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Preface

The memorial 20" workshop on General Relativity and Gravitation (JGRG20) was held at Yukawa
Institute for Theoretical Physics, Kyoto University, from 21st to 25th, September 2010.

The aim of the JGRG series of workshops is to overview wide and expanding topics in general relativity
and its surrounding fields, including astrophysics and cosmology, and to encourage collaboration among
participants of the workshop. This year was very special not just because it was the 20th anniversary of
the JGRG workshops: It was the year of the 60th birthday of Professors Takashi Nakamura and Kei-Ichi
Maeda, who were founding fathers of JGRG and who have been making invaluable contribution to the
community of general relativity and gravitation in Japan for last forty years.

To celebrate their birthdays, we arranged a special style of scientific programme; we invited 19 world-
renowned researchers and asked them to overview their research fields. We not only learned a variety of
aspects of gravity, cosmology and astrophysics from their lectures, but also heard their heartfelt memories
from the time when Takashi and Kei-Ichi were young. We also had 84 poster presentations by young
scientists who actively discussed their works. We believe that the workshop was a great success with a
plenty of stimulating discussions.

Now, JGRG has a history of 20 years! For those who are interested in the history of JGRG, we
would recommend to take a look at the contribution of Takashi and/or the JGRG proceedings web-
site (http://www-tap.scphys.kyoto-u.ac.jp/jerg) maintained by Theoretical astrophysics group of Kyoto
University.

We would like to deeply express our gratitude to Ms. Kiyoe Yokota, Secretary for theory groups at
Department of Physics, Kyoto University. Without her effort, we could not have continued this series of
JGRG meetings over twenty years. We sincerely hope that she would continue to help us for years to
come.

This workshop was supported in part by JSPS Grant-in-Aid for Research (A) No. 21244033, by JSPS
Grand-in-Aid for Creative Scientific Research No. 20151970, by MEXT Grant-in Aid for the Global COE
program at Kyoto University, “The Next Generation of Physics, Spun from Universality and Emergence,”
and by the Yukawa Institute for Theoretical Physics, Kyoto University.

Kyoto, 30th of June, 2011

Takashi Hiramatsu
Misao Sasaki
Masaru Shibata
Tetsuya Shiromizu
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Rong-Gen Cai 1

Connections between Gravitational Dynamics and
Thermodynamics

Rong-Gen Cai'

Key Laboratory of Frontiers in Theoretical Physics, Institute of Theoretical Physics, Chinese Academy
of Sciences, P.O. Box 2735, Beijing 100190, China

Abstract

In this paper we briefly summarize three aspects of connections between gravita-
tional dynamics and thermodynamics by focusing on three kinds of spacetime horizon:
causal Rindler horizon of spacetime, black hole event horizon and apparent horizon in
a Friedmann-Robertson-Walker (FRW) universe. For the causal Rindler horizon, we
derive the Einstein’s field equations from the Clausius relation. For black hole horizon
in a static spherically symmetric spacetime, we show that at the black hole horizon,
the Einstein’s field equation can be cast to a form of the first law of thermodynamics.
Applying to the Clauius relation to apparent horizon of a FRW universe, one is able
to derive the Friedmann equations, not only in Einstein gravity, but also in Lovelock
gravity. We show that there exists Hawking radiation associated with the apparent
horizon in the FRW universe.

1 Introduction

According to Einstein, general relativity describes dynamics of spacetime by use of spacetime metric, while
thermodynamics is another subject which describes macroscopic properties of thermal system in terms of
energy, pressure, entropy and temperature etc. of the system. The first evidence for the deep connections
between gravitational dynamics and thermodynamics comes from black hole thermodynamics. Black hole
as a fantastic object is predicted by general relativity. Black hole thermodynamics tells us that black
hole has a temperature proportional to its surface gravity and an entropy proportional to its horizon
area, and the temperature, entropy and black hole mass satisfies the first law of thermodynamics. Not
only the first law, other three laws of thermodynamics are also obeyed for black hole. In this sense,
black hole is nothing, but an ordinary thermodynamic system. However, black hole is a special thermal
system because its entropy is proportional to its horizon area, while entropy of ordinary thermal system
is proportional to its volume. Another feature of black hole thermodynamics is that heat capacity of
some black hole may be negative, for example, Schwarzschild black hole.

The geometric feature of black hole temperature and entropy leads one to conjecture that gravity might
be an emergent phenomenon and is a coarse graining description of some underlying microscopic degrees of
freedom. In fact this idea was first proposed by Sakharov in 1967 [1], before black hole thermodynamics
is set up. According to Sakharov, spacetime background emerges as a mean field approximation of
underlying microscopic degrees of freedom, similar to hydrodynamics or continuum elasticity theory from
molecular physics.

Just in the beginning of 2010, E. Verlinde [2] proposed that gravity is not a fundamental interaction
in Nature, but a kind of entropic force and gravity is caused by changes in the information associated
with the positions of material bodies. With the assumption of the entropic force together with the Unruh
temperature, Verlinde is able to derive the second law of Newton. Also he is able to derive Newton’s
law of gravitation with the assumption of the entropic force together with the holographic principle and
the equipartition law of energy. This observations are also made by Padmanabhan [3]. He observed
that the equipartition law of energy for the horizon degrees of freedom combing with the thermodynamic
relation S = E/2T, also leads to Newton’s law of gravity, here S and T are thermodynamic entropy and
temperature associated with the horizon and F is the active gravitational mass producing the gravitational
acceleration in the spacetime.

1Email address: cairg@itp.ac.cn
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According to Verlinde, that gravity is an entropic force is more than to say that gravity has some-
thing to do with thermodynamics. In this paper, however, we will not discuss the viewpoint of gravity
as entropic force more, instead we will study the connections between gravitational dynamics and ther-
modynamics, in particular, focus on the relation between Einstein’s field equation and the first law of
thermodynamics. We will investigation the relation by using of three kinds of spacetime horizons: Rindler
horizon, black hole horizon and apparent horizon in a Friedmann-Robertson-Walker (FRW) universe.

The organization of this paper is as follows. In the next section, we briefly repeat the derivation
process of Einstein’s field equation from the first law of thermodynamics made by Jacobson by applying
the latter to Rindler horizon of spacetime [4]. In Sec. 3 we focus on black hole horizon and show that the
Einstein’s field equations can be cast to a form of the first law of thermodynamics, not only in general
relation, but also in Horava-Lifshitz gravity [5, 6]. In Sec. 4 we focus on apparent horizon of FRW
universe, and investigate the relation between Friedmann equations and the first law [7-9] and show that
there exists Hawking radiation associated with apparent horizon [10].

2 Rindler horizon: from the first law to Einstein’s field equa-
tions

The so-called Rindler coordinate chart describes a part of flat spacetime, or say, Minkowski vacuum. This
chart was introduced by Wolfgang Rindler. The Rindler coordinate sysytem or frame describes a uni-
formly accelerating frame of reference in Minkowski space. In special relativity, a uniformly acceleration
particle undergoes a hyperbolic motion. For each such a particle a Rindler frame can be chosen in which
it is at rest. For example, in the Rindler chart the Minkowski space can be written as

ds? = —2?dt? + da® + dy® + d2?, (1)

where 0 < x < 00, —00 < t, y, z < oco. The Rindler coordinate chart has a coordinate singularity at
x = 0. The acceleration of the Rindler observers diverges there. The locus z = 0 in the Rindler chart
corresponds to the locus X2 — T2 = 0 with X > 0 in the Cartesian chart of Minkwoski space, the latter
consists of two null half-planes. The locus = 0 is just the Rindler horizon, the Rindler observer cannot
see any information outside the Rindler wedge.

According to Davies [11] and Unruh [12], for a uniformly accelerating observer with acceleration a in
Minkowski space, she will detect a temperature given by T = 5=, where the so-called geometric units
have been taken: ¢ = h = kg = 1. In the Rindler coordinate (1) , for a Rindler observer with a fixed
x = xg, her acceleration is a = 1/x.

Now consider a certain event P in any spacetime, by equivalent principle, one can introduce a local
inertial frame around P with Riemann normal coordinates. One further transforms the local inertial
frame to a local Rindler frame by accelerating along an axis with acceleration x. Then there is a Unruh
temperature associated with the local Rindler horizon as

T = /2. 2)

Suppose the matter in the spacetime is described by the stress-energy tensor Tp;,. Then the heat flux
across the Rindler horizon H is

5Q:/ Tabxadzbv (3)
H

where x® is an approximation boost Killing vector on H. Note that the relations: x* = —xAk® and
dX* = k*dAdA, where k% is the tangent vector to the horizon generators for an fine parameter A which
vanishes at P; dA is the area element on a cross section of the horizon. Then we have

0Q = —k / ATk kP dAdA. (4)
H

Now assume that the entropy is proportional to the horizon area, so that the entropy variation associated
with a piece of horizon is given by

dS = né A, (5)
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where 7 is a constant and 0.4 = fH OdAdA. Using the Raychaudhuri equation

de 1

7:77927 2 akakb

Y 3 0° — Rapk®k”, (6)
and assuming the vanishing of expansion 6 and shear o at P, to the leading order of A\, one has 6 =
—ARpkk?, which leads to

SA=— / ARk kPN A. (7)
H

By the Clausius relation 6Q = T'dS, one can have

27
Rab + fgab = ?Taby (8)

where f is an arbitrary function. To determine the function f, we employ the conservation law of the
stress-energy tensor: Tal;’b = 0. This leads to f = —R/2 4+ A, where A is a constant, this is nothing, but
the cosmological constant as one will see shortly. Put f back to the above equation, one arrives at

1 2
Rab - §Rgab + Agab = ? ab- (9)

One can see immediately from (9) that it is nothing, but the Einstein’s field equation, once G = 1/47 is
identified.

Thus we simply repeated the process to derive the Einstein’s field equations from the Clausius relation
made by Jacobson [4]. The key idea is to demand that this relation holds for all the local Rindler
causal horizons through each spacetime point, with Q) and T interpreted as the energy flux and Unruh
temperature seen by an accelerated observer just inside the horizon. In this sense, the Einstein’s field
equation is nothing, but an equation of state of spacetime. If this viewpoint is correct, it has significant
implication for quantum gravity theory: it may be no more appropriate to canonically quantize the
Einstein’s field equation than it would be to quantize the wave equation for sound in air.

Further remarks: 1) For f(R) gravity [13] and scalar-tensor gravity [9], it turns out that a non-
equilibrium thermodynamic setup has to be employed in order to produce corresponding gravitational
field equations. Namely one needs an entropy production term added to the Clausius relation. 2) It is
further shown that assuming the nonvanishing of the shear for Einstein gravity, the non-equilibrium setup
is needed, dS = §Q/T + d;S, where the entropy production term is proportional to the squared shear
of the horizon [14]. And it leads to a universal ratio of the shear viscosity n to entropy density of the
horizon: 7/s = 1/4xw. 3) For any diffeomorphism invariant theory, however, it has been shown recently
that given Wald’s entropy formula, by the Clausius relation, it is possible to derive the gravitational field
equations [15, 16]. However, an issue exists that to have the Wald’s entropy formula, one has to know
first the gravity theory. In this sense, the derivation is not natural and satisfied [17].

3 Black hole horizon: equivalence between Einstein’s field equa-
tions and the first law of thermodynamics

In this section we move to black hole horizon and discuss the relation between the Einstein’s field equations
and the first law of thermodynamics.
Let us first consider the Einstein’s field equations

1
Gap = Rap — iRgab = 887Gy, (10)

where G is the Einstein tensor. Consider a generic static, spherically symmetric spacetime

ds? = —f(r)di* + f 71 (r)dr? + b*(r)(d6® + sin? 6do?), (11)
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where f(r) and b(r) are two continuous functions of r. Suppose the metric (11) describes a black hole
with a nondegenerated horizon at r1. Then the horizon has a Hawking temperature given by

T= o fr), (12

where a prime denotes the derivative with respect to r. The Einstein’s field equation in the metric (11)
turns to be

1 1
Gl= o (1 V2 LBV +2f8"), G = (=14 b8 + f2), (13)

At the black hole where f(r;) =0, G¢ and G! become identical:

1
Gl = G} = (=1 +bfV))],... (14)

The r — r component of the Einstein field equations at the horizon can be written as
— 1+ bf'V = 8xb2P, (15)

where P = T is the radial pressure of matter at the horizon. Now we multiply a displacement dry of
the horizon on both sides of the above equation, the resulting equation can be cast as

Td (4”b2> —d (Ti) — Pav, (16)

4G 2G
where V is the black hole volume and dV = 47b?dr, . This equation can be clearly rewritten as
TdS — dE = PdV (17)

with identifications: S = 47b?/4G = A/AG and E = r; /2G. Note that equation (17) is nothing, but
the first law of thermodynamics. Here T is the Hawking temperature of the black hole horizon and S is
the Bekenstein-Hawking entropy of the black hole. Note that here E is the Misner-Sharp energy at the
horizon and is not the ADM mass of the black hole.

Thus we showed that at a black hole horizon, the Einstein’s field equations can be cast to a form
of the first law of thermodynamics, which implies that there exists a deep connection between gravity
and thermodynamics. It is further shown that even for Horava-Lifshitz gravity, which is not a diffeo-
morphism invariant theory, its field equation at black hole horizon also can be cast the first law form of
thermodynamics [0].

In addition, it is found that the story goes on for Lovelock gravity [18], BTZ black hole spacetime [19],
stationary black holes and evolving spherically symmetric horizons [20]. However, a non-equilibrium
thermodynamics setting is needed for f(R) gravity [21].

4 Apparent horizon: Friedmann equation, the first law of ther-
modynamics and Hawking radiation

In this section we move to apparent horizon in a FRW universe.

4.1 From first law to Friedmann equation

Let us start with an (n 4 1)-dimensional FRW metric

dr?
1—kr2

ds* = —dt* + a*(t) ( + erQil) , (18)

where a is the scale factor and d22_; denotes an (n—1)-dimensional sphere with unit radius. Without loss
of generality, one can take k = 1, 0 or —1, corresponding to a closed, flat or open universe, respectively.
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Einstein’s field equations in the FRW metric (18) take the form

k 167G

H* 4+ & =——— 1
. k 381G

where p and p are energy density and pressure of the perfect fluid in the spacetime, and H = a/a is the
Hubble parameter and the overdot stands for the derivative with respect to cosmic time t.
Introducing the physical radius 7 = ar and the metric (18) can be rewritten as

ds?® = hypydx®da® + 72d0?

n—1y

(21)

where 2° = t, 2! = r, and hy, = diag(—1,a%/(1 — kr?)). In a FRW universe, there may exist some
different horizons, for example, particle horizon, Hubble horizon, apparent horizon and event horizon etc.
Here we focus on apparent horizon, which is argued to be a causal horizon of spacetime. By definition of
apparent horizon, h® 0,797 = 0, we have the apparent horizon radius

P (22)

JHEt kjat

Now we apply the first law of thermodynamics (the Clauius relation), dE = T'dS, to the apparent
horizon of the FRW universe. To do that, we assume that there exist temperature and entropy associated
with the apparent horizon as

1 A
T= == 2
2 g’ s 4G’ (23)

where A = fz_lﬂn_l is the apparent horizon area. Suppose the matter source in the FRW universe is
a perfect fluid, its stress-energy tensor is given by Tu, = (p + p)UsUp + pgas, where U, is the 4-velocity.

Following [22], defining two physical quantities, the energy supply vector ¥, and work density W as
1
W = TL007 + Wat, W == T"ha, (24)

one then can calculate the amount of energy across the apparent horizon within the time internal dt as
dE = A(p + p)Hr,dt. (25)

Using the energy dF together with the temperature T' and entropy S in (23), the Clausius relation leads
to

[ LA NP (26)

a n—1
Clearly this is nothing but the second Friedmann equation (20). Further by use of the continuity equation,
p+n(p+p) =0, integrating (26) yields
k 167G

H?* 4+ = =

a2  n(n-1) P 27)

Here an integration constant has been put into the energy density p. In fact, the integration constant is
just the cosmological constant. This way the cosmological constant appears as an integration constant,
whose exact value should be given by initial condition. Thus the so-called cosmological constant problem
does not appear here.

Thus we have derived the Friedmann equations governing the dynamics of the FRW universe by
applying the first law to the apparent horizon of the spacetime with assumption (23). In fact, replacing
the entropy formula in (23) by corresponding ones in Gauss-Bonnet gravity and more general Lovelcok
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gravity, in the same way we are also able to derive corresponding Friedmann equations in those gravity
theories [7].

The above approach can be used in more general cases [23], in fact. For example, given a relation
between entropy and apparent horizon area, we are able to obtain corresponding modified Friedmann
equation. Take an example, it is generally believed that quantum correction will add a logarithmic term
to black hole area entropy formula as [24]

A A
S:EJralnE, (28)

where « is a constant. In the same way, we obtained Friedmann equations in four dimensions

(1 + 4ia> (H - g) = —4rG(p +p),

k «@ k 8rG
H?>+ =+ —(H*+ =)*= —p. 29
+oa o (H + ) 3 P (29)
If the entropy is given by an arbitrary function of apparent horizon area, S = f(z) where x = A/4G, we
can have a general forms of Friedmann equations [24]

(F ~ 5)7' () = ~4xG(p + p),
831G T [f

4.2 Equivalence between the Friedmann equation and the first law

In this subsection we prove that the Friedmann equation at the apparent horizon can be cast to a form
of the first law of thermodynamics [8].
Let us start with the FRW metric (18), by definition, k = ﬁ@a(\/fhh“babf), one has the surface

gravity at apparent horizon
1 2
Ly
A QHTA

K =

). (31)

In terms of the apparent horizon radius, the first Friedmann equation (19) can be expressed as

1 167G

 — T . 32
7% n(n—1) P (32)
Taking derivative on both sides of the above equation and using the continuity equation, one has
1 8rG
—dry = —— Hdt. 33
73 4 P tp) (33)
With identification T' = k/27, and S = A/4G, this equation can be rewritten as
dE =TdS +WdV, (34)

where E = pV, V is the volume of the region inside the apparent horizon and W = (p — p). This is
nothing, but the form of the so-called unified first law at the apparent horizon of the FRW universe. It is
also shown that the form (34) also holds for the Gauss-Bonnet gravity and Lovelock gravity. Further it is
found to hold in brane world scenarios [25]. With this we can obtain the entropy expression for apparent
horizon in brane world scenarios. For a review, see [20].

It is interesting to note that with the first law (34), starting from some modified Friedmann equation,
one is able to get entropy expression of apparent horizon in some quantum corrected gravity. Take the
Friedmann equation in loop quantum cosmology as an example. In that case, the modified Friedmann

equation takes the form
871G P
H? = —— (1 —~ ) : 35
3 r Pcrit ( )
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where paic = V3/(327G?3), v is the Barbero-Immirzi parameter. Clearly when p = per;, one has a
vanishing Hubble parameter. Based on this, it is argued that the big bang singularity can be avoided by
bounce in loop quantum cosmology. Starting with (35), we can obtain the entropy expression associated
with the apparent horizon as [24]

A S A L oa/a)+co, (36)

5= 4G + ArG2pesy 4G

where Cy is an undetermined constant. This way we see that a logarithmic correction term indeed appears
in loop quantum gravity.

4.3 Hawking radiation of apparent horizon

In the process to derive the Friedmann equation, we have assumed that there is a Hawking temperature
(23) associated with apparent horizon in a FRW universe. In this subsection, we prove this by use of
the quantum tunneling approach, which is first employed by Parikh and Wilczek [27] to discuss Hawking
radiation for black hole horizon.

In terms of the physical radial coordinate 7 = ar, the 4-dimensional FRW metric can be expressed as

11—/ 2H7

ds* = — —
8 1— ki2/a? 1— ki2/a?

dtdr + di® + 72dQ3. (37)

1
1 — k7?2 /a?

In the spherically symmetric metric (37), one can define a Kodama vector, K¢ = —e®V,7 = /1 — ki*2/a2(0/0t)°.
The norm of the Kodama vector is K? = —(1—72/74). One see that the Kodama vector is time-like, null
and spacelike, inside the apparent horizon, at the apparent horizon and outside the apparent horizon,
respectively. As a result, the Kodama vector can play the role as a Killing vector does in a de Sitter
space in static coordinates.

Within WKB approximation, a particle with mass m in the metric (37) satisfies the Hamilton-Jacob
equation:

g""9,80,8 +m? =0, (38)

where S is its action. In the s-wave approximation, one can define the energy and the radial wave-number
of the particle as

w=—K"9,8S = —/1— ki2/a20,S, k; = (9/07)"0sS = 0;S. (39)

And the action can be expressed as

w
Sz—/idt+/k;dﬁ 40
V1= kr?/a? (40)

Then the Hamilton-Jacob equation (38) turns to be

w? 2HTWw 72
— ki + (1 — = )k2 2=, 41
1—kf2/a2+\/m +( f%)r—’_m ( )
which has the solution as

ke — —HF + \/H2772 + (1 —=72/r3)1 —m?(1 — k2 /a?) Jw?] (42)

(1 72)72) /1 ki?ja “

where the plus/minus sign corresponds to an outgoing/incoming mode. Now we consider an incoming
mode since the observer is inside the apparent horizon,like the case of particle tunneling for the cosmo-
logical event horizon in de Sitter space [28]. It is obvious that the action S has a pole at the apparent
horizon. Through a contour integral, we obtain an imaginary part of the action

_Im/ Hi+ /H22 + (1 — 72 /73)[1 — m2(1 — ki?/a?) w?]
(1 —72/7%) /1 — ki2 /a2

TFAW. (43)

ImS = wdr
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In the WKB approximation, the emission rate I' is the square of the tunneling amplitude (here the particle
tunnels from outside to inside the apparent horizon)

I’ & exp(—2ImS). (44)

Combining (44) with (43), one can see clearly that the emission rate can be cast in a form of thermal
spectrum, I' ~ exp(—w/T'), with temperature

1

T= A (45)
Thus we have finished the proof that an observer inside the apparent horizon will see a thermal spectrum
with temperature (45) when particles tunnel from outside the apparent horizon to inside the apparent
horizon. This can be explained as Hawking radiation of apparent horizon in the same spirit in the
tunneling approach proposed by Parikh and Wilczek that the Hawking radiation of black hole is expressed
as a tunneling phenomenon. Furthermore, at this level of approximation, the mass of particle does not
enter the emission rate. This is just the remarkable feature of thermal spectrum. In addition, let us note
that the null geodesic method also leads to the same temperature [10].

5 Conclusion

A lot of evidence shows there exist deep connections between gravity and thermodynamics. In this
paper we just mentioned pieces of them. The intrinsic relation between gravity and thermodynamics is
required to further study. If gravity is indeed not a fundamental interaction in Nature, instead it is an
induced coarse graining description of some microscopic degrees of freedom of spacetime, it is natural
to see the deep connection between gravity and thermodynamics, and even further to see the relation
between gravity and hydrodynamics. The latter is a very active issue under studying recently in the
framework of AdS/CFT correspondence or in more general sense. Clearly to understand the nature of
gravity, obviously it is worthy to deeply investigate the relation between gravity and hydrodynamics.
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Abstract
Many important advances in the understanding of black-hole physics took place after
the numerical relativity breakthroughs of 2005 that allowed fully non-linear dynamical
numerical simulations of the inspiral, merger and ringdown of black-hole binaries. We
review recent exciting developments in the study of merging black-hole binaries and
discuss future directions.

1 Introduction

According to the no-hair theorem, equilibrated black holes (BHs) in General Relativity are completely
described by three quantities: the mass M, angular momentum J, and electric charge @ of the Kerr-
Newman BH solution. However, the electric charge should be rapidly depleted by the surrounding plasma
and astrophysical BHs can be completely described by their mass and spin. Although the interiors of
BHs may be exotic objects where the spacetime curvature becomes singular, these regions are expected
to be covered by a horizon and are thus invisible (cosmic censorship conjecture).

Kramer et al. [1] tested General Relativity to ~ 0.05% by calculating the inspiral rate of a double
pulsar. However, there still are important open questions: Do BHs really exist in nature? Are they really
represented by the Kerr solution? Are there naked singularities in the Universe? Is General Relativity
the correct theory of gravity in the strong-field regime?

There is strong, but indirect, evidence that BHs exist in the Universe, with a vast range of masses
from few tens to 10°My. The stellar-mass BHs (3 — 30M,) should form from the collapse of massive
stars, while intermediate-mass BHs (IMBHs, 10?2 — 10*M) may assemble in globular clusters. Massive
BHs (MBHs, 10* — 10" M) and super-massive BHs (SMBHs, 107 — 10M,)) are seen in galactic cores
by the motion of stars and/or gas surrounding them. These MBHs/SMBHs appear to be connected
by the M — o relation [2, 3] to their host galaxies. From the electromagnetic observations, there is
evidence that astrophysical BHs may be spinning relatively fast. Also note that since there is evidence
that galaxies collide, it is plausible that their central BH’s inspiral and collide through the stellar/gas
dynamical friction, and the energy loss due to gravitational radiation below sub parsec scale (after the
final parsec problem [4]).

We note that coalescing black-hole binaries (BHBs) are very loud gravitational-wave sources with the
final merger event producing a strong burst at a luminosity of Lgw ~ 10??L which makes them ideal
targets for all gravitational-wave detectors (with different detectors sensitive to BHBs in different mass
regimes). The gravitational waveforms from these mergers will inform us about the BH masses, (initial
and final) spins, source locations, merger rates, and spacetime dynamics. These gravitational waveforms
are also essential in matched filtering applications to assist gravitational-wave detection.

There are several past and ongoing ground-based gravitational-wave detector projects, including Initial
LIGO (Laser Interferometer Gravitational wave Observatory, 2005 — 2010) [5], VIRGO [6], Advanced
LIGO (10 x increase in sensitivity from Initial LIGO, 2016+ ), LCGT (Large-scale Cryogenic Gravitational
wave Telescope, ~ 2017) [7], Einstein Telescope (ET, 10 x increase in sensitivity, 2027+) [8] and other
third generation (3G) detectors. We expect that target sources for 3G detectors are not only the inspiral
and merger of neutron star-neutron star binaries, neutron star-(stellar-mass) BH binaries, (stellar) BH-BH
binaries, but also IMBHs at cosmological distances.

1Email address: manuela@astro.rit.edu
2Email address: lousto@astro.rit.edu
3Email address: nakano@astro.rit.edu
4Email address: yosef@astro.rit.edu
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There are also plans to go to space with LISA (Laser Interferometer Space Antenna, 2025+) [9] and
DECIGO (DECi-hertz Interferometer Gravitational wave Observatory, ~ 2027) [10]. LISA will measure
gravitational waves at low frequency (10~* —10~! Hz), and DECIGO will be the “bridge” between LISA
and ground-based detectors with the sensitivity range (30 mHz—30Hz). MBH binary mergers are one of
LISA’s main target, and we will learn about merger rates, the history of hierarchical galaxy mergers, and
the growth of MBHs over time from its detections. Extreme mass-ratio inspirals (EMRIs) which consist
of a central MBH and a stellar/intermediate-mass compact object, are also important gravitational-wave
sources. From these mergers we can obtain information about the mass and spin of central objects, and
as a result, they will provide a census of MBHs in galaxies and the MBHs growth mechanisms (i.e. do
these massive objects arise from the merger of comparable mass smaller objects or by accretion onto a
large central object).

Merging MBH/IMBH binaries will not only be observed through gravitational-waves, but also likely
to be accompanied by electromagnetic counterparts. From correlations between the electromagnetic and
gravitational-wave spectra, we will obtain important astrophysical information. This includes an im-
provement in the sky localization of the source and identification of the host galaxy morphology, tests
of galaxy merger scenarios, and detection rates for gravitational-wave sources. Importantly, these obser-
vation will provide a novel measurements of the luminosity distance (from the gravitational waveform)
to redshift relation out to cosmological distances (cosmological standard sirens), as well as provide tests
of the fundamental principles of General Relativity (e.g. graviton’s speed). They will also improve our
understanding of BH accretion physics and magneto-hydrodynamics, circumbinary disks, as well as grav-
itational kicks. Consequently, these studies are very important to our understanding of the dynamics of
our Universe (see Astro2010 Decadal Survey White papers [11, 12]).

2 Simulation of Black-Hole Binaries

In Numerical Relativity, we solve numerically General Relativity’s field equations for a dynamical space-
time. The goals are to understand gravity at its strongest manifestation, to inform gravitational-wave
detection, and to determine characteristics of compact objects. To simulate black-hole binaries in Numer-
ical Relativity, we need tackle many challenges, 1) several scales required for the physics that arise from
the mass of the smallest black hole, black hole’s spins, and the wavelength of the emitted gravitational
waves in the wave zone, 2) long waveforms matching the early post-Newtonian inspiral phase, 3) large
parameter space of black-hole binaries, mass ratio, individual spins, eccentricity, etc.

The first simulation in Numerical Relativity was done by Hahn and Lindquist [13] in 1964 for a
head-on collision of two equal-mass black holes in two dimensional (2D) space. In 1990s, there was a big
effort by the Binary Black Hole Grand Challenge Alliance (e.g. [14]) to solve the BBH problem. We then
saw various development in the evolution system (NOK-BSSN [15-17]), initial data (“puncture” initial
data [18]), and gauge conditions ( “fixed puncture” evolutions [19]) in black-hole binary simulations. In the
Lazarus project (see [20]), the final moments of the merger of black-hole binaries in the three dimensional
(3D) simulations has been modeled through the identification of perturbations at late times. In 2004,
[21] presented a simulation of black-hole binaries for about one orbital period.

After 40+ years of hard work, the black-hole binary problem in full General Relativity has been
solved with the breakthroughs of 2005 by the “generalized harmonic” [22] and the “moving punctures”
[23, 24] methods. In these works, the first successful fully non-linear dynamical numerical simulations
were done for the inspiral, merger, and ringdown of orbiting black-hole binary systems. In particular,
the moving punctures approach, developed independently by the Numerical Relativity groups at UTB
(Now RIT) and NASA/GSFC, has become the most widely used method in the field and was successfully
applied to evolve generic black-hole binaries. In this approach, a singular term in the spacetime metric
is numerically regularized and the black holes move across the computational domain. The generalized
harmonic approach has also been successfully applied to accurately evolve generic BHBs for tens of orbits
with the use of pseudospectral codes [25, 20].

There have been since 2005 many important advances in the understanding of black-hole physics:
studies of the orbital dynamics of spinning black-hole binaries [27-33], calculations of recoil velocities
from the merger of unequal mass black-hole binaries [34-36], and the surprising discovery that very large
recoils can be acquired by the remnant of the merger of two spinning black holes [30, 37-52], empirical
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Figure 1: [Simulation: Manuela Campanelli, Carlos Lousto, Yosef Zlochower, Visualization:
Hans-Peter Bischof] Inspiral and merger of three black holes. The small dots show their trajectories.
This movie is downloadable from http://ccrg.rit.edu/movies.

models relating the final mass and spin of the remnant with the spins of the individual black holes [53-60],
and comparisons of waveforms and orbital dynamics of black-hole binary inspirals with post-Newtonian
predictions [61-68].

3 LazEv code results

We can accurately and stably evolve black-hole binaries (and multiplets, e.g. [69-71] and Figure 1) for
a vast range of mass-ratios and spins, and compute the gravitational-wave radiation, black-hole remnant
and spacetime dynamics. In the following, we summarize some work using the LazEv [72] implementation

of the moving puncture approach.

3.1 Merger of Spinning Black Holes: Hang-Up Orbits

To understand the dynamics of highly spinning black-hole binaries, we accurately simulated the inspiral
orbit of black-hole binaries with two equal mass m and individual spins with equal amplitude S/m? =
0.757 parallel to the orbital angular momentum in [27]. The simulations start from the orbital frequency
0 = 0.05/Mapm where Mapy denotes the ADM mass of the system.

We found that the orbital hang up effect (spin-orbit coupling) delays the onset of the plunge phase
(compared to the non-spinning case) when the spins are aligned with the orbital angular momentum,
while in the anti-aligned case the plunge phase is hastened. This effect can be considered as the leading
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Figure 2: The real part of the £ = 2, m = 2 mode of the hybrid gravitational waveform for a precessing
black-hole binary [75]. This is created by matching the NR waveform to the waveform derived from the
3.5 post-Newtonian order equations of motion, and the matching starts around ¢t = 226 Mapy1.

order spin-orbit coupling (the 1.5 post-Newtonian order interaction) in the post-Newtonian equations of
motion. The total radiated energy Fyaq/Mapwm is (6.7 +0.2) % for the aligned case, while for the anti-
aligned case it is only (2.2 +0.1) % (compared to the non-spinning case (3.5 +0.1) %). And in all cases
the black holes merged to form a single final Kerr black hole with sub-maximal spin (the non-dimensional
spin x < 1), i.e., the cosmic censorship conjecture holds in our all cases.

3.2 Merger of Generic, Precessing Black-Holes

In [73], we compared Numerical Relativity and post-Newtonian waveforms of a generic black-hole binary,
i.e., a binary with unequal masses, with mass ratio ¢ = mj/mo = 0.8 and unequal, non-aligned, precessing
spins of magnitude, S;/m? = 0.4 and Sy/m3 = 0.6. The numerical simulation starts with an initial
separation of r ~ 11Mapym, and has 9 orbits prior to the merger. To obtain the initial data (the
positions, momenta, and spins of each black hole), we considered purely post-Newtonian evolutions of a
nearly quasi-circular binary with initial orbital separation r ~ 50Mapy by the procedure in [74], extended
to spinning particles.

Comparison of numerical simulations with post-Newtonian ones have several benefits aside from the
theoretical verification of the post-Newtonian calculations. From a practical point of view, one can directly
propose a phenomenological description and thus make predictions in regions of the parameter space still
not explored by numerical simulations. From the theoretical point of view, an important application is
to have a calibration of the post-Newtonian error (and fitting parameters in the Effective-One-Body ap-
proach) in the last stages of the binary merger. Also, combining the post-Newtonian waveform from large
separations and smoothly attaching this waveform to the corresponding Numerical Relativity waveform
produced by the binary during the late-inspiral, we can provide a hybrid waveform [75]. The waveform
in Figure 2 is available for download from http://ccrg.rit.edu/downloads/waveforms®.

5 We would like to introduce an interesting website: http://www.black-holes.org/. Some numerically-generated gravita-
tional waveforms are also publicly available from this website.
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Figure 3: [Simulation: Manuela Campanelli, Carlos Lousto, Yosef Zlochower, Visualization:
Hans-Peter Bischof] Remnant gravitational recoil of the merger of a black-hole binary. We see the
bobbling and merger of two black hole and the resulting merger superkick. The bar at the bottom
indicates the speed of the black holes. This movie is downloadable from http://ccrg.rit.edu/movies.

3.3 Gravitational Recoiling Black-Holes

We have modeled the remnant gravitational kick of the merger of black-hole binaries with very large
recoil velocities due to gravitational radiation since the discovery [38, 39] (see Figure 3) in the numerical
simulations of generic spinning binaries. The spins of the black holes play a crucial role in producing
recoils of up to 4000 km/s which allow remnant black holes to escape from major galaxies. The large
gravitational recoils found had a significant impact on astrophysics since, the gravitational kicks affect the
SMBH retention rates in galaxies, the IMBH retention rates in globular clusters, galactic core dynamics
and accretion disk dynamics. Direct observation of them can lead to the first confirmation of a prediction
of General Relativity in the highly-dynamical, strong-field regime.

Based on the notion [40, 76] that the leading description of the recoil can be modeled by the post-
Newtonian dependence [77, 78], empirical formulae for the final remnant black-hole recoil velocity (also
mass and spin) from merging black-hole binaries were obtained in [60] (and references therein). In [79],
considering cubic and possible fifth-order corrections [54], we obtained enhanced recoil formulae for the
“maximum kick” configurations, and have predicted that the maximum recoil will be 36804130 km/s. In
[30] we confirmed that the recoil formula is accurate to within a few km/s in the comparable mass-ratio
regime for the out-of-plane recoil by using a new set of 20 numerical simulations.

In [81], we studied the statistical distributions of the spins of generic black-hole binaries during the
‘dry’ inspiral (i.e. gravitational radiation driven) and merger, as well as the distributions of the remnant
mass, spin, and recoil velocity. In the statistical results, we found a small bias towards counter-alignment
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of the vectors A and S with respect to the orbital angular momentum L just prior to merger, where
S=25 + §2, A= (mq + m2)(§2/m2 — 51/m1). This effect essentially takes place at close separations
and can be studied analytically at low post-Newtonian orders. The anti-alignment effect is associated
with the late-time precession of the orbital plane due to gravitational radiation reaction. This effect for
dry mergers seems to oppose the alignment mechanism observed in ‘wet’ mergers [32, 83]. After the
initial inspiral regime, we studied the merger of black-hole binaries using full numerical simulations. We
found that the merged black holes have a considerable probability (23 %) to reach recoil velocities above
1000km/s and the distribution is highly peaked along the orbital angular momentum (see Table 1).

Table 1: The probability to obtain large recoil velocities, and large recoil velocities along the line of sight
assuming a uniform distribution of mass ratios [31]. Large recoil magnitudes are highly probable, but
less observable.

vlkm/s] > | 500 1000 2000 2500
Recoil 50.2% 232% 22%  0.24%
Observer 226% 6.4% 0.22% 0.01%

3.4 Simulations of Small Mass-Ratio Black-Hole Binaries

According to [84], small mass-ratios black-hole binaries in the range 0.01 < ¢ = my/mg < 0.1 are
most likely to occur. Current Numerical Relativity simulations have focused on the comparable mass-
ratio regime, and black-hole binaries in the very small mass-ratio regime can, in principle, be modeled
accurately with the black hole perturbation approach. The small mass-ratio regime is hard to model with
Numerical Relativity simulations.

In [85] we introduced a new technique that makes use of the trajectories obtained in the Numerical
Relativity simulations and efficient perturbative evolutions to compute waveforms at large radii for the
leading and non-leading modes in the black hole perturbation approach, i.e., the Regge-Wheeler-Zerilli

(RWZ) formalism [36, 87]. As a proof-of-concept, we computed waveforms for a relatively close binary
with mass ratio ¢ = 1/10.
In the next paper [38], we reached smaller mass ratios, to the ¢ = 1/15 case, and extended the RWZ

formalism for the Schwarzschild perturbations by including, perturbatively, a term linear in the spin
of the larger black hole (SRWZ formulation). For intermediate mass-ratio black-hole binaries with the
mass ratio ¢ = 1/10 and 1/15, we have found good agreement in the Numerical Relativity and SRWZ
waveforms which include the late inspiral, plunge, merger and ringdown phases (see Figure 4).

Recently, the merger of a mass ratio 100 : 1 black-hole binary has been simulated in [89] using an
optimal choice of the mesh refinement structure around the smaller black hole. Using the techniques
presented in this paper, we can simulate even smaller mass-ratios ¢ and initially spinning black holes.
It is also important to choose quasi-circular orbital parameters (see [90]) and to evolve initial data with
lower spurious radiation content to obtain realistic true inspiral wave information [91, 92].

4 Community-Wide Collaborations

The NINJA (Numerical INJection Analysis, https://www.ninja-project.org/doku.php?id=ninja:home) is
a collaborative effort between members of the numerical relativity and gravitational-wave data analysis
communities. In NINJA-1 [93, 94] with ten numerical relativity groups providing gravitational waveforms
and data analysis contributions from nine different groups, short Numerical Relativity waveforms from
the merger of black-hole binaries without any hybrids, i.e., attaching post-Newtonian inspiral waveforms,
have been used for the injections. The data set did not include the type of non-Gaussian transients seen
in real gravitational-wave detector data. In NINJA-2 with more groups, we are now attempting to use
various (including different mass-ratios and spins) hybrid waveforms for LIGO and VIRGO data analysis.

To develop accurate analytical gravitational-wave template banks of black-hole binaries for the data
analysis, a larger region of the parameter space including spin precessing systems, has been simulated


https://www.ninja-project.org/doku.php?id=ninja:home

16 Merging binary black holes in astrophysics

-80+— —
— NR
- RWZ
i -—- SRWZ ]
90— —
-100 — _
110 -
120 | | | I’;
950 1000 1050 1100 1150
M
Figure 4: The phase evolution of the (¢ = 2, m = 2) wave for the ¢ = 1/10 case [88]. The (black)

solid, (red) dotted, and (blue) dashed curves show the Numerical Relativity, RWZ (spin-off), and SRWZ
(spin-on) calculations, respectively. Note that although the initial part of the three curves show almost
the same evolution, we can see differences after the merger.

on the TeraGrid machine Kraken, and the precise full numerical gravitational waveforms have been com-
puted in the NRAR collaboration (Numerical-Relativity and Analytical-Relativity, https://www.ninja-
project.org/doku.php?id=nrar:home).

The Einstein Toolkit (http://einsteintoolkit.org/) is a state of the art, open, community developed
software infrastructure for relativistic astrophysics. The targets are black holes, neutron stars, core-
collapse supernovae, etc. This type of a collaborative work will be needed in the future directions
discussed next.

5 Future Directions

As mentioned in the Introduction, coincident detections of gravitational-wave and electromagnetic signa-
tures from merging black-hole binaries give us varied astrophysical information. Observable consequences
of large gravitational recoils include effects of a SMBH passing through an accretion disk. The disk around
the kicked black hole will have broader spectrum and be shifted with respect to the host disk. The sudden
loss of mass of the central black hole will perturb the disk, MBHs will be displaced or wandering from the
core of the host structure, and the kicks lead the reorientation of jets, e.g. X-shaped radio-morphologies.

Studies of electromagnetic counterparts of merging black-hole binaries should include the gaseous
environment. The scale problem, from 10° pc to 107° pcs, represents a huge computational challenge.
One should split the problem into stages, the capture, pre-merger, merger and post-merger (e.g. kicked)
stages. Simulations of the merger require full General Relativity-magneto-hydrodynamics (GR-MHD)
and radiation physics modeling.

Regarding the gaseous environment close to the merging black-hole binaries, (at scales < 0.01pc)
there are some initial explorations about the electromagnetic fields [95] and radiatively inefficient hot gas
clouds [96] around them. One may also consider alternative models, e.g. thin circumbinary disk. The
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most important point is to create reliable GR-MHD codes which properly account for accretion rates,
electromagnetic fields, radiation transport, and the required numerical resolution. To complete the above
studies we will need large collaborative efforts.

6 Conclusions

Exciting new astrophysical phenomena have been found thanks to Numerical Relativity’s black-hole
binary simulations. We can accurately and stably evolve almost arbitrary black-hole binaries. The
gravitational waveforms are accurately produced for use in gravitational wave data analysis for ground
and space-based detectors. The results can be compared with the post-Newtonian (including Effective-
One-Body) and black hole perturbation theories, and be used to calibrate them. The remnant mass-loss
reaches up to 10% of the total mass of the system, and depending on the spins magnitude and orientation
we can observe the gravitational superkicks.

On the other hand, we still have some open challenges for the numerical simulations of black-hole
binaries, 1) extreme black-hole binaries, nearly maximal spins and extreme mass-ratios are still very hard
to accurately simulate, 2) long, accurate simulations and multiple physical scales require more efficient
evolution codes, and 3) better initial data are needed especially for highly spinning black-hole binaries
and for the inclusion of matter.

The possibility of observing electromagnetic counterparts from binary black-hole mergers is a very
exciting topic. This study requires 1) careful pre-merger modeling efforts, 2) a comprehensive approach
and reliable GR-MHD codes, and 3) open source codes for general relativistic astrophysics, such as
(http://einsteintoolkit.org/).

Astrophysicists can now test General Relativity in the highly-nonlinear regime. The simulations of
black-hole binaries can soon be used to look for gravitational waves reaching earth opening thus up a
brand new window onto the Universe.
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Classical dynamics of strings and branes, with application to
vortons

Brandon Carter

LUTH (CNRS), Observatoire Paris - Meudon

Abstract

These notes offer an introductory overview of the essentials of classical brane dynamics in
a space-time background of arbitrary dimension, using a systematic geometric treatment
emphasising the role of the second fundamental tensor and its trace, the curvature vector
K* . This approach is applied to the problem of stability of vorton equilibrium states of
cosmic string loops in an ordinary 4-dimensional background.

1 Worldsheet Curvature Analysis

1.1 The first fundamental tensor

Earlier treatments of the classical dynamics of strings and higher p-branes were inclined to rely too much on
gauge dependent auxiliary structures such as internal coordinates * on the d=p-+1 dimensional worldsheet,
which can be useful for various computational purposes but tend to obscure what is essential. The present
notes offer an introductory overview of a more geometrically elegant approach [1] that is particularly useful for
work in a background spacetime whose dimension n is 5 or more [2—4], but that | originally developed for the
purpose of studying cosmic string loops and particularly the question of the stability of their vorton equilibrium
states [5] in a background of dimension n=4. Following the strategy originally advocated by Stachel[6], the
guiding principle of this approach [1] is to work as far as possible with a single kind of tensor index, which
must of course be the one that is most fundamental, namely that of the n-dimensional coordinates, ", on
the background spacetime with metric g, .

The idea is to avoid unnecessary use of the internal coordinate indices, which are lowered and raised
by contraction with the induced metric 7);; = gu,a" ;2" ; (using the notation 2", = Oz /Jc" ) on
the worldsheet, and with its contravariant inverse 7]” . This is achieved by working instead with the (first)
fundamental tensor as given by projection back onto the background according to the prescription

" =alat (1)

(in the manner that is applicable to the contravariant version of any worldsheet tensor) so that 17*, will be
the tangential projector. The complementary orthogonal projector is ¥, = g#, — n* . As well as having
the properties 1), 1", = 1, and &' 17 = 1" = these projection tensors will evidently be related by

2, =0=1mn".

1.2 The second fundamental tensor

In so far as we are concerned with tensor fields such as the frame vectors whose support is confined to the d-
dimensional world sheet, the effect of Riemannian covariant differentation VN along an arbitrary directions on
the background spacetime will not be well defined, only the corresponding tangentially projected differentiation
operation

Vo= 1"V, (2)
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being meaningful for them, as for instance in the case of a scalar field o for which the tangentially projected
gradient is given in terms of internal coordinate differentiation simply by V¥ = 0"/ x# ;¢ ;. The action of
this operator on the first fundamental tensor N*" itself gives the entity

def
K,° = n°,Vun?, (3)
that we refer to [1] as the second fundamental tensor.

As this second fundamental tensor, KW’) will play an important role in the work that follows, it is worth
lingering [1] over its essential properties. The expression (3) could of course be meaningfully applied not only to
the fundamental projection tensor of a d-surface, but also to any (smooth) field of rank-d projection operators
nt, as specified by a field of arbitrarily orientated d-surface elements. What distinguishes the integrable case
— in which the elements mesh together to form a well defined d-surface through the point under consideration
— is the Weingarten identity, whereby that the tensor defined by (3) will have the symmetry property

K" =0, (4)

an integrability condition that is derivable [1] as a version of the well known Frobenius theorem.

As well as being symmetric, the tensor KWP is obviously tangential on the first two indices and also
orthogonal on the last: quf(gyp = K,,,71s" = 0. It fully determines the tangential derivatives of the
first fundamental tensor 7)#, by the formula

Viullvp = 2K pwp) (5)
(using round brackets to denote symmetrlsatlon) and it is characterisable by the condition that the orthogonal
projection of the acceleration %" = %"V, U" of any tangential unit vector field %" (with %" U, =-—1

) will be given by ! UK, = ﬂ’u ut

1.3 Extrinsic curvature vector and Conformation tensor

It is very practical for a great many purposes to introduce the extrinsic curvature vector I | defined [1]
as the trace of the second fundamental tensor,

def o
Kt = K"} =V, (6)

which is automatically orthogonal to the worldsheet, n* K* = 0. It is useful for many specific purposes
to work this out in terms of the intrinsic metric 77;; and its determinant |77| . For the tangentially projected
gradient of a scalar field ¢ on the worldsheet, it suffices to use the simple expression v“tp = T)ijx"ﬂ-cp,j .
However for a tensorial field (unless one is using Minkowski coordinates in a flat spacetime) the gradient will also
have contributions involving the background Riemann Christoffel connection Ful’p =g’ (gg(“’p) — %gupyg) .
The curvature vector is thus obtained in explicit detail as

1
K = = (VI ) ol T (7)
Ui

This expression is useful for specific computational purposes, but much of the literature on cosmic string
dynamics has been made unnecessarily heavy by a tradition of working all the time with long strings of non
tensorial terms such as those on the right of (7) rather than exploiting more succinct tensorial expressions,
such as KV =V, nh.

As an alternative to the universally applicable tensorial approach advocated here, there is of course another
more commonly used method of achieving succinctness in particular circumstances, which is to sacrifice
gauge covariance by using specialised kinds of coordinate system. In particular, for the case of a string,
i.e. for a 2-dimensional worldsheet, it is standard practise to use conformal coordinates 0° and o! so
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that the corresponding tangent vectors z* =z and 't = x#  satisfy the restrictions 'z, =0,
4, +a'Mx’, =0, which implies \/||7|| = 2'#a’ , = "%, , so that (7) simply gives \/||7|| K =
" =iV + (2 —heP)l Y,

The physical specification of the extrinsic curvature vector (6) for a timelike d-surface in a dynamic theory
provides what can be taken as the equations of extrinsic motion of the d-surface [1], the simplest possibility
being the “harmonic” condition K* = 0 that is obtained (as shown below) from a surface measure variational
principle such as that of the Dirac membrane model [7], or of the Goto-Nambu string model [8] whose dynamic
equations in a flat background are therefore expressible with respect to a standard conformal gauge in the
familiar form 2”/* — 2" =0,

There is a certain analogy between the Einstein vacuum equations, which impose the vanishing of the
trace RW of the background spacetime curvature prl,, and the Dirac-Gotu-Nambu equations, which
impose the vanishing of the trace /{¥ of the second fundamental tensor B’AH”, Moreover, just as it is
useful to separate out the Weyl tensor [9], i.e. the trace free part of the Ricci background curvature which is
the only part that remains when the Einstein vacuum equations are satisfied, so also analogously, it is useful
to separate out the the trace free part of the second fundamental tensor, namely the extrinsic conformation
tensor [1], which is the only part that remains when equations of motion of the Dirac - Goto - Nambu type
are satisfied.

Explicitly, the trace free extrinsic conformation tensor CWP of a d-dimensional imbedding is defined
[1] in terms of its first and second fundamental tensors as

def

1
Cun’l= Ku'— a'r/WK” : CvF=0. (8)

Like the Weyl tensor W),,”,, of the background metric (whose definition is given implicitly by (13) below)
this conformation tensor has the noteworthy property of being invariant with respect to conformal modifications
of the background metric: g, — ezagW =

K0 = K+ 10,17 Vya, Cunl— CuLr. (9)

This is useful [10] for work like that of Vilenkin [11] in a Robertson-Walker cosmological background, which
can be obtained from a flat spacetime by a conformal transformation for which € is a time dependent Hubble
expansion factor.

1.4 Codazzi, Gauss, and Schouten identities

As the higher order analogue of (3) we can go on to introduce the third fundamental tensor[1] as

def

E)\Myp =1 O'Mn Tyj—paﬁA]{O'Ta ) (1O>

which by construction is obviously symmetric between the second and third indices and tangential on all the
first three indices. In a spacetime background that is flat (or of constant curvature as is the case for the
DeSitter universe model) this third fundamental tensor is fully symmetric over all the first three indices by
what is interpretable as the generalised Codazzi identity.

In a background with arbitrary Riemann curvature R,\upg the generalised Codazzi identity is expressible

[1] as
—_ —_ 2 ¢ T @
:AHVP == (AMV)p + §77 AT (;ﬂ) V)RUTBO&J*pﬁ (11>

A script symbol R is used here in order to distinguish the (n- dimensional) background Riemann curvature
tensor from the intrinsic curvature tensor of the (d- dimensional) worldsheet to which the ordinary symbol
R has already allocated. For many of the applications that will follow it will be sufficient just to treat the
background spacetime as flat, i.e. to take Rmﬁa =0.
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For n > 2, the background curvature tensor will be decomposible (if present) in terms of the background
Ricci tensor and its scalar trace,

Ruy = Rpupuy R = RV}/ ) (12)

and of its trace free conformally invariant Weyl part W#,,po — which can be non zero only for n > 4 —in
the well known [9] form

o __ o 4 [p 0] 2 [p ol
R =W + 59, R~ tonesey RI 19 - (13)

In terms of the tangential projection of this background curvature, the corresponding internal curvature
tensor takes the form

R,uzzpa = 2]{p[u7—Ku]aT + 1 /1“7] )\VRR)\&Tn pan Ta' ) (14>

which is the translation into the present scheme of what is well known in other schemes as the generalised
Gauss identity.

The less well known analogue (attributable [9] to Schouten) for the (trace free conformally invariant) outer
curvature is expressible [1] in terms of the relevant projection of the background Weyl tensor as

-Q;wpa =2 C[qu CI/]TO’ +1n iﬂ] AVWH)\OCTJ—paJ—To— : (15>

In a background that is flat or conformally flat (for which it is necessary, and for n > 4 sufficient, that the
Weyl tensor should vanish) the vanishing of the extrinsic conformation tensor C#,,p will therefore be sufficient
(independently of the behaviour of the extrinsic curvature vector /X* ) for vanishing of the outer curvature
tensor QWpU , which is the condition for it to be possible to construct fields of vectors \* orthogonal to the

surface and such as to satisfy the generalised Fermi-Walker propagation condition to the effect that J_puﬁl,)\p
should vanish.

2 Laws of motion for a regular brane complex

2.1 Definition of brane complex

The term p-brane has come [12, 13] to mean a dynamic system localised on a timelike support surface of
dimension d=p+1 , in a spacetime background of dimension n> p . Thus a zero - brane means a “point
particle”, and a 1-brane means a “string”, while a 2-brane means what is commonly called a “membrane”.
At the upper extreme an ( n-1)-brane is what is commonly referred to as a “medium” (as exemplified by
a simple fluid). The codimension-1 (hypersurface supported) case of an ( n-2)-brane (as exemplified by a
cosmological domain wall) is what may be referred to as a “hypermembrane”, while the codimension-2 case
of an ( n-3)-brane is what may analogously be referred to as a “hyperstring”.

A set of branes forms a “brane complex” if the support surface of each (d-1)-brane member is a smoothly
imbedded d-dimensional timelike submanifold of which the boundary, if any, is a disjoint union of support
surfaces of lower dimensional members of the set. For the complex to qualify as regular [1] it is required that
a p-brane member can act directly only on an (p-1)-brane member on its boundary or on a (p + 1)-brane
member on whose boundary it is itself located, though it may be passively influenced by higher dimensional
background fields.

Direct mutual interaction between branes with dimension differing by 2 or more would usually lead to
divergences, symptomising the breakdown of a strict — meaning thin limit — brane description. To cure that
properly, a more elaborate treatment — allowing for finite thickness — would be needed, but it may suffice to
use a thin limit approximation [15] whereby the divergence is absorbed [16, 17] in a renormalisation.

In the case of a brane complex, the total action 7 will be given as a sum of contributions from the various
(d-1)-branes of the complex, of which each has its own Lagrangian d-surface density scalar (Y[ say. Each
supporting d-surface will be specified by a mapping 0 +— ${(I} giving the local background coordinates x*
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Figure 1: Nautical archetype of a regular brane complex in which a 3-brane (the wind) acts (by pressure
discontinuity) on a 2-brane (the sail) hemmed by three 1-branes (bolt ropes) terminating on 0-branes
(shackles) that are held in place by three more (free) 1-branes (external stay/sheet ropes).

( = 0, ..., n-1) as functions of local internal coordinates o* (@ = 0, ... , d-1). The corresponding d-
dimensional surface metric tensor (47);; induced as the pull back of the n-dimensional background spacetime
metric g, , determines the surface measure, @dS , in terms of which the total action will be expressible

T = Z/«ndg S @dS = +/||@n|| d% . (16)
d

as

2.2 Conserved current and the stress-energy tensor

As well as on its own internal (d-1)-brane surface fields and their derivatives, and those of any attached
d-brane, each contribution @], will also depend (passively) on the spacetime metric g, and perhaps other
background fields, of which the most common example is a Maxwellian gauge potential A, , for which the
corresponding field [, = 2V, A, , isinvariant under gauge changes A, — A+V,, and is automatically
closed, V[pFlW] = 0, Subject to the internal dynamic equations of motion given by the variational principle
stipulating preservation of the action by variations of the independent field variables, the effect of arbitrary
infinitesimal “Lagrangian” variations éAu , ég,w , of the background fields will be to induce a corresponding
variation

7= [T T ). (17
d

from which, for each (d—1)-brane, one can read out the electromagnetic surface current vector @ j# | and
also (since J((0dS) = %(dm’“’(éguy) @dS , ) the surface stress momentum energy tensor

OO,

@TH — @TVH — 9 + @ @ph (18)

g
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For any d-dimensional support surface <d)3, Green's theorem gives
/<d>d3 @OV, @) ¥ = %(dl)dg(d))\l/(d)jy’ (19)

taking the integral on the right over the boundary (d-1)-surface of IS of (dg, where (D), is the
(uniquely defined) outward directed unit tangent vector on the d-surface at its (d-1)-dimensional boundary.

The Maxwell gauge invariance condition (independence of < ) is thus seen to be equivalent to the electric
current conservation condition
@)\, G)jH = E @)\, @5+ (20)
d=p+1

which means that the source of charge injection into any particular (p-1)-brane is the sum of the currents
flowing in from the p-branes to which it is attached.

2.3 Force and the stress balance equation

The condition of being “Lagrangian” means that 1(5 is comoving as needed to be meaningful for fields
with support confined to a particular brane. However for background fields one can also define an “Eulerian”
variation, g , with respect to some appropriately fixed reference system, in which the infinitesimal displacement

of the brane complex is specified by a vector field £# . The difference will be given by § — ](35 = 55 , where

the E_:Q is the Lie differentiation operator, which will be given for the relevant background fields by the
familiar formulae S:EA# = PV, AL+ ANLEP L and {:EgWZQV(Mf,,) .

In a fixed Eulerian background, the background fields will have Lagrangian variations given just by their Lie
derivatives with respect to the displacement £# . Subject to the internal field equations, the action variation 67

due to the displacement of the branes will therefor just be Zd f(d)dg <<de” f_;EAy-i— L @ 6_;69,“,) .

The postulate that this vanishes for any £# entails the further d-surface tangentiality restriction (UL*) @7VP =
0 and (by the Green theorem) the dynamic equations

@\, 0T+, = ®f (21)

in which total force density,

®f, = (p)fp + (").]Em (22)

includes the Faraday-Lorenz contribution (P)fp = F,, () j# . from the background, while on each (p-1)-
brane, the contact force exerted by attached p-branes is

®f , = Z @\, @T*H, | (23)

d=p+1

in which it is to be recalled that, on the (p+l)-dimensional support surface of each attached p-brane, <d>)\u
is the unit vector that is directed normally towards the bounding (p-1)-brane.

The tangential force balance equations will hold as identities when the internal field equations are satisfied
(because a surface tangential displacement has no effect). The non-redundent information governing the
extrinsic motion of a (d—1)-brane will be given just by the orthogonal part. Integrating by parts, as the surface
gradient of the rank-(n—d) orthogonal projector ®I* ~ will be given in terms of the second fundamental tensor
@I, * of the d-surface by

“’Wu (pj_”p = _ (p>KWP _ (p>[(upy , (24)
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the extrinsic equations of motion are finally obtained in the form
Y P — (p)P Iz
® (p)AMV = (pj_u ®fH (25)

It is to be remarked that this is valid not just for a conservative force such as the electromagnetic example
considered above, but also for dissipative forces such as frictional drag[10] by a relatively moving background
medium.

The most familiar application is to the case p = 1 of a point particle of mass /7 with unit velocity vector

2" and orthogonally directed acceleration vector | for which one has n*¥ = —ztz¥ | TH = mztz"
KWe = ghiviP | sothat KP = —if and TWK, P = mi’.

3 Canonical Liouville and symplectic currents

3.1 Canonical formalism for Branes

For the study of small perturbations, and particularly for the systematic derivation of conservation laws asso-
ciated with symmetries, it is useful to employ a treatment of the canonical kind that was originally developped
in the context of field theory (as a step towards quantisation) by Witten, Zuckerman, and others [18-24].
This section describes the generalisation of this procedure to brane mechanics in the manner initiated by
Cartas-Fuentevilla [25, 26] and developed in collaboration with Dani Steer [27]. After a general presentation,
including a review of the relationships between the various (Lagrangian, Eulerian and other) relevant kinds of
variation, the procedure is illustrated by application to a particular category that includes the case of branes
of purely elastic type.

Consider a generic conservative p-brane model whose mechanical evolution is governed by an action integral
of the form

Iz/ﬁ&“m (26)

over a supporting worldsheet with internal co-ordinates o' (’i =0,1,.. p) ; and induced metric 7);; =
gwxl;xf’,j in a background with coordinates x*, (u = 0,1,..n— 1), (n > p+ 1) and (flat
or curved) space-time metric g,,, . The relevant Lagrangian scalar density L= ||7]||1/2Z, is given as a

function of a set of field components g4 - including background coords — and of their surface deriatives,
q", = 0;,¢* = 0g*/0c". The relevant field variables ¢*  can be of internal or external kind, the most

obvious example of the latter kind being the background coordinates £* themselves.
The generic action variation,

0L = L,5q* +pog%;, (27)

specifies partial derivative components ﬁA and and corresponding generalised momentum components p/f .
The variation principle characterises dynamically admissible “on shell” configurations by the vanishing of the
Eulerian derivative

oL -
5o =L~ ps (28)
In terms of this Eulerian derivative, the generic Lagrangian variation will have the form
5L i
There will be a corresponding pseudo-Hamiltonian scalar density
H=plq—L, (30)

for which

OH = ¢%0p, — L,6q" . (31)
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(The covariance of such a pseudo-Hamiltonian distingushes it from the ordinary kind of Hamiltonian, which
depends on the introduction of some preferred time foliation.)

For an on-shell configuration, i.e. when the dynamical equations

oL

are satisfied, the Lagrangian variation will reduce to a pure surface divergence,

oL = (pAquA)ﬂ. , (33)
and the correponding on-shell pseudo-Hamiltonian variation will take the form
OH = q%0p, —p! ;0g* . (34)
3.2 Symplectic structure
The generic first order variation of the Lagrangian will be given by
oL ;
5L = 500t + 0 (35)
in terms of the generalised Liouville 1-form (on the configuration space cotangent bundle) defined by
N 3
V' =p,oq*. (36)

Now consider a pair of successive independent variations 0, 0 , which will give a second order variation

of the form % %
560 = 5<M—A>5qA bt (8p} 80> +p:58q*) . (37)
Thus using the commutation relation 08 = 00 one gets
\ 5£ Z Z 6£ \ N -
b= )00t (= )dar =5, 38
6q1\ q 5qA q " ( )
where the symplectic 2-form (on the configuration space cotangent bundle) is defined by
o = (5/p/i5qA — 5pi(§qA : (39)
For an on-shell perturbation we thus obtain
oL :
= -0 = SL=10;, (40)
ogs

while for a pair of on-shell perturbations we obtain

5(%):5(5;)20 I (41)
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The foregoing surface current conservation law is expressible in shorthand as
w" g = 0 s (42)

in which the closed (since manifestly exact) symplectic 2-form (39) is specified in concise wedge product
notation as

=AY = (5pf\ Adg* . (43)

Some authors prefer to use an even more concise notation system in which it is not just the relevant
distinguishing (in our case acute and grave accent) indices that are omitted but even the wedge symbol
/\ that indicates the antisymmetrised product relation. However such an extreme level of abbreviation is
dangerous [25] in contexts in which symmetric products are also involved.

3.3 Translation into strictly tensorial form

To avoid the gauge dependence involved in the use of auxiliary structures such as local frames and internal
surface coordinates, by working [28] just with quantities that are strictly tensorial with respect to the back-
ground space, one needs to replace the surface current densities whose components V' and ' depend on
the choice of the internal coordinates (TY:, by vectorial quantities with strictly tensorial background coordinate
components given by

O = [l et = (4)

K
and with strictly scalar divergences given by

VO =l T = e (45)

)

In terms of the surface projected covariant differentiation operator defined in terms of the fundamental
tensor M = T}”J:“ix”j by V, =n",V,, one thus obtains a Liouville current conservation law of the
form

V,0" =0 (46)

for any symmetry generating perturbation, i.e. for any infinitesimal variation d¢* such that 6L = 0.
Similarly a symplectic current conservation law of the form

Y, 0 =0 (47)

will hold for any pair of perturbations that are on-shell, i.e. such that §(6L/dg*) = 0.

3.4 Application to hyperelastic case

In typical applications, the relevant set of configuration components g will include a set of brane field
components (© as well as the background coords z* , so that in terms of displacement vector £ = Jxt
the Liouville current will take the form

—1/2 i j
0¥ = |Inl| 22" (pa’ 09" + p, €) = ma” 09" + 7,0 EF, (48)
in which the latter version replaces the original momentum components by the corresponding background
tensorial momentum variables, which are given by 7,7 = ||77||_1/2 l"fi Do’ and WMV = ||77||_1/2 :L"j,i plf .

The hyperelastic category [29] (generalising the case of an ordinary elastic solid which includes the special
case of an ordinary barotropic perfect fluid) consists of brane models in which — with respect to a suitably
comoving internal reference system 0 — there are no independent surface fields at all — meaning that the ¢
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and the pai are absent — and in which the only relevant background field is the metric g,,,, that is specified
as a function of the external coordinates * . In any such case, the generic variation of the Lagrangian
is determined just by the surface stress momentum energy density tensor T according to the standard
prescription

1 —
52 = Sl T g (49)

whereby TH s specified in terms of partial derivation of the action density with respect to the metric.

In a fixed background (i.e. in the absence of any Eulerian variation of the metric) the Lagrangian variation
of the metric will be given by ég/w = {£guw = 2V(,&€,) . Comparing this to canonical prescription
0L = L6 + pu’fli with & = daxt s_hows that the relevaripartial derivatives will be given by the
(non-tensorial) formulae £, = ||n||*/2 Lo, pl = |72 T'pwnx”; . It can thus be seen that in

v

the hyperelastic case, the canonical momentum tensor 7, © and the Liouville current ©Y will be given just

in terms of surface stress tensor 1" by the very simple formulae

/=T, eV =T, . (50)

In order to proceed, we must consider the second order metric variation, whereby (following Friedman and
Schutz [30]) the hyper Cauchy tensor (generalised elasticity tensor) E#*P7 = PV s specified [31] in terms
of Lagrangian variations by a partial derivative relation of the form

(Il T = (InllY2€#7 g, . (51)
The symplectic current is thereby obtained in the form
Q@ =0rANE, (52)

where

O =2C," NP +T"V,¢,. (53)

4 Brane perturbation by gravitational radiation

4.1 Generic case

A background metric perturbation (Sgl“, = h;w will provide an extra Lagrangian and stress contribu-
tions 0L = %Tpghp(,, and 6T = E‘nghp(,, whence a corresponding force increment 57“ =
1T NP h,, — Y, (Twh(,“) . The effect of this is expressible as the inclusion of an extra term TG“ on
the right of the original force balance equation, as expressed in terms of the unperturbed values of the metric
Guv , stress tensor THv , and force density f#, so as to obtain a perturbed force balance of the form

V= T (54)
in which the effective gravitational perturbation contribution is given by

T = 3TV hyy — VU, (T ho" + Tl ) (55)

a formula that was not so well known until relatively recently [31].
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4.2 The case of a simple Dirac-Nambu-Goto type brane

The simplest dimensionally unrestricted application, is to a p-brane of the Dirac-Nambu-Goto type, for which
the relevant master function is simply constant, so given in terms of a corresponding Kibble mass M, by
L= —MIE"H . (In the context of superstring theory M, is typically of the order of magnitude of the Planck
mass M, , whereas in the context of cosmic string theory the Kibble mass is expected to comparable with
the relevant Higgs mass, M, . ) In this special case, the surface stress momentum energy tensor is of course
simply proportional to the fundamental tensor:

TH = — T T =mPH (56)

so its trace will be given by T=— (p+1)7 , where 7 s interpretable as the surface tension. The
corresponding the hyper-Cauchy tensor is found[31] to be

CHrPo — ’Z'(T/“(”T/")” — %7/“”7}"") . (57)
The dynamical equation of motion (54) will therefor reduce to the form
TR =, (58)

in which (as well as the possibility of drag) the right hand side will include an effective gravitational contribution
expressible[31] in the form f,* = f* + f,*', with

Sl =T 1#nye (Vphw — %Vl,hpg) , (59)
St =T (VKP4 g K# — K¥P) Dy, (60)
It was observed by Battye[32, 33] that the early work on gravitational perturbations of strings cited by Vilenkin

and Shellard in their 1994 treatise [34] was seriously flawed by the use for estimating f,* of a formula (7.7.3)
without the orthogonal projection operator L*¥ in the expression (59) for f,*, and entirely lacking the
contribution f;#* which might be relatively negligible for high frequency radiation[32] of external origin, but
not in the case of self-interaction for which the two contributions will be comparable. The self interaction
contributions from (59) and (60) will be separately divergent, but in the “hyperstring” case these divergences
will actually cancel each other. Thus (contrary to what was claimed in (7.7.7) [34]) the total self-interaction
will remain finite[16, 17, 33] whenever the codimension is 2, as for an ordinary string in 4 dimensions (or for
a “brane-world” in 6 dimensions).

4.3 Regularisation of self-interaction

To treat such self-interaction one must face the problem that the regularity condition (see Figure 1) is violated
whenever a brane of dimension d = p + 1 acts on a background of dimension n > d + 2, . To
cure this, a physically realistic regularisation involves replacing the infinitely thin worldsheet by a support of
finite thickness. The divergent self-interaction fields such as Aﬂ and h/w are then replaced by regularised

averages Aﬂ and h/w with dominant contribution proportional to the relevant source [16, 17]. This means
Aﬂ o j* and huv x (n — 2>T/w — TU Juv » which for a Nambu-Goto hyperstring, p = n — 3, gives
o (p+ 1)7 1# | with a proportionality coefficient that diverges as the thickness tends to zero. On
such world sheet confined fields, the ordinary gradient operator V,, must be replaced by the corresponding
regularlsed operator V,,, so that for example the field F = ZV[#A,, will have the regularlsed average

F,w = ZV[MA,,] , as needed for the electromagnetlc self-interaction force density f F The

pi Vi

required result, giving zero gravitational contribution, fG“ = (0, for Nambu-Goto hyperstrings (including
[33] the ordinary string case p=1 with n=4) has been shown [15] to be provided generally by the conveniently

simple and easily memorable formula V,, =V, + t K,
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5 Vorton equilibrium states of elastic string loops

5.1 The category of simple elastic string models

For any string model the fundamental tensor of the 2 dimensional worldsheet will be expressible in terms of
any orthonormal diad of space like and timelike vectors %", %" as nt, =—-utu”+ UM UY . There
will generically be a prefered diad with respect to which the symmetric surface stress energy tensor will be
expressible as

T =y u'u’ — T W B (61)

where 7 is the string tension, and {{ is the surface energy density, which, in the elastic case, is determined
as a function of 7 by an equation of state.
In addition to the extrinsic (transversely polarised) “wiggle” perturbations which, as in any string model,

travel with a characteristic velocity v = \/T/?/{ such a model has perturbation modes of only one other
kind: these are sound type (longitudinal compression) “woggle” modes, which propagate relative to the locally

preferred frame with speed given by the formula v, = 4/ —dT/dZ/{ . A particularly important special case
is that of models of the integrable transonic type [35] for which the “wiggle” and “woggle” speeds coincide,
which occurs when the equation of state is specified simply by the specification of a fixed value for the product
UT . The kind of model appropriate for representing such familiar technical applications as bow strings, or
the strings of musical instruments, will generally be of subsonic type, meaning that the wiggle speed v s less
than the sonic speed v, while on the other hand it has been shown by Peter [36] that models of supersonic
type will commonly be needed for the representation of cosmic strings of the conducting vacuum vortex type
envisaged by Witten [37].

A model of any such elastic type is specifiable in variational form by a string Lagrangian [, depending
only on the magnitude of the gradient of some stream function ¢ (which in the Witten case represents
the phase of a complex scalar field). This means that the string model is characterised by a single variable
equation of state giving L. as a function of the scalar w = 1" ;¢ ;. It is useful [14, 38] to introduce
the corresponding adjoint formulation in terms of the quantity A = L + wk, with k = —2dL/dw.
When w < 0, one finds that the tension and energy density will be given by 7 = — L, Uu=-A,

while when w > 0 they will be given by 7 = —A, U = —L. In all cases the phase gradient
is proportional to a surface current, ¢¥ = :B’fﬁb , ¢ =rn7p,; =—0L/Op,, that has the property of
being conserved, (\/—’]EZ),i = 0, whenever there is no external force, so that the equation of motion of
the worldsheet reduces to the simple form 7" K ,,» = 0, with T* = 2~ 1a"c" 4+ Lk .

When he originally introduced the concept of conducting cosmic strings [37] Witten suggested that a simple
linear action formula, L = —7112(1 +62 w) , involving just a single extra parameter (namely a lengthscale
04 ) might be used as a good approximation, least in the weak current limit for which w is sufficiently small.
However it subsequently became clear that such a linear formula is inadequate even in the weak current limit,
since it implies that wiggle propagation would always be subsonic v? < UL2 , whereas detailed examination of
the relevant kind of vacuum vortex by Peter [36] revealed that the wiggle propagation in such a case would
typically be supersonic v?2 > v? As a more satisfactory replacement for Witten's direct linearity ansatz,
it has been found [39, 40] that at the cost of introducing one more mass scale 772, , a reasonably good
representation is obtainable by using an ansatz of logarithmic form L = —m?— $m21n {l—i—()f w}.

5.2 Stationary string states in flat background

We shall conclude this overview by considering what can be said about stationary equilibrium states, as
characterised, in a flat background a world sheet that is tangent to a timelike unit static Killing vector satisfying
VM/{J” = 0 . In such a worldsheet there will also be an orthogonal (and therefor spacelike) unit tangent vector
et satisfying the invariance condition k”V,e* = 0. For such a worldsheet, the first fundamental tensor
will be given by " = —kMEY + ete” | while in terms of the curvature vector, K* = e"V, et | the
second fundamental tensor will be given by /\'),,* = ¢,¢, K7 .

Within the worldsheet, the preferred timelike eigenvector of the stress energy tensor, as characterised by
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the relation T u” = —Uu, will be expressible in the form
' = (1=0?) V2 (kP v et) (62)

which defines the relative flow velocity v . Under these conditions, the free dynamical equation (5.1) can be
seen to reduce to the simple form (U — v?*7T)KP = 0.

For an infinitely long string this equation can of course be solved in a trivial manner by choosing a
configuration that is straight, which means /X” = 0 , in which case the value of v is unrestricted. However
for a finite closed loop the curvature cannot vanish everywhere, and where /X” is non-zero the only way of
satisfying the extrinsic equilibrium condition(5.2) is for the relative flow velocity to bethe same as the relevant

wiggle propagation speed: v = \/T/Z/{, while to satisfy the intrinsic (current conservation) equilibrium
condition it is trivially sufficient (and generically necesssary) for the value of this speed to be uniform. Provided
this centrifugal equilibrium condition is satisfied, there is no retriction on the curvature, which need not be
uniform: thus the equilibrium configuration of the string loop need not be circular, but may have an arbitrary
shape.

After thus obtaining the generic condition for string loop equilibrium, the next problem is to find which of
such vorton equilibrium states are stable. This question has so far been dealt with [5, 41] only in the simple
case of equilibrium configurations that are circular.

5.3 Stability criterion for circular vorton states

It is easy to see that the stability of a uniform circular equilibrium state of an elastic string loop in a flat
background will depend just on the extrinsic (wiggle type) and longitudinal (sound type) perturbation speeds,
v and v, . Moreover it is fairly easy to show [5] that such a state will always be stable in the subsonic
case, v? < UL2 , which is what is most likely to be relevant in a terrestrial engineering context.Even in the
supersonic case, it has been shown [5] that monopole 7 = 0 and dipole 7 = 1 perturbation modes are
always stable. However instability may occur for higher modes, . > 2 for which, in a state with radius a ,
the eigenfrequency W is given by the solution of an equation of the cubic form 22 4 box? + bz + by = 0,
for the quantity x = (J,u}/?)+ n, where v, = 2v/(1+ v?), is the relative velocity of orthogonaly
polarised forward propagating wiggles, and the coefficients of the cubic are given by by = ['— 2 — &

by = 2+ (1 +&(1—=n"2), by = I'(1—n"2), using the notation & = (1 — 1)3),
=202 2 202
I'=vi*(v? —v?)/(1—v’v?).
The stability criterion, for all the roots to be real, is the positivity of a discriminant A = b2b2 +
18bybiby — 4b3 — 4b3by — 27602. Figure 2 shows the zones of negativity (instability) for the lowest
relevant mode numbers, . = 2,3, ... by Martin [41]. In the ultrarelativistic limit v — 1 , v, — 1 that

is relevant for weak currents in conducting cosmic strings, one gets £ — 0 and
A— dn2(F+1+n D2 (M +1-n"1)3, (63)

which is strictly positive (implying stability) almost always, the unstable exceptions being on the lines con-
verging in the plot to the limit point =1, Uf = 1 with gradient given in terms of the corresponding

node number by 1/(2n — 1).

The upshot is that although some circular vorton states are unstable, there are plenty more — the ones that
would presumably be selected under natural conditions — that are stable, at least with respect to macroscopic
string perturbations. It is however to be remarked that — since it deals only with the thin string limit — the
kind of analysis described here can not resolve the (sensitively model dependent) issue of stability with respect
to quantum effects or other processes involving the microscopic internal structure of the vacuum vortex or
whatever else may constitute the string.
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Figure 2: Zones of instability of circular vorton states, as obtained by X. Martin on plot of squared
rotation (and wiggle) speed, v?, against squared “sonic” speed v .
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Abstract

We derive slow-roll conditions for thawing quintessence. We solve the equation of
motion of ¢ for a Taylor expanded potential (up to the quadratic order) in the limit
where the equation of state w is close to —1 to derive the equation of state as a function
of the scale factor. We find that the evolution of ¢ and hence w are described by only
two parameters, wo (the present-day value of w), and the K, which parametrizes the
curvature of the potential, and w(a) is model-independent. We derive observational
constraints on these two parameters. We also derive the slow-roll conditions for a non-
minimally coupled scalar field (extended quintessence) during the radiation/matter
dominated era extending our previous results for thawing quintessence. We find that
the ratio ¢/ 3H ¢ becomes constant but negative, in sharp contrast to the ratio for
the minimally coupled scalar field. We also find that w(a) asymptotically approaches
that of the minimally coupled thawing quintessence.

1 Introduction

It is my great pleasure to give my talk at this special occasion celebrating Prof. Maeda and Prof.
Nakamura’s 60th birthday. I have several joint papers with both of them about black holes and cosmic
no hair conjecture, which I am very proud of. The topic I discuss is dark energy, about which I wrote
several papers (including X-matter paper [1]) with Takashi Nakamura more than ten years ago when I
was a postdoc at Yukawa Institute. More specifically, I consider slow-roll dark energy. Firstly I explain
the motivation of my study and then I derive the slow-roll conditions of a certain type of scalar field dark
energy models (called thawing model) and derive the equation of state of such a dark energy model. I
also fit the equation of state to observational data and put constraints on the parameters involved in the
equation of state. Next, I extend the dark energy model to include non-minimal coupling with gravity. I
derive the slow-roll conditions of such a non-minimally coupled quintessence and find such a dark energy
behaves very differently from a minimally coupled quintessence. I also find however that the equation of
state approaches to that of minimally coupled quintessence. Finally I summarize my talk.

2 Slow-roll Dark Energy

There is strong evidence that the Universe is dominated by dark energy, and the current cosmological
observations seem to be consistent with ACDM. The equations of state of dark energy, w, is close to —1
within 10% or less. However, how much is a dark energy model close to the cosmological constant? In
order to quantify such ”distance from the cosmological constant” in the dark energy theory space, we
need to introduce a parametrization of the equation of state, w(a), which parametrizes the deviation from
the cosmological constant, w = —1. Moreover, since w is close to —1 This implies that even if a scalar
field (dubbed ”quintessence” [2]) plays the role of dark energy, it should roll down its potential slowly
because its kinetic energy density should be much smaller than its potential. In this situation, as in the
case of inflation, it is useful to derive the slow-roll conditions for quintessence because the dynamics of
the scalar field can be discussed only by simple conditions without having to solve its equation of motion
directly. Quintessence models are classified according to their motion [3]: In ”thawing” models the scalar
fields hardly move in the past and begin to roll down the potential recently, while in ”freezing” models
the scalar fields move in the opposite ways and gradually slow down the motion. We will mostly consider
the slow-roll conditions for thawing models since the observational data already favor them and there
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are several particle physics models for them. Note however that our consideration will not be limited to
quintessence but will be applied to the case when the scalar fields which are subdominant components in
the universe move slowly. Axions, curvatons, and moduli before the oscillation can be such fields.

2.1 Slow-roll Conditions

We first derive the slow-roll conditions for thawing quintessence models [4]. Working in units of 87G = 1,
the basic equations in a flat universe are

b+3H)+V' =0, (1)
a\®> 1

H*=(-) == 2

(2) =3m+re) 8

) 1 1 .
H = =3 (o5 +p8) + (po +p6)) = =5 (L +we)ps + 62). (3)

where V' = dV/d¢, H = a/a is the Hubble parameter with a being the scale factor, pg(pp) is the energy
density (pressure) of matter/radiation, py = /2 + V(¢)(py = $>/2 — V(¢)) is the scalar field energy
density (pressure), and wp is the equation of state of matter/radiation.

By slow-roll quintessence we mean a model of quintessence whose kinetic energy density is much
smaller than its potential,

%(;32 <V (4)

Unlike the case of inflation, we do not require that ¢ is smaller than the friction term 3H qb in Eq. (1)
since H is not determined by the potential alone, but by the matter/radiation along with the scalar field
energy density.

With fixed wy, slowly rolling thawing models correspond to the equation of state w = py/py very
close to —1, so that the Hubble friction is not effective and hence ng is not necessarily small compared
with 3H (;5 in Eq. (1). Slowly rolling freezing models correspond to models whose w is not so close to —1
compared with thawing models so that the Hubble friction is effective and ¢ is smaller than 3H¢ in Eq.
(1).

We derive the slow-roll conditions for thawing quintessence during the matter/radiation dominated
epoch. We first introduce the following function :

3

Bzﬁ-

(5)
As stated above, for thawing models, 3 is a quantity of O(1). We assume (3 is an approximately constant
in the sense |3| < H|3|, and the consistency of the assumption will be checked later. In terms of 3, using
Eq. (1), ¢ is written as

. V!
T “
and the slow-roll condition Eq. (4) becomes
2
€= oy <1, (7)

where we have omitted 1 + 3 since it is an O(1) quantity and introduced the factor of 1/6 so that
€ coincides with the inflationary slow-roll parameter, ¢ = 1(V’/V)?2, if the scalar field dominates the
expansion: H? ~ V/3. Eq. (7) is a quintessence counterpart of the inflationary slow-roll condition
(V')V)?2 < 1.
Similar to the case of inflation, the consistency of Eq. (5) and Eq. (1) should give the second slow-roll
condition. In fact, from the time derivative of Eq. (6)
Vv 14+wp ., 1%

¢= 91+ B)2H?  2(1 +5)V + 3(1+B)2H’

(8)
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where we have used H/.H2 ~ —3(1 +wp)/2 from Eq. (2) and Eq. (3). On the other hand, from Eq. (5)
and Eq. (6), ¢ =30H¢ = —pV'/(1+ (), and so we obtain

v (1+wp) s v (1+wp)
G+pE 2 304mH - a+mEE T 2 ©)

7=

where we have used ﬂ < HpB. While the left-hand-side of Eq. (9) is an almost time-independent quantity
by assumption, the first term in the right-hand-side is a time-dependent quantity in general. Therefore
the equality holds if the first term is negligible:

V//
= g Inl <1, (10)
so that 8 becomes
1
§= -0 (11)
2
or the left-hand-side is negligible:
18] < 1, (12)
so that
3
n= 5(1+w3)~ (13)

The former condition corresponds to the slow-roll thawing models, while the latter corresponds to the
slow-roll freezing models. /3 given by Eq. (11) is an approximately constant, which is consistent with
our assumption. Here the factor 1/3 is introduced in Eq. (10) so that 5 coincides with the inflationary
slow-roll parameter, n = V" /V, if H?> ~ V/3. Eq. (10) is a quintessence counterpart of the inflationary
slow-roll condition |V"|/V < 1.

Eq. (7) and Eq. (10) constitute the slow-roll conditions for thawing quintessence during the mat-
ter /radiation epoch. Moreover once the universe becomes dominated by the scalar field, the two condi-
tions reduce to the usual inflationary slow-roll conditions from H? ~ V/3. Therefore, these conditions
(Eq. (7) and Eq. (10)) are the slow-roll conditions for thawing quintessence at all times, both during
the matter/radiation era and during the scalar field dominated era. Note that since H2 > V/3, the
inflationary slow-roll conditions are sufficient conditions for slow-roll thawing quintessence during the
matter/radiation era, not necessary conditions. In Fig. 1, the evolution of 3 is shown for a thawing
quintessence model (V = M?*(1 — cos ¢)). The evolution of 3 agrees nicely with Eq. (11).

2.2 Equation of State

Next we derive general solutions of ¢ in the limit of |1 + w| < 1 and derive w as a function of a. To do
so, we first note that the Hubble friction term in Eq. (1) can be eliminated by the following change of
variable

u=(¢— ¢:)a’?, (14)
where ¢; is an arbitrary constant, which is introduced for later use, and then Eq. (1) becomes
3
ﬂ+1@3+pwu+aw%”20. (15)

We assume a universe consisting of matter and quintessence with w ~ —1. Then the pressure is well
approximated by a constant: pp + pg = pp ~ —pgo, Where pgo is the nearly constant density contributed
by the quintessence in the limit w ~ —1. Eq. (15) then becomes

3
i — 7Po0ut a®?V' = 0. (16)
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Figure 1: [ as a function of a for thawing quintessence model with the axion-like potential V =
M*(1 — cos ¢). The dotted lines are 3 = 2/3,1/2, respectively.
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Since we consider a slow-roll scalar field, the potential may be generally expanded around some value ¢;,
which we identify with the initial value, in the form (up to the quadratic order)

V(6) = V(9 + V/(6)(6 — ) + 5V (00)(6 — 00)" (1)
Substituting the expansion Eq. (17) into Eq. (16) and taking pgo = V(¢;) gives
i + (V”((bi) — iV(qﬁi)) w=—V'(¢;)a’/?. (18)

Being consistent with |w 4+ 1| < 1, we assume a(t) is well approximated by its value in the ACDM model
which is given by

B 1/3
a(t) = (1 sz) sinh?/3(t/ts), (19)

where {40 is the present-day value of density parameter of quintessence, a = 1 at present, and 5 is
defined as tA = 2/1/3pg0 = 2/4/3V(¢;). Since Eq. (18) is a second order linear ordinary differential
equation, it can be solved analytically. The solution, which is valid if the initial time is much earlier than
the present time, is [4]

)= dit X'/’((Z)) (ktAS:I}llélg/) ta) 1) ’ (20)
where k = \/(3/4)V(¢;) — V" (¢;). Then the equation of state becomes [4]
N (e S L
where
K= hty = |1- 2V00) (22)
3 V(i)
Fla) = \/1+ (@50 — a2, (23)

We also studied the slow-roll conditions for k-essence [5] and find that the equation of state obeys
the same functional form as Eq. (23) since the k-essence Lagrangian can be Taylor-expanded for small
kinetic energy, X = ¢2/2, if it is analytical

p(X,¢) = p(0,¢) + (Op/0X) X + ..., (24)

and it reduces to that of canonical scalar field by field redefinition [6].

2.3 Observational Constraints

The results of this paper indicate that Eq. (21) applies both to quintessence models and to a subset of
k-essence models with w ~ —1. Hence Eq. (21) is a useful and physically well-motivated parametrization
for w(a) that can be compared with the observations. So, in this section, we present the observational
constraints on the equation of state parameters wg and on K [6].

First, we note that the cosmological constant corresponds to a line in the (wp, K) plane: wy = —1
irrespective of K. This can be understood for a canonical scalar field by noting that wg = —1 corresponds
to the case where the scalar field sits at the minimum (K < 1) or the maximum (K > 1) of the potential.

As observational data we consider the recent compilation of 397 Type Ia supernovae (SNla), called
the Constitution set with the light curve fitter SALT, by Hicken et al. [7] and the measurements of BAO
from the recent SDSS data [3].
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Figure 2: Contours at 68.3% (red, inner), 95.4% (blue, middle), 99.7% (green, outer) confidence level on
wo and K. The Constitution SN set was combined with BAO constraint.

BAO measurements from the SDSS data provide a constraint on the distance parameter A defined by

=0y (i) ([ ) )

to be A(z = 0.35) = 0.493 + 0.017 [3].

The joint constraints from SNIa and BAO are shown in Fig. 2. We marginalize over (), to derive the
constraints. The allowed range of wy is narrow: —1.14 < wy < —0.92(10). We find that the cosmological
constant wy = —1 is fully consistent with the current data. Note that K, which parametrizes the curvature
of V(¢;), is not well-constrained by current SNIa and BAO data.

3 Slow-roll Extended Quintessence

In this section, we further study the slow-roll conditions for a scalar field non-minimally coupled to gravity
(called extended quintessence) and examine to what extent the results for minimally coupled quintessence
are universal [9].

We consider the cosmological dynamics described by the action
1 1
S= [dova |k - FOR= 5V - V(0)] + 5. (26)

Here k2 = 87Gpqre is the bare gravitational constant, F(¢) is the non-minimal coupling and S,,, denotes
the action of matter (radiation and nonrelativistic particle).
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The equations of motion in a flat FRW universe model are

é+ 3HS +V'(4)+6F(¢) (H n 2H2) -0, (27)
3H? = K2 (,03 + %(;52 + U) =: liz(pB + p¢) =: :‘izptom (28)
2 = k2 (pp st ps+ 822 -V = 26 — AHP — 2F (21 + 3H?)) (29)

= =2 ((1+ws)ps + po +Ps) »
U = V+6H(F+HF>, (30)

where ' = d/d¢, pp and pp denote the background (radiation and matter) energy density and pressure,
respectively, and wg = pp/pp is the equation of state of radiation and matter.

3.1 Slow-roll Conditions

We derive the slow-roll conditions for extended (thawing) quintessence during the matter /radiation dom-
inated epoch [9]. Eq. (27) then becomes

¢+3Ho+ Vg =0, (31)
e =V +3F H*(1 - 3wg). (32)
By “slow-roll”, we mean that the movement of ¢ during one Hubble time is much smaller than ¢. On

the other hand, the condition that the kinetic energy density of the scalar field is much smaller than the
potential U (Eq. (30)) in the energy density of the scalar field py (Eq. (28))

1.
5¢>2<<U, (33)

implies that
P?H 2 < k72 < ¢, (34)

~

from U < piot ~ v 2H? if k¢ 2 1. Hence we regard Eq. (33) as the slow-roll condition.
We derive the consistent set of the slow-roll conditions. We again consider the ratio,

3

/6:3?#).

(35)

For slow-roll (thawing) models, we first assume that 3 is an O(1) approximately constant quantity not
equal to —1 in the sense |3| < H|A3|, and the consistency of the assumption will be checked later. In
terms of 3, using Eq. (31), ¢ is rewritten as

. Vi
9= 31+ pB)H’ (36)

and the condition Eq. (33) gives the first one of the slow-roll conditions

Vei <1 (37)
€:=
6H2U ’
where we have omitted 1+ ( since it is an O(1) quantity and introduced the factor of 1/6 in € so that
N2
€ coincides with the inflationary slow-roll parameter, ¢ = % <X—V) , if the scalar field dominates the

expansion: H? ~ k?V/3 and U ~ Vg ~ V.
Similar to the case of inflation, the consistency of Eq. (35) and Eq. (31) should give the second
slow-roll condition. In fact, from the time derivative of Eq. (36)

5 - —Ed)— & (b_F"H(png). 3F'H(1—3wp) 8
- 3(1+pB)H 1+ 03 1+ 3 1+0

. Y
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where we have used (H?(1 —3wp)) ~ —3H*(1 —3wp). On the other hand, from Eq. (35) and Eq. (36),
¢ =30H¢ = —FV)/(1+ (), and so we obtain

6=i- N _H V" F'(1-3wp) V-V
3H 3H?  9(1+pB)H? 31+ 0) Ve
_ wp—1 v F"(1=3wg) V'
- 2 9(1 + B)H?2 3(1+3) - Vi’ (39)

where we have used 3F’ H?(1 —3wp) = V3 — V' and |3| < H|G|. While the left-hand-side of Eq. (39) is
assumed to be an almost time-independent quantity, the terms other than the first in the right-hand-side
are time-dependent quantities in general. Therefore the assumption is consistent if they are negligible:!

"

7 : <1, (40)

V/
=—:; |nl<1 and |F"(1-3wp)|<1 and ‘—
3H? Vi

so that 8 becomes

wB—l

f=—

(41)

3 given by Eq. (41) is consistently an O(1) constant not equal to —1. Here the factor 1/3 is introduced
in 7 so that 7 coincides with the inflationary slow-roll parameter, n = V" /k?V, if H?> ~ k?V/3. The
conditions in Eq. (40) are quintessence counterparts of the inflationary slow-roll condition |[V"|/k?V < 1.

Eq. (37) and Eq. (40) constitute the slow-roll conditions for extended quintessence during mat-
ter/radiation epoch. S (Eq. (41)) is negative and is quite different from that for a minimally coupled
scalar field (Eq. (11)) which is positive. Therefore, this can be a discriminating probe of the non-minimal
coupling of the scalar field. Although it may be difficult to determine the thawing dynamics from dis-
tance measurements, the ratio § may be determined by measuring the time variation of the fine structure
constant « if ¢ induces such a variation and « depends linearly on ¢.

In Fig. 3, the evolution of 3 is shown for a massive scalar field (V = im?¢?) with a non-minimal
coupling F = 1£¢? with £ = 1072, The evolution of 3 agrees nicely with Eq. (41).

3.2 The Equation of State

Next we derive analytically the equation of state [9]. We consider the case that the non-minimal coupling
is given by F(¢) = 3£¢°. In terms of u defined in Eq. (14), the equation of motion Eq. (27) becomes

.. 3 (32 : 2 / : 2 3

i+ | =5 (H+3H +6§(H+2H) u+[V +6§¢¢<H+2H)}a2:0. (42)
Since we are interested in the slow-roll motion of the quintessence field ¢, we may expand the potential
V(¢) around the initial value ¢; up to the quadratic order as in Eq. (17). Moreover we assume that

the scale factor a(t) is well approximated by that in the ACDM model Eq. (19). Then the approximate
solution, which is valid as far as ¢ > tA and ¢ > ¢, is given by [9]

4 V' (¢) +4§’€2¢iv(¢z’) sinh(kt) cosh (%)

P(t) = ¢i + -1/, (43)
V(1) kit sinh (i)
with k = \/(% —4€) K2V (¢;) — V"(¢;). The equation of state w is then given by [9]
2
K-F F 1K K+ F F(a) — DX
L w = (14 wg)a®k D) | _1/(3))( _Y}i R @/)2( (?)1/2 : ] : (44)
(K = Q0" ) ("™ + DE + (K + Q") (" = DE
1 The exception is the case of F”' = const. In this case F”' needs not to be small. For example, if F = %§¢>2, then 3

satisfies § = —% during the radiation era and g = —1 so that § = =9+v9—48¢ V129748§ during the matter era.

__£&
2 3(1+B)
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Figure 4: wg as a function of a. The solid line is the numerical solution, while the dotted line is the
asymptotic solution Eq. (44).

where K = kt) = \/ - % - %};,‘;((‘Z;)). We have normalized the expression to wgo in Eq. (44). This
expression completely coincides with that in the minimal coupling Eq. (21). It is noted, however, that
this expression applies only for ¢ 2 ¢, and that the definition of K is different but, when & approaches 0,
reduces to that of the minimally coupled scalar field.

In Fig. 4, wy is shown as a function of a. We find that apart from the slight offset wg approaches the
asymptotic solution given by Eq. (44). This, together with [0], makes the functional form of wy(a), Eq.

(21), even more useful.

4 Summary: What is the Kepler’s law of Dark Energy?

We have derived slow-roll conditions for thawing quintessence models, Eq. (7) and Eq. (10). We have
also solved the equation of motion of the slow-roll thawing quintessence and obtained the equation of
state as a function of the scale factor w(a), Eq. (21), which involves only two parameters. We have found
that this w(a) is in general not fit by a linear evolution in a which is frequently used in the literature. We
have also found that this w(a) applies to quintessence models and to k-essence models with w ~ —1 and
also to extended quintessence models. Applying this parametrization to SNIa data and BAO, we find
that the present-day value of w is constrained to lie near —1, while the curvature parameter K is poorly
constrained by the observations. Further, we see that the cosmological constant limit of these models
is consistent with the current data. As an extension, we have also derived the slow-roll conditions for
non-minimally coupled scalar field during the radiation/matter dominated epoch. We have also derived
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the slow-roll equation of motion of the scalar field and found that the ratio ¢>/3H d) becomes constant
but negative, in sharp contrast to the result for the minimally coupled scalar field. This ratio can be a
discriminating probe of the non-minimal coupling of the scalar field.

Finally, I would like to ask a provocative question. When I teach classical mechanics to freshman, I
am always impressed by the role which the Kepler’s laws of the planetary motion played in formulating
the Newtonian mechanics. As we know, every law is essential in establishing the universal attractive force
of gravity: the second law shows that the force depends only on the distance between the planet and
the Sun (central force); from the first law, the force is found to be proportional to inverse square of the
distance; the third law establishes the force depends only on the mass of each body with the universal
constant: the Newton’s constant. Being impressed by the success of Kepler’s law as a phenomenological
law, I cannot help asking ”What is the Kepler’s law of dark energy (or the Universe)?”.

Truly finally, I would like to say ”Happy birth day to Prof. Maeda and Prof. Nakamura!”
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Abstract

This work is a brief review of applications of hidden symmetries to black hole physics.
In physics and mathematics the symmetry allows one to simplify a problem, and often
to make it solvable. According to the Noether theorem symmetries are responsible
for conservation laws. Besides evident (explicit) spacetime symmetries, responsible
for conservation of energy, momentum, and angular momentum of a system, there
also exist what is called hidden symmetries, which are connected with higher order
in momentum integrals of motion. A remarkable fact is that black holes in four and
higher dimensions always possess a set (‘tower’) of explicit and hidden symmetries
which make the equations of motion of particles and light completely integrable. The
paper gives a general review of the recently obtained results.

1 Introduction

In this paper we discuss higher dimensional rotating black holes and their properties. We consider
black holes with the spherical topology of the horizon in a spacetime which is either asymptotically
flat (vacuum) or (Anti)deSitter (with cosmological constant). We demonstrate that such solutions of
the Einstein equations always possess a "tower” of symmetries, which make the equations of geodesic
motion completely integrable. This 'tower’ is generated by a single object, which we call a principal
conformal Killing- Yano tensor. This object is responcible for a set of Killing vectors reflecting a spacetime
symmerty. It also generates a set of Killing tensors, connected with hidden symmetries of the spacetime.
The corresponding conserved quantities, which are first and second order in the momentum, form a
complete set of integrals of motion which make the geodesic equation completely integrable. The purpose
of the paper is to describe a general scheme of this construction, and to discuss its application to concrete
problems connected with particle motion and field propagation in the higher dimensional black holes.
We also describe a class of metrics which admit the principal conformal Killing-Yano tensor and its
generalizations.

2 Complete integrability

2.1 Phase space

Let us first remind three related notions which play an important role in study of dynamical systems:
(i) complete integrability, (ii) separation of variables, and (iii) hidden symmetries (for more details see
[1, 2]).

A phase space is a set of three items {M?*™ Q, H}. M?™ is a 2m—dimensional differential manifold.
A symplectic form € is a closed, d€2 = 0, non-degenerate 2-form. The non-degeneracy means that the
corresponding matrix of its coefficient has the rank 2m. Locally 2 = 0 can be presented in the form

Q=dao, (1)

where « is a 1-form. H is a scalar function on M?™ called a Hamiltonian. We denote coordinates on
M?™ by 24 (A=1,...,2m). A set of coordinates which covers all the manifold is called an atlas.

1Email address: vfrolov@ualberta.ca
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Since the symplectic form is non-degenerate, the tensor {245 has an inverse one QAB, defined by the
relation Q48Qp0 = 5@. The tensors Q45 and Q48 can be used to relate tensors with upper and lower
position of indices. For example,

77A _ QABH’B (2)

is a vector generating the Hamiltonian flow. The equation of motion of a particle in the phase space is
A=A, (3)
Poisson bracket for two functions on the phase space A and B is defined as
{A,BYy=Q"BA B . (4)

One says that these function are in involution if their Poisson bracket vanishes. The Poisson brackets for
any three functions A, B, and C on the symplectic manifold obey the Jacobi identity

{4, B}, C} + {{B,C}, A} + {{C, A}, B} = 0. (5)

If F(z) is a function on the phase space, the equation of motion Eq.(3) determines its evolution
F, = F(z(t)) )
Ft:{H,Ft}. (6)

A function F for which {H, F'} = 0 is an integral of motion of the Hamiltonian system. The Hamiltonian
itself is a trivial integral of motion.

According to Darbouzx theorem, in the vicinity of any point of the phase space it is always possible to
choose canonical coordinates z* = (q1,G2, - -, Gm,P1, P2, - - - »Pm) in which the symplectic form is

Q=" dp; Adg; . (7)

i=1

In such canonical coordinates many relations are simplified and take a well known form. A set of canonical
coordines which covers the phase space is called a canonical atlas.

2.2 Integrability

Integrability of equations of a dynamical system generically means that these equations can be solved
by quadratures. Integrability is linked to ‘existence of constants of motion’. For the integrability it is
important to know: (i) How many constants of motion exist? (ii) How precisely are they related? and
(iii) How the phase space is foliated by their level sets?

A system of differential equations is said to be integrable by quadratures if its solution can be found
after a finite number of steps involving algebraic operations and integration. The following theorem (Bour,
1855; Liouville, 1855) establishes conditions required for the complete integrability of a Hamiltoniam
system:

If a Hamiltonian system with m degrees of freedom has m integrals of motion Fy = H, Fs,..., F,, in
inwolution which are functionally independent on the intersection sets of the m functions, F; = f;, the
solutions of the corresponding Hamiltonian equations can be found by quadratures.

The main idea behind Liouville’s theorem is that the first integrals of motion F; can be used as
m coordinates. The involution condition implies that the m vector fields generated by gradients of
F; commute with each other and provide a choice of canonical coordinates. In these coordinates, the
Hamiltonian is effectively reduced to a sum of m decoupled Hamiltonians that can be integrated.

We denote by My an intersection of the level sets F; = f; for m integrals of motion (see Figure 1).
Since the integrals of motion are independent, the tangent to M/ vectors XA = A8 F; p are linearly
independent and My is a m—dimensional submanifold of the phase space. The condition that the integrals
of motion are in involution implies

[Xi, X;] =0. (8)

One also has
QupX{XP ={F, F;} =0. (9)
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Figure 1: Illustration to the proof of Liouville theorem.
Let us use the equations F;(p, q) = f; to get p; = p;(f, q). Denote
q m
S(F,q) = /O > pilf,9)dg;. (10)
7" =1

The integral is taken over a path on M connecting two its points ¢° and g. The relation Eq.(9) implies
that S(F,q) does not depend on the choice of the path. Denote

a8
U, — —— 11
tOF; (11)
then .
dS =" (V,dF; + pidg;) - (12)
i=1

Since the symplectic form € is closed, one has d2S = 0 and hence

i=1 i=1

This result means that there exists a canonical transformation (p;,¢q;) to (F;, ¥;). To obtain ‘new’
canonical coordinates two operations are required: (1) finding of p; = p;(f,q), and (2) calculation of
some integrals. In the new variables the Hamiltonian equations take the form

F, = {H/F}=0, (14)
. OH
U, = {H¥}= =4l 15
(.0} = 5o =] (15)
The solution of this system is trivial
F;=const, WU, =a;+d/t. (16)

Complete integrability and chaotic motion are at the two ends of ‘properties’ of a dynamical system.
The integrability is exceptional, while the chaoticity is generic. In all cases, integrability seems to be
deeply related to some symmetry, which might be partially hidden. The existence of integrals of motion
reflects the symmetry.

Important known examples of completely integrable mechanical systems include:
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1. Motion in Euclidean space under a central potential;
2. Motion in the two Newtonian fixed centers;

3. Geodesics on an ellipsoid;

4. Motion of a rigid body about a fixed point;

5. Neumann model2.

3 Separation of variables and integrability

Complete integrability of the Hamiltonian systems is closely related with the separation of variables in
the Hamilton-Jacobi equation. For a Hamiltonian H(P,Q), P = p1,...,pm and @ = q1,...,¢n, the
Hamilton-Jacobi equation is

H(00S5,Q) =0, 998 = (84,5, ...,0,,5). (18)

If a variable ¢; and a derivative 04, S enter this equation in a form of single expression ®1(9,, 5, ¢1), than
one says that the variable ¢; is separated. In such a case one may try to search a solution in the form

S = Sl(ql)—i-S'(qg,...,qm). (19)

Putting
(I)l(alh Sa ql) = Cl ) (20)

one obtains an equation with a less number of variables
Hi(04,5,...,04,5,q2,---,qm; C1) = 0. (21)

Let S’(ga,-.-,qm;C1) be a solution of this equation depending on a parameter Cy, then Eq.(19) is a
solution of Eq.(18) when S; obeys an ordinary differential equation Eq.(20), which is easily solvable by
quadratures. If a variable go can be separated in a new equation Eq.(21) one can repeat this procedure
again. One says that the Hamilton-Jacobi equation Eq.(18) allows a complete separation of variables if
after m steps we obtain a solution of the initial equation Eq.(18) which contains m constants C;

S = 51(q1,C1) + S2(g2; C1,C2) + ... 4+ S (Gm; C1,y ..., Ca) (22)

In this case one obtains a complete solution of the Hamilton-Jacobi equation which depends on m pa-
rameters and the corresponding Hamilton equations are integrable by quadratures (Jacobi theorem).
The constants C1,...,C,, for a completely separable Hamilton-Jacobi equation can be considered
as functions on the phase space where they are integrals of motion. In a case, when these integrals on
motion are independent and in involution, the system is completely integrable in the sense of Liouville.

4 Particle motion in General Relativity

4.1 Equation of motion in the Hamiltonian form

Consider a particle motion of mass p in the gravitational field. Its equation of motion is

D2z
—F— =0. 23
dr? (23)
2The Lagrangian of the Neumann model is
1 N
L=3 [£7 — axz} + A(z} —1)] . an)

k=1



52 JGRG20 Proceedings

Here, D/dt is the covariant derivative with respect to the proper time 7. Introduce the affine parameter
A = 7/p and denote a derivative with respect to it by a dot. The Lagrangian for Eq.(23) is

1
L= ggwa’c“a’t” . (24)
The momentum p,, is defined as follows
oL L
Pu= 55 = Jwt - (25)

Denote by D the dimensionality of the spacetime. Coordinates (p,,,x") are canonical on the phase
space M?P. In these coordinates the symplectic form is

0= zD: dp, N dxt . (26)
p=1
The Hamiltonian of the particle is
H= " . (27)
It gives trivial integral of motion
H= —% 2 (28)
For null rays one must put g = 0. The Hamiltonian equations of motion
= {H,z"} =g¢""p,, (29)
b = () =30, (30)
are equivalent to the geodesic equation Eq.(23), which can be written in the form
P'Puwy =0. (31)

4.2 Integrals of motion and Killing tensors

Consider a special monomial in the momentum on the phase space of the relativistic particle of the form

K=K!=tep, .. .pu, . (32)
A condition that this is an integral of motion implies
Kpsv) (33)

The symmetric tensor of the rank s, K, . ., which obeys the equation Eq.(33), is called a Killing tensor.
The metric g, is a trivial example of the Killing tensor of rank 2.
Suppose we have two integrals of motion, K(,) and K(;), connected with the Killing tensors Kél)“

and KE?)“"”', respectively. Using the Jacobi identity Eq.(5) it is easy to check that {K(, K} also

commutes with the Hamiltonian H and hence is an integral of motion. This commutator is a monomial
of the power s 4+t — 1 in the momentum. The corresponding Killing tensor of the rank s +¢ — 1 is

K5y, Kyl = K(s¢-1) 5 (34)

4] e fbs—1AV] .. Vg e(pr..-ps— AUy .V e(vy...vp—1 AVL . fhs—1
KLyt = s G O ) G (35)

The introduced operation for the Killing tensors is known as the Schouten-Nijenhuis brackets. Killing
tensors form a Lie subalgebra of a Lie algebra of all totally symmetric contravariant tensor fields on the
manifold with respect to these operations. The Killing tensors for which the Schouten-Nijenhuis bracket
vanishes are said to be in involution.

In a simplest case when a monomial is of the first order in the momentum, the Killing tensor coincides
with the Killing vector, and the Schouten-Nijenhuis bracket reduces to a usual commutator of two vector
fields.

If there exist D non-degenerate functionally independent Killing tensors®

in involution then the

3Some of them can be Killing vectors.
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geodesic equations in D—dimensional spacetime are completely integrable.

Geodesic motion in the gravitational field of the most general solution describing a rotating black hole
in 4 and higher dimensional spacetimes, which are asymptotically either flat or (A)dS, is a new class of
physically interesting completely integrable systems.

5 Killing-Yano tensors

5.1 Definitions

Killing tensors are natural symmetric generalizations of a Killing vector. Let us discuss another important
generalization, known as a Killing-Yano tensor. We define first a conformal Killing-Yano tensor of rank
p. It is an antisymmetric tensor ky, ..., which obeys the following equation

Vi ko) pssipis = GuapzFusecpprs = 0 = 1D)G1ug(ur o) paopip 1] - (36)
By tracing both sides of this equation one obtains
~ 1
k Vﬂlklﬂuz--ﬂp : (37)

parseety = ]
In the case when ];uz...up = 0 one has a Killing—Yano (KY) tensor. For the KY tensor k the quantity
Lylpg...,u,,_l = k/tlyg...ppp'up > (38)

is parallel-propagated along the geodesic.
The ‘square’ K of KY tensor k, defined by the relation

K= (kok)u =0 — Dy, k1217 (39)

is a Killing tensor. Notice that not an arbitrary Killing tensor can be written in the form .

5.2 Properties of conformal Killing-Yano tensors

The (conformal) Killing-Yano tensors have the following properties:

1. Hodge dual of a conformal Killing-Yano tensor is a conformal Killing-Yano tensor;
2. Hodge dual of a closed conformal Killing-Yano tensor is a Killing-Yano tensor;
3. Hodge dual of a Killing-Yano tensor is a closed conformal Killing-Yano tensor;

4. Exterior product of two closed conformal Killing-Yano tensor is a closed conformal Killing-Yano
tensor.

Figure 2 schematically illustrates these properties. The last of these statements was proved in [3, 4].

5.3 Principal conformal Killing-Yano tensor

Consider an antisymmetric tensor of rank 2 h,, which obeys the following equation

Vol = gyuéo — gywéu - (40)

This is a conformal Killing-Yano tensor. Equation (40) implies the following relations
1 1%
Viphuy =0, &u = BV e (41)

The first of these relations means that h is closed. Here D = 2n + ¢ is the spacetime dimension. For even
number of dimensions € = 0, while for the odd number € = 1. The tensor h is non-degenerate if its matrix
rank is 2n. A principal conformal Killing- Yano tensor is a non-degenerate closed conformal Killing-Yano
tensor of rank 2. The existence of the principal conformal Killing-Yano tensor for the most general known
solution [5] for higher dimensional rotating black holes with spherical topology of the horizon was proved
in [6, 7].

It is possible to show that the vector &" defined by the second equation in (41) is a Killing vector.
We call it a primary Killing vector [3].
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CKY

CCKY

R2-KT

Figure 2: Schematical illustration of the properties of closed conformal Killing-Yano tensors (CCKY),
Killing-Yano tensors (KY), and Killing tensors of rank 2 (R2-KT).

6 Killing-Yano ‘tower’

In a spacetime with a principal conformal Killing-Yano tensor it is possible to construct a set of Killing
vectors and tensors, which we call a Killing-Yano ‘tower’. The idea of this constuction is following. For
a given principal conformal Killing-Yano tensor h one can define the a set of n — 1 objects
h™ =hAhA...Ah, j=1,...,n—1. (42)
~—
j times

Each of these objects is a closed conformal Killing-Yano tensor, so that their Hodge dual are Killing-Yano
tensors

k(;

j) = *h/\j. (43)

By taking ‘squares’ of these tensors one obtains n — 1 Killing tensors of the second rank
K@) =k okg) - (44)
If € is a primary Killing vector then it is possible to show that
T o R
S = B (45)

are again Killing vectors. Thus one obtains n Killing vectors. In the odd dimensional spacetime there
exists an additional Killing vector n = *h”"™. A set of constructed n + ¢ Killing vectors, n — 1 Killing
tensors, and one trivial Killing tensor (g) gives D conserved quantities for the geodesic motion. It is
possible to show that the corresponding integrals of motion are independent and in involution. Thus
geodesic motion equations are completely integrable in a spacetime with a principal conformal Killing-
Yano tensor [9-11].

7 Canonical form of metric

7.1 Canonical coordinates

In a spacetime with a principal conformal Killing-Yano tensor h there exists a special convenient choice
of coordinates. Consider the following eigen-value problem

¥ mY, = Fizgmly, . (46)
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Complex eigen-vectors m/{, can be written as
mh, = el el (47)

where e, and e; are mutually orthogonal normalised real vectors. A non-degerate h has n different
eigen-values z, (@ = 1,...,n), and the corresponding eigen-space for each of these eigen-values is two
dimensional (see [12]). One can use x, as n coordinates on the spacetime manifold. We call them Darboux
coordinates. For each of the Killing vectors ¢ from the Killing-Yano ‘tower’ one can introduce a Killing
parameter so that the integral line of this vector field is a solution of the equation

S (48)

This gives us n + ¢ Killing coordinates ¢; (j = 0,...,n —¢). Total number of Darboux and Killing
coordinates is D, which is sufficient for using as coordinate system in the D dimensional spacetime
manifold. We call these coordinates canonical.

7.2 Off-shell canonical metric

The metric of the spacetime which possesses a principal conformal Killing-Yano tensor in the canonical
coordinates is of the form [13-15]

2 2
n n—1
U ec
2 _ Ya 2 a (4)
s’ =Y - (dzq)? + : Z A dy, Yy > AUy (49)
a=1 j=0 7=0
Here
a= H(wb - :L‘i) o Xo=Xa(Ta), (50)
b#a
n n n—1
[T +xa2) ZAJA(J (14 Azd) H 1+ A22) = Y Al (51)
a=1 a=1 k=0

A potential b, which generates the principal conformal Killing-Yano tensor h,

h =db, (52)
in the canonical coordinates is
n—1
1
_ = (k+1)
b_2;),4 dipy . (53)

The metric (49) is of the algebraical type D. As we indicated above, geodesic equations in this metric
are completely integrable. Besides this, it also has the following nice properties. In the metric (49):

1. Hamilton-Jacobi and Klein-Gordon equations allow complete separation of variables [16];
2. Massive Dirac equation is separable [17];

3. Stationary string equations are completely integrable [18];

4. Tensorial gravitational perturbation equations are separable [19];

5. Equations of the parallel transport along timelike and null geodesics can be integrated [20, 21];
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7.3 On-shell metric

The metric (49) is valid for any geometry with a principal conformal Killing-Yano tensor. We call this
metric off-shell, since it does not obey the Einstein equations. Let us consider now on-shell geometry,
that is assume that the metric obeys the equations

Ry = (D~ 1)Agy . (54)

A is the cosmological constant. The Einstein equations restrict arbitrary functions X, (z,), which enter
(49), so that they take the form of polynomials [5, 23]

X, =byz, + Z cprk (55)
k=0

As a result, the solution depends on D — ¢ arbitrary parameters. This solution coincides with the most
general solution for higher dimensional black holes in either asymptotically flat (A = 0), or asymptotically
(A)dS spacetime, obtained in [5]. Arbiraty constants, which enter this solutions are: the cosmological
constant A, the mass M, rotation parameters, and ‘NUT’ parameters. In the 4D case this is a Kerr-
NUT-(A)dS metric.

7.4 Charged particle motion in weakly charged black holes

Another example of a completely integrable system is the case of a charged particle motion in a spacetime
of a weakly charged higher dimensional black hole [22]. Its equation of motion is
D2z# Dz¥

_— F"LV
. dr2 q dr

. (56)

Here p is mass and ¢ is charge of the particle, D/dr is the covariant derivative with respect to the proper
time 7. It is useful to introduce the affine parameter A = 7/u. Denoting by the dot "a covariant derivative
with respect to parameter A, the equation of motion can be rewritten as

it = qF*, i (57)

If K,,, is the Killing tensor, and the field obeys the condition

KW Fyy =0, (58)
then the following quantity is conserved
PM K, i (59)
The equation of motion (57) follows from the Lagrangian
1 . .
L= iglwas#o: +qA 2t (60)

To write a Hamiltonian one defines the momentum

oL Ly
Pu = @ = g™ + unv (61)
and the corresponding Hamiltonian reads
1
H=59""(pu = qA) (v — qAv). (62)

2

Since it does not depend on A, the Hamiltonian is the integral of motion. For our choice of the affine
parameter A one finds that its value is given by

1
H= _5”2‘ (63)
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The conservation law (63) with Hamiltonian (62) implies the following Hamilton—Jacobi equation for
the classical action S = —1Au? + S(a#):

—p? =g (8#5 — qA#) (8,5 - qu) . (64)

From the same Hamiltonian one obtains the equation for a charged massive field ¢ by substituting
P — —1V,. The corresponding Klein-Gordon equation is

[V —igAu) g™ [V —igA] — 1?] 0 = 0. (65)

Consider now a Ricci-flat spacetime, R, = 0, which possesses a Killing vector £#. Then, in the

Lorentz gauge V, A” = 0, the Maxwell equations V, FF*¥ = 0 reads V,,V¥A, = 0. The Killing vector "

obeys the same equation V, V¥¢, = 0. This means that the Killing vector field can be used as a potential
of a special test electromagnetic field

A, =Q¢,. (66)
Here, @) is a normalization constant parameterizing the strength of the field.

Let us assume that the background spacetime allows the separability of uncharged Hamilton—Jacobi
and Klein—Gordon equations. It is natural to ask, what happens with these equations when one consider
the system with the test Killing electromagnetic field (66). If the separation takes place with respect to
the Killing coordinate corresponding to the Killing vector &#,

oS =1, o=V, (67)

with ¥ being the separation constant, the charged Hamilton—Jacobi (64) and Klein-Gordon equations
(65) take the form

g" OpuS OpuS + M? =0, (68)
(9" V.V, — M?|p =0. (69)

Here, the function M? is given by (e = qQ)
M? = — 2e0 + €262, (70)

The remarkable property of a spacetime which admits a principal conformal Killing-Yano tensor is that
these equations are completely separable for the case when &* is the primary Killing vector of the system.

To illustrate this property for the Hamilton-Jacobi equation, we use the following ansatz for the action
function S

n n—1
S="Salwa) + > Uithy, (71)
a=1 k=0

where the functions S, (z,) are functions of just one variable z,. Substituting it into Eq.(64) for the
metric Eq.(49) one obtains the following equations

2
s =g () -

n—1 n—1 (72)
Co=Y Wp(=a2)" "%, By=> Ep(—a2)" 7",
k=0 k=0

Here = are separation constants.
Similarly, substituting the separability ansatz

¥ = H Ra(7q) f[ exp(iqjkwk) ) (73)
a=1 k=0

in the Klein-Gordon equation Eq.(69) we find that the separation of variables really takes place and for
the modes R,(z,) one obtains the following second order ordinary differential equations

L eX,)") Ro = 0. (74)

7\
(Xart) + (Ba— 5

For more details see paper [22].
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7.5 Further developments

Let us mention two recent developments of the above described results.

(1) In our discussion we assumed that the closed conformal Killing-Yano tensor is non-degenerate. In
particular, this implies that there exists a set of n different eigen-values of h, which we used as Darboux
coordinates. In a degenerate case, there may exist several eigen-values which are constants, and some
of these constants can vanish. The general form of the canonical metric for such degenerate cases was
constucted in [12].

(2) We discussed vacuum (with cosmological constant) solutions of the higher dimensional Einstein
equations. An interesting generalization to a non-vacuum case was obtained recently in [24]. The au-
thors consider a five dimensional minimally coupled gauged supergravity, which includes gravity and the
Maxwell field with a Chern-Simons term. The corresponding Largrangian density is

1 1
L:*(RJFA)—EFA*FJFﬁFAFAA. (75)

The corresponding Einstein-Maxwell equations are

1, 1 v 1 9
RHVJrgA*Q(F;MFu 69#VF)7 (76)
1
dF =0, d+«F—-—FANF=0. (77)

V3

The main result of this work is the following. One can modify the covariant derivative by including a
non-vanishing torsion T = % * F', and generalize the equation (40), by subsituting the modified derivative
insted of the covariant one. The authors demonstrated that the generalized principal conformal Killing-
Yano tensor generates a ‘tower’ of integrals of motion which provides complete integrability of a charged
particle motion in these spaces. An interesting example of a charged rotating black hole solution in this
theory was obtained in [25]. It is interesting, that the corresponding metric is of a general algebraical

type.
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An expected gravitational scalar field
— Past and Future —

Yasunori Fujii'

Advanced Research Institute for Science and Engineering, Waseda University, Tokyo 169-8555

Abstract

The paper consists of two parts. In the first half — Past, Chapters 1-3, we begin with
recalling a historical development of the gravitational scalar field, hypothesized as a
Nambu-Goldstone boson associated with scale invariance in particle physics. We then
re-emphasize how we can understand the accelerating universe, related inseparably
to today’s version of the cosmological constant problem, in terms of the gravitational
scalar field, particularly in the context of the scalar-tensor theory originally due to
P. Jordan. In the second half — Future, Chapters 4-6, we propose an experimental
search for the scalar field as a constituent of Dark Energy, by means of a precision
measurement on photon-photon scattering taking place inside a high-intensity laser
beam. This part is based on the collaboration with Kensuke Homma. Some of the
footnotes are for additional comments not delivered on the occasion of the talk.

1 Historical introduction

I have been attracted to the idea of the gravitational scalar field since the early 1970’s when I was
interested in scale invariance in particle physics, broken spontaneously in terms of Nambu-Goldstone
boson, a massless scalar field called dilaton [1]. T was also convinced that the scalar field, unlike the genuine
gauge fields like photon or graviton, has no immunity against acquiring nonzero self-energy. Consider,
for example, the scalar field diagram in which we have quarks and leptons coupled gravitationally in the
closed loop. We then derived m,, the mass of the scalar field [2],[3],

2 mgMZ,

T (107%V)?, (1)

m

where mq, Mg, Mp are for the light-quark mass ~ MeV, the supersymmetric breaking mass scale ~ TeV
and the Planck mass ~ 10'8GeV, respectively, allowing us for the latitude of a few orders of magnitude
in both directions. More surprising was its inverse, or the force-range A = m !, estimated to be ~ 100m,
a macroscopic distance which had never been explored before. I then proposed “non-Newtonian gravity,”
with the static potential;[2]

V;‘ (T) _ _ Gmimj

(1 + as(ij)e_r//\) : (2)

If the coefficient as(;;) turns out to be independent of any specific natures of the objects 7, j, then the
concept of Weak Equivalence Principle (WEP) must have been respected. After years of extensive studies
in precision measurements not only in physics but also in such versatile areas including geology and space
sciences, however, no solid evidence has been reported for the presence of a new type of force. The data
accumulated in the past has then been recorded only in the diagrams like Fig. 1, originally invented by
G.W. Gibbons and B.F. Whiting,[1] who provided with a convenient way to express the observational
upper bounds on the deviations from the inverse-square law and on WEP violation.

I was, on the other hand, a theorist who was frequently asked the question, on whether everything is
consistent with Einstein’s idea on General Covariance. Some of the people including J. O’Hanlon, and
R. Acharia and P. A. Hogan [7] helped me by providing me with an affirmative view based on the scalar-
tensor theory (SST) [8]. Since then I have been attracted to SST. The following discussions, particularly
throughout the first three sections, will be largely based on Ref. [3].

r

1Email address: fujii@e07.itscom.net
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Figure 1: The left and right diagrams obtained from the composition-independent (for any departure
from the inverse-square law) and -dependent (for WEP violation) experiments, respectively, plot the
observed upper bounds on the coefficients equivalently to a5 in (2), against the assumed force-range .
They are taken from Figs. 2.13 and 4.16-17 of Ref. [5]. For more recent results, particularly on the mm
range, see Ref. [6] and papers cite therein.

In 1955 P. Jordan came up with the Lagrangian [5]?
1 5 L
L= V=g §§¢ R - 659 8u¢6u¢ + Lmatter | » (3)

which features a nonminimal coupling term, (£4?/2)R, in place of the standard Einstein-Hilbert term,
where we use the Reduced Planckian Units (P Units) defined by ¢ = h = Mp(= (87G)~/?) = 1. Notice
that the present age of the universe is tg = 1.37 x 10'%y ~ 1002 in units of the Planck time.

Obviously one of Jordan’s motivations was to offer a generally covariant theory which accommodates
the spacetime-dependent effective gravitational constant defined by (87Geg (7)) ™! = £¢?(z) in accordance
with Dirac’s suggestion [9].

We also make use of the conformal transformation/frame defined by g, — guuw = Q2(2)g,, repre-
senting locally rescaling the metric tensor. By this transformation, the same Lagrangian in (3) can be
re-expressed in terms of the new metric g.,,. By a special choice Q* = £¢?, the re-expressed Lagrangian
is found to be

1 1
‘C =V 9% <§R* - Sgn(cz)ggfyauaaua + L*matter) ) (4)

which features 87G, = 1, hence back to the Einstein-Hilbert term, where (? = (6 + ¢£~1)~!. For this
reason we are now in what is called the Einstein frame (Efr), whereas (3) is the Lagrangian in the Jordan
frame (Jfr). We may say that Dirac was right when he was in Jfr, but obviously not if he lived in Efr.
The question is then which frame is physical.

Note that the canonical scalar field in Efr is o, which is not the same as ¢ in Jfr, but is related to it
by ¢ = £-1/2¢C7,

Also the scale factor a and the cosmic time ¢ in cosmology are also subject to the changes; a, = Qa
and dt, = Qdt [10]. In this context the way of the cosmological expansion may differ from frame to frame.

Then came the year 1998, when the accelerating universe was finally approved by the observation [11].
This also left us with today’s version of the cosmological constant problem, featuring the two questions;
fine-tuning and the coincidence problems, the first of which will be discussed briefly. According to the
observed result Qy = A/pe &~ 0.7 [11], we find the size of the cosmological constant; Aops ~ 10720 in
the P Units, to be compared with the theoretical estimate Ay, ~ 1 in the same units, from almost any
of the unification-oriented theories, implying a huge discrepancy of nearly 120 orders of magnitude. In
order to better understand the cosmological constant problem, perhaps the most promising is to assume
the presence of a scalar field. In a sense the scalar field started then to live an entirely new life. Also
many kinds of theories started to be discussed on the scalar field. But perhaps the simplest theoretical

2¢ = 41 and ¢ are related to the widely used symbols by 4w = e£~1, with ¢ = Sgn(w).
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idea due to Jordan appears to come to a unique finding on the most integral aspect of the cosmological
constant problem, as we are going to show from now on.

For this purpose we start with the Lagrangian in Jfr but with an added constant A, which is “large,”
meant to be of the order one in the P Units;>

1 1
L= v —g (2€¢2R — gigliyau¢au¢ - A + Lmattem) . (5)
We may compare this with the effective Lagrangian for the closed strings in higher-dimensional spacetime
[12);
1= . 1 3
Lstring = vV —ge2® (2R + 29" 0,90, P — 12HMHW> . (6)
Notice the presence of a scalar field ® sharing basically the same nonminimal coupling term as in (5) *.
For this reason, Jfr is sometimes called the string frame.’
We move to Efr;
_ 1 2 1 nz A —4¢o
L= V —9x iR* - Sgn(C )59* a,uUaL/U — e + Limatter | - (7)

To be noticed is that the “constant” term A in (5) has been converted to a potential V(o) = Ae=4¢7.
On these bases we now discuss simple cosmology.

2 Lambda cosmology and choosing a physical frame

By assuming the spatially flat FRW metric, also radiation-dominated universe for simplicity, we derive the
cosmological equations, discussing the solutions. Fortunately we find asymptotic and attractor solutions,
which are rather simple [13]. We examine their behaviors somewhat in detail, on both of Jfr and Efr
separately.

First in Jfr, we find an extremely simple solution:

a=const, ¢=20\/AE-1t, p=—3AC? (2+ 65_1) . (8)

The first equation represents simply, and almost trivially, a static universe. For this reason the Jfr cannot
be accepted as a physical frame. Note that these solutions do not allow a smooth limit as A — 0.

We add an important comment on what is known as the Brans-Dicke (BD) model [14], in which BD
required a constraint that ¢ should be decoupled from Ly atter, leaving ¢ to be coupled only through the
nonminimal coupling term, to save WEP. The same requirement entails another condition that m, mass
of any of the matter fields, is constant;

m = const. (9)

With this constant particle mass, we may prepare a microscopic clock or meter-stick. As an example,
the electron mass inverse, m_ ! provides with the unit, or standard, of the atomic clock. We then find
that we have no way to detect any possible time change of the unit itself, as long as we stick to the use
of the same atomic clock, in other words, unless we use other kind of clocks. This simple finding might
be elevated to a principle; Own Unit Insensitivity Principle (OUIP) [10], according to which any unit is
a constant in the current frame which we live in.

3The constant term A might be slightly extended by multiplied by a monomial of the scalar field; ¢?. The corresponding
Lagrangian is, however, transformed to an Efr form of the Lagrangian, then again back to the Jfr form now with A without
the ¢-dependence. More precisely, we start with a theory with the modified term ¢9A’, also with £ and ¢’. We introduce
¢ =(6+ 4(0')71/2 where w’ = €’¢/~1 /4. The new form of the Jfr Lagrangian with the unmodified A term is reached simply
by the substitutions; A = A’¢’~9/2 and ¢ = (6 + 4w)~1/2 = ¢/(1 — ¢/4) where w = e£71/4.

4A more precise identification follows for ¢ = 2e~® with £ = 1/4 and € = —1. The last condition never implies a ghost
of negative energy. The diagonalized field o has a positive energy as shown in the second term on RHS of (4).

5Tt even seems as if Jordan invented his theory having expected it to be applied to string theory decades later.
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Now let us move to Efr. The solutions are;

a, = t/*~t, (10)
o = &+ (1/2)¢ tInt,, (11)
3H? = po+pe (12)
1, 3 o
pr = 307 HV(0) = A = (7, (13)
3 1
e = —(1-=¢2)t? 14
p 4( 16 ) M (14)
me = *_1/2. (15)

The universe now expands, as shown in (10), where a, and t, are the scale factor and the cosmic time,
respectively, in Efr. It also does in accordance with the assumed radiation dominance. It even sounds
like a good news, because it appears to allow us to accept Efr as a physical frame. We must be careful,
however, before reaching a conclusion; we look into other portion of the solution.

Equation (11) tells us how the scalar field evolves with the cosmic time. Eq. (12) is Einstein’s equation
in the conventional sense, but with RHS consisting of two terms. The first term p, defined by (13) can
be interpreted as an effective cosmological constant, Aeg, or called Dark Energy. It falls off like ¢, 2, as
shown by the last term. This is one of the most useful results in the current analysis. On the other hand,
p« is for the ordinary matter density in radiation-dominance, again falling off like ¢, 2, according to (14).

Then we have come to the solution for m,, the particle mass in Efr. It should behave like ~ t, 12 1
am going to tell how I come up with this solution, in the first place. Perhaps the simplest way is to make
use of the relation

am = QM. (16)

On LHS, a is the scale factor in Jfr, which was shown to be a constant according to the first of (8). We
also found m = const as in (9) in accordance with BD model. As we also find, the product am happens
to be invariant under conformal transformation. Combining these with the solution (10) we have no way
to avoid (15), hence in conflict with OUIP. From this point of view, (15) is in fact a bad news. We fail
to accept Efr as a physical frame.

Naturally we may wonder if Efr can be still saved by revising part of the theory in such a way that
we come up with the conclusion m, = const acceptable for the physical frame. We are going to show
very briefly how we can do this.

For the sake of illustration, let us assume that the matter fields can be represented by a single, free
and massive fermion field, v, so that the matter Lagrangian in Jfr is given by

Lmatter = _E (ﬁ"" m) 1/1 (17)

The second term on RHS is a constant mass term, a consequence of appreciating the BD model, as we
explained before. We attempt, however, to replace this term by the Yukawa interaction term;

Latter = _E (@_‘_ f¢) 1% (18)

where f is a dimensionless coupling constant. This is obviously against BD’s premise, hence at the risk of
WEP violation. This by no means keeps us, on the other hand, from applying a conformal transformation
to move to Efr in which we find the matter Lagrangian;

L*matter = _@* (@* + m*) ¢*7 (19)

where we introduced 1, defined by 1, = Q~3/24) together with the same for 1. By this transformation
we then determine m, to be given by
My = 5_1/2f7 (20)

which is a constant, in consistency with our goal stated above. This is the way we successfully save Efr
as a physical frame, though with certain problems, as will be discussed again briefly.
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At this moment, however, we notice that the matter Lagrangian (19) contains no scalar field o.
Thanks to this decoupling, we may find no way to detect WEP violation as long as we use the matter
field, represented by 1, in the above simplified illustration, to measure the effects. This is true, somewhat
curiously, in spite of BD’s general argument in Jfr ruling out WEP. In fact the absence of the scalar field
in the matter Lagrangian in Efr provides us with an alternative way to save WEP, like the Jfr counterpart
stated in BD’s premise.

As it turns out, however, the decoupling and undetectability just mentioned in Efr are true only
classically. In fact quantum effects come in easily arising from the relativistic quantum field theory to
be developed in tangential Minkowski spacetime. Consequently, WEP violation re-emerges again in the
realistic environments. Quantitative estimates are derived through what is known as quantum-anomaly
calculations, which reveal, at the same time, that the effects are rather weak.%

3 Decaying cosmological constant and Dark Energy

We have come to summarizing what we have achieved. Our Jfr is a theoretical frame, sometimes called
string frame, in which we have a theoretical cosmological constant A, ~ 1, while our Efr is nearly
identified with the physical, or the observational frame, to a good approximation, only up to quantum
effects estimated rather weak. We have the effective cosmological “constant” given essentially by p.
falling off like ¢, 2 according to (13).

More precisely, the identification for the physical frame needs more scrutiny. Due to the quantum
effects, in fact, the truly physical frame is somewhat different from the pure Efr. But before going into
details, we test how good the Efr relation at the present epoch, now put into the form;

Aesio ~ tig (21)

where the suffix 0 is for the present epoch. LHS was shown, in the paragraph preceding (5), to be 107120
in P Units based on the observation, while ¢, ~ 100 in the same units, as was also noted following
(3). By substituting this into RHS of (21), we come across a fully impressive agreement with LHS, to be
hardly dismissed as a mere coincidence. We call this Scenario of a decaying cosmological constant, which
will turn out later to be applied to a considerable portion of the entire history of the universe.

According to this Scenario, today’s value of the observed value Aeg is this small simply because we
are old cosmologically, but not because we fine-tuned any of the theoretical parameters. It sounds as if
we are rediscovering Dirac in 1937, now applied to A but not to G.

We may also repeat what we stated before: The simplest approach due to Jordan has now reached
the above Scenario by leaving the BD model, at the risk of WEP violation hopefully barely below the
observational upper bounds. We have also come through non-trivial arguments on how the physical
frame is selected. We also add that there seems to be no other theoretical ideas, simple still natural,
to account for the simple yet highly remarkable observational achievement (21), the central message of
today’s version of the cosmological constant problem.”

Before closing my first half of today’s presentation, I am going to discuss briefly two related subjects.

Scaling wvs tracking behaviors?

This is related to (13) and (14), on p, and p. for Aeg, or Dark Energy and the ordinary matter
densities, respectively, but sharing the same manner of falling off ~ ¢ 2 in Efr, called the scaling behavior.

6 The WEP violating terms in the Jfr matter Lagrangian turn out to come with dimensionless coupling constants, as
shown generically in the the Yukawa interaction term in (18). The simplicity of BD’s premise, decoupled ¢ field in Jfr, is
now replaced, miraculously, by scale invariance of equal simplicity, except for the A-dependent potential as in (7). This
will eventually result literally in the spontaneously broken scale invariance with o as a Nambu-Goldstone boson in a strict
sense, somewhat like a rebirth of the idea as mentioned at the beginning of Section 1. Also the quantum-anomaly-type
regularization of the loop integrals parametrized by D-dimensional spacetime off 4 dimensions is closely connected with a
technical way to implement a breaking of scale invariance, or dilatation symmetry, in the Lagrangian in D # 4. Through
this line of arguments we find a fascinated interplay between scale invariance and WEP. For more details, see Ref. [3]

7 This result itself had been foreseen much earlier by Y. F. in 1982 [15], also by O. Bertolami in 1986 [16], though the
way of deriving the result is in a much better shape at present than it used to be.
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This is, however, not the way we expect an extra acceleration of the universe. Observed result appears
to require a nearly constant p,, called the tracking behavior, which obviously demands us a remedy.
Skipping all the details, we simply show the diagrams in Fig. 2. In the bottom panel, we plotted two
densities p, (also similar to ps) and p,. as functions of ¢, in the log-log scale. The two densities behave
~ t;2 as overall behaviors, thus inheriting the Scenario of the decaying cosmological constant, applied,
rather unintentionally, to a long time-scale starting right after the primordial inflation. Looking into
more closely reveals, however, we notice certain non-smooth behaviors, particularly occasional plateau
behavior of Aeg, with a concomitant sharp rise of the scale factor, causing a mini-inflation, as shown in
the top panel. An interlacing behaviors between two densities are also noted.

These are the behaviors designed rather phenomenologically supposed to come from quantum effects
hence departing from the pure Efr solutions. Underneath such local behaviors to fit the observations,®
we still find an unmistakable sign of the persistent and dominant overall trend based on the simple
scalar-tensor theory.

Figure 2: In the bottom panel, we plot p., denoted here by ps for Aeg and p, for the ordinary matter
density as functions of the cosmic time in the log-log scale, so that the present epoch is around 60. In
addition to the overall behaviors p; ~ p, ~ t22, to be understood in terms of the simplest version of the
scalar-tensor theory, we note certain non-smooth and local behaviors. In particular, plateau behaviors
of ps triggers the mini-inflation of the scale factor a, as shown in the top panel. Taken from Fig. 5.8 of
Ref. [3].

Locally massive vs globally massless behaviors?

By a locally massive behavior we simply mean a nonzero mass of the scalar field o somewhere around
~ 107%V, basically given by (1). By a globally massless behavior, on the other hand, we mean the Efr
solution given by (11), which can be traced back to the exponential potential V(o) = Ae™%¢? as shown
in (7). This potential is so smooth that we have no local minimum as an indication of a nonzero mass,
hence described roughly as a massless behavior. These two behaviors may appear contradictory with
each other, but might be two different ways in which the same thing o shows itself in two utterly different
surroundings.

8For more details, see our Ref. [3], together with Refs [17].
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Equation (11) even appears to display a purely classical evolution of the entire universe, whereas the
nonzero mass is a quantum effect of the field exchanged between two local objects. We are now going to
discuss another local phenomena in which o mediates a force between two photons inside a laser beam,
now in the second half of my talk.

4 Attempted experimental search for the scalar field

We want naturally to probe experimentally the gravitational scalar field supposed to be as light as
ms ~ 107%V, as a bench mark, though the latitude of a few orders of magnitude is to be understood.
An obvious issue is how we can overcome the o-matter coupling as weak as the gravitational coupling,
or My 1 by some non-gravitational means. In the past searches for non-Newtonian gravity or the fifth
force, huge and heavy objects were often used, sometimes even appealing to natural environments, like
water reservoirs, bore holes, cliffs, and so on, still ending up only with unavoidable and uncontrollable
uncertainties [5],[18]. This time, in contrast, we are going to propose laboratory experiments by means
of precision measurements on photon-photon scattering taking place in high-intensity laser beams. The
content of the following part of the present paper is based largely on our joint work with Kensuke Homma

[19].

We start with assuming the scalar-field-dominated processes, as shown diagrammatically in Fig. 3.

P2 P4 P2 P3
p .'\r/? v
P, 3 T

----------- eq du

dg i

p, P, ,v/\. — T

P1 p3 P1 P4

Figure 3: o-dominated diagrams for the photon-photon scattering. Solid lines are for the photons with
the attached momenta p’s while the dashed lines for o, in the s-, t-, and u-channels, respectively.

We avoid loop diagrams as often used in the QED box diagrams [20]. We are particularly interested in
the s-channel process in which the scalar field occurs as a real resonance hence making an overwhelming
contributions.

Unlike conventional CM or Lab frames, we prefer the frame in which we have the quasi-parallel
incident beams, as shown Fig. 4.

Figure 4: The two photons with the momenta p; and ps are incident nearly parallel to each other, making
a small angle 2¢9. At the middle we set up the z axis. The outgoing photons p3 and p4 are also shown.
The polarization vectors are shown, but with the related details skipped in the present text.
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The incident photon momenta are parametrized as

p1 = (wsind,0,wcos?;w),
p2 = (—wsin?,0,wcosV;w), (22)

where w is the common frequency, while the outgoing photon momenta are

p3 = (w3sinfs,0,wszcosbs;ws),

ps = (—wqsinby,0,wqcosb;wy), (23)

where the axial symmetry around the z axis is assumed for the s-channel reaction. Details on the
polarizations will be omitted in what follows.
We choose 9 as small as ~ 1079 so that we have the relation

Mg
S o (24)
in which we use the symbol w; = 1eV which provides us with a typical energy scale of the processes to
be discussed. In (23), we choose 0 < 03 < ¥ < 64 < 7 so that 0 < wy < w3 < 2w.

Notice also that the frame we mentioned can be obtained from the CM frame in which the two
photons collide each other head-on along the x axis, and Lorentz boosted in the z direction with the
velocity 6, = cos®.

We compute the differential cross section with respect to ps;

do 1\’ 4 g [ W32

A '*19(—) M2, 25

dQs (87rw> S 2w Ml (25)
where M is an invariant scattering amplitude, which may depend on ws, for example. In the context
of the o-dominance, however, we find no such dependence in M. In this sense, possible ws-dependence
comes only through the kinematical factor (ws/2w)?.

Out of sin™* 9, two come from the phase-volume integral, whereas the remaining is due to the flux of
the two-photon beam [21];

1/y/ (p1p2)? ~ 1/ (2w? sin® 9) . (26)

0.5 — -

oy R Y B e
8 8 10

4
0,/

Figure 5: ws/w plotted against 83/9. Note that the forward peak is extremely narrow with the angular
width ~ 9 ~ 1077,

We also find
e — wsin? Y
® 7 1 —cosdcosbs’
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implying that w3 shows a sharp forward peak toward 63 — 0, confined to the angle ¥, which is much
smaller than any of the practical angular resolution, as shown by Fig. 5. The peak reaches a top with
w3 = 2w, carrying the entire incident energy, providing an observational signature unique to the frame
with quasi-parallel incident beams.

It is important to notice, however, that the peak is too narrow to be measured directly. On the other
hand, ws/w can be measured accurately, hence allowing to set up a threshold @3, accepting the events
only for wg > w3. Choosing w3 > w turns out to be highly convenient to remove the large amount of the
unwanted background photons coming non-interacting flowing out also to the forward direction.

According to Fig. 5, also from (27), we then define the angular boundary 63 < 5 = ﬁm7 where
§ is defined by w3/w = 2 — §. This 03 is of the same order of magnitude as ¥ which is extremely small.
Nearly automatically, we are then considering the partially integrated cross section defined by

% / do . do Os w3\2 . N do 20

271'/0 <d93> sin O3dfs ~ (d%)o%/o (%) sin B3dfs ~ (dﬂs)ow - (28)
where the subscript 0 implies the value estimated at the forward direction, also to the linear approximation
with respect to §. The dependence on 92 found on the far RHS can be understood because the integrand
is approximately proportional to #3. We thus find that we can make use only of a tiny portion of solid
angle which is reasonably sized to detect the desired events, though the ultimate reason can be traced
back to the narrow forward peak of ws. The consequence will be discussed later again in connection with
the whole analysis of enhancing the signals.

In Fig. 6 we show a simplified experimental setup. The incident laser beams will meet at a point to
make an angle 2¢9. The nearly frequency-doubled photon will give a signal in the detector placed along
the z axis. This setup, though easy to understand the principle, is too naive particularly for 9 < 1. A
more practical setup will be nresented later

o

[

photon
detector

polarizer

Figure 6: A simplified experimental setup. Two laser beams will collide each other to produce the photon
p3 to be detected at the detector. More practical setup will be shown later.

5 Resonance amplitude

In Fig. 3 we assumed a vertex for the photon-photon-o coupling, which can be derived from the scalar-
tensor theory, described by the interaction Lagrangian;

1
~ Lo = Z131\41;11~“WJW%, (29)

where we start to re-install Mp explicitly to demonstrate the gravitational nature. In addition, the
factor B = (2/9)(a/7)Z(¢ includes the fine-structure constant together with certain parameters.’ In

9 Z represents an effective number of such fundamental fields, like quarks and leptons. For more details see Ref. [3], in
which the factor (1/12) in (6.181) has been multiplied by 8/3 to give (2/9) when the complex scalar matter fields in the loop
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fact the coupling (29) is a consequence of a quantum effect derived through the quantum-anomaly-type
calculation, hence WEP violating, as was discussed toward the end of Section 2.
We immediately compute the decay rate of o into two photons;

T, = (167)"! (BMy")* m?, (30)
giving the decay lifetime ', ~ 3 x 10%%t(, where t; is the age of the universe.
We also compute the Feynman amplitude for the first diagram of Fig. 3 in the s-channel process;'°
12 N 12 wh(cos29 —1)2
Mii1s=— (BMp Y ————————=— (BM;; ! , 31
i (BM;) (p1 + p2)? +m2 (BM;) 2w2(cos 29 — 1) + m2 (31)

where the denominator in the first equation is the propagator of o, while A/ is a well-defined but compli-
cated combination of the momenta and the polarization vectors. Re-expressing them in terms of w and
¥ according to (22), we arrive at the second equation. We also replace m, by m, — i[', /2 for a nonzero
width of o as a resonance.

We want to make the resonance nature more explicit. For this purpose we introduce a variable &
defined by

€ =w?—uw?, (32)
where
2
2 mo’/2
= — 33
“r T T " cos20 (33)
corresponding to m?2. Also corresponding to I', we define
mely/2
TT 1 " cos20 (34)

The resonance condition, (p; + p2)? +m2 = 0, is now translated into & = 0. In this neighborhood, we
approximate (31) by

CL2

£2+a2’

a
E+ia

M,.(€) = —4rn , hence |M,.(&)|* ~ (47)? (35)

precisely the Breit-Wigner one-level formula. Remarkably enough we reconfirm what has been well-
known;

M, (€) = dim, or [M.(§)]* = (4m)?, (36)

where RHS’s are finite constants independent of strength of the coupling. This implies that our amplitude
right at the resonance is by no means small even if we started from (31) which is multiplied by My el

Tt is true that this result is verified only in the extremely limited range of || <a for the second of (35),
where a ~ Mp? ~ 1077w} according to the estimate of (30) and (34), with w; = 1eV introduced after
(24) as a typical energy scale of the system. We also keep it in mind that the presence of My Zin (31)
constrains the size of | M|? as small as ~ My * as a whole including non-resonance contributions. We will
nevertheless exploit the huge gain of O(Mp) when |[M,|? at £ = 0 is compared with the overall size in
our efforts to enhance the gravitationally weak signals.!!

in the toy model are replaced with the more realistic Dirac fields. The same type of the interaction had been introduced
from a rather phenomenological point of view [22] and in other references. It was shown, on the other hand, that this type
of the coupling is left unconstrained by the solar-system experiment, as long as the force-range of ¢ is shorter than the solar
radius, whatever the origin [23].

10The numerals in the suffix on LHS are for the photon polarizations, not to be discussed in the text.

1 This is precisely a consequence of exploiting the scattering amplitude in a full context. This makes a difference from the
LSW approach in the axion search [24], in which the “wall” was inserted to remove the residual photons after producing a
long-lived resonance, hence failing to enhance the weak signals to the maximum. Also the enhancement due to the resonance
contributes to outnumber the result of the QED box-diagram [20] by as much as 50 orders of magnitude particularly in
the forward direction. Notice also this type of enhancement makes it possible to ignore the contributions from the ¢- and
u-channels.
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The first issue arising from the small width a < w?, allowing practically no direct measurement of
the resonance peak in any energy scale of wy, can be dealt with by an averaging process;

M=o [ M@ = (nfn T (37)
aJ_g 2

where we have introduced @ as large as w?, with n = @/a > 1. The occurrence of n~! on RHS will be
justified as long as we substitute the integrand |M.,.(£)|? exactly from the second of (35), where 7 — 1
in the limit n — oco. But we may interpret this intuitively as a probability of hitting a small target
width a aiming from a wider platform as large as @. Notice also that n~! ~ 10~77 is somewhat close to
(my/Mp)? ~ 10772

We now sketch briefly what we have done and what we are going to do for the likely enhancement
of the weak signals. First our comparison of |M,.(0)[? ~ M3 with |M|?> ~ M;* as a whole might be
represented by a gigantic leap shown near the left end of Fig. 7. This will be followed by a setback
by n~! ~ 10~ corresponding to the averaging process given by (37). Remarkably, we are still at the

middle, still up by more than 70 orders of magnitude from the bottom.

Mp
width of resonance intense laser
Mg?
height of resonance
Myt

Figure 7: Schematic representation of enhancing the gravitationally weak signals ~ My 4 finally to those
at the level of ~ M.

We further attempt to go up by substituting the value ¥ ~ 1079 into (25) to obtain ¥~* ~ 1036.12
But this is the time when we should revisit the discussion around (28). With the averaged resonance
contribution (37), the partially integrated cross section (28) goes like this;

% 1\? w3\ 2 s 2
F=2n /0 (m) 9t (ﬁ) sin By (4~ 7 = 2001, (38)
Due to the factor ¥? in (28), we have now 9¥~2 ~ 10'® rather than 9¥~=* expected previously in (25). This
reduced gain is probably one of the prices we have to pay for reaching realistic goals.

We are then somewhat above the “middle” as also shown in Fig. 7. We are still short of achieving
the goal of O(MJ) by something like 54 orders of magnitude. We aim to fill this up finally by appealing
to the intensity of the laser beam.

It might be appropriate now to show a more realistic experimental setup in Fig. 8 in which we adopt
one-beam focusing inside the beam itself in place of the two-beam focusing illustrated in Fig. 6.

A pulse of laser with a frequency held fixed to w; comes from the left of the lens system, which focus
the beam toward the interaction volume denoted by D. Pairs of photons will collide each other, as before,
then producing the outgoing photon p3 with the frequency nearly 2w, finally reaching the detector. We

12This can be done without potential danger of suffering from an infinity in 7 in the limit ¢ — 0, because the far RHS
of (31) is shown to behave like ~ 9* for 92 < (1/4)(m2 /w?).
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polarization filter ®,}
Vv

photon detector“'"—%—

Figure 8: A one-beam focusing setup in which the beam is focused by means of a lens system, to the
interaction volume D. Also the frequency of the incident laser pulse is fixed, while the incident angle
varies around the value ~ 1079,

find that the angle ¥ somewhat distributed around the value ~ 107%. Combining (32) and (33) with
w = wy we find

fmw? o o (39)

The averaging process (37) might then be re-expressed as an integral with respect to . Corresponding
to £ = 0, we have the resonance condition for the angle;

My
=T (40)
which is naturally ~ 1079 according to (24).
6 Required laser intensity
Given the partially integrated averaged cross section Ao (28) we obtain the yield by'?
Y=LAo (41)
with the luminosity £ given by o
L~ ]:[T )\/22, (42)

where the numerator is for the combinatorics to pick up a pair of two photons out of the averaged photon
number N in a pulse of the laser, while ) is its wavelength.
Using the numerical values for w = w; and ¢ = 0.1, also integrating over the time interval of a pulse,
we find
Y~ 107N, (43)

With Y ~ 1, expecting to find an event per pulse focusing, we then obtain the required photon number,
Ny ~ 1032 which is disappointingly larger than 10?2, corresponding to what appears to be rather close
to the strongest pulse available at present or near future [25]. Sticking to using this so-called 1kJ beam
as a convenient reference would imply Y ~ 107'® per pulse, hence it takes ~ 10'%y even operated with
repetition period of 10 Hz.

We still point out that there are certain aspects which have been left unscrutinized but possibly break
through the impasse we face currently. In the first diagram of Fig. 3 we consider the left vertex in which

13The discussion in this section represents a technical status at the time of delivering the talk. Further scrutinies from
wider perspectives, hence even possible revisions, will be made in our future publications.
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two photons annihilate, unrealistically into the vacuum, also creating o. In reality, they annihilate into
the interaction volume shown in Fig. 8, thus into the sea of photons having been prepared in the initial
state of the laser. We may even focus upon each photon, the one with the momentum p;, for example.
There must be other photons which are in the quantum state sharing the same quantum numbers as p;.
Suppose there are n of them. What is relevant here is the transition amplitude

<nlajn+1>=vn+1, (44)

derived in accordance with the commutation relations on the annihilation operator a and the creation
operator a', respectively. This is what has been long known in connection with the induced absorption
of light by atoms. Leaving this traditional association with atomic transitions, we may consider creation
and annihilation of photons of their own merit, though some kind of association is always required, this
time with the scalar-field coupling.

With the choice n = 0, (44) reduces to

< 0la|]l >=1, (45)

representing a spontaneous annihilation, which is precisely computed by means of the Feynman rules.
We then may attempt an extension of the conventional estimate due to the Feynman diagrams, by

the rule summarized symbolically;

F li Vv

eynman amplitude to be corrected by x n+l, (46)

yconv n + 1

So far the discussions have been restricted obviously to discrete states. Transitions to the realistic
continuous states can be achieved basically by replacing n by a distribution function n(9);

n+1~n—n(d)N, (47)

with the normalization condition

/ n(9)dy = 1, (48)

extending the obvious condition > n = N. We also assumed that the distribution function depends on
the slope of the photon momenta with its frequency fixed to wy, apart from the polarization states.

We may repeat nearly the same about another photon po, with an approximate assumption that the
same function n(d¥) can be used. On the other hand, the same type of process may not be applied to
the outgoing photons ps and p4, because these momenta are most likely close to 2w and 0, respectively,
according to (27) and Fig. 5, then entirely off the range included in the initial degenerated state, which
also includes little of the scalar field o. For these reasons the modification (46) should apply only to the
two incident photons in the present circumstances.

We also recall that the momenta p; and po are such that they are connected to the o line as shown
in the first diagram of Fig. 3. This implies that the averaging integral in (37) is now multiplied by
n?(9(&))N? inside the integration. In view of the fact that |M.,.(¢)| is peaked sharply at ¢ = &, = 0,
corresponding to ¥ = ¥, = (1/2)(my/w1) defined by (40), we find that the function n(¢) can be taken
outside the integral to be n(¥,). In this way we have

Yeonv = YV = Veonv X nQ(ﬁr)Nz ~ 10_63n2(19r)N4a (49)

where we have substituted (43) in obtaining the far RHS. This indicates an obvious enhancement by
including the induced effects, though depending on the value of n(¢;).

For a one-beam focusing, we expect a Gaussian behavior of n(¥), hence suggesting a rather flat
function near 1J,.. A preliminary analysis shows n(1J,.) ~ 10°, hence N; ~ 10'2, considerably smaller than
1kJ beam. Obviously, however, more scrutinized studies will be needed to reach reliable final results on
Ny.
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Radiation Recoil Velocity of a Neutron Star
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Department of Physics, Hiroshima University, Higashi-Hiroshima 739-8526

Abstract

Kick velocity of a compact star is discussed. In particular, the recoil is calculated
as a back reaction to the magnetic dipole and quadrupole radiations from a pul-
sar/magnetar born with rapid rotation. The process is slow one operating on a spin-
down timescale. Resultant velocity depends on not the magnitude, but rather the
ratio of the two moments and their geometrical configuration. The model does not
necessarily lead to high spatial velocity for a magnetar with a strong magnetic field,
which is consistent with the recent observational upper bound. The maximum ve-
locity predicted with this model is slightly smaller than that of observed fast-moving
pulsars.

Preface

It is a great pleasure to talk at this JGRG20 meeting for the 60th birthday of Takashi Nakamura Sensei
and Kei-ichi Maeda Sensei. This meeting started two decades ago under their enthusiastic leadership,
and has been developed successfully. Young generation including me has grown up through the meeting. I
would like to express special thanks on this occasion.

1 Introduction

Formation of black holes and neutron stars is most violent energetic event in astronomy. However, the
event rate is rare, so that the direct observation is very difficult. The obstacle can be overcome by
observing into deep universe with advanced technology. Another approach to infer the past powerful
happening may be possible by looking for some evidence. Velocity of the proper motion belongs to the
category. High velocity of compact stars suggests the violent event at birth.

This kind of idea has been discussed since the beginning of relativistic astrophysics in the 1970’s. For
example, some black holes may have large velocity (>300km s~!), and migrate from the Galaxy. One of
the important mechanisms for high velocity is gravitational radiation. Beckenstein(1973) [1] formulated
the linear momentum radiation for collapsing two-body problem in post-Newtonian approximation. Note
that net linear momentum is radiated by the interference between different multipoles. (See Appendix
for a simple demonstration.) Quadrupole and the next order octopole radiation generate it in the lowest
order. The energy is a sum of each multipole radiation AE = AFE; + AE3 + ---, whereas the linear
momentum is APc ~ (AE;AE3)Y/? ~ ¢AE, where AE; is the radiation by quadrupole (I = 2) and
octopole (I = 3), and ¢ is the efficiency. Thus, a compact star with mass M gets the magnitude of
velocity v/c ~ e(AE/Mc?) as a back reaction of linear momentum emission. Higher velocity is achieved
in more relativistic system. The treatment is weak field approximation, so that it may be questionable
to apply it to the events in strong gravity regime. The linear momentum radiation is also calculated for
various cases by using linear perturbation of black hole space-time. See Ref.[2] for the summary of Kyoto
group in the 1980’s. The treatment is applicable to the events in strong gravity, but extremely small mass
ratio of the binary is assumed. Radiation reaction is also ignored. Recently, full relativistic simulations
of collision of two back holes have been performed, e.g., [3, 4]. See also Campanelli in this volume.

Interesting thing is that high velocity components in QSOs have been observed;for example ~2500km s~*
in SDSSJ092712.65+294344.0[5] and ~2100km s~! in E1821+643[(]. These sources are candidates of
gravitational radiation recoil. Gravitational radiation is very important mechanism to produce such high
velocities especially in the merger of super-massive black hole binary. For the formation of stellar black

1Email address: kojima@theo.phys.sci.hiroshima-u.ac.jp
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holes, there are many competing mechanisms. Supernova explosion is one of complicated physics. In ad-
dition to the gravitational radiation, anisotropic emission of neutrinos, (magneto-)hydrodynamical waves
and electromagnetic waves may cause the kick velocity.

Possible origins of kick velocity of a neutron star are discussed in this paper. The understanding may
become a useful hint for the black hole system. Observation of pulsar proper motion and some proposed
scenarios are briefly reviewed in Section 2. In Section 3, a rocket mechanism is discussed in detail by
electromagnetic radiation from rotating dipole and quadrupole moments in vacuum, which is recently
considered[7]. Section 4 presents our conclusions.

2 Pulsar proper motion

Pulsar velocities are determined from measurements of their proper motion and distance. The position
of pulsars is recorded by the periodic pulse, so that the proper motion of pulsars is easily determined
than that of black holes. Manchester et al.(1974)[3] for the first time achieved it for PRS1133416, using
timing observation over a four-year period. Observational progress over three decades has provided some
interesting results. Firstly, number of pulsars has been increased up to ~1000. The statistical property
becomes better. Hobbs et al.(2005)[9] analyzed a catalog of 233 pulsars, and found that the mean three-
dimensional velocity is 400 km s~!, which is converted from observed two-dimensional velocity v, on
the sky. Second interesting discovery is fast moving pulsars. Very high velocities have been reported;
B1508+55 (v, ~ 1000 km s=! [10]) and PSR2224+45 (v, > 800 km s~* [11]). Third one is existence
of a magnetar, a class of neutron stars with super strong magnetic field strength B, ~ 10'*~1°G. The
velocity is very interesting. At moment, the upper limit of the transverse velocity v, has been reported,
although there is uncertainty in the value. For example, v; ~ 210 km s~! for AXP XTEJ1810-197[12],
vy < 1300 km s™! for SGR 1900+14 [13, 14] and v, < 930 km s~! for AXP 1E2259+586[13]. On the
other hand, the magnetic fields for the fast moving pulsars are quite ordinary, B, ~2-3 x10'2G. Thus,
there is no clear correlation between the field strength and the velocity in the present sample.

A number of pulsar kick mechanisms have been proposed. See e.g, Ref.[15] for a review. They are
classified by working epoch, pre-natal, natal and post-natal mechanisms. The pre-natal mechanisms is a
binary breakup at the supernova explosion. Resultant escape velocity is not large, ~ a few hundreds km
s~!. Next is the natal mechanisms. Several kick mechanisms operative at the core bounce of the supernova
explosion have been proposed to date: anisotropic emissions of neutrinos (e.g., [L0, 17]), hydrodynamical
waves (e.g., [18, 19]), and MHD effects (e.g., [20]). Large-scale simulations are required to check any of
these mechanisms, and are still in progress. Among these scenarios, a strong magnetic field may play a key
role, since it naturally causes one preferable direction. However, very strong field strength > 10°~16G
seems to be needed. The origin of the strong fields is also a problem, fossil or dynamo action. Kick
mechanisms at birth end on a dynamical timescale of the order of milliseconds or the cooling timescale
of ~ 10 s. If the strong magnetic fields are generated on a longer timescale, some natal kick mechanisms
involved the magnetic-field-driven anisotropy do not work effectively. Recoil driven by electromagnetic
radiation, which is operative on a longer spindown timescale of ~ 10%(B/10'°G)~2(P;/1ms)? s, has been
proposed as a post-natal kick mechanism[21] (see also [15] for the corrected expression). The model is
revisited as one of possible mechanisms in the next section. This does not mean that other scenarios are
inadequate.

3 Kick driven by radiation

3.1 Generation of magnetic fields

The surface magnetic field strength B of a pulsar is conventionally estimated by matching the rotational
energy loss rate with the magnetic dipole radiation rate, that is, By ~ (3¢3IPP)'/?/(2v/2rR?), where
I is the inertial moment, Ry is the stellar radius, P is the spin period, and P is the time derivative of
the spin period. The precision of this approximation is only at the order of magnitude level because
actual energy loss is not well described by magnetic dipole radiation in a vacuum. A more realistic model
with current flows and radiation losses is required, but has not yet been established. A simple estimate
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provides B, = 10'2G for typical radio and X-ray pulsars, and B, ~ 10'3-10'G for magnetars, although
the level of the approximation must be noted. Dynamo action in a rapidly rotating proto-neutron star
with P =~ 1 ms is proposed as a mechanism for this amplification by 2-3 orders of magnitude (see e.g.,
22, 23)).

Recent numerical simulations of dynamo action can be used to study the large-scale fields in fully
convective rotating stars. For example, non-axisymmetric fields are generated in the case of uniform
rotation [24], while mostly axisymmetric fields with a mixture of the first few multipoles are formed in
the case of a differentially rotating star[25]. The results may not directly apply to pulsars or magnetars,
but suggest that the magnetic field configuration of neutron stars may not be an ordered dipole. If
there are higher-order multipoles, these will also contribute to the radiation loss. The upper bounds
on their surface magnetic fields are rather loose. See Ref.[26] for a discussion of the magnetic fields of
millisecond pulsars. The magnetic field strength By, relevant to the multipole moment of order (I,m)
is limited to B, < Bs/(mR:Q/c)!=1, where Q) = 27/P is angular velocity, and the radiation of each
multipole L;,, ~ c(mRQ/c)**2 (B, R,)? is assumed to be smaller than that of a dipole. Thus, a model
with complex magnetic configuration at surface By, > B, (I > 1) is allowed because of the small factor
RsQ2/c < 1 for observed stars.

In the original work of the rocket mechanism[21], an oblique dipole moment displaced by a distance s
from the stellar center rotates. This causes the radiation of higher order multipoles, whose superposition
is generally asymmetric in the spin direction, leading to the kick velocity. In the off-center model, the
quadrupole field By of order By ~ (s/Rs) X By ~ Bj is involved. It is interesting to study the case
where Bs > Bj, because the constraint of the higher order component by the radiation is very weak,
for example, By ~ (¢/(Rs§)) x By > Bj. In this paper, the kick velocity induced by electromagnetic
radiation is examined: A star rotates with both dipole and quadrupole magnetic fields, in which a larger
quadrupole field By > B; at the surface is allowed. The maximum kick velocity as a recoil of momentum
radiation is evaluated. Evolution of the spin and spatial velocity is calculated.

3.2 Electromagnetic fields

Maxwell equations are solved for the fields outside a rotating object with angular frequency 2 in vacuum;
the object has a magnetic dipole and quadrupole moments. The dipole moment is denoted by p, and the
direction is inclined from the spin axis by x;. Quadrupole moment is denoted by @ and the inclination
angle of the symmetric axis is x2 from the spin axis. The electromagnetic fields outside the rotating
magnetized object are described by the magnetic mupltipoles of order I = 1,2, |m| < [, for which E, =
E-r =0 [27]. The explicit forms are written in Ref.[7]. Their characteristics are described below.

The electromagnetic fields for a rotating magnetic dipole are discussed at first. Near the stellar surface
R; < r < ¢/, the magnetic field reduces to

2 ei/\ ei)\ )
B — Boear = /;Lni?’ cos(f — x1)er + 'ur—g sin(f — x1)es, (1)

where A = ¢ — Q(t —r/c). It is clear that the field near the surface represents a magnetic dipole inclined
by the angle x1, which rotates in the azimuthal direction with ¢ = Qt. The electromagnetic fields in the
radiative region (r > ¢/Q) are given by

02 02

B — Brua = 5Pl (1) P} (0)c™es + e L-Pla)eRes, 2)
iu$? . Q

E — Bra = 5P} ()¢ ey — 5P (x) P (0)c ey, 3)

where P7'(z) is the associated Legendre function and the prime denotes the derivative with respect to x.
The electromagnetic fields for a rotating magnetic quadrupole are similarly discussed.The near-field

Qe
B— Bnear - 20 4 P2 (9 XQ) %0 1 P/O(9 X2)e97 (4)

where the phase As is shifted by Ao = A + §, because the meridian plane in which the symmetric axis
of the quadrupole is located may differ by the azimuthal angle § from that of the dipole. Equation (4)

is
3Q6M2
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represents the magnetic field of a rotating quadrupole, whose inclination angle is x2. Radiative fields in
r > ¢/ become

Q03

B— Brad == _36C3T [P21 (XQ)P% (0)(—;’i>\2 + 2P22(X2)P/§(9)62M2] €y
QQ5 1 A2 2 : 2iXa
+ 1203, [P2 (x2) cos Be’*? + 4Py (x2) sin fe ] €4, (5)
QQS 1 (2% 2 : 2io
E—Ena = 126, [Py (x2) cos 02 + 4P3 (x2) sin fe***2] eg
Q0 n A 2 12 (0 220Nz
+ gegn [P ()P3(0)e™ + 2P (x2) P3(0)e*™ ] ey. (6)
1.51 15

Figure 1: Closed magnetic field lines in the cases of pure dipole (left) and dipole plus quadrupole (right).
The magnetic axis is inclined by angle x1 = x2 = 7/4 from the spin axis z, and the azimuthal angle

between moments is § = 7/2. A sphere of radius 0.2¢/Q at the origin is also shown. Distance is scaled
by ¢/Q.

The combination of dipole and quadrupole fields is compared with the case of a pure dipole. A snapshot
of almost-closed magnetic field lines near the light cylinder is shown in Figure 1. Both inclination angles
are the same y; = x2 = m/4, but the meridian planes are perpendicular, that is, 6 = 7/2. Field strength
is set as @ = 0.2uc/Q. It is clear that the quadrupole field is added to the dipole one. The quadrupole
field increases more rapidly with the decrease of the radius r, and dominates for r < r, ~ 0.2¢/€2 for the
model parameter, since By ~ u/r® and By ~ Q/r%.

Contour of outgoing flux is shown in Figure 2. This pattern by almost m = 1 mode rotates with the
angular frequency 2. There is a symmetry between upward and downward fluxes, in the case that two
directions of dipole and quadrupole are parallel, 6 = 0. On the other hand, there is a small asymmetry
in the case that two axes are perpendicular, § = /2. This asymmetry causes net linear momentum and
hence the recoil velocity.

3.3 Radiation

The radiation energy per unit time is obtained by integrating the time-averaged Poynting flux over
the solid angle at the wave zone r > ¢/§). The luminosity for a combination of electromagnetic fields
described by egs.(2),(3) and egs.(5),(6) is given by

2()4 2006 20)6

C . 2u°Q* | . .
L= /E(Erad X Brad) - €72 sin §dfd¢p = 'L;CS sin? x1 + 16055 sin? 2yo + “ES sin? xo. (7)
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Upward  s=0 Upward  3=m/2

Downvard ~ 3=0 Downvar d = 3=ru/2

Figure 2: Contour of Poynting flux going in +z direction(upper panel) and going in —z direction(lower
panel). Left ones are for the parallel case of dipole and quadrupole axes § = 0, whereas right ones for
orthogonal case 6 = 7/2.

The luminosity is the sum of the contributions from multipole radiation. Our model consists of three
components, the magnetic dipole radiation M, 1 specified by spherical harmonics index (I,m) = (1,1),
and the quadrupole radiation Mj; and My 2. They correspond to the first, second and third terms in
eq.(7). The third term is larger than the second term roughly by a factor m% = 25 which comes from
the frequency of time variation.

The linear momentum radiated per unit time in the direction z is similarly calculated as

5

l ——— . Q° . .
= / E(Erad X Brad) - .72 sin 8dfd¢ = % sin x1 sin 22 sin 4. (8)

The net flux arises from the interference of two multipoles, namely, the magnetic dipole M; ; and the
quadrupole Ms ;. The angle x; governs the radiation strength of each multiple /, while the angle § governs
the interference. The most efficient configuration is realized when the two magnetic multipole moments
are orthogonal, 6 = 7/2. On the other hand, when both of the multipole moments lie in the same
meridian plane (i.e., § = 0), the net linear momentum vanishes. This property can be understood from
the fact that radiative electromagnetic fields in vacuum are expressed by the spherical Hankel function h;
and the asymptotic form for & = Qr/c > 1is h; ~ exp[i(§ —Im/2)]/r for the multipole [. There is a phase
shift 7/2 between dipole and quadrupole fields, and this shift is important in the wave interference.
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Table 1: Comparison of models.

Model Multipole a 3 v v/ (ap)/?
Off-center dipole M1, Myy,Ehn 033 0.83 x10=2 047 9.0
Dipole-quadrupole M 1, M1, Ms2 0.33 0.10 0.18 0.97

3.4 Comparison

Our dipole-quadrupole model is compared with the off-center dipole one [15, 21]. The rates of energy
and linear momentum are written in term of the magnetic dipole moment (ug, pg, ft-) in cylindrical
coordinate and distance s from the spin axis as follows:

204 406

=33 (Wh+12) + 15732N§- (9)
The first term is the magnetic dipole radiation M; ;. Correspondence to our expression is clear by replac-
ing g + pl = p? sin x;. The second term is derived from the sum of electric dipole radiation E; ; and
magnetic quadrupole radiation My ;. Their contributions are Q65212 /(6¢°) by Ey 1 and Q55242 /(10¢°) by
My 1, respectively. The parameter in the off-center dipole model corresponds to () sin 2y = 4spu, except
for a complex phase factor. There is a constraint on the quadrupole moment @ as @ sin 2y < 4R cos x1,
since s < Rg. In our model, it is possible to consider the case of @ > uRs in magnitude.

The linear momentum in the off-center dipole model is evaluated as[15]

82 spug

F = ;
15¢°

(10)
Net linear momentum flux arises from two types of interference. One is between magnetic dipole radiation
M, 1 and electric dipole radiation £ ;. The other is between magnetic dipole radiation M; ; and magnetic
quadrupole radiation M, ;. These contributions are expressed by Q°sugpu./(3¢°) and Q°sppu./(5¢%),
respectively. The latter reduces to eq.(8) if sp, = @ sin2x2/4 and pg = psinx; sind.

Although there is a slight difference in the radiative components between the off-center dipole and
dipole-quadrupole models, both formulae for eqs. (7),(8) and eqs. (9),(10) are parameterized as

2004 2006
12Q Q*Q
L=« = + 5 5 (11)
Q5
F_l“Q , (12)

T 10 P

where «, # and « are dimensionless numbers that depend on only the geometrical configuration. The
typical values are listed in Table 1 for the simple assumption that siny;,siné — 1/4/2, that is, the
directional average of (sin”;) = (sin®d) = 1/2. Tt is clear that the coefficient $ in our model is
considerably larger than that in the off-center model. This comes from the radiation of m = 2.

3.5 Evolution

The angular velocity Q(¢) is determined by equating the loss rate of rotational energy with the luminosity
L in eq.(11), and the velocity V' (¢) is determined from the momentum emission F in eq.(12). In terms of
the mass M and inertial moment I, we have

. 204 206
100 = —ab - 5QC5 7 (13)
o pQeY’

MV =

14
10 ¢ (14)
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By using the approximation I = 2M R?/5, where R; is the stellar radius, the magnitude of the velocity
gained from the initial angular velocity €2; is given by

YQR? /Q 0? ¥ 2 oo 1
AV = : dA< AV, = —F— (LR, X X —t X\, 15
Dot Jo, act  pQ@pEE S AV = gy () XX XL (19)

where X = (8/a)"/2QQ;/u and the present angular velocity Qo = 0 is used in the last inequality. The
function AV, is determined by the ratio Q/(uRs) of the two multipole moments for the fixed geometrical
configuration and the initial angular velocity €2;. Two limiting cases of AV, are approximated as

QR.\3
AV A (GF) (B2)° for0< X <1 ”
~ -1
c ﬁ (N%s) (QiCRS) for X > 1.

The value AV, increases as the ratio Q/(uRs) increases, while Q/(uRs) < 1, but begins to decrease
for Q/(uRs) — o0o. Thus, it has a maximum with respect to the magnetic moment ratio:

AV, v [(URN? Q a\'"? (RN
~92x1073 t ~15( = ) 1
c 9.2 x 10 (aﬁ)l/Q ( - > a P 5 3 o ( 7)

The magnetic moment ratio at the maximum means that the quadrupole field By ~ Q/R% is stronger
than the dipole field By ~ p1/R3 at the surface. The energy loss rate L; of each multipole is approximately
the same at the beginning, Ly = BQ?*Q¢/c® ~ 2.3 x ap?Q}/c® = 2.3L,, but the contribution of Ly and
becomes smaller as (Q is decreased. The velocity using the canonical values is evaluated as

P\? 8l -1
AV, =~ 120 ———= k 18
<1ms> x (aB)1/? e (18)

For the off-center dipole model, V, ~ 103(P;/1ms)~2 km s~! is allowed for an initially rapid rotator, the
initial period P; = 1 ms, using typical values given in Table 1. On the other hand, the typical value
is small, V, ~ 10%(P;/1ms)~2 km s, for the dipole-quadrupole model. The difference comes from the
presence of radiation of m = 2, which causes efficient energy loss, as discussed in the previous section.
Nevertheless, extremely high velocity is possible for a specific configuration even in the present model.
Small § corresponds to high velocity. For small xo in eq.(7), we have § = sin? 2x2/160. Because a =
2sin? x1/3, v = sin x; sin 2x2/2 for sin§ = 1; the combination of parameters reduces to v/(af3)'/? = 7.7.
The resultant kick velocity increases up to ~ 930(P;/1ms)~2 km s~!. This optimal case corresponds to
the magnetic configuration with an inclined dipole and a nearly axially symmetric quadrupole. The ratio
of the moments is Q/(uRs) ~ 74(sin x1/ sin x2)(P;/1ms).

Time evolution of spin and velocity is calculated for the optimized relation (17). Once the quadrupole
field strength is fixed, the evolution of Q(t) in eq.(13) is scaled by characteristic time ¢, of the dipole
radiation loss for the initial angular velocity ; = 27/ P;:

Ic? a -1/ P \? I -2
t=—C _~08 (—) : __r , 19
apQ? 0.33 (1ms> (1031Gcm3) . (19)

where magnetic dipole field at the surface is chosen as B; ~ 10'3 G. Figure 3 shows the evolution of
Q(t)/Q; as a function of 7 = t/t,. The ratio of quadrupole to the total energy loss rate, Lo/(L1 + Lg) is
also plotted. The ratio at t = 0 is approximately 0.7 because of Ly ~ 2.3L1, but monotonically decreases.
At t = t,, the angular velocity becomes 2 ~ 0.5¢2; and the contribution of quadrupole radiation also
decreases as Ly ~ 0.5L1. The velocity V(t) normalized by the terminal one (eq.(18)) is also shown in
Figure 3. The magnitude attains to almost terminal value, V' ~ 0.8AV, before t = t,.

3.6 Implication

Magnetic field strength itself is critical in most kick mechanisms. For example, B, > 10*® G at the surface
is required in asymmetric neutrino emission (e.g., [16]), as well as in asymmetric magnetized core collapse
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Figure 3: Time evolution of velocity, spin and energy loss rates as a function of dimensionless time
T = t/t.. Solid red line represents the linear velocity normalized by the terminal one AV, and dashed
green line the angular velocity normalized by initial one €2;. Dotted blue line is the radiation loss ratio
Lo/(L1 + Lo).

(e.g., [20]). The resultant velocity increases with the field strength because the asymmetry arises from
the magnetic field. Magnetars are therefore expected to have high velocity if one of these mechanisms
is operative. Recent observations do not support the high velocity, as discussed in Section 2. There is
no clear evidence in the present observation about correlation between the field strength and the kick
velocity.

The electromagnetic rocket mechanism considered in [21] and in this paper does not depend on field
strength if the spin evolution is determined from the radiation loss. In our model, the ratio of dipole and
quadrupole moments is important. The condition for high velocity is that the quadrupole field is large
enough in magnitude for the radiation loss to be of the same order as the dipole field. The velocity also
depends on the geometrical configuration of the multipole moments, that is, each inclination angle from
the spin axis and the angle between the axes of symmetry of the moment. Assuming that the directions
of moments are random, and that they are equally likely to be oriented in any direction, it is found that
the mean velocity with respect to the configuration is not so large, ~ 120(P;/1ms)~2 km s~!, for the
optimized dipole-quadrupole ratio. The maximum velocity is realized for a specific configuration in which
the inclination angle of the quadrupole moment is small, and the meridian plane in which the quadrupole
moment lies is perpendicular to the plane of the dipole. The velocity increases up to ~ 930(P;/1ms) 2
km s~!. This value is slightly smaller than the maximum observed velocity of a pulsar.

The configuration is unknown, and is closely related to the origin of the magnetic field, dynamo or
fossil. Nevertheless, interesting results are reported within the mean-field dynamo theory[23]: (1)Strong
large-scale and weak small-scale fields are generated only in a star with a very short initial period, that
is, the Rossy number is small: (2)Maximum strength decreases and small-scale fields become dominant
with the decrease of the initial period. Thus, magnetars may have an ordered dipole with a strong field,
while some pulsars may have rather irregular fields with higher multipoles. Through the superposition
of higher multipoles, pulsars in general come to have a larger radiation recoil velocity than magnetars.

Finally, if the kick velocity of pulsars and magnetars is governed by the same mechanism, it either
should not simply depend on magnetic field, or should depend on only the configuration. The latter
possibility was explored here. Present argument is recognized as the order of magnitude level due to the
rotating model in vacuum. Further improvement of the magnetosphere will be of importance to explore
the idea.
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4 Conclusions

Some proto-neutron stars are conjectured to be born in hypothetical extreme state of rapid rotation P ~ 1
ms with an ultra strong magnetic field B, ~ 10'°G. Such rapidly rotating magnetars are also considered
as one of models for gamma-ray bursts. Is there any remaining evidence of this stage within our Galaxy?
The proper motion can possibly be used as a probe. Observationally, there is no correlation between
the field strength and the kick velocity. The velocity should depend on magnetic field in a complicated
manner. The kick velocity is an indirect evidence of past violent energetic event, so that a number of
speculations are allowed. Direct observations by gravitational waves by LIGO/VIRGO/LCGT and by
many electromagnetic bands would be of importance as a witness.
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Appendix

This appendix demonstrates how net linear momentum originates from the interference between multipole
radiations. For example, the field is assumed to be described by a sum of modes with spherical harmonics
Yim

h=" A (t,7)Yim (0, 9)-

m

Time averaged energy radiation rate carried away by waves is given by

dE * 2
E O(/dQlZ (Al’m’Yl’m’) Alm}/lm:Z|Alm| 5

'm’lm lm

where orthogonal property of Y, is used. The total power radiated is just an incoherent sum of contri-
butions from different multipoles. The linear momentum radiation is calculated with directional cosine.
For example, z-component is given by

dp, « *
T / dQ Y (A Yo )* €08 0(AimYim) = > ¢it Afsim Aim,

U'm/lm m

where clim is a coeflicient, and there is a coupling between [ and [ +1 due to the combination rule. In this
example, the field h is decomposed by scalar spherical harmonics(s = 0). The harmonics are replaced
by vector harmonics for the electromagnetic wave (s = 1), and by tensor harmonics for the gravitational
wave (s = 2).
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Anniversary of the 20th Japan General Relativity and
Gravitation (JGRG)

Takashi Nakamura®

Department of Physics , Kyoto University, Kyoto 606-8502

1 How did Numerical Relativity in Kyoto start?

I was born in 1950. I was admitted to faculty of science, Kyoto university in April 1969. In Japan, the
academic year of university starts in April and ends in March usually. However 1969 was an unusual year.
In university of Tokyo, some radical students occupied the main buildings for an year or so. Finally the
police entered the university to get rid of these students. In these confusions, the entrance examination to
university of Tokyo had to be cancelled in 1969. In Kyoto university also, some radical students occupied
many buildings so that there were no lectures for an year or so. I had only one minute entrance ceremony
because the radical students were against the ceremony and lectures.

In faculty of science of our university, one can choose what one studies in university after one is
admitted. My first plan was to study biophysics. However my high school teacher said to me that at
first I had better study various fields of science in university so that I studied also astrophysics and found
it very, very interesting. In 1970, professor C. Hayashi in our faculty got Eddington medal of Royal
Astronomical Society for the discovery of “Hayashi Phase”. I noticed this fact through the scientific
journal for non-experts. Then I attended Hayashi’s seminar in the fourth grade and was admitted to
Hayashi group as an graduate student after the entrance examination.

Brief History of Chushiro Hayashi is as follows:

1920 born.

1957-1984 professor in department of physics as a leader of nuclear astrophysics group.
1977-1979 dean of faculty of science.

1970 awarded Eddington Medal.

1971 awarded Japan academy prize and imperial prize.

1987 life member of Japan academy.

2010 Feb. 28 passed away.

Main subjects were stellar evolution such as Hayashi phase, origin of solar system called Kyoto model
and cosmology such as n-p ratio.

In my undergraduate student age, I had an unusual experience. I took a course of lectures on Lebesgue
integral by professor Mizohata. In the end of his last lecture he said, “I will retire this March so that
this is the final lecture. Now I would like to say something to you. Suppose that there is a problem in
mathematics that you can not solve. In this situation there are two attitudes to the problem. The first
one is; You are bad. You should study harder to solve the problem. However there is another attitude;
The problem is bad. You had better arrange the problem which you can solve. Please remember this
second attitude.” I had never considered the second attitude. I had never considered a possibility that
the problem is bad. The problem should not be bad but it is the thing that should be solved. After
Mizohata’s short talk, I thought that this second attitude should be the research. Then I could understand
what professor Mizohata wanted to say although I could not understand Lebesgue integral itself almost
everywhere.

When I was in master course, over doctor problem became severe. Here the over doctor problem
(=Japanese English?) means that many graduate students can not find permanent positions even after
they received Ph.D. At that time, the job meant the permanent position in Japan. I wondered what
would happen when I would receive Ph.D five years later. Then Professor Humitaka Sato in Yukawa
Institute for Theoretical Physics said to me that the problem would be resolved when I would receive

I1Email address: takashi@tap.scphys.kyoto-u.ac.jp
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Ph.D. In my graduate student age, I first wrote papers on density wave theory of spiral arms with S.
Ikeuchi and F. Takahara and the restoration of broken symmetry in astrophysical situation with K. Sato.
However around the age of 26 or so, the over doctor problem became more severe since even K. Sato and
K. Nomoto could not find permanent positions. I was deeply disappointed since K. Sato and K. Nomoto
were already famous in the world. One day in such disappointed days, professor Hayashi came into the
graduate student room and said to me, “What will happen when two rocks collide is a very important
problem in relation to the formation theory of planets. Can you study this problem with us?” I answered,
“Thank you and I will consider the problem for a while.” However I could neither find reference papers
for this problem nor imagine what to do. Later I went to his office and said, “I decline to study what
will happen when two rocks collide since I could not find any reference papers.” Then professor Hayashi
said, “A problem with no or little reference papers is a good problem. If there are many reference papers
on the problem, that means that your contribution to the field will be very small .” This was completely
unexpected statement for me. Usually graduate students like to study the problem with many references.
What professor Hayashi said is , however, in reality correct. He himself did study the problems with
no or little references such as the stellar evolution in 1960s and the origin of solar system in 1980s. To
overcome over doctor problem, I thought that I should do something big. For this purpose I combined the
statements of professors Mizohata and Hayashi as ; Find the solvable problem for the important theme
with no or little reference papers.

I consulted Maeda what we should start. Three possible problems were considered. 1) jet formation
from accretion disk, 2) high energy cosmic rays and 3) numerical simulations of collapse of rotating stars
to black holes. Two graduate students Miyama and Sasaki joined our group. Finally we decided to study
non-spherical collapse of the star leading to the formation of black holes, called numerical relativity later.
We started seminars with no time limit in 1977. In reality we started from zero. We heard from many
seniors that our challenge is hopeless and the result should be the failure. However after two years or so,
finally we submitted four papers in 1979 and accepted for publication:

e General Relativistic Collapse of an Axially Symmetric Star by Takashi Nakamura, Kei-ichi Maeda,
Shoken Miyama and Misao Sasaki, Prog.Theor. Physics 63 (1980) 1229

e A New Formalism of the Einstein Equations for Relativistic Rotating Systems by Kei-ichi Maeda,
Misao Sasaki, Takashi Nakamura and Shoken Miyama , Prog.Theor. Physics 63 (1980) 719

e An Analytic Solution of Initial Data for Slowly Rotating Dust Sphere under Maximal Slicing Con-
dition by Kei-ichi Maeda, Shoken Miyama, Misao Sasaki and Takashi Nakamura , Prog.Theor.
Physics 63 (1980) 1048

e A Method of Determining Apparent Horizons in (2+1)+1-formalism of the Einstein Equations by
M. Sasaki, K.Maeda, S. Miyama and T. Nakamura, Prog. Theor. Phys. 63 (1980) 1051

We also presented early results of non-spherical collapse of dust and gravitational waves at 2nd Marcel
Grossman Meeting at Trieste Italy in 1979, where I met Tsvi Piran first.

In 1981 Miyama published axially symmetric time evolution of pure gravitational waves (S. Miyama,
Prog. Theor. Phys. 65 (1981)). While I wrote a paper on general relativistic collapse of axially symmetric
stars leading to the formation of rotating black holes (T. Nakamura, Prog. Theor. Phys. 65 (1981) 1876)
which is the first numerical example of the formation of rotating black hole. In 1987, I wrote 218 pages
review paper on “General Relativistic Collapse to Black Holes and Gravitational Waves from Black Holes”
(Prog.Theor.Phys. suppl90) with Oohara and Kojima. One of the conclusions of this review paper was
that non-axially symmetric systems , i.e. ,3D numerical relativity was strongly needed. From page 88
to 101 of this paper, I presented the time evolution of 3D pure gravitational waves as an example of 3D
numerical relativity where the basic idea called BSSN formalism at present was shown.

2 When and How the study of laser Interferometer gravitational
waves detector in Japan started 7

In 1988 March 23, I received a letter from president of Nagoya university, Sachio Hayakawa. He met
Hayashi on his way to Tokyo and back to Nagoya and knew that I was interested in gravitational waves.
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His friend Mizushima in Colorado, asked Hayakawa to organize the research group on the laser inter-
ferometer gravitational wave detectors in space using two artificial satellites. He already discussed this
with laser physicist professor Takuma in Univ. Electro-Communication, M. Fujimoto in NAO (National
Astronomical Observatory) and ATR (Advanced Telecommunication Research) company. Hayakawa an-
swered to Mizushima that he wanted to organize the research group on the laser interferometer in Japan
after the discussion with Takuma. He was impressed by the talk of Kip Thorne when he invited Kip to
talk on LIGO at Nagoya University in 1986 after Yamada conference in Kyoto. In the letter, Hayakawa
asked me to join the group. I answered, “Yes”. In 1988 June, we first had a small meeting at ATR
in Osaka. We felt that we had a bigger meeting with more experts to discuss how we should start the
research on laser interferometer gravitational wave detectors in Japan.
Brief History of Sachio Hayakawa is as follows:

1923 born

1954-1959 Professor in YITP

1959-1987 Professor in Nagoya University
1987-1992 President of Nagoya University
1991 awarded Japan Academy Prize
1992 Mar. 5 passed away

Main subjects were Elementary Particle Physics, Cosmic Ray Physics and Gamma Ray and X-Ray
Astronomy.

We had Molecule Type workshop? in YITP entitled “Dynamical Space Time and Gravitational
Waves”. We had the workshop in 1988 September. Participants were Hayakawa, Kawashima(ISAS),
Takuma (Univ, Electro-Communication), Tsubono(Univ.Tokyo), Fujimoto(NAO), Morimoto(KEK), Naka-
mura, Madea, Sasaki, Miyama, Kojima, Oohara, Futamase, and Nagasawa. Professor Hirakawa in Univ.
Tokyo had been trying to observe the continuous gravitational waves from Crab pulsar using cooled res-
onant type antenna. Unfortunately he passed away in 1986. Tsubono succeeded to Hirakawa’s group in
Univ. Tokyo. Morimoto continued the experiment by Hirakawa in KEK. Kawashima made 10m delay
line laser interferometer in ISAS3. The main purpose of this workshop was to discuss and decide what
we should do next several years.

Resolutions were: 1) Apply to the grant-in-aid of Type B with 3M Yen( about 30,000 Euro now)
to prepare for the bigger grant-in-aid. 2) Simultaneously apply to the grant-in-aid on Priority Area of
ministry of education with 600M YEN(about 6M Euro now). 3) P.I : prof. Hayakawa. Next year(1989)
we were informed that the Type B grant was approved but the priority area was not. In 1989 June,
prof. Hayakawa proposed to write a conceptual design of the interferometer. The design started in June
mainly by Mio and Ohashi and ended in February 1990. However the ministry of education was anxious
about the research by the president of the university. In short, the president of the university should
not be the leader of the big grant-in-aid such as priority area. Hayakawa then asked me to be P.I. I
obeyed his order. We again applied to the grant-in-aid on Priority Area “gravitational wave astronomy”
in 1990 with 600M YEN( about 6M Euro now). The cover title of application form for the grant-in-aid
on the priority area was “Gravitational Wave Astronomy” for 1991-1994. This was approved. That is,
we started the priority area (1991-1994) with 600M Yen(about 6M Euro now). At that time, we do not
know which is better, Fabry Perot or Delay Line? The best interferometer then was MPI 30m in which
Delay Line was adopted. We decided to develop both as

e organization of the priority area
e Sub Project A1) Construction of FP type 20m interferometer ( Leader Fujimoto in NAO)
e Sub Project A2) Construction of 100m Delay Line interferometer (Leader Kawashima in ISAS)

e Sub project B) Development of high power and stable laser such as Nd:YAG laser 200mW with
Sv/v ~ 10719 /y/Hz. ( Leader K. Ueda in Univ, electro-communications)

2Molecule type means that the number of participants is 10 or so
3Institute for Space and Aeronautics Science
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e Sub project C) Development of various elements such as seismic isolation and control of mirror.
(Leader K. Tsubono in Univ. Tokyo)

e Sub project D) Research on sources of gravitational waves and numerical simulations. (Leader T.
Nakamura in YITP)

Unfortunately Prof. Hayakawa passed away in 1992 March 5. What he did was extremely important.
Without his activity, present gravitational wave research group in Japan could not exist. Especially
important is that he proposed to exchange MOU (Memorandum Of Understanding) among NAO, KEK
and ICRR. This MOU has been continuing even now. Its content is: “The presidents(directors) of NAO,
KEK and ICRR (three big institutes in Japan) agree to work and cooperate together to construct the
ground based 3km size gravitational wave detector in Japan.” He also encouraged to write the conceptual
design. This was also very ,very important.

I did not expect that I became P.I. of the experimental project. Moreover the ministry of education
requested me to achieve something very new in the world. I knew nothing about the laser interferometer
so that I began to read the document of the conceptual design. I found that the thermal noise was
important so that I proposed to cool down the mirror to 4K. Then I received many objections; “How do
you cool the mirror in the vacuum? Do you shed the cool gas to the mirror and absorb it from somewhere
to keep the level of vacuum? That is extremely difficult.”, “How about keeping all the vacuum tube 4K
and cooling the mirror by its emission of radiation?”, “It would be OK for end mirrors disregarding the
cost. However near mirrors should absorb the laser light more or less so that the temperature of the
near mirror would be at most 200K or so. 200K mirror does not help to increase the sensitivity.”, “We
have been studying the resonant detectors to catch the continuous gravitational wave from Crab pulsar.
We knew various problems in cooling the detector. We started the study of laser interferometer since we
heard that the cooling is not needed. Are you saying that we should cool again?” The discussions ended
at that time. However ten years later in 2000, Kuroda in ICRR succeeded in cooling the mirror to 20K
by the conduction of the wire which sustains the mirror. This opened the way to LCGT.

3 The birth of JGRG (Japan General Relativity and Gravita-
tion)

To support the experimental effort for the detection of gravitational waves, Maeda and I considered to
make the theoretical community related to general relativity and gravitation. Contents are

1) Once a year we will have ~ five days conference on general relativity and gravitation.
2) We will publish the proceedings in English.

3) Priority Area “Gravitational Wave Astronomy” will support the cost of the proceedings and a part
of the travel and living expenses for invited speakers.

4) The place of conference will be changed every year to promote general relativity and gravitation.

5) The contents of the conference should be as wide as possible. Any talks related to general relativity
and gravitation are OK.

6) We also expected that some young people in JGRG move to data analysis and experiments.

In Appendix A, I show the list of JGRG from the first one to the 20th (this conference).

The Priority Area itself ended with great success. The judge of the priority area , Takuma (laser
physicist) and I agreed as “Any apparatus considered by scientists will be constructed sooner or later,
unless it conflicts with major laws of physics such as energy conservation, uncertainty principle and the
principle of increase of entropy.” New program followed the priority area.

New program on “gravitational wave astronomy” (a Grant in-Aid for Creative Basic Research from
the Ministry of Education 09NP0801) was a top-down program. One could not apply to this program.
Principal Investigator was Y. Kozai who was a former director of NAO (National Astronomical Obser-
vatory). The total cost was 1560M Yen (about 15.6M Euro now). The TAMA 300 was constructed by
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this program and I was a leader of theory group. However I was against this project since 300m is not
long enough to detect gravitational waves. I said, “Although this is a top down project, please reject the
project. We had better ask and wait for the funding of 3km size interferometer.” Answer was: “It is too
risky to extend the arm length two orders of magnitude ( from 20m to 3km). Even by TAMA 300, if
we are lucky enough we may detect the gravitational wave first in the world. Then we can ask for 3km
size antenna”, “If we reject the project, how can we get the fund for experiments?” My answer to this

question WaS “erereieee .
Then let us consider the source of gravitational waves that TAMA300 might detect*

1) At this time, using gravitational microlensing, dark matter in our galaxy might consist of MACHO
(MAssive Compact Halo Object) of mass about 0.5 solar mass.

2) If MACHO is a black hole, it should have been formed in the early universe when the temperature
T was ~1GeV.

3) MACHO black holes were formed randomly in space so that binary black hole was formed due to
the tidal force of the third near-by black hole.

4) Coalescence rate would be about once per 20 years by TAMA300. That is, the probability of
detection is 5% per year or so, which is the same as the consumer tax rate in Japan. That is neither
large nor small.

2001 was thirteen years after we started from zero. We succeeded in 1038 hours operation of TAMA300
with 87% duty cycle in 2001°. We theoretical group members also took part in 8-hours shift each. In
2003, 1157 hours operation was done and achieved the sensitivity that the coalescing binary neutron stars
event in our galaxy can be detected.

New program ended with a great success in 2001 and next program called “New development in the
research of gravitational wave” (Grant-in- Aid for Scientific Research on Priority Area of Ministry of
Education) followed. “New development in the research of gravitational wave” was as follows:

e This was approved for 2002-2005.

e Principal Investigator: Kimio Tsubono (Univ. Tokyo)
e The total cost: 1430M Yen (about 14.3M Euro now)
e Main purposes of the program were:

1) Observations using TAMA300.

2) Basic technical research on LCGT(Large Cryogenic Gravitational wave Telescope with 3km
arm length) using 100m proto type CLIO.

3) Theory and data analysis °

Project DECIGO (DECi hertz Interferometer Gravitational wave Observatory) was born in this pri-
ority area. Motivation to DECIGO comes from extra solar planets. Many extra solar planets are found
using many absorption lines (~5000) of nearby G type stars since small orbital motion up to 10m/s
can be measured. Loeb” proposed to apply this techniques to many QSO absorption lines so that two
observations between several years or so yield direct measurement of cosmic acceleration and thus dark
energy. Our point is to use gravitational waves from coalescing binary neutron stars at z~1 instead of
QSO absorption lines. Then a year to ten years before coalescence, the frequency of gravitational wave
should be 0.1 Hz band where little proposal for detectors existed 8. Punch Point of Ultimate DECIGO
with 10726 /v/Hz at 0.1Hz is as follows:

4 Gravitational Waves from Coalescing Black Hole Macho Binaries, T. Nakamura, M. Sasaki, T. Tanaka and K. S Thorne,
Astrophys. J.487(1997) L139-L142

5 Stable Operation of a 300-m Laser Interferometer with Sufficient Sensitivity to Detect Gravitational-Wave Events
within our Galaxy, Masaki Ando, et al, the TAMA collaboration Physical Review Letters 86 3950 (2001)

6Nakamura and Sasaki were leaders of thory and data analysis groups, respectively and they supported JGRG.

7A.Loeb, Astrophys. J. Letters 499 L111 (1998)

8Direct Measurement of the Acceleration of the Universe using 0.1Hz Band Laser Interferometer Gravitational Wave
Antenna in Space, Naoki Seto, Seiji Kawamura, Takashi Nakamura, Physical Review Letters 87 221103 (2001))
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e ~100,000 mass of neutron stars and black hole per year will give us mass functions of NS and BH.

e Direct measurement of acceleration of the universe which is independent measurement of the cur-
vature of the universe so that the independent information of EOS of the universe is available.

e Background gravitational waves predicted by inflation model up to Qgw ~ 1072% can be detected.

This is a completely independent information from WMAP and PLANCK because the frequency

of gravitational wave is completely different.

e If the fundamental scale is TeV, then the redshifted gravitational wave at T=TeV is just 0.1Hz
band. We may see something.

For practical DECIGO with 10723/ vHz at 0.1Hz, the angular resolution of ~1 arcminute can be achieved
a week before the coalescing binary neutron stars event at ~ 300Mpc”. Then we can point all the
detectors to coalescing binary neutron star (black hole) event. Since the direction as well as the time
(within ~0.1 sec accuracy) of the event are known beforehand, all band electromagnetic detectors from
radio to ultrahigh energy gamma rays can be pointed to the source with possible neutrino detectors.
Even the high frequency gravitational wave detectors can be tuned to catch ISCO, QNM and so on.

4 The dark age of Japanese Gravitational wave group

In 2005, we applied to Grant-in- Aid for Scientific Research on Priority Area of Ministry of Education
called, “Frontiers of all wave length gravitational waves astronomy” with 2100M Yen (about 21M Euro
now) for 2006-2011. Contents of the project are as follows:

e PI: T. Nakamura

e Sub Project A01) Pulsar Timing Array (Leader T. Daishido)

e Sub Project A02) DECIGO (Leader S. Kawamura)

Sub Project A03) CLIO(100m proto-type of LCGT) (Leader M. Oohashi)

Sub Project A04) High Frequency GW (Leader K. Arai)

Sub Project A05) Theory and Data Analysis (Leader T. Tanaka and N.Kanda)

The meaning of all wavelength Gravitational wave astronomy can be explained as

e Gravitational Wave Astronomy <= Electro Magnetic Wave Astronomy

e GHz GW? <= gamma ray Astronomy

e MHz GW? <= X-ray Astronomy

e 10kHz GW <= UV Astronomy

e Ground Detectors ~100Hz<= Optical Astronomy

e Deci Hertz GW <= Infrared Astronomy

e LISA (mHz Band) <= Radio Astronomy

e Pulsar Timing Array (10nHz Band) <= Low Frequency Radio Astronomy

In 2006, we were informed that the project was not approved. The comment of the judges was “We
understand the scientific purposes of all wave length gravitational wave astronomy but it is too early to
start it simultaneously in the time when no gravitational wave is detected.” However in electromagnetic
waves all wave length astronomy started almost simultaneously in Japan. We proposed similar priority
areas in 2007,2008 and 2009 changing P.I.. However they were not approved. ICRR also requested the
construction of LCGT to Ministry of Education in these years but LCGT was not approved in spite of
recommendation by GWIC and Science Council of Japan.

9Deci hertz Laser Interferometer can determine the position of the Coalescing Binary Neutron Stars within an arc minute
a week before the final merging event to Black Hole, Ryuichi Takahashi and Takashi Nakamura, Astrophys. J. Letters 596
1.231-L.234(2003)
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5

Dark age ended in 2010 July 20 !!

Very recently a part of LCGT plan which amount to 9800M Yen = about 98M Euro was approved. We are
now preparing application form to the Grant-in- Aid for Scientific Research on Priority Area of Ministry
of Education called, “Frontier of physics and astronomy opened by the detection of gravitational waves”
for 2011-2015. This Priority Area will support the construction and operation of LCGT in every sense
including the basic research for upgrade the present LCGT design.

In conclusion,

e JGRG was born 20 years ago in relation to start of the research on detection of gravitational waves

1st:

2nd:

3rd:

4th:

5th:

6th:

Tth:

8th:

9th:

10th:

in Japan.
This year a part of LCGT was approved. JGRG will support LCGT in every sense.

We will apply to grant-in-aid on priority area to support LCGT and JGRG. We hope that this will
be approved.

Next project after LCGT will be DECIGO in 2020’s.

In Japan, one has the right to vote after 20 years old. In this sense, JGRG becomes an adult this
year.

List of JGRG(Japan General Relativity and Gravitation)

1991.12.4-6 ,Tokyo Metropolitan Univ. , 44 talks,120 participants , 399 page English proceedings,
supported by Priority Areas ”Gravitational Wave Astronomy”

1993. 1.18-20, Waseda Univ. , 57 talks, 142 participants, 476 page English proceedings, supported
by Priority Areas ”Gravitational Wave Astronomy”

1994. 1. 17-20, Univ. Tokyo, 64 talks, 155 participants, 516 page English proceedings, supported
by Priority Areas ”Gravitational Wave Astronomy”

1994. 11.28-12.1, Kyoto Univ. YITP | 56 talks, 105 participants, 475 page English proceedings,
supported by Priority Areas ”Gravitational Wave Astronomy”

1996. 1.22-25, Nagoya Univ., 57 talks, 110 participants, 463 page English proceedings, supported
by New Program ”Gravitational Wave Astronomy” (TAMA project was started as a part of this
program.)

1996. 12.2-5, Tokyo Inst. Tech., 60 talks, 120 participants, 481 page English proceedings, supported
by New Program ” Gravitational Wave Astronomy”

1997. 10.27-30, Kyoto Univ. YITP, 52 talks, 93 participants, 364 page English proceedings, sup-
ported by New Program ” Gravitational Wave Astronomy”

1998. 10.19-22, Niigata Univ., 59 talks, 110 participants, 392 page English proceedings, supported
by New Program ” Gravitational Wave Astronomy”

1999. 10.27-30, Hiroshima Univ., 74 talks, 120 participants, 502 page English proceedings, sup-
ported by New Program ”Gravitational Wave Astronomy”

2000. 9.11-14, Osaka Univ., 60 talks, 120 participants, 431page English proceedings, supported by
New Program ” Gravitational Wave Astronomy”

From JGRG10 Talks should be in English .

11th:

2002. 1.9-12, Waseda Univ., 79 talks, 150 participants, 445 page English proceedings, supported by
New Program ” Gravitational Wave Astronomy”
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12th:

13th:

14th:

15th:

16th:

17th:

18th:

19th:

20th:

2002. 11.25-28, Univ. Tokyo Komba, 67 talks, 150 participants, 469 page English proceedings,
supported by "New Development of GW Research ”

2003. 12.1-4, Osaka City Univ., 55 talks, about 150 participants, 307 page English proceedings,
supported by ”"New Development of GW Research ”

2004. 11.29-12.3, Kyoto Univ. YITP, 49 talks, about 150 participants, 465 page English proceedings,
supported by ”"New Development of GW Research ”

2005. 11.28-12.2, Tokyo Inst. Tech., 47 talks, about 150 participants, 347 page English proceedings,
supported by "New Development of GW Research ”

2006. 11.27-12.1, Niigata Univ. 57 talks, 150 participants, 282page English proceedings, supported
by funds from MEXT.

2007. 12.3-7, Nagoya Univ. , 62 talks, 170 participants, 396 page English proceedings, supported
by JSPS Scientific Research(B) and MEXT Creative Scientific Research

2008. 11.17-21, Hiroshima Univ. , 69 talks, about 150 participants, 318 page English proceedings,
supported by JSPS Scientific Research(B) and MEXT Creative Scientific Research

2009. 11.20-12.4, Rikkyo Univ. , 70 talks, 185 participants, 427 page English proceedings, supported
by Rikkyo Univ. and MEXT Creative Scientific Research

this conference 2010. 9.21-9.24

Proceedings are available (http://www-tap.scphys.kyoto-u.ac.jp/jgrg/pastjgrg.html).
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Accelerating cosmologies and inflation in string theories with
higher order corrections

Nobuyoshi Ohta!

Department of Physics, Kinki University, Higashi-Osaka, Osaka 677-8502

Abstract

We discuss how to obtain inflationary and accelerating cosmological solutions in the
context of string theories and M-theory. First, we review the no-go theorem which
forbids such solutions in the low-energy effective string theories, i.e. supergravities.
Then we show that this can be avoided if we consider time-dependent internal space.
This is given by the S-brane solutions in string and M theories. Unfortunately these
solutions do not give enough e-folding. We then argue that higher order corrections
in string and M theories can give inflationary solutions with big enough e-folding.

1 Introduction

First of all, T would like to thank the organizers for inviting me to this special occasion of 20th an-
niversary of JGRG, and also the occasion of the 60th birthdays of Prof. Maeda and Prof. Nakamura.
Congratulation on the 60th birthday, both Prof. Maeda and Prof. Nakamura.

It is my great pleasure and honour to be acquainted with both of you, and in particular to collaborate
with Prof. Maeda on various interesting subjects. As other people, I wish both of you a good health and
future prosperity.

My real encounter with Prof. Maeda was at the occasion when I was invited as a speaker in a workshop
on brane world (2002 Jan.) which was organized by those people. In retrospect, it was this occasion
that I started looking at time-dependent solutions in the context of string and supergravity theories; I
remember that in some evening I had an early dinner and then was deriving such solutions now known
as S-brane solutions. Such time-dependent solutions later became a subject to study together.

It was then one or two years later at one of this series of JGRG at Osaka City University (2003 Dec.)
that we really discussed seriously collaboration on cosmological solutions in superstring/M-theory.

So I think that it is appropriate to talk about this subject in this occasion. This is also good because
all the former speakers talked about other aspects of his work on black holes.

2 Models of inflation and no-go theorem

Superstring is the most promising candidate for the unified theory of all interactions of elementary
particles including gravity. It is an urgent problem to give any check of superstring and /or predictions. To
achieve this task, we should look for circumstances where quantum effects of gravity are most significant
such as black holes and the early universe both of which involve singularity. It is extremely important
to study if superstrings can give predictions consistent with observation and also resolve the problem of
singularity. Here we focus on the problems associated with the early universe.

First let us briefly recall why inflation is necessary. There are two major cosmological questions.

e Horizon problem: It is found that the universe is homogeneous in the large scale beyond the distance
causally connected. Why and how is such homogeneity realized?

e Flatness problem: It is also found that the present universe is very flat, but it is quite unnatural
to have it at the very present. Why is this so?

1Email address: ohtan@phys.kindai.ac.jp
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Inflation, the rapid expansion of the universe at the early stage, can resolve both these problems because
of the rapid expansion of the initial causally connected region. As an important byproduct from the
observational viewpoint, it turns out that this rapid expansion at the early stage produces scale invariant
density perturbation which agrees with recent observations. If the grand unified theory of elemantary
particles is correct, there will be lots of monopoles produced at the early universe, and inflation will also
be needed to dilute these.

More surprising is that it has been discovered that the expansion of the present universe is accel-
erating! Naively we expect that the expansion is decelerating because the gravity is attractive force.
The acceleration means that there is some source causing this acceleration, typically a tiny cosmological
constant. This is called late-time acceleration.

Thus the correct theory of gravity must explain not only the inflation at early epoch but also the
present accelerating expansion. It is this question about superstring that we address.

The first model of inflation was proposed by Guth and Sato in 1981 [I, 2]. Motivated by grand
unified theories which involve change of vacuum energy due to phase transition, they considered effective
cosmological constant, which produces exponential expansion of the scale factor of our FLRW universe
when it is positive.

Actually another model of inflationary expansion had been proposed before by Starobinsky. This is
caused by higher order corrections such as R? [3].

Without introducing artificial potential, we would like to have this behavior as a prediction of the
fundamental theory, the superstring. However there is a no-go theorem [4—6] that forbids this. Let us
briefly see how this result is obtained.

The Einstein equations give

a 4G a2 k 887G
B )+

am s e (Q) +m=ge M

where a is the scale factor in the FLRW universe, G the gravitational constant, k& the signature of the
curvature of our space, p the energy density and P pressure, respectively. To have inflation, we must

have @ > 0ie. p+3P <0 (w = % < —1). This means that the gravity works as repulsive force! A
famous example of this anti-gravity is the cosmological constant with

p=A, P=-—A, (2)

The following theorem has been shown [1-0]:
Theorem: If D(> 2)-dimensional supergravity is compactified on smooth manifold without boundary
and the following is true,

1. gravitational interactions do not contain higher derivative terms than ordinary Einstein theory,
2. all massless fields have positive kinetic term (not ghost),
3. d-dimensional Newton constant is finite,

then we cannot obtain accelerating expansion. e
Now the challenge is how to avoid this no-go theorem. The following possibilities immediately come
to our mind.

e Consider additional degrees of freedom such as D-branes. This has been considered by Dvali-Tye [7],
KKLT [¢] and [9].

e We can consider time-dependent internal space, which leads to the S-brane [11] and will be briefly
discussed in the following.

e We can also consider higher order corrections existing in superstring/M-theory (like Starobinsky).
This is closely related to our work [12] with Prof. Maeda.

e Introduce scalar fields with negative kinetic terms, which is called phantom cosmology. We will not
consider such a pathological theory.

e Consider non-compact space and/or space with boundary, which is the approach called brane world.

In what follows, we discuss the second and third possibility.



94 Accelerating cosmologies and inflation in string theories with higher order corrections

3 S-brane

A Vacuum solution which exhibits accelerating expansion was found in higher-dimensional Einstein grav-
ity if we consider hyperbolic space for the internal space [13]. It was then immediately identified as a
special case (0 flux) of S-brane [10, 11], i.e. SM2-brane (S2-brane in M-theory with 3-dimensional space)
which is given as

ds: = [cosh3c(t — tg)]g/(”_l) [ — e2ng(t)=6¢"/(n—1) 342
+629(t)766//("*1)d23170 + [cosh 3¢(t — tQ)]*2("“)/?’(”*1)@26'513:2 , (3)

where ¢, ¢’ are constant, x represent three-dimensional space, d = 4+n and dZ%,U is n-dimensional sphere
(o = +1), flat (¢ = 0) or hyperbolic (¢ = —1) spaces. Here

1 B J—
n—1 In cosh[(n—1)3(t—t1)] o=+,
g(t) = (t—t1) ) 1o =0, (4)
1 . —
a1 n Snh[(n—1)Blt—t:]] %= -1

with a constant [.
When compactified, the 4-dimensional Einstein frame is defined as

ds® = 57" (t)dsh, + 6% (t)dSy, ., dsh = —a®(t)dt* + a®(t)da?, (5)
where we have defined
§(t) = [cosh3e(t — ty)]"/ (M= Deg(t)=3¢/(n—1)
a(t) = [cosh3c(t — tQ)](n+2)/6(n—1)eng(t)/2—(n+2)6’/2(n—1). (6)
The cosmic time is then defined by
dr = a®(t)dt, (7)

If Z—Z > (, then 4-dimensional universe expands. The condition for n = 7 is given by

%tanh[gc(t )] - @ coth(3y/3/7ct) > 0, (8)

The behavior of this quantity is depicted by the solid line in Fig. 1 (a) as a function of the original time

n(t) =

2 . . . . .
t. For 27‘21 > 0, the universe exhibits accelerating expansion:

9 1 1 ,
8 <Cosh2[3c(t ") " b’ (3 3/7Ct)> —m(H) >0 (9)

The behavior of the lhs is also shown by the dotted line in Fig. 1 (a), and the scale factor in Fig. 1 (b).
Unfortunately examining the behavior of the scale factor, alas, we find that the obtained e-folding
during accelerating expansion is very small only around 2 — 3!!
The basic mechanism that causes this accelerating expansion can be understood from the effective four-
dimensional viewpoint as follows [14]. Consider the product of d-dimensional universe and n-dimensional
space whose metric is given by

ds? = e 2 > mi¢i/(d—1)d83+1 + Z e2¢i(2) gy:2 (10)

mi, €57

where ZZ m; = n and ¢; is the signatures of the curvatures of internal m;-dimensional spaces. The size
of each internal space is determined by ¢;. We find that the d-dimensional effective potential is given

by [17]

im; — 1) _ 2 (0 v a0 1o, b d—1)2
V = Z(_Ei)%e ey ((szFd D+ 24 mJ¢J) _ 60%. (1]_)
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Figure 1: (a) 9% (solid line) and dd—; (dotted line) for o = —1,n = 7. (b) scale factor a(t).

For simplicity, we consider ¢q = ¢o = --- = ¢. There is additional contribution when we have four-form
flux. Then the effective potential for the 4-dimensional case takes the form shown in Fig. 2. The potential
is always bounded below for the case with flux, but there is no lower bound on the potential in the case
without flux for spheirical space (e = +1). The case of e = —1 is similar to that with flux, and there is
no potential for e = 0.

(1)

Figure 2: Scalar potential. The upper one is for hyperbolic internal space with and without flux, and
the lower one is for spherical case with flux. The potential for spherical space without flux goes to minus
infinity for ¢ — —oc.

From this figure, we can understand how the above temporary accelerating expansion takes place [14].
Suppose that the scalar field ¢ comes in from the right, then it climbs up the slope but turns around after
some time. While the scalar field is up on the slope, the potential gives an effective positive cosmological
constant and the inflation occurs, but this ceases after some time. It is also obvious that the size of
internal space will become large eventually.

In this picture, it is clear that the accelerating expansion is possible only for hyperbolic internal space
if we consider solutions of higher-dimensional Einstein equation without flux [13], but this is always
possible for S-branes with flux even for ¢; > 0 [L1]. This is a striking contrast and excellent feature of
the S-brane solutions. So far so good. The only unfortunate result is that the obtained e-folding is very
small. These solutions are very interesting because they clearly show that it is possible to evade the no-go
theorem by considering time-dependent solutions.

If we use hyperbolic space for our space, it has been found that there is accelerating ever-expanding
solution in the higher-dimensional Einstein theory [15]. This solution is found for m > 6, and the behavior
of the scale factor, when it is reduced to four-dimensional FLRW universe, is given by

a(t) = 7 4+ Ar~V(m=6)/(m+2), (12)

For m = 6, it may appear that this solution does not give accelerating expansion. However a closer look
reveals that the solution involves logarithmic term and gives such expansion [16]. It is very interesting
that the minimal dimension m = 6 precisely coincides with the critical dimension of the string theory,
and M-theory is also allowed! The solution may be useful to describe the present accelerating expansion.
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4 Higher order corrections in M-theory

From the analysis of the previous section, it is rather clear that the S-brane solutions cannot be used for
inflation at early universe because

1. it does not give large enough inflation,
2. it leads to big internal space.

However, it is known that there are always higher-order quantum corrections in string theory. Con-
sidering Starobinsky’s approach mentioned in Sec. 2, this gives us the hope to have the inflation within
the context of string and/or M theory. These higher-order terms must be important in the early universe.
In M-theory, they are given as

S = Sgu + Sy, (13)
1 1 -
Ser = = /dllx\/—g]i Si= = /dnx\/—g [a4E8 +yLw + 6R*| . (14)
2Kr74 2Kk%4
where

I 1 « Vi...baV. o o

By = 724 X 3!6 s 460‘5’)’9101~-P404Rp1 1,LL11/1 < RP* 4#4V4 ) (15)
1

Ly = CAIWKCQHVﬂCApUQCBPUH + ic)\ﬂuycaﬁuuckpoacﬂpan- (16)

i _ kT _ T _ 27,2 \1/3 :
Here Cyr is the Weyl tensor, oy = g, Y = gatx@ns and Tr = (27°/k1,) /7 is the membrane
tension. Considering the relation

00 R (17)

I (R) ~ Lw(©) + 5 —prp =g R

it is natural to consider § ~ 10737 because the coefficient in the second term in (17) is 1073 for D = 10
or 11. Otherwise we also find that R* is dominant and the system does not give any interesting solution.
Take the general metric [6, 12]

ds% = —e?mo®) g2 4 eQul(t)dsi + e2u2(t)dsg, D=1+p+q, (18)

where 0, and o, are the signs of the p = 3- and ¢ = 7-dimensional spaces, respectively.
Since there are too many possible solutions, we restrict the possible solutions to those given by

ug =e€t, up =pt+1Inag, wug=vi+lInby. (e=0,1) (19)

It is clear that € = 0 gives generalized de Sitter solution (“generalized” in the sense that it contains
time-dependent internal space) and € = 1 gives power expanding solution in terms of the cosmic time.
By varying the above action, we find three basic (Einstein) equations:

4
F = Y F,+Fy+Fp=0, (20)
n=1
4 4 4
F(P) = Z fT(LP) + X Z gr(LP) +Y Z hglp) + F{Sé’) + FI(%IZ) =0, (21)
n=1 n=1 n=1
4 4 4
F(Q) = Z fT(L‘Z) +Y ng(lq) + X Z hng) + F{S[Z) + F}(%QAI) =0, (22)
n=1 n=1 n=1

where we have defined X = ii; — dguq + ﬂ%, Y = iy — dgus + a%, and other functions involving time
derivatives of the metric functions. Due to the generalized Bianchi identity, only two out of these three
equations are independent.

Solutions are summarized below [12]:
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4.1 (5:03:07:0

Here we obtain generalized de Sitter solutions.
MEly (i, 7) = (£0.10465,70.93666). (23)

In this case, the scale factor a(7) exhibits ”super-inflation” in the Einstein frame.
We do not find exact solution in power-law solutions but asymptotic solutions are found.

42 d=03=0,07#00r d =0;=0,03#0

In this case, there is no generalized de Sitter solution. We find exact solution in power-law solution

ME12(u, v, 07) = (0,1, —1). (24)
4.3 6#0
Here we find more solutions for § < 0. See Figs. 3 and 4 and Table 1.
v A%
: . H 2 2
Hs : d
- — 1.5 1.5
: : 1 1
.
0.5 0.5
ps=vs) | 1 o A
| 0
SIS - -0.5 -0.5
;‘ N Vi vV,
e ak |
Ve | / K
1 LS -5
Vs i i r (
J ‘ : 4 5 -5 -4 g
-0 -1 -100 2107 2107 210" -107 -10° -5x10° 0 5x10° 10
Figure 3: Five de Sitter solutions for o, = 04 = 0,8 < 0. Figure 4: de Sitter solutions for § ~ 0,0, = o4 = 0.
The conditions for good inflation are
1. u>v,u>0

2. 60 e-folding

3. almost stable but the existence of small instability is desirable in order to have inflation ending
after some time.

Closer study shows that enough inflation cannot be obtained only with the exact solution. It turns
out that some exact solutions have unstable modes, so we should study the evolution after the exact
solution decays in the direction of unstable mode. In particular, the solution ME6 in Table 1 looks
promising. We therefore performed numerical study and found a solution which comes close to ME6
and then goes away. We thus find that there is a case in which we can obtain large e-folding as shown in
Figs. 5 and 6.

The feature of general solutions is that the size of the internal space is larger than the Planck scale.
For example, if we obtain 60 e-folding for MN1 (see the numerical solution in Fig. 6), we will have

Ry ~ 4000m7y, (25)
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Table 1: Solutions MEiy (i = 1,---,5) for various d. (ms,nu) means that there are m stable and n
unstable modes. The solution is stable if 10-dimensional volume expansion rate 3u + 7v is positive.
Solution Property Range Stability  3u; + Tvs
ME14 v <0< —0.00004311 <6 <0 (0s,5u) —
=0 (1s,2u) -
0 < & < 0.000059 88 (1s,4u) -
ME2, v <0< pa —0.04520 < § < —0.002649  (4s,1u) +
ME3, 0< ps =vs 5 < —0.000 4732 (3s,0u) +
MEA4, vs <0< pia —0.2073 < 6 < —0.004 852 (1s,4u) -
ME5, vs <0< s —0.2073 < § < —0.2056 (2s,3u) -
ME6, Ve =0, 0 < 16, Gq6) § < —0.000 5589 (5s,1u) +
MET7, vr =0, Gom) <0< pg 0.002999 < § (4s,2u) +
MES8+ pns =0, 0 <0y, Vs —0.003163 < § < —0.000 5650 (4s,2u) +
ME9, po =0, 0 < &p(o), v § < —0.0005657 (5s,1u) +
ME104 pio =0, 5p(10) <0< o 6 < —0.00004349 (5S,1u) +
ME1ly i1 =0, Gpa1) <0 <wvii  —0.08522 < § < —0.003164  (4s,2u) +

Inag,Inbg (=1nb)

1tz 40
[
MN1 MN3 MN1(a)¥
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0.1 20 MN3(a)f
MN4 - /
MN2 —_ [~ s ‘
ERNIRYS A
0 L OTNs@y |
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P T AMNIL2(b)
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Figure 5: numerical results near ME6, on Figure 6: Sizes of the space for § = —0.1.
the ui1-u2 plane for § = —0.1. Shown are MNi(a) represents Inag of MNi solutionsB

ME6+ and MF1
where Ry is the radius of the internal six-dimensional space. This is rather big and gives large extra
dimensions. From the relation
mj = Rgmj), (26)
we get
miy ~ 2 x 107 3my ~ 600 TeV, (27)

which is quite low energy. If true, we may attain the energy scale of quantum gravity near future. But
of course the present estimate strongly depends on the initial condition and there is no surprize if we do
not see such effects in low energy.
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5 Gauss-Bonnet theory with dilaton

5.1 Solution space

We have also studied similar solutions in Gauss-Bonnet theory with dilaton (effective heterotic string) [17]
1 e - .
=5 /de —5e % [R+4(0,0) + aa g, (28)

The field equations gives autonomous system. We looked for fixed points in the time evolution, and found
that general solutions are those starting from one fixed point to another fixed point. We find seven fixed

Figure 7: The Solution space with dilaton. Solid (red) line for d?a/dr? > 0, and dotted (green) line for
d*a/dr? < 0.

points:
(z,y,2) = M(0,0,0), P;(F0.292373, +0.36066, £0.954846),
P2(£0.91822, F0.080285, +0.585906), (29)
P3(£0.161307, £0.161307, 39.30437), (30)

Only P, gives accelerated expansion. But actually Py gives

a(r) = e 32 = 06771 7| 7175 (7 cosmic time) (31)
We have also examined how large region of the initial conditions can give solutions approaching these
fixed points. The result is that there are certain regions which approach the solutions, as shown in Fig. 7.
Thus the problem with the initial conditions are not so severe.

This approach is being reconsidered with Prof. Maeda and Wakebe [18] in the string frame, but the
result does not seem to be so much different. If the field redefinition ambiguity is taken into account, the

result turns out to change very much and we find that de Sitter solutions are possible.

5.2 Density perturbation

Given some inflationary solutions, it is important to study if inflation by higher order corrections can
produce scale invariant density perturbation [19]. Here we consider a toy model with GB and dilaton
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higher derivative kinetic terms:
1
L.= —ia'f(gb) [e1REEs + c2(Vo)] . &(¢) = Ael? (i = +1 at tree level.) (32)

Typically A = —icl = 1,co = —1. Our approach is to consider no terms other than those from
superstrings. We find several relevant solutions given in Table 2.

’ Parameters \ nr \ nr \ r ‘

A=—-1/4,c1 =1,co=—-1,u=1 3.28 2.28 -

A= —1/4c;=1,c0=—1,u=10"2 1.0027 2.7x 1073 -
A=—1/4,¢c; =1,c0 =0, =102 1.011 0.011 -
A=1/4,c1=1,co=—-1,u=1 0.174 —0.826 46.4
A=1/4,c; =1,c0 =1, =1072 0.9650 —0.0350 | 7.1 x 1073
A=1/4,c1=1,c0 =—-1,0=10 —124 —13.4 -
A=1/4,c1=1,cc =—-1,0=10 —174 —18.4 -
A=1/4,c1=1,c0=-1,p=10 9.7 x 1073 —0.99 5.73
A=1/4,c1=1,c0=0,u=1 0.37 —0.63 1.15 x 103
A=1/4,c1 =1,c0=0,u= 1072 0.99 —0.01 -
A=1/4,c;1 =1,c0 =0, = 10 9.8 x 1073 —0.99 5.73

Table 2: de Sitter solutions for various A, ¢, ¢o, p and wg = —1, spectral index ng of scalar perturbation,

and nr for tensor mode tensor-to-scalar ratio r.

The result is that if GB is dominant, there is no good solution. We find that if higher kinetic term is
dominant, there are good solutions.

6 Conclusion

Here we thus find that no-go theorem can be overcome. We find that various models are possible, but
fine tuning may be necessary. In most models, quantum corrections seems to be important. An example
We have discussed S-brane solutions that
e gives accelerating expansion,

e but unfortunately only gives small e-folding.

We have also found that higher order corrections are important in the early universe, and they can
give generalized de Sitter solutions. The obtained desirable features are

e it gives enough e-folding,

e it also gives relatively large internal space which could be tested experimentally,
e the size of the internal space can be stabilized,

e it can produce density perturbation.

There are still several problems that should be studied further:

e There is a question of frame-dependence: Einstein or string (Jordan) frames. The question is
whether the difference of the frames produces any qualitative difference in the result [18].

e It seems that fine tuning of the initial conditions is necessary. Whether this is a general result or
not should be studied.



N. Ohta 101

e It is also interesting to study density perturbation [19]. It is interesting and important to extend
this GB case to M-theory and check if the realization of graceful exit is possible.

It is also known that KKLT [3] need complicated and ad hoc settings. It is important to examine
whether nature likes that or not. In this connection, we probably have to take string landscape and
anthropic principle into account.

Another important question is how to derive 4 dimensions. We have seen that it is possible to obtain
4 dimensions as a solution, but it is not clear if it is natural or why other dimensions are excluded. This
is a serious question because it is possible to show that there are solutions which allow other dimensions.
The fact that there is 4-form in M-theory may be important in the realization of four dimensions. But to
study this problem, we may need higher order corrections in 4-form, which is not known at the moment.
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Inflation and dark energy—theory and observational signatures
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Abstract

The theories of inflation and dark energy are reviewed paying particular attention to
their observational signatures. We discuss the classification of inflationary models,
primordial density perturbations including non-Gaussianities, and modified gravity
models of inflation. We also review theoretical attempts for finding out the origin of
dark energy—such as the cosmological constant, modified matter models, and modified
gravity models.

1 Introduction

The inflationary paradigm has been the backbone of high-energy cosmology over the past 30 years.
Inflation was first introduced [1, 2] as a way of addressing a number of cosmological problems such as
horizon and flatness problems. The striking feature of the inflationary cosmology is that it predicts nearly
scale-invariant, gaussian, adiabatic density perturbations in its simplest form [3]. This prediction shows an
excellent agreement with all existing and accumulated data within observational errors. In particular the
temperature anisotropies of Cosmic Microwave Background (CMB) measured by the Wilkinson Microwave
Anisotropy Probe (WMAP) [, 5] have provided the high-precision dataset from which inflationary models
can be seriously constrained.

The first model of inflation proposed by Starobinsky [!] is based on a conformal anomaly in quantum
gravity. The model in which the Lagrangian density is given by f(R) = R + aR?, where R is a Ricci
scalar, can lead to the sufficient cosmic acceleration with a successful reheating [6]. Moreover this model
is still allowed from the recent observations of the CMB temperature anisotropies [7]. The idea of “old
inflation” [2], which is based on the theory of supercooling during the cosmological phase transition,
turned out to be unviable, because the Universe becomes inhomogeneous by the bubble collision after
inflation. The revised version dubbed “new inflation” [8, 9], where the second-order transition to true
vacuum is responsible for cosmic acceleration, is plagued by a fine-tuning problem for spending enough
time in false vacuum. However these pioneering works opened up a new paradigm for the construction
of workable inflation models based on particle physics such as superstring theory and supergravity (see
e.g., Refs. [10, 11]).

Most of the inflation models, including the Linde’s chaotic inflation [12], have been constructed by
using a slow-rolling scalar field with a sufficiently flat potential. One can discriminate between a host
of slow-roll inflation models by comparing the theoretical prediction of the spectral index of scalar met-
ric perturbations as well as the ratio between scalar and tensor perturbations with the temperature
anisotropies in CMB (see e.g., [13—15]). There are other classes of models called k-inflation [16] in which
the field kinetic energy plays an important role to drive cosmic acceleration. Since in k-inflation the scalar
propagation speed is different from the speed of light [17], this can give rise to large non-Gaussianities
of primordial perturbations [18, 19]. The models based on the modification of gravity (including the
Starobinsky’s model [1]) can lead to some peculiar theoretical predictions for inflationary observables.
We shall discuss how a host of models can be distinguished from observations.

The observations of supernovae type Ia [20, 21] have shown that the Universe entered the phase
of cosmic acceleration after the matter-dominated epoch. The discovery of this late-time accelerated
expansion has opened up a new research field called dark energy (DE), see e.g., [22]. If we try to explain
the origin of DE based on particle physics, we encounter a problem associated with a very small energy
scale. For example, the vacuum energy appearing in particle physics is usually significantly larger than
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104 Inflation and dark energy

the observed energy density of dark energy (pg% ~ 10747 GeV?) [23]. In this case we need to find out a

mechanism to obtain a tiny value of the cosmological constant A consistent with observations.

The first step toward understanding the nature of DE is to clarify whether it is a simple cosmological
constant or it originates from other sources that dynamically change in time. The dynamical DE models
can be distinguished from the cosmological constant by considering the evolution of the equation of state
of DE (= wpg). The scalar field models of DE such as quintessence [241, 25] and k-essence [26, 27] predict
a wide variety of variations of wpg, but still the current observational data are not sufficient to provide
some evidence for the preference of such models over the ACDM model. Moreover we require that the field
potentials are sufficiently flat, such that the field evolves slowly enough to drive the cosmic acceleration
today. This demands that the field is extremely light (m, ~ 10733 eV) relative to typical mass scales
appearing in particle physics. However it is not entirely hopeless to construct viable scalar-field dark
energy models in the framework of particle physics.

There exists another class of dynamical DE models that modify Einstein gravity. The models that
belong to this class are f(R) gravity [28, 29] (f is a function of the Ricci scalar R), scalar-tensor theories
[30], Dvali, Gabadadze and Porrati (DGP) braneworld model [31], Galileon gravity [32], and so on. The
attractive feature of these models is that the cosmic acceleration can be realized without recourse to
a dark energy component. If we modify gravity from General Relativity, however, there are in general
stringent constraints coming from local gravity tests as well as a number of observational constraints.
Hence the restriction on modified gravity models is quite tight compared to modified matter models such
as quintessence and k-essence.

We shall review the above mentioned dark energy models and also discuss the current status of
observational and experimental constraints on those models.

2 Inflation

2.1 Dynamics and models of inflation

Most of inflationary models are based on a minimally coupled scalar field ¢ (“inflaton”) with a potential
V(¢). In the flat Friedmann-Lemaitre-Robertson-Walker (FLRW) background with a scale factor a(t),
the energy density and the pressure of the inflaton are given, respectively, by

ps =2+ V(6), Py=¢*/2-V(¢), (1)

where a dot represents a derivative with respect to cosmic time ¢. From the Friedmann equation 3H? =
81Gpy (H = a/a is the Hubble parameter and G is gravitational constant) and the continuity equation
ps +3H (py + Py) = 0, it follows that

H? &T[;éuvw)], b+ 3Ho+ Vy(p) =0, (2)

N 3m?,
where mp = G~1/? is the Planck mass, and Ve = dV/d¢. Combination of these equations gives
ifa = 8w (V — (/52)/(3771}2,1), which means that cosmic acceleration (& > 0) occurs for ¢2 < V. Inflation
can be realized by a sufficiently flat potential along which the field evolves slowly. Under the slow-roll

conditions ¢ < V(¢) and |§| < |3H¢|, we have H? ~ 87V (¢)/(3m2)) and 3Hp ~ —V4(¢) from (2).
We define the so-called slow-roll parameters [13]

o (V) _ maViss o _ MV Visos )
Vo 1er \ V) stV VT 6an2v?
The sufficient amount of inflation is realized provided that {ev,|nv|, |£|} < 1. At leading order in
the slow-roll expansion the parameters (3) reduce to ey ~ ¢ = —H/H? ny =~ 2 — ¢/(2He¢), and
& ~ [2e —n/(Hn)]n [33]. The cosmic acceleration ends when ey and 7y grow to of order unity. A useful
quantity to describe the amount of inflation is the number of e-foldings, defined by
. ty 8 R VAR ¢ dg
N=m= [ Ha~—" | djp= VT (7 4o (4)

b
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where the subscript f denotes the evaluation of the quantity at the end inflation. In order to solve the
horizon and flatness problems we require that N is larger than 60 [14].

The inflationary models based on a scalar field can be roughly classified in the following way [34]. The
first class (type I) consists of the “large field” models, in which the field evolves over a super-Planckian
range during inflation, A¢ > mp. Chaotic inflation [12] is one of the representative models of this class.
The second class (type II) consists of the “small field” models, in which the field moves over a small
(sub-Planckian) distance: A¢ < myp. New inflation [8, 9] and natural inflation [35] are the examples of
this type (although in these models there are some cases in which the field evolves over a super-Planckian
range). In the first class one usually has V44 > 0, whereas V44 can change the sign in the second class.
The third class (type III) consists of the hybrid inflation models [36, 37], in which inflation typically
ends by a phase transition triggered by the presence of a second scalar field. The fourth class (type IV)
consists of the double inflation models in which there exist two dynamical scalar fields leading to the two
stages of inflation. A simple example is two light massive scalar fields [38] (see also Refs. [39]).

We note that several models of inflation cannot be classified in the above four classes. For example,
there are some models in which the potential does not have a minimum-such as inflation with an expo-
nential potential [10], quintessential inflation [41], and tachyon inflation [412]. Typically these scenarios
suffer from a reheating problem unless some modifications to the potential are taken into account. There
exist other models of inflation in which an accelerated expansion is realized without using the potential
of the inflaton. For example, k-inflation [16] and ghost inflation [43] belong to this class. In this case
inflation occurs in the presence of non-linear kinetic terms of the scalar field. Inflation can also be realized
by higher-order curvature terms [1, 44].

2.2 Linear density perturbations and observational constraints

It is possible to distinguish between a host of inflationary models from primordial density perturbations
generated during inflation. Consider the general theories [16] described by the action

S:/d4x\/jg

M2
TPR+P(¢,X) , (5)

where M, = (87G)~'/2 is the reduced Planck mass, R is a Ricci scalar, and P(¢, X) is the Lagrangian
dependent on the field ¢ and the kinetic energy X = —(1/2)¢""0,¢0,¢. In addition to the standard
canonocal field with a potential, the action (5) includes a wide variety of theories such as low energy
effective string theory with derivative terms [45], ghost condensate model [46], tachyon field [47], and
DBI theories [48]. In the following we shall use the unit MSI = 1, but we sometimes restore M} when
the dimension matters.

The line-element describing scalar perturbations ¥, B, ®, E and tensor perturbations h;; about the
flat FLRW background is given by [50]

ds® = —(1 4 2V)dt* + 2a(t) B ;dz'dt + a®(t) [(1 + 2®)6;; + 2E ;; + hyj] da'da? (6)

One can derive the action for the scalar functions ¥, B, ®, F together with the inflaton fluctuation d¢.
Integrating the action (5) by parts and using the background equations of motion, the second-order action
for these perturbations can be written in terms of the gauge-invariant comoving curvature perturbation

[51]
R=0—Hbp/d. (7)

Choosing the comoving gauge d¢ = 0, for example, the second-order action for the curvature perturbation
takes the following form [17]

2
Sy = /dt dPra® S [RZ - S oROR| (8)
2 a
where e = —H JH?, and ¢? is the scalar propagation speed squared, given by [17]
P
c2 X

SE . S— 9
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We write R in Fourier space with the comoving wave number k, as

R(r,x) = /d3k R(, k)e“"x , R(7, k) = u(r,k)a(k) + u* (7, —k)aT(—k) , (10)

1
@)

where a(k) and af (k) are the annihilation and creation operators, respectively, satisfying the commutation
relations [a(k),af(ks)] = (2m)36G) (ky — ko), [a(ky),a(ks)] = [aT(k1),a'(k2)] = 0. Note that 7 =
Ja~'dt is a conformal time, which can be expressed as 7 = —1/(aH) in the de Sitter background.

The equation for the Fourier mode u follows from the action (8). Introducing new variables v = zu
and z = (av/2¢/cs)u, it follows that

'+ (EkP =2 )2)v =0, (11)

where a prime represents a derivative with respect to 7. In the quasi de Sitter background with a slow
variation of ¢2 we can approximate 2" /z ~ 2/72. The solution to Eq. (11), which recovers the Bunch-Davis
vacuum state v = e~“*7 /\/2¢.k in the asymptotic past, (kT — —o0) is given by

eficskr

u =

After the perturbations leave the Hubble radius (csk < aH), the asymptotic solution for k7 — 0 is
described by u ~ H/ [2k3/ 2 /ecs]. The power spectrum Px of the curvature perturbation is defined by
(R(k1)R(ky)) = (272 /k3)Pr (k1) - (2)36®) (k; + ky). We then obtain [17]

1 H?
_ = 13
Pr 8772M§1 cs€ (13)
which is evaluated at c;k = aH. The spectral index is
dInPr
-1= =—-2—1n— 14
ng ank | on €—n-—s, (14)
where
e=—H/H* ~ n=¢/(He), s=¢s/(Hes). (15)

The tensor perturbation h;; satisfies the same equation as that for a massless scalar field. The
spectrum of tensor perturbations and its spectral index are given by

2H2 dln PT
Pr=——+, = = —2¢. 16
Ty T AWk | (16)
The tensor-to-scalar ratio is P
r=L — 16cse = —8cenr . (17)
Pr

In inflation models with a standard kinetic term (i.e. P = X —V(¢)) the propagation speed is ¢; = 1.
In this case it follows that

nr — 1= —6ey + 2ny, nr = —2ey, r = 16ey, (18)

where we used the slow-roll parameters defined in Eq. (3). The runnings of the spectral indices are given
by
dTLT

= 16eyny — 24} — 2%, ar = = —dey (2ey —nv) . (19)
dink|,_.n

o an
T dnk|,_, 4

ar

We can evaluate the above observables for given inflaton potentials. Let us consider chaotic inflation [12]
with the potential V(¢) = Vo¢™. In this case the number of e-foldings is given by N = 4x/(nmp)(¢* —(b?c),



S. Tsujikawa 107

0.1 F

large-field

0.01
small-field

@m

0.001 f

WMAP

very small-field inflation

0.92 0.94 095 096 097 0.98 0.99 1.00 1.02
N

Figure 1: Observational constraints (1o and 20 contours) on single-field inflation models in the (ng,r)
plane (ng is denoted as ng in the figure). We also show the theoretical prediction of chaotic inflation
with V(@) = Voo™ (the power n = 4,3,2,1,2/3) and natural inflation with V' (¢) = Vp[1 —cos(¢/p)]. The
border between large-field and small-field models is characterized by r = 0.01. From Ref. [53].

where ¢y = nmpi/4y/7 is value of inflaton at the end of inflation (at which ey = 1). The scalar spectral
index nk and the tensor-to-scalar ratio r are given by

2(n+2) 16n
B e ) - . 2
'R AIN+1° " TaANF1 (20)

The number of e-foldings relevant to the CMB anisotropies corresponds to Ncyp = 50-60. Figure 1 shows
theoretical predictions for the models n = 4,3,2,1,2/3 (Ncump = 60), with the bounds constrained by the
WMAP 5-year data [52]. The models with n < 3 are within the 20 contour, but the self-coupling model
(n = 4) is not allowed observationally. Hybrid inflation [30] gives rise to the scalar spectral index ng
larger than 1 with a suppressed tensor-to-scalar ratio (r < 1), which is also in tension with observations.

From Eqs. (4) and (17) we find that 7 is related to the variation of the field ¢, as 7 = (8/M2))(dp/dN)>.
The total variation of the field between the time when the perturbations exited the Hubble radius (at
N = Ncug) and the end of inflation (at N = Ny) is then given by A¢/M;, = flnyMB dN\/%. Provided
that the variation of 7 is not much, we obtain the Lyth’s bound [54]

Ap/My = O(1) x (r/0.01)1/2, (21)

For large-field inflation with A¢ > M, we have r > 0.01 (as in chaotic inflation). The small-field models
(A¢ < My,) gives rise to a suppressed tensor-to-scalar ratio: r < 0.01. The natural inflation model with
the potential V(¢) = V[l — cos(¢/u)] belongs to either large-field or small-field, depending on the initial
conditions of ¢. The models motivated by string theory, such as D-brane inflation [55], racetrack inflation
[56], and Kéhler inflation [57] usually predict a very small tensor-to-scalar ratio (r < 1073). It may be
difficult to see the signatures of those models even with the Planck satellite.

In k-inflation the propagation speed ¢ is different from 1, so we need to use the results (14) and (17)

to confront the models with observations. In such models the non-Gaussianity of curvature perturbations
can be large, as we will see in what follows.
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2.3 Non-Gaussian perturbations

The standard inflation with a canonical kinetic term predicts a nearly Gaussian distribution of primordial
perturbations [58, 59], but in k-inflation it is possible to give rise to large non-Gaussianities. The first
non-trivial statistics describing the non-Gaussianities of the curvature perturbation R is the bispectrum
defined by

(R(k1)R(k2)R(ks)) = (27)*6® (k1 + ko + k3)(Pr)2B(k1, k2, k3) , (22)

where B depends on inflation models.

Let us consider k-inflation models described by the action (5). The vacuum expectation value of the
three-point correlation function of R can be obtained by using the interaction picture in quantum field
theory, as [60]

(R(t, k1)R(t k2)R(t, k3)) = —i/t dt(O[[R(t, k1 )R(t, ko) R(t, k), Hr(#)]]0) , (23)

to

where ¢ is the initial time during inflation (at which the perturbations are deep inside the Hubble radius)
and t is some time after the Hubble radius crossing. The interaction Hamiltonian H; can be derived by
expanding the action (5) at the third-order in perturbations, as H;y = —Ls, where L3 is the third-order
Lagrangian (i.e. S5 = [dtLs).

In order to evaluate the third-order Lagrangian L3 it is convenient to use the ADM metric ds? =
—NZ2dt? + h;j(dx' + Nidt)(dz? + N7dt) with h;; = a?e?™;;. In this case we only need to consider the
perturbations of N and N? at first-order in R, with the comoving gauge d¢ = 0 [59]. Using the first-
order solution (12) and commutation relations for the creation and annihilation operators, we obtain the
three-point correlation long after the Hubble radius crossing [19]:

(R(k1)R(k2)R(ks)) = (2m)"6) (ky + ko + ks)(Pr)* A/ (k{k3K3) , (24)
with
A= (L2 %Jr l—1 Zk2k2+—Zk2k3+EZk3
oo\ e2 Y ) 2K3 c2 K < g
€ 3 2 27,2 n (1 3
toa —ka ;kk +—§kk +c§<szki>
1F£] 7 7

+ c% _7Zk3——2k2k2+ﬁ2k2k3 , (25)

i>] i#]

where K = k1+ko+ ks, X = XP’X—&—2X2P,XX7 and \ = X2RXX+2X3RXXX/3. We take a factorizable
shape function B in the form B = (2m)*(9f,/10)[=1/(k3k3) — 1/(k3k3) — 1/(k3k3) — 2/(k3k3k3) +
1/(k1k3K3) + (5 perm.)], where the permutations act on the last term in parenthesis. For the equilateral
triangles where k1 = ko = k3 it follows that [18, 19]

i 85 1 8 A 55 € 5 n 85 s
requil 2
= — ~a 1 P — T a . T a T T a .
nl 324 ( 17 E) 36 Cg 12 Cz 54 Cg ( )

In standard inflation with a canonical kinetic term one has ¢2 = 1, A = 0, and s = 0, so that fequll is
of the order of the slow-roll parameters € and 7. In k-inflation models such as DBI inflation [48] one has
|£S™) > 1 for ¢2 < 1, which can be testable in future observations. Non-Gaussianities in multi-field
inflation has been also studied by a number of authors [61]. For the k-inflation models described by the
action P = Xg(Y), where g is an arbitrary function in terms of Y = Xe#®/M»1 (1 is a constant), assisted
inflation [62] occurs in the presence of multiple scalar fields [63]. It is of interest to see whether such
assisted k-inflation models can give rise to large non-Gaussianities.
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2.4 Modified gravitational models of inflation

There are a number of inflation models based on the modification of gravity—such as f(R) gravity and
scalar-tensor theories. Let us consider the action in f(R) gravity

M2
5= [dev=a i), (27)

where f is an arbitrary function in terms of the Ricci scalar R. In the Starobinsky’s model described by
the Lagrangian f(R) = R+ R2?/(6M?) [1] the slow-roll parameter e = —H /H? is approximately given by
e~ M?/(6H?), so that inflation occurs for H > M ~ 1013 GeV. The mass scale M is determined by the
WMAP normalization of the CMB temperature anisotropies [7]. The dynamical analysis of this model
was carried out in Refs. [65].

The spectra of scalar and tensor perturbations can be evaluated directly for the Jordan frame action
(27). Another way is to transform the action (27) to that in the Einstein frame under the conformal
transformation §,, = Fg,,, where F' = 0f/OR. The action in the Einstein frame is given by [60]

Sp = / 'z "lR - Jﬂ"amam V(9) (28)

where ¢ = /3/2M, InF and V(¢) = (FR — /)M 1/(2F2). Under the conformal transformation the
perturbed metric (6) is transformed as

d3? = Fds* = —(1 + 20)d#* + 2a(t) B ;di'df + a*(1) {(1 +20)5;; +2E ;; + Bij] dztdi’ (29)

where df = VFdt and @ = VF, a. We decompose the conformal factor F (t,x) into the background
and perturbed parts: F(t,x) = F(t) [1 4 6F(t,x)/F(t)]. In what follows we omit a bar from F. The
transformation of scalar metric perturbations is given by

U =V+4§F/(2F), B=B, ®=&+6F/2F), E=E, (30)

whereas iLij = hy; for tensor perturbations. Under the above transformation one can easily show that the
curvature perturbation R = ® — H5F/F is invariant, i.e. R = R. Since the tensor perturbation is also
invariant, the tensor-to-scalar ratio 7 in the Einstein frame is identical to that in the Jordan frame.

For example, let us consider the model f(R) = R+ R?/(6M?). For this model the potential V' (¢) in
the Einstein frame is given by

V(e) = ZM?MIE1 (1 — e—\/QTWMPl) . ¢ =1/3/2 My In[l + R/(3M?)]. (31)

In the regime ¢ > M, this potential is nearly constant (V(¢) ~ 3M?M 21 /4), which leads to slow-roll
inflation. Meanwhile, in the regime ¢ < My, one has V(¢) ~ (1/2)M2<;$2 so that the field oscillates
around ¢ = 0 with a Hubble damping. During inflation the slow-roll parameters defined in Eq. (15)
are approximately given by € ~ 3/(4N?) and n ~ 3/(4N?) — 1/N, where N ~ (3/4)6\/%‘25/]%1 is the
number of e-foldings from the end of inflation to the epoch of the first horizon crossing during inflation.
From Eq. (18) the spectral index of curvature perturbations and the tensor-to-scalar ratio are given,
respectively, by

ng—1~-2/N, r~12/N?, (32)

where we have ignored the term of the order of 1/N? in the expression of ng. For the typical value N = 55
relevant to the CMB anisotropies we have nr ~ 0.964 and r ~ 4.0 x 1073, These values are allowed
by the WMAPS5 year constraints: ng = 0.960 & 0.013 and r < 0.22 (for the negligible running) [52].
The tensor-to-scalar ratio is suppressed compared to chaotic inflation with the potential V(¢) = Voo™
(n = 2,4), because the potential (31) is almost flat in the regime ¢ > M.

For the model f(R) = R+ R?/(6M?), reheating proceeds gravitationally through the oscillation of
R in the regime H < M [6]. If a field x is non-minimally coupled to R through the coupling £ Rx?/2,
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non-perturbative particle creation called preheating can occur through parametric resonance [67]. In
Ref. [68] it was shown that preheating occurs for |¢| larger than 1.

The equivalence of the curvature perturbation between the Jordan and Einstein frames also holds for
scalar-tensor theory with the Lagrangian £ = F(¢)R/(2k?) — (1/2)w(¢)g"* 8,60, ¢ — U(9) [69]. For a
non-minimally coupled scalar field with F(¢) = 1—¢&k2¢? [70, 71] the spectral indices of scalar and tensor
perturbations have been derived by using such equivalence [72]. In particular the self-coupling potential
U(p) = A\¢p*/4 with a largely negative non-minimal coupling (|£| > 1) gives rise to the similar potential
to Eq. (31) in the Einstein frame. In this case ng and r are the same as those given in Eq. (32) [72],
so the model can be allowed observationally. Preheating in this model was studied in detail in Ref. [73].
We note that the self-coupling potential with a non-minimal coupling was recently revived as a “Higgs
inflation” as a way of realizing inflation with a Higgs field [74].

3 Dark energy

In this section we discuss a number of approaches that have been adopted to try and explain the origin
of dark energy. The difference between inflation and dark energy is their associated energy scales—the
former is about 10" GeV and the latter is about 10742 GeV. From the view point of particle physics dark
energy is more difficult to identify its origin, but still it is not entirely hopeless to do so. In inflationary
cosmology the energy density of a scalar degree of freedom should vary in time to end inflation, but dark
energy can be either the cosmological constant (constant energy density) or some other dynamical source.

3.1 Cosmological constant

The cosmological constant A is the simplest candidate of dark energy and it is favored by a number of
observations [5, 20, 21, 75]. However it suffers from a serious problem of energy scale if it originates
from a vacuum energy appearing in particle physics. The zero-point energy of some field of mass m with
momentum & and frequency w is given by E = w/2 = v/k? + m2?/2 (in the units of A = ¢ = 1). Summing
over the zero-point energies of this field up to a cut-off scale kpax (3> m), we obtain the vacuum energy

density
Kme 2 4
max Arkdk 1 k
Pvac = / L* \V4 k2 + m?2 ~ 28X (33)
0

(2m)3 2 T 16m2”

where we have used the fact that the integral is dominated by the mode with k larger than m. Taking
the cut-off scale kmax to be the Planck scale mp;, the vacuum energy density can be estimated as pyac >~

107 GeV?. This is about 10'?! times larger than the observed value pg% ~ 1047 GeV*.

Before the observational discovery of dark energy in 1998 [20, 21], most people believed that the
cosmological constant was exactly zero and tried to explain why it is so. The vanishing of a constant may
imply the existence of some symmetry. In supersymmetric theories the bosonic degree of freedom has its
Fermi counter part that contributes to the zero point energy with an opposite sign. If supersymmetry
is unbroken, an equal number of bosonic and fermionic degrees of freedom is present such that the total
vacuum energy vanishes. However it is known that supersymmetry is broken at sufficient high energies
(for the typical scale Mgysy = 10® GeV). Hence the vacuum energy is generally non-zero in the world of
broken supersymmetry.

Even if supersymmetry is broken there is a hope to obtain a vanishing A or a tiny amount of A. In
supergravity theory an (effective) cosmological constant is given by an expectation value of the potential
V for chiral scalar fields ¢’

V(e ") = e X | DW (KT )(D;W)* = 362 W (34)

where k2 = 871G =1 /Mgl, K and W are the so-called Kahler potential and the superpotential, re-
spectively (which are functions of ' and ™). The quantity K% " is the inverse of the derivative
Kij- = 0?°K/0¢'0¢p7" , whereas the derivative D;W is defined by D;W = dW/d¢" + k2W (0K /dp").
The breaking of the supersymmetry corresponds to the condition D;W # 0. In this case it is possible
to find scalar field values giving the vanishing potential (V' = 0), but this is not in general an equilibrium
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point of the potential V. Nevertheless there is a class of Kahler potentials and superpotentials giving a
stationary scalar-field configuration at V = 0. Consider, for example, the gluino condensation in Eg X Fg
superstring theory [76]. The reduction of the 10-dimensional action to 4-dimensions gives rise to a so-
called modulus field T. This field characterizes the scale of the compactified 6-dimensional manifold.
There exists another complex scalar field S of 4-dimensional dilaton/axion fields. The fields T' and S are
governed by the Kéahler potential

K(T,S) = —(3/k*)In (T +T*) — (1/6*)In (S + S*), (35)

where (T 4+ T*) and (S + S*) are positive definite. The field S couples to the gauge fields, while T' does
not. An effective superpotential for S can be obtained by integrating out the gauge fields under the use

of the R-invariance [77]:

W (S) = M3 [c1 + c2 exp(—35/2b)] , (36)

where c¢1, co, and b are constants.
Substituting Egs. (35) and (36) into Egs. (34), we obtain the field potential
Mgl 2

V=@ P+ 5

(37)

c1 + ca exp(—35/2b) {1 + %(S—l— S*)}

This potential is positive because of the cancellation of the last term in Eq. (34). The stationary field
configuration with V' = 0 is realized under the condition DgW = 0W/dS — W/(S + S*) = 0. Note that
the derivative, DrW = k?WAOK /0T = —3W /(T +T*), does not necessarily vanish. When DrW # 0 the
supersymmetry is broken with a vanishing potential energy. Hence it is possible to obtain a stationary
field configuration with V' = 0 even if supersymmetry is broken.

The discussion above is based on the lowest-order perturbation theory. This picture is not necessarily
valid to all finite orders of perturbation theory because the non-supersymmetric field configuration is not
protected by any symmetry. Moreover some non-perturbative effect can provide a large contribution to
the effective cosmological constant. The so-called flux compactification in type IIB string theory allows
us to realize a metastable de Sitter (dS) vacuum by taking into account a non-perturbative correction
to the superpotential (coming from brane instantons) as well as a number of anti D3-branes in a warped
geometry [78]. Hence it is not hopeless to obtain a small value of A or a vanishing A even in the presence
of some non-perturbative corrections.

Kachru, Kallosh, Linde and Trivedi (KKLT) [78] constructed dS solutions in the type II string theory
compactified on a Calabi-Yau manifold in the presence of flux. The construction of the dS vacua in the
KKLT scenario consists of two steps. The first step is to freeze all moduli fields in the flux compactification
at a supersymmetric anti de Sitter (AdS) vacuum. Then a small number of the anti D3-brane is added
in a warped geometry with a throat, so that the AdS minimum is uplifted to yield a dS vacuum with
broken supersymmetry. If we want to use the KKLT dS minimum derived above for the present cosmic
acceleration, we require that the potential energy Vys at the minimum is of the order of Vyg ~ 10747 GeV*.
Depending on the number of fluxes there are a vast of dS vacua, which opened up a notion called
string landscape [79]. The question why the vacuum we live in has a very small energy density among
many possible vacua has been sometimes answered with anthropic arguments. Some people have studied
landscape statistics by considering the relative abundance of long-lived low-energy vacua [30]. These
statistical approaches are still under study, but it will be interesting to pursue the possibility to obtain
high probabilities for the appearance of low-energy vacua.

In the following we shall consider alternative models of dark energy to the cosmological constant,
under the assumption that the cosmological constant problem is solved in such a way that it vanishes
completely.

3.2 Modified matter models

In this section we discuss “modified matter models” in which the energy-momentum tensor 7},, on the
r.h.s. of the Einstein equations contains an exotic matter source with a negative pressure. The models
that belong to this class are quintessence [24, 25], k-essence [26, 27], and perfect fluid models. In what
follows we shall discuss quintessence and k-essence. Note that there is a perfect fluid model described by
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the equation of state P = —A/p (A > 0) (Chaplygin gas) [31], but this model was already excluded by
the observations of large-scale structure [32].

3.2.1 Quintessence

Many scalar fields are present in particles physics—including string theory and supergravity. We use
“quintessence” [25] to denote a canonical scalar field ¢ with a potential V' (¢). The action of quintessence
is described by [21]

4 MP21 1 nz
S = d TN/ —g TR — ig aﬂ¢au¢ - V(¢) + SJV[? (38)

where My, is the reduced Planck mass, and R is the Ricci scalar. As a matter action Sy; we consider a
perfect fluid with the energy density pys, the pressure Py, and the equation of state wys = Pps/par.

In a flat FLRW background the perfect fluid satisfies the continuity equation pas +3H (ppr + Pas) =0
and the field ¢ obeys the second of Eq. (2). The field equation of state is given by

Py ¢*—2V(9)

Wy = — = = , (39)
"T e Fr2v(9)
where pg and P, are given in Eq. (1). We also have the following Friedmann equation
H? = o (L5 4V (0) 4w (40)
M2 |2 '

During radiation and matter dominated epochs, the energy density pps of the fluid dominates over that
of quintessence, i.e. py > pgy. We require that pg tracks pps so that the dark energy density dominates
at late times. Whether this tracking behavior occurs or not depends on the form of the potential V' (¢).
If the potential is steep so that the condition /2 > V(¢) is always satisfied, we have wy ~ 1 from
Eq. (39). In this case the energy density of the field evolves as p, o< a=%, which decreases much faster
than the background fluid density.

We require the condition wg < —1/3 to realize the late-time cosmic acceleration, which translates into
the condition ¢> < V(). Hence the scalar potential needs to be shallow enough for the field to evolve
slowly along the potential. This situation is similar to that in inflationary cosmology and it is convenient
to introduce the following slow-roll parameters given in Eq. (3). If the conditions ey < 1 and |ny| < 1
are satisfied, the evolution of the field is sufficiently slow so that |¢| < [3H@| and ¢ < V(o).

The deviation of wg from —1 is given by

2
Ve

1 St B—
T T S 1%,

(41)
where p = qS/ (3H gb) This shows that wy is always larger than —1 for the positive potential. In the
slow-roll limit, |&,] < 1 and ¢2/2 < V(¢), we obtain 1 + we =~ 2ey /3 by neglecting the matter fluid in
Eq. (40), i.e. 3H? ~ V((;S)/Mgl. The deviation of wg from —1 is characterized by the slow-roll parameter
€y .

So far many quintessence potentials have been proposed. Crudely speaking they have been classified
into (i) “freezing models” and (ii) “thawing” models [83]. In the class (i) the field was rolling along the
potential in the past, but the movement gradually slows down after the system enters the phase of cosmic
acceleration. In this case the field equation of state wy decreases toward —1. In the class (ii) the field
(with mass m) has been frozen by Hubble friction (i.e. the term H¢) until recently and then it begins
to evolve once H drops below mg. In this case the equation of state of dark energy is wg ~ —1 at early
times, which is followed by the growth of wg. The representative potentials that belong to these two
classes are

e Freezing models:
(A) V(9) = M*7m¢~™ (n>0),  (B) V(9) = M**"¢~" exp(ag?/my).
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Figure 2: The allowed region in the (wg,w;,) plane for thawing and freezing models of quintessence
(here primes denote the derivative with respect to N = Ilna). The thawing models correspond to the
region between two curves: (a) wy = 3(1 + wg) and (b) w), = 1 + wy, whereas the freezing models are
characterized by the region between two curves: (c) wy, = 0.2wg(1 + wy) and (d) wj = 3wy (1 + wy).

The dotted line shows the border between the acceleration and deceleration of the field (¢ = 0), which
corresponds to wj = 3(1 + wg)*.

e Thawing models:

(C) V(g) =Vo+M*"¢" (n>0), (D) V(¢) = M* cos®(¢/f).

The potential (A) does not possess a minimum and hence the field rolls down the potential toward in-

finity [24, 25]. This appears, for example, in the fermion condensate model as a dynamical supersymmetry
breaking [34]. The potential (B) has a minimum at which the field is eventually trapped (corresponding
to wy = —1). This potential can be constructed in the framework of supergravity [35].

The potential (C) is similar to the one of chaotic inflation (n = 2,4) used in the early Universe (with
Vo = 0). while the mass scale M is very different. Note that the model with n = 1 was originally proposed
by Linde [36] to replace the cosmological constant by a slowly varying field and then it was revised [37]
in connection with the possibility to allow for negative values of V(¢). The Universe will collapse in
the future if the system enters the region with V(¢) < 0. The potential (D) appears as that of the
Pseudo-Nambu-Goldstone Boson (PNGB). This was introduced by Frieman et al. [38] in response to the
first tentative suggestions that the universe may be dominated by the cosmological constant. The small
mass of the PNGB model required for the late-time cosmic acceleration is protected against radiative
corrections, so this model is favored theoretically. In this model the field is nearly frozen at the potential
maximum during the period in which the field mass mgy is smaller than H, but it begins to roll down
around the present (my ~ Hp).

The freezing models and the thawing models are characterized by the conditions wy, = dw,/dIn(a) <0
and w(’ﬁ > 0, respectively. More precisely the allowed regions for the freezing and thawing models are
given by 3w (1 +wy) < w) S 0.2we(1+wg) and 1+wy S wy, $ 3(14wg), respectively [33]. In Fig. 2 we
illustrate these borders in the (wy, wé) plane. While the observational data up to now are not sufficient
to distinguish freezing and thawing models by the variation of wy, we may be able to do so with the next
decade high-precision observations.
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In supernovae Ia observations the Hubble parameter H(z) is estimated by measuring a luminosity
distance dy,. From the observational data it is possible to reconstruct quintessence potentials [89]. The
reconstruction process is however subject to two general problems. The first is that finding a model
containing a trajectory with a given expansion rate does not guarantee that the trajectory is stable. The
second is that the actual observational data such as dj, are known at discrete values of redshifts, so we
require some smoothing process for the reconstruction. In spite of these potential problems it will be of
interest how the future high-precision observations can restrict the forms of quintessence potentials.

3.2.2 k-essence

Let us consider dark energy models in which the late-time cosmic acceleration is driven by a kinetic
energy of a scalar field. The action for such models is described by (5) in the presence of matter fluids:

M2
S— /d%sﬁ—g SRR P, X)| + Sur (42)
The application of these theories to dark energy was first carried out by Chiba et al. [26]. Later this was

extended to more general cases and the models based on the action (42) were named “k-essence” [27].
The energy density ps and the pressure Py of the field are given by py = 2XPx — P and Py = P,
respectively. The equation of state of k-essence is

Py P

Z® _ - 43
Py 2XPx—P ()

Wy =
As long as the condition |2X P x| < |P] is satisfied, wy can be close to —1. For example, in the ghost
condensate model [16] given by P = —X + X?/M*, we have

1—X/M*

= Tsx/A 4

We
which gives —1 < wg < —1/3 for 1/2 < X/M* < 2/3. In particular a de Sitter solution (ws = —1) is
realized at X/M* = 1/2. Since the field energy density is p, = M*/4 at the de Sitter point, it is possible
to explain the present cosmic acceleration for M ~ 1072 eV. There is also a modified version of the above
model, P = —X 4 e /Mv1 X2 /M4, which is called dilatonic ghost condensate model [19]. The correction
of the type e*?/Mr X2 /M* can arise as a dilatonic higher-order correction to the tree-level string action.

In k-essence it can happen that the linear kinetic energy in X has a negative sign. Such a field, called
a phantom or ghost scalar field [90], suffers from a quantum instability problem unless higher-order terms
in X or ¢ are taken into account in the Lagrangian density. In the (dilatonic) ghost condensate scenario
it is possible to avoid this quantum instability by the presence of the term X?2. The quantum stability
conditions for k-essence which come from the positive definiteness of the Hamiltonian are given by [19]

Px +2XPxx > 0, Px >0, (45)
Py < 0. (46)

The instability prevented by the condition (46) is of the tachyonic type and generally much less dramatic
than the conditions (45). The scalar propagation speed c¢; is defined in Eq. (9), which is positive under
the conditions (45).

In the dilatonic ghost condensate model (P = —X + e /M1 X2/)M*) for example, the conditions
(45) are ensured for e*®/Me1 X/M* > 1/2 with the sound speed smaller than 1 (speed of light). Some
k-essence models have been proposed to solve the coincidence problem of dark energy by the existence of
tracker solutions [27]. In such cases, however, it was shown that the sound speed becomes superluminal
(cs > 1) before reaching the accelerated attractor [91].

3.3 DModified gravity models

There is another class of dark energy models in which gravity is modified from General Relativity (GR).
We discuss a number of cosmological and gravitational aspects of f(R) gravity and DGP braneworld.
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3.3.1 f(R) gravity

Let us consider the action (27) in f(R) gravity in the presence of matter fluids:

2
=0 [ dtav=a R+ sur, (47)

where f is a function of the Ricci scalar R, and Sy, is a matter action for perfect fluids. The field equation
can be derived by varying the action (47) with respect to g,

FR) R (9) = 57 (R)gu = VP (R) + g DF (R) = Ty M (15)

where F(R) = 0f/0R, and T}, is an energy-momentum tensor of matter?. The trace of Eq. (48) is given
by

30F(R) + F(R)R - 2f(R) =T/M}, (49)

where T' = g""T),, = —pap + 3Py. Here pyr and Py are the energy density and the pressure of matter,
respectively.
The de Sitter fixed point corresponds to a vacuum solution at which the Ricci scalar is constant. Since
OF(R) = 0 at this point, we obtain
F(R)R—-2f(R)=0. (50)

The model f(R) = aR? satisfies this condition and hence it gives rise to an exact de Sitter solution. It
is possible to construct viable dark energy models based on f(R) theories having the late-time de Sitter
solution satisfying the condition (50).

The possibility of the late-time cosmic acceleration in f(R) gravity was first suggested by Capozziello
[28] in 2002. An f(R) model of the form f(R) = R— p>™+1)/R™ (n > 0) was proposed to be responsible
for dark energy [29], but this model suffers from a number of problems such as the matter instability [92],
absence of the matter era [93], and inability to satisfy local gravity constraints [94]. There are a number
of conditions under which f(R) dark energy models are viable. Below we summarize those conditions.

e (i) fr > 0for R > Ry, where Ry is the Ricci scalar today. This is required to avoid the appearance
of a ghost.

e (ii) frr > 0 for R > Ry. This is required to avoid the negative mass squared of a scalar-field
degree of freedom (tachyon) [95].

e (iii) f(R) — R —2A for R > Ry. This is required to for the presence of the matter era [93] and for
consistency with local gravity constraints [96, 97].

e (iv) 0 < %(r =-2)<latr= —% = —2[98, 99]. This is required to for the stability and
the presence of a late-time de Sitter solution. Note that there is another fixed point that can be
responsible for the acceleration [99] (with an effective equation of state weg > —1).

The examples of viable models that satisfy all these requirements are [96, 97, ]

_ (R/R.)™" -
(A) f(R)=R - /LRCW with n,u, R. >0, (51)
(B) f(R) = R — uR. [1 —(+ RQ/RE)_"] with 7,1, Re > 0, (52)
(C) f(R) = R— puR tanh (R/R,) with u, R, >0, (53)

where p, R., and n are constants. R, is roughly of the order of the present cosmological Ricci scalar Ry.
A similar model to (C) was also proposed by Appleby and Battye [101]. If R > R. the models are close
to the ACDM model (f(R) ~ R— uR.), so that GR is recovered in the region of high density. Meanwhile

2There is another way for the variation of the action (47) called the Palatini formalism.
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the deviation from GR becomes important when R decreases to the order of R.. The equation of state
wpg of dark energy to confront with supernovae Ia observations can be smaller than —1 for viable f(R)
models without the appearance of ghosts [96, , ]. We note, however, that the effective equation of
state weg = —1 — 2H/(3H?) remains to be larger than —1 as long as the conditions (i)-(iv) listed above
are satisfied (apart from small oscillations around the de Sitter attractor if it is a stable spiral). Since
the deviation of wpg from that in the ACDM model (wpg = —1) is not so significant [96, ], the viable
models such as (51)-(53) can be consistent with the supernovae Ia data fairly easily.

The modification of gravity manifests itself in the effective gravitational coupling that appears in
the equation of cosmological perturbations. The matter density perturbation §,, satisfies the following
equation under a quasi-static approximation on sub-horizon scales [104]

Sm + 2H5m — 4Gt pr0m = 0, (54)
where p,, is the energy density of non-relativistic matter, and

G 1+4mk?/(a®R)
Gt = T 3m 2 /(a2R) (55)

Here m = Rf rr/f r is the deviation parameter from the ACDM model [99]. In the regime where the
deviation from the ACDM model is small such that m k?/(a?R) < 1, the effective gravitational coupling
G is very close to the gravitational constant G. Then the matter perturbation evolves as ¢, o 12/3
during the matter dominance. Meanwhile in the regime mk?/(a?R) > 1 one has Geg = 4G/(3f.r), so
that the evolution of §,, during the matter era is given by d,, o H(V33-1)/6

This unusual evolution of §,, leaves a number of interesting signatures such as the modification to the
matter power spectrum and the effect on weak lensing. For the models (A) and (B), for example, the
difference between the spectral indices between the matter power spectrum and the CMB spectrum can

be estimates as [97]
V33-5

An, = .
"= et

Observationally we do not find any strong signature for the difference of slopes of the two spectra. If
we take the mild bound An, < 0.05, we obtain the constraint n > 2. Local gravity constraints on solar
system scales can be satisfied for n > 0.9 [105] through the chameleon mechanism [106]. Hence, as long
as n > 2, the models (A) and (B) can be consistent with both cosmological and local gravity constraints.
The model (53) can easily satisfy local gravity constraints because of the rapid approach to the ACDM
model in the regime R > R..

In the strong gravitational background (such as neutron stars), Kobayashi and Maeda [107, ]
pointed out that for the f(R) models such as (51) and (52) it is difficult to obtain thin-shell solutions
inside a spherically symmetric body with constant density. For chameleon models with general couplings
Q, a thin-shell field profile was analytically derived in Ref. [109] by employing a linear expansion in
terms of the gravitational potential ®. at the surface of a compact object with constant density. Using
the boundary condition set by analytic solutions, Ref. [109] also numerically confirmed the existence of
thin-shell solutions for ®. < 0.3 in the case of inverse power-law potentials V(¢) = M*t"¢~". Ref. [110]
also showed that static relativistic stars with constant density exists for the model (52). The effect of the
relativistic pressure is important around the center of the body, so that the field tends to roll down the
potential quickly unless the boundary condition is carefully chosen. Realistic stars have densities p4(r)
that globally decrease as a function of r. Numerical simulations of Refs. [L11] demonstrate that thin-shell
solutions are present for the f(R) model (52) by considering a polytropic equation of state even in the
strong gravitational background.

(56)

3.3.2 DGP model

There is another class of modified gravity models of dark energy based on braneworlds. In braneworlds
standard model particles are confined on a 3-dimensional (3D) brane embedded in 5-dimensional bulk
spacetime with large extra dimensions. Dvali, Gabadadze, and Porrati (DGP) [31] proposed a braneworld
model in which the 3-brane is embedded in a Minkowski bulk spacetime with infinitely large extra
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dimensions. Newton’s law can be recovered by adding a 4D Einstein-Hilbert action sourced by the brane
curvature to the 5D action. The presence of such a 4D term may be induced by quantum corrections
coming from the bulk gravity and its coupling with matter on the brane. In the DGP model the standard
4D gravity is recovered for small distances, whereas the effect from the 5D gravity manifests itself for
large distances. Interestingly it is possible to realize the late-time cosmic acceleration without introducing
a dark energy component [112].

The action for the DGP model is given by

1 ~ 1
S=—= /d5X\/—§R+ /d4X\/—9R—/d5X\/j§£M7 (57)
®)

2
2K 25(4)

where gap is the metric in the 5D bulk and g, = 8MXA8VXB§AB is the induced metric on the brane
with X4 (z¢) being the coordinates of an event on the brane labelled by z¢. The 5D and 4D gravitational
constants, mé) and n?4), are related with the 5D and 4D Planck masses, M) and M4y, via “?5) = 1/M(35)
and /{%4) = 1/M(24).

The first and second terms in Eq. (57) correspond to Einstein-Hilbert actions in the 5D bulk and on
the brane, respectively. The matter action consists of a brane-localized matter whose action is given by
Jd*z/=g (o + Lbrane) ‘wwhere o is the 3-brane tension and £372%¢ is the Lagrangian density on the brane.
Since the tension is not related to the Ricci scalar R, it can be adjusted to be zero.

The Friedmann equation on the flat FLRW brane is given by [112]

H2—£H=@p (58)
o 3 M >

where ¢ = +1, r. = H(25)/ (2/1%4)) is a crossover scale, and pjs is the matter energy density on the brane

satisfying the continuity equation

pym +3H(par + Pr) = 0. (59)
If the crossover scale r. is much larger than the Hubble radius H !, the first term in Eq. (58) dominates
over the second one. In this case the standard Friedmann equation, H? = /154),01\4 /3, is recovered.

Meanwhile, in the regime 7, < H~!, the presence of the second term in Eq. (58) leads to a modification
to the standard Friedmann equation. In the Universe dominated by non-relativistic matter (pas oc a=3),
the Universe approaches a dS solution for ¢ = +1:

H—>Hds:1/7“c. (60)

Hence it is possible to realize the present cosmic acceleration provided that r. is of the order of the
present Hubble radius H; '

Although the DGP braneworld is an attractive model allowing a self acceleration, the joint constraints
from data of supernovae la, baryon acoustic oscillations, and the CMB shift parameter shows that this
model is under strong observational pressure [113]. Moreover, this model contains a ghost mode [114] with
the effective Brans-Dicke parameter wpp smaller than —3/2. Hence the original DGP model is effectively
ruled out from observational constraints as well as from the ghost problem. It is however possible to
construct a generalized DGP model free from the ghost problem by embedding our visible 3-brane with
a 4-brane in a flat 6D bulk [115].

In the DGP model a brane-bending mode ¢ (i.e. longitudinal graviton) gives rise to a field self-
interaction of the form O¢(0"¢0,,¢) through a mixing with the transverse graviton [116]. This can lead
to the decoupling of the field ¢ from gravitational dynamics in the local region by the so-called Vainshtein
mechanism [117]. It is possible to generalize the field self-interaction O¢ (9" ¢0,¢) to more general forms
in the 4D gravity, such that the Lagrangian is invariant under the the Galilean shift 0,¢ — 9,0 +b, [32].
In such “Galileon gravity” the late-time cosmic acceleration can be realized without the appearance of
ghosts [118].

4 Conclusions

We have discussed theoretical attempts for finding the origin of inflation and dark energy, paying partic-
ular attention to their observational signatures. The WMAP observations already ruled out some models
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of inflation (such as V(¢) = A¢*/4). The future observations such as the Planck will be able to constrain
inflationary models further. In particular the detection of gravitational waves and non-Gaussianities will
allow us to discriminate between a host of inflation models.

The important step for approaching the origin of dark energy is to clarify whether it is a cosmological
constant or it originates from some dynamical source. In doing so, it is important to find some observa-
tional signatures for the deviation of the dark energy equation of state from —1. Modified gravity models
of dark energy can be distinguished from other models at the level of perturbations because of the mod-
ification of the effective gravitational coupling. The upcoming high-precision observations of large-scale
structure, weak lensing, and cosmic microwave background may allow us to discriminate those models

from the ACDM.
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Non-linear perturbations from cosmological inflation
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Abstract

In this talk I will discuss various ways in which non-linear perturbations produced
during inflation give distinctive signatures of the physical processes at work in the
very early universe.

1 Introduction

It is a pleasure to be back in Kyoto and an honour to participate in this meeting celebrating the 60th
birthdays of Professors Maeda and Nakamura. I was lucky enough to meet Kei-ichi Maeda for the first
time towards the end of my PhD when he came to visit my supervisor, John Barrow, at the University
of Sussex. Prof Maeda was a visitor for a month or more, so we had plenty of opportunity to discuss
research. Of course Maeda-san was very approachable and easy to talk with, and so we soon had the
outline of a paper [1]. That formed the basis for a continuing collaboration, my first visit to Tokyo ten
years ago, and many visits since and papers with many other Japanese researchers.

In this talk I will try to give an overview, no doubt biased and incomplete, of recent work to characterise
non-linear inhomogeneous perturbations in cosmology and in particular those produced in different models
of inflation in the very early universe. The main point I wish to emphasise is that inhomogeneities
beyond the first-order perturbations conventionally studied, can offer distinctive observational predictions
of the physical processes at work during and after inflation. We have become adept at producing a
power spectrum of primordial density perturbations that is consistent with observational constraints
(AZ = (2.430 £ 0.091) x 1079 and spectral index n = 0.968 + 0.012 [2]) from a range of models with
suitably tuned parameters, but there is additional information in the higher-order correlators of the
primordial density field, as well as tensor perturbations.

2 Extended inflation

The work of Maeda and Japanese JGRG community has highlighted the central role played by gravity
in cosmological inflation. Inflation is an accelerated expansion, usually framed in terms of a background
homogeneous and isotropic (FRW) background cosmology obeying the Einstein equations of general rel-
ativity. The symmetry of the background spacetime limits the gravitational equations to the familiar
Friedmann constraint equation for the Hubble rate, H, plus the evolution equation for the acceleration.
Once we introduce inhomogeneous perturbations we have constraint and evolution equations for energy
and momentum, which can be conveniently decomposed into scalar, vector and tensor perturbations
on the maximally symmetric background space [4]. The non-linearity of general relativity is only ap-
parent once we go beyond linear perturbations and go to second order and beyond. Often inflation is
described in terms of minimally coupled scalar fields in four-dimensional general relativity, but some-
times gravity itself drives the inflationary dynamics, through modifications to general relativity and/or
higher-dimensional geometry. Starobinsky’s original inflation model was itself driven by the curvature of
spacetime, considering the effective expansion in fourth-order gravity [3].

As this meeting also celebrates the 20th anniversary of the JGRG society I thought it would be
interesting to look back at where inflation stood back in 1990, when I was just beginning as a research
student. If you look back at the proceedings of the first JGRG meeting you will find papers by Kitada
and Maeda [5], and Maeda and Sakai [6] investigating aspects of one particular theoretical model.

I1Email address: david.wands@port.ac.uk
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One particularly simple and elegant model of inflation - the hot topic in 1990 - was extended inflation
proposed by La and Steinhardt [7]. It implemented Guth’s old inflation [8] driven by a supercooled false
vacuum energy density in an extended gravity theory - Brans and Dicke’s gravity [9] with a dynamical
effective gravitational “constant” determined by a scalar field: Geff o MPTIQ o &1,

The dynamics thus followed from the simple Lagrangian

L=®R— = (VD) ~ Myr (1)

where R is the Ricci scalar and the false vacuum energy density is required to be around the GUT scale,
M r. Extended inflation solved the graceful exit problem of old inflation because even with a constant
false vacuum energy, the Hubble rate decreases in Brans-Dicke gravity as the ® field grows, gravity
becomes weaker and the Hubble constant decreases. This was soon generalised to other scalar-tensor
theories by Barrow and Maeda [10] and Accetta and Steinhardt [11].

Intriguingly, extended inflation offers a dynamical solution to the hierarchy between the Planck scale
and the GUT scale. Brans-Dicke gravity has no instrinsic mass scale, just the dimensionless parameter
w. But extended inflation fixes the value of the Planck scale at the end of inflation by the requirement
that the phase transition completes [12, 14].

The false vacuum decays to the true vacuum via spontaneous bubble nucleation. The Coleman-de
Luccia instanton [13] describes the tunneling of a self-gravitating scalar field. The physical decay rate
(per unit volume per unit time) is given by a constant

I~ MéUT exp (—SEg) . (2)

where the Euclidean action of the instanton, Sg, is a dimensionless shape parameter governed by the
height of the barrier relative to the false vacuum energy. Whether or not the transition completes
is governed by the percolation parameter which describes the nucleation rate per Hubble volume per
Hubble time

r M3,

H* MéUT

exp (—SEg) . (3)

In general relativity, where the expansion rate in the false vacuum is fixed, this is a constant. So the
phase transition either completes too quickly (before sufficient inflation has taken place) for I' > H* or
not at all if I' < H*. In Brans-Dicke gravity inflation can start close to the Planck scale

M2
HwﬁNMpl. (4)

with I'/H* < 1 for a strongly first-order transition with Sz > 1, but then the percolation parameter
grows as the Planck scale, Mp, grows and H ~ MéUT /Mpy decreases. The phase transition completes,
and inflation ends, only when the Hubble rate has dropped sufficiently to give I'/H* ~ 1 and hence

Mp) ~ Mgur exp(Se/4) . (5)

So the Planck scale at the end of inflation is set relative to the GUT scale by the shape of the dimensionless
potential. Like all good solutions to the hierarchy problem it identifies the ratio between mass scales with
an exponential of a dimensionless number, in this case Sg ~ 30.

The linear scalar and tensor perturbations - quantum fluctuations of the free fields - are most easily
calculated by a conformal transformation to the Einstein frame, neatly described in another of Maeda’s
influential papers [15]. The model recovers a small red tilt for both scalar and tensor modes, and achieves
sufficient inflation, so long as w is large enough. The Brans-Dicke parameter also needs to be large enough
to be compatible with current solar system bounds today.

The problem (as was soon realised by Erick Weinberg [12]) comes from non-linear perturbations. The
nucleated bubbles are highly inhomogeneous with the energy density of the interior transfered to the
relativistic bubble walls. For large w the expansion becomes quasi-exponential, with an almost constant
Hubble parameter and thus almost constant percolation parameter, I', so the distribution of bubbles
at the end of inflation becomes almost scale invariant. This is the “big bubble problem” of extended
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inflation [16]. The percolation rate must be suppressed on large scales so that the number of large
bubbles, which would be observable on the cosmic microwave background (CMB) sky, is suppressed, and
this is inconsistent with an almost scale-invariant distribution of linear density perturbations (n ~ 1) in
Brans-Dicke gravity 2.

The quality and quantity of data from the CMB sky has improved dramatically since the first detection
of primordial anisotropies was announced by the CoBE satellite in 1992 [19]. But even then the bounds
on the spectral index of linear perturbations(n > 0.8) were incompatible with bounds from the spectrum
of non-linear bubble perturbations in Brans-Dicke gravity [20].

3 Hybrid inflation

The problem with modifying gravity in order to achieve the graceful exit from inflation is that it can
only affect the Hubble rate, or equivalently the ratio between the false vacuum and the Planck mass, and
this is a relatively ineflicient way to change the percolation parameter (3). Equation (2) for the physical
decay rate offers a more efficient way to trigger a sudden transition; change the shape, Sg, which appears
in the exponent. This is the basis for hybrid inflation, proposed by Linde [21, 22], which remains one of
the most common models used to describe inflation today.

Hybrid inflation is also driven by the vacuum energy density of one field trapped in a false vacuum,
while a second field evolves. Inflation ends when the dynamical field triggers a phase transition, which may
be first-order or second-order [23], but unlike extended inflation it is the shape of the vacuum potential
that changes rather than the mass scales. Explicit coupling between the fields rapidly destabilises the
false vacuum and inflation comes to an abrupt end.

Consider the original hybrid inflation model [21-23] which is described by a slowly rolling inflaton
field, ¢, and the “waterfall field”, y, with a potential energy

2
Vi(g,x) = <M2 - ?xQ) + %m2¢2 + %WQXQ- (6)

The effective mass of the waterfall field in the false vacuum state (x = 0) is
my(6) = (¢* - 62) - (7)

where we define ¢? = 2X\'/2M?/~. Thus the false vacuum is stabilised for ¢? > ¢2, while for ¢ < ¢2
there is a tachyonic instability leading to a second-order phase transition from x = 0 to |x| = 2M/V/\.

The simple potential (6) for a real scalar field, y, has two discrete minima at y = +2M/v/A. Thus
regions which settle into distinct true vacuum states are separated by domain walls leading to cosmological
catastrophe at late times. However vacuum states with higher-dimensional vacuum manifolds may have
cosmic strings (for a complex field with an S' vacuum manifold, |x| = 2M/+v/)X), monopoles (for an SO(3)
symmetric field with an S? vacuum manifold) or no topologically stable defects for higher-dimensional
vacua. The formation of cosmic defects plays an important role in constraints on particular hybrid
models [23, 24, 20].

Primordial density perturbations arise due to first-order fluctuations in the inflaton field, d¢, along
the classical trajectory and requiring these to match observations is used to constrain the model param-
eters [23]. Hybrid inflation requires at least one further field and we should also consider the role of
fluctuations in this field. However, so long as the waterfall field remains massive, mi > H?, then there
are effectively no classical perturbations in the y field on super-Hubble scales during inflation. Eventually
the tachyonic instability in the x field does lead to the exponential growth of long-wavelength perturba-
tions at the end of inflation but the waterfall field retains the steep blue spectrum of the initial quantum
fluctuations [25].

2“Hyperextended” inflation models [10, 11] were also considered, but these required a large value of w(®), in order to
obtain an almost scale-invariant spectrum of linear perturbations when large scales left the Hubble-horizon, which then
decreased rapidly before the end of inflation to have a rapidly rising bubble spectrum on small scales, before recovering
large w (or stabilising the Brans-Dicke field by some other means) to recover the general relativistic limit by the present

)
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Non-linear inhomogeneities are thus produced in the density by the phase transition, either bubble nu-
cleation and collisions in first-order models, or tachyonic growth of fluctuations and tachyonic preheating
[27, 28] in second-order transitions, but these are only significant on scales of order the Hubble-horizon
at the end of inflation [25, 29, 30], unless the waterfall field remains light for an extended period during
inflation. The case of an extended phase transition which takes place during inflation is an interesting
case that requires further study [24, 31, 32].

4 Second-order gravitational waves

We have very little information about the primordial density perturbation on the Hubble scale at the
end of inflation as the primordial perturbation has decayed away in the radiation era, erased by free-
streaming, and reprocessed by non-linearities in the subsequent matter era. The only information we
expect to have access to would be gravitational relics: possibly primordial black holes from large metric
distortions, or gravitational waves.

Bubble collisions after a first-order phase transition or violent preheating at the end of inflation are
just two of the possible mechanisms proposed as a source of a stochastic background of cosmological grav-
itational waves that could be detected by gravitational wave detectors currently being built or planned
in future. Other possible sources of non-linearities are cosmic strings or self-ordering scalar fields. Grav-
itational waves must be generated at some level from free (first-order) fluctuations of the metric during
inflation, but the amplitude is constrained to be small on scales probed by CMB experiments and neces-
sarily smaller on scales accessible by direct detectors given the red-tilted spectrum predicted by inflation.

However we know that there must be a second-order background of gravitational waves generated
from the scattering of the first-order primordial density perturbations [33-37] which are observed in the
CMB or large-scale structure. Currently we have only upper limits on the amplitude of a stochastic
gravitational wave background, but this observation can still be used to place limits on the primordial
density perturbation on scales much smaller than those probed by the CMB or large-scale structure
[39-41].

If we extract the transverse and tracefree part of the Einstein equations, expanded to second-order
about a spatially flat FRW metric we obtain [35]

hi; 4+ 2Hh; + ki = ST (8)
where SZT is the transverse, tracefree part of the source term

Sij = 200,0;® —2V0,0;,® + 4V0,;0;V + 9;90;® — 9'®0; ¥ — 9" V9;® + 30" W0; ¥

4 2¢2
—9;(V + H®)),; (V' + HP) — —=
3(1 + w)H2 (974 HD)0; (¥ + He) 3wH?

[BH(H® — ') + V20] 9;0;(® — ¥) (9)

and w = P/p is the equation of state and ¢ = P’/p’ is the adiabatic sound speed. We have neglected
any first-order tensor or vector perturbations and assumed only scalar perturbations, expressed in terms
of the longitudinal gauge metric perturbations ® and ¥ [4]. At early times in the radiation-dominated
era we have w = ¢2 = 1/3 and ® = ¥ = (2/3)Ag =constant on scales much larger than the Hubble scale
at that time.

In the standard hot big bang cosmology, primordial density perturbations generate gravitational waves
(with similar wavelengths) as modes re-enter the Hubble scale during the radiation dominated era after
inflation [37]. The resulting stochastic background is conventionally expressed as a fractional density
relative to the critical density. For an almost scale-invariant primordial power spectrum, A%(k), we have

Qguw.0(k) = Fraa Q.0 AR (k) . (10)
The gravitational wave background is only weakly dependent on the comoving wavenumber, k, with
Fraa =~ 33 for a scale-invariant spectrum [37]. If the density perturbation spectrum has a sharp, localised

peak at k = ki, then the resulting gravitational wave background is sharply rising [39]

k 2
Qgu,o(k) = 2900 A% (kpk) (M) : (11)
p
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Figure 1: Constraints on the primordial density perturbation, A%, obtained from gravitational waves
produced during the radiation era [40]. Black lines denote current constraints from gravitational waves
detectors and BBN. Green lines denote constraints expected from future gravitational waves detectors.
WMAP gives a direct measurement (shown in red) of the primordial density perturbation on very low
frequencies.

with an abrupt cut-off at £ = 2kyx. In either case the observed bounds on 4,0 on a range of scales
today places bounds on the primordial density perturbation on the corresponding comoving scale in the
early universe. Current and future bounds are shown in Figure 1. For example, future space-based
experiments such as DECIGO [412] could place a bound on the primordial density perturbation at the
level of A% ~ 3 x 1077 on comoving scales k ~ 108 m~!. On the other hand current bounds from pulsar
timing arrays require A% < 5 x 1073 on comoving scales k= ~ 1pc, which is already sufficient to rule
out the formation of primordial black holes in the intermediate mass range Mpy ~ 103Mg, [39].

5 Second-order density perturbations and non-Gaussianity

The source terms like Eq. (9) also appear at second- and higher-order in the dynamical equations for
scalar metric and density perturbations. Given that the observed primordial density perturbations are
small, A% ~ 107, one might expect these higher-order effects to be negligible. But in canonical, slow-roll
inflationary models, the first-order density perturbations come from vacuum fluctuations of the free, non-
interacting quantum fields. Once stretched to super-Hubble scales, these fluctuations are well-described by
a Gaussian random field, and linear evolution preserves the Gaussian nature of the distribution. Second-
and higher-order terms in the field equations have a non-Gaussian distribution as the fluctuations on
different wavelengths become correlated. Thus although second-order terms are generally expected to be
small their contribution may be distinguished from that of the first-order terms.

In recent years, prompted by the influential work of Maldacena [43], researchers have begun to con-
sider how the non-Gaussianity of primordial density perturbations can be used to systematically explore
different possible higher-order terms describing different physical interactions in alternative inflationary
models. At the same time observers have developed matched-filtering techniques to extract optimal
estimators for theoretical templates for non-Gaussianity.

A simple technique for exploring primordial non-Gaussianity during or after inflation is the non-linear
extension [14] of the § N-approach [15-47]. This identifies the primordial density perturbation, ¢, with
the perturbation in the local expansion, N = [ Hd¢, from an initial flat hypersurface during inflation
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to a final uniform-density hypersurface after inflation. For perturbations on scales far larger than the
Hubble scale during inflation, we expect the local expansion to be determined by the local field values at
that time, N(py).

The initial field values themselves can be constructed as a perturbative expansion

1
QDI(ti7X) = @I(tl) + (51901(ti,X) + 5524p1(ti7x) +... (12)
where @!(t;) is the classical background field, d;¢’ are the first-order vacuum fluctuations of the free

field, and 82’ and higher-terms are generated by non-linear interactions of the fields. We can give a
perturbative expansion of the primordial perturbation

¢ = N(o")-N(@") (13)
1
= <1+§<2+--- (14)
1
= Nisio' + 3 zI:N[(52g01 + ;NL;&@I&W" +... (15)

where Ny = ON/0p!, Nij = 0*°N/0pl0p”, etc.
First order terms give the leading, second-order contribution to the power spectrum or two-point
function

(Cx1)C(x2)) = Y NN (619" (x1)0197 (x2)) - (16)

I,J

Since the bispectrum or 3-point function vanishes for a Gaussian field, the leading, fourth-order contri-
bution to the primordial 3-point function is dependent upon the second-order terms, giving

(C(xa)¢(x2)¢(x3)) ~ Y NINsNk ((51" (x1)017 (x2)920™ (x3)) + perms)
1K

+ Y NINNip (019" (x1)0197 (x2)610" (x3)01" (x3)) + perms) . (17)
1,J,K,L

It is instructive to rotate from an arbitrary basis in field space into adiabatic perturbations along the
background trajectory [59]

'Id I
do = 721 Ld f =

> (¢7)
and the remaining directions, y!, orthogonal to the background trajectory such that Y, ¢fdx! = 0
(assuming for simplicity a flat metric in field space). Since ¢ is non-linearly conserved in the large-scale

; (18)

limit [60] we know that adiabatic field perturbations lead to a primordial perturbation [55, (1]
1

Clada = Ngdo+ 5NW&;Q +... (19)

H 1H
= —bo+-—6b0+... 20
507 + 557 + (20)

1 1 1

= - 0o + = 2 —n)do% + ... 21
Vaarts 7t 2 zearg, B @)

where € and 7 are the usual slow-roll parameters for a canonical inflaton field. Thus the non-Gaussianity
due to adiabatic perturbations of weakly-coupled (Gaussian) fields is suppressed by slow-roll parameters,
O(e,n), and unlikely to ever be observed. Any observable non-Gaussianity must come from either intrinsic
non-Gaussianity of the field perturbations, due to interactions on sub-Hubble scales, and/or non-adiabatic
perturbations in multi-field models.

The first line in Eq. (17) corresponds to the intrinsic non-linearity of the field. This is expected to
be small for canonical, weakly-coupled fields during slow-roll inflation, of order the slow-roll parameter
e=H /H? < 1. For it to be significant on sub-Hubble scales during inflation implies that the fields
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have significant self-interaction terms on sub-Hubble scales, which is possible in models of inflation with
non-canonical kinetic terms, such as DBI inflation [48] or k-inflation [49]. An alternative possibility is
that the initial vacuum state, perhaps at the Planck scale, itself contains non-Gaussianities, e.g., [50].

The second line corresponds to non-Gaussianity that is generated even if the initial field perturbations
are Gaussian, due to the non-linear dependence of the expansion upon the initial field values. In this
case the resulting primordial density perturbation, (x), is a local function of initially Gaussian fields,
5101 (x), and hence this is known as local-type non-Gaussianity [51]. It arises due to the non-linear
expansion history on super-Hubble scales either during inflation, due to coupled field dynamics [52], or
after inflation in modulated reheating scenarios, where one or more fields control the reheating process
after the end of inflation [53], or in the curvaton scenario due to the late decay of a weakly coupled field
[54].

These different physical processes can be distinguished in terms of the shape of the bispectrum. In
Fourier space the primordial bispectrum is commonly written as

6
BC(kh ]{?2, kg) = ngL(kla k27 ]{?2) [PC(kI)PC(kQ) + 2perms] . (22)

where the primordial power spectrum is given by P (k) = A% (k)/(4mk?).

For non-Gaussianity described by a local function of a single Gaussian field fyi, is independent of
wavenumber. Thus the bispectrum peaks at poles of the power spectra P(k), corresponding to a squeezed
triangle k1 = —|ks + k3| — 0 and permutations. This is now tightly constrained by both CMB and large-
scale structure data which requires —5 < fnr, < 70 at 95% confidence limit [2].

Non-Gaussianity generated on sub-Hubble scales by non-canonical fields during inflation generally
gives a primordial bispectrum which peaks at values k1 ~ ko ~ k3. This equilateral-type non-Gaussianity
is primarily constrained by CMB data, which requires —214 < fS"" < 266 at 95% confidence limit [2].

Reducing all the possible forms of non-Gaussianity down to a single number such as fyr, allows us to
place tight constraints with the current data, but hides the diversity of possible forms of non-linearity and
the information potentially available in the distribution of primordial density perturbations. Constraints
on the 4-point function or trispectrum are currently weak but offer one obvious way to distinguish between
inflationary models with similar bispectra [55]. Even the bispectrum may contain additional information
in models where the non-Gaussianity is scale-dependent [56]. This may be due either to a single field
whose non-linearity evolves with time during inflation, such as a curvaton coupled to the inflaton [57],
or non-Gaussianity due to multiple Gaussian fields whose power spectra have different scale dependence

[58].

6 Conclusions

Although observations of a nearly scale-invariant spectrum of primordial density perturbations about a
spatially flat FRW universe are consistent with many models of inflation in the very early universe, they
will probably never be considered proof that inflation really happened. We would like to find properties of
the universe which are produced by inflation, but not likely to be necessary features of any model for the
origin of structure. Evidence of deviations from an exactly scale-invariant spectrum [2] is perhaps the first
evidence for the dynamical origin for primordial perturbations. An almost scale-invariant power spectrum
of gravitational waves produced from vacuum fluctuations during inflation is of course another generic
feature of inflation that is not otherwise required by any astronomical considerations. But conversely
such first order gravitational waves would tell us little about the physical processes driving inflation.
We can go beyond the primordial power spectrum to seek signatures predicted by specific realisations
of inflation. In a perturbative approach interactions lead first to a non-vanishing 3-point function or
bispectrum, and the shape of this bispectrum reflects the nature of the interactions, either scattering on
sub-Hubble scales, which produces an equilateral-type bispectrum, or local evolution on super-Hubble
scales, which produces a squeezed bispectrum shape. Non-Gaussianity of the primordial distribution
thus offers a systematic way of building up a picture of the physical interactions in the early universe.
Superimposed on this there will be intrinsic non-linearities in the subsequent radiation- and matter-
dominated eras, which we have shown, give rise to some level of gravitational waves and a mixture of
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local- and equilateral-type non-Gaussianity in the CMB anisotropies [62] which may ultimately limit the
level of primordial non-Gaussianity we can observe.

More speculatively different models of inflation may be distinguished by non-perturbative phenomena
such as topological defects or the spectrum of inhomogeneous bubbles and their gravitational waves
spectra generated by phase transitions during or at the end of inflation as in models of hybrid or extended
inflation.
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Abstract
We study black hole solutions in the Einstein gravity with Gauss-Bonnet term, the
dilaton and the Maxwell gauge field in various dimensions. The spacetime is asymp-
totically flat and the solutions have static and spherical symmetry. We focus on the
effect of the higher order correction term of the dilaton field and found that it gives
little effect on the solutions except for the five-dimensional case. The charged black
hole solution does not have the extreme limit by the coupling to the dilaton field.

1 Introduction

One of the long-standing problems in theoretical physics is how to reconcile gravity with quantum theory.
Superstring theory is the leading candidate for quantum gravity. In order to study the geometrical
properties and strong gravitational phenomena, it is still difficult to apply full superstring theory itself.
In this situation, it is appropriate to investigate these problems by using the effective low-energy field
theories including string quantum corrections.

Many works have been done on black hole solutions in dilatonic gravity, and various properties have
been studied since the work in Refs. [I]. On the other hand, it is known that there are higher-order
quantum corrections from string theories. It is thus important to ask how these corrections may modify
the results. Several works have studied the effects of higher order terms, but most of the work considers
theories without dilaton, which is one of the most important ingredients in the string effective theories.
Hence it is most significant to study black hole solutions and their properties in the theory with the
higher order corrections and dilaton. The simplest higher order correction is the Gauss-Bonnet (GB)
term coupled to dilaton in heterotic string theories.

In our previous paper [2], we have studied asymptotically flat black hole solutions with the GB
correction term and dilaton without a cosmological constant in various dimensions from 4 to 10 with
(D — 2)-dimensional hypersurface of curvature signature k¥ = +1. We have then presented our results
on black hole solutions with the cosmological constant with (D — 2)-dimensional hypersurface with k =
0,1 [3-5]. In the string perspective, it is also interesting to examine asymptotically non-flat black hole
solutions with possible application to AdS/CFT and dS/CFT correspondences in mind. However, in our
previous work, we do not consider the higher order term of the dilaton field as in many other works.
Hence in this work we investigate the effects of such term on the properties of the black holes. We also
include the U(1) gauge field in the system to examine whether coupling of the dilaton field affect the
gauge field.

2 Dilatonic Einstein-Gauss-Bonnet-Maxwell theory

We consider the following low-energy effective action for a heterotic string in one scheme:

1

L S ares=a R Ligs? - Levep2 ol B2+ B (0k)
S = 2“2D/d xv/—g|R 2(8@5) 1€ F* + age {RGB+ 16u(8¢) } , (1)

where £% is a D-dimensional gravitational constant, ¢ is a dilaton field, v = 1/2, F is a gauge field, as =

o’ /8 is a numerical coefficient given in terms of the Regge slope parameter, and Ry = R, pe RFYPT —
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Figure 1: The region where the discriminant of the quadratic equation for ¢/; is positive in D = 4. The
horizontal axis is €¥?#/2y; and the vertical axis is e"®# e;.

4R, RM + R? is the GB correction. In the original derivation of the effective action, it was first derived
in the Einstein frame from the S-matrix calculation in string theory and then transformed into the string
frame. Also it is convenient to interpret our results in the Einstein frame. Hence we have transformed
this into the Einstein frame, reduced to D dimensions, and used the field redefinition ambiguity dg,, =
ola1 Ry + aoV V¢ + gu{asR + as(Vo)? + asV?¢}] and d¢ = o/[b1R + be(9¢)? + b3V3¢], up to
higher order terms. We have also set H = 0. The constant p is introduced to see the difference of the
solutions with and without the higher order term of the dilaton field. In the above process, higher order
terms are dropped. This is allowed because the effective low-energy action can be determined up to field
redefinition when it is read off from the scattering amplitudes computed in string theories. All this means
that there is no absolutely preferred form of the action if they are related this way, and one cannot claim
which system is better.
Let us consider the static spacetime and adopt the metric and field strength

ds? = —B(r)e a2 + B~ dr? + r?hyda'da?, Fo, = f(r), (2)

where h;jdz'dz? represents the line element of a (D —2)-dimensional hypersurface with constant curvature
(D —2)(D — 3)k and volume Xy, for kK = £1,0. A prime denoted the derivative with respect to r.

In this paper we study spherically symmetric solutions (k = 1). The field equation for the Maxwell
field is easily integrated to give

€1 _
I'= 5" 3)

where e; is a constant corresponding to the charge. Hence our task is reduced to setting boundary
conditions for the fields B, and dilaton ¢ and integrate the above set of equations.

Let us first examine the boundary conditions of the black hole spacetime. We assume the following
boundary conditions for the metric functions:

1. The existence of a regular black hole horizon rg: By =0, Bj >0, [0g]|<oo, |¢pm|<oo.
2. The nonexistence of singularities outside the event horizon: B(r) > 0, |§] < oo, |4] < 0.

Here and in what follows, the values of various quantities at the horizon are denoted with subscript H.
3. Asymptotic flatness at spatial infinity (as r — o0):

2M 31 o1
BN1_71D7_37 5(7')’\’77 ¢N75 (4)
with finite constants M, &1, ¢1, where M corresponds to the mass parameter of the black hole.

By the equation of the dilaton field with the regularity condition at the horizon, we obtain the
quadratic equation determining ¢%,. The (9¢)*-term in Eq. (1) does not contribute to the boundary
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Figure 2: The M-rgy diagram of the neutral solution (e; = 0) in Einstin-GB-dilaton system with the
higher order term of the dilaton field (red solid line), in Einstin-GB-dilaton system without the higher
order term of the dilaton field (blue dashed line), in Einstin-GB system (black dot-dashed line), and in
GR (green doted line) (a) D =4, (b) D =5, (¢) D =6, and (d) D = 10.

condition of the dilaton field at the horizon. For the D = 4 case, there is a parameter region where
the quadratic equation has no real solution. The region where the discriminant is positive is depicted in
Fig. 1. For e = 0, the boundary is rye?®#/2 > 241/4 ~ 2.192. For e"%He; > 2.3032, the discriminant is
positive for all rg.

It is useful to consider several scaling symmetries of our field equations (or our model). Firstly, as
can be scaled out by the following scaling as r — 7“/(121/2, M — ]\4/042(5’_3)/27 e1 — 61/a2(D_2)/2. The
field equations also have a shift symmetry:

b—¢— ¢y, r— e'wﬁ*/?,ﬁ7 e1 — e(P=27¢x/2¢, (5)
where ¢, is an arbitrary constant. The third one is the shift symmetry under
§— 06— 0, t—e ot (6)

with an arbitrary constant J,, which may be used to shift the asymptotic value of § to zero.

3 Black hole solutions

It will be instructive to compare our results with the non-dilatonic case. When the dilaton field is absent
(i.e., Einstein-GB-Maxwell system), we substitute ¢ = 0 and v = 0. For the D > 5 case, the field
equations can be integrated to yield [7]

2m(r)
B=1-"55, 6=0, (7)
where
pD-1 8(D — 3),M (D — 4)¢2
- “1+4/1 :
mr) = 1o D=3 \/ M 8(D — 2)r20=2) |’ (8)
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and M is an integration constant corresponding to the asymptotic value m(oo) for the plus sign in Eq. (8).
In the as — 0 limit, the solutions with the plus sign approach the Reissner-Nortstrém solutions. This
means that they can be considered to be the solution with GB correction to GR. On the other hand, the
solutions with the minus sign do not have such a limit. For these reasons, we call the solutions with plus
(minus) sign the (non-)GR branch.

In the dilatonic case, since the basic equations do not have non-trivial analytical solutions, we have to
resort to the numerical method. Firstly we consider the neutral solution (e; = 0). The relation between
the mass and the horizon radius of the black holes in various dimensions are shown in Fig. 2. We find
that the relations are qualitatively same as those of solutions without the higher order term of the dilaton
field (& = 0) except for the 5-dimensional case[2].

In the D = 5 case, there is the lower limit for the mass and the horizon radius of the black holes as
in the 4-dimensional case. In D = 4 the lower limit is determined by the condition at the horizon shown
in Fig. 1, while the second derivative of the dilaton field diverges at some radius outside of the event
horizon in the lower limit in D = 5.

For the charged solutions, we depict the relation between the mass and horizon radius in D = 5 in
Fig. 3. The electric charge is e; = 5. The charged Boulware-Deser solution [7] have the extreme limit
where the black hole horizon and the inner horizon coincide. The extreme solution has the lowest mass
and is the smallest black hole solution. The dilatonic solution also has the lowest limit solution. It is
not, however, the extreme solution and the horizon is not degenerate. At this solution, the field variables
diverges as in the neutral black hole solution. As a result, there is no extreme solution even for the
charged black hole in the dilatonic case.

12
w
T

rula

Figure 3: The M-ry diagram of the charged solution (e;/a(P~2)/2 = 5) in Einstin-GB-dilaton system
with the higher order term of the dilaton field (red solid line) and in Einstin-GB system (black dot-dashed
line) in D = 5.
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Quantum state of universe before big bounce
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Abstract

A gauge-invariant quantum theory of the flat Friedmann-Robertson-Walker (FRW)
universe with dust is studied in terms of the Ashtekar variables. We use the reduced
phase space quantization which has following advantages: (i) fundamental variables
are all gauge invariant, (ii) there exists a physical time evolution of gauge-invariant
quantities, so that the problem of time is absent and (iii) the reduced phase space can
be quantized in the same manner as in ordinary quantum mechanics. Analyzing the
dynamics of a wave packet, we show that the classical initial singularity is replaced
by a big bounce in quantum theory. A possible interpretation of the result is that
the wave function of the universe has been in superposition of states representating
right-handed and left-handed systems before the big bounce.

1 Introduction

One of the motivations of quantum cosmology is to shed light on quantum nature of the initial singularity.
However, there exists potential problems that have not been completely resolved yet. A problem is
about what should be interpreted as observables in classical and quantum gravity [1, 2]. A canonical
formulation of general relativity (GR) is a constrained system with first-class constraints in which the
spacetime diffeomorphisms are interpreted as gauge transformations. In gauge theories, only gauge-
invariant quantities are observables. However, there are techmical and conceptual difficulties in the
realization of the idea especially in GR. In many works, gauge-variant quantities are used as observables.
This issue must be seriously considered especially in quantum gravity because it is substantially related
to the problem of time [3].

In this paper, we shall construct and analyze a gauge-invariant quantum theory of the flat FRW
universe with the Brown-Kuchaf dust [1] in terms of the Ashtekar variables [5, 6]. We use the reduced
phase space quantization method where the so-called relational formalism [7, 8] is used to construct the
classical reduced phase space spanned by gauge-invariant quantities, and then the system is quantized in
the same manner as in ordinary quantum mechanics. The quantization gives a possible resolution to the
problem of time. As for the dynamics of the universe, we consider the motion of a wave packet and evaluate
the expectation value of the scale factor. It is shown that the expectation value has a non-zero minimum,
that is, the initial singularity is replaced by a big bounce in quantum theory. The remarkable point is
that the big bounce mixes the states representing right-handed and left-handed systems. See [9, 10] for
details of the work. In this paper we adopt the unit in which ¢ = 1.

2 Reduced phase space of the flat Friedmann-Robertson-Walker
universe with dust
In the Ashtekar formulation [5, 6], the variables (A%, E%) form a canonically conjugate pair where A’ is

a SU(2) connection and EY is an orthonormal triad with density weight 1. In the flat FRW model, the
Ashtekar variables can be written in terms of only one independent components ¢ and p [11],

A, = et)we,  Ef =p(t) X7, (1)

a’
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where w’ are bases of left invariant one-forms and X; are invariant vector fields dual to the one-forms.
These variables have relations to the scale factor a such that
~ 2 ~ v .

[pl = a®, &= sgu(p)5a, (2)
where v is the so-called Barbero-Immirzi parameter, N is the lapse function and the dot denotes the
derivative with respect to t. Note that, while the scale factor is restricted to be nonnegative, p ranges
over the entire real line, carrying an orientation of triads determined by the sign of p. We here consider a
compact universe to avoide the divergence of the three-space integral and in particular we only consider
the case of three-dimensional torus, where we take a cube of coordinate range 0 < z,y,z < V%, and
identify the opposite faces.

If we define new variables as p := V3 p and ¢ := V3¢, the total action for gravity plus the Brown-
Kuchaf dust [1] is written as

3 .
Stot = /dt {mpéqt PrT — NHio | (3)

where k = 87G, T is the proper time measured along the particle flow lines when the equations of motion
hold, Pr is its conjugate momentum and the Hamiltonian constraint takes the form

3
Hiot = Hgray + Haust = —T,yQCQ V|p|+ Pr =0. (4)

The key observation of the relational formalism [7, 8] to define gauge-invariant quantities is as follows.
Take two gauge-variant functions F' and 7" on the phase space, and choose one of the functions T as a clock.
Then, the value of F' at T' = 7 is gauge-invariant even if F' and T" themselves are gauge variant. Suppose
a phase space has a 2n-dimension (n > 2), and there are canonical coordinates (¢%,pg,a = 1,--- ,n) such
that {¢%, pp} = d¢. We will denote a first-class constraint by H and a phase space point by y = (¢%, pa)-
Under the gauge transformation generated by H, a point y is mapped to y — o, (y), where ¢ is a gauge
parameter. That is, ol;(y) is a gauge flow generated by H starting from y. Then we can define the
gauge-invariant quantity O%(y) as

OF(y) := F(af (v)|r(at, (y))=r- (5)

A constraint equation H = 0 is said to be of deparametrized form if it is written as H(¢*, T, pa, Pr) = Pr+
h(¢®, pa) = 0 with some phase space coordinates {¢®, T; p,, Pr}. In the deparametrized theories, the re-
duced phase space is spanned by the gauge-invariant quantities (Oga (y), 0. (y)) associated with ¢* and p,
with the simple symplectic structure {O OT L (Y )} = 0p. The physical Hamiltonian Hphys is obtained
by replacing ¢* and p, in h(¢®, pa) with O7. ( ) and O}, (y): Hphys (OT (), 05, (y)) =h (Oga (v),0;, (y))
The Hamiltonian generates the time evolution of the gauge invariant quantity associated with a function
F which depends only on ¢% and pg: aOF W _ = {Hphys, OF(y)}.

In the present case, it is natural to choose the function 7" as the clock variable. Then, the reduced phase
space is coordinatized by the gauge-invariant quantities C(7) := O (y) and P(7) := O} (y) associated
with ¢ and p with very simple symplectic structure

{0). P(r)} = 7 (6)

Moreover, we can obtain the physical Hamiltonian Hpnys by replacing ¢ and p in Hgpay(c, p) with C' and
P,

Hypnys = —70(7)2 [P(T)]- (7)

3 Quantization

In this section, we shall quantize the system on the reduced phase space obtained in the previous section.
Now the physical variables are operators and the Poisson bracket {e, o} is replaced with the commutation
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relation (1/ih)[e, e]. Thus (6) becomes the canonical commutation relation

€.p)= "1 0

Let us choose the ordinary Schrédinger representation in which the operators P and C’, respectively, act

on a wave function ¥(P) in the following way: P\IJ(P) = PU(P), C'\I/(P) = m%a\gig) . As a concrete
example, we choose the following operator ordering for the Hamiltonian,
Hynys = ——\/1PIC?
phys = _772 |P|C*. 9)

Then the Schrodinger equation takes the simplest form,

ov h? 0%

ine = P

or 3 oP?

Since the present Hamiltonian is different from the ordinary kinematical term, we choose the Hilbert
’ .

space as H = L*(R, |P|~2dP) in order to make the Hamiltonian (9) Hermitian up to surface term. Hphys

is somewhat singular at the origin P = 0, it is indeed self-adjoint in H.

(10)

4 Dynamics of the universe

Let us now analyze the dynamics of a wave packet. The procedure is as follows. First, we prepare an
initial wave packet W(P,0) at some nonzero P. Then, we numerically evolve it backward in time by the
Schrodinger equation (10) and evaluate the expectation value of |P| as a function of the internal time
7. Here we consider |P| because both the positive and negative P correspond to the universe of the
same size with different orientation of triads. For simplicity, we here choose the initial wave function as
a Gaussian wave packet

(P — Py)?

U(P,0) = Cyexp (— 552

- ikoP) , (11)

where Cj is the normalization constant. Fig. 1(a) show the absolute value of the wave function as a
function of P and 7, and the expectation value of |P| is plotted as a function of the time 7 in Fig. 1(b).

AP [(3/8m7°12]

014 012 01 -008 006 -004 -002 0
T [tp]

(b)

Figure 1: Fig.(a) shows the absolute value of the wave function as a function of 7 and P. Fig.(b) shows
the expectation values of |P| as a functions of 7.

We can see from Fig. 1(a) that a part of the wave packet is reflected and the rest is transmitted at
the origin. We here remind that the sign of P determines an orientation of triads, which correspond to a



140 JGRG20 Proceedings

right-handed and left-handed systems respectively. Thus, the result indicates that if the present state of
the universe is in a right-handed system, the past state is in superposition of the states of a right-handed
and left-handed systems. As for the expectation value of |P|, Fig. 1(b) indicates that the expectation
value never goes to zero and bounces at a nonzero minimum. That is, the initial singularity is replaced
by a big bounce in the present model.

5 Conclusions

A gauge-invariant quantum theory of the flat FRW universe with dust has been studied in terms of
the Ashtekar variables. We have first constructed the classical reduced phase space of the system by
using the relational formalism and then have quantized the reduced system. The advantages of the
quantization method are as follows: (i) fundamental variables are gauge-invariant quantities, (ii) a natural
time evolution of the gauge-invariant quantities exists, so that the problem of time is absent and (iii) the
reduced phase space can be quantized in the same manner as in ordinary quantum mechanics because
there are no constraints in the reduced phase space. In the obtained quantum theory, we have analyzed
the dynamics of a wave packet and have shown that the expectation value of P has a non-zero minimum,
that is, the initial singularity is replaced by a big bounce in quantum theory. The interpretation of the
wave packet is that if the present state of the universe is in a right-handed system, the past state has
been in a superposition of the states of a right-handed and left-handed systems.
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Light propagation in time-dependent gravitational field

Hideyoshi Arakida®

School of Education, Waseda University, Tokyo 169-8050

Abstract

We attempt to calculate the gravitational time delay in a time-dependent gravi-
tational field, especially in Robertson-McVittie spacetime. To this end, we adopt
the time transfer function method proposed by Le Poncin-Lafitte et al. (2004) and
Teyssandier and Le Poncin-Lafitte (2008) and we re-examine the global cosmological
effect on light propagation in the solar system. We also apply the obtained results to
the secular increase in the astronomical unit, reported by Krasinsky and Brumberg
(2004), and we show that the leading order terms of the time-dependent component
due to cosmological expansion is 9 orders of magnitude smaller than the observed
value of dAU/dt, i.e., 15+ 4 [m/century].

1 Time Transfer Function

The time transfer functions that give the travel time of the light ray/signal are formally expressed as
follows [1, 2]:

1
tp—ta = T.(ta,Za,7p) = p [Rap + Ac(ta,Za, %)) (1)

L . 1 L "
= Z(antBa'rB) = E[RABJ'_AT(‘T"AatBaxB)}) (2)

where 7.(ta,ZTa,Zp) is the emission time transfer function in spacial coordinates Z4,Zp and t4 is the
emission time of the signal, 7,.(Z4,tp,Zp) is the reception time transfer function in spacial coordinates
Z4,Zp and tp is the reception time of the signal, Rap = |Z5 —Z 4/, and A, and A, are the emission time
delay function and reception time delay function, respectively. A, and A, characterize the gravitational
time delay. In (1) and (2), Henceforth, A denotes the emission and B denotes the reception.

A, and A, can be iteratively calculated up to any order of approximation; nevertheless, now we only
need the 1st order formulae, i.e.,

Rap (! i 00 i —
Al = T/O |98 — 2Ninglh) + Nip Nl di @
A Ban [Uron oo v N g T !
T T, [9(1)— apd) + Nap ABg<1>} ’ W

where g(}] indicates the Ist order perturbation with respect to n* and Njpz = (¢ — 2%)/Rap. In (3)

and (4), integration is carried out along the straight line

t(n) =ta+pTap, o(p)=za+p(zp—xa) for A, (5)
t(A) =lp— AT‘ABa CE()\) =ITB — )\((EB — (EA) for A(l)’ (6)

r

where T4 is the time lapse between A and B along the straight line. Then, we can put Tap = Rap/c.
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2 Gravitational Time Delay in Robertson-McVittie Spacetime

The Robertson-McVittie (RM) metric is expressed in standard comoving form [3, 4] as
1- 5505 EVIRE
d32 = _ M C2dt2 + |:]_ + :| a? t d’l"2 +’f’2d92 7 7
1+ 725;5[“) 2c2ra(t) () ) (M)

where dQ? = df? + sin? dp?, M is the mass of the central gravitating body, and a(t) is a scale factor.
(7) reduces to the Schwarzschild solution when a(t) = 1, and it reduces to the FLRW cosmological model
for the curvature parameter £k = 0 when M = 0.

The various observational models of the solar system are currently formulated in some kind of proper
coordinate system such as the barycentric celestial reference system (BCRS) based on the post-Newtonian
framework [5], instead of the cosmological comoving frame. Hence, to compare the effects formulated
using the proper coordinates with the cosmological ones within the same framework, we adopt the radial
transformation

GM |
=a(t)r |1+ ——
R =a(t)r { + 202ra(t)} , (8)
we convert (7) into the virtually proper coordinate system [3, 6—10]. Thus, (7) is rewritten as
2GM  H?R? 2HR GM 2GM
~—(1- - 2qp2 — 2 (4 22 1 2 | R2402
ds ( 2R = )cdt p ( +62R>cdth—|—< + CQR)dR + R=dQ*, (9)

where H = H(t) = a(t)/a(t) is the Hubble parameter.

As mentioned in previous section, the light path used in the computation is rectilinear so that the
rectangular coordinate system can be used instead of the spherical coordinate system. By coordinate
transformation,

= Rsinfcos¢, y= Rsinfsing, 2z = Rcosh, (10)
and (9) becomes (see [14, 15])
2GM  H?R? 2Hz! 2GM ; 2GM ;. o
2 2 742 T 7 %
ds® = — (1 - 2p @ > cdt® — (1 + 2R ) cdtdz' + ((51»‘7 + 2ps” xﬂ> dz'dz?, (11)

where R = \/x2 + 32 + 22. To simplify the computation, the straight line used in integration is parallel
to the z-axis Hence, (11) reduces to

2GM  H?R? 2H 2GM 2GM
d32:_(1_ cC;R - c2R )chtQ— CI <1+ cC;R )cdtdx+<1+ c§R3 x2> da?, (12)

where y = b = constant (b is the impact factor), z = 0, R = vz2 4+ b2, and in this case, we may put
Niy = N%5 = (zp — va)/Rap. This approach is similar to the one described in [16], (see Section
40.4 and Fig. 40.3 of [16]). In (12), we see the Hubble parameter H(t), which generally is an arbitrary
function of time ¢. Hence, we suppose that H(t) changes adiabatically because the time lapse of a light
ray/signal observed in the solar system is much shorter than the age of the universe, Ty ~ 1010 [y1]:

dH dH
H(t) ~ H — t —
() o+ dt o ; dt

H _
~ T—S ~ 1072 [1/(s yr)], (13)

0

where Hy ~ 10717 [1/s]. Therefore dH/dt|o > 0 implies accelerating expansion of the universe; otherwise,
it implies decelerating expansion.
The time delay functions A, and A, can be resolved into the following components:

Ac(zata,zp) = A(za,zp)+Alwa,zp) + Ac(za,ta, ), (14)
Ar(wa,xp,tg) = Alza,op)+A(@a,zp) + Ar(za,25,18), (15)



H. Arakida 143

where A(a: A,zp) corresponds to the Shapiro time delay, ;(x 4,2p) is due to the static component of
cosmological expansion (Hy in (13)), and Ac(za,ta,28), Ar(za,zp,tp) are due to the time-dependent
(secular) component of cosmological expansion (dH/dt|y in (13)). By the straightforward calculations

from (3), (4), (12), and (13), we obtain following results:

A GM Va2 + b2
Alwasap) = —5 |2m|ZBIVIBTZ ] (28 T4 (16)
c xA++/T4 +b Vai +02  \fz4 +b
A Ho o 2 Hg 3 3 2
Alxpg,zp) = —ET(xB—xA)—l—G?[xB—mA—&—% (xp —x4)]
AGM H,
- dH €

Ae(IA,tA,Z'B) = E c

1
( [(sz — xi)tA + 5(2””23 — TATB — mi)TAB]
0

H
+ 37(; {[1‘% —l‘?4+3b2(1‘3 —.%‘A)] ta
1

+ 1 [335?,’3 —za2% — 2iap — a5 + 60 (vp — a?A)] TAB}

2GM
— 5% {[(mB —224)Tag +2(xp — xa)ta] /2% + b2

2 b2
b [eaTan — 2en - 2a)tal /7 + 9~ Tap | 2EVIBER
za+ /74 + 07

) o

~ dH € 1
A (za,xp,tg) = i (_C [(sz - xi)tB — §(£E2B +zaTB — 256124)TAB}
0
H
+ 3—(;{[:8%—96?4+362(m3—m,4)] tp
1
= 3 [2% + zazh + 2h2p — 32% + 60> (zp — 24)| Tap}

2GM
+ E=p— {[$BTABQ(:CB:CA)tB]\/£B2B+b2
C RAB

Iy
— [(2zp —24)Tap —2(xp — xa)tp] /2% + b2 —*TapIn Tt VT 0

rA+ \/W }>(19)

where e = N4, =1forzp—wx4 >0and e = —1 for zp — x4 < 0. € is derived from the term —QNABg?f)
in (3) and (4).

3 Application to Secular Increase in Astronomical Unit

The Secular increase in the astronomical unit (AU), reported by Krasinsky and Brumberg (2004) [11], is
an unexplained physical phenomenon observed in the solar system. This anomaly was discovered while
analyzing planetary radar and spacecraft (mainly Martian landers/orbiters) ranging data and improving
the various astronomical constants including AU. Krasinsky and Brumberg estimated

Ay =15+4 [m/cy]. (20)
dt
as the most appropriate value. Subsequently dAU/dt ~ 20 [m/cy] was separately evaluated by Pitjeva
at the Institute of Applied Astronomy (TAA), Russia, and by Standish at the Jet Propulsion Laboratory
(JPL), USA.
It should be emphasized that the increase in AU does not imply the expansion of a planetary orbit or
the equivalent increase in the orbital period of a planet. According to Krasinsky [18], the observations do
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not reveal any such traces. Further, the determination error of inner planetary orbits in the latest lunar-
planetary ephemerides (e.g. DE of JPL and EPM of TAA) is also smaller than the observed dAU/dt, i.e.,
15 [m/cy] (see Table 4 of [12]). Therefore, the observed dAU/d¢ value may relate with not the dynamic
aspect of planetary motion but the propagation of a light ray/signal.

Previously, some attempts have been made to explain the secular trend in terms of cosmological
expansion [11, 13, 17]. In particular, Krasinsky and Brumberg (2004) and Arakida (2009) considered
its contribution to light propagation. However, it is generally difficult to compute the time-dependent
geodesic of null rays; hence, the approach of the farmer is somewhat qualitative, whereas that of the
latter is essentially restricted to discussion in static spacetime.

Now, on the basis of the results obtained in previous section, let us re-examine whether the cos-
mological effect relates with the observed dAU/dt. Tt is appropriate to regard the coefficients of 4
and tp in (18) and (19) as secular terms owing to cosmological expansion. Then, if we assume that
dH/dt|y ~ 1072* [1/(s yr)] from (13), the leading order of magnitude of coefficients is approximately
10719 [m/yr] = 1078 [m/cy] because x4 and xp are of the order of a few [AU] or 10! [m] in the solar
system. Unfortunately, this is approximately 9 orders of magnitude smaller than the evaluated dAU/dt,
ie., 15 [m/cy]. Therefore, the time-dependent effect due to cosmological expansion does not induce the
secular increase in AU.
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Abstract

Despite their diversity, many of the most prominent candidate theories of quantum
gravity share the property to be effectively lower-dimensional at small scales. In
particular, dimension two plays a fundamental role in the finiteness of these models
of Nature. Thus motivated, we entertain the idea that spacetime is a multifractal
with integer dimension 4 at large scales, while it is two-dimensional in the ultraviolet.
Consequences for particle physics, gravity and cosmology are discussed.

In 1884, Edwin A. Abbott published his satirical novella Flatland: A Romance of many dimensions,
where a Square living in the (2 + 1)-dimensional Flatland envisions different geometries. While it is easy
for it to imagine worlds of lower dimensions such as Pointland and Lineland, it takes the intervention
of a Sphere to have the Square realize the possibility of Spaceland (our world) and even more fantastic
cosmos which even the Sphere cannot fathom.

This book has been entertaining generations of teachers, mathematicians and physicists, keeping
vivid in the public imagination the possibility that the universe, after all, might be more than a matter
of spheres. In fact, the notion of higher dimensions has been considered most seriously by the scientific
community, from Kaluza—Klein to brane-world scenarios. The latter can be motivated by perturbative
string theory, where the number of spacetime dimensions is higher than four. The brane-world has been
a popular playground where issues such as the hierarchy problem have found fresh insight [1].

On the other side of the story, models in lower dimensions are extremely helpful in addressing a
number of physical and technical problems which are harder to tackle in 4D. However, the dimensionality
of spacetime is a fixed ingredient, so while in the case of brane and string scenarios the unobserved
extra dimensions are explained via compactification or other mechanisms, lower-dimensional theories are
typically regarded as toy, albeit very interesting, models of reality.

Nevertheless, there is another meaning in which a model can be “lower-dimensional”. Independent
theories such as causal dynamical triangulations, asymptotically safe gravity, spin-foam models, and
Horava—Lifshitz gravity all exhibit a running of the spectral dimension dg of spacetime such that at short
scales dg ~ 2 [2]. This number is no chance and plays an important role in quantum gravity, not only
in reference to the richness of worldsheet string theory, but also because gravity as a perturbative field
theory is renormalizable near two dimensions [3].

Is it possible to construct a field theory of matter and gravity which is effectively two-dimensional
at small space-time scales and four-dimensional in the infrared? Here we wish to argue for a positive
answer, whose details can be found in [4]. In homage to Abbott’s novella, one would have liked to call the
short-scale world a Lineland, but this would have been misleading. Nowadays we know that there exist
geometric objects which are not curves or sheets or solids even if they have integer dimension. Fractals
have required a revision and extension of the concept of “dimension”, the Hausdorff definition being
just one example. In many cases, often presented in rich pictorials, fractals have noninteger dimensions,
but there exist instances where a dust or a curve can fill the ambient space enough to achieve integer
dimensionality [5]. Multifractals are objects with scale-dependent Hausdorff dimension.

The problem now is to encode in the structure of spacetime the dimensional flow typical of multi-
fractals. This can be done by promoting the Lebesgue measure in the integral defining any field theory
action to a generic Lebesgue—Stieltjes measure:

dPx — do(z), ol = —Da# —-D, (1)

1Email address: calcagni@aei.mpg.de
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wherep is a (possibly very irregular) distribution, square brackets denote the engineering dimension in
momentum units, and 0 < a < 1 is a parameter which is related with the operational definition of the
Hausdorff dimension dy as follows. In fact, the latter determines the scaling of a Euclidean volume (or
mass distribution) of characteristic size R, V(R) ~ R%. Taking ¢ ~ d(rP?),

R
V(R) ~ / doguel (x) ~ / drrPe=t ~ RP«, (2)
D-ball 0
thus showing that
du

Consider a Lorentz-covariant Lagrangian density £; this can be the total Lagrangian of gravity and
matter on a manifold M endowed with metric Guv, where p = 0,1,...,D — 1 and D is the topological
(positive integer) dimension of M. To make the universe a multifractal M, we replace the standard
measure in the action with a nontrivial Stieltjes measure:

S= / do(x) V=gL . (4)
M

We assume M has no boundary; the case with boundary should share most of the same qualitative
features. If p is absolutely continuous, it can be written as do(z) = v(x)dPz, where v is a Lorentz scalar.
We can choose

v(X) = X Pl 4 pPi-e), (5)

where M is a constant mass and X =t or X = |x| depending on whether we want to define a “timelike”
or “spacelike” multifractal. The metric g,,, and the scalar v are independent degrees of freedom which
constitute the composite geometric structure (metric and fractal) of M. A fractal must shortly evolve
to a smooth configuration. We expect M to be about the Planck mass, although the lower bound from
particle physics actually seems to be much lower, M > 300 + 400 GeV [6].

Equation (5) is inspired by results in classical mechanics, according to which integrals on fractals
can be approximated by Weyl or fractional integrals which, in turn, are particular Lebesgue—Stieltjes
integrals. The order of the fractional integral Do has a natural interpretation in terms of the Hausdorff
dimension of M [7]. Fractional integrals find applications in a range of disciplines, from statistics to
finance to engineering. In one dimension, different values of o mediate between full-memory (o = 1)
and Markov processes (« = 0), where « corresponds to the fraction of states preserved at a given time.
Loosely speaking, in our case it is the “fraction of spacetime dimensionality” felt by an observer living in
M, which is equally divided among the D directions for the isotropic weight (5).

The Lorentz scalar v may contribute a kinetic term if interpreted as part of the field dynamics,
otherwise it is excluded from the calculus of variations. We must stress that Eq. (5) is a very special case
of Stieltjes measure and it is quite possible that realistic models with fractal behaviour do not admit an
absolutely continuous measure. In that case, it is not yet clear how to work out the details of the theory.

Otherwise, properties of the class of models satisfying Eq. (5) are well illustrated by a scalar field theory
[4]. The engineering dimension of the scalar field is zero when « has the critical value a = o, = 2/D.
The dimension of spacetime is well constrained to be 4 from particle physics to cosmological scales and
starting at least from the last scattering era. Therefore, D = 4 for phenomenological reasons. The
properties of the field causal propagator in configuration space depend on the value of a. By making
use of momentum-space results, one can see that the superficial degree of divergence of the Feynman-like
diagrams of the theory is lower than in 4D. This is promising but not sufficient to demonstrate the
effectiveness and viability of a renormalization group flow. At any rate, at the classical level the system
does flow from a lower-dimensional configuration to a smooth D-dimensional one. This is clear from
the definition (5) of the measure weight and its scaling properties when a < 1, as already discussed.
Therefore, at least the phenomenological valence of the model is guaranteed.

If M ~ mp, it is likely that UV effects be important only during the very early universe. This is
suggested also by a minisuperspace analysis of the model [4], indicating that UV cosmological solutions
with zero intrinsic curvature do not exist unless one allows for exotic matter fields (or condensates)
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violating the null energy condition. On the other hand, at late times an imprint of the nontrivial short-
scale geometry might survive as a running cosmological constant. The latter appears as a source term in
the Noether conservation law for the Hamiltonian H: in Minkowski, the energy of the system is

E(t) = H(t) + A(t) = H(t) + /1t dt/dxi)ﬁ. (6)

In general, the physical D-momentum dissipates, which might constitute a unitarity problem at the
quantum level. In nonrelativistic fractal models this is a direct result of the nonautonomous character
of the action; translation invariance is broken explicitly. In our relativistic scenario, v is a scalar with
implicit coordinate dependence, a geometric factor defined for a Da-dimensional physical world which
enters the definition of Poisson brackets. This is a key difference with respect to scalar-tensor theories
and results in a deformation of the Poincaré algebra. In this precise sense, also relativistic fractals break
translation invariance.

However, the system also admits a conservative interpretation. One can also regard v as an indepen-
dent “dilaton-like” field rescaling the total Lagrangian density in the D-dimensional ambient spacetime.
In that case, one can define the Poisson brackets as usual (no Stieltjes measure within) and show that
Poincaré invariance is preserved. Dissipation occurs relatively between parts of a conservative system.
Quantization would follow through, although an UV observer would experience an effective probability
flow through his world-fractal.

We have just said that translation invariance is not broken explicitly in relativistic fractal field theory.
For instance, the use of a nontrivial measure weight might lead to the idea that translation invariance be
violated by the expression for the propagator. This is not the case, as we show here in more detail than
in [4]. Consider a free scalar field with action

So= 3 [ def@) o(a) F(O) o(0). (7

where we keep the kinetic operator f(O) general. The free Lorentzian partition function Zj in the
presence of a local source J is

Zo[J] = /['Dq’)] ei[S‘th do(z) J(z) ()] = /[D¢] 62’SJ . (8)

Using the definition of the D-dimensional Dirac distribution with nontrivial measure
1 —ik-x
oK) = gyp | del@)e )

and the Fourier-Stieltjes transform of the field ¢(x) = (27) =P [ do(k) ¢(k) €, we obtain

;/d(g(w_)? [_J’(—Mf(_k@‘;(k)+j(—k)q$(k)+j(k)¢;(_k)}
- ;/d(g(;)? lsﬁ(k)f(k?)@(kHW | »
where ~
o8 = 80) = iy (1)

Modulo the measure, we have followed exactly the same steps as in ordinary quantum field theory.
Equation (8) becomes

) = { [ipdexs |5 [E55et-nrR)600] e [2 IES J;(@)}igk>]

— Z[0) exp [ = J;ﬂ;ﬁﬂ ~ (12)

2



148 Gravity on a multifractal

The exponent can be written as

/ do(—k) J(~k)T(k) _
@nP (k)

so that, if o(—k) = o(k), the free partition function reads

o) [ det TR

2011 = 200 exp |5 [ dote) [ dat) S@)Gla = 70 (1)
where
pik-(a—y)
Gla =)= g [ 4e0) Gz (14

Therefore, we have recovered the usual definition of the propagator as the solution of the Green equation

F(O) G —y) =6dp(x —y). (15)

Other details and other features of the scalar field on an effective (multi)fractal spacetime can be
found in [4]. These properties are shared also by the gravitational sector when the latter is switched
on. There, one can see that the bare Newton’s constant is dimensionless for o = «,, thus suggesting
renormalizability [4]. Physical implications of the UV propagator, renormalization, and the hierarchy
problem will require further attention.
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Abstract

We study the contribution of the waterfall field to the curvature perturbation at the
end of hybrid inflation. In particular we clarify the parameter dependence analytically
under reasonable assumptions on the model parameters. After calculating the mode
function of the waterfall field, we use the § N formalism and confirm the previously
obtained result that the power spectrum is very blue with the index 4 and is abso-
lutely negligible on large scales. However, we also find that the resulting curvature
perturbation is highly non-Gaussian and hence we calculate the bispectrum. We find
that the bispectrum is at leading order independent of momentum and exhibits its
peak at the equilateral limit, though it is unobservably small on large scales.

1 Introduction

Hybrid inflation [1] is an interesting realization with two field contents, the usual inflaton field ¢ which
drives slow-roll inflation and the waterfall field x which terminates inflation by triggering an instability,
a “waterfall” phase transition. Previously, it has been assumed that x becomes momentarily massless
only at the time of waterfall and very heavy otherwise, and thus does not contribute to the curvature
perturbation R on large scales: only the quantum fluctuations of ¢ contributes to R and we can follow
the well-known calculations of single field case, with the energy density of the universe being dominated
by a non-zero vacuum energy.

This naive picture has been receiving a renewed interest [2, 3] with the common qualitative results
that the power spectrum of the curvature perturbation induced by the waterfall field is very blue and
extremely small on large scales. However, quantitatively it is not clear if they all agree or not. In
particular, in Ref. [3] the 0 N formalism was employed to derive the power spectrum, but the dependence
on the model parameters was not explicitly presented.

Here, we provide another complementary view. We adopt a few reasonable assumptions on the model
parameters and solve the mode functions of y in terms of the number of e-folds analytically. Then using
the 0N formalism we calculate the corresponding R induced by x explicitly.

2 Mode function solution of waterfall field

Before we begin explicit computations, first of all we make the physical picture clear. Our purpose is to
calculate the contribution of the waterfall field x to the curvature perturbation R. This is only possible
when y becomes dynamically relevant. While y is well anchored at its minimum during the phase of
slow-roll inflation and hence does not participate in the inflationary dynamics, it controls the physical
processes from the moment of waterfall till the end of inflation. Thus, in the context of the § N formalism,
if we can find the evolution of y during this phase as a function of the number of e-folds N, it amounts
to finding R by the geometrical identity R = dN. Therefore, our aim in this section is to calculate
x = x(V) starting from the moment of waterfall. We will directly use this result to calculate R in the
next section.
We consider the potential of the two fields, the inflaton ¢ and the waterfall field yx, as

A [ M? 2 1
V($:x) =7 <A - x2> - §m2¢2 + §g2¢>2x2 : (1)
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We note that during the most period of inflation of our interest, it is assumed that the vacuum energy
Vo = M*/(4)\) dominates so that the Hubble parameter is effectively a constant, H = Hy. This is a
good approximation even after the waterfall phase transition until the last moment of inflation. The
slow-roll and the waterfall conditions are m?/Hg < 1 and M?/HZ = 3 > 1, respectively. Note that
before waterfall, ¢ > ¢2 = M?/g?, x is well anchored at its minimum y = 0 so it is itself the same
as its fluctuation, y = 6x. Then after the waterfall transition, 5y becomes unstable and dx? starts to
grow rapidly, and inflation ends when the inflaton starts to roll fast, which happens when the term g?§x?
exceeds m? in the effective mass squared of the inflaton. Here we adopt the mean field approximation,
i.e. we replace g25x? by its expectation value g?(6x?), which should be valid for the motion of the
homogeneous inflaton field ¢. We also assume that the nonlinear term Adx? in the equation of 5y can be
neglected until the end of inflation. That is, we assume

A
M? > g—2m2 > Mox2) . (2)

Then, using the background solution ¢ = ¢.e~"" where n = N — N, is the number of e-folds measured
relative to the time of the waterfall transition and r = 3/2 — \/9/4 —m2/H2 ~ m?/(3H3) < 1 and
neglecting the nonlinear term in accordance with the assumption (2), we obtain the equation for dy in
the Fourier space in terms of n as
k2
i + 304 + {1«262“ +B (e - 1)} dxk =0, (3)
c

where k. = a.Hy.
We can find the solution of (3) by using the WKB approximation and the large scale limit (k — 0) [1].
With a = /2rg > 1, the evolution of the large and short scale modes are given by

2 3 1
|0xL,s(n)] =|dxL,s(n=0)] A exp (3an3/2 — §n ~1 logn> , (4)

where A = 3%/°T'(2/3)/[2y/ma'/%] and the “initial” amplitudes are
NG H,
32/31(2/3) \/2k3al/3
Mo

V2kk,

[0xL(n = 0)]

[Oxs(n = 0)] =

3 Curvature perturbation induced by waterfall field

In this section, we calculate the curvature perturbation R by using (4) in the context of the § N formalism.
In the 6 NV formalism the spacetime geometry is spatially smoothly varying over super-horizon scales while
each Hubble horizon size region is regarded as a homogeneous and isotropic universe. Hence we first need
to smooth over the horizon scale Hy ',

ak. 3
533 (@) = 3¢ (n, ) + (5xa(n)) = [&&(0) n / (;l&ﬁx%(m A exp (4

gan3/2 - 3n> , (7)

where dx7 (0) and hence 6x?(n) is spatially varying on super-horizon scales, and (6x%(0)) = a?H3/(87?)
which follows from (6). Note that we have omitted the logarithmic dependence term on n in the exponent,
which is sub-dominant when we evaluate at n = ny = O(1). We have also subtracted the contribution
from the modes with k > ak since they remain stable and behave in the same way as the flat Minkowski
vacuum modes, in accordance with the regularization we adopted, i.e. (§x?(n)) =0 at n < 0. Neglecting
—3n in the exponential for simplicity since o > 1, splitting n = 7 + dn and expanding in terms of in,
(7) is written as

ox* (R + on) = [1 + (SXQL(OH (6x%(0)) A% exp (gang/z’) (1 + 207 26m + - - ) , 8)
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where (6x%) > dx3 as discussed above.
Now we evaluate dn at a later time, say, at the end of inflation n = ny. Here it is important to note
that the end of inflation is controlled by the value of §x? at each spatial point, namely,

m2

5x*(ny, @) = il (6 (ny)) - (9)

Analogous to the case when the value of the inflaton field determines the end of inflation hypersurface,
this condition determines the end of inflation hypersurface on which the energy density is uniform (at
leading order approximation where the contribution of the inflaton to the energy density is negligible).
Then, we find

1~ [1 n g;‘%gg” (1 + 2an}/ 25n) , (10)

where we have truncated at linear order in dn. Inverting this relation, we can write the curvature
perturbation generated between the moment of phase transition and the end of inflation as

1 ox7(0,z)
2()01}/2 <5X%(0)> -

R(z) =dn~ — (11)

This explicitly shows that the spectrum of R is determined by the spectrum of §x% .

4 Correlation functions

Moving to the Fourier space, the power spectrum is defined by

(6x%), (0x%),, 7
<R<k=>7z<q>>z<27r>36<3><k+q>PR<k>=4a§nf< e >=a§fng<(6x2>k<6x2)q>- (12)
S

Before waterfall, §x is purely quantum and it can be expressed in terms of the creation and annihilation
operators a,, and ay as

dgk ik-x dSk ik-x T *
ox = / (277)36 Ok = / (27r)3€ (aka + af’““) ’ (13)

where aL and aj, satisfy the canonical commutation relations [ag,af] = (2m)36G) (k — q), otherwise zero,
and the mode function y; follows the same equation as that of §x. Since the Fourier component of §x?
is written as a convolution, we have to correlate four creation and annihilation operators with different
momenta,

(63 6),) = [ 525 (Granan) Gxsdra-n) (14)

To calculate the above, we should note that what we are interested in are connected graphs, correlating
different (0x?)x’s. Thus only taking into account the meaningful contractions, we can easily find

((OxpOXk—p) (OX10Xq-1))
= XpX|k—p|XI X[g—)(27)*? [5(3)(1) +q-15Ok—p+1)+6V(p+1)i®(k—p+q- l)] . (1)

Thus, eliminating one of the momenta using the delta functions, and using the remaining delta function
5@ (k + q) to replace q with —k, we find

(5, 0),) =2 [ ol [ 8 5-+) (1)
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However, from (5), we have already seen that the super-horizon mode xj is independent of k, and thus
can be pulled out of the integral. Hence, we only have to integrate over the relevant super-horizon scale
momentum, for which the upper limit is k = k.. Therefore, using (5), we finally obtain

2 2 — (27)36(3) #a—ygh’g
<(‘5X )i (0x >q> = (2m)"0 (k+q)311/3 [r2/3)* k3

Since this expression has, as it should, the correct delta function dependence, we can readily extract
the power spectrum Pgr. Noting (12) we find

k3 3272 a—22/3 ( k )3

E*P = -
o2 T 3us /3t ny \ke

(17)

Pr (18)

where the numerical coefficient reads 3272/ {311/3 [F(2/3)}4} ~ 1.67255. Thus, with ny = O(1), the

maximum amplitude is found at k = k. as Pr ~ a~22/3 which is already much smaller than unity for

a > 1. For larger scales, it is exponentially suppressed and thus becomes absolutely negligible: for
example, for a scale that exited the horizon at 50 e-folds before waterfall, it is suppressed by a factor
(e759)3 ~ 1075%. As already discussed in the previous section, setting Pr oc k"? 71, the spectrum is very
blue with the index ng = 4.

We can proceed almost identically to compute the bispectrum. It is given by

(R(k1)R(k2)R(k3)) = (21)36®) (k1 + ko + k3) Br (k1, k2, k3)
3
-1 1 Pd®gdi
= (Ml/g M) / O ((0Xq10Xt1—q1) (6Xq20Xko—g2) (6Xqs0Xks—gs)) - (19)
f
where after choosing meaningful contractions we have
BPqid®qad’qs
/ W <(5X111 6Xk1—¢h) (5XQ25Xk2—QQ) (6XQB5XIC3—¢13)>
6
47'(']{3 2ﬁ HO
3 32/31°(2/3) | /2k3al/3
Comparing this expression with the definition of the bispectrum, we find
16(2m)7 ol

35 [0(2/3))° n%/ ks’

=868 (ky + ko + k3)

Br(k1, ke, ks) = — (21)

where the numerical coefficient reads 16(27)7/ {3°[I'(2/3)]°} ~ 4128.89. To leading order, the bispec-
trum has no momentum dependence, and thus the dimensionless shape function (k1koks)?Br (K1, k2, k3)
exhibits its maximum amplitude at the equilateral limit k&1 = ko = k3. This is anticipated, since the
curvature perturbation produced by the waterfall field is intrinsically highly non-Gaussian. Note, how-
ever, that this bispectrum is completely unobservable on large scales: in the equilateral limit, multiplying
kS, we see for example that it is exponentially suppressed by a factor of (e72°)% a~ 107120 for a scale
that exited the horizon at 50 e-folds before the waterfall. Thus this bispectrum is totally hopeless to be
detected on large scales.
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Abstract

In this paper we highlight our work in arXiv:1009.3488, where we test the f(R)
theory of modified gravity via the cosmological observations and the solar-system
experiments.

The f(R) theory of modified gravity with the following gravity action was proposed for explaining
the cosmic acceleration at the present epoch [1-3].

S =53 [ dev=g R+ F(R), (1)

where f(R) is a general function of the Ricci scalar, representing the deviation from general relativity
(GR), and & is the gravitational coupling. As an essence of cosmology, this theory needs to pass the
cosmological test. As a theory of modified gravity, it needs to pass the local gravity test. In Ref. [1]
we test the f(R) modified gravity via the cosmological observations about (1) the cosmic expansion and
(2) the cosmic structures and via (3) the solar-system experiments. This work will be highlighted in the
present paper, as follows.

Cosmic-expansion test

It is well known that for any given expansion history H(z) (where H is the Hubble expansion rate and z is
the redshift) one can reconstruct f(R) which generates the required H(z). The f(R) models constructed
in this way are called “designer f(R)”.

For the construction of the designer f(R) models, we consider the expansion rate H(z) parameterized
via the constant equation of state of effective dark energy, weg, and that via the Chevallier-Polarski-Linder

(CPL) parametrization [5, 6], wepr(2) = wo + waz/(1 4 z), with the current observational constraints
[7]:
Weg = constant = —0.980 & 0.053 (68% CL), (2)
wy = —0.93 +0.13, w, = —0.417072 (68% CL). (3)

In this case the designer f(R) is parameterized by the parameters of w(z), the initial condition of f(R),
and other cosmological parameters ¢;. That is, f(R) = f(R;{wo,Wa, fri,q;}), where fr; is the initial
value of fr and fr = df /dR. These models by design can pass the current cosmic-expansion test.

After constructing the designer f(R;{wo,wq, fri,q;}), we test them via the cosmic-structure obser-
vations and the solar-system experiments.

Cosmic-structure test

Regarding the cosmic structures, the key quantities for distinguishing between GR and modified gravity
are the two ratios, U/® and Geg/Gn. The scalar metric perturbations, ¥ and ®, are defined with the
perturbed Robertson-Walker metric in the conformal Newtonian gauge:

ds® = —[L+2U(Z,t)] dt* + o [1 — 28 (7, 1)] d?. (4)

1Email address: jagu@ntu.edu.tw



154 Test f(R) Modified Gravity

The effective gravitational coupling G.g is operationally defined by the following evolution equation of
the matter density perturbation (8,, = dpm/pm), while G is the Newtonian gravitational constant.

O + 2H6,, — A7 GegrpmOm =0, (5)

which is valid for the sub-horizon perturbations at late times.
In GR these two ratios are both unity, while in f(R) modified gravity they are complicated functions
of the length scale and time: For a sub-horizon Fourier mode with the wave number k at late times,

2
N 1_;'_47;7 frRR
o) = ——noi (6)
+ a? 1+ fr
.2
Guilhya) _ Gealkya) . 1 1+akdm -
- 2 - k2 f bl
Gn K2 /8T L+ fr1 435 Len

where fr = df /dR and frr = d*f/dR>.

For the designer f(R;{wo,wa, fri,q;}) we constructed, we found that for all {wo, w,} and for most
of the initial conditions fg; the theoretical prediction of the ratio ¥/® at k = 0.01h/Mpc and a = 1 is
very close to 2, which is around the margin of the current observational bound [3]:

1<¥/P <199 for k=0.01h/Mpc and a = 1. (8)

Only within a narrow range of fg; this ratio can be significantly smaller than 2 and fit the above constraint
well. Accordingly, a fine-tuning of the initial condition of f(R) is required for the designer f(R) modified
gravity to survive the cosmic-structure test.

Solar-system test

For the solar-system test, we consider the f(R) modified gravity with the chameleon mechanism [9] and
obtain the solar-system constraints of the general f(R) [10]:

1075 < fg <0 for R/HZ ~10°, (9)
0< Rfpr <2/5 for R/HZ>10°. (10)

We then look for the the viable designer f(R;{wes, fri}) (for constant weg) models, which satisfy the
above constraints, by surveying the parameter space {wes, fr;} around the GR point {—1,0}.
We found the viable region extremely small. The deviation of the viable {weg, fr;} from the GR point
{—1,0} is tiny:
1+ wer| < 1077, (11)
|fril < 1073, (12)

The ratios, ¥/® and Geg/G n, in these viable designer models are very close to unity (the GR prediction):

\Ij —6
’@—1‘ < 1076, (13)

Gcf‘f —6
—1 1 . 14
\GN \ < 10 (14)

Accordingly, these viable models are indistinguishable from GR, considering both the current and the
future observations in sight.

To sum up, among the designer f(R;{wo,wq, fr;}) models under our consideration, only those closely
mimicking GR (with a cosmological constant) can pass the solar-system test. As a result, regarding the
frequently studied designer f(R) models constructed with respect to weg = —1, the solar-system test has
ruled out those of cosmological interest, i.e., distinct from ACDM in the prediction of cosmic structures
(\I//(I’ and Geﬂ‘/GN).



Je-An Gu 155

Acknowledgments

This work is supported by the Dark Energy Working Group of the Leung Center for Cosmology and
Particle Astrophysics (LeCosPA) and by the Taiwan National Science Council (NSC) under Project No.
NSC 98-2112-M-002-007-MY 3.

References

. Capozziello, 5. Carloni an . oisl, Recent Res. Dev. Astron. Astrophys. 1,
1] S. C iello, S. Carloni d A. Troisi, R Res. D A A h 1, 625 (2003
[arXiv:astro-ph/0303041].

[2] S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Phys. Rev. D 70, 043528 (2004)
[arXiv:astro-ph/0306438].

[3] S. Nojiri and S. D. Odintsov, Phys. Rev. D 68, 123512 (2003) [arXiv:hep-th/0307288].

[4] W.-T. Lin, Je-An Gu and P. Chen, arXiv:1009.3488 [astro-ph.CO].

[5] M. Chevallier and D. Polarski, Int. J. Mod. Phys. D 10, 213 (2001) [arXiv:gr-qc/0009008].
[6] E. V. Linder, Phys. Rev. Lett. 90, 091301 (2003) [arXiv:astro-ph/0208512].

[7] E. Komatsu et al., arXiv:1001.4538 [astro-ph.CO].

[8] T. Giannantonio, M. Martinelli, A. Silvestri and A. Melchiorri, JCAP 1004, 030 (2010) [arXiv:astro-
ph/0909.2045].

[9] J. Khoury and A. Weltman, Phys. Rev. Lett. 93, 171104 (2004) [arXiv:astro-ph/0309300];
Phys. Rev. D 69, 044026 (2004) [arXiv:astro-ph/0309411].

[10] Je-An Gu and Wei-Ting Lin, in preparation.


http://arxiv.org/abs/1009.3488

156 Kerr bound

Black hole candidates and the Kerr bound

Tomohiro Harada!(® and Rohta Takahashi(®

(@) Department of Physics, Rikkyo University, Toshima, Tokyo 175-8501, Japan
®) Cosmic Radiation Laboratory, the Institute of Physical and Chemical Research, 2-1 Hirosawa, Wako,
Saitama 351-0198, Japan

Abstract

The specific angular momentum of a Kerr black hole must not be larger than its mass
in the geometrical units. The observational confirmation of this bound which we call
a Kerr bound directly suggests the existence of a black hole. On the other hand, the
violation of this bound may suggest the existence of a superspinning object which
might be suggested from a string theory argument. In order to investigate obser-
vational testability of this bound by using the X-ray energy spectrum of black hole
candidates, we calculate the energy spectra from an optically thick and geometrically
thin accretion disk of a superspinning object which is described by a Kerr metric
but whose specific angular momentum is larger than its mass, and then compare the
spectra of this object with those of a black hole. Based on this calculation, we present
that the observational confirmation of the Kerr bound is very hard but the violation
of it may be detectable if only the continuum X-ray spectrum of the disk is available.

1 Introduction

Black hole candidates will be directly observed by radio interferometers by X-ray satellites and gravita-
tional wave detectors in the near future. Although these candidates are most likely to be black holes, it
is not obvious to confirm that. In principle, to prove that black hole candidates are really black holes, we
have to show that the observed data cannot be explained by anything else. In this relation, there is an
argument that if we can show that a sufficiently large amount of mass, say, above the model-independent
maximum mass of neutron stars ~ 3Mq, is compactified within the size comparable with its gravitational
radius, general relativity assures that it is a black hole. It turns out however that this argument crucially
depends on the cosmic censorship hypothesis [1, 2]. The singularity theorems predict the existence of
spacetime singularities in generic spacetimes, where the spacetime curvature is singular in typical cases.
The cosmic censorship hypothesis is an unproven hypothesis about the properties of spacetimes which are
solutions to the Einstein equation with physically reasonable matter fields and with generic initial data.
It claims that spacetime singularities formed in physical gravitational collapse are covered by horizons
and hidden from any or distant observers. Thus, the cosmic censorship hypothesis ensures the future pre-
dictability of the classical theory including general relativity. On the other hand, since quantum gravity
should replace classical general relativity in the Planckian regime, singular spacetimes in classical theory
might be modified to regular ones in some sense. If this is true, the cosmic censorship hypothesis for the
classical theory should be reconsidered in the new context. One of the interesting possibilities is that
naked-singular solutions of the classical Einstein equation are physically significant in the low-curvature
region but largely modified to be smooth spacetimes around singularities in the classical solutions due
to quantum gravity effects. This article is based on Takahashi and Harada [3]. We use the geometrical
units, where ¢ = G = 1.

The Kerr metric is a solution to the vacuum Einstein equation. This solution is stationary, axisym-
metric and asymptotically flat. The metric is given by

2Mr daMrsin® 0 P
2 _ _ 2 R ) 2
ds® = (1 > >dt — s dtde + Adr + Xdf
2Mra? sin” 0
+(r2+a2+m;m> sin? 0dg?,
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where ¥ = r? + a%cos?0, A = r?2 — 2Mr + a?, and M and a are the mass and the Kerr parameter,
respectively. We put a. = a/M as the nondimensional Kerr parameter. The Kerr solution has a curvature
singularity at r = 0 and 8 = 7/2, where ¥ = 0 and this is called a ring singularity. For |a.| < 1, the
solution has an event horizon at r = ry, where ry is a larger root of A = 0. We can see that the ring
singularity is covered by an event horizon. For |a.| > 1, there is no event horizon and the ring singularity
is therefore not covered by a horizon. A singularity which is not covered by a horizon is called a naked
singularity. Therefore, the condition |a.| < 1 must be satisfied for the singularity to be covered and we
call this condition the Kerr bound on the Kerr parameter.

Here we should mention an important example where the naked singularity is remedied due to quantum
gravity effects in string theory [4]. There is a solution called the BMPV solution of supergravity in (4+1)
dimensions. This solution describes a black hole in some region of the parameter space as a sub-extremal
case but has a naked singularity in other region as a super-extremal case. This naked singularity is actually
excised by a domain wall of strings and D-branes, if stringy effects are taken into account. Although the
Kerr solution has not yet been dealt with in the same context, we can assume that the naked singularity
in the super-extremal Kerr solution is excised as well due to stringy effects and this regular object is
called a superspinar. Figure 1 shows this assumption schematically. In this connection, we should also
mention that it is suggested that we might overspin a sub-extremal black hole to a super-extremal object

by plunging a test body [5].
e S
A}
!
v X
S - ’

Stringy effects

Figure 1: The schematic figure of the remedy of a naked singularity due to stringy effects.

2 The standard accretion disk in the general Kerr spacetime

We newly invent the consistent accretion disk model for the superspinar. We generalise the general
relativistic standard accretion disk model around a black hole [6] to a superspinar. We adopt the following
assumptions. The disk is axisymmetric, steady-state, geometrically thin and optically thick. The angular
momentum of the fluid is transferred by the viscous torque and the dissipative energy is used to thermalise
the disk. The local thermal equilibrium holds in the disk fluid. The inner edge is torque free and given
by the innermost stable circular orbit (ISCO). Then, we find the solution of the fluid equation in the
background Kerr metric. Given a Kerr spacetime, the accretion flow is fixed by two parameters, the
accretion rate M and the radius of the outer edge rmax- The accretion rate must be sub-Eddington
for the consistency of the model. The result is not sensitive to the choice of 7.« if it is chosen to be
sufficiently large. Figure 2(a) shows the present accretion disk model schematically.

It is well known that the Kerr black hole has an ISCO. As a, is increased from 0 to 1, risco, the
radius of the ISCO, decreases from 6M to M, while ry, the horizon radius, decreases from 2M to M.
In fact, the Kerr spacetime has an ISCO even for a, > 1. As a, is increased from 1, rigco continues
to decrease to 2/3 at a. = 4v/2/(3v/3) ~ 1.09, takes a minimum there and turns to increase. r1sco is
greater than its Schwarzschild value 6M for a, > 8v/6/3 ~ 6.53. This is shown in Fig. 2(b).

The efficiency e of emission can be calculated as 1 — Eygco, where Eigco is the specific energy of
the particle orbiting the ISCO. Figure 3(a) shows the efficiency as a function of the spin parameter a.,
where only the short-dashed line and the solid line are relevant to the present accretion disk model. The
efficiency is ~ 5.7 % for the Schwarzschild black hole a, = 0 and increases to ~ 42 % for a, = 1=. Then,
it jumps to the maximum value ~ 157.7%. The efficiency is larger than 100% for 1 < a, < 1.09. It then
decreases to ~ 42 % for a, = 5/3 ~ 1.67 and continues to decrease as a, is increased further. Note that
the efficiency becomes ~ 5.7 % again for a, ~ 6.53. Figure 3(b) shows the temperature profiles of the
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r I1SCO

2
(a) The accretion disk model (b) The radius of the ISCO

Figure 2: (a) The schematic figure of the accretion disk model in the general Kerr spacetime and (b) the
radius of the ISCO as a function of the Kerr parameter [3].

accretion disks. We can see that there appears a peaky spike near the inner edge for 1 < a, < 1.09 due

to the high efficiency of the disk. We should note that for a superspinar with 1.09 < a, < 6.53, there is
a black hole counterpart with very similar temperature structure.
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(a) The energy efficiency (b) The temperature profile

Figure 3: (a) The energy efficiency € = 1 — Ersco as a function of the Kerr parameter and (b) the
temperature profiles of the accretion disks for the different values of the Kerr parameter [3].

3 The X-ray spectrum from the accretion disk

In addition to the dynamics and thermodynamics of the accretion disk, we assume that the dissipative
energy due to the viscous torque is fully converted to the locally black-body radiation. We solve the
general relativistic radiative transfer, including all kinematical general relativistic effects through the
spacetime metric and the motion of the fluid. We neglect the absorption, emission and reflection by the
surrounding gases for simplicity. We assume there is no emission and no absorption by the superspinar
at the centre.

Figure 4(a) shows the predicted energy spectra for the different spin parameter values. For 1 < a, <
1.67, the spectrum extends to higher energy compared to black holes. For a, 2 6.53, the photon energy is
lower compared to black holes. However, surprisingly, any black hole has its superspinar counterpart which
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Figure 4: (a) The spectra of the emission from the disk with the different values of the Kerr parameter
and (b) the demonstration of the similarity of the spectra between the black hole and the superspinar
counterpart [3].

gives a very similar X-ray spectrum. This is demonstrated in Fig. 4(b). In contrast, for a superspinar
with 1 < a, < 1.67 or a, 2 6.53, there is no black hole counterpart.

~ ~

4 Summary

In the present settings, it is very challenging to distinguish black holes from superspinars only by the
X-ray spectrum observation. In contrast, some of the superspinars can be clearly distinguished from black
holes. In other words, we can potentially find the violation of the Kerr bound by the X-ray spectrum
observation. The present disk and radiation model might be too simple. It is interesting to study the
observational testability of the Kerr bound with other accretion models, such as Radiatively Inefficient
Accretion Flow (RIAF). See Takahashi and Harada [3] for further details.
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Abstract

In this talk, we show the second order Boltzmann equation with polarisation without
specifying any gauges. In order to describe a polarisation of photon, we introduce
a tensor-valued distribution function. We derive the gauge transformation rules for
metric, momentum and distribution function. We correct the previous results for
gauge transformtion rule of distribution function in which some terms were missed.
The tensor-valued distribution function is a tensor on two dimensional polarisation
surface, therefore, we have to consider the change of polarisation surface as well as
its transformation rules as a tensorial quantity in the gauge transformation. For a
consistency, we check the gauge invariance of the derived equation. Finally, we give
a short comment on the observed temperature.

1 Introduction

The non-Gaussianity in the Cosmic Microwave Background is the one of the hottest topics in Cosmology
because the non-Gaussianity can be a new window for the information of primordial universe. It is often
said that the simplest inflation model predicts the very tiny non-Gaussianity, therefore if non-Gaussianity
is detected, this simplest model can be ruled out. From the recent studies, we know a lot of models which
predict large non-Gaussianity. Therfore, from the observations of non-Gaussianity, we may constrain
inflationary models.

On the other hand, the non-linear evolution of perturbations generates the so-called late time non-
Gaussianity. This becomes the noise for primordial non-Gaussianity. Fortunately, if cosmological pa-
rameters are given, we can calculate this late time non-Gaussianity without ambiguity by solving second
order Boltzmann equation. Then, in principle, they can be completely subtracted.

Along this direction, the second order Boltzmann equation was written down in the Poisson gauge in
[1, 2]. In [3], this equation was solved numerically and they reported that fll\?ﬁal ~ 5 can be generated.
We have to consider this late time non-Guassianity seriously and estimate it correctly. Although their
calculation were performed in the Poisson gauge, at a linear level, the synchronous gauge was used for
the numerical calculation. Therefore there could be some inconsistency in such a calculation.

For this purpose, we write down the second order Boltzmann equation without specifying gauges.
We derive the gauge transformation rules for metric, momentum and distriabution function. Finally we
check the gauge invariance of the derived equation.

2 Preparations

We shall use the ADM formalism to write down the expression of the perturbed metric. In general, the
metric can be decomposed in this formalism as

ds? = a*(n) [—N2d772 + 735 (dz" + N'dn)(da? + den)] (1)
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where N is a lapse, N is a shift and ~;; is a spatial metric. We consider perturbations around the flat
Friedmann-Robertson-Walker spacetime and we then define the perturbations as

N=1 + a, Yij = 51’]’ + Qh” (2)
Any perturbation X will be expanded into a first-order and a second order parts as
_x0 1y
X=X+ §X (3)

The photon momentum satisfies the null condition P#P,, = 0, thus there are only three independent

components. Using the components of the momentum in the local inertial frame p(® = eff)P“, we
consider the conformal energy ¢ and the direction n(*) of the photon as independent variables;

@
N (i iy _ P i), G
1= 3/@8upp0pY) =ap®, 0 =G a1, (4)

e =a(l+a)’, el =a {(N’ + B NF) 60, + (51]- +hi; — thkhkj> 5@} : (5)

We introduce the tensor-valued distribution function f,,, to express the polarisation. Since the dis-
tribution function will be defined on a two-dimensional polarisation surface, it has only four degrees
of freedom. These four degrees of freedom can be extracted by decomposing f,, into a trace part, a
symmetric traceless part and an anti-symmetric part as

‘ , 1 .
I(z", q7n(z))SW + P#,,(:v“,q,n(l)) + 5V(m“,q,n(z))epﬂweg’d” (6)

N | =

Fun(z#,q, n(i)) =
where S, is a screen projector and its definition is
SP«V(PM> = G + BLO)GZ(,O) —d,d,, d* = (g, + e(o)“e,(jo))P” (7)
And also, the anti-symmetric tensor is defined by
€apys = €lapys)s  €0123 = V/—4. (8)

Here [ is the intensity and V' the degree of circular polarization. As for P,,, it encodes the two degrees
of linear polarisation (so called Q and U in Stokes parameter).

3 Boltzmann equation

The distribution matrix satisfies the Boltzmann equation

Dfa,@ _

where D/DA is the covariant derivative along a photon trajectory *(\) and C,,, is the collision term.
The explicit form of Df,3/DA is

Dlas _ g p 42"  Ofapda | Ofas dn'")
DA M T 9 dh T on® da

(10)

where V, is the covariant derivative. Projecting the equation with the screen projector, we can show
that the physical distribution matrix satisfies the following equation

Dfuv

SpNSUV D = Cuv (11)
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where ¢, = SMQS,,BC’W. After short calculation, the left hand side is decomposed into the I, V and
P, parts similarly to Eq. (6);

D
DA

1DI DP,, 1DV
apa It oy zmewvée?md‘s) : (12)

S,1S," = S,"S," (

We also decompose the collision term in the same way as

, 1 ) . 1 )
pr(xll7 q, n(l)) = §Cl(xﬂa q, n(Z))SMV + OP (xll7 q, n(Z)) =+ icv('xﬂa q, n(l))€puuoe€0)d0 (13)

Nz
We can write down the second order Boltzmann equation for intensity as

)
ozt

N' 3.
-+ 25”hjk5klhlmn(m))

DI qg 9 ¢ (i) - .

- -1 4 i) _ §ikp, )
DX a?N Jn T <n kil

2 . . . . . . .

i % {—a,m(” + (N5 — hip)nDn@ + a(ay; — §;,N* ;n@ + hyn@)n®

. - . 5 ) O
+ (Oz,i — 5lmNm7¢’rl(l) + 2hiln(l))5mhjkn(7) + (Nk,ihjk + Nkhij7k)n(z)n(J)} %
L L . ol
+ %(n(z)n(]) —6%) {ogj — N ;0 hyn® 4 (hy g — hkl,j)n(k)n(l)} D = ol (14)

where " means the derivative with rigard to 7. We can write down the equation for P,, and V/, although
we don’t give the expression here.
4 Gauge dependence

One of our goals is to check the gauge invariance of the Boltzmann equation. For this, we first derive the
transformation rules under the gauge transformation. The gauge transformation up to the second order
is given by

1
ot Gt =gt et =My 5&@)# (15)

From now on, we derive the gauge transformation rules for metric, momentum, and the distribution
function. We will write the component of ¢# as &* = (T, L*).
Gauge transformation of metric at second order are given by

_ 1 1
9op = Gap = Jap — Legap + 555(»’35%5) + 5Leegap (16)

&€ means £* €Y. Up to the second order, the ADM variables transform as
| . . ,
a=a—-HT-T+ 5(H2 +H)T? + H(2TT + T;L") — HaT

—aT =T — a;L' + N'T; + TT + T° + T L' + 697,15 (17)

N =N+ 69T ; — L' +26YaT; — N'T — N'T + NIL' ; — N* ;L7 — 2567 h;,, T,
— 89 2T;T +TT ;) +TL' + TL + 6"*T;L" j, — 09T j,L* + L' ;L7 (18)

2hij = 2hij — 2HT8;j — (6 LF j + 8, L ;) — AHhy; T + (2H? + H)6;; T* + 2H8,;(TT + T L)
F2HT (i, LF j + 83 L i) — N¥ (6,15 + 0 T5) — 2hiy T — 2hij x L¥ — 2(hi LF j + hjp L )
~T;T; + T L* j + 0 LF ;) + (6T + 03 T1) L*
+0u L L' 5+ (6ik L i+ 0k L ) L' + (Gi L' j + 0x; L' )L (19)

)
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where H is conformal hubble parameter defined by H = a/a.
Then using the transformation rules for P* and metric, we obtain the transformation rule for g;

1. ) 1. . A ,
éq+@q%ﬁ?ﬁ+fmm+20H7ﬁﬁ2HHTﬂfmw+2NTﬂﬁ+Tmm@N%MM%}
(20)
In the same way, the gauge transformation rule of n(¥ is given by
2D =n® 4600 = n@ 4 (59 — n(”n(]))TJ + 56“6(6;@@1,]- — ;L j)n) (21)

Using the transformation rules for metric and momentum, we find the gauge transformation rule for
the distribution function

5 of Of a? ; ;

s = fap — Lefap — 0g—L2% —on' 2 — — T (P f* o' P 22

Jap = fap — Lefap L n'o q,( s+ fa"Pp) (22)
The last two terms were missed in [1]. These terms come from the gauge transformation of projection

tensor S, and physically means the change of screen.

Although we don’t show the detailed calculation, using the derived gauge transformation rules for
metric, momentum and distribution function, we can show the gauge invariance of the second order
Boltzmann equation. This fact gives the consistency check for the derived gauge transformation rule.

5 comment on observed temperature

In all the literature, the second order temperature anisotropies are calculated in the Poisson gauge with
a specific choice of the local inertial frame. Strictly speaking this is not the temperature anisotopies that
we observe. Thus one needs to change the local inertial frame or perform the gauge transformation. At
the first order, this is not an issue. Since the first order gauge transformation rule of temperature is given
by;

© — O+ HT +Tn® (23)

the change of the gauge and the local inertial frame only affects the monopole £ = 0 and dipole £ = 1 if we
expands the temperature aniostropies into multipole components. Thus the ¢ > 2 modes are not affected
by the change of observers. However this is no longer the case at the second order. In the second order
gauge transformation, there are terms that are convolutions of the first order temperature anisotorpies
and the gauge transformation functions. These terms affect the observed temperatures even for the ¢ > 2
modes. Thus a care must be taken when we compare theoretical predictions to observations.
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Abstract

The Hilbert-Huang transform is a novel, adaptive approach to time series analysis that
does not make assumptions about the data form. This algorithm is adaptive and does
not impose a basis set on the data, and thus the time-frequency decomposition is not
limited by time-frequency uncertainty spreading. Because of its high time-frequency
resolution, it will have important applications to the detection of gravitational wave
signal. As a first step, we demonstrate a possibility of the application of a Hilbert-
Huang transform to the search for gravitational waves.

1 Introduction

The Hilbert-Huang transform (HHT) is the combination of the well-known Hilbert spectral analysis and
the empirical mode decompositon developed recently by Huang et al.[1]. It presents a fundamentally new
approach to the analysis of time series data. Its essential feature is the use of an adaptive time-frequency
decomposition that does not impose a fixed basis set on the data, and therefore, unlike Fourier or Wavelet
analysis, its application is not limited by the time-frequency uncertainty relation. This leads to a highly
efficient tool for the investigation of transient and nonlinear features. The HHT is applied to various
fields including materials damage detection [2], biomedical monitoring [3] [4], etc. Because gravitational
wave detectors, such as LIGO, Virgo and LCGT, have a great variety of nonlinear and transient signals,
the HHT has the promise of being a powerful new tool in the search for gravitational waves. We will,
therefore, demonstrate a possibility of the application of the HHT to data analysis of gravitational waves.

2 Brief Description of Hilbert-Huang Transform

The HHT consists of two components; empirical mode decomposition (EMD) and Hilbert spectral anal-
ysis. In this section, we introduce briefly both components of HHT. It will be shown that the Hilbert
transform (HT) can lead to an apparent time-frequency-energy description of a time series. However, this
description may not be consistent with physically meaningful definitions of instantaneous frequency and
instantaneous amplitude, since the HT is based on Cauchy’s integral formula of holomorphic functions
tending to zero fast enough at infinity. The EMD can generate components of the time series whose
HT can lead to physically meaningful definitions of these two instantaneous quantities, and hence the
combination of EMD and HT provides a more physically meaningful time-frequency-energy description
of a time series.

Hereafter, we assume that the input x(¢) is given by sampling a continuous signal at the discrete time,
t=t; fori=0,1,---,N.
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2.1 Empirical Mode Decomposition

The EMD has implicitly a simple assumption that, at any given time, the data may have many coex-
isting oscillatory modes of significantly different frequencies, one superimposed on the other. The each
component is defined as an intrinsic mode function (IMF) that satisfies the following conditions: (i) In
the whole data set, the number of extrema and the number of zero crossings must either equal or differ at
most by one. (ii) At any data point, the mean value of the upper and the lower envelopes defined using
the local maxima and the local minima, respectively, is zero.

With the above definition of an IMF, we can then decompose any function through a sifting process.
The sifting starts with identifying all the local extrema and then connecting all the local maxima (minima)
by a cubic spline to form the upper (lower) envelope. The upper and lower envelopes usually encompass
all the data between them. Their mean is designated as mi(t). The difference between the input z(t)
and mq (t) is the first protomode, hy(t), namely, hq(t) = 2(t) — mq(¢). By construction, h; is expected to
satisfy the definition of an IMF. However, that is usually not the case since changing a local zero from a
rectangular to a curvilinear coordinate system may introduce new extrema, and further adjustments are
needed. Therefore, a repeat of the above procedure is necessary. This sifting process serves two purposes;
(a) to eliminate background waves on which the IMF is riding and (b) to make the wave profiles more
symmetric. The sifting process has to be repeated as many times as is required to make the extracted
signal satisfy the definition of an IMF. In the iterating processes, h1 can only be treated as a proto-IMF,
which is treated as the data in the next iteration: hq(t) — mq1(t) = h11(t). After k times of iterations,
hy(p—1)(t) — mix(t) = hix(t); the approximate local envelope symmetry condition is satisfied, and hiy
becomes the IMF ¢y, that is, ¢1(t) = hix(¢).

The approximate local envelope symmetry condition in the sifting process is called the stoppage
criterion. The several different types of stoppage criterion were adopted. In this article, we use the
Cauchy types of stoppage criterion [1]:

al 2 ol 2
Z [mak(t:)] Z [ha(ts)]” < e (1)
i=0 i=0

with a predetermined value e.

The first IMF should contain the finest scale or the shortest-period oscillation in the signal, which can
be extracted from the data by x(t) — ¢y (¢t) = r1(¢). The residue, rq, still contains longer-period variations.
This residual is then treated as the new data and subjected to the same sifting process as described
above to obtain an IMF of lower frequency. The procedure can be repeatedly applied to all subsequent
Ty, and the result is r,_1(t) — ¢, (t) = r,(t). The decomposition process finally stops when the residue,
7y, becomes a monotonic function or a function with only one extremum from which no more IMF can
be extracted. Thus, the original data are decomposed into n IMFs and a residue obtained, r,,, which can

n
be either the adaptive trend or a constant: z(t) = Z ¢ (t) + rp(t).
j=1

2.2 Hilbert Spectral Analysis

The purpose of the development of HHT is to provide an alternative view of the time-frequency-energy
paradigm of data. In this approach, the nonlinearity and nonstationarity can be dealt with better
than by using the traditional paradigm of constant frequency and amplitude. One way to express the
nonstationarity is to find instantaneous frequency (IF) and instantaneous amplitude (IA). This was the
reason why Hilbert spectral analysis was included as a part of HHT.

For any function z(t), its Hilbert transform (HT) y(¢) is

y(t) = %P/_OO :‘(_%d’ﬁ (2)

where P is the Cauchy principal value of the singular integral. Although it is not trivial to calculate
the Cauchy principal value numerically, the HT can be obtained using the Fourier transform or the FFT
of z(t) and the convolution theorem, since the HT is the convolution of x(¢) and 1/(7t). Assuming the
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function z(t) is the real part of a holomorphic function F(z) on the real axis z = ¢, the HT y(¢) will be
its imaginary part, that is, ‘
F(t) = 2(t) + iy(t) = a(t)e’?), (3)

where

a(t) = \/=(t)* + y(t)* and () = tan* {18} . (4)

Here a(t) is the instantaneous amplitude and 6(t) is the instantaneous phase function. The instantaneous

frequency is given by
1 do(t) 1 dy dx
t - — 7 = —_— = Y— . 5
10 2 dt 2ma? (x at ~ Vat 5)
With both amplitude and frequency, we can express the amplitude (or energy, the square of amplitude)
in terms of a function of time and frequency, H(w,t). The marginal spectrum can then be defined as

T
h(w) = /O H{w, t)dt, (6)

where [0, T is the temporal domain within which the data is defined. The marginal spectrum represents
the accumulated amplitude (energy) over the entire data span in a probabilistic sense and offers a measure
of the total amplitude (or energy) contribution from each frequency value, serving as an alternative
spectrum expression of the data to the traditional Fourier spectrum.

3 Demonstration of HHT as Gravitational Wave Data Analysis

To illustrate the application of the HHT to data analysis of gravitational waves (GW), we look at the
identification of a signal in white Gaussian noise. Our principal motivation is in analyzing data from
GW detectors such as LIGO, Virgo and LCGT. GW signals at the sensitivity of the current detector are
not expected to show rates exceeding one per year at SNR > 8. The adaptive and high time-frequency
resolution features of the HHT are well suited to GW analysis.

We focus in this article on simulations with time series data composed of stationary white Gaussian
noise and GW signals well separated in time. As an example, we inject a 20 solar mass black hole binary
merger and ringdown signal [5] with SNR = 7 into white Gaussian noise at 16 kHz sampling rate. The
merger signal is shown in the top panel of Fig.1 and the time series of signal in white Gaussian noise is
shown in the lower panel of Fig.1.

Although, in this article, we do not discuss in detail, we have made the modifications, which is called
Ensemble Empirical Mode Decomposition (EEMD) [6], to HHT application to the GW data analysis.
The purpose of introducing EEMD is to average over errors in the EMD process. EEMD is also an
algorithm, which contains the following steps: (1) Add a white noise series to the targeted data; (2)
decompose the data with added white noise into IMFs; (3) repeat steps (1) and (2) again and again but
with different white noise series each time; and (4) the ensemble means of corresponding IMFs of the
decompositions are obtained as the final result. In this article, we set a EMD ensemble number and EMD
stoppage criterion 200 and € = 0.01 respectively.

The top panel of Fig.2 shows the results of EEMD. The green, blue and red lines show 2nd, 3rd
and 4th IMFs. The black line shows injected signal. In the 2nd and 3rd IMFs, the signal can be seen,
largely separate from the noise. The middle and lower panels of Fig.2 show the instantaneous amplitude
and frequency derived from the Hilbert transform of 2nd, 3rd and 4th IMFs. The black line shows the
instantaneous amplitude and frequency of injected signal without noise. The instantaneous amplitude
and frequency of 2nd plus 3rd IMF's display similar behavior of the instantaneous frequency and power of
injected signal. Thus, there is a possibility that we can identify a targeted signal and extract information
about the signal frequency and power evolution in time.

4 Summary

In this article, we briefly reviewed the analysis algorithm of the HHT. As a fist step, we demonstrated the
application of the HHT to GW data analysis. To illustrate the application of the HHT to GW analysis,
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Figure 1: 20 solar mass black hole binary merger
and ringdown signal [5]. The upper and lower
panels show the pure signal and the signal in
white Gaussian noise with SNR=7, respectively.

Figure 2: IMFs 2, 3, 4 and original signal. The
middle and lower panels display instantaneous
amplitude and frequency, respectively.

we looked at the identification of a signal in white Gaussian noise. As the result, we found that there was
a possibility that we could identify a targeted signal and extract information about the signal frequency
and power evolution in time.

In future, because HHT is empirical method, we need more systematic simulations to investigate
the property of the HHT. Many more details of the results of systematic simulations will be discussed
elsewhere.
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Abstract

It is well known that one-loop free energy of closed strings diverges above the Hage-
dorn temperature. One explanation for this divergence is that a ‘winding mode’ in
the Euclidean time direction becomes tachyonic above the Hagedorn temperature.
The Hagedorn transition of closed strings has been proposed as a phase transition via
condensation of this winding tachyon. But we have not known the stable minimum of
the potential of this winding tachyon so far. On the other hand, we have previously
calculated the finite temperature effective potential of open strings on D-brane—anti-
D-brane pairs, and shown that a phase transition occurs near the Hagedorn temper-
ature and D9-brane—anti-D9-brane pairs become stable. In this article, we present a
conjecture that D9-brane—anti-D9-brane pairs are created by the Hagedorn transition
of closed strings, and describe some circumstantial evidences. We also discuss its
application to cosmology.

1 Hagedorn Transition of Closed Strings

Since the early days of string theory, it was observed that perturbative string gas has an interesting ther-
modynamic property. The string gas has a characteristic temperature called the Hagedorn temperature.
We can compute the one-loop free energy of strings by using path integral in Matsubara method. The
one-loop free energy of strings diverges above this temperature.

One explanation for this divergence is that a ‘winding mode’ in the Euclidean time direction becomes
tachyonic above the Hagedorn temperature. Sathiapalan [1], Kogan [2] and Atick and Witten [3] have
proposed the Hagedorn transition of closed strings via condensation of this winding tachyon. They
advocated that the Hagedorn temperature is not really a limiting temperature but rather is associated
with a phase transition. Atick and Witten argued further from the world sheet point of view. The
insertion of the winding tachyon vertex operator means the creation of a tiny hole in the world sheet
which wraps around the compactified Euclidean time. Thus, the addition of the winding tachyon vertex
operator to the world sheet action induces the creation of a sea of such holes. At low temperature, sphere
world sheet does not contribute to the free energy, since it cannot wrap the compactified Euclidean time.
But if we consider the condensation of winding tachyon above the Hagedorn temperature, the sphere
world sheet is no longer simply connected and it contributes to the free energy above the Hagedorn
temperature. It should be noted that these modes can be interpreted as winding tachyon only in the
Matsubara formalism, namely, if we perform the Wick rotation of the time direction and compactified it
with period 5. We cannot identify which modes condensate to what extent in Lorentzian time when this
winding tachyon condensates in the Euclidean time.

Significant effort has been devoted to find out the stable minimum of the potential of this winding
tachyon. But we have not known the stable minimum yet. It is difficult to compute the potential of
closed string tachyon because this potential has to be calculated by closed string field theory and this
theory has not been well-established.

2 Brane—anti-brane Pairs at Finite Temperature

We have previously discussed the behavior of brane-antibrane pairs at finite temperature in the constant
tachyon background [4]. At zero temperature, the spectrum of open strings on these unstable branes
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contains a tachyon field 7. In the brane-antibrane configuration, we have T = 0, and the potential
of this tachyon field has a local maximum at T" = 0. If we assume that the tachyon potential has a
non-trivial minimum, it is hypothesized that the tachyon falls into it. Sen conjectured that the potential
height of the tachyon potential exactly cancels the tension of the original brane-antibrane pairs [5]. This
implies that these unstable brane systems disappear at the end of the tachyon condensation.

Although brane-antibrane pairs are unstable at zero temperature, there are the cases that they be-
come stable at finite temperature. We have calculated the finite temperature effective potential of open
strings on these branes based on boundary string field theory. For the D9-brane-D9-brane pairs, a phase
transition occurs at slightly below the Hagedorn temperature and the D9-D9 pairs become stable above
this temperature. On the other hand, for the Dp-brane-Dp-brane pairs with p < 8, such a phase transi-
tion does not occur. We thus concluded that not a lower dimensional brane-antibrane pairs but D9-D9
pairs are created near the Hagedorn temperature. Let us call this phase transition brane-antibrane pair
creation transition. Although we only describe the case of brane-antibrane pairs, almost the same argu-
ment holds for the case of non-BPS D-branes. This work is generalized to the case that Dp-brane and
Dp-brane are separated by Caldo and Thomas [6].

3 Creation of D9-brane-D9-brane Pairs from Hagedorn Transi-
tion of Closed Strings

Let us consider the relationship between above two phase transitions. Let us return to the argument
of Atick and Witten about the meaning of the condensation of the winding tachyon [3]. The insertion
of the winding tachyon vertex operator corresponds to the creation of a tiny hole in the world sheet
which wraps around the compactified Euclidean time, and the condensation of winding tachyon induces
an infinite number of tiny holes in the world sheet. But what is the hole of closed string world sheet?
Let us try to think about it from a different point of view. If we identify the boundary of a hole created
by winding tachyon vertex operator with a boundary of open string on a D9-D9 pair, the insertion of
winding tachyon vertex operator means the insertion of the boundary of open strings, which wraps the
compactified Euclidean time once, in the tiny hole limit. Then the sphere world sheet which is no longer
simply connected is naturally reinterpreted as higher-loop open string world sheet. If we enlarge the size
of this hole, we can describe open strings with arbitrary boundary. Therefore, we present a following
conjecture :

D9-brane-D9-brane pairs are created by the Hagedorn transition of closed strings.

That is, above two phase transitions are two aspects of one phase transition. In the sense that T'=0
is the perturbative vacuum of open strings, this is a phase transition from closed string vacuum to open
string vacuum. In other words, the stable minimum of the Hagedorn transition is the open string vacuum.

4 Circumstantial Evidences

Here we describe some circumstantial evidences for this conjecture. First, if we consider the thermody-
namic balance on D9-D9 pairs, we can show that energy flows from closed strings to open strings and
open strings dominate the total energy. This is because we can reach the Hagedorn temperature for closed
strings by supplying finite energy, while we need infinite energy to reach the Hagedorn temperature for
open strings on these branes. This implies that, as the temperature increases, the creation of D9-D9
pairs begins before closed strings are highly excited.

Secondly, one-loop free energy of open strings on a D9-D9 pair approaches to the propagator of
winding tachyon in the closed string vacuum limit, as is sketched in Fig. 1. This is an example that we
can identify the closed string sphere world sheet with winding tachyon vertex operators with the open
string world sheet in the closed string vacuum limit. Atick and Witten consider only closed string vacuum
and looking for stable minimum in winding tachyon space. But it is reasonable to look for the stable
minimum in all the open string tachyon space.
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Figure 1: The cylinder world sheet (left) approaches to the sphere world sheet with two winding tachyon
vertices insertion (right).

Thirdly, we can show that the finite temperature effective potential at the open string vacuum becomes
the global minimum in entire space of the open string tachyon field near the Hagedorn temperature.
In the case of a D9-D9 pair, the potential energy at T' = 0 is given by

N R (1)
TBu (ﬂ - 5H)
where [ is the inverse of the Hagedorn temperature and vy is the 9-dimensional volume of the system that
we are considering. From this we can see that this potential energy decreases limitlessly as the temperature
approaches to the Hagedorn temperature. It is natural to think that the open string vacuum becomes
the global minimum near the Hagedorn temperature. This is the property that the stable minimum of
the Hagedorn transition is expected to have.

5 Application to Cosmology

The spacetime-filling branes are very advantageous in the sense that all the lower-dimensional D-branes
in type II string theory are realized as topological defects through tachyon condensation from non-BPS
D9-branes and D9-D9 pairs. We can identify the topological charge as the Ramond-Ramond charge of
the resulting D-branes. These D-brane charges can be classified using K-theory [7]. Thus, if non-BPS
D9-branes exist in the early universe, various kinds of branes may form through tachyon condensation
[8]. It would be interesting to examine the possibility that our Brane World forms as a topological defect
in a cosmological context. We have studied the homogeneous and isotropic tachyon condensation as a
first step towards ‘Brane World Formation Scenario’. In this article, we describe only the simplest case.
For other cases, see Ref. [9].

The low energy effective action for tree level closed strings is described by type ITA supergravity. For
simplicity, we shall focus on 10-dimensional metric g,,,,, and set the other fields to zero or some constants.

Then the action is given by
1
- ﬁ/dlom\/ —g R (2)

We must also consider the action for non-BPS D9-branes. For simplicity, we only deal with the zero
temperature case. The BSFT action for a linear tachyon profile in the flat spacetime is derived in Ref.
[10]. Let us focus on tachyon T in the open string spectrum, as well as graviton g, in the closed string
one, and assume that the action in the curved spacetime is given by

Sg =

Sr=p / dz/=g e T F (A\V,TVFT), (3)
where o, A and p are constants, and
1\ !
f(z)\/%F(erl){F(erQ)} : (4)

The total action we consider is the sum of (2) and (3). We assume that the universe is homogeneous
and isotropic, and that the spatial curvature is flat. In order to perform the numerical calculation,
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Figure 2: The time evolution of the scale factor a(t) (left) and the tachyon field T'(¢) (right) in the case
of Einstein gravity coupled to tachyon field. We have set a(0) = 1. The initial condition for the tachyon
is T =107 and T = 0 at ¢t = 1000. We choose such a small initial value of 7" in order to show the
inflation phase exists before the decelerated expansion phase.

we must choose an initial condition. It is expected that, even if non-BPS D9-branes are stable near
the Hagedorn temperature initially, they become unstable because the energy density decreases as the
universe expands. Then the tachyon starts to roll down from the local maximum of the potential at
T = 0. When the tachyon remains at T' = 0, the solution for the equations of motion is de Sitter solution.
Thus, it is reasonable to choose the initial condition which is close to the de Sitter solution. We calculate
the numerical solution as is depicted in Fig. 2. From this we can see that the tachyon asymptotically
approaches to a linear function of ¢. Sugimoto and Terashima have pointed out that T — ¢/ VA + const.
as t — oo, and that it is related to tachyon matter [11]. This comes from the divergence of F(z) and its
derivative at z = —1. As we can see from Fig. 2, the scale factor asymptotically approaches to a constant
as t — oo. This is because the energy density of the tachyon field asymptotically approaches to zero and
we are considering the case that the spatial curvature is zero. The inflation phase continues for a long
time if we choose small initial value of T
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Abstract

We study an extension of Killing-Yano symmetry in the presence of totally skew-
symmetric torsion, which is called generalized hidden symmetry. Such a symmetry
gives rank-2 irreducible Killing tensors which don’t in general commute. We further
study Kerr-Sen black hole spacetime and its generalizations in hetelotic supergravity
theory. It is shown that these spacetimes possess generalized Killing-Yano symmetry
and the torsion is identified with 3-form flux naturally.

1 Introduction

Killing—Yano symmetry has been studied as a fundamental hidden symmetry which plays a crucial role
in black hole spacetimes. It is known that in the four-dimensional Kerr spacetime [1], all the symmetries
necessary for separability of the geodesic, Klein-Gordon and Dirac equations, are described by a Killing—
Yano tensor [2]. Higher-dimensional solutions describing rotating black holes have attention in the recent
developments of superstring and supergravity theories. It was demonstrated that the vacuum rotating
black hole solutions (with spherical horizon topology) [3-5] have Killing—Yano symmetry and generalize
separability of Hamilton-Jacobi equation [6-9], Klein-Gordon equation [10, 11] and Dirac equation [12].
In this presentation we discuss a Killing—Yano symmetry in the presence of skew-symmetric torsion. The
spacetimes with skew-symmetric torsion occur naturally in supergravity theories, where the torsion may
be identified with a 3-form field strength. Black hole spacetimes of such theories are natural candidates
to admit the Killing—Yano symmetry with torsion. This generalized symmetry was first introduced by
Bochner and Yano [13] from the mathematical point of view and recently rediscovered [14-16] as a hidden
symmetry of the Chong—Cvetic-Lii—Pope rotating black hole of D = 5 minimal gauged supergravity [17].
Furthermore, this was found in the Kerr—Sen black hole solution [18, 19] of effective string theory and
its higher-dimensional generalizations [20]. The discovered generalized symmetry shears almost identical
properties with its vacuum cousin; it gives rise symmetries that imply separability of the Hamilton—Jacobi,
Klein-Gordon, and Dirac equations in this background [21].

2 Generalized Killing-Yano symmetries

We first recall some notations concerning a connection with totally skew-symmetric torsion. Let Ty, be
a 3-form and V7 be a connection defined by

1
vIvt = v,y + S TearY< (1)

where V, is the Levi-Civita connection. The connection VI satisfies a metricity condition VI g,. = 0,
and preserves the geodesics. For a p-form g, ...q, the covariant derivative is calculated as

1 ,
Vi, = Vb, + éTca[b1¢cb2~~-b,,] . (2)
We further define an exterior derivative d” and a co-exterior derivative 67 by

1 c
(dTw)al“'aerl = Ev[q;lwazmaerl] ’ (5T¢)a1"'ap—l = —VZIZJ ay-ap—1 (3)
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A generalized conformal Killing-Yano (GCKY) tensor k was introduced as a p-form satisfying for any
vector field X

1 1
Vik=—X 1d"k— ——X*A§Tk 4
S h D-p+1 ’ )

where _i and A stand for an inner and a wedge product, respectively. A GCKY p-form f obeying 67 f =0
is called a generalized Killing-Yano (GKY) tensor, and a GCKY p-form h obeying d'h = 0 is called a
generalized closed conformal Killing-Yano (GCCKY) tensor.

Proposition 2.1 GCKY tensors possess the following basic properties:
1. A GCKY 1-form is equal to a conformal Killing 1-form.

2. The Hodge star x maps GCKY p-forms into GCKY (D — p)-forms. In particular, the Hodge star
of a GCCKY p-form is a GKY (D — p)-form and vice versa.

3. When hy and hy is a GCCKY p-form and q-form, then hg = hy A hy is a GCCKY (p + q)-form.

4. Let k be a GCKY p-form for a metric g and a torsion 3-form T. Then, k= QPtk is a GCKY
p-form for the metric § = Q%g and the torsion T = Q?T.

5. Let k be a GCKY p-form. Then

Qab = kacl-~~cp,1kb01.“0p71 (5)

is a rank-2 conformal Killing tensor. In particular, @ is a rank-2 Killing tensor if k is a GKY
tensor.

We define a 2j-form h\9) as h) = h AR A --- A h where the wedge products are taken j — 1 times
such as h® =1, hV) = h, h® = h Ah, ---. If we put the dimension D = 2n + ¢, where € = 0 for even
dimensions and ¢ = 1 for odd dimensions, k() are non-trivial only for j =0,--- ,n —1+e¢, i.e., K9 =0
for j > n —1+¢e. Since the wedge product of two GCCKY tensors is again a GCCKY tensor, hV) are
GCCKY tensors for all j. Moreover the Hodge dual of the GCCKY tensors h7) gives rise to the GKY
tensors fU) = xh\). For odd dimensions, since h("™ is a rank-2n GCCKY tensor, f( is a Killing vector.
Given these GKY tensors f) (j =0,...,n — 1), one can construct the rank-2 Killing tensors

() _ 1 () (J)erecp—2j-1
Kab = ooy — g /oo BT ©)

obeying the equation V(QKIEZ)) =0, and
(KO, KOV, = KOV K]~ KOV R =0, @

This means that the integrals of motion generated from Killing tensors don’t commute with respect to
Poisson bracket.

When the torsion is absent, it is shown that dh is a Killing vector. On the other hand, when the
torsion is present, neither 67h nor §h are in general Killing vectors. Such a torsion anomaly appears
everywhere in considering geometry with the GCCKY 2-form. For instance, it is seen in separability
of field equations. Separation of variables in differential equations is deeply related to the existence of
symmetry operators, which commute between themselves and whose number is that of dimensions. It is
known that such symmetry operators can be generated by a CCKY 2-form in the absence of torsion. In
the presence of torsion, however, the commutator between a symmetry operator generated by a Killing
tensor and the laplacian don’t vanish in general. This means that a GCCKY 2-form no longer generates
symmetry operators for Klein-Gordon equation. Similarly, it is known that the GCCKY 2-form doesn’t
in general generates symmetry operators for Dirac equation, while it is possible for CCKY tensor.
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2.1 Kerr—Sen Black Hole

Let us see an example of spacetimes admitting a GCCKY 2-form. Actually, it can be shown that (2n+¢)-
dimensional metric

n—1

2
-3 Qe+ 33 (S a3 ZAi’”dwk)
c n * n Ny n—1 ®)
k=0 v=1 Y k=0

where ¢ is a constant, admits a GCCKY 2-form h. It is convenient to introduce an orthonormal basis

{et, el e},
euf,/ tdo, e ,/ ( dwk—zgj ZA““dwk) ,

e n) <Z AW ey, — Z év ZA<k>d¢k> : (9)

v=1

in which g, h and the torsion T" are written as

n
g= Z (e”e“ + e’leﬂ> + eele? |

pn=1
n n n
~ (9 H 0 XV 12
h= Eleue“/\e’" T:_<H_1 ’j__[ e#/\e“)/\}_l U—Ve . (10)

Here the metric functions are given as

"N
Up=[[h—ad), H=1+3 5"
p=1 "H

vF#u
A= T e, %= Y wed AP=a=1
g <msn 1< < <vesn
ViF K

and the functions X, and N, depend on the single variable z,: X,(x,), Nyu(z,).
In considering an effective theory of hetelotic supergravity,

1
5:/e¢(*R+*d¢Ad¢—*FAF—§*HAH), (12)

where ' = dA and H = dB — A A\ dA, the metric g and the 3-form field strength H identified with the
torsion T' are required to satisfy the equations of motion

1
Rap = VaVié = F, Fye = T H, " Hyeg = 0.,
d(e¢*F> — P« HAF, d<e¢*H) -0,
1
(Vo)? +2V2%¢p + §FabFab + 12Ha peH® —R=0. (13)

These equations determine the unknown functions X,, and N, as

n—1

—1)"¢
=Y a4+ 2myua) e el x2) & N, =2muel s (14)
k=0 ®
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where s = sinhd, ¢ = coshd, ¢,-1 = —1, and m,, (u =1,---,n), ¢ (k=0,---,n—2), ¢ and J are
arbitrary constants. In addition, the Maxwell potential A and the dilaton field ¢ become

n n—1
c N,
A== 23" Ald =logH . 15
5#21 HU“ — m ¢k7 ¢ og ( )

When we take the special choices of the constants, the solutions represent charged rotating black hole

solutions including the Kerr-Sen black hole [18, 19] and its higher-dimensional generalizations [20]. The
torsion anomalies vanish on these black hole spacetimes, and hence one can expect that integrable struc-
tures [22-25] are subject to a generalized Killing-Yano symmetry.

3 Conclusion

We have studied an extension of Killing-Yano symmetry in the presence of 3-form torsion. We have
demonstrated that, when the torsion is an arbitrary 3-form, one obtains various torsion anomalies and
the implications of the existence of the generalized Killing-Yano symmetry are relatively weak compared
with ordinary Killing-Yano symmetry. However, in the spacetimes where there is a natural 3-form obeying
the appropriate field equations, these anomalies disappear and the concept of generalized Killing-Yano
symmetry may become very powerful.
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Abstract

This Letter generally deduces a general dark energy model in Einstein’s special rela-
tivity, which just shows a general dark energy may generally exist not being necessary
in general relativity.

1 Introduction

Special Relativity is, built up by Einstein, a kind of special spacetime theory [1]. It overcomes the dif-
ficulties relative to Galilean transformation ((i) the equations of electromagnetic fields do not obey the
Galilean transformation; (ii) the speed of light c is a constant — the results of Michelson - Morley ex-
periment; (iii) Particles move with high-speed), it generalized Lorentz invariant property of the equations
of electromagnetic fields to the situation of mechanics. In addition, it expanded and modified Newtonian
spacetime, thus Einstein gave the creation of a new era of Einstein’s space-time theory. Beside, Poincare
etc, had some contributions to the modern theory of special relativity [2]. Newtonian mechanics is the
case of special relativity in the low-speed approximation.

2 A general dark energy model

For convenience of discussion, we first review some main relative results to be used in this Letter, then
generally deduce a general dark energy model in Einstein’s special relativity. Using proper time dr =
dt\/T—v2/c2 (v =4 (2 =Ax-Ax) is the velocity of the object in the reference frame ) and
generalizing the speed to four dimensions, we may set up the Four-velocity

dze 1 d o
v Yo _ Ve 4=0,1,2,3. (1)

dr \/I—UQ/CZW \/1—112/62,

Utilizing the invariance of the interval AxCAxg+Az!Azi+Az2Azs+A23Az3=c?ATAT, then we have
uouo—i-ulu1+u2u2+u3u;3:02:77“”u#u1,. Therefore, we obtain

Uy —

du, dut
2ty —=2u,, —=0. 2
K dr Un dr 0 (2)

Eq.(2) shows that the relation of 4-vector u, and du’/dr is vertical.
With Eq.(1), we define the four-momentum as

Pa=Mota=modx,/dr, a=0,1,2,3. (3)
Then the fourth component of the four-momentum is

pa=moug=mgic/\/1—[F2, (4)
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the space component of the four-momentum is

mo dx; v?2
= —— - =Mmv;, (M= 1-—). 5
P ot di mu;, (m=mg/ 02) (5)

In the equations of the special relativity, for an object acted by four-force K, and considering Eq.(3),
we have

dp du
K,=—%t= "
B dr o dr’ (6)
multipling Eq.(2) with m, , we achieve
u,modu” /dr=u, K"=0, (7)

Eq. (7) shows that 4-vector u,, is vertical to K*. With Eq.(6), we have

dp; 1 d(mv) 1
Ki=—""= = F;. 8
dT 1 2 dt v2 ( )
T2 ez
The forth component of four-force is
dpy dpia
Ky=—=mo—.
dr o dr )
Substituting Eq.(8) and (9) into (7), we obtain
) dp* 1 )
U4K4+uiKZZU4L+ui F'=0. (10)
dr 1_22
Then, we have
4 .
U N (11)

dT 2
Gfime

v-F is the power of the force F | and the power is equal to the rate of increase of energy with time,

ie., ‘%, thus we have
dp* ,  dE idE
dizil dizzdi' (12)
T . 17%; t cdr
Therefore, we obtain
dp, 1dE
et 13
dr cdr (13)
Then, we achieve '
i
p4=EE + Co1, (14)

where Cy; is an integral constant, satisfies %:O . It means that Cp; is independent of the proper time

or time. Therefore, Cy; has a clear physical significance, which is relative to dark energy, cosmological
constant and zero-point energy in quantum field theory. When neglecting Cjyy, it reduces to Einstein’s
theory of special relativity. Thus, using Eq.(4) we obtain
) moic
p4:EE +Con=—r—= (15)

V1-6%

Thus, we achieve a general energy

E=moc?/\/1—[2+Ep=mc*+Eo, (16)

where Ey1=icCy; is a general invariant energy as a general dark energy, because its dimension is energy.
In particular, it is just the dark energy that causes the accelerating expansion of the universe or relative
to cosmological constant and so on, and which is determined by the relative cosmological experimental
data.
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3 Discussion and conclusion

When neglecting Fo; , Eq.(16) reduces to the Einstein’s Mass-Energy relation E=mgc?/+/1—3%2=mc? ,
which is another way to deduce the Einstein’s Mass-Energy relation. It means that the achieved theory
is consistent. F=mc? means that any matter has the great power, which predicts the existence of matter
energy. Any rest object has a great rest energy Eg=moc?> . Combining Eqs. (8) and (12), we have
K,=(K,K-v/c) . If v changed, then 9#0 , it is a non-inertial reference frame. In fact, the F=ma is
equivalent to F=dp/dt in Newtonian physics. In the discussion above, we find that the former is not
suitable for generalizing, becuase the property of m and a is not well defined. While the latter is a well
defined vector, once we replace dt with d7, and generalize the 3-momentum to 4-momentum, it is just the
relation between 4-force and 4-acceleration, which looks like the Newton’s second law in four dimensional
expression.

Therefore, we generally deduces a general dark energy model in Einstein’s special relativity, which
just shows that a general dark energy may generally exist, which is not necessary to exist in general
relativity.
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Abstract

Casimir energy is calculated for 5D scalar theory in the warped geometry. A new regu-
larization, called sphere lattice regularization, is taken. The regularized configuration
is closed-string like. We numerically evaluate A(4D UV-cutoff), w(5D bulk curvature,
extra space UV-boundary parameter) and T'(extra space IR-boundary parameter) de-
pendence of Casimir energy. 5D Casimir energy is finitely obtained after the proper
renormalization procedure. The warp parameter w suffers from the renormalization
effect. Regarding Casimir energy as the main contribution to the cosmological term,
we examine the dark energy problem.

1. Introduction In the quest for the unified theory, the higher dimensional (HD) approach is
a fascinating one from the geometrical point. Historically the initial successful one is the Kaluza-Klein
model, which unifies the photon, graviton and dilaton from the 5D space-time approach. The HD theories
, however, generally have the serious defect as the quantum field theory(QFT) : un-renormalizability. The
HD quantum field theories, at present, are not defined within the QFT.

In 1983, the Casimir energy in the Kaluza-Klein theory was calculated by Appelquist and Chodos[1].
They took the cut-off (A) regularization and found the quintic (A%) divergence and the finite term. The
divergent term shows the unrenormalizability of the 5D theory, but the finite term looks meaningful[?]
and, in fact, is widely regarded as the right vacuum energy which shows contraction of the extra axis.

In the development of the string and D-brane theories, a new approach to the renormalization group
was found. It is called holographic renormalization. We regard the renormalization group flow as a curve
in the bulk. The flow goes along the extra axis. The curve is derived as a dynamical equation such
as Hamilton-Jacobi equation. It originated from the AdS/CFT correspondence. Spiritually the present
basic idea overlaps with this approach.

2. Casimir Energy of 5D Scalar Theory In the warped geometry, ds? = w2122 (Mupdatdz” + dz2)
, we consider the 5D massive scalar theory with m? = —4w? (< 0). £ =v/~G(—3VAOV & — Im?®?) .
The Casimir energy Ecqs is given by

e T Beas = / DP exp{i / XL}

1
=exp {~5(ph+ MY}, v =pi +p5+ 05 +ph (1)
Euclid np

where M, is the eigenvalues of the following operator.
) Lt M () =0, L=t o T @)

where s(z) = ﬁ Zs parity is imposed as: ¢, (2) = =, (—2) for P = — ; ¥,(2) = ¢p(—2) for P = +.
The expression (1) is the familiar one of the Casimir energy. It is re-expressed in a closed form using
the heat-kernel method and the propagator as follows. First we can express it, using the heat equation
solution, as (w/T = e“!, I is the periodicity in y-coordinate: y — y 4 21, w|z| = e*I¥]),

- d* *1dt
o T Beu = (const) x exp [T_4/ (27.3)742/0 §7T‘r Hy(z,7';t) )
1/T b
Tr Hy(z,2';t) = / s(2)Hp(z, z;t)dz

= —(s7'L, — ) Hy(2,25t) =0 . (3)
1/w 8t

1Email address: ichinose@u-shizuoka-ken.ac.jp
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The heat kernel Hy(z, 2’; t) is formally solved, using the Dirac’s bra and ket vectors (z|, |2), as Hp(z, 2/; t)

(z|e*(*s_1ﬁz+p2)t\z ). We here introduce the position/momentum propagators G;7: G} (z, 2') = [,7 dt Hy(z,
They satisfy the following differential equations of propagators.

R No(lz| - |2']) P=-1

G} can be expressed in a closed form. Taking the Dirichlet condition at all fixed points, the expression
for the fundamental region (1/w < z < 2/ <1/T) is given by

)IO(PZ)}{IO(%S)~ o(p") T Ko(2)Io(p2)}
JKo(2) — Ko(%)Io(2) ,

3 Lo(EVK (5 K
GF (2, ) = 7L 52,72 LolL) Ko (D7) T Kol

2 To( (5)

’ﬂ\"@z €

where p = /p2,p% > 0. Iy and K are modified Bessel functions. We can express Casimir energy as,

d4
A, PE
- B = [ G2

1T
/ dz FF(p, 2), FF(p, 2) = / kG (2, 2)dE, (6)
p<AJ1/w (.UZ

where p = \/]g The momentum symbol pg indicates Euclideanization. Here we introduce the UV
cut-off parameter A in the 4D momentum space.

3. UV and IR Regularization and Evaluation of Casimir Energy The integral region of the
above equation (6) is displayed, in Fig.1, as a rectangle. In the figure, we introduce the regularization
cut-offs for the 4D-momentum integral, 4 < p < A. For simplicity, we take the following IR cutoff of 4D
momentum : pg = A - % = Ae ¢!,

P

A A

Alou f---r---
E Aoz uv

q ‘ N

/\T/@) =HT : IR w
% ; . ud |

Vo Noa — yr t f

Fig.1 Rectangle region of (z,p)
for the integration (6). The hy-
perbolic curve was proposed|3].

Fig.2 Region of (p,z) for the in-
tegration (present proposal).

Importantly, (6) shows the scaling behavior for large values of A and 1/T. From a close numerical
analysis, we have confirmed : (4A) ECaS (w,T) = (2 )4 X [—0.0250%5] The A®-divergence, (4A), shows

the notorious problem of the higher dimensional theories. We have proposed an approach to solve this
problem and given a legitimate explanation within the 5D QFT[4, 5]. See Fig.2. The IR and UV cutoffs
change along the etra axis. Their S3-radii are given by rrr(z) = 1/prr(2) and rpv(2) = 1/puv(2).
The 5D volume region bounded by Byy and Bjg is the integral region of the Casimir energy Ecgs. (
We call this regularization sphere lattice regularization because one big 4D-ball (radius r;g) are made of
many small 4D-balls (cells, radius ryyv). See Fig 12 of Ref.[6] ) The forms of ryy (z) and r1r(z) can be

determined by the minimal area principle: 3 + r r— 72,,_:1 =0,r = gr,r” = %, 1w <2z<1/T. We
have confirmed, by numerically solving the above differential eqation (Runge-Kutta), those curves that
show the flow of renormalization really appear. The results imply the boundary conditions determine the

property of the renormalization flow.

4. Weight Function and the Meaning We consider another approach which respects the minimal
area principle. Let us introduce, instead of restricting the integral region, a weight function W (p,z) in
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the (p, z)-space for the purpose of suppressing UV and IR divergences of the Casimir Energy.

d4p 1/T B ~ 3
—E&EV(%T)E/(%)i/l dz W(p,2)F¥(p,2) p=\/pZ+p?+p%+p§ :

Jw
(Ny)~! e~ (/2P * = (/2T = = Wi(p, 2), N1 = 1.711/872 elliptic suppr.
(N)~te P T/w = Wy(p, 2), Ny = QTS /82 hyperbolic suppr.1 (7)

(Ng)~ L=1/2(0° /0 +1/2°T%) = Ws(p, 2), Ng = 0.4177/87%  reciprocal suppr.1

where F¥(p, z) are defined in (6). They (except W) give, after normalizing the factor A/T, only the
log-divergence.

Bl AT = —aw? (1 — 4cln(Ajw) — 4 In(A/T)) (8)

where the numerical values of «, ¢ and ¢’ are obtained depending on the choice of the weight function[6].
This means the 5D Casimir energy is finitely obtained by the ordinary renormalization of the warp factor
w. (See the final section.)

In the previous work[5], we have presented the following idea to define the weight function W (p, 2).
In the evaluation (7), the (p, z)-integral is over the rectangle region shown in Fig.1 (with A — oo and
u — 0). Following Feynman|[7], we can replace the integral by the summation over all possible pathes

p(2).

o2

1T
- B D) = [DRC) [ dz SI9). ) 815(6),7) = o p P WG FTEE 6)

There exists the dominant path py (z) which is determined by the minimal principle : §S = 0. Dominant
Path pw(z) : % = mn(WF)/ ( M) Hence it is fixed by the weight function W(p, z). On
the other hand, there exists another mdependent path: the minimal surface curve r4(z). Minimal Surface
Curve ry(z) : 3+ 2r'r —

where

=0,=<z< 1 . It is obtained by the minimal area principle: §A = 0

/2+1

ds® = dz. (10)

dxdx? / . YT\ [r2 {1 43
g dx :/ -
Vo 1

— ) ——= adxb, A =
(Oab + (rrl)z) w222 Yab(v)dx® dz”, Jo WA

Hence 74(z2) is fixed by the induced geometry ga,(x). Here we put the requirement[5]: (4A) pw (2) = pg(2),
where p, = 1/r,. This means the following things. We require the dominant path coincides with the
minimal surface line py(z) = 1/r4(z) which is defined independently of W (p, z). W(p, z) is defined here
by the induced geometry gqs(x). In this way, we can connect the integral-measure over the 5D-space with
the geometry. We have confirmed the coincidence by the numerical method.

In order to most naturally accomplish the above requirement, we can go to a new step. Namely, we
propose to replace the 5D space integral with the weight W, (7), by the following path-integral. We newly
define the Casimir energy in the higher-dimensional theory as follows.

1/p YT |\ /2 13
— Ecas(w, T, A) / dp/ =r(T HDJ: - z)exp [ / 7“+7‘dz] , (11)
1

o  20/wiz?

where ¢ = AT/w and the limit AT~! — oo is taken. The string (surface) tension parameter 1/2a’
is introduced. (Note: Dimension of o/ is [Length]*. ) F(p,z) is defined in (6) and represents the
contribution from the field-quantization of the bulk scalar (or EM) fields. (This proposal is shown to be
valid in arXiv:1004.2573, 1010.5558.)

5. Discussion and Conclusion When ¢ and ¢’ in (8) are sufficiently small we find the renormal-
ization group function for the warp factor w as
0 Wy ,

—=—c—c . (12)

=w(l —cln(A/w) — ' In(A/T)) , B = A ) n
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No local counterterms are necessary.

Through the Casimir energy calculation, in the higher dimension, we find a way to quantize the
higher dimensional theories within the QFT framework. The quantization with respect to the fields
(except the gravitational fields G 45 (X)) is done in the standard way. After this step, the expression has
the summation over the 5D space(-time) coordinates or momenta fdz 1, dp®*. We have proposed that
this summation should be replaced by the path-integral [ [, . Dp®(z) with the area action (Hamiltonian)

A = [/det g d*z where gq is the induced metric on the 4D surface. This procedure says the 4D
momenta p® (or coordinates z%) are quantum statistical operators and the extra-coordinate z is the
inverse temperature (Euclidean time). We recall the similar situation occurs in the standard string
approach. The space-time coordinates obey some uncertainty principle[3].

Recently the dark energy (as well as the dark matter) in the universe is a hot subject. It is well-
known that the dominant candidate is the cosmological term. The cosmological constant A appears as:
(5A) Ruy — 39w R = Mg = T, S = [ d*a/=g{g- (R+ N} + [ d*a/=g{Limatter}, g = det g, -
We consider here the 3+1 dim Lorentzian space-time (u,v = 0,1,2,3). The constant A observationally

takes the value : (5B) &)\Obs ~ ﬁ ~my ~ (1073eV)4 Aops ~ gz ~ 4 x 107%(eV)?, where

Reps ~ 5 x 1032eV ! is the cosmological size (Hubble length), m, is the neutrino mass. On the other
hand, we have theoretically so far : (5C) ﬁ)\th ~ %ﬁ = My* ~ (10%%eV)*. We have the famous huge

discrepancy factor : (5D) )f‘::s ~ NDQL,NDL = MpReos ~ 6 X 1090, where Npy is here introduced as
the Dirac’s large number. If we use the present result, we can obtain a natural choice of T,w and A
as follows. By identifying T"*Ecqs = —an AT 'w*/T* with [d*z/=g(1/GN)Aob = R2,(1/GN), we

CcOos

obtain the following relation: (5E) N, = R2, 4~ = —a; WT45A The warped (AdSs) model predicts the

cos Gn
cosmological constant negative, hence we have interest only in its absolute value. We take the following

choice for A and w : (5F) A = My, ~ 10Y9GeV,w ~ W = Ij:i\{il ~m, ~1073eV.

As shown above, we have the standpoint that the cosmological constant is mainly made from the
Casimir energy. We do not yet succeed in obtaining the value a; negatively, but succeed in obtaining
the finiteness of the cosmological constant and its gross absolute value. The smallness of the value is
naturally explained by the renormalization group flow. Because we already know the warp parameter w
flows (12), the A\ops ~ 1/R2, oc w, says that the smallness of the cosmological constant comes from the
renormalization group flow for the non asymptotic-free case (¢ + ¢ < 0 in (12)).

The IR parameter 7', the normalization factor A/T in (8) and the IR cutoff 4 = AL are given

by : (5G) T = R (Npr)Y/? ~ 1072eV, & = (Npp)*5 ~ 1050, = MuyNpy"" ~ 1GeV ~ my,
where my is the nucleon mass. The degree of freedom of the universe (space-time) is given by : (5H)
A* Wt A7 6/5 74 Mpi 4

gt =77 = Npp~ ~ 10" ~ (32"

1 my
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Stable Bound Orbits around Black Rings
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Abstract

We study stable bound orbits of a free particle around a black ring. Unlike the higher-
dimensional black hole case, we find that there exist stable bound orbits in toroidal
spiral shape near the black ring axis and stable circular orbits on the axis. However,
a range of thickness parameter of the black ring solution which has the stable bound
orbits has a upper bound at a critical value. The critical thickness value is determined
analytically as the degenerate point of the innermost and outermost stable bound
orbit on the ring axis.

In higher dimensions, there is a wide variety of black hole solutions in contrast to four dimensions. In
the framework of the vacuum Einstein gravity, in addition to a generalization of the Kerr metric derived
by Myers and Perry in [2], we have the metrics of the black object solutions with various topology of event
horizon [3]. Indeed, Emparan and Reall found the five-dimensional black ring solution which has horizon
topology S? x St in [4]. The existence of the black ring solution shows multiplicity of higher-dimensional
black objects. Namely, the black hole uniqueness theorem does not hold in higher-dimensional spacetime
as the same form in the case of four-dimensional black hole.

Among many ways of investigating black objects, the study of a free particle motion is a basic approach
to understanding physical features of black objects. In recent years, free particle motion in the black ring
geometry is studied by several authors [5]. In particular, Hoskisson has investigated extensively geodesics
in the black ring geometry in [6]. He has shown that the separation of variable of the Hamilton-Jacobi
equation for geodesics does not occur in the ring coordinates.

In this report, we then will focus on existence of stable bound orbits around a black ring. It is worth
pointing out that there is no stable bound circular orbit in the higher-dimensional Schwarzschild solution.
In contrast, we show that there exist stable bound orbits far from a black ring. The difference of geometry
between a black hole and a black ring is clearly distinguishable by geodesic motions.

We begin by giving the geometry of the black ring. The metric is written in the form

o _ _FW (. aplty
v F%%Gﬁ CRé%%w> dy? dx? G(x)
o (_CW 2 dy x x) o
Tt )< Py G<y>+G<x>+F<x>d¢>’ o

with the range of the ring coordinates —1 < z < 1, —oco < y < —1, where

FE)=1+X, GO =Q0-)1+r), C=4/AxA-v)

-\ @)

and R, v, and \ are the parameters of the solution. The three parameters all have a physical interpre-
tation: R, v, and A denote the ring radius, the thickness of the ring, the rotation velocity of the ring,
respectively, where the parameter range is

R>0, 0<Ax<v<l. (3)

1Email address: igata@sci.osaka-cu.ac.jp
2Email address: ishihara@sci.osaka-cu.ac.jp
3Email address: takamori@sci.osaka-cu.ac.jp
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The parameter ) is determined by the regularity conditions at the two rotation axes of the ring in terms
of v as follows:

2v

A= 1402 )

The black ring metrics are stationary and axisymmetric, with Killing vectors 0:, 04, and 9y. The
fixed point of ¥-rotation generated by 0y, which we refer to as the ring axis, exists at y = —1, and the
fixed point of ¢-rotation generated by Oy, which we refer to as the equatorial plane, exists at © = %1.
Furthermore, this metric appears to have a singularity at y = —1/v, —1/\, —oo. Evaluation of curvature
invariants such as Rap.qR*? shows that the singularity at y = —oo is a true, curvature singularity.
The singularities in the metric components at y = —1/v and y = —1/\ are coordinate singularities,

corresponding to the event horizon and the ergo surface with S? x S! topology, respectively.
We turn to a discussion of geodesic motion in the black ring geometry. Let p,, be 5-momentum of a
particle with rest mass m, we obtain the Hamiltonian of geodesic motion as

I — 1 (x—y)? G(x)pi _ (z —y)* G(y)pz + E? (Ueff + m2ﬂ ) (5)

2| R® F(o) R F(x) E?
where
_ Fl@) CE-yPy+1)?  @-y?, Flyle-y?, . Cl-y’Fy+1)
Vet =~ Fy) ~  Gir@Fy) | a@ ¢ RoyFm v T moyr@ ¢ O

is the effective potential of the geodesic motion and E denotes —p;, and {4, ¢y, denote py/E, py/E,
respectively. The three components, p;, pg, and py, yield constants of motion since the black ring metric
admits three commutable Killing vectors.

In what follows, in order to give intuitive picture of particle motion, we use (-p coordinates which are
defined as

Vyz—1 1—2?
(=R———, p=R . (7)
r—y r—y
In the flat limit, the black ring metric reduces to the flat metric in the form ds? = —dt? + d¢2 + (2dy? +
dp? + pde?.
Let us consider stationary particle motion determined by

m? oU, oU,
ﬁ = Oa J(Cs‘mpst) = J(Cstapst) = 07 (8)

Ueﬂ”(Cstv pst) + ac 8,0

i.e., (Cst, pst) are positions of the extrema of Uyg. Restricting attention to stable bound orbits, we impose
in addition to equation (8) the requirement that

O*Uer

detH(CS,ps) > 0, Tp2

(Cs’/J's) >0, (9)

where

(10)

82U, 92U,
S5 (C, p) 2L (¢, p)
HC o) = | o0 e ) :
( p) < 884%? (C7 p) aalégff (C7 p)

so that ((s, ps) denote positions of local minima of Ueg.

In Figure 1, the domains of ((s, ps) are drawn by solving the conditions (8) and (9) numerically. The
figure shows that there are stable bound orbits on and near the ring axis of the black ring geometry while
there is no stable bound orbit on the equatorial plane. The orbits on the time slice of the Killing time
have toroidal spiral shape near the ring axis and circular shape on the ring axis, which is generated by
the two axial Killing vectors.

In figure 1, it is not clear whether outermost stable bound orbits exist in the case of v = 0.2 and how
much the value of v at which the domain of stable bound orbits disappears is. Therefore, let us discuss
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2.0 F
p/R

1.0

0.0

Figure 1: The shaded region shows the domain of stable bound orbits in the black ring spacetime for
each v. The dashed and solid semicircles show the ergo surfaces and the event horizon, respectively,
where ¥ = 0.2,0.4,0.5, and 0.6 from the small one to the large one.

innermost and outermost stable circular orbits in the black ring geometry. To simplify the discussion
here, we focus attention on the ring axis. If £, = 0, the form of U.s expanded in ¢ near the ring axis is

4 2 £2 2 + R2 2 1 3p4d 1— 3.4
Ucf‘f ~ Uaxis + VR ¢(p ) - ( il l/) R ( V) & C27 (11)
P+ R (TR (- 022 R0+ )+ (1)
where
2 £2 R2 + 2
U — 1 ARy N (" +p7) . (12)
A= 2R+ 72) | B2+ 0) + (1= )

We impose condition (8) on equation (12) and solve the equation for ¢4, then we have

’ (1= v)(R2 + ) (R? + p2)7 = v(pl + 205 R — RY)’

where we chose the positive root without loss of generality. Substituting equation (13) into equation (11),
we solve equation, detH = 0, where the equation, in this case, reduces to

U U
0p? 0¢?
where po and p; denote radius of the outermost stable circular orbit and the innermost stable circular
orbit, respectively. Figure 2 shows the plot of the solutions of equation (14) in v-p plane. The radii of
outermost stable circular orbits approach infinity as v decreases. Indeed, we can find that there are stable
circular orbits with infinite radii in the case of 0 < v < 1/3. Details of this discussion is found in the our
paper [7].
In addition, the two curves intersect at the critical value of the thickness, vy. By solving equations
OUc /0p = 0, 0?Uur /0p? = 0, 0?Uegr/0¢? = 0, with Uyg in the form of equation (11) simultaneously, we
obtain the exact expression for vy:

1/2 1/3
1 2 1/3 1/3 2 1/3 3+ V41
— (15 —24(——)  +6(43+ Va1 —le(—2—) -—g(2tVv
v 2( <3+\/41> (( )) ) (3+\/41) 2

/ 1/2

—1/2
1783 2 1/3 1/3 145 13
Tabicd EPL D VY G +6(43—|—\/41) 2 4=
2 ( (3 + \/41) ( ) 2 2

(C = OapO) =0 or (C = 07/)1) = Oa (14)

(15)
= 0.65379 - - .
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|
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0.0 0.2 04 0.6 08 10

Figure 2: (v-p plane) The top curve shows the radii of the outermost stable circular orbits, po, and the
bottom curve shows the radii of the innermost stable circular orbits, pr.

Therefore, we find that there exist stable bound orbits only in the case of v < vy on the ring axis. In
fact, the statement holds in the whole black ring geometry within the limit of accuracy of the numerical
calculations.

In this report, we have discussed stable bound orbits of a free particle in the black ring geometry. By
using the way of an effective potential of a free particle motion, we show the existence of stable bound
orbits in the black ring spacetime which is a characteristic property of the black ring geometry unlike
the black hole case. In addition, the characteristic value of the thickness parameter of the black ring
solution were found by the analysis in the ring axis. The stable bound orbits exist only in the case of
v <y~ 0.65379.
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Perturbation solutions to the lnes equation for multiple lens
planes
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Abstract

Continuing work initiated in an earlier publication (Asada, 2009, MNRAS, 394, 818),
we make a systematic attempt to determine, as a function of lens and source param-
eters, the positions of images by multi-plane gravitational lenses. By extending the
previous single-plane work, we present a method of Taylor-series expansion to solve
the multi-plane lens equation in terms of mass ratios. The advantage of this method
is that it allows a systematic iterative analysis and clarifies the dependence on lens
and source parameters. In concordance with the multi-plane lensed-image counting
theorem that the lower bound on the image number is 2V for N planes with a sin-
gle point mass on each plane, our iterative results show directly that 2% images are
always realized as the minimum number of lensed images.

1 Introduction

Gravitational lensing has become one of important subjects in modern astronomy and cosmology (e.g.,
Schneider 2006, Weinberg 2008). It has many applications as gravitational telescopes in various fields
ranging from extra-solar planets to dark matter and dark energy at cosmological scales (e.g., Refregier
2003 for a review). For instance, it is successful in detecting extra-solar planetary systems (Schneider
and Weiss 1986, Mao and Paczynski 1991, Gould and Loeb 1992, Bond et al. 2004, Beaulieu et al. 2006).
Gaudi et al. (2008) have found an analogy of the Sun-Jupiter-Saturn system through lensing. In recent,
gravitational lensing has been used to constrain modified gravity at cosmological scale (Reyes et al. 2010).

It has long been a challenging problem to express the image positions as functions of lens and source
parameters (Asada 2002, Asada, Hamana and Kasai 2003 and references therein). For this purpose, we
present a method of Taylor-series expansion to solve the multi-plane lens equation in terms of mass ratios
by extending the previous single-plane work (Asada 2009).

For N point lenses, Witt (1990) succeeded in recasting the lens equation into a single-complex-variable
polynomial. This is in an elegant form and thus has been often used in investigations of point-mass lenses.
The single-variable polynomial due to N point lenses on a single plane has the degree of N2 + 1, though
the maximum number of images is known as 5(N — 1) (Rhie 2001, 2003, Khavinson and Neumann 2006,
2008). This means that unphysical roots are included in the polynomial (for detailed discussions on the
disappearance and appearance of images near fold and cusp caustics for general lens systems, see also
Petters, Levine and Wambsganss (2001) and references therein). Following Asada (2009), we consider
the lens equation in dual complex variables, so that we can avoid inclusions of unphysical roots.

2 Basic Formulation

2.1 Multi-plane lens equation

We consider lens effects by N point masses, each of which is located at different distance D; (i =1,2,--- N)
from the observer. For this case, we prepare N lens planes and assume the thin-lens approximation for
each lens plane (Blandford, Narayan 1986, Yoshida, Nakamura, Omote 2005).

First of all, angular variables are normalised in the unit of the angular radius of the Einstein ring as

4G M, D1s
O — [ 2 Ctot 1S 1
E=V\ "&@DiDg (1)
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where we put the total mass on the first plane at Dy, G denotes the gravitational constant, ¢ means the
light speed, M;,; is defined as the total mass Zfil M; and Dy, Dg and D;g denote distances between
the observer and the first mass, between the observer and the source, and between the first mass and the
source, respectively.

Recursively one can write down the multi-plane lens equation (Blandford and Narayan 1986, Schneider
et al. 1992). In the vectorial notation, the double-plane lens equation is written as

5 _ 9_< 04

S AE
0 — V152M — 0
16 —£]?
+vada ; (2)
0—¢, 9
|9 - Vl%m - £2|

where 3, 8, £; and £ denote the positions of the source, image, first and second lens objects, respectively.
Here, v; denotes the mass ratio of each lens object, and we define dy and d- as

D1D2s
dy =
? DyDy’ ®)
DsDs
0y = . 4
2 Dy D g @)

It is convenient to use complex variables when algebraic manipulations are done. In a formalism
based on complex variables, two-dimensional vectors for the source, image and lens positions are denoted
as w = By + 18y, 2 = 0, +i0,, and ¢; = i, + ilyy, respectively. Figure 1 shows our notation for the
multi-plane lens system. Here, z is on the complex plane corresponding to the first lens object that finally
deflects light rays and thus z means the direction of a lensed image.

By employing this formalism, the double-plane lens equation is rewritten as

1-v vds
z* (1-v)dy |’ (5)

z* —e* —

Z*

where the asterisk * means the complex conjugate and we use the identity as vy + v = 1 to delete 14
and v denotes v5. Note that we choose the center of the complex coordinate as the first mass. Then, we
have ¢; = 0 and simply denote € = €5, which is the projected relative position of the second mass with
respect to the first one. The lens equation is non-analytic because it contains not only z but also z*.

2.2 Iterative solutions

The mass ratio does not exceed the unity by its definition. Therefore, we use a simple-minded method
of making expansions in terms of the mass ratios. One can delete v by noting the identity as >, v; = 1.
And the location of the first lens is chosen as the origin of the complex coordinates.

Formal solutions are expressed in Taylor series as

ZE YD D U VR ) (pe) (o) (6)

p2:0 p3:0 pN:O

where the coefficients z(,,)(ps)...(py) are independent of any v;. What we have to do is to determine each
coefficient 2(,,)(py)-.(py) iteratively.

At the zeroth order, we have always a single-plane lens equation as the limit of 1 — 1 (vy = --- =
vy — 0). We have the two roots for it. In addition, we have more roots for a multi-plane lens equation
as seeds for our iterative calculations. An algorithm for doing such things is explained in next section.
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Ist Lens Plane 2nd Lens Plane Source Plane
Im Im Im

\ Re " \ Re " \ Re

V4
<~Di1T Di2

D2
D|\<_
D2s =%
Ds

Figure 1: Notation: The source and image positions on complex planes are denoted by w and z,
respectively. Locations of N masses are denoted by ¢; for ¢ = 1,--- , N. Here, we assume the thin lens
approximation for each deflector. The several distances among the observer, source and each lens object
are also defined.

3 Image Positions

3.1 Double lens planes
At zeroth order (vo — 0), the double-plane lens equation becomes simply

1
w:Z(O)_zE*)’ (7)
0

which is rewritten as
2(0)%(0) — 1 = wz(y)- (8)

The L.H.S. of the last equation is purely real so that the R.H.S. must be real. Unless w = 0, therefore,
one can put zy) = Aw by introducing a certain real number A. By substituting zy) = Aw into Eq. (8),
one obtains a quadratic equation for A as

ww* A? —ww*A —1=0. (9)

1 4
4 = <1i 1+ )
2 ww*

= Ai, (10)

This is solved as

which gives 2y as A+w.

In the particular case of w = 0, Eq. (8) becomes |z()| = 1, which is nothing but the Einstein ring.
In the following, we assume a general case of w # 0.

We must consider z() = Arw, separately,

Table 1 shows a numerical example of image positions obtained iteratively and their convergence.

2(1) tells us an order-of-magnitude estimate of the effect by a separation between the two lens planes.
Such a depth effect is characterised by d2, which enters the iterative expressions through z; and z_.
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Table 1: Example of image positions by the double-plane lens. We choose v1 = 9/10, v = 1/10, € = 3/2,
w =2, D1/Dg = 2/5, Da/Dg = 3/5. Iterative results (denoted as ‘Oth’. ‘Ist’, ‘2nd’ and ‘3rd’) show
a good convergence for the value (denoted as ‘Num’) that is obtained by numerically solving the lens
equation.

Images 1 2 3 4

Oth. 2414213 -0.414213 1.780776 -0.280776
1st. 2434312 -0.390217 1.731605 -0.276050
2nd. 2.430981 -0.388713 1.732327 -0.275043
3rd. 2.431474 -0.388781 1.732190 -0.274861

Num 2431396 -0.388766 1.73220  -0.274833

4 Conclusion

We made a systematic attempt to determine, as a function of lens and source parameters, the positions of
images by multi-plane gravitational lenses (Izumi, Asada 2010). We presented a method of Taylor-series
expansion to solve the multi-plane lens equation in terms of mass ratios.

In concordance with the multi-plane lensed-image counting theorem that the lower bound on the
image number is 2V for N planes with a single point mass on each plane, our iterative results show
directly that 2V images are always realized as the minimum number of lensed images.

It is left as a future work to compare the present result with state-of-art numerical simulations.
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Abstract

A Lifshitz scalar with the dynamical critical exponent z =3 obtains scale-invariant,
super-horizon field fluctuations without the need of an inflationary era. Since this
mechanism is due to the special scaling of the Lifshitz scalar and persists in the
presence of unsuppressed self-couplings, the resulting fluctuation spectrum can devi-
ate from a Gaussian distribution. We study the non-Gaussian nature of the Lifshitz
scalar’s intrinsic field fluctuations, and show that primordial curvature perturba-
tions sourced from such field fluctuations can have large non-Gaussianity of order
fxi = O(100), which will be detected by upcoming CMB observations. We compute
the bispectrum and trispectrum of the fluctuations, and discuss their configurations
in momentum space. In particular, the bispectrum is found to take various shapes,
including the local, equilateral, and orthogonal shapes. Intriguingly, all integrals in
the in-in formalism can be performed analytically.

1 introduction

Horava-Lifshitz gravity [1] is attracting much attention as one of candidates for the theory of quantum
gravity because of its power-counting renormalizability, which is realized by the Lifshitz scaling

T — b, t — b°t, (1)

with the dynamical critical exponent z > 3 in the ultraviolet (UV). There are many attempts to investigate
properties and implications of this theory [2, 3].

It is natural to suppose that not only gravitational fields but also other fields exhibit the same Lifshitz
scaling in the UV. Even if they classically have different scalings, quantum corrections should render
them to have the same scaling. A Lifshitz scalar with z = 3 can produce the primordial scale-invariant
perturbations even without inflation [2]. It is noteworthy that this value of z is the minimal value for
which gravity is power-counting renormalizable.

In order to discern this production mechanism of the primordial perturbation from others, we need
to investigate distinct features in observables such as the cosmic microwave background. In this respect,
non-Gaussianity has been considered as one of the promising approaches to distinguish production mech-
anisms. For this reason, there are on-going efforts to detect or constrain non-Gaussian nature of the
primordial perturbation [4]. Towards identification of the production mechanism by future observations,
theoretical analyses of non-Gaussianity in various cosmological scenarios have been performed [5-7].

We focus on primordial non-Gaussianity from a Lifshitz scalar and calculate its bispectrum and
trispectrum. With the dynamical critical exponent z = 3, the scaling dimension of the Lifshitz scalar is
zero and, thus, nonlinear terms in the action are unsuppressed unless forbidden by symmetry or driven to
small values by renormalization. It is those nonlinear terms that we expect to produce non-Gaussianity. It
turns out that the produced bispectrum can be large enough to be observed in future observations. We find
three independent cubic terms dominant in the UV, each of which gives different shape dependence of the
bispectrum. Roughly speaking, they correspond to local, equilateral and orthogonal shapes, respectively.

This presentation is based on our paper [3].

1Email address: keisuke.izumi@ipmu.jp
2Email address: takeshi.kobayashi@ipmu.jp
3Email address:shinji.mukohyama@ipmu.jp
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2 Order estimate for fy,

We shall present order estimates for the bispectrum of curvature perturbations and the corresponding
nonlinear parameter fny,.

We assume that perturbations of the Lifshitz scalar are almost linearly transformed to curvature
perturbations. In our calculation of the bispectrum and trispectrum of curvature perturbations, we thus
take into account the linear term only. In particular,

(€)= u2(90),  (CCO) = > (90) . (2)

This treatment is justified by the fact that perturbations of the Lifshitz scalar have large non-Gaussianity.

We review the mechanism for generation of scale-invariant cosmological perturbations from a Lifshitz
scalar [2]. Let us consider the Lifshitz scalar ¢, specialized to the case with z = 3, in a flat FRW
background

ds® = —dt + a(t)*8;dz"da? (3)

to investigate generation of cosmological perturbations. The action for the perturbation ¢ is then written
as

S, = % / dtd*z a(t)* [(9:0)” + 606 + O(6%)] , @
where
0= 1 A S _ary G (5)
T M T M2at)i s T a(t)? ’

M and m are mass scales and s and ¢? are dimensionless constants. In the UV, the quadratic action for

¢ is simply
1

S, — %/dtdgﬂ? a(t)3 {(6t¢)2 + ]\M(lf)Gdegd)} . (6)

The scaling dimension of ¢ is zero,
¢ — 00, (7)

and its power-spectrum should be scale-invariant. Since ¢ is scale-invariant and there is only one scale
M in the UV quadratic action (6), we expect that the power-spectrum should be roughly

(6¢) ~ M. (8)

We shall adopt the so called in-in formalism [5, 9] to calculate the bispectrum and trispectrum of the
Lifshitz scalar. The leading contribution to the bispectrum is given by the following formula (see the

next section for details)
(600) = i < [ / dt Hs, ¢¢¢} > , (9)

where Hj represents cubic terms in the interaction Hamiltonian. Dominant terms in [ d¢H; are marginal
ones, i.e. those terms whose scaling dimensions are zero. Actually, there are three (and only three)
independent marginal cubic operators in the action in the UV:

1
Sy = /dtd% Val)? {1 9> A%p + aa(A%9)(0:i9)* + az(Ag)°}, (10)
where «; are dimensionless parameters. (The fist term can be forbidden by the shift symmetry if one

likes.) Evidently, validity of perturbative expansion (in the in-in formalism) requires «; be smaller than
unity. The corresponding cubic operators in the interaction Hamiltonian are

Hy(t) = — / P ﬁ [on A% + as(A26)(9:0)% + a3 (Ad)° ). (11)
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Each of these dominant cubic terms includes six spatial derivatives and gives zero scaling dimension to
J dtH;z. Combining this with the fact that the scaling dimension of ¢ is zero, we conclude that the
bispectrum of ¢ given by (9) should be scale-independent, and thus

(pp0) ~ aM?, (12)

where a stands for the most dominant one among «; (i = 1,2, 3).
Roughly speaking, the non-linear parameter fyr, is defined so that

(¢¢E)
~ . 13
ST "
Thus, combining this with (2), (8) and (12), we obtain
—1
L~ a (Aj) ~ 3 x 10%a. (14)

Here, we have used the COBE normalization [1], 7341/2 ~4.9x 1075,

As already stated, validity of perturbative expansion requires that the dimensionless parameters «; be
smaller than unity. We find from the order estimate (14) that fxr, can be large, e.g. as large as O(100),
even if ; are reasonably small.

3 Conclusions

We have studied non-Gaussianity in the intrinsic fluctuations of a Lifshitz scalar which follows an
anisotropic scaling with z = 3. Our work is based on [2], which pointed out that its special disper-
sion relation in the UV can lead to generation of super-horizon field perturbations. Since the scaling
dimension of a Lifshitz scalar with z = 3 is zero, the resulting field perturbations become scale-invariant
whether or not the scalar’s self-couplings are small. This leads to our main point that curvature pertur-
bations generated from such field fluctuations necessarily leave large non-Gaussianity in the sky, unless
the field’s self-couplings are forbidden by some symmetry, or the field exhibits some sort of asymptotic
freedom. This is to be contrasted with perturbations generated through cosmic inflation, where largely
non-Gaussian intrinsic fluctuations are in most cases incompatible with scale-invariance.

The Lifshitz scalar’s self-coupling terms containing spatial derivatives produce non-Gaussianities with
various configurations in momentum space. In particular, the bispectrum of the field fluctuations includes
shapes which are similar to that of the local, equilateral, and orthogonal forms. (However, we emphasize
that the local, equilateral, and orthogonal shapes do not form a complete basis set for the bispectrum
obtained. We also note that the results of the effective field theory approach in [10] do not apply to our
case, where Lorentz symmetry is explicitly broken, and non-Gaussianity is sourced by marginal terms in
the action.) Upon computing the correlation functions, we have carried out expansions in terms of the
interaction Hamiltonian. Within the domain of applicability of such perturbative expansion, i.e. the self-
couplings less than unity, we have seen that the Lifshitz scalar’s field fluctuations can lead to significant
non-Gaussianity in the primordial curvature perturbations. In particular, when curvature perturbations
are sourced linearly from the field fluctuations, their bispectrum saturates the current observational limit
for the orthogonal and equilateral forms, as the self-couplings as and ag in (10) approach unity. Since
naively there is no reason for such self-couplings to be suppressed, we can expect large non-Gaussianity
to be produced from Lifshitz scalar fluctuations, which may be detected by upcoming CMB observations.
On the other hand, for the local-type bispectrum, observational constraints require 1 to be as small as
0O(1072—1073) (the level of tuning depends on a1 ’s sign). However, such self-couplings sourcing local-type
non-Gaussianity can be forbidden by a shift symmetry.

The field fluctuations generated in the mechanism of [2] obtain a scale-invariant spectrum. However,
when one takes into account the renormalization-group flow of the parameters of the theory (e.g. M
in (6)), the spectrum may become tilted. A time-dependent background value ®(t) may also give rise
to similar effects. How strong the tilt becomes, as well as the scale-dependence of the non-Gaussianity,
remains to be understood. While we have studied fluctuations of scalar fields, the scalar graviton which
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can show up in Hofava-Lifshitz gravity may also obtain fluctuations in a similar manner. It would be
interesting to investigate the possibility that such scalar graviton generates the primordial curvature
perturbations. (Ref. [11] works in this direction. See [12] for some issues related to the scalar graviton,
including non-perturbative continuity of the limit in which general relativity is supposed to be recovered.
See also [13] for a recent attempt to eliminate the scalar graviton from the theory.) Furthermore, when
considering cosmic inflation in Hotava-Lifshitz gravity, due to the field fluctuations freezing-out at the
time of sound horizon (M2?H)~'/3 exit, the well-known relations in slow-roll inflation between various
cosmological observables and the slow-roll parameters are expected to be modified. Aspects of cosmic
inflation in Horava-Lifshitz gravity are also worthy of study in details.
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Abstract

Time evolution of the @) ball in thermal logarithmic potential is studied using lattice
simulations. We confirm that the @ ball transforms from the thick-wall type to
the thin-wall type when the thermal logarithmic term in the potential is overcome
by a mass term with a positive coefficient of radiative corrections as the temperature
decreases due to the cosmic expansion. We also discuss the effects of this phenomenon
on the detectability of gravitational waves from the @Q-ball formation.

1 Introduction

A @ ball is a non-topological soliton, which consists of scalar fields that carry global U(1) charge Q.
Its existence and stability are guaranteed by finite @) and it is often generated in the Affleck-Dine (AD)
mechanism for baryogenesis. Recently, it is claimed that gravitational waves (GWs) are generated at the
Q-ball formation [3], which may be detected by the next generation gravitational wave detectors such as
DECIGO and BBO. However, the detailed study of the subsequent evolution and the decay of Q balls
revealed it to be difficult even by those next generation gravitational wave detectors [2].

The properties of the AD mechanism and the @ ball depend on the supersymmetry (SUSY) breaking
mechanism, because the effective potential of the relevant scalar field (AD field) quite differs for the
different mediation mechanism. Consequently, there are various types of @ balls. Among them, the
thermal log type @ ball, whose effective potential is dominated by thermal logarithmic term, possesses
an interesting feature. As the universe expands, the cosmic temperature decreases and so does the
thermal logarithmic potential. Thus, the properties of thermal log type @ ball will change with time.
Moreover, zero-temperature potential eventually overcomes the thermal potential and then the type of
Q@ ball changes [2]. If the zero-temperature potential itself allows a @-ball solution, the type of @) ball
changes to the corresponding type.

It may then be naively expected that the @ balls would be destroyed if the zero-temperature potential
alone does not allow a @-ball solution. Recently, however, it was shown that even if the zero-temperature
potential alone does not allow a @Q-ball solution, the total potential (the thermal logarithmic term and
a mass term with a positive radiative correction) does allow a @-ball solution, which would result in the
transformation from the thermal log type of the @ ball into the thin-wall type [4]. Since the scenario
would be changed in this case, it is important to investigate whether the field configuration dynamically
transforms from one type of the @ ball to the other.

Here, we perform numerical simulations on the lattice to see the time evolution of the configuration of
the AD field in the potential with a thermal logarithmic term and a mass term with a positive coefficient
for radiative corrections, where the latter term alone does not allow a @-ball solution. We confirm that
the thermal log type @ ball transforms to the thin-wall type @ ball found in Ref. [4]. We also find
that there is a tiny parameter region where the GWs from @-ball formation may be detected by future
detectors such as DECIGO or BBO only in the case of @ balls in thermal potential [2].

IThis presentation is based on [1, 2].
?Email address: kamada@resceu.s.u-tokyo.ac.jp
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2 Properties of () balls

We are interested in the @-ball properties in the potential with both a thermal logarithmic term and a
mass term with a positive coefficient for one-loop radiative correction,

Viot = Vihermal + VgraV7 (1)
. 2|92, for |®| <« T )
thermal T4 1og (|¢>| ) ’ for |(I)| > T ( )

2
Viray = m3|®[? [1+Klog ('AL ﬂ , (3)

where @ is the complex AD field and T is the cosmic temperature. The upper term in Vipermal represents
the thermal mass from the thermal plasma and the lower one represents the two-loop finite temperature
effects coming from the running of the gauge coupling ¢(7') which depends on the AD field value. Note
that even before the reheating from the inflaton decay has not completed, there exists thermal plasma
from the partial inflaton decay as a subdominant component of the universe. Vg ay denotes a soft mass
term due to gravity-mediated SUSY breaking, where mg ~ O(TeV). The second term in the bracket is the
one-loop radiative correction, and A is the renormalization scale. Here we assume K > 0 (K ~ 0.01—0.1)
so that Vgrav alone does not allow a @-ball solution.

At larger temperature when the field starts the oscillation, the potential is dominated by the thermal
logarithmic term Vipermal, and the thermal log type @ balls form [4]. The properties of this type @ ball
are similar to those of the gauge-mediation type @ ball [4],

¢o(T) ~TQ'*, w(T) ~V2rTQ™ ", E(T) ~ 47rfTQg/4 R(T) ~ ?/15/; (4)

where @ is the charge stored in a @ ball, ¢g = v/2|®¢| is the AD field value at the center of @ ball, w is
the angular velocity of the AD field, F is the energy stored in a @ ball, and R is its radius. Since the
charge @ is the conserved quantity, whose value is determined at the @-ball formation, the parameters
of @ balls change as the temperature decreases according to Eq. (4).

As the temperature decreases further, Vg, will eventually dominate the potential at ¢o. In our
previous study in Ref. [2], we assumed that @ balls are destroyed and turn into almost homogeneous AD
field quickly at this moment, because the potential (3) alone does not allow a @-ball solution. Recently,
however, one of the present authors pointed out that a @-ball solution does exist even in this situation
[4]. Although the soft mass term overcomes the thermal logarithmic term at large field values, the latter
will dominate the potential at smaller field values. As a result, in the light of charge conservation, a
thin-wall type @-ball solution exists. We shall call it the thermal thin-wall type @ ball. The properties
of the @ ball are written as

T2
m¢K1/2’

¢o(T) ~ C(T/m¢>K1/2) caT?

KO\ M3
onallime  E~amQ. R~ (Z92) )
where ¢(T/myK'/?) and «(T) are slowly increasing functions of 7' and they are of order of unity at
the temperature we are interested in. For example, ¢(10) ~ 2.5,¢(10%) ~ 3.4,¢(10%) ~ 4.1,¢(10%) ~
4.6,¢(10°%) ~ 5.1,¢(105) ~ 5.5,¢(107) ~ 6.0 and so on. «(T) is expressed as

24 22
9 cT 1 c“T
=1+K|1 — =1 —
@ + <Og<2m2KA2>+c2 Og(QmiK))’ (6)

and its temperature dependence is stronger than that of c.

It is true that such a @Q-ball solution exists but not clear that the field configuration follows from the
thermal log type @ ball to the thermal thin-wall one. In order to tell how the configuration of the AD
field evolves, we perform numerical studies on the lattices.
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3 Time evolution and type transformation of the () ball

Here, we investigate the time evolution of the @ ball in the potential of the thermal logarithmic term and
the soft mass term with positive radiative corrections by using lattice simulations. Since we are primarily
interested in the transformation of a @ ball, here we limit ourselves to a single @ ball assuming the
spherical symmetry of the field configuration, and solve the 1-dimensional partial differential equations
in the radial direction by using the staggered leapfrog method with second order accuracy both in time
and in space.

The time evolution of the field configuration is shown in Fig. 1 for Q ~ 1.0 x 10°. The axes are
rescaled with respect to the scale factor a so that the rescaled radius is almost constant for the thick-wall
type. We can see that the configuration of the @ ball changes from the thick-wall to the thin-wall types.
This coincides with the feature of the transformation of the @-ball solution found in Ref. [4].

45 T

w

Field value (a

O L L \ L S L
0 3000 6000 9000 12000 15000

a

Figure 1: Configurations of the AD field for Q ~ 1.0 x 10° at the time of T = T\, T\ /2, T, /4,T./8, T /16,
and T, /32 from the top to the bottom, respectively. Q-ball configuration changes from the thick-wall to
the thin-wall types.

The temperature dependence of the field value at the Q-ball center and the Q-ball radius with various
charges of the @ ball are shown in Fig. 2. Here blue crosses, red x’s, and green stars represent numerical
results for Q ~ 2.5 x 10%,1.0 x 10, and 3.0 x 10°, respectively. Corresponding lines are the analytic
estimates (4) and (5) up to numerical coefficients for each case (blue: @ ~ 2.5 x 108, red: Q ~ 1.0 x 10,
green: @ ~ 3.0 x 10°): At high temperature, ¢ x TQ'/*, R oc T'Q'/*,w o TQ~'/* for the thermal log
type @ ball, while, at low temperature, ¢g o< T2, R oc T=*/3Q'/? w = const. for the thermal thin-wall
type @ ball. We show the analytical estimates of the field value and the angular velocity in Eq. (5) with
purple line in Fig. 2(a), since they are independent of charge (). We can see that the analytical estimates
(4) and (5) are well reproduced by the lattice simulations. One exception is the angular velocity at low
temperature. This could be understood by the factor a(T') in Eq. (5), which decreases as T' gets lower.
We can therefore conclude that the @ ball really transforms from the thermal log type to the thermal
thin-wall type in the potential considered here.

4 Detectability of gravitational waves

Now we see the detectability of the GWs from Q-ball formation. The present density parameter Q%
and frequency fy of the GWs are given by

4 H 2
et (3 ()
fo=fr (Zi) ; ®

where the subscript f and 0 represents the parameters are evaluated at the time of @-ball formation
and the present. They strongly depend on the cosmic history after @)-ball formation. In particular, the
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Figure 2: Temperature dependence of ) ball properties. Blue crosses, red x’s, and green stars represent
the numerical results for Q ~ 2.5 x 10%,1.0 x 10°, and 3.0 x 10%, respectively. Lines correspond to
analytical estimates (4) and (5) up to numerical coefficients.

existence of @-ball dominated era severely constrains the detectability of GWs, which is determined by
the SUSY breaking mechanism, its model parameters and initial conditions. Anyway, we can calculate
them by evaluating the Hubble parameter when @) balls dominate the energy density of the Universe and
they decay.

As aresult, we can find that in the gauge-mediated SUSY-breaking model, if the reheating temperature
is Tp ~ 10" GeV and the initial field value of the AD field is ¢osc ~ Mg with mgz/, ~ 10GeV and
Mp ~ 10* GeV, the present density parameter of the GWs from the @Q-ball formation can be as large
as Q% =~ 10716 and their frequency is fo ~ 10 Hz [1, 2]. Thus, it is difficult but not impossible to
detect them by next-generation gravitational detectors like DECIGO or BBO, but the parameter region
for detectable GWs is very small. Moreover, we can find that it is almost impossible to detect GWs
from @-ball formation in other cases. In other cases when the thermal logarithmic potential drives the
@-ball formation, though the present amounts of the GWs from the @-ball formation can be as large as
Q2w =~ 1078, the frequencies of such GWs are turned out to be very high. Thus, the identification of
such GWs may determine the decay rate of inflaton or the initial condition of the AD mechanism.

We would like to comment on baryogenesis. Generally speaking, including the present case, the
amount of produced baryon asymmetry is typically large for the case that AD condensates or @-balls
(almost) dominate the energy density of the Universe so that the present radiations and baryons are
attributed to their decays. This is simply because the number densities of radiations and baryons are of
the same order unless the (C'P-violating) A-terms are suppressed by some symmetry. Thus, it is difficult
to explain GWs and baryogenesis simultaneously. Once the GWs from the @-ball formation are detected,
we have the following two possibilities. In the case that such Q-balls are responsible for the present
baryon asymmetry, the A-terms are suppressed by symmetry reason. The second option is that @-balls
are irrelevant for baryogenesis, which is realized for the AD fields with B — L = 0.
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Abstract
We consider a Weyl invariant extension of Dirac-Born-Infeld type gravity. An appro-
priate choice of the metric hides the scalar degree of freedom which is required by the
local scale invariance of the action at the first sight, and then a vector field acquires
mass. Moreover, nonminimal couplings of the vector field and curvatures are induced,
which may be suitable to the vector inflation scenario.

1 Introduction

The cosmological inflation is proposed as some resolutions for the important cosmological problems, e.g.
the flatness, horizon and monopole problems. Most of successful models are based on models of classical
scalar fields, although we have not known the reason of the existence of such fields in the theory of
elementary particle physics. Another inflation scenario, which is called the vector inflation, is proposed
by Ford [1] and some authors [2—1]. In such recent models [3, 4], the massive vector field couples non-
minimally to gravity. The Lagrangian density in the model [3] is expressed as

R 1 1 R
=v-g|——-F, F" — = 24,40 1
£ It6r 4" 2<m 6>”}’ (1)
where F,, = 0,A, — 0, A, and the Newton constant is unity (G = 1). If we assume the spatially flat
universe with the metric

ds? = —dt* + a®(t)dx?, (2)

and A; (i = 1,2,3) depends only on t and Ag = 0, then the equation of motion of the vector field A;
becomes the following form

where B; = A;/a. Eq. (3) is very similar to the one for a homogeneous scalar field in the Friedmann-
Lemaitre-Robertson-Walker universe. Moreover, the energy density is expressed as ~ BZQ7 which is also
similar to the one for the scalar field. Thus the approximately isotropic ansatz can be justified.

We have studied the vector inflation scenario [5] with Weyl invariance [6]. We found that the choice
of the frame yields the mass of the Weyl gauge field, but the nonminimal coupling term is lost [5]. We
need to generalize further the gravitation theory.

Dirac-Born-Infeld-Einstein (DBIE) theory was considered by Deser and Gibbons [7] and have been

studied by many authors [8]. The Lagrangian density of DBIE theory takes the following type

el 2

where R, is the Ricci tensor and the « is a constant. Originally, electromagnetism of the Dirac-Born-
Infeld (DBI) type has been considered as a candidate of the nonsingular theory of electric fields. Therefore
the DBIE theory as the highly-nonlinear theory is also expected as a theory of gravity suffered from no
argument of singularity.

We take notice of the nonlinearity in the DBIE theory and expect that the Weyl invariant DBIE
theory realizes the suitable scenario of the cosmological inflation.

1Email address: kan@yamaguchi-jc.ac.jp
2Email address: maki@jwcpe.ac.jp
3Email address: shiraish@yamaguchi-u.ac.jp
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2 Weyl’s gauge gravity theory

In this section, we briefly review the Weyl’s gauge transformation to construct the gauge invariant La-
grangian. Consider the transformation of metric in D dimensions

Juv — g;“, = €2A(1)guu ) (5)
where A(z) is an arbitrary function of the coordinates z*. We can define the field with weight d = —£-2
which transforms as b

- =e 2 ADg, (6)

In order to construct the locally invariant theory, we consider the covariant derivative of the scalar field

- D -2
0@ = 0,® — == 4,9, (7)

where A, is a Weyl’s gauge invariant vector field. Under the Weyl gauge field transformation
A, — A:L =A,—0.,A(x), (8)
we obtain the transformation of the covariant derivative of the scalar field as

~ D

8, — e T ANDG . (9)

The modified Christoffel symbol and the modified curvature are given as follows

~ 1 ~ ~ ~
Fﬁu = 59” (5ugau + v Guo — aagw) ) (10)
RNVPU [ga A] = apf"tjo - aﬂf"tjp + f‘ipf‘l)/\cr - fl)tofzép ’ (11)

where @LQW = 0,90p + 24,95, The Ricci curvature is generalized as

Rud [9, A] = Ruuuo[g7 A}
= Ryo+F,e—[(D—2)Vod, + 6o VA" + (D - 2) (A A, — AxAgus) . (12)

where the field strength of the vector field is given by F,, = 9,4, — 0, A, , which is gauge invariant
as I, — F ;/w = F,, . Note that under the Weyl’s gauge transformation, The Ricci curvature (12) is
invariant

Ryolg. Al = Ruolg', A'] = Ryelg, Al (13)

3 Weyl invariant Dirac-Born-Infeld gravity

We can use the Weyl invariant Ricci tensor R;w in the DBI gravity. We should also use a combination
pr2 guv instead of the metric tensor, because it is not Weyl invariant. Note that the scalar ® compensates
the dimensionality of the metric. The use of RW and -2 gy in the DBI type action leads to the theory
of gravity, a vector field, and unexpectedly, a scalar field.

Now we introduce the following independently Weyl invariant tensors into the determinant in the DBI
theory

(pﬁgVU b Rfﬂ[‘g?A} b R[g? A]gVO' b) FVO’ ) Qizév@éo'@v
D 2PMONDD, gLy, Vo(P19,D) 4V, (2719,®), VA®19,P)g., (14)

where

_ D-—2
RS 9, Al = Ryo — T(VUAV + Vo Ao) + guo VA | + (D —2) (A As — AAYgus) | (15)



N. Kan, T. Maki, and K. Shiraishi 203

nd
’ Rlg, Al = ¢"°R,s[9,A] = R—2(D — 1)V, A" — (D — 1)(D — 2) A, A" . (16)

We choose those as symmetric tensors are not traceless.*

model is described by the Lagrangian density

L=—/—det M, + (1 — A/ —det(®72g,,), (17)

Using the Weyl invariant tensors (14), our

with
M/u/ = (I)ﬁgul/ - aléiu[gvA] - a2R[ga A]guu + /BF/M/
710 729,29,® + 12D 2g 05D, Py,

5 |Va(@710,0) + V, (2718,0)| — 11 X7V (@70, ®)gyu (18)

where a1, a9, B8, 71, V2, V3, 74 and X are dimensionless constants.” Furthermore the Lagrangian density
can be expressed by the new metric conformally related to the original one and new variables. If we
choose

N — 4
Juv = f 2®D72guua (19)

where a mass scale f was introduced, and

S 2
AP‘ = A# — mau 1n¢, (20)

we can rewrite the Lagrangian density (17) as

L=—y/—det M, + (1 -\ fPy/=3, (21)

where g = det g, and

Myu = f2§hw _alR}U/ - a2RguV +ﬂﬁ;w +71A#Au +7§gpaApAagﬂu +'Yé (ﬁ,uAu + @VAA}L) +’Vz/1 ﬁpAp g,uu ’

(22)
in which 44, +4, 74 and v} are dimensionless constants rewritten by the set of the former, a1, asg, 71,
v2, v3 and 4. Note that the scalar field ®(z) is hidden away in the Lagrangian (21). The expansion
of the determinant in (21) yields the non-minimal coupling term to gravity of the vector field and the
induced curvature term as well as the ordinary scalar curvature and the gauge sector.® Therefore (21) is
the promising Lagrangian for describing the vector inflation.

4 Cosmology of Weyl’s gauge gravity

We consider cosmological aspect of the theory described by the Lagrangian (21). We assume the four
dimensional flat universe and take the isotropic metric

ds® = —dt* + a*(t)dx> . (23)

We also assume that only A;(t) is homogeneously evolving, and As = A3 = Ay = 0. By these ansatze,
we look for the condition that the vector field behaves much like a scalar field at classical homogeneous
level. Substituting the ansatze into (22), and after some calculation, we can extract the part of the
Lagrangian which includes bilinear and higher-order of the vector field A;. If we choose the parameters

4Judging from the number of fields and derivatives, the term CDfﬁgA“F,»\Fgu is allowed in the same order. But
this term is different from others in the point that it includes two kinds of fields except for the metric. We discarded this
marginally possible term here.

5 If we demand that the terms with lowest derivatives in the expansion of the Weyl invariant Lagrangian density (17)
look like the one of scalar-tensor theory, we must choose as a1 + 4az2 > 0 and 1 + 4y2 + 4v3 + 8vy4 > 0, for D = 4.

6The expansion of the determinant is known for various dimensions.
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as 3% = % (5an] + 12027] + 120174 + 480274) and (v4)? = —3ai1v{, we find that the vector-field part
becomes )
1 . f 1
a* |5(B8* = 98) B = 5 (v1 +498) BY — ¢ (=1 + 40175+ 8957 Bi 4+ | (24)
where B} = %, which acts as a scalar field.
We can tune the parameters to obtain the model of the realistic inflation. If ag =71 = y2 =773 =v4 =
0, or these parameters take small values in comparison with a4, there is only one parameter «; in the
model. Unfortunately, the effective mass for By may be large in this simple model. Another tuning of the
parameters is also possible. If we choose appropriate parameters, the chaotic inflation [9] is practicable
via the self-interaction of the scalar field Bj.

5 Summary and Outlook

We investigated Weyl invariant Dirac-Born-Infeld gravity. The choice of an appropriate frame breaks
the Weyl invariance, and the vector field acquires mass as well as non-minimal coupling to gravity, and
curvatures are induced. Therefore the Weyl invariant DBIE theory is expected to be a candidate for
a model which causes an inflationary universe. We also examined slow development of the massive
vector field and indicated that several scenarios of the inflation are possible by tuning of parameters
appropriately.

Future works are in order. Numerical calculation and large simulation will be needed to understand
the minute meaning of the Weyl invariant DBI gravity, because of the local inhomogenuity of the direction
as well as the strength of vector fields is important for thorough understanding.” The inflation along
with a fast evolution, known as the DBI inflation, is also interesting. The similar scenario is feasible in
our model, though the higher-derivatives make the detailed analysis difficult. The higher-dimensional
cosmology in the Weyl invariant DBI gravity is worth studying because of its rich content. Incidentally,
DBI gravity in three dimensions is eagerly studied, which is related to new massive gravity theory. We
think that the Weyl invariant extension is also of much interest.
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Abstract

We construct an exact solution for the spherical gravitational collapse in a single co-
ordinate patch. To describe the dynamics of collapse, we use a generalized form of the
Painlevé-Gullstrand coordinates in the Schwarzschild spacetime. The time coordinate
of the form is the proper time of a free-falling observer so that we can describe the
collapsing star not only outside but also inside the event horizon in a single coordinate
patch. We show the both solutions corresponding to the gravitational collapse from
infinity and from a finite radius.

1 Introduction

Numerous studies have been done on the properties of the black hole and the formation by gravitational
collapse. The standard method of describing a spherical contraction of a uniformly distributed dust star
[, 2] is making a physically reasonable junction of the two different spacetimes corresponding to the
interior and exterior regions of the collapsing body. The interior and exterior solutions are given by the
FLRW metric and the Schwarzschild metric, respectively, and described in different coordinate systems.
Although it is nothing wrong to construct solutions in such a manner, one cannot describe the dynamics
of the collapsing star in terms of the coordinates of the observer outside the event horizon. The main
purpose of this paper is to describe the both regions inside and outside the horizon by a single coordinate
system in a physical way.

The Painlevé-Gullstrand coordinates of the Schwarzschild solution [3, 4] is, in fact, the key to a simple
physical picture of black hole and gravitational collapse. Unlike the Schwarzschild form, the Painlevé-
Gullstrand metric tensor has an off-diagonal element so that it is regular at the Schwarzschild radius and
has a singularity only at the origin of the spherical coordinates. In other words, the surfaces of constant-
time traverse the event horizon to reach the singularity. Therefore, the Painlevé-Gullstrand coordinates
are convenient for exploring the geometry of collapsing star and black hole both inside and outside the
horizon altogether by a single coordinate patch. This feature results from the fact that this coordinate
system adopts a time coordinate as measured by an observer who is at rest at infinity and freely falls
straightforward to the origin. We note that the physics of the collapsing matter is best described by
its proper time, i.e., the Painlevé-Gullstrand time coordinate. In the present work, we generalize the
Painlevé-Gullstrand metric to incorporate gravitational collapse.

2 Painlevé-Gullstrand coordinates

In this section, we derive generalized Painlevé-Gullstrand coordinates (tp, 7,6, ¢). We say here “gener-
alized” in the sense that we introduce free-falling observers who start not only from infinity but also
from other general points. The following mathematical derivation of the generalized Painlevé-Gullstrand
coordinates is close to the derivation in [5], but the physical situation and the time coordinate are different.

The time coordinate ¢}, of this family is the proper time 7 of an observer who freely falls radially from
rest. Let us start with the Schwarzschild metric given in the standard form

ds® = — f(r)dt,® + [~ (r)dr® + r® (d6° + sin® 0d6?) , (1)

1Email address: kanai@th.phys.titech.ac.jp
2Email address: msiino@th.phys.titech.ac.jp
3Email address: ahosoya@th.phys.titech.ac.jp
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where f(r) =1 —2M/r. In the Schwarzschild spacetime, the normalized four-velocity us" of an observer
at the spacetime coordinates x¢#(7) is defined by us# = dasH/dr = &s* with 7 being the proper time,

and can be explicitly written as ugh = (t's, 7", 9, ¢>> = (€/f, —/e2—f,0, 0), where ¢ is a constant of
motion. Since we choose the Painlevé-Gullstrand time coordinate ¢, as the proper time of the free-falling

observer, the geodesic is orthogonal to the surfaces f, = constant and the geodesic tangent vector us,, is
equal to the gradient of ¢,: ug, = —0t,(xs")/0xs", that is to say,

dt, = edt, + V€2ffd1". (2)

Consequently, the Painlevé-Gullstrand metric takes the form

1 2
ds? = —dt,” + 5 (dr+ v(r)dty)* + r2d0?, (3)
where v(r) = /€2 — f(r) is radially free-falling velocity. The observer in geodesic motion have the
normalized four-velocity
upt = (g, 7, 0, 6) = (1, =0, 0,0). (4)
Note that the metric form (3) is different from that given by Martel and Poisson [5], for our time

coordinate is € times larger than theirs. This is because our metric is characterized by the free fall from
various points at rest, while theirs by the free fall from infinity at various initial velocities.
The important point to note is that the metric (3) indicates an analogue of the conservation of energy

in the Newtonian mechanics,
1/ dr\?
E=-(— P 5
5 () +o0) )

where E = (¢2 — 1)/2 is a conserved energy and ®(r) = —M/r is a gravitational potential energy of a
central force field. In particular, if the particle freely falls from rest at infinity, the conserved energy E is
zero (i.e., e = 1) and the metric (3) reduces to the standard form given by Painlevé and Gullstrand:

2
[2M
ds? = —dt,* + <dr + dtp> + r2d02. (6)
T

For a free fall from infinity, the radial velocity v is the Newtonian escape velocity /2M /r. It is obvious
from the metric (3) and (6) that the Painlevé-Gullstrand coordinates are regular at the horizon r = 2M.
This enables us to deal with the geometry of black hole both inside and outside the horizon.

In the subsequent sections, we will consider the solution of the Einstein equation with matter. In
general, the energy £ and the mass M are functions of ¢, and 7, not constant values. With the physical
picture in mind and motivated by (3), we make the ansatz for the metric in the generalized Painlevé-
Gullstrand form

1 2
2 _ g2 2 102
ds* = —dty® + 5 pe—s (dr—l—v(tp,r)dtp) + 12402, (7)
where
2m(t
ltper) = |/ 2E(ty,r) + 2le2T) ®)

3 Spherical gravitational collapse—from infinity

We solve the Einstein equation in the spherical gravitational collapse from infinity. According to Birkhoff’s
theorem, the Schwarzschild solution is the only solution of the vacuum Einstein equation for a spherically
symmetric spacetime. In particular, even if matter distribution is not static but moving in a spherically
symmetric way, the exterior vacuum region is given by the Schwarzschild metric. As shown in the previous
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section, we can express the Schwarzschild metric in the Painlevé-Gullstrand form (6). Meanwhile, for the
matter solution in the case of the gravitational collapse, the metric is assumed to be of the form

2
2
df:-ﬁ£+<w+ 7“?”&9 +r2d02, )

that is, the generalized form (7) with E = 0. For simplicity, we consider the Einstein equation with
uniformly distributed dust matter, G, = 871}, = SWp(tp)upMupl,, and then obtain the solution of the
mass function

47 . 1
m(tp,r) = ?T‘Sp(tp)v P(tp) = 6nt. 2
p

Let R(t,) be the surface radius of the star at time ¢, and M be the mass inside the surface. It is
natural to impose a boundary condition at the surface » = R(¢,), that is, the mass,

47
m(tp’rﬂr:R(tl,) = ?Rg(tp)P(tp) =M, (11)

of the star is constant, and then the radius of the boundary is given by

(10)

Rity) = (9]2”<—tp>2)1/3. (12)

This means that the surface of the star is at rest at infinity and its radius monotonically decreases to
zero as t, — 0. In addition, the motion of the surface is geodesic. From simple calculations, the exterior
metric (6) and the interior metric (9) turn out to be smoothly matched at the boundary surface r = R(tp).
Therefore, we can describe the geometry of all the spacetime by a single coordinate system (¢,,7,0, ).

4 Spherical gravitational collapse—from a finite radius

We show the solution of the collapse from a finite radius. The standard model of a collapsing star is
collapse from rest at a finite initial radius. It is not trivial to apply the idea of the Painlevé-Gullstrand
coordinates to the situation of the collapse starting with a finite radius.
To begin with, we consider the boundary surface that freely falls from rest at a radius Ry. At the
surface, the conservation law (5) gives the energy
M

B=—p (13)

V(ty) = ,/jé‘i) - (14)

where R(t,) is the surface radius smaller than the initial radius Ry.
Next, when we assume that the exterior solution ranges from the contracting surface radius R(tp) to
the initial radius Ry (i.e., R(tp) < r < Rp), the energy remains the same as (13),

and the infall velocity

Ey=—— (15)

and therefore the infall velocity becomes

2M 2M  2M
’U+(r>:\/7‘+2E+:\/T—&) (16)

in the exterior region. The exterior metric is therefore given by

2
1 2M  2M
dSi _ —dtp2 4 W (d'f’ + \/:dtp> —+ T‘2dQ2. (17)
1

Ry
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Finally, in the interior region 0 < r < R(t;), since the energy is now a function of time and radius
coordinates, we make the ansatz

m(tp,r)

E_(tp,r) =— (18)

Ry

R(tp)
for the energy and

’U,(tp,r) = \/MP’T) + 2E,(tp,7’) _ \/2m(tpvr) <1 B R](%t;,)> (19)

r r

for the velocity in the generalized Painlevé-Gullstrand metric (7).
In the case of the uniformly distributed dust, we can solve the Einstein equation taking into account
the boundary condition as before. The mass function reduces to

47 3M
pltp),  pltp) = WR(,)

where the surface radius and the time coordinate are
R Ry3
R(tp)=§(1+cosn), tp=1/87]?4(n+sinn), (21)
respectively, and the parameter 7 takes the value from 0 to 7. This interior solution

2M _% T
R(t,) Ro R(t

2
1
ds® = —dt,” + 5 (dr + )dtp> +r2dQ° (22)
r

M
~ Ro \ R(tp)

is smoothly matched with the exterior metric (17) at the boundary surface r = R(t,). In fact, when the
initial radius is large enough to satisfy Ry > M, the energy and the velocity in the both regions become
the same as those of the collapse from infinity.

5 Summary

For the description of gravitational collapse of a dust star, we have introduced the generalized Painlevé-
Gullstrand coordinates with the time coordinate being the proper time of a free-falling observer. We
gave the solutions of the Einstein equation in the cases of the collapse from a finite radius as well as from
infinity. The metric describes both the interior and exterior regions of the star, which smoothly match
at the surface of the star. More precisely, the metric is of C! class, while the metric component is of C1~
class. The choice of the Painlevé-Gullstrand time coordinate enables us to write the solutions inside and
outside the event horizon in a single coordinate patch.
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Abstract

Using the Bondi coordinates, we discuss the angular momentum at null infinity in five
dimensions and address the Poincare covariance of the Bondi angular momentum. We
also show the angular momentum loss/gain law due to gravitational waves. In four
dimensions, the angular momentum at null infinity has the supertranslational ambi-
guity and then it is known that we cannot construct well-defined angular momentum
there. On the other hand, we would stress that we can define angular momentum
at null infinity without any ambiguity in higher dimensions. This is because of the
non-existence of supertranslations in higher dimensions.

1 Introduction

Inspired by the recent progress of the string theory, the importance of the gravity theory in higher dimen-
sional space-times is steadily growing. However, there are still many remaining issues to be investigated
in higher dimensions. One issue among them is the asymptotic structure. For asymptotically flat space-
times, the asymptotic structure is defined at spatial and null infinites. The asymptotic structure at spatial
infinity (spi) is well-defined by conformal embedding in four and higher dimensions [1]. The asymptotic
structure at null infinity in four dimensions is well studied by many authors [2, 3]. On the other hand,
there are only a few work about the asymptotic structure at null infinity in higher dimensions. Indeed,
asymptotic flatness has been defined by using conformal completion method in only even dimensions [1—(]
and by using the Bondi coordinates in five dimensions [7].

The asymptotic symmetry at null infinity in four dimensions is semi-direct product of the Lorentz
group and the supertranslational group, which is an infinite dimensional translational group. The presence
of supertranslations implies the infinite number of the direction of translation, while the Poincare group
has only four directions in four dimensions. Because of this infinite directions of translation, we cannot
construct well-defined angular momentum in four dimensions. There are many attempts to define of
angular momentum at null infinity in four dimensions, whereas all those definitions are suffered from
supertranslational ambiguity. On the other hands, in five dimensions, since asymptotic symmetry is the
Poincare group [7], we can expect that angular momentum at null infinity can be defined without any
ambiguities. The purpose of this paper is to discuss angular momentum at null infinity in five dimensions.
We will see that angular momentum can be defined well and show the Poincare covariance of the Bondi
angular momentum.

2 Bondi coordinate and Einstein equations

In the Bondi coordinates % = (u,r, 0, ¢, 1) the metric can be written as

Veb
2

ds®* = ———du® — 2eBdudr + r*hsp(dz? + U du)(dz® + UPdu), (1)

1Email address: tanabe@yukawa.kyoto-u.ac.jp
2Email address: tanahashi@ms.physics.ucdavis.edu
3Email address:shiromizu@tap.scphys.kyoto-u.ac.jp



210 Angular momentum at null infinity in five dimensions

where
e sin @ sinh D4 cos f sinh Dy
hap = | sinfsinh D, €2 sin? 0 sin 6 cos @ sinh D3 | , (2)
cosfsinh Dy sin @ cos @ sinh Dy €8 cos? 0

where 24 = (0, ¢, 1) and we adopted the gauge condition satisfying det hyp = sin® 6 cos? 6. u = const.
are null hypersurfaces and the periods of the coordinates 0, ¢ and ¢ are /2, 27 and 27, respectively.
From the gauge condition, e can be written as

Cs _ 1 + €2 sinh? Dy + €< sinh? D3 — 2sinh D1 sinh Do sinh D3
eC1+C2 — ginh? D, .

(3)

Then hap have five functional freedom. In the following we will identify C4,Cs, Dy, Dy, D3 as those
freedom. In this coordinate system, null infinity is represented by r = oo and the metric at null infinity
is

ds* = —du® — 2dudr + r*(d6* + sin® 0dp? + cos? 0dyp?). (4)

To investigate the asymptotic structure at null infinity, we have to solve the Einstein equations near
null infinity. Here note that five dimensional space-times have five degree of freedom of gravitational
fields. If we identify hap as the freedom of gravitational field, C, Cs, D1, Do, D3 can be expanded as

Ay — Cll:iz/,;m"‘) . 012(;233A) . Cli(;f};A) n 014(:337‘4) Lo (5)
Co(u, 7, 2%) = 021;?/,;%‘) y Gl =) CQigl%A) - 024(:,‘3; L TSE (6)
Dy () = D11T(\u/,;:r‘4) N D12(77:g, z) + Dlig?};A) n D14(77:;, ) +O(T?) (7)
4y = D31:\1L/,?$A) n D32(:2:95A) + D3igli};3‘4) n D34(:379€A) +OrT), 9)

From Einstein equations R, 4 = 0, we can see that U# can be expanded as

Cl (U, T,z

Uf(u,2?) | Us'(u,2?)  Ug'(u,a?) | Uf(u,z?)

U4 ; O(r=9/? 10
and coefficients U;f‘ can be written by C1,, Cay, D1y, Doy, D3y, for example,
2 1 0 1 0 1 0 1
Ul = Z|——%>—=:(sinfcos?0C —— —Diy+———--Dy — ————C|. (11
! 5 | sin 6 cos? 6 96 (sin 6 cos n+ sin @ O¢ 1t cos 0 Oy 17 Sinfcosf ! (11)

Next, let us define the Bondi angular momentum from uA components of the metric. Near null
infinity, gue and g,y are expanded as

1 1 1 1

gu¢ = W Sin2 QU{i) + ; Sin2 0U5§ + ﬁ Sin2 QUP? + 1"72]¢ + O(T_5/2) (12)
1 1 1 1

Guyp = 7 cos? OUY + - cos? OUY + R cos? QUL + ﬁjw +0(r=%/?), (13)

where

j¢ = sinfDyq U19 + sin? 0Cs, Uf’ + sin 6 cos 0 D3y U{P + sin? 9Uf (14)
7Y = cos 0Dy U? + sin 6 cos D5, UY — cos? 0(Chy + Co1)UY + cos® U . (15)
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We define the Bondi angular momenta, Jé’ and Jgon ai» Will be naturally defined by

ondi

1 . p 1 .
Jgondi(u) = _E S3j¢dQ7 J]gondi(’u’) = _E P jd}dQ (16)

From R, = 0, we can derive the evolution equations of angular momentum J(g and Jg’on ai- The

ondi

evolution equation of Jg by gravitational waves can be expressed as

ondi

d 1 5% a5®
—Je = —— _— —_ dQ 17
du Bondl(U) am S3 |:( Ou )radiation - ( ou total derivative 7 ( )

where (05%/0u) adiation is the radiation part given by

95 1901 dCh  19Cy 9C1  10C1 9Csy 190y 90y
u radiation B 4 8¢ Ou 8 a¢ ou 3 a¢ ou 4 8¢ ou
19D3 0Dy 1 0Dz (0C1; | 0Cy 3 0D31 0C11
1 7 tan — tand
106 ou 10" au(aw+aw)+20an oy ou
2 6D31 8021 1 BDH (9D11 3 8D11 8D21 3 6D11 8D21
TS e 1 0 ou 200w aw 2000 au
1 taneacll D31 itaneaCm D31 gtaneaD;ﬂ 0Cy1  19Ds 0D
4 oY Ou 10 ou Oy 5 ou oY 4 Ou 0¢
3 8D31 8 . 2 3 8 8D21
+20 20 Bu 20 (sinf cos® ODsy) — 50 008989 (tan6Ds3;) 5
3 8D11 0, . 2 3 8011 0
+20COS29 5u 50 (sinf cos” 0C11) — 20 cosf 5 90 (tan6D11)
3 8021 0 .92 3 . 8021 8D11
+2()Sin9(:os€ ou 89(S1n 6 cos6Dn) = 20 sin 0 a0  Ou
3 0
_QOCOSQ%(CNDH) (18)

and since (9;5¢ /OU)total derivative 1S the total derivative part which has no contribution to the evolution

for the angular momentum by gravitational waves, we do not write its explicit form here. The evolution

equation for Jgondi has same form. For the details, see [8].

3 Asymptotic symmetry and Poincare covariance of angular
momentum

Asymptotic symmetry is defined as the transformation group which preserve the boundary conditions of
at null infinity. By infinitesimal transformations £%, the metric is transformed as gq;, — gap + 0gap, Where

5gab = Vagb + nga. (19)

In Ref. [7], it was shown that the asymptotic symmetry at null infinity in five dimensions is Poincare
group and the generator of the translations is represented as £“ = —f (xA) where the function f (:17‘4) is

f(z?) = ay + a,sinfcos ¢ + ay sin@sin ¢ + a, cos § cos ¥ + a,, cos fsin 1. (20)

The global charges associated with asymptotic symmetry (the Poincare group), which is angular
momentum My, should be transformed under translations as

Map — My + 2P[awb], (21)

where f = 2%, and 2% = (1,2%) and 2! = (sin 6 cos ¢, sin @ sin ¢, cos § cos 1), cos O sin)). P is a Bondi
momentum [3]. However, we are considering dynamical space-times which has no exact timelike Killing
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vector. This means that the quantities M,;, would change due to gravitational waves under translations
(u — u — f(z4)). Then, the expected transformations of M,, under translation are

Mab(u) — ab(u — f) + 2P[a (u)wb] = Mab(u) =+ 2P[a(u)wb] — (fdciMab(u)> . (22)

radiation

In fact, we can show this transformation as follows. By the translations, j® is transformed as

d5¢
A L - a(xA)—aj + (05 non radiation + (total derivative terms), (23)
u
where we do not write the explicit form of above terms. For the details, see [8]. Using the solutions for

UA, we can show that

1 5% 3 O
Jgondi - Jé)ondi T In /ss [_Oé(xA) (8u> } ] ) + 67 /o m(U,CCA)adeQ (24)
radiation

This transformation is equivalent to Mszy; — Mazy + 2Pzwy — (fdMsg/du)radiation- This stands for the

Poincare covariance of the Bondi angular momentum. In the same way, we can show the Poincare

covariance of angular momentum Jg’ondi.

4 Summary

In this paper, we defined the Bondi angular momentum at null infinity in five dimensions and showed
the Poincare covariance of the Bondi angular momentum. In addition, we successfully confirmed the
Bondi angular momentum loss/gain due to gravitational wave. Asymptotic symmetry at null infinity is
an infinite dimensional translational group (supertranslations) in four dimensions, not a four dimensional
group. Then this implies that the angular momentum at null infinity has always ambiguities. Contrasted
with this, it is shown that asymptotic symmetry at null infinity is the Poincare group in five dimensions.
Then we can define the Bondi angular momentum at null infinity in a Poincare covariant way without
any ambiguities.
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Abstract
In this presentation, in order to draw some implications concerning the effects of
gravity generated by colliding particles in the BSW mechanism., we study a collision
of two spherical dust shells based on the paper [1]. We show that the energy of two
colliding shells in the center of mass frame observable from infinity has an upper limit
due to their own gravity.

1 Introduction

Recently, Banados, Silk and West (BSW) showed that two test particles can collide with arbitrarily high
energy in the center of mass (CM) frame near an extremal Kerr black hole, even though these particles
were at rest at infinity in the infinite past [2]. We call this mechanism the BSW mechanism. If this
mechanism was really workable, it might be possible to probe Planck-scale physics by observing the
neighborhood of an extreme or almost extreme Kerr black hole. However, it is not yet clear whether
particles can really be accelerated with sufficient efficiency to produce collisions with Planckian energies.
To answer this question, it is necessary to consider, among other things, the effect of particle size, the
effect of gravitational radiation on the trajectories of the particles, and the effect of the gravity generated
by the particles themselves at the event horizon. In this presentation, we focus on the third effect.

2 Particle Collision around Extreme Charged Black Holes

Since the large CM energy of the particles produces strong gravity, we must take this into account when
evaluating how large the CM energy can become in the BSW mechanism. However, it is difficult to treat
the effects of gravity due to the particles, partly because Kerr spacetime is not very symmetric.

A mechanism similar to the BSW mechanism has been reported for Reissner-Nordstrém spacetime [3].
In this case, we can see the effects of the gravity generated by the colliding objects, since Reissner-
Nordstrom spacetime is more symmetric than Kerr spacetime. This will be carried out in the next
section. For now, we will ignore the effects of gravity.

The metric and gauge 1-form of Reissner-Nordstrom spacetime is

ds® = —fdt? + f~tdr® + r2(d#* + sin® 0dp?), A, = g(dt)u, (1)

where f =1 —2M/r + Q?/r?, M and Q being the mass parameter and the charge, respectively. In the
case of M? > @2, the equation f = 0 has two positive roots, r = r4 := M + /M2 — Q2.
The action of a charged test particle subjected to the Lorentz force is given by

3 u
S = —m/dT—q/ZAMCZidT, (2)
T
=0

where 7, m and ¢ are the proper time, inertial mass and charge of the test particle, respectively. From the
minimal action principle, we obtain its equation of motion. Without loss of generality, we may assume
that the orbit of the particle is confined to the equatorial plane § = 7/2. We can easily integrate the
time and azimuthal components of the equation of motion and obtain

a1 q dé 1,
S _ (e _ 9y 9 _ Le
dr f (EC m t) and dr  r2’ (3)
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where &. and ¢, are integration constants which correspond to the specific energy and angular momentum
of the particle, respectively. We assume that & is positive. By using the normalization condition of the
4-velocity and the above results, we obtain the energy equation

2 2
2M 2 2

N Lvoo, owith ve—(e-99) (12 @) (1L, (4)

dr mr r 72 72

For simplicity, hereafter, we consider a particle radially falling toward the black hole, i.e., the case of
f. = 0. If the background spacetime is extreme @ = M and the charge of the particle is ¢ = E.m, the
effective potential becomes
E2—1)(r—M)?
yo_ (&= -Mp 5

r2

From the above equation, we can see that this charged test particle asymptotically approaches the future
degenerate horizon r = ry = M, i.e., the outward null if £, > 1.

We consider another particle with an identical inertial mass m to the charged particle but with a
vanishing charge, which is also radially falling toward the black hole. Then, let us consider the collision
between this neutral particle and the charged particle with the effective potential (5). We assume that
the specific energy of the neutral particle is equal to that of the charged particle, £&. We can easily see
that, by this assumption, the absolute value of the velocity of the neutral particle is larger than that of
the charged particle at the same radial coordinate. Hence, the charged particle corresponds to the 1st
particle, whereas the neutral particle corresponds to the 2nd particle. The square of the CM energy at
the collision event is obtained as

EZ, = V—gap®p® =V2m\/1 = gayudy uly, (6)
2m? M M\?
- o 1—T+£3—\/53—1\/53—<1—r) : (7)

r—M

We can easily see that the CM energy diverges in the limit r — r4 = M. This is similar to the BSW
mechanism.

It is still difficult to treat the gravity of particles in Reissner-Nordstrom spacetime. Here, it is worth-
while to note that the world line of a radially moving test particle is equivalent to the trajectory of an
infinitesimally thin spherical test shell by virtue of the symmetry of Reissner-Nordstrém spacetime. Since
the CM energy at the collision event between two shells is the same as that given by Eq. (6) (see Eq.(12)
in Sec.4), an indefinitely large CM energy is realizable also in this case. The gravity generated by an
infinitesimally thin spherical shell can be treated analytically by the Israel formalism [1]. In the next
section, we study the effects of the gravity of a thin spherical charged shell.

3 Infinitesimally thin spherical charged dust shell

In this section, we study the gravity generated by a thin spherical shell with a non-vanishing charge. An
infinitesimally thin shell is equivalent to a singular timelike hypersurface ¥ which divides spacetime into
two regions V7 and Vs (see Fig.1).

We consider a spherically symmetric dust shell whose surface stress-energy tensor is given by S% =
ouub, where o is the energy density per unit area, which is assumed to be non-negative, and u® can be
regarded as the 4-velocity of the shell. We assume that this dust shell may have a non-vanishing charge.
According to the Birkhoff’s theorem, the spacetime except on the shell itself is Reissner-Nordstrom
spacetime, and hence the metric in the region V; is given as

ds® = —feo)dtfy + [ dr® +r*(d6® + sin®0de?), (8)

where f(;) is f;) =1 —2M;/r + Q?/r?. Here, note that all coordinates except for the time ¢ are common
to both Vi and Va. We assume M; > |Q;| and denote the roots of fi;) = 0 by r = ri) = M;++/M? — Q2.
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W (M2,Q2)
(‘Z\/—{l ) Ql)
\ > 7 \ ——r
Figure 1: Schematic spacetime diagram of a spher- ~ Figure 2: Schematic spacetime diagram of two
ical timelike shell. spherical timelike shells.

In this coordinate system, the components of the 4-velocity u® are u’é) = (dt(i)/dT, dr/dr,0, O), where 7
is chosen so that u%u, = —1.

Using the normalization condition of the 4-velocity, the constraint of Einstein equation leads to u :=
4mor? = const. This equation means that the proper mass u of the shell is conserved. From the Israel
formalism [4] and the normalization condition of the 4-velocity, we obtain the energy equation for the
shell as

(dT)2+Vshe11=0, with Vsheu:—(é'—qff?)2+l—2<M>+<Q>2—(H)2+(q)2,(9)

dr r 72 2 2

where € 1= (My — M1)/p, (M) := (Mz + M;)/2,(Q) := (Q2 + Q1)/2, and ¢q := Q2 — Q1. Thus, we may
call £ the specific energy of the shell, and we assume that it is positive. We can see that the effective
potential (9) has almost the same form as that for a charged test particle (4) with . = 0, or equivalently,
that for a spherical charged test shell. The differences between Eqgs. (4) with ¢, = 0 and (9) are regarded
as the self-gravity and self-electric interaction terms.

Let us investigate whether the charged dust shell can asymptotically approach an outward null hy-
persurface as in the case of the charged test shell. The outside of the shell is the region V5, and the BH
horizon in this region is r = rf) := My + /M3 — Q3 which is the outward null hypersurface. Hence, we
search for the condition which guarantees r = rf) to be the asymptote of the singular hypersurface 3.

This task is equivalent to solving V(rf)) =0 and dV(r)/dr| _ = = 0 in terms of the parameters, Qa,
=Ty

Mo, pu, g and €. We have
Qs = My, q® — 2Moq + 2MoEp — p? = 0. (10)

The condition Q2 = M> implies that region V5 is an extreme Reissner-Nordstrom spacetime. If the above
conditions hold, the effective potential becomes

Vehen = - (£% - 1)7{2 — M2)2. (11)

Namely, if this charged dust shell is contracting and £ > 1, it asymptotically approaches the outward
null hypersurface r = Ms. Hence, it is likely that a BSW-type mechanism can occur in this system.

4 effect of gravity generated by colliding shells in BSW process
In this section, we consider collisions of two spherical dust shells and discuss the CM energy at the

collision event. These two shells divide the spacetime into three regions, V;, Vo and V3, before the
collision (see Fig.2). We assume that the inner shell is the same as that considered in the preceding
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section, whose parameters satisfy conditions (10). We also assume that, as in Sec. 2, the outer shell is
composed of neutral dust and has the same specific energy £ as the inner charged shell. Because the
outer shell is neutral, we have Q2 = (3. Further, both shells are assumed to have an identical proper
mass, fout = Min = M-

The energy of the colliding shells in this frame, which is also called the CM energy En, is given by

B = / T& i, tiyr? sin 0dAdOd = f?um7 (12)

where T2 is the total stress-energy tensor of the shells, X is the proper length in the direction of 7. As
expected, the CM energy of the shells takes the same form as that of the particles.

As shown in the preceding section, the outward null hypersurface r = T(f ) = Ms is the asymptote of
the inner shell. Thus, as in the case of the test shells, the closer the relative velocity between the inner
and outer shells approaches to the speed of light, the closer the collision event approaches to the BH
horizon in Vs, i.e., r = rf ) Asa result, the CM energy at the collision event can be indefinitely large,
even if the gravity of the colliding shells is taken into account. However, we should note that if the two

shells collide inside the BH horizon in V3, ie., r < Tf) = M3 + /M2 — Q3, distant observers like us

could not see the collision of these shells. We should also note that rf’) is larger than rf ) by virtue of the
gravity generated by the outer shell. Thus, the observable CM energy is less than that of the collision at

= rf) given in accordance with Eq. (12) as

Eon(r= rf)

1 Y
)= \[2“\/1 VR 2EBEL+ 2V + 28/ (13)

where the function Y is given by
Y = Jero 1\/2(@ F M) 26— 1) (w/Eu(%u +2M7) + 26+ M1> +

x\/—Q(E,u—i— My) +2(€+1) (\/M+ 261+ M1> yy
i, (25 (\/m+25u+M1) +u). (14)

We can see from the above result that the CM energy at the collision event between these shells has
an upper limit in the observable domain r > rf), and this limit is determined by the mass M; of the

“central black hole” and the proper mass of the two shells. Here, we should note that in order that the

outer shell overtakes the inner shell, (u”.)? — (uf,)? should be positive at r = Tf). We can see that this
condition holds from [(ugut)2 — (uirn)Q]T:T@) > 0.

In the case that the mass M; of the central black hole is much larger than the proper masses of the
shells p1, the observable CM energy becomes Eop, ~ 21/4€14\/& — /€2 — 1M11/4u3/4. We can see from
this equation that the observable CM energy is not indefinitely large. Thus, when estimating the size of
the observable CM energy, the gravity caused by the colliding objects must not be ignored, even if their
initial energy is very small. Our result suggests that an upper limit also exists for the total energy of
colliding particles in the center of mass frame in the observable domain in the BSW process due to the
gravity of the particles.
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Abstract

We study the non-equilibrium condensation process in the holographic superconduc-
tor. When the temperature 7' is smaller than a critical temperature T¢, there are two
black hole solutions, the Reissner-Nordstrom-AdS black hole and a black hole with
a scalar hair. In the boundary theory, they can be regarded as the supercooled nor-
mal phase and the superconducting phase, respectively. We consider perturbations
on supercooled Reissner-Nordstrom-AdS black holes and study their non-linear time
evolution to know about physical phenomena associated with rapidly-cooled super-
conductors. We find that, for T' < T¢, the initial perturbations grow exponentially
and, eventually, spacetimes approach the hairy black holes. We also clarify how the
relaxation process from a far-from-equilibrium state proceeds in the boundary theory
by observing the time dependence of the superconducting order parameter. Finally,
we study the time evolution of event and apparent horizons and discuss their cor-
respondence with the entropy of the boundary theory. Our result gives a first step
toward the holographic understanding of the non-equilibrium process in superconduc-
tors.

1 Introduction

Recently, the duality between the superconductor and gravity theory has been proposed [1-3] as a new
application of the AdS/CFT correspondence, in which the simplest gravity theory is given by Einstein-
Maxwell-charged scalar theory with negative cosmological constant. In this gravity theory one of static
solutions is the well-known Reissner-Nordstrom-AdS black hole solution, in which the scalar field vanishes.
It is known that this solution is unstable when the temperature T is lower than a critical temperature
T.. In consequence of the instability, it is expected that the scalar field will condense into a non-
vanishing profile and eventually the black hole will have the scalar hair breaking the U(1)-gauge symmetry
spontaneously. For low temperature T' < T, such a static solution has been constructed numerically. It
was shown that the solution has similar properties with superconductors [3]. Thus, the instability of the
Reissner-Nordstrom-AdS black hole for low temperature was identified with the superconducting phase
transition. In the same way, the Reissner-Nordstrom-AdS and hairy black holes in the gravitational
theory were identified with the normal and superconducting phases of a superconductor realized within
the dual field theory, respectively. Such holographic superconductors are considered as a hopeful approach
to understand the property of strongly correlated electron systems.

The non-equilibrium process of strongly correlated systems such as superconductors is not fully un-
derstood because of difficulties in its theoretical treatment. The AdS/CFT correspondence offers a novel
approach to this longstanding problem. To understand non-equilibrium process of strongly correlated
systems, we should simply solve classical dynamics of gravitational systems in the bulk thanks to the
duality. For near equilibrium dynamics of superconductor, there are several approaches from the hologra-
phy. However, very little progress has been made in the regime that the theory is far from equilibrium. In
this work, we give a holographic approach to understand the non-equilibrium process of superconductors.

As we mentioned before, for low temperature T' < T, there are two phases of black holes in the
gravity side, the Reissner-Nordstrom-AdS and the hairy black holes, and they are regarded as supercooled
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normal phase and superconducting phases, respectively. In this work, we consider small perturbations
on the supercooled Reissner-Nordstrom-AdS black holes and study non-linear time evolution of them.
Because of the instability of the Reissner-Nordstrom-AdS black holes, the initial perturbations will grow
exponentially at the beginning of the time evolution. It is expected that the exponential growth is
saturated due to the non-linear effect and the spacetimes will approach static solutions. It is believed
that the final states of the time evolution are the hairy black holes obtained in [3], but there is no proof.
Studying non-linear time evolutions of the Einstein-Maxwell-charged scalar system, we will show that the
final states are given by the hairy black holes. We are also interested in dynamics of the phase transition
on the boundary theory. To reveal the non-equilibrium process, we observe the time dependence of the
superconducting order parameter and study how the normal phase goes to superconducting phase in the
boundary theory in the middle of the time evolution. Finally, we study the time evolution of event and
apparent horizons. See also [1] in detail.

2 Equations of motion

We consider the 4-dimensional Einstein-Maxwell-charged scalar theory with negative cosmological con-
stant, whose action is given by

6
S:/d4x\/jg[R+L2—

where L is the AdS curvature scale and ¢ is the U(1)-charge of the complex scalar field ¢. The field
strength is defined by F = dA as usual. This theory is introduced in [I-3] as a gravity dual of a
superconductor. In addition to the diffeomorphism symmetry, this action has the local U(1) symmetry,
A — A+d) and ¢ — €%, where ) is an arbitrary scalar function. Hereafter, we take the unit of L =1
and set m? = —2.

For simplicity, we assume that the spacetime has the plane symmetry. Using the diffeomorphism
and U(1) gauge symmetries together with the assumed plane symmetry, we can take the metric ansatz
without loss of generality as

1

1 Fu B = 10 = iqA ) —m? Y|, (1)

ds? = 72712 [F(t, 2)dt? + 2dtdz] + D(t, 2)2(da® + dy?) ,
A=qa(t,z)dt @

We use the ingoing Eddington-Finkelstein coordinates, (¢,z). In these coordinates, the AdS boundary
is located at z = 0. These coordinates are convenient for our numerical calculations since we can easily
extend time slices defined by constant-t surfaces into the inside of the event horizon and also set the
AdS boundary to be a constant-z plane. Note that diffeomorphism and U(1) gauge symmetries have not
been completely fixed, because the form of the variables (2) is invariant under the residual symmetry,
1/2 = 1/2+g(t), @ — a + d:\(t) and ¢ — €' yh. These residual gauge symmetries will be fixed by
the boundary conditions. The complete set of the equations of motion are given by

% /1
r_x (1.4 2 20,112 _ _
(@DP) — — (22 o2 + m?y| 6> 0, (3)
222(Dap) 4 iqz2a/vp 4+ 22207 H(D®)Y + 22201 ®' Dy + m*p =0 , (4)
(22(z72F)) = 22 + 4073(D®)®' — ("' Dy + ¢/ DY*) =0, (5)
222(Da) + 24 (272F) o + 4220 H(D®)a’ — 2ig(yyDy* —*Dy) =0, (6)
and
720, = —207' D% — (F/ - 2F> 'D® — Dy =0, (7)
z
P20y = —22207 (20" +20) — Y )P =0, (8)

D205 = 2222 + 2za’ 4+ 2220710/ +iq(yyt — )] =0, (9)
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where ’ = 0, and derivative operator D is defined as

D® =9, — FO,®/2, D2® = 0,(D®) — F.(DP)/2, Do = — Fo.a/2,

Dy =0pp — FO0/2 —iiqap , D™ = Op™ — FOY" /2 +iqay™ . (10)
Here, the operator d; — F'0, /2 represents the derivative along the outgoing null vector. We regard Eqs. (3-
6) as evolution equations and Eqgs. (7-9) as constraint equations. We solve the evolution equations for
the time evolution and use the constraint equations only at the AdS boundary and the initial surface to
give the boundary conditions for the time evolution.

One of static solutions of the equations of motion is merely the Reissner-Nordstrém-AdS black hole
solution (with planar horizon), which is given by F = 1 — 2Mz3 + iQQZ‘l, ® = 2! o = Qz and
1 = 0. Parameters M and @ are proportional to mass and charge of the black hole, respectively. For
this solution, the complex scalar field has a trivial configuration ¥ = 0. That is, this black hole has no
“hair” except for the mass and electric charge. The event horizon is located at z = z; determined by
F(z4) = 0. In terms of the horizon radius z, we can rewrite M as

1 1
M=_—(1+-Q%%]) . 11
222 ( T3¢ Z+> (11)
The temperature of the black hole is given by
1 dF 12 — 24 Q?
po LA _12-500 (12)
dm dz 16724

Z=ZzZ4

It is known that this solution is unstable when the temperature T is smaller than a critical temperature
T.. The numerical value of the T, is obtained in [I-3]. In consequence of the instability, it is expected
that the scalar field will grow and eventually the black hole will have the scalar hair. Thus, the U(1)-
gauge symmetry is spontaneously broken due to condensation of the complex scalar field. Indeed, for low
temperature T' < T, at fixed charge @, static solutions of the hairy black hole with ) # 0 exist and have

been constructed numerically [3]. Similarly to the previous case, the temperature of the hairy black hole
is given by T = —ﬁ% iy where F(z;) = 0.
This instability was identified with the superconducting phase transition in the dual theory [I-3]. In

this work, we will investigate the dynamical process of the superconducting phase transition in the view
of the gravity theory. Since we are taking the ingoing Eddington-Finkelstein coordinates (2), our time
slices are given by null surfaces. We consider a slightly-perturbed Reissner-Nordstrom-AdS spacetime
as initial data, and study non-linear time evolution from it. At the AdS boundary, we give appropriate
boundary conditions. Inside the event horizon, we excise a region before encountering the singularity for
the numerical calculation.

3 Numerical Results

In this section, we summarize the numerical results obtained by the evolution scheme of the previous
section. In Section 3.1, we describe the free parameter and the initial conditions. We summarize the
general properties of the bulk field dynamics in Section 3.2. After that, we study the dynamics of the order
parameter of the boundary theory, which is the boundary value of the bulk scalar field, in Section 3.3.
In Section 3.4, we focus on the dynamics of the event and the apparent horizons.

3.1 Initial data and parameters

We should specify the ¥(t = 0, z), M and @ on the initial surface. We treat M and @ as fixed parameters
since they are conserved quantities in our setting. Without loss of generality, we can fix one of the
parameters using a residual coordinate transformation. In our numerical calculation, we put M =
(1+@Q?/4) /2. This condition implies that the horizon radius of the initial black hole is set to unity
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(see Eq. (11))2. As for the initial data of v, we consider the Gaussian perturbation on the Reissner-
Nordstrom-AdS spacetime as

Yt =0,2)= \/%522 exp {—(22;2"1)} (13)

with A = 0.01, 6 = 0.05 and z,, = 0.3. We tried several other initial conditions and found that they
yield qualitatively the same results. Thus, we will show below the results only for the initial data given
by Eq. (13).

3.2 Dynamics of bulk fields

First of all, we show the dynamics of the bulk scalar field. In Figure 1, we depict the dynamics of the
amplitude of the complex scalar, [¢(t, z)|, for ¢ = 1.0 and T/T. = 0.5 at the initial state. The critical
temperature T, is evaluated for a fixed charge Q3. We can find that much of the wave packet of the initial
perturbation (13) is instantaneously absorbed in the horizon within ¢7, < 0.06. Because of the remnant of

the wave packet, which is the unstable mode contained in the initial perturbation (13), the scalar density
grows exponentially for tT, < 6. The exponential growth is saturated by the nonlinear effect at 7. ~ 6.

In tT. 2 6, the scalar density approaches a static solution. As in Figure 2, we can find that the static
solution coincides with the hairy black hole solution obtained in [3]. Thus, our result gives numerical

proof of the conjecture that the final state of the instability of the Reissner-Nordstrom-AdS black hole is
the hairy black hole. Our result also implies that, for the most symmetric perturbations, the hairy black
holes are stable. It is worth noting that this phase transition from the initial Reissner-Nordstrom-AdS
black hole to the final hairy black hole is a dynamical process under the fixed mass and charge. It implies
that the temperature of the initial state and that of the final state are different in general. Indeed, the
temperature of the final hairy black hole increases compared to the initial temperature due to the phase
transition.
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=

R RNty
[w(t.2)| WES%@%‘\ [w(t.2)|
0.4 s 0.025 L
03 = e i
. X R 5
0.2 =SS 0.0%> T
: S :
0.1 S 0.005
0 0
14
1 0.08
0.06
(a) 0< ¢T, < 14 (b) 0 < T, < 0.08

Figure 1: The dynamics of the scalar field for ¢ = 1.0 and initial temperature T/T, = 0.5. In Figure (a),
we depict the dynamics of the amplitude of the complex scalar field, |1(¢, z)|, on (¢, z)-plane for 0 < ¢T, <
14. In Figure (b), we depict |¢(t, 2)| for 0 < tT. < 0.08 in order to focus on the behavior of the wave
packet of the initial perturbation.

3.3 Dynamics of the order parameter

In following subsections, we show some results from the numerical solutions that are relevant to the dual
theory. In this subsection, we describe the non-linear dynamics of the order parameter of the boundary
theory.

2To be accurate, the z4 defined by Eq. (11) slightly differs from the apparent horizon position for our initial data,
because we will give small perturbations on the Reissner-Nordstrom-AdS solutions.
3 For ¢ = 1.0, 1.5 and 2.0, the critical temperature T, is respectively given by T./+/Q = 0.03589, 0.08421 and 0.1234.
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Figure 2: The function r#[t|?/Q? is depicted on fixed time slices, where r is circumference radius defined
by r = ®. From bottom to top, the curves correspond to 7T, = 5.15, 6.44, 7.73 and 9.02. The top solid

curve correspond to that of the hairy black hole. We can see that the solution approaches the hairy black
hole.

From the asymptotic form of the numerical solution ¥ (t, z), we can read off ¥5(t) defined by (¢, z) =
1 (t)z + Pa(t)22 + -+ . The coefficient 1)9(t) is regarded as the superconducting order parameter in
dual theory and so we set ¥1(t) = 0. Following [2, 3], we define the order parameter on the boundary
theory as (Oy(t)) = V2u(t). In Figure 3, we depict the time dependence of the order parameter
(ql(O2(t)))/?/T., for ¢ = 1.5 and T/T,. = 0.2, 0.4, 0.6, 0.8, 1.1, 1.2 and 1.4. The sharp signal at the
small ¢ is caused by the initial perturbation (13). For T > T, the initial perturbation dissipates and
the order parameter converges to zero. On the other hand, for T" < T, the order parameter grows
exponentially and approaches a non-trivial value. We find that, for T" < T, the more rapidly the order
parameter converges to its final value for lower temperature.

|q<02>|1/2 /T,

tT, tT

(a) T < T¢ (

Figure 3: The dynamics of the order parameter is depicted for ¢ = 1.5. In Figure (a), the curves from
top to bottom correspond to T/T, = 0.2, 0.4, 0.6 and 0.8. In Figure (b), the curves from top to bottom
correspond to T/T, = 1.1, 1.2 and 1.4. Note that the vertical axis in Figure (b) is logarithmic scale,
while that is linear scale in Figure (a).

3.4 Evolution of horizons

Now, we investigate the time evolution of apparent and event horizons. The apparent horizon z = zau/(t)
can be determined from D®(¢, zan(t)) = 0. We determine the event horizon z = zgy(t) as follows. For
sufficiently late time, spacetimes settle static solutions. Thus, at late time, the event horizon can be easily
determined by F(t,zgn(t)) = 0. To determine the event horizon for any ¢, we solve the null geodesic
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equations, Zgu(t) = —F(t,zeu(t))/2 , backward along the tangent to the event horizon at late time.
Then, we obtain null geodesic generators of the event horizon and find the location of the event horizon
z = zgu(t). Once we know the zgp(?) and zam(t), we can calculate the area of event and apparent
horizons as

Area(event/apparent horizon) = ®(t, zpm/an(t))* . (14)

In Figure 4, we depict the time evolution of the area of the horizons. We find that the area of the
horizons monotonically increase by the time evolution and the event horizon has larger area than that
of the apparent horizon. We also see that, after the final state has settled to equilibrium, the apparent
horizon and the event horizon coincide. In addition, the two horizons seem to coincide even at the initial
state. Thus, it is quite likely that we can regard the area of the horizon as the entropy at the initial state.

50.5 . . T T
50
495
49
485
48
475

Area(horizon)/Tc2

47

465 f
46 1 1 1 1

Figure 4: The time evolution of the area of event and apparent horizons are depicted for ¢ = 1.5 and

T/T. = 0.4 at the initial state. Solid and dashed curves correspond to the area of event and apparent
horizons respectively.
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Abstract

We propose a new class of inflation model, G-inflation, which has a Galileon-like
nonlinear derivative interaction of the form G(¢, (V$)?)0¢ in the Lagrangian with
the resultant equations of motion being of second order. It is shown that (almost)
scale-invariant curvature fluctuations can be generated even in the exactly de Sitter
background and that the tensor-to-scalar ratio can take a significantly larger value
than in the standard inflation models, violating the standard consistency relation.
Furthermore, violation of the null energy condition can occur without any instabilities.
As a result, the spectral index of tensor modes can be blue, which makes it easier
to observe quantum gravitational waves from inflation by the planned gravitational-
wave experiments such as LISA and DECIGO as well as by the upcoming CMB
experiments such as Planck and CMBpol.

Inflation in the early universe is now a part of the standard cosmology to solve the horizon and flatness
problem as well as to account for the origin of density/curvature fluctuations. It is most commonly driven
by a scalar field dubbed as inflaton, and the research on inflationary cosmology has long been focused on
the shape of the inflaton potential in the particle physics context. Its underlying physics is now being
probed using precision observations of the cosmic microwave background and large scale structure which
are sensitive only to the dynamical nature of the inflaton. Reflecting this situation, a number of novel
inflation models have been proposed extending the structure of the kinetic function.

In this article, we propose a new class of inflation models, for which the scalar field Lagrangian is of
the form

where K and G are general function of ¢ and X := —V,¢V*¢/2. The most striking property of this
generic Lagrangian (1) is that it gives rise to derivatives no higher than two both in the gravitational-
and scalar-field equations. In the simplest form the nonlinear term may be given by GU¢ o XUOg,
which has recently been discussed in the context of the so-called Galileon field [1, 2]. The general form
G(¢, X)O¢ may be regarded as an extension of the Galileon-type interaction X[J¢ while maintaining the
field equations to be of second-order [3]. So far the phenomenological aspects of the Galileon-type scalar
field have been studied mainly in the context of dark energy and modified gravity. In this article, we
discuss primordial inflation induced by this type of fields. See also [4, 5].

Now let us start investigating our model in detail. Assuming that ¢ is minimally coupled to gravity,
the total action is given by

S = /d4x\/?g {]\421%11% + c4 . 2)

The energy-momentum tensor 7}, derived from the action reads

Ty = KxVu6V,00 + Kguy — 2V (,GV,) 6 + 6, VAGY ¢ — Gx OV .0V, 6. (3)
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