 1971) 



Post-shock acceleration 

Semi-analytic 

 

 

 

Reproduce simulations 

 

The distribution of 

 velocity-kinetic E. is given 

  taking the mass into account 



Neutron star crust 

 

Chamel&Haensel (2000) Chamel&Haensel (2000) 

Chamel&Haensel (2000) 
Oertel+ (2012) 



Estimation of the ejecta mass 

Crust density profile: 𝜌 ∝ 𝑅 − 𝑟 𝑛, here 𝑛 ≈ 3 

 assume a core-crust interface is at some density 𝜌0 

Shock velocity: 𝑣 ∝ 𝜌−0.2 for polytropic index 𝑛 = 3 

 assume 𝑣ini is the core sound velocity ~0.25𝑐 

 𝑣esc = 2𝐺𝑀 𝑅 ~0.7𝑐 for a typical HMNS 

Acceleration from initial to escape velocity gives 

 the ratio between the density 𝜌esc 𝜌0  

Integrate this with geometrical reduction gives the 
ejecta mass to be 10−2~10−3𝑀crust ~0.01𝑀⨀  



Blast wave evolution 

Blandford-Mckee’s solution (Blandford&Mckee 1973): 
the evolution of relativistic self-similar blast waves 

An initial shell has energy 𝐸 and Lorentz factor Γ 

BM begins when the shell obtains ~𝐸 from the ISM 

                                𝑅(𝑡) ∝ 𝑡1/4, Γ(𝑡) ∝ 𝑡−3/8 

                         For a refreshed shock 𝐸 > Γ ∝ Γ1−𝑠 

                     𝑅 𝑡 ∝ 𝑡(𝑠+1)/(𝑠+7) 

                            Γ(𝑡) ∝ 𝑡−3/(𝑠+7) (Rees&Meszaros 1998) 

Blast wave 

InterStellar Medium 



Assumption for refreshed shocks 

Fully adiabatic evolution (no radiation energy loss) 

A radius-Lorentz factor closure relation: 𝑅 = 4Γ2𝑐𝑡 

 this exact factor depends on situations 

When the slower shell rear-ends, it is decelerated 
by the material accumulated by all the faster shells 

𝐸0
Γ

Γ0

1−𝑠

~Γ2𝑅3𝑛H𝑚𝑝𝑐 

These relations determine the time evolution 



Synchrotron radiation 

Emission by relativistic electrons in a mangetic field 

 - electron acceleration behind a shock 

 - magnetic field amplification behind the shock 

Fit the GRB afterglow and SNR well 

 

Assume that the same model holds also in our case 

 - a smaller mass leads earlier deceleration 

 - more energetic electrons contribute to radiation 



Synchrotron radiation 

The electron number density in the Lorentz factor is 
assumed to have a power-law distribution 

high frequency: cooling, low frequency: absorption 
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General relativistic simulation of 
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Kenta Kiuchi 
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Magnetized Binary Neutron Star Mergers 

Magnetic Fields of NS （Manchester 04） 

1011-14 G 

Spin period 

P
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Neutron stars have a magnetic field in general. 

What about  in binary neutron star 

mergers ?  

Possible amplification processes 

‣ Kelvin-Helmholtz instability (Price-

Rosswog 06, Gaicomazzo+ 11) @merger 

‣ Magnetorotational instability 
(Balbus-Hawley 98, Rezzolla+ 11) in HMNS / 

disk 

‣ Compression 

‣ Magnetic winding 



Mass of observed NSs 
(Lattimer & Paraksh 06) 

Outcome of binary neutron star mergers 

Shapiro-Time delay of PSRJ1614-2230 
(Demorest+ 10) 

‣Canonical mass of BNS = 2.7-2.8 M


 

‣Maximum mass of spherical NS = 1.97 ±0.04 M


 

Long-lived Hyper Massive Neutron Star (HMNS) would be 

formed after the merger  

⇒ Magnetic fields would be an important player in binary 

neutron star mergers, e.g., angular momentum transport etc. 



NR simulations for magnetized BNS mergers 

✓Albert Einstein Institute (Giacomazzo+ 09, 11, Rezzolla+ 11) 

‣ Γ-law EOS  

✓Illinois University (Liu+ 08) 

‣ Γ-law EOS 

✓ Louisiana University+ (Anderson+ 08) 

‣ Γ-law EOS 

 

All the simulations have been done so far 

‣  Relatively short duration ≾ 20 ms after merger or BH 

formation   

‣  Applied only Γ-law EOS 

 

Our motivation 

‣ Long term simulation for exploring the magnetic  

amplification process 

‣ Adopt the nuclear theory based EOS 



Set up 

‣ Equation of State : H4 based on RMF (Gledenning & Moszkowski 91)  

    Mmax ≳ 2.03 M
  and Γ-law for thermal part  (Γth=1.8) 

   P = Pcold + Pth 

‣ BNS mass :  2.7 M


, 2.8 M
 (Equal mass system) 

‣ Magnetic fields configuration : Confined 

GRMHD simulation of magnetized BNS mergers 

Confined field line (Liu+08) 



‣ Code description : FMR – GRMHD code based on Balsara’s 

method preserving Div · B  = 0 as well as the magnetic flux 

conservation (KK+ 12 ) 

 

Formulation and Numerical scheme 

‣Baumgarte-Shapiro-Shibata-Nakamura formulation (Shibata-

Nakamura 95, Baumgarte-Shapiro 99) 

‣4th-order FD in space and time for the Einstein eqs. 

‣LLF flux and 3rd-order reconstruction for MHD 

‣Weno5 for reconstruction in the refinement boundary 

 

Resolution Study 

‣ High resolution       Δx = 230 m  (NS covered by 100 grid points) 

‣ Medium resolution  Δx = 288 m  (NS covered by 80 grid points) 

‣ Low resolution         Δx = 384 m  (NS covered by 60 grid points) 

 

GRMHD simulation of magnetized BNS mergers 







Property of BH and torus 

Density and angular velocity profile along x-axis 

‣ Mass of BH is 2.6-2.7 M  and spin of BH is ≈ 0.7 

‣ Almost Keplerian profile (∝ R -3/2) 

‣ Torus mass ≈ 0.03-0.04 M
 @ 30 ms after BH formation 

‣ MRI wavelength would be larger compared to HMNS, e.g.,  

 ρ  ≈ 1015 g / cm3 



Magnetic field amplification (2.8 M
 - confined model) 
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BH formation 

‣ Rapid increase at t – tmerge ≈ 0 ms 

‣ Slow increase in the HMNS phase 

‣ Exponential growth after the BH formation (inside 

the torus) 



Rapid increase at t – tmerge ≈ 0 ms 

Magnetic field strength 
Vorticity @ t – t merge ≈ 0 ms 

‣ Poloidal field increases by compression ∼ ρ2/3 

‣ Toroidal field increases by the Kelvin-Helmholtz 

instability (Price-Rosswog 06, Anderson + 08, Gaicomazzo+ 11) 

‣ Vortexes appear in the shear layer forming the two stars 

come into contact. 



Slow increase in the HMNS phase 

‣ Poloidal field increases due to the compression 

‣ Toroidal field increases by the magnetic winding 

‣ Very short MRI wavelength, i.e., ρ ∼1015 g / cm3  

Magnetic field strength 



Exponential growth after the BH formation 

High 

Medium 

Low 

Poloidal   Toroidal 

‣ Exponential growth in the high resolution, not in the low 

resolution, after the BH formation 

‣ e-folding time ≈ 6 ms (high resolution model) 

‣ Saturation level ≈ 3-5×1048 erg (1-2 % of kinetic energy) 

Saturation 

BH formation 



Grid resolution vs MRI wavelength 

‣ Red region  

= MRI wavelength is 

covered by more than 10 

grid points 

High 

Medium 

Low 

Poloidal   Toroidal 



2.7 M
  model 

‣ Strong magnetic pressure for the confined model 

 ‣ 2.7 M
 model is marginally stable 

‣ Already reaches to a saturation level ≈ 2 ×1049 erg (3-5 % of 

kinetic energy)  

BH formation 

Saturation 



Mass ejection 

Mass ejection is important for the electromagnetic 

counter part of BNS mergers 

‣synchrotron radiation (radio) (Nakar & Piran 11) 

∼ 2.5 mJy (E0/1049erg)(n0/1cm-3)1/2(β/0.2)-1 (D/300Mpc)-2 

‣r-process elements (optical) (Li-Paczynski 98, Metzger+10, 12) 

tpeak ∼ 0.1 day (β/0.2)-1/2 (Meje/10-3 M )1/2 

Lpeak ∼ 7 ×1041 erg/s (f/3×10-6) (β/0.2)1/2 (Meje/10-3 M )1/2 

2.7 M


– confined B 

2.8 M


– confined B 

‣Rapid rise due to the gravitational 

torque @ the merger  

‣ Meje ≈ several ×10-4 M
 

‣ Kinetic energy E0 ≈1049-50  erg 



Summary for magnetized BNS mergers 

‣  Torus around the BH is subject to the MRI 

Long term and high-resolution simulation is essential 

‣ Turbulent magnetic field develops inside the torus 

‣ Saturation of MRI : magnetic energy ≈ 1-5 % of kinetic 

energy 

 

Future work 

‣ Higher resolution simulation, ultimately Δx ≈ 100 m 

on K computer 

‣ Weak magnetic field, e.g., 1011-13 G for observed NSs 

‣ Systematic study for EOS 

‣ Equilibrium configuration of magnetized binary neutron 

stars as initial conditions 



Luminosity 

2.7 M
  model 2.8 M

  model 



Gravitational wave astronomy and binary neutron 

star mergers 

Gravitational waves  

‣ Imprinting “raw” information of 

sources 

‣ Extremely weak signal, hc∼10-22 

Binary neutron star (BNS) mergers 

‣ Promising source of GWs : 10 events / yr for KAGRA 

‣ High-end laboratory for the nuclear theory : 

Reconstruction of Mass-Radius relation 

‣ Theoretical candidate of Short-Gamma-Ray Burst 
(Narayan+ 92) 



Numerical Relativity 

BNS mergers 

‣ Density ∼1015 g / cm3 (Strong interaction) 

‣ Temperature ∼1011 K (Weak interaction) 

‣ Strong gravity (Gravity) 

‣ Magnetic field ∼1011-14 Gauss (Electromagnetic force) 

 

 Numerical Relativity :  Simultaneously solving  

‣ the Einstein equations 

‣ Relativistic (magneto) hydrodynamics 

‣ Radiation field for neutrino 

 

Unique approach to explore phenomena in strong gravity 



Dipole field line 

Dipole model 

BH formation 



2.8 M
  - Dipole model 

High 

Medium 

Low 

Poloidal   Toroidal 

Saturation 

BH formation 

‣ Exponential growth in the high and middle resolution, not in 

the low resolution after the BH formation 

‣ e-folding time ≈ 6 ms (high resolution model) 

‣ Saturation level ≈ 6-7 ×1048 erg (2-3 % of the kinetic energy) 
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Shear Oscillations in  
Hadron-Quark Mixed Phase 

Hajime Sotani (YITP) 

T. Maruyama (JAEA) 
T. Tatsumi (Kyoto Univ.) 



Hadron-Quark Mixed Phase 
•  Nonuniform structure between 
the crust and core (pasta). 

•  As increasing the density, hadronic 
matter could change to quark matter 
with the phase transition. 

•  Similar to the pasta in crust region, 
the hadron-quark mixed phase may 
become nonuniform structure, 
whose properties depend strongly 
on the surface tension. 
–  10 MeV fm-2 < σ < 70 MeV fm-2 

•  How can we see such properties ?? 

14/Nov./2012	

crust	


core	


quark ? 
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Asteroseismology 
•  Via the observations of stellar oscillations 
　→ One can get the interior information (asteroseismology) 
     e.g., helioseismology for Sun 

•  With this technique, the possibilities to get the 
information of NSs have been suggested. 

14/Nov./2012	

Andersson & Kokkotas (1998) 
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Shear Oscillations 
•  Shear oscillations can be characterized by μ. 
•  We know the formula of μonly in bcc lattice. 

–  considering the shear only in quark spherical droplet. 
–  frequency of fundamental oscillation ∝ vs (vs2 ~ μ/ρ) 
–  calculated frequencies could be lower limit 

14/Nov./2012	

ni : number density of quark droplet	

Z : charge of quark droplet	

a : spacing of quark droplet 

density	

HQ	  mixed	  phase	hadron	  ma@er	 quark	  ma@er	

strohmayer et al., 1991 
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Shear Modulus 
•  μ~10-10-10-9 in crust 
•  μ~10-7-10-6 in HQ mixed phase 

–  number of “charge” is quite different 
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Estimations 
•  Compared with crust properties, 

–  μbecomes ~103 times larger 
–  ρbecomes ~10 times larger 
–  vs = (μ/ρ)1/2 could be ~10 times larger 

•  Frequencies of shear oscillations ∝ vs 
–  In HQ mixed phase, the frequencies of shear oscillations 
could become ~10 times larger than that in crust. 
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Fundamental Oscillations 1 
•  Frequencies of fundamental shear oscillations as 
a function of stellar mass 
–  those depend strongly on the surface tension 

c.f.) 0t2 in crust ~ 20 - 30 Hz 
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Fundamental Oscillations 2 
•  We find that the frequencies of fundamental shear 
oscillations are almost proportional to σ. 

•  With the help of the observation of stellar mass, it 
might be possible to obtain the value of σ.  
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Fundamental Oscillations 2 
•  We find that the frequencies of fundamental shear 
oscillations are almost proportional to σ. 

•  With the help of the observation of stellar mass, it 
might be possible to obtain the value of σ.  
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Conclusion 
•  We consider the shear oscillations in hadron-quark 
mixed phase, whose properties depends strongly on 
the surface tension. 

•  Frequencies of shear oscillations in HQ phase becomes 
~10 times larger than those in crust. 

•  Frequencies of fundamental oscillations are 
proportional to surface tension.  

•  We show the possibility to determine the value of σ. 
–  With the help of the observation of stellar mass, one might be 
possible to obtain the value of σvia the observation of shear 
oscillations. 
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1st Overtones 
•  Frequencies of 1st overtone shear oscillation as a 
function of stellar mass 

•  We can not see the linearity with respect to σ. 
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!"# !"! !"$ !"% !"& !"'!"'

$"'

%"'

&"'

'"'

!(!

!"
$)
*+
,
-.

&#

$#

!#

!" #" $" %"!&"

#&"

$&"

%&"

'&"

()*+,(-./#0

!!
#(
)1
2
30

!&!"
!&#"
!&$"
!&%"

11	JGRG22	  @	  Tokyo	  Univ.	



Comparison with QPO frequencies 
•  Comparison of frequencies of torsional oscillations 
with the QPO frequencies observed in SGR 1806-20 

- less than 5% accuracy 
14/Nov./2012	   JGRG22	  @	  Tokyo	  Univ.	  

L	  =	  127.1	  MeV	
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Non-axisymmetric oscillations of rotating relativistic
stars by conformally flat approximation

Shin’ichirou Yoshida (The University of Tokyo)
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Studies of oscillations of rapidly rotating relativistic stars 

astrophysical interests

as sources of gravitational wave

ground-based laser-interferometers
resonant detectors      

stability of stars
 
determining maximum masses/rotational period of NS

ν ∼ several · (10
2 − 10

3
)Hz

Aim of the studies:

Compute characteristic(eigen-) frequencies of “realistic” NS models.

Determine the stability boundaries of a parameter space of rotating stars.
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Kojima (1992,1997) slow-rotation
Yoshida & Kojima (1997) slow-rotation

Cutler & Lindblom (1992) post-Newtonian

Yoshida & Eriguchi (1997,1999) Cowling; f-modes
Yoshida & Eriguchi (2001) Cowling; axisymmetric modes
Yoshida et al. (2002,2005) Cowling; f-modes

Lockitch et al. (2001) slow-rotation, relativistic inertial modes

Ruoff & Kokkotas (2001,2002) slow-rotation, relativistic r-
modes

Ferrari et al. (2004) Cowling; rotating proto-NS
Passamonti et al. (2006) slow-rotation
Ferrari et al. (2007)

                           

Font et al. (2001) Cowling; axisymmetric oscillations
Dimmelmeier et al. (2006) spatially conformal-flat; 
axisymmetric oscillations

Saijo et al. (2001) post-Newtonian
Saijo (2005) spatially conformal-flat

Shibata & Sekiguchi (2003) full GR; axisymmetric oscillations
Shibata & Karino (2004) post-Newtonian; bar-mode instability
Shibata & Sekiguchi (2005) full GR; dynamical instability

Stavridis et al. (2007) slow-rotation(differential)
Kastaun et al. (2010) Cowling
Krueger et al. (2010) Cowling
Gaertig & Kokkotas (2009,2011) Cowling (also g-modes)

Baiotti et al. (2007) full GR; bar-mode instability
Manca et al. (2007) full GR; dynamical instability
Takami et al. (2011) full GR; axisymmetric instability

Preceding studies of oscillations of rotating stars in GR

* non-linear hydrodynamic simulation

* linear hydrodynamic simulation

via traditional eigenvalue problem via direct hydrodynamical simulations

“Cowling”=Cowling approximation where metric perturbation
is neglected

2012年11月14日水曜日



Full GR treatment is rather expensive!

* eigenvalue problem - no formulation exists except for slowly rotating cases! 
(messy equations; how do we impose boundary conditions?)

* direct numerical simulations - numerically expensive
                  identification & extraction of eigenmodes?

For a “fluid mode”, its gravitational damping time is several orders of magnitude
longer than the period   We may neglect the gravitational radiation effect.

But, neglecting all the gravitational perturbation (Cowling approximation) is not satisfactory,
especially for the low-order modes.

We want something better than Cowling, but easier to handle than “full GR”.

  Conformally flat approximation!!

2012年11月14日水曜日



General relativistic hydrodynamics with spatially 
conformally-flat approximation

Wilson et al.(1996) - binary NS quasi-equilibrium

Glanclement et al. (2002) - binary BH quasi-equilibrium

Oechslin et al. (2002;2004) - NS merger

Faber et al. (2004) - NS merger

Dimmelmeier et al.(2002) - Core-collapse SN

Saijo (2005) - bar-instability in core collapse

Dimmelmeier et al.(2006) - Non-linear oscillations of NS

Isenberg (1978) ; Wilson et al. (1996) :  Solving system of elliptic eqs. for metrics
“Isenberg-Wilson-Mathews theory”

Applications

2012年11月14日水曜日



Formulation

assumptions
+  a background star - stationary, axisymmetric, isentropic
+  barotropic EOS - no buoyancy (no g-modes)
+  linear perturbation
+  spatially conformally flat approximation (CFA) of gravity

- both equilibrium & perturbed state

[CFA] 

“(3+1)-” form of Einstein’s equation in CFA:
        Hamiltonian & Momentum constraint, “evolution” of Kij (K=0)

ds2 = −α2dt2 + ψ4fij(dxi + βidt)(dxj + βjdt); fij : flat metric

∇̂i∇̂iψ = −2πψ5

�
ρ

H
+

1
64πα2

Λ̂ijΛ̂ij

�

∇̂i∇̂i(αψ) = 2παψ5

�
ρh(3(αut)2 − 2) + 5p +

7
64πα2

Λ̂ijΛ̂ij

�

∇̂i∇̂iβ
j = 16παψ4Sj − 1

3
∇̂j(∇̂kβk) + Λ̂jk∇̂k ln

�
α

ψ6

�

ρH := nanbT
ab Sj := −δj

ancT
a
c Λ̂ij := ∇̂iβj + ∇̂jβi − 2

3
f ij∇̂kβk

T ap := ρhuaub + pgab
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Formulation - contd.

% boundary conditions
  
 +  metric components               --- regularity at the origin & at the infinity
 +  fluid variables           ---  regularity at the origin

           stress free surface :  

ψ, α, βj

h, πj

∆p = 0 (Lagrangian perturbation of pressure vanishes).

Linearizing equations above and supplementing with boundary
conditions, we set up an eigenvalue problem.

[equations of hydrodynamics]

rest mass conservation

momentum equation

πb∂bπj − πb∂jπb = 0

πa := hua

∂aπa + πa∂a ln
�ρ

h

�
+ πa

�
∂aα

α
+

6∂aψ

ψ
+

2
r
δr
a + cot θδθ

a

�
= 0
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Numerical treatment

(A) metric part:  given sources (S), formal solutions are obtained by Green’s functions

∇̂i∇̂iq = S → q =
�

S(�y)G(�x|�y)dVy

(B) fluid part:  equations are descretized

U(f) = g(q) f : array vector of fluid variables
U : array of operators describing hydro-equations

regarded as source terms when q is given

Equations of fluid part are solved by Newton-Raphson method.

(A) and (B) are iteratively solved. => eigenmode!

2012年11月14日水曜日



Numerical treatment - contd.

* radial grid points: non-uniform distribution (r*=1 on the equatorial surface)
* angular grid points: zeroes of Legendre function

   -- For stellar interior, “fluid” and “metric” grids are staggered.

*  Surface-fitted coordinate: r = Rs(θ∗) r∗

θ = θ∗
p(Rs, θ) = 0 (equilibrium surface)

Equilibrium stellar surface is always mapped to r*=1.
==> Boundary condition is easy to impose.
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Equater

computational grids

* background star is stationary and axisymmetric
=> perturbation is decomposed into harmonic components

The problem is reduced to 2D eigenvalue problem.
δf ∼ exp[−iσt + imϕ] · F (r, θ)
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Results - quadrupole modes of slowly rotating star

Mode M / R

0.100 0.998 1.26 0.998 1.02

0.200 0.997 1.15 1.00 1.01

0.100 1.00 1.10 0.994 1.00

0.200 0.997 1.11 0.991 1.01

0.100 1.00 1.05 0.997 1.00

0.200 0.999 1.06 1.00 1.00

σ0
CFA/σ0

R σ0
Cw/σ0

R σ�
CFA/σ�

R σ�
Cw/σ�

R

p
1

p
2

f

Cw: Cowling approximation (Yoshida & Kojima 1997)

σ = σ0 + m σ� Ω
non-rotating rotational correction

p = K�2EOS ---

δf ∼ exp(−iσt + imϕ)
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Results - quadrupole modes of slowly rotating star
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CFS instability Chandrasekhar (1970),  Friedman & Schutz (1985) 

From the inertial frame, the star (with a
marker dot) and the mode pattern is rotating 
in clockwise direction. 

Angular momentum carried away
by gravitational wave has the same sign
as that of the star.

From the corotating frame of star (in 
which the star is at rest), the mode pattern 
is rotating in counter-clockwise direction.  
This mode has an opposite sign of canonical 
angular momentum to that of star (and that of
gravitational wave).

instability in pulsations of rotating stars that couple to (gravitational) 
radiation field         --- f-mode, r-mode instability

Ω�
inertial
frame
view

corotating
frame
view

zeroes of frequency (seen from the inertial frame) marks the onsets of the instability.
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Results - sequences of counter-rotating f-modes
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m=2 (Cowling)
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m=4 (Cowling)

Equilibria: computed by COCAL code (Uryu & Tsokaros 2012)
EOS: p = Kρ2

sequences f-modes (l=m=2) with compactness M/R=0.20

(kinetic energy/gravitational energy)

pattern speed ωp := σ/m
m=2

m=3

m=4

·‘exact’ neutral 
points (Stergioulas 
& Friedman 1998)
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Summary

We developed a new code to solve eigenmode problem of
rotating star with arbitrary rotation.

Compared to conventional Cowling approximation, the eigenmodes
obtained are highly improved.

spatially conformal flatness approximation
    => suppressing gravitational radiation

What’ s coming next?
* differential rotation --- proto-NS ; dynamical instability of rotating stars
* nuclear EOS --- asteroseismology of NS
* stably stratified star --- g-modes of rotating stars in GR
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1. Introduction
Various Instabilities in Secular Timescale

r-mode instability

g-mode instability

• Fluid elements oscillate due to restoring force of buoyancy 
• Instability occurs in nonadiabatic evolution or in convective unstable cases 

Kelvin-Helmholtz instability
• Instability occurs when the deviation of the velocity between the different 

fluid layers exceeds some critical value

1
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Rotating 
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Inertial
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m1�tOccurs when

amplify

(Andersson 98, Friedman & Morsink 98)
ei(m⇥��t)

CFS instability (Chandrasekhar 70, Friedman & Schutz 78)

• Fluid elements oscillate due to Coriolis force 
• Instability occurs due to gravitational radiation 

• Fluid modes (f, p, g-modes) may become unstable due to gravitational 
radiation 

• Instability occurs in dissipative timescale 
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Dynamics of r-mode instabilities

• Saturation amplitude of o(1) 
• Imposing large amplitude of radiation reaction 

potential in the system to control secular 
timescale with dynamics (Lindblom et al. 00)

1D evolution with partially included 3 wave interaction

3D simulation

• Saturation amplitude of ~ o(0.001), which depends on interaction term
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(Schenk et al. 2001)Final fate of r-mode instability

• Evolution starting from the amplitude o(1) 
• Imposing large amplitude of radiation reaction potential
• Energy dissipation of r-mode catastrophically decays to 

differentially rotating configuration in dynamical 
timescale

3D simulation

(Gressman et al. 02, Lin & Suen 06)
• After reaching the saturation amplitude ~o(0.001), 

Kolmogorov-type cascade occurs
• Destruction timescale is secular
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Alternative approaches
•From linear regime to nonlinear regime
•From dynamical timescale to secular timescale

are necessary!
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Amplitude of r-mode instability

• Isolated compact object in the supernova 
remnant Cassiopeia A

• Compelling evident that the central compact 
object is neutron star

• Restriction to the amplitude of the r-mode 
instability by not detecting gravitational waves 

Possibility of gravitational wave source

• Possibility of parametric resonance by nonlinear mode-mode 
interaction

• Amplification to 

Necessary to obtain a common knowledge for the basic 
properties of r-mode instability !

(LIGO 10)

↵ ⇡ 0.14� 0.005

(Bondarescu et al. 09)

↵ ⇠ 1
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2. Dynamics beyond acoustic timescale

Gravitational radiation reaction (Blanchet, Damour, Schafer 90)

hij = � 4G

5c5
�
d3ITT

ij

dt3
amplification factor to control the 
radiation reaction timescale

�(RR) =
1
2
(�� + hijx

j�i�) �� = 4�hijx
j�i�

Quadrupole radiation metric

Gravitational radiation reaction potential

(includes 2.5PN term)

• Timescale which cannot be reached by GR hydrodynamics

• Instability driven by gravitational radiation
Need to separate the hydrodynamics and the radiation term

Need to impose gravitational waves

“Newton gravity + gravitaional radiation reaction” are at least 
necessary
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Dynamics beyond the acoustic timescale

Kill the degree of freedom of the sound wave propagation

Propagation of the sound wave

No shocks

Imposing the anelastic approximation changes the structure of the 
pressure equation

Linear regime
(Villain & Bonazzolla 02)

Anelastic approximation

rj(⇢v
j) = 0

vjrjh+ (�� 1)hrjv
j = 0

rj(⇢eqv
j) = 0

✓
4� 1

c2s

@

@t

◆
P = S@

@t
rj(⇢v

j) +4P = S

@⇢

@t
=

1

c2s

@P

@t
= �rj(⇢v

j)

• Shortest timescale in the system restricts the maximum timestep for 
evolution

• Relax the restriction from the rotation of the background star

Acoustic timescale in Newtonian gravity 
(control acoustic timescale)

Introduce rotating reference frame
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Basic equations in rotating reference frame (Lie derivative)

Boundary condition: 
P=0 at the stellar surface�p = Sp

@⇢

@t
= 0

rj(⇢v
j) = 0

@

@t
(⇢ui) +rj(⇢uiv

j) = �rip� ⇢ri(�+ �(RR))
�⇢(vj(eq) + vj)rjui (eq) + ⇢ujriv

j
(eq)

Time evolution

Pressure poisson equation

Anelastic approximation (constraint)

Need a special technique to satisfy constraints throughout 
the evolution

�̃ij = �ij + hijspatial metric

up to 1st order of �

Spatial component of the 
momentum velocity

ui(eq) + ui = �̃ij(v
j
(eq) + vj)
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Boundary Condition:             at the stellar surface

(McKee et al. 08)

8

1. Time update the linear momentum

2. Introduce an auxiliary function      and solve the following 
Poisson’s equation

Note that the velocity does not automatically satisfy anelastic condition

5. Time update the pressure

3. Adjust the 3-velocity in order to satisfy the anelastic condition

�

Procedure

(��ui)(�) = (��ui)(n) ��t[�ip + · · · ]

4. Introduce another auxiliary function      and solve the following 
Poisson’s equation

�

(��)(�) = �j(��vj)(�) � = 0

(��vi)(n+1) = (��vi)(�) � (�i�(�))

�� = �ij [�j(��ui)(�) � �j(��ui)(n+1)]
Boundary Condition:             at the stellar surface� = 0

p(n+1) = p(n) +
 (⇤)

�t

Similar procedure to SMAC method, which is used to 
solve Navie-Stokes incompressible fluid
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3. Nonlinear r-mode instability
Equilibrium configuration of the star 

• Rapidly rotating neutron star 
• Uniformly rotating, n=1 polytropic 

equation of state 

Eigenfunction and eigenvector of r-mode in incompressible star
Eigenfunction of the velocity

Impose eigenfunction type perturbation on the equilibrium 
velocity to trigger r-mode instability

Eigenfrequency (rotating reference frame)

Check the excitation of the eigenfrequency

rp/re T/W
0.55 0.102
0.65 0.088
0.70 0.076
0.75 0.062

� = 1� 10�4�v = ��R
� r

R

�l
Y (B)

ll

! =
2m

l(l + 1)
⌦ Incompressible star case
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Spectrum

Eigenfrequency of the 
r-mode from slow 

rotation approximation
(Yoshida & Lee 01)

Our excitation 
frequency

g-mode？

Due to 
• slow rotation approximation
• anelastic approximation
the eigenfrequency does not perfectly agree



No.
22nd  General Relativity and Gravitation in Japan

14 November 2012 @RESCEU, The University of Tokyo, Japan11

-3e-05
-2e-05
-1e-05

0
1e-05
2e-05
3e-05

�¡
�
�  r

 h
+ 

 R
 / 

M
2

0 100 200 300 400
t / Pc

-3e-05
-2e-05
-1e-05

0
1e-05
2e-05

¡�
� r 

h x 
 R

 / 
M

2

Saturation amplitude is around ↵ ⇡ 10�3

Gravitational Waveform



No.
22nd  General Relativity and Gravitation in Japan

14 November 2012 @RESCEU, The University of Tokyo, Japan12

Velocity profile
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•No velocity profile 
appears in the 
equatorial plane in 
linear and slow 
rotation regime of r-
mode instability

Effect of rapid 
rotation and 
nonlinearity

• Shock wave seems to 
form at the surface as 
the times goes on

“Destruction” of 
r-mode instability
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• Lindblom et al. shows in their 
paper that the catastrophic 
decay is due to the shocks 
and the breaking waves at the 
surface

• Anelastic approximation kills 
the dominant contribution of 
the density fluctuation

• Computation with small 
amplitude of velocity 
perturbation with Newtonian 
hydrodynamics may answer 
the question

13

Comment to the Catastrophic Decay?

(Lindblom et al. 02)

Might be very difficult
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4. Summary

• We have succeeded in constructing a nonlinear anelastic 
approximation in the rotating reference frame, which kills 
the propagation of sound speed, in order to evolve the 
system beyond the dynamical timescale.

• When the current multipole contribution is dominant to the 
r-mode instability (density fluctuation effect is negligible), 
the instability seems to last for at least hundreds of rotation 
periods 

• Studies of no anelastic approximation with small amplitude 
of velocity perturbation may help us for a better 
understanding

We investigate the r-mode instability of uniformly rotating 
stars by means of three dimensional hydrodynamical 
simulations in Newtonian gravity with radiation reaction
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Upper limits of particle emission from high-energy collision
and reaction near a maximally rotating Kerr black hole
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Introduction

“Kerr BHs as particle accelerators”
(Bañados, Silk & West 2009):
Collision with an arbitrarily high
centre-of-mass (CM) energy near the
horizon of a maximally rotating BH.
Implication to DM particles pair
annihilation.

Critical comments: Berti et al. 2009,
Jacobson & Sotirou 2010

Astrophysical relevance: Harada &
Kimura 2011abc
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Can we observe new physics?

Particle collision with extremely high
CM energy might produce an exotic
particle. Can we observe it?

If a high-energy and/or super-heavy
particle is to be emitted from the
collision of ordinary particles, we need
energy extraction from the BH.

This is possible in general for a rotating
BH, as is well known.
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Collisional Penrose Process

Figure: Left: Penrose process, right: Collisional Penrose process. The light and
deep shaded regions denote the ergoregions and BHs, respectively.

Energy can be extracted from a rotating BH due to the negative
energy orbit in the ergoregion.

Collisional Penrose process (Piran, Shaham & Katz 1975)

Jacobson & Sotiriou (2010) argue that no energy extraction occurs
through the BSW collision.
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Maximally rotating BH

Maximally rotating Kerr BH
Boyer-Lindquist coordinates: (t, r, θ, ϕ)
a = M: rH = M, ΩH = 1/(2M), κH = 0
Ergoregion: M < r < M(1 + sin θ)

Geodesic motion in the equatorial plane
1D potential problem

1
2

(pr)2 + V(r) = 0, or pr = σ
√
−2V(r), where pr =

dr
dλ
,

where λ is the affine parameter,

V(r) = −Mm2

r
+

L2 − a2(E2 − m2)
2r2

−
M(L − aE)2

r3
− E2 − m2

2
,

and E and L are conserved.
Forward-in-time condition: pt = dt/dλ > 0
This implies 2E − L̃ ≥ 0 in the limit r → rH, where L̃ = L/M. We
define a critical particle as a particle satisfying 2E − L̃ = 0.
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Collision and reaction

Collision and reaction: 1 + 2 → 3 + 4
CM energy: E2

cm = −(pa
1
+ pa

2
)(p1a + p2a) = −(pa

3
+ pa

4
)(p3a + p4a)

Conservation: E1 + E2 = E3 + E4 and L̃1 + L̃2 = L̃3 + L̃4
Radial momentum conservation：pr

1
+ pr

2
= pr

3
+ pr

4

BSW collision: particle 1 is critical (2E1 − L̃1 = 0), while particle 2 is
subcritical (2E2 − L̃2 > 0). If the two particles collide at r = M/(1 − ϵ)
(0 < ϵ ≪ 1) with pr < 0,

Ecm ≈

√√√
2(2E1 −

√
3E2

1
− m2

1
)(2E2 − L̃2)

ϵ
.

Ecm → ∞ as ϵ → 0.
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Particle motion near the horizon

Let L̃ = 2E(1 + δ), δ = δ(1)ϵ + δ(2)ϵ
2 + O(ϵ3).

The forward-in-time condition at r = M/(1 − ϵ) yields δ < ϵ + O(ϵ2).
Turning points of the potential

rt,±(e) = M
1 + 2e

2e ∓
√

e2 + 1
δ(1)ϵ

 + O(ϵ2), where e = E/m.

To escape to infinity from r = M/(1 − ϵ), we need e ≥ 1 and
(a) δ(1) < 0 and σ = 1
(b) δ(1) > 0 and r ≥ rt,+(e) or 0 < δ(1) ≤ δ(1),max = (2e −

√
e2 + 1)/(2e).
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Collision and reaction near the horizon

Let us consider a collision at r = M/(1 − ϵ).
Let L̃3 = 2E3(1 + δ), σ3 = ±1 and σ4 = −1.

The forward-in-time condition is taken into account.

The radial momentum conservation: pr
1
+ pr

2
= pr

3
+ pr

4
.

Expand pr
i

(i = 1, 2, 3, 4) in terms of ϵ.
The radial momentum conservation implies at O(ϵ)

(2E1 −
√

3E2
1
− m2

1
) + 2E3(δ(1) − 1) = σ3

√
E2

3
(3 − 8δ(1) + 4δ2

(1)
) − m2

3
.

It implies at O(ϵ2) an equation including m4. With this equation, we can
check whether m2

4
≥ 0 is satisfied or not.
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The energy of the escaping particle

The radial momentum conservation implies at O(ϵ)

(2E1 −
√

3E2
1
− m2

1
)+ 2E3(δ(1) − 1) = σ3

√
E2

3
(3 − 8δ(1) + 4δ2

(1)
) − m2

3
.

(1)

Squaring the both sides of Eq. (1) yields the following quadratic
equation for E3.

4A1E3(1 − δ(1)) = A2
1 + (E2

3 + m2
3), (2)

where A1 = 2E1 −
√

3E2
1
− m2

1
> 0.

Solving Eq. (2) for δ(1) and substituting it into Eq. (1) yields

A2
1 − (E2

3 + m2
3) = 2σ3 A1

√
E2

3
(3 − 8δ(1) + 4δ2

(1)
) − m2

3
. (3)
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Upper limits of the emitted particle’s energy

We assume E1 ≥ m1 so that particle 1 is initially at infinity.

(i) σ3 = 1: Eq. (3) immediately implies E3 ≤
√

A2
1
− m2

3
< E1, i.e., no

energy extraction.
(ii) σ3 = −1 and 0 < δ(1) ≤ δ(1),max: E3 = 2.186E1 is possible.

Eq. (2) immediately implies λ− ≤ E3 ≤ λ+, where

λ± = 2A1 ±
√

3A2
1
− m2

3
and the equality holds for δ(1) = 0.

This implies that E3/E1 takes a maximum (2 −
√

2)/(2 −
√

3) ≃ 2.186
for E1 = m1, m3 = 0 and δ(1) = +0.
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Escape without and with bounce

Figure: Left: escape without bounce (σ = 1), right: escape with bounce (σ = −1).

Energy extraction is possible only with bounce (σ3 = −1).
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Energy gain efficiency

The upper limit of the energy gain efficiency η = E3/(E1 + E2) can be
further studied based on O(ϵ2) equation.

The upper limit of the efficiency for E3 = EB is given by 146.6 % for
any BSW collision.

The upper limits are 117.6 % for perfectly elastic collision, 137.2 % for
inverse Compton scattering and 109.3 % for pair annihilation.

Our result agrees with a numerical work by Bejger, Piran, Abramowicz
& Hakanson (2012) and contradicts a simplistic argument by
Jacobson & Sotiriou (2010).

On the other hand, the efficiency is not very high but modest at most.
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Summary

The rotational energy of a maximally rotating BH can be extracted
through a BSW collision, whereas the emitted particle cannot be
highly energetic.

Note, however, that the BSW collision may open a new reaction
channel because of high CM energy, which can leave its features on
the gamma-ray spectrum (cf. Cannoni, Gomez, Perez-Garcia &
Vergados 2012).
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Stable Bound Null Orbit 
around a Black Ring 

T.Igata, H.Ishihara, and Y.Takamori  
(Osaka City University) 

  

Hideki Ishihara 



Introduction 
Higher-dim. Black Hole is a key  
            for a verification of extra dimensions?  

Black Ring 

Kerr Black Hole 

Myers & Perry (1986) Emparan & Reall (2002) 
Black Hole 



Geodesics around a Black Hole 
Geodesic particles are important probes of 
          gravitational field around a black hole. 

• ISCO appears for timelike particles 

• Unstable circular orbits exist for null particles 

• Geodesic equations in Kerr geometry are separable 

• No stable circular orbit exists for timelike particles 

• Unstable circular orbits exist for null and timelike particles 

• Geodesic equations are separable 

For spherical black holes (the Myers-Perry metric) 

• Stable stationary orbits exist for timelike particles 

• Geodesic equations would not be separable 

For black rings (the Emparan-Real metric) 

J.Hoskisson(2008), M.Durkee(2009),  

T.Igata, H.Ishihara, and Y.Takamori(2010),(2011) 

S.Grunau, V.Kagramanova, J.Kunz, C.Lammerzahl(2012) 

V.P.Frolov and D.Stojkovic(2003) 



Stable Bound Orbits 

Stable Bound Orbit 

Timelike Null 

4-D Black Holes Yes No 

5-D Black Holes No No 

5-D Black Rings Yes ? 

T.Igata, H.Ishihara, and Y.Takamori,  

  Phys. Rev. D82, 101501 (2010) 

Orbits stable against small perturbations, and  

bounded in a finite domain outside the black hole horizon. 



Particle Motion around a Black Hole 
4-dim. Schwarzschild BH case 

Effective potential : 

≖∴∨≲∻≌∩
≖∴∨≲∻≌∩ ∽ ≌∲
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≲ ⊡ ≍≌∲
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Particle Motion around a Black Hole 
D-dim. Schwarzschild BH case 

Effective potential : 

 No stable bound orbits for  

≖ ≄ ∨ ≲  ∻ ≌  ∩ ∽ ≌  
∲ 
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Stationary Points Set for Effective Potential 
Effective potential for D-dim. Schwarzschild BH 

Stationary condition 

no stable bound orbits  

≄ ∽ ∴ ≄ ∽ ∵ 

Local min. Local max. 

ISCO 

Local max. 

Stationary Points Set ≌  ∨ ≲  ∩ ∽ 
≳  

∨ ≄  ⊡  ∳ ∩ ≍  ≲  ∲ 
≲  ≄  ⊡  ∳ ⊡  ∨ ≄  ⊡  ∱ ∩ ≍  



How about  

Black Ring ?  



Horizon topology        

5D Singly Rotating Black Ring 

Free parameters  
: ring radius 

: thickness 

Killing vectors  

Metric 

fat thin 

Emparan & Reall (2002) 

≀ ≴  ∻ ≀ ⋁ ∻ ≀  ⋃  

≤ ≳ ∲ ∽ ⊡  ≆  ∨ ≹  ∩ ≆  ∨ ≸ ∩ 
⊵ 
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⊶ ∲ 
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⊵ 
⊡  ≇  ∨ ≹  ∩ ≆  ∨ ≹  ∩ ≤ ⋃  

∲ ⊡  ≤ ≹  ∲ ≇  ∨ ≹  ∩ ∫ ≤ ≸  
∲ 

≇  ∨ ≸ ∩ ∫ ≇  ∨ ≸ ∩ ≆  ∨ ≸ ∩ ≤ ⋁  
∲ 
⊶ 
∻  

≆ ∨⊻∩ ∽ ∱ ∫ ⊸⊻∻ ≇∨⊻∩ ∽ ∨∱⊡ ⊻∲∩∨∱ ∫ ⊺⊻∩∻ ≃ ∽
≲
⊸∨⊸⊡ ⊺∩∱ ∫ ⊸
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≒ 
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Event Horizon 

rotation 

rotation 

                  are suppressed. 
            : polar coordinates on the independent two planes, respectively. 

unit 

Coordinates for the Black Ring 



Hamiltonian formalism for a Null particle 
Constants of motion 

Hamiltonian 

≕∨⊳∻ ⊽∻ ≬⋃∻ ≬⋁∩ ∽ ≧≴≴ ∫ ≧⋁⋁≬∲⋁ ∫ ≧⋃⋃≬∲⋃ ⊡ ∲≧≴⋃≬⋃

≅ ∽ ⊡≫≴∻ ≌⋁ ∽ ≫⋁∻ ≌⋃ ∽ ≫⋃

Effective Potential 

∨≬⋁ ∺∽ ≌ ⋁∽≅ ∻ ≬⋃ ∺∽ ≌ ⋃ ∽≅ ∩

≈ ∽ ∱ ∲ ≧ 
⊮  ⊯  ≫  ⊮  ≫  ⊯  
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Stationary Points Set 

Stationary Orbits 

≀⊳≕∨⊳∻ ⊽∻ ≬⋃∻ ≬⋁∩ ∽ ≀⊽≕∨⊳∻ ⊽∻ ≬⋃∻ ≬⋁∩ ∽ ∰

⊧ ∽ ≦∨⊳∻ ⊽∻ ≬⋃∨⊳∻ ⊽∩∻ ≬⋁∨⊳∻ ⊽∩∩≧
≬⋃ ∽ ≬⋃∨⊳∻ ⊽∩∻ ≬⋁ ∽ ≬⋁∨⊳∻ ⊽∩

≟⊽ ∽ ≟⊳ ∽ ∰
Stationary Solutions 

defines 2-dimensional surface embedded  

in the 4-dimensional space 

≕ ≪⊧ ∽ ∰Null condition for the stationary orbits is 

≎  ∽ ≦ ∨ ⊳  ∻ ⊽  ∻ ≬ ⋃  ∻ ≬ ⋁ ∩ ≧ 

≫  ⊽ ∽ ≫ ⊳ ∽ ∰ 



Stability conditions 

≈∨≕ ∩ ∽
⋃

≀∲⊳≕ ≀⊳≀⊽≕
≀⊽≀⊳≕ ≀∲⊽≕

∡
Stable Stationary orbit Local minimum of ≕ ∨ ⊳  ∻ ⊽ ∻ ≬ ⋃  ∻ ≬ ⋁ ∩ 

≤≥≴≈∨≕ ∩≪⊧ ∾ ∰ ≴≲≈∨≕ ∩≪⊧ ∾ ∰and 

Two eigenvalues of Hessian matrix 

are positive at the stationary point. 



⊺ ∽ ∰∺∱
Existence of Stable Stationary Orbits 

≐ ≲ ≯ ≪ ≥ ≣ ≴ ≩ ≯ ≮ ≯ ≦ ⊧ ≩ ≮ ≴ ≯ ≴ ≨ ≥ ⊳  ∭ ⊽ ≰ ≬ ≡ ≮ ≥ ≦ ≯ ≲ 



Stable Toroidal Spiral Orbits 

The stable stationary orbit is tangent to  

 a null Killing vector 

≀ ≴  ∫ ⊮  ∨ ≬ ⋃  ∻ ≬ ⋁ ∩ ≀ ⋃  ∫ ⊯ ∨ ≬ ⋃  ∻ ≬ ⋁ ∩ ≀ ⋁ 
The projection of a orbit on a                 surface  

is a toroidal spiral on            .  

≴ ∽ ≣ ≯  ≮ ≳  ≴ 
. 

≓ ∱ ⊣ ≓ ∱ 



⊺ ∽ ∰∺∱∳∲∲∴ ∧ ⊺≣⊺ ∽ ∰∺∱ ⊺ ∽ ∰∺∲

Critical Thickness 

p : Innermost Stable Toroidal Spiral Orbit   (ISTSO) 

q : Outermost Stable Toroidal Spiral Orbit  (OSTSO) 



⊺ ∽ ∰∺∱

Cusps 

≐ ≲ ≯ ≪ ≥ ≣ ≴ ≩ ≯ ≮ ≯ ≦ ⊧ ≩ ≮ ≴ ≯ ≴ ≨ ≥ ≬ ⋃ ∭ ≬ ⋁ ≰ ≬ ≡ ≮ ≥ ≦ ≯ ≲ 



Stationary Points Set 

≄ ∽ ∴ 

Local min. Local max. 

ISCO 

2-dim. surface embedded  

  in 4-dimensional space 



≳∳≳∳

≳∱
≳∲

≳∱

Stationary Points  



Stationary Points  



Bounded Null Orbits  

Non stationary bounded orbits appear 



Summary 

Stable bound null orbits exist  
  around a Black Ring.  

for 

Stable Bound Orbit 

Timelike Null 

4-D Black Holes Yes No 

5-D Black Holes No No 

5-D Black Rings Yes Yes 

⊺  ⊷ ⊺  ≣ ∽ ∰ ∺ ∱ ∳ ∲ ∲ ∴ ⊢ ⊢ ⊢ 
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Introduction



CMB 
Polarization

10-33 4 ! 10-28

Axion Mass in eV

108

Inflated 
Away

Decays

3 ! 10-10

QCD axion
2 ! 10-20

3 ! 10-18

Anthropically Constrained
Matter

Power Spectrum
Black Hole Super-radiance

Axiverse

QCD axion

String axions

QCD axion was introduced to solve the Strong CP problem.

It is one of the candidates of dark matter.

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, 
PRD81 (2010), 123530.

String theory predicts the existence of 10-100 axion-like massive 
scalar fields.

There are various expected phenomena of string axions. 



Axion field around a rotating black hole

Axion field forms a cloud around a rotating BH and
extract energy of the BH by “superradiant instability”.

Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March-Russel, PRD81 (2010), 123530.
Arvanitaki and Dubovsky, PRD83 (2011), 044026.



Superradiance

R =
u√

r2 + a2

d2u

dr2
∗

+
[
ω2 − V (ω)

]
u = 0

ω < ΩHm

Superradiant condition:

Φ = Re[e−iωtR(r)S(θ)eimφ]

u ∼ e−i(ω−mΩH)r∗

∇2Φ =0Massless Klein-Gordon field

(
1− mΩH

ω

)
|T |2 = 1− |R|2

u ∼ Aoute
iωr∗ + Aine−iωr∗

A1
horizon

in

Aout

Zeľdovich (1971)



Bound state
Zouros and Eardley, Ann. Phys. 118 (1979), 139.

ω < ΩHm
Superradiant condition:

 0.14
 0.15
 0.16
 0.17
 0.18
 0.19
 0.2

 0.21
 0.22

-100 -50  0  50  100

V

r*/M

!2

V

I II III IV

u ∼ e−i(ω−mΩH)r∗ distant region

u ∼ e−
√

µ2−ω2r∗

Massive Klein-Gordon field ∇2Φ− µ2Φ =0

Detweiler, PRD22 (1980), 2323.

near horizon

Typical time scale ∼ 107M ∼
{

50 s (M = 10M!)
1.6 year (M = 106M!)



Accretion

Rotating Black Hole

Super-Radiant Modes

Decaying Modes

Gravitons

BH-axion system

Superradiant instability
Emission of gravitational waves
(Level transition, Pair annihilation of axions)

Effects of nonlinear self-interaction
Bosenova
Mode mixing

Arvanitaki and Dubovsky, PRD83 (2011), 044026.



Nonlinear effect

c.f., QCD axion

Typically, the potential of axion field becomes periodic

U(1)PQ symmetry

PQ phase transition

V = f2
aµ2[1− cos(Φ/fa)]

ϕ ≡ Φ
fa

∇2ϕ− µ2 sinϕ = 0

QCD phase transition

Z(N) symmetryPotential becomes like a wine 
bottle⇒ ⇒



Accretion

Rotating Black Hole

Super-Radiant Modes

Decaying Modes

Gravitons

BH-axion system

Superradiant instability

Effects of nonlinear self-interaction
Bosenova
Mode mixing

Arvanitaki and Dubovsky, PRD83 (2011), 044026.

Emission of gravitational waves
(Level transition, Pair annihilation of axions)



Bosenova in condensed matter physics
http://spot.colorado.edu/~cwieman/Bosenova.html

BEC state of Rb85（interaction can be controlled）
Switch from repulsive interaction to attractive interaction

Wieman et al., Nature 412 (2001), 295



What we would like to do

We would like to study the phenomena caused by axion 
cloud generated by the superradiant instability around a 
rotating black hole.

In particular, we study numerically whether “Bosenova” happens 
when the nonlinear interaction becomes important.

We adopt the background spacetime as the Kerr spacetime, and 
solve the axion field as a test field.



Simulations

Typical two simulations

Does the bosenova really happen?



Setup

Numerical simulation

Sine-Gordon equation

∇2ϕ− µ2 sinϕ = 0

a/M = 0.99, Mµ = 0.4

As the initial condition, we choose the bound state of 
the Klein-Gordon field of the                        mode.l = m = 1

!"0
1

2

3

4#1

#2
#3 #4

BH

#40 #20 0 20 40

#40

#20

0

20

40

r Cos!Φ"

r
S
in
!Φ"

a#M"0.99, MΜ"0.4

Initial peak value
(A) 0.6 1370
(B) 0.7 1862

E/[(fa/Mp)2M ]



−200 ≤ r∗/M ≤ 200

(φ = 0)

Φ

(θ = π/2)

ϕpeak(0) = 0.6

r cos φ

r sinφ

Axion field on the equatorial plane

Simulation (A) 

(Equatorial plane)



Simulation (A) 
Peak value and peak location
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−200 ≤ r∗/M ≤ 200

(φ = 0)

Φ

(θ = π/2)

ϕpeak(0) = 0.7

r cos φ

r sinφ

Axion field on the equatorial plane

Simulation (B) 

(Equatorial plane)
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Simulations

Typical two simulations

Does the bosenova really happen?



Does bosenova really happen?

time

amplitude

Bosenova???

(A)

Saturation???

Additional simulation:

ϕ(0) = Cϕ(A)(1000M)

ϕ̇(0) = Cϕ̇(A)(1000M)
C =






1.05
1.08
1.09



Supplementary simulation ϕ(0) = Cϕ(A)(1000M)

ϕ̇(0) = Cϕ̇(A)(1000M)

Energy absorbed by the black hole ∆E :=
∫ t

0
FEdt

C!1.05

1.08

1.09

0 2000 4000 6000 8000 10000

"20
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20

40

60

80

t!M

#E

C =






1.05
1.08
1.09

The bosenova happens when E ! 1600× (fa/Mp)2M



Discussions

Effective theory

Gravitational waves



rp δr

δν

Effective theory (1)

Action Ŝ =
∫

d4x
√
−g

[
−1

2
(∇ϕ)2 − µ2

(
ϕ2

2
+ ÛNL(ϕ)

)]
,

Non-relativistic approximation

ϕ =
1√
2µ

(
e−iµtψ + eiµtψ∗

)

ŜNR =
∫

d4x

[
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
− 1

2µ
∂iψ∂iψ

∗ +
αg

r
ψ∗ψ − µ2ŨNL(|ψ|2/µ)

ŨNL(x) = −
∞∑

n=2

(−1/2)n

(n!)2
xn.

Approximate the axion cloud as a Gaussian wavepacket

ψ = A(t, r, ν)eiS(t,r,ν)+imφ

A(t, r, ν) ≈ A0 exp
[
− (r − rp)2

4δrr2
p

− (ν − νp)2

4δν

]
,

S(t, r, ν) ≈ S0(t) + p(t)(r − rp) + P (t)(r − rp)2 + πν(t)(ν − νp)2 + · · · ,

(ν = cos θ)



Effective Lagrangian:

rp δr

δν

Effective theory (2)
L = T − V

T =
1
2
Aδ̇2

r + Bδ̇r ṙp +
1
2
Cṙ2

p +
1
2
Dδ̇2

ν ,

V

µα2
g

=
1

2(αgµrp)2(1 + δr)

(
1 + δν +

1
4δr

+
1

4δν

)
− 1

(αgµrp)(1 + δr)

−α−2
g

∞∑

n=2

(−1/2)n

(n!)2n

[
N∗√

δrδν(αgµrp)3(1 + δr)

]n−1

.

Potential

αg = 0.1

N!"0.02

N!"0.08

0.0 0.5 1.0 1.5 2.0 2.5
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#5

0
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ΑGΜrp

V!ΜΑG2
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Small oscillations

Oscillation around a equilibrium point ∆qi = (∆δr,∆δν ,αgµ∆rp)

Oscillation frequencies

ω2 = 1.141, 0.249, 0.0166,

δq =




0.110
−0.027

0.994



 ,




0.075
0.724
0.686



 ,




−0.378
−0.005

0.925



 .

∆t ≈ 761M

ω2 = 14.06, 5.59, 0.175, ∆t ≈ 26M

∆q =




0.218
−0.030

0.975



 ,




0.070
0.927
0.367



 ,




−0.640
−0.085

0.763



 .

αg = 0.4, N∗ = 1.1

αg = 0.4, N∗ = 1.3

d2(∆qi)
dt2

= −
∑

j

ωij∆qj



Discussions

Axion cloud model

Gravitational waves



GWs emitted in the bosenova (rough estimate)

Assumption:

C!1.05

1.08

1.09

0 2000 4000 6000 8000 10000

"20
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20

40

60

80

t!M

#E

Qij ∼ r2
pE

Quadrupole approximation

Amplitude of generated GWs h ∼ Q̈ij

robs
∼ 10−7 M

robs

Change in the quadrupole moment
by the infall of energy in the bosenova

10M
E0 +

1
2
(∆E)

[
cos

(
π

t

∆t

)
− 1

]

0.05E0 500M10−3M



Detectability

Supermassive BH of our galaxy（Sagittarius A*）

Solar-mass BH (e.g., Cygnus X-1)

h ∼ Q̈ij

robs
∼ 10−7 M

robs

Detectable by the eLISA

hrss ∼ 10−24(Hz)−1/2

below the sensitivity of the KAGRA, Advanced 
LIGO, Advanced Virgo, etc.

(10−4 Hz)

(102 Hz)

Angular frequency 
of GW

hrss :=
[∫

|h|2dt

]1/2

∼ 10−16(Hz)−1/2



Summary



Summary

We developed a reliable code and numerically studied the 
behaviour of axion field around a rotating black hole.

The nonlinear effect enhances the rate of superradiant instability 
when the amplitude is not very large.

Calculation of the gravitational waves emitted in bosenova.

Ongoing studies

The case where axions couple to magnetic fields.

The bosenova collapse would happen as a result of superradiant 
instability.



Appendix



Superradiant instability



Massive scalar fields around a Kerr BH

Metric

ds2 = −
(

∆− a2 sin2 θ

Σ

)
dt2 − 2a sin2 θ(r2 + a2 −∆)

Σ
dtdφ

+
[
(r2 + a2)2 −∆a2 sin2 θ

Σ

]
sin2 θdφ2 +

Σ
∆

dr2 + Σdθ2

Σ = r2 + a2 cos2 θ,
∆ = r2 + a2 − 2Mr.

Massive scalar field

L = −
√
−g

[
1
2
gab∇aΦ∇bΦ + U(Φ)

]
,

∇2Φ− U ′(Φ) = 0

Lagrangian density

Klein-Gordon equation

U(Φ) =
1
2
µ2f2

a sin2(Φ/fa)

! 1
2
µ2Φ2



Massive scalar field around a Kerr BH

Separation of variables Φ = e−iωtR(r)S(θ)eimφ

1
sin θ

d

dθ
sin θ

dS

dθ
+

[
−k2a2 cos2 θ − m2

sin2 θ
+ Elm

]
S = 0

d

dr
∆

dR

dr
+

[
K2

∆
− λlm − µ2r2

]
R = 0

K = (r2 + a2)ω − am

k2 = µ2 − ω2

λlm = Elm + a2ω2 − 2amω



(tortoise coordinate)       :

Massive scalar field around a Kerr BH
d

dr
∆

dR

dr
+

[
K2

∆
− λlm − µ2r2

]
R = 0

distant region

near horizon R ∼ e±iω∗r∗

outgoing

ingoing

r∗ dr∗ =
r2 + a2

∆
dr

ω∗ = ω − ΩHm

Energy flux Pµ = −Tµ
νξν

−Pr∗ = ∇r∗Φ∇tΦ ∝ (ω − ΩHm)ω

If                       , negative energy falls into the black holeω < ΩHm superradiance

R ∼ r−1±µ2−2ω2
k exp(±kr) k =

√
µ2 − ω2



Bound state

Matching method

WKB method

Numerical analysis

Zouros and Eardley, Ann. Phys. 118 (1979), 139.

Dolan, PRD76 (2007), 084001.

Detweiler, PRD22 (1980), 2323. Mµ !Mω " 1

Mµ! 1



Ergo-region Barrier
region

Potential Well

Exponential
growth region

P
o

te
n

ti
a

l

r*! Black Hole Horizon

“Mirror” 
at r~1/µ

Bound state

Zouros and Eardley, Ann. Phys. 118 (1979), 139.

r∗1 r∗2 r∗3

ω2

R =
u√

r2 + a2

d2u

dr2
∗

+
[
ω2 − V (ω)

]
u = 0

V (ω) =
∆µ2

r2 + a2
+

4Mamωr − a2m2 + ∆
[
Elm + (ω2 − µ2)a2

]

(r2 + a2)2
+

∆
(r2 + a2)3

(
3r2 − 4Mr + a2 − 3∆r2

r2 + a2

)



Qualitative discussion on “Bosenova”
Arvanitaki and Dubovsky, PRD83 (2011), 044026.

Nonrelativistic approximation

S =
∫

d4x

[
iΨ∗∂tψ −

1
2µ

∂iψ∂iψ − µVNψ∗ψ +
1

16f2
a

(ψ∗ψ)2
]

V (r) ≈ N
l(l + 1) + 1

2µr2
− NMµ

r
− N2

32πf2
ar3

Effective potential

action

U(Φ) =
1
2
µ2f2

a sin2(Φ/fa)

S =
∫

d4x
√
−g

[
1
2
gab∇aΦ∇bΦ + U(Φ)

]

Φ =
1√
2µ

(
e−iµtψ + eiµtψ∗

)



Code



Stable simulation cannot be realized in Boyer-
Lindquist coordinates. 

First difficulty
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Stable simulation cannot be realized in Boyer-
Lindquist coordinates. 

First difficulty

-1

-0.5
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-200 -150 -100 -50  0  50  100  150  200

!

r*

We use ZAMO coordinates.

t̃ = t,

φ̃ = φ− Ω(r, θ)t,
r̃ = r,

θ̃ = θ,

Ω =
dφ

dt
=

uφ

ut
= − gtφ

gφφ

=
2Mar

(r2 + a2)2 −∆a2 sin2 θ



r∗

Φ

t/M = 0 ∼ 50

Numerical solution in the ZAMO coordinates



ZAMO coordinates become more and more 
distorted in the time evolution

Second difficulty
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ZAMO coordinates become more and more 
distorted in the time evolution

Second difficulty

We “pull back” the coordinates !6 !4 !2 0 2 4 6

!6

!4

!2

0

2

4

6

r Cos!""

r
S
in
!""

t#50

t(n) = t,
φ(n) = φ− Ω(r, θ)(t− nTP ),
r(n) = r,
θ(n) = θ.

nTP ≤ t ≤ (n + 1)TP :



Pure ingoing BC at the inner boundary,
Fixed BC at the outer boundary

Our 3D code

Space direction：6th-order finite discretization

Time direction：4th-order Runge-Kutta

Courant number:

Pullback: 7th-order Lagrange interpolation

C =
∆t

∆r∗
=

1
20

Grid size:
∆r∗ = 0.5 (M = 1)
∆θ = ∆φ = π/30



r∗

Φ

t/M = 0 ∼ 100

Code check (1)

Comparison with semianalytic solution of the Klein-Gordon case

ω(CF)
I /µ = 3.31× 10−7

ω(Numerical)
I /µ = 3.26× 10−7

Growth rate

ωI =
Ė

2E
! E(100M)− E(0)

200ME(0)
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Code check (2)

Convergence
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Comparison with BEC



Action

BEC BH-axion

S = Nh̄

∫
d3xdt

[
iψ∗ψ̇ +

1
2
ψ∗∇2ψ − r2

2
ψ∗ψ − g

2
(ψ∗ψ)2

]

iψ̇ = −1
2
∇2ψ +

r2

2
ψ + g|ψ|2ψ

Gross-Pitaevskii equation

Action

Ŝ =
∫

d4x
√
−g

[
−1

2
(∇ϕ)2 − µ2

(
ϕ2

2
+ ÛNL(ϕ)

)]
,

Non-relativistic approximation

ŨNL(x) = −
∞∑

n=2

(−1/2)n

(n!)2
xn.

ϕ =
1√
2µ

(
e−iµtψ + eiµtψ∗

)

+
αg

r
ψ∗ψ − µ2ŨNL(|ψ|2/µ)

]

ŜNR =
∫

d4x

[
i

2

(
ψ∗ψ̇ − ψψ̇∗

)
− 1

2µ
∂iψ∂iψ

∗

Saito and Ueda, PRA63 (2001), 043601

Action



Effective theory

BEC BH-axionψ = A(x, y, z, t)eiφ(x,y,z,t)

A =
exp

[
−( x2

2d2
x(t) + y2

2d2
y(t) + z2

2d2
z(t) )

]

√
π3/2dx(t)dy(t)dz(t)

φ =
ḋx(t)
2dx(t)

x2 +
ḋy(t)
2dy(t)

y2 +
ḋz(t)
2dz(t)

z2

dx = dy = dz = r(t)Spherical case

S =
Nh̄

4

∫
dt

[
3ṙ2 + 3ṙ − f(r)

]
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Simulation results

BEC BH-axion
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Green’s function analysis



m=-1 mode is generated!

Simulation (B) 
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Green’s function

(∇2 − µ2)x′G(x, x′) = δ4(x, x′)

Equation

ϕ(x) = ϕ0(x) + ∆ϕ, ϕ0 = 2Re
[
e(γ−iω0)tP (r)S1

1(cos θ)eiφ
]
,

Formal solution

BH

i

t=0

+

t, r 

r 
*

u=const.

=const. r =u
*

(      )*

i0

i-

Approximation

O(ϕ4
0) is ignored

Green’s function approach (1)

(∇2 − µ2)∆ϕ = J(ϕ0) := −µ2

6
ϕ3

0

∆ϕ(x) =
∫

D′
d4x′

√
−g(x′)G(x, x′)J(ϕ0(x′))



Green’s function approach (2)

Constructing the Green’s function

BH

i
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(      )*
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]
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(2π)2
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!,m

∫ ∞
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dωGω
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Green’s function approach (3)

Near-horizon solution

∆ϕ =
∑

!,m

eimφSm
! (cos θ)

eimΩHr∗

2i(r2
+ + a2)

×
{

e(3γ−imω0)uD#m(u, r∗)−
∫ ∞

−∞
dω

e−iωu

ω̃A+(ω)
#m [3γ + i(ω −mω0)]

E(ω)
#m (u, r∗)

}
,

First term

Second term
Pole ω = mω0 + 3iγ ∼ e−i(mω0+3iγ)t

Pole A
+(ω(!mn)

BS )
"m = 0 ∼

∑

n

(· · ·)e−iω(!mn)
BS t

ω(n)
BS ! ±µ ! ±ω0

Nonlinear term makes transfer from growing 
bound state to decaying bound state with 
negative frequency. 

∼ e−i(mω0+3iγ)t
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Are you ready for this? 
      

             First year Planck observations:            
Full sky maps and cosmological implications. 

  

      Authors.............................................. 

 
    Abstract   We present full sky microwave from the Planck first 

year sky survey. …. The age of the Universe…….Nonlinearity 
of local type f_NL^local(k_0=0.002 Mpc^-1)=15 +/- 9 (95% 
CL) is detected. …. index n_s = 0.97 +/- 0.02... The B-mode 
polarization is also detected.  The corresponding  tensor-to-
scalar ratio is estimated as rT(k_0=0.002 Mpc^-1)=0.10 +/- 
0.03 (95% CL).  

    



§ Introduction 

• Inflation  

   is an elegant solution to  

     horizon, flatness, monopole problem 

   and 

   provides the seed of density fluctuation of       

     adiabatic,  

     almost scale invariant, and Gaussian 

    as well as tensor modes. 

                                            

     



Non-Gaussianity in perturbation 
generation 

• Inflaton  [Hawking, Guth and Pi,… 1982] 

    fNL = (,)  [Maldacena 2003] 

• Curvaton  [Lyth and Wands, Moroi and Takahashi, Enqvist and 

Sloth 2001~2] 

    fNL = (1/R)  [Lyth et al 2003,…] 

• Modulated reheating by a light scalar  [Kofman 

2003, Dvali et al 2004] 

       []  0       T/T  0 

    fNL= fNL(, , …) [Zaldarriaga 2004,…]  



System in perturbation generation 

• Inflaton  [Hawking, Guth and Pi,… 1982] 

       Inflaton  

• Curvaton  [Lyth and Wands, Moroi and Takahashi, Enqvist and 

Sloth 2001~2] 

       Inflaton  + Curvaton  

• Modulated reheating by a light scalar  [Kofman 

2003, Dvali et al 2004] 

       Inflaton  + Light scalar  



System in perturbation generation 

• Inflaton  [Hawking, Guth and Pi,… 1982] 

       Inflaton  

• Curvaton  [Lyth and Wands, Moroi and Takahashi, Enqvist and 

Sloth 2001~2]               “massive” + “decaying” + “non  interacting”  

       Inflaton  + Curvaton  

• Modulated reheating by a light scalar  [Kofman 

2003, Dvali et al 2004]                          What’s difference? 

       Inflaton  + Light scalar  
                                             “massless” + “  interacting”  



§ - interaction 

• Inflaton  - Curvaton/light scalar  interactions 
may exist. 

 

• If  and  are singlet, there might be 

          int =   SM  + tiny ² ² +…, . 

•  ex.)  

               int =   ||²      then       ² 

 

• Modulated reheating by curvaton [Suyama et al 2010]     



§ General analysis 

• Inflaton  and another scalar  

• Thermal history after inflation 

 

      ρ  

 

      ρσ 

 

 

  inflation          decay               decay                   time 
 

 



§ General analysis 

• Inflaton  and another scalar  

• Thermal history after inflation 

             inflation 

      ρ                              modulated  

 

      ρσ 

                                                     curvaton 

 

  inflation          decay               decay                   time 
 

 



§§ Formula of perturbation 

• After  decay:  

   inflaton-modulated mixed [Zaldarriaga 2004, Ichikawa et al 

2008] + curvaton 

• On uniform  density hypersurface 

 

 

 

• Power spectrum 



§§ Resultant perturbation 

• Important parameters: *, R, {*Q, *²Q,…}                             

                                      - ratio      Modulated 

 

 

 

 

 
 

 

• Small * case : mainly  originated 

 



§ Simplest case 

• Potential 

 

 

   

 



§§Power spectrum  

• Power spectrum 

 

 

 

 



§§Power spectrum  

• Power spectrum 

 

 

 

 



§§ Tensor and nonlinearity 

• Model I 

• Interaction 

 

 

• Decay rate 

 

 

 

 

                          



§§ Tensor and nonlinearity 

• Model I 

 

 

 

 

                          

     



§§ Tensor and nonlinearity 

• Model I 

 

 

 

 

                          

     



§ Summary 

• “Inflaton-modulated-curvaton mixed” 

 

• Interaction between   and  is a subject to be 
studied. 

 

• An interesting possibility: simultaneous large 
fNL and rT  
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Abstract
We show that the finite-time future singularities appear in f(T ) gravity with T being
the torsion scalar. We reconstruct f(T ) gravity models with realizing the finite-time
future singularities. It is explicitly demonstrated that a power-law type correction
term T β (β > 1) such as a T 2 term can remove the finite-time future singularities
in f(T ) gravity. We also investigate f(T ) models with realizing inflation in the early
universe, the ΛCDM model, Little Rip cosmology and Pseudo-Rip cosmology.

1 Introduction

Cosmological observations such as Type Ia Supernovae (SNe Ia), cosmic microwave background (CMB)
radiation, large scale structure (LSS), baryon acoustic oscillations (BAO), and weak lensing have sug-
gested the current accelerated expansion of the universe. There is two representative approaches to
understand this phenomenon. The first is to introduce the so-called “dark energy” (for a very recent
review, see, e.g., [1]). The second is to extend the gravitational theory, for example, F (R) gravity (for
reviews, see, e.g., [2]). There also exists “teleparallelism” constructed by using the Weitzenböck connec-
tion. This is an alternative gravity theory to general relativity and it is described by the torsion scalar T
and not the scalar curvature R defined with the Levi-Civita connection [3]. It has recently been revealed
that the late time cosmic acceleration [4, 5, 6] as well as inflation [7] can be realized by extending this
theory to f(T ) gravity, similarly to that in F (R) gravity. In this paper, we review our results in Ref. [8].
In particular, we demonstrate the existence of finite-time future singularities in f(T ) gravity. We note
that the procedure used here has also been extended to Loop quantum cosmology [9]. In addition, we
explain the relevant cosmologies to future singularities. We use units of kB = c = ~ = 1 and denote the
gravitational constant 8πG by κ2 ≡ 8π/MPl

2 with the Planck mass of MPl = G−1/2 = 1.2 × 1019GeV.

2 Finite-time future singularities in f(T ) gravity

In the teleparallelism, the metric gµν is written gµν = ηABeAµ eBν with eA(xµ) orthonormal tetrad com-
ponents, where A = 0, 1, 2, 3 for the tangent space at each point xµ of the manifold, µ, ν = 0, 1, 2, 3
are coordinate indices on the manifold, and eµA is the tangent vector of the manifold. The teleparallel
Lagrangian density is expressed by using the torsion scalar T , although in general relativity the La-
grangian density is described by the Ricci scalar R. The torsion scalar T is given by T ≡ S µν

ρ T ρµν
1Email address: bamba@kmi.nagoya-u.ac.jp
2Email address: rmyrzakulov@gmail.com
3Email address: nojiri@phys.nagoya-u.ac.jp
4Email address: odintsov@ieec.uab.es



2 Finite-time future singularities in f(T ) gravity

Table 1: Conditions for the finite-time future singularities to occur on q in the expressions of H in Eq. (1),
ρDE, PDE, and the behaviors of H and Ḣ in the limit t → ts.

q(6= 0, −1) H (t → ts) Ḣ (t → ts) ρDE PDE

q ≥ 1 [Type I (“Big Rip”) singularity] H → ∞ Ḣ → ∞ J1 6= 0 J1 6= 0
or J2 6= 0

0 < q < 1 [Type III singularity] H → ∞ Ḣ → ∞ J1 6= 0 J1 6= 0
−1 < q < 0 [Type II (“sudden”) singularity] H → Hs Ḣ → ∞ J2 6= 0
q < −1, but q is not any integer H → Hs Ḣ → 0
[Type IV singularity] (Higher

derivatives of
H diverge.)

with T ρµν ≡ eρA
(
∂µe

A
ν − ∂νe

A
µ

)
the torsion tensor and S µν

ρ ≡ (1/2)
(
Kµν

ρ + δµρ Tανα − δνρ Tαµα
)
, where

Kµν
ρ ≡ − (1/2)

(
Tµνρ − T νµρ − T µν

ρ

)
is the contorsion tensor. The modified teleparallel action is given

by [5]I =
∫

d4x|e|
[
f(T )/

(
2κ2
)

+ LM

]
, where |e| = det

(
eAµ
)

=
√
−g and LM is the Lagrangian of matter.

We take the four-dimensional flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) space-time with
the metric ds2 = dt2 − a2(t)

∑
i=1,2,3

(
dxi
)2, where a(t) is the scale factor. In this background, we

have gµν = diag(1,−a2,−a2,−a2) and the tetrad components eAµ = (1, a, a, a). The torsion scalar
T = −6H2 with H = ȧ/a the Hubble parameter, where the dot denotes the time derivative, ∂/∂t.
In the flat FLRW background, the gravitational field equations read H2 =

(
κ2/3

)
(ρM + ρDE) and

Ḣ = −
(
κ2/2

)
(ρM + PM + ρDE + PDE) with where ρM and PM the energy density and pressure of

all perfect fluids of generic matter, respectively. The perfect fluid satisfies the continuity equation
ρ̇M + 3H (ρM + PM) = 0. In addition, the energy density and pressure of dark components become
ρDE =

[
1/
(
2κ2
)]

J1 and PDE = −
[
1/
(
2κ2
)]

(4J2 + J1), respectively, where J1 ≡ −T − f + 2TF and
J2 ≡ (1 − F − 2TF ′) Ḣ with F ≡ df/dT and F ′ = dF/dT . The standard continuity equation is also
satisfied as ρ̇DE + 3H (ρDE + PDE) = 0.

3 f(T ) models with realizing cosmologies

In the FLRW background, the effective equation of state (EoS) for the universe is written as [2] weff ≡
Peff/ρeff = −1 − 2Ḣ/

(
3H2

)
with ρeff ≡ 3H2/κ2 and Peff ≡ −

(
2Ḣ + 3H2

)
/κ2 the total energy density

and pressure of the universe, respectively. At the dark energy dominated stage, we have wDE ≈ weff .
In the following, we consider this case that dark energy is completely dominant over matter because we
explore the evolution of the universe around the time when the finite-time future singularities appear.
For Ḣ < 0 (> 0), we find weff > −1 (< −1), which describes the non-phantom [namely, quintessence]
(phantom) phase. The case that weff = −1 for Ḣ = 0 corresponds to the cosmological constant.

It is known that there exist four types of the finite-time future singularities [10]. Type I (“Big
Rip” [11]): For the limit t → ts, a → ∞, ρeff → ∞ and |Peff | → ∞. The case that ρeff and Peff are finite
values at t = ts [12] is included. (ii) Type II (“sudden” [13]): For the limit t → ts, a → as, ρeff → ρs and
|Peff | → ∞. (iii) Type III: For the limit t → ts, a → as, ρeff → ∞ and |Peff | → ∞. (iv) Type IV: For the
limit t → ts, a → as, ρeff → 0, |Peff | → 0, and higher derivatives of H diverge. Also, the case that ρeff

and/or |Peff | become finite values at t = ts is included. Here, ts is the time when the finite-time future
singularities occur, and as(6= 0) and ρs are constants. We examine the case that H is expressed as [14]

H ∼ hs (ts − t)−q for q > 0 , H ∼ Hs + hs (ts − t)−q for q < −1, −1 < q < 0 , (1)

where hs(> 0) and Hs(> 0) are positive constants, and q(6= 0, −1) is a non-zero constant. Only the
period 0 < t < ts is studied because H should be a real number. In Table 1, we show the conditions
for the finite-time future singularities to exist on q in the expression of H in Eq. (1), ρDE, PDE, and the
behaviors of H and Ḣ in the limit t → ts.
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Table 2: Necessary conditions on the model parameters of a power-law model of f(T ) in order to realize
the finite-time future singularities, what types of the finite-time future singularities finally emerge, and
those of the correction term fc(T ) = BT β with removing the finite-time future singularities.

q( 6= 0, −1) Final behavior f(T ) = ATα fc(T ) = BT β

(A 6= 0, α 6= 0) (B 6= 0, β 6= 0)
q ≥ 1 [Type I (“Big Rip”) singularity] emerges α < 0 β > 1
0 < q < 1 [Type III singularity] — α < 0 β > 1
−1 < q < 0 [Type II (“sudden”) singularity] — α = 1/2 β 6= 1/2
q < −1, but q is not any integer emerges α = 1/2 β 6= 1/2
[Type IV singularity]

For H in Eq. (1), we reconstruct models of f(T ) gravity where the finite-time future singularities
occur. We note that there have been proposed reconstruction method for modified gravity such as an
F (R) gravity in Ref. [15]. As a result, we find that for a power-law form of f(T ) as f(T ) = ATα

with A(6= 0) and α(6= 0) non-zero constants, in the flat FLRW background both the two gravitational
filed equations can be satisfied. In addition, we investigate a correction term to remove the finite-time
future singularities. As an example of a correction term fc(T ), we take fc(T ) = BT β where B(6= 0)
and β(6= 0) are non-zero constants. In F (R) gravity, the correction term with β = 2, namely, a T 2

term can cure the finite-time future singularities [2]. Consequently, we see that for the combined form as
f(T ) = ATα+BT β , the two gravitational filed equations cannot be met simultaneously. This implies that
such a power-low correction term can remove the finite-time future singularities. In Table 2, we depict
necessary conditions for the model parameters of a power-law form of f(T ) where the finite-time future
singularities appear, those of a power-low the correction term which can remove the finite-time future
singularities. We also describe what types of the finite-time future singularities eventually appear. The
finite-time future singularities with the large absolute value of q can emerge. In addition, we explicitly
derive f(T ) models in which (a) inflation in the early universe, (b) the ΛCDM model, (c) Little Rip
cosmology [16], and (d) Pseudo-Rip cosmology [17, 18] can be realized. In Table 3, we represent forms
of H and f(T ) with realizing these cosmological scenarios.

Furthermore, we study Little Rip cosmology which corresponds to a mild phantom scenario. The
Little Rip scenario has been proposed to avoid the finite-time future singularities, in particular a Big
Rip singularity. In this scenario, the energy density of dark energy increases in time with wDE being
less than −1 and then wDE asymptotically approaches wDE = −1. However, such a scenario eventually
leads to the dissolution of bound structures at some time in the future via the increase of an inertial
force between objects. This process is called the “Little Rip”. We also investigate Pseudo-Rip cosmology.
The above four cosmological models can be classified by using the behavior of the Hubble parameter as
follows [17]. (a) power-law inflation: H(t) → ∞, t → 0. (b) the ΛCDM model or exponential inflation:
H(t) = H(t0) = constant with t0 the present time. (c) Little Rip cosmology: H(t) → ∞, t → ∞. (d)
Pseudo-Rip cosmology, which is also phantom asymptotically de Sitter universe: H(t) → H∞ < ∞,
t → ∞. Here, t ≥ t0, and H∞(> 0) is a positive constant. We also note that for a Big Rip singularity,
H(t) → ∞, t → ts, as shown in Table 1.

4 Summary

We have illustrated that there appear finite-time future singularities (Type I and IV) in f(T ) gravity and
reconstructed an f(T ) gravity model with realizing the finite-time future singularities. Furthermore, it
has been verified that a power-law type correction term T β (β > 1) such as a T 2 term can remove the
finite-time future singularities in f(T ) gravity. This is the same feature as in F (R) gravity. In addition,
we have derived the expressions of f(T ) gravity models in which (a) Power-law inflation, (b) CDM model,
(c) Little Rip cosmology, and (d) Pseudo Rip Cosmology can be realized.



4 Finite-time future singularities in f(T ) gravity

Table 3: Forms of H and f(T ) which can realize (a) inflation in the early universe, (b) the ΛCDM model,
(c) Little Rip cosmology and (d) Pseudo-Rip cosmology.

Cosmology H f(T )
(a) Power-law inflation H = hinf/t , f(T ) = ATα ,
(In the limit t → 0) hinf(> 1) α < 0 or α = 1/2
(b) ΛCDM model H =

√
Λ/3 = constant , f(T ) = T − 2Λ ,

or exponential inflation Λ > 0 Λ > 0
(c) Little Rip cosmology H = HLR exp (ξt) , f(T ) = ATα ,
(In the limit t → ∞) HLR > 0 and ξ > 0 α < 0 or α = 1/2
(d) Pseudo-Rip cosmology H = HPR tanh (t/t0) , HPR > 0 f(T ) = A

√
T
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Soichiro Isoyama 1(a)

(a)Yukawa Institute for Theoretical Physics, Kyoto university, Kyoto, 606-8502, Japan

Abstract

We discuss the inspiral of a small body in a background Kerr spacetime. In the adia-
batic regime, the radiation reaction is solely characterized by the averaged rate of the
change of the constants of motion, the energy E, the azimuthal angular momentum
L and the Carter constant Q. Despite the lack of the global conservation law for the
Carter constant, it has been shown that its long time averaged rate of change can
be simply computed via “global conservation law like” formula when there exists a
simultaneous turning point of the radial and polar oscillations. However, an inspi-
ralling orbit may cross a resonance point, where the frequencies of the radial and polar
orbital oscillations are in a rational ratio. At the resonant point, one cannot find a
simultaneous turning point in general, thus a direct computation of the self-forces,
quite challenging especially in the Kerr background, seems to be necessary. Contrary
to this expectation, we here show that we can still compute the averaged rate of
change of the Carter constant in a relatively simple manner even at the resonance
point.

1 Introduction

A supermassive black hole accompanied by a compact object is one of the potential sources of the low
frequency gravitational waves. This system can be considered as a particle with mass µ moving along a
bound orbit on a much larger Kerr black hole with the mass M(≫ µ) and the spin parameter a. Then,
the dominant part of the long time orbital evolution due to the radiation reaction of the gravitational
wave emission is dictated by the long time averaged rates of the change of three constants of motion: the
energy E, the azimuthal angular momentum L and the Carter constant Q as long as the characteristic
time scale of the secular orbital evolution due to the radiation reaction is sufficiently longer than the
orbital period. This method is called the adiabatic approximation [1, 2].

The averaged rates of change of the energy and the azimuthal angular momentum of the particle
can be balanced with the ones carried by the gravitational waves due to their global conservation laws.
Although we do not have any balance argument for the Carter constant, based on Mino’s work [1], it
has shown that the averaged rate of change of the Carter constant can be also computed by a practically
simple formula [2, 3]. However, the derivation of above mentioned formula implicitly assumes that there
exists a simultaneous turning point of the radial and polar oscillations. The problem is that we cannot
find such a turning point for a inspiral that crosses a resonant point, where the inspiral’s radial and polar
orbital frequencies, Ωr and Ωθ, takes Ωr/Ωθ = jr/jθ with coprime integers, jr and jθ.

The purpose of this article is overviewing our claim that we can still easily compute the adiabatic
evolution of the Carter constant in the resonance case, together with the scalar toy model: a point scalar
particle with mass µ0 and charge q coupled to its own scalar field, and moving on the resonant bounded
geodesic around the Kerr black hole. Further details are presented in our preparing manuscript [5]. In
this paper, we use geometrical units G = c = 1 and take the sign convention of the metric is (−,+,+,+).
For saving the space of the article, the basic tools required for the adiabatic evolution of the scalar toy
model, such as the solution of geodesic equation and the mode-decomposed retarded solution of the scalar
field, are borrowed from Drasco et al.[6] without derivation.

1Email address: isoyama@yukawa.kyoto-u.ac.jp



2 Adiabatic evolution of resonant orbits on Kerr space time

2 A bounded resonant geodesic in Kerr spacetime

We label the geodesic motion of a scalar particle with the bare rest mass µ = 1 and a scalar charge q
as z(λ) := (t(λ), r(λ), θ(λ), ϕ(λ)) with the “Mino time” λ, which is related to the proper time τ as
dλ := dτ/Σ with Σ := r2+a2 cos2 θ. In terms of the Mino time, the r and θ oscillations are independently
periodic for bound orbits:

r(λ) = r(λ+ nΛr), θ(λ) = θ(λ+ kΛθ), (1)

where n and k are integers, and Λr and Λθ are the periods with respect to the Mino time λ. The precise
meaning of the resonance is that the orbital frequencies Υr,θ := 2π/Λr,θ with respect to the Mino time
λ, or the frequency Ωr,θ = Υr,θ/Υt with respect to t are related to each other as

Υr
jr

=
Υθ
jθ

=: Υ , (2)

where jr and jθ are coprime integers. In the resonance case, there is always a difference between the
times reaching the minima of r and θ oscillations. We call this difference “offset phase” and denote it as
∆λ ,and choose ∆λ such that |∆λ| ≤ Λ′/2, where Λ′ = (2π/Υ)/(jr + jθ).

The motion in the t and ϕ directions is also decoupled into r- and θ-dependent parts. Indeed, we have

t(λ) = Υtλ+∆tr(λ−∆λ) + ∆tθ(λ), ϕ(λ) = Υϕλ+∆ϕr(λ−∆λ) + ∆ϕθ(λ), (3)

where Υt and Υϕ are the averaged orbital frequency, and ∆tr and ∆ϕr are the oscillating function with
the period Λr. The meaning of the functions ∆tθ and ∆ϕθ can be understood in the same manner.

For detailed derivations, see Draso et al.[6].

3 Adiabatic evolution of the Carter constant with resonance

Due to the lack of the global conservation law for the Carter constant, we go back to the definition of the
Carter constant, and start from the bare formula of its long time averaged rate of the change, which is
written in terms of the scalar self-force acting on the particle. The Carter constant in the Kerr spacetime
is defined as (e.g.. see Ref. [3])

Q :=

(
L

sin θ
− a sin θE

)2

+ a2 cos2 θ +Σ2(uθ)2, (4)

where uα := dzα/dτ , and E and L are the conserved energy and the azimuthal angular momentum of the
particle, respectively. With the aid of the geodesic equations, the expression of the long time averaged
value of the Mino-time derivative of the Carter constants takes⟨

dQ

dλ

⟩
λ

= −2q

⟨{(
Vtr(r)∂t + Vϕr(r)∂ϕ +

dr(λ)

dλ
∂r

)[
Σ(x)Φ(R)(x)

]}
x=z(λ)

⟩
λ

, (5)

where Vtr(r) and Vϕr(r) are the r-dependent potentials of the t and ϕ components of the geodesic equations

[6]. In Eq. (5), the symbol ⟨. . . ⟩ denotes the λ average: ⟨F (λ)⟩λ := limT→+∞(1/(2T ))
∫ +T

−T dλ′F (λ′) for

a function F (λ). The field Φ(R)(x) is the R-part of the retarded scalar field, which is regular even at
the particle’s location [7]. With the aid of the “radiative (anti-symmetric)” field defined by the half-
retarded minus half-advanced fields, and the “symmetric” field also defined by the half-retarded plus
half-advanced field, we have Φ(R)(x) := Φ(rad)(x) +

{
Φ(sym)(x)− Φ(S)(x)

}
, where Φ(S)(x) is the S-part

of the retarded field, which is the symmetric for the argument of the Green function, satisfies the same
inhomogeneous Klein-Gordon equation as retarded solution, and shares the same singular structure as
the one of retarded/advanced field. To ensure the regularity of Φ(R)(x), the subtraction of Φ(S)(x) is
essential.

Noting that either radiative, symmetric and S-part field, which we put the symbol Φ(♯) to schematically
denote them, is defined through the Green function as Φ(♯) := −q

∫
dλΣ[z(λ)]G(♯)[x, z(λ)], Eq. (5) can
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be rewritten with these Green functions. After integral by parts of Eq. (5) and rather involved algebra,
we arrive at expression for the radiative part:⟨

dQ

dλ

⟩(rad)

λ

= 2q2
∫ +∞

−∞
dλ′ Σ[z(λ′)]

⟨[
Σ(x) (⟨Vtr⟩∂t − ⟨Vϕr⟩∂ϕ)G(rad)(x, z(λ′))

]
x=z(λ)

⟩
λ

−2q2
∫ +∞

−∞
dλ′

[
Σ(x′)

d

d(∆λ)

⟨
Σ[z(λ)]G(rad)(z(λ), x′)

⟩
λ

]
x′=z(λ′)

. (6)

Note that z(λ) implicitly depends on the offset phase ∆λ.
The symmetric and S-part contribution to ⟨dQ/dt⟩(♯) is more tricky since the each ofG(sym)[z(λ), z(λ′)]

and GS [z(λ), z(λ′)] diverges in the coincidence limit z(λ) → z(λ′), while their difference is regular in this
limit. The problem here is that we can just compute symmetric and S-part field separately since the
S-part Green function is only defined near the particle location[7]. To remedy this situation, we here
introduce the point splitting regularization by displacing the orbits z(λ) and z(λ′) as z(λ) → z+(λ) :=
z(λ) + (ϵ/2)ξ, and z(λ′) → z−(λ

′) := z(λ′) − (ϵ/2)ξ with a small parameter ϵ ≪ 1, and the Killing field
ξ := cos ζ ξ(t)µ + (Ωϕ cos ζ − Ωsin ζ) ξ(ϕ)µ as well as the Killing vectors associated with the stationarity
and axisymmetry of the Kerr spacetime: ξ(t)µ and ξ(ϕ)µ. Here Ωϕ and Ω are the orbital frequency with
respect to t, not to the Mino-time, and we introduce the parameter ξ to specify the Killing field.

Taking care of this point splitting regularization, the symmetric contribution to ⟨dQ/dt⟩, after sub-
tracting the S-part contribution and making it regularized, can be written as⟨

dQ

dλ

⟩(sym−S)

λ

= − lim
ϵ→0

q2
d

d(∆λ)

[
Ψ(sym)(∆λ, ϵ)−Ψ(S)(∆λ, ϵ)

]
. (7)

where we introduce the symmetric and S-part potential Ψ(sym)/(S)(∆λ, ϵ) defined by

Ψ(sym)/(S)(∆λ, ϵ) :=

∫ +∞

−∞
dλ′Σ[z−(λ

′)]
⟨
Σ[z+(λ)]G

(sym)/S[z+(λ), z−(λ
′)]
⟩
λ
. (8)

4 Simplified formula for the regularized symmetric part

The expressions Eqs. (6) and (7) are rewritten as more practical expressions if we take care of that the
variables of the scalar Klein-Gordon equation is separable in the Kerr spacetime. In fact, its homogeneous
solution, namely mode functions is written by π♭ωℓm(t, r, θ, ϕ) := (2/

√
r2 + a2)e−iωteimϕθωℓm(θ)u♭ωℓm(r∗)

wherem is the integer, r∗ is the tortoise coordinate defined by dr∗ := ((r2 + a2)/(r2 − 2Mr + a2))dr, and
θωℓm(θ)eimϕ := Sωℓm(θ, ϕ) is the spheroidal harmonics normalized as

∫
dθdϕ sin θSωℓm(θ, ϕ)∗Sωℓ′m′(θ, ϕ) =

δℓℓ′δmm′ .. The symbol ♭ represents one of the four distinct boundary conditions: “up”, “down”, “in” and
“out”. The corresponding radial functions u♭ωℓm(r∗) are respectively defined in e.g. Ref.[6]. The mode
functions enable us to write down the retarded Green function as the factorized form:

G(ret)(x, x′) =
1

16πi

∫ +∞

−∞
dω

+∞∑
ℓ=0

ℓ∑
m=−ℓ

ω

|ω|
1

αωℓmβωℓm

×
[
πup
ωℓm(x)πout ∗

ωℓm (x′)H(r − r′) + πin
ωℓm(x)πdown ∗

ωℓm (x′)H(r′ − r)
]

(9)

with the Heaviside step function H(x) :=
∫ x
−∞ δ(y)dy. Thinking of the definition of the radiative and

the symmetric field, at least, the Green functions associated with these two field are also written in
the factorized form with the relation given by G(rad)(x, x′) := (1/2)[G(ret)(x, x′) − G(ret)(x′, x)] and
G(sym)(x, x′) := (1/2)[G(ret)(x, x′) + G(ret)(x′, x)] with G(ret)(x, x′) = G(adv)(x′, x). Their explicit forms
will be shown our manuscript [5].

The simplified formula is essentially derived by substituting the radiative and the symmetric Green

function in the factorized form into Eqs. (6) and (7). Considering ⟨dQ/dλ⟩(rad)λ has already computed
by both Flanagan et.al. [8] and us [5], we bravely skip to show its explicit form here. See above two
references for technical issues and its final form.
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Compared to ⟨dQ/dλ⟩(rad)λ , the simplification of ⟨dQ/dλ⟩(sym)
λ and ⟨dQ/dλ⟩(S)λ is much involved. The

main obstacle is that the S-part Green function does not admit the mode decomposition in terms of the
spheroidal harmonics, while we can easily decompose the symmetric Green function with the aid of Eq. (9).
Here, the key observation here is what we need is the mode decomposition of the potentials defined in
Eq. (8), rater than that of the Green functions themselves. We note that the bound geodesic allows to
discretized the frequency ω as ωmN := mΩϕ +NΩ with the integer N . With the aid of this information
and the retarded Green fucntion in mode decomposed form given in Eq. (9), it is straightforward to
obtain the regularized symmetric potential in the (N,m)-decomposed form:

Ψ(sym)(∆λ; ϵ) =
∑
Nm

ei(ϵ1N+ϵ2m)ΩΨ
(sym)
Nm (∆λ), (10)

where ϵ1 = ϵ cos ζ and ϵ2 = ϵ sin ζ. remarkably, Eq. (10) is nothing but a two-dimensional Fourier series
expansion of Ψ(sym)(∆λ; ϵ). In other words, the (N,m)-mode decomposition is simply achieved via its
inverse Fourier transformation. This is clearly good news for the S-part potential since its local expansion
near the particle can be computed as

Ψ(S)(∆λ; ϵ) = −ψ(ζ)
ϵ

+O(ϵ), (11)

with a ζ-dependent function. Thus, the (N,m)-mode decomposition of Eq. (11) is just derived as

Ψ
(S)
Nm(∆λ) =

Ω2

4π2

∫ π
Ω

− π
Ω

dϵ1

∫ π
Ω

− π
Ω

dϵ2e
−i(ϵ1N+ϵ2m)ΩΨ(S)(∆λ; ϵ) (12)

All in all, the expression given in Eq. (7) can be computed as by mode-by-mode subtraction:⟨
dQ

dt

⟩(sym)

t

= − q2

Υt

∑
Nm

ei(ϵ1N+ϵ2m)Ω

[
d

d(∆λ)

{
Ψ

(sym)
Nm (∆λ)−Ψ

(S)
Nm(∆λ)

}]
. (13)

The merit of Eq. (13) is that both (N,m)-modes of the symmetric and S-part potentials are easily handled
in the numerical implementation without bothering the divergence. In addition, the S-part has already
subtracted at the level of mode decomposed form, we do not see any divergence even after summing up
with respect to the N and m modes of the right hand side of Eq. (13). Again, further technical details
will be explained our manuscript [5].
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Introduction 



from LAMBDA web site (http://lambda.gsfc.nasa.gov/)  

COBE WMAP 

 Precise measurements of CMB fluctuations 

 The energy components of Universe is well 

described by ΛCDM model   

Cosmic Microwave Background (CMB) 

 dark energy, dark matter  

 mass of neutrinos   

・
・
・

 



Cosmological observations 

 Type-Ia Super Novae 

 Baryon Acoustic Oscillations 

 Cluster abundance 

 Weak Lensing 

 The physical properties of source (CMB) is well known 

 CMB lensing  

 Sensitive to both geometry and density fluctuations at z=1~5 

 Observations 

 CMB temperature/ polarizations 

 21cm brightness temperature 

 The most high-z source for weak lensing 

dark energy, neutrino mass, … 

primordial gravitational waves, primordial non-Gaussianity 



Last scattering surface 

Conformal distance 

observer 

(Reviews : Lewis&Challinor’06, Hanson+’10) 

Θ 𝑛 + 𝑑  

Θ 𝑛  

 CMB Lensing  

      =  Distortion of the pattern of the temperature/polarizations anisotropies 

Θ 𝑛  

Θ (𝑛) = Θ 𝑛 + 𝑑 (𝑛)  

𝛻 −2  𝑑𝜒
𝜒𝑠 − 𝜒

𝜒𝜒𝑠
𝜓(𝜂0 − 𝜒, 𝜒𝑛)

𝜒𝑠

0

 

Deflection angle 𝒅 

Gravitational potential 

Lensing potential  Lensed anisotropies 

Lensing effect on CMB  



 Angular power spectrum 

Θ ℓ𝑚Θ ℓ′𝑚′
∗ = 𝛿ℓℓ′𝛿𝑚𝑚′𝐶 ℓ

ΘΘ 

Lensing effect becomes dominate at Silk damping scale： ℓ > 𝟐𝟎𝟎𝟎 (~ few arcmin) 

lensed = unlensed  

             + Lens contribution  

unlensed 

Lens contribution 

Θ (𝑛) Θ ℓ𝑚 =  𝑑𝑛 𝑌ℓ𝑚
∗ 𝑛 Θ  (𝑛) 

Harmonics space Angular power spectrum 

Lensed temperature anisotropies 

(Lewis&Challinor’06) 

A few arcmin angular resolution is required 

 Lensed angular power spectrum 



 Lensed E/B-modes angular power spectra 

lensed E-mode 

unlensed E-mode 

lensed B-mode 

(Lewis&Challinor’06) 

 CMB polarizations 

E-mode (even) B-mode (odd) 

 Decomposition with parity (patterns of E/B-modes) 

𝑦 

𝑥 

 B-mode from lensing 

Lensed polarizations anisotropies 



 Lensed E/B-modes angular power spectra 

lensed E-mode 

unlensed E-mode 

lensed B-mode 

(Lewis&Challinor’06) 

 CMB polarizations 

E-mode (even) B-mode (odd) 

 Decomposition with parity (patterns of E/B-modes) 

𝑦 

𝑥 

 B-mode from lensing 

Lensed polarizations anisotropies 



 Lensed CMB power spectrum, e.g.,  𝑪ℓ
𝑩𝑩  

 CMB lensing reconstruction  

How to measure lensing effect from CMB 

= estimate lensing potentials itself  

 useful for cross-correlation studies with, e.g., cosmic shear, 

galaxy clustering, etc 

 also useful to study, e.g., three-point correlation of lensing 

potentials, etc 

 easy to mitigate biases from, e.g.,  masking compared to reconstruction    

 estimation of power spectrum of lensing potentials, 𝑪ℓ
𝝓𝝓

, is difficult  



 Essence of lensing reconstruction 

Θ ℓ = Θℓ −  𝑑2𝐿 ℓ ⋅ 𝐿 𝜙𝐿−ℓΘ𝐿 

 Estimator (e.g., Hu&Okamoto’02; Hanson+’09) 

𝜙 𝐿
(𝑆)

=  𝑑2ℓ  𝐹ℓ,𝐿
𝜙

 Θ ℓΘ 𝐿−ℓ 

𝜙 𝐿
(𝐶)

= 𝜙 𝐿
(𝑆)

− 〈𝜙 𝐿
𝑆

〉 

Θ ℓ =
Θ 𝐿

𝐶𝐿
ΘΘ  

Mean-field bias: induced by non-lensing effect 

(mask, inhomogeneous noise, beam asymmetry, …) 

includes “observed lensed” Cl’s 

Lensing induces mode coupling in the temperature anisotropies 

Lensing potentials would be estimated from mode coupling Θ ℓΘ 𝐿 (ℓ ≠ 𝐿) 

(Review: Hanson+’10) 

CMB lensing reconstruction 

(𝐿 ≠ 0) 



 Smith+ ’07 

WMAP  

+ NVSS (NARO VLA Sky Survey) 

Lensing reconstruction from current data 

 Hirata+ ’08 (2.5σ) 

WMAP  

+ NVSS + SDSS (Sloan Digital Sky Survey) 

(3.4σ) 

𝐴𝐿 = 𝐶ℓ
𝑜𝑏𝑠/𝐶ℓ

𝑡ℎ𝑒𝑜 

WMAP + South Pole Telescope (SPT) WMAP 

+ Atacama Cosmology Telescope (ACT) 

 van Engelen+ ’12  Das+ ’11 

(~4σ) 

Angular power spectrum of lensing potentials 

(~6.3σ) 

SPT 

𝐶ℓ
ΘΘ(𝑊𝑀𝐴𝑃) + 𝐶ℓ

ΘΘ(𝑆𝑃𝑇) 

𝐶ℓ
ΘΘ(𝑊𝑀𝐴𝑃) 

𝐶ℓ
ΘΘ(𝑊𝑀𝐴𝑃) + 𝐶ℓ

𝜙𝜙
(𝑆𝑃𝑇) 



Lensing signals would be detected with enough precision to 

probe, e.g., dark energy and massive neutrinos 

 Ongoing/upcoming and next generation CMB experiments 

PLANCK, CMBPol,  LiteBIRD, … 

PolarBear, ACTPol, SPTpol, Polar… 

 Space 

 Ground 

TN, Saito & Taruya ’10 

Future prospects 

ACTPol  

PLANCK  

𝛿𝑤 = −0.2 

𝛿∑𝑚𝜈 = 0.2 𝑒𝑉 

∑𝑚𝜈 [eV] 

ln(Ω𝑚ℎ2) 



Lensing reconstruction from CMB map  

and Its Cosmological Applications 



Curl --- any vector and tensor sources (gravitational 

waves (GWs), cosmic strings, magnetic field… ) 

2 components 
Gradient --- linear density fluctuations… 

 Deflection angle 

gradient curl 

𝑑𝑖 𝑛 = 𝜕𝑖𝜙 𝑛 + 𝜖𝑖𝑗𝜕𝑗𝜔(𝑛) 

2D Levi-Chivita tensor 

 Application of curl-mode reconstruction 

 Probing, e.g., cosmic strings, GWs, magnetic field … 

 Check systematics 

Gradient/Curl modes 

 Outline 

1. derive estimator for gradient and curl modes 

2. reconstruct from current CMB data 

3. discuss future prospects 



 𝑋 ℓ𝑚 , 𝑌 ℓ𝑚 ： Lensed quantities （Θ ℓ𝑚, 𝐸 ℓ𝑚, or 𝐵 ℓ𝑚） 

Estimator 

 Estimator 

1.  Gradient / curl mode estimators do not include curl / gradient mode, respectively 

2.  The variance of estimator is minimized  

Thanks to the distinctive property of parity (𝛁 and ⋆ 𝛁), we can estimate 

gradient and curl mode separately 

 Weight functions are determined so that 

𝜙 ℓ𝑚
(𝑋𝑌)

= −1 𝑚   𝐹ℓ𝐿1𝐿2

𝑋𝑌 ℓ

−𝑚

𝐿1

𝑀1

𝐿2

𝑀2
𝐿2𝑀2𝐿1𝑀1

X 𝐿1𝑀1
𝑌 𝐿2𝑀2

 

𝜔 ℓ𝑚
(𝑋𝑌)

= −1 𝑚   𝐺ℓ𝐿1𝐿2

𝑋𝑌 ℓ

−𝑚

𝐿1

𝑀1

𝐿2

𝑀2
𝐿2𝑀2𝐿1𝑀1

X 𝐿1𝑀1
𝑌 𝐿2𝑀2

 

mode coupling 

TN, Yamauchi & Taruya ’12 



Lensing reconstruction from current data 

(Dunner+’12) 

Data is taken from http://lambda.gsfc.nasa.gov/product/act/act_prod_table.cfm (LAMBDA) 

ACT  Data 

http://lambda.gsfc.nasa.gov/product/act/act_prod_table.cfm
http://lambda.gsfc.nasa.gov/product/act/act_prod_table.cfm


(e.g., Hanson+’11) 

𝑥 𝐿 =  𝑑ℓ 𝐹ℓ,𝐿
𝑥  Θ ℓΘ 𝐿−ℓ 

 Power spectrum of lensing estimator  

Estimating lensing power spectrum 

〈 𝑥 𝐿
2〉 =  𝑑ℓ1  𝑑ℓ2 𝐹𝐿,ℓ1

𝑥 𝐹𝐿,ℓ2

𝑥 〈Θ ℓ1

∗ Θ 
𝐿−ℓ1

∗ Θ ℓ2
Θ 𝐿−ℓ2

〉 

decomposed into disconnected/connected part  

〈 𝑥 𝐿
2〉 ≃ 𝑁ℓ

𝑥, 0
+ 𝐶ℓ

𝑥𝑥 +  𝑁ℓ
𝑥, 1

𝑥

+ 𝑂[ 𝐶ℓ
𝑥𝑦 2

] 

disconnected part 

(Gaussian bias)  connected part  

[Note] several techniques for power spectrum estimation can reduce 

uncertainties in Gaussian bias 

(Hu’02, Sherwin&Das’11, TN,Hanson&Takahashi’12) 



From ACT data, parameter region which is not ruled out from CMB 

temperature power spectrum, e.g.,  

Cosmological implications 

 An example of cosmological implications from curl mode 

𝑮𝝁~𝟏𝟎−𝟗 with 𝐏 ∼ 𝟏𝟎−𝟓 

ℓ4 𝜛 𝐿
2/2𝜋 

𝐶ℓ
𝜛𝜛 

seems to be ruled out 



Cosmological implications (Future Prospects) 

 Cosmic strings --- can be explored with upcoming experiments 

 Primordial GWs --- even r=0.1 would be difficult to detect. 

(This would be a new probe of cosmic strings from CMB ) 

𝐏~𝟏𝟎−𝟑 , 𝑮𝝁~𝟏𝟎−𝟖 

TN, Yamauchi & Taruya ’12 



Summary 

 Show an example of cosmological implications from curl mode  

 Lensing reconstruction from current CMB map 

 Formulation of CMB lensing reconstruction in the presence of both 

gradient and curl modes 

 Gradient and curl modes are estimated separately thanks to the distinctive 

property of parity 

 Lensing signals from upcoming and future CMB experiments and galaxy 

imaging surveys would constrain not only mass of neutrinos, property of dark 

energy, but also e.g., cosmic strings and other non-scalar components 

 Future prospects of CMB lensing reconstruction 

 If r<0.01, lensing reconstruction is important to probe primordial 

gravitational waves from B-polarization 



 Gradient mode 

ℓ4 𝜙 𝐿
2
/2𝜋 



(e.g., Hanson+’11)  Bias contributions 

Estimating lensing power spectrum 

𝝓 ℓ
𝟐

− 𝑵ℓ
𝝓,(𝟎)

 

from simulation 

Theoretical Cl 



Reduced-bias estimator  

(2) improve “standard” estimator to remove “mean field” 

𝜙 ℓ = 𝑅ℓ
𝜙𝑀

𝑀ℓ 〈𝜙 
ℓ
𝐵𝑅〉 = 0 

We consider “lensing” and “mask” estimators: 

𝑅ℓ
𝑎𝑏 = 𝑁ℓ

𝑎𝑎  𝑑𝐿
𝑓ℓ,𝐿

𝑎 𝑓ℓ,𝐿
𝑏

2𝐶 ℓ
ΘΘ𝐶 𝐿

ΘΘ 

𝑓ℓ,𝐿
𝑀 = [𝐶 𝐿

ΘΘ + 𝐶 
ℓ−𝐿
ΘΘ ] 

𝑓ℓ,𝐿
𝜙

= ℓ ⋅ 𝐿𝐶 𝐿
ΘΘ + ℓ ⋅ (ℓ − 𝐿)𝐶 

|ℓ−𝐿|
ΘΘ  

𝑀 ℓ = 𝑁ℓ
𝑀𝑀  𝑑𝐿

𝑓ℓ,𝐿
𝜙

𝑓ℓ,𝐿
𝑀

2𝐶 ℓ
ΘΘ𝐶 𝐿

ΘΘ 

𝜙 ℓ 𝐶𝑀𝐵 = 𝜙ℓ + 𝑅ℓ
𝜙𝑀

𝑀ℓ 

𝑀 ℓ 𝐶𝑀𝐵 = 𝑅ℓ
𝑀𝜙

𝜙ℓ + 𝑀ℓ 

Since  

we define a new estimator  

𝜙 ℓ
𝐵𝑅 =

𝜙 ℓ − 𝑅ℓ
𝜙𝑀

𝑀 ℓ

1 − 𝑅ℓ
𝜙𝑀

𝑅ℓ
𝑀𝜙

 

𝑁ℓ
𝑎𝑎 −1 =  𝑑𝐿

𝑓ℓ,𝐿
𝑎 𝑓ℓ,𝐿

𝑎

2𝐶 ℓ
ΘΘ𝐶 𝐿

ΘΘ 



Appendix: Filter functions 

𝑓ℓ,𝐿
𝜙

= ℓ ⋅ 𝐿𝐶𝐿
ΘΘ + ℓ ⋅ (ℓ − 𝐿)𝐶

|ℓ−𝐿|
ΘΘ  

𝑓ℓ,𝐿
𝜛 = (⋆ ℓ) ⋅ 𝐿𝐶𝐿

ΘΘ + (⋆ ℓ) ⋅ (ℓ − 𝐿)𝐶
|ℓ−𝐿|
ΘΘ  

𝐹
ℓ,𝐿 

′  𝜙
=

𝐹ℓ,𝐿
𝜙

− 𝑅𝜙𝑀𝐹ℓ,𝐿
𝑀

1 − 𝑅𝜙𝑀𝑅𝑀𝜙
 

 Our “bias-reduced” estimator 

𝑅ℓ
𝑎𝑏 = 𝑁ℓ

𝑎𝑎  𝑑𝐿
𝑓ℓ,𝐿

𝑎 𝑓ℓ,𝐿
𝑏

2𝐶 ℓ
ΘΘ𝐶 𝐿

ΘΘ 𝑓ℓ,𝐿
𝑀 = [𝐶 𝐿

ΘΘ + 𝐶 
ℓ−𝐿
ΘΘ ] 

𝐹
ℓ,𝐿 
𝑎 = −𝑁ℓ

𝑎𝑎𝑓ℓ,𝐿
𝑎  

 “standard” quadratic estimator 

𝑁ℓ
𝑎𝑎 −1 =  𝑑𝐿

𝑓ℓ,𝐿
𝑎 𝑓ℓ,𝐿

𝑎

2𝐶 ℓ
ΘΘ𝐶 𝐿

ΘΘ 

𝑓ℓ,𝐿
𝜙

= ℓ ⋅ 𝐿𝐶 𝐿
ΘΘ + ℓ ⋅ (ℓ − 𝐿)𝐶 

|ℓ−𝐿|
ΘΘ  

𝑓ℓ,𝐿
𝜛 = (⋆ ℓ) ⋅ 𝐿𝐶 𝐿

ΘΘ + (⋆ ℓ) ⋅ (ℓ − 𝐿)𝐶 
|ℓ−𝐿|
ΘΘ  



Θ 𝑛 = Θ 𝑛 + 𝑑 ≃ Θ 𝑛 + 𝑑 𝑛 ⋅ 𝛻Θ(𝑛) 

Information on the deflection angle is included in the 

observed lensed anisotropies 

We need to reconstruct the deflection angle only from 

the statistical properties of lensed and unlensed CMB 

Lensing Reconstruction  



Result 2. Cosmological applications 

We consider two sources of curl mode: primordial GWs and cosmic strings 

See Yamauchi, TN & Taruya ’12 for details of cosmic strings 

Model of cosmic strings 

 We consider straight string, randomly oriented 

 Lensing is induced by metric perturbations from strings in our line-of-site  

 Motion of strings is determined by velocity-dependent one scale model 

which depends on string tension, 𝑮𝝁 and intercommuting probability, 𝑷 

with probability, 𝑷 



Noise spectrum 

 The variance of curl-mode estimator is similar to that of gradient-mode 

 If we include polarization, the variance of curl-mode estimator is 

improved efficiently compared to that of gradient mode 

Curl Gradient 

ℓ 

ℓ
(ℓ

+
1
)𝑁

ℓ
/2

𝜋
 



𝜔 𝜃, 𝜑 =  𝑑𝜒
𝜒𝑠 − 𝜒

𝜒𝑠𝜒

1

sin 𝜃

𝑑

𝑑𝜒

𝜕Ω𝜃

𝜕𝜑
−

𝜕Ω𝜑

𝜕𝜃

𝜒𝑠

0

 

Vector and tensors contributions 



Purposes 

 Previous work including curl-mode reconstruction 

 Cooray+’05 • empirically defined a quadratic estimator in flat-sky 

1. Derive estimator including curl mode  

 

 

2. Lensing reconstruction from current CMB data and show cosmological 

implications 

 

 

3. Compute the detectability of curl mode from primordial GWs and cosmic strings 

with full-sky estimator., and also compare with that of B-mode shear generated 

from cosmic strings.  

 Our purposes  

• claimed that the gradient-mode estimator given in 

previous studies are biases in the presence of curl mode 



Comparison with B-mode shear 

Yamauchi, TN & Taruya ’12 



Comparison with power spectrum 

 S/N on 𝑷 − 𝑮𝝁 plane 

LSST has sensitivity to cosmic strings with P~0.1 and 𝑮𝝁~𝟏𝟎−𝟕 

Constraints from power spectrum (GKS effect) 

Yamauchi, TN & Taruya ’12 
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Two regimes of accelerated expansion 

2  

Reheating 



           gravity 

can describe the accelerated expansion.  

 

 

Primordial inflation 

 

 

Late-time acceleration 
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cf.            model for both accelerated expansion 



4  

Local scale                                   

Solar system test  

Horizon scale 

                   

Expansion history 

 

Testing modified gravity 

Intermediate scale 

                               

Large scale structure 



Time variation of EoS parameter 

  

5  

- 0.92  - 0.23 

- 0.94  - 0.22 

- 0.96  - 0.21 

H.M., Starobinsky, Yokoyama 

PTP 123 (2010) 887 [arXiv:1002.1141] 

Komatsu et al., 

 APJ Suppl. 192, 18 (2011) 

[arXiv:1001.4538] 

 



Growth index 

  

Rapetti et al., arXiv: 1205.4679 6  

H.M., Starobinsky, Yokoyama 

PTP 123 (2010) 887 [arXiv:1002.1141] 



Additional transfer function in             gravity 

 

 

 

 

 

 

 

 

          gravity enhances matter power spectrum. 

                     cancel 

Massive neutrino suppresses matter power spectrum. 
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Constraint on            from BBN 
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Constraints on            and                 in ΛCDM  

CMB 
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(95% CL) 

(68% CL) 

LSS 
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+ Komatsu et al., 

 APJ Suppl. 192, 18 (2011) 

[arXiv:1001.4538] 
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Constraints on            and                 in ΛCDM  
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Riemer-Sorensen et al 

[arXiv:1210.2131] 

ΛCDM cosmology 

 

sub-eV  

sterile neutrino 



Sterile neutrino mass       1 eV 

       ΛCDM model 
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Mention et al.,  
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[arXiv:1101.2755] 

Giunti, Laveder,  

Phys.Rev. C83 (2011) 065504 
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Neutrino oscillation 



MCMC analysis: ΛCDM vs             gravity 

12  

H.M., Starobinsky and Yokoyama, arXiv:1203.6828 

 3 massless and 1 massive neutrino with mass = 1 eV 

 WMAP7, SDSS DR 7 

 Better fit :               10.7   (Δ AIC = 8.7) 

 GR :                                 ,            :   

 

ΛCDM 



MCMC analysis: ΛCDM vs             gravity 

13  

H.M., Starobinsky and Yokoyama, arXiv:1203.6828 

 3 massless and 1 massive neutrino with mass = 1 eV 

 WMAP7, SDSS DR 7 

 Better fit :               10.7   (Δ AIC = 8.7) 

 GR :                                 ,            :   

ΛCDM 

WMAP 

ΛCDM 

SDSS 



14  

Summary 

14  

 Cosmology based on ΛCDM model 

        Sterile neutrino mass       1 eV  

 

 Neutrino oscillation experiments 

        Sterile neutrino mass       1 eV 

 

          gravity can resolve the tension. 
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No. 3] Weak Lensing Study of 30 Clusters 827

Fig. 8. Left panel: The mean distortion profile with 1! statistical uncertainties as a function of the projected radius, which is obtained by stacking the
distortion signals for 10 clusters that are selected with the virial masses Mvir ! 6 " 1014 h#1 Mˇ from 19 clusters in figure 6. Note that the distortion
profile is plotted in units of the projected mass density, and the projected radius is computed from the weighted mean redshift of clusters. The dashed and
solid curves are the best-fit SIS and NFW models, respectively. Right panel: A similar plot, but for 9 halos with Mvir > 6 " 1014 h#1 Mˇ. For both
results, the SIS model is strongly disfavored: ∆"2 $ "2

SIS;min # "2
NFW;min ' 41 and 127 for the low- and high-mass cluster samples, respectively.

The combined results also show 2!-level evidence that the NFW concentration is greater for more massive halos, which is exactly consistent with
the result in figure 6.

status of the clusters: more relaxed clusters tend to have high
concentrations, and vice versa (also see Smith & Taylor 2008).
It will therefore be important to further explore the concentra-
tion distribution by enlarging the sample size of clusters.

5.5. Stacked Lensing Signal

In this section we study the stacked weak-lensing signal of
19 clusters in figure 6. This approach has several important
advantages. First, the average distortion profile is less sensitive
to substructures within and asphericity of the individual cluster
mass distributions and also to uncorrelated large-scale structure
along the same line-of-sight. This is because these “contam-
inating signals” are averaged out via the stacking, under the
assumption that the universe is statistically homogeneous and
isotropic. Second, stacking should boost the signal-to-noise
ratio of the distortion signal at very small and large radii. The
signal-to-noise ratio at small radii is limited for a single cluster
because the solid angle subtended by a radial bin shrinks at
small radii, thus reducing the number of galaxies over which
the mean distortion signal is calculated. Hence, the signal-to-
noise ratio suffers despite the signal peaking in these regions.
On the other hand, at large radii, the binned solid-angle is much
larger, helping to maintain the signal-to-noise; however, the
signal becomes very small, and thus the signal-to-noise ratio
declines. As discussed in subsection 5.3, the signal-to-noise
ratio is optimized at intermediate radii. Therefore, stacking
helps to improve the signal-to-noise as a function of the radius,
thus enabling a clearer investigation of (i) the curvature of the

density profile, which is a characteristic signature of the NFW
prediction, helping us potentially to address the nature of dark
matter (e.g., Yoshida et al. 2000), and (ii) the distribution of
mass outside the virial radius to address whether or not the
outer slope of the NFW profile, # / r#3, continues outside
the virial radius (e.g., Bertschinger 1985; Busha et al. 2003).

To study the stacked lensing signal, we divide the 19 clus-
ters into two mass bins, based on whether the NFW model fits
to individual clusters yielded a virial mass estimate of greater
than or less than Mvir = 6 " 1014 h#1 Mˇ. This results in
two sub-samples of 10 low-mass and 9 high-mass clusters.
Figure 8 shows the average distortion profile as a function
of the projected radius in the physical length scale. Note
that the effect of different cluster redshifts was taken into
account by using the weighting method in terms of the lensing
efficiency functions of averaging clusters (Mandelbaum et al.
2006; also see Sheldon et al. 2009a), and the projected radius
is computed from the weighted mean redshift of the sampled
clusters. However, we checked that, even if we use the single
lensing efficiency for the mean cluster redshift, the results
remains almost unchanged due to the narrow redshift coverage
of our cluster samples. Note that the mean lens redshifts are
hzli = 0.251 and 0.236 for the low- and high-mass samples,
respectively.

First, unsurprisingly, the stacked profiles yield very signifi-
cant detections: the total signal-to-noise ratios are S=N = 24
and 30 for the low- and high-mass samples, respectively.
Second, the lensing distortion signals are recovered over a wide
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[DLofDGP] Luty, Porrati & Rattazzi ‘03, Nicolis & Rattazzi ’04 

∂µφ → ∂µφ+ cµ

X ≡ −1

2
(∂φ)2

Lint ∼ X�φ
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[Luty, Porrati & Rattazzi ‘03, Nicolis & Rattazzi ‘04] 

X&iO%

φ�(r) ∼
�

M

2MPl

Λ3

r

�1/2

� ∂rΦN

rV ≡ (M/MPl)Λ
−1

←<=0--:-K%b 

Lφ = 3φ�φ− 2

Λ3
(∂φ)2�φ+

2

MPl
φT

3�φ+
1

Λ3

�
(�φ)2 − (∂µ∂νφ)

2
�
= − 1

MPl
T
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is equivalent to the generalized galileon 
[Deffayet et al. ‘11, Kobayashi, Yamaguchi , Yokoyama ‘11] 

GiX ≡ ∂Gi/∂X

L = K(φ, X)−G3(φ, X)�φ

+G4(φ, X)R+G4X × (field derivatives)

+G5(φ, X)Gµν∇µ∇νφ

−1

6
G5X × (field derivatives)

E4-0- 

S =

�
d4x

√
−g[L+ Lm] assume matter do not  

directly couple to φ 

2%90/A3090C%QR:=3A+:<%+Q%X5%n 



S9=DT0+R:K%<+;R3A+: 
ds2 = ηµνdx

µdxν

[:+0K-0%3+%9K.A3%34A<%<+;R3A+:5%E-%0-oRA0-%3493 
K(φ0, 0) = 0, Kφ(φ0, 0) = 0

φ = φ0 = const, X = 0

'>4-0A=9;%<C..-30A=%>-03R0/93A+:<%>0+KR=-K%/C%9%
:+:0-;93A,A<3A=%.933-0 
ds2 = −[1 + 2Φ(r)]dt2 + [1− 2Ψ(r)]δijdx

idxj

φ = φ0 + ϕ(r)

U;;%34-%=+-p=A-:3<%90-%-,9;R93-K%93%34-%/9=DT0+R:KZ%
J-%EA;;%AT:+0-%34-%.9<<%3-0.%8XXZ%
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ds2 = −(1 + 2Φ)dt2 + (1− 2Ψ)dx2

X&iOM�

M2
Pl

2

(r2Ψ�)�

r2
−MPlξ

(r2ϕ�)�

2r2
− MPl

Λ3
α
[r(ϕ�)2]�

2r2
− 3MPl

Λ6
β
[(ϕ�)3]�

6r2
= −1

4
T t
t

M2
Pl (Ψ

� − Φ�)− 2MPlξϕ
� − MPl

Λ3
α
(ϕ�)2

r
= 0

η
(r2ϕ�)�

r2
− 2

µ

Λ3

[r(ϕ�)2]�

r2
+ 2MPlξ

[r2(2Ψ− Φ)�]�

r2
+ 4

MPl

Λ3
α
[rϕ�(Ψ� − Φ�)]�

r2
+

2
ν

Λ6

[(ϕ�)3]�

r2
− 6MPl

Λ6
β
[(ϕ�)2Φ�]�

r2
= 0

E4-0-%<AW%KA.-:<A+:;-<<%>909.-3-0<M%%
q5%r5%s5%t5%u5%v%90-%QR:=3A+:<%+Q%�	���������	����	����������

(cf. Vainshtein mechanism under considering background 
evolution [Kimura, Kobayashi, Yamamoto ‘12]) 
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x =
1

Λ3

ϕ�

r
, A(r) =

1

MPlΛ3

M(r)

8πr3

P (x,A) := ξA(r) +
�η
2
+ 3ξ2

�
x+ [µ+ 6αξ − 3βA(r)]x2

+
�
ν + 2α2 + 4βξ

�
x3 − 3β2x5 = 0

E4-0-%E-%K-V:-%

OF0H%A<%34-%-:=;+<-K%.9<<Z 
E4A=4%90-%KA.-:<A+:;-<<Z 
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P (x,A) := ξA(r) +
�η
2
+ 3ξ2

�
x+ [µ+ 6αξ − 3βA(r)]x2

+
�
ν + 2α2 + 4βξ

�
x3 − 3β2x5 = 0
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WF0H�
0�

x =
1

Λ3

ϕ�

r
, A(r) =

1

MPlΛ3

M(r)

8πr3

[cf. Sbisa, Niz, Koyama, Tasinato ‘12] 
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x ≈ xf := − 2ξA(r)

η + 6ξ2
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P (x,A) ≈ ξA− 3βAx2 − 3β2x5 ≈ 0

x ≈ x± := ±

�
ξ

3β
= const

Ψ�/r � Φ�/r ∝ A
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Eαβ
µν Hαβ

i:-%V:K<�

[de Rham, Heisenberg ‘11] 

K = 0 = G3, G4 =
M2

pl

2
+MPlφ+

MPl

Λ3
αX, G5 = −3

MPl

Λ6
βX

η = µ = ν = 0, ξ = 1, α �= 0, β �= 0
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[Umetsu et al. ’11, 
cf. Oguri et al. ‘12] 

[Bartelmann’s talk] 
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d2

dχ2
(χθi) = 2Φ+,i, i = 1, 2

ΣS ∝
� ∞

0
dZ�(2D)Φ+ r =

�
r2⊥ + Z2

Φ+ ≡ (Φ+Ψ)/2

�Φ+ =
Λ3

MPl

[
�
αx2 + 2βx3 + 2A

�
r3]�

2r2

  Assume "#(r) 
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ρ(r) =
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Introduction

(from WMAP website)

 Accelerating universe

•  Implication of cosmological constant?

•  Observationally, fine !!

•  Cosmological constant problem 

　　　　   121 orders of magnitude differences

Gµ⌫+⇤gµ⌫ = 8⇡GTµ⌫

Can modification of gravity solve 
this puzzle ???



✓  Galileon

L � (@')2 ⇤'

second derivative with respect to space-time

✓  Galileon term contains the second derivative term, but ... 

No higher-order derivative terms in EOM !!

(Nicolis et al. ʼ09)

Galileon theory

coupling between scalar and curvature

⇤ = rµrµ

EOM � (⇤')2 � (rµr⌫')
2 �Rµ⌫rµ'r⌫'



Most general second-order 
scalar-tensor theory (MGST)

Einstein-Hilbert term
L4 � (M2

Pl/2)R

K-essence term L2 � (@�)2, V (�)

Non-minimal derivative coupling
L5 � Gµ⌫rµ�r⌫�

(Germani et al. 2011;
 Gubitosi, Linder 2011)

Cubic galileon term

L3 � (@�)2⇤�

L2 = K(�, X)

L3 = �G3(�, X)⇤�

L4 = G4(�, X)R+G4,X [(⇤�)2 � (rµr⌫�)(rµr⌫�)]

L5 = G5(�, X)Gµ⌫(rµr⌫�)

� 1

6
G5,X


(⇤�)3 � 3(⇤�)(rµr⌫�) (rµr⌫�)

+ 2(rµr↵�)(r↵r��)(r�rµ�)

�

X = �(@�)2/2, GiX = @Gi/@X

✓  Horndeski found the most general Lagrangian whose EOM is second-order 
differential equation for φ and gμν  (also known as Generalized galileon)

Horndeski, Int. J. Theor. Phys. 10,363 (1974) , Deffayet, Gao, Steer (2011) 



Why galileon??

Self-accelerating solution

Free of ghost-instabilities

Vainshtein mechanism 

• Scalar field is effectively weakly coupled to matter in a high 

density region

• Reduce general relativity at small scales

Relation with decoupling limit in massive gravity

(Vainshtein 1972)

(de Rham, Gabadadze, Tolley, 2010)



Cosmological observations

Standard rulers (supernovae + CMB shift parameter) 

• Not powerful tools to constrain model parameters in modified 
gravity theories, but useful tools to determine cosmological 
parameters

Galaxy distribution (SDSS LRG sample)

• The error bar is still large to constrain model parameters

Cross correlation between LSS and ISW

• Excellent tool to constrain modified gravity

• Indicates that the effective gravitational coupling Geff has to be 
smaller than ~1.2 GN, otherwise CCF becomes negative which 
contradicts with observations

RK, Kazuhiro Yamamoto, JCAP 04 (2011) 025
RK, Tsutomu Kobayashi,  Kazuhiro Yamamoto, Physical Review D 85 (2012) 123503



Other signatures ??



 Quadratic action for a tensor mode in the most general scalar-tensor theory

where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as

S(2)
T =

1

8

∫

dtd3xa3
[

GT ḣ
2
ij −

FT

a2
(#∇hij)

2

]

, (2.3)

where

FT ≡ 2
[

G4 −X
(

φ̈G5X +G5φ

)]

, (2.4)

GT ≡ 2
[

G4 − 2XG4X −X
(

Hφ̇G5X −G5φ

)]

. (2.5)

Here an overdot denotes differentiation with respect to t, and H = ȧ/a is the hubble param-
eter. We find the propagation speed of the tensor perturbations,

c2T ≡ FT

GT
. (2.6)

When G4 = G4(φ) and G5 = 0, the propagation speed of gravitational waves is equal to the
speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.

3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫

d4x
√
−g
[

−gµν∂µΨ
∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ

]

. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫

d3p

(2π)3/2

[

b̂pψp(η)e
ip·x + ĉ†pψ

∗
p(η)e

−ip·x
]

, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(

d2

dη2
+ p2 +m2a2

)

ψp(η) = 0. (3.3)

– 3 –
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the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as

S(2)
T =

1

8

∫

dtd3xa3
[

GT ḣ
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speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.
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In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action
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]

. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as
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particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
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δ(p− p′), [ĉp, ĉ
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Sound speed of  
graviton in MGST

FT ⌘ 2
h
G4�X

⇣
�̈G5X +G5�

⌘i

GT ⌘ 2
h
G4�2XG4X �X

⇣
H�̇G5X �G5�

⌘i

Kobayashi, Yamaguchi, Yokoyama, Prog. Theor. Phys. 126, 511 (2011),

 Sound speed of graviton

Sound speed of graviton could be different from speed of light !!!



Gravitational 
Cherenkov radiation

particle

graviton

particle

Moore and Nelson (2001)

If the sound speed of graviton is smaller than the speed of light, particle 
should emit graviton through the similar process to Cherenkov radiation

Highest energy cosmic ray (p ~ 3×1011 GeV) can provide us the lower bound 
on the sound speed of graviton



Gravitational 
Cherenkov radiation

where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as
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where
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[

G4 −X
(

φ̈G5X +G5φ

)]

, (2.4)
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G4 − 2XG4X −X
(
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Here an overdot denotes differentiation with respect to t, and H = ȧ/a is the hubble param-
eter. We find the propagation speed of the tensor perturbations,

c2T ≡ FT

GT
. (2.6)

When G4 = G4(φ) and G5 = 0, the propagation speed of gravitational waves is equal to the
speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.

3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫

d4x
√
−g
[

−gµν∂µΨ
∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ

]

. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫

d3p

(2π)3/2

[

b̂pψp(η)e
ip·x + ĉ†pψ

∗
p(η)e

−ip·x
]

, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(

d2

dη2
+ p2 +m2a2

)

ψp(η) = 0. (3.3)
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where K, G3, G4, and G5 are arbitrary functions of the scalar field φ and the kinetic term
X ≡ −gµν∇µφ∇νφ/2, Giφ and GiX stands for ∂Gi/∂φ and ∂Gi/∂X, respectively, and Lm is
the matter Lagrangian. We assume that matter is minimally coupled to gravity. Note that
for the case, G4 = M2

Pl/2, the Lagrangian L4 reproduces the Einstein-Hilbert term.
We consider the tensor perturbations in the most general second-order scalar-tensor

theory on a cosmological background, and briefly review the results in derived in [36]. We
briefly review the tensor perturbations in the most general second-order scalar-tensor theory,
derived in [36]. The quadratic action for the tensor perturbations can be written as

S(2)
T =

1

8

∫

dtd3xa3
[

GT ḣ
2
ij −

FT

a2
(#∇hij)

2

]

, (2.3)

where

FT ≡ 2
[

G4 −X
(

φ̈G5X +G5φ

)]

, (2.4)

GT ≡ 2
[

G4 − 2XG4X −X
(

Hφ̇G5X −G5φ

)]

. (2.5)

Here an overdot denotes differentiation with respect to t, and H = ȧ/a is the hubble param-
eter. We find the propagation speed of the tensor perturbations,

c2T ≡ FT

GT
. (2.6)

When G4 = G4(φ) and G5 = 0, the propagation speed of gravitational waves is equal to the
speed of light. On the other hand, the propagation speed of gravitational waves depends
on the cosmological background in the presence of G5 or G4 being dependent on X. If
the propagation speed of gravitational waves is less than the speed of light, it is tightly
constrained from gravitational Cherenkov radiation.

3 Gravitational Cherenkov radiation in an expanding universe

In this section, we derive the gravitational Cherenkov radiation in a cosmological background.
For simplicity, we consider a complex scalar field with the action

Sm =

∫

d4x
√
−g
[

−gµν∂µΨ
∗∂νΨ−m2Ψ∗Ψ− ξRΨ∗Ψ

]

. (3.1)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but
this term can be neglected as long as we focus on the subhorizon scales, p/a,m % H, where
p is the comoving momentum. The free part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫

d3p

(2π)3/2

[

b̂pψp(η)e
ip·x + ĉ†pψ

∗
p(η)e

−ip·x
]

, (3.2)

where η is the conformal time, b̂p and ĉ†p are the annihilation and creation operators of the

particle and anti-particle, respectively, which satisfy the commutation relations [b̂p, b̂
†
p′ ] =

δ(p− p′), [ĉp, ĉ
†
p′ ] = δ(p− p′), and the mode function obeys

(

d2

dη2
+ p2 +m2a2

)

ψp(η) = 0. (3.3)
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The WKB approximate solution is given by (e.g., [45])

ψp(η) =
1

√

2Ωp
exp

[

−i

∫ η

ηin

Ωp(η
′)dη′

]

(3.4)

with Ωp(η) =
√

p2 +m2a2. The WKB approximation is valid for

Ω2
p "

∣

∣

∣

∣

1

Ωp

d2Ωp

dη2
− 3

2

1

Ω2
p

(

dΩp

dη

)2∣
∣

∣

∣

2

, (3.5)

which can be satisfied as long as p/a,m " H.
On the other hand, the action of the graviton is given by eq. (2.3), then, we have the

quantized graviton field

ĥµν =
1

a

√

2

GT

∑

λ

∫

d3k

(2π)3/2

[

ε(λ)µν âkhk(η)e
ik·x + ε(λ)µν â

†
k
h∗k(η)e

−ik·x
]

, (3.6)

where ε(λ)µν is the polarization tensor, â†
k
and âk are the creation and annihilation operators,

which satisfy the commutation relation [âk, â
†
k′ ] = δ(k− k′), and the mode function satisfies

(

d2

dη2
+ c2sk

2 − a′′

a

)

hk(η) = 0. (3.7)

For the case cs ∼ O(1) and csk/a " H, we may write

hk(η) =
1√
2ωk

exp

[

−i

∫ η

ηin

ωk(η
′)dη′

]

, (3.8)

where we defined ωk = csk, and the approximate solution is valid as long as csk/a " H. The
interaction part of the action (3.1) is given by

SI = −
∫

dtd3xahij∂iΨ∂jΨ
∗

= −
∫

dηd3xhij∂iψ∂jψ
∗, (3.9)

where we defined ψ = aΨ, and the interaction Hamiltonian is

HI = a

∫

d3xhij∂iΨ∂jΨ
∗. (3.10)

In order to evaluate the gravitational Cherenkov radiation, we adopt the method de-
veloped in [46, 47]. Based on the in-in formalism [48], the lowest order contribution is given
by

〈Q(t)〉 = i2
∫ t

tin

dt2

∫ t2

tin

dt1 〈[HI(t1), [HI(t2), Q]]〉 . (3.11)

We consider the expectation value of the number operator and the initial state with the one
particle state with the initial momentum, i.e., b̂†pin

|0〉. Then the lowest-order contribution of

– 4 –

[b̂p, b̂
†
p0 ] = �(p� p0)

[ĉp, ĉ
†
p0 ] = �(p� p0)

✓
d2

d⌘2
+ p2 +m2a2

◆
 p(⌘) = 0

✓
d2

d⌘2
+ c2T k

2 � a00

a

◆
hk(⌘) = 0

Consider the complex scalar in a FRW background

Quantize the complex scalar and tensor field as

Mode functions satisfy



Gravitational 
Cherenkov radiation

Figure 1. Feynman diagram for the process

the process so that one graviton with the momentum k is emitted from the massive particle
with the initial momentum pin, as shown in fig. 1, is written as [49]

〈

â†(λ)
k

â(λ)
k

〉

= 2!
∫ t

tin

dt2

∫ t2

tin

dt1
〈

HI(t1)â
†(λ)
k

â(λ)
k

HI(t2)
〉

. (3.12)

Then, the total radiation energy from the scalar particle can be estimated as E =
∑

λ

∑

k
(ωk/a)

〈

â†(λ)
k

â(λ)
k

〉

, which leads to

E =
∑

λ

∫

d3k

(2π)3
ωk

a

∣

∣

∣

∣

∫ η

ηin

dη1
1

a(η1)

√

2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)εijp
i
inp

j
f

∣

∣

∣

∣

2

, (3.13)

where pf + k = pin (pif + ki = piin). With the use of the relation
∑

λ

∣

∣εijpiinp
j
f

∣

∣

2
= p4in sin

4 θ,
we have

E =

∫

d3k

(2π)3
ωk

a
p4in sin

4 θ

∣

∣

∣

∣

∫ η

ηin

dη1
1

a(η1)

√

2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

∣

∣

∣

∣

2

.

(3.14)

We are now interested in the subhorizon scales, k/a, p/a, m, csk/a " H, and the situation
so that the scale factor a is constant, then we can approximate as

∫ η

ηin

dη1
1

a(η1)

√

2

GT
hk(η1)ψpf (η1)ψ

∗
pin

(η1)

# 1

a

√

2

GT

1√
2ωk

1
√

2Ωpin

1
√

2Ωpf

∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)] . (3.15)

Then the total radiation energy eq. (3.14) reduces to

E # 1

4GTa3

∫

d3k

(2π)3
p4in sin

4 θ

ΩfΩin

2πT

a
δ(Ωin − Ωf − ωk), (3.16)

Here we assumed the long time duration of the integration,
∣

∣

∣

∣

∫ η

ηin

dη1 exp [i(Ωin − Ωf − ωk)(η1 − ηini)]

∣

∣

∣

∣

2

# 2πT

a
δ(Ωin − Ωf − ωk), (3.17)
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E =
X

�

X

k

(!k/a)
⌦
â†(�)k â(�)k

↵

HI = a

Z
d3xhij@i @j 

⇤

where

The total radiation energy from the complex scalar field

dE

dt
' GN p4in

a4
4(1� cT )2

3(1 + cT )2

Graviton emission rate (using sub-horizon approximation)

t ⇠ a4

GN

(1 + cT )2

4(1� cT )2
1

p3

A particle with momentum p cannot possibly have been traveling for longer than 
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Toy Model 2

The condition for avoiding ghosts of the tensor perturbations, GT > 0, is δ > Ωφ(Ωφ − 3),
which is automatically satisfied, while the condition for avoiding instability c2T ≥ 0 is

δ ≥
Ωφ

Ωφ + 3
. (4.6)

Therefore, δ > 0 is required for avoiding ghost-instability. Thus the theoretically allowed
parameter range is

0 < δ <
2

5
, (4.7)

which is equivalent with

− 1

18
< C(z = 0) < − 1

30
. (4.8)

The propagation speed of gravitational waves in terms of Ωφ is rephrased as

c2T =
(3 + Ωφ)δ − Ωφ

(3− Ωφ)δ + Ωφ
. (4.9)

The constraints from gravitational Cherenkov radiation cT > 1 − ε, where ε = 2 × 10−15,
reads δ > 1−O(ε) from eq. (4.9), which contradicts with the condition (4.7). Equivalently,
from eqs. (4.3) and (4.8), λ is always negative, therefore, the propagation speed of gravita-
tional waves is always smaller than unity from eq. (4.5). Thus this purely kinetic coupled
gravity is inconsistent with the constraint from the gravitational Cherenkov radiation for any
theoretically allowed parameter λ.

5 Extended galileon model

In this section, we consider the model proposed by De Felice and Tsujikawa [44], which is an
extension of the covariant galileon model [52]. In this model, the arbitrary functions has the
following form,

K = −c2M
4(1−p2)
2 Xp2 ,

G3 = c3M
1−4p3
3 Xp3 ,

G4 =
1

2
M2

pl − c4M
2−4p4
4 Xp4 ,

G5 = 3c5M
−(1+4p5)
5 Xp5 , (5.1)

where ci and pi are the model parameters and Mi are constants with dimensions of mass.
We impose the conditions that the tracker solution is characterized by Hφ̇2q = const and
the energy density of the scalar field is proportional to φ̇2p. These conditions enable us to
reduce the model parameters, which is given by p2 = p, p3 = p + (2q − 1)/2, p4 = p + 2q,
and p5 = p+ (6q− 1)/2 1. Note that the covariant Galileon model corresponds to p = 1 and
q = 1/2.

1Kimura and Yamamoto considered the case : p = 1, q = n− 1/2, c4 = 0, and c5 = 0 [53].
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Summary

• In the most general scalar-tensor theory, sound speed of 
graviton could be different from speed of light

• The constraints from gravitational Cherenkov radiation 
would be a powerful probe.

• Gravitational Cherenkov radiation could be a criteria for the 
construction of modification of gravity



Gravitational Cherenkov 
radiation for massive graviton

3

where γij ≡ ΩikΩjlγkl, " ≡ DiDi is the Laplacian operator associated with Ωij , F (t) and cn(t) (n = 0, 1, · · · ) are
general functions of the time coordinate t. Note that F (t) must be positive definite in order to avoid appearance
of ghost and strong coupling. We can then set F (t) = 1 by a field redefinition, to be more precise, by a conformal
transformation. Finally, in order to describe low energy phenomena such as cosmological evolution of gravitational
waves at late time, we truncate the series expansion (the sum over n) at the second order spatial derivatives and
obtain

I
(2)
tensor =

M2
Pl

8

∫

dtd3xNa3
√
Ω

[

1

N2
γ̇ij γ̇ij +

c2g(t)

a2
γij ("− 2K)γij −M2

GW (t)γijγij

]

, (5)

where we have set F = 1 by a field redefinition (or a conformal transformation) and we have defined

c2g(t) ≡ c1(t), M2
GW (t) ≡ −c0(t)−

2Kc1(t)

a2
. (6)

Note that physical meaning of cg and MGW are the sound speed and effective mass of gravitational waves.
Taking advantages of the background symmetry, it is convenient to expand γij as

γij =
∑

λ

∫

k2dk γk,λY
λ
ij

(

"k, "x
)

, (7)

where k2 ≡ Ωij
"ki"kj , λ denotes the helicity state and Y λ

ij is the tensor harmonics satisfying

(

"+ k2
)

Y λ
ij = 0, DiY λ

ij = 0, ΩijY λ
ij = 0,

∫

d3x
√
Ω ΩijΩklY λ

ik

(

"k, "x
)

Y λ′

jl

(

"k′, "x
)

= 32π2δλλ′δ3
(

"k + "k′
)

. (8)

The equation of motion for γk,λ is then

γ̄′′

k +

(

c2gk
2 + a2M2

GW −
a′′

a
+ 2Kc2g

)

γ̄k = 0, γ̄k ≡ aγk, (9)

where the prime (′) denotes derivative with respect to the conformal time η defined by dη ≡ Ndt/a. Since the equation
of motion is identical for both polarizations, we omit the index λ hereafter.

III. AN ATTEMPT TOWARD NONLINEAR COMPLETION

The nonlinear theory of massive gravity recently proposed by Refs. [3, 4] eliminates the renowned BD ghost by
construction and thus can be considered as a nonlinear completion of the Fierz-Pauli theory, which is the simplest
and the oldest among all linear massive gravity theories. Having this in mind, we consider it quite possible that the
phenomenological model described in the previous section might also find its nonlinear completions in the future.
In this section we discuss an attempt towards such a nonlinear completion. In particular, we shall derive the model

with cg = 1 precisely, based on a non-trivial background in the nonlinear theory of massive gravity. Unfortunately,
this construction is purely classical and fails at the quantum level [31].1 Nonetheless, at the very least it shows that
the structure of the model considered in the present paper, with cg = 1, is not forbidden by symmetry. Readers who
are interested only in purely phenomenological aspects can safely skip this section.
The covariant action of the nonlinear massive gravity is constructed out of a 4-dimensional metric gµν and four

scalar fields ϕa (a = 0, 1, 2, 3) called Stückelberg fields. The Stückelberg fields enter the action only through the tensor
fµν defined as

fµν = f̄ab(ϕ
c)∂µϕ

a∂νϕ
b, (10)

where f̄ab(ϕc) is a non-degenerate, second-rank symmetric tensor in the field space. The spacetime metric gµν and
the tensor fµν are often called physical metric and fiducial metric, respectively.

1 Adopting a different approach, Ref. [32] achieved a similar conclusion.

 Quadratic action for a tensor mode for massive graviton
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I. MASSIVE GRAVITY

We consider the equation of motion

γ′′k +

(

c2gk
2 + a2M2

GW − a′′

a
+ 2Kc2g

)

γk = 0 (1)

The dispersion relation

ω2
k = c2gk

2 + a2M2
GW (2)

II. GRAVITATIONAL CHERENKOV RADIATION IN AN EXPANDING UNIVERSE

In this section, we derive the gravitational Cherenkov radiation in a cosmological background. For simplicity, we
consider a real scalar field with the action

Sm =

∫

d4x
√
−g

[

−1

2
gµν∂µΨ∂νΨ− 1

2
m2Ψ2 − 1

2
ξRΨ2

]

.

(3)

Here we assume the conformal coupling with spacetime curvature ξ = 1/6, for simplicity, but this term can be
neglected as long as we focus on the subhorizon scales, p/a,m # H, where p is the comoving momentum. The free
part of Ψ can be quantized as

Ψ̂(η,x) =
1

a

∫

d3p

(2π)3/2

[

b̂pψp(η)e
ip·x + b̂†pψ

∗
p(η)e

−ip·x
]

,

(4)

where η is the conformal time, b̂†p and b̂p are the creation and annihilation operators, which satisfy the commutation

relation [b̂p, b̂
†
p′ ] = δ(p− p′), and the mode function obeys

(

d2

dη2
+ p2 +m2a2

)

ψp(η) = 0. (5)

The WKB approximate solution is given by (e.g., [? ])

ψp(η) =
1

√

2Ωp
exp

[

−i

∫ η

ηin

Ωp(η
′)dη′

]

(6)

with Ωp(η) =
√

p2 +m2a2. The WKB approximation is valid for

Ω2
p #

∣

∣

∣

∣

1

Ωp

d2Ωp

dη2
− 3

2

1

Ω2
p

(

dΩp

dη

)2∣
∣

∣

∣

2

, (7)

∗Email: rampei"at"theo.phys.sci.hiroshima-u.ac.jp

For cg=c, there is no gravitational Cherenkov radiation even if m≠0

Currently, checking the case cg≠c and m≠0...
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Vector mode in cosmology 

Scalar mode 

Vector mode 

 dominant component, gravitational clustering,… 

 very minor component and does not serve as a seed of structure formation 
 In absence of sources, it decays away, and rapidly becomes negligible … 

 BUT!  It can be generated via a variety of mechanisms :  
                  cosmic strings, magnetic fields, massive neutrinos,  
                  2nd-order density perturbations, modification of gravity,… 

…The detection/measurement of them offers an important clue to 
probe the unknown physics and history of the very early universe! 



NASA/ESA Gravitational Lensing 
= method to ``see’’ invisibles 

WEAK LENSING observations can provide a direct evidence for  
the intervening ``VECTOR MODES’’ along a line of sight by measuring 

the spatial patterns of the deformation of the photon path. 



Main Goal 

1. We derive the full-sky formulas for 

• vector-induced cosmic shear for galaxy survey 
    

• vector-induced deflection angle for CMB-lensing 

2. As a prospect for detecting shear/deflection,   
    we consider a cosmic string network as  
    a possible source for seeding vector perturbations. 



Cosmic shear 
Galaxies randomly distributed 

Slight alignment 

:the deformation of distant-galaxy 
images due to weak gravitational 
lensing by large-scale structure 

 z=0 

 z=zS 

 z=zL 

…+ exotic objects 

Intrinsic shape of  
a background galaxy  

Galaxy shape actually 
seen after WL 

WL 



E-/B-mode decomposition in WL 

E-mode B-mode 

The spatial pattern of lensing shear fields can be decomposed 
into even-parity  part (E-mode) and odd-parity part (B-mode). 

The non-vanishing B-mode shear signal would be a direct 
evidence for non-scalar metric perturbations . 

Scalar 
 

Vector 
 

Tensor 

dominant 

dominant 

No 
counterpart 

(See [Dodelson+(‘03), Schmidt+(‘12),…] for primordial GW) 



Formula for vector-induced B-mode shear 
[DY+Namikawa+Taruya, 1205.2139] 

comoving distance 

  vector perturbations 

: gauge-invariant vector perturbations 

Solving the geodesic 
deviation equation,… 



CMB lensing 

[Hu+Okamoto(2002)] 
 z=0 

 z=zCMB 

 z=zL 

gradient-mode 

 Upcoming CMB experiments offers a opportunity 
to probe the gravitational lensing deflection of 

the CMB photons with unprecedented precision. 

curl-mode 

Unlensed CMB map 

Non-scalar metric perturbations 
induce the curl-deflection! 



Formula for vector-induced curl-mode 

Note : Considering a single light source, we can extract the vector-
induced gradient-/curl-modes from the vector-induced shear fields. 

[DY+Namikawa+Taruya, 1205.2139] 

: vector perturbations 



CMB-lensing reconstruction 
Lensing induces higher-order term, i.e., non-Gaussianity, in 
measured CMB anisotropies. 

 NG can be used to reconstruct  
     the lensing angular power spectrum.  

Gradient-mode φ 
      [Hu+Okamoto (2002),…] 
 

Curl-mode ω 
     [Cooray+ (2005),     
       Namikawa+DY+Taruya (2011)] 

Hu+Okamoto(2002) 

gradient-mode 
from density pert. 



A cosmic string network  
as a source of vector perturbations  

``COSMIC STRINGS’’ : relics from the 
early universe and exist in a wide 
variety of particle-physics models. 

[Hiramatsu, DY +, in prep.] 

Tμν
string The vector metric perturbations, 

``σg,i’’, are sourced by the non-
vanishing vector mode of string 

stress-energy tensor. 

(For convenience, we use the simple analytic model for 
the network evolution and the correlations.) 



B-mode shear from cosmic strings 

S/N~30 ! 
S/N~5 ! S/N~3 ! 

[DY+Namikawa+Taruya, 1205.2139] 

String tension Gμ =10-8 

reconn. prob. P= 10 -3 With a flat shape at l<100, rapidly falls off at l>>100 



S/N for string-induced B-mode shear 

Disfavored by 
CMB TT 

Disfavored by 
CMB TT 

Disfavored by 
CMB TT 

For theoretically inferred smallest value, P=10-3,  

we could even detect the signal for Gμ=5×10-10 ! 

For P=10-1, the B-mode signal is detectable for Gμ=5×10-8 

[DY+Namikawa+Taruya, 1205.2139] 



Curl-deflection from cosmic strings 

S/N ~ 10 ! 
S/N ~ 3 ! 

[DY+Namikawa+Taruya,  
1205.2139] 

String tension Gμ =10-8 

reconn. prob. P= 10 -3 

The curl-mode signals is 
prominent and have the 

largest amplitude at 
large-angular scales. 

The CURL-MODE measurement would provide not only a direct 
probe of cosmic strings, but also a diagnosis helpful to check the 

systematics  in the derived constraints from the CMB TT. 



S/N for string-induced curl-deflection  

Cosmic variance limit ACTPol+PLANCK 

[DY+Namikawa+Taruya, 1205.2139] 

Disfavored by 
CMB TT 

Disfavored by 
CMB TT 

For P=10-3, the curl-mode signal is detectable for Gμ=10-9 



Summary 
We study how vector metric perturbations affect weak 

gravitational lensing and possible signatures. 
 

As an application, we consider a cosmic string network as 
a possible source for seeding vector perturbations. 

B-mode of shear fields 

Curl-mode of deflection angle 

• P<10-1 →Gμ > 5×10-8
 , P=10-3 → Gμ > 5×10-10  

• P<10-1 →Gμ > 4×10-9
 , P=10-3 → Gμ > 10-9  

There are several missing pieces including 

the contribution of tensor perturbations,  
the additional correlations, and the other sources 

[DY, Namikawa, Taruya, in prep.] 
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Inflation: general ideas
ИI
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ИR

Inflationary solution of Hot Big Bang problems
Temperature
fluctuations
δT/T ∼ 10−5

Universe is uniform!

δρ/ρ ∼ 10−5

co
nf

or
m

al
tim

e
space coordinate

particle
horizon

casually
connected
regions

co
nf

or
m

al
tim

e

space coordinate

inflationary
expansion
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Inflation: general ideas
ИI
ЯN
ИR

Chaotic inflation: simple realization

S =
∫

d4x
√−g

(
−M2

P
2

R +
(∂µ X)2

2
−βX 4

)

Ẍ+3HẊ + V ′ (X) = 0

ȧ2

a2 =H2 =
1

M2
P

V (X) , a(t) ∝ eHt

slow roll conditions get satisfied at
Xe > MPl M2

P = M2
Pl/(8π)

generation of scale-invariant scalar (and
tensor) perturbations from exponentially
stretched quantum fluctuations of X

Chaotic inflation, A.Linde (1983)

X
δρ/ρ ∼ 10−5 requires

=⇒ V = βX4 : β ∼ 10−13

We have scalar in the SM! The Higgs field!

In a unitary gauge HT =
(

0 ,(h + v)/
√

2
)

(and neglecting v = 246 GeV) λ ∼ 0.1−1

S =
∫

d4x
√−g

(
−M2

P
2

R +
(∂µ h)2

2
− λ h4

4

)
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Higgs-inflation Mechanism, Reheating, Predictions for perturbation spectra
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Higgs-inflation

S =
∫

d4x
√−g

(
−M2

P
2

R−ξH†HR +LSM

)F.Bezrukov, M.Shaposhnikov (2007)

In a unitary gauge HT =
(

0 ,(h + v)/
√

2
)

(and neglecting v = 246 GeV)

S =
∫

d4x
√−g

(
−M2

P + ξ h2

2
R +

(∂µ h)2

2
− λ h4

4

)

slow roll behavior due to modified kinetic term even for λ ∼ 1
Go to the Einstein frame: (M2

P + ξ h2)R→M2
P R̃

gµν = Ω−2g̃µν , Ω2 = 1 +
ξ h2

M2
P

with canonically normalized χ:

dχ

dh
=

MP

√
M2

P + (6ξ + 1)ξ h2

M2
P + ξ h2

, U(χ) =
λM4

P h4(χ)

4(M2
P + ξ h2(χ))2

.

we have a flat potential at large fields: U(χ)→ const @ h�MP/
√

ξ
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Higgs-inflation Mechanism, Reheating, Predictions for perturbation spectra
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√
6 log(

√
ξh/MP )

√
3/2ξh2/MP

h
exact

log(h)

lo
g
(χ
)

MP /
√
ξMP/ξ

MP

MP /ξ

Reheating by Higgs field
after inflation: MP/ξ < h < MP/

√
ξ

effective dynamics : h2→ χ

L =
1
2

∂µ χ∂
µ

χ− λ

6
M2

P
ξ 2 χ

2

Advantage: NO NEW interactions
to reheat the Universe

inflaton couples to all SM fields!

0

λM
4
/ξ2

/16

λM
4
/ξ2

/4

U(χ)

0 χend χWMAP χ

0

λ v
4
/4

0 v

exponentially flat potential! @ h�MP/
√

ξ :

U(χ) =
λM4

P
4ξ 2

(
1−exp

(
−
√

2 χ√
3MP

))2

coincides with R2-model!

But NO NEW d.o.f. 0812.3622, 1111.4397

Different reheating temperature. . .

from WMAP-normalization: ξ ≈ 47000×
√

λ
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Higgs-inflation Mechanism, Reheating, Predictions for perturbation spectra
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√
6 log(

√
ξh/MP )

√
3/2ξh2/MP

h
exact

log(h)

lo
g
(χ
)

MP /
√
ξMP/ξ

MP

MP /ξ

Reheating by Higgs field
after inflation: MP/ξ < h < MP/

√
ξ

effective dynamics : h2→ χ

L =
1
2

∂µ χ∂
µ

χ− λ

6
M2

P
ξ 2 χ

2

Advantage: NO NEW interactions
to reheat the Universe

inflaton couples to all SM fields!

F.Bezrukov, D.G., M.Shaposhnikov, 0812.3622

m2
W (χ) =

g2

2
√

6
MP |χ (t)|

ξ

mt (χ) = yt

√
MP |χ (t)|√

6ξ
sign χ(t)

reheating via W +W−, ZZ production at zero crossings

then nonrelativistic gauge bosons scatter to light fermions

χ →W +W−→ f f̄

Hot stage starts almost from T = MP/ξ ∼ 1014 GeV:

3.4×1013 GeV < Tr < 9.2×1013
(

λ

0.125

)1/4
GeV

ns = 0.967 , r = 0.0032 F.Bezrukov, D.G.,

WMAP-normalization: ξ ≈ 47000×
√

λ 1111.4397
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Higgs-inflation Extensions: to solve neutrino, DM, BAU
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True Extension of the Standard Model should

Reproduce the correct neutrino oscillations
Contain the viable DM candidate
Be capable of explaining the baryon asymmetry of the Universe
Have the inflationary mechanism operating at early times

Guiding principle:
use as little “new particle physics” as possible

Why? No any hints observed so far!
No FCNC

No WIMPs
No . . .

Nothing new at all
(apart of QCD. . . )

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 10 / 28



Higgs-inflation Extensions: to solve neutrino, DM, BAU
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Straightforward renormalizable completion: νMSM

Use as little “new physics” as possible
Require to get the correct neutrino oscillations
Explain DM and baryon asymmetry of the Universe

Lagrangian
Most general renormalizable with 3 right-handed neutrinos NI

LνMSM = LMSM + N I i/∂NI− fIαHN ILα −
MI

2
N

c
I NI + h.c.

Extra coupling constants:
3 Majorana masses Mi

15 new Yukawa couplings
(Dirac mass matrix MD = fIα〈H〉 has 3 Dirac masses,
6 mixing angles and 6 CP-violating phases)

T.Asaka, S.Blanchet, M.Shaposhnikov (2005)

T.Asaka, M.Shaposhnikov (2005)
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Higgs-inflation Extensions: to solve neutrino, DM, BAU
ИI
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The model is remarkably simple:

It explains
inflation without introducing a new scalars
post-inflationary reheating without new interactions with SM fields

It may be further modified (e.g. by νMSM) to resolve other
phenomenological problems of the SM:

neutrino oscillations
dark matter
baryon asymmetry of the Universe

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 12 / 28



LHC: the Higgs boson mass
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Outline

1 Inflation: general ideas

2 Higgs-inflation
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LHC: the Higgs boson mass
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Naively all we need is V ∼ λ φ4 > 0... (here in the Einstein frame)

Fermi Planck Fermi Planck

λ λ

µ µ

Fermi Planck Fermi Planck

φ φ

VV
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LHC: the Higgs boson mass
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Critical point: where EW-vacuum becomes unstable
Strong coupling

Zero

MFermi MPlanck

Scale Μ

Mh=mmin

Mh=mmax

signHΛL Λ

F.Bezrukov, M.Shaposhnikov (2009)
F.Bezrukov, D.G. (2011)
F.Bezrukov, M.Kalmykov, B.Kniehl, M.Shaposhnikov (2012)
G. Degrassi et al (2012)

mH
h >

[
129.0 +

mt −172.9GeV
1.1GeV

×2.2− αs(MZ )−0.1181
0.0007

×0.56
]

GeV

present measurements at CMS and ATLAS:

mh ' 125.5±1 GeV
Update at HCP2012, Nov.12-16

100 105 108 1011 1014 1017 1020

-0.02

0.00

0.02

0.04

0.06

Scale Μ, GeV

Λ

Higgs mass Mh=124 GeV

100 105 108 1011 1014 1017 1020

-0.02

0.00

0.02

0.04

0.06

Scale Μ, GeV

Λ

Higgs mass Mh=127 GeV
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LHC: the Higgs boson mass
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Multiple point principle: D.Bennett, H.Nielsen (1993), C.Froggatt, H.Nielsen (1995)

Fermi Planck Fermi Planck

φ φ

VV

Λ' 0 ⇒ V (φEW ) = V (φPlanck ) = 0⇒ λ (µPlanck ) = 0

Planck scale enters⇒ V ′ (φEW ) = V ′ (φPlanck ) = 0⇒ dλ (µ)

d log µ
(µPlanck ) = 0

It gives mt ' 173 GeV and mh ' 129 GeV
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LHC: the Higgs boson mass
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Upper limit on the Higgs boson mass
Higgs-inflation: selfconsistency, h ∼MPl

F.Bezrukov, M.Shaposhnikov (2009)
F.Bezrukov, D.G. (2011)
F.Bezrukov, M.Kalmykov, B.Kniehl, M.Shaposhnikov (2012)
G. Degrassi et al (2012)

mH
h >

[
129.0 +

mt −172.9GeV
1.1GeV

×2.2− αs(MZ )−0.1181
0.0007

×0.56
]

GeV

critical value refers to λ(h→MP)→ 0

WMAP-normalization: ξ ≈ 47000×
√

λ · · · → 0 ?

ξ ∼ 1 would imply λ ∼ 10−13 at
finit interval ∆h ∼MPl

dλ

d log µ
= +#λ

2−Y 4
t + αW + . . .

Can not be arranged. . .
100 105 108 1011 1014 1017 1020

-0.02

0.00

0.02

0.04

0.06

Scale Μ, GeV

Λ

Higgs mass Mh=127 GeV

errors in MW give uncertainties < 0.2 GeV

170 171 172 173 174 175 176
0.116

0.117

0.118

0.119

0.120

0.121

Pole top mass Mt, GeV

St
ro

ng
co

up
lin

g
Α

S
HM

Z
L

Higgs mass Mh=125 GeV

Experimental uncertainties: 2-3 GeV
Theoretical uncertainties: 1-2 GeV

Important for further improvement:

3-loop matching and QCD for t

measurement of αs , mt and mh
at LHC(?)
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LHC: the Higgs boson mass
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The SM Higgs boson (?) found @ 125 GeV

When the digit matters. . . !!

Smooth incorporation of gravity @ MPl?
– Great desert up to Gravity scale (asymptotic safety?)
(no gauge hierarchy problem: all NP we need

is either @ EW-scale or in gravity sector)
– viable (ν , DM, BAU) SM extensions: R2-inflation with νMSM, Higgs-inflation
(can S2H†H help?), . . .

It’s another scale: e.g. PQ-scale, or Leptogenesis, etc

Just a coincidence, e.g. as GUT
– gauge coupling unification→ (gauge hierarchy problem, then not at a single
point)→ SUSY
– there are other “hints”:
m2

h ≈mZ mt , mh ≈ v/2≈ 3mZ /2, λ (mh = 125 GeV)≈ 0.125
Is Nature aware of GeV and decimal system?
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Higgs-inflation and QFT
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Higgs-inflation and QFT Nonremormalizability and strong coupling
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Fine theoretical descriptions both in

UV: χ �MP , U =

const +O
(

exp
(
−
√

2 χ/
√

3MP

))

and in

IR: h�MP/ξ , U =
λ

4
h4

no gravity corrections at inflation!
(Unlike βX 4) All inflationary

predictions are robust

Obvious problem with QFT-description
of IR/UV matching at intermediate
χ < χend and h < MP/

√
ξ

Hence no reliable prediction for the
SM Higgs boson mass mh =

√
2λ v

except the absence of Landau pole
and wrong minimum of Higgs potential
(well) below MP/ξ

130GeV . mh . 190GeV

0

λM
4
/ξ2

/16

λM
4
/ξ2

/4

U(χ)

0 χend χWMAP χ

0

λ v
4
/4

0 v

exponentially flat potential! @ h�MP/
√

ξ :

U(χ) =
λM4

P
4ξ 2

(
1−exp

(
−
√

2 χ√
3MP

))2

coincides (apart of Treh ' 1014 GeV) with R2-model!
But NO NEW d.o.f. 0812.3622

ns = 0.967 , r = 0.0032 , N = 57.7

from WMAP-normalization: ξ ≈ 47000×
√

λ
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Higgs-inflation and QFT Nonremormalizability and strong coupling
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Strong coupling in Higgs-inflation: scatterings

Jordan frame Einstein frame

MP/ξ

MP

MP/ξ MP/√ξ h

E

Weak coupling

Λg-s

Λgauge

Strong coupling

ΛPlanck

MP/ξ

MP

MP/ξ MP/√ξ h

E

Weak coupling

Λg-s

Λgauge

Strong coupling

ΛPlanck

gravity-scalar sector:

Λg−s (h)'





MP
ξ

, for h . MP
ξ

,

ξ h2

MP
, for MP

ξ
. h . MP√

ξ
,

√
ξh , for h & MP√

ξ
.

1008.5157

gravitons: Λ2
Planck 'M2

P + ξh2

gauge interactions:

Λgauge (h)'
{ MP

ξ
, for h . MP

ξ
,

h , for MP
ξ

. h ,
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Higgs-inflation and QFT Nonremormalizability and strong coupling
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Strong coupling at MP/ξ . . .

Introducing new fields to push the scale up: out of the logic

Can it change the initial conditions of the Hot Big Bang?

1 reheating temperature
2 baryon (lepton) asymmetry of the Universe
3 dark matter abundance

Let’s test these options adding all possible nonrenormalizable
operators to the model

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 22 / 28



Higgs-inflation and QFT BAU, neutrino oscillations from UV-physics?
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What can nonrenormalizable operators do?
F.Bezrukov, D.G., Shaposhnikov (2011)

δLNR =− a6

Λ2 (H†H)3 + · · ·

+
βL

4Λ
Fαβ L̄αH̃H†Lc

β
+

βB

Λ2 Obaryon violating + · · ·+ h.c.

+
βN

2Λ
H†HN̄cN +

bLα

Λ
L̄α ( /DN)cH̃ + · · · ,

Lα are SM leptonic doublets, α = 1,2,3, N stands for right handed sterile neutrinos potentially
present in the model, H̃a = εabH∗b , a,b = 1,2;

and

Λ = Λ(h) =
{

Λg−s (h) , Λgauge (h) , ΛPlanck (h)
}

couplings can differ significantly in different regions of h:
today h < MP/ξ , at preheating MP/ξ < h < MP/

√
ξ
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Higgs-inflation and QFT BAU, neutrino oscillations from UV-physics?
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LFV, BV nonrenormalizable operators today

Neutrino masses: easily

L
(5)

νν =
βLv2

4Λ

Fαβ

2
ν̄α ν

c
β

+ h.c.

hence

Λ∼ 3×1014 GeV×βL×
(

3×10−3 eV2

∆m2
atm

)1/2

when

Λ =
MP

ξ
∼ 0.6×1014 GeV

can explain with

βL ∼ 0.2

Proton decay: probably

L (6)
∝

βB

Λ2 QQQL

then from experiments

Λ &
√

βB ×1016 GeV ×
(

τp→π0e+

1.6×1033 years

)1/4

with the same

Λ =
MP

ξ
∼ 0.6×1014 GeV

one needs

βB < 0.4×10−4

Either B and Lα are significantly different
or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 24 / 28



Higgs-inflation and QFT BAU, neutrino oscillations from UV-physics?
ИI
ЯN
ИR

LFV, BV nonrenormalizable operators today

Neutrino masses: easily

L
(5)

νν =
βLv2

4Λ

Fαβ

2
ν̄α ν

c
β

+ h.c.

hence

Λ∼ 3×1014 GeV×βL×
(

3×10−3 eV2

∆m2
atm

)1/2

when

Λ =
MP

ξ
∼ 0.6×1014 GeV

can explain with

βL ∼ 0.2

Proton decay: probably

L (6)
∝

βB

Λ2 QQQL

then from experiments

Λ &
√

βB ×1016 GeV ×
(

τp→π0e+

1.6×1033 years

)1/4

with the same

Λ =
MP

ξ
∼ 0.6×1014 GeV

one needs

βB < 0.4×10−4

Either B and Lα are significantly different
or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 24 / 28



Higgs-inflation and QFT BAU, neutrino oscillations from UV-physics?
ИI
ЯN
ИR

LFV, BV nonrenormalizable operators today

Neutrino masses: easily

L
(5)

νν =
βLv2

4Λ

Fαβ

2
ν̄α ν

c
β

+ h.c.

hence

Λ∼ 3×1014 GeV×βL×
(

3×10−3 eV2

∆m2
atm

)1/2

when

Λ =
MP

ξ
∼ 0.6×1014 GeV

can explain with

βL ∼ 0.2

Proton decay: probably

L (6)
∝

βB

Λ2 QQQL

then from experiments

Λ &
√

βB ×1016 GeV ×
(

τp→π0e+

1.6×1033 years

)1/4

with the same

Λ =
MP

ξ
∼ 0.6×1014 GeV

one needs

βB < 0.4×10−4

Either B and Lα are significantly different
or we will observe proton decay in the next generation experiment

Dmitry Gorbunov (INR) 14 November 2012 JGRG22, Tokyo 24 / 28



Higgs-inflation and QFT BAU, neutrino oscillations from UV-physics?
ИI
ЯN
ИR

Leptogenesis, ∆B ≈∆L/3: can be successful

i
d
dt

Q̂L =
[
Ĥint,Q̂L

]
, ∆nL ≡ nL−nL̄ = 〈QL〉

LY =−Yα L̄α HEα + h.c. , L
(5)

νν =
βL

4Λ
Fαβ L̄α H̃H†Lc

β
+ h.c.

d∆nL/dt ∝ Im
(

β
4
L Tr

(
FF †FYYF †YY

))
∝ β

4
L y4

τ · Im
(

F3β F ∗
αβ

Fα3F ∗33

)

for the gauge cutoff Λ = h one has

β
4
L

( yτ

0.01

)4
(

0.25
λ

)5/4
×10−10 < ∆L < β

4
L

( yτ

0.01

)4
(

0.25
λ

)
×10−9 ,

for gravity-scalar cutoff Λ = ξ h2/MP

β
4
L

( yτ

0.01

)4
(

0.25
λ

)13/4
×6.3×10−13 < ∆L < β

4
L

( yτ

0.01

)4
(

0.25
λ

)2
×2.4×10−10

In both cases the asymmetry can be (significantly) increased with operator

δL τ = yτ Lτ HEτ + βy Lτ HEτ

H†H
Λ2 + · · ·

one can fancy the hierarchy gives a factor up to 108 !

1∼ βy � yτ ∼ 10−2 .
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Dark matter: an example of sterile fermion

Lint = βN
H†H
2Λ

N̄cN =
βN
4

h2

Λ(h)
N̄cN

can be produced at preheating or at the hot stage

DM fermion has to be light! (WDM?)
Indeed, today bLα

Λ L̄α ( /DN)cH̃

fα ∼ bLα

MN
Λ

.

So, N is unstable with the γν partial width of the order

ΓN→γν ∼
9b2

Lα
αG2

F

512π4
v2M5

N
Λ2 .

EGRET gives τγν ∼> 1027 s, hence 0709.2299

for Λ = MP : MN . 200MeV , for Λ = MP/ξ : MN . 4MeV
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Outline

1 Inflation: general ideas

2 Higgs-inflation
Mechanism, Reheating, Predictions for perturbation spectra
Extensions: to solve neutrino, DM, BAU

3 LHC: the Higgs boson mass

4 Higgs-inflation and QFT
Nonremormalizability and strong coupling
BAU, neutrino oscillations due to nonrenormalizable operators?

5 Summary
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Summary

LHC hints at 125 GeV may point at:

Multiple point principle ...?

No new particle physics upto gravity scale

Higgs-inflation: 129 GeV . mh . 195 GeV
needs better precision in measurement of mh, mt , yt , αs

may ask for UV-completion... asymptotic safety?
Some other inflationary models also point at mh ∼ 125 GeV (e.g. hill-top potential in simple
tensor-scalar gravity I.Masina, A.Notari (2012))

Higgs-inflation may be easily completed to account for

I neutrino oscillations
I dark matter
I baryon asymmetry of the Universe

Examples: νMSM, nonrenormalizable operators at strong coupling UV-scale
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Backup slides
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Absence of the Landau pole upto
inflationary scale ∼ 1013 GeV and
stability of the Higgs potential at large
post-inflationary values of the Higgs
boson field h ∼MPl

129GeV . mh . 195GeV

F.Bezrukov, D.G. (2010)

Lower bound refer to the case of
λ (MPl ) = 0

Message: Zero
Planck-scale corrections
from gravity?
PAST: gauge coupling unification. . .
Message: λ(125 GeV) = 0.125
Nature knows

GeV and decimal system !! ©
THIS MODEL HAS ALREADY
BEEN CORNERED BY LHC !!

if the SM Higgs boson exists. . .

RG-evolution with energy scale µ:

dλ

d log µ2 ∝ + # ·λ 2 −# ·Y 4
t

105 1010 1015 MP1020
Μ,GeV

0.5

1

1.5

2

�!!!!
Λ

mH=126.3 GeV

mH=174 GeV

h→W +W− , ZZ

Treh ' 3×1013 GeV F.Bezrukov, D.G., M.Shaposhnikov (2009)
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Models without NEW scalar(s) in PARTICLE PHYSICS SECTOR

A.Starobinsky (1980) R2-inflation Higgs-inflation F.Bezrukov, M.Shaposhnikov (2007)

SJF =−M2
P

2

∫√−g d 4x
(

R− R2

6 µ2

)
+ SJF

matter , SJF =
∫√−g d 4x

(
−M2

P
2

R−ξH†HR

)
+ SJF

matter

In this two models “inflatons” couple to the SM fields in different ways

R2-inflation: gravity, L ∝ φ/MP Higgs-inflation: finally, at φ . MP/ξ like in SM
D.G., A.Panin (2010) F.Bezrukov, D.G., M.Shaposhnikov (2008)

Treh ≈ 3×109 GeV Treh ≈ 6×1013 GeV

with different length of the post inflationary matter domination stage: F.Bezrukov, D.G. (2011)

somewhat different perturbation spectra
ns = 0.965 , r = 0.0032 ns = 0.967 , r = 0.0036

break in primordial gravity wave spectra at different frequencies
in R2 perturbations 10−5 enter nonlinear regime:
gravity waves from inflaton clumps
SM Higgs potenial is OK up to the reheating scale:

mh & 116 GeV mh & 120−129 GeV
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The power spectra of primordial perturbations
The same potential, the same φ at the end of inflation

e.g. F.Bezrukov, D.G., M.Shaposhnikov (2008)

ns ' 1− 8(4N + 9)

(4N + 3)2 , r ' 192
(4N + 3)2

But WMAP observes different N in the two models:
k/a0 = 0.002/Mpc exits horizon at different moments

N =
1
3

log

(
π2

30
√

27

)
− log

(k/a0)

T0g1/3
0

+ log
V 1/2
∗

V 1/4
e MP

−

1
3

log
V 1/4

e
1013 GeV

− 1
3

log
1013 GeV

Treh

The difference is F.Bezrukov, D.G. (2011)

N∗ ≈ 57− 1
3

log
1013 GeV

Treh
,NR2 = 54.37, NH = 57.66.

R2-inflation: ns = 0.965, r = 0.0036,

Higgs-inflation: ns = 0.967, r = 0.0032.

Planck(?), CMBPol(1-2σ )

2 4 6 8 10 12
Φ�MP

0.05

0.10

0.15

0.20

V�Μ
2MP

2

inflation RD, MD epochs

H(t)

q(t)=
a(t)

k

tte

inside
horizon

inside
horizon

outside
horizon
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Upper limit on the Higgs boson mass

R2-inflation: stability while the Universe evolves
from Q = Treh ≈ 3×109 GeV

J.Espinosa, G.Giudice, A.Riotto (2007) F.Bezrukov, D.G. (2011)

mR2
h >

[
116.5 +

mt −172.9GeV
1.1GeV

×2.6− αs(MZ )−0.1181
0.0007

×0.5
]

GeV

Higgs-inflation: stability while the Universe evolves
from Q = Treh ≈ 6×1013 GeV

F.Bezrukov, M.Shaposhnikov (2009) F.Bezrukov, D.G. (2011)

mH
h >

[
120.0 +

mt −172.9GeV
1.1GeV

×2.1− αs(MZ )−0.1181
0.0007

×0.5
]

GeV

stability while the Universe evolves
right after inflation h ≈ 1013 GeV

mH
h > [129.0 + . . . ] GeV

present limit from CMS: mh < 127 GeV @ 95%CL

105 1010 1015 MP1020
Μ,GeV

0.5

1

1.5

2

�!!!!
Λ

mH=126.3 GeV

mH=174 GeV

Uncertainties: about 2−3 GeV
due to unknown QCD-corrections

Important for further improvement:

(N)NLO corrections in QCD
coupling

measurement of mt and mh at
LHC
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In Massive Gravity (MG), the mass of graviton is non-vanishing, 

which breaks the gauge invariance 

Generally speaking, the dof is 

Constraint 

equations 

Helicity  

Recently, a non-linear construction of massive gravity 

theory (dRGT) is proposed, where the BD ghost is 

removed by specially designed non-linear terms, so that 

the lapse function     becomes a Lagrangian Multiplier, 

which removes the ghost degree of freedom. 



 where 

fiducial metric  

C. de Rham, G. Gabadadze, Phys. Rev. D 82, 044020 (2010); 

C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett 106, 

231101 (2011); 

S. F. Hassan and R. A. Rosen, JHEP 1107, 009 (2011) 

Non-linear Massive Gravity (dRGT) 

Stuckelberg field 
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Self-accelerating solution is found in context of non-linear 

massive gravity, where two branches exist with effective 

cosmological constant consists of a contribution from 

mass of graviton. A. E. Gumrukcuoglu et. al. JCAP 106, 231101(2011); 

still there exists the Cosmological Constant Problem 

There seems to be some hope to explain the current 

acceleration, but… 

A possible resolution: Anthropic Landscape of Vacua 

S. Weinberg, Rev. Mod. Phys. 61, 1 (1989) 
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• The Landscape has 

several local minima; 

 

• the fields can (and will) 

tunnel from a metastable 

minimum to a lower one; 

 

• this process is driven by 

instanton.  

 

S. Coleman and F. de Luccia, Phys.Rev. D21, 

3305, (1980) 

→ it is interesting to investigate how the stability of a vacuum  

is determined in the context of  non-linear Massive Gravity 



 Setup of model 

• potential  

local minima: 

global minima: 

local max: 
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• tunneling probability per unit time per unit volume  

bounce solution ‘false vacuum’ 

 usually, bounce solutions are explored by assuming an O(4) symmetry 

Lowest action 

 spacetime metric: Euclidean  



→ the O(4)-symmetric solutions are obtained by setting 

 fiducial metric: deSitter 

fiducial Hubble parameter 

Note: the fiducial metric may not respect the symmetry 



→ 
Branch I 

Branch II 

(equivalent to branch II) 

→ 

Inserting these ansatz into the action, we obtain the 

constraint equation by varying with respect with f 
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where 

  Friedmann equation & EOM for tunneling field 



Hawking-Moss(HM) solution 
• HM solution can be found at the local maximum of the potential 

         under boundary condition  

• inserting this result into the Euclidean action and 
evaluate by integrating in the range                            , 
we finally express the HM action 



standard HM 

solution  Correction due to 

the mass of graviton 

Comparing with GR case, recalling the tunneling 

probability                       , we obtains: 

Tunneling rate is enhanced for            ,  

                         suppressed for   





14 

Summary and future work 

We constructed a model in which the tunneling field 

minimally couples to the non-linear massive gravity; 

 

corrections of HM solution from mass term is found, which 

implies suppression or enhancement of tunneling rate, 

depending on the choices of parameters; 

 

analysis of Colemann-DeLuccia solutions is under work; 

 

it would be interesting to investigate the case where the 

tunneling field couples to the non-linear massive gravity 

non-minimally. 
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• Note: for the Minkowski fiducial metric,                  , by setting 

 
 

 
            so we recover the Minkowski one by setting               . 

• Appendix 
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Introduction

So far, various modified gravity theories have been suggested.
（Scalar-tensor theory,  f(R) gravity, higher derivative gravity,
   bimetric gravity, nonlinear massive gravity etc.）

Those theories could alter tensor perturbations and predict the
properties of GWs different from GR:

•  massive gravitons
•  different phase evolution of GWs
•  additional GW polarizations (scalar & vector pols.)

GW observation can be utilized for
• direct test of general relativity
• probing the extended theories beyond GR

Here we focus on massive graviton and its detectability with  
GW detectors.
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Massive graviton & GW

Dispersion relation of graviton

• minimum frequency of GW 

• propagating speed of GW (group velocity) 

Modification of GW waveform from a compact binary 
[ Will 1998, Berti et al. 2005, Yagi & Tanaka 2010 ] 

aLIGO: LISA: 

• phase velocity of GW 
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GW polarizations

Tensor VectorScalar

In general metric theory of gravity, six polarizations are allowed.
[ Eardley et al. 1973, Will 1993].
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Current mass constraints

Solar system 

Galaxy  cluster 

CMB 

[ Talmadge et al. 1988, Will 1998 ]

[ Goldhaber & Nieto 1974 ]

Weak lensing [ Choudhury et al. 2004 ]
[ Dubovsky et al. 2010 ]

The above is static bounds based on the modification of 
Newtonian potential (background level).

Binary pulsar [ Finn & Sutton 2002 ]

This bound is applied to only tensor polarization mode. 

Constraints on scalar and vector mode of GW is NOT so strong
and they can be quite massive.
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GW background

Energy density of GW background 

tensor

vector

scalar

Here we consider massive GW background.

Detector output of GW background 

detector 
response func.
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Correlation analysis of GW background

T! T!

Signal to noise ratio

correlation

Single detector cannot distinguish GWB and random detector noise. 
Also in most cases GW signal is small compared to noise. 

Signal of detector 1:
Signal of detector 2:
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Correlation signal

tensor 

vector 

scalar 

Correlation signal in a frequency bin:

Overlap reduction function 
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Overlap reduction function

LIGO H1-L1 pair 

@ low freq. Const. @ high freq. Damping oscillation 

For massive graviton,
effective distance
between detectors is
smaller than massless
case.

• stronger correlation 
• low freq. cutoff 

Tensor
Vector
Scalar
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Mass detection

Case (i): small mass  
Case (ii): intermediate mass  
Case (iii): large mass  

Low freq. cutoff
of detector sensitivity
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Mass detection

Case (i): small mass  
Case (ii): intermediate mass  
Case (iii): large mass  

Low freq. cutoff
of detector sensitivity

Indistinguishable 
from massless case 
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Mass detection

Case (i): small mass  
Case (ii): intermediate mass  
Case (iii): large mass  

Low freq. cutoff
of detector sensitivity

Characteristic jump of
GWB spectrum is seen. 
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Mass detection

Case (i): small mass  
Case (ii): intermediate mass  
Case (iii): large mass  

Low freq. cutoff
of detector sensitivity

Even if large GWB exists,
we see nothing.
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Fisher matrix & graviton mass determination

Typical mass scale detectable with a GW detector: 

Use Fisher matrix to estimate measurement accuracy of 
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Fisher matrix & graviton mass determination

Typical mass scale detectable with a GW detector: 

Use Fisher matrix to estimate measurement accuracy of 

We ignore the contribution from the 2nd term for safety.
Then our estimate is conservative one.
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Computation setup

Consider 4 GW detectors: aLIGO (H1&L1), aVIRGO, KAGRA 
Correlation pairs are HL, HV, LV, HK, KL, KV.
(all noise spectra are assumed to be that of aLIGO.)

Detector network:

Model of GW background: 

Free parameters:

Fiducial values: & all 

We assume only a single
pol. mode exists.
(not mixture of 3 pols.)
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SNR of a detector network

Detector low freq. cutoff = 10 Hz.

SNR threshold = 10 High freq. cutoff = 300 Hz

No significant difference
between polarization 
modes. A detector 
network has almost the 
same sensivity to GWB.
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Mass measurement accuracy

In the available frequency range, graviton mass is well determined.

for
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Note1: If the correlation signal is a mixture of 3 pol. modes,
           we can robustly separate these mode with a detector 
           network as shown in

• Search for graviton mass and polarization enable us to perform
  model-independent test of gravity and to constrain alternative
  theory of gravity.

Summary

[ AN et al., PRD 79, 082002 (2009); PRD 81, 104043 (2010) ]

Note2: If we take the Fisher matrix for          into account,
          detectable mass range would broaden.

•  We considered massive GWB and showed that if GWB is
   detected, advanced-detector network can search for graviton
   mass in the range.

Note3: It’d be interesting to consider space-based detectors
          and pulsar timing, which can constrain different mass range.
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Large peak on GWB spectrum?

[ Gumrukcuoglu et al., arXiv:1208.5975 ]  



22

Observational constraints on GWB
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Angular response functions

Vector and scalar modes are also detectable with an interferometer.

[ Tobar, Suzuki & Kuroda 1999 ]
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Overlap reduction function (KV)
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Overlap reduction function (LV)
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Overlap reduction function (HV)
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Overlap reduction function (KH)
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Overlap reduction function (KL)
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Mode separation

In principle, three detectors allow us to separate the modes.

Mode separation

If the modes are not separable (                   ),
GWB signal does not contribute to the SNR at the frequencies.

0=

Separability strongly depends on              .

Correlation signal of GW at a frequency bin
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Detectors & Earth coordinate

Detector pair is completely characterized by three parameters.

Orientation of det. 1

Orientation of det. 2

Angle between 
the detectors

5 advanced detectors on the ground.
[ A=AIGO, C=LCGT, H=AdvLIGO(H1), L=AdvLIGO(L1), V=AdvVIRGO. ]
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SNR (single pol.)

1=HL,
2=AC,
3=CH,
4=LV,
5=HV,
6=CV,
7=CL,
8=AV,
9=AH,
10=AL.

Detector pair

Assume that GWB has only one polarization mode.

This is also true for current detectors.
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Detectable GWB with single pol.

Observation time

All modes are detectable with almost the same SNRs.

All detectors have the same noise spectrum as that of AdvLIGO.

5 advanced detectors on the ground.
[ A=AIGO, C=LCGT, H=AdvLIGO(H1), L=AdvLIGO(L1), V=AdvVIRGO. ]

most sensitive
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Detectable GWB after mode separation

• Advanced detectors on the ground
[ A=AIGO, C=LCGT, H=AdvLIGO(H1), L=AdvLIGO(L1), V=AdvVIRGO. ]

• Assume the same noise spectrum as that of AdvLIGO.

Mode separation hardly
degrade the SNRs.
(Almost the same
sensitivity to GWB
in the presence of
 a single pol. mode)



 

 

 

 

 

 

 

RESCEU SYMPOSIUM ON 

GENERAL RELATIVITY AND GRAVITATION 

JGRG 22 

November 12-16 2012 

Koshiba Hall, The University of Tokyo, Hongo, Tokyo, Japan 

Daisuke Yoshida, JGRG 22(2012)111424 

“New cosmological solutions in massive gravity” 

 



D. Yoshida 1
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Abstract
In massive gravity,we find a series of the metrics for which the effective energy mo-
mentum tensor from the graviton mass behave as a cosmological constant. As a
result,the metric that is exact solution in general relativity with cosmological con-
stant is a exact solution also in massive gravity. Especially,these solutions include
expanding cosmological solutions with flat,open and closed spacial curvature.

1 Introduction

It is very intriguing to explore whether or not the graviton can have a mass. The first attempt to add
a mass term to the gravity action was made by Fierz and Pauli [1], who considered the quadratic action
for the graviton hµν in flat space with the mass term

m2
(
hµνh

µν − h2
)
. (1)

The linear theory with the Fierz-Pauli mass term is ghost-free. However, the theory does not reproduce
general relativity in the massless limit m → 0. The extra three degrees of freedom in a massive spin
2 survive even in this limit, and therefore the prediction for light bending is away from that of general
relativity, which clearly contradicts solar-system tests. This is called the vDVZ discontinuity [2].

As pointed out by Vainshtein [3], the discontinuity can in fact be cured by going beyond the linear
theory. Massive gravity has a new length scale called the Vainshtein radius, below which the nonlinearities
of the theory come in and the effect of the extra degrees of freedom is screened safely. The Vainshtein
radius becomes larger as m gets smaller, and thereby a smooth massless limit is attained.

However, the very nonlinearities turned out to cause another trouble. Boulware and Deser argued
that there appears the sixth scalar degree of freedom at nonlinear order, which has a wrong sign kinetic
term, i.e., the sixth mode is a ghost [4]. The presence of the Boulware-Deser (BD) ghost has hindered
us from constructing a consistent theory of massive gravity.

Recently, a theoretical breakthrough in this field has been made. Adding higher-order self-interaction
terms and tuning appropriately their coefficients, de Rham and collaborators successfully eliminated
the dangerous scalar mode from the theory in the decoupling limit [5, 6]. Then, Hassan and Rosen
established a complete proof that the theory does not suffer from the BD ghost instability to all orders
in perturbations and away from the decoupling limit [7]. Thus, there certainly exists a nonlinear theory
of massive gravity that is free of the BD ghost.

2 Action of Ghost Free Massive Gravity

The action of the ghost free massive gravity [6] is following:

S = SEH + Smass + Smatter, (2)

1Email address: yoshida”at”th.phys.titech.ac.jp
2Email address: tsutomu”at”rikkyo.ac.jp
3Email address: msiino”at”th.phys.titech.ac.jp
4Email address: gucci”at”phys.titech.ac.jp



2 New Cosmplogical Solutions in Massive Gravity

here,SEH and Smatter is usual Einstein-Hilbert action and matter’s action. The additional mass term
Smass is

Smass =
M2
PL

2

∫
d4x

√
−gm2 (U2 + α3U3 + α4U4) . (3)

with graviton mass m and free parameters α3, α4. Here,

U2 := [K]2 − [K2], (4)

U3 := [K]3 − 3[K][K2] + 2[K3], (5)

U4 := [K]4 − 6[K2][K]2 + 8[K3][K] + 3[K2]2 − 6[K4]. (6)

”[ ]” represents trace:

[K] = Kµµ, [K2] = KµνKνµ, · · · , (7)

and Kµν is

Kµν = δµν −
√
gµρ∂ρϕa∂νϕbηab. (8)

the Square root of a tensor is defind as follow:√
Aµρ
√
Aρν = Aµν . (9)

ϕa (a = 0, 1, 2, 3) are scalar fields called Stückelberg field.
In the action,Stückelberg fields appear throught the conbination ∂µϕ

a∂νϕ
bηab ≡ Σµν , and , We call

this tensor “fiducial metric”. In the coordinate

x0 = ϕ0, x1 = ϕ1, x2 = ϕ2, x3 = ϕ3, (10)

the fiducial metric becomes the diagonal Minkowski metric:

Σµν = ηµν , (11)

and,this coordinate called “unitary gauge”.
The equation of motion derived from this action is

Gµν +m2Xµν =
1

M2
PL

Tµν . (12)

Here,Gµν is the Einstein tensor,Tµν is the energy momentum tensor of the matter,and m2Xµν is effective
energy momentum tensor from graviton mass:

m2Xµν =
1√
−g

δSmass
δgµν

(13)

Note that if m2Xµν ∝ gµν , this term behave as a cosmological constant, therefore the equation of motion
coincides with the Einstein equation with a cosmological constant.

3 Cosmological Solutions

In massive gravity, a change of coordinate transforms not only gµν but also Σµν . So, in the coordinate
where gµν is the usual diagonal form:

gµνdx
µdxν = −dt2 + a2(t)

[
dr2

1−Kr2
+ r2dΩ2

]
, (14)
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the fiducial metric Σµν is a generally complicated form.
The first attempt to find a cosmological solution was made by D’Amico et al [8]. In this analysis,

the free parameterα3, α4 set to zero,the spacial curvature is flat , and in the familiar diagonal FLRW
coordinate of teh physical metric,the fiducial metric is the diagonal Minkowski form (ϕµ = xµ):

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj (15)

Σµνdx
µdxν = ηµνdx

µdxν , (16)

or has same symmetry as the physical metric(ϕ0 = f(t), ϕi = xi):

gµνdx
µdxν = −dt2 + a2(t)δijdx

idxj , (17)

Σµνdx
µdxν = −ḟ2(t)dt2 + δijdx

idxj . (18)

In both cases, equation of motion implies ȧ = 0, as a result ,our univers can not expand.
To obtain the expanding FLRW solution,we must consider more complicated case. One way is to

consider the open FLRW space time [9] ,or more general fiducial metric [8] [10]. But , we take another
approach. We choose the coordinate where the fiducial metric is the diagonal Minkowski form(unitary
gauge), and the physical metric is not usual diagonal form.

Before our work,the de Sitter solution was already found [11]. In this analysis,the de Sitter space time
is described by the Painlevé-Gullstrand (PG) coordinate in the unitary gauge:

gµνdx
µdxν = −κ2dt2 + α̃2

(
dr ±

√
Λ

3
κrdt

)2

+ α̃2r2dΩ2 (19)

Σµνdx
µdxν = ηµνdx

µdxν . (20)

In addition, free parameter α3, α4 was choosed as following:

α3 =
1

3
(α− 1), α4 =

1

12
(α2 − α+ 1), α =

α̃

1− α̃
. (21)

In this case,the effective energy momentum tensor from the graviton mass is

m2Xµν =
m2

α
gµν . (22)

Therefore, the equation of motions are Einstein equation with the effective coupling constant m2/α.So
for Λ = m2/α,this de Sitter solution is an exact solution in massive gravity.

We extend this analysis to the FLRW space time. The key observation is that ,as the de Sitter space
time, the FLRW space time can be described by the PG coordinate[13].So,we impose this form of the
physical metric in the unitary gauge:

gµνdx
µdxν = −κ2dt2 + α̃2

1−Kα̃2r2/a2(t)

(
dr ± ȧ

a
κrdt

)2

+ α̃2r2dΩ2 (23)

Σµνdx
µdxν = ηµνdx

µdxν . (24)

We use same parameters as (21). In the set up ,the effective energy momentum tensor from the graviton
mass is same as eq.(22),and,as expected,the equation of motion is the Einstein equation with a cosmo-
logical constant. So, as in general relativity,these FLRW space times are solutions in massive gravity.

We can transform the coordinate to the familiar diagonal FLRW coordinate by r → R = α̃r/a(t), t→
T = κt,

gµνdx
µdxν = −dT 2 + a2(T )

[
dR2

1−KR2
+R2dΩ2

]
(25)

Σµνdx
µdxν = −

(
1

κ2
− ȧ2R2

α̃2

)
dT 2 +

2aȧR

α̃2
dTdR+

a2

α̃2
(dR2 +R2dΩ2). (26)

In this coordinate,the fiducial metric is inhomogenious form. Thus,the fiducial metric is the form out of
ansatz eq.(16),eq.(18).
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4 More General Solutions

We can generalize our cosmological solutions. Instead of the PG form FLRW metric (23) ,we use the
following general PG form metric:

gµνdx
µdxν = −U2(xµ)dt2 + V 2(xµ) (dr + f(xµ)dt)

2
+ α̃2r2dΩ2. (27)

Here,U, V, f are arbitrary functions. Also,in this set up,the effective energy momentum tensor is same as
(22). As a result,the metric that is an exact solution in general relativity with a cosmological constant
,is a exact solution also in massive gravity.

For example,the Lemâıtle-Tolman-Bondi (LTB) metric can be described by PG form[13]. Therefore
the LTB solution is an exact solution in massive gravity. we can use this solution to study spherical
collapse of a perfect fluid in massive gravity.

5 Concludion

We have found new cosmological solutions in massive gravity with flat,open,and closed spatial geometries.
Our solutions can be extended to general spherical space time,including LTB space time. In both cases,
the key was that general PG form metric (27)gives rise to an effective energy momentum tensor of a
cosmological constant m2/α for the special choice of the parameters (21). This is essential for being able
to get analytic solutions in massive gravity easily from the seed solutions in general relativity.

References

[1] M. Fierz and W. Pauli, Proc. Roy. Soc. Lond. A 173, 211 (1939).

[2] H. van Dam and M. J. G. Veltman, Nucl. Phys. B 22, 397 (1970); Zakharov, JETP Letters (Sov.
Phys.) 12, 312 (1970).

[3] A. I. Vainshtein, Phys. Lett. B 39, 393 (1972).

[4] D. G. Boulware and S. Deser, Phys. Rev. D 6, 3368 (1972).

[5] C. de Rham and G. Gabadadze, Phys. Rev. D 82, 044020 (2010) [arXiv:1007.0443 [hep-th]].

[6] C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. Lett. 106, 231101 (2011) [arXiv:1011.1232
[hep-th]].

[7] S. F. Hassan and R. A. Rosen, Phys. Rev. Lett. 108, 041101 (2012) [arXiv:1106.3344 [hep-th]].

[8] G. D’Amico, C. de Rham, S. Dubovsky, G. Gabadadze, D. Pirtskhalava and A. J. Tolley, Phys. Rev.
D 84, 124046 (2011) [arXiv:1108.5231 [hep-th]].

[9] A. E. Gumrukcuoglu, C. Lin and S. Mukohyama, JCAP 1111, 030 (2011) [arXiv:1109.3845 [hep-th]].

[10] P. Gratia, W. Hu, M. Wyman, arXiv:1205.4241 [hep-th].

[11] L. Berezhiani, G. Chkareuli, C. de Rham, G. Gabadadze and A. J. Tolley, Phys. Rev. D 85, 044024
(2012) [arXiv:1111.3613 [hep-th]].
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What is bimetric gravity? 

Introduce massive graviton 
  → ”massive gravity theory” 

When there is general covariance, graviton cannot have mass. 

Introduce “reference metric”. 

＊reference metric is non dynamical in massive gravity 

Make the reference metric dynamical 

bi(metric)gravity 

It breaks general covariance, then graviton can have mass. 



: physical metric : reference metric 

S.F.Hassan and R.A.Rosen  JHEP. 1202 126 (2012) 

trace 

: reduced Plank scale 

EH action of EH action of 

: coupling constant 

Interaction term 

Bigravity action 



As the simple case,  
we think of bimetric theory with cosmological constants. 

We would like to investigate dynamics of spacetime  
with matter in bimetric gravity. 

＊We can think of cosmological constants  
  as scalar fields in slow roll approximation. 

We can also discuss inflation. 

slow roll 

The motivation of our study 



de Sitter solution 

: EoM of 𝛼  

: EoM of 𝛽  

: constraint (from variation with respect to N)   

: constraint (from variation with respect to M)  

: consistency relation (secondary constraint)  

de Sitter solution is represented as positive roots of  :        = const. 

homogeneous   
 metric ansatz 

From variational principle of action 



de Sitter solution 

: EoM of 𝛼  

: EoM of 𝛽  

: constraint (from variation with respect to N)   

: constraint (from variation with respect to M)  

: consistency relation (secondary constraint)  

de Sitter solution is represented as positive roots of  :        = const. 

homogeneous   
 metric ansatz 

From variational principle of action 

Expansion rate (Hubble) 



where                                   , 

The conditions for the existence of de Sitter solution 

Condition② :  The roots satisfy  

Condition① :  There exist positive roots of  

where 

Inner root Outer root 

0 

Inner root Outer root 

The region where de Sitter solution exists 

② 

① ① 

② 



Anisotropic perturbation 

anisotropic  
ansatz  

: EoM of 𝜎  

: EoM of λ  

: Effective mass of  
   massive graviton 

From variational principle of action, 

From the difference of EoMs, 



The stability towards the anisotropic perturbation 

The stability is determined  
by the sign of oscillational term 

Inner root Outer root 

positive definite 

stable 

stable 

unstable 

where 

whether         is larger/smaller than    



Evaluation of effective mass        

𝛽 = 2 

𝛽 = 3 

𝛽 = 4 

𝛽 = ∞ 

𝛽 = 2 

𝛽 = 0.6 

𝛽 = 0 

𝛽 = −∞ 

𝛽 = −1 

𝛽 = 3.5 

𝛽 = 5 

Inner root Outer root 

: the ratio of effective mass  
   to Hubble scale 

Effective mass exactly equals to             on                      ! 



 There are two series of solutions:  inner root and outer root. 

Summery 

(1) homogeneous isotropic metric ansatz 

(2) anisotropic perturbation around de Sitter sol.  

the condition that de Sitter solution exists 

the stability for the perturbation 

effective mass of massive graviton corresponding to the anisotropy. 

・ inner root        stable 

・ outer root        stable for                     and unstable for                      

・ inner root       

・ outer root      

This indicates the anisotropy decays in Hubble timescale. 

For inner root, effective mass is bounded above Hubble scale. 
If we consider inflation then the anisotropy decays in inflation time scale. 



Future work 

When we consider perturbations on de Sitter background in massive gravity, 

the square of graviton mass should be larger than              (Higuchi bound)  

 otherwise negative norm states appear 

Effective mass exactly equals to             on                       ! 

ref.  A.Higuchi, Nucl,Phys. B 282,397 (1987) 

Higuchi bound   

In our analysis, 

・ explicitly calculating the mass bound of massive graviton in bimetric gravity 

・ checking whether inner root is really stable towards arbitrally perturbation  

Is there really the relation between them ? 
 

coincide 
with  

 i.e.  the critical condition for the existence of de Sitter solutions 
 





cosmological constant 
of physical metric 

cosmological constant  
of reference metric 

equivalent 



＊We fix                       and vary         in the following. 
     Then root of            is function of        . 

The condition for the existence of de Sitter solution 

Condition(2)  :  The roots  satisfy  

Condition(1)  :  There exist positive roots of  

Expansion rate is determined from constraint. 

where 



        and            (inner root and outer root) 

This root satisfies                                   

The behavior of the roots of          

There exists a positive multiple root . 

There ordinarily exist two positive roots. 

As we decrease        , 
decreases. 

increases. 

Sometime,  
becomes smaller than 

becomes larger than 

The critical         is          ,         , respectively. 



we can rewrite the following value as 

From                       , 
inner root satisfies 

outer root satisfies 



＊ when we make the general coordinate transformation 
      at the same time for both metrics,  
      the action is unchanged. 
     (there are only 4 DOF as general covariance.) 

: physical metric : reference metric 

S.F.Hassan and R.A.Rosen  JHEP. 1202 126 (2012) 

trace 

: reduced Plank scale 

EH action of EH action of 

: coupling constant 

Interaction term 

Bigravity action 
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Abstract
We analyze the response of the parity violation in the primordial non-Gaussianity
to the CMB bispectrum. We find that the parity-violating non-Gaussianity creates
III, IIE, IEE, IBB, EEE, EBB spectra obeying

P3
n=1 `n = odd and IIB, IEB,

EEB, BBB spectra satisfying
P3

n=1 `n = even. We confirm these features through
the case where the parity-violating Weyl cubic action or primordial helical magnetic
field exists.

1 Introduction

Non-Gaussian features in the cosmological perturbations include detailed information on the nature of
the early Universe, and there have been many works that attempt to extract them from the bispectrum
(three-point function) of the cosmic microwave background (CMB) anisotropies (e.g., Ref. [1]). However,
most of these discussions are limited in the cases that the scalar-mode contribution dominates in the
non-Gaussianity and also are based on the assumption of rotational invariance and parity conservation.

In contrast, there are several studies on the non-Gaussianities of not only the scalar-mode perturba-
tions but also the vector- and tensor-mode perturbations [2]. These sources produce the additional signals
on the CMB bispectrum [3] and can give a dominant contribution by considering such highly non-Gaussian
sources as the stochastic magnetic fields [4]. Furthermore, even in the CMB bispectrum induced from
the scalar-mode non-Gaussianity, if the rotational invariance is violated in the non-Gaussianity, the char-
acteristic signals appear [5]. Thus, it is very important to clarify these less-noted signals to understand
the precise picture of the early Universe.

This paper discusses how the parity violation in the primordial non-Gaussianity affects in the CMB
bispectrum. The effects on the cosmic microwave background (CMB) have been well-studied and the
cosmological parity violation has been verified by analyzing the non-vanishing cross-correlated power
spectra between the intensity (I) and B-mode polarization (B) anisotropies and those between E-mode
(E) and B-mode polarization anisotropies. Furthermore, beyond the linear-order effects, the impacts
of the parity violation on the graviton non-Gaussianities have recently been discussed [6, 7]. According
to the concept of this literature, in Ref. [8], we have formulated the CMB bispectrum generated from
the parity-violating graviton non-Gaussianities and find special signatures of primordial parity violation.
Moreover, Ref. [9] have evaluated the detectability of the parity-violating non-Gaussianity by using the
CMB III bispectrum under an assumption of the existence of large-scale helical magnetic fields.

This paper corresponds to a review of our papers [8, 9]. Detailed organization is as follows. In the
next section, we summarize the effects of the parity in the primordial non-Gaussianity on the CMB
bispectrum. In Secs. 3 and 4, we present the CMB bispectra sourced from the non-Gaussianities due to
the parity-violating Weyl gravity and primordial helical magnetic fields. The final section is devoted to
summary and discussion.

2 Response of parity in non-Gaussianity to CMB bispectrum

The CMB fluctuation on any direction, n̂, is quantified in multipole space as

∆X(n̂)
X

=
∑
`m

aX,`mY`m(n̂) , (1)

1Email address: mare@nagoya-u.jp
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where X denotes the intensity (I) and two polarization fields (E, B). If keeping the rotational invariance
of the primordial non-Gaussianity, the CMB bispectrum is also defined in multipole space as

BX1X2X3,`1`2`3 =
∑

m1m2m3

(
`1 `2 `3
m1 m2 m3

)〈 3∏
n=1

aXn,`mmn

〉
(2)

The multipole configuration of the CMB bispectrum can be easily understood only if one consider
the parity transformation of the CMB intensity and polarization fields in real space. III, IIE, IEE,
IBB, EEE and EBB spectra from parity-conserving non-Gaussianity, and IIB, IEB,EEB, and BBB
spectra from parity-violating non-Gaussianity have even parity, namely,〈

3∏
i=1

∆Xi(n̂i)
Xi

〉
=

〈
3∏
i=1

∆Xi(�n̂i)
Xi

〉
. (3)

Then, from the multipole expansion (1) and its parity flip version as

∆X(�n̂)
X

=
∑
`m

aX,`mY`m(�n̂) =
∑
`m

(�1)`aX,`mY`m(n̂) , (4)

one can notice that
∑3
n=1 `n = even must be satisfied. On the other hand, since IIB, IEB,EEB,

and BBB spectra from parity-conserving non-Gaussianity, and III, IIE, IEE, IBB, EEE, and EBB
spectra from parity-violating non-Gaussianity have odd parity, namely,〈

3∏
i=1

∆Xi(n̂i)
Xi

〉
= �

〈
3∏
i=1

∆Xi(�n̂i)
Xi

〉
, (5)

one can obtain
∑3
n=1 `n = odd.

3 CMB signatures from parity-violating Weyl gravity

Primordial non-Gaussianity from parity-odd (parity-violating) Weyl cubic action has been firstly reported
by Ref.[6] in the context of ultraviolet modification of gravity. After that, careful treatments by Ref. [7]
have shown that resultant parity-violating non-Gaussianity of the primordial gravitational waves emerges
not in the exact de Sitter space-time but in the quasi de Sitter space-time, and hence, its amplitude is
proportional to a slow-roll parameter. In these studies, the authors have assumed that the coupling
constant of the Weyl cubic terms is independent of time.

In this section, we focus on the graviton non-Gaussianity generated from the parity-violating Weyl
gravity with the running coupling constant as a function of a conformal time, f(�), whose action is given
by

S =
∫

d�d3x
f(�)
Λ2

�����W��γ�W
γ�
σ�W

σ�
�� . (6)

Here, W��
γ� denotes the Weyl tensor, ����� is a 4D Levi-Civita tensor normalized as �0123 = 1, and Λ

is a scale that sets the value of the higher derivative corrections [6]. The coupling constant is assumed
as the power-law type: f(�) = (�/��)A, where � is a conformal time. Here, we have set f(��) = 1. Such
a coupling can be readily realized by considering a dilaton-like coupling in the slow-roll inflation. In this
case, depending on time dependence of coupling, we can realize finite non-Gaussianity of gravitational
waves even in the exact de Sitter space time. Note that primordial tensor bispectrum from such non-
Gaussianity is categorized as the equilateral type.

Figure. 1 shows an example of the CMB III and BBB bispectra from such primordial tensor bispec-
trum. Here, we plot the reduced bispectrum defined by

bX1X2X3,`1`2`3 � (G`1`2`3)
�1BX1X2X3,`1`2`3 (7)
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with

G`1`2`3 �
2
√

`3(`3 + 1)`2(`2 + 1)
`1(`1 + 1) � `2(`2 + 1) � `3(`3 + 1)

√∏3
n=1(2`n + 1)

4�

(
`1 `2 `3
0 �1 1

)
. (8)

It is observed that III and BBB spectra obey
∑3
n=1 `n = odd and

∑3
n=1 `n = even, respectively. These

are consistent with the discussion in the previous section and characteristic imprints of the parity-violating
non-Gaussianity.
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Figure 1: Absolute values of the CMB III and BBB spectra from parity-violating graviton non-
Gaussianity. Here, three multipoles are fixed as `1 � 2 = `2 � 1 = `3. Here, we fix the parameters
as Λ = 3 � 106GeV, A = 1 and �� = �k�1

� = �14Gpc, and other cosmological parameters are fixed as
the mean values limited from the WMAP 7-yr data [10].

4 CMB signatures from helical magnetic fields

If there exists the primordial magnetic field (PMF), which is a favored candidate for the seed field of
microgauss-level magnetic fields in galaxies and cluster of galaxies, their power spectrum may involve the
parity-violating component. Assuming Gaussianity of such PMF, beneficial signals are generated in the
CMB bispectra due to the quadratic dependence of the CMB fluctuation on the PMF. In the case where
only parity-conserving component exists, the contributions of PMFs to the primordial non-Gaussianities
and the CMB bispectra have been deeply investigated in e.g., Ref. [4].

In this section, let us consider the effects of PMFs including the parity violation on the CMB bispec-
trum. We shall start from the convention of the parametrization for the PMF as

〈Ba(k)Bb(k′)〉 =
(2�)3

2

[
PB(k)Pab(k̂) + i�abck̂cPB(k)

]
�(k + k′) , (9)

where k̂ is a unit vector, �abc is the 3D Levi-Civita tensor normalized by �123 = 1, and Pab(k̂) � �ab� k̂ak̂b
is a projection tensor coming from the divergence free nature of PMFs. The first and second terms in the
bracket of r.h.s. represent non-helical and helical contributions, respectively. The magnetic anisotropic
stress, which depends quadratically on the PMF, acts as a source of metric perturbations prior to neutrino
decoupling. Then, due to Gaussianity of the PMF, resulting curvature perturbation and gravitational
wave become highly non-Gaussian fields. Such non-Gaussianities result in finite CMB bispectra of scalar
and tensor modes.

Figure 2 describes the signal-to-noise ratio from the parity-violating components of the CMB III
bispectrum (

∑3
n=1 `n = odd) in the cosmic variance limit. As shown in this figure, at large scales,

tensor mode dominates over scalar one because of the ISW amplification. Note that the auto-correlated
bispectrum of scalar modes is exactly zero because the scalar mode has no spin dependence and cannot
hold the information on parity. The parity-odd III bispectrum depends on P 2

BPB. Introducing the PMF
strengths smoothed on 1Mpc, namely, B1Mpc(∝ P

1/2
B ) and B1Mpc(∝ P

1/2
B ), we can conclude that the

signal-to-noise ratio from parity-odd III bispectrum exceeds unity if B
2/3
1MpcB

1/3
1Mpc > 2.3nG.



4 Parity violation in the CMB bispectrum
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 0.0001
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TTT
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Figure 2: Signal-to-noise ratios from the parity-odd CMB III bispectra coming from
∑3
n=1 `n = odd,

respectively, in the cosmic variance limit. The “total” line denotes S/N obtained from the total spectrum
of TTT, STT, TST, TTS, SST, STS and TSS modes, and the others correspond to S/N ’s coming from
each mode. Here, we fix the PMF parameters as B1Mpc = 1.0nG,B1Mpc = 0.287nG, and assume the
PMF generation at the GUT scale and nearly scale invariance of PB and PB. The other parameters are
identical to the mean values obtained from the WMAP-7yr data [10].

5 Summary and discussion

In this paper, we have summarized the impacts of parity-violating non-Gaussianities on the CMB bispec-
tra. Non-Gaussian level party violation limits the multipole configurations of the CMB bispectra. That
is, III, IIE, IEE, IBB, EEE, EBB spectra obey

∑3
n=1 `n = odd, and IIB, IEB, EEB, BBB spec-

tra arise if satisfying
∑3
n=1 `n = even. Actually, these special properties associated with parity-violating

non-Gaussianity can be predicted in the several early Universe models, such as the Weyl gravity and
inflation with the electromagnetic field [8, 9]. Constraining these models from the CMB observation
remains as a future issue.
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The Cosmological  
Constant Problem 

“Joyeux anniversaire et meilleurs voeux aux professeurs  Futamase,  
Kodama & Sasaki!” 
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Outline 

1- Introduction: the cosmological constant in the Einstein equations. 
 
 
 
2- Observational constraints on the CC.  
 
 
 
3- Regularization (or renormalization) of the vacuum energy density. 
 
 
 
4- Possible loopholes in our approach to the CC problem. 
 
 
 
5- General conclusions. 
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Outline 

Based on  

“Everything you always wanted to know about the 
Cosmological constant problem (but were afraid to ask)” 

Comptes Rendus Physique 13 (2012) 566-665  

arXiv:1205.3365 

  S. Weinberg, Rev. Mod. Phys. 61, 1 (1989) 
 

 V. Sahni & A. Starobinsky, astro-ph/9904398 
 

  T. Padmanabhan, hep-th/0212290 
 

  J. Yokoyama, gr-qc/0305068 
 

  J. Polchinsky, hep-th/0603249 
 

 M. Li, X. Li, S. Wang & Y. Wang, arXiv:1103.5870 

See also: 



The cosmological constant (CC): introduction 

4 

Historically introduced by Einstein to find a static cosmological solution  in       
General Relativity (GR)  [see N. Straumann, gr-qc/0208027] 
 

 



In presence of a Cosmological Constant, the Einstein field equations read 
 

  
 
 

geometry CC matter 

  Preserves covariance  
 

 Covariant derivative vanishes hence compatible with a conserved energy 
momentum tensor 

 
 Dimension length^ (-2) 

 
 The CC can always been seen as an extra source of matter: 

 
 The equation of state of the CC is:                        . The effective 

pressure is negative. 

The cosmological constant (CC): introduction 



The cosmological constant: constraints 

6 

detection 

Parker & Pimentel, PRD25, 3180 (1982) 

Wright, astro-ph/9805292 



    

2011 Nobel prize 

In 1998, two groups measure the expansion of the Universe and claim 
detection of a non-vanishing CC.  
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 

 

The cosmological constant in cosmology 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 

 

The cosmological constant in cosmology 



The cosmological constant in cosmology 
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 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 



The cosmological constant in cosmology 

11 

 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described  
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  
    pointing towards this conclusion (age of the universe, SNIa, clusters  
    abundance, lensing etc …) 
 
 



The cosmological constant in cosmology 

12 

Example: using the CMB only, a vanishing CC now seems to be ruled out at more  
than 5 sigma …  

 

SPT data, arXiv:1210.7231 



The cosmological constant 

13 

 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described 
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  
    pointing towards this conclusion (age of the universe, SNIa, clusters  
     abundance, lensing etc …) 

 
 The other alternatives (in-homogeneous universe, modified gravity,          

quintessence etc …) have their own problems. 
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Quintessence 

DE 

DE 3pDE 

A possible alternative is that there is no CC but a scalar field (“quintessence”) 
playing the role of a “dark energy”.  

 

   

must be <0 

Ratra & Peebles, PRD37 3406 (1988) 



Quintessence 

15 

In these models, dark energy is dynamical and the equation of state is a time- 
dependent  quantity. Falsifiable since different from the CC 

 

Brax & Martin, astro-ph/9905040 



Quintessence 

16 

  Hard to find good models of particle physics which lead to the correct  
     potentials 
 
 Hard to control the interactions of quintessence with the other fields 

 
 Hard not to destroy the flatness of the potential by quantum corrections 

 
 Everything seems to indicate that w=-1 …  



The cosmological constant 

17 

 The hard fact is that the following equation does not fit well the data 
 
 

 
 
 

 If the Universe is homogeneous and isotropic and if gravity is described  
by GR and if there is no other exotic fluid then the CC is non-vanishing. 
 

 In this framework, the Universe is accelerating. 
 
 2012: there is now a bunch of different and independent measurements  

    pointing towards this conclusion. (age of the universe, SNIa, clusters  
     abundance, lensing etc …) 
 
 The other alternatives (in-homogeneous universe, modified gravity, 

quintessence etc …) have their own problems. 
 

 Even if what we see in cosmology is not the CC, this implies a new upper 
limit on the CC energy density 



The cosmological constant 

18 

detection 



The cosmological constant 

19 



The cosmological constant: summary of the classical discussion  

20 

 Therefore, the CC remains the simplest explanation of the different  
     cosmological measurements 
 
 
 There is no sign in the observations that we need a dark energy   

different from the CC 
 

 
 At this (classical) level, we have a theory with a new fundamental   

constant and its value has been determined by the measurements to be  
 

 
 

 
 The CC is such that it is very difficult to check this value elsewhere 

than in cosmology … always a negligible effect. 
 
 



The cosmological constant: the quantum side 

21 

When QM and QFT are taken into account, the nature of the discussion  
 is however drastically modified [A. Sakharov, Sov. Phys. Dokl. 12, 1040 (1968)] 

Classical contribution 

Quantum contribution 

 
The vacuum state has the following  
    stress-energy tensor 
 
 
 
 
 
 
 
 
 
 In flat spacetime, only differences  
     of energy are measurable so not  
     important …  In curved spacetime, the absolute value is important. 
 
  A priori, the  vacuum fluctuations gravitate as any other form of energy  
 
 



The weigh of the vacuum 

22 

An example is the Electro-Weak transition 



The cosmological constant: the quantum side 

23 

Quantum contribution 

  Because of Heisenberg principle the position  
     and the velocity of a quantum harmonic oscillator  
     cannot vanish at the same time 
 
 
 
 
 A quantum field=infinite collections of  
    quantum oscillators 
 
 
 
 
  This should not cause any panic since we are  
      used to tame infinities in QFT: renormalization. 
 
  However, this particular type of infinity is usually not renormalized but  
     ignored on the basis that, in flat spacetime, only differences of energies  
     are measurable. 
 
  
 
 



The weigh of the vacuum 

24 

The first attempt to estimate the gravitational impact of vacuum fluctuations  
was done by W. Pauli [see “Die allgemeinen Principein des Wellenmechanik”] 

Einstein static universe 

Radiation field in a box 

“it could not even  
reach to the moon” 



The cosmological constant & QFT 

25 

In a modern language, the main issue is how to renormalize  the vacuum energy 
density 

 

  The vacuum contribution is expressed in terms of Feynman bubble diagrams,  
      ie diagrams with no external leg.  
 
 
  These diagrams have bad convergence properties, worst than ordinary  
      loop diagrams: they remain infinite even in the QM limit. 
 
 
  In non-gravitational physics, these graphs always cancel out. 

 
 

  When gravity is taken into account, one must regularize them.  



Regularizing the cosmological constant 

26 

Renormalization leads to the following expression for the CC 
 

- Birrell & Davies, “QFT in curved spacetime” (1982) 
- Akhmedov, hep-th/0204048 
- Koksma & Prokopec, arXiv:1105.6296 



The value of the cosmological constant 

27 

detection 

“prediction?” 



The cosmological constant: possible loopholes 

28 

 
 A possible loophole is that vacuum fluctuations are just an artifact of  
     QFT. However,  we observe their influence in the Casimir effect or in the  
     Lamb shift effect. 
 
 
 
 
 
 
 
 
 
 Maybe vacuum fluctuations have abnormal gravitational properties?? But  
     vacuum fluctuations participate for a non-negligible amount to the mass of  
     nuclei … and they are observed to obey the UFF (WEP). 

 
 

What about the EP (UFF) in the quantum regime?? 



Gravitational coupling in the QM regime 

The UFF in QM is described by the following Schrodinger equation  
 

 The validity of this equation has  been experimentally 
checked by the Collela Overhausser Werner (COW)  
experiment and by atomic interferometry. 

 
 UFF can be checked by measuring times of flight of  

quantum particles. 
 
 The classical result is recovered if  

One gram particle:  

Neutron:  
P. Davies, CQG 21 5677 (2004)  



30 

Conclusions: 

Summary 

 The cosmological constant problem is the impossibility to reconcile the  
     renormalized value  of  vacuum energy with its observed value in cosmology  
     and/or with the upper contraints obtained in others experimental situations. 
 
 
  It is then natural to question the assumptions made to arrive at this result: 
     failure of our renormalization technique, vacuum fluctuations=fake , abnormal  
     gravitational properties of the vacuum etc …  
       
 
  However, investigating these issues does not seem to reveal  any inconsistencies  
     (at the theoretical/observational level). 
 
 
  It is frustrating that cosmology be the only situation where one can measure  
     (and not only constrain) the CC! 
 
 
  The CC problem is a deep problem since it lies at the crossroads between  
      gravity and QM. In brief, the question is: what are the gravitational  
      properties of the quantum vacuum? 
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Futamase-sensei	

•  Congratulations on your 60th birthday! 	

•  Congratulations to Sasaki-san and Kodama-san, too 	

•  I was a graduated student of Futamase-sensei at 

Tohoku University	

•  My master thesis project as “Post-Newtonian 

Lagrangian perturbation approach to the large-scale 
structure formation” (1998)	


•  My PhD thesis project was “Weak lensing effect on 
CMB” (2001)	



The golden age of cosmology 	

•  Various data sets are now available	

•  The measurement accuracies are increasing improved	


•  Can test cosmological models/scenarios very precisely: the expansion 
history and the growth of structure formation	



Big Questions in Cosmology	

•  What is the universe made of? 
– the nature of dark matter	


•  What is its fate? – the nature 
of dark energy	


•  How did the universe begin? – 
the nature of primordial 
fluctuations	

From WMAP	



Test of cosmic acceleration	
•  Geometrical test	


	

	


	

–  CMB, Type-Ia SNe, Baryonic Acoustic Oscillation (BAO)	


•  Growth of structure formation	


–  Weak Lensing, Galaxy clustering, Counts of galaxy clusters	


•  Goal: Combine the geometrical and structure formation probes to 
distinguish DE and modification of gravity for the origin of cosmic 
acceleration 	

H 2(z) = H0
2 Ωm0(1+ z)

3 −
K
H0
2 (1+ z)

2 +
ρde(z)
ρcr0

#

$
%

&

'
(

Dark Energy	

€ 

˙ ̇ δ m + 2H ˙ δ m − 4πGρ mδm = 0
Cosmic Expansion	 Gravity	



From Millennium Simulations	

Large-scale structure formation	

•  The initial conditions are now 
well constrained by CMB	


•  The ΛCDM model gives 
specific predictions of the 
subsequent structure formation, 
based on the analytic and 
simulation methods	


•  The growth of structures arises 
from the competing effects; 
cosmic expansion vs. gravity	


•  Dark energy affects the 
structure formation	


•  The models can be tested by 
precise data  	



Galaxy survey; imaging vs. spectroscopy	

•  Find objects	

–  Stars, galaxies, galaxy clusters	


•  Measure the image shape of each 
object → weak gravitational lensing	


•  For cosmology purpose	

–  Pros: many galaxies, a 

reconstruction of dark matter 
distribution	


–  Cons: 2D information, limited 
redshift info. (photo-z at best)	


•  Measure the photon-energy 
spectrum of target object	


•  Distance to the object can be 
known → 3D clustering analysis	


•  For cosmology 	

–  Pros: more fluctuation modes in 3D 

than in 2D 	

–  Cons: need the pre-imaging data for 

targeting; observationally more 
expensive (or less galaxies)	


Imaging 	 Spectroscopy  	



•  Examples; SDSS, 
COSMOS	


•  Legacy data set	

Impact of unbiased wide-area 
imaging/spectroscopic survey	

 abridged …	

The table shows scientific 
impacts of each optical 
telescope and survey, based 
on the stats of 2008-year 
papers published in journals	

	

SDSS(2.5m) has brought 
more impacts than HST or 
8m Tels	


Trimble & Ceja (2010) 	



SuMIRe = Subaru Measurement of 
Images and Redshifts	

l  IPMU director Hitoshi Murayama funded (~
$32M) by the Cabinet in Mar 2009, as one of 
the stimulus package programs 	


l  Build wide-field camera (Hyper SuprimeCam) 

and wide-field multi-object spectrograph 
(Prime Focus Spectrograph) for the Subaru 
Telescope (8.2m)	


l  Explore the fate of our Universe: dark matter, 

dark energy 	


l  Keep the Subaru Telescope a world-leading 

telescope in the TMT era	


l  Precise images of 1B galaxies 	


l  Measure distances of 1M galaxies 	


	

HSC	
PFS	

Subaru (NAOJ)	



@ summit of Mt. Mauna Kea (4200m), Big Island, Hawaii	

Subaru Telescope	

Prime-Focus Instrument	

Subaru Telescope	



Dark Energy 
Competition	

BigBOSS (2015?-)	

Euclid (2020)	

LSST (2020?-)	
WFIRST (2020?-)	

DES (2012-)	

BOSS (2009-)	

KIDS (2012-)	



Time line (DE experiments)	

2011
	

2012
	

2013
	

2014
	

2015
	

2016
	

2017
	

2018
	

2019
	

2020
	

WL	
HSC	

DES	
LSST?	

Euclid	

PFS	

SDSS/BOSS	
BAO	

WFIRST?	

We are in a good position! 	



Hyper Suprime-Cam (HSC)	


  Upgrade the prime focus camera	


  Funded, started since 2006: total cost 
~$50M	


  International collaboration: Japan 
(NAOJ, IPMU, Tokyo, Tohoku, Nagoya, 
+), Princeton, Taiwan 	


  FoV (1.5° in diameter): ~10×Suprime-
Cam 

  Keep the excellent image quality	


  Instrumentation well underway (being 
led by S. Miyazaki, NAOJ)	


  HSC survey starting from 2012 - 
2017	


  Deep multi-band imaging (grizy; i~26, 
y~24) with 1400 square degrees	




Hyper Suprime-Cam Project	

•  All instruments at 
Mauna Kea	


•  The largest camera 
in the world	


•  3m high	


•  3 tons weighed	


•  116 CCD chips 
(870 millions pixels)	



The Engineering first light!	
Shack-Hartmann unit	

The first image of Vega	

From Satoshi Miyazaki (NAOJ, HSC PI)	



HSC 
Engineering 
First Light	

•  Press release (Sep 12)	

•  From homepages of IPMU and 

NAOJ	

•  Nature, the newspapers in Japan, 

YouTube	

•  YouTube: 3,998 hits (as of Nov 13)	



Planned HSC Survey 	
•  Wide Layer: 1400 sq. degs., grizy (iAB=26, 5σ)	


–  Weak gravitational lensing	


–  Galaxy clustering, properties of z~1 L* galaxy 	


–  Dark Energy, Dark Matter, neutrino mass, the early 
universe physics (primordial non-Gaussianity, 
spectral index)	


•  Deep Layer: 28 sq. degs, grizy+NBs (i=27)	

–  For calibration of galaxy shapes for HSC-Wide WL	


–  Lyman-alpha emitters, Lyman break galaxies, QSO	


–  Galaxy evolution up to z~7	


–  The physics of cosmic reionization 	

•  Ultra-deep Layer: 2FoV, grizy+NBs (i~28)	


–  Type-Ia SNe up to z~1.4	


–  LAEs, LBGs	

–  Galaxy evolution	


–  Dark Energy, the cosmic reionization	




Planned HSC Survey	
HSC-UD

HSC-Wide

HSC-Deep Black: existing	

Magenta: upcoming	

Blue: future	

HSC Layers will 
explore new 
regions in survey 
parameter space 	


wider	narrower	

de
ep

er
	

sh
al

lo
w

er
	

A
ll sky	



HSC Survey Fields	

R.A.

DEC

HSC-D

HSC-D
HSC-D/UD

HSC-W

Galactic Extinction E(B-V)

•  The HSC fields are selected based on …	

–  Synergy with other data sets: SDSS/BOSS, The Atacama 

Cosmology Telescope CMB survey (from Chile), X-ray (XMM-
LSS), spectroscopic data sets	


–  Spread in RA	


–  Low dust extinction	


 	



Gravitational Lensing���
=Einstein’s prediction  
Gµν =

8πG
c4

Tµν

⇒  light path: x = x[z;gµν ]
The curved space-time bends “light path”	

	

The curvature of space-time is measurable 
via galaxy shapes	

Lensing strength = 
 (geometry of the universe)  
   × (total matter of lens(es)) 	

Cosmic acceleration (DE)	

Dark matter	

 distorted galaxy shapes	



Subaru Telescope:  ���
wide FoV & excellent image quality	

~50,000 galaxy images	

HST	

Galaxy cluster	

The current SprimeCam image (M. Oguri)	

•  Fast, Wide, Deep & Sharp 	

•  a cosmological survey needs these  



Subaru Telescope:  ���
wide FoV & excellent image quality	

~50,000 galaxy images	

HST	

Galaxy cluster	

The current SprimeCam image (M. Oguri)	

•  Fast, Wide, Deep & Sharp 	

•  a cosmological survey needs these  

Hyper Suprime-Cam FoV	



Statistical weak lensing	

•  Need statistics to reduce the 
intrinsic shape contamination 	


•  Excellent image quality and deep 
image needed for an accurate WL 
measurement	


•  Issues; accurate shape 
measurements, PSF correction, 
pixelization effect	



Stacked lensing: halo-shear correlation	
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obs(θi ) = γ+
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Ncl

∑ ≈ γ+
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 projection effect	

 clusters 

Less affected by 
projection effect, 
intrinsic alignment,	

sys. errors  ….	

	

Note: halo center	

Oguri & MT 11	



Average DM distribution of galaxy clusters	
Okabe, MT, Umetsu, Graham, Futamase 10 
Okabe, MT, Futamase  et al.  in prep.	

Stacked cluster lensing 
(all the ROSAT-selected 
clusters in z=0.15-0.3)	

	

Have obtained Subaru 
data of all the 52 
previously-known, X-ray 
luminous clusters in 
0.15<z<0.3; S/N~50	

	

Used ~1M galaxies in 
total for WL analysis	

	

This projected started in 
2005; it has taken 6 years 
so far (10 nights)	



Stacked Lensing (contd.)	

Subaru measurements. 
Okabe, Takada+ 11	

The precise meas. of mean mass: Mvir/10^14=6.75+0.33
-0.32 (4%), cvir=4.10+0.21

-0.20(5%)	

Excellent agreement with CDM simulation predictions	

Cluster-centric radius [Mpc/h]	
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NFW	

SIS 	
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(χmin
2 = 9.23)

(χmin
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2 =19)



Forecast for stacked lensing with HSC	

•  HSC can achieve a high S/N detection of stacked WL signals out to z~1.3	

•  Small-angle signals are from one halo (the mean halo mass and the 

average shape of mass profile)	

•  Large-angle signals are from the mass distribution in large-scale structure	


Oguri & MT 10	
M>10^14M_s/h	



Prime Focus Spectrograph 
(PFS)	


  Multi object fiber spectrograph for 8.2m Subaru	


  International collaboration; Japan (IPMU+), 
Princeton, JHU, Caltech/JPL, LAM, Brazil, ASIAA	


  Initiated by the stimulus funding (~$30M 
secure); $50M needed for the instrumentation	


  The current baseline design	


-  The same optics to HSC	


-  2400 fibers	


-  380-1300nm wavelength coverage	


-  R~2000, 3000, 5000 (blue, red, NIR) 	


  The target first light; around 2017	


  Capable of various science cases:  cosmology, 
galaxy, galactic archeology 	




 PFS Positioner	


Op#cal	  Bench	  with	  Posi#oner	  Units	  

Posi#oner	  Unit	  -‐	  Cobra	  

Cobra system is the most essential part of PFS, and will be built at JPL	

Designed to achieve 5μm accuracy in < 8 iterations (40 sec) 	


A&G	  Fiber	  Guides	  



•  Concept Design Review (Mar 
2012)	


•  Next milestone: Preliminary 
Design Review (Feb or Mar 
2013)	

3rd PFS collaboration meeting	

Aug 13-16, 2012@Caltech	

~70 participants	

(~50 non-Japanese)	


Successfully passed CoDR!	



PFS Science Document in arXiv	



Baryon Acoustic Oscillation (BAO)	
Sloan Digital Sky Survey (SDSS-I,II) (2000-2008)	

Eisenstein et al. (05)	

€ 

rBAO = DA (z)Δθobs

€ 

rBAO =
Δzobs

H(zsurvey )
Dark Energy Task Force Report (DETF)	



BAO geometrical test	

•  Measure the single length scale 
(BAO) from the galaxy 
distribution	


•  Not use the clustering 
amplitude information to do 
cosmology due to galaxy bias 
uncertainties, even though 
much higher signal-to-noise 
ratios in the amplitude signals	


•  The amplitude uncertainty is 
marginalized over to obtain the 
distance constraints	

€ 

DA (z)θobs = rBAO
Δzobs
H(z)

= rBAO

$ 
% 
& 

' & 

×	



Redshift range for PFS survey	

•  0.7<z<2 universe not yet observed	

•  SuMIRe = Imaging & spectroscopic surveys of the same region of 

the sky with the same telescope 	

Lyman-alpha clouds	

 z~2-3 (BAO just detected)	

 z<0.7	 From SDSS-III website	



PFS spectrograph design	

•  Wide wavelength coverage: Blue (380-670), Red 
(650-1000) and NIR (970-1300) spectra at the same time	



Unique capability of PFS: high performance	

•  [OII] line (3727Å) feature 
used for cosmology survey	


•  Assuming baseline instrument 
parameters (fiber size, 
throughput, readout noise, 
etc.)	


•  Conservative assumption: 0.8’’ 
seeing, at FoV edge, 26 deg. 
zenith angle	


•  Included sky continuum & OH 
lines	


•  The PFS design allows 	


      a matched S/N in Red and 
NIR arms → a wide redshift 
coverage, 0.8<z<2.4	


•  LSS more linear at higher z	
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A working example: 	

f[OII]=5×10-17erg/cm2/s, σv=70 km/s, reff=0.3’’ 	

texp=2×450sec (15min in total)	

Target z range of PFS cosmology	

PFS-blue	 PFS-red	 PFS-NIR	



Target selection of [OII] emitters	
•  Mock Catalog, based on the COSMOS 30 bands, zCOSMOS and DEEP2 (Jouvel 

et al. 2009, + further updates)	


•  The wide z-range allows an efficient target selection based on the color cut:	


22.8<g<24.2 & -0.1<g-r<0.3	


•  7847 targets per the PFS FoV (1.3 deg. diameter)~ 3×(# of PFS fibers) 	


•  ~75% success rate for 2 visits of each field	

z>0.7 ELG efficiency, fhiz
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PFS Cosmology Survey	

•  The total volume: ~9 (Gpc/h)3 ~ 2 × BOSS survey	


•  Assumed galaxy bias (poorly known): b=0.9+0.4z	


•  PFS survey will have ngP(k)~a few@k=0.1Mpc/h in each of 6 redshift bins	


Redshift 	 Vsurvey	

(h-3 Gpc3)	

# of galaxies 	

(per FoV)	

ng	

(10-4 h3 Mpc-3)	

bias	 ngP(k)	

@k=0.1hMpc-1	

0.8<z<1.0	 0.79	 358	 6.0	 1.26	 2.23	

1.0<z<1.2	 0.96	 420	 5.8	 1.34	 2.10	

1.2<z<1.4	 1.09	 640	 7.8	 1.42	 2.64	

1.4<z<1.6	 1.19	 491	 5.5	 1.5	 1.78	

1.6<z<2.0	 2.58	 598	 3.1	 1.62	 0.95	

2.0<z<2.4	 2.71	 539	 2.7	 1.78	 0.76	

•  Assume 100 clear nights to meet the scientific goals → the area of PFS survey	


100[nights]×8[hours]×60[min]
2[visits]× (15[min]+3[min])

×1.098[sq. deg. FoV]=1464 sq. deg.



Expected BAO constraints	

•  The PFS cosmology 
survey enables a 3% 
accuracy of measuring 
DA(z) and H(z) in each 
of 6 redshift bins, over 
0.8<z<2.4	


•  This accuracy is 
comparable with BOSS, 
but extending to higher 
redshift range	


•  Also very efficient given 
competitive situation	

–  BOSS (2.5m): 5 yrs	

–  PFS (8.2m): 100 nights	


	


BOSS	 PFS-Red	 PFS-NIR	



Model-independent DE reconstruction	

Ωde(z) =
ρde(z ⊂ zi )
3H 2(z)
8πG



PFS vs. BigBOSS	

•  500  vs. 100 nights	

•  14000 vs. 1420 sq. deg.	


•  BAO constraints; 
BigBOSS a factor 3 
more powerful than 
PFS?	


•  No! PFS has a 
comparable power with 
BigBOSS in z=1.2-1.6, 
also probes the new z-
range 	


BigBOSS	
PFS	



Expected growth rate constraints	

•  The PFS survey 
design allows a 5% 
accuracy of 
constraining the 
growth rate in 
each redshift 
(each of 6 bins) 	


•  Again 
complementary to 
BOSS	


	


BOSS	

PFS-Red	
PFS-NIR	



SuMIRe: HSC+PFS forecast	
•  Improves the dark 

energy FoM by a factor 
of 6 from either alone 
of the two	


•  σ(w_const)=0.02: 
equivalent to Stage-IV 
DE experiment 	


•  There are more rooms 
to explore the synergy 
(not yet fully explored 
in the literature)	


•  Calibration issues of 
various systematics in 
each imaging and 
spectroscopic surveys	

DE eq. of state	
wDE(a) ≡

pDE
ρDE

= w0 +wa(1− a)

an empirical 
parameterization 	

(w=-1: cosmological const.)	

Oguri & MT 11	



Cosmology frontier survey needs ���
help from theory people!  	

•  Need to resolve many issues in both theory and observation	

•  New ideas can be tested with upcoming data sets (SuMIRe in 

particular)	


•  Japan is behind observational cosmology (theory is stronger 
in Japan)	


•  A big chance/opportunity for Japanese community to make a 
leap to the world frontier	


•  Discovery channels (hope serendipitous discoveries as in SK)	


 	



Current obs. cosmology driven by data 	

•  The high-precision 
measurements/data available	


•  Empirical models often used	


•  Data is more advanced than 
the accuracy of model 	

Mν,tot<0.94eV(95%C.L.)	

€ 

Pg (k) = b2Pm
L (k)1+Qnlk

2

1+1.4k
Tegmark et al. 06	



New development in modeling 
nonlinear power spectrum	

•  Various new methods 
to compute nonlinear 
power spectra have 
revisited 	


•  Good examples; new 
ideas from theory 
people help! (for 
analysis/interpretation)	


•  The field led by many 
Japanese cosmologists	


•  Based on pioneer 
works; Kodama & 
Sasaki (84), Suto & 
Sasaki (91), Makino, 
Suto & Sasaki (92)	
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Red: new model	

Sugiyama & Futamase 12	 Taruya et al. 12	

(also see Matsubara 08…)	



Summary	
l  SuMIRe = Subaru Measurement of Images and Redshifts	


l  Unique capabilities of 8.2m Subaru Telescope (other projects all 4m-class 
telescopes besides LSST)	


l  Hyper Suprime-Cam Survey (HSC) = imaging of 1B gals	

l  Start the wide-area survey from around Aug 2013 for 5 years	

l  Use WL to recover the DM distribution up to z~1	


l  Prime Focus Spectrograph (PFS) = redshifts of 4M gals	

l  Start the wide area survey from around 2018 for 5 years	

l  Baryon Acoustic Oscillations to measure the cosmic expansion rate	


l  Imaging + spectroscopic survey is a very powerful combination	

l  Cosmology: DE, DM, neutrino masses, curvature, inflation models (f_NL)	

l  Not only for cosmology, also for galaxy evolution, the origin of Milky Way	


l  Great opportunities for young cosmologists to jump into, to “test” your 
models/ideas	
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Four Laws of Black Hole Dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Bardeen, Carter & Hawking 1973]

δM − ωH δJ =
κ

8π
δA

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]

δA > 0

THIRD LAW
It is impossible to achieve κ = 0 in any process
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Four Laws of Black Hole Dynamics





surface gravity

rotation frequency

H

A
horizon
  area

ZEROTH LAW
Surface gravity κ is constant over the horizon of
a stationary black hole

FIRST LAW
Mass M and angular momentum J of BH
change according to [Christodoulou 1970, Smarr 1973]

M − 2ωH J =
κ

4π
A

SECOND LAW
In any physical process involving one or several
BHs with or without an environment [Hawking 1971]

δA > 0

THIRD LAW
It is impossible to achieve κ = 0 in any process
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Fourty Years of BH Thermodynamics [Bekenstein 1972, Hawking 1976]

Using arguments involving a piece of matter with entropy thrown into a BH,
Bekenstein derived the BH entropy

SBH = αA

This would require TBH = κ
8πα but the thermodynamic temperature of a

classical BH is absolute zero since a BH is a perfect absorber

However Hawking proved that quantum particle creation effects near a BH
result in a black body temperature TBH = κ

2π . This leads to the famous

Bekenstein-Hawking entropy of a stationary black hole

SBH =
c3k

~G
A
4

The analogy between BH dynamics and the laws of thermodynamics is complete
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Toward a Generalized First Law for a System of BHs

S r

 r



H

The mass and the angular momentum of the BH are given by Komar surface
integrals at spatial infinity

M = − 1

8π
lim
r→∞

∮
Sr

∇µtν dSµν

J =
1

16π
lim
r→∞

∮
Sr

∇µφν dSµν

where tµ and φµ are the two stationary and axi-symmetric Killing vectors
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Toward a Generalized First Law for a System of BHs

The first law of BH dynamics expresses the change

δQ = δM − ωH δJ

in the Noether charge Q between two nearby BH
configurations, where Q is associated with the
Killing vector

Kµ = tµ + ωH φ
µ

which is the null generator of the BH horizon

K

congruence 
of horizon's
generators
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Toward a Generalized First Law for a System of BHs

A generalized First Law valid for systems of BHs can be obtained when the
geometry admits a Helical Killing Vector (HKV)

Kµ∂µ = ∂t + Ω ∂ϕ

where ∂t is time-like and ∂ϕ is space-like (with closed orbits), even when ∂t
and ∂ϕ are not separately Killing vectors

This applies to the case of two Kerr BHs moving on exactly circular orbits
with orbital frequency Ω

The two BHs should be in corotation, so that ωH should approximately be
equal to Ω. In particular the spins should be aligned with the orbital angular
momentum
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Toward a Generalized First Law for a System of BHs


L

S

S1 2m

m
2

1

H

H

H
=

CM
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Toward a Generalized First Law for a System of BHs

1 With the Helical Killing Vector Kµ∂µ = ∂t + Ω ∂ϕ the change in the
associated Noether charge is given by

δQ = δM − Ω δJ

provided that the space-time is asymptotically flat [Friedman, Uryū & Shibata 2002]

2 However exact solutions of the Einstein field equations with Helical Killing
symmetry cannot be asymptotically flat since they are periodic which
contradicts the decrease of the Bondi mass at J +

[Gibbons & Stewart 1983]
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Toward a Generalized First Law for a System of BHs

J

J

+

-

I0

Physical situation

no incoming
   radiation
   condition

standing waves 
     at infinity

J

J

+

-

I0

Situation with the HKV
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Looking at the Conservative Part of the Dynamics

One way to deal with the problem is to look at approximate solutions which
are asymptotically flat. A possible solution is to suppress radiation degrees of
freedom by imposing a condition of conformal flatness for the spatial metric
[Isenberg & Nester 1980; Wilson & Mathews 1989]

Here we follow a different route which is to consider only the conservative
part of the dynamics in a post-Newtonian (PN) expansion, neglecting the
dissipative effects due to the emission of gravitational radiation

Thus we derive the First Law for a class of conservative PN space-times
admitting a HKV and describing point particles (possibly with spins) moving
on an exactly circular orbit
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Two Point Particles on an Exactly Circular Orbit

K
K K1

u
1



 

particle's trajectories

light cylinder

time

space
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Conservative versus Dissipative Dynamics in PN theory

Internal acceleration of a matter system is written as a formal PN expansion

dv

dt
= AN +

1

c2
A1PN +

1

c4
A2PN +

1

c5
A2.5PN

+
1

c6
A3PN +

1

c7
A3.5PN +

1

c8
A4PN +O

(
1

c9

)

Naive split would be to say that conservative effects are those which carry an
even power of 1/c, while dissipative effects, linked to gravitational radiation
reaction, are those which carry an odd power of 1/c
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Conservative versus Dissipative Dynamics in PN theory

This is correct at leading 2.5PN order where the force derives from a scalar in
an appropriate gauge, A2.5PN = ∇V2.5PN with [Burke & Thorne]

V2.5PN(x, t) = −1

5
xixjI

(5)
ij (t)

This term would change sign if we change the prescription of retarded
potentials to the advanced potentials

This is still correct at sub-leading order 3.5PN where the force involves both
scalar and vector potentials given by [Blanchet 1997]

V3.5PN =
1

189
xixjxkI

(7)
ijk(t)− 1

70
x2xixjI

(7)
ij (t)

V i3.5PN =
1

21
x〈ixjxk〉I

(6)
jk (t)− 4

45
εijkx

jxlJ
(5)
kl (t)

which also change sign from retarded to advanced potentials
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Dissipative Tail Effect in the PN Dynamics

However the naive split fails starting at 4PN order because of the appearance of
tails in the radiation reaction force [Blanchet & Damour 1988]

V4PN = −4M

5
xixj

∫ t

−∞
dt′ I

(7)
ij (t′) ln

(
t− t′

2r

)
This term is not invariant when we go from retarded to advanced potentials

Tail of GW
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Logarithms at 4PN order in the Conservative Dynamics

With the HKV we have at our disposal the binary’s orbital period P = 2π/Ω.
We split

ln

(
t− t′

2r

)
= − ln

( r
P

)
+ ln

(
t− t′

2P

)

Tails produce a conservative 4PN logarithmic term

V4PN = −4M2

5
xixj

[
−I(6)

ij (t) ln
( r
P

)
︸ ︷︷ ︸

conservative 4PN log term

+

∫ t

−∞
dt′ I

(7)
ij (t′) ln

(
t− t′

2P

)
︸ ︷︷ ︸

dissipative term (neglected)

]

We shall see appearing at 4PN and higher orders like 5PN some logarithmic
contributions in the conservative part of the dynamics of binary black holes
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Short History of the PN Approximation

Equations of motion

1PN equations of motion [Lorentz &

Droste 1917; Einstein, Infeld & Hoffmann 1938]

Radiation-reaction controvercy [Ehlers

et al 1979; Walker & Will 1982]

2.5PN equations of motion and GR
prediction for the binary pulsar
[Damour & Deruelle 1982; Damour 1983]

The “3mn” Caltech paper [Cutler,

Flanagan, Poisson & Thorne 1993]

3.5PN equations of motion [Jaranowski

& Schäfer 1999; BF 2001; ABF 2002; BI 2003;

Itoh & Futamase 2003, Foffa & Sturani 2011]

Ambiguity parameters resolved [DJS

2001; BDE 2003]

Radiation field

1918 Einstein quadrupole formula

1940 Landau-Lifchitz formula

1960 Peters-Mathews formula

EW moments [Thorne 1980]

BD moments and wave generation
formalism [BD 1989; B 1995, 1998]

1PN phasing [Wagoner & Will 1976; BS

1989]

Test-particle limit using BH
perturbations [Tagoshi & Sasaki 1994]

2PN waveform [BDIWW 1995]

3.5PN phasing and 3PN waveform
[BFIJ 2003, BFIS 2007]

Ambiguity parameters resolved [BI

2004; BDEI 2004, 2005]
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The Gravitational Chirp of Compact Binaries

The waveform is obtained by matching a high-order post-Newtonian waveform
describing the long inspiralling phase and a highly accurate numerical waveform
describing the final merger and ringdown phases
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3.5PN Equations of Motion of Compact Binary Systems
v
1

y
1

y
2

r
12

v
2

Explicit EOM for non-spinning compact binaries

dvi1
dt

= −Gm2

r2
12

ni12

+
1

c2

1PN︷ ︸︸ ︷{[
5G2m1m2

r3
12

+
4G2m2

2

r3
12

+
Gm2

r2
12

(
3

2
(n12v2)2 − v2

1 − 2v2
2

)]
ni12 + · · ·

}

+
1

c4
[· · · ]︸ ︷︷ ︸

2PN

+
1

c5
[· · · ]︸ ︷︷ ︸

2.5PN

+
1

c6
[· · · ]︸ ︷︷ ︸

3PN

+
1

c7
[· · · ]︸ ︷︷ ︸

3.5PN

+O
(

1

c8

)

Spin effects arise at orders 1.5PN for the spin-orbit and 2PN for the spin-spin.
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Mass and Angular Momentum of Compact Binaries

It is convenient tu use the gauge invariant PN parameter

x =

(
GmΩ

c3

)3/2

with the mass parameters m = m1 +m2 and ν = m1m2/m
2.

Conservative PN energy for circular orbits

E = −1

2
mν

{
1 +

1PN︷ ︸︸ ︷(
−3

4
− ν

12

)
x+

2PN︷ ︸︸ ︷
[· · · ]x2 +

3PN︷ ︸︸ ︷
[· · · ]x3

+

4PN︷ ︸︸ ︷(
· · ·+ 448

15
ν lnx

)
x4 +

5PN︷ ︸︸ ︷(
· · ·+

[
−4988

35
− 6565ν

]
ν lnx

)
x5 +O

(
x6
)}

The 4PN and 5PN conservative logarithmic terms have been computed recently
[Blanchet, Detweiler, Le Tiec & Whiting 2010]
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Mass and Angular Momentum of Compact Binaries

The angular momentum J is checked to satisfy for all the terms up to 3PN order,
and also for the 4PN and 5PN log terms, the

Thermodynamic relation valid for circular orbits

∂M

∂Ω
= Ω

∂J

∂Ω

which constitutes the first ingredient in the First Law of binary black holes.

The thermodynamic relation states that the flux of energy emitted in the
form of gravitational waves is proportional to the flux of angular momentum

It is used in numerical computations of the binary evolution based on a
sequence of quasi-equilibrium configurations [Gourgoulhon et al 2002]
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The Redshift Observable [Detweiler 2008]

The geometry has a Helical Killing Vector (HKV) asymptotically given by

Kµ∂µ = ∂t + Ω ∂ϕ

The four-velocity uµ1 of the particle must be proportional to the HKV at the
location of the particle

Kµ
1 = z1 u

µ
1

In suitable coordinate systems z1 reduces to the inverse of the zeroth
component of the particle’s velocity,

z1 =
1

ut1
=
√
−(gµν)1 v

µ
1 v

ν
1

The relation z1(Ω) is a well-defined observable which can be computed to
high precision in PN theory
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The Redshift Observable [Detweiler 2008]

The redshift obervable was introduced
in self-force computations of the motion
of a particle around the black hole in
the limit m1/m2 � 1

It represents the redshift of light rays
emitted by the particle and received at
infinity along the symmetry axis

z1 =
(kµu

µ)rec

(kµuµ)em

=
1

ut1

This is also the Killing energy of the
particle associated with the HKV

z

m

m 1

2

EM-ray

k
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Post-Newtonian Computation of the Redshift Observable

The PN metric is to be evaluated at the
location of one of the particles

z1 =

[
− (gµν)1︸ ︷︷ ︸
regularized metric

vµ1 v
ν
1

]1/2

v
1

y
1

y
2

r
12

v
2

A self-field regularization is required

Hadamard’s regularization [Hadamard 1932; Schwartz 1978] is convenient but has
been shown to yield ambiguities at the 3PN order

Dimensional regularization [’t Hooft & Veltman 1972] is extremely powerful and is
free of any ambiguity at 3PN order

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 23 / 34



High-order PN result for the Redshift Observable
[Blanchet, Detweiler, Le Tiec & Whiting 2010ab]

Posing X1 = m1/m and still x = (GmΩ/c3)3/2, the redshift observable of
particle 1 through 3PN order and augmented by 4PN and 5PN logarithmic
contributions is

z1 = 1 +

(
−3

2
X1 +

ν

2

)
x+

1PN︷ ︸︸ ︷
[· · · ] x2 +

2PN︷ ︸︸ ︷
[· · · ] x3 +

3PN︷ ︸︸ ︷
[· · · ] x4

+

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

4PN log

)
x5 +

(
· · ·+ [· · · ] ν lnx︸ ︷︷ ︸

5PN log

)
x6 +O

(
x7
)

We can re-expand in the small mass-ratio limit ν = m1m2/m
2 � 1 so that

z1 = zSchw + ν zSF︸ ︷︷ ︸
self-force

+ ν2 zPSF︸ ︷︷ ︸
post-self-force

+O(ν3)
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High-order PN fit to the Numerical Self Force

The 3PN prediction agrees with the SF value with 7 significant digits

3PN value SF fit

a3 = − 121
3 + 41

32π
2 = −27.6879026 · · · −27.6879034± 0.0000004

Post-Newtonian coefficients are fitted up to 7PN order

PN coefficient SF value
a4 −114.34747(5)
a5 −245.53(1)
a6 −695(2)
b6 +339.3(5)
a7 −5837(16)
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Comparison with the Self-Force Prediction
[Blanchet, Detweiler, Le Tiec & Whiting 2010]
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First Law of Binary Point Particle Mechanics
[Le Tiec, Blanchet & Whiting 2011]

1 We find by direct computation that the redshift observables z1 and z2 are
related to the ADM mass and angular momentum by

∂M

∂m1
− Ω

∂J

∂m1
= z1 and (1↔ 2)

2 Finally those relations can be summarized into the

First law of binary point-particles mechanics

δM − Ω δJ = z1 δm1 + z2 δm2

The first law tells how the ADM quantities change when the individual masses m1

and m2 of the particles vary (keeping the frequency Ω fixed)

3 An interesting consequence is the remarkably simple relation

First integral of the first law

M − 2ΩJ = z1m1 + z2m2

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 27 / 34



Agreement with the Generalized First Law of Mechanics
[Friedman, Uryū & Shibata 2002]

Space-time generated by black holes and perfect fluid matter distributions

Globally defined HKV field

Asymptotic flatness

Generalized law of perfect fluid and black hole mechanics

δM − ΩδJ =

∫
Σ

[
µ̄∆(dm) + T̄ ∆(dS) + wµ∆(dCµ)

]
+
∑
n

κn
8π

δAn

where ∆ denotes the Lagrangian variation of the matter fluid, where dm is the
conserved baryonic mass element, and where T = zT and µ = z(h− Ts) are the
redshifted temperature and chemical potential

In the point-particle limit for the fluid bodies (without BHs) one recovers formally
the PN result

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 28 / 34



First law of mechanics for binary point particles with spins
[Blanchet, Buonanno & Le Tiec 2012]

The spins must be aligned or anti-aligned with the orbital angular momentum.

First law of binary point particles with spins

δM − Ω δJ =
2∑

n=1

[
zn δmn + (Ωn − Ω) δSn

]
The precession frequency Ωn of the spins obeys

dSn
dt

= Ωn × Sn

The total angular momentum is related to the orbital angular momentum by

J = L+ S1 + S2

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 29 / 34



Analogies with single and binary black holes

1 Single black hole [Bardeen et al 1972]

δM − ωH δJ =
κ

8π
δA

2 Two black holes [Friedman, Uryū & Shibata 2002]

δM − Ω δJ =
2∑

n=1

κn
8π
δAn

3 Two point particles [Le Tiec, LB & Whiting 2012]

δM − Ω δJ =
2∑

n=1

znδmn

4 Two spinning point particles [LB, Buonanno & Le Tiec 2012]

δM − Ω δJ =
2∑

n=1

[
zn δmn + (Ωn − Ω) δSn

]
Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 30 / 34



Analogies with single and binary black holes

1 Single black hole [Smarr 1973]

M − 2ωH J =
κ

4π
A

2 Two black holes [Friedman, Uryū & Shibata 2002]

M − 2Ω J =
2∑

n=1

κn
4π
An

3 Two point particles [Le Tiec, LB & Whiting 2012]

M − 2Ω J =
2∑

n=1

znmn

4 Two spinning point particles [LB, Buonanno & Le Tiec 2012]

M − 2Ω J =
2∑

n=1

[
znmn + 2 (Ωn − Ω)Sn

]
Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 30 / 34



Analogies with single and binary black holes


L

S

S1 2m

m
2

1

CM

For point particles which have no finite extension the notion of rotation frequency
of the body is meaningless. Thus the First Law is valid for arbitrary aligned or
anti-aligned spins
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The first law for Binary Corotating Black Holes

1 To describe extended bodies such as black holes one must suplement the
point particles with some internal constitutive relation of the type

mn = mn

(
mirr
n , Sn

)
where Sn is the spin and mirr

n is some “irreducible” constant mass

2 We define the response coefficients associated with the internal structure

cn =

(
∂mn

∂mirr
n

)
Sn

, ωn =

(
∂mn

∂Sn

)
mirr

n

where in particular ωn is the rotation frequency of the body

3 The First Law becomes

δM − Ω δJ =
2∑

n=1

[
zn cn δm

irr
n + (zn ωn + Ωn − Ω) δSn

]

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 32 / 34



The First Law for Binary Corotating Black Holes

Corotation condition for extended particles [LB, Buonanno & Le Tiec 2012]

zn ωn = Ω− Ωn

The First Law is then in agreement with the first law of two black holes
[Friedman, Uryū & Shibata 2002]

δM − Ω δJ =
2∑

n=1

κn
8π
δAn

provided that we make the identifications

mirr
n ←→

√
An
16π

zn cn ←→ 4mirr
n κn

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 33 / 34



Conclusions

1 Compact binary star systems are the most important source for gravitational
wave detectors LIGO/VIRGO and LISA

2 Post-Newtonian theory has proved to be the appropriate tool for describing
the inspiral phase of compact binaries up to the ISCO

3 For massive BH binaries the PN templates should be matched to the results
of numerical relativity for the merger and ringdown phases

4 The PN approximation is now tested against different approaches such as the
SF and performs extremely well

5 The conservative part of the dynamics of compact binaries exhibits a First
Law which is the analogue of the First Law of black hole mechanics

Luc Blanchet (GRεCO) First law of binary black hole dynamics JGRG 2012, Tokyo 34 / 34
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1975-1983 



Bitter start 

1975/4     Nuclear Astrophysics Group   
                 led by late Prof. Chushiro Hayashi   

             in  Kyoto University. 

 1969   Lagrangian quantum cosmology (Misner) 

Particle creation in  an expanding universe 
(Parker) 

 1970    Singularity theorems (Hawking, Penrose) 

 1973    BH entropy (Bekenstein) 

 Hawking –Ellis textbook 

 1974    BH evaporation  (Hawking) 









Bitter start 

1975/4     Nuclear Astrophysics Group   
                 led by late Prof. Chushiro Hayashi   

             in  Kyoto University. 
1975/7    My daughter was born. 
1977/1     My son was born. 
  

1977/12    Two papers on quantum gravity.  

 “Quantization of Gauge Fields by the Reduced Canonical 
Formalism. 1. The Case of the Yang-Mills Field.”  KUNS-442 

 “Quantization of Gauge Fields by the Reduced Canonical 
Formalism. 2. The Case of the Gravitational Field.” KUNS-443 

 Both were rejected!! 

 



First Papers 

After struggles of two years,  

 “Inevitability of a naked singularity 
associated with the black hole 
evaporation”, Kodama H: PTP 62, L1434-
1435 (1979) . 

 

 “Conserved energy flux for the spherically 
symmetric system and the back reaction 
problem in the black hole evaporation”,  
Kodama H: PTP 63, 1217-1228 (1980). 

 



Moving to Physical Cosmology 

1981/3  Degree of DS 

“On the particle-defining modes for a free neutral scalar field in 
spatially homogeneous and isotropic universes” 

Kodama H: PTP65, 507-524 (1981). 

But, I was still struggling … 

1981-82  Invited to collaboration on the  
           inflationary universe model by  
           Katsuhiko  Sato  
 (with Maeda K, Sasaki M) 
 
This collaboration opened up a new  
research avenue for me!! 

Multiverse ? 



1983-1987 



The Early History of Inflation Theory 

1974     SU(5) GUT  (George H & Glashow SL) 

1980 GUT  inflation ( Sato K,  Kazanas D, Guth A) 

1981 New inflation model (Linde A,  Albrecht & Steinhardt) 

1982 Cosmological perturbations from quantum fluctuations 
(Linde A, Hawking SW & Moss I,  Starobinsky AA) 

Creation of the Universe from Nothing (Vikenkin A) 

1983    Wave function of the universe (Hartle J, Hawking SW) 

Chaotic inflation (Linde A) 

1984    Birth of superstring theories 



Kodama H: “Comments on 
the chaotic inflation”, 
UTAP9, Proc. GUT & 
Cosmology, Tsukuba 1983. 

Kodama H, Sasaki M, Sato K: 
PTP68, 1561 (1982) 

From Inflation to Cosmological Perturbations 

The old inflation model    too inhomogeneous universe.   

The new inflation model   too  “bold”  universe. 

       How did the present inhomogeneous structures emerge? 

Gauge-invariant formulation for perturbations 

“Gauge Invariant Cosmological Perturbations”,  Bardeen J: 
PRD22, 1882 (1980) 

Extension to multi-component systems 

 “Cosmological perturbation theory” 
Kodama H, Sasaki M: PTP Suppl. 78, 1-166 (1984). 

 “Constraint on the amplitude of isothermal perturbations 
imposed by an isotropy of the cosmic microwave background 
radiation” 
Suto Y, Sato K, Kodama H: APJ Lett 292, 1-4 (1985). 

 



More on Cosmology 

We introduced the concept of “isocurvature perturbations” and 
studied their cosmological consequences. 

 “Evolution of isocurvature perturbations I: Photon-baryon 
universe” 
Kodama H , Sasaki M: IJMP A 1, 265-301 (1986). 

 “Evolution of isocurvature perturbations II. Radiation-dust 
universe” 
Kodama H, Sasaki M: IJMP A 2, 491-560 (1987). 
 

 Decaying CDM (with Suto & Sato) 
 Baryogenesis after inflation (with Yokoyama & Sato^2) 
 Dynamics of quark –hadron phase transition (with Iso & Sato) 



1987-1993 



Back to Quantum Gravity 

Interpretation of quantum cosmology 

 “Quantum Cosmology In Terms Of The Wigner 
Function.” ,  Kodama H(1988),  MG5 (Perth, Australia) 

I was struggling again. .. 

New canonical formulation by Ashtekar. 

     “New Variables for Classical and Quantum Gravity.” 
     Ashtekar A: PRL 57, 2244-2247 (1986)  

Application to cosmology. 

 “Specialization of Ashtekar’s Formalism to Bianchi 
Cosmology” 

      Kodama H: PTP 80, 1024-1040 (1988). 

 “Holomorphic Wavefunction of the Universe” 
 Kodama H: PRD 42, 2548-2565 (1990). 



New Research Group 

Compact Bianchi models 

 “Comments on closed Bianchi models” 
Fujiwara Y,  Ishihara H,  Kodama H: CQG 10, 859-868 (1993) 
  

Domain wall dynamics 

 “Does a domain wall emit gravitational waves? — Gauge-
invariant perturbative treatment” 
Kodama H, Ishihara H, Fujiwara Y: PRD 50, 7292-7303 (1994) 
 

Maximum mass of dS BH 
 “Can Large Black Holes Collide in de Sitter Space-Time? – An 

Inflationary Scenario of Inhomogeneous Universe –” 
Shiromizu T, Nakano K, Kodama H,  Maeda K: PRD 47, R3099 
(1993). 



1993-1995 



New Formulation for Canonical QG 

 Dirac formalism for the canonical quantum gravity  

 

 

 

 

 

New quantum formulation for totally constrained systems. 

 “Dynamics of Totally Constrained Systems I. Classical Theory” 

Kodama H : PTP 94, 475-501 (1995)  

 “Dynamics of Totally Constrained Systems II. Quantum Theory” 

Kodama H : PTP 94, 937-987 (1995)  

These are the the least cited papers among my papers, but I 
believe that these are the most original and deep work in my life. 



Web Formalism for a Totally Constrained System 

Totally Constrained System 

 

The state vector is just a bookkeeper of measurement info: 

 

The quantum constraint is imposed on an unbounded linear 

functional Y on H which describes dynamics: 

 

Time observable T selects an ‘instantaneous state space’  L: 

 

On  L , Y coincides with the usual wavefunction: 



1995-2007 



Bianchi Cosmology 

Hosoya Group in Titech  

“Compact homogeneous universes.” 
 Koike T, Tanimoto M, Hosoya A: JMP35 , 4855 (1994) [grcq/9405052] 

Thurston conjecture (=> proved by G Perelman 2002-2003) 

Locally homogeneous & compact 3D     

 

Hamiltonian structure of compact Bianchi models 

 “Canonical Structure of Locally Homogeneous Systems on Compact 
Closed 3-Manifolds of Type E3, Nil and Sol” 
Kodama H : PTP 99, 173-236 (1998) [gr-qc/9705066]. 

 “Phase Space of Compact Bianchi Models with Fluid” 
Kodama H : PTP 107, 305-362 (2002) [gr-qc/0109064]. 
 



Back to Inflationary Cosmology 

Is the Bardeen parameter conserved during reheating? 

 “Evolution of cosmological perturbations in a stage 
dominated by an oscillatory scalar field” 

Kodama H, Hamazaki T : PTP 96, 949 (1996)[gr-qc/9608022]. 

 “Evolution of cosmological perturbations during reheating” 
Hamazaki  T, Kodama H: PTP96, 1123 (1996)[gr-qc/9609036]. 

 “Evolution of Cosmological Perturbations in the Long 
Wavelength Limit” 
Kodama H, Hamazaki T: PRD 57, 7177(1998) [gr-qc/9712045]. 



To Higher Dimensions 

Braneworld model  

“A Large mass hierarchy from a small extra dimension” 
Randall L , Sundrum R: PRL83 , 3370-3373 (1999)  
“An Alternative to compactification” 
 Randall  L, Sundrum  R: PRL83 , 4690-4693 (1999)  

Perturbations with model generalisation 

 

 Brane World Cosmology — Gauge-Invariant Formalism for 
Perturbation — 
Kodama H, Ishibashi A, Seto O: PRD62, 064022(2000)[hep-
th/0004160]. 

Cf. “Gauge invariant gravitational perturbations of maximally symmetric space-times”, 
Mukohyama  S: PRD62, 084015 (2000)[hep-th/0004067] 



Higher-Dimensional Black Holes 

Static black holes in higher dimensions 
 
 
Three types of perturbations 

– tensor perturbations :  trivial 

– vector perturbations :  easy 

– scalar perturbations :  difficult 

Generalisation of the Regge-Wheeler & Zerilli equations 
 “A master equation for gravitational perturbations of maximally 

symmetric black hole in higher dimensions” 
Kodama H,  Ishibashi A.: PTP110, 701-722 (2003) 

 “Stability of higher-dimensional Schwarzschild black holes” 
Ishibashi A, Kodama H : PTP110, 901-919 (2003) 

 “Master equations for perturbations of generalized static black holes 
with charge in higher dimensions” 
Kodama H, Ishibashi A.: PTP111, 29-73 (2004) Thanks to Maple!! 

 Original paper by Zerilli 



To HD Unified Theories 

The first realistic string inflation model (KKLT): 

“de Sitter Vacua in String Theory” 

Kachru S, Kallosh R, Linde A, Trivedi S : PRD68, 046005 (2003). 

Systematic classification of  BPS solutions to  sugra  of D=5 – 11: 

       Gauntlett JP, Gutowski JB (2003), … 

Dynamics of warped compactification  

 “Moduli Instability in Warped Compactifications of the Type IIB 

Supergravity 

Kodama H. and Uzawa K.: JHEP 0507, 061:1-16 (2005) [hep-th/0504193]. 

 “Comments on the four-dimensional effective theory for warped 

compactification” 

Kodama H. and Uzawa K.: JEHP 0603, 053:1-18 (2006) [hep-th/0512104]. 



Bottom Up Analysis  

Standard model  ⇒ GUT:  gauge-sector unification 

αunification, hypercharge structure, neutrino mass 

Baryon asymmetry, strong CP(Peccei-Quinn symmetry) 

GUT  ⇒ SGUT:  boson-fermion correspondence 

Dark matter, Λ problem, hierarchy problem 

SGUT  ⇒  Sugra GUT:  inclusion of gravity 

Flat inflaton potential 

Sugra GUT  ⇒ HD Sugra GUT:  matter sector unification 

Generation repitition, Cabibo/neutrino mixing, CP violation 

Origin of the Higgs in the adjoint representation 

HD Sugra GUT ⇒ Superstring/M theory 

Consistency as a quantum theory, finite control parameters 

No Λ freedom (M-theory) 



Research History 

GUT inflation model 
1981～82, 1987～88 

Galaxy formation，CMB 
anisotropy 1982～ 

Cosmological gauge-inv. 
perturbation theory  

1984～87, 1996～98 

Braneworld model and 
its perturbation theory 

2000～02 

BH evaporation 

1985～90 

Canonical QG 
1979～ 

Compact Bianchi models 

1993～2002 

Uniqueness and stability 
of  higher-dim BHs 

2003～ 

QFT in curved spacetime 
1979～81 

Cosmological 
Particle Creation 

Qn Cosmology 

Spacetime singularity 

1992～95 

Cosmology based on higher-
dimensional sugra/string theory 

2004～ 

BH thermodynamics 
1997～1998 

Naked singularity 
2003 

Primordial 
inflation 

I decided to push forward my research in 
my remaining time,  believing that our 
universe is really higher-dimensional  

microscopically !!  



2007 -- 2016 



Cosmophysics Group Key Projects 

 

Test unified theory of all interactions 
including gravity  by the early evolution of 
the Universe 

High energy physics of cosmic jets and black 
holes 



Problems to be solved in HUnT 

 Dark Energy /  Inflation Problems 
– Supersymmetry is necessary to control the vacuum energy but  

not sufficient to make it small. 
   ☞ New symmetry? 
– How to circumvent the No-Go theorem against inflation? 
   ☞ Higher-order corrections? Singularities? Open extra-

dimensions?  

 Compactification problem 
– No compactification with  stabilised  moduli  consistent with the 

SM has been found. 
 ☞   Can we reproduce the  SM ? 

     
– Landscape problem,  breaking and restoration of  SUSY 
 ☞ Dynamical comparison of compactification and ground 
states. 



Messengers of  Fundamental Physics in 
Cosmophysics 

 Indirect 

 CMB /LSS   Inflation 

 Direct 

DM:  neutralinos      E  » ESUSY = 1TeV » 1010 GeV 

 gravitinos        E  » ESUSY ,  almost undetectable 

axions                E  » fa = 108 GeV  »   mpl 

GW:                              E  .  mpl 

Dark radiations ??? 

 

 



Axiverse 

Among these, axions are quite unique in the 
following points: 

 The shift symmetry leads to Chern-Simons 
interactions producing interesting and rich 
cosmophysical phenomena. 

 Non-perturbative effects produce vey tiny mass, 
which is consistent with experiments due to its 
pseudo-scalar nature.  The Compton 
wavelength can be of cosmological scales. 

 Axion is an indispensable ingredient in the 
anomaly cancelation and appears ubiquitously 
in string compactification.    

 Thus, axions provide us the possibility to probe 
physics on the highest energy scales by low energy 

cosmophysical phenomena.  

Y6 

a 

a 

g 

g 

q 

g5 



Back to Four Dimensions  

I believe that axion is the 
most promising research 
subject in the future.   
 

So,  on the occasion of my 
becoming 60 years old,  
I propose the subject  
“axion cosmophysics”  
as the baton to the next 
generation. 
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A Few Thoughts onA Few Thoughts on
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Misao SasakiMisao Sasaki
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-- geemunugeemunu, , geemunugeemunu, , geemunugeemunu......--
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a bit of recollectionsa bit of recollections

cosmological perturbation

theory (CPT)

collaboration with

H Kodama

gravitational waves

(GW)

collaboration with

T Futamase through

TAMA300

+ gravitational lensing
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a bit of recollectionsa bit of recollections

cosmological perturbation

theory (CPT)

gravitational waves

(GW)

• during 80’s, GWs were regarded as more realistic,

of firm GR foundation.  

• during 90’s, CPT became realistic, thanks to

COBE/DMR measured anisotropy.  

• during 00’s, both became realistic. But...  

so WE WE (at least(at least II)) need fairy tales...

fairy tales are necessary for healthy growth of childrenchildren
(H Sato at a theory group workshop, ୰㛫Ⓨ⾲, in ’90s)

(chukan-happyo-kai)
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Gravity TodayGravity Today

�� No deviation fromNo deviation from General RelativityGeneral Relativity

•• solar system tests solar system tests –– PPN parametersPPN parameters

( )
 :   

       :    

2

00
1 2 2 1

1 2 1

GR

ij ij GR

g

g

ψ βψ β

δ γψ γ

= − + − + ⋅⋅⋅ =

= + + ⋅⋅⋅ =

|γ|γ−−1|<1|<2.32.3xx1010--55 : Shapiro time delay (: Shapiro time delay (BertottiBertotti et al. et al. ‘‘03)03)

|4β|4β−−γγ−−3|<3|<4.44.4xx1010--44 : Strong EP (: Strong EP (BaesslerBaessler et al. et al. ‘‘99) 99) 

•• constancy of gravitational constantconstancy of gravitational constant

||dlogG/dtdlogG/dt||<<1010--1212 yryr--11: Lunar laser ranging (Williams et al : Lunar laser ranging (Williams et al ‘‘04)04)

cf. Willcf. Will’’s living review s living review ‘‘0606
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•• binary pulsar binary pulsar –– GW emission rateGW emission rate

B1913+16 1.0013±0.0021
GR

P

P
=

ɺ

ɺ

HulseHulse--Taylor binary (B1913+16)Taylor binary (B1913+16)

-- orbital change due to GW emissionorbital change due to GW emission

-- periastronperiastron time shifttime shift

perfect match withperfect match with

GR predictionsGR predictions

gravitational wave astronomygravitational wave astronomy will further test GRwill further test GR
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Cosmology TodayCosmology Today
�� Big BangBig Bang theory has been firmly establishedtheory has been firmly established

CMB spectrum

at T=2.725K

wavelength [mm]

frequency [GHz]

200 sigma

error-bars

COBE/FIRAS

another strong evidence foranother strong evidence for GRGR
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• highly Gaussian fluctuations

• almost scale-invariant spectrum

WMAP 7yr

Strong evidence for Strong evidence for InflationInflation

1 2

0

( ) ( )

2 1
(cos ).

4
θ

π

∞

=

∆ ∆
+

=∑
T n n

PC

T

ℓ

ℓ

ℓ

� �

ℓ

only to be confirmedonly to be confirmed (by tensor modes?)(by tensor modes?)
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Fundamental(?) IssuesFundamental(?) Issues

•• Dark MatterDark Matter

Is it really `matterIs it really `matter’’??

Perhaps yes, because it Perhaps yes, because it gravitates.gravitates.

fermion? boson? primordial BH?fermion? boson? primordial BH?

something else?something else?

Is there a way toIs there a way to generically distinguish them?generically distinguish them?
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-- apparent apparent accelerated expansion of the universeaccelerated expansion of the universe

•• Dark EnergyDark Energy

Is the expansion really accelerating?Is the expansion really accelerating?

e.g. inhomogeneous universe modelse.g. inhomogeneous universe models

How can weHow can we confirm acceleration?confirm acceleration?

-- modified gravitymodified gravity vsvs unknown matter fieldunknown matter field

w<w<--11 implies modified implies modified gravity,etcgravity,etc......

How to distinguish?How to distinguish?

large scale structure formation large scale structure formation 

any otherany other effective discriminators?effective discriminators?

Can we falsify GR?



10

comments on modified gravitycomments on modified gravity

IR modification UV modification

long distance short distance

GR

? ?

• time is important in spacetime!

• any smooth function f(x) contains infinitely

large Fourier modes...

• amplitude of Riemann? in which frame?



111111

•• InflationInflation

-- How did inflation begin?How did inflation begin?

-- What is What is ‘‘inflatoninflaton’’??

what guarantees homogeneity and isotropy?what guarantees homogeneity and isotropy?

quantum cosmology/gravity?quantum cosmology/gravity?

eternal inflation, anthropic principle,eternal inflation, anthropic principle,

probability measure,...probability measure,...

new guiding principle / working hypothesis?new guiding principle / working hypothesis?

what determines the end of inflation?what determines the end of inflation?

flatness / open inflation?flatness / open inflation?

nonnon--Gaussianity? tensorGaussianity? tensor--scalar ratio?scalar ratio?
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WhatWhat’’s next?s next?

Which direction?Which direction?
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With a bit ofWith a bit of ᡃ⏣ᘬỈᡃ⏣ᘬỈ ((gaga denden--in sui)in sui)

which means which means ‘‘self advocacyself advocacy’’, more or less..., more or less...

String Theory Landscape!String Theory Landscape!

Isn’t there a landscape in LQG?

(a question to Abhay)
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String theory landscapeString theory landscape

� There are ~ 10500 vacua in string theory

• vacuum energy ρv may be positive or negative

• some of them have ρv <<ΜP
4

• typical energy scale ~ ΜP
4

4

PM

Vρ

4

V PMρ ≪

Bousso & Pochinski (’00), Susskind, Douglas, KKLT (’03), ...
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testing string theory landscapetesting string theory landscape

in cosmology?in cosmology?
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Cosmic LandscapeCosmic Landscape
various vacua realized in the early universe

distribution determined by various factors

probability measure, density of states,

quantum equilibrium, ... 

quantum transitions between various vacua

credit: unknown, taken from a Chinese website.
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Creation of open universeCreation of open universe

bubble wall

open universe

dS vacuum

de Sitter (dS) vacuum: O(4,1)

Euclidean bubble: O(4)

nucleated bubble: O(3,1)   

=open universe
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� two possibilities

1. inflation after tunneling was short enough (N~60)

2 3

01 10 ~10− −−Ω =

−Ω01 1≪

2. inflation after tunneling was long enough (N>>60) 

signatures from bubble collisions

“open universe”

“flat universe”

signatures in large angle CMB anisotropies

Yamauchi, Linde, Naruko, Tanaka & MS (2011)

Sugimura, Yamauchi & MS (2012)

Our Universe was born out of quantum tunneling!Our Universe was born out of quantum tunneling!

Sugimura’s talk:

parallel session

on Monday
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last scattering surface

reheating surface

colliding bubble

we are here

trace of bubble collisionstrace of bubble collisions

creation of our creation of our ‘‘bubblebubble’’ universeuniverse
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� simple model

• no (spherically symmetric) bubble seen in the CMB map

negligible effect on curvature perturbation

(~Newton potential) at leading order

bubbles may be seen as “localized” non-Gaussianity

2( ) ( ) ( ) ( ) ...Gauss NL Gaussx x f x xΦ =Φ + Φ +

space-dependent
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NonNon--Gaussian bubbles in the CMB SkyGaussian bubbles in the CMB Sky

detection of a spherically symmetric “localized” non-Gaussianity

will be the first observational signature of string theory!

3 2

( , ) ( , )NL

T T
f

T T

δ δ
θ ϕ θ ϕ   =    

   

Sugimura, Yamauchi & MS (2012)
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Summary without summary...Summary without summary...

precision cosmologyprecision cosmology

gravitational wave astronomygravitational wave astronomy

We are entering an era ofWe are entering an era of

perturbative, non-perturbative, numerical, observational...

develop develop ‘‘realisticrealistic’’ GR cosmologyGR cosmology

any tiny deviation from GR would be revolutionary

continued to T continued to T FutamaseFutamase’’ss talktalk
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Current Status of Numerical Relativity 

Simulations 



 Solving Einstein eq. and source field eqs. to clarify dynamical 
phenomena in the universe where strong gravity plays a role  

 

 

 

 

 All four known interactions play important roles 
 Gravity : GR, BH formation, ISCO, etc 
 Strong :  EOS (equation of state) of dense nuclear/hadronic matter  
 EM       : MHD phenomena, EOS of dense matter 
 Weak :  Electron capture, Neutrino production 

 99% gravitational binding energy released is carried away by neutrinos in SNe 
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What is Numerical Relativity ? 



Targets of Numerical Relativity 

 Dynamical phenomena with strong gravity 

 Black hole formation 

 Stellar core collapse 

 Merger of compact object binary 

General relativistic gravity is important 
Highly nonlinear and dynamical 

Numerical 
Relativity 



Targets of Numerical Relativity 

 Dynamical phenomena with strong gravity 

 Black hole formation 

 Stellar core collapse 

 Merger of compact object binary 

 Gravitational waves from them 

 NR should provide GW templates 

General relativistic gravity is important 
Highly nonlinear and dynamical 

Numerical 
Relativity 



Current & up-coming GW detectors 



BNS 1.35-1.35Msolar optimal @ 100Mpc  

Merger  

HMNS formation 

NR 

Inspiral charp signal 

Post Newton 



Targets of Numerical Relativity 

 Dynamical phenomena with strong gravity 

 Black hole formation 

 Stellar core collapse 

 Merger of compact object binary 

 Gravitational waves from them 

 NR should provide GW template 

 Towards GW astronomy 

 Exploring physics and astrophysics by GW 

General relativistic gravity is important 
Highly nonlinear and dynamical 

Numerical 
Relativity 



 Neutron star (NS) as a laboratory of dense matter physics 

 There are a large number                                                                      of 
theoretical models 
 Equation of State (EOS) 

Neutron star & physics of dense matter 

QGP 

F. Weber (2005) 

www.gsi.de 

) , ,( iXTPP 



Open Question 
 Given the theoretical uncertainty, which one is the right one ? 

 Traditional method to constrain the models 
 Mass-Radius relation :                                                                      

 Estimation of mass and radius                                                            by 
observation of X-ray binary 

 Large systematic error 

 Maximum mass :                                                                                       

 Just find a massive NS 

 PSR J1614-2230   (NS-WD) 

 NS of 1.97Msolar  

 Mass measurement by                                                                                                       
Shapiro time delay 

 Too soft EOSs are excluded 

 Still we have a number of                                                       
theoretical models 

Lattimer & Prakash (2007) 

Bill Saxton, 

NRAO/AUI/NSF 



Compact binary merger as cosmological collider  

 NS-NS merger 

 Collision of giant nuclear matter objects 

 Tell BH or NS by GW ⇒ maximum mass 

 Both M and R are contained in GW 

 We may explore the physics of dense 
matter by ‘seeing’ NS interior by GW 

 BH-BH merger 

 Collision of strongest gravity sources 

 Testing gravity in extremely strong regime 

 Beyond Einstein gravity ?  

 Higher dimension ? 

 Comparison of observations with  NR 
modeling 



Targets of Numerical Relativity 

 Dynamical phenomena with strong gravity 

 Black hole formation 

 Stellar core collapse 

 Merger of compact object binary 

 Gravitational waves from them 

 NR should provide GW template 

 Towards GW astronomy 

 E.g. NS as a laboratory for dense matter physics 

 High energy phenomena in astrophysics 

 Gamma-ray bursts 

 Supernova explosions 

General relativistic gravity is important 
Highly nonlinear and dynamical 

Numerical 
Relativity 



Central engine of SGRB 

 Gamma-ray burst (GRB) :  basic features 
 Short and intense burst of gamma-rays 

 Discovered accidentally in the late 1960s (Vella satellite) 

 With rapid time variability : Δt ~ ms 

 Duration : T ~ 0.01-1000 s.  
 Bimodal distribution :  

 T < 2 s : Short GRB (SGRB)   

 T > 2 s : Long GRB (LGRB) 

 Energy :  
 LGRB ~ 1051erg (with beaming) 

 SGRB ~ 1049 erg  

 Central engine model 
 BH + accretion disk formed by 

 SGRB : NS-NS, BH-NS merger 

 LGRB : Stellar core collapse 

Short GRB 

Long GRB 



How does the GRB jet launch ? 

 One possible scenario : neutrino pair annihilation 

 Emission of  neutrinos in the hot accretion disk 

 Deposition of energy through neutrino annilihation in the baryon-
poor funnel around the rotation axis driving a baryonic jet 

 Emission of  gamma-ray photons in internal shocks  

 Energetics 

 Disk mass  : 0.05Msolar  

 Gravitational energy at ISCO ~ 1053 erg 

 Neutrino Luminosity ~ Gravitational energy ? 

 Neutrino pair annihilation efficiency of 0.1--1% ? 

     ⇒ jet energy of 1050-51 erg ? 

     ⇒ GRB energy of 1049 erg ? 

Sekiguchi & Shibata 2007 

 

ee

Hot disk 



Current status of NR (1) 

 Solving Einstein equation ○ 
 ADM formulation (unstable)  ⇒  BSSN formulation (stable)  

 Shibata & Nakamura (1995),  Baumgarte & Shapiro (1999) 

 Stable and less time-consuming coordinate conditions (1990~)  

 Numerical scheme for GR hydrodynamics ○ 
 High resolution shock capturing scheme (Valencia, Munich  1990~)  

 GR Magnetohydrodynamics (GRMHD;  2000~)  Kiuchi-kun’s talk 

 Treatment of BH ○ 
 First successful binary BH simulation by Pretorius in 2005 

 BSSN-puncture : adopt nice coordinates and variables (Campanelli+ 2006) 

 Other issues ○ 
 Locating Apparent Horizon 

 GW extraction techniques from the metric 

 Mesh refinement techniques (E.g. Yamamoto+ 2008)  

 Powerful Supercomputers 



Current status of NR (2) 

 Towards more ‘realistic’ or physical modeling ……. 

 Trend in 2010~ 

 Equation of state (EOS) ○ 

 Nuclear-theory-based finite temperature EOS tables  

 Sekiguchi 2007,2010; Ott et al. 2009 

 Neutrino treatment ○～△ 

 Weak interactions (Sekiguchi 2010)   

 e± captures, e± annihilation, plasmon decay, Bremsstrahlung 

 Neutrino cooling (Sekiguchi 2010) 

 Neutrino heating (Kuroda+ 2012, Sekiguchi+ in prep) 

 Neutrino transfer based on Thorne’s Moment scheme (Shibata+ 2011) 

 Solving Boltzmann equation (6+1 dims. !) is not feasible at current status                   
⇒ approximate solution 

Takahashi, Ohsuga, 

Sekiguchi, Inoue, & Tomida 



Neutrino transfer : last frontier in NR 
 Solving Boltzmann equation (6+1 dims. !) is not feasible at current status 

 Approximate solution by Moment scheme with a closure relation 

 Neutrino heating (absorption on proton/neutron) can be treated 

 Some approximate treatment is required for νannihilation 
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Neutrino transfer : last frontier in NR 
 Solving Boltzmann equation (6+1 dims. !) is not feasible at current status 

 Approximate solution by Moment scheme with a closure relation 

 Neutrino heating (absorption on proton/neutron) can be treated 

 Some approximate treatment is required for νannihilation 

 



 Einstein’s equations: Shibata-Nakamura (BSSN) formalism 
 4th order finite difference in space, 4th order Runge-Kutta time evolution  

 Gauge conditions : 1+log slicing, dynamical shift 

 GR Hydrodynamics with neutrinos (Sekiguchi 2010) 

 Nuclear-theory-based finite temperature EOS 

 EOM of Neutrinos 

 Lepton Conservations 

 Weak Interactions 

 e± captures, pair annihilation,                                                                                   
plasmon decay, Bremsstrahlung 

 A detailed neutrino opacities 

 High-resolution-shock-capturing scheme 

 BH excision technique 

 (Fixed) Mesh refinement technique 
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NR simulations with a physical modeling is 

now possible ! 

Sekiguchi (2010) Progress of Theoretical Physics 124, 331 



Compact object binary mergers 

 NS-NS and BH-NS merger 



Evolution of NS-NS Binary 

tidal deformation 

suncrittotal 3MMM 
crittotal MM 

max NS,total MM max NS,total MM 

Imre Bartos, GECo, Columbia University 

(Bartos et al. 2013, in prep.) with permission 

Mr  Mr  several~

Hyper Massive NS 

(HMNS) 

Shibata et al. 2005,2006 

GWs, 

neutrinos 

Lattimer & Prakash (2007) 

Canonical mass 
= 1.35-1.4Msolar 



GW from NS-NS (long lived HMNS) 

NS(1.2Msolar)-NS(1.5Msolar) binary (APR EOS) 

Animation by Hotokezaka 

Hotokezaka et al. (2011);  (2012) 



GW from NS-NS (long lived HMNS) 

Animation by Hotokezaka 

NS(1.2Msolar)-NS(1.5Msolar) binary (APR EOS) 

Inspiral  

Charp signal 

Tidal 

deformation 
Merger 

HMNS  ]g/cm[ log 3

10 

Density Contour 

Gravitational Waveform 

Hotokezaka et al. (2011);  (2012) 



GW from NS-NS (Prompt BH formation) 

Animation by Hotokezaka 

NS(1.3Msolar)-NS(1.6Msolar) binary (APR EOS) 

Hotokezaka et al. (2011);  (2012) 



    

 BH or NS ⇒ maximum mass 

 GW from rotating HMNS  

     ⇒ NS radius (and EOS)    
  

    

 Finite size effect 

 Deviation from  

    charp ⇒ NS radius  
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Merger and oscillation 
of HMNS 

Density contour 

   

 Point particle approximation 

 Information of orbits,     

    neutron star mass etc. 
  

Inspiral phase 
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Exploring Dense matter physics by GW 

Compact binary mergers are astrophysical 

laboratory for dense matter physics ! 

GWs will contain its information.  



GWs from HMNS (1.3-1.4 Msolar Merger) 

f HMNS ~ 3.2kHz f HMNS ~ 2.9kHz 

f HMNS ~ 2.5kHz f HMNS ~ 2.0kHz 

Soft EOS 
More compact 
structure 

Stiff EOS 
Less compact 

Hotokezaka et al. (2011);  (2012) 



GW spectra (1.35-1.35 Msolar) 

GW spectra show characteristic 

peak frequency fpeak 

fpeak’s are different for different 

EOS ⇒ constraining EOS 

Hotokezaka et al. (2011);  (2012) 



Evolution of BH-NS Shibata & Taniguchi (2008) 

Kyutoku et al. (2010), (2011) 
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GW from BH-NS merger 

 Tidal disruption 
 GW amplitude shutdown 

suddenly 

 Widespread tidal arm 
and accretion disk form 
 
 
 

 Plunge/Weak disruption 
 inspiral orbit sustains in 

more inner regions 

 NS hits BH and quasi-
normal mode is excited 
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Kyutoku et al. (2010), (2011) 



What GW spectra tell us 
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Stiffer EOS 

Larger radius for fixed mass 

More likely to be tidally disrupted 

Kyutoku et al. (2011) 

(M
NS

/M
BH

=0.5, M
NS

=1.35, a
BH

=0.75) 

Kyutoku et al. (2010), (2011) 

Stiff EOS 



NR simulations with microphysics 

 Towards central engine of GRB 



NS-NS merger (1.6-1.6Msolar) 

Sekiguchi et al. PRL (2011) 107, 051102;  107, 211101 

 Hyper massive NS (HMNS) is first formed 
 Temperature increases significantly by compression and shock heating 

 Shocks occur in spiral arms  

 HMNS eventually collapse to a BH due to emission of GW and neutrinos 
 accretion disk (with Mdisk < 0.1Msolar) forms around the BH  

Animation by Kiuchi 



Density [ log10 g/cc]  Temperature [ MeV ]  

 Hyper massive NS (HMNS) is first formed 
 Temperature increases significantly by compression and shock heating 

 Shocks occur in spiral arms  

 HMNS eventually collapses to a BH due to emission of GW and neutrinos 
 accretion disk (with Mdisk < 0.1Msolar) forms around the BH  

Sekiguchi et al. PRL (2011) 107, 051102;  107, 211101 

NS-NS merger (1.6-1.6Msolar) 

Animation by Kiuchi 



Neutrino emission (NS-NS) 

1.5-1.5 

1.6-1.6 

1.35-1.35 

BH 

ν emissivity [log  erg/s/cc ] 

 HMNS emits copious neutrinos : Lν ~ 3×1053 erg/s (Eν = 20-30 MeV) 

 Events within 5 (1) Mpc can be detected by Hyper Kamiokande (SK) 

 Large neutrino luminosity of  ~ 1053 erg/s even after the BH formation 

e

e

 

Sekiguchi et al. PRL (2011) 107, 051102;  107, 211101 

HMNS 



BH-NS merger (4 -1.35 Msolar, aBH = 0.5) 

Sekiguchi et al. in prep. 

 NS is tidally disrupted and single spiral arm is formed 

 The spiral arm interacts with itself and shock wave occur there 

 A massive (O(0.1Msolar)) and hot accretion disk eventually forms 
around the BH 

 

Animation by Kiuchi 



Density [ log10 g/cc]  Entropy/baryon [kB]  

Sekiguchi et al. in prep. 

 NS is tidally disrupted and single spiral arm is formed 

 The spiral arm interacts with itself and shock wave occur there 

 A massive (O(0.1Msolar)) and hot accretion disk eventually forms 
around the BH 

 

BH-NS merger (4 -1.35 Msolar, aBH = 0.5) 

Animation by Kiuchi 



Neutrino emission (BH-NS) 

 Copious neutrinos (5-8×1052 erg/s) are 
emitted from the hot disk 

 Lν is smaller than NS-NS merger case 

 Shock waves are weaker 

 More dense disk : longer diffusion time 

 Low density region above BH 

 A potential site for ν-pair annihilation 

e

e

 

ν emissivity [log  erg/s/cc ] 

Temperature [ MeV ]  

Density [ log10 g/cc]  

Sekiguchi et al. in prep. 



BH formation in stellar core collapse 

 



BH formation and Long GRBs 

 Collapse of massive stellar core to BH + Disk 

 Promising theoretical candidate of central engine of                   
Long Gamma-ray Bursts (LGRBs) 

 

 

BH 

0      10     20     30     40     50   [s] 

    Time Profile 

1050erg/s  <  Lγ < 1052erg/s 

Most violent explosion in the universe 

Highly           

Time-variable 
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BH formation in 2005 

Density contour [log g/cc] 

lapse function 



BH formation in 2005 

Density contour [log g/cc] 

lapse function 

BH 

? 



BH+Disk formation in stellar core collapse 
 100Msolar model by Umeda & Nomoto (2008) + rotation 

 Torus-structured shock : accumulation of matter to the proto-NS 

 Time varying, large (~1052 erg/s) neutrino luminosity after BH formation 

 

Sekiguchi et al. (2012) Progress of Theoretical & Experimental Physics 

Sekiguchi & Shibata ApJ (2011) 

x-z plane 

 

After the core bounce 

Standing shock wave is 

formed 



BH+Disk formation in stellar core collapse 
 100Msolar model by Umeda & Nomoto (2008) + rotation 

 Torus-structured shock : accumulation of matter to the proto-NS 

 Time varying, large (~1052 erg/s) neutrino luminosity after BH formation 
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Sekiguchi et al. (2012) Progress of Theoretical & Experimental Physics 

Sekiguchi & Shibata ApJ (2011) 



Same model but with Slower Rotation:                                             
Spheroidal configuration, No time variability  

 



Comparison of Rotational Profile 
 Rotational profiles of Proto-Neutron Star are similar  

 Small difference in rotational profile of outer region results in 
large difference in dynamics 

rapid 

moderate 

Slower 

Rapider 
PNS 



500Msolar-PopIII core collapse:                     
Outflow appears even when BH is formed directly 



500Msolar-PopIII core collapse:                     
Outflow appears even when BH is formed directly 



 Matter accumulation 
into the central region 
due to the oblique 
shock 

 Shock wave 
formation in the pole 
region of the BH 

 Efficient dissipation of 
kinetic energy 

 Inefficient advection 
cooling  

 Thermal energy is 
stored 

 Outflow 
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500Msolar-PopIII core collapse:                     
Outflow appears even when BH is formed directly 

1900km 

BH 

! 



Moderate rotation : BH formation zoo 



Moderate rotation : BH formation zoo 



Summary 

 Numerical Relativity is the unique tool to study dynamical 
phenomena in the universe where strong gravity plays a role 

 Recent developments enable us to perform simulations in physical modeling 

 NS-NS and BH-NS are very interesting phenomena both in physics 
and astrophysics 

 Promising sources of ground-based GW detectors 

 As laboratory for exploring physics of dense matter 

 Central engine of SGRB 

 BH formation process in stellar core collapse is quite dynamical, 
accompanying oblique shock, convection, and outflows 

 The dynamics is sensitive to the initial rotational profile 

 The resulting system has preferable features for LGRBs 

 More systematic studies with physical modeling will be done in the 
near future 

 



Appendix 

 



Expected Merger Rate 
 Binary Neutron Star (BNS, NS-NS) and candidate 

 6 Binaries with pulsar are expected to merge within Hubble time 
 Empirical NS-NS merger rate: 3-190 Myr-1 /galaxy (Kim et al. 2006) 

 Merger rate from population synthesis 
 NS-NS : 10-200 Myr-1/gal. (Kalogera et al. 2004) 

 BH-NS : 0.1-5 Myr-1/gal. (Belczynski 2007) 
Lomier (2008) 

 NS-NS : ~10 - 100 events/yr for advLIGO 

 BH-NS : ~ 1 - 30 events/yr for advLIGO 

Not so rare events ! 

We can do GW astronomy 





 One of most promising source of GWs 
 Next generation interferometer can see  ~ 350Mpc 

 Expected event rate : more than 10/yr 

 Unique window to ‘see’ inside dense matters 
 Very small cross section with matter 

 Dynamical response of dense matter 
 By contrast with static, isolated neutron star 

 Multiple information of equation of state 

 Tidal deformation (radius) : relatively low density 

 Maximum mass : most high density 

 Oscillation :  

 Less uncertain parameters 
 Inspiral waveform provides information of mass  

 Mass should be determined in isolated neutron star 

 Simple in a complementary sense 
 Essentially quadrupole formula 

 By contrast with optical observation 

Radius is sensitive to 

relatively low density parts 

Maximum mass depends on 

most dense parts 

Δ ~ 10% 

Δ ~ 10% 

Ozel & Psaltis 

2009 

Why GWs from NS-NS are interesting ? 



    
 

   
 Most massive NS accurately observed : 1.97 Msolar (Demorest et al. 2010) 

   

   

   

 HMNS formed after the merger is very hot as T ~ O(10MeV) 

 Thermal contribution is not negligible ⇒ Finite temperature EOS 

 Neutrino cooling plays an important role ⇒ Microphysics 
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Development in Numerical Relativity（1） 

 ADM /3+1decomposition (Arnowitt, Deser, & Misner 1962;  York 1978) 

 General Relativity：Theory on spacetime manifold 

 Time and spatial derivatives appear in equations in a mixed manner 

 It is not clear the type of equation (elliptic, hyperbolic ?) 

 Formulation as an initial (and boundary) problem 
 

 Basic ideas on coordinate conditions (Smarr, York, … in 1970’s) 

 There is no absolute spacetime and no preferred frame of reference 

 Those who perform simulations must specify coordinate 

 Use this degree of freedom to avoid singularities and to resolve the frame dragging 

 Development of faster conditions (Shibata, Alccubierre, Brugmann, Bona, … ~2000) 
 

 Some pioneering studies (Nakamura, Ohara, Teukolsky, …1980’s) 

 First full GR simulation of gravitational collapse (Nakamura 1980’s) 



Development in Numerical Relativity（2） 

 BSSN formalism (Shibata & Nakamura 1995; Baumgarte & Shapiro 1999) 

 Einstein equation：constrained system 

 Maxwell eq.： Gauss’s law, No-monopole condition 

 Einstein eq.： Hamiltonian(~energy), Momentum constraint equations 

 ADM formalism：violation of constraints grows monotonically in time and 

simulation clash in a short time 

 Stable, long-term simulations become possible 

 Quasi-equilibrium configurations of NS-NS (Uryu, Gourgoulhon, Taniguchi, 

Cook, Shibata, … 90’s ~)  

 The first full GR simulation of NS-NS merger (Shibata & Uryu 2000) 

 NS-BH initial data (Taniguchi, Shibata, Uryu, Grandclement, Kyutoku, … 2006~ ) 

 The first full GR simulation of BH-NS merger (Shibata & Uryu 2006) 



Development in Numerical Relativity（3） 

 Evolving BH spacetime (Pretorius 2005; Campanelli et al. 2006) 

 BH excision : no information from BH interior ⇒ excise and set boundary cond.  

 The first BH-BH merger simulation (Pretorius 2005) 

 Need experienced craftsmanship  

 BSSN-Puncture : adopt nice coordinate conditions and variables 

 Easy to implement : most difficult simulation (BH-BH) becomes relatively easier one 

 A large number of BH-BH merger simulations (2006～) 
 

 (General) Relativistic hydrodynamics (Font, Marti, Muller, Del Zanna, … 90’s~) 

 (General) Relativistic MHD (Hawley, Komissarov, Anton (Valencia), Duez (Illinoi), 

Shibata-Sekiguchi, ... 2000~) 



Recent development and Future direction 

 Toward more physical modeling   

 Numerical Relativity simulations with Microphysics (Sekiguchi  2010) 

 Nuclear-theory-based finite temperature EOS (Table EOS !) 

 Weak interactions : e± capture,  neutrino scatterings,  neutrino capture 

                           : Two very different timescales                                                                                    

⇒ Numerically, very ‘ stiff ’  source terms 

 Neutrino cooling : simplified treatment 

 Towards GR (neutrino)radiation-hydrodynamics 

 An early attempt : Farris et al. (2008) 

 Covariant formulation based on Thorne’s moment formalism : Shibata et al. (2011) 

 The first Full GR radiation-MHD simulation : Shibata & Sekiguchi (2011)  

 Simplified modeling of BH-Disk system  

 1D core collapse simulation : O’Connor & Ott (2012) 

 An semi-implicit scheme : Roedig et al. (2012) 

dynweak    



Why Microphysics ? 

 High density (>1012 g/cc) and T (> 1-10 MeV) regions 

                      ⇒ neutrinos drive the thermal / chemical evolution 

 99% of energy released in stellar core collapse is carried away by neutrinos 

 Neutrino : Weak interactions should be taken into account 

 Strong dependences of weak rates on T ⇒  Finite temperature EOS  
 

 NS-NS, BH-NS mergers 

 Inspiral : NS is cold (kBT/ EF << 1 )                                    ⇒ zero T EOS  

 Meger  : Compression, shock heating (kBT/ EF ~ O(0.1) )  ⇒ finite T EOS 

 Prompt BH formation ⇒ hot region quickly swallowed by BH 

 Effects of finite temperature would be miner 

 HMNS, late time BH, and massive disk formation (more likely) 

 Shock heating, neutrino cooling, etc. are important 

 

e ,   
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Conclusions

We shall discuss mainly (but not only) linear dynamical (in)stabilities
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Two main motivations to study gravitational stability of black holes:

• Criterium of existence (in D = 4 for alternative theories of gravity and
in D > 4 owing to absence of uniqueness)

• gauge-gravity duality (instability corresponds to the phase transition in
the dual theory)

• scenarios with extra dimensions (though experimental data on LHC

gives no optimism: no large total transverse energy so far at 8 TEV: CMS

collaboration claims that semiclassical BHs with mass below 6.1 TeV are

excluded)



From linearized perturbations to a master wave equation
• Step 1: Perturbations can be written in the linear approximation in the form

gµν = g0
µν

+ δgµν , (1)

δRµν = κ δ

(

Tµν −
1

D − 2
Tgµν

)

+
2Λ

D − 2
δgµν . (2)

Linear approximation means that in Eq. (2) the terms of order ∼ δg2
µν

and higher are

neglected. The unperturbed space-time given by the metric g0
µν

is called the
background.
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• Step 4: Reducing the perturbation equations (after separation of angular variables)
to a second order partial differential equation, termed master wave equation. For
example, for static and some stationary BHs the master wave equation has the form:

−
d2R

dr2
∗

+ V (r , ω)R = ω2R, (3)



Criteria of stability: analytical vs numerical

• If the effective potential Veff in the wave equation (3) is positive definite, the
differential operator

A = −
∂2

∂r2
∗

+ Veff (4)

is a positive self-adjoint operator in the Hilbert space of square integrable functions
L2(r∗, dr∗). Then, there are no negative (growing) mode solutions that are
normalizable, i. e., for a well-behaved initial data (smooth data of compact support),
all solutions are bounded all of the time.
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is a positive self-adjoint operator in the Hilbert space of square integrable functions
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normalizable, i. e., for a well-behaved initial data (smooth data of compact support),
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• Yet, in majority of cases A is not positive (negativeness of the effective potential in
some regions, dependence of the potential on the complex frequencies ω)

• Sometimes the situation can be remedied by the so-called S-deformation of the wave
equation to the one with positive definite effective potential, in such a way that the
lower bound of the energy spectrum does not change.

• Usually, it is difficult to find an ansatz for the S-deformation, so that numerical
treatment of the wave equation is necessary.
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very cumbersome form, the imaginary part of the unstable mode may be very small, ....



• The numerical criteria of stability could be the evidence that all the proper
oscillation frequencies of the black hole, termed the quasinormal modes are damped.

• Quasinormal modes are eigenvalues of the master wave equation with appropriate
boundary conditions: purely ingoing waves at the horizon and purely outgoing waves
at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated
by AdS/CFT and is usually the Dirichlet one Ψ = 0, where Ψ is some gauge inv.
combination.

• Quasinormal modes normally have real and imaginary parts ω
ℓ,m,... = Reω + iImω

and depend on a number of quantum numbers such as multipole number ℓ, azimuthal
number m, overtone numbers n. That is, there are infinite countable number of
quasinormal modes. Potential difficulties: instability usually occurs at lower multipoles
ℓ, but also may happen at high ℓ (Gauss-Bonnet BH), an effective potential may have
very cumbersome form, the imaginary part of the unstable mode may be very small, ....

• How to show that all of the QNMs are damped?



• The numerical criteria of stability could be the evidence that all the proper
oscillation frequencies of the black hole, termed the quasinormal modes are damped.

• Quasinormal modes are eigenvalues of the master wave equation with appropriate
boundary conditions: purely ingoing waves at the horizon and purely outgoing waves
at infinity or de Sitter horizon. For AdS BHs boundary condition at infinity is dictated
by AdS/CFT and is usually the Dirichlet one Ψ = 0, where Ψ is some gauge inv.
combination.

• Quasinormal modes normally have real and imaginary parts ω
ℓ,m,... = Reω + iImω

and depend on a number of quantum numbers such as multipole number ℓ, azimuthal
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• How to show that all of the QNMs are damped?

• Ideally, either: to achieve an asymptotic regime in all numbers ℓ, m, etc... and
parameters in the frequency domain or to perform time-domain integration until
asymptotic tails. Better - both.



(In)stability of 3+1 dimensional BHs and wormholes

Black hole solution (parameters) Publication
Schwarzschild (M) Regge, Wheeler 1957

Reissner-Nordström (M, Q) Moncrief; Alekseev 1974
exactly extreme Reissner-Nordström (M, Q) Aretakis 2011

Schwarzschild-dS (M, Λ > 0) Mellor, Moss 1989
Schwarzschild-AdS (M, Λ < 0) Cardoso, Lemos 2001

Reissner-Nordström-dS (M, Q, Λ) Mellor 1989
Kerr (M, J) Press 1973; Teukolsky 1974

exactly extreme Kerr (M, J) Aretakis 2011; Lucietti, Reall, 2012
Kerr-dS (M, J, Λ > 0) Suzuki 1999
Kerr-AdS (M, J, Λ < 0) Giammatteo 2005

Kerr-Newmann (M, J, Q) ?
Kerr-Newman-A(dS) (M, J, Q, Λ) ?

Dilaton (M, Q, φ) Holzhey 1991; Ferrari, 2000
Dilaton-axion (M, Q, J, φ, ψ) ?

Dilaton-GB (M, φ) Torii 1998, Pani 2009
Born-Infeld (M, Q) axial only, Fernando 2004

Black universes (M, φ) Bronnikov, Konoplya, Zhidenko 2012
BHs in the Chern-Simons theory (M, β) Cardoso 2010
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(In)stability of 3+1 dimensional BHs and wormholes

• Non extreme four dimensional BHs are usually stable under linear gravitational
perturbations, except black universes with the minimal area function and rotating
asymptotically AdS BHs (superradiant modes).

• Extreme Kerr and Reissner-Nordstrom BHs space-times are unstable.

• Wormholes and black holes supported by exotic matter, such as phantom fields, are
usually unstable.

• ...and from
1993 Gregory and Laflamme (black branes)
2003 Ishibashi and Kodama (black holes)

a higher dimensional story starts...



Three types of instability:
• Gregory-Laflamme instability. It occurs for black strings at long wavelengthes in
the extra dimension z and is connected with inapplicability of the Birkhoff theorem.
Gregory and Laflamme 1993. Gubser and Mitra instability (2001) for large highly
charged RNdS BHs in N = 8 supergravity is of this kind. Developement of black string
instability beyond linear order - nonuniform string - thermodynamic arguments and
numerical computations by Choptuik and others, 2000th
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mΩ

ω
> 1, (5)

the reflected wave has larger amplitude than the incident one, a superradiance. This
effect was predicted by Zeldovich and proved for Kerr BHs by A. Starobinsky in 1974.
Super-radiance is connected with extraction of rotational energy of a black hole and
occurs at positive ("co-rotating"with a black hole) m. Super-radiance + Dirichlet
boundary conditions far from black hole = instability. Therefore, rotating AdS black
holes are unstable in the superradiant regime.
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• Superradiant instability of asymptotically AdS rotating BHs. If

mΩ

ω
> 1, (5)

the reflected wave has larger amplitude than the incident one, a superradiance. This
effect was predicted by Zeldovich and proved for Kerr BHs by A. Starobinsky in 1974.
Super-radiance is connected with extraction of rotational energy of a black hole and
occurs at positive ("co-rotating"with a black hole) m. Super-radiance + Dirichlet
boundary conditions far from black hole = instability. Therefore, rotating AdS black
holes are unstable in the superradiant regime.

• "Non-Gregory-Laflamme"instability. The "other"type of instability which is not

connected with the inapplicability of the Birkhoff theorem or superradiance. It

happens, for instance, for asymptotically de Sitter highly charged black holes in D > 6

space-times.



Instability of RNAdS BHs in supergravity and RNdS
instability in EM theory

,

Рис.: Left: Gubser-Mitra instability of R-N-AdS in N = 8 supergravity; Right:

R-N-dS instability, Konoplya, Zhidenko PRL, 2009. The parametric region of
instability in the right upper corner of the square in the ρ− q “coordinates” for D = 7
(top, black), D = 8 (blue), D = 9 (green), D = 10 (red), D = 11 (bottom, magenta).
The units r+ = 1 are used; ρ = r+/rc = 1/rc < 1, rc is the cosmological horizon. The
charge can be normalized by its extremal quantity q = Q/Qext < 1.



Superradiant instability
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Рис.: The stable region in the parameter plane for the simply rotating
higher-dimensional asymptotically AdS black hole. Kodama, Konoplya, Zhidenko 2009.
The instability has the tiny growth rate which, apparently, will be suppressed by the
intensive Hawking evaporation.



(In)stability of higher-dimensional black holes

Black hole solution (parameters) Publication
Schwarzschild (M) Stable for all D Kodama, Ishibashi 2003

non extreme R-N (M, Q) Stable for D = 5, 6, . . . , 11 K.Z. 2009
Schwarzschild-dS (M, Λ), (M, Λ > 0) Stable for D = 5, 6, . . . , 11 K.Z. 2007
Schwarzschild-AdS (M, Λ) (M, Λ < 0) Stable in EM theory for D = 5, 6, . . . , 11 K.Z. 2008

R-N -dS (M, Λ) (M, Q, Λ > 0) Unstable for D = 7, 8, . . . , 11 K.Z. 2009
R-N -AdS in E-M (M, Λ) (M, Q, Λ < 0) stable in E-M K.Z. 2008

R-N -AdS in supergravity (M, Λ) (M, Q, Λ < 0) unstable Gubser, Mitra 2000
Gauss-Bonnet (M, α) Unstable for large α, Dotti 2006
Lovelock (M, α, β, ...) Unstable for large α, Soda, Takahashi

Myers-Perry and its generalizations (M, J) ? Only particular types of perturbations
Dilaton (M, Q, φ) ?

Dilaton-axion (M, Q, J, φ, ψ) ?
Dilaton-Gauss-Bonnet (M, φ, α) ?
squashed Kaluza-Klein black holes stable, 2000th Soda, Ishihara and others

black strings and branes Gregory and Laflamme 1993
black rings, saturns, etc ? (Heuristic arguments and analogies)

K.Z. = Konoplya and Zhidenko
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• This claim was supported by some intuitive arguments of O. Dias and collaborators
(2011) borrowed from M. T. Anderson (2006): AdS boundary conditions act like a
confining box. Any excitation added to the box, after some time, could explore a
configuration consistent with the conserved quantities. The conjecture is that an
excitation of AdS eventually finds itself inside its Schwarzschild radius and collapses to
a black hole .

• In concordance with this conjecture it was argued in a subsequent paper of Dias
(2012) that a number of asymptotically AdS space-times including a SdS BH
space-time apparently look like non-linearly stable

• By now, in my opinion, there is no clearness in this issue: alternative non-linear

computations or possibly higher order perturbative calculations would help...
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By now, we know a lot of about various (in)stabilities of black holes and branes in four
and higher dimensions in the linear regime, but far from everything....



Conclusions

By now, we know a lot of about various (in)stabilities of black holes and branes in four
and higher dimensions in the linear regime, but far from everything....

We know not much about possible nonlinear (in)stabilities in higher dimensions...



j

aH

Рис.: The qualitative phase diagram for the black objects in D ≥ 6 (taken from an
Emparan’s paper). The horizontal and vertical axes correspond, respectively, to the
spin and area of a black object. If thermal equilibrium is not imposed, multirings are
possible in the upper region of the diagram.
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Inflationary multiverse: 

Gravity	  coupled	  to	  a	  field	  theory	  with	  several	  metastable	  vacua	  

Very	  interesEng	  dynamics,	  driven	  by	  inflaEon	  and	  vacuum	  transiEons.	  



Inflationary multiverse: 

Gravity	  coupled	  to	  a	  field	  theory	  with	  several	  metastable	  vacua	  

  Our universe could well be that system: 

	  -‐	  There	  is	  some	  evidence	  for	  primordial	  inflaEon.	  	  

	  -‐	  And	  some	  more	  for	  cosmic	  acceleraEon.	  

-‐	  This	  scenario	  may	  offer	  a	  soluEon	  of	  the	  cc	  problem	  
(and	  all	  other	  observed	  coincidences),	  given	  a	  vast	  landscape	  of	  vacua.	  



Vacuum transitions: - Slow roll 

- Quantum diffusion 

-  Bubble nucleation 

Robust features of  theories with long lived inflating vacua: 

	  -‐	  InflaEon	  is	  generically	  eternal to the future. 

-   All vacua which	  are	  accessible	  are	  eventually populated.	  There	  will	  be	  some	  
fracEon	  of	  the	  volume	  of	  the	  universe	  	  	  

	  -‐	  The distribution of  vacua [e.g. Vol(\phi,t)] approaches an attractor	  at	  late	  
Emes.	  

These	  are	  semiclassical	  mechanisms	  	  (there	  may	  be	  other	  transiEon	  
mechanisms	  in	  a	  full	  quantum	  theory).	  



Bubble formation 	  

A	  
B	  

timescales down to τq. Also, in this regime, we seem to have to resort to numerics.
In any case, we have the option of presenting also (in a subsection) an alternative
model detector involving a four point interaction, which may be more efficient.
Also, we may be able to proceed analytically in this case.

Our conclusions are summarized in Section 5.

2 Timescales

In the thin wall limit, the action for a vacuum bubble is given by

S = −
�

M(r)
�

1− ṙ2 dt+ �

�
V (r) dt. (2.1)

Here, M(r) is the mass of the domain wall of radius r, � is the difference in energy density
between the false and the true vacuum, and V (r) is the volume inside the bubble. In D
spacetime dimensions,

M(r) = σ Ω rD−2, V (r) =
Ω

D − 1
rD−1, (2.2)

where σ is the wall tension, and Ω is the surface of the unit (D−2)-sphere. A vacuum bubble
has zero energy (relative to the false vacuum configuration without the bubble)

�
p2r +M2 − � V (r) = 0. (2.3)

Here the radial momentum is given by

pr = γMṙ, (2.4)

with γ = (1− ṙ2)−1/2. Up to temporal shifts, the solution of (2.3) is given by Eq. (1.1), with

r0 =
(D − 1)σ

�
. (2.5)

Eq. (2.5) gives the size of the critical bubble, which is also the timescale needed for thie
bubble wall to become relativistic

τacc ∼ r0. (2.6)

To relate r0 to other relevant scales, we introduce the dimensionless combination

λ ≡ σD

�D−1
∼ SE � 1. (2.7)

Up to a numerical coefficient of order one, this coincides with the instanton action SE , which
can be calculated by substituting the Euclidean version of (1.1) into the Euclidean version of
(2.1). The semiclassical approach to tunneling is only valid when the last strong inequality
is satisfied. This will make λ a useful expansion parameter.

Eq. (2.3) can be thought of as the classical limit of a Schordinger equation for the wave
function of the bubble. This was used in [2] to estimate the probability that a bubble of
vanishing size may tunnel to the critical size. The estimate in [2] is in qualitative agreement
with the decay rate per unit volume Γ ∼ e−SE which is obtained by the instanton methods
[3]. The lifetime τvac for the false vacuum is therefore exponential in λ,

ln τvac ∝ λ. (2.8)
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1− ṙ2 dt+ �

�
V (r) dt. (2.1)

Here, M(r) is the mass of the domain wall of radius r, � is the difference in energy density
between the false and the true vacuum, and V (r) is the volume inside the bubble. In D
spacetime dimensions,

M(r) = σ Ω rD−2, V (r) =
Ω

D − 1
rD−1, (2.2)

where σ is the wall tension, and Ω is the surface of the unit (D−2)-sphere. A vacuum bubble
has zero energy (relative to the false vacuum configuration without the bubble)

�
p2r +M2 − � V (r) = 0. (2.3)

Here the radial momentum is given by

pr = γMṙ, (2.4)
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Γ ∼ e−
� r0
r=0 |pr|dr (0.1)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field
theory can decay by quantum tunneling. The process occurs locally, by nucleation of true
vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially
at rest, and then expands with constant proper acceleration r−1

0 . Lorentz invariance of the
false vacuum, however, indicates that bubbles will not have any preferred rest frame in which
to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume
should include an integral over the Lorentz group, in order to account for all possible frames.
Such integral would of course be divergent (or at least cut-off dependent if a regulator is
imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton
method which made it clear that the rate is finite, and that integration over the Lorentz
group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat
mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an
adequate description of the process. If it is true that a long lived metastable false vacuum
is approximately Lorentz invariant, what is it that determines the rest frame in which the
critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared
to the bubble size (see Fig. 1). The trajectory of a vacuum bubble of radius r as a function
of time t is given by [2, 3]

r2 − t2 = r20. (1.1)

Eq. (1.1) is invariant under Lorentz boosts, and describes a bubble which contracts from
infinite size (at t → −∞) to the minimum size r0 (at t = 0), and then expands again to
infinite size (at t → ∞). However, only the expanding part of this trajectory is relevant
to vacum decay. Indeed, we assume that the system is prepared in the false vacuum in the

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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Critical bubble nucleates at rest,  
and then expands 
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Figure 1. Diagram illustrating the nucleation of a bubble of true vacuum. The system is prepared

to be in the metastable false vacuum at some early time t = −t0. A bubble of size r0 nucleates at rest

at time t = 0, and subsequently expands. The semiclassical picture of an expanding bubble is valid

for t � τq.

event occurs at the time which we here denote as t = 0, forming a critical bubble, which

then expands according to (1.1). Nucleation is a quantum process (indicated in Fig. 1 by a

wavy line), and therefore we should not say that it takes place exactly at the turning point

hypersurface t = 0. The semiclassical picture of an expanding bubble is valid only after a
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As we shall see, in the regime where the action of the instanton describing vacuum decay is

large, we have τq � r0. In this sense, it is still quite accurate to say that nucleation takes

place on a t ≈ const. hypersurface.
Since only the expanding branch of (1.1) is relevant, the actual process of vacuum

decay is not at all Lorentz invariant. In a reference frame S� which moves at high velocity

v = tanhφv with respect to the rest frame of nucleation, things look rather different (see Fig.
2). Observers in the new frame will see a piece of the bubble appear at time t� ≈ −r0 sinhφv,

moving very fast in the boost direction. The bubble will come to a halt at t� = 0. At

that time the bubble wall presents a somewhat awkward shape: it consists of one hemisphere

attached to a rather fuzzy interface between false and true vacuum, which cannot be described

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the
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where nµ is a unit spacelike vector normal to uµ.
For this electric field, we may choose a Lorentz-covariant gauge in which the gauge field

Aµ is given by

Aµ =
1

2
E �µν x

ν . (2.4)

However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where

Aµ =
1

2
E
�
�µν x

ν − ∂µ(x
0x1)

�
. (2.5)

This gives the components of the gauge field as

Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,

�
−∂2

t + (∂x − ieAx)
2 −m2

�
φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =

�
dk

(2π)1/2

�
akφk(t) + b†−kφ

∗
k(t)

�
eikx , (2.8)

where the mode functions φk(t) satisfy the equation,

�
d2

dt2
+m2

+ (k + eEt)2
�
φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)

�
= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)

where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ
in a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take

care of option (C) above, the hypersurface of initial conditions (where the quantum state for

the field φ is prepared) was taken to the infinite past t → −∞. In this idealized situation,

it was shown that the “in” vacuum is Lorentz invariant2, and therefore cannot determine a

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ in

a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take care

of option (C), the initial hypersurface where the quantum state for the field φ is prepared

was taken to the infinite past t → −∞. In this idealized situation, it was shown that the “in”

vacuum is Lorentz invariant2, and therefore cannot determine a preferred frame of nucleation.

To investigate (A) and (B), the model detector was chosen to be a particle of a second charged

field ψ (see Fig. 3), interacting with φ through the vertex

g(φψ∗χ+ hc), (1.3)

where g is a coupling constant. Through this interaction, the ψ particle can anihilate the

φ antiparticle in the pair, producing a neutral particle χ. The kinematics of this process

is such that the φ antiparticle has at most two chances, along its hyperbolic trajectory, of

interacting with the detector. The reason is that the center of mass energy of the collision

between φ∗ and the detector particle ψ has to be equal to the rest mass mχ of the product.

This selects the magnitude of the momentum of φ relative to ψ, but we have two options for

its sign. If the pair nucleates in the rest frame of the detector, as in (a), then the collision

will take place in the expanding branch of the hyperbola, and the momentum of the decay

product χ will be negative p < 0. On the other hand, if the pair nucleates in a frame which is

highly boosted with respect to the detector, then there is a good chance that the interaction

takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). The results of Ref.[1] showed a strong asymmetry in

the momentum distribution of the decay products, towards negative momenta. This was

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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Γ ∼ e−
� r0
r=0 |pr|dr (0.1)

Γtotal = Γ Ω

�
dφv(sinhφv)

D−2
= ∞ (0.2)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared

to the bubble size (see Fig. 1). The trajectory of a vacuum bubble of radius r as a function

of time t is given by [2, 3]

r2 − t2 = r20. (1.1)

Eq. (1.1) is invariant under Lorentz boosts, and describes a bubble which contracts from

infinite size (at t → −∞) to the minimum size r0 (at t = 0), and then expands again to

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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Figure 1. Diagram illustrating the nucleation of a bubble of true vacuum. The system is prepared

to be in the metastable false vacuum at some early time t = −t0. A bubble of size r0 nucleates at rest

at time t = 0, and subsequently expands. The semiclassical picture of an expanding bubble is valid

for t � τq.

event occurs at the time which we here denote as t = 0, forming a critical bubble, which

then expands according to (1.1). Nucleation is a quantum process (indicated in Fig. 1 by a

wavy line), and therefore we should not say that it takes place exactly at the turning point

hypersurface t = 0. The semiclassical picture of an expanding bubble is valid only after a

certain time τq has ellapsed,

t � τq > 0. (1.2)

As we shall see, in the regime where the action of the instanton describing vacuum decay is

large, we have τq � r0. In this sense, it is still quite accurate to say that nucleation takes

place on a t ≈ const. hypersurface.
Since only the expanding branch of (1.1) is relevant, the actual process of vacuum

decay is not at all Lorentz invariant. In a reference frame S� which moves at high velocity

v = tanhφv with respect to the rest frame of nucleation, things look rather different (see Fig.
2). Observers in the new frame will see a piece of the bubble appear at time t� ≈ −r0 sinhφv,

moving very fast in the boost direction. The bubble will come to a halt at t� = 0. At

that time the bubble wall presents a somewhat awkward shape: it consists of one hemisphere

attached to a rather fuzzy interface between false and true vacuum, which cannot be described

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the
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where nµ is a unit spacelike vector normal to uµ.
For this electric field, we may choose a Lorentz-covariant gauge in which the gauge field

Aµ is given by

Aµ =
1

2
E �µν x

ν . (2.4)

However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where

Aµ =
1

2
E
�
�µν x

ν − ∂µ(x
0x1)

�
. (2.5)

This gives the components of the gauge field as

Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,

�
−∂2

t + (∂x − ieAx)
2 −m2

�
φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =

�
dk

(2π)1/2

�
akφk(t) + b†−kφ

∗
k(t)

�
eikx , (2.8)

where the mode functions φk(t) satisfy the equation,

�
d2

dt2
+m2

+ (k + eEt)2
�
φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)

�
= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)

where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)
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completely cut off and can be at least partially observed. (C) A third possibility is that the

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ
in a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take

care of option (C) above, the hypersurface of initial conditions (where the quantum state for

the field φ is prepared) was taken to the infinite past t → −∞. In this idealized situation,

it was shown that the “in” vacuum is Lorentz invariant2, and therefore cannot determine a

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ in

a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take care

of option (C), the initial hypersurface where the quantum state for the field φ is prepared

was taken to the infinite past t → −∞. In this idealized situation, it was shown that the “in”

vacuum is Lorentz invariant2, and therefore cannot determine a preferred frame of nucleation.

To investigate (A) and (B), the model detector was chosen to be a particle of a second charged

field ψ (see Fig. 3), interacting with φ through the vertex

g(φψ∗χ+ hc), (1.3)

where g is a coupling constant. Through this interaction, the ψ particle can anihilate the

φ antiparticle in the pair, producing a neutral particle χ. The kinematics of this process

is such that the φ antiparticle has at most two chances, along its hyperbolic trajectory, of

interacting with the detector. The reason is that the center of mass energy of the collision

between φ∗ and the detector particle ψ has to be equal to the rest mass mχ of the product.

This selects the magnitude of the momentum of φ relative to ψ, but we have two options for

its sign. If the pair nucleates in the rest frame of the detector, as in (a), then the collision

will take place in the expanding branch of the hyperbola, and the momentum of the decay

product χ will be negative p < 0. On the other hand, if the pair nucleates in a frame which is

highly boosted with respect to the detector, then there is a good chance that the interaction

takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). The results of Ref.[1] showed a strong asymmetry in

the momentum distribution of the decay products, towards negative momenta. This was

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared

to the bubble size (see Fig. 1). The trajectory of a vacuum bubble of radius r as a function

of time t is given by [2, 3]

r2 − t2 = r20. (1.1)

Eq. (1.1) is invariant under Lorentz boosts, and describes a bubble which contracts from

infinite size (at t → −∞) to the minimum size r0 (at t = 0), and then expands again to

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which
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should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared

to the bubble size (see Fig. 1). The trajectory of a vacuum bubble of radius r as a function

of time t is given by [2, 3]

r2 − t2 = r20. (1.1)

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
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Figure 1. Diagram illustrating the nucleation of a bubble of true vacuum. The system is prepared

to be in the metastable false vacuum at some early time t = −t0. A bubble of size r0 nucleates at rest

at time t = 0, and subsequently expands. The semiclassical picture of an expanding bubble is valid

for t � τq.

event occurs at the time which we here denote as t = 0, forming a critical bubble, which

then expands according to (1.1). Nucleation is a quantum process (indicated in Fig. 1 by a

wavy line), and therefore we should not say that it takes place exactly at the turning point

hypersurface t = 0. The semiclassical picture of an expanding bubble is valid only after a

certain time τq has ellapsed,

t � τq > 0. (1.2)

As we shall see, in the regime where the action of the instanton describing vacuum decay is

large, we have τq � r0. In this sense, it is still quite accurate to say that nucleation takes

place on a t ≈ const. hypersurface.
Since only the expanding branch of (1.1) is relevant, the actual process of vacuum

decay is not at all Lorentz invariant. In a reference frame S� which moves at high velocity

v = tanhφv with respect to the rest frame of nucleation, things look rather different (see Fig.
2). Observers in the new frame will see a piece of the bubble appear at time t� ≈ −r0 sinhφv,

moving very fast in the boost direction. The bubble will come to a halt at t� = 0. At

that time the bubble wall presents a somewhat awkward shape: it consists of one hemisphere

attached to a rather fuzzy interface between false and true vacuum, which cannot be described

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the
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where nµ is a unit spacelike vector normal to uµ.
For this electric field, we may choose a Lorentz-covariant gauge in which the gauge field

Aµ is given by

Aµ =
1

2
E �µν x

ν . (2.4)

However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where

Aµ =
1

2
E
�
�µν x

ν − ∂µ(x
0x1)

�
. (2.5)

This gives the components of the gauge field as

Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,

�
−∂2

t + (∂x − ieAx)
2 −m2

�
φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =

�
dk

(2π)1/2

�
akφk(t) + b†−kφ

∗
k(t)

�
eikx , (2.8)

where the mode functions φk(t) satisfy the equation,

�
d2

dt2
+m2

+ (k + eEt)2
�
φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)

�
= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)

where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ
in a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take

care of option (C) above, the hypersurface of initial conditions (where the quantum state for

the field φ is prepared) was taken to the infinite past t → −∞. In this idealized situation,

it was shown that the “in” vacuum is Lorentz invariant2, and therefore cannot determine a

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ in

a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take care

of option (C), the initial hypersurface where the quantum state for the field φ is prepared

was taken to the infinite past t → −∞. In this idealized situation, it was shown that the “in”

vacuum is Lorentz invariant2, and therefore cannot determine a preferred frame of nucleation.

To investigate (A) and (B), the model detector was chosen to be a particle of a second charged

field ψ (see Fig. 3), interacting with φ through the vertex

g(φψ∗χ+ hc), (1.3)

where g is a coupling constant. Through this interaction, the ψ particle can anihilate the

φ antiparticle in the pair, producing a neutral particle χ. The kinematics of this process

is such that the φ antiparticle has at most two chances, along its hyperbolic trajectory, of

interacting with the detector. The reason is that the center of mass energy of the collision

between φ∗ and the detector particle ψ has to be equal to the rest mass mχ of the product.

This selects the magnitude of the momentum of φ relative to ψ, but we have two options for

its sign. If the pair nucleates in the rest frame of the detector, as in (a), then the collision

will take place in the expanding branch of the hyperbola, and the momentum of the decay

product χ will be negative p < 0. On the other hand, if the pair nucleates in a frame which is

highly boosted with respect to the detector, then there is a good chance that the interaction

takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). The results of Ref.[1] showed a strong asymmetry in

the momentum distribution of the decay products, towards negative momenta. This was

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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For this electric field, we may choose a Lorentz-covariant gauge in which the gauge field

Aµ is given by
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1
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However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where
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Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,
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φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =
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eikx , (2.8)

where the mode functions φk(t) satisfy the equation,
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+ (k + eEt)2
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φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)
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= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)

where

z ≡
√
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t+
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, λ ≡ m2

eE
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The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)

– 6 –

Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ
in a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take

care of option (C) above, the hypersurface of initial conditions (where the quantum state for

the field φ is prepared) was taken to the infinite past t → −∞. In this idealized situation,

it was shown that the “in” vacuum is Lorentz invariant2, and therefore cannot determine a

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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The investigation in [1] was done by using pair production of a charged scalar field φ in

a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take care

of option (C), the initial hypersurface where the quantum state for the field φ is prepared

was taken to the infinite past t → −∞. In this idealized situation, it was shown that the “in”

vacuum is Lorentz invariant2, and therefore cannot determine a preferred frame of nucleation.

To investigate (A) and (B), the model detector was chosen to be a particle of a second charged

field ψ (see Fig. 3), interacting with φ through the vertex

g(φψ∗χ+ hc), (1.3)

where g is a coupling constant. Through this interaction, the ψ particle can anihilate the

φ antiparticle in the pair, producing a neutral particle χ. The kinematics of this process

is such that the φ antiparticle has at most two chances, along its hyperbolic trajectory, of

interacting with the detector. The reason is that the center of mass energy of the collision

between φ∗ and the detector particle ψ has to be equal to the rest mass mχ of the product.

This selects the magnitude of the momentum of φ relative to ψ, but we have two options for

its sign. If the pair nucleates in the rest frame of the detector, as in (a), then the collision

will take place in the expanding branch of the hyperbola, and the momentum of the decay

product χ will be negative p < 0. On the other hand, if the pair nucleates in a frame which is

highly boosted with respect to the detector, then there is a good chance that the interaction

takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). The results of Ref.[1] showed a strong asymmetry in

the momentum distribution of the decay products, towards negative momenta. This was

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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that the number density of pairs vanishes on some initial surface t = const.3 We shall come
back to this issue in Section 4.

Despite its somewhat unphysical properties, we find that the in-vacuum is a useful
laboratory for studying the bubble nucleation process, at least in the limit where the initial
conditions are removed sufficiently far in the past. In this paper we shall consider tree-level
interactions between the pairs and the detector. The kinematics of these interactions is such
that, out of the infinite bath of created particles, only those whose momentum relative to
the detector is in a certain range will have a chance to interact with it. In this sense, most
particles in the bath are invisible, and their infinite density is irrelevant.

To be specific, we model the detector by introducing two additional scalar fields: a
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Figure 3. The “detector” particle ψ can anihilate the φ antiparticle through the vertex (1.3), pro-

ducing a neutral particle χ. Kinematically, there are at most two opportunities for the interaction to

take place along the hyperbolic trajectory of φ. If the pair nucleates in the rest frame of the detector

particle ψ, as in (a), then the collision will take place in the expanding branch of the hyperbola, and

the momentum of the decay product χ will be negative p < 0. On the other hand, if the pair nucleates

in a frame which is highly boosted with respect to the detector, then there is a good chance that the

interaction takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). Therefore, a strong asymmetry in the momentum distribution of

the products towards negative momenta can be interpreted as evidence that the detector encounters

the expanding branch much more often than the contracting branch, consistent with option (A) in

the introduction.

interpreted as evidence that the detector encounters the expanding branch much more often

than the contracting branch, consistent with option (A). It was therefore concluded that

nucleation takes place preferentially in the rest frame of the detector.

The analysis of Ref. [1] was restricted to a range of parameter space where the momen-

tum of the φ antiparticle at the time of collision is highly relativistic. In this sense, the frame

of nucleation was probed rather imprecisely, with a tolerance much larger than the size of

the critical bubble.

The purpose of this paper is to sharpen the discussion given in Ref. [1], by tightening

the precision to which the rest frame of bubble nucleation can be determined, down to the

smallest possible scale. We start in Section 2 with a discussion of the timescales which

are relevant to bubble nucleation. These include the time τq of quantum fuzziness after

nucleation, the size of the critical bubble r0, the timescale τnuc that it takes for a small

quantum fluctuation in the false vacuum to tunnel into a critical bubble, the time t0 ellapsed

since initial conditions, and the average lifetime τvac of the false vacuum. The parametric

hierarchy between these scales will be clarified.

In Section 3 we briefly review pair production by an electric field in (1+1)-dimensions.

In Section 4 we consider the response of the model detector (1.3), extending the analysis of

Ref. [1] to the range of parameter space where the momentum of the φ antiparticle at the

moment of collision is only mildly relativistic or non-relativistic. This will allow us to probe

the frame of nucleation on scales smaller than r0 and down to τq.
JG: it is not clear to me how efficient the model detector (1.3) is for probing
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Γtotal = Γ Ω

�
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D−2
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SE ≡ πλ � 1 (0.5)

wφ + wψ = wχ (0.6)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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Possible outcomes of  this “experiment”: 

(A) -‐	  Frame	  of	  nucleaEon	  is	  determined	  by	  the	  rest	  frame	  of	  the	  detector.	  

(B) -‐	  Perhaps	  the	  frame	  of	  nucleaEon	  is	  not	  very	  well	  determined	  
	  	  	  	  	  	  	  	  	  and	  the	  detector	  can	  probe	  part	  of	  the	  contracEng	  branch.	  	  

(C)	  -‐	  The	  frame	  of	  nucleaEon	  is	  determined	  by	  iniEal	  condiEons.	  

Time-scales: 

For	  tunneling	  to	  be	  semiclassical	  

timescales down to τq. Also, in this regime, we seem to have to resort to numerics.
In any case, we have the option of presenting also (in a subsection) an alternative
model detector involving a four point interaction, which may be more efficient.
Also, we may be able to proceed analytically in this case.

Our conclusions are summarized in Section 5.

2 Timescales

In the thin wall limit, the action for a vacuum bubble is given by

S = −
�

M(r)
�

1− ṙ2 dt+ �

�
V (r) dt. (2.1)

Here, M(r) is the mass of the domain wall of radius r, � is the difference in energy density
between the false and the true vacuum, and V (r) is the volume inside the bubble. In D
spacetime dimensions,

M(r) = σ Ω rD−2, V (r) =
Ω

D − 1
rD−1, (2.2)

where σ is the wall tension, and Ω is the surface of the unit (D−2)-sphere. A vacuum bubble
has zero energy (relative to the false vacuum configuration without the bubble)

�
p2r +M2 − � V (r) = 0. (2.3)

Here the radial momentum is given by

pr = γMṙ, (2.4)

with γ = (1− ṙ2)−1/2. Up to temporal shifts, the solution of (2.3) is given by Eq. (1.1), with

r0 =
(D − 1)σ

�
. (2.5)

Eq. (2.5) gives the size of the critical bubble, which is also the timescale needed for thie
bubble wall to become relativistic

τacc ∼ r0. (2.6)

To relate r0 to other relevant scales, we introduce the dimensionless combination

λ ≡ σD

�D−1
∼ SE � 1. (2.7)

Up to a numerical coefficient of order one, this coincides with the instanton action SE , which
can be calculated by substituting the Euclidean version of (1.1) into the Euclidean version of
(2.1). The semiclassical approach to tunneling is only valid when the last strong inequality
is satisfied. This will make λ a useful expansion parameter.

Eq. (2.3) can be thought of as the classical limit of a Schordinger equation for the wave
function of the bubble. This was used in [2] to estimate the probability that a bubble of
vanishing size may tunnel to the critical size. The estimate in [2] is in qualitative agreement
with the decay rate per unit volume Γ ∼ e−SE which is obtained by the instanton methods
[3]. The lifetime τvac for the false vacuum is therefore exponential in λ,

ln τvac ∝ λ. (2.8)
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Size	  of	  the	  criEcal	  bubble	  

As mentioned in the introduction, the semiclassical description is not adequate at the
classical turning point r = r0, where the radial momentum pr vanishes. We note, however,
that it becomes very accurate for t � τq, where τq can be determined from the condition
[r(τq)− r0] pr(τq) ∼ 1. This leads to

τq ∼ λ−1/3r0 � r0. (2.9)

Hence, the intrinsic uncertainty in the rest frame of nucleation is much smaller than the
bubble size (as illustrated in Figs. 1 and 2).

The uncertainty τq should not be confused with the timescale τnuc that it takes for the
critical bubble to form out of a tiny false vacuum fluctuation. In the semiclassical picture,
it is somewhat unclear how to even characterize τnuc, but causality suggests that this time
should at least be as large as the size of the critical bubble,

τnuc � r0. (2.10)

The scale τnuc can be defined somewhat more precisely in the quantum theory, as we shall
see in the next section, where we consider pair production as a model for vacuum decay in
(1+1) dimensions.

In summary, we are led to the following hierarchy of scales,

τq � r0 � τnuc � t0 � τvac. (2.11)

where the strong inequalities are parametrically enhanced the larger is λ ∼ SE . In (2.11), t0 is
the time ellapsed from the hypersurface of initial conditions to the moment when the bubble
nucleates. This should at least be marginally larger than τnuc. The last strong inequality
is also imposed on t0 because our primary interest is in bubbles which nucleate in isolation,
without interference from collisions with other bubbles. Bubbles that form at t0 � τvac
are very likely to remain isolated for a period of time which is much larger than all other
scales involved in the problem. It should also be noted that τvac grows exponentially with
λ, whereas for all other scales the dependence is power law. In this sense, we can practically
think of τvac as infinite. In the (1+1)-dimensional example which we consider in the following
Section, the electric field producing the pairs is external and the pairs do not interact with
each other. In this idealized situation, the scale τvac does not play any role.

3 Pair production

Here we briefly review Schwinger pair production, which serves as a model for bubble nu-
cleation in (1+1) dimensions. The main advantage is that the nucleated pairs are treated
fully quantum mechanically. In the following Section, we shall consider the detection of the
nucleated pairs. Our conventions will follow those of Ref. [1].

Consider a charged scalar field φ, coupled to an external electric field with gauge poten-
tial Aµ = δ1µA(t). By spatial homogeneity, we can separate into fourier modes, which satisfy
the equation.

φ̈k + w2
kφk = 0, (3.1)

where
w2
k = m2 + (k − eA)2. (3.2)

Here, m is the mass of the field φ and e is its charge.
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Eq. (3.3) can be thought of as a Schrodinger equation with potential Veff = −(λ+ z2), and
the determination of the Bogolubov coefficients αk and βk amounts to solving a scattering
problem in this potential (see Fig. 4). Note that k enters Eq. (3.3) only through the
combination k + eEt, so the scattering near z = 0 occurs at the time t ≈ −k/(eE), but it is
otherwise independent of k. Eq. (3.10) can then be rewritten as

Γ = dn/dt = eE|βk|2/(2π) (3.11)

where the coefficient βk = eiπν
∗
can be easily calculated from a standard linear relation

between the parabolic cylinder functions appearing in φk and φout
k (see e.g. [1]). This leads

to Schwinger rate

Γ =
eE

2π
e−πλ, (3.12)

The exponent in (3.12) coincides with the Euclidean action SE = πλ, in agreement with the
instanton approach, which is valid for large SE .

The asymptotic expansion (3.7) φk, and the analogous one for φout
k , are valid for |z| �

|ν|. Hence the timescale of scattering off the potential in Fig. 4, where the mixing of positive
and negative frequency modes occurs, is at most of order τmixing � ν

√
eE ∼ λ1/2r0. On the

other hand, this seems to be a rather crude upper bound. Mode mixing will be at its peak
when the non-adiabaticity parameter

fk(t) =
ẇk

w2
k

(3.13)

is at its maximum. The function fk is symmetric around the time t = tk ≡ k/eE (where it
vanishes) and has two peaks which are at a distance ∆t ∼ r0 away from tk. Hence, we can
estimate τmixing ∼ r0. Identifying this with the semiclassical timescale τnuc for nucleation of
a pair out of a vacuum fluctuation, we have

τnuc ∼ r0. (3.14)

This is consistent with the estimate τnuc � r0 which we mentioned in the previous subsection.
Further evidence for (3.14) can be found by considering the case of an electric field

which is turned on and off on a timescale t0:

Ê(t) =
E

cosh2(t/t0)
. (3.15)

The corresponding gauge potential is given by A(t) = −Et0 tanh(t/t0), and the mode equa-
tion (3.1-3.2), can in this case be solved in terms of hypergeometric functions . The Bogoli-
ubov coefficient is given by (see e.g. [7] and references therein)

|βk|2 =
cosh2

�
π
�

(eEt20)
2 − 1

2

�
+ sinh2

�
πt0
2 (w+ − w−)

�

sinh(πt0w+) sinh(πt0w−)
, (3.16)

where w± =
�

m2 + (k ∓ eEt0)2. For the mode with conserved momentum k = 0, the
physical momentum is at the turning point kphys = k− eA(t) = 0 precisely at the time t = 0.
For this mode, w+ = w− and (3.16) simplifies to

|βk=0|2 =
cosh2

�
π
�

(eEt20)
2 − 1

2

�

sinh2
�
πt0

�
m2 + (eEt0)2

� . (3.17)
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Timescale	  of	  nucleaEon	  

Quantum	  fuzziness	  scale	  around	  the	  turning	  point	  
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dφv(sinhφv)

D−2
= ∞ (0.2)

Γ = A e−SE (0.3)

τq � r0 � t0 → ∞ (0.4)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared

to the bubble size (see Fig. 1). The trajectory of a vacuum bubble of radius r as a function

of time t is given by [2, 3]

r2 − t2 = r20. (1.1)

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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Let us consider  (Eme	  ellapsed	  since	  iniEal	  condiEons)	  

This	  will	  take	  care	  of	  opEon	  	  (C)	  
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SE ≡ πλ � 1 (0.5)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton

method which made it clear that the rate is finite, and that integration over the Lorentz

group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [4–6].
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In	  a	  constant	  external	  electric	  field	  

where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)

where the coefficient is chosen in order to satisfy the normalization condition (2.11). For

future reference, we give a useful integral representation of the parabolic cylinder functions,

DΛ(Z) =
e−

Z2

4

Γ(−Λ)

� ∞

0
dw e−Zw−w2

2 w−Λ−1 , for �(Λ) < 0 . (2.15)

From the asymptotic expansion formula,

Dp(z) ∼ e−
z2

4 zp , for |z| � 1 , |z| � |p| , |arg z| < 3

4
π , (2.16)

we find

φk ≈ 1

(2eE)1/4

�√
2 |z|

�ν∗

e
i
2 z

2
, for z � − |ν| . (2.17)

Hence i∂tφk ∼ −eEtφk at t → −∞, indicating that these mode functions are positive

frequency in the “in” region at t → −∞. The corresponding vacuum state |0�in, defined
by ak|0�in = bk|0�in = 0 is the in-vacuum, which has no particles in the asymptotic “in”

region.

Because of the non-trivial background, the positive frequency mode function φk at

t → −∞ does not remain positive frequency at finite t, and in particular it is given by

a linear combination of the positive and negative frequency functions at t → +∞. The

positive frequency functions at t → ±∞ are related by a Bogoliubov transformation,

φk = αk φ
out
k + βk φ

out∗
k , (2.18)

where

φout
k (z) =

1

(2eE)1/4
e−iπ4 ν Dν [(1 + i)z] , (2.19)

is the positive frequency mode function at t → ∞ and |αk|2− |βk|2 = 1. We can check that

the asymptotic expansion of φout
k indeed gives

φout
k ≈ 1

(2eE)1/4

�√
2 z

�ν
e−

i
2 z

2
, for z � |ν| . (2.20)

Using a linear relation,

Dν∗ [−(1− i)z] = eiπν
∗
Dν∗ [(1− i)z] +

√
2π

Γ(−ν∗)
e−iπ2 νDν [(1 + i)z] , (2.21)

we can read off the Bogoliubov coefficients,

αk =

√
2π

Γ(−ν∗)
ei

π
4 (ν

∗−ν) , βk = eiπν
∗
. (2.22)

This gives

|βk|2 = e−πλ
= e−

πm2

eE . (2.23)
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�µν is the unit anti-symmetric tensor with �01 = 1, and E = const is the value of the electric

field. It is clear from this expression that a constant electric field in (1 + 1)-dimensions is

Lorentz invariant. More specifically, an observer with a 2-velocity uµ sees the electric field

given by

Eµ = Fµν u
ν
= E nµ , nµ ≡ uν�νµ , (2.3)

where nµ is a unit spacelike vector normal to uµ.

For this electric field, we may choose a Lorentz-covariant gauge in which the gauge

field Aµ is given by

Aµ =
1

2
E �µν x

ν . (2.4)

However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where

Aµ =
1

2
E
�
�µν x

ν − ∂µ(x
0x1)

�
. (2.5)

This gives the components of the gauge field as

Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,

�
−∂2

t + (∂x − ieAx)
2 −m2

�
φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =

�
dk

(2π)1/2

�
akφk(t) + b†−kφ

∗
k(t)

�
eikx , (2.8)

where the mode functions φk(t) satisfy the equation,

�
d2

dt2
+m2

+ (k + eEt)2
�
φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)

�
= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)
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2.2 Momentum distribution and Lorentz invariance

The Bogoliubov coefficients βk are simply related to the momentum distribution of particles

in the “out” state at t → ∞,
dn

dk
=

1

2π
|βk|2 . (2.24)

This can in turn be related to the rate of the Schwinger process, ie, the rate of pair creation

of charged particles. The mixing between positive and negative frequency modes in the

in-vacuum mode functions (2.14) occurs in the interval

|z| � |ν| , (2.25)

centered at z = 0 (or k = −eEt). Hence, the number density of particles created between

time t0 and t > t0 is given by

n =
1

2π

� −eEt0

−eEt
dk |βk|2 . (2.26)

This leads to
dn

dt
=

�
eE

2π

�
e−

πm2

eE . (2.27)

This is the Schwinger formula for the rate of pair creation.

An important feature of the momentum distribution (2.24) is that it is independent of

k. The total density of created particles, obtained by integration over k, is infinite. This

is not surprising, since the pair creation process was going on at a constant rate for an

infinite time. A more realistic calculation would include back-reaction of the pairs on the

electric field, so the field would gradually decrease and only a finite density of pairs would

be produced. But according to Eq. (2.27), in a weak electric field with |eE| � m2 pair

creation is a very slow process, and the field can remain nearly constant for a very long

time. Thus, one can expect that our idealized treatment should apply in some limiting

sense. We shall see, however, that taking the limit and interpreting the result is not always

straightforward.

It should be noted that k in Eq. (2.24) is the canonical momentum, which is related

to the physical momentum by

kphys = k + eEt. (2.28)

The only subtlety is in determining the range of this distribution. Pair creation in a given

mode occurs in a spacetime region where the negative frequency contribution to the mode

function becomes significant. As we discussed, this occurs at k ≈ −eEt. Hence, Eq. (2.24)

is valid in the range

− eEt � k < ∞. (2.29)

The uncertainty in the lower limit of this range can be estimated from (2.25), which (as-

suming λ = m2/(eE) � 1) leads to the uncertainty

∆kmin ∼ λ1/2m, for λ � 1 . (2.30)

Note that at future infinity, the distribution of out particles is given by (2.24) in the full

range −∞ < k < ∞. The final distribution is then Lorentz invariant5. On the other hand,
5This conclusions follows from the Lorentz invariance of the phase space element dk dx [17].
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where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)

where the coefficient is chosen in order to satisfy the normalization condition (2.11). For

future reference, we give a useful integral representation of the parabolic cylinder functions,

DΛ(Z) =
e−

Z2

4

Γ(−Λ)

� ∞

0
dw e−Zw−w2

2 w−Λ−1 , for �(Λ) < 0 . (2.15)

From the asymptotic expansion formula,

Dp(z) ∼ e−
z2

4 zp , for |z| � 1 , |z| � |p| , |arg z| < 3

4
π , (2.16)

we find

φk ≈ 1

(2eE)1/4

�√
2 |z|

�ν∗

e
i
2 z

2
, for z � − |ν| . (2.17)

Hence i∂tφk ∼ −eEtφk at t → −∞, indicating that these mode functions are positive

frequency in the “in” region at t → −∞. The corresponding vacuum state |0�in, defined
by ak|0�in = bk|0�in = 0 is the in-vacuum, which has no particles in the asymptotic “in”

region.

Because of the non-trivial background, the positive frequency mode function φk at

t → −∞ does not remain positive frequency at finite t, and in particular it is given by

a linear combination of the positive and negative frequency functions at t → +∞. The

positive frequency functions at t → ±∞ are related by a Bogoliubov transformation,

φk = αk φ
out
k + βk φ

out∗
k , (2.18)

where

φout
k (z) =

1

(2eE)1/4
e−iπ4 ν Dν [(1 + i)z] , (2.19)

is the positive frequency mode function at t → ∞ and |αk|2− |βk|2 = 1. We can check that

the asymptotic expansion of φout
k indeed gives

φout
k ≈ 1

(2eE)1/4

�√
2 z

�ν
e−

i
2 z

2
, for z � |ν| . (2.20)

Using a linear relation,

Dν∗ [−(1− i)z] = eiπν
∗
Dν∗ [(1− i)z] +

√
2π

Γ(−ν∗)
e−iπ2 νDν [(1 + i)z] , (2.21)

we can read off the Bogoliubov coefficients,

αk =

√
2π

Γ(−ν∗)
ei

π
4 (ν

∗−ν) , βk = eiπν
∗
. (2.22)

This gives

|βk|2 = e−πλ
= e−

πm2

eE . (2.23)
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(Independent	  of	  k)	  



Formally, the current can be expressed as

Jµ =
ie

2

�
φ†Dµφ− φ (Dµφ)

†
�
+ h.c. (4.3)

A naive calculation of the expectation value of Jµ in the in-vacuum gives an infinite answer.

One way to regulate this sort of infinity, which respects Lorentz and gauge invariance, is to

use the point splitting method. The idea is to take the two field operators in the products

in Eq. (4.3) at different spacetime points, x and y, and then take the limit y → x. The

current expectation value �Jµ� can then be expressed in terms of the 2-point function,

G(1) = G+ +G− , (4.4)

where

G+(xµ, yµ) ≡ in� 0 |φ†(xµ) e−ie
� y
x Aνdxν

φ(yµ) | 0 �in , (4.5)

G−(xµ, yµ) ≡ in� 0 |φ(yµ) e−ie
� y
x Aνdxν

φ†(xµ) | 0 �in , (4.6)

and the Wilson line has been inserted to make the 2-point function gauge invariant. The

expectation value of the current is given by

�Jµ� =
ie

2
lim

xν→yν

�
∂

∂yµ
− ∂

∂xµ

�
G(1)(yν − xν) = ie lim

∆xν→0

∂G(1)(∆xν)

∂∆xµ
, (4.7)

where ∆xν ≡ yν − xν .

The 2-point functions G±(∆xµ) are calculated in Appendix B. The result is
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but not with respect to spatial reflection,

G(1)(∆t,−∆x) = G(1)(∆t,∆x)∗. (4.12)
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7 Momentum distribution of the pairs

Our results in Section 6 indicate that the detection rate of φφ∗-pairs is independent of the

state of motion of the detector. This is in agreement with the Lorentz invariance of the

in-vacuum state that we established in Sec. 3.

However, the analysis of Sec. 6 does not allow us to determine the momentum distri-

bution of the pairs measured by the detector. Indeed, it is clear from that analysis that it

can only determine the distribution integrated over momenta or (which is essentially the

same) over the proper time along the detector trajectory. In particular, we do not have

an answer to the question we asked in the introduction: are the φ and φ∗ particles of the

pairs observed to nucleate at rest and then move away from one another, or they can also

be detected on the ‘wrong’ parts of their hyperbolic trajectories, where they move towards

one another at a high speed? In the former case, the distribution should be cut off at

kphys ≈ 0, as in Eq. (2.33).

In order to address this question, we consider a detector with a time-dependent coupling

g(t) = g e−t2/T 2
, (7.1)

so the detector is effectively turned on only for a finite time interval ∆t ∼ T around t = 0.

Focusing on a charged ψ-detector, we shall assume that

mφ � eET � mψ, (7.2)

so that the detector momentum qphys remains essentially unchanged during this interval

(while φ-particles can be significantly accelerated). For example, if we choose q = 0, then

qphys ≈ 0 during the interaction. The resulting χ-particle will then have (approximately)

the same momentum as the φ∗-particle that collided with ψ,

p ≈ kphys (7.3)

We assume as before that

mφ � mψ < mχ −mφ. (7.4)

In addition, we may assume that turning on and off of the detector is adiabatic,

T � (p2 +m2
φ)

−1/2, (7.5)

so that the time variation of the coupling does not lead to a sizable violation of energy

conservation at the moment of collision. In fact, the first strong inequality in (7.2) implies

T � λφ/mφ, (7.6)

so (7.5) is automatically satisfied in the regime where pair nucleation is rare, λφ = m2
φ/(eE) �

1, in which we are now focusing. It then also follows from Eqs. (7.2) and (7.6) that

eET 2 � λφ � 1. (7.7)
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To find the distribution of χ-particles, we need to calculate the amplitude

Aχ(p; q = 0) =

� ∞

−∞
dt g(t) φ∗

−p(t)ψ0(t)χ
∗
p(t). (7.8)

Since the ψ-particle is practically at rest during the time interval of interest, we can use

ψ0(t) ≈
1�
2mψ

e−imψt. (7.9)

The amplitude (7.8) is calculated in Appendix F. Here we are only interested in the p-

dependence of the amplitude. In the parameter regime specified above, this is given by the

factor

dNχ

dp
∝ |Aχ(p; q = 0)|2 ∝ exp

�
−
(p+ ωp −mψ)

2

(eET )2

�
. (7.10)

This distribution is peaked at p = p̄, which is specified by

p̄+
�
p̄2 +m2

χ = mψ, (7.11)

or

p̄ = − 1

2mψ
(m2

χ −m2
ψ) (7.12)

and has width

∆p ∼ eET. (7.13)

Note that we will only see a sharp peak in the distribution provided that |p̄| � ∆p ∼ eET .

Using (7.2), this requires

p̄2 � m2
φ. (7.14)

Eq. (7.12) is to be compared with Eq. (5.6) for the kinematically allowed values of p. For

q = 0, it gives

p ≈ ± 1

2mψ
(m2

χ −m2
ψ). (7.15)

In deriving (7.15), we have assumed m2
χ −m2

ψ � mφmψ, which in turn implies the ultra-

relativistic motion of the φ particle, as in (7.14).

From (7.12), it is clear that only one of the two possible values in (7.15) is actually

detected. This is consistent with the picture of pairs being produced at rest (in the ob-

server’s frame) and then being accelerated by the electric field. φ-antiparticles move in

the direction opposite to E and hit the ψ-probe with kphys < 0. This is imprinted in the

momentum of the final χ-particle, p ≈ kphys < 0.

From (7.14), we also conclude that the asymmetry in the momentum distribution is

only visible for relativistic φ particles, which means that the precision to which we can

determine the frame of nucleation is limited by the acceleration time,

∆tnuc ∼
mφ

eE
. (7.16)

This scale is comparable to the size of the instanton.
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Contents

Γ ∼ e−
� r0
r=0 |pr|dr (0.1)

Γtotal = Γ Ω

�
dφv(sinhφv)

D−2 = ∞ (0.2)

Γ = A e−SE (0.3)

τq � r0 � t0 → ∞ (0.4)

SE ≡ πλ � 1 (0.5)

wφ + wψ = wχ (0.6)

mχ −mψ � mφ (0.7)

T � τq (0.8)

1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [? ], a metastable false vacuum in
field theory can decay by quantum tunneling. The process occurs locally, by nucleation of
true vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is
initially at rest, and then expands with constant proper acceleration r−1

0 . Lorentz invariance
of the false vacuum, however, indicates that bubbles will not have any preferred rest frame
in which to nucleate. This observation seems to suggest [? ] that the total rate of decay
per unit volume should include an integral over the Lorentz group, in order to account for
all possible frames. Such integral would of course be divergent (or at least cut-off dependent
if a regulator is imposed). Nonetheless, soon after this idea was proposed, Coleman [? ]
developed a instanton method which made it clear that the rate is finite, and that integration
over the Lorentz group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat
mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an
adequate description of the process. If it is true that a long lived metastable false vacuum
is approximately Lorentz invariant, what is it that determines the rest frame in which the
critical bubble nucleates?

The question is best illustrated in the limit when the bubble walls are thin compared
to the bubble size (see Fig. ??). The trajectory of a vacuum bubble of radius r as a function
of time t is given by [? ? ]

r2 − t2 = r20. (1.1)

Eq. (??) is invariant under Lorentz boosts, and describes a bubble which contracts from
infinite size (at t → −∞) to the minimum size r0 (at t = 0), and then expands again to
infinite size (at t → ∞). However, only the expanding part of this trajectory is relevant

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [? ? ? ].
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where nµ is a unit spacelike vector normal to uµ.
For this electric field, we may choose a Lorentz-covariant gauge in which the gauge field

Aµ is given by

Aµ =
1

2
E �µν x

ν . (2.4)

However, since the calculation in this gauge seems technically more involved, we choose a

non-covariant gauge where

Aµ =
1

2
E
�
�µν x

ν − ∂µ(x
0x1)

�
. (2.5)

This gives the components of the gauge field as

Aµ = (At , Ax) = (0 , −Et) , (2.6)

where (t, x) = (x0, x1).

2.1 The in-vacuum and the Bogoliubov coefficients

The variation of the action with respect to φ gives the field equation,

�
−∂2

t + (∂x − ieAx)
2 −m2

�
φ = 0. (2.7)

We expand the field in terms of the creation and anihilation operators,

φ(t, x) =

�
dk

(2π)1/2

�
akφk(t) + b†−kφ

∗
k(t)

�
eikx , (2.8)

where the mode functions φk(t) satisfy the equation,

�
d2

dt2
+m2

+ (k + eEt)2
�
φk = 0 . (2.9)

The canonical commutation relations lead to

[ak, a
†
k� ] = δ(k − k�) , [bk, b

†
k� ] = δ(k − k�) , (2.10)

and the normalization condition,

i
�
φ∗
k(t)∂tφk(t)− φk(t)∂tφ

∗
k(t)

�
= 1 . (2.11)

Linearly independent solutions of Eq.(2.9) can be expressed in terms of the parabolic

cylinder functions,

φ±
k (z) ∝ Dν∗ [±(1− i)z] , (2.12)

where

z ≡
√
eE

�
t+

k

eE

�
, ν = −1 + iλ

2
, λ ≡ m2

eE
. (2.13)

The general solution is given by a linear superposition of φ±
k . We choose

φk(z) =
1

(2eE)1/4
ei

π
4 ν

∗
Dν∗ [−(1− i)z] , (2.14)
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

semiclassically. The nucleation process does not conclude until the time t� ≈ +r0 sinhφv,

when the semiclassical bubble wall wraps the full sphere.

Given its impact on the kinematics of bubble formation, it is in hindsight surprising that

investigation of the frame of nucleation has been neglected for over three decades. Recently,

however, this issue was addressed in Ref. [1], by considering a model detector which interacts

with the nucleaded bubbles. Several plausibe scenarios were anticipated to possibly emerge

from this study: (A) It could be that the frame of nucleation simply coincides with the rest

frame of the detectors. In other words, each detector will see bubbles forming at rest in her

own rest frame. (B) It is conceivable that the contracting part of the bubble history is not

completely cut off and can be at least partially observed. (C) A third possibility is that the

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ
in a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take

care of option (C) above, the hypersurface of initial conditions (where the quantum state for

the field φ is prepared) was taken to the infinite past t → −∞. In this idealized situation,

it was shown that the “in” vacuum is Lorentz invariant2, and therefore cannot determine a

2This does not follow trivially from the boost invariance of the electric field, since the “in” vacuum must
be defined in a given frame and in a specific gauge.
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Figure 2. Bubble nucleation in a reference frame S� which moves at high velocity v = tanhφv with

respect to the frame of nucleation. Observers in the boosted frame will see a piece of the bubble appear

at time t� ≈ −r0 sinhφv, moving very fast opposite to the boost direction. At t� = 0 the bubble wall

has a somewhat awkward shape: it consists of one hemisphere attached to a fuzzy interface between

false and true vacuum, which cannot be described semiclassically. The process of formation lasts

untile the time t� ≈ +r0 sinhφv, when the semiclassical bubble wall closes into a full sphere.

frame of nucleation is influenced by how the decaying false vacuum was set up.

The investigation in [1] was done by using pair production of a charged scalar field φ in

a constant electric field as a model for bubble nucleation in (1+1) dimensions. To take care

of option (C), the initial hypersurface where the quantum state for the field φ is prepared

was taken to the infinite past t → −∞. In this idealized situation, it was shown that the “in”

vacuum is Lorentz invariant2, and therefore cannot determine a preferred frame of nucleation.

To investigate (A) and (B), the model detector was chosen to be a particle of a second charged

field ψ (see Fig. 3), interacting with φ through the vertex

g(φψ∗χ+ hc), (1.3)

where g is a coupling constant. Through this interaction, the ψ particle can anihilate the

φ antiparticle in the pair, producing a neutral particle χ. The kinematics of this process

is such that the φ antiparticle has at most two chances, along its hyperbolic trajectory, of

interacting with the detector. The reason is that the center of mass energy of the collision
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that the number density of pairs vanishes on some initial surface t = const.3 We shall come
back to this issue in Section 4.

Despite its somewhat unphysical properties, we find that the in-vacuum is a useful
laboratory for studying the bubble nucleation process, at least in the limit where the initial
conditions are removed sufficiently far in the past. In this paper we shall consider tree-level
interactions between the pairs and the detector. The kinematics of these interactions is such
that, out of the infinite bath of created particles, only those whose momentum relative to
the detector is in a certain range will have a chance to interact with it. In this sense, most
particles in the bath are invisible, and their infinite density is irrelevant.

To be specific, we model the detector by introducing two additional scalar fields: a
charged scalar ψ(t, x) and a neutral scalar χ(t, x), with the interaction Lagrangian

Lint = −g (φ†ψχ+ ψ†φχ) , (1.4)

where g is a coupling constant. This model has been studied in great detail by Massar and
Parentani [13] and by Gabriel et al [14], who used it to investigate the Unruh effect for an
accelerated detector.

We start with a charged ψ-particle in the initial state. It interacts with φ-antiparticles
of the pairs via4 ψφ∗ → χ and thus has a finite lifetime τψ. We shall calculate the momentum
distribution of χ-particles in the final state and use it to deduce the momentum distribution
of the created φ-pairs. To achieve this goal, we will have to consider the interaction (1.4)
with a time-dependent coupling, g(t) = g exp(−t2/T 2), so that the detector is turned on
for a finite period of time ∆t ∼ T . We shall also briefly discuss the case when the role of
the detector is played by the neutral χ-particle. All our results point in the direction of
option (A) – that the frame of pair (and bubble) nucleation is determined by the frame of
the detector.

The paper is organized as follows. In Section 2, we introduce the in-vacuum state and
review the Schwinger pair production using the method of Bogoliubov coefficients. In Section
3, we show that the in-vacuum is Lorentz invariant. In Section 4, we calculate the two-point
function in this vacuum and discuss the expectation value of the current, pointing out the
pathologies associated with the infinite density of particles in the in-vacuum. We argue that
these can be remedied by considering Lorentz breaking initial conditions. In Section 5, we
set up our detector model. The final distribution of χ-particles and the observed momentum
distribution of the pairs are calculated in Sections 6 and 7. Finally, our results are summarized
and discussed in Section 8. Some technical details of the calculations are presented in the
Appendices.

2 Schwinger pair production

We consider a constant electric field in (1 + 1)-dimensions. Spin-zero charged particles that
are being pair produced by the Schwinger effect are described by a complex scalar field φ(t, x);

3
The number density of pairs is not a sharply defined quantity. Nonetheless, it can be defined by using the

instantaneous Hamiltonian diagonalization. Such states (with vanishing particle number at t = 0) have been

discussed in Refs. [11] and [15]. The initial number of particles could also be rigorously defined by considering

an electric field which vanishes at t → −∞ and then turned on at some time in the past. An abrupt turn-on

at an instant of time was considered in Refs. [15–17], and an adiabatic turn-on with E(t) ∝ 1/ cosh2
(t/T )

was discussed in Ref. [11].
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Figure 3. The “detector” particle ψ can anihilate the φ antiparticle through the vertex (1.3), pro-

ducing a neutral particle χ. Kinematically, there are at most two opportunities for the interaction to

take place along the hyperbolic trajectory of φ. If the pair nucleates in the rest frame of the detector

particle ψ, as in (a), then the collision will take place in the expanding branch of the hyperbola, and

the momentum of the decay product χ will be negative p < 0. On the other hand, if the pair nucleates

in a frame which is highly boosted with respect to the detector, then there is a good chance that the

interaction takes place in the contracting branch of the hyperbola. This will lead to a χ particle with

positive momentum p > 0, as in (b). Therefore, a strong asymmetry in the momentum distribution of

the products towards negative momenta can be interpreted as evidence that the detector encounters

the expanding branch much more often than the contracting branch, consistent with option (A) in

the introduction.

interpreted as evidence that the detector encounters the expanding branch much more often

than the contracting branch, consistent with option (A). It was therefore concluded that

nucleation takes place preferentially in the rest frame of the detector.

The analysis of Ref. [1] was restricted to a range of parameter space where the momen-

tum of the φ antiparticle at the time of collision is highly relativistic. In this sense, the frame

of nucleation was probed rather imprecisely, with a tolerance much larger than the size of

the critical bubble.

The purpose of this paper is to sharpen the discussion given in Ref. [1], by tightening

the precision to which the rest frame of bubble nucleation can be determined, down to the

smallest possible scale. We start in Section 2 with a discussion of the timescales which

are relevant to bubble nucleation. These include the time τq of quantum fuzziness after

nucleation, the size of the critical bubble r0, the timescale τnuc that it takes for a small

quantum fluctuation in the false vacuum to tunnel into a critical bubble, the time t0 ellapsed

since initial conditions, and the average lifetime τvac of the false vacuum. The parametric

hierarchy between these scales will be clarified.

In Section 3 we briefly review pair production by an electric field in (1+1)-dimensions.

In Section 4 we consider the response of the model detector (1.3), extending the analysis of

Ref. [1] to the range of parameter space where the momentum of the φ antiparticle at the
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0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.
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1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [2], a metastable false vacuum in field

theory can decay by quantum tunneling. The process occurs locally, by nucleation of true

vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is initially

at rest, and then expands with constant proper acceleration r−1
0 . Lorentz invariance of the

false vacuum, however, indicates that bubbles will not have any preferred rest frame in which

to nucleate. This observation seems to suggest [2] that the total rate of decay per unit volume

should include an integral over the Lorentz group, in order to account for all possible frames.

Such integral would of course be divergent (or at least cut-off dependent if a regulator is

imposed). Nonetheless, soon after this idea was proposed, Coleman [3] developed a instanton
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Is this be related to an arrow of  time in the multiverse?   
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   we see expanding bubbles but not contracting ones 
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1 Introduction

As shown originally by Voloshin, Kobzarev and Okun [? ], a metastable false vacuum in

field theory can decay by quantum tunneling. The process occurs locally, by nucleation of

true vacuum bubbles of a critical size r0. In the semiclassical picture, a critical bubble is

initially at rest, and then expands with constant proper acceleration r
−1
0 . Lorentz invariance

of the false vacuum, however, indicates that bubbles will not have any preferred rest frame

in which to nucleate. This observation seems to suggest [? ] that the total rate of decay

per unit volume should include an integral over the Lorentz group, in order to account for

all possible frames. Such integral would of course be divergent (or at least cut-off dependent

if a regulator is imposed). Nonetheless, soon after this idea was proposed, Coleman [? ]

developed a instanton method which made it clear that the rate is finite, and that integration

over the Lorentz group does not play any role in calculating it 1.

Coleman’s arguments, however, do not shed much light on a related and somewhat

mysterious aspect of bubble nucleation, a missing ingredient which seems necessary for an

adequate description of the process. If it is true that a long lived metastable false vacuum

is approximately Lorentz invariant, what is it that determines the rest frame in which the

critical bubble nucleates?

1The reason is that instanton in this case is O(4) invariant, and its Lorentzian continuation (describing
the bubble after nucleation) is invariant with respect to Lorentz boosts. Because of that, the final state in the
asymptotic future is independent of the rest frame in which the critical bubble nucleates. Integrating over the
Lorentz group would then amount to overcounting the final states. For a recent discussion of related issues,
see [? ? ? ].
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Slight	  departure	  from	  ergodicity!	  Persistent arrow of  time. 

(J.G.+	  Vilenkin	  ‘12)	  	  	  
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TransiEons	  through	  crunches,	  if	  allowed,	  
are	  likely	  to	  be	  very	  far	  from	  ergodic.	  

We	  expect	  in	  this	  case	  a	  very	  well	  defined	  
arrow	  of	  Eme.	  

(J.G.+	  Vilenkin	  ‘12)	  	  	  
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Figure 2. Mini landscape with an AdS vacuum A, a low-energy dS vacuum B, and a high-energy dS

vacuum C.

XA/XB = TAB. (3.47)

The fraction of time spent by the watcher in different vacua can now be found from Eq. (3.35),

fJ ∝ XJτJ .
The transition probabilities Tij can be expressed in terms of the rates κij from the

definition (3.20),

TAB =
κAB

κAB + κCB
, TCB =

κCB

κAB + κCB
, (3.48)

and the average times spent during one visit are given by

τB =
1

κAB + κCB
, τC =

1

κBC
, (3.49)

while τA is determined by the classical AdS evolution. Combining all this, we obtain

fC
fB

=
κCB

κBC
+QC

κAB

κBC
, (3.50)

fA
fB

= τAκAB. (3.51)

Note that the second term in (3.50) is important when QCκAB � κCB, that is, when the rate

of transitions from B to C through a bounce at A is comparable to or higher than the rate

of direct upward transitions. In the limit when bounce transitions to C are highly unlikely,

QC → 0, Eq. (3.50) gives a thermal distribution, fC/fB = κCB/κBC ∼ exp(SC − SB). On

the other hand, if QC ∼ 1 and B has a much lower energy density than C, so that SB � SC ,

then the first term in (3.50) is negligible and fC/fB ∼ κAB/κBC . In this case, the ratio

fC/fB is not suppressed by the small upward transition rate and can be much greater than

exp(SC − SB).

In the absence of AdS bounces, the mini-landscape (3.42) was discussed in Ref. [8]. The

outcome then depends on the relative lifetime of the vacua B and C. For τB � τC , one finds

fC/fB ≈ τC/τB. In the opposite (and apparently more realistic) case, when the high-energy

vacuum has a shorter lifetime, τC � τB, the result is fC/fB ∼ exp(SC − SB).
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Perturbative resultsStohasti slow-roll inationLangevin and Fokker-Plank equationsProbabilities to go to di�erent vaua after inationLoal duration of inationChoie of an initial onditionCorrelations and joint PDFConlusions



Perturbative anomalous growth of light salar�elds in the de Sitter spae-timeBakground - �xed - de Sitter or, more interestingly, quasi-deSitter spae-time (slow roll ination).Ours for 0 � m2 � H2 where H � _aa ; a(t) is a FRW salefator. The simplest and textbook example:m = 0; H = H0 = onst for t � t0 and the initial quantumstate of the salar �eld at t = t0 is the adiabati vauum formodes with k=a(t0)� H0 and some infrared �nite stateotherwise: < �2 >= H20N4�2 + onstHere N = ln aa(t0) � 1 is the number of e-folds from thebeginning of ination and the onstant depends on the initialquantum state (Linde, 1982; Starobinsky, 1982; Vilenkin andFord, 1982).Straightforward generalization to the slow-roll ase j _H j � H2.



For 0 < m2 � H2, the Bunh-Davies equilibrium value< �2 >= 3H408�m2 � H20is reahed after a large number of e-folds N � H20m2 . In theslow-roll ase with _H 6= 0, the "instantaneous" value withH(t) instead of H0 is generially never reahed at all!Purely infrared e�et - reation of real �eld utuations;renormalization is not important and does not a�et it.For the de Sitter ination (gravitons only) (AS, 1979):Pg(k) = 16GH20� ; < hikhik >= 16GH20N� :The assumption of small perturbations breaks down forN & 1=GH20 . Still ongoing disussion on the �nal outome ofthis e�et. My opinion - no sreening of the bakgroundosmologial onstant, instead - stohasti drift through anin�nite number of loally de Sitter, but globally non-equivalentvaua. A �nite and small shift in H0 : ÆH0 � GH30 .



Reason: the de Sitter spae-time is not the generi late-timeasymptote of lassial solutions of GR with a osmologialonstant � both without and with hydrodynami matter. Thegeneri late-time (expanding) asymptote is (Starobinsky,1983): ds2 = dt2 � ikdx idxkik = e2H0taik + bik + e�H0tik + :::where H20 = �=3 and the matries aik ; bik ; ik are funtions ofspatial oordinates. aik ontains two independent physialfuntions (after 3 spatial rotations and 1 shift in time +spatial dilatation) and an be made unimodular, in partiular.



An always larger e�et - due to salar (adiabati) utuationsof an inaton degree of freedom (Mukhanov and Chibisov,1981; Hawking, 1982; Starobinsky, 1982; Guth and Pi, 1982):P�(k) = GH4k�j _H jkwhere the index k means that the quantity is taken at themoment t = tk of the Hubble radius rossing during inationfor eah spatial Fourier mode k = a(tk)H(tk).The onsisteny relation for inaton-driven inationr � PgP� = 16j _Hk jH2k = 8jng j < 0:17(the last inequality - from the most reent observations).For suÆiently large Nf = ln �afa �, inhomogeneous utuationsbeome larger than 1. Loop orretions proportional to higherpowers of h may beome important in this regime only.



Beyond small perturbations during slow-rollinationLoally { around our world-line { slow-roll ination has boththe beginning and the end.Globally it has no beginning and no end in the most ofinteresting ases { in the sense that pathes of anapproximately de Sitter spae-time (not neessarily expandingonly) always exist somewhere in spae and time (but outsideour past and future light ones) - "eternal ination".Taking bakreation into aount =) quantum bakground.



Stohasti approah to ination ("stohasti ination"):R̂�� � 12Æ��R̂ = 8�GT̂ �� (ĝ��)- not as a funtion of < ĝ�� > !Leads to QFT in a stohasti bakground.Stohasti ination:1) an deal with an arbitrary large (though suÆientlysmooth) global inhomogeneity;2) takes bakreation of reated utuations into aount;3) goes beyond any �nite order of loop orretions.Fully developed in Starobinsky (1984,1986) though the �rstsimpli�ed appliation (but beyond the one-loop approximation)was already in Starobinsky (1982).



Langevin equation for the large-sale �eldThe �rst main idea: splitting of the inaton �eld � into alarge-sale and a small-sale parts with respet to H. Moreexatly, the border is assumed to lie at k = �aH withexp��H2j _Hj�� �� 1.The seond main idea: a non-ommutative part of thelarge-sale �eld is very small (it is omposed from deayingmodes), so we may neglet it. Then the remaining part isequivalent (not equal!) to a stohasti -number (lassial)�eld with some distribution funtion.d�d� (n) = � 13Hn+1 dVd� + f ;< f (� (n)1 ) f (� (n)2 ) >= H3�n4�2 Æ(� (n)1 � � (n)2 ) :The time-like variables � (n) = R Hn(t; r) dt, whereH2 = 8�GV (�)=3.



This is not a time reparametrization t ! f (t) in GR. Di�erent� (n) desribe di�erent stohasti proesses and even havedi�erent dimensionality. Di�erent "loks" are needed tomeasure them:1) n = 0: phase of a wave funtion of a massive partile(m� H);2) n = 1: salar metri perturbations (ÆN formalism);3) n = 3: dispersion of a light salar �eld generated duringination < �2 >= 14�2 < Z H3 dt >= < � (3) >4�2 :See F. Finelli et al., Phys. Rev. D 79, 044007 (2009) formore details.



f desribes the ow of small-sale linear �eld modes throughthe border k = �aH to the large-sale region in the ourse ofthe universe expansion. In the leading approximation, it isonstruted from solutions of the massless salar �eld equationin the de Sitter spae-time with the adiabati vauum initialondition for a given spatial Fourier mode:�k = H0 (2k)�1=2�� � ik� e�ik� ; � = �(a(t)H0)�1f (t; r) = �aH20(2�)3=2 Z d3k Æ(k��aH0) (�i)H0p2k3=2 hake�ikr � ayke ikriThough formally an operator, f (t; r) is equivalent to alassial Gaussian white noise.Appliability onditions { the standard slow-roll ones:V 02 � 48�GV 2; jV "j � 8�GV =3



Einstein-Smoluhovsky (Fokker-Plank) equation���� = ��� � V 03Hn+1 �� + 18�2 �2��2 �H3�n�� :Probability onservation: R � d� = 1.RemarksI More generally, the last term an be written the form18�2 ��� �H(3�n)� ��� �H(3�n)(1��)���with 0 � � � 1.� = 0 { Ito alulus.� = 1=2 { Stratonovih alulus.However, keeping terms expliitly depending on � exeedsthe auray of the stohasti approah. Thus, � mayput 0.



I All results are independent of the form of a uto� in themomentum spae as far as it ours for k � aH (�� 1).I Bakreation is taken into aount: ÆT �� = (V �Vlas) Æ��.I No neessity in any infrared uto�. Problems with the soalled "volume weighting" arise beause quantities likea3� are onsidered whih are not normalizable, thus, theymay not be onsidered as probabilities of anything fromthe mathematial point of view ("unitarity breaking").Their physial justi�ation is also awed sine it based onthe wrong assumption that all Hubble physial volumes("observers") emerging from expansion of a previousinationary path are lones of eah other while it is notso.



I Another possible soure of apparent infrared divergenes:use of "gauge invariant" (with respet to a bakgroundspae-time metri) variables like �(r; t) whih are notgenerally ovariant with respet to the full metri and,therefore, not diretly observable. In ontrast, quantitieslike �(r; t)� �(0; t0) are generally ovariant andobservable though non-loal.I The auray of the stohasti approah is not suÆientfor alulating quantities � H2 in < �2 > and � H4 inEMT average values beause of the omission of aontribution from the small-sale part (inluding theonformal anomaly). However, all larger quantities (ifexist) an be alulated quantitatively orretly. Also, thesmall-sale part is mainly the one-loop orretion from amassless minimally oupled salar �eld, so it an beadded.



Transition to preditions for the post-inationaryevolutionFrom �(�; �) during ination to the distribution w(�) over thetotal loal duration of ination:w(�) = lim�!�end j = lim�!�end jV 0j3Hn+1 �(�; �) :For the graeful exit to a post-inationary epoh, thestohasti fore should be muh less than the lassial oneduring last e-folds of ination.The same way to obtain the joint distribution w(0; �1; jrj; �2)from the 2-point joint probability distribution�(�1; 0; �1;�2; jrj; �2) during ination.



From ÆN- to N-formalism
Let n = 1. Whends2 = dt2 � a2(t)e2�(r)dr2 + small termsafter ination and omplete thermalization where�(r) = N(r) � � (1)(r) :



Probabilities to go to di�erent vaua after inationLet ination may end in two vaua: � = �1 and � = �2 withV (�1) = V (�2) = 0 (to onsider a larger number ofpost-inationary vaua, � should have more thanone-dimensional internal spae).
φ1 φ2φ3 φ4 φ

V



Boundary onditions at the end of ination:�(�1; �) = �(�2; �) = 0.Method of alulation (Starobinsky (1984,1986)): onsider thequantities Qm(�) = Z 10 �m�(�; �) d�where � = 0 orresponds to the loal beginning of ination.Qm(�1) = Qm(�2) = 0.By integrating the Fokker-Plank equation over � , we get form = 0:



Q0(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C0 � Z  �1 �0( 1) d 1� ;C0 = R �2�1 d� exp�� �GH2(�)� R ��1 �0( ) d R �2�1 d� exp�� �GH2(�)� :P1 = C0 { the absolute probability to go to the vauum� = �1;P2 = 1� C0 { the absolute probability to go to the vauum� = �2.No n dependene in C !



Loal duration of inationQ1(�) = 8�2H3�n exp� �GH2(�)� Z ��1 d exp�� �GH2( )���C1 � Z  �1 Q0( 1) d 1� ;C1 = R �2�1 d� exp�� �GH2(�)� R ��1 Q0( ) d R �2�1 d� exp�� �GH2(�)� :< �1 >= C1C0 ; < �2 >= ~C11� C0 ;< � >tot= C0 < �1 > +(1� C0) < �2 >= Z �2�1 Q0(�) d� :~C1 is C1 with �1 and �2 interhanged.



Some thoughts on the hoie of an initial onditionI Stati solutions { not normalizable in the inationary (i.e.unstable) ase.I �0(�) = Æ(�� �0) { why?I "Eternal ination as an initial ondition": �0(�) / �E1(�){ the wave funtion of the lowest energy level of theShrodinger equation arising through the separation ofvariables in the Fokker-Plank equation (E0 = 0 due tohidden supersymmetry of the former).1) Not possible in the ontinuum spetrum ase.2) In the disrete spetrum ase, generially E2 � E1 � E1{ not enough time for relaxation.As a whole, "eternal" ination seems not be eternalenough to �x the initial ondition uniquely.



However, if ination had ourred at all, the dependene ofpreditions on �0(�) is omparatively weak: for almost all�0(�) exept from the HH-like one �0(�) / exp� �GH2(�)�, themain ontribution omes from the highest maximum of V (�)without any neessity of a "tunneling" initial ondition.On the other hand, if �0(�) / exp� �GH2(�)�, there ispratially no ination at all, and �nal probabilities P1 and P2are equal to the initial ones.



Correlations and joint PDFFollowing A.A. Starobinsky and J. Yokoyama, Phys. Rev. D50, 6357 (1994).In the leading approximations, all Green funtions and jointn-point probability distributions of the inaton �eld an beexpressed through solutions of the same Fokker-Plankequation with di�erent initial onditions only. In partiular, inthe ase H � H0 during ination (for simpliity only), thegeneral two-point PDF for 4D-points lying outside eah otherfuture light ones in the stohasti approah is:�2[�1(r1; t1); �2(r2; t2)℄ =Z �[�1(r1; t1)j�r(r1; tr)℄�[�2(r2; t2)j�r(r2; tr)℄�1(�r ; tr ) d�r



where tr is the time in the past when both orresponding3D-points were inside one Hubble volume and�[�1(r; t1)j�2(r; t2)℄ satis�es the Fokker-Plank equation withrespet to both its time and �eld variables with the initialondition �[�1(r; t1)j�2(r; t1)℄ = Æ(�1 � �2)Through the N-formalism - joint probability distributions of aspae-time metri after ination.Otherwise, if the 4D-points are inside the future light one ofone of them, the spatial points r1 and r2 are inside oneelementary averaging volume, so they oinide in terms of thestohasti approah. Then, for t1 < t2,�2[�1(r; t1); �2(r; t2)℄ = �[�2(r; t2)j�1(r; t1)℄�1(�1; t1))



ConlusionsI During slow-roll ination, bakreation of reated inatonutuations has to be taken into aount for suÆientlylong ination and leads to QFT in a stohastibakground.I No problems of priniple in prediting all joint probabilitydistributions for light salar �elds, inluding the inatonitself, during and after ination (N-formalism) in theoriginal (probability onserving) stohasti approah, onean initial ondition �0(�) is given. No neessity to refer toother universes outside our light one.I New "loks" apart from metri perturbations areprobably needed to measure large infrared e�ets like thetotal loal duration of an inationary stage in ourUniverse.



I No satisfatory priniple to �x �0(�) uniquely.I Some dependene on �0(�) remains in �nal answers, so apossibility to get some knowledge on it from observationaldata does not seem hopeless. However, if ination hadourred at all, the dependene of preditions on �0(�) isweak and mainly produed by the region around thehighest maximum of V (�). For this, no spei�"tunneling" initial ondition is needed.Congratulations and best wishes to Kodama-san,Sasaki-san and Futamase-san one more!
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