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Ministry of Education, Science and Culture. This proceedings volume was also partially
supported by a Grant-in Aid for Scientific Research on Priority Areas ”Gravitational
Wave Astronomy”(No.04234105).

The main purpose of this series of workshops is to review the latest observational and
theoretical work in gravitational physics and relativistic astrophysics. A further purpose
is to promote lively and stimulating interactions between researchers working in fields

related to relativity and gravity — including particle physics, astrophysics, cosmology.
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Singularities in the Classical Spacetimes

Hideo Kodama

Department of Fundamental Sciences, FIHS
Kyoto University, Kyoto 606

Singularities of spacetimes have been one of the main subjects in the study of general relativity
throughout since its early stage. The culmination was the proof of the singularity theorems by Penrose
and Hawking during the years 1965-1970. Though these theorems established the generic nature of
the occurrence of singularities in physical spacetimes, they tell almost nothing about the structures
and the physical influences of singularities. Though these remaining problems are not fully resolved
yet, lots of important results have been accumulated so far through the investigation by many people.
In this article, with the recent increasing interest in these problems in mind, which was provoked
by the progresses in numerical relativity and the gravitational wave astrophysics, 1 briefly overview
the development mainly after 1970 in the study of singularities in the classical spacetimes. For more
comprehensive and detained treatments of the topic as well as its early history, the reader is referred
to the books [HE73), [BE81), [Wal84), the reviews [Pen68], [Ger71], [ES77], [TCE80], [Sei83], [Cla87]
and the articles in the proceedings of the singularity symposium in GRGS8[ElN79].

1 What are the spacetime singularities?

Singularities appear in various aspects of physics. The spacetime singularities, however, consti-
Lutes a quite peculiar class among them. For example, singularilies in field theories are usually
the break down of continuity or smoolhness of ficld configuralions at some points in spacetime.
There the values of fields may be ill-defined at singularities, but their spacetime locations are
well-defined, which lets the term singular points make sense. In contrast the singularities of a
spacetime cannot be any portion of a physical spacelime itsell because the physical laws can-
not be written down at points where the spacetime structure loses meaning, at least in general
relativity. This feature makes it a very subtle problem Lo define the spacetime singularities
precisely. Of course there may be theories in which Llie spacetime structure in the usual sense
need not be defined everywhere, but we are not concerned with such theories in this article.
Historically spacetiine singularilies were first rccognized as the divergence of curvature
toward the boundaries of spacetimes described by simple exact solutions such as the Friedmann

solution and the Scliwarzschild solution. However, as more exact solutions were found and their



global structures were investigated, it was realized that spacetime singularities are not always
associated with the divergence of curvature. ‘

The most peculiar example is the Taub-NUT spacetime{Mis63,MT69], which is the only
vacuum solution of Bianchi type IX found so far. Its metric is given by

2
1=2ds? = -‘% +4U(dy + cos 8dg)? + (2 + 1)(d6? + sin §2dg¢?), (1)

where U is the function of time t given by

2

U= 2mttz-i--*.ll t , @)
0, ¢ and ¢ are the Euler angle of the 3-sphere, and I(# 0) and m are constants. Though
the metric component g, diverges and the determinant of the spatial metric vanishes as ¢
tends to t; = m % v/m? + 1, the components of the curvature tensor with respect to a natural
orthonormal tetrad are all finite in this limit. This is explicitly seen from the expression for
the chiral combinations of the curvature form R, := (Rqs + i * Ra)/2 with respect to the
natural orthonormal dual basis 82,

Rot = Mg —if)(B° A0 +ix (0 AP, (I=1,2,3) (3)

where \; =1, A = A3 =-1/2 and

_ m(1-3t%) 4 1(? - 3) _mi(3-1)4+1 -3¢
f— (tz + 1)3 ] g - (tg + 1)3 * (4)

Thus the surfaces ¢ = t; are expected to be similar to the horizon in black hole spacetimes.
This expectation is true. Actually it can be easily shown that they are null and the spacetime
can be extended across them to yield a maximally extension with topology S° x R[HE73].

This maximally extended Taub-NUT spacetime appears to be completely regular because
the orthonormal-tetrad components of the curvature tensor are all uniformly bounded as is
seen from the above expressions. However, when one examines the behavior of geodesics, one
encounters a peculiar phenomenon: there exist a family of timelike and null geodesics which are
inextensible but have finite affine lengths and converge to the null surfaces ¢ = t.[MT69,RS75].
This implies that some geodesic observers can exist only for a finite proper time. Thus, though
the curvature tensor is well-behaved everywhere, this spacetime should be regarded to be
physically singular. Since the badly-behaved geodesics in the present case are contained in the
compact region . < ¢ < t,, this type of singular behavior is called an imprisonment.

From the lessons from this example and others, most people now define the singular space-
times as those that contain incomplete inextensible curves{TCE80]. To make this definition



exact, one must specify the category of curves to be considered. As we will see in the next
section, only non-spacelike geodesics are considered in the most singularity theorems. However,
as was pointed out by Geroch[Ger68], there exist spacetimes which are geodesically complete,
yet contain incomplete timelike curves with bounded acceleration. Clearly such spacetimes are
physically badly-behaved. Hence people usually extend the category to general non-spacelike
curves.

One technical problem arises in this extension. It is to define the incompleteness of a general
non-spacelike curve for which the affine parameter may not be defined. This problem was first
discussed by Schmidt and solved by introducing the generalized affine parameter for a general
non-spacelike curve defined as follows[Sch71,Sch72]. Let 4 be a non-spacelike curve with a
parameter ¢ and {(e,);} be an orthonormal basis of the tangent space T, at a point p € 7. The
parallel transport of {(e,),} defines a orthonormal tetrad {e,} along 7. Then the generalized
affine parameter u of v is defined in terms of the tetrad components V* of the tangent vector
V =4.0, as

u = /,, (E V“V")m dt. (5)

The value of this parameter depends on the choice of (e,), as well as p. However, one can easily
show that the finiteness of the generalized affine parameter is preserved even if one changes the
choice. In particular the completeness of a curve is defined in terms of it without ambiguity,
and coincides with the ordinary definition for geodesics.

The completeness with respect to this generalized affine parameter is called the b-completeness.
It is because the spacetime is b-complete if and only if the principal orthogonal bundle
7 : O(M) — M associated with the spacetime metric is complete as a metric space with
respect to the natural positive definite Riemannian metric of O(M)[HE73). For Riemannian
manifolds the b-completeness and the geodesical completeness (g-completeness for brevity) are
equivalent. However, the former is strictly stronger than the latter for Lorentzian spacetime
as stated above.

One should note that, though the b-completeness is a quite elegant concept mathematically,
it is too strong for the arguments of spacetime singularities because it requires the completeness
for space-like curves as well as non-spacelike curves. Hence the b-completeness is applied to
only non- spacelike curves in this article unless otherwise stated. The structure of singularities

in b-incomplete spacetimes and its classification will be discussed in detail in §3.



2 When do singularities occur?

As established by the singularity theorems by Hawking and Penrose, physical spacetimes are
singular quite generally. The most essential reason for it is the universal attractive nature of
gravity. Though this nature has a physical origin, it can be given a quite simple mathematical
expression.

Let z#(A, o) be a family of geodesics with affine parameter A. Then from the commutativity

of V# = 9z# /0] and Z* = 8z* /8o, we obtain the geodesic deviation equation
v}z = R(V,2)V, (6)

where R is the Riemannian curvature tensor.
In the case where the geodesics are timelike, by expanding the vectors in terms of the
orthonormal Fermi basis Eg = V, Ei(I = 1,2, 3), the change of Z along the geodesic is expressed

as
dz!
Yivhe z'v,v, (7)
1
ViV = 551.10 + o1y +wia, (8)

where o}, is the symmetric traceless part and wys the anti-symmetric part. From this expres-
sion one sees that 8, o1; and wyy represent the ezpansion, the shear and the rotation of a spatial
volume comoving with the family of geodesics, respectively. In terms of these quantities the
geodesic deviation equation (6) can be written as the evolution equations for these quantities.

In particular the expansion @ satisfies the well-known Raychaudhuri equation[Ray55,HE73)

ﬂ = —R,',anb + w”w” - 6”0” - 102 (9)
dr 3
From this equation it follows that, if R.V*V® > 0 and wyy vanishes, the relative expansion of
the neighboring geodesics is always decelerated. Here the term containing wyy represents the
effect of the centrifugal force by rotation. Hence the Raychaudhuri equation shows that the
gravity acts attractively if and only if R, VeV?® > 0 for any time-like vector V. This condition
is called the timelike convergence condition.

If the spacetime metric satisfies the Einstein equations, the timelike convergence condition
can be rewritten as the condition on the energy-momentum tensor:

Tavev' 2 (37- 5) vev. (10)

Roughly speaking, this condition represents the local positivity of the energy, although, to be
exact, it is slightly weaker than that. For example, if Ty, is diagonalizable with g, it is written



as|HET3)
2A

p+ P 20(1=1,2.3), p+zle,27. (11)
For the case A = 0 the condition (10) is called the strong energy condition.

If the timelike convergence condition is satisfied, it can be easily shown that a hypersurface-
orthogonal geodesics focuses locally within a finite affine time once they begin to contract. In
fact, since the rotation of a hypersurface-orthogonal geodesics vanishes, it follows from the
Raychaudhuri equation that @ satisfies the inequality

1
6()) < 176(0) + /3 (12)
if 8(0) < 0, hence § — —oo at some X < 3/|6(0)].

This result implies that the spacetimes which contain only irrotational dust clouds are
singular since dust particles move along geodesics and the material density diverges if the
geodesics converge[Ray57]. However, we cannot conclude from this argument that singularities
generally occur even for dust systems because the rotation which acts repulsively may prevent
the focusing. For example, Anderson, Morgan and Thorne[AMT72] showed that a collaps-
ing counter-rotating dust cylinder with vanishing total angular momentum bounces without
producing singularities. Moreover, if the pressure of matter does not vanish, the focusing of
geodesics has nothing to do with the behavior of matter.

Thus from the physical standpoint the geodesic focusing property has no direct relation
to the occurrence of singularities. However, from the geometrical standpoint, it has a deep
consequence. What plays an important role there is the concept of the conjugate points.

Two points p and ¢ on a geodesic v are said to be conjugate along v if there exists a
nontrivial field Z along 4 which satisfies the geodesic deviation equation (6) and vanished at p
and ¢ simultaneously. This intuitively means that there exists a geodesic which is infinitesimally
close to v and intersects with it at p and ¢. Similarly a point p is said to be conjugate to a
three surface H along a geodesic y which passes through p and intersects with H orthogonally
if there exists a vector field Z satisfying Eq.(6) which is orthogonal to 4 and vanished at p.
An important property of the conjugate points is that if a non-spacelike geodesic 4 contains
a pair of conjugate points it can be deformed to a longer timelike curve[HE73, Prop. 4.5.8,
Prop.4.5.10]. Similarly a geodesic v orthogonal to a three surface H can be deformed to a
longer curve orthogonal to H if there is a point conjugate to M on 4[HE73, Prop. 4.5.9).

This property of the conjugate points is to be contrasted with the fact that, in a globally
hyperbolic spacetime, for any causally separated pair of points there exists a unique geodesic

connecting them of the maximum length, and for any point p in the future(past) Cauchy




4) There ezists at least one of the following:
i) a compact achronal set without edge,
ii) a closed trapped surface,

iii) a past (or future) trapped point.

In this theorem the condition 2) implies that for any non-spacelike geodesic there exists a point
on it at which Vs Ryjedte V/VV 3 0 where V is the tangent vector to the geodesic.

Although the statements of these four famous singularity theorems are slightly different
from one another, they all have the same structure in that the occurrence of singularities
are deduced from the convergence condition, the causality condition, and the existence of a
trapped set. Among these three types of conditions, the imposition of the last one is quite
natural since the singularities are expected to occur only under the circumstances where the
gravitational field is sufficiently strong as in gravitational collapse and in the early universe.
In fact, for example, the third condition in the second Hawking’s theorem cannot be made
weaker because an exact geodesically complete solution is found by Senovilla[Sen90,CFS92} in
which the other two conditions are satisfied but the trapping condition is violated only along
a single null geodesic through a point.

In contrast the requirement on the causality appears to be just technical and inessen-
tial to the occurrence of singularities. Nevertheless, no general singularity theorem with this
requirement eliminated has been established yet, although some arguments suggesting that
the violation of causality does not lead to the avoidance of singularities have been given by
Tipler(Tip76,Tip77).

Finally requiring the convergence condition is also natural since it represents the attractive
nature of gravity as we have seen at the beginning of this section. In contrast to the trapping
condition, however, this condition can be replaced by a weaker requirement. It is because
it is mainly used to deduce the existence of conjugate points in the proof. For example it
was shown by Tipler[Tip78] that in Hawking-Penrose’s theorem the strong energy condition
can be replaced by the weak energy condition, that is, TosV2V*® > 0 for any timelike vector
V, together with the strong energy condition on the average along every complete timelike
geodesic. Recently Borde[Bor87] and Kanndr[Kan91) further pursued this line of refinement,
and proved the following focusing theorem:

Theorem 5 (Bordel987) Let y be a complete non-spacelike geodesic with affine parameter
A and let V = 8, be its tangent vector. Then, if the following two conditions are satisfied, v
conlains a pair of conjugate points:

1) The generic condition is satisfied on ~.



2) For any ¢ > 0 there ezists a number B > 0 such that for any pair of affine parameters
A1 < Aq there ezist lwo intervals of the real number, I)(< Ay) and I,(> Aq), both of which
have lengths larger than B, and the following inequalily is satisfied:

‘"
j RuVEVAA > —¢, V'€ I, Vt" € .
'l

In this theorem the local convergence condition is replaced by a nonlocal one. In particular it
implies that the singularity theorem may be extended to the semi-classical theory of general

relativity for which the local positivity of the energy-momentum tensor is not satisfied.

3 What types of singularities occur?

Although the singularity theorems make clear the conditions for the occurrence of singularities
in a quite generic form, they give no information on the structure of singularities expected.
They just tell that there exists an incomplete geodesic. This is a quite unsatisfactory feature
of the theorems because we cannot discuss the physical influences of the singularities. In
this section we overview the progress in the investigation of this advanced problem after the

establishment of the singularity theorems.

3.1 Classification of singularities

In the discussion of the structure of singularities there is one important technical point to be
noticed first of all. It is the differentiability class and the extension of the spacetime structure.
In general relativity there is a large freedom in the choice of the base spacetime manifold.
For example, if a metric g satisfies the Einstein equations on a manifold M, its restriction to
a four-dimensional submanifold M’ of M is also a solution to the Einstein equations. This
restriction makes the spacetime singular even if the original one is complete. However, the
singularities arising from such restriction seem to be unphysical. Hence it is suggested that,
if one wants to investigate the structure of physical singularities, one must find a maximal
extension of the spacetime. This procedure, however, provokes some subtle problems.

First one must specify the smoothness of the metric and the manifold structure because
weakening the smoothness requirement in general yields a larger extension. One natural crite-
rion for the smoothness is expected to be given by the wellposedness of the Einstein equations.
This, however, does not give a definite answer. For, the Einstein equations is meaningful in
the distributional sense if the metric is at least of class C'~ while the weakest smoothness
condition so far proved for the existence and the uniqueness of a solution to the Cauchy prob-
lem of the Einstein equations is W2*¢(¢ > 0) on the metric]HKM77]. Here the metric is of



class C*~ if it has (k — 1)-th continuous derivatives and the k-the derivatives are bounded
almost everywhere, and of class W if the generalized derivatives up to the a-th order are
square integrable(if « is not integer, the precise definition of the Sobolev space W* requires
the pseudo-differential operator). Though the necessary condition for the metric to be W25+
is that it is of C®**¢(Hélder continuity), the best sufficient condition in the category of class
C* is C*%+¢. Thus the wellposedness of the Einstein equations cannot be expressed by a simple
smoothness condition.

Another possible criterion for the smoothness is given by the singularity theorems. Since
the existence and uniqueness of geodesics is guaranteed only for the metric of class C*~, the sin-
gularity theorems hold under the same condition|HE73]. However, just for the b-completeness
to be defined, the metric is required to be of class C*-.

Thus there is no natural smoothness condition at present. In the discussion of singularities
it is common to consider in the class C° for the curvature tensor, which corresponds to the
class C*~ for the metric, because it is the widest class in which the singularity theorems holds.
In the following the differentiability is specified by the smoothness of the curvature tensor
unless otherwise stated.

The second problem is the nonuniqueness of the extension. Here the nonuniqueness arises
from two origins. First in the class C?*~ the solution to the Cauchy problem may not be
unique as stated above. Though this nonuniqueness disappears if one requires a sufficiently
stronger smoothness, it tends to make the spacetimes appear more singular. Second the max-
imal extensions may not be globally hyperbolic as in the black hole solutions. In such cases
there appears the Cauchy horizon and the extension across it is obviously not unique. This
nonuniqueness cannot be eliminated by weakening the smoothness, and is a quite cambersome
one. Some people may argue that the very occurrence of the Cauchy horizon implies that the
spacetime is singular. However, we should be more open-minded on this point because the real
spacetime may not be globally hyperbolic. In the following we shall not be worried about this
nonuniqueness problem.

As explained in the first section, singularities are not points of the physical spacetime, but
just implies that there exist some incomplete non-spacelike curve. When the differentiability
class of the spacetime is specified, singularities are usually classified in terms of the behavior of
the curvature tensor along the incomplete curve as follows|[HE73,ES77]. Let v be an inextensible
incomplete non-spacelike curve. First if the curve can be extended to be a complete curve by
some extension of the spacetime in the class C* for the curvature tensor, 7 is said to approach
a C*-regular singularity. Otherwise, it is said to approach a C*-singularity. In the following it

is assumed that all the C*-regular singularities are eliminated by a maximal extension.



Let Rgpca be the components of the Riemannian curvature tensor with respect to the par-
allelly transported orthonormal frame along 7. If Rgseq is of class C* along 7, 7 is said to
approach a C* guasi-regular singularity, and otherwise a C* p.p. (parallelly-propagated) curva-
ture singularity. For the latter, if all the polynomial combinations of R,s.q stay in the class C*
along 7, it is said to be a C* n.s.p.(non-scalar-polynomial) curvature singularity, and otherwise

a C* s.p.(scalar-polynomial) curvature singularity.

3.2 Quasi-regular singularities

One typical example of the quasi-regular singularity is the conic singularity obtained, for
example, by cutting a wedge from the Minkowski spacetime and identifying the surfaces, which
appears in the spacetime containing a cosmic string. Another is the Misner singularity obtained
by identifying the Minkowski spacetime by some discrete group generated by a boost[Mis67,
ES77). The singularity of the Taub-NUT space is also of this type.

The most important characterization of the quasi-regular singularities is the local ex-
tendibility theorem proved by Clarke[Cla73] which states:

Theorem 6 (Clarkel1973) For any curve vy which approaches a quasi-regular singularity,
there exists an eztension of a neighborhood of v in which 4 can be extended to a longer curve.

This theorem implies that the quasi-regular singularity has a global nature, and suggests that
it occurs only in special spacetimes. Clarke has shown that it is the case at least in the globally
hyperbolic region[Cla75,Cla76]:

Theorem 7 (Clarke1975,1976) Let 4 be an ineztensible incomplete non-spacelike curve in
a C% mazimally eztended spacetime which is globally hyperbolic. If Rypcq is not asymptotically
algebraically special along v, v approaches a C° p.p. curvalure singularity.

This theorem implies that if quasi-regular singularities occur, the spacetime has the Cauchy
horizon in general, and they are on or outside it, since the algebraic special nature of the
curvature tensor is not stable against perturbations. Further, if the Cauchy horizon is unsta-
ble against perturbations, which implies that the strong cosmic censorship holds in generic
spacetimes, all the singularities are p.p. curvature ones in general. Thus the quasi-regular
singularities are not expected to occur in the physical spacetime.

In §1 we saw that the incomplete curves in the Taub-NUT spacetime are imprisoned. For the
quasi-regular singularity it can be shown that this imprisonment occurs also only in specialized
spacetimes[HE73):



Theorem 8 If p is a limit point of a curve v which approaches a quasi-regular singularity,
there ezxists a non-spacelike vector K € T, such that Ry K°K® = 0, and the Weyl tensor is
algebraically special at p. Further the Weyl tensor and the Ricci tensor are asymptotically
specialized along ~.

Finally Clarke showed that the quasi-regular singularity has a primordial nature(for the

precise definition of the primordialness of a singularity and the proof of the statement, see
[Cla76)).

3.3 Non-scalar polynomial curvature singularities

In a Riemannian space with a positive definite metric the tetrad components are all regular
if all the scalar polynomials constructed from them are regular. However, it does not hold in
the Lorentzian spacetimes. To see this, note that there exists only two independent complex
scalar polynomials of the Weyl tensor which are expressed in terms of the complex null-tetrad

components of the Weyl tensor in the Newman-Penrose formalism, ¥,,...,¥,, as

I = q’o‘l’q —4'1‘1'1’3"'3‘1’%, (13)
Vo ¥ ¥y

J=|v, U, ¥;|. (14)
VY, ¥3 ¥,

In particular for the Petrov type 1II and N, since I = J = 0, all the singularities are of n.s.p.
type if vacuum. For the other algebraically special types (Il and D) for which I® = 27J3,
even if some of ¥;’s are singular, all the scalar polynomials may be regular if the combinations
Uol, and ¥, Y3, and ¥, are regular. A similar cancelation of divergence can occur also for the
type L. For example an appropriate conformal transformation of spacetimes with the Misner
singularity yields spacetimes with n.s.p. curvature singularities from Theorem 8 because the
transformation will make R, K*K® nonvanishing at the limit points while it preserves the Weyl
tensor.

Another example is the singular plane wave solution explained below. It is shown that
quasi-regular singularities occur also in some tiited cdsmological models.

The important characterization of the quasi-regular singularity is given by the following
theorem by Siklos and Clarke[Cla79]:

Theorem 9 Let v be a non-spacelike curve approaching a p.p. curvaeture singularity, and
have a neighborhood which is space- and time-orientable and has a spin structure. Then the
singularity is of n.s.p. type if and only if there ezists a tetrad field in a neighborhood of v with
respect to which every component Rgpes is bounded.



This theorem implies that the n.s.p. singularity occurs due to a bad behavior of the paral-

lelly propagated frame field. I will illustrate this point by the example of the singular plane

wave[ES77].

The p.p wave solution is given by the metric

ds? = dz? + dy® + 2dudv + 2H (z,y, u)du®, (15)
where H is the function given by
H= %A(u)[(:x:2 — y?) cos ®(u) — 2zy sin d(u)] (16)
with arbitrary functions A(u) and ®(u). With respect to the orthonormal frame
0. — (1 + H)d,}, O+ (1 — H)3,),
\/-[ (1+ H)a,] \/—l (1- H)d)]
€ = a:s €3 = aya (17)
and its dual basis
= %{(1 — H)du—dv], 0= \/_[(1 + H)du + dv],
0* =dz, 6*=dy, (18)
the connection forms are given by
wpy + iwpy = (x — iy)Ae'“’(ﬂo +8) (I=0,1), (19)
and the chiral combination of the curvature forms by
..-ROI = 01 (20)
J-2
*Ros = 'TAe-'°(o° +O)A (P +i6®) (J=23). (21)
This shows that the spacetime is of Petrov type III.
From these equations it is easily seen that the curve v defined by s =y=0andu = —v =

8/V2 is a geodesic with affine parameter s, and e, defined above is parallel along it. Thus the

spacetime is p.p. curvature singular if A(u)e=***) is a singular function of u. Since it is of

Petrov type 111, the singularity must be of n.s.p. type.

Now let us rotate and boost the frame e, to define the new frame é,,

été = e*“")(eo + el),

& +18 = e-@(u)/2(62 + ie),

(22)
(23)



and its dual basis

0° £ 0" = ¥ (g° £+ 9", (24)
8 + i = /(92 4 igd), (25)

where {(u) is an arbitrary function of u. Then the curvature forms are expressed as

Ry = 0, (26)
;J=2
oy = o AK(B +8') A +iF) (J=2,3). (27)

Thus if £ is chosen so that it cancels the singularity of A, the components of the Riemannian
curvature tensor become regular in the new frame. For example, if £ is take as £ = --% log(1 +

A?), the nonvanishing component of the curvature tensor is expressed as
A = ———
" (28)

which is of class C%~ regardless of the smoothness of A(u).

4 Cosmic Censorship

4.1 Cosmic censorship hypothesis

The discussion on the structure of singularities in the previous section shows that the singular-
ities predicted by the singularity theorems are in general associated with the divergence of the
spacetime curvature. Thus the classical laws will not be applied around the singularities any
longer, and the behavior of the spacetime and matter there should be determined by a new
theory, such as quantum gravity. However, such modification of the structure around singular-
ities may not have a physical importance. For example, though the cosmic initial singularity is
naked in the sense that some of the past-inextensible non-spacelike curves are incomplete, we
do not have to worry about its structure or influence in investigating the recent evolution of the
universe, provided that the initial singularity is causally separated from the present by some
Cauchy surface on which the initial condition for the later evolution is specified. Similarly if
the singularities produced by gravitational collapses are always confined within the horizons,
they cannot have any physical influence on the observers staying outside the horizons.

From these observations and the very fact that no violent phenomena which appear to be
produced by spacetime singularities have be observed so far, Penrose proposed the hypothesis
that all the singularities other than the initial singularities are hidden by the horizons in

the asymptotically flat physical spacetimes[Pen69]. This hypothesis is called the weak cosmic



censorship hypothesis. In the mathematical language it is expressed by the condition I+ C
W. Here S is a partial Cauchy surface, M is the unphysical spacetime constructed as
the union of the physical spacetime M and its causal infinity 8M(see §4.2), and T* C M is
the future causal infinity of the asymptotically flat region. An asymptotically flat spacetime
satisfying this condition is said to be future asymptotically predictable from a partial Cauchy
surface S.

Though the singularities become harmless for observers staying outside the horizons under
the weak cosmic censorship hypothesis, they may still be disastrous for observers falling into
the black holes. This distinction of observers seems to be quite artificial from the physical
point of view because the physical evolution of the spacetime structure has the local nature.
From this viewpoint Penrose later introduced the strong cosmic censorship hypothesis which
states that the maximally extended physical spacetime is globally hyperbolic[Pen79). This
implies that the spacetime singularities would be harmless even locally apart from the initial
singularities.

These cosmic censorship hypotheses do not hold in their most generic forms because there
exist some counterexamples. The simplest one is given by the gravitational collapse of spherical
dust shells. In this system, if a sufficiently large inward velocity is given to an outer shell
initially, its trajectory crosses with that of an inner shell before they enter the horizon to
produce a naked singularity[YSM73,MYS74). This type of singularity is called a shell-crossing
singularity. It is shown that the shell-crossing singularity occurs also for spheroidal dust-
shell collapse[Sze75]. Another example is the shell-focusing singularity which is, for example,
produced at the center in the spherical dust collapse under appropriate initial conditions[Chr84,
New86). Null dust is also shown to produce a shell-focusing naked singularity[Kur84,Pap85,
Hol86). Since all these examples are concerned with dust systems, one may suspect that these
singularities would be avoided in the physical spacetime because the pressure does not vanishes
for realistic matter. This suspicion has not been clearly rejected or proved yet, although Ori
and Piran showed that the shell-focusing singularity occurs in self-similar spherical collapse of
matter with a bounded pressure[OP87,Lak88).

Recent numerical study of gravitational collapse also provides some counterexamples or
examples which suggest the breakdown of the hypothesis. For example, Nakamura et al[NST88]
constructed a sequence of time-symmetric initial data for the poloidal dust ellipsoid collapse
in which there appear no apparent horizon but the curvature increases without bound at some
points on the symmetry axis. Later it was numerically shown that the curvature grows without
bound but no apparent horizon appears in the time-symmetric poloidal collapse if the ellipsoid

has a sufficient long poloidal form initially(ST91). It was also shown that the inclusion of



rotation does not change the result[ST92].

The breakdown of the weak cosmic censorship which these examples are concerned with
is closely related with the hoop conjecture proposed by Thorne[Tho72] and the related con-
Jecture called the isoperimetric conjecture by Gibbons[Gib84). These conjectures assert that
a trapped surface is formed only if the circumference or the area of the surface of a region is
smaller than some constant multiple of the mass contained in the region. They have been so
far exactly formulated and proved only for some special systems such as the spherically sym-
metric system{Mal91a,BMO88], the null dust-shell collapse[BIL91,BIL92,B092,Tod92), and the
momentarily static and conformally flat initial data[Mal91b,Fla92](see also [SY83,0mu86]). If
these conjectures are true, naked singularities would be formed by gravitational collapse of
matter with a sufficiently elongated shape under the assumption that a trapped surface is
formed if the horizon exists. However, the latter assumption, though quite likely to hold, has
not been proved yet.

These examples and the related work show that the cosmic censorship hypothesis would
be valid only under some strong additional assumptions. In the following we briefly describe a
couple of theorems proved by Krolak which state that the cosmic censorship hypotheses hold
under some geometrical assumptions.

4.2 Krolak’s theorems

We must give some definitions to state the theorems by Krolak. An open past set W (I~(W) =
W) of a spacetime M is said to be a IP(indecomposable past) if it cannot be written as a union
of two nonempty open past sets. Further a IP W is called a PIP(proper IP) if W = I-(p)
for some point p € M, and a TIP(terminal IP) otherwise. It was shown by Geroch and
others[GKP72) that W is a TIP if and only if there exists a future inextensible curve v such
that W = I-(7).

If a TIP is written as () in terms of a future complete curve «, it represents a future
infinity point and called a co-TIP. The other TIPs are called singular TIPs and represent
the singularities of the spacetime. Similarly by replacing I~ by I*, IFs, PIFs, TIFs and
others are defined. The set of all co—TIPs and oco-TIFs is called the causal boundary of M
and denoted by @M. In the weakly asymptotically simple and empty spacetime 3M has two
disconnected components Z+ and I~, which are a future and a past set, respectively, and both
are diffeomorphic to S? x R. The union of M and 8M is denoted by M.

A singular TIP X in a weakly asymptotically simple and empty spacetime M is said to be
nakedly singular if X c J-(Z*,M)N M and X C I~ (p) for some point p € J-(@H,M)nM.
A nakedly singular TIP X is further said to be of strong curvature type if for any null geodesic



generator 7 of X # @ and for any null geodesic congruence around v and for any point p
on 7, there exists a point ¢ € 7 N I*(p) such that 8(q) < 0 where 0 is the expansion rate
of the congruence. A spacetime is said to satisfy the strong curvature condition if all the
naked singular TIPs are of strong curvature type, to satisfy the simplicity condition if for any
naked singular TIP X there exists a null geodesic generator v of X such that there exist a
sequence v; of achronal null geodesics to Z+ which converge to v, and to satisfy the trapped
surface condition if for any naked singular TIP X there exists a trapped surface 7 such that
TNXnNnIHS)#0.

A spacetime M is said to be regular partially fulure asymplotically predictable from a partial
Cauchy surface § if I+ C J*(S, M), D*(S,M) N A # @ for any null geodesic generator ) of
T+, and for any past inextensible non-spacelike curve v in J*(S) there exists a point s € §
such that 4 C I*(s). These conditions say that the partial Cauchy surface S is visible from
the future infinity and the singularities are located in the future of S.

In terms of these definitions Krolak’s theorem on the weak cosmic censorship is expressed
as follows[Kro86):

Theorem 10 (Krolak1986) Let M be a regular partially future asymptotically predictable
from a asymptotically regular partial Cauchy surface S. Then M is future asymptotically
predictable from S if the following three conditions are satisfied:

1) The null-convergence condition holds.
2) The strong causality condition holds.

8) Either a) the simplicity condition and the strong curvature condition or b) the trapped
surface condilion is salisfied.

A partial Cauchy surface S is said to be properly separated from H*(S) if the causal
simplicity fails on a null geodesic generator v of H*(S) in the past of some point p € v, and
J=(p) has a future inextensible generator A such that ANI*(S) # @. Further a spacetime is said
to be future nakedly singular relative to S if A is future incomplete and « is past incomplete.

Krolak recently proved that the strong cosmic censorship holds for strong curvature singu-

larities if the partial Cauchy surface is properly separated from its Cauchy horizon[Kro92):

Theorem 11 (Krolak1992) A spacetime cannot be fulure naked relative to a partial Cauchy
surface S if S is properly separated from H*(S) and the following three conditions are satisfied:
1) the null-convergence condition,
2) the strong causality condition,

3) the strong curvature condition.
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Compactification of 3D Homogeneous Spaces®
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1. Introduction and Summary

It has been many times mentioned and studied from different viewpoints that topology
of space or space-time may cause some significant role in classical and quantum gravity. (An
earlier view is lucidly described in [2]. And the reader can find related topics, also in this
conference; see e.g., M. Seriu, T. Koike, M. Tanimoto in this volume.) In order to understand
such aspects of gravity it is important to investigate global dynamics of gravity which is closely
related with topology and global geometry of space or space-time.

The standard canonical formalism of general relativity treats a space-time as a dynamical
deformation of a spacelike hypersurface and its three-dimensional geometry under an appro-
priate gauge condition. One needs to know what are the dynamical degrees of freedom of
three-dimensional geometry and how they evolve in time, in order to study such global as-
pects of classical and quantum gravity. Though it is not an easy problem, one can consider
several toy models, one of which is (2+1)-dimensional gravity [3)[4][5]. The basic reason why
it serves as an interesting model is that, in (2+1)-dimensional space-time, there are no local
gravitational-wave modes that is of little interest for study of global dynamics. Instead one has
global dynamical modes that are related to the so-called “moduli” of a 2-manifold representing
spacelike hypersurface. By global dynamics in gravity, we mean such dynamical degrees of
freedom whose presence essentially depends on topology of spatial manifold. One can explic-
itly examine classical and quantum gravity in this (241)-dimensional gravity in the case that

spatial 2-manifold is a torus, for example.

When one proceeds to consider the real life of (3+1)-dimensional gravity, it should be

+ This is based on the work (1] by Y. F., Hideki Ishihara and Hideo Kodama.
1 Supported in part by JSPS Fellowships for Japanese Junior Scientists.



first made clear what is global dynamics in (3+1)-dimension. It seems not so easy, as in the
(241)-dimensional case, to define global deformation of three-dimensional spatial manifold in
the full dynamics of (3+1)-dimensional gravity. Especially we have no idea whether one is
able to extract global dynamics in arbitrary inhomogeneous geometries and how the nonlinear
coupling between such global dynamical degrees of freedom and local gravitational-wave modes
or some matter fields can be disentangled and solved. As a first step towards the understanding
of such problems, we restrict our attention to a locally homogeneous manifold, or the spatially
homogeneous cosmology. That is, the so-called Bianchi model, well known in general relativity, .
which has been widely studied by many people (see [6)(7] for example). In the model, a space-
time is assumed to have symmetry, namely spatially homogeneity. Since the gravitational
degrees of freedom are reduced to be finite in this model, it gives an appropriate system for us
to understand the full complexity of the Einstein equations and physical cosmology described
by it.

In this talk, we study Bianchi model whose homogeneous spatial hypersurfaces are compact
without boundary, i.e. closed. Space-time will be therefore assumed to be a product of a closed
3-manifold and a (portion of) real line. First of our purposes is to make clear the relation
between the Bianchi type symmetry of space-time and s;;atial compactness from geometrical
viewpoint. By doing it we would like to show some interesting kinematical properties intrinsic to
such closed Bianchi models. Some of them were mentioned in some works by other people, but
under somewhat restrictive conditions. We do not assume such restrictions in our geometrical
argument and shall make clear some points unnoticed in the literature. And, in order to show
them, we utilize a recent mathematical result on three-dimensional manifold by Thurston and
others. This is the second purpose of this talk, because this mathematical stuff seems to be
significant for future investigation in the line described above. It might also serves as a useful
tool in other fields in general relativity. Finally we comment on how one can define global

dynamics in such spatially homogeneous models.

2. Locally Homogeneous Spaces and Bianchi Cosmology

Let us begin with a general description of homogeneity in geometry. A Riemannian manifold
(M,g) is defined to be locally homogeneous, if for every pair of points z,y € M there are
neighborhoods U and V of z and y, for which there exists a local isometry mapping (U, z)

to (V,y). Such local isometries do not, in general, extend to isometries of the whole (M, g).



Let us denote the full group of isometries of (M, g) by Isom(M,g). Then if for every pair of
points z,y € M there is an isometry ® € Isom(M, g) such that &(z) =y, that is, Isom(M, g)
acts transitively on M, one says that (M, g) is (globally) homogeneous. Since it is a standard
fact that a simply-connected and locally homogeneous manifold is globally homogeneous, the
universal covering space (ﬁ ,§) of a locally homogeneous manifold (M, g) must be homogeneous.
For our convenience, we shall say that a homogeneous manifold (M, g) is simply homogeneous
if Isom(M,g) has a three-dimensional subgroup G, that acts simply-transitively on M. In
that case, we call the G, a homogeneity group. If the universal covering space of a locally
homogeneous manifold is simply homogeneous with a homogeneity group G, then we shall call

it a locally homogeneous manifold with a homogeneity group G,.

The usual Bianchi model starts with the following assumptions for spatial homogeneity. A
three-dimensional Lie group G, acts on a space-time as a group of isometries of the space-time,
such that each orbit is a spacelike hypersurface & on which G, acts simply-transitively. The
space-time considered is topologically a product space £ x R. We have a family of 3-manifolds
(Z,9(t)) for each t € R, where g is the spatial metric intrinsic to L. Then it follows that G,
acts simply-transitively on each (I, g(t)) as a group of isometries of (I, g(t)). In the above

terms, (X, g(t)) is simply homogeneous.

Such a Riemannian manifold is well understood in the context of Bianchi cosmology. (See
[6])[7] for references and complete information on the definitions and the notations below.)
Denote by Cf; (I,J,K = 1 ~ 3) the structure constant of the Lie algebra of G, with respect
to a certain basis {£}: [£,,¢;] = CII‘:, €+ Then there globally exists on M an invariant basis
{X,} which one can choose so that

(X, X ) = s X, 0
and its invariant dual basis {x!} which satisfies the Mauer-Cartan equation
dx' = % Cixx’ A x¥. (2)
The metric g on M can be expressed in terms of x/ as
ds’ =g, x"x’, (3)

where g, is a nonsingular constant matrix. Thus the Riemannian metric of a simply homo-

geneous manifold can be completely specified by the Lie algebra of G, and a constant matrix
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The three-dimensional real Lie algebras are completely classified into the well-known Bianchi
types. They are denoted as I, II, III, IV, V, VI(A), VII(A4), VIII and IX. Here VI(A) and
VII(A) are one-parameter families of algebras and III is isomorphic to VI(A = 1). They
are subdivided into class A and B according to whether the trace of the structure constant
a; = %C,JJ has a vanishing norm (67 aIaJ)’/2 or not. Class A consists of I, II, VI(0), VII(0),
VIII and IX, while the other types, IV, V, [II=VI(1), VI(A # 0), VII(A # 0) belong to class B.

For a given Bianchi Lie algebras I~IX, there exists a unique (up to a constant matrix g 1)
simply-connected Riemannian manifold M diffeomorphic to a simply-connected Lie group G
which is uniquely determined by the given algebra. G is then a group of isometries acting simply-
transitively on M. Therefore, for a simply-connected and simply homogeneous manifold with a
homogeneity group G;, its topology is determined by the Bianchi type of the Lie algebra of G,
while its metric is given by (3). Especially, M is diffeomorphic to either R? or $3 depending
on whether G, is of the type I~VIII or IX respectively.

However, it is not adequate for a general study of spatially homogeneous space-times to
restrict only on those simply homogeneous manifolds as spatial homogeneous sections. In
fact, when one can construct a compact manifold by identifying certain points in a simply
homogeneous manifold, it usually lowers the dimension of the group of isometries so that the
resulting manifold is not simply homogeneous any longer. For example, it can be shown that a
homogeneous spatial section in every class B Bianchi model cannot be simply homogeneous if it
is compact (see [13]{1] for it). More simple example which is easily understood and appealing to
one’s vision is given in the following drawing. They are a 3-torus (Fig. 1) and a “twisted” 3-torus
(Fig. 2). With a standard flat metric on each 3-manifold, the former is simply homogeneous
while the latter is not. Note that one can cut the twisted torus and glue two such cutted pieces
to obtain a torus (in other words, a torus is a double covering space of a twisted torus). 3-torus

is simply homogeneous, but the twisted 3-torus is not.

Therefore we should also include in our consideration a locally homogeneous manifold whose
universal covering space is simply homogeneous. More explicitly, we shall consider a wider
class of spatially homogeneous space-times as follows. A three-dimensional Lie group G, is
now assumed to act on the universal covering space of a space-time as a group of isometries,

such that each orbit is a spacelike hypersurface 5 on which G, acts simply-transitively. Then



X

Figure 1. A torus constructed by identifying three pairs of opposite faces of a cube which
is embedded in Euclidean space. Each pair is identified by one of three translations in the
direction z, y or z. (For example, see a letter “4” on the top and bottom faces identified
by z-translation.) Since it is clear that the three independent periodic translations are global
(continuous) isometries of the torus, it is a simply homogeneous space. In fact, Isom(M,g) is

isomorphic to S! x 8§ x S! x (discrete group) as a group.

X

Figure 2. A “twisted” torus constructed by identifying three pairs of opposite faces of a cube
in Euclidean space. The identification is the same as above except that one pair of opposite
faces is identified by a translation with a twist involved. In the figure, it is z-translation with a
half of full turn along z axis (see a letter “4” on the top and bottom faces identified by it). It can
be observed that only z-translation survives as a global (continuous) isometry of this twisted
torus. Therefore it is not a simply homogeneous space. In fact, Isom(M,g) is isomorphic to

S! x (discrete group) as a group.



G, acts simply-transitively on each Tasa group of isometries of £, so the underlying manifold
¥ is a locally homogeneous manifold with a homogeneity group G,. We will concentrate on
the study of T in the following, which is denoted by (M, g). Henceforth we assume that M is

closed.

Let us now study in general a locally homogeneous 3-manifold (M, g) with a homogeneity
group G,. Consider its universal covering space (H ,§) with a covering map p. A covering
transformation is a homeomorphism v: M — M such that poy = p. The set of covering
transformations is a group under composition, which is called a covering transformation group
[. Because in this case I' is a discrete subgroup of Isom(ﬁ ,9), acting freely and properly
discontinuously on M , M is isometric to the quotient space M JT. Thus in order to study M
one has to examine I' and M. M is, as shown above, simply homogeneous so that its structure is
determined by the homogeneity group G,. Note that G, is in general a subgroup of Isom(ﬁ v 9)
In what follows, we will classify all the possible geometries of (M, §) by employing a modern
viewpoint of “geometry” and show some relations between those geometries and the Bianchi
types. How one can choose I' to obtain a compact locally homogeneous manifold M = M /T

depends on each class of geometry.

3. Thurston’s Eight Geometries

In a modern approach, “geometry” can be viewed in the following way (see [8][9)(10], for
example). Suppose that X is a manifold and G is a group acting on X. G is assumed to act
transitively on X with compact point stabilizer (the isotropy subgroup of G at any point of X
is compact). Then a “geometry” is the pair (X, G) and the properties of X invariant under
the action of G. One can recover the ordinary viewpoint of differential geometry by finding a
G-invariant metric on X. (Its existence is guaranteed since G's stabilizer is compact at every
point. And as G acts transitively on X, the metric is complete.) In general, there would
be many different G-invariant metrics on X so that X can have a variety of properties. For
instance, as is easily seen from above, the universal covering (M, §) of a locally homogeneous

(M, g) and its isometry group Isom(ﬁ ,9) are an example of (X, G).

Thurston [9] classified all the three-dimensional geometries under the following restrictions.
In this classification, two geometries (X, G) and (X’,G') are defined to be equivalent if there
is a diffeomorphism of X with X’ which casts the action of G on X onto that of G' on X'.



First of all, X is assumed simply-connected for one can always study universal covering spaces
if necessary. Secondly, we restrict ourselves to the case that G is maximal. It means that when
two groups G, and G, such that G| C G, can both act on X, one should take G, as G. In
our consideration above, G = Isom(M, ) is maximal when one chooses § appropriately by
changing g, ; in the metric (3) so that the full isometry group Isom(ﬁ ,§) becomes maximum.
So, for example, (E3, R3) is out of ;:onsideration, where E® is the Euclidean space and R3
acts on it as translations. Rather, one should take the full isometry group of E3, namely the
three-dimensional Euclidean group E(3), as G. Finally, it is assumed that G has a subgroup
" which acts on X as a covering group so that X/T' becomes compact. Then the geometry is

said to admit a compact quotient. Now the Thurston’s theorem can be stated as follows:

Theorem. Any maximal and simply-connected three-dimensional geometry which admits a

compact quotient is equivalent to one of the eight geometries (X, IsomX) described below.

(i) X = 83, the spherical geometry. IsomX = SO(4).
(ii) X = E®, the Euclidean geometry. IsomX = E(3)*.
(iii) X = H3, the hyperbolic geometry. IsomX = PSL(Z‘, C).
(iv) X = §% x El. IsomX = (IsomS? x IsomE')*.
(v) X = H? x E'. IsomX = (IsomH? x IsomE!)*.

—

(vi) X = T,(H?), the universal covering space of unit tangent space of H 2. IsomX =
IsomH? x R.

(vii) X = Nil, the Heisenberg group.
(viii) X = Sol, a solvable three-dimensional Lie group.

Some remarks follow. Here IsomX means only orientation preserving isometries. I' should
be a discrete subgroup of this IsomX in order that X /T be orientable. The isometries cor-
responding to (vii) and (viii) are omitted. The dimension of IsomX is 6 for (i)~(iii), 4 for
(iv)~(vii), and 3 for (viii). Nil and Sol spaces are three-dimensional Lie groups whose Lie
algebra is of Bianchi type II and VI(0) respectively. Tl(~Hz) is equivalent to SE;R which can
be also regarded as the universal covering of the Lie group of Bianchi type VIII. Final remark
is that all the possibilities of a compact quotients are known for all the classes except the

hyperbolic geometry (iii). For complete information, the reader should refer to [9][10].



We would like to comment on how such a classification has a great significance in studying

topology of 3-manifold. Let us consider a three-dimensional manifold M which is assumed to

be orientable and compact without boundary for simplicity. M has no Riemannian metric a

priori. In order to examine the topology of M,

1. first decompose it into prime manifolds. Denoting the connected sum of two manifolds M
and M, by M #M,, then a 3-manifold is called prime if any expression M as M #M, .

implies M, or M, being homeomorphic to $%. (For example, S* and T° are prime

manifolds.) It is shown that M can be expressed as a finite connected sum of prime

manifolds and that the pieces of prime manifolds are unique.

2. Let us then consider prime manifolds M.

a. The fundamental group = (M) is a finite group. (e.g. 1rl(53) is trivial.) It is a

cojecture that such M admits a geometry modelled on S®. It should be mentioned

that this conjecture contains the famous Poincaré conjecture as-a corollary.

b. m,(M) is an infinite group. (e.g. 1rl(T3) is isometric to Z x Z x Z as a group.)

bl.

b2.

One class of such M admits a non-separating embedded 2-sphere in it. Since M
is prime, any separating 2-sphere (i.e. which separates M into two disconnected
pieces) bounds a 3-ball. Observe that S? x S! admits a non-sepafating 2-sphere.
M is said irreducible if it is prime and does not possess any non-separating
sphere. In fact, §2 x §! is the only example which is not irreducible. Clearly

52 x S! admits a geometric structure modelled on S% x E!.

Now remains the other class, namely, irreducible manifolds with infinite 1rl(M ).
Decompose it further into a finite number of smaller pieces by cutting M along
2-tori which are disjoint, two-sided incompressiblet . (In the special case that M
is a torus bundle of S! of a certain type, M itself admits Sol geometry without
doing this torus decomposition.) This decomposition is unique in a sense. The
resulting each piece is either a Seifert fiber space or a manifold with no embedded
incompressible torus within it (or sometimes both). A Seifert fiber space is a
3-manifold which is a union of disjoint circles S! in a particular way. All the

Seifert fiber spaces are divided into six classes of the eight geometries stated

1 A two-sided 2-surface N is said incompressible if every simple curve on N which bounds a 2-disk in M
with interior disjoint from N also bounds a 2-disk on N itself.



above, i.e. except H® and Sol, according to which geometries they admit. Thus
one has to consider an irreducible 3-manifold with no embedded incompressible
torus. If it belongs to a class called Haken manifolds® and is not a Sifert fiber
space, then it is a theorem that it possesses hyperbolic geometry H3. If it is not
a Haken manifold, it is a conjecture that such a manifold is a Sifert fiber space

or admits hyperbolic structure.

In summary, the Geometrization Conjecture asserts that any closed 3-manifold can be
decomposed into a finite number of pieces in a canonical way, each of which admits one of the
eight geometries. Since it can be shown that each of these geometric pieces admits one and
only one geometry and every topology of them is known except for H3. In order to study global
dynamics in gravity and to make clear the interplay between it and the topology of space or
space-time, one has to know what is the possible topology of 3-manifolds. The answer to this

question is given by this Geometrization Conjecture if its assertion is really the case.

4. Some Kinematical Properties of Closed Bianchi Models

Returning to our study of locally homogeneous maniff)lds, we recall that the homogeneity
group G, is assumed to be a subgroup of Isom(jl:f ,9) for any metric of the form (3). Since in
the Thurston’s classification G = Isom(l\? »g) must be maximal, G, is a subgroup of G which

belongs to one of the eight classes. From this we can deduce two interesting consequences.
(A) No anisotropic expansion is allowed for Bianchi model V with a closed spatial section.

Consider the universal covering space (17 ,g) of a closed spatial section that is a locally homoge-
neous spacelike hypersurface in Bianchi V space-time. Since (H ,9) is simply homogeneous, the
metric g is of the form (3). According to Milnor [11](Special Example 1.7), for the Lie algebra of
Bianchi type V, (JTJv ,§) is necessarily isometric to 2 maximally symmetric space with a negative
constant curvature of a certain magnitude, whatever one chooses as g g 0 (3). Equivalently,
(1\7 ,§) is always the hyperbolic geometry (iii) in the above classification. This fact means that
each locally homogeneous spacelike hypersurface in Bianchi V space-time is locally isometric
to a negative constant curvature space. But it does not immediately imply that anisotropic

expansion is impossible (e.g. it does not for Bianchi I model whose homogeneous spatial section

*+ A J-manifold is called a Haken manifold if it is prime and contains a two-sided incompressible 2-surface
which is not a 52,



is flat). For there possibly remains a continuous choice of the covering transformation group I'
for constructing M = M /T. In other words, we may have the freedom of “moduli” of a closed
manifold. However, no such freedom arises in this hyperbolic geometry due to the Mostow
rigidity theorem (see (8][9]). The theorem asserts that if two closed manifolds with hyperbolic
geometry are homeomorphic to each other, they are actually isometric to each other. So a
Bianchi V homogeneous universe is rigid allowing only a change of overall scale factor. Thus

the proposition was proved.

(B) Bianchi IV and VI(A4 # 0,1) with a closed spatial section does not exist.

The proof is easy. The homogeneity group must be a subgroup of one of the eight isometry
groups in the classification. However, it cannot be for the homogeneity group of Bianchi type
IV or VI(A # 0,1), as is explicitly shown by examining the Lie algebras of them and the above
eight classes. Therefore, no closed Bianchi IV and VI(A4 # 0,1) exists.

We can proceed further and study the correspondence between the Bianchi models and the
Thurston’s eight geometries. The result is summarized in Table 1 and Table 2. This can be
obtained from the consideration of the proof of the Thurston’s classification theorem [10]. From
the table it can be seen that a closed locally homogeneous manifold with the homogeneity group
VII (A # 0) admits the hyperbolic geometry as the case of V so that no anisotropic expansion is
admitted also for this type VII(A # 0). Also note that the geometry of (iv) S% x E! corresponds

to the Kantowski-Sachs model, rather than the Bianchi models considered here.

Essentially the same correspondence between the Thurston’s classification and the Bianchi
types was presented by Fagundes [12]. The fact (B) was also mentioned in it. However,
it was assumed that the covering transformation group T is always a discrete subgroup of
the homogeneity group G,. (This is not true in general in our assumptions, and causes a
substantial difference for class B models as is explained below.) And our approach here is a
group theoretical one which clarifies the relation among G,, T and the eight maximal groups in
the Thurston’s classification. Such an approach is also useful in studying under what conditions
class B Bianchi models can be compactified. (An interested reader can find it in [1].) Related
is a more general study of Bianchi cosmology with compact spatial sections, by Ashtekar and
Samuel {13]. The compactification problem is connected to the absence of general scheme of
variational principle [14] where one imposes the spatial homogeneity before taking variation of

an action.



Bianchi Type Geometry

Class A

I R3
E*x R
B3

II Heisenberg G
Nil

VI(0) Sol=E(1,1)

VII(0) E(2)
E3

VIII SL.R
SL;R

IX SU(2)~ §?
SU(2) ~ §3
S3

30(2)
50(3)

€
50(2)

e

20(3)
50(2)
e30(2)
50(3)

Isotropy Bianchi Type Geometry Isotropy

Class B

II=VI(1) H*x E' S0(2)
SL,R 50(2)

v —

\ H3 50(3)

VI(A#0,]) —

VII(A+£0) H? S0(3)

Table 1: Geometry of the compactified Bianchi type

Thurston Type Bianchi Type
Class A Class B

B3 I, VII(0)

H? V, VII(A#0)

g3 IX

St x Bt — —

H? x B! I=VI(1)

SI;R VIII II=VI(1)

Nil I

Sol VI(0)

Table 2: The correspondence between the Thurston type and the Bianchi type



5. Concluding Remark

Finally we would like to briefly comment on how such study of closed Bianchi models can

be used to investigate global dynamics in (3+1)-dimensional gravity.

As explained in the first section, it should be first made clear what is global dynamics in
(3+1)-dimension. Since, in contrast such a (2+1)-dimensional gravity model, one has to treat
both the local gravitaional-wave modes and global modes which are nonlinearly coupled with
each other, one has no apparrent way to extract the global dynamics out of the full (3+1)-
dimensional gravity. As a first step to understand it, we restricted our attention to spatially
homogeneous space-times. As we have observed, each spatially homogeneous space is a locally
homogeneous manifold which can be recovered from its universal covering space as a quotient
space. This is in the same situation as one could define “moduli” of a closed 2-manifold.
Especially one can describe how global modes can be incorporated and expressed into the
dynamical variable, i.e. spatial 3-metric by examining the construction of a closed 3-manifold
out of the universal covering space in a concrete way. But since the universal covering space
is not always a maximally symmetric space as we saw in Thurston’s theorem, it is necessary
to distinguish anisotropy from the freedom of moduli now. Then, one can define moduli of
a locally homogeneous 3-manifold by examining the possible quotient spaces of each type of
unijversal covering spaces (this was recently studied by another group [15]). It is noted that this
viewpoint concentrates only on the geometry of spatial sections so that it may need a certain

modification in the space-time construction.

As the next step, one can take into account a deviation from the locally homogeneity
presented here. One thing is to include a small fluctuation of local gravitational-wave modes
in an appropriate perturbation scheme, or to examine the coupling of the global modes with
some matter fields. Another is to consider “topological inhomogeneity”. The Geometrization
Conjecture described earlier tells us that any compact 3-manifold has a geometric decomposition
into pieces, each element of which admits one geometry of the eight classes. Then it is an
interesting problem what is a possible geometry on a manifold that is a connected-sum of such
prime manifolds and how one can glue two locally homogeneous geometries of different types .

along a junction surface in between.
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1 Introduction

In the standard cosmology we normally assume homogeneity and isotropy of the Uni-
verse. On the basis of this cosmological principle the Friecdmann-Robertson-Walker metric
is constructed and Big-Bang Cosmology has been successfully developed in the theory of
Einstein gravity [1].

The homogeneous but anisotropic universe models, the Bianchi [2, 3] and the Kantowski-
Sachs-Nariai universes [4, 5], have been studied from various motivations [6]. For example,
people have attempted to clarify the properties of the initial singularity and also attacked
the basic problem why the present Universe looks so isotropic by studying the time evo-
lution of the homogeneous anisotropic models [7].

In the present paper we shall study compact (locally) homogeneous universes. The
investigation of compact universes may be important when we are interested in the pos-
sibility of our Universe to have a non-trivial topology or its topology change. The former
aspect was studied by Fang and Sato [8] and by Ellis [9] in a special model of torus uni-
verse . For the latter we note that the famous theorem by Geroch [10] on topology change
assumes the compactness of spatial manifold.

It will be more intriguing to study the geometries of compact locally homogeneous
universes when we investigate minisuperspace models in quantum gravity. There it is
necessary to make explicit the global degrees of freedom corresponding to deformation of
the compact universes.

Our strategy to attack compact locally homogeneous space M is the following. First we
consider the universal covering space M of M and specify a group G which transitively
acts on M. The metric is constructed so that it is invariant under the group G. So the
universal covering space M is endowed with a homégeneous metric. Second we compactify
the geometry (M ,IsomM ) by identifying the points in M by a discrete subgroup T of
the isometry group IsomM which acts on M freely. This gives us a compact locally
homogeneous space M = M /T [11].

The degrees of freedom consist of the ones for the universal cover and the Teichmiiller

deformations variables which parametrize the discrete subgroup I'. For example, Bianchi



IX universe has two degrees of freedom with no Teichmiiller parameters. As we shall
see in the subsequent sections, Bianchi VI(0) universe has one universal cover degree of
freedom and one Teichmiiller parameter.

Ashtekar and Samuel [12] have also investigated global degrees of freedom of compact
locally homogencous universes. However, they restricted their definition of locally ho-
mogeneous space so that the discrete group I is a subgroup of a 3-dimensional group ,
the Bianchi group. Qur definition of locally homogeneous space seems more natural and
general and coincides with the one adopted by mathematicians. For example, they have
excluded compact hyperbolic spaces by restricting I to a subgroup of the Bianchi V group
in the Bianchi V model with the Poincaré metric. In fact the Bianchi V model can be
compactified by using the largest isometry group PSL(2, C) D Bianchi V group.

We shall appeal to Thurston’s theorem [11] and its slight generalization to enumerate
all possible geometries (M, IsomM) which admit compact quotients.

Fagundes [13] also realized the relationship between the Thurston.and the Bianchi type
geometries but did not classify topologies nor considered the global degrees of freedom.

Here we present a complete classification of the topologies of compact locally homo-
geneous universes and study the global degrees of freedom by looking for possible defor-
mations of the universal covering spaces and explicitly constructing the representations
of the fundamental group m;(M) in the isometry group IsomM except for the compact

hyperbolic 3-manifolds.

2 Compact locally homogeneous models

A spacetime is represented by a pair (M, g,), where )M is a 4-manifold and g,y is
a Lorentzian 4-metric. We 3+1 decompose the spacetime, i.e. we think of a spacetime
(M, gas) as the time evolution of a Riemannian 3-metric hq(t) on a 3-manifold M. We

require that this decomposition is synchronous; the lapse function is unity and the shift

vector vanishes. Then the 4-metric can be written as

Gab = —(dt)a(dt)b + hap. (l)



We say a spacetime (M, hqy(t)) to be spatially locally homogeneous if h,p(t) for every t is
locally homogeneous. We say (M, has(t)) to be spatially compact if M is compact.
Let (M, hqs(t)) be a spatially compact locally homogeneous spacetime. Let us separate

the conformal factor a(t) from hg(t) as
hab(t) = a?(t)has(t) (2)

and think of A, as the dynamical variables. Therefore, the physical degrees of freedom
are the numbers needed to parametrize h,;. Hereafter we omit the bar of A, and simply

denote it by hg;.

As mentioned in the previous section, M has a unique universal cover M up to diffeo-
morphisms, and (M, ha(t)) is metrically diffeomorphic to (M, Aq(t))/T(t) where Ay is
homogeneous and T is a discrete subgroup of Isom(M, hg). All I'(t) must be isomorphic

for all M/T'(t) to have the same topology.

The degrees of freedom can be separated into two categories, those of the universal
cover and the Teichmiiller parameters. Thinking of a manifold M as a quotient M/T'
of a simply connected homogeneous manifold M naturally leads us to separating the
degrees of freedom of h,; into those of 71,,;, and those of T', i.e. those of the universal cover
(M . }_1,,5) and the Teichmiiller parameters. Here we should recall that there is freedom of
diffeomorphisms in giving a universal cover M of M. If ¢ is an orientation preserving
diffeomorphism from M onto itself, (M , fz.,,,) /T and (JVI , ¢J~1¢b) /¢oLod~! are diffeomorphic
metrically and have the same orientation. This means that different pairs of 71.,5 and [
may give the same manifold (M, hg). To avoid this uninteresting freedom emerged from
diffeomorphisms, and recalling that we have already put aside the conformal factor, we
define the degrees of freedom of the universal covering manifold as those of

{homogeneous metrics on a simply connected manifold which admit compact quotients}
{orientation preserving diffeomorphisms} {global conformal transformations} )

(3
We say that there are degrees of freedom of the universal cover if these equivalence classes

can be smoothly deformed.

Once a metric on the universal cover M is fixed, the isometry group of M is determined.

Remaining deformations of the manifold M are the Teichmiiller deformations.



3 Locally homogeneous spaces

A metric on a manifold M is said to be (globally) homogeneous if the isometry group
acts transitively on M, i.e. for any points p,g € M there exists an isotnetry which takes
p into ¢. A metric on a manifold M is said to be locally homogeneous if for any points
P, q € M there exist neighborhoods U,V and an isometry (U,p) — (V, q). The difference
between global and local homogeneity is that in the latter case the isometry may not be

globally defined.

Any locally homogeneous manifold is diffeomorphic to the quotient of a simply con-
nected homogeneous manifold by a discrete subgroup of the isometry group. Conversely,
a quotient space of a homogeneous Riemannian manifold by an appropriate subgroup of
the isometry group is locally homogeneous. X/T is a locally homogeneous Riemannian
manifold if I is a discrete subgroup of Isom.X and acts freely on X. So our task is to find
out all possible discrete subgroups I' of IsomX which acts freely on X and makes X/T

compact.

4 Geometries and Thurston’s theorem

In order to state precisely and take advantage of the result obtained in the recent
study in 3-manifolds, we use the term ‘geometry’ in a specific sense. A geometry is
a pair (X,G) where X is a manifold and G is a group acting transitively on X with
compact point stabilizers. Geometries (X, G) and (X', G’) are equivalent if there is a
diffeomorphism ¢ : X — X’ with ¢ : g+ ¢ogo¢~! being an isomorphism from G onto
G'. Let us call ¢ an equivalence map. A geometry (X,G’) is a subgeometry of (X, G)if
G' is a subgroup of G. A geometry is mazimal if it is not a proper subgeometry of any

geometries.

Although a geometry (X,G) is merely a pair of a manifold X and a group G and
has nothing to do with Riemannian metrics on X itself, one can discuss homogeneous
Riemannian metrics from the viewpoint of geometries. This is because one can construct

a complete homogeneous metric from a geometry (X, G) as follows.



We quote the theorem of Thurston which is of great use in classifying all compact,

locally homogeneous spaces.

THEOREM 1 (Thurston) Any mazimal, simply connected 3-dimensional geometry which
admits a compact quotient is equivalent to the geometry (X, Isom.X) where X is one of
E®, H3, 83, 2 x R, H? x R, SL(2,R), Nil, or Sol.

A brief proof can be found in Scott [11]. Each X in the theorem is a manifold with a
certain ‘standard’ Riemannian metric on it. E", H", and S™ denotes the 3-dimensional
Euclidean, Hyperbolic, and spherical manifolds,respectively, and SI(2, R), Ni], and Solare
3-dimensional Lie groups with an invariant Riemannian metrics and correspond to Bianchi

VIII, 11, and VI(0) spaces, respectively.

Note that this Riemannian metric on X is not of essential importance in the theorem
but is simply useful to express a group G in a geometry (X, G) as IsomX and the action
of G on X. For example, (E?, IsomE?) means the same as (R?,10(3)).

5 The Teichmiiller space

Let M be a simply connected homogeneous Riemannian manifold with its metric has
fixed. Let M be a quotient of M by a discrete subgroup ' of IsomM. The Teichmiiller
space of M is the space of all smooth deformations of M irrespective of its size, keeping
the condition that M is a quotient of (M , fzab).

Let us put it more precisely. Let Rep(M) denote the space of all discrete and faithful
representations p : Ty (M) — Isom* M. Let us call a diffeomorphism ¢ : M — M a global
conformal isometry if ¢.7nab = const.- hg. Let us dc;.ﬁne a relation ~ in Rep(M) such that

p ~ ¢ holds if there exists a global conformal isometry ¢ of M connected to the identity
which gives p'(a) = ¢ o p(a) o ¢~! for any a € m(M). It defines an equivalence relation in
Rep(M). We define the Teichmauller space as

Teich(M) = Rep(M)/ ~ . (4)



The Teichmiiller space is a manifold. The numbers used to parametrize the Teichmiiller
space are called the Teichmiiller parameters.

If two representations p and p' correspond to the same point in Teich(M), the above
global conformal isometry ¢ on M induces a well-defined global conformal isometry from
M /T onto M/T", where T' = p(m(M)) and I = p/(m(M)). This is because for any v € T
there exists unique o/ € I such that oy = 7' o¢, which guarantees that ¢(M /D)= MJT.

The Teichmiiller parameters constitute a subset of dynamical variables of locally ho-

mogeneous universes.

6 Results

In this section we expalin the procedure to get all universal covers and the one to get
compact quotients. The whole results are shown in the tables in [14].

Theorem 1 tells us all simply connected mazimal geometries which admits compact
quotients. But we want to consider a general locally ﬁomogeneous metric on a compact
manifold, so the requirement that the geometry be maximal is too strong for our pur-
pose. For example, Bianchi IX space does not satisfy this requirement; the geometry
(S3(topologically), SU(2)) is a subgeometry of the isotropic 3-sphere (53, SO(4)). In gen-
eral, if (X, G') is a subgeometry of (X, G) then G’ is a subgroup of G and acts transitively
on X. It follows that the the stabilizer of G’ is a subgroup of that of G. In other words, a

metric on a maximal geometry is more isotropic than those on any of its subgeometries.

Theorem 1 says nothing about nonmaximal geometries which have compact quotients,
Nevertheless we can show that we have only to consider subgeometries of the above
eight geometries. Let (X, G’) be a simply connected 3-geometry which admits a compact
quotient. Then there is a discrete freely acting subgroup I of G’ which makes X/I”
compact. Let (X, G) be a maximal geometry which has (X, G’) as its subgeometry. Then
I’ is a subgroup of G which makes X/I” compact, so our maximal, simply connected
geometry (X, G) admits compact quotients. By Theorem 1 our maximal geometry (X, G)
is one of the eight Thurston geometries, which proves that (X,G’) is a subgeometry of

one of the eight Thurston geometries.



If a Riemannian manifold (M , 71.,5) admits compact quotients then the geometry (M, Isom* M )
is a subgeometry of the eight Thurston maximal geometries. Our strategy is to consider
all subgeometries (M, G) of the Thurston geometries and G-invariant metrics on M. Here
we must recall that G may not be the isometry group itself , i.e. it may be the case that
the G-invariant metric on M admits a larger isometry group than G. So it is necessary to
find the whole Isom* M in each case. Of course, if (M, hy) and (M, i%,) are in the same

equivalence class then Isom*(M, ko) and Isom* (M, k!,) are isomorphic.

We adopt the following procedure to find all equivalence classes of homogeneous metrics
on a simply connected manifold which admit compact quotients and their isometry groups:

1)List up all subgeometries (M, G) of each of the Thurston geometries.

2)For each subgeometry (M, G), form a general G-invariant Riemannian metric 2/, on
M.

3)Transform the metric into a certain simple ‘representative metric’ hq by diffeomor-
phisms together with global conformal transformations and find the equivalence classes.

4)Find the isometry group of (M, hg). .
We thus get all possible universal covers of locally homogeneous Riemannian manifolds.
Logically speaking, equivalence classes thus found do not necessarily have to admit com-
pact quotients. So we have another task.

5)Make sure whether the equivalence class really admits compact quotients. The
Bianchi classification (2, 3] is of great use in carrying out the procedure given above,
for it is the classification of all simply connected 3-dimensional Lie groups up to isomor-
phisms.

We emphasize that the Thurston geometries are the maximal 3-dimensional geometries
which give compact quotients while the BKSN geometries are the minimal 3-dimensional
geometries.

We found that the number U of degrees of freedom of the universal cover is
U =5 — dim(Aut(AlgG)) (%)

for the Bianchi geometries with dim(Aut(AlgG))> 5, and U = 0 for those with dim(Aut(AlgG))<
5.



The equivalence classes (3) which give the universal covers of all orientable compact

locally homogeneous Riemannian manifolds is given as below.

THEOREM 2 Any simply connected 3-dimensional Riemannian manifold which admits
a compact guotient is one of the types in Table 2 up to orientation preserving diffeomor-

phism and global conformal transformation.

The number of the degrees of freedom is the number of parameters in the representative
metric. The degrees of freedom are also characterized by free parameters appearing in

the relative ratios of the nonvanishing principal sectional curvatures. These ratios can be
chosen to be dynamical variables.

All compact locally homogeneous Riemannian manifold and their Teichmiiller spaces
are obtained by the following procedure.

1)Pick up a Thurston geometry X (say, E®) and list up all compact locally homogeneous
manifolds M = X/I' modeled on (X, Isom*X).

2)List up all types (say, Type al and Type a2) of universal covers M which is subge-
ometries of (X, Isom*X).

3)For each universal cover type, check whether X/T can be modeled on (M, IsomM)
or not by checking whether I is a subgroup of IsomM.

4)Find their Teichmiiller spaces.

Note that a representation p : m,(M) — Isom*M is determined by the images of the
fixed generators of m(M).

For the universal covers which have L and R types, we show the results of L type; the
representations in R type can be obtained in the same way.

The compact quotients and their dynamical degrees of freedom are in [14]. The total
degrees of freedom F is the sum of the degrees of freedom U of the universal cover and

the dimension T of the Teichmiller space.

7 Conclusion and discussions

We have worked out the classification of topologies of compact locally homogeneous

universes except for hyperbolic 3-manifolds studying possible fundamental groups for each



Thurston geometry.

We have extracted the global degrees of freedom which consist of two parts. One is the
degrees of freedom of the universal covers, while the other is the Teichmuller deforma-
tions which parametrize the discrete subgroup I of the isometry group. The Teichmiiller
parameters are obtained by constructing the representation of the fundamental group in
the isometry group.

Intuitively the difference of the two degrees of freedom is the following, Assuming
the homogeneity of the Universe one can locally determine the universal cover degrees of
freedom by measuring all ratios of the sectional curvatures. In a sense these are interpreted
as local anisotropies. In order to know the Teichmiiller parameters, on the other hand,
we probably have to send many space explorers, who are supposed to measure the times
taken by all possible round trips around non-trivial loops, etc.. In short, the Teichmiilller
parameters are global quantities.

We have not discussed the dynamics of our compact universes in the present work. In
a separate paper we will study the Einstein gravity for a compact locally homogeneous
universes and give a list of supermetrics in terms of the global variables discussed in this
paper.

Thurston conjectured that all possible topologies of compact 3-manifolds can be clas-
sified considering connected sums and torus sums of the prime manifolds which are given
by the compact quotients of the eight geometries [15]. This may lead us to a speculation
that at least some aspects of general inhomogeneous universe are understood by studying
combinations of the compact locally homogeneous spaces.

It will be also interesting to investigate quantum field theory in the compact locally
homogeneous spaces which have non-trivial topologies. We naturally expect the Cashmir
effects, etc.. ’

We hope our present work furnishes a mathematical base on which a new field of

cosmology develops.
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Scalar fields are indispensable constituents in most of the theoretical models
of unification. Among them a dilaton-like (or JBD-like) field and those corre-
sponding to the radii of compactified spaces are of special interest, because they
have the “nonminimal gravitational couplings,” and couple also to the fields of
other elementary particles, particularly through their kinetic terms.

It is also noticed that the scalar fields can be ‘spatially uniform depending
only on the cosmic time ¢, as solutions of the cosmological equations for the
Robertson-Walker universe. As a consequence, the gravitational constant as
well as other coupling constants should vary with ¢, resulting eventually in the
time-variability of particle masses.

The gravitational constant is unique in that it can be made truly constant by
applying a conformal transformation which diagonalizes the mixing between the
scalar fields and the metric field [1]). But other “constants” (coupling constants
and masses) are still left time-dependent in general. This can be seen most easily
in a gauge field A‘{ with the kinetic term which is usually multiplied by a function
Z(¢) of the scalar field ¢(t). To make the kinetic term canonical one applies
a “wave-function renormalization” Al — Z=1/24!, resulting in redefining the
gauge coupling constant e — Z~'/?¢, which now depends on the cosmic time {.
Notice that the combination /=g g*?g** which appears in the kinetic term is
conformally invariant by itself in 4 dimensions.

Of course one may expect that the scalar field had settled in one of the
potential minima in a sufficiently early epoch leaving no observable trace of
time-variation in late times. In this scenario, however, the value of the potential
minimum plays a role of a cosmological constant, hence creating another source
of the problem. It was pointed out that at least one scalar field should keep



growing to infinity to avoid the cosmological constant problem [2]. In fact most
of the models of “a decaying cosmological constant” the scalar field behaves
generically like 1, as the cosmological constant itself decreases like 12 [1,3].
If, as in many models, the factor Z is a power function of the scalar field, the
coupling constants would vary like powers of 1, predicting é/e ~ ¢!, which
would give values of the order of 10~%y~! at the present epoch.

On the experimental side, however, the reported analyses give upper bounds
which are already below the level of 1072%~! by several orders of magnitude
[4,5]. The most stringent is the one for the strong coupling constant squared:
&, /a, $107%y"" as obtained from the depletion of Sm isotope in Oklo [5]. It
should be admitted that none of the analyses are entirely free from uncertainties;
one might suspect some coincidence or conspiracy. It is nevertheless remarkable
that no evidence has ever emerged for time-dependences. It seems that we face
a serious conflict between the observation and the theoretical models if we add
a requirement that the cosmological constant pause no problem.

We suggest a promising remedy based on our finding that the cosmological
equations allow an interesting solution of the scalar field; it may stay nearly
constant for some time [1,6]. If one can adjust the parameters such that this
time interval extends to the present epoch, no observable time-variability would
ensue though the scalar field would have varied considerably in the remote past
(probably earlier than the time of nucleosynthesis) and should vary in the future.

This behavior is a consequence of a delicate competition between the force
due. to the potential and the frictional force provided by the cosmological ex-
pansion [6]. This is essentially the same as “relaxation oscillation,” a typical
nonlinear effect, known by many examples in our daily experience.

The effect seems to be a rather common feature of an exponential potential of
the scalar field, as will appear naturally in the model of a decaying cosmological
constant {1]. Details will be reported in a separate paper.
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ABSTRACT

We clarify the relation between 2-form Einstein gravity and its topological
version. The physical space of the topological version is contained in that of the
Einstein gravity. Moreover a new vector field is introduced into 2-form Einstein
gravity to restore the large symmetry of its topological version. The wave function

of the universe is obtained for each model.
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1. Introduction

Topological gravity is expected to elucidate the global (topological) aspects
of gravity. In Ref.[1], a topological version of four dimensional Einstein gravity
is proposed. This topological version is obtained by modifying an alternative
formulation of gravity enlightened by Capovilla et al.[2], in which anti-self-dual
2-forms are used as fundamental variables. This formulation, which we call 2-
form Einstein gravity, leads to the canonical formalism discovered by Ashtekar
(3]. Investigating the relation between 2-form Einstein gravity and its topological
version, we found that, a unique quantum state in the latter turns out to be one
of the physical states in the former. This physical state is interpreted as the wave

funvtion of the universe.

Moreover in Ref.[4], a new vector field is introduced into 2-form Einstein
gravity to restore the large symmetry of its topological version. We also obtain

the wave function of the universe in the new system.

2. Symmetries

Einstein Gravity

The action of (Euclidean) 2-form Einstein gravity is given in terms of 2-
form £F and SU(2) spin connection 1-form w* in the presence of a cosmological

constant A,

44
S= /'2"AR——'2"A2;+§¢HEkAE', (1)

where R, = dw, + (w x w),, ¥,, is a symmetric trace-free Lagrange multiplier
field, and « is a constant parameter. The SU(2) indices 1,3, k,--- =1,2,3, in the
fields imply that they transform under the chiral local-Lorentz representation



n
(1,0) of SU(2)xSU(2) [5]. In this formulation, the metric g,,, is defined as
] 1,
gww=_ﬁehﬁ%,whx%ﬂ, g = det(g,,) - (2)

Using this definition, we find that the action (1) is equivalent to the usual
Einstein-Hilbert action [2,6].

Since the action (1) describes general relativity, it is invariant under the
local-Lorentz transformation and diffeomnorphism,

6&=D%+Qw, §2h = [3,6,) + £, 2%, (3)

where L ¢ is the Lie derivative with respect to a vector field £#, and the local-
Lorentz transformation corresponds to the SU(2) gauge transformation with a

parameter 85.

Topological Gravity

From the equations of motion, the multiplier field :/)“ is determined to be
proportional to the anti-self-dual part of the Weyl tensor, which governs the
modes of the gravitational wave. Therefore the topological version of the theory
is obtained by simply dropping the last term in the action (1), that is, by setting
a=0 (1]):

s_=/ﬂAR—£2M2. (4)
a=0 k24 k
In this case, a new symmetry generated by a parameter 1-form 9{‘ emerges in

addition to diffeomorphism and the local-Lorentz (with 9(’,‘ ) symmetries,

A
&f:D%+T#f, §TF = 2T x 8,)F + Do} . (5)

Here diffeomorphism with a vector field £# is implicitly included in the above

local-Lorentz and 0{‘- transformations as we can see by setting 8f = ¢*w¥ and

11 We use the notation for the SU(2) indices, F'- G = F'G' and (F x G)' = €j1 FG*, where
€;j) is the structure constant of SU(2).



0"“ = 26Tk u The theory turns out to be on-shell reducible in the sense that the
transformation laws (5) are invariant, modulo the equations of motion, under

60F = -%e{; ,  66% = Det . (6)

This means that not all of the parameters in (5) are independent.

New System

From the view point of the topological gravity, one can see that the large §%-
symmetry is partially broken in Einstein gravity leaving only diffeomorphism and
local-Lorentz symmetries intact and, as a result, the modes of i:he gravitational
wave are induced. The obstruction for the 85-symmetry is the last term in the
action (1). We can restore the symmetry by introducing a vector field (1-form)
n* in the last term as follows,

o o - - - A
5/'/,“2"/\2' = -2-/¢v“2k/\zl, EkEEk-—an+ﬁ(qxr’)".(7)

This makes our new system invariant under the 8-transformation in (5) with

én* = 0{‘, together with diffeomorphism and the local-Lorentz transformation:

éuw* = DOE + Eewk + %9? . 6Zh=(3, + 2" + Déf .

(8)
b° = [n, )" + Len* +67 .

They are all independent and hence there is no reducibility in the system. It is
easily shown that the new system is equivalent to Einstein gravity, by choosing
the gauge condition, n* = 0, for the Gf-sym.metry. Indeed physical degrees of

freedom of the new system is 2: the modes of the gravitational wave.



3. Physical states

Topological Gravity

In the topological case (a = 0), the action (4) becomes in canonical form:
S=/dt/d3m[d:a-B“—wo-qo—Eau-qS“]. ()

The canonical variables are w¥ and their conjugate momenta Bf = e“”‘E{,‘c, which
are the spatial components of the spin connection w* and the 2-form Z*. Vary-
ing (9) with respect to their time components wf and TF), we get two sets of

constraints,
— a a — abe A [
¢, =-DBE~0, ¢8=2(c Rfc—-ﬁBk)zO. (10)

The Poisson brackets among them are given by

{‘Pg(x)v Soj(y)} =-2 €ijk ﬂok(x) 53(){ - Y) [} {¢?(x)1 ¢Jb(Y)} =0 ) (11)
(0,30, 630} = ~2 €5, 1) (x—y).

All the constraints are of first class and the algebra is closed. The constraints
¢, and 4} generate the local-Lorentz and g%- transformations in (5) respectively.
In this canonical formulation, the on-shell reducibility (6) appears as a linear

dependence of the constraints,

s A
Dodt— 59, = 0. (12)

In the Dirac approach for quantization, one has to impose quantum conditions
to choose physical wave functional ¥. In the topological case with A # 0, these



conditions can be expressed using the constraints (10) in w? representation,
Py (W) 8/60)¥(w) = iD,(6/b6wg)¥(w) =

$3(w, 6/6w)¥(w) = 2(e™ R, + il"—z 6/6wg)¥(w)=0. 9

Since these equations are linear differential equations, we can easily solve them

to obtain the unique functional of w¥,

\Il(w)=exp(%lc_s), I .= / Pzeu, - (B, + (w xw)), (14)

where I ,_. is the Chern-Simons term on the three-dimensional boundary. This
type of solution is also found in a different version of topological gravity {7).
The functional ¥(w) is the wave function of the universe in four dimensional
(Euclidean) topological gravity. It can also be considered as the BRST invariant

vacuum, because it is the unique representative annihilated by the BRST operator
[1].

Einstein Gravity

On the other hand in the Einstein gravity (a # 0), we have to solve the
constraint equations, which can be considered as five linear equations for nine
Lagrange multipliers =X, [2]. The solution is expressed with four arbitrary vari-
ables N (shift vector) and N (lapse density of weight —1),

1 C
ok = -3 €4 [N Bf + N(B® x B)] . (15)

Substituting this result for the canonical action (9), we now have four constraints,
together with , in (10), which are associated with the Lagrange multipliers N°
and N,

1 b -
Co = 4 ach ¢ = Rnb ~0, (16)
_1 a b c a b R A B€) ==
C = 6,(B" x BY)-¢°= (B* x BY) - (R, — 526, B)~ 0.

We can identify ¢,1Cs and C with the independent first class constraints cor-



responding to the generators of the local-Lorentz transformation, spatial diffeo-

morphism and temporal diffeomorphism respectively.

An important observation is that all the constraints in the Einstein Gravity
are linear combinations of those in the topological version. Especially four diffeo-
morphism generators C; and C in (16) are linearly dependent on nine ‘new-type’
generators ¢f in (10). We see that ¥(w) in (14) becomes a special solution of all
quantum constraints in the Einstein gravity if the operator ordering is arranged
as in (16). This ordering is consistent with the commutation relations among
the constraint operators [8]. This ¥(w) is nothing but the Euclidean version of
the wave functional discovered by Kodama [9,10). Therefore the physical space
of the topological gravity is contained in that of the Einstein gravity. .

New System

With the vector field 5*, the action becomes in canonical form,
S= / dt / d*zli, - B® —wy @~ Ty ¢° ~ 20, S B (17)

where Bk = e“b"i)fc is the spatial components of the 2-form £¥. Again we have
to solve the constraint equation derived by varying (17) with respect to 1. The
solution is expressed by using four arbitrary variables N* and X,
ok 1 bhe ab o Hoyky _ Lok Eola
a0 = _Z eabc[N Bk + ],Y(B x B ) ]- 5‘% - (wo X na) + §Dan0 . (18)

Substituting this result for the canonical action (17), we get four sets of con-
straints:

@, = —DoBf —2(n, x "n*)¥ x 0,

- A

dt =2 ("Ry ~ 5B - 2"} =0,

(19)
IZI,_I = Z Gabc

1 - N -
H= g e, (B x BY). (§ +27%) = 0.

B (4 +2"r°) =0,

The fields 7#{ are the conjugate momenta of the spatial components of n¥. Next



we redefine the constraint H, as

1

H,=2H, +w, ¢ — Ee“,m(f?" - B%.¢°. (20)

The new constraint H, generates the spatial diffeomorphism. The non-zero Pois-

son brackets among the constraints are given by

{‘ﬁ[g]]aﬁa[yz]} =-2 ‘43[(91 X 92)] 1 {tﬁ[g],&"[hal] ==2 &a[(g x k)]

(HIN], HIMTY = L]~ GlEowq) + 58, H(B° — B, =

where ¢[g,] = fd:’a:gfgbk, #°lhy) = [ dPzhige Lo = Be. B”(M@bly - NoM).
All the constraints in the system are of first class. Among them, ¢, and $2 are
identified with the generators of the local-Lorentz and 0{‘- transformations in (8)

respectively. The constraint 7 generates temporal diffeomorphism while H, the

spatial one.

As in the previous cases, quantum conditions are

2,00 8/60,m,8[En)¥(o,m) =0, $i(w, /6,7, 6/8n)¥(w,m) =0,

(22)
Hy(w,8/60,1,8/50)B(w,n) =0, H(w, §/6w,n,6/6n)¥(w,n) =0.
These linear differential equations are solved as the following;:
6i A
Y(w,n) = expllo_s +B(Io_s — GIxew)):
Ijow = / dBzeey, - R, - % / d3zeey, - Dyn. (23)

4 A 2 3 be
+3 (7 [ e,y xn),

where f is a constant parameter. If we choose it as —%i, the wave function of

the Universe becomes
W(w,m) = explily,,). (24)

This solution is suitable for both A = 0 and A # 0 cases. The detailed behavior
of this functional will be reported in Ref.[11].



4, Summary

We have clarified the relation between the 2-form Einstein gravity and its
topological version. The physical space of the topological version is contained in

that of the Einstein gravity.

Moreover the vector field n* is introduced into 2-form Einstein gravity to
restore the large symmetry of its topological version. Since this new model has
the modes of the gravitational wave, it is equivalent to the Einstein gravity. It
may be a good strategy in quantum gravity to stydy models with large symmetry,
in addition to local Lorentz and diffeomorphisms.

We have obtained the wave function of the universe for each model.
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Quantum Fluctuation of Black Hole Horizons
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Abstract

In a classical Schwarzschild spacetime, two horizons, which are the appar-
ent horizon and the event horizon, are degenerate. We also discussed the
separation of black hole horizons using the canonical quantization of gravity.
We introduce local mass and expansion of null geodesics as quantum oper-
ators. Hence, we can obtain the wave function of black hole interior as a
mass eigenstate by using minisurperspace model. From this wave function,
one can consider the quantum trajectory which represents a black hole ge-
ometry where the apparent horizon is located inside a event horizon by the
uncertainty principle of geometry.

1 Introduction

Since the discovery of Hawking radiation, many works have been devoted to
the analysis of the quantum evaporation of black holes. In particular, the
problem of final fates of evaporating black holes has been much debated. In
Hawking's semiclassical calculation, the emitted radiation was found to be
exactly thermal. Then, if a black hole evaporates completely, an initially
pure quantum state must evolve to a mixed state. This is known as the
information loss paradox. As was emphasized by Preskill[1], it is very difficult
to resolve the serious puzzle in quantum mechanics and general relativity.
Before reaching the final resolution, we must develop quantum theories of
the black hole geometry.



A possible way of treating the horizon as a quantum system is to apply
the Wheeler-DeWitt equation([2] to spherically symmetric spacetime. The
Wheeler-DeWitt approach will be viable as a quantum theory of a horizon[3].
To advance this prospect, in this paper, we want to clarify the quantum
feature of the horizon from the Wheeler-DeWitt equation.

We will consider static states of a spherically symmetric black hole instead
of its evolutionary states. In classical relativity the apparent horizon is always
located just on the event horizon. The degeneracy of the two horizons can be
removed owing to quantum fluctuation of the metric. This was first pointed
out by York(4] under the semiclassical approximation. The purpose of our
work is to give a Wheeler-DeWitt description for the interesting quantum
phenomenon.

For a vacuum, spherically symmetric spacetime we can choose the metric
dependent on a radial coordinate r only. Note that if we are concerned with
the interior geometry of black holes, the coordinate r plays the role of a time
coordinate, and we have a time slicing on the homogeneous spatial hypersur-
face r =const. Because of this homogeneity, one can use the minisuperspace
model which is used in quantum cosmology.

In Sec.2 we construct the canonical variables from the metric for the in-
terior geometry and write down the Hamiltonian. The spherically symmetric
metric permits us to introduce the locally-defined gravitational mass[5] and
the expansion of null geodesics, which are represented by the canonical vari-
ables. The mass is required to be conserved for the spherically symmetric
Ricci flat system, and the expansion of null geodesics is used to determine the
position of the apparent horizon. Our key idea is to treat these geometrical
quantities as quantum-mechanical operators. Nambu and Sasaki[6] discussed
the WKB solutions of the Wheeler-DeWitt equation by using classical tra-
jectories in the minisuperspace. We specify the exact solution representing
the interior of the static hole as an eigenstate of the mass operator. In Sec.3
we discussed the WKB approximation for our wave function, then one can
obtain the classical trajectory and classify the minisuperspace into classically
allowed region and forbidden region. From the wave function, in Sec.4, we
discuss the quantum separation of the apparent and event horizons. In the
minisuperspace of the metric we find the classically forbidden region between
the two horizons, where the amplitude of the wave function is exponentially
suppressed. We arrive at the conclusion that the Wheeler-DeWitt equation
can give a plausible wave function to model quantum fluctuations of the



horizon geometry.

2 Canonical properties and Wave Function for Black Hole

We follow the standard canonical formulation of general relativity. Let us
consider the extended Schwarzschild spacetime with the metric written in
the form

2
ds? = —%de + udX? + v(d6? + sin® 8d¢?), (2.1)

where a is the lapse function. T can be identical with the Schwarzschild
spherical coordinate r which works as a time-coordinate inside the black
hole, and under the gauge condition a = 1 the metric given by

=—-1, v=T? 2.2
u=—5 v (2.2)
becomes independent of the coordinate X. In this paper we will treat the
metric fluctuations of black hole interior by assuming the Kantowski-Sachs
minisuperspace model such that a = a(T),u = u(T),v = v(T).
From the Einstein Lagrangian of this system, one can obtain the canonical
momenta conjugate to the variables u and v
Vi V u uv
Iy=——- o = ——(— 4+ —). .

N 4Ga’ i 4G a+av) (23)
where the dots denote derivatives with respect to the coordinate T, and the
length V = [dX is assumed to be a finite constant for our convention, and
the Hamiltonian written in the form

H = ua+yv-L
4Ga ull2 V2

= 22 |-nm+ 3

v % 3G (2:4)

gives the dynamical constraint H = 0.
To quantize the system, we make the usual substitutions for the momenta

h o ho

n, - -1'5-1;, I, = 7%, (2'5)



Then the quantum state of the black hole interior is represented by the wave
function ¥(u,v) on the minisuperspace, which satisfies the Wheeler-DeWitt
equation

4Ga
H‘I’ - 7‘ (—nunu +

pnu 1-p V2
ul,u P, ) ¥ =0. (2.6)

2v T 8G?
For the spherically symmetric metric satisfying the vacuum Einstein equa-

tions, we have a locally defined gravitational mass M as a dynamical con-
stant. If we use the canonical momenta (2.3), M has the form

2GuPIl u!-PI, o'/?

which is weakly commutable with the Hamiltonian as follows,
2{GhIl,

This commutation relation means physical state ¥ can be obtained as a mass
eigenstate;
MY =mV¥, (2.9)

where m is the mass eigenvalue. The Wheeler-DeWitt equation HY = 0
supplemented by the condition (2.9) of the mass eigenstate gives the unique

exact solution "
—_ (s

where IV is an arbitrary constant, and

v
2= ——u(v- 12 .
oh u(v — 2Gmu!/?) (2.11)

The choice of the Hankel function of the first class H{! is due to the require-
ment of the black hole state[6].

Inside the black hole there exists a trapped region bounded by the ap-
parent horizon, which is defined in terms of the expansion of null geodesics.
Following Carter(7], we consider a null-vector decomposition of the metric
(2.1),

Gab = =By — Bola + Yatn (212)



with

M, =4%6a=0, 1°8,=~1,
%Yab = B%Yab = 0, (2.13)

where I* and §° are the vector fields tangent to outgoing and incoming null
rays respectively. In spherical symmetric system, these two null-vectors are
necessarily tangent to null geodesics. Then, from the expansions for outgoing
and ingoing null rays given by

Oy =18+ °lay,  0_ = B2 +1°0°Bap. (2.14)
and we obtain the expansion operator

8G2uPIl, u' "I,

T (2.15)

0_0.'. =
The substituting of Eq.(2.3) leads to the relation of expansion operator and

mass operator. Y

6.0, = _.% (1 - 271-/2—) (2.16)
In classical geometry, both 8, and 8_ become negative in the trapped region,
and 6, = 0 on the apparent horizon. The event horizon will be the null
surface u = 0, where in the Schwarzschild spacetime the expansion 8, also
vanishes. In the quantum versions, we must treat .8, as an operator. Then
the trapped region will mean that ¥-4.6,¥ > 0, and the apparent horizon
will be located at the surface ¥°0_8,¥ = 0 where ¥ corresponds to mass
eigenstate (2.10). In the minisuperspace with the coordinates u and v, we
require the positions of the apparent and event horizons to be v*/2 = 2Gm
and u = 0 respectively. The wave function (2.10) will describe the quantum
separation of the two horizons.

3 WKB approximation and minisuperspace
WKB approximation for wave function is given by

¥ ~ el (3.1)



So, Az corresponds to the classical action of this system.
hz=§ (3.2)

This wave function is same as the one given by Nambu and Sasaki up to
its coefficient. One can obtain the trajectories of classical solutions on the
(u, v*/?)-plane.

From the Hamilton-Jacobi’s theory, we can obtain the classical trajectory

2Gm)

=7 (3.3)

u=—c(1-—

where ¢ is the constant of integration. This solution is independent of the
choice of the laps function a. One can easily see that the constant of inte-
gration c must be positive from the other classical equations. The classical
trajectories with different value of ¢ represent only one physical trajectory,
since the constant of integration ¢ represents the degree of freedom of the
scale transformation of the coordinate X.

M,=0
Claesical Trajectory Figl.
The classification of
(u,v)-plane. Classical
action is real in the
region A and C, and
imaginary in B and D.
| The interior of hole is
represented by u>0.

Redon A
(AH)

u=0 —> (EH)
R R

—
T
T

—e g 12 vz 2Gm

:] classically allowed region
: classically forbidden region

Using whether the classical action S (3.2) is real or imaginary, one can
classify the (u, v)-plane into 4-regions as follows (Fig.1):
~region A:  u>0and v'/? <1y,
-region B:  u>0aid v'/? >,
‘regionC: wu<Oandv'?<r,
-regionD:  u<0and v'/?>r,



where r, = 2Gm. Wave function has oscillating behavior in the region A
and D, and has exponential dumping in B and C. However in the region C
and D, 3 + 1 formalism becomes broken down, i.e. the T-direction changes
to spacelike from timelike, and the X-direction changes to timelike from
spacelike. So, we restrict our consideration to the region A and B.

The region A where the classical action S is real (and then 112 > 0) is
classically allowed region and the region B where the classical action S is
imaginary (and then is [12 < 0) is classically forbidden region. We note
that ¥ > 0 in both of the region A and B. It is reasonable to interpret that
the existence of the region B suggests that a quantum geometrical region is
constructed outside the apparent horizon v!/? = r, of a black hole due to the
uncertainty principle. So, we consider the quantum fluctuation of black hole
geometry in the next section.

4 Separation of Apparent Horizon and Event Horizons

In the Sec.3, it is shown that classical trajectories (3.3) are only in the re-
gion A. We must note that each trajectory (line) in (u,v)-plane represents
a geometry of black hole. In the region A, the expansion of null geodesics
8_8, is positive, so the part of a trajectory in region A represents a trapped
region of its geometry (since incoming expansion 6_ has a negative value in
the black hole case). In the region B, 8,.0_ become negative since the canon-
ical momentum I1, become imaginary. Then, the part of a trajectory in the
region B represents an untrapped region of its geometry nevertheless u > 0.
So, the point v!/2 = r, on a trajectory is the apparent horizon of a hole as
mentioned in Sec.2.

Event horizon is null surface which is the locus of outgoing future-directed
null geodesics rays that never manage to reach arbitrarily large distances from
the hole. So, the location of the event horizon of a trajectory in (u, v)-plane
(which represents a black hole geometry) can be easily obtained as a null
surface. The point u(T) = 0 on a trajectory (this coincide a T = const.
surface) is a null surface of its geometry. Then, this point on a trajectory
represents the event horizon of its geometry. '

But this point u = 0 cannot be the apparent horizon if v'/2 # r, as men-
tioned in Sec.2 since expansion of null geodesics ¥~8_8,¥ does not vanish.
At classical level, these two points (u = 0 and v'/? = r,) coincide, which can
be regarded as a degeneracy. However, quantum behavior of the expansion



(2.15) become different from classical one due to the uncertainty principle
Au - All, ~ A (4.1)

By this unceYtainty principle, ¥°0,0_¥ cannot become exactly zero due to
the factor uII2. So, one cannot define the position of apparent horizon by
u = 0 at quantum level.

Classical Tralectory : Fig2.

p The classical trajectory
and a quantum trajectory
in (u,v)-plane. A quantum
trajectory represents a
geometry in which the
apparent horizon and the
event horizon are separated.

— . classical trajectory
————: quantum trajectory

If the quantum trajectory passing through the region B (Fig.2) exist, it
represents the geometry in which the area of the apparent horizon and the
area of the event horizon is different. The existence of such a trajectory is
possible since the amplitude of wave function is not exact zero in classically
forbidden region. Furthermore, from the spacetime metric (2.1), one can eas-
ily see that the apparent horizon v'/2 = rg in the quantum trajectory passing
through the region B is spacelike, since a v(T')!/? = const. surface coincide a
T = const. surface by our minisuperspace model and u > 0 in the regions A
and B. Thus one can see the violation of the horizons’ degeneracy from our
wave function. It is reasonable to consider that this quantum separation of
the apparent and the event horizon has something to do with York’s one.

Unfortunately, the precise quantum mechanical amplitude of this separa-
tion (the amplitude of a quantum trajectory passing through the region B)
cannot be given by our wave function due to the ambiguity of our. model, for
example, it is about divergence factor V', or about the normalization of our



wave function and so on. We cannot obtain more interpretation of our wave
function. So, the analysis of a different model are necessary to make sure
that our interpretations of the wave function of a black hole are correct.

5 Conclusion and Discussion

We remark our conclusion in this paper. We consider the state of the ge-
ometry of a Schwarzschild black hole interior as a preliminary work toward
the understanding of the quantum state of evaporating black hole and then
consider the quantum behavior of static black hole geometry. Then we can
obtain the exact solution of Wheeler-DeWitt equation describe the interior
of black hole as the mass eigenstate by minisuperspace model. The WKB
approximation of this wave function corresponds to one which was obtained
by Nambu and Sasaki up to its coefficient. And we discussed the possibility
of the spontaneous separation of the apparent and the event horizon of a
hole. Then, we can conclude from our wave function that the apparent and
event horizon can be separate spontaneously due to the uncertainty principle
of gravity. Unfortunately, precise quantum mechanical amplitude cannot be
obtained due to our ambiguity of our model. To make sure whether our in-
terpretations of our wave function are physically correct or not, the analysis
by the other models are necessary.

In our model, 3 + 1 formalism is broken in the regions where u < 0
(i.e. the region C and D in Fig.2) since the T = const. surface change
from spacelike hypersurface to timelike. However, these regions seem also
describe the exterior of the event horizon, since the classical action is real in
the region D and the classical trajectory (3.3) which can be obtained from our
wave function represents Schwarzschild metric. If one stands at the opposite
point of view, one can interpret that our wave function predicts the fact that
there are compact region and its outside region with boundary u = 0 in a
space and these two regions are expressed by single coordinate whose time
coordinate T in the compact region change to space coordinate in its outside
region. Furthermore, if our wave function describes the exterior of black hole,
one can consider the quantum trajectory passing through C, and then one
can casily see that the apparcnt horizon in this trajectory is v'/2 = r, and this
apparent horizon become timelike since v(T) = const. surface coincide and
u < 0 in the regions C and D (Fig2). This quantum trajectory represents the
quantum geometry analogous to York’s argument rather than the trajectory



passing through the region B.

However, as we mentioned above, 3 + 1 formalism becomes broken down
in these regions, and T-direction changes to spacelike from timelike in them,
and we have no answer for the problem that what influences appear by this
breaking down of canonical formalism. So, we have no answer for the question
that our wave function really describes the exterior of black hole or not.
To answer this problem, one must consider the other model and this work
remains as a future one.
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Pathological divergence in perturbative
quantum field theory
in spacetime with accelerated expansion
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Abstract : We show that perturbative quantum field theory may break down in curved
spacetime with accelerated expansion[l]. We consider A¢P-theory (p = 3,4,5,--) with
curvature coupling €R¢* in de Sitter space and perturbatively evaluate the n-point
function. We find the vertex-integral over all spaceltime points diverges for a certain
range of the mass and curvature coupling. In particular, for Ag%-theory with £ =0, the
divergence arises for m*/H? < 27/16 where H~! is the de Sitter radius. Then we show
that the same type of divergence arises quite generally in a spacetime with accelerated
expansion. Since it is caused by unboundedly accelerated expansion of spacetime, we

call it the superexpansionary divergence.

In spite of its importance, it is generally very difficult to formulate a quantum field
theory in cirved spacetime in a rigorous and traclable manner. An exception is that in
de Sitter spacetime. Thanks to the maximal symmetry characterized by the de Sitter
group, O(1, 4), various exact formulas can be used to quantize a field[2,3,4]. Furthermore
it is cosmologically realistic in the sense that our universe is believed to have undergone
an inflationary expanding phase at the early stage which can be well approximated by the
de Sitter spacetime. In the present paper we consider a self-interacting scalar field in the
de Sitter background. Calculating the connected part of an n-point spatial correlation
function, we show that a new type of pathological divergence may appear in the theory,
which is of purely geometrical origin. We also note that this is a common phenomenon
in spacetime with accelerated expansion and discuss its implications to the inflationary

cosmology. Plank units with ¢ = & = G =1 are used throughout.



Let us start with a free scalar field with the following Lagrangian,
1
L =~5 (0" budw +m’¢* + (RS, (1)

where R is the scalar curvature and £ is a constant. For the moment we focus on the de

Sitter spacetime with the metric

ds® = —dt® + 2ltgp?® = (TI-I{UT(—(]”- + de?). (2)

where H is a constant and 75 is the con- n=-0
formal time defined by e#! = 1/(—Hp) for
—00 < 7 < 0. The above coordinate repre-
sents only the upper-half region of the max-
imally extended de Sitter spacetime. The
entire spacetime including the lower-half re- n=-c0
gion may also be expressed in terms of the

above coordinates by simply extending the n=+0

domain of  to —oc0 < 1/(—7) < oo (i.e.,
0 <75 <ooand —o0 <7 <0;see Fig. 1). Fig.1

In the coordinates given by Eq.(2), the scalar field ¢(z) can easily be quantized as

3 1. : ]
) = [ s [oetmane®™ + eitniae =] )

Here aj, and aL are the annihilation and creation operators, respectively, and () is
the corresponding positive frequency mode {unction for an appropriately chosen vacuum
state. For the Euclidean vacuum state, which respects the full de Sitter invariance, the

mode function ¢.(y) is given by

wi(n) = e‘”—;—m—n)"’ze‘"”zHﬁ’)(—k’)); (—o0 < 1/(~7) < o),

o= (o)

where H" is a Hankel function of the first kind. We choose the arbitrary phase factor

(4)




e as § = —ix /4 for which the equality vi(—1) = @i(3)* is satisfied [4). The Feynman

propagator has been explicitly calculated in the literature (2,3,5,6],

NOW we introduce the following self-interaction:

Following the general prescription for perturbative quantum field theory, we can calcu-
late n-point Green functions. Here let us focus on the equal-time limit of the n-point
expectation value with respect to an in-vacuum, |0,in) “{7). This limit gives the n-point
spatial correlation function which is physically observable in principle. We first consider

the 4-point function, then the connected part is given by the following expression in the

first-order perturbation:

Ga)(ml) T2,T3, L4, ’l)

6
= 2A1mUd“y\/—g(y)A(y,xl)A(y,we)A(y,xs)A(yawa) ; ©

where z; = (7,2i), ¥y = (7, ¥), Ay, zi) = (0|T¢(y)$(x)|0), which is the free Feynman
propagator, and the integration with respect to vertex y ranges the whole region in the

past of 7. Using Eqgs. (3), we obtain the formal expression for the connected 4-point

function as

Glgy(x1, %2, X3, X4377)

2)\1111[H[ / (f;f)s](, )%(ZL ) expli ZL 2;)

=1 (7)

xH[ch(n) /d1)+/d7) 41—[[‘/’1('1)]

where we have assumed that 7 is in the upper-half region, or —co < 7 < 0. In the above

expression, the #’-integration may diverge depending on the values of mass and/or the

* In the de Sitter spacetime with a de Sitter invariant vacuum state, the in-vacuum is equal
to the out-vacuum. Ilence the common formalism for transition amplitudes gives the same
result.



nonminimal coupling constant §. Namely, in the limit ' — 0, vi(y') has power-law
depndence of 3, vi(n') o |7'|, where ¢ := % — v, while the volume element \/—g(7/)
expands in proportion to |7'|~%. Therefore the integration with respect to 7' diverges in
the limit o — 0, il —4 + 4¢c < -1, i.e.,, ¢ < 3/4.

In the above we have considered the 4-point function in the first order of perturba-
tion. This type of divergence, however, occurs in all orders of perturbation. As is clear
from the above arguments, this divergence is caused by the expansion of the spatial
volume at past infinity. Hence we call it the superezpansionary divergence[6). Thus we
conclude that the conventional perturbative expansion is not well-defined in de Sitter
spacetime for a scalar field with ¢ £ 3/4, or

2
m 27
— + 12 £ —.
TR T ®
Note that this feature is not limited to A¢*-theory. For A¢?-theory (p = 3,4,5,---), the
above constraint is generalized to m2/H? 4 126 < 9(p — 1)/p%.

Since the superexpansionary divergence is of spacetime origin, one expects that it
also arises in other spacetimes with unboundedly accelerated expansion. To see this, let
us consider a spacetime filled with a matter with the equation of state : P = —(n +
3)/(n + 1)p, where n( > 0) is a constant, p and P denote density and pressure of
the matter, respectively. Assuming the spatially closed Friedmann-Robertson-Walker

metric, one can solve the Einstein equation to find

a 1 1

(IS' = E?.EW(—‘IT- + ‘lai), (9)

where a := n/(n + 1), H, is a constant and do3 is the metric on three-dimensional unit
sphere. In the limit ar — £x/2, the scale factor a is related to the proper cosmic time,
which is defined by dt = dr/a, as a  t'*". In this sense one may regard this spacetime

as power-law background. In the limit » — oo, this reduce to the de Sitter spacetime.

We consider a nonminimally coupled scalar field with the Lagrangian (1), in this

spacetime. Then the field can be quantized using the harmonics on S3 [2,6]). In the



massless case, mode functions can be solved analytically. In terms of their asymptotic

behavior at a7 — +7/2 we find that the superexpansionary divergence appears if

\/l_(sg-l)(a“)<2+a_1(4-a)_

q a? 2« p\ «

(10)

For a massive scalar field, it is difficult to analytically solve the equation of molion for
any mode. However, the existence of superexpansionary divergence depends only on the
asymptotic behavior of the mode function at ar — /2, where we can find analytic
expression. The superexpansionary divergence is absent as long as p > 3 for a massive
field in this spacetime. This is interpreted as follows. In the power law background, the
Hubble parameter hecomes smaller and smaller as spacetime expands, and consequently

the scalar field becomes relatively more and more massive.

Let us now briefly discuss cosmological implications of the superexpansionary diver-
gence. As long as only in-vacuum expectation values are concerned, this divergence ap-
parently comes from the unbounded expansion of spatial volume at past infinity. Hence,
if we take an expanding phase of the spacetime only, e.g., the upper half region of de
Sitter space in Fig.1, the divergence does notl appear in Eq. (7), because 5'-integration
runs only —oo < 3’ < 5. Since this is usually the case of inflationary cosmology, the
superexpansionary divergence should not cause any difficulty in evaluating various ex-
pectation values of quantwn fluctuations. Ilowever, since the de Sitter invariance of
the expectation values is explicitly broken in this case even for a massive scalar field,
it becomes quite unclear whether expectation values thus calculated at, say, time 7 are
really independent of the portion of spacetime considered, as n — —0. For example, for
a certain class of inflationary models, the relevant part of de Sitter space is that covered
by 0 < 7 < 7/2 of the spatially closed metric, Eq. (9) with a = 1, and the résulting
expectation values for this case may differ from those calculated for the part covered by
—oo < 7 < 0 of the spatially flat metric. Although this issue remains to be solved, in
connection with it we note that for a ficld massive enough to avoid the superexpansionary
divergence, the vacuum expectation values for the maximally extended de Sitter space

and those for the upper half of it have qualitatively very different asymptotic forms.



In any case, it is very interesting if the global spacetime structure should qualitatively
affect the behavior of quantities such as spatial correlation functions. Observational

implications surely deserve further study.

We do not claim that interacting quantum field theory does not exist in spacetime
with accelerated expansion. In conclusion, It is the conventional interaction picture with

Jree asymptolic states at future and past infinity that fails.
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Unification of Gravity, Gauge and Higgs Fields
by Confined Quantum Fields

Toshiki Isse

Department of Physics Osaka Universily

1 Effective action for scalar field

We first discuss classical dynamics of free fields that are contained in a sub-
space V, of an N+4 dimensional flat space V. A metric of V is 545=(-1,1,...,1)
(a,8=0,1,...,N + 3). We regard V, as a neighborhood of a four dimensional
submanifold M arbitrarily embedded into V. In other words, we assume an exis-
tence of some physical objectg (we call it template of spacetime) which confines
quantized free fields inside the neighborhood of M. In the case of spin 1/2 fields,
the system is shown to be described by an infinite number of fields in M, inter-
acting with gravity (g,.), SO(N) gauge fields (4,) and an N-plet of scalar fields
(¢°). The fields g, Agand ¢° are determined from embedding functions of M
and correspond respectively to the induced metrig, the normal connection and
the extrinsic curvature of M. In this talk, we study low energy effective theory
of the system. Investigating quantum effects caused by the massive modes of the
fields we will show that Einstein-SO(N)-Yang-Mills-Higgs theory is induced as a
low energy effective theory of the system. The fields ¢* will be shown to behave

as Higgs fields.

We first study classical dynamics of a free massless scalar field that is con-
tained in the neighborhood V, of M. The Neumann boundary condition is im-
posed on a boundary of V,. The action of the system is described by

«50D*(2) 8D(2)
9z« OZP

Sscatar|D, X = /dZN+4(—7) + constant), (1.1)
V.

The exact definition of V, will be given shortly. We find that the appropriate

coordinates to describe V, are given by the curvilinear coordinates (z,, %), where



z,(p =0,1,2,3) are the coordinates tangent to M and ¢*( a = 1,...,N) are the

ones normal to M. The line element of V is written in the new coordinates,

3 N
ds?= 3 gz c)detde® + 3 dedet. (1.2)

By=0 a=1

We can choose ¢® = 0 on the manifold M, so that z,(u = 0,1,2,3) can be
regarded as the coordinates of M. Using the new coordinates, we define the
neighborhood V, as a region that satisfies |¢®| < I/2, (a = 1,...,N). We can
always find the above coordinates if all focal points lie outside the neighborhood
of M. In order to satisfy the above condition, M has to be embedded so that
the smallest focal length d(X) is larger than £/2. In the new coordinates, the

Lagrangian of the system is written by

SucutrlD, X] = [ v/=g(X(@da*ds™ (X ()1 + )22 (25 2B )

V.
0D*(z,¢) 0D(z,s)
acb dgh

+(1+ 4"

+ constant),
(1.3a)
where g,,(X(z)) is the induced metric of M and the correction terms Aand A’

are order of magnitude (1}

ASA = 0O(—=— (1.3b)

d(X))

We neglect the correction terms Aand A’ as we are interested only in the limit
2/d(X) — 0. We will discuss the physical meaning of the limit later. Then we

decompose the scalar field into a Fourier series with respect to ¢?,
D(z*,¢®) = -2 Z D(z*,n)exp(i2xn? - ¢*/1). (1.4)

We substitute the above expression into the action (1.3a) and integrate over the



¢® variables, neglecting Aand A'. We find

scalar[D X]
/ BRI (0@ g SN D m ) (1
+ constant),
where
2 2mn .,
M} = (SR (1.6)

The mass of n(# 0) modes are very large, when ! is very small. The massive
modes cannot be excited classically in low energy physics. We find, however, that
quantum effects caused by the massive modes are not negligible. The massive
modes of the fields are influenced by the configuration of the submanifold, which
itself provides the gravity. It is therefore natural to expect that the quantum
effects caused by the massive modes generate dynamics of the gravity. Such
an idea was first introduced by Sakharov and Zeldovich [2]{3]. The effective
Lagrangian of the system is obtained by path integrating all massive modes. We
write the effective Lagrangian of the system as '

0 0
Lﬁola, ff = L£e),,o__mode ff + v/ —g(z)constant, (1.7)

where Li f)f(g) is given as follows,

LY, = ; iTr In[~V,V* + M,)
n#0

=5 Lgf;),(n).
n#0

(1.8)

As the gravitational fields are background fields and D is a bilinear field,

it is sufficient to compute one-loop effective action of mode n ; L((?f(n) We



evaluate Lg(})f(n) by using a heat kernel technique developed by De-Witt and
Schwinger{4](5],
00 gl/ze-iM:s 0

. \rds
Za,(zs) o (1.9)

(0) =3 g _°
chf(n) =1 A (4ﬂ'is)2+€,2 e

Here we used a dimensional regularization n=4+e, where n is taken to be the
dimension of the submanifold M. a, are the De-Witt Schwinger coefficients.

Carrying out the s integration we obtain

1/2 & 2 —r+24¢/2
(0 _9g _o_ 2My9 2
Lfin) = @ gl‘(r 2-¢/2)(F)’n ar. (1.10)
The mode sum of the effective action can be calculated by using Epstein zeta
functions;

o0

sw(an,.anis)= ) o Z (arma)? +- - (annn))*7, (1.11)

ny=—0c0 nN=—00

sn(s) =¢n(l,...,1;8) (1.12),

where the prime indicates that we should omit the term for which all n; = 0. The
()

final expression for L, i is

©® _ ;o (T(N/2+42)xn(N +4)  T(N/2+ 1)sn(N +2)
Les = V9(X(2) ( T N/2+2pd 2axNzr2 g R

1 R? Ruw\pR“W\p _ R#v le N i

1
72 2 [hi der t
87r25[72 + 180 780 ] (21r) e[hzgher order terms)
(1.13)
where higher order terms are given by the following finite terms,
ra i D(r)ecn (2 — )(me)2aras (1.14)
(4r)? =~ o r+2- .

It is known that ¢y(s) is convergent when s > N and that it has simple poles at
s = N,N —1,...,1[7]. Therefore the coefficients ¢p and a) are finite while a, (
[(N +5)/2] 2r 22 ) are divergent as ¢ — 0.



2 Effective action for spinor flelds

In this section we discuss the spinor case. The action of free spinor fields

contained in the neighborhood V, of M is,

YB(Z) + constant]. (2.1)

o1 = §j d
Swnrl®X] = 3 [ dZ* GBI 5z - 5
V.

As in the case of the scalar fields we write the action in the coordinates z,,¢°.
Then we decompose the spinor fields into a Fourier series with respect to ¢® and

integrate over ¢® in the limit £/d(X) — 0. We find the action in the limit;

Sapinor[q)s X]

- [ VR (b TED - e
’ .
127n® - e

+ S(z,n) " — ®(z,n) + constant },

¢ (2,n) 9z*| _, ( )

where $(z#,n) are Fourier components of the spinor fields and

3
N+ Ozh

Mz)= ) 5%

a=0

re, (2.3)

<=0

We have to perform a local transformation on the fields ®(z,n)to make fields

transforming as spinors on M. The transformation is given as follows
B(z,n) = ¥(z,n) = p7}(e(2))®(z,n), (2.4)

where e(z) is an SO(1,N+3) matrix field on M and p is a spinor representation
of e(z). The field e(z) is defined by putting N+4 column vectors ei(z) (i=0,...,
N+3) on M successively

e(z) = [eo(x)...es(2)es(z)...e34 8 (2)] . (2.5)

Here ep(x), ..., e3(2) are orthonormal vectors (in V') tangent to M and e4(z),...,

e3+~N{(x) are othonormal vectors normal to M [8]. The action (2.2) is written in



terms of ¥(z,n)
Sapinor[q’a X]

= / v/—g(z)dz* (i Z \il(a:,n)['y”(:z)e,, + imy|¥(z,n) + constant) , (2.6)
M n

where
9= oot ulreepael e el (o
0 mle(2)) = NZT e, 242 (2.7
Afi(e(z) = Ni: e AN 210
my = 2R (2.7¢)

¢

We showed in Ref.[1] that w, and A, are identified as a spin connection and an
SO(N) gauge field respectively and that ¥(z,n) transforms as a 2l¥/2-plet of
Dirac spinors on M. A local Lorentz ( a gauge ) transformation corresponds to
a transformation of the orthonormal vectors eg(z),...,e3(z) ( e4(z), ..., €34+ ¥ (Z)).
The fields w, and A, are determined by the embedding functions of M modulo
the Local Lorentz and the gauge transformations. Note that w, and A, are not
independent and that they are both nontrivial connections. In addition to the

action (2.1) we consider the following surface term ,

d @

Ssurjacc / dZN+4h‘I)I‘°(aZa + W),

(2.8)

where h is an arbitrary constant. Following the same procedure as discussed

above, we find that the surface term (2.8) induces a simple Yukawa interaction



and an N-plet of scalar fields,

Ssurj'ace = /d$4 vV —g(:z:)h\fl(m,n) A¥(z,n). (2'9)
M ’
where
B = ¢°rite, (2.10)
3
$° = ¢+ (2.11)
1=0

The field ¢:‘3+“ is called extrinsic curvature of M and is given by e(xz) as

N43 ad+a
¢:‘§+a = Z [e™Y(z )]1 ?.[_e_%"):]”_“_ (2.12)
a=0

We find that the final expression for the action in the limit £/d(X) — 0 is

Sspinor [Qg X)

= [ V=a@iat] B, (2) 9+ b B = ma)¥(z,m)+comstan],
M  (213)

As in the case of the scalar, an effective Lagrangmn of the system is obtained by

path integrating all massive modes,

Lﬁ!’:l) eff = Lgleﬁ)—mode S',fz) + v —g(z)constant, (2.'14)

where

LYP = =3 iTrnfiy"Vy + (b p - ma)]
n#0
=Y Ll (n).
n#Q

(2.15)



The effective action is written as

LD = /G (s + (R + ca?)
Ng R? R, R*" _ 7Rm~\PR"W\p

- (47:)25[5 T 360
2
- mtrF”yF’“’ + 2h2(v“¢)a(vu¢)n + 2h4(¢2)2
X 2 (2.16)
+ §h2¢>2R] + ?[higer order terms} ).
Here
2NpT(N/2 4+ 2)sp(N + 4)
= e (2.17a)
NpeD(N/2 4+ 1) (N +2)
2= 2anNi2+? (2.17%)
2
¢y = L+ 2/NINFT(N/2 + V(N +2)h (2.17c)

/242 !

and |higer order terms] represent finite contributions from !/ 2)(r 23)
3 Interpretation of effective action

In quantum field theory divergent terms are renormalized by redefining cou-
pling constants and fields. We cannot, however, remove the divergent terms in
eq.(1.17) and eq.(2.16) by usual renormalization prescription; coupling constants
to be renormalized do not exist in our original Lagrangians (1.1),(2.1). Is it
a difficulty in our theory? The answer is no. The theory we developed here
is nothing but a free field theory restricted in a finite region V, of the embed-
ding space V. Therefore we must obtain some reasonable physical results from
€q.(1.17) and eq.(2.16). We will propose a possible effective Lagrangian which
describe quantum fluctuation of the system. We would like to search for a phys-

ically reasonable effective Lagrangian by the following method. We assume that



there exist finite physical fields denoted by Xo(z), ¥(z,0) and D(z,0), which
are defined respectively by rescaling the original fields

X°(z) = e~ M2 X(z) (3.1a)
U(z,0) = (Np/672) 2k e~ ¥ (2, 0) (3.1b)
D(z,0) = (Np/67°)/ 2k pe=*2 D(z,0). (3.1c)

where «, and «p are arbitrary constants. The parameters A, A,, and Ap are
introduced as powers of ¢ multiplying the original fields. In other words, we
regard X%(z), ¥(z,0) and D(z,0) as divergent fields. Eq. (3.1a) implies

gu(X(2)) = €~A§FV(X’(I)) (3.2)

e:‘ = e"VZéL. (3.3)

Consider a corresponding system that consists of both spinor fields and N scalar
fields. Taking into account the fact that the fields X%(z), ¥(z,0) and D(z,0)
are finite, we factorize a leading divergent coefficient as an overall factor of the
effective Lagrangian of this system. For example, when A = 2 ( Ap = (1 -
A)/2,2p = (1 = 31/2)/2 ), the effective action is written as

“ZN
Do F pphus (3.4)

Legr = 6n2e eSS



Here Le if is a finite Lagrangian of the physical fields,

h
Ly
Ng . .
= V=3l )" 8,0"*)(z,0)8" D*(*)(z,0)
A=1
— U(z,0)(i7"V, + £o8°T* 1) ¥ (2,0) + contant + 161rGR (3.5)
dim SO(N) (¢) (c)uv 2 o
Fyuy Fie 200 PR
- ~———-(V¢)+——¢ "(¢)——
; 4;:,', # 8&2
3 Npg 1R Np RuRW  4Ng  _ Ry, R
el Pt CR T R D )
where
1 T(N/2+2)n(N +4) Np
16:G = axa¥iE Ny T (36)
2 _ (1+2/N)T(N/2 + 1)sn(N +2)
m T (3.7
. h -
“ = K—\/3/2¢“. (3.8)
¥

As the overall factor of the Lagrangian does not effect equation of motion, we
can regard Lrhys eff 252 possible effective Lagrangian which describes the effective
theory of the system. Of course the classical Lagrangian obtained here depends
on the choice of the definition of the physical fields X%(z), ¥(z,0) and D(z,0),
namely the choice of the values A, Ay, and Ap. All possible effective Lagrangians
are classified by A, A,, and Ap. We find a classification with respect to A is
physicaly the most relevant. A table [1] provides the classification with respect
to A. Remember the condition of the embedding; d(X') > £/2 and the correction

terms Aand A’ discussed in section two. They are written in terms of the finite



fields X as

d(X) > eM*¢/2 (3.9)
A=A = 0(eMe)d(X)). (3.10)

If A > 0, the condition of the embedding is automatically satisfied and the

correction terms approach zero in the limit ¢ — 0.

The table [1] shows that energy scale of the system increases as the value
X decreases. A plausible effective Lagrangian which describes the system in the
lowest energy scale is in a case A > 1. However in this case the system is unstable.
When A = 1( in the second lowest energy scale ) the effective Lagrangian Lf%{’
includes Einstein-Yang-Mills-Higgs action. In this case gauge symmetry is broken
spontaneously and the fermions and the gauge fields obtain mass. If 0 < A < 1,
the symmetry breakdown does not happen nor the effective action Li’;’}’ includes
Einstein action. If A < 0, the calculation of the effective action of the system
becomes meaningless. In this case £/d(X), which we neglected, becomes infinitely
large. The system is described not as a four dimensional effective theory in M

but as an N+4 dimensional free field theory in V,.
4 Discussions and Conclusion

The effective Lagrangian which describes the lowest energy scale of the system
includes Einstein-Yang-Mills-Higgs action. Gravity, SO(N) gauge fields and Higgs
fields are induced themselves by embedding functions of M. However these three
kind of fields are not independent. We hope that the difficulty might be overvome
by introducing other type of surface terms to the original action ; for exa.rhple
kgaa(ap@[“’l‘ﬂl“&(b) or k30a(3365<f>l"“F”l""l"él"'a.,af‘l))... The above surface
terms are dimensionally reduced to Yukawa interaction terms in M. You can
easilly find that they include various representation of Higgs fields,$%% or gabede,
They are obtained also by contracting the spacetime indicies of the extrinsic

curvature of M. As the constants k2 and k3 are dimensionfull, it is expected that

— 85—



the fields ¢% and ¢%%d¢ might make a various energy scales of the symmetry
break down. If it is the case, we can consider the garvity, the SO(N) gauge fields
and Higgs fields as independent fields in sufficiently low energy. It is a future task
to build a model that can reproduce the standard GUT theories of SU(5),S0(10),

or Eg.
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Quantum gravity from 4-¢ dimension
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It is one of the most important problem to find a theory which could provide us a
reliable calcuation of quantum gravitational-effects on some physical quantities. Although
superstring theory could be considered as such a theory, it is hard to get a meaningful
result in terms of this theory at four dimension (d = 4). Since any kind of successful
field theory in the four dimension is renormalizable, one would expect a renormalizable
theory also in the gravity. We can really make a renor.malizable, gravitational theory [1)
by adding quadratic terms of the curvature to the Einstein gravity, but it is not unitary

since massive ghost appears in this theory.

In order to evade the this problem, Tomboulis [2] has previously proposed 1/N-
expansion formalism, where the effective lagrangian (L:ﬁ) is obtained by integrating out

N-fermion fields,

Ljj =Ny~ ("2R FA+Trina(Oy ’)) ! Y

This is used for the perturbative calculation of the quantum metric-fluctuations. In
eq.(1), & = kpu' "¢ /NY? A = Agu*~¢/N and Oy/2 = 7*D,. &g and Ag are the renor-

malized gravitational constant and the renormalized cosmological constant respectiverly,



and T'ring(0,;2) denotes the regularized fermion-loop correction. Due to the terms in-
duced by the fermion loop-corrections, a complex conjugate pole appears instead of the
massive ghost in the graviton propagator derived from L:ﬁ As aresult, the perturbative
unitarity can be realized in terms of the Lee-Wick mechanism. However the original the-
ory should include higher derivative terms in order to renormalize the divergences of the

fermion loop-corrections, so the theory is essentially the higher derivative theory which

includes a massive ghost.

Our proposal is to apply the 1/N-expansion scheme to the theory of d = 4 — ¢ in
order to resolve the dilemma of the renormalizability and the unitarity. In d = 4 —¢, the
logarithmic divergences do not appear, so the higher derivative terms are not necessary.
Then, the ghost can be eliminated in the theory defined in d = 4 — ¢, and it would be
unitary in this sense. Therefore, it is possible to perform a consistent calculations of
the quantum gravity in d = 4 — ¢ in terms of 1/N-expansion. There is an interesting
idea [3] that the fractal dimension, d = 4 — ¢, would be realized effectively due to the
non-perturbative effect of black-holes. But we do not investigate on this point here, and
we consider that the world of d = 4 is realistic. Our idea is that we use L:ﬁ to calculate
the physical quantity in d = 4 — ¢ leaving ¢ finite in order to keep the unitarity and the
renormalizability. After finishing the calculation, we examine the limit of ¢ = 0 for the
calculated quantity in order to see the physical aspects in the realistic four dimension.

However, L:ﬁ is not available in executing the perturbative calculation in d =
4 — ¢, because the graviton propagator obtained from L:Z has a tachyonic-pole. This
undesirable situation can be improved if we consider the spin-3/2 fields as N matter-fields.

The gravitational term induced by the loop of the spin-3/2 fields has the opposite sign to

that of L:ﬁ As a result, the tachyonic pole does not appear in the graviton propagator



obtained from L3}3,

¥ = Ny -g(nm + A+ Trinp(Oy2) — 3TrIng(0, ,2)), (2)

and we instead find a complex conjugate poles other than the usual massless pole. In
eq.(2), the gauge condition and the constraint for the spin-3/2 field are taken according
to ref.[4]. Then we can perform the perturbative calculation satisfing the unitarity if the

Lee-Wick mechanism works.

Several authors [5] have studied the problem of whether the radiative correction of
gravitational modes could give rise to a spontaneous symmetry breaking as in the gauge
theories [6]. But all those approaches are performed just in four dimension, where no
reliable theory of quantum gravity exists. We here investigate the same problem in terms
of Lfﬁ given above, and the result is continued to d = 4. Here we consider the case of

that the cosmological constant A is fine tuned to zero.

We add to Liﬁ the following scalar(¢)-part

/ 1
Ly= —g(gg"va“¢6,¢ + (¢2R + N-l7¢4) . (3)
Then the following one loop potential is obtained,

v = —P(d)ﬁ > (‘—f!)—"a-%"(d)r(l + %n)f(n; $), (4)
n=0

x4/2

where P(d) = W and



oo

I(n; ¢) = 51._7'% %s(l"zld)ne_.y¢4’. (5)
n

Since a(d) o« ['(2—d/2), a is very large near d = 4. So we expanded the effective potential
in the series of 1/a. In the integration of eq.(5), the urtraviolet cutoff # is introduced
because the integral diverges for n = 0,1 and 2. For large a(d), the most dominant term

is that of n = 0, so we can approximate V(1) as follows.

2 ¥ ) 7 dz _, __
V(l) ~ —EP(d)m¢4£% f -z—z le (6)
nyéd
= —gP(d)—:/— [¢4(ln ¢ - b) + Iim(ﬂ +¢%*n ) (7
d \Va(d) " 7y Kk

The terms which diverge at 7 = 0 can be absorbed into the cosmological constant by a
suitable renormalization. The remaining finite term in Eq.(7) has a similar form to that
of the Coleman-Weinberg potential induced by the radiative correction, but its sign is
opposite. Then the the minimum of the potential, V = V© 4+ V(1) is the trivial one,
< ¢ >= 0. This implies that the gravitational effect can not bring on a spontaneous

breaking of a symmetry as in a gauge theory.

Nextly, we consider the limit of ¢ = 0 in our calculation. In this limit, a(d) o< 1/¢
near ¢ = 0. Then we do not need any subtraction in the four dimensional limit, and there

is no problem in taking the limit, ¢ = 0, of V{!), And we obtain the following null result,

lim v() =g (8)



So it can be said that the quantum effect of gravitation does not contribute to the four-
dimensional effective potential of a scalar within our calculational scheme. Then the other
effect like a radiative correction of a gauge field would be necessary to provide the vacuum

expectation value of a scalar.
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A Teleparallel Theory of (2+1)-Dimensional Gravity
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A theory of (2+1)-dimensional gravity 1s developed on the
basis of the Weitzenbock space-time characterized by the
metricity condition and by the vanishing curvature tensor. The
fundamental gravitational field variables are dreibein flelds
and the gravity 1is attributed to the torsion. The most general
gravitational Lagrangian quadratic in the torsion tensor is given

klm k klm
tkLm+Bv vk+ra G Here, tktm' vk and Qpin 8re

by Lc=at
irfeducible components of the torsion tensor, and «, 8 and vy are
real parameters. A condition 1s imposed on « and 8 by the
requirement that the theory has a correct Newtonian limit. Static
circularly symmetric exact solutions of the gravitational fleld
equation in the vacuum are given. They are classified into two
types by the signature of «fi. The space-times given by the

solutions have event horizons, i1f and only 1f a(3a+48)<0.

Singularity structures of these space-times are also examined.

§1. Introduction
Recently, the Einstein theory of (2+1)-dimensional gravity
has attracted considerable attentions,1)~6) but it does not have a
Newtonlian limlt.l)'Z) For the (1+1)-dimensional case, there is a
theory7) having a correct Newtonian limit. Thus, it is natural to

raise a question: Is'nt there a relativistic theory of (2+1)-



dimensional gravity having a Newtonian 1imit? For the (3+1)-

dimensional case, a teleparallel theory of gravity, named new

general relativity.s) is known to describe well all the observed

gravitational phenomena in the same level as the Elnstein theory.
In the present note, we give a teleparallel theory of

(2+1)-dimensional gravity having a Newtonian limit.

§2. dreibeins, covariant derivative and teleparallelism
‘The three-dimensional space-time ¥ 1s assumed to be a

differentiable manifold endowed with the Lorentzian metric

g=guvdm“0dmv (1,v=0,1,2) related to the flelds eX=ek

ok l
(k=0,1,2) through the relation 9up=€ pMi1€ - Here, (ng,) 1s the

o
udw

Minkowskian metric, (nkl)dgfdiag(-l.l.l). and {z”: ©=0,1,2} is a

local coordinate of the space-time. The fields ek=e"k8/8z". which

are dual to ek. are the dreibein fields. Field strength of eku is
given by

k _ k _k

T uv‘e v.1 e wv (2.1)

We define the covariant derivative of the Lorentzian vector
field vK by
k_ n k
VLV =g la“v . (2.2)

For the world vector flelds w=w“a/az", the covariant

derivative with respect to the affine connection Fiv is given by

vvw“=avw“+rﬁvw*. (2.3)
The requirement
VLVk=evlekuva” (2.4)
for V“dgfe“kVK leads to
n_.v k
rxv"e P v (2.5)



and hence we have

Tkw—ekxT’\uvdefek (3=, (2.6)
H  def.n _rH BT _pH et oo
R vap r vp,A r VA, p rtx vp rtprvx =0, (2.7)
def _rP p =
vlg“v alguv I"u rvx up_o. (2.8)
The components Tl and ,‘i"'l are those of the torsion tensor

J1§y) vap
and of the curvature tensor, respectively. Equation (2.7) implies

the teleparallelism, and it together with Eq.(2.8) means that ¥

is the Weltzenbock space-time.

§3. Lagrangian and gravitational field equation
For the matter field ¢ belonging to a representation of the

three-dimensional Lorentz group, L”(¢. k¢) with vkwdef B

ka ¢ is
a Lagranglan invariant under global Lorentz transformation and
under general coordinatg transformation, ‘1if L”(¢.8k¢) is an
invariant Lagrangian on the three-dimensional Minkowskian
space-time.

For the dreibein fields e the most general Lagranglan,
wvhich 1s invariant under the transformations stated above and is
quadratic in the torsion tensor, i1s given by

Lc=atklmtkLm+8vkvk+raklmaktm. (3.1)
Here, tkLm' v, and a,,. are the irreducible components of Tklm'

which are defined by

def_ 1 1 1
ban = T Tran* Tokn)* 7OV 0 V00 27 Mgylpe (3-2)
def
vk b1 T Lk' (3.3)
def_1
Gn - 3 T Take* Timk) (3.4)

respectively, and «,8 and y are real constant parameters.

Then,



def 1 [y ,3
pdef L de . (3.5)

gives the total action of the system, where ¢ is the light
velocity in the vacuum and L 1s defined by
def
Lz /-g (LC¢L”(¢. vkw)) (3.8)

def
det(guv).

with g

The gravitational field equation following from the action |

is
~29%F  v20XF . el -n. L.eT (3.7)
ijk iik iy TLiivG T ig )
with
F defa(t Y+8(n, . .v,- v.)+2ya =-F (3.8)
idk tik~bikg ii%k M ikVjy igk™ " ikg: .
def mn _ 1 mn_
H, .2 T F p 2 ijn i '”jt' (3.9)
k def uk
v FiJk ] F(Jk' (3.10)
T, def 1 n 8(/-g Ly ,
de M

§4. Classical test particle and light ray
The world line of a freely falling classical test body is the
geodesics of the metric g=guvd$"®dxv. if the effects due to the')
"spin” of the fundamental constituent particles can be ignored.
Light rays‘propagate along the null geodesics of the metric
g, which can be shown on the basis of the electromagnetic
Lagrangian Lemdgf- g"Pg voFqupo /4 with F

case of the Einstein theory in the (3+1)-dimensional space-time.

)

—a“Av -3 A , as in the

By "spin", we mean here the quantum number associated with the

three-dimensional Lorentz group.



§5. Statlic clircularly symmetric gravitational field
We consider a static, circularly symmetric gravitational
field produced by a static circularly symmetric body. We can
assume, without loss of generallity, that (eku) has a diagonal
form,

X A(r) 0 0
(e” )=| 0 B(r) o0 (5.1)
k 0 0 B(r)

with rdng/(zl)2+(x2)2 , which leads to akLmEO'

(A) Newtonian limit
)

First, we consider the case for which the conditions"

Toozpcz>>|Tab|=0. a,b=1,2, (5.2)
- dA_. dB
A=1xB, 3;3033; (5.3)

are satisfled, where p is the mass density of a gravitating body.
For this case, the field equation (3.7) takes the following form:
(3u+48)AA - (3x-48)aBx-2pc2, (5.4a)
(3-48)%4 - (3a+48)%Em0, (5.4b)
where Tab and terms quadratic in dA/dr and dB/dr have been
neglected.
Here, A stands for the Laplacian of the two-dimensional Euclidean
space. From Eqs.(5.4a) and (5.4b), we can show that the potential
U defined by

e A2o_q. 2U
900 ° A 1 > (5.5)

c
gives the Newtonian potential and that the equation of motion of

a slowly moving classical test particle agrees with that in the

Newton theory, if and only if

*) Circularly symmetric solutions are possible, only if

T a=0=T

a0’ a=1,2.

0
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which we shall assume hereafter. Here, G(#0)is the Newton

So+4f=- , =0, (5.86)

gravitational constant for the case of two-dimensional space.

(B)Exact vacuum solutions

The exact solutions of Eq.(3.7) with T -0 are obtained for
ek‘_l having the expression (5.1). They are classified into two
types by the signature of of.
(B.1)The case with af<0

For this case, the solution, which is normalized as

A(r0)=1=B(r0) for some positive constant 7, is given by

1-A 1+A
A(P)=X(r)Y(T), B(r)=[X(r))1+A (Y(r))l'A i (5.7)
Here, we have defined Adng-4B/3a and
def 1+A def 1-A;
X(r) K in—}, Y(r) = - K 1n——— (5.8)
(v S0 ) (- §0%; 1)

with real constants Kl and Kz satlisfying the relation
K1K2-(1+A)K1-(1-A)K2=o. (5.9)

The potential U defined by Eq.(5.5) agrees, around T=Th, with

the Newton potential produced by a central gravitating body

having a mass #, if and only if

2
5 ((1+MK - (1-A) K, }=2CH. (5.10)

{B.2) The case with af>0

For this case, the solution normalized as A(r0)=1=B(r0) is

i-Q i+Q
Am=1Z(12, B(m=(z(m) TR (zm )T, (5.11)
where 09¢%/2873 and
z(ry9ef1. i:gKln—$5 (5.12)



with X being a complex constant satisfying the relation

IRI2+ (L+@) K- (i-Q)K"=0. (5.13)
The potential U agrees, around T=Ty. with the Newton potential
produced by a central gravitating body having a mass #, if and
only 1if

2
o (L+Q) K+ (i-)K" ) =2GH, (5.14)
which can be satisfied, 1f Q2+12]4QGH|/c2.

§6. Event horizons and singularities of the space-times

glven by the solutions (5.7) and (5.11)

By singularity, we mean here the point(s) at which tklmtklm

and/or vkvk do not have derivatives. By effective singularity.')

we mean the point(s) at which the Riemann-Christoffel scalar

curvature does not have derivative(s).

(A) The space-time given by the solution (5.7)

Let a, and a, be the solutions of X(r)=0 and Y(r)=0,

respectively; X(al)=0 and Y(a2)=0. Then, we have the following:

<1> For the case with A>3, the circles r=a, and r=a, are both

1
event horizons.

<2> For the case with 32A>1, the circle r=a, 1s an event horizon.

1
To reach the circle r=a,, classical particle needs

infinitely long time, even uhen'it is measured by ils oun

proper time. Thus, the circle r=a2 is an "ultra" event

*) Note the following: The Riemann-Christoffel curvature tensor is
not the curvature tensor of the Weitzenbock space-time, but in
our theory, classical test particles and light rays "feel" this

curvature.



horizon in this sense.
<3> When A<1, there is no event horizon at all.
<4> There are singularities and also effective singularities
both at the origin r=0 and at r=a,.
<5> For the case with A>5, the circle r=a, is a singularity.

<6> For the case with A<l, the circle r=a, is a singularity and

2
also an effective singularity.

(B) The space-time given by the solution (5.11)
There is no event horizon in this space-time, but it has a

singularity and an effective singularity at r=0.

From (A) and (B), we know that these space-times have event

horizons, if and only 1f «(3x+48)<0.
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Some Models for the description of the Scale-Dependent Topology
Masafumi Seriu
Department of Physics, Facully of Science,

Kyoto Universily, Kyoto 606, Japan
* % %

The foam-like structure is one possible picture for the space-time near the
Planck scale , which is supposed to occur due to the quantum fluctuation. Using
a simple two-dimensional space with one topological handle as our model of
this structure, we investigate the scatiering problem of a massless scalar field
on this space. With this model, we focus on the following effects, (a) How the
scattering cross-section changes depending on the variety of topologies. and (b)
How the twist of the handle affects the cross-section. We found out that there
are the systematic topology-dependence and the twist effect in the cross-section.
Our models can also be regarded, to some extent, as a quantitative description
of the “scale-dependent topology”, the approximate topology coming from the

limitation of the energy scale of a probe.
* ok

The “space-time foam” is one of the most exciting pictures for space-time
which is naturally deduced from the quantum theory of gravity.[! This is the
speculation that the space-time structure may be topologically complicated at
very small scale because of the drastic metric fluctuation which dominates near

at the Planck scale.

This structure leads us to the concept of the scale-dependent topology of
space-time. Topology of a certain space can be characterized as a collection of
non-trivial loops allowed on the space. In physical situations, the role of these
allowed loops are played by the possible paths of a probe injected to a region
in question. In order to detect some topological ha.hdle, the wave length of the
probe should be as short as the size of the handle. Thus, the finer structures,

characterized by shorter loops than the wavelength of the probe, are smoothed
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out. In other words, the higher the energy scale of a probe is, the finer topological

structure appears.

We will be benefitted well if we successfully obtain a precise, quantitative de-
scription of how effective topology of space-time changes according to the change
of the observational scale on our side, for there are many scale-dependent phe-
nomena accompanying this effective topology, e.g. 1)“charge without charge”
due to Wheeler.[J¥ 2) the effective topology change (4, 3) some theories for

explanation of the smallness of the cosmological constant.

We here present one possible approach for the quantitative investigation of
the scale-dependece in the microscopic space-time structure. We are here in-
terested in how an observer “feels” the space-time structure where he lives in
through his experiments with energy-scale in hand , for all of the above and the
other phenomena results from this type of effective, approximated topological
structure in the observer’s neighborhood. Our approach, being local in nature,
may be considered as supplementing many other discussions related to global
topology and topology change of the universel®); The former concerns only local,
effective topology and emphasize the observational effects, while the latter con-
cerns the global, mathematical structure of the universe at the expense of the

clear connection with observations.

As the scattering experiment is the most basic experiment for the investiga-
tion of a certain structure, let us set up the scattering problem regarding various
topological handles as a scatter. In order to define the scattering cross-section
clearly, the asymptotic region is needed as usual. Although this necesity may be
undesirable for the full description of the foamlike structure, we set up models
with asymptotic region because such a scattering process can be regarded as an
elementary process, just like in particle physics. To make calculations as simple
as possible, we reduce the space dimension from 3 to 2, believing that the essence
of the phenomena is grasped well even by this simplification.With this model, we

focus on the following effects,
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(a) How the scattering cross-section changes depending on the variety of topolo-
gies.
(b) How the twist of the handle affects the cross-section.
We prepare a two-dimensional flat space, remove a disk with radius a from
it. By the variety of the ways to identify the edge of the hole, we obtain a size

a region with various topologies. We consider a massless scalar field ® on this

space. We can express @ as a superposition of solutions for

(A+k)o=0, © k-we*+ f(o)M
T N/

Thus

. o0 a : . (] a .
&=k 4 E m=_°°im-é2H,(,})(kr)e""a = Z i (Jm(kr) + TmH,(,})(kr))e'"" .

m=-—00

In this form of expansion, the cross-section can be expressed as
- 1 o0 imé |2
0(9) - 2”k I Zm-_._wame I

For example, consider a (RP*#R P?#R P?) “handle. As (RP?#RP2#RP?) ~

aabbce ~ abcab~1c!, we set the boundary condition for ® on r = a region
o(r=a, 8 =0)=0(r=gq, 9=rx+0) ,
o(r =a, 0=-§—+5)=0(r=a, 0=—%—5) , for 0565-"3—
2 = -
o(r =g, 9=§ﬂ +8)=0(r=a, 0 =-9) ,

and with the same identification ,
do _ do ' Y
dr(p)_ df(p) at P=EpPp .

Note that the signs in front of § in (4) correspond to the identification directions
of edges and they reflect topological informations of the handle. Then, we easily

obtain
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{-—2 Fm for m=0mod 6 =0, 6, +12, ---
Am =
" 0 others

where

P(z) = ) ,.o{"%”’2 (m#0)
T W) = | i s e (m=0)

Note that the selection of m’s is mainly controlled by (4) while (5) only determines
the precise values of a,,’s. In the same way, we can determine a,,’s for the other

variety of topologies of the handle. See the Table.
We should also note the following points.

1°) The form of o (8) is 2 » ko (§) = A+ B(). The f-independent part
A is of order (ka)!, coming from ap = =2 To = —2i r (£8)%. It is not
the topological effect but the curvature scattering at the handle and it is

common to all topologies.

2°) The topological effects appear in the 8-dependent part B(6) in a prominent
fashion. We can read from Table the general feature: The more the topology
of the handle become complicated, the longer the period of allowed m’s

becomes, and so the smaller the B(8) term becomes.

3°) There are defferent ways to construct a certain handle. For example,
T #T? ~ abeda='b"lc™ld~! ~ (aba~1b71)(cdcld™1) ~ --- . It is easy
to show that, however, the resulting a,;’s are independent of those choices.

Thus, a,;’s certainly carry topological informations of a handle.

4°) Fix one topology for the handle (e.g. 72 # T2). Then, one can show that
the more the handle is distorted, the smaller B(f) becomes.

5°) When the genus g is fixed, the order of magnitude of B(8) does not depend
on the orientability of the handle.
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Let us now study the effect of a twist of a handle on the propagation of a
field. Although the size of a handle maybe microscopic, the angle ¢ of a twist

can be macroscopic, so that it is worth studying its effect.

As a model, we consider a two-dimensional flat space and remove from it two
identical disks of radius a with a relative separation D. (D > 2a is the only
restriction for D. D maybe D 3> a or D = O(a).) By the identification

(r=a,0=0)=("=4a,0'=0+¢),

we obtain a space with topology (R P*#RP?)#R?, which contains one handle
(the Klein’s bottle) twisted by ¢.

On this space, we again consider a massless scalar field ® . Using the addition
theorem for H,(.}) 18U @, expressed in terms of (r, 6) , can be re-expressed in
terms of (v, 6'):

00 . o a ) -
o= Z i*{e*P T (kr') + Z: i"‘-—i"lJm_,,(kr')H,(, )(kD)}e"‘a .
n=-=0co m=-—00
Setting the boundary condition for @, ® (r=a,0 =)= 0 (r' = a,0' =0 + ¢),

we obtain the recurrent relation for a,;’s,
. » . w
an = 2(e'we"" ~1)ynt+e" 8, E " Im-n(ka)ay, ,
m=-=00

where

(1) lng!-&a +1) -
n = -%kmkd, ka1 { In(3P4r) n=0
Hy'(ka) — (§) n#£0

The twist effct in the cross-section emerges in O((ka)? sin? %2-) The deflec-
tion occurs in the components of waves that went through the handle, so that
the order of magnitude of the twist-terms becomes the same as that of the other

terms .
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We have above investigated some “observational” effects due to the topo-
logical handle by setting the scattering problem of a scalar field. In spite of
their simplicity, our models provide some quantitative descriptions of the scale-
dependent topology . For example, the difference and the simlarity between two
cross-sections for T?#7T? and for T?#T?#T? (see Table) show, in terms of ka,
how various handles will be detected as the energy scale of a probe changes. For
fixed ka, handles with complicated topology are “polished out” and only handles
with simpler topology remains. We should finally note that the above approach
is far from the complete description of the effective space-time structure and that
the scale-dependent description of geometry in addition to that of topology will

be more significant and complicated. For more details, see ref.[8].
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genus Non-Orientable Orientable
: E
X RP1 T2
1
y 0 4 8
= even 2T ! ' 1
am :FZFm (Odd) am-_-_—_ {:F m 2. 6, 10,
0 (odd)
RP#R P? T2 ¢ b
: d .
a d
2 N
0
. ;{_zrm (0,4, 8-) . = F2r,, ( ) ) 8, 12 16,
" 0 - (others) 0 (ot'hérs)l ) 20,
‘RP}#RPYRP? b T*HT#T?
¢ a
3 a c
b
0,
{—zr,,, (0, 6, 12, 18- - ) O = {:szm (
am = 6’
0 (others) 0 (others)
RPHRPYRPHRPT | | b THTHTHT
d a
4 a d
b ¢ .
0 16 0: 16: . T
'am={:F2Pm ( ’ .8 ) ” ) am:{:F2Pm ( 8, %, .. f]
"o (othe:)’ ! 0 (others)
Table
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Integrable Cosmology

M.Yoshimura
Department of Physics, Tohoku University
Sendai 980 Japan

Abstract

A proper incorporation of quantum back reaction is crucial to resolving some
important issues discussed at the interface of gravity and quantum mechanics. Two
dimensional dilaton gravity theories provide a class of toy models in which the semi-
classical quantum correction is under analytic control. Some recent works on a
quantum decay of de Sitter spacetime are reviewed, with a special emphasis on inte-
grable models, integrable including the the semiclassical quantum effect. Arguments
are also put forward to indicate that even the nonintegrable model shares the same
universality class as integrable models with regard to the end point of cosmological

evolution.
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I. Introduction: Importance of semiclassical analysis

Relevance of gravity in the quest of the fundamental law at microscopic distance
scales is always dubious from a practical viewpoint. But the success of the unified
theories has led to a daring venture of the ultimate unification with gravity, culmi-
nating in the superstring theory. Although the idea of the superstring theory is far
reaching and promissing in the long run, progress has slowed down, and one perhaps
needs a big quantum jump to go a step forward.

In considering gravity in the quantum context, one should not forget the plain
fact that there are a few unsolved, important problems at the very root of the
foundation of quantum gravity. Quantum mechanics is based on the premise that
the time axis is defined in a global sense and is endowed with a special universal
meaning in contrast to other spatial coordinates. Yet the Einstein gravity tells that
the time is a relative notion. .

The situation becomes acute with the presence of event horizon in the black
hole geometry, because the timelike direction locally defined on the horizon loses
its meaning to an observer sitting far away from the horizon. This has led to the
discovery of Hawking radiation [1]. Closer examination of the Hawking radiation
however reveals a number of puzzles [2]; Hawking radiation has a thermal spectrum,
which seems to imply that gravitational collapse of a quantum mechanical state leads
to a mixed state, clearly violating the fundamental principle of quantum mechanics.
What might be happening here is either that quantum mechanical correlation is
hidden in emitted particles {3], or that there is a huge, effectively infinite degeneracy
of states at the Planck mass scale black hole [4], storing information of the initial
collapsing state until the very end of black hole evaporation. Personally, I believe
that yet another possibility should be pursued; back reaction due to particle emission
should be incorporated to examine evolution of the spacetime structure, and it might
be just so that the concept of event horizon is only approximate and there is no
fundamental difficulty of quantum mechanical development, although in practice
there is a rich spectrum of physics yet to be explored.

There are many problems to each of these proposed resolutions [2]. Only detailed
and careful examination may solve all this problem, revealing subtlties so far ignored.
As a minimum requirement one has to set up a scheme to incorporate quantum back

reaction into a semiclassical framework so that one can follow time evolution of black
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hole evaporation until the very end.

Until very recently there has been no tractable model to study the back reac-
tion problem at a quantitative level. Callan, Giddings, Harvey, and Strominger [5]
(CGHS) recently proposed an interesting toy model in two spacetime dimensions to
discuss black hole evaporation. They considered two dimensional dilaton gravity. A
nice feature of this model is that in the large N limit quantum correction to the
classical system is governed by one loop matter field integration which yields an
unambiguous trace of the energy-momentum tensor known as the trace anomaly.
Combined with the energy-momentum conservation, the stress tensor component is
almost uniquely determined by the background metric, up to two arbitrary functions
of one variable. These functions must be fixed by boundary condition in a problem
at hand. For instance, in the case of black hole formation the boundary condition
is given by the fact that there has not been any outgoing flux of radiation from the
collapsing body prior to the black hole formation. This condition turns out restric-
tive enough to yield Hawking radiation and recession of the event horizon due to the
back reaction.

Unfortunately, one cannot pursue black hole evaporation until the end point, be-
cause in this model a curvature singularity develops and it approaches the receeding
event horizon from inside the hole, and at the end the semiclassical approximation
breaks down [6]-[10]. It is not clear that this is due to a bad choice of the model, or
due to a more fundamental problem.

I have explored another important realm of the quantum back reaction related to
gravity [11], [12], [13]. This is the process of quantum decay of de Sitter spacetime.
My initial motivation was a possibility of realizing a self-terminating inflationary
universe model. The inflationary scenario is an interesting idea to solve two out-
standing problems in cosmology; the horizon and the flatness problem. The whole
idea however rests with the temporary presence of a cosmological constant to be
eliminated in the end, which has no deep reason to be so, from the point of funda-
mental microphysics. It would be nice if there is an intrinsic mechanism of quantum
decay of exponentially expanding universe. Again two dimensional dilaton gravity
provides an interesting toy model to study this problem, and fortunately in this
case one can pursue the quantum decay to the end. I will review the present status
of two dimensional dilaton cosmology, substantially supplementing the background

material.
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II. Two dimensional dilaton gravity

It is well known that the two dimensional Einstein gravity is trivial and has a null
content. For instance, the Einstein-Hilbert action [ /=g R is a topological quantity
and the Lagrangian density is a total divergence. Nontrivial gravity is either induced
by quantum effect of matter fields or is introduced by another degree of freedom such
as the dilaton field. We choose to introduce a dilaton degree of freedom denoted by

@ in the present context. The classical action we mainly consider is then
S, = % /d’z\/—g [€% (=R - 48,p0"p + 4)%) + L™, (1)

We call this model the reversed CGHS model, because it differs from the original
CGHS [5) model in two signs of the curvature and the dilaton kinetic terms. The
cosmological constant ) sets a length scale in the theory. A novel feature of dilaton
gravity is that the coupling factor €?% acts as a varying gravitational constant, as in
the Brans-Dicke theory in four dimensions. We often consider as a matter Lagrangian
L) a set of N massless fields;

1 = 1 000 @)

We digress to discuss the most frequently used coordinate system called the
conformal gauge. By a coordinate transformation we may take the metric in the

form of
ds® = 2g,_dztdz™ = —e**dztdz~, z¥=z"+z'. (3)
Our convention of the affine connection and the curvature is

1
Fs-y = Eg“(gﬁa At Ovep— gﬂv.a_) ) (4)
R, =R, Ry, =95, = 0,055+ T3, T3, — oo Thp (5)

ay ¥

Nonvanishing components in the conformal gauge are given by

1
g+-= _§ e2p, (6)
4, = 2,0, T =2.p, ™

Ry = —-20,0_p, R=28e"%08,0_p. 8)
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Covariant derivative is expressed by
Piti- = 3+8_¢,o, Ptk = 3190 20:p0: ¢, (9)
\/_ —= Ou(V/=99"0p) = —de ¥0,0-¢. (10)

Armed with these formulas, one may derive the well known peculiar identity in

two dimensions:

Ruu RUIO] (1 1 )

de tgm,
This means among other things that a vanishing Ricci scalar gives a vanishing Rie-
mann tensor, hence a locally flat spacetime.

Although the above action may look strange to some reader, it is recast into a

perhaps more familiar form with a Weyl rescaling,
Guv = € . (12)
In the rescaled system
S, = —/d’ G 1= e R4 4N 4 &2 L], (13)

modulo a total divergence. Hence the matter is directly coupled to the dilaton field
in this form. We shall exclusively use the original form of the action, but it is useful
to keep in mind this alternative expression.

Derivation of field equations is a nontrivial exercise. One has to use the following

important identity for the metric variation; for an arbitrary function f,
v—-9fg¢" 6Ruu = fau(\/ —gu*)= —v—g (f;u;v - guvf;;:) 5", (14)
modulo a total divergence, where w* is a 4-vector given by
w* = g°f 614, — ¢ 6%, (15)

Furthermore in two dimensions alone
1

Ruv =594 R=0. (16)

This remark leads to the classical field equations in the reversed model,
%m—ww0¢+wu.m”+vww=%3”ﬂwv (17)
Op - M+ 5 LR—p,¢" = (18)

TimM» =0. (19)
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The energy-momentum tensor T{™) is written in the case of massless fields as

1
T‘EIJI) = - ufi auft' + 5 Guv aafi 8afi . (20)
Hence
TWe =0, T = T, (21)

As to the classical matter one may equally well take the one dimensional ideal gas
obeying the same traceless condition Eq.21.
We now discuss integrability of the classical model. Field equation in the confor-

mal gauge takes the following form for a set of massless fields,

2
—&&y+2&m&v—%¢”=0, 22)
1
Bip —202pBsp = — 1 e (8:5)?, : (23)
—4e 9,0 p— N +2e %0 0_p+4e ¥ dppd_p =0, (24)
8,0 f; = 0. (25)

The first + — metric equation combined with the third dilaton equation yields

hd_(p—y) = 0, (26)
Di_e = )N2eHe-v), (27)

Thus p — ¢ and f; are both free fields, and may be written as
p—p=Gs(z")+G_(z7), [f=filz*)+f(=7). (28)
The constraint equation corresponding to the metric & & variation is
Be ~ 20ulp—¢)Bu ™ = 5 (0 i (29)

We may understand the role of constraint equation as relating three free fields, fs
and Gy, already introduced, and a new one from the homogeneous solution of Eq.27.
Integrability of the classical system is better understood by introduction of new

field variables,
2

ba= —me ™, Y= Valo= ). (30)
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Here «x is an arbitrary parameter and is fixed later when quantum correction is

included. Field equations and the constraint equation in terms of ¥4 are given by

940-¢p- =0, (31)
0,0 vy = _K 2V~ (32)

+VU-¥+ \/E ’

1

YR 52, + Bty Bebo — (0 = 0. (33)

The classical action in terms of 14 is given by

L[ 2 ,vAe- 4 L 5

S,:;/dx[—6+¢+6_1/:_+,\ e +3 L oS0 ). (34)

i=1
An important fact related to the integrability is a symmetry under the following
variation of fields [14]:

S, =€, Sy =0. (35)

At the end of this section we remark on the original CGHS model. The classical

action of the original CGHS model is given by
S, = % Jd2/G (€77 (R+ 48,000 +4X7) + L] (36)

Field equations of the original model are obtained from the reversed model by the

following replacement,
AT 2 T}:’,‘) - —T,E’,}" . (37)

Nature of gravity in these two models are quite different. We shall make some

comment on cosmology in the original model later on.

I11. Dilaton cosmology and inflationary universe model

The reversed CGHS model has interesting cosmological applications [11] in con-
trast to the original CGHS model. The original model is an interesting laboratory to
investigate in great depth black hole formation and the end point of Hawking radi-
ation, while the reversed model gives an interesting toy model to study an evolving

inflationary universe and the quantum decay of de Sitter spacetime. It is regrettable,
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but it is true that in two dimensions there is no single theory among models so far
known, describing both acceptable black hole and acceptable cosmological solutions
at the same time.

Among general solutions of the reversed CGHS model, we discuss in this section
cosmological solulions assuming homogeneity, namely, suppressing z! dependence.

The basic set of equations are then

ag¢'— =0, (38)
8/\2 2.4
Oatps = 7 =Y (39)
hfi =0, (40)
~ Y G + Bt ot — 1 (Bf? = 0 (a1)
+ 04 VoY - 0Js) — Y.
where 3, denotes z° derivative. General solution to these is given by
'»b— = % on ’ (42)
4A B:O
¢+—x[_§ + D2+ (], (43)
fi= ha®, (44)
BD - fi,=0. (45)
In terms of p and ¢,
2
ez“’ = B;z 7 1 (46)
42? gBeo _ o5 Bz - 217\70
2 Br®
o = B 4 (47)

4)2 eBz® _ fx- B:to B" C !

( Bzo !ll )2

R = 4)[-14e B ]. (48)

eB=° — fl-B o_ 4A?C
We take without loss of generality B > 0 throughout this paper, because the other
case is readily obtained by time reversal. Existence of a curvature singularity besides
the initial or the final singularity is unavoidable, if the right hand side of Eq.43 has
a positive maximum, namely, if

82

i B*C
g,l\z) <0. (49)

(1=In IVl
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The curvature singularity occurs at the zero of the denominator factors in the above

equations, namely at a finite z° obeying

2 B?

11 0

-==Br' - —=C=0. 50
8A2 42 (50)

At this singularity the coupling e?* also diverges.

Ba®

An important special case however exists if a fine tuning of the parameters is

made to eliminate the curvature singularity;

2 f? . BQC

14 1.
gat Tl gya) 7 =0 (51)
This special case describes an evolving de Sitter spacetime, as is made clear shortly.

With this parameter choice, or equivalently by taking in the previous general solution

B? Jii 0 0 Jii
mc-—'s—/\—z, Bz" — Bz +]IIW, (52)
one has
B2 eBz:o
2 - -
¢ = 4)2 B _pggo_ 1’ (53)
Bx® 2
—Bs e’ =1
R = 4A’[—1+e3°e,,£°—_3-zo)—_ll, (54)
2
e = 2B 1 (55)

fi B — Bz -1~
The range of coordinate time is —oo < z° < 0, as is explained shortly.

It is often useful to introduce the comoving coordinate defined by
ds® = ~dr? 4+ a(7)? (da:’)2 , (56)
zo
ar)=¢, r= / ds%e?, (57)
—00

with the range 7 > 0.
One may deduce limiting behavior at z° = *oo. Initial time behavior at z° =

—oo,0or T =0, is given by

At ~ (_leo)-g e B 1 (58)

a(r)~-§B‘r, RN(TTMT—)” (59)

e¥ ~ —%2— (- InAr)~}. (60)
1
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One sees that matter effect is crucial in this cosmological model; the limit f; — 0 is
not allowed. The time dependence of the scale factor a(7) is an expected behavior
for the hot big bang model with massless radiation in two dimensions. This is

ascertained by noling the classical energy-momentum tensor due to f— matter,

a(r) T = —a¥(r) T = fl, (61)

The same behavior is expected for the one dimensional ideal gas with p = p < a™2.

Late time behavior at z° = 0=, or 7 = oo, is given by

T~ = (\/E/\)-l In (—\/§ /\a:o) , (62)

a(r) = \/_I\z = ~ eV Rgn2, (63)

e¥ ~ m (64)

(65)

This is the behavior expected for a de Sitter spacetime with H = “"‘ ~ V2.
Indeed one can show that a stationary de Sitter spacetime given by
1
= VaX—z%) /\(—zo)
&Y= —— (67)

\/f_ (=2°)

(66)

is an exact solution of field equations.

The behavior of coupling strength in this inflationary model is as follows. Initially
it is in the weak coupling region; xe? < 1, behaving like € o« (—Bz°)~! with
2% ~ —oo. In the de Sitter phase it is in the strong coupling region like e o (—2°)~?
with 20 = 0~.

Actually, there is another class of solution in which the parameter B above is
replaced by —B with B > 0: the time revers'ed solution. This class of solution
describes an evolving spacetime that begins with a flat spacetime at 2° = —o0 and
ends with the de Sitter spacetime at z° = 0. We shall call this model the cold
universe model (CUM), while the previous one the hot universe model (HUM). In
this paper we shall focus on HUM simply because this model mimics a realistic hot

big bang.
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IV. Semiclassical quantum back reaction: Decay of de Sitter spacetime

Both in the black hole evaporation and the de Sitter space decay a proper treat-
ment of quantum back reaction is important. In two dimensional dilaton gravity we
are considering, this correction is incorporated in a set of semiclassical equations.

In the large N limit the leading quantum effect is given by one loop matter field
integration in the path integral approach. The net effect of N massless fields is the

trace anomaly,

1) =-<r, (68)
or the effective Polyakov action [15);
K 1
Sy = —-8;/(121 V-9 RgR, (69)
with k = . A proper treatment of ghosts [16] leads to a modification of «;
N-24
k=h TERE (70)

Since we take the large N limit, we will ignore this difference. In the conformal

gauge the Polyakov action takes the form of

So= == [d84pd-p, (71)

modulo a total divergence.

The trace anomaly supplemented by the energy-momentum conservation leads
to a more specific form of the stress tensor components [5], [L17]. In the conformal
gauge with nonvanishing g, , ['f; alone, the conservation equation T = 0 leads

to

(9..T++ + (9+T+_ - FI+T+.. e 0, (72)
(9+T__ + 6_T+_ - F:_T+_ =0. (73)

Since the trace of the stress tensor is given by
T = 2g+-T+_ = —48-2pT+_ , (74)
the conservation implies integrability with a known trace anomaly;

(Ty-) = = 8,0-p. - (15)
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Combined together, an explicit computation yields

O-(Tys) = —=(0-0p~20:p0-04p), (76)
= -Z0.(8ip—0:pdsp). (77)
(78)
Hence
(Tas) = = = [82p - Orpdap + Li(a¥) ). (79)
Similarly, working with — — component we obtain both of
(Tes) = = = [8hp - Bepdap + ta(a®) ). (80)

Two arbitrary functions 3 (z*) are to be determined by boundary condition depend-
ing on a problem one wishes to address.
Written in terms of the mixed tensor component, one has in the case of homoge-

neous cosmology,

(1) = a7 S (57—t b ], (81)
() = —a"glp"—%p"+t++t-], (82)
(TP) = (T =" 2[ty - 1], (83)

where the prime ' = 8"’7.

An important point to note is that the quantum stress tensor is determined by a
combination of the background geometry and the boundary condition. In the semi-
classical approximation we adopt here, quantum back reaction is thus incorporated
as an effective stress tensor term and one has to solve the entire system with back
reaction included.

We now propose how to choose the boundary condition in our cosmological sit-
uations: there should be no incoming flux besides the classically specified one. A
similar proposal of no incoming flux was made in the case of black hole formation in
the original CGHS model, leading to Hawking radiation. The cosmological boundary
condition implies that at the initial null infinity of ¥ = —oo there should be no

quantum flux computed from Eqs.80. The limiting formula for p at z° = ~oo is

el ~ ;}(—on)'% i B (84)
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Using this general asymptotic form, one derives the asymptotic quantum flux; at

infinite null past of z* = —co

(1) = ~) = a5 -5 ki 42, (85
() = ~(T) =a? = [ty -] (86)

Thus from the no quantum flux boundary condition, one finds that

2
ta(a*) = 2. (87)

We thus conclude that no quantum flux condition gives the unique boundary term,
and this is true even in the case with arbitrary inhomogeneities.

In considering application to the evolving de Sitter model it is instructive to first
fix the background metric and work out the Polyakov stress tensor. This approach
based on the fixed background without considering back reaction is not our ultimate
goal, but it is the way how Hawking radiation was first derived in the black hole
geometry [1]. The behavior of the quantum stess tensor in the de Sitter phase is

readily computed with the boundary function already fixed. At z° =0~
K
(T9) = (T} = =S¥, (1) = (1) =0, (88)

from Eq.66. The result is insensitive to the boundary function ¢4 just determined.
This is an important result: it clearly implies [11] that the dominant back reaction
effect in the de Sitter background is not a thermal emission of massless particles, but
it is more like a negative cosmological constant. On the other hand, Gibbons and
Hawking (18] argued that Hawking radiation should occur in the de Sitter spacetime
owing to the presence of future event horizon. However, in this explicit evolving
model the Gibbons-Hawking picture is not realized.

~ One has to go beyond the fixed background approach, in order to properly assess
the back reaction problem. The idea is to incorporate one loop quantum stress tensor
into a set of semiclassical equations. For instance, one may use the effective Polyakov

action as a starting basis of analysis;
1 2 -2
Ser= = [d (e (~204p0-0 ~ 20400 (89)

+40,00_p + N "’)+ Zmﬂa fi- 26+p6_pl- (90)

i=1
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In practice this is a difficult task, because the quantum system is not analytically
solvable unlike the classical system.

As a matter of principle, however, the quantum system presents no essential dif-
ficulty. A very nice feature of the reversed CGHS model is that no singular behavior
is expected, unlike in the original CGHS model. The singularity appears in zeros
of kinetic coefficients. Denoting the kinetic functional coefficients by 10, M 8_®,
with ® a (N + 2)— vector and M a (N +2) x (N + 2) matrix, one finds that

detM=—4e-‘v(1+%e“)(4l)”;eo. (91)
Note however that in the original CGHS model

N 1
= =410 (1 — = ) (=W
det M = —4e7"% (1 12:: )(4) . (92)

Hence a curvature singularity is expected at % e¥ =1, in the original model.

A set of semiclassical equations may be written in terms of the comoving coordi-

nates. With the dot implying 7 (comoving time) derivative,

(1+ f—vg YH + H?) = 2(¢* - ), (93)
N . ) N .
(1 3¢ )@+ H) = 2(1+ 5, €2)(¢" = X2), (94)
. 2 v
p-Hp= 1 e - Doy Zom), (95)

where H = p. Elimination of the second derivative terms leads to

NB* N

1
22 _ )22 . 2 plde=2p 2 _ 1 L2 2= .
PP - Htp+8e (fii+ 7 ) B H*=0 (96)
Taking the large N limit formally yields
A+H =0, (97)
¢+ Hp=¢"= A%, (98)
. B?
H+ T e =0. (99)

Analysis of these equations, including perturbation around the classical solution,
was made in [11]. Roughly, what happens is as follows: The classical phase matches
to the large N solution, which in the end goes back to the classical solution again.

Result thus suggests a quantum decay of de Sitter spacetime in such a way that the
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quantum back reaction makes it possible to bypass either the strict de Sitter phase
or the classical singularity. Instead of repeating this analysis we shall describe in
more detail integrable models in which some of these features are more quantitatively
understood.

At the end of this section we make a brief comment on the original CGHS model,
in particular, why we do not consider this model. The original CGHS model does
not have interesting cosmological solutions analoguous to the big bang model in four
dimensions, as pointed out in [11], [19]. It is however true that with the cosmological
constant reversed, A2 — — A%, there exists a big bang type solution starting with
an initial singularity, in a limited parameter region [20]). A closer examination of
this solution shows that the initial behavior is governed by the strong coupling limit,
N e > 1. Thus effect of full quantum gravity neglected in the present approach
is important at initial times. Moreover, due to the singular behavior of this strong
coupling region, one cannot determine the boundary function ¢y which is crucial
in our discussion. Hence even if one restricts application of the model to late time
behavior in which the semiclassical approximation is justified, there is uncontrolable

ambiguity. From these reasons we do not consider the original CGHS model.

V. Integrable models

At the moment there are two types of integrable models known [14), [21], [12],
integrable in a strong sense including the semiclassical quantum correction. Both
models are constructed so that they satisfy the symmetry already encountered at
the classical level. Thus we maintain the symmetry under the following variation of

fields:
Spp=c,  Sp.=0. (100)

We also demand the total action S in terms of ¥, to have the same form as the

classical one S,,
L 2 orvw- o L o
s=;/d¢[-a+¢+a_¢_+xe +3 20 fdfi). (101)
i=1

Phrased this way, we seek a new relation of %4 in terms of p and . Of two known
examples, we mainly present the RST model [14] due to the simplicity of presenta-

tion.
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The modifed action of the reversed RST model is § = S, + §,, with S, given by

K 1
S, = —S—ﬂ_/dzm V=§|R5R+2¢R). (102)

In the conformal gauge the crucial new definition of 4 that leads to the integrability

¢+=—%e'2"+\/§p, V.= Ve(p—v). (103)

We may explain this result by the following heuristic argument. The sum of the

classical and the Polyakov terms is written as
20, € 0_(p— )+ £ 04p0-p= 044 0% + £ 01p0-p, (104)

where the last term in this equation is, modulo a total divergence, equal to

K
TVIvR, (105)
in the conformal gauge. Elimination of this term yields S, of Eq.102, resulting in S
of Eq.101.
The constraint equation of the reversed RST model is writien as
£ 1
ota(e?) = - YR Oy 4 4) + Oubulut — JOuSY. (100

We get the same set of dynamical equations as in the classical theory,

8,0-%- = 0, (107)

22 (apvme-
D04 = — e . (108)

We thus have a number of constrained free fields ¥, f;, and ¥, that exponentially
couples to P_ .

Before we give a detailed discussion on this reversed RST model with quantum
correction incorporated, we state our main conclusion on our analysis of this model:
(1) we either have regular solutions or solutions in which the weak coupling semi-
classical approximation breaks down; (2) a set of solutions exist, realizing a decaying
de Sitter spacetime with accompanying radiation, however radiation being different

from that expected in the Gibbons-Hawking picture.
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We now present cosmological solutions assuming homogeneity. The dynamical

equation, Eqs.107, 108, is trivially integrated to yield

Y. = ‘/TEBm", (109)
2 g 2
by = _\/232 ef” +(—\3-_-D+ —‘é—EB)x°+WC, (110)

with B, C, and D integration constants. The constraint equation, with these in-

serted, is
rta(a¥) = S QBD+ 2 B~ 1), (111)

with f;; a constant of motion for f— fields; fi(z°) = fo: + f1,:2°. We shall further
discuss the boundary condition later on. Exactly the same solution follows for one

dimensional ideal gas obeying
To=-T xe?. (112)
Using the definition of 14+ and eliminating p, we derive
—e —-DxO'—C. (113)
With ¢ known, the other field is given by

p=tp+-§a:°. (114)

The most important feature of this solution is that the determinental equation
Eq.113 has a monotonic behavior ranging from co to —oo as a function of ¢ on the left
hand side. This means that for any choice of 2% and z' reality of ¢ is guaranteed.
This is not true in the classical limit with x = 0. Of course, a large positive ¢,
hence an even larger €%, implies a breakdown of the semiclassical approximation.
Thus one must be careful not to rely on the large ¢ region in order to derive some
definite conclusion within the semiclassical approximation. The region in which the
semiclassical approximation breaks down occurs in a portion of spacetime where the
right hand side of Eq.113 becomes strongly negative.

Important quantity for the classification of solutions is the sign of D, assuming
as always B > 0. If D < 0, the right hand side of the determinental equation Eq.113

0

is monotonically increasing from —oo to 0o as z° increases. Combined with the
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monotonic behavior of the left hand side as a function of i, one finds that at initial
times the solution is in the strong coupling region; x€?* > 1. A further detailed

analysis shows that

e ~ INBL | 1-F)iBe (115)

in the asymptotically quantum region, where ¢ = |2|. The semiclassical approxi-
mation breaks down in the asymptotic region and we shall not discuss this case any
further.

On the other hand, if D > 0, the right hand side of Eq.113 has a minimum at
some finite z°. In this case the solution has a classical behavior with ¢ = —o0, in
the asymptotic region of infinite past and infinite future. At intermediate z° near
the minimum quantum effects may become significant.

The comoving time defined as before behaves in the asymptotic region like

B 1 0
Cr e (lB7/2) 16
5 7 ki (116)

at 2%~ —co and

AT ~ -gz“ (117)

at z° ~ co, with the range of 7 extending to co.

The asymptotic behavior at infinite past of 7 =0 is given by

1 1

e’ ~ . 118
v-Dz® /-2 In(Br/[2) (118)
1 0 B
~ —— (B2 =
a W e 5T (119)
e-Bs° 1
R ~ D (120)

—z0 (rln7)?’

We shall adopt the same boundary condition as before; no incoming quantum
flux besides the classically specified one. With the conformal coupling term ¢ R

added in the reversed RST model, the quantum stress tensor is modified to

(Ty) = 3-0:0-(2%-¥), (121)

1
(Teg) = - % [3140 — (0£p)* + t&(z*) + OppOsp — 53190] . (122)
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Using this quantum flux and the limiting behavior of fields at 2 = —co, one deter-

mines the boundary function from the no incoming flux condition;

B2
o(*) = (123)
Thus the constraint equation Eq.111 simply reduces to
fi;
ZB y ( )
as in the classical case.
At infinite future of 7 =
B 0 B
A —(B: 12) o, 2 g=AT
e 2/\ T (125)
0 -Bx? ~ _B__ ~2A7
a [1+8/\2(§+ ) ] 2/\+O(/\7'e ), (126)
R ~ B’({ + - )B:vo ~B=% L O(Are™?T). (127)

We arrive at an important conclusion on the final state of the universe: the universe
approaches a flat spacetime of dimensionless size -2% . Measured by the comoving
time scale, the rate of this approach to the final state is given by the time ﬁ .
Furthermore the approach is via contraction. This suggests existence of a maximum
size at an earlier epoch.

Indeed, the maximal size is computed by the condition; a’ = 0. By a straight-

forward computation we derive an exact equation [12] for the maximal size a;

(Bm it = go-igemtobt (%2 ) (128)
a, a? K
with ( = 4““ , and
D C . BD
(=3 n—-?+ln——w. (129)

a/ = =. (130)
This can be simplified in a number of cases. For a, > a;,

@ ~ e (TR ab. .(131)
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In the limit of x — 0

Ay ~ €% (n-1)/x \/Eaf . (132)
In the large « limit
1 [
m ~ 5\ 29 (133)

In principle an arbitrarily large universe is possible.

Energy balance between the classical and the quantum contribution is presumably
a clue to understand the nature of quantum correction. It would be useful to follow
evolution of the quantum stress tensor, Eqs.121, 122, although there is no unique
way to separate this contribution from other terms, due to the presence of conformal

coupling term ¢ R. Useful combinations of the mixed stress tensor components are
1

ey = 5 (T0) = (B, (134)
1

Ays = S ((To) +(TY)), (135)

which may be regarded as an effective quantum energy density and an effective
quantum cosmological constant, respectively. There is a simple relation: A,y =
— 4= R. The limiting behavior is given by

1 K 1 K

pes = 5 0(5), Aeps=5 0((m—0)-; , (136)
at zg ~ —00, indicating that quantum effects are initially subdominant, and
1 xB? 1 )
chj = ;—8;-, Aefj= ;1—2—0(&1:06 ), (137)
at xg ~ 0o. It then yields a global amount of created energy at the final epoch,
1 xkB* kX
— (W = - RO RN
(T3) = —(T) il (138)

in the form of massless particles. In the extreme large N limit this reduces to 2% Az,
Note that this result is insensitive to the parameters in the solution, or the initial
condition. We shall further show in the next section that this result is universal even

in the presence of inhomogeneities.
It is useful to make a comparison to the Gibbons-Hawking conjecture [18] in the
case of de Sitter spacetime. They argue that the presence of future event horizon

gives rise to a thermal emission of massless particles with a temperature of

Ten = o= (139)
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where the Hubble parameter H is replaced by that in the de Sitter phase of our
evolving cosmological solution. This leads to an energy density,
N A2

— A%, 140
127 (140)

PGH =

This differs from our final increment of energy, by a factor of 2, this one larger than
the created energy in our final universe. It is not clear, however, that we are making
a fair comparison. The usual procedure to derive the Hawking radiation would be to
insert the classical background in the formula of quantum correction (7T,,) without

considering the back reaction. Then one would get

19 == -, (141)
as already noted previously. Namely, what comes out from our study of the integrable
model with quantum back reaction taken into account is that the Gibbons-Hawking
radiation does not occur in the classical de Sitter phase, and furthermore the final
energy output after all transient phenomena end is the half of the Gibbons-Hawking
radiation.

Another evidence against the Gibbons-Hawking picture is given by time depen-
dence of the energy output. As verified quantitatively in (12}, most of the energy
creation occurs in the late contracting phase of evolution. It is thus difficult to iden-

tify this radiation as associated with the expanding epoch of de Sitter spacetime.

V1. No hair theorem in integrable cosmology

We extend our semiclassical analysis to cosmology with an arbitrary degree of
inhomogeneities {13]. We shall first present result in the integrable model of the
reversed CGHS model. Later we shall mention how the general result is further
extended to other integrable and nonintegrable models.

The most interesting result of general inhomogeneous solution is validity of a
form of cosmic no hair theorem. The cosmic no hair theorem may be viewed in
broad terms as an approach to a smooth universe despite initial irregularities [22],
(23). In the literature it is often discussed in connection with a final state of de Sitter
spacetime [24], [25], (23]. But we shall consider the theorem in a somewhat more

general context.
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In our problem the final universe turns out to be a flat spacetime in two di-
mensions with a universally created matter, irrespective of arbitrarily large initial
inhomogeneities. We shall prove this result for matter distribution arbitrarily local-
ized in null coordinates.

We start with general inhomogeneous solution in the reversed RST model;

22
e~ —g = %?eB’Og.,,(z"')g_(m“) —Dz® = C = h(2%) - h_(z7) (142)
o+ B0t L [ 2 2 ]
p=w+5B2°+ 5 |Infgy + 5oi) +1n(g- + 5ol)| » (143)

with g4 > 0. This is the most general solution written in a form convenient to
facilitate its comparison to the homogeneous case. The homogeneous cosmological
solution is given by seting both g; equal to 1 and both hy vanishing. We now
make a coordinate gauge choice within the conformal gauge such that new Bz*' =

Bz* 4+ 2Ing; . In this new coordinate g} =1, and

e~ g"" = %\:es’o - D2~ C - hy(z*) - h_(z7), (144)
p = ¢+%Bz°. (145)

The constraint equation in this new gauge is |
bl — —?h; = —%(&fi)z + %BD + ll—ﬁch2 — xtx(z%). (146)

We can put forward the no incoming boundary condition as in the previous argument
for the homogeneous case. Despite the presence of the inhomogeneity we get the same
boundary function. First, note that at 2* = —oo the asymptotic behavior of the

dilaton field is given by
1 D .,
¢~ =g In[—52% — k], (147)

barring a cancellation between D and h4 terms, and one can show, using Eqgs.121,
122, that

(Tee) ~ 0, (148)
K B?
(T*-_g) ~ - ;r' (ti - E . (149)
This yields that both
BZ
i = T (150)
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We thus conclude that no quantum flux condition gives the unique boundary term,
even in the case with arbitrary inhomogeneities.

Superficially this result is equivalent to demanding both the « dependent and the
& independent terms in the constraint equation Eq.146 vanish, hence the terminology
of the classical boundary condition was used in Ref.[12]. But we use the full quantum
solution even for the contribution identified as a classical one, hence the £ dependent
term in Eq.146 does not correspond to the quantum stress tensor Eq.122 . Because of
this the quantum stress tensor has a nontrivial functional behavior at finite spacetime
points.

The general solution in the homogeneous gauge having no incoming quantum
flux at null infinite past is summarized by the three equations: Eqs.144, 145 and the
constraint equation giving hy:

B

1 1
hi - Eh' = - E(Bif.-)z + ZBD (151)

The homogeneous universe model has

BD. (152)

Lol Rand

1
hy =0, '2'(3#.‘)2 =

Hence the right hand side of Eq.151 measures deviation from the homogeneous mat-
ter distribution.

When we consider inhomogeneous matter distribution, we shall restrict to inho-
mogeneity localized in null coordinates. Thus we assume that the right hand side of
Eq.151 has a finite support. This means that for a large enough z* the function h4
obeys the homogeneous differential equation, and the limiting behavior at large z°

is given by
hy ~ 3=, (153)

This is important in later discussion of the cosmic no hair theorem.

The scalar curvature is computed from the general solution as

2 2
PR SRR btk Sl 1 ik ek ST
1+ §e2w [1 + :"se'l:pls

This equation is not written in a closed form as a function of 2°, because the coupling
strength € must be computed from the transcendental equation Eq.144. Neverthe-

less this expression is useful in many ocassions. Let us first work out the classical
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limit, & = 0, of this formula. In this case

[B2eB=’ — 2 _ p|[BeB’ 2 _p! )

R=—4\ 4+ 4eB% 155
e (5 eB= — D20 — C — hy — h_] (155)
Classical singularity thus appears whenever
4/\2 Bz° 0
ﬁe - Dz —C—h+~—h_=0. (156)

Note that classical singularities may show up in several places at different times,
even when the homogeneous part defined without hy term is regular at all finite z°.
The situation may be regarded as a model of evolving universe with an arbitrary
degree of inhomogeneities which is usually considered to develop into black holes.

The general trend of effect of inhomogeneous matter is as follows: as the matter
content 1(0:f;)? increases, hy becomes more negative, reducing singular behavior.
On the other hand, as the matter content }(9:f;)? decreases, hs becomes more
positive, enhancing singular behavior. Thus the void, and not the lump, tends to
increase more curvature. This is a peculiarity of the reversed model and is hoped to
be discussed more fully elsewhere.

The universal nature of the final state is valid in a more extended class of two di-
mensional dilaton gravity theories, beyond the reversed RST model so far discussed.

Let us assume first that the theory is integrable in the form of

2
e — f(p) = % B —Da® —C —hy - h_, (157)
1
p=v+y(p) = ; Ba’. (158)

For instance, in the BCDA model [21] based on the conformal field theory the two

functions are given by
fg) =~ Flp), ole)=v— fle), (159)
Flp)=e*Ve®rr+xln[e?+Vite |- g Inde.  (160)
As ¢ varies from —oo to 0o, F(yp) changes according to
e-w-w+0[n2e2v1—.§1n4ic+2\/ze-v. (161)
All integrable models of this class have the classical limit of the same form,

e = y i Dz"-C, (162)
2(p—) = Ba®. (163)
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This must be so, because all these models have the same classical limit of the reversed
CGHS model. But the point here is that the classical £ = 0 limit and the weak
coupling €% = 0 limit coincide. This is understandable in the large N limit we
consider, since x €2 is the expansion parameter of quantum loop correction.

The next leading corrections to the classical equations, Eqs.162, 163, are different
in various models. In the reversed BCDA model the classical term is modified to the

order of x according to
e eV orp, 2p-p)>2p-v)+ 7, (164)

while in the reversed RST model it is

_ K
e e -Cp, 2p-v)=>2(p-y). (165)
One then derives a universal classical behavior; at z° = —co
_ N0
@~ —% In(=Dz°% + O (x %?—)), (166)
B , 1 0
PG =5 In(-Dz"), (167)
and at z° = o0
B , B
p~-FT +In 55 (168)
p~In B + O[z%8="). (169)

2X
Of course, at intermediate 2° occurrence of model dependence is unavoidable, but
existence of semiclassical solution linking two limiting classical behaviors is guaran-
teed if one assumes validity of the asymptotic weak coupling scheme. The classical
behavior at z° = co immediately yields the final flat universe of the cosmological

scale factor £, and of the vanishing curvature of the form,

Yl

R~ 0[z%5="). (170)
Both in the reversed RST and BCDA models the approach to the final flat universe
is made by passing through a contracting phase, but contraction rate is different in
the two models.

For an asymptlotic quantum stress tensor one may take the original Polyakov

form,

(Tas) = = = [0 - (0:0)? + tal=*)] - (171)
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Although the reversed RST model has an additional contribution to this stress tensor
due to the conformal coupling term @R as seen from Eq.122, the additional piece
turns out subdominant at both the initial and final stages of cosmological evolution.

We hence regard the above choice of quantum stress tensor quite adequate for our

purposes.
At 2° = —oo the dominant stress component is computed from Eqs.166, 167
K B?
Teg) ~ — = (te - —). 17
(Tes) = (tx 16) (172)

Thus no incoming flux condition gives the same unique boundary term as before,
ty = —‘% . With this given, one derives from Eqs.168, 169 the asymptotic flux at

future infinity, z° = oo,

xB?
T (173)
It then gives the universal flux of created radiation in the final flat universe,

Note that this flux is insensitive to the initial condition and is determined by the
fundamental constants in the theory. This derivation makes clear importance of the
initial boundary condition and the limiting classical behavior, to get the universal
quantum flux.

The status of the original nonintegrable model [11] is as follows. Assuming the
Polyakov form of quantum stress tensor, one immediately finds that to the leading %
order the universality of the final state with the definite amount of created radiation
holds. In the next leading order of 7 there is a deviation from the integrable model,
if one strictly takes the original Polyakov form [13]. In terms of x expansion the
leading & behavior is however not adequate to the discussion of order %, and one
needs the next two loop quantum correction not considered here, in order to establish

the next leading A* correction.

In summary, | have discussed tractable models of quantum back reaction in two
dimensional cosmology. In the context of inflationary universe scenario these models
provide a concrete mechanism of quantum decay of de Sitter spacetime, without

relying on the fine tuning of microphysics parameters.
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Cosmological Application of CGHS Model
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1

Recently Callan, Giddings, Harvey and Strominger[1] (abbreviated as CGHS)
provided the useful toy model of (1+41)-dimensional gravity. They attempted to
analyze the back reaction of the Hawking radiation[2] on the two-dimensional
analogue of black hole geometry in a consistent way by the use of this model. In
their first paper, CGHS developed their original scenario as follows: First intro-
ducing 141 dimensional dilaton gravity, CGHS found the solutions corresponding
to black hole formation, and showed occurrence of the Hawking radiation on the
spacetime background they obtained. Next including quantum effect from quan-
tized conformal matters as Polyakov term[3), they gave the possibility to analyze
the back reaction of Hawking effect in a leading semi-classical approximation
consistently, even though their first scenario on the quantum black hole was too
simple. Up to the present, many works have studied the behavior of quantum
black hole in this model(4).

On the other hand in general relativity, there are other interesting problems
which must be resolved taking account of quantum effect besides the problem of
Hawking radiation. For example, since Morris, Thorne and Yurtsever(5) pointed
out the possibility of making a time-machine, quantum effect on the spacetime in
which closed time-like curves appear (abbreviated as CTC-spacetime) has been

discussed by several authors [6,7,8,9,10]). One of the most important problems in

o e-mail address: akika@phys.titech.ac.jp
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this subject is whether CTC-spacetime still continues to be or not due to quan-
tum effect. On this problem, Hawking suggested that the laws of physics prevent
the appearance of closed time-like curves(so called ’Chronology Protection Con-
Jjecture’). In four dimensions the analyses on this problem so far have been done
only on the fixed background spacetimes. So it must be interesting to treat such

spacetimes including back-reaction in closed form even in lower dimensions.

In this paper we will investigate the quantum back reaction problem on the
stability of the CTC-spacetime in two dimensional model of dilaton gravity. Fol-
lowing the CGHS scenario, we apply this model to compact one dimensional
universe. In the first half we give a classical solution corresponding to CTC-
spacetime: an analogue of Misner universe. Then we show the disappearance
of this spacetime due to inhomogeneity even any fine-tuning introduced. In the
second half we introduce quantum effect and observe the re-appearance of such

a CTC-spacetime if some fine-tuning of parameter is introduced.
2

We consider the 1 4- 1 dimensional renormalizable theory of gravity coupled
to a dilaton scalar field ¢ and N massless conformal fields f;. The classical action
is

N

=5 / da\[—gle ¥R+ 4(V4) - ) - ZY (VY] (O]

i=1
where R is the scalar curvature, A? is a cosmological constant. This model differs

from the original C.G.H.S. model in the sign of the cosmological term.
The equations of motion derived from (01) are
0=—40,0-¢ + 204.0_p+ 40, 90_¢ — Ne*,
0=040-¢—0840_p, (02)
0=0;40-f;,

in the conformal gauge:

guvdztde’ = —e??dztdz, (03)
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where z* =t £ z . In addition the following constraints have to be imposed:

N
4e79(0%¢ — 204p019) = ) O+ fibs fi. (04)

i=1

In the following we adopt the periodic boundary condition that (f, z) identi-
fies with (¢,z + L) and the initial condition that the Universe start from static
cylynder with usual Minkowski metric at the past infinity. Then the general form
of the solutions is given as follows:

- A?
e ¥ =y, +u_+ ?e“‘ ,

(05)
e2p =e—2Ale2¢ ’

where u; and u_ are chiral periodic functions which satisfly the following equa-

tions from the constraints (04):

0=0%us + Azus + -;—85;}'05;] . (06)

3

When there is no matter field, general solutions that satisfying the periodic

boundary conditions depend only on time:

e2¢ =(M + e-b\t)-l ,

e2p =e-24\le2¢ ’

(07)

where M is the arbitrary constani. We classify the behavior of the solutions into

three types with respect to the sign of M.

When M equals to 0, the solution becomes an analogue of the Linear Dilaton

Vacuum solution in C.G.H.S. model. The world is a static cylinder spacetime.
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When M is negative, we see from (07) that the observer meet some singularity

in the finite proper time. From the expression of scalar curvature R:

aINM

R=—M+e‘2""

(08)
this singularity prove to be the essential singularity. In fact this singularity is
the same as the one in the 1 4+ 1 dimensional black-hole treated in CGHS.

On the other hand when M is positive, the space collapses into zero volume
in finite proper time(as coordinate time ¢ goes to +00). But from (08) the scalar
curvature still remains finite value —4A? at the point. Hence we expect that the

spacetime can be extended. In fact, if one define the coordinates:

n= —e-IM,
{ Y= Ltz (09)

the metric g on the manifold M which is defined by (¢,z) then takes the form ¢’
‘given by

-1 1
ds® = M—_n(ndt{)2 + :\-dxbdr)). (010)

This is analytic on the manifold M’ defined by ¥ and by —oco < 3 < M. The
region < 0 of (M’ , g') is isometric with (M , g). The behavior of (M', ¢')
is shown in Fig.1. In the region > 0 of M' the closed timelike curves appear,
because the roles of ¢ and z are replaced. The surface n = 0 is the boundary
of the Cauchy Development; that is the Cauchy Horizon. This extension is the
same way as in the case of Misner space (we liave two dimensional version when
A = 0) and Taub-NUT space [11]. Hawking uses Misner space to discuss the

chronology protection conjecture [9].

In the rest of the paper we investigate the conjecture in this model both from

the viewpoint at classical and the quantum level.
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4

Iu this section we consider the Universe with classical massless scalar fields.
The solutions of (04) satisfying the periodic boundary condition always exist
with arbitrary configurations of the scalar fields. If we expand the scalar fields

in Fourie series:
f(z+: 1:_) =f+(3+) + f—(z-) )

o
€ L2 4 4 2mm g4 (011)
f+ =o:i+\/;zi+ E (a,"fsm—L z= + b3 cos ——z ),

n=1
here ay,a} and b are the expansion coefficients. we obtain the solution as
follows
~2¢ 2 1 3 Ty
e =M — { =+ =Z}t + 7 + (oscillation part),
22 22
S (2702 k2 g2 (012)
E=Z(—L-) [(an) + (b7) ],
n=1
where the fourth term in the right hand side of the first equation in (012) is the
oscillation part, that is the sum of the trigonometric functions. From (012) it
should be noted that any classical configuration of matter fields makes a finite
contribution to the term proportional to time, which cause divergence of the
scalar curvature. Therefore the Universe inevitably meets singularity at { = co

and cannot extend to the region with closed time-like curves.

5

From now on we study how the classical solution change by including back

reaction.

In two dimensions, the quantum effect of massless matter fields is completely
determined by conformal anomaly. [3] The quantum effective action is sum of

the classical action (01) and the Polyakov term induced by N matter fields:

Spuantam = =32 [ P2/ ~g(a) [ 2\ ~g(e) R Gl <) R),  (019)

here & is {12 and G(z, 2') is a Green function of the scalar fields. « is assumed to
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be a large number for introducing 1/N-expansion. Further we add the follwing

term introduced by Russo et al.[12] to the above action:

quantum = __/dz zyV-— g2¢ R. (014)

Introducing the following field redefinition

x=Vi(p- 38+ ),

(015)
Q=V(i¢+ 1),
2 K
then the semi-clasical equations of motion becomes in very simple form:
b -
8.0y = - —= a:(l U)'
YOXET TR (016)

040-(x —w) =0,
and

0sf - 0sf — 2mts(zs) = —OrxOsx + 0:00:Q + Vlx,  (017)

where - denotes the sum of i and {3 are arbitrary chiral functions to be deter-
mined by the boundary conditions and f; is interpreted as macroscopic behavior
of quantized fields. With the zero-mode contribution included( i.e. the homo-
geneous configuraton of matter: < f >= v/2¢t ), the solution of the equations
(016) and (017) is as follows

2
KX =M—2—~(/\ t.m,+—)t+e'n',
2" ; (018)
K .

2 . e
where tyey =3 = ﬁ- due to the Casimir effect.

From the equations (015) and (018), we know the qualitative behavior of ¢

as a function of time ¢ (Fig.2).
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We examine whether quantumm version of CTC-spacetime realizes or not.
First from (015) and (018), we obtain

2 = 26 — 2AL. (019)

To get CTC-spacetime, 2¢ must become linear in ¢ as ¢ — oo in the conformal
flat gauge. By comparing  — ¢ and Q — { relations, we know the corresponding

solutions exist in the following region of parameters:

M >V,

(020)
€ =kA? + dRlyey .

where §2., is the local minimum of  in Q — ¢ relation (Fig.2(2)). It should be
noted that the value of dilaton at # = 0 can be adjusted so small one that the

semi-classical approximation is valid.

6

The spacetime structure of 1 + 1 dimensional compact Universe have been
studied in two dimensional model of dilaton gravity. First we gave a classical so-
lution corresponding to the spacetime in which closed time-like curves appear and
show the instability of this spacetime due to the existence of matters. Next we
observed the appearance of quantum analogue of such a CTC-spacetime needed
some fine tuning of parameters. Thus it can be said that the chronology protec-

tion holds in a weak sense in this model.

As further investigations, it is more interesting to understand the classical
and semi-classical behaviours of the compact universe treated in this paper with
full quantization of two dimensional dilaton gravity[13, 14]. Especially, the con-
struction of the physical states having such classical and semi-classical behaviours

is required.

One of the aurthors(T. M.) would like to acknowledge Y. Onozawa, M. Siino

and K. Watanabe for enjoyable discussions.
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Figure Captions

Fig.1 Misner-typ universe;
t = +oo(n = 0) is a closed null geodesics. The region:(y < 0) is Globaly
hyperbolic Spacetime, and the region:(y > 0) have Closed Time-like Curves.
Fig.2 Q-¢ and Q-1 relations;
(a)Q2- ¢ relation, (b)N2-t relation
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ON THE MASS OF TWO DIMENSIONAL QUANTUM BLACK HOLE

Tsukasa TADA!

Shozo UEHARA?

Uji Researck Center
Yukawa [Institute for Theoretical Physics
Kyoto University, Uji 611, Japan

In this talk we shall consider the mass of 2di-
mensional quantum black hole especially. Re-
cently two dimensional toy model of quantum
black hole has been altracting much interest.
Many features of CGIIS model(2] and its mod-
ified version [3-8] have been discussed. But we
shall here concentrate on the problem of the mass
among many other problems.

Here we shall first introduce a kind of mass
function, that is the mass that observed at each
point of space-time and next calculate its value
for CGHS model. Up to now our study is limited
to semiclassical analysis.

To begin with, let me show the action, which
we are going to study.

S= % / d*z /=5~ (R + 4(V4)? + 47?) ,

where ¢ is dilaton and X is a constant. Here ¢ is
for dilaton, which couples to scalar curvature R
and its kinetic term. Aud this X is a some con-
stant, here we take it positive. It corresponds to
a cosmological constant of gravitational system
in higher dimension when we think this action
as a spherically reduced model from higher di-
mension.

In particular we would like to point out that
the above action resembles the action of spheri-
cally symmetric model of four dimensional grav-

]
2
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ity. So keeping in mind its resemblance will be
helpful in the following study. In fact it is pointed
out that the above mentioned action is obtained
by taking large D limit for D-dimensional spher-
ically symmetric gravitational system [9)].

Now we are going to analyze this model through
the canonical formalism. As as usual we decom-
pose the metric in the following form;

. N2+ M N
Jab = " .
N ¥

Here Ng is known as lapse and N, is shift. ¥
stands for a dynamical degree of freedom of grav-
itational sector and these ¥ and ¢, dilaton are
two dynamical degrees of freedom in the present
model. ’

Thus in terms of canonical variable, that isy, ¢
and their conjugate momenta, 7, 74, the above
aclion is written as ;

S =/R¢$+ Ty - NoHo — N\H,.

Here - is for time derivative and Hy and M, are
the generators of time and space re-parametrization.
Therefore we obtain these two constraint:

{HO(“¢|¢vﬂ7l7) = 0
H‘(ﬂ¢,¢,ﬂ'-’,7) =0 )

They are rather complicated equation in terms
of ¥y ¢ 7sand 7. Next we shall combine these two
equations to get a new quantity.

We find that these combination of two gener-
ators is nothing but a total derivative of M as



follows;

(—4)'77"75“ -

¢
0=7{oxi+'ﬂxx ;)

Wi

Here / denotes the spatial derivative and

M.

2
2 2
M = ﬂezé —_ ﬂe-zé + Ae"zé.
A Ay
It can be written in covariant form;
e

M=2

[A’ - g“‘vawm] .

The above quantity is nothing but two dimen-
sional version of local mass which is first in-
troduced in the study of spherically symmel.-
ric model of four dimensional gravitational sys-
tem by Fischler Morgan and Polchinski (10]. The
present system is very similar to spherically sym-
metric four dimensional gravity, hence we could
imitate their construction in four dimensional.
And very recently this quantity has applied to
the evaporating Black Hole by Tomimatsu[11).
Our initial motivation is to apply this method to
the CGHS model.
Rewriting with more usual form of metric;
- 1 2p - -
94- = =57, G4+ =9-- =0,

in conformal gauge and with light-cone coordi-
nate z+ and z~, we find :

M= % [4e~%*e 2?8, 409 + z\:'e':"’] .

Here p is for Liouville field as usual.

In CGHS model conformal matter couples Lo
the two-dimensional dilatonic gravity. And we
consider the situation that a matter shock-wave
is coming to the origin. The most eminent feature
of this model is that it can be exactly solved in
classical case. So we can follow the whole process
of matter collapsing though it is classical. One
can expect that this model resolves the secret
of gravitational collapse and formation of black
hole because of its similarity to four dimensional
spherically symmetric model.

Let us show the exact solution of this model
when this matter shock-wave comes in. Here we

denote matter field by f and there you can see
the shock-wave on the line of z+ = =

1 M
§8+f3+f = I;g_-&(l"’ - 23-)

Where M is a free parameter that represent the
magnitude of the shock-wave and this is proved
to be a mass of black hole later.

Then the classical solution of this model be-
comes as follows.

ds® = e*dzrtdz
_ dztdz-
- 4\""9 (z% = z)0(z* - ) - A2ztz-

For this geometry we find the local mass expres-
sion as follows;

Mzt z7) = MO(z - )

So far the classical theory, now we would like
to proceed to the quantum theory. We incor-
porate quantum effect through including trace
anomaly term;

KOO p

into the action. Here x depends on the number
of matter fields and we assume it is rather pos-
itively large. This gives us an one-loop effective
action and make us possible to large-N analysis.

One finds that the model is no longer exactly
solvable once we incorporate the quantum effect
through the anomaly. Many features in classical
theory become different. For example ¢ does not
coincide with p, and the analysis breaks down
at some large value of ¢,efc. So our analytical
study is limited to the region near the classical
region. That is, we can only analyze on the mat-
ter shock-wave line and past null infinity where
space-time is asymptotically flat and the quan-
tum fluctuation is very small (Fig. 1).

First at past null infinity, where z~ goes to
minus infinity;

er'——m = M0(2:+ - 3:)

There the result coincide completely with one of
classical theory, as one may expect. That is after
matter shock wave passes, one finds the value M
stays constant in past null infinity.
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Fig.1. Plot of local ass function on Penrose diagram.

Fig.2. Decreasing of the mass towards x* direction is

shown.

Secondly, we proceed to the result on the mat-
ter shock-wave line. On this line the value of local
mass expression take like this.

—Nztz-

-Mzre- -«

Mzt zo)=M

It increases along the matter shock-wave line to
the horizon and actually diverges at the criti-
cal point, where semi-classical equation breaks
down, sometimes it referred as a quantum singu-
larity. Of course its value at past null infinity is
M as one can easily sce.

Also we have calculated its derivative along
zt and find it decreases towards rt direction
outside the apparent horizon. It slowly reaches
zero at past null infinity (Fig.2).

The area painted white in Fig. 1. is left for
further study with numerical calculation, which
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is now in progress. Therefore it is difficult and
may be dangerous to drag some conclusion from
these result because most crucial region is not
yet analyzed.

So let us close this talk with the conunent that
the situation on mass seems to be rather dif-
ferent for 2d CGHS model comparing 4d case.
There is some evidence already in the classi-
cal physics. For example, applying the inverse
Kruskal-Szekeres transformation to the static so-
lution of 2d dilatonic system we find

1

ds? =
$E T -erimy)

x [_(1 - Z)dn? + ](d—_'_z:] :

where r, = -215 This form is in usual ¢, r coordi-
nate and what to be compared with Schwartzschild
solution. There is no parameter M in the above
form so the difference is obvious.

Note added: Recently we have noticed that the
same local mass is also considered in [12].

References

[1) T. Tada and S. Uchara, preprint YITP/U-92-37,
hep-th/$301020 .

(2] C.G. Callan, S.B. Giddings, J.A. Harvey and
A. Strominger, Phys. Rev. D45 (1992) R1005.

(3] T. Banks, A. Dabholkar, M.R. Douglas and
M. O'Loughlin, Phys. Rev. D45 (1992) 3607.

(4} J.G. Russo. L. Susskind and L. Thorlacius, Phys.
Let. B292 (1992) 13; preprint SU.ITP.92-17 (1992);
preprint UTTG-19.92 (1992).

5] A. Biral and C. Callan,
PUPT-1320,hepth@xxx /9205089 (1992).

[6) S.P. de Alwis, preprim COLO-HEP-280,
hep@xxx9205069 (1992); preprint COLO-HEP-284,
hep@xxx9206020 (1992).

(7) A. Suominger,  preprint
hepth®@xxx/92056028 (1992).

[8) K. Hamada, preprint UT-Komaba 92-7 (1992).

[9) J. Soda, Ehime preprint (1992).

(10] W. Fischler, D. Morgan and J. Polchinski, Phys.
Rev. D42 (1990) 4042.

[11] A. Tomimatsu, Phys. Lett. B289 (1992) 283.

(12) V. P. Frolov, Phys. Rev. D46 (1992) $383.

preprint

UCSBTH-92-18,



Quantum Gravity and Black Hole'

KEN-J1 HAMADA AND ASATO TSUCHIYA

Institute of Physics, Universily of Tokyo
Komaba, Meguro-ku, Tokyo 153, Japan

Abstract

The quantum theory of the spherically symmetric gravity in 3+1 dimensions is investi-
gated. The functional measures are explicitly evaluated and the physical state conditions are
derived by using the technique developed in two dimensional quantum gravity. Then the new
features which are not seen in ADM formalism come out. If x5 > 0, where x, = (N —-27)/127
and N is the number of matter fields, a singularity appéars, while for », < 0 the singularity

disappears. The quantum dynamics of black hole seems to be changed by the sign of «,.
1. Introduction

Since the original work of Hawkingfll many authors study the quantum dynamics of
black holes. Almost all of works are done within the semi-classical approximatiou!""'"’l In
this talk we discuss how the quantum gravity will influence the dynamics of black holes™”

As a model of gravity we consider the spherically symmetric gravity in 3+1 dimensions.

As a quantization method of gravitation, Arnowitt-Deser-Misner (ADM) formalism is
well-known. This method, however, has some serious problems, which are the issues of mea-
sures and orderings. Here we explicitly evaluate the contributions from measures. Following
the procedure developed in two dimensional gravity ‘we determine the measures in conformal
gauge. From the gauge fixed theory the physical state conditions are derived. Then the new

features which are not seen in ADM formalism appear.

t Talk given by K.H. at “Workshop on General Relativity and Gravity”, Waseda, Tokyo, Japan, 18-20
Jan 1993.
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The spherically symmetric gravity in 3+1 dimensiouns is defined by reducing the Einstein-

Hilbert action to the two dimensional one as
=g 1 2
Ien = lG 167G diry/—g I RY = Z/(’z.l'\/"g(Rg(p2 +2¢°70, 003 + F) . (1)

The fields g4 and ¢ are defined through the four dimensional metric (dst)? = g adada? +
Gp2d0?, where a, 8 = 0,1 and d9? is the volume element of a unit 2-sphere. G is the
gravitational constant. In the following we set G = 1. We couple N two dimensinal conformal

matter fields

AV
1
Iite.N = =3 [ Ery=a520. 1041, (2)
Jj=1

Some classical solutions of this system are known. For f = 0 the Schwarzshild geometry

is well-known. The gravitatinal collapse geometry is given Ly™

2MI( D) i -
- _[)- . =,
ds (l " ) Iy e fado | p=r, (3)

where ds? = ga,,da"’d:cﬁ and the coordinate (&, #) is defined through the relations, da =
du*(@+4M)/a, u* = v~ 2r*,+* = r+2M log( 54y — 1) and & = v. This geometry is derived
by sewing the flat space time and the Schwarzshild black hole geometry along the shock wave
line & = 0, where the infalling matter flux is given by T{l-, = Mé(p). In (a, ) coordinate the

horizon locates at & = —4M.
2. Quantization of Spherically Symmetric Gravity

Let us define the quantum theory of the spherically symmetric gravity. The partition
function is expressed in terms of the path integral over the two dimensional metric g, 3, the

scale field ¢ and the matter fields f as

(9)Dg(9)Dg(f) i1
Z= / : Vol(D‘fﬂ' W) itssatons) | Igoq = Igy+ 1y, (4)

where Vol(Diff.) is the gauge volume of diffeomorphism. The functional measures are defined
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by the following norms

< bg,69 >4= / A2 /=g4°P §%(69ar 8938 + b0apb0,8) |
< b, b >p= /dzm\/-g&pbnp , (5)

<b8fj 8f; >y= /(lz.r\/——géfjéfj (j=1,---N).

The measures explicitlly depend on the dynamical field g. Therefore we must extract
its contributions from the measures. They are evaluated by using the procedure of David-
Distler-Kawai (DDK)"’l in conformal gauge g = ¢2°§, where § is the background metric. The
final expression is given by

where @ denotes the fields p, ¢, f and the reparametrization ghosts b and ¢. The gange-fixed
action [ is
I = 5,50(p,5) + I5a(%5,0) + T (3 £) + Ipn(n0,0)
= %./ ¢zV=3 [goﬁa"‘f’aﬂ‘r’ +2§°P 00 pdpp + %Rsﬂ + o2

(7)
+ 5§ 0o plpp + Rip) - i 800 03] + Iph(.b,0)
. =
with .
Ky = 12Lﬂ(l +cp+ N—-26)= N 1;:7 . (8)
where Sz(p, §) is the Liouville action defined by
Silp,9) = [ deV=HaP0up050 + ). (9)

The value of &, is given by setting £ = 1/2 in ref.6. The functional measure of the Liouville
field p is defined by the norm on g as

< 6p,bp >5= /(lzm\/—gépép ’ (10)

and also the measures for.¢ and f is defined by the norms (5) on § instead of g.
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The background metric § is very artificial so that the theory should be independent
of how to choose it. Really it is proved that the partition function is invariant under the
conformal change of the background metric, or Z(e2?§) = Z(§). where o is an arbitrary local
function. This means that the theory is considered as a kind of conformal field theory defined
on §. The Virasoro algebra without central extension should be realized.” The physical state
conditions are derived from the demand that the theory should be independent of how to

choose the background metric,

% =0, o <Tpy>=0, (11)

g=n
where 77,3 = (—1,1) and the energy-momentum tensor is defined by f},,g = ——\;_—-(,;ML.I.JI;,m,.

Since the Liouville ficld p is transformed as p'(@') = ple) — {2} for the conformal

- 4 -
coordinate transformation 2 = rF(r¥), where y(r) = %log|%§—,|2‘ [v]2 = r*o~ and

+

- . g
1% =20+ 1!, the energy-momentum teusor T, ; is transformed as

. +42 . R v
Tis(a) = (%) (Taeg(z) +wste() . Ty ()= la—l,

2
a7 T+ (12)

where t3(z) is the Schwarzian derivative tg(r) = (dy(r)/dr)? — 9%q(x)/0xE2. 14 is
determined by the boundary condition that the coordinate system which is joined to the

Minkowski space time (asymptotically) is considered as the coordinate system with t4 = 0.
3. Black hole dynamics

To derive the black hole dynamics we must solve the physical state condlitions (11). But
it is a very difficult problem so that we take an approximation. The original actions (1) and

(2) are the order of 1/h, while the Liouville part of I is the zeroth order of h. However, if

* Note that in this case the theory does not reduce to the free-like theory. So it is quite different from
the usual conformal field theory.

3 More explicitly, To,, is transformed as

a4 ’ 0 *\? 2 o 0'* 2
Tia(e) = (5};) (Fasle) + wata(2) + ﬁ»—,',(mf?) te(r)

with cror = 1 = 1278, + ¢, + N = 26 = 0. Note that if T} (') satisfics the usual form of the Virasoro
algebra with central charge ¢,y = 0, then in r coordinate the combination Tux(r) + #4t4(r). not

Ti4(x) itself, just satisfies the same form of the Virasoro algebra. The importance of ¢4 in quantum
gravity is stressed in ref.10.
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|ns| is large enough, then it is meaningful to consider the “classical® dynamics of I. This
is nothing but the semi-classical approximation, which is valid only in the case of A/ > 1
and |x,] > 1. The classical dynamics of [ is ruled by the equations T3 = 0 and the ¢ field
equation of motion. Then we set 'f’gg = 0 because the ghost flux shonld vanish in the flat

space time,

The gravitational collapse geometry is given as a solution with non-zero infalling matter
flux. Giving the flux T;{t-, = M6(®), we can get the exact solution along the shock wave line

7=0,

40

P
ﬁ) ’ (,7(0—0, u) =r= —211 . (13)

The (apparent) horizon, which is defined by the equation dpp = 0™ locates at

6‘-.99(1'::0,1‘;) = %(1 -

i=— fa_
it=—4M 1+4M""

=0
i
o

(14)

If k, > 0, the location of the horizon initially shifts to the outside of the classical horizon
# = —4M by quantum effects. Then the black hole evaporates and the horizon approaches to
the singularity asymptotically. The location of the singularity is determined by the equation
=k, (at =0,itis @ = =2 VKs). Note that at the singularity the curvature is singular,
but the metric is finite. If x, < 0, the singularity disappears. The location of the lLorizon
initially shifts to the inside of the classical horizon. If the effective mass of the black hole
is defined by Mgy = %‘Plhorizon' this means that the initial mass of the black hole is less
than the infalling matter flux M. After the black hole is formed, the positive flux comes in
through the horizon and the black hole mass increases. It seems that the horizon approaches

to the classical horizon asymptotically and becomes stable.

For 5, > 0, the classically forbidden region &, > ¢? > 0 called “Liouville region” extends
behind the singularity. To understand this region we must go back to the full quantum

gravity. In the canonical quantization the physical state conditions arce written as

Tool = Ta¥ =0, (15)
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where ¥ is a physical state and

. 1 1 Ky 1 1
Too =————( M2 - ¢TI, + —ﬂz) +o" + §~:'2 — i = e

o2 — kg \2 2"
K 1 N
_Dsr 92 47 2 2 12
2(p 2p)+2jz=;(ﬂl+f,). (16)
- h‘
Tor =p'T, — I, + $'T, + Y T f} .
i=1

These correspond to the Hamiltonian and the momentum constraints. The conjugate mo-

mentums for p,p and f; are defined by
M= ~Kp-pp, NMo=-p—pp, Mj=f. (17)

The notable point is the factor (¢? — &)1 in front of the kinetic term of the Hamiltonian
constraint, which does not appear in ADM formalism™" The region 2 > w, is classically
allowed, whereas the Liouville region x, > ? > 0 is the classically forbidden region where the
sign of the kinetic term changes. There may he some possibility of gravitational tunnclings

through this region.

The problem of the information loss seems to come out in the case of 5 > 0. Then
the black hole evaporates and the information seems to be lost. However in this case the
Liouville region extends behind the singularity. So it appears that there is a possibility that
the informmations run away through this region by gravitational tunneling. On the other
hand, if k, € 0, the Liouville region disappears. But the hlack hole scems to be stable. In

this case it appears that the problem of the information loss does not exist.
4. Discussions

The quantumn model of spherically symmetric gravity discussed in this talk has some
problems. Here we adopt the conformal matter described by the action (2). Strictly speak-
ing, however, we should consider the action such as Iy = —% J (12.1'\/—_g~;2g“"00 f0,f,
which is derived by reducing the four dimensional action to the two dimensional one. Ig-
noring ?-factor corresponds to ignoring the potential which appears when we rewrite the
d’Alembertian in terms of the spherical coordinate. The black liole dynamics is determined
by the behavior near the horizon so that it seems that this simplification does not change

the nature of dynamics.
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The other problem is in the definitions of measures. As the actions are derived from the
four dimensional ones, the two dimensional measures also should be derived from the four

dimensional one

Cd

< g™, 8gW > 0= \ dtr/=g At iedi3glDsgi) + 69300’y . (18)
From this definition we get

< 69,69 4= \ @GP g (Ban 6035 + 800008)

(19)
<8, bp >¢= .\.%?\l%gﬂ .
And also for the matter fields,
<8580 55= [ /TR (=11 (20)

The difference between (5) and (19-20) is apparent. The factor ¢? in the measures of g and
f prevents us from quantizing the spherically symmetric gravity exactly. We expect that

this factor also does not change the nature of quantum dynamics drastically.

REFERENCES

1. S. Hawking, Comm. Math. Phys. 43 (1975) 199; Phys. Rev. D14 (1976) 24G0.
2. P. Davies, S. Fulling and W. Unrul, Phys. Rev. D13 (1976) 2720.
3. C. Callan, S. Giddings, J. Harvey and A. Strominger, Phys. Rev. D45 (1992) R1005.

4. J. Russo, L. Susskind and L. Thorlacius, Phys. Lett. B292 (1992) 13; T. Banks, A.
Dabholkar, M. Douglas and M. O’Loughlin, Phys. Rev. D45 (1992) 3607.

5. S. Hawking, Phys. Rev. Lett. 69 (1992) 406; L. Susskind and L. Thorlacius, Nucl.
Phys. B382 (1992) 123; B. Birnir, S. Giddings, J. Harvey and A. Strominger, Phys.
Rev. D46 (1992) 638.

6. K. Hamada, Quantum Theory of Dilaton Gravity in 1+1 Dimensions,
preprint UT-Komaba 92-7, to appear in Phys. Lett. B.

—154-



7. K. Hamada and A. Tsuchiya, Quantum Gravity and Black Hole Dynamics in 1+1

Dimensions, preprint UT-Komaba 92-14, to appear in Int. J. Mod. Phys. A.
8. W. Hiscock, Phys. Rev. D23 (1981) 2813.

9. J. Distler and H. Kawai, Nucl. Phys. B321 (1989) 509: F. David, Mod. Phys. Lett.
A3 (1988) 1651.

10. N. Seiberg, Prog. Theor. Phys. Suppl. 102 (1990) 319.

11. P. Thomi, B. Isaak and P. Hajicek, Phys. Rev. D30 (1984) 1168; P. Hajicek, Phys.
Rev. D30 (1984) 1178.

—155—
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Abstract

The renormalization structure of two-dimensional quantum gravity is investigated in
a covariant gauge. One-loop divergences of the effective action are calculated. All the
surface divergent terms are taken into account thus completing previous one-loop calcu-
lations of the theory. It is shown that the on-shell effective action contains only surface
divergences. The off-shell renormalizability of the theory is discussed and classes of renor-

malizable dilaton and Maxwell potentials are found.
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The current activity in the study of the two-dimensional (2d) quantum gravity is mo-
tivated by the following (main) reasons. First of all, it is extremely difficult to study the
physics of black holes and of the early universe in the ambitious frames of the modern
models of four-dimensional quantum gravity. Solvable toy models like the 2d gravity sim-
plify the considerations and hence can help in the study of more realistic situations. From
another point of view, the 2d quantum gravity is interesting on its own as a good labora-
tory for developing formal methods of the quantum field theory. Moreover, a connection
with very fundamental physics may be developed because some models of the 2d gravity
are string-inspired models.

Recently, an investigation of the renormalization structure of the 2d dilaton gravity has
been started [1-4]. The one-loop counterterms in covariant gauges have been calculated
[1-4] and it has been shown that the theory may be renormalizable off-shell for some
choices of the dilatonic potential (in particular, for the Liouville potential). The only
one-loop divergenées on shell are surface terms [1].

In the present paper we address the question of the calculation of the one-loop countert-
crms which appear in the dilaton-Maxwell 2d quantum gravity as given by the following
action® [5,0)

1 1
=- / &’z /g [59“" L0, + o Ro + V(p) + ;f(so)y“"y""FwFaa . (1)

where F,, = 9,4, — 9,4, is the electromagnetic field strength, ¢ is the dilaton, V() is a
general dilatonic potential and f(i) is an arbitrary positive valued function. Notice that
for some choices of f and V this action corresponds to the heterotic string effective action.
The theory admits black hole solutions. Properties of the 2d black holes associated with
different variants of the theory (1) were studied in Refs.[5,9,10] along the same lines as
developed for the pure dilaton gravity (without the Maxwell term) [7,8]. The model given
by (1) is also connected (via some compactification) with the four-dimensional Einstein-
Maxwell theory which admits charged black hole solutions [14).

The one-loop counterterms for the theory with the action (1) have been already cal-
culated in Refs.[6,9] — but not taking into account the contributions of the divergent
surface terms. In this paper we generalize those calculations in order to take into account
all such terms in the efective action. It is well known that they are relevant, e.g. in the

context of the Casimir effect calculations (see, for example, Ref.(15]).

3For a higher derivative generalization, see Ref.[12]
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The classical field equations corresponding to (1) are
1
V“(prV) = 0) _A‘ro + CIR + V,((P) + Zf’(w)F;?v = 0:
1 1
=5V V0) + 207V eV, + (VY2 - g7 A)p (2)
l af l af ¢ 2 1 a Bu _
+29 V+89 fF., 2fF”F =0.

We will use Eqs.(2) below, in the analysis of the divergences of the theory.
The background field method is employed. The fields are split into their quantum and
background parts,

p— ‘/_’ = ¢ + ®, Ap _— /i;- = A;‘ + Q;u Gyp — !7,.» =G + hpm (3)

where the second terms ¢, @, and k,, are the quantum fields. In what follows we shall
use the dynamical variables & = g**h,, and 71,,,, =h,, - %hg,,., rather than 4,,.
In order to make contact with Ref.[4] where the surface divergences in the absence of

the Maxwell term are calculated, the following term is added to the initial action
A5= o€ [z G [pha (R - %Rg‘"’)] , (4)

where £ is an arbitrary parameter. Owing to the 2d identity R,, — 3Rg,, = 0, the
expression (4) is obviously zero. (Notice that AS is very similar to a kind of Wess-
Zumino topological term. The observation that the parameter € only appears in the
surface on-shell counterterms and is in fact related to the trace anomaly, hints in this
direction.) However, the second variation of (4) may bé important for the removal of
non-minimal contributions from the differential operator corresponding to S®. A possible
interpretation of this term is given in [4].

To fix both the abelian and general covariant invariances we use the following covariant

gauge conditions :
= A B
SGF—_E/dqz {xACusx®},
X*=-VQ., x'=-Vh-[a/(214)]V', r=alf-1)/2. (8)

The index A = {*, u} runs over the three-dimensional space of gauge transformations.
The most convenient form for the matrix Cyp is

Cap = /9 diag (f,2749,.).

If the identity (4) is absent then £ =0 and vy = —¢, /2.
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As is well known, the divergences of the one-loop effective action are given by

Paio = zTr InF = iTr In M|,

(6)

where .U, is the ghost operator corresponding to Sgr (5) and the second variation of

the action defines the operator H:

1 .~ .
s¢' i = S+ AS@ + Sor.

(7)

Here ¢' stands for the set of the quantum fields, {Q,,®, b, h,.}. Making use of the

background vs quantum fields splitting (3) one easily finds that

where

H=-Ka+I'V,+ M,

(}g,m 0 0 0o )
0 o 22- 0
K ' = !
2 4 2 ,
0 = - —+—) 0
Cy (C'i! 19 )
0 0 0 —BP,.
\ yo ot )

the projector P#»# being 548 — 19"*9°%, and

f'(Vog)g*t = f1(VE¢)g™* — f'(V*¢)g",

_iél = f'F“'\’ Zi\n = "Zi\l = "“%fFM;

FA i A

Ly = W(V %),
D= =L = (Vua)PP>, L} =-2(V%),

_]:;\l = fF)‘UP"B"‘“' - fF* podv

Z;, =0,
- Il -~

—L}y= é(qu&)P"""“",

3C1
2

U B LU
§fR9" v My =My = EV'_ gf'F,Im My = _S_fF:v!

(% _ 7) (Vu¢) (P::Paﬂ,»\n _ I‘Spv.kn 13:5) _ (VA¢)1‘3pv,aﬂ,

3 - -~ - ~
(v=3 ) (Vaveg)Preinpos 4 (v,9)(v<g) o s
1
4
] 2 Buv - - 1 ~ -
g/ Fa Pl + fRAFP PreesPOf 4 o f P FY PIYPRS.

(VA¢)(VA¢)13""'°5 + 7¢R13""""’ - %v Pprvas
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Now we can start the computation of the contribution of the gravitational-Maxwell

part to the effective action divergences. First of all, one easily sees that

Tr In ﬁla.‘u =Trln (—R""ﬁ)

(11)

because Tr In(—K) gives a contribution proportional to 8(0) which is zero in the dimen-

div

sional regularization. However, in order to apply the standard algorithm

Péw = ;TrnH| = (m + 2BV, +11) |ai
R . . ‘
’E -\) ' (12)
where ¢ = 27(n — 2), one should take care that the operator # be hermitean, properly
symmetrized, etc. Imprudent integrations by parts actually change the matrix eclements
which may lead to the breakdown of these compulsory properties.

In order to recover an operator # with the required properties the doubling procedure
of 't Hooft and Veltman [13] is very useful. A clear explanation on how to do this in the
present context can be found in Refs. [2-4] (for more details, see [13]). In fact, using this

method amounts to the following redefinitions of the operator # given in (8):

- - 1 - - -
L, — LQ:E(L)—L{)—VAI(,

M — J= (M + M) - 29 I] - 2aF, (13)
Now, introducing the notation E* = —%F’“Z"‘ and 1 = =K' M, we have the operator

H of the proper form and thus we can apply the algorithm (13).
The explicit form of the operators £* and 1i can be found from (11) and (13) to be
the following

(B = 5[(v*¢)g:-(V°¢)g:+(v,,¢)gax], = -L5,

of e
(B = gF (B = gFu P - PP,
R T
(B = (f L L) = -ae, E-o
o af, \w A f aw a w
(BY% = 3 ¢( Vog) Pt (BN} = k ¢(FtP,,, - FLBY),
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3 — a _ ) (wv af BAir _ P Pab,Ax 1 or s pos.
(B = (4—73 2¢)( $) (Pl Pir = Prgun P )+2¢(V $) P27,
ﬁ: = —%Rg:) H§=— V,+—F:w
- Ly (Le L L 1 o
ny = -V (2c1+37—¢+4c1)F +( + )(A¢),
n = (%—%)( wi)——(w)(vw)—— F“’"] Purpst
.f W 14 Qa
- ml’ F¥P,, ,P® 2
[ ! » 1 _3a —p+ VL TEw] pas
+ s a0+ (55— 22 (00) - Rt oo+ 2 P22

Applying the algorithm (13) and the matrix elements (15), after some tedious algebra

we find the gravitation-Maxwell contribution to the effective action:

1 2 1 '
FGMM:—E/d?xﬁ[gR-*-_nvl_%-*-(§%+4£¢) F’ (15)

f ! 1 ) ( f" f’? 1 a ) ]
+ + b o tW\FT-F-s5t—=% V)V
( f ¢ a 299 (A¢) f2 ¢ 27¢2 2 247 (V3¢)(Va9)
To complete the calculations we should add the ghost contributions. The ghost oper-

ators corresponding to (5) are

My =8, Mybh=g¢" ! (v ¢)V"+m V'V, $) + R~ (16)

Again, using the algorithm (13), we get the divergent ghost contributions of the effective

action

th dlv=—_/d2$\/—[3ﬂ+ (A¢) (27¢2 -)¢o

Note that the doubling procedure (14) should not be invoked.

=) o).

Finally, the total divergent part of the one-loop effective action given by the sum of
(16) and (18) becomes

- 1 20 f,f
Tsiv = /d’zﬁ[5R+ V' - 7¢+(2c|+47¢)F2

Lei 1 L) )|
* (f+¢ )(A¢)+(f o mt ) (VAW (s

A few remarks are in order. First of all, in the absence of the Maxwell sector (f = 0)

and when dropping the surface divergent terms, expression (19) (no surface divérgences)

—161 -



coincides with the results obtained in Refs.[2,3,4] in the same gauge,

Lo == d’zf[ Ve 4 S(P0(Tae)]. (19)

Notice that the term (4) was not introduced in Refs.[2,3] so that ¥ = —¢; /2. Besides, we
actually disagree with Ref.[4] in the surface divergent terms. This stems from the fact
that the term —V* E, corresponding to the algorithm (13) is missing in Ref.[4). This term
gives an additional contribution to the surface divergencies.

Secondly, dropping the surface divergent terms one can see that the divergencies of
the Maxwell sector coincide with the ones previously obtained in Refs.6,9].

Eq.(19) which contains the surface divergent terms of the theory (1), constitutes the
main result of the present work, and completes the calculations done in Refs.[6,9]. It is
interesting to notice that there is no dependence on « in the terms which result from
the Maxwell or the Maxwell-dilaton sectors (only in the pure dilaton sector does such
dependence appear). Also to be remarked is the fact that the contribution from the

Maxwell terms to the dilaton sector
L[ f o 0
| @ vivs (L9%4), (20

is trivial: it is merely a surface term [6).
Let us now consider the result (19) on shell. Integrating (19) by parts, keeping all the
surface terms and using the classical field equations (2) we obtain the on-shell divergences

of the effective action
!
5:',,""‘" /d’z {SR + - (V'+ ZF‘?") + A [lnf+ (l - —) Ing - —¢]}

Using the second of the field equations (2), we can rewrite Eq.(22) as follows:
rop-shell = /dnx {SR +A [lnf + (l - —) Ing + —¢] } (22)

Hence, one can see that the on-shell divergences of the one-loop effective action are just
given by the surface terms. If we are allowed to drop the surface terms we can conclude
that the one-loop S-matrix is finite as in the pure dilaton gravity [1]. Note also that
the surface counterterms on shell depend on the parameter v (and hence on £). This is
not surprising because by adding the term (4) one introduces a new parameter into the
theory. (This parameter apparently can influence only surface counterterms because the
triviality of Eq.(4) is a consequence of the Bianchi identities.)
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Finally, let us discuss the renormalizability of the theory off shell. Dropping the surface
terms in (19) we get
Laiv = -"'/‘121 \/-[ Vie —+ (L + "L) (VA¢)(VA¢) (23)
" 7¢ 2 ¢
For the case £ = 0 this result has been obtained previously [9). Adding to the counterteris
(i.e. (24) with the opposite sign) to the initial action (1) we obtain the renormalized action.
Choosing the one-loop renormalization of the metric g,,, as

1
Guv = €Xp ( o 7¢) Gos (24)

we get the renormalized action in the following form

V'(9) _ f(9) g
= ~pv / —_— _F 25
Su= [ €25 [ 350000 +aks+ Vo) + Li@E, - L8 - LOp | o
The dilaton and the coupling ¢, do not get renormalized in the one-loop approximation.
From (26) it follows that the theory under discussion is one-loop multiplicatively renor-

malizable for the families of potentials:

V(gy=e+A, f(¢)=¢’ or f(8)=h,
V(¢) = Aising + Bycosd,  f(4) = Aasing + Bycos ¢, (26)

where a, A, 8, fi, A1, By, Az and B, are arbitrary constants.

The black hole solutions which appear for the Liouville-like potentials in (27) were
discussed in Refs. [5,9,10]. It would be interesting to study the time-dependent solutions
(the 2d cosmology) for the theory that has been considered here with the potentials (27)
and taking into account the back reaction [11].

Summing up, we have investigated the renormalization structure of Maxwell-dilaton
gravity and found all the one-loop counterterms including the surface counterterms. The

on-shell limit of the effective action and the renormalizability off-shell have also been
studied in detail.
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Role of the 5th Coordinate in Wesson's 5D STM Theory of Gravity
Takao Fukui
Faculty of Liberal Arts, Dokkyo University, Soka, Saitama, Japan

Abstract. [t is shown that the physical quantities in the 4D world such
as density, pressure and then an equation of state for a gravitating
spherically symmetric fluid can be derived from the geometrical property
of the fifth dimension of a spherically symmetric line-element in the
Wesson's 5D STM theory of gravity.

1. Introduction

Since Wesson proposed a 5D Space-Time-Mass theory of gravity (1], the
theory has physically been studied by various authors [2] besides
finding cosmological solutions {3). The authors made it possible to
draw some physical properties only from the geometrical property of an
extra dimension in the theory. From observational point of view, Coley
{4] studied the nucleosynthesis and Wesson [5] presented some testable
results, with applying the theory to the Universe. An equation of state
in the early epoch of the Universe was derived by Fukui (6] with using
the Chatterjee’'s cosmological solution (3]). This equation of state can
be applied for studying baryon synthesis in the early Universe. These
studies imply that the theory will be useful in describing the physical
quantities of the 4D Universe in terms of the geometry of a higher
dimensional world, when it is applied to cosmology.

While Wesson and Wesson & Lin [7) studied the effective properties of
matter by appling the theory to a spherically symmetric 5D line-element,
and showed that the theory can be useful also in studying solar system
dynamics. Ma [8] derived expressions of the rest mass of a test body by
applying the theory to Mach’'s principle in a quasi-static and spherically
synmetric gravitational field.

Here we derive an equation of state and study the motion of a test
particle in and arousd gravitating spherically symmetric systems.

2. 5th Coordinate and Energy-Momentum Tensor in 4D

A metric for 5D Space-Time-Mass is taken here as

dts)g2=dt4rg2-¢4qdg?, (1)

where d'*'s? js a familiar standard form of the 4D Space-Time metric,

df4’s2=¢"dt2-e dr2-r2 (4@ 2+sin2 0 d ¢ 2), (2)
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and v, A, and u are functions of t, r, and m.
According to the works of Wesson [2,5], Fukui [6], and Wesson &

Ponce de Leon [9], 5D Einstein's field equations in vacuum ‘S'°G“.=0 are
split here into ‘4'G%,, the part which i3 proper to 4D ST, and the
remainder H°,. Furthermore l°, is regarded as the energy-momentum tensor
T®s in 4D ST. So the field equations are written as

CBIGE = GOt =12 G p+ (8 k/c?) T =0. (3)

Greek indices run from 0 to 4, while Latin from 0 to 3¢°’.

The conservation laws in the energy-momentum tensor., T?®..=0 of which
only T®®;,=T'%.,=0 are not identically satisfied, put the following
constraints. From T®%.,=0,

(CAL-2A 2+A 22-A20)e "+ QL - A (244 u'/rev2fo-v/ fo i~ X V' A+

boe “ . u ' . g A A%, » LR wA ex X
tAputlvu-2u 4y a/r-dup’/r)e - (4A u+2A2u-2A uu-4A-4A A+

o % * o ¥ o . . * o * . . %
SIARAZA M2V A4 D 2A-D AR -2AA-A2A+A A 2t )e-*=0, (4)

and from T'®,,=0,

CoAu o au X2 u-A p A X p-20 W20 BV AR G r e T (VA
[} * * v,
4 A u'/r-2 u"u’+4g;=/r+u'u’=- VegYe - (-AY p-rv i E W A a0 -

w* 4 * * X T * * #* » %
I B 1S S S TN U EY IS S E SIS, I S o I B W R/ Q2O

+4A 2t /rye-*=0, (5)

where (), (+), and (*) represent partial differentials with respect to
t, r, and o respectively. Thus Egs. (1)-(5) are basic equations to be
erployed in the following sections.

3. Perfect Fluid
Since in the Universe as a whole and even inside star, the matter is

a perfect fluid to high precision, the energy-momentum tensor is taken
here as,

Teo=(p c2+p)U°Up-p& °s. (6)

t* Refer to [1(1983)] for detail of Eq. (3).
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Where o and p are the density and pressure respectively in the 4D
Universe, and U® (=dx*/d‘*’s) & U, are the four velocities and its

non-zero components are obtained from Eq. (2).1.e. 1=e" (U®)2-e*(U')2,
Then by using Eqs. (3) and (6), the density and pressure are given as

(8 k/c!) pe2=(3u/2r)e-*-(D X/4)e"‘. and (7
(Brk/c) p=(u'/2r) e (5 A /4)e-*. (8)

Eqs. (7) and (8) lead to the following equation of state for gravitating
spherically symmetric fluids.

p=(1/3) p c2-(c*/487 k) ie“. (9)

In case of U'=0, a co-moving coordinate, the following new conditions
yielded from T'1=T22(=T%s) should be taken into account;
from ‘4°G',=141G2,,

(2X+a2-0 A Yer = (20 2=V AT-2 A fr-2 0 /r-4/r2 ) e -4 /12 =0, (10)

and from H',=H2:,

. . " . LA * #

Ape ' -QQu+u2-X u-2u/r)e* -(2A +A2+:z\-/\;)e"’=0. (11)
4. Motion of a Test Particle

The geodesic equation in 5D is calculated by

d2x*/d'®'s? + "5, (dx*/d‘®’s) (dx"/d'®’s)=0. (12)

In the following d‘®'s should be written just as ds.
For « =0,

d2t/ds?+ (5 /2) (dt/ds) 2+ v’(dt/ds) (dr/ds)+ 1 (dt/ds) (dn/ds)+
+(e*7/2) A (dr/ds)2+(e*=*/2) i (dn/ds) =0, (13

for x =1 which represents the radial equation of motion,
d2r/ds?+(e”~*/2) v'(dt/ds) 2+ A (dt/ds) {dr/ds)+(A°/2) (dr/ds) 2+

+:{ (dr/ds) (dm/ds)-re-*(d& /ds)2-rsin? @ e *{(dd /ds)2-(e®-*/2) u'(dn/ds)?2=0,
: (14)
for x =2,

d2 8 /ds2+(2/r) (dr/ds) (d @ /ds)-3inB cos & (d¢ /ds)2=0, (15)
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for =3 which is the azimuthal equation of motien,
d{r2sin28 (d¢ /ds)}/ds=0, (16)

and for x =4 which gives the rate of change of the mass of a test

particle,

d2n/ds?+(e*"“/2) v (dt/ds)2+;l(dt/ds)(dm/ds)—(e"“/Z)i (dr/ds) 2+
+'(dr/ds) (dn/ds)+ (4t /2) (dn/ds)2=0. an

In the “Newtonian Jimit” , these equations reduce to those of 4D ST
theory of gravity, and we can make identical discussion to that in 4D ST,
on the motion of a test particle [1).

5. ¥esson's solution and Comments

Here we take a spherically symmetric solution obtained by Nesson [1],
and see what physical results the present scenario draws from the
solution. The solution obtained by Wesson is as follows,

dts's?=(1-2a/r)c2dt2-dr2/(1-2a/r)-r2 (d@ *+sin? 0 d¢ 2)-dnm?, (18)
where “a” is a constant with the dimension of length. Since Gm/c? is
constant on the surface of dm=0 of the 5D manifold, there the constant
“a” can be equated to GMe/c? where Mo is the mass of the central body.
This solution satisfies the conservation laws Eqs. (4) and (5) and the
co-moving coordinate conditions Eqs, (10) and (11), and leads to p =p=0
in Eqs. (7) and (8). Then the metric Eq. (18) on the surface of dm=0 can
be understood as the exterior Schwarzschild solution of a static
spherically symmetric star in a co-moving coordinate system of the 4D ST
i.e. a black hole of mass Me.

¥hile Eqs. (7)-(8) imply that there may be possibility to give a
radiation equation of state for a neutron star or a ‘cold’ electron gas
(10] p=(1/3) pc2, and an equation of state for a “stiff matter” p=p c2.
In case of the Chatterjee's cosmological solution [3], it was shown by
Fukui [6] that our Universe experienced a stiff matter state before the
radiation era.

From Eqs. (13) and (17), dm/dt=ea (1-2a/r). The size of the constant «
is expected to be small. This relation implies that the Wesson's theory
can be studied in connection with Mach's Principle [8].
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In conclusion, the present scenario shows that the Wesson’'s 5D STM
theory of gravity which is within the framework of general relativity
is useful in studying the inside and neighbourhood of a relativistic
star as well as the origin of the Universe.
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Energy, Momentum and Angular-Momentum
Currents in General Relativity

KoicHl NoMurA AND KENJI HAYASHI
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and

TAKESHI SHIRAFUJI

Physics Department, Saitama University, Ur}zwa, Saitama 338

ABSTRACT

Extending the tetrad formalism of General Relativity, we introduce a notion
of local translation in addition to the local Lorentz transformation. By means
of Noether’s method applied to action integral with the local translation and lo-
cal Lorentz invariance, we derive the energy-momentum and angular-momentum
curents, P¥# and J kly which transform as four-vector densities under general co-

ordinate transformations.
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In a series of papers,!)~%) Kawai has developed a gauge theory of gravity on
the basis of the principal fiber bundle over four-dimensional spacetime with the
covering group of the proper orthochronous Poincaré group. In this theory, there
exists an internal Poincaré gauge group, and the tetrad fields eg, are constructed
from the connection coefficients Ag, and Ay, and a Higgs type field X ; e, =
Xy +AppX Ly Apy. Particularly noteworthy is the fact that conservations of the
energy-momentum and of (orbital + spin) angular-momentum both follow from

the internal Poincaré gauge invariance.

In this paper, we apply Kawai’s formalism to general relativity. Namely, let us
take Ay, and a Higgs t:,ype field X} as the basic fields, and assume that the tetrad
fields eg, are constructed from X and Ay, as follows: ez, = X4, +Ag,. As for
the spin connection Ay, we assume that it is expressed by the tetrad fields. In flat
spacetime, X} can be globaly identified with the position vector, while in curved

spacetime, X can only locally be identified with the position vector.

Now let us define a local translation by X & = Xt — €x(z), and assume that the
tetrad fields are kept invariant; €, = eg,. Here €;(z) are four arbitrary functions.
Then A, are transformed as Zk,, = Apy + €. Matter fields ¢ are also assumed
to be invariant under local translations; $ = ¢. On the other hand, since the tetrad
fields are changed like ey, = Lk-'e,,, under local Lorentz rotations, under which

Apg, are transformed as Ay, = Ly'A:,, - Lkv',” X

We take the gravitational Lagrangian density Lg as follows:
1
Lg = 5-e(A™Am — A™ Agnm) (1)

following Mpgller.5) Here A is defined by Apmnen™. It should be noticed that Aty
involves only first-order derivatives of X; and Ag,. Lg can be obtained from the
Einstein-Hilbert Lagrangian density R/2x by subtracting fist-order derivatives of

Agyy in the form of a total derivative;

1
ek =-Le+D", 2)
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where the explicit form of D is given by
1 kv
D# = = (ee Ve “Ak’y) . (3)
Since the total (gravitational + matter) Lagrangian density L = Lg + L s is local

translation invariant, there are three Noether’s identities, from which we can derive

6L id niu _ gk
£ phu — phwv
6Ak” w (4)
where the energy-momentum current P*# and its super-potential F** are defined
by

6L det OL¢g
phu &l pha | gka ki def OoM ku def 226G
Ll U St R 7 (5)
and
OLg id
plevdd 226 W _phos 6
aAk",y ( )

respectively. Thus the differential conservation law pPke, u = 0 follows from the field
equation §L/6A, = 0, which turns out to agree with the Einstein equation. As is
shown by using Noether’s identities mentioned above, the field equation SL/6X; =
0 is automatically satisfied, if the Einstein equation and the field equation of ¢ are
both satisfied.

Since the Lagrangian density L¢ is changed by a total derivative under local
Lorentz transformations; §Lg = (§D*),,, there are four Noether’s identities. From

)

these identities, we obtain®

2X["—6jl‘ L LU L (7)
flu

where the angular-momentum current J ki and its super-potential *#¥ are de-

*) Here the symbol { ] denotes the antisymmetrization.
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fined by

#
b del o [ lepln . gtk pivn _ e D% _ i 9D 8
J 2 (X P +A yF e yaA‘]v A IA aA‘]y"\ ( )
and
v .
skiny Qéf 2 (X["F’]‘“‘+ aiD eq'\) g —Ek“’", (9)
[kpird

respectively. Thus, with the help of the Einstein equation and (7), we have the

differential conservation law J** , = 0.

Let us define P* and J¥ by

P* ‘!%f/ P"“da,, and J¥ dé{/ Jk,"dap ) (10)

respectively. Then, it can be shown that for an isolated system P¥ and J* agree

with the total energy-momentum and the total angular-momentum, respectively.

It is worth mentioning that P*# and J*/* are transformed as tensors under
global Lorentz rotations of tetrad fields and as vector densities under general co-

ordinate transformations.

Details of this paper will be published elsewhere.
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Black Holes with Non-Abelian Hair and their Thermodynamic Properties
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Department of Physics, Waseda University, Shinjuku-ku, Tokyo 169-50, Japan

Abstract

We present some black hole solutions of Einstein-Yang-Mills-dilaton system, and calculate their
Hawking temperatures. We find that il the coupling constant of the dilaton is smaller than some
critical value, the thermodynamic behavior of these black holes includes two phase transitions at
points determined by the value of the mass parameter. The black holes with the mass between
those two critical values have positive specific heat. This is also true for the known colored black
hole solution. \We also reanalyse Skyrime black holes and find that there exist two modes of solutions
(stable mode and unstable excited mode) and they have a critical horizon radius beyond which
there is no Skyrme black hole. Those stable hlack holes with small mass have two fates: One
possible remnant is a particle-like solution (Skyrmion) through the Hawking's evaporation process
and the other is a Schwarzschild black hole by matter accretion. When a Skyrme black hole evolves
in a Schwarzschild black hole at some critical mass, ils area increases by a finite amount, hence
we may regard this change as the first order phase traunsition. The specific heat of stable Skyrme
black holes is always negative, while there is one or three transition points for unstable modes.

1 Introduction

The discovery of the particle-like solution and the colored black hole solution of the Einstein-Yang-
Mills(EYM) equations[],2} has been received much attenlion. Because non-trivial solution was not
known and the black hole solution may be a counter example to the “no-hair” conjecture. By re-
cent works, however, it turns out that the colored black hole as well as the particle-like solution is
unstablef3]. Although such instability may give a doubt in its reality, it never lose their importance
as the black hole solution with non-Abelian hair. Furthermore, new class of non-Abelian black holes
is found in the Einstein-Skyrme(ES) system[4), which is stable against linear radial perturbations{5)

Here, first we study static black holes in a theory that couples a scalar field to a Yang-Mills(YM)
field. The theory we consider arises as the 4-dimensional effective theory corresponding to various
higher dimensional unified theories of fundamental interactions, and the scalar field it contains, which
we shall call the dilaton field, is an artifact of the scale invariance typical of these unified theories.
We present dilatonic colored black hole solutions in Einstein-Yang-Mills-dilaton (EYMD) system
numerically[6] and discuss the efTect of the dilaton coupling on their structure (§.2). We also calculate
their llawking temperatures to see their thermodynamical properties (§.3).

Several years ago, in a simpler gravitational system, the Einstein-Maxwell-dilaton (EMD) system,
a black hole solution and their thermal properties were discussed[7]. It was shown that a second
order phase transition {change sign of the specific heat), which also appears in the case of a Reissner-

Nordstrom black hole, does not occur when the coupling constant of the dilaton a is greater than
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unity. From our numerical analysis, we find that a dilatonic colored black hole has similar phase
transitions at two points, if o is smaller than a critical coupling constant ag ~ 0.5 (§.3).

We also reanalyse the black hole solutions of the ES system and calculate its Hawking temperature.
It turns out that the ES system has two modes of solutions: one is the stable mode discussed in ref.(5]
and the other is an excited mode which is unstable[8). They have the same critical horizon radius,
above which there is no solution except for a Schiwarzschild solution. This fact provides us a scenario
of their evolution as will be discussed below (§.4). No phase transition occurs in stable mode, while
the excited mode has one or three phase transition points (§.5). The concluding remarks will follow
them.

2 Dilatonic Colored Black Holes

We consider models with the following action[9];

——e Y P2 (n

= [dev=5 | LR - 2 (Vo) -
S-/(( ry/ 0[2“213(9) 72 (V®) 16wg2

where £2 = 8xG, ® is the dilaton field, and F and A are the YM field strength and its potential,
respectively. gc and a(> 0) are coupling constants for the YM field and the dilaton field, respectively.
This type of action is reduced from various unified theories as discussed in [7]. For example, a = 1 and
o = /3 are the models from a superstring theory and from the 5-dimensional Kaluza-Klein theory,
respectively. Notice that o = 0 with ® = 0 denotes the usual EYM system.

We now cousider an SU(2)-YM field. We shall make the spherically symmetric ansatz. In the

spherically synunetric static case the space-lime metric can be written as
ds? = — (1 - @) e~ Pdi? 4 (1 - 2?—_'")-’ dr? + +% (do? + sin? 0dg?) . )
For its potential, we consider only the purely ‘magnelic’ case, i.e.,
A = wrdd 4 (cos O0rs + wsin 07;) d¢, 3)

where 7; denote the generators of SU(2). m, § and w are functions only of r.

Variation of the action (1) leads to the field equations,

..2 - -
st_ T N g 1 g Y p 1 2\?
111_4(1 1’)¢ +Ee I—T w +-2—,__—2(l—w) 4
; 2 e-0¢
6' = —1-4"2 -——— 2
3 AT Y (5)
~5:2 ( @) :]' 2 _(s+a0) [( 2’7'> P 2 7] _
e 1l = — | ®'| + —=ae l - — w+—(l-—-w) =0 (6)
P A} P 2F
D !
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Figure 1: The solutions of (a) the Yang-Mills potential w, (b) the dilaton field &, (c) the mass
function m and (d) the lapse function 6 for dilatonic colored black holes with one node {n = 1) and
two nodes (n = 2). We set Ay = 1. For n = 2 (dashed line) we show the model of a = 1. In the limit
of a — 0o, the solution approaches to the Schiwarzschild solution (the dot-dashed line).

where we have introduced the dimeunsionless variables, # and 1, normalized by the radius of the
horizon ry, ie., ¥ = rfry and 1 = Qm/fry. A prime denotes a derivative with respect to .
Ay = riu/llp/oc) with the Planck length Ip = VG denotes the ratio of the size of black hole to a
typical scale length of the present theory (~ {p:/yc-).

For the boundary conditions, first we assume a regular event horizon at # = 1, i.e,,
. |
my = 7 |617] < o0, (8)

where the subscript I denotes the values of functions at the horizon. Outside the horizon, the

condition r > 2m (r) must be satisfied. To find asymptotically flat solutions, we have
m(r) — M =const. 8(r) —bo=0 as r— oo, 9)

where Af is a gravitational mass of a black lole. As for & and w, we assume ¢ — 0 and w — %1 as

r — 00, which guarantee the finiteness of the enecgy of the system.
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Figure 2: The solutions of (a) the Yang-Mills potential w, (b) the dilaton field ®, (c) the mass
function m and (d) the lapse function § for dilatonic colored black holes with one node (n = 1). We
set o = 1. We also plot the Schwarzschild solution by a dot-dashed line for comparison.

Under the above conditions, we solved Eqs. (4)-(7) numerically and found a discrete family of
regular black hole solutions characterized by the node number (n) of the YM potential. For Ay = 1,
the solutions with one node (n = 1) and two node (n = 2) are shown in Fig.l. \We can see that the
dilaton field ® increases as the coupling constant o increases. But a increases further, ® decreases
again. Because, in the limit of o — 50, we recover a Schwarzschild solution (il = 4 and § = 0) with
® = 0 and w = 1. We confirmed those behaviours numerically. For the solution with n = 2 (two
nodes) the YM field distributes to a larger distance.

In Fig. 2, we also show the solutions for various values of Ay, setting a = 1. When Ay — o0, i.e.,
ry — oo (large black holes) or yoc — oo, we find that the space-time approaches the Schwarzschild
solution, while the YM potential w is not trivial («w # 1). This is easy to understand, because in
the limit Ay — oo, the YM field decouples from gravity (See Egs. (4)-(7)). The non-Abelian YM
field can then have non-trivial configuration although it makes no contribution to black hole structure

(see Fig. 2). What physically happens is as follows: The contribution in its mass enefgy from the
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YM field itself may also be a kind of “quanta”. Although its value may depend on n, it may be a
typical mass scale,mp/gc. When the black hole gets large, its energy may not increase so much and

its contribution to the black hole structure becomes ignorable, resulting in the Schwarzschild black
hole.

3 Thermodynamic Properties of Dilatonic Colored Black Holes

The black holes considered here may be rather small unless go € 1, because their typical size is
probably Ip/gc. Their quantum effects may be important in the context, hence we shall calculate
the temperature of dilatonic colored black holes. The Hawking temperature is given as

1
T= dwry e™E (1= 2iy) . (10)

The results of 8 = /T v.s. the gravitational mass M are shown in Fig. 3. For the colored
black hole case (a« = 0), as A7 increases, T increases within some range of black hole masses,
ie, for My = 0.905mpfgc < M < My = L.06lmp/gc[10). This means that the specific
heat is posilive in this mass range. This is hardly

surprizing, since a colored black hole has sim-

ilar behavior near the horizon to the Reissner-
Nordstrom black hole which has a kind of phase
transition at Qs = V3GM /2. We find, however,
a new behavior: the specific heat change its sign
again if M gets smaller than 0.905 mp/gc. For
M < M, as M decreases § decreases again and
vanishes at M = 0.829mp/gc, when the black

hole disappears and a particle-like solution is re-

0 Il 1 1 1

covered. 06 08 1 12 1.4 1.6
Similar behavior is found for the dilatonic col- gcM/my

ored black hole, il the coupling constant a is small Figure 3: The inverse temperature 8(= 1/T)

enough. This behavior is similar to the EMD of dilatonic colored black hole (n = 1) as

a function of M. For comparison, we also
plot the Schwarzschild (w = 1,® = 0) and
the Reissner-Nordstrom black-hole cases (w =
we see that the temperature has a tendency to 0,% = 0) by a dot-dashed and a dotted lines,

black hole, although in the EMD system, there

is only one phase transition point. From Fig. 3,

approach that of the Schwarzschild black hole as respectively.
a grows, and find that no phase transition occurs

beyond some critical value of a{ag ~ 0.5).
4 Skyrme Black Holes

The Skyrme black holes[4] are another type of black holes which have non-Abelian hair. Here we

reanalyse the black hole solutions of ES system and study their thermodynamical properties.
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The SU(2)xSU(2) invariant action coupled to gravity is given by [13]

1 1 1
= P el =12 2 _ 2 11
S /d /g [2';2R(g)+ 4f5TrA 32g§TrF ) (11)

where " and A are the field strength and its potential, respectively, and fs and gs are coupling
constants. A and F are expressed in terms ol the SU(2)-valued function U as A = vtvy, F = AnA.

We are interested in spherically symmetric static solutions, so we make the hedgehog ansatz for U
U(z) =cosx(r)+isiny(r)o-r, (12)

where the a; denote the Pauli matrices and y is a function of the radial coordinate r. For the
spherically symmetric static spacetime we take the same metric form (2) as in the EYMD case.

Varying the action (11), we obtain the following field equations,

..2 - . 2 - 2
s _2p|F(,_22m\ p  sin’y 1 ., _Qm) 2, sin®x
m=x fs[4 (l = ),\ +—‘2 +§j\7-5111 x{(l - X+ 272 (13)

1
B LR I S
6 = —n’f5 3 YA sin‘ y (14)
= 7
{e"sf'2 (l - @) x'} —edsin2y
7 . ! 1 .
+,\12 siny [{e"'s (l - +n) v sin ,\'} - e'*‘-'_'—2 cos x sin? ,\'] =0, (15)
i

where we have again normalized the scale length by the radius of the event horizon ry. Ay =
r11/(1/ fs9s) describes the ratio of a radius of an event horizon to a typical scale of the present theory.
Note that in the limit of fg — 0 the above equations are reduced to that of colored black hole case
by replacement cos x with w and setting g4 = 4my? (13].

For the boundary conditions we demand the existence of a regular event horizon (8) and asymptotic
flatness (9). We can restrict the value of \ at Lhe horizon to the range [—, 7] without loss of generality.

Finiteness of the energy of the system gives us the asymptotic boundary condition for y:
x(r)—2nx as r — oo, (16)

where n is an integer. |n] denotes the winding number of the Skyrmion solution. In the case of

Skyrme black hole, as a topology is trivial, the winding number, defined by [8)

Wa = 5= [\(rar) = sin(xtran)], (17)

is no longer an integer. But, since IV, is close to [n], we also call n the “winding number”.

We solve the field equations (13)-(15) under the above boundary conditions, and find two modes
of solution. One is a family of solutions which is stable against linear radial perturbations (5). The
other is another family of solutions which is an excited state of the first family and is unstable [8). In

the limit of fs — 0, the excited solution approaches the colored black hole in the EYM system [8).
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The stable mode has critical values of Ay for each coupling constant fs and their “wind-
ing number” n. Beyond this value there is no non-trivial solution. For example Agy = 340.85
when fs/v/G = 0.02, n = 1. This means that the stable Skyrme black hole with large horizon
radius (and then with large mass) does not exist. In the previous example, these critical values
are rye = 68.170p and My = 46.30mp for gs = 0.1 respectively. The critical value Mg gets
small as n increases (Ay o = 109.19 for fs/\/5 = 0.02, n = 2), (See also Fig. 4). The family
of excited solutions also has the same critical value of Ay, where two family coincide each other.

This non-existence of large stable black holes

3 . - lz
provides us a scenario for the evolution of the ' '

Skyrme black holes. Suppose we have a sta-
ble Skyrme black hole initially. When a mat- sl

ter fluid falls into the black hole, the mass in-

BsTylp

creases and then the radius of the event horizon

increases[12,13). If the horizon radius exceeds

the above critical value, the Skyrme black hole
shifts to a Schwarzschild black hole. The Skyrme

“hair” may have dropped into the black hole be- 0

gsM/m,,

yond the event horizon. In this sense, a Skyrme
black hole may not be stable unless the surround- Figure 4: The relations between the mass
and' the horizon radius for the Skyrme black
holes. We set js/\/(—}' = 0.02. The dots in
right edges of the lines denote the limit of
Schwarzschild black hole, the area of the black the solutions. Hence, by matter accretion, the
hole increases discretely (Fig. 4), which may be black hole evolves into a Schwarzschild black
hole (a dot-dashed line) as shown by the line
with an arrow. This may be regarded as a
first-order phase transition.

ings are just in a vacuum. One interesting lact is

that when the Skyrme black hole evolves into a

regarded as a first order phase transition because

the area can be interpreted as the black hole en-

tropy.

5 Thermodynamic Properties of Skyrmne Black Holes

In Fig. 5 we show the temperature of Skyrme black holes. The stable mode has always negative
specific heat and has no phase transition (Fig. 5(a)). In case of the excited mode (Fig. 5(b)), for
large coupling constant fs we find one phase transition point, but as fs gets small, black holes has
three phase transition points; Afy e, M2,crs Macr. The critical point Mz ¢ is the same type as that of
the Reissner-Nordstrom black hole and the smaller one (A, ) corresponds to the lower critical point
in the colored black hole type. Between Afy o and Ay, the specific heal becomes positive, when the
Skyrme field becomes dominant. The lacgest critical point Afs appears only in the Skyrme black
hole. Beyond M., the specific heat becomes again positive. [n the limit of fs — 0, the temperature
of colored black hole is recovered. (Compare a = 0 in Fig. 3 and fs/VG = 0.01 in Fig. 5(b)).
From the above properties, we can speculate the following scenario for the evolution of Skyrme
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Figure 5: (a) The inverse temperature (= 1/T) of the Skyrme black hole with n = 1 as a function
of M. The dots in right edges of the lines denote the limit of the solutions. We also show that of the
Schwarzschild black hole by a dot-dashed line for comparison.

(b) The inverse temperature 8 = 1/T of excited modes of the Skyrme black holes as a function of M.
The dots in right edges of the solid curves denote the limit of the solutions. The dot-dashed line is
that of a Schwarzschild black hole.

black holes. If the surroundings of the black hole are just in a vacuum, those black hole yvill evaporate
away by the Hawking’s quantum process. The temperature of those black hoies, however, becomes
infinity when the mass approaches soine non-zero finite valye, e.g. M = 14.50mp for fs/\/é =
0.02, gs = 0.1. Through the evaporation process, hence, the event horizon shrinks and eventually
disappears, and the particle-like solution (Skyrmion) remains with a finite mass determined by the

fundamental constants (gs, fs and mp) and the “winding number” n.

6 Concluding Remarks — A Hair or A Wig —

We have shown the black hole solutions, with non-Abelian hair, in the Einstein-Yang-Mills-dilaton
system, and study their temperatures and specific heats. If the dilaton coupling o < agr ~ 0.5,
these dilatonic colored black holes have two phase Lransition points, between which the specific heat
becomes positive. While the Skyrme black holes, which also have non-Abelian hair, do not have such
a phase trausition point and the specific heat is always negative in the stable mode, although the
unstable excited mode has some phase transition points like a colored black hole. From the fact of
the absence of the Skyrme black holes with a large mass, we conclude that either the black hole will
evaporate away and leave a stable particle-like non-Abelian structure (Skyrmion) with a finite mass
or the Skyrme black hole will evolve into the Scliwarzschild black hole and lose its “Skyrme hair” by
matter accretion. When the Skyrme black hole evolves into a Schwarzschild black hole, the area (the
entropy) of black hole will increase by a finite amount, which may be regarded as a kind of first-order
phase transition. .

As for the stability of dilatonic colored black holes, they may be linearly unstable like a “pure”
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colored black hole. Because the dilaton field ® does not give a great change to the potential of first-
order equations of linear perturbations compared with the colored black hole case, a bound state (a
growing mode) may exist. This is now under investigation.

From the present analysis, we may extract a common property for both non-Abelian “hair”s.
When the (dilatonic) colored black hole becomes large, the YM “hair” will not give so much contri-
bution on the black hole structure. We just find the Schwarzschild black hole with non-trivial YM
structure. While, for the case of the Skyrme black hole, there is no large black hole with the Skyrme
“hair”. In both cases, the mass energy of non-Abelian gauge field structure seems to be “quantized”
by the fundamental constants just as for the particle-like solutions. In fact there is no such a particle-
like structure with large mass. Rather its mass is “quantized” and this “discretized” mass is specified
by the node number or the “winding number”. \When the mass of the black hole gets large, hence, the
contribution from those non-Abelian gauge field structure becomes small, finally finding the trivial
Schwarzschild solution. In the case of the Skyrime black hole, we guess, such a structure may be
hardly stretched because of its “winding number” and hence the size is also compactified. It cannot
co-exist with the black hole structure because the size of those structure becomes smaller than the
horizon scale. When the black hole gets large, the “Skyrme hair” may fall into the black hole. From
those facts, it may be more suitable to call those non-Abelian structure as “a wig” instead of “a hair”.

“A wig” is more unstable than a “hair” and it is easily put off.
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Exact Solution for a Black Hole with a Thin Disk 1
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ABSTRACT

The static soliton solutions to the vacuum Einstein equation with
axial symmetry is considered. It is shown that the 6-soliton solution
constructed from one pair of real pole trajectories and two pairs of
complex conjugate pole irajectories describes the gravitational field
with asymptotic flatness, which is produced by a black hole surronnded
by a thin disk.

The soliton technique to solve the gravitational field equation[1] provides us an
infinite series of exact solutions to the vacuum Einstein equation with axial symme-
try. For example, the 2-soliton solution with asymptotic flatness is the Kerr black
hole solution and a certain limit of the 4-soliton solution is the Tomimatsu-Sato so-
Iution in the stationary case. In the static case the 2-soliton solution corresponds
to the Weyl solution and the solutions with higher soliton numbers are interpreted

as the nonlinear superpositions of multi-Weyl solutions{2,3]. These solutions are

1 Based on the work in collabaration with M. Endo and T. Koikawa.
* E-mail address: asuma@jpndokyo.bitnet
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obtained by adopting only real pole trajectories in constructing the soliton solu-

tions. The solutions with complex pole trajectories have been little considered

and it is recently that they were shown to have interesting features(3,4,5].

In

this report we consider the 6-soliton solution constructed from one pair of real

pole trajectories and two pairs of complex conjugate pole trajectories. It will be

shown that the solution describes the gravitational field with asymptotic flatness,

which is produced by a black hole surrounded by a thin disk.

The solution is given by

—ds? = —fdt* + £7[Q(dp* + d=*) + p*d4’),

with
f=fsrfp, Q=0QsaQpQI,
where
fon = —”;fb.
3,12
I = Imlplfhl ,

QBH = p,(l‘a - l"b)’
(82 +2*) (1} + p?)’
Qp = PPl = paltli — Bl (11 — 32 (m2 — p)?

255383 Ind + p? [ pd + P21 |paa |4 sa*
Qs = P2leta — pa|*la — pal*les — mal* s — pia]®
2%(m? + B1)*(m? + B3| [*lpal* (apss)t”

Here y1, and p; are the real pole trajectories

Ha = —(m+2)+/(m +2)? + p3,
#o = (m —z) = /(m - z)? + p3,

#1 and p; are the complex pole trajectories

p1 =45y — 2+ [(i8, - 2)? + p?)H/?,
p2 =iy — z — [(iB; — 2)? 4 p?)V/3,
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and fi, and i, are the complex conjugate trajectories to y; and pj, respectively.
If we introduce the (r — 8) coordinates by
p=+r(r—2m)sind, z=(r—m)cosh, (10)
far and Qpg reduce to

2m -2
fer =1~ - QR = (r - 2m)

(11)

72 — 2mr + m3sin? 9’

which shows that they describe a Schwarzschild black hole. In the spatial infinity
prz — 0o, fp, @p and Qr tend to 1 and so the solution is asymptotically flat.
On the event horigon and plong the z-axis defined by p = 0, fp stays finite and
@p = Q1 = 1, which means that the event horizon evades defectiveness and the
axis retains a locally Euclidean nature. We also find that Qp — oo at z = 0 and
p = Zx(k = 1,2), which constitutes two rings located on the z = 0 plane outside
the event horizon. In addition to this we find that there is discontinuity of the
derivatives of fp and Qp on the z = 0 plane. In order to see this behavior let us
assume that ¥; < ¥; and expand In fp and In Qp in the neighbourhood of z = 0.
We obtain for p > X3

1

1 3
Infp = (ﬁ_ﬁ;) |z} + O (|z°) , (12)

VA=l +/F-5)
nap ! T~ S0P - z:)) +ol), 1)
and for I; < p< 3
%+ VI =5)
s =i — ) _ gl + 0, (14)

T, iz,
Qo =l T E - AT T T/l = p

=)zl + O(z%). (15)

The existence of the terms including |z| in these expansions shows the discontinuity

of the derivatives with respect to z. Note that there is not any kind of discontinuity
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in the region 0 < p < E; and so the solution is regular there. The components
of the Einstein tensor, which consist of the derivatives of In f and In Q, therefore
include the terms with the 8-function §(z). This means that the vacuum Einstein
does not hold on the plane given by p > %, and z = 0 and a certain disk-like

source exists there.

The properties of the disk-like source can be elucidated by calculating the
energy-momentum tensor of the source, which is directly given by the calculation

of the Einstein tensor. The results are for p > I,

TS, = 2ve? - Blve? - Bi(%] _522)5(2)&&5(—1,0, 0,0), (16)

(Vo =21+ v/ -5j)

for ) < p< X3
Tpo =Tps =0,

25} (2 + VB 7) VAo TIVE - P

Tou = TG o
254 (5 + VE[=7) VA -BVE 7
Tos = AT oz)

and for p < B; T, = 0. Note that we have taken only the disk part of the
solution into account to obtain these expressions. There is of course contribution
from the interaction between the black hole and disk but it does not change the
essential behaviors of 75,. From Eq. (16) we find that the outer part of the
disk defined by p > E; and z = 0 has positive energy density and zero pressure.
Therefore this part behaves like dust. As p — oo, the energy density decreases

rapidly as

e~ BB By, (18

which assures the asymptotic flatness of the solution. On the other hand, Eq. (17)

shows that the inner part defined by ¥; < p < £; and z = 0 has negative energy

density and positive pressure. The equation of state is given by

_ B+ VE -
1Y ’

(19)
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We have shown that the solution considered here describes the asymptotically
flat gravitational field produced by a black hole and disk. The black hole is
surrounded by the disk which is composed of two parts. The outer part consists of
dust and the inner part consists of the matter with negative energy density(Fig. 1).
The negative energy density of the inner part may be unphysical. It is natural
to guess that this comes from the static condition of the solution. Therefore the
stationary case in which the rotation of the disk is taken into account might be

worth studying to seek a physical solution.

Fig. 1 A black hole surrounded by & thin disk.
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Exact Solutions to the Einstein Equation with Scalar Fields

Takao Koikawa
School of Social Information Studies, Otsuma Women’s University
9-1 Kamioyamada-Machi, Tama, Tokyo 206, Japan

ABSTRACT

We study the axially symmetric static Einstein equation coupled with a
scalar field. The parallelism between the scalar field and a part of the metric
in the Einstein equation enables one to obtain the soliton solutions for both the
scalar field and the metric. Of the infinite series of solutions we focus on the
solution composed of 4-soliton solution of metric and 4-soliton solution of the
scalar field. We give a physical interpretation of the solution that two Weyls
with scalar charges are exactly sustained by the tension of a string which lies

between the two Weyls.

)



In the preceding papers(1] the present author and Azuma have already ex-
hausted the vacuum soliton solutions to the static Einstein equation and dis-
cussed their intriguing features. The solutions are classified by their soliton
number together with the feature whether the poles are real or complex. In the
last workshop on General Relativity and Gravitation held at Tokyo Metropoli-
tan University in December 1991, we reported our result on the 4-soliton solution
with real poles(2]. The physical interpretation of 2-soliton soluton ;vith real poles
is the Weyl solution and the 4-soliton solution is the two Weyl connecte by a cos-
mic string with string tension g. It is quite surprising that our investigation of
the strenght of string tension shows the exact cancellation of the gravitational
force between two Weyls. What is peculiar about this equation is that the string
tension or the energy densily per unit length becomes negative as far as two
masses of the two Weyls are positive. In this paper we consider the case that
the energy-momentum tensor is made up of a scalar field as a step toward the
realistic situation of two rotating black holes connected by a cosmic string. We
shall show an infinite series of soliton solutions of both the scalar field and the
metric which are physically quite interesting. We focus on the 4-soliton solution
of the scalar field and give the physical interpretation of it and then inquire the

above difficulty of negative energy density. The metric is given by
—ds® = F(p, z)(dp’ + dz’) + gab(p, z)dz“dzb. (a,6=0,1) (1)

By introducing the 2 x 2 matrix g = (g,5), the Einstein equation reads

(P91 97" )io H(P91s 97 )1 = 0, (2a)

(0 F),p= =2+ S0~ V") = 20042 -42), (25)

(ln F)ﬂ = ;_ph(UV) - t_?P¢m ¢u ’ (2C)
1

p_F.{(M’P )w +(pdis )1 } =0, (2d)

where the 2 x 2 matrices U and V are defined by

U=pg,p9" V=pg.9". (3)
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In Egs. (2a)-(2d) and thereafter F,, is a partial differentiation of F with respect
to z. In Eqs. (2b) and (2¢) ¢(p, z) is a scalar field. The difference betweeen the
static and stationary conditlions apperars in the diagonality of g. In the present
static case g becomes diagonal and we express it as g = diag(—f, f~'p?). We

can simplify the equations by introducing Q(p, z) and Q(p, z) by

F=£1Q4, (4)

and require that Q satisfy the vacuum Einstein equation. We further introduce
¥ by

f = exp(2¢). (5)
Eventually we have

(P¥1p 1o H(P¥1s )is = 0, (6a)
(ln Q)!P = 2P(¢|: —4’13 )v (6b)
(ln Q)sl = 4P¢m Puss (6(:)
(P¢w ):p +(P¢n )u = 01 (ﬁd)
(0 Q)= ~22plg2-4.) (6¢)
(In Q)u == §§P¢m bz - (6f)

This shows the parallelism between ¢ and ¢.

The procedure of solving the Einstein equations is first obtaining ¥ from
Eq.(6a). Then by substituting them into Egs.(6b) and (6¢) and integrating them
we obtain Q. In the similar way w?. obtain Q. The last step or the integration is
not always easy but we do not encounter the difficulty in a special case. When
QQ = 1 we do not need to obtain Q and Q respectively. We shall illustrate
this in the follwing (i)non-soliton case and also discuss it in the(ii)soliton case in

connection with Papapetrou-Majumdar-Myers(PMM) solution[3).
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(i)non-soliton case. It is easy to see that Eqs.(6a) and (6d) are solved by

= &
NV =

(7)
= i .
R =

Though it is not easy to integrate Eqs.(6b) and (6c) to obtain Q and Q for these
solutions, we do not need their explicit form as far as the following condition
holds: .

m; = ¢;. (i = 1, ooy n) (8)

When this condition holds, the metric becomes
—ds? = —$~3dt? + $2d2?, 9)

with

& = exp()_ mi/|Z - &) (10)
i

This solution should be compared with the PMM solution which expresses the
maximally charged black holes. The four-metric and four-potential are given by

—ds? = —-&d¢? + $2d3?,

. (11a)
A=—(1-&Y)a,

where

§=1+Y mfli-&l. (11b)
i

In the limit |£] >> 1, the above two four-metrics coincide despite the diffence of
the enerygy-momentum tensor constituent: s.calar field or electric field.
(ii)soliton case. We shall next consider the soliton solution. We note that
Bqs. (6a) — (6¢) are the same as those for the vacuum case. In the previous pa-
pers{3,4] we have already written down the exact vacuum solutions and discussed

their intriguing physical interpretations. We can now make use of the solutions
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not only to ¢ but also to the scalar field ¢. We can therefore write a series of
exact soliton solutions of scalar field as

3 ftdte-rit.\"9
¢=%m(rw=p_ﬂb) , (120)

with

Bu=tn -z /(@ -2l +p% (k=1,2,-,n) (12b)
where G is the Newtonian constant. In the above equation the coefficient 3 /G
is attached in order to give the due dimension to the scalar field. Here w,’s are
constants which could be real or complex. The + sign in front of the square
root in fiz’s is to be determined so that the scalar field vanishes asymptotically.
The behavior of the soliton type solution near the origin is quite different from
the non-soliton type solution. Now we obtain Q by substitituting the solution to
r. h. s. of Egs. (6¢) and (6f) and then integrating the equations just as we obtain
Q from Egs. (6b) and (6¢c) by substituting the soluton y. We thus obtain

P T (g — i)
| 31

Q= e—rT Ty (13s)
I;I(P’ + f13) I;II‘: c
with
2 (n) ik
¢ =23(n-2) H(ﬁm-t = Wyy-1)?(Wan — Bar)’. (13b)
A>1

Just as we classified the vacuum solutions according as the pole trajectories
pa's are real or complex for every soliton number, we can classify the above
solutions by complexness of /iy’s. In the vacuum case, the physically interesting
solutions appear in the 4-soliton solution with real poles and complex poles. We
called the 4-soliton solution with complex poles the “2-ring solution” which is
free from the divergence of the curvature invarianis{3]. The further investigation
showed that the solution corresponds to that obtained by the disk-like source on
the surface determined by two rings and it ranges outside of the inner ring[4].

On the other hand the interpretation of the 4-soliton solution with real poles is
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the two coalesced Weyls sitting on the gz-axis with a certain distance. In this
note we shall concentrate on this real pole case.
Before we discuss the 4-soliton solution of the scalar field, we first consider

the 2-soliton solution. The solution is given by
c) ( ﬁli‘)) -9
s—h|-—/]] , 14
RV )
with ,
By =1y —z 4 /(B —2)* + 9%,
ﬁ’ = 1713 -z - \/(15) —Z)’ +p’.

‘We assume that 16; < ¥w; and parametrize them as @y = zp — o and W3 = 29+ 0.

(15)

By introducing the prolate spheroidal coordinates (z,y) by

p=oV@ -1 -3),

z — z9 = o=y,

(16)

Eq. (14) reads

¢=:}’_gln(:;i). (17)

When the distance from the origin is large the spheroidal cordinate z is approx-

Yt (18)

o

imated to

z
Substituting this into Eq. (14), we obtain

2qoc? \/5
¢~ _q___/___’ (19)
for large \/p? + z2. This shows that the charge e of the scalar field is given by
e = 2q0¢*/\/G.
We shall next consider the case that both 1 and ¢ are 4-soliton solution with

real poles. In Eq. (9) the constants w,’s and g are not necessarily the same as

those in the poles constituting the metric. But here we assume that 1, = wy.
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masses of two Weyls are both positive[3]. It can be positive only when one of
the Weyls has the negative mass, though this might not be so serious because
such a case occurs only when we consider the far separated limit. In the present
case there is a way out.

P, is now given by

Py= [(23 - 2,)? = (03 —,)?
(23 — 21)? = (03 + 01)3

MM, e1€;
|z2 = z1]* |22 — 2

] 6’—4q’

(25)

—»1—-4G(—G ), as |z — z;| — oo,
where M; = 8c*0;/G(i = 1,2) and ¢; = 2gc*0;/VG(i = 1,2). The comparison
with the metric in the presence of the cosmic string[6] with the string tension p

yields
M, M, er1€e3
|23 = 23] * |22 — z[*

p=-G (26)

We find that the sign of # depends on the strength of two “charges” of the two
Weyls, or the masses and the scalar charges. From the string tension view
point the negative u corresponds to the repulsive force and the positive y to
the attractive force. It is now possible to require that the energy density per
unit length or u be positive even when two Newtonian masses M; and M; are

positive. The non negative energy condition reads
eie3 Z (\/EMl) (\/EM;) . (27)

We consider the case that the string tension vanishes. This is satisfied by the

condition
6 —4¢* =0. (28)
In this case the metric simplifies into

—~ds? = —@~2de? + $*di?, :
bm o (i) (50
vG P '

—198—



LY —q
&= (.*"‘1""0_—7&) (29b)

This should be also compared with MMP solution[3]. We should note that con-
ditions that the metric get simplified in the non-soliton and soliton cases are
different(see Eq.(8) and Eq.(28)). Both conditions leads to the balancing be-
tween the gravitational and scalar field interaction forces. However, as far as we
consider the balancing between them, the weaker conditon Eq.(28) in the soliton
case is natural, ‘

The author would like to thank all the organizers of the workshop. He
acknowledges Prof.Azuma for discussion and needs to say that the present paper

and his talk at the meeting partly depends on the preprint{6].
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Inhomogeneities in the de Sitter Space-Time
Ken-ichi Nakao
Department of Physics, Kyoto University, Kyoto 606, Japan

1. Introduction

Our universe observed today is homogeneous and isotropic. The standard
Big Bang scenario is based on this observational fact and can explain the impor-
tant observational facts, i.e., the Hubble’s expansion law, 2.7K cosmic microwave
background radiation and the abundance of light elements. However, since the
homogeneity is just the basic principle in the Big Bang scenario, we cannot get
a natural answer within the framework of this scenario for the question why
our universe is so homogeneous at present. The inflationary-universe scenario
is one of the most favorable models to resolve the above question, the so-called
homogeneity problem. 8 In this scenario, the vacuum energy due to the phase
transition by inflaton scalar field dominates at very early stage of the universe.
Since the vacuum energy of the inflaton field behaves like as the cosmological
constant, the universe undergoes the de Sitter-like rapid cosmic expansion. Af-
ter a phase transition, the vacuum energy is converted into radiation and the
standard Big Bang model is recovered. Initial inhomogeneities are stretched and
go outside the horizon by the rapid cosmic expansion, resulting in the present

homogeneity of the universe.

However, even though there is a positive cosmological constant exists, it is
not obvious whether the de Sitter-like rapid cosmic expansion is always realized
or not. Since the inhomogeneities have “energy” and generate the gravitational
field by themselves, those may collapse into a black hole or a naked singularity. In
connection with this problem, the “cosmic no hair conjecture” is proposed, which
states that “all” space-times approach the de Sitter space-time asymptotically if
a posilive cosmological constant exists. ) If this conjecture is true or almost true,

we can understand why the present universe is so homogeneous.

-201-



In the realistic inflationary scenario, the cosmological constant is given by the
vacuum energy of the inflaton field and hence the inhomogeneity of the cosmolog-
ical “constant” itself is important for the onset of the inflation. So several authors
have investigated the inhomogeneities of the inflaton field both in analytic and
numerical approaches.3~9] However, inhomogeneities except for the cosmological
“constant” are important too. Because, when we discuss about the onset of in-
flation, such inhomogeneities may also not so small before the de Sitter-like rapid

expansion.

In this literature, we consider the space-times with isolated inhomogeneities
and a cosmological constant (called asymptotically de Sitter space-times). In
Sec.2, we show the Schwarzschild-de Sitter space-time and the Oppenheimer-
Snyder-type collapsing dust solution in the de Sitter space-time, which are the
simplest examples of the asymptotically de Sitter space-time. In Sec.3, we in-
vestigate initial data for the gravitational waves and the Einstein-Rosen bridges.
These examples show the important feature of the inhomogeneities in the de
Sitter space-time. As already mentioned, since thé inhomogeneities are equiva-
lent to the energy, these produce the gravitational field by themselves and may
collapse into the black holes or naked singularities. In reality, it is well known
that in the case of the asymptotically flat space-time, the large and well localized
inhomogeneities form apparent horizons and evolved into black holes. However,
our examples show that even though the inhomogeneities are localized enough,
these inhomogeneities with large “gravitational mass” can not collapse into black
holes. Hence, the inhomogeneities form only the small black holes and those may
be diluted by the de Sitter-like rapid cosmic expansion which will be realized
later stage. As a result, the cosmic no hair conjecture seems to be valid for the

practical inflationary scenario. In this literature, we adopt the unitsofc =G = 1.
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2. The Schwarzschild-de Sitter and
Oppenheimer-Snyder Space-Times

The simplest spherically symmetric examples of the asymptotically de Sitter

space-time with a cosmological constant A(= 3H?) are given in this section.

2.1 THE SCHWARZSCHILD-DE SITTER SPACE-TIME

By the use of the Schwarzschild coordinates, the metric of the Schwarzschild-

de Sitter space-time is written as,[w]

ds? = ~C(R)dT? + Z,—(lk—)dR’ + R*(d8® + sin® 0dy?), (2.1)
with
C(R)=1_EI’;1_H33’, (2.2)

where M is the “gravitational mass”, which is often called Abbott-Deser (AD)
1)

conserved mass.

As the Schwarzschild space-time, C = 0 gives the positions of event horizons.
However, there does not exist a positive root of C = 0if M > My = 1/(V2TH).
On the other hand, in the case of M < M., we obtain the following positive

roots,
Rp = —2—-cos[l(1r + tan™! \/w—)]
HY3 13 i (2.3)
Rc = Hf/fi‘ cos [%(w — tan™! \/w—c)])
where
1
We = W -1. (24)

It is always true that Rg < Rc. Rg = Rc(= 3M) is realized if M = M.
Here it should be noted that when M > M., the Schwarzschild-de Sitter space-

time is no longer the black-hole solution. The Penrose diagrams for M < M.,
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The Friedmann equation is given by

2
(ﬁ) =M e 1, (2.6)
dr a
where
41" 3
m= -3—pa ) (27)

with the energy density of the dust p.

In the interior space-time, the dust particles move along timelike geodesics.
Since the metric and its first order derivative should be continuous across the
surface of the dust sphere, the surface of the dust sphere moves along a timelike
radial geodesic also in the exterior Schwarzschild-de Sitter space-time. There-
fore, we can see the motion of a dust sphere by investigating geodesics in the
Schwarzschild-de Sitter space-time. The radial geodesics in the Schwarzschild-de

Sitter space-time obey the equation,

(%%)’ - El_z(zz —C(R)) = -V(R), (2.8)

where R, and T}, are, respectively, the proper radius and proper time defined by

dT, = CY*(R) dT,

dR, = C'*(R)dR. (29)

E is an integration constant which corresponds to the energy of a particle with
unit mass. From the continuity of the metric and its first order derivative at the
surface of the dust sphere x = x;, we obtain the relation,

M = msindx,,

2.10
E = cos ;. (2.10)

Since Eq.(2.8) is the same form as the energy equation for a relativistic par-
ticle moving in the potential V(R), the forbidden region for the motion of the
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particle is given by V(R) > 0. The forbidden region V > 0 is depicted by the
shaded region in Fig.2. It should be noted that there is no forbidden region for
M > M. Typical trajectories of the surface of the dust sphere is depicted in
the Penrose diagram of the Schwarzschild-de Sitter space-time by solid lines with
an arrow in Fig.1. Since, as already mentioned, the direction of time evolution is
upward in Fig.1, there is no collapsing solution in the case of M > M. There-
fore, the dust sphere with large gravitational mass cannot collapse into black
hole.

3. Analysis of Initial Data

Initial data for vacuum space-times with a cosmological constant A(= 3H?)

must satisfy the Hamiltonian and momentum constraints, i.e.,

)R- KiK}+ K* = 6H?, (3.1)
Dj(Ki -8 K) =0, (3.2)

where ®)R is the Ricci scalar of the three-dimensional spacelike hypersurface.
K,j is the extrinsic curvature of the three-space and K is its trace part. Dj is the

covariant derivative with respect to the intrinsic metric of the three-space.

Here we consider the case with the extrinsic curvature which has only a trace

part, i.e.,

K} = —H§]. (3.3)

Here, it should be noticed that, for isotropic and homogeneous space-time in
which the scale factor a is spatially constant, the condition (3.3) turns out to be
the Friedmann equation in terms of the cosmic time ¢, i.e., a~%(da/dt)? = H?,
resulting in the de Sitter solution(a = e#*). Thus, the condition (3.3) is regarded

as the assumption of the uniformly expanding background universe.
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By virtue of the above condition, the Hamiltonian constraint reduces to the
same as that of the time symmetric initial value for the vacuum space-time with-

out A, ie.,
R =0, (34)

and the momentum constraint is satisfied trivially.

We solve Eq.(3.4) in order to get initial data for localized nonlinear gravi-
tational waves and Einstein-Rosen bridges. To get some physical insight to the
cosmic no hair conjecture, we search for the apparent horizon which is determined
by initial data only in contrast wit:h the event horizon. Since the apparent hori-
zon always exists within the event horizon (and coincides with the event horizon
in the stationary space-time), the existence of the apparent horizon means the

(14)

existence of the black hole.

The apparent horizon is a closed two-surface such that the expansion p of
the future directed outgoing null geodesic congruence vanishes, where outgoing
means the direction toward the asymptotically de Sitter region.[lsl Detailed for-

malism to obtain the apparent horizon was given by Sasaki et al. (16]

3.1 NONLINEAR GRAVITATIONAL WAVES

The time symmetric initial data of localized gravitational waves without A
were discussed by Brill"”) and treated numerically by Eppley. (8] The Brill’s wave
can be interpreted to a snap shot of an axisymmetric gravitational waves as a
moment on maximum expansion (or minimum contraction). While, our wave
solution corresponds to a snap shot of the waves in the uniformly expanding
background because of the condition (3.3), although their procedure and discus-

sion are almost valid in our case as well.

Following Brill, we write the intrinsic metric of the three-dimensional space-

like hypersurface in the following form,

de® = ydz®dz® = YA(R, 2)[e AR (dR? + d2?) + R*dyp?, (3.5)
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where A is a constant, which corresponds to the amplitude of the gravitational

waves and (R, z) is an arbitrary function which satisfies the boundary conditions;

g=0=308pg at R=0,
(3.6)
qg— O(1/r?) or faster for r — +o00,

where r = VR? + 22, ¢ provides a localization of the waves. We, then, adopt the
following function g(R, z),

oR2) = (2Y exp (- 17), e

0

where rg is a constant, which corresponds to a width of the waves.

With Eqs.(3.5) and (3.7), the Hamiltonian constraint (3.4) is written as,

v+ %aw + 0%+ %U(R,‘z)yb =0, (3.8)
where
2 6R* R? r?
U(R,z) = (;g - ? + r—g) exp (_-2"_8) (3.9)

We solve Eq.(3.8) numerically. In order to impose the asymptotic de Sitter
boundary condition, we demand the ordinary asymptotically flat behavior for the

conformal factor ¢ as,
vy—1+ 2—]‘,: for r — 400, (3.10)

where M is constant. It is worthy to notice that M corresponds to the gravi-
tational mass (AD mass) and, as shown by Brill, it is always positive for non-

vanishing A.
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From a regularity on the symmetric axis, R = 0, and from a reflection sym-
metry with respect to the equatorial plane, z = 0, the conformal factor ¥ should

satisfy the following boundary condition,

OrvY|r=0 = 8:¥]:=0 = 0. (3.11)

Here we search for the apparent horizon for various width rq of the gravita-
tional waves for fixed cosmological constant, i.e., H. We expect that the gravita-
tional waves localized enough becomes black hole. In the case of the asymptoti-
cally flat space-time (H = 0), we find the apparent horizon for rg < rerir ~ 1.3M.
This means that the large gravitational mass M produces the strong gravity and
hence a black hole is formed in the case of the large gravitational mass M even
if the gravitational waves are localized not so hard. On the other hand, in the
case of H > 0, rqj is not a monotonically increasing function of M as shown
in Fig.3. As expected, for M > M, there is no apparent horizon for all rg.
Hence, it seems to be likely that the gravitational waves with large gravitational

mass do not collapse into a black hole.

3.2 EINSTEIN-ROSEN BRIDGES

Initial data for N-Einstein-Rosen bridges with H = 0 were investigated by
Brill and Lindquist[w] and the more accurate analysis of two Einstein-Rosen
bridges was performed by Cadez.!”™ Here we shall investigate two Einstein-Rosen
bridges with H > 0.

Following Brill and Lindquist, in order to solve Eq.(3.4), we assume the con-

formally flat metric,
de? = yi[dr? + r2(d6? + sin® 8dy?)), (3.12)

where dé? is the three-metric of the initial surface. With this metric, the Hamil-
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tonian constraint (3.4) becomes the Laplace equation, i.e.,
Ay =0, (3.13)

where A is the flat Laplacian.

As for the time symmetric initial value problem without A, we know how to
obtain the two-Einstein-Rosen-bridge (with equal mass) solution, which is just

19]

to set ¢ as

M
+ M , (3.14)

2\/r?+r§ —2rorcosf  24/r? + 1 + 2ror cosd

where M ia an integration constant and ry is half of the Euclidean distance

=1+

between two Einstein-Rosen bridges. M > 0 in order to guarantee the positivity
of the gravitational mass (AD mass). Here (r,8) is the spherical coordinates
in the conformally flat three-space which origin is chosen to be the center of
two Einstein-Rosen bridges. This solution has three asymptotically de Sitter
regions, r — oo, (r,8) — (ro,0) and (r,8) — (rq, 7) (See Fig.4). We call the first
asymptotic sheet Sp and the others S) and S, respectively.

The gravitational mass m of each Einstein-Rosen bridge and the total mass

M, of those are, respectively, given by[w]
m = M(l + ﬂ), Mot = 2M. (3.15)
41‘0

Then the “interaction energy” miy is given by

M2
Mint = Mgog -2m= _2_1‘0. (316)

The interaction energy is always negative and when the distance 2rg between two

bridges are infinite, the interaction energy vanishes.
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If ro is enough large, i.e., ro 3> M, each Einstein-Rosen bridge can be seen
as an isolated system with “mass” M. Hence, in such a circumstance, each
Einstein-Rosen bridge has the same kinds of the apparent horizons as the one
Einstein-Rosen bridge (a cross section of the Schwarzschild-de Sitter space-time
by Buirkhoft’s theorem). On the other hand, if rg is not so large and “interaction
energy” min, is not negligible, each Einstein-Rosen bridge cannot be seen as an
isolated system. We expect that there is some influence for the apparent horizons
by the interaction between those Einstein-Rosen bridges. In fact, for the A = 0
case, as rg decreases and smaller than r.; = 0.766M, the black-hole apparent
horizon surrounding both Einstein-Rosen bridges appears.m] This means that
the large gravitational mass produces the strong gravity, by which the black-hole
apparent horizon enclosing two massive bridges appears even for large distance.
Thus one may expect that one black hole is formed by observers on Sy, if two
Einstein-Rosen bridges are sufficiently close. However, as shown in Fig.5, in our
case with / > 0, r..;; is not monotonically increasing function with respect to M
but has a maximum value at M ~ 0.35M;;. Hence, it seems that the Einstein-
Rosen bridges with large “gravitational mass” are hard to coalesce with each

other and to form a black hole if there exists A.

4. Discussion

We have investigated several examples of inhomogeneities in the de Sitter
space-time (asymptotically de Sitter space-time). From these examples we may
get some physical insight about dynamics of inhomogeneous space-time with a

cosmological constant.

Although we have not shown in the preceding sections, one of the most im-
portant conjectures is that there is an upper bound on the areas of apparent

horizons in space-time with a cosmological constant, i.e.,

A<drH™?, (4.1)
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In fact, we can prove that the inequality (4.1) is true for initial data with K{ =
%K 6f , where K is a constant.!'! We can also conjecture that the area of event
horizons in a stationary space-time has also the same bound. This is true for
a static space-time with single cosmological horizon.?"! We can also prove the
black-hole area theorem in de Sitter background.[“] The area of the black-hole
event horizons must increase in time just as in the case of asymptotically flat
space-time. Suppose that the universe approaches a stationary space-time. It is,
then, likely to exist an upper bound also on the black-hole event horizon in de
Sitter background, i.e., Agg < 47H -2, This fact with the above area theorem,
hence, yields a following expectation: Black holes in de Sitter background cannot
coalesce each other beyond the critical area of the event horizon, resulting that

many small black holes still remain in de Sitter background.

This expectation brings us to a desirable inflationary scenario in inhomoge-
neous space-times as follows. Initial inhomogeneities collapse into many small
black holes, which areas are bounded as Apy < 4vH ™2, but not into large-scale
inhomogeneities which may prevent the global portion of the universe expand-
ing exponentially, if the cosmic censorship hypothesis is true. Those small black
holes are harmless in an inflationary scenario, because they will not only be di-
lutes away by the exponential expansion of the universe but also be evaporated
away soon by Hawking radiation (The typical mass of the black holes is ~ 10%g
for GUT-scale vacuum energy.). In order to confirm this scenario, the research

along the above discussion is now in progress.
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1. Introduction

The inflationary universe scenario ) s currently the most favorable model to
explain the present homogeneity and isotropy of our universe. In this scenario,
the vacuum energy of some fundamental field (the so-called “inflaton”) behaves as
a positive cosmological constant during a period in the early universe. Although
some fundamental problems in the standard big bang scenario are resolved by the
idea of inflation, there may still be two unsolved problems in the inflationary sce-
nario: One is what is the inflaton field, and the other is the isotropy-homogeneity
problem. To answer for the former question, we may have to understand the final
unified theory of fundamental forces, while the latter question might be solved
in the context of the classical Einstein theory. If all or most space-times with a
positive cosmological constant approaches the de Sitter space-time, we will find
that the universe is isotropic and homogeneous just after inflationary era. This

argument is closely related to “the so-called cosmic no hair conjecture” ) | This
conjecture is true under some restrictions on space-times or on those initial con-
ditions. However, we also know black hole space-time in de Sitter background.
Schwarzschild-de Sitter space-time does never approach de Sitter one. Some dust
sphere with a cosmological constant can evolve into the Schwarzschild-de Sitter
space-time. Therefore, in the case of more inhomogeneous space-times without
any symmetry, it is not clear whether or not the de Sitter-like cosmic expansion
is realized even if there exists a positive cosmological constant. In particular,
if the inhomogeneities are very “strong” and “localized” enough, some portions
may gravitationally collapse into black holes or naked singularities. Hence, we
propose that instead of proving the cosmic no-hair conjecture, we have to look
for an inflationary scenario, in which many black holes could be formed but they
are harmless, for inhomogeneous universes.

Motivated by these considerations, in the present paper, we study the behav-
jor of black holes in space-times with a positive cosmological constant A. First,
in order to make clear the meaning of black holes in such asymptotically non-
flat space-times, we introduce & new class of space-times, called asympiotically
de Sitler space-time. Then, we define black holes in asymptotically de Sitter
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space-times and study their fundamental properties. We show that many of the
theorems on black holes in the asymptotically flat space-times, including the area
theorem, hold also in the asymptotically de Sitter space-times. Furthermore, we
give an argument which strongly suggests the existence of an upper bound on the
area of the event horizon of the black hole in the space-time with A. Our results
obtained here may provide an inflationary scenario for inhomogeneous universes,
as will be discussed later.

2. The Properties of Black Holes
in the Asymptotically de Sitter Space-Time

First, we shall start with defining the asymptotically de Sitter space-time.m
A physical space-time (M, g) is said to be weakly future asympiotically simple
if there exists a strongly causal space-time (M, g) and a conformal embedding,
p : M—p[M]CM, such that p[M] has a boundary dp[M] and the following

conditions are satisfied:

(1) There exists a C*® function  on M, such that § = Q%p,(g), where o, is
the mapping induced from the embedding ¢.

(2) 2 > 0 on p[M], and Q|r = 0 and dz # 0 on the boundary of ¢[M],
T := 8¢p[M). Further Z consists of two types of connected components, the future
ones It (with J*(Z¥)Np[M)] = ¢) and the past ones I~ (with J~(Z~)Np[M] =
#) and It # 4.

Remark: T may have many connected components in general. For example,
there exist an infinite number of connected components in the Schwarzschild-de
Sitter space-time. Here we assume, however, that 7% are both connected; this
assumption holds in the applications that we have in mind. For the more general
case in which 7* have many connected components, we can apply the following
theorems to the restricted space-time region in which Z% are both connected.

Weakly future asymptotically simple space-times define a rather general cat-
egory of space-times and include the asymptotically flat space-times as well. In
order to remove such asymptotically flat cases and to restrict to those with de
Sitter-like behavior in the future, we must assume the Einstein equations. A
physical space-time (M, g) is said to be weakly future asymptotically simple and
de Sitter if (M, g) is weakly future asymptotically simple and satisfies the fol-
lowing condition:

(3) gab satisfies Rgp — $gapR + Agap = 87GTyp with A > 0, where Q73T has
a smooth limit on I+,

From the point of view of causal structure, the above conditions are still too
weak, since one can construct other space-times whose region outside black holes
contain the closed timelike curves from these space-times by a perturbation. To
eliminate such pathologies, we impose a further condition. A physical space-time
(M, g) which is weakly future asymptotically simple and de Sitter is said to be
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strongly asymploiically predictable (from L) and de Sitter in the future if there
exists a partial Cauchy surface £ such that T+ ¢ D+(X), and JH(E)NJT-(Z*) C
D*(X). Hereafter, we shall call such space-times the asympioticelly de Sitter
space-times for brevity.

Let us pause for a moment to discuss the meaning of these conditions. First,
though the condition (2) in general implies that the space-time has regular in-
finities 7%, it alone does not restrict the structure of I%. If the condition (3) is
imposed further, then I% are smooth three-dimensional space-like hypersurfaces
in M because §(#,#)|z+ = —A < 0 where #® = §*VQ. I represent the
infinities in time, and Q! can be regarded as the local scale factor near I%. The
condition on Ty in (3) implies that as the universe expands the energy density
decreases at least as rapidly as the dust-like matter does. This condition is sat-
isfied at least in all inflationary models. What is interesting here.is that this
requirement leads to a quite strong consequence, i.e., the space-time structure
around ZI% is locally de Sitter. To be precise, we can show from the conditions
(2) and (3) that there exists a foliation of the space-time around Z+ by space-like
hypersurfaces whose expansion # and shear ¢,, behave as § — 3./A/3 and
ouy — 0 toward I%, respectively. :

Now we proceed to the study of black holes. In analogy with the asymptoti-
cally flat case we define a black hole and its event horizon in an asymptotically
de Sitter space-time to be the region B = ¢[M] — J~(Z1) and its boundary
H = J=(Tt)N¢[M], respectively. First, we show that the existence of a trapped
surface guarantees the existence of a black hole, if there is no naked singularity.

Theorem I: Let (M, g) be an asymptotically de Sitter space-time such that
Ra4k%k*>0 for every null vector k®. Let T be a trapped surface contained in
(M = J=(p)) 0 D*(ZT), where p is a point on Z+. Then TCB, that is, the
trapped surface is contained in a black hole.

Proof : Suppose T¢B, that is, J-(Z¥)NT # ¢. Let ¢ be a point in
JHT)NZI*, and v be a curve in I+ connecting ¢ and p. Then, since D*(Z) is
globally hyperbolic, hence is causally simple, J*(T') is closed in D¥(X) and its
intersection with 7 is a closed segment 4’ containing g(or the single point g). Let
r be the endpoint of 4’ other than ¢ if 7' is not the single point and otherwise be g.
Then again from the causal simplicity of D¥(Z), r must be contained in J D).
Then r lies on a future-directed null geodesic generator & of J¥(T) N DH(X)
which starts from T, which is orthogonal to T' and has no conjugate point to
T between T and r, because D*(X) is globally hyperbolic. On the other hand,
there must exist a conjugate point on a within a finite affine distance from aNT’,
since the expansion rate of future directed null geodesic generators orthogonal
to T is negative and the space-time satisfies the energy condition. This implies
that o cannot be totally contained in J*(T') and leads to a contradiction. Thus
TCB. QED. )

In the above theorem we restricted the location of our trapped surface in
order to guarantee that J*(T) intersects Z+. Dropping this restriction allows
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us easily to construct counterexamples to the above theorem’s conclusion (one is
the Schwarzschild-de Sitter space-time).

Next we consider the properties of the event horizon. First, note that each
geodesic generator of J~(Zt) is either future inextendible or has a future end-
point on I+ because, from condition (2), Zt is closed. If a generator intersects
Z*, it must intersect at the edge of I+. However, this is impossible since Z+
does not have an edge. Hence, as in the asymptotically flat case, every null
geodesic generator of J~(Z7) is future inextendible in an asymptotically de Sit-
ter space-time. This enables us to prove an area theorem for black holes in the
asymptotically de Sitter case.

Theorem 2 (The Area Theorem in Asympiotically De Sitter Space-Time):
Let (M, g) be asymptotically de Sitter and such that R,;k®k® >0 for every null
vector k%, Let £; and X, be Cauchy surfaces of the globally hyperbolic region
D*(X) with Z,CI+(Z). Furthermore suppose that there exists an event horizon
H = J-(Z*) N J*(T). Then for H, := HNE, and H, := HNE,, (Area of
H1)<(Area of Hy).

Proof. Suppose that the expansion rate & of the future directed null geodesic
generators of H is negative in an open set U C H N D*(Z). Then there exist a
compact closed two-surface S C DH(X) — J~(Z*1) such that SNU C H N D¥(X)
and the trace K3, of the second fundamental form Ky, of S for the outgoing
null geodesic coincides with 8 in SN U. Let p be a point in Z*. Since J~(p)
is closed in D*(Z) because of causal simplicity, D*(Z) — J~(p) is open. Hence
we can slightly deform S to a new surface S’ inside D¥(Z) — J~(p) so that
S'NJ-(It) # ¢, keeping K3, negative on S' N J=(Z*). Then by the same
argument in the proof of Theorem 1 we can show that there exists a null geodesic
generator a of J*(S') N D*(X) which intersects I+. Clearly anS' C J~(Z)
and 4 is negative therein. However, this implies that o has a conjugate point
with a finite affine distance from o N S’, hence goes into I*(S’). This leads to a
contradiction. Therefore 6 is non-negative everywhere on H.

As T, is a partial Cauchy surface of D¥(X), every future inextendible null
geodesic u through M, must intersect with #; at a single point. Through the
correspond of these two intersecting-point, one can construct a natural mapping
My to Ha. Taking account that the expansion of null geodesic generators of
J~(Zt) n J*(X) is non-negative and the mapping is injective, one can obtain
(Area of H3)>(Area of Hy). QED.

One can also show in the asymptotically de Sitter case that the intersection
of an event horizon with a partial Cauchy surface is a two-sphere. (The argument
is exactly the same as in the asymptotically flat case.) This is also true of the
apparent horizon in non-stationary space-times: Each connected component of
the apparent horizon is homeomorphic to the two-sphere.
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3. The Upper Bound on Event Horizons
We have shown so far that a black hole in an asymptotically de Sitter space-
time has almost the same features as one in an asymptotically flat space-time.

However, there is an important difference between black holes in an asymptoti-
cally de Sitter space-time and black holes in an asymptotically flat one. Here we

shall give the upper bound on the event horizon at least for maximal slicing,m
by which some portion of space-time can be foliated.

Consider a three-dimensional spacelike maximal hypersurface (X, ¢). Suppose
that I can be foliated by a one-parameter family {S(r)},¢r,u(o} of two-spheres,
and perform a (2+1)-decomposition of its geometry. The metric of £ becomes

de? = vdr? + hgp(dz? + vAdr)(dz? + VB dr), (3.1)

where A 4p is the intrinsic metric of S(r), and A, B = 1, 2. Defining the extrinsic
curvature of S(r) as

1
kap := 5;(0#343 —Davp — Dpvy), (3.2)
we get

(0 + %kv) [ (2R -2 - -;-A — 4D, (v D4))]
=vkh\/? ((3)R —2A + kypkdB — %kz + 2V'7'DAV'DAV) (3.3)

+20, [h" 2 ((’)R - 294(./-11)4./))] -D, [h" 2 (k’ + %A) u"] ,

where D4, ()R and k are the covariant derivative induced on S(r), the intrinsic
curvature of S(r) and the trace of k., respectively. (¥ R is the intrinsic curvature
of I. Furthermore suppose that one can take v and v4 such that vk > 0 and

20, [hl/’((z)R - 21),,(1/-11)%))] -D, [h‘“ (k’ + %A) u"] =0. (3.4)
Define I by
I:= exp(% /r ukdr) RY2[2 R — k2 - %A — 4D (v~1D4Y)). (3.5)

Then, from eq.(4) and the Hamiltonian constraint, we see that 8,J > 0. Hence
if S(r) shrinks to a point as r — 0, we obtain way the inequality I > 0. Thus,
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- . oy 3
integrating e~ ? Jveary over S(r), we get

6r— [ kdS-3aap) >0, (3.6)
5(r) 3

where A(r) is the area of S(r). Hence, we obtain the upper bound A,z on the
area of S(r) as

12 3 12
A < - =3 k!d < 1T —
(r) < 'A' A str) S < Amas A

(3.7)
The upper bound Ap,,: is also applicable to the area of both the apparent and
event horizons.

4. Discussion

The area theorem and the upper bound on the area of the event horizon,
when put together, lead to a quite interesting consequence. -Consider a collision
of two black holes whose event horizons have areas A; and A,, respectively. Asin
asymptotically flat space-times, if these black holes merge to form a single black
hole by collision, the area of the event horizon of the final black hole, Ay, should
satisfly the inequality,

Ap2 A+ Ay (41)

from the area theorem. However, in an asymptotically de Sitter space-time,
Ay should be smaller than A;,.: = 127/A , provided the space-time permits a
foliation by maximal hypersurfaces. Hence, if A} + A2 > Amqsz, the black holes
cannot merge to a single black hole. This result, if it holds generally, suggests
that the inflationary scenario works well even if the universe starts with strong
inhomogeneities. In such case lots of small black holes will be formed from
inhomogeneities at start, and some of them will merge or grow to larger black
holes. However, since the area of each event horizon is bounded by 12x/A, any
region with scales much larger than the Hubble horizon radius \/3/A will never
collapse. Hence the universe as a whole will continue to expand provide the initial
size of the universe is much larger than the Hubble horizon size. Since the small
black holes will eventually ease to be newly produced and be diluted away by
this expansion, the universe will proceed to the standard inflationary stage soon
or later.

This argument should be regarded as a suggestive one at present, since we
do not prove the existence of maximal hypersurfaces which goes through event
horizons and the partial foliation by maximal hypersurfaces in asymptotically
de Sitter space-times. However,one can see easily that Schwarzschild-de Sitter

space-time can be partialy foliated by maximal surfaces’)
that one may prove it.

. Hence, we expect
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Abstract

One dimensional cosmological model is studied from the point of
view of the pattern formation. We show that the non-linear inertial
term is crucial for the pattern formation. An infinite number of con-
served quantities, which indicate the existence of the hidden symme-
try, are newly founded. Those strongly constrain the power transfer of
the density field. The above symmetry must be essential for explaining
the scaling behavior at the epoch of the singularity formation.

1 Introduction

To understand the large scale structure is one of the important issues in the
theoretical cosmology. First step to attack this problem is to characterize the
pattern in the sky. Various statistics have been used for this purpose. The
multi-point correlation functions are very popular [1]. Especially, the two-
point correlation function for galaxies is well studied observationally. The
result shows the power law behavior with the index about —1.8. This scaling

behavior is also observed in the cluster-cluster correlation with the same
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index. One possible explanation is given by Peebles, however, his argument
is not so convincing [1]. What we must reveal is the law hidden in the non-
linear dynamics. This is essential for understanding the large scale structure
of the universe.

With the above motivation, we shall study the one-dimensional cosmo-
logical equations which represent the flat universe with the dust fluid in
one-dimension. In this case, the existence of the exact solution, the so-called
Zeldovich solution, makes the analysis easy. Interestingly, the power spec-
trum of this model shows the universal scaling pattern with the index —1/3
at the epoch of the singularity formation [2,3,4). This universality is expected
to hold in the realistic case. Hence, to explain this universality is important
to understand the large scale structure of the universe. Here, we will seek

the law which governs this pattern formation.

2 Universality

One-dimensional cosmological equations are the following:

5050+ Szl )1+ 8z, )] =0, e

aft) 1
F9( 1) + Zoulas ) ma(a, ) + o) 0 2 Ha)=0, )
a"—;qs(z, )= 3(Cyas(a ©

where 6 and v are the density perturbation and the peculiar velocity field re-

spectively. We assumed the flat universe, a(t) = t*/*. Using the Lagrangian
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picture, we can solve the above equation. As we would like to know the pat-
tern formation in the real space, however, the Eulerian picture is appropriate
for this aim. Hence, we will use the Eulerian picture throughout this paper.
Before we examine the above equations, we must consider what causes the
beautiful pattern. If we neglect the non-linear term, the pattern would never
appear. Indeed, it is the mode coupling through the non-linear term that
makes the pattern. Therefore, we can not discard the non-linear term. On
the other hand, the cosmological expansion and the Newtonian gravity is not
so crucial for the pattern formation. To make this fact manifest, we shall

study the simplified model:

02 3

58(z,8) + o {o(z,1)(1+ 8(z, )] = 0, (4)
0 d
EU(I,t) + v(x, t)-a—z-v(::, t) = 0. (5)

From now on, we will show that this almost trivial system belongs the same
universal class with the cosmological model. To uncover the structure of this
non-linear equations, we shall use the momentum space purturbation theory.

Defining the new field u(z) = dv(z)/8z and expanding the field like as

6(p) = 3. dnlp), (6
(p) = 3 walp) ¢

we obtain the puturbative equations

Zh) t e == 3 P wba -k, @

k=-c0 " m=1
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Zup)=-> P % tn(K)inonlp — ) ®)

k-—oo m=]

By examining order by order, the time dependence of the variables become
6n(k, t) = t"6,(k) , (10)

Un(k,t) = —t""'Gn (k) . (11)

Thus the differential equations reduce to the algebraic recursion equations;

oo

néa(p) - @a(p) = kZ Zl T (k)8n-m(p — F) (12)
(n = Din(p) = Z 'i‘ m(k)p—m(p— k) . (13)

k==00 m=]

It is easy to prove the relation
Ba(k) = Ba(k) (14)

And the recursion equations are solved as

61(’6)

,ZH T (15)

" =]

Then the full non-perturbative mode becomes

§(p,t) = i t"3a(p) = 2%/:' dgexpip(g +vi(q)t) , p#0. (16)

n=l
It is natural to interpret the parameter ¢ in the eq.(16) as a Lagrangian

coordinate. Its relation to the Eulerian coordinate is given by

z=g+un(qt, (17)
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where v1(g) is the linear velocity field. By the inverse Fourier transformation,
we get

oo t) = g (18)

where p, represents the mean density and the prime denotes the differentia-
tion with respect to g. The zero-point of the Jacobian of the transformation

from the Lagrangian coordinate to the Eulerian coordinate becomes the sin-

gularity of the density field (18). The singular point is given by the condition

1
g = -, (19)
v1(ge) = 0. (20)
Thus, the eq. (17) becomes
z=z.+a(g - q) (21)
in the leading order. Then we obtain
p(z,t) ~ (z —zc)~} (22)
or, equivalently,
P(k,t) ~ &~} (23)

This behavior coincides with that of the cosmological model [2]. Thus, we
can fairly say that the cosmological expansion and Newtonian gravitational

force is not essential for the pattern formation.
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3 What is the law behind the non-linear dy-
namics?

Using the field variables, the relation (14) in the perturbative analysis can
be written as

5(z,) = —t%v(z,t) . (24)

This relation (24) reduces the basic equations (4) and (5) to the only one

non-linear equation,
a i)
Et-u(z, t) + v(z, t)av(z, t)=0. (25)

It is important to notice that there exist an infinite number of conserved

quantities in the above systems,

%/:t dzv"(z,t) = 0.. (26)
Equivalently,
%Z < g () vka(t) > 852 a0 =0 (27)
kq

Denoting the initial n-th order moment of the velocity field as g5, the above

equation is solved as
3 < (E) v, () > 85 ko = On - (28)
ki

Using the relation (24) in the momentum space form

§(k, 1) = iktu(k, 1), (29)
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we obtain the law behind the non-linear dynamics as

S(ky,t)  6(knit)
§< kll R

> 626*‘.'0 = Gn(it)n . (30)
In particular, the power spectrum is constrained by the equation
k,t
3 Ll G)) = gyt?. (31)

In the intermediate process of the non-linear evolution, the above infinite
number of the equations constrain the power transfer strongly. This leads to
the universal scaling behavior with the index —1/3. Although we do not yet
understand the direct relation between our findings and the number —1/3,
we believe the relation we found is the key for the analytic derivation of the
miracle number. For supporting this expectation, we shall show that the
same law also holds in the cosmological case which has the same miracle
number —1/3.

Surprisingly, the equations (1),(2) and (3) reduce to one non-linear equa-

tion also in this case. Assuming the relation

3.0
o= s }-—.
§(z,t) 2t 6zv(z,t), (32)
the seeking equation is
d 1 a
— -% - —_— =
Bt[t v(z,t)] + tv(z,t)azv(z,t) 0. (33)

The eq.(33) leads to the infinite number of the conserved quantities again.

ad? /  daft (e, ) = 0. (34)
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This fact is highly non-trivial and yields the main result of this paper,

6(kl)t) 6(km t)
Z < b cee h

> 65 0 = @aalt)” (35)
ki

where o, is the constant determined by the initial n-th order moment of the
velocity field. The special case of this law is previously obtained by us [§].
It should be noted that eq.(35) has the same form with the eq.(30). This
fact is, of course, a refrection of the similarity between eq.(26) and eq.(34).
These conserved quantities indicate the hidden symmetry. The large symetry
strongly constrains the dynamics. It must be this symmetry that yields the
number —1/3.

4 Conclusion

We studied the one-dimensional cosmological pattern formation. It turns out
that the cosmological expansion and the Newtonian gravity is not essential
for the —1/3 pattern. Indeed we found the universal law (35) which holds
for the universality class with the index —1/3. The pattern is related not
to the detailed dynamics but to the non-linear inertial term. The existence
of the infinite number of conserved quantities indicate the hidden symmetry
behind this non-linear system. It is interesting to find it, however, we must
understand the Hamiltonian structure before doing it. It should be noted
that we do not yet understand two points. First point is how to calculate
the number —1/3 from our formalism. Second one is how to extend our

formulation to other situations, especially to the higher dimensional systems.
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ABSTRACT

Time variations of X-rays from a black hole candidate GS1124-683 are
compared with those from other black hole candidates: Cyg X-1, GX339-4,
GS2023+338 and low mass X-ray binary neutron stars: GX5-1 and X1608-522, and
we get the following results.
1) In GS1124-683, four states, i.e. a high flare state, a high quiet state, a high-to-
low transition state and a low state are recognized.
2) Normalized power spectrum densities (NPSDs) and phase lags between different
energy X-rays from the black hole candidates in the same states are similar not only
in the low state but also in the high flare state.
3) In the high flare state, the X-ray energy spectrum consists of two components: a
disk black body component and a power law component. These two components
have their inherent PSDs; a flat top shape noise (FTN) for the power law component
and a power law shape noise (PLN) for the disk black body component. However,
the NPSD values normalized to the corresponding component are not constant.
4) In the high quiet state, the main component is the disk black body component,
and its NPSD is PLN.
5) In the low state, the X-ray energy spectrum consists of only a power law
component. This component has a harder energy spectrum and shows different and
larger time variations than those of the power law component in the high state. The
NPSD of the power law component in the low state is larger than those in the high
state and power law shaped, which saturate at the frequencies less than about 0.1 Hz.
Thus the shape of the NPSD and the energy spectrum of the power law component
in the low state are different from those in the high (flare and quiet) state.
6) GS2023+338 in its flare state has harder energy spectrum than that of GS1124-
683 in the similar high flare state, and has the NPSDs rather similar to those in the
low state of the black hole candidates, though in the low state GS2023+338 has the
same X-ray energy spectrum and the same NPSD to the other black hole candidates.
7) A low mass X-ray binary neutron star GX5-1 has two component in its X-ray
energy spectrum; a disk black body component and a hard black body component.
In the horizontal branch, the fraction of the hard black body component is larger
than that in the normal branch. In the horizontal branch, the NPSDs are the flat top
shape noise (FTN) and are larger than the NPSDs in its normal branch, which are
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the power law shape noise (PLN). These relations are similar to those of the black
hole candidates in its high flare state and in its high quiet state. However, the phase
lags of time variations between different energy X-rays from GXS5-1 in its
horizontal branch are different from those of the black hole candidates in the high
flare state.

8) In the low state, a low mass X-ray binary neutron star X1608-522 has a power
low X-ray energy spectrum and its NPSD is similar to those of the black hole
candidates in the low state. Thus X-ray energy spectra and NPSDs of low mass X-
ray binary neutron stars (GXS-1 and X1608-522) in the high and the low states are
almost similar to those of the black hole candidates in the these states, though the
phase lags between different energy X-rays seem to be different from those of the
black hole candidates, and these are observed in different X-ray binary neutron
stars.

" Key words: X-ray star, black hole candidate, low mass X-ray binary neutron star,
Nova Muscae 1991, time variations.

1. Introduction.

Mainly due to observations of Cyg X-1, it had been believed that black hole
candidates had two states; a high state and a low state, and in the low state their X-
rays had a power law energy spectrum and showed rapid time variations, and in the
high state the X-rays had a soft energy spectrum and showed small time variations
(for the reviews, see for instance, Oda, 1977, Liang and Nolan, 1984).

Recently, however, it was found that in the high state GX339-4 had two sub-
states; a high flare state and a high quiet state. In the high flare state, X-rays have
two components; a power law component and a disk black body component, and
show rapid time variations including QPO and a peculiar peaked phase lag
(Miyamoto et al. 1991). In the high quiet state of GX339-4, X-rays have a soft
energy spectrum, and their time variations are smaller than those in the high flare
state (Makishima et al. 1986).

Moreover, it was found that in the low state the energy spectra and time
variations of X-rays from the black hole candidates, Cyg X-1, GX339-4,
GS2023+338, were the same (Canonical time variation; Miyamoto et al. 1992),
which were shown in Fig.1. The normalized power spectrum densities (NPSDs) and
the phase lags in the low state of Cyg X-1, GX339-4 and GS2023+338 are the same.
It was also shown by Miyamoto et al. (1988) that these phase (time) lag could not be
explained by the Compton scattering model by Sunyaev and Trumper (1979), which
was proposed to explain the power law X-ray component as a product of the inverse
Compton scatterings in a very hot electron cloud.

An X-ray nova: Nova Muscae or GS1124-683 showed long term variations
similar to a black hole candidate A0620-00 (Kitamoto et al.,1992) and optical
observations showed that this X-ray source had a mass larger than about 3.8 Mo
(Remillard et al.,1992) or had a mass of about 8 Mo (Cheng et al. 1992). These
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strongly suggest that GS1124-683 is a black hole. Another X-ray nova: GS2023+338
showed rapid time variations and had a hard energy spectrum even in its flare state
(Kitamoto et al. 1989; Tanaka 1989). Recently the mass of the compact star in this
source was estimated to be 8-15.5 Mo, and shown to be a black hole candidate
(Casares, Charles, and Naylor, 1992). However, the hard energy spectrum of this
source in its flare state is quite different from those of GX339-4 in the same state
mentioned above, though in the low state the normalized power spectrum density
functions (NPSDs; Miyamoto et al. 1991), phase lags and X-ray energy spectrum of
GS2023+338 are the same to other black hole candidates: Cyg X-1 and GX339-4
(Miyamoto et al. 1992) in the same state.

Thus it is of interest to investigate whether there are time variations in GS1124-
683 in the high and the low states similar to those of other black hole candidates.
Time variations of GS2023+338 in its high flare state are also interesting.
Comparisons between X-ray time variations together with energy spectra of the
black hole candidates and those of the low mass X-ray binary neutron stars are also
very interesting.

2. Energy spectra, long term variations and four states of GS1124-683.

After the discovery of the Nova Muscae (GS1124-683) with the ASM (Makino
and the Ginga team, 1991), this source was observed with the large area counter
(LAC) on board Ginga (Turner et al., 1989) in the energy range of 1.2-36.8 keV
from 1991 January 11 to September 24-25 when this source became undetectable
with the LAC. The observed X-ray energy spectra were fitted with a two
component model: a disk black body component and a power law component. The
disk black body component is X-rays emitted from an accretion disk (Mitsuda et al.
1984). In addition to these two components, iron line components and absorption by
interstellar gas and ionized iron atoms with spread excited energy levels (a smeared
edge model) (Ebisawa, 1989) were taken into account. Evolution of these two
components are shown in Fig.2 (Miyamoto et al. 1993a).

From Fig.2, one can discriminate four states in GS1124-683: a high flare state
(about the 8-67th day), a high quiet state (about the 69-109th day), a high-to-low
transition state (about the 109-164th days) and a low state (after about the 164th
day). In the high flare state, X-rays had the two components mentioned above and
showed rapid time variations including QPO, which were similar to those of
GX339-4 in the same state (Miyamoto et al. 1991). In the high quiet state, the main
X-ray component was the disk black body component and time variations were
small. In the high (flare and quiet) state, the photon number index of the power law
component was about -(2.2-3.). In the low state, the energy spectrum could be
represented by a power law and its photon number index was about -1.6. Thus the
photon number index in the low state is clearly different from those in the high
state.

In long terms, the fluxes of the disk black body component and the power law
component changed incoherently, but as if they were internally correlated together
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as shown in Fig.2. Thus the X-ray flux from the disk should not be considered to be
proportional to a rate of accreting matter. Gravitational energy released in the disk
is partly used to produce the power law component, and the ratio of the energy flux
of the power law component to the total flux changes with time. Thus superficially
independent but internally related production process of these two components
should be searched for, such as a jet model proposed by Miyamoto and Kitamoto
(1991) to explain the time variation of X-rays from GX339-4 in the high flare state.

3. Short term variations of X-rays from GS1124-683.

To investigate short term variations of X-rays, we calculated the normalized
power spectrum density (NPSD) and the phase lag (van der Klis et al. 1987;
Miyamoto et al. 1988), and got following results.

1)- In the high flare state, the NPSDs change with time, which are shown in
Fig.3(a). For instance, on January 11, when a ratio of X-ray counts of the power
law component to the total X-ray counts (a power law component ratio; PLR) was
about 80%, the NPSD had a flat top shape (flat top shape noise (FTN)), which was
similar to that on January 22 shown in Fig.3(a). However on January 17, when the
power law component showed the local minimum and the PLR was about 15%, the
NPSD changed to a power law shape (power law shape noise (PLN)) as shown in
Fig.3(a). On January 18-22, when the PLRs were about 30-40%, it became FTN
again. In this high flare state some data showed a mixed shape of these two type
noises. In the high quiet state where the PLR was less than 3%, the NPSD was PLN
as shown in Fig.3(a). Thus it is clear that the shape of the NPSD depends on the
power law component ratio (PLR).

2)  In the high flare state, the phase lags also changed with time. On January 11-
12, time variations of 4.6-9.2 keV X-rays were the most advanced and the phase
lags were about 0.02-0.1 radian. However, from January 16 to January 22, time
variations of 2.3-4.6 keV X-rays were the most advanced. From January 16 to 22,
the phase lags showed a peak around 2-3 Hz, though the peaks before January 22
were rather small, and on January 14-16, the peaks of the phase lags were about
0.1-0.3 radian. On January 22, the phase lags of X-rays had a clear peak around 2-3
Hz (Fig.4(a)), and the NPSD was the FTN which had a knee around 2-10 Hz
(Fig.3(a)). These NPSDs and phase lags are similar to the C+D sub-state of the high
flare state in GX339-4 observed by Miyamoto et al. (1991) (see Fig.3(b) and
Fig.4(b)). Thus we could find another possible canonical time variations of X-rays
in the high flare state. The energy spectra, the NPSDs and the phase lags are similar
in these black hole candidates in their high flare state (Miyamoto et al. 1993a).
These phase lags and the energy spectrum were explained by Miyamoto and
Kitamoto (1991) with a jet model that the inverse Compton scatterings in large hot
electron clouds were the production process of the power law component.

3)  In the high quiet state, the NPSD had the lowest values. The NPSD in this state
had a power law shape (PLN) and was similar.to those of low energy X-rays from a

—241-



low mass X-ray binary neutron stars: GX5-1 in its normal branch as shown in Fig.3
(for the normal branch, see Lewin et al. 1988).

4)  In the low state, except for frequencies below about 0.2 Hz, the NPSDs of the
GS1124-683 became similar to those observed in Cyg X-1, GX339-4 and
(G52023+338 as shown in Fig.5. They are the same not only on different occasions
but also in different energy ranges. Thus canonical time variations in the low state
discovered by Miyamoto et al. (1992) was confirmed also in GS1124-683. In this
state the PSDs had a power law shape with the index of about -1 at the frequencies
between 0.1-1.0 Hz.

5)  The results described in 1) and 3) suggest that there are two kind of shapes in
PSDs corresponding to the two energy spectrum components. To confirm this, we
fitted the power spectrum density functions (PSDs) with a two component PSD
model; one was a power law shape noise (PLN) and the other was a flat top shape
noise (FTN) of a Lorenzian of zero central frequency. In the high state, we found
that the PLN had the power law index of -0.7 and was consistent to be due to the
disk black body component, and the FTN had a Lorenzian shape of the width of 8
Hz and was consistent to be due to the power law component. These parameters
seemed to be constant throughout the high state. However, we also found that the
values of these noises normalized to each corresponding component were not
constant at all time. The PLN normalized to the disk black body component seems to
become large with the increase of the PLR. The FTN normalized to the power law
component also seems to change with PLR.

6) X-rays from GS2023+338 in the flare state had a hard energy spectrum,
which was different from those of GX339-4 and GS1124-683 (Kitamoto et al. 1989;
Tanaka 1989). The NPSD of GS2023+338 in the flare state is also different from
those of GS1124-683 in the very high flare state, and is rather similar to that in the
low state as shown in Fig.6 (Terada, 1991). Thus the X-rays from GS2023+338 in
the flare state are not the same in the energy spectrum and in the time variations to
those of GS1124-683 and GX339-4, though in the low state its energy spectrum,
NPSD and phase lags are similar to those of Cyg X-1, GX339-4 (Miyamoto et al.

1992). Thus in the nova of GS2023+338 X-rays must be produced by a different

process from that in other sources such as GX339-4 and GS1124-683. )

4. Comparisons with low mass X-ray binary neutron stars GX5-1 and X1608-522.
X-rays from a low mass binary neutron star GX5-1 consist of the disk black
body component and a hard black body component. In the horizontal branch the
fraction of the hard black body component is larger than that in the normal branch.
As mentioned in 3-3), the NPSD of X-rays from GX5-1 in the normal branch is
similar to that of the GS1124-683 in the high quiet state. Both in GS1124-683 in the
high quiet state and GX5-1 in the normal branch, the NPSDs of higher energy X-
rays are larger than those of lower energy X-rays, though the NPSDs of high
energy X-rays from GS1124-683 are much larger than those of the same energy X-
rays from GXS5-1. This is not only due to an increase of the ratio of the hard
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component (the power law component or the hard black body component) at higher
energy X-rays. In the normal branch of GX5-1, the NPSD of the disk black body
component itself becomes larger at higher energy X-rays (Kamado, 1993).

- The NPSD of GX5-1 in the horizontal branch is FTN, which is similar to that
of the GS1124-683 on 1991 January 22 and GX339-4 in the C+D sub-state (in the
high flare state) as shown in Fig.3. It is of interest to note that the above relation
between the shape of the NPSD and a fraction of the hard black body component in
GX5-1 is similar to the relation between the shape of the NPSD and PLR in
GS1124-683 and GX339-4 mentioned in 3-1). The hard black body component in
GX5-1 corresponds to the power law component in GS1124-683 and GX339-4.
However the phase lags of time variations between different energy X-rays of the
black hole candidates, GS1124-683 and GX339-4, are different from those of a low
mass X-ray binary GX5-1, which are shown in Fig.7. GXS5-1 does not show such a
large peculiar phase lags observed in GS1124-683 and GX339-4, though it is
possible that the peculiar peak of the phase lags may be produced only in a some
part of the X-ray flare. These situations i.e. similar NPSDs and different phase lags,
can be explained as followings. Both initial X-rays of hard components in these
black hole candidates and those in the low mass X-ray binary neutron star are
produced by the same process. However, in the black hole candidates, these X-rays
have been transferred to higher energy X-rays by the inverse Compton scatterings
in large very hot electron clouds and are observed as the power law component,
which show the large peculiar phase lags (Miyamoto & Kitamoto 1991). In GX5-1,
this component has not been processed by the inverse Compton scatterings in the
large very hot electron cloud. This may be the reason why similar NPSDs are
observed in the black hole candidates and in the low mass binary neutron star, and
the phase lags between different energy X-rays from GX5-1 do not show the
peculiar phase lags similar to those of GS1124-683 and GX339-4.

It is of interest to note that shapes of X-ray energy spectra of a low mass X-
ray binary neutron star X1608-522 show similar change to those of the black hole
candidates together with its X-ray intensity (Mitsuda et al. 1989). The shape changes
from a thermal type at high luminosity to a power law type as the luminosity goes
down. The energy spectrum of the X-rays from X1608-522 can be represented by a
two component model i.e. the disk black body component or a black body
component of kT of about 1.5 keV and a power law component with an exponential
cut off. When the X-ray luminosity (2-20 keV) is less than about 2x10-9 erg s-! cm-
2, the main component of the energy spectrum is the power law component of the
photon number index of about -1.7 with the exponential cut off at the X-ray energy
larger than 20 keV and the luminosity of another component is less than about 1/10
of that of the power law component. When the X-ray luminosity is about (2.5-
3.5)x10-9 erg s-! cm-2, the photon number index of the power law component is
about -(2-3) (Mitsuda et al. 1989)

As for the NPSD, we have no results at high X-ray luminosity. However at
the low X-ray luminosity of about (2-6)x10-9 erg s-1 cm-2 (2-60 keV) ((3-9)x1036
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erg s°1 at the assumed source distance of 3.6 kpc), the NPSD was obtained by
Yoshida et al. (1993) and the result is shown in Fig.8, together with that of Cyg X-1
in the low state. One can recognize that the NPSDs are similar to those of the black
hole candidates in the low state. However there are some minor differences. In the
black hole candidates, NPSDs are the same to each other at the frequencies above
about 0.3 Hz (Miyamoto et al. 1992). But in X1608-522, NPSDs observed at
different occasions are the same at the frequencies above 3 Hz. The values of NPSD
of X1608-522 are smaller than those of the black hole candidates at-the frequencies
less than about 10 Hz. .

5. Conclusions.

In the low state, time variations of GS1124-68 are similar to other black hole
candidate: Cyg X-1, GX339-4, GS2023+338, and in the high flare state the time
variations of GS1124-68 are also similar to those of GX339-4. These results
strongly suggest that the canonical X-ray production process are going on in these
black hole candidates not only in the low state but also in the high state. However,
GS2023+338 is an exception. In the flare state, GS2023+338 has its energy spectrum
and NPSD different from other black hole candidates.

In the high state, the PSDs of GS1124-683 and GX339-4 consist of a PLN
which is due to the disk black body component and a FTN which is due to the power
low component. The FTN normalized to the power law component is much larger
than the PLN normalized to the disk black body component.

In the low state, X-rays have a power law energy spectrum and the PSD has a
power low shape. In the high state the PSD of the power law component is FTN.
The indexes of the energy spectra of these two power law components are also
different in the low state and in the high state. Thus the production processes of the
power law components in the high state and in the low state must be different.

The NPSD in the horizontal branch of GX5-1 is similar to those of the black
hole candidates GS1124-68 and GX339-4 in their high flare state. However the
phase lags of time variations between different energy X-rays of GX5-1 are
different from those of GS1124-683 ,GX339-4. These suggest following situations.
Initial X-ray of the hard component in GS1124-683, GX339-4 and GX5-1 are
produced by the same process. However, in the black hole candidates, these X-rays
have been transferred to higher energy X-rays by the inverse Compton scatterings
and are observed as the power law component. In GX5-1, the hard component has
not processed by the Compton scatterings and its phase lags do not show the peculiar

eak lag.
d Irgi the high and the low state, X1608-522 has energy spectra similar to those
of the black hole candidates. The NPSD of X1608-522 in its low state is similar to
that of the black hole candidates in the same state. The phase lag of X1608-522 in its
low state is not known yet.
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In the nova of GS2023+338, X-rays must be produced by a different process
from that in other black hole candidates, because its X-ray energy spectrum and
NPSD in its flare state are different from those in other black hole candidates.

We would like to thank all the members of the Ginga team, who support this
work through observations and data analysis. Thanks are also due to my colleagues,
S.Kitamoto, K.Hayashida, K.Terada, Y.Kamado and S.Iga. This review is a
summary of collaborative works with these people.
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Fig.1. The normalized power spectrum densities (NPSDs) and the phase lags of the

black hole candidates; Cyg X-1, GX339-4, and GS2023+338 in the low state
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ABSTRACT

We show a possibility of copious emission of gravitational waves from spindle
like naked singularity which is formed dynamically from initially non-singular
data as suggested in numerical relativity. We suggest that when the space-time
approaches naked singularity, its gravitational mass may evaporate due to the
emission of gravitational waves and therefore the mass of the resultant naked
singularity almost vanishes. We also suggest a possibility of naked singularity

formation as strong sources of gravitational waves.
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1. Introduction

i

About ten years ago Nakamura and Sato' ‘ performed numerical simulations
of collapse of non-rotating deformed stars of mass 10Mg. They used a phe-
nomenological equation of state which becomes P o p? in the limit of p — co.
They started various simulations with oblate and prolate initial deformation and
reduction of internal energy. They found that if the initial reduction of the in-
ternal energy is not large, the density distribution becomes almost spherically
symmetric in the final stage and the apparent horizon is formed even though the
density distribution is strongly deformed in the beginning. However if the initial
reduction of the internal energy is large, the deformation of the distribution is
enhanced for the large initial deformation. In these cases, no apparent horizon is
identified. Rod-like or disk-like singularities which resemble naked singularities

(2)

in Weyl metric'”’ seem to be formed. Nakamura and Sato, however, concluded
such initial conditions are not realistic. Since a star should have evolved quasi-
statically until the general relativistic instability sets in, the internal energy in the
beginning should be near the virial value and the prolate and oblate deformation
should not be so large. Recently, Shapiro and Teukolsky performed numerical
simulations of general relativistic prolate and oblate collisionless spheroids. B 1y
a prolate collapse with large deformation, they showed the formation of spindle
like singularity by measuring curvature invariant [ = Ry, R¥*#° and there are

no apparent horizon, which suggests the singularity is naked.

As shown by Wald 1 concretely, non existence of apparent horizons does not
necessarily mean the non existence of the event horizon. Therefore spindle singu-
larity suggested by above numerical examples may be covered by event horizons
so that the cosmic censorship proposed by Penrose!”! may be valid. What we like
to discuss in this paper is, however, the converse case. If the formation of spindle-
like singularity from non-singular initial data suggested by numerical relativity
is naked, how should we understand this fact? The standard answer will be that

the formation of singularity means only the breakdown of the Einstein’s classi-
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cal general relativity. If the quantum effects of gravity are taken into account,
everything will be OK. In this paper, however, we try to analyze the formation
of naked singularity within the classical gravity. In the formation of spindle sin-
gularity the curvature invariant, J = Ry, ,, R#¥*#? diverges. If the singularity is
naked, is there a special reason for non-propagation of the information of this
increase to the null infinity Z+? Intuitively at the formation of singularity, very
short wave length disturbances of space-time will be created. If there is no event
horizon, these disturbances may propagate as gravitational waves so that naked
singularity may be a strong source of the very short wave length (i.e., A € M,
where M is the mass of naked singularity) gravitational waves, which suggests

that the singularity itself should suffer strong back reaction.

In §2, we discuss the prolate dust collapse and generation of gravitational
waves. In §3, we suggest a possibility of generation of the copious gravitational
waves by the analytic solution of initial data for prolate dust collapse and its
time evolution. In Appendix A, we show the Bel-Robinson Poynting vector for
those data. §4 will be devoted to physical and astrophysical implications of the
results. In this paper, we take the speed of light and the Newton’s gravitational

constant to be unity. Our convention for the Riemann and Ricci tensors are

1
Vi Vyw, = ER,,,,,"w,, (1.1)
Rpu = Rypvp, (12)

where V, is the covariant derivative. Greek tensor indices take values 0,1,2, 3,

while latin indices take values 1,2, 3.
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2. Prolate Dust Collapse and Copious
Generation of Gravitational Waves

As discussed in §1, several numerical simulations suggest the formation of
spindle like naked singularity. If so, we like to ask how much gravitational waves
are emitted in the formation process of naked singularity. Since the formation
of naked singularity means the divergence of the curvature invariant, e.g., Ruyp0
R#¥?? | very short wave length gravitational waves may be emitted. Therefore if
one likes to estimate the amount of gravitational waves by numerical simulations,
one needs extremely fine resolution of numerical grids (see discussion in §4).
In this section, we estimate the amount of the gravitational radiation by using
almost analytic solutions of prolate collapse. That is, we only solve ordinary

differential equations.

Now if a spindle like naked singularity is formed from non-singular initial
data, pressure or dispersion of collisionless matter should play a minor role. If
they play a major role in dynamics, the singularity may not be formed. Therefore
we here approximate the prolate collapse to a spindle singularity bs' the New-
tonian dust collapse of the homogeneous prolate spheroid as a first step. We

assume that the shape of the prolate spheroid is given as

22 +y? 22
. + =z 1. (2.1)
Then @ and ¢ obeyls]

. IM 1
i= —Ta(e)a—c, (2.2)

; M 1
c= "77(8)3' (2.3)

1 l-e* 1+e
ale) = = (1 - In T ) (2.4)
_21—e?) 1, 1+e

o) = 245 (_1 s it e), (2.5)
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where e = /1 —a?/c? and M is the mass of the system. A dot is the time
derivative. The luminosity of the gravitational waves in the frame of quadrupole
formula is given as

1 ..2 2M? .2

L= 45Daﬂ 375 (a c ) . (26)

We here ask the total amount of energy (A E) emitted until the prolate spheroid

becomes a spindle singularity (a =0 and e =1).

AE is proportional to

I= / (@ - %)t (2.7)

As discussed by Lin, Mestel and Shuls] a becomes zero for finite value of c. Then
from Eq.(2.2), we have fora = 0

i=-2 (2.8)
a
where
M
A==

Eq.(2.8) means that velocity a logarithmically diverges for a — 0. Similarly, we
have from Eq.(2-3)

E=B(l+%lnl;e>, (2.9)
where
b
From Eq.(2.9)

a = —\/2A4In(ap/a), (2.10)

where gy is a constant of integration.
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Now defining ¢, as a time when e becomes zero, we have

a(t) a
_/o‘ v2Aln(ap/a) e

Changing an integration variable from a to s = \/In(ap/a), we have

00

2
2 [ e tds=1. -1,

V2AJ,s

Now for s 3> 1, the Gauss’s error function has asymptotic expansion as

200 e (2n )
d Z( )"2n+l 2n+1 =t -1,

n=0

Therefore a is determined implicitly by

(2n - 1)M
2"+1(ln ao/a)

In the lowest order, Eq.(2.14) is approximated as

a

v2A,/In(ag/a) =t

a~(t¢—t)1/2Aln(t tit),

ag

V24’

_t,

and, hence,

where

io ~

(2.11)

(2.12)

(2.13)

(2.14)

(2.15)

(2.16)

(2.17)

Eq.(2.9) shows & diverges for e — 1, However divergence is not strong but
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logarithmical. At divergence ¢ is approximated as
co Bln(t. - 1), (2.18)
The integration of Eq.(2.18) yields
¢ = const. — B(t. — t)[In(t. — 1) + 1]. (2.19)

That is, ¢ does not diverge. Now we are ready to estimate the integral of Eq.(2.7)
te
I | (ad+ 3ad—cé — 3¢6)%dt, (2.20)
0
Since &, @ and ¢ diverge at { = {,, we here mainly estimate the integral near

t~1, thatis, fromt=1{~-0tol =1, as

te
I'= / (a6 + 3ad — c¢ — 3¢é8)°dt, (2.21)
te=0

Now @ and ¢ are estimated as

i=As e=B(1+ml), =24 (2.22)
a? ag a

where a{J is a constant. I’ can be rewritten as

0+ . . 2
I'=- / da (-2/1;‘:- - B% —3:B(1+1In :—,))
0

a 0
O da (6GMa . a.\?2
——/(; E( c +3caB(l+ln a—a))
_4 /°+ 36M?,/2An(ao/a) da
e a’c?
=+ 00. (2.23)

Eq.(2.23) means that under the Newtonian hydrodynamics with the quadrupole
formula an infinite energy is radiated before the formation of spindle like singular-
ity. If this is real even in the general relativistic treatment, the gravitational mass
of the naked spindle like singularity may evaporate and the resultant singularity

is dried up due to the copious emission of gravitational waves. .
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3. Momentarily Static Initial Data

Initial data of a momentarily static prolate spheroid give us some insight
to how much gravitational waves are emitted in the course of the formation of
the spindle singularity in general relativity. This was discussed by Nakamura,
Shapiro and Teukolsky (NST).m We consider the time symmetric initial data
(Kij = 0), with conformally flat 3-space as

di? = ¢* f;;dz'dz? (3.1)
where f;; is the flat metric. The Hamiltonian constraint equation becomes
A¢ = -2mpy¢®, (3.2)

where A and py are the flat Laplacian operator and the energy density measured

by the normal line observer, respectively. NSTm set py as

26’ pyr = dmpp, (3.3)

My [(4xa%c/3), Rz/a2 + 2%t <1
PN = (3.4)
0, elsewhere
so that ¢ has an analytic solution as
_ My, Y o
$=1+ ( g4 (R + ZKZ)), (3.5)
_ My .
Kp= Sce)® R(B — sinhBcoshp), (3.6)
z= ’(’ % Z(tanhg - ), (3.7)
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where g is given by

. c R* Z7?
sinhg = e for el + = <1, (3.8)
and
2 2
Rinh?8 + Z%tanh?8 = c?¢? for % + Z—z >1. (3.9)
a c

NSTm obtained the relation of the total rest mass energy defined by

M, = / pdtd3z, (3.10)
to the gravitational mass M as
2My
M= A1
where
6  l+e
a= E 1— C. (312)

Eq.(3.11) shows that for the fixed total rest mass Mp, the gravitational mass
decreases as a function of the eccentricity e. In the limit of spindle singularity,
M goes to zero. This means that the gravitational binding energy becomes just
the total rest mass. Thus if we model the late stages of a collapse of a prolate
spheroid to a spindle singularity by a sequence of above initial data with fixing
Moy and increasing eccentricity e, we expect the copious emission of gravitational

waves so that the naked singularity itselfl might become zero gravitational mass.

One may say that the sequence of initial data is different from its true evolu-
tion. To argue against this objection, we shall discuss the evolution of the above
initial data analytically for /M < 1. As a coordinate condition we take a =1
and #' = 0, where a and #° are the lapse function and the shift vector, respec-

tively. Further, we consider the dust fluid (P = 0). Then outside the prolate
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spheroid, the evolution of the space-time is determined by

d

5K = G R;;, (3.13)
and

9 .

E‘y,-j = -2Kj;, (3.14)

where (3)11.',' is Ricci tensor with respect to the intrinsic metric v;;. Now we seek

after the solution in a power series of t € M as

i 7.(,0) +4P0 4+ (4),4 . (3.15)
and
K =KS)1+K§?)13+'--. (3.16)
In the lowest order we find
K = 6720:60;6 — 2671 0:0;6 — 2672 £;;(0,9)(8" ) = T, (3.17)
where §; is the covariant derivative with respect to fi;.
and
7.(,?) = -Lj. (3.19)

It is easy to observe that K; (-) is traceless and divergence free respect to 7( )
because of the Bianchi 1dent1ty Here it should be noticed that K( ) does not
include the longitudinal part which is determined by the momentum constraint.
Since our coordinate is determined by the geodesic time slicing (a = 1) and the

co-moving spatial coordinate (8° = 0) conditions, the momentum density Jp, of
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the dust fluid vanishes for all time if J; = 0 initially. Hence, the longitudinal
traceless part L;; of the extrinsic curvature K;j is determined by the momentum

constraint as

, 3
DiIi = §D.-K = o(ﬁ—‘ﬁ). (3.20)

Eq.(3.20) means that L;; does not include the first order term with respect to
t/M and therefore K,gjl) is transverse traceless(TT), i.e., just the degree of free-
dom of the gravitational waves. Hence one may say that in reality emission
of gravitational waves occurs from the prolate collapse to a spindle singularity,

because T'T part of Kj; exists.

We shall estimate roughly how much gravitational radiation is generated.

The total energy (ADM energy) Eyr = M of the system is given by

1 x - -
Ego‘ = —E;/Atﬁ\/‘_ydaz,E/pdj ‘yd32, (3.21)

where A is the Laplacian operator with respect to the conformal metric %;; =
¢"7.-,-.(8] By the use of the Hamiltonian constraint, the effective energy density

Pefs is written as
1 . . -
pess = pud® + 7o (K] K; — K*)¢* — COR¢] = pnd® + p, (3.22)

where )R is the Ricci scalar with respect to %ij. Here it should be noticed that,
in the case of {/M < 1, the lowest order contribution to pg comes from K,(jl)i
and 7%? )2, From Eqs.(3.17) and (3.19), we obtain pg for the vacuum part as

po = %[(o*aw)w;am — 0g~1(8'9)(8 6)(8:539)
T (3.23)

. 3
+12472{(0'9)(6:9))) + 05

For the case of a = 1072, c =1 and M = 1, we depict pgon Z=0and Z = ¢
planes in Fig.1. pg is very large irrespective of Z since we are using the unit of
M=1
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For e — 1, ¢ diverges as (3M/2c)In(c/R) near the spheroid, so that pg

becomes as
172 \3¢%
~o (Y S .24
PG “(3M) T (3.24)

Since the collapsing time of the prolate spheroid to a spindle singularity ¢, is
estimated as®!

M -1/2

ter~v 0-5[’-1,2 ~ (T) '

= (3.25)

Then, the “energy” Eg produced until t ~ {., which comes from the transverse

traceless part, i.e., the degree of gravitatlional waves, becomes

Eg ~

T

1/72c\312 d=x c\*
In the case that the naked singularity appears, ¢/M R l.O,m so that Eg becomes
almost equal to the total energy Eyy = M of this system. The above estimate

suggests that almost all E;, is converted into the gravitational waves.

At this stage, it is not clear whether the “energy” of the gravitational waves
Eg propagates away to It or collapses into the singularity. In order to see
the propagation direction of gravitational waves, the Poynting vector proposed
by Bel and Robinson P2 is often used in the numerical simulation since this is
defined locally and covariantly. (11 The lowest order of PBel fort « M is directed
toward the Z-axis. This feature seems to suggest that the gravitational waves
collapse into the singularity. However, as shown in Appendix A, the lowest order
contribution to Pde does not come from dominant T'T' part, 7,()2 %? and K,(Jl ).
Furthermore, the dimension of P;B" is different from the physical energy flux.
Hence, in our case, P2 does not seem to correspond to the energy flux of the

gravitational waves.

Since there are no trapped surface, no apparent horizon and no event hori-

zon, the gravitational waves seem to propagate away to I*. Of course, even

though the event horizon does not exist, there is a possibility that the outgoing
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gravitational waves suffer the back scattering by some potential barrier like as
the Regge-Wheeler one of the Schwarzschild space-time, which exists outside the
event horizon. It is not known whether it exists or not in the axisymmetric space-
time with the spindle singularity. However in the cylindrical space-time such a
potential barrier does not exist to a gravitational wave variable q/).[g] Since we
can regard the space-time with highly eccentric configuration with ¢ 3> M as the
cylindrical one locally, gravitational waves emitted near the spindle will propa-
gate to infinity. If so, the large amount of the gravitational radiation is emitted,
which is comparable with the total energy of the system and the mass of the re-
sultant naked singularity almost vanishes. However, since it is not clear whether
the gravitational mass of naked singularity is non-negative, there is a possibility
that the resultant naked singularity produces infinite gravitational waves and its
mass diverges negatively. Recently, Echeverria shows that the cylindrical dust
shell collapse produces finite gravitational waves even though the naked singu-
larity is formed. "® This fact suggests that the spindle naked singularity does not

have negative infinite value.

4, Discussions

Detailed fully general relativistic numerical simulations are needed to confirm
the naked singularity dried up conjecture proposed in this paper. If we use
Eq.(3.11), 50% of the total rest mass is radiated by the time when e becomes
ey2 where e, is defined by

ey =1~ 2exp(—-2k) . 4.1)

IMo
At this time, a is only 2exp(—10c/3Mg) x c. For ¢ ~ Mp, a = 0.07c. In
order to resolve one wave length of gravitational waves in numerical relativity,
we need ~ 20 grids per wave length. Since the wave length of the radiated

gravitational waves may be ~a or so, we need ~ 200 grid along the spindle like
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object with a/c ~ 1072, To resolve the structure of spindle like singularity up
to asymptotically flat region, Rmax = Zmax =~ 10c. Therefore needed number of
grids becomes ~ 2000 x 2000, which is barely possible by the most powerful super
computers at present. Furthermore, in the course of the singularity formation,
the energy density of matter grows up and very high temperature will be realized.
Hence we have to take into account the effect of QCD and furthermore that of
GUT, in order to investigate whether the naked singularity is formed or not

finally.

If the naked singularity dried up conjecture is true, naked singularity forma-
tion in such as the galactic center, will be one of the most powerful source of grav-
itational waves, i.e. the conversion rate can be 100% (<f. for black hole collision,
maximum possible is 29%, in practice S 10%). (2] 1 the case of the black hole for-
mation, the shortest wave length of gravitational waves is limited to A & 20M 3l
However in the naked singularity drying up A can be 2 exp(—10c/3M)x ¢ as shown
in the previous paragraph. For ¢ = 5M, A can be 5.7x 10~7 M. Thus naked singu-
larity formation of mass 108 M, may emit gravitational waves with wave length
8.7 x 10%cm, i.e., 3.4k Hz. For the hypothetical event of naked singularity drying
up at the distance of 1Gpc, the amplitude of the gravitational wave k can be
~ 2.0 x 10718,

Acknowledgment

This work was partly supported by the Grant-in-Aid for Scientific Research on
Priority Area of the Ministry of Education (04234104) and for Scientific Research
Fellowship (1526).

—263—



APPENDIX A

The Poynting vector proposed by Bel and Robinson (1 often used in order
to see the propagation direction of the gravitational waves in numerical simu-
lations since it is constructed locally from the Weyl tensor and its definition is
covariant. Fix a three dimensional spacelike hypersurface with the unit normal

vector n, and set,

Epv = Cppvananp; (Al)
1
By, = 56,,,,”‘800,3,,”11,11", (A2)

where C,,,,° is the Weyl tensor of the space-time and ¢,,? is the anti-symmetric
tensor, respectively. The tensor fields E,, and B,, are purely spatial and can be

written by the quantities on the three dimensional spacelike hypersurface as,

Ei; = O Rij + KK — K{Kyj, (A3)
B;‘j = flm(iDtKj")'» (A4)

where €y, and Dy are anti-symmetric tensor and the covariant derivative within
the three dimensional spacelike hypersurface, respectively. The Bel-Robinson

Poynting vector is given by

P,'Bel = fich:Ecb- (A5)

On the time symmetric hypersurfaces given in §3, P,-Bel vanishes since B;j is
equal to zero. Then, as performed in §3, we consider the time evolution of those
hypersurface and calculate P,-B". For t € M, the intrinsic metric 7;; and the

extrinsic curvature K;; are given by,

7ii(8) = 75 — Bt?, : (A6)
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- 1 m
Kij(t) = Syt + 5(7,(,‘-”2, £t - TELE)8, (A7)
where we use the relation

. 1
O (e = 0) = =3(igy - 32)EREL). (A8)

The lowest order of E;; and B;; are then obtained as

E;j ~ T;4, (A9)
7 © © :
Bjj = — 5t Eem(e™ D5} + €™ DiEY), (A10)

© . .
where D; is the covariant derivative with respect to 7‘(?). Here, it should be

noticed that the lowest order contribution to E;; and Bj; does not come from the
©) ©)
lowest TT part, 7,(;)!2 = —E;jtz and Kf;)t = X;;t because of D;Zj: = D;Z;.

Then, we get P as

P-Bc' - 1t3€.¢62c2 (étm (B 2d+€lm (b) zd) + O(.ﬁ.) (All)
t - 12 $ a<~dm ety L&, M4 ’

We can see that the lowest order of P?¢! is directed toward the Z-axis. This
feature seems to suggest that the gravitational waves collapse into the singularity.
However, the lowest order contribution to P;B“ does not include the lowest order
of TT part, 7,(; )% and Kg)t. Furthermore, the dimension of P,-B" is different
from the physical energy flux. Hence, in our case, PPl does not represent the

energy flux of the gravitational waves.
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FIGURE CAPTIONS

1. The effective energy density of the gravitational waves defined in §3 are
depicted for the case of @ = 1072, ¢ = 1 and M = 1. In Fig.1(a), p¢ on
Z =0 plane is depicted, while in Fig.1(b) that on Z = c.
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Scattering of Maximally-Charged
Dilaton Black Holes'?

Kiyoshi Shiraishi3

Akita Junior College
Shimokitade-Sakura, Akita-shi, Akita 010, JAPAN

The action for the Einstein-Maxwell-Dilaton system we consider in

(N+1) dimensions is: [1]
S = f dN"xi'-_g—[R-—"'—(Vd))z-e'{““/m"ml?z] (N23), (1)
167 N-1
where we fix the Newton constant to unity. The coupling constant # is
the parameter which determines the strength of the coupling between
the Maxwell field F and the dilaton field ¢.

It is known that static forces among extreme black holes in this
system ‘are totally cancelled with one another. Therefore, there can
exist multi-centered static solutions describing many-body systems of
extreme charged black holes. We find #-black-hole solution in the
following form:

ds2= - U2+ MR’ 2)
where '
UR) = (RN (3)

Talk given at the Workshop on General Relativity and Gravitation
{Waseda Univ., Tokyo, Japan), 18-20 January 1993.

2This talk is based onrefs. [0].

3e-mail: g00345@jpnac.bitnet. or g0O34S@sinet.ad.jp.
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and

F(Sa) =1+ — Wi (4)
Z T (N- 2)[2 e

Using these expressions, the (Maxwell) vector one-form and the
dilaton configuration are written as

A=~:4/2(N2 )Il-{F(‘)}‘]dt. )

e (4aiN-D)0 = [F(m}h’/(N-zmz) . (6)
In this solution, the asymptotic value of ¢ is fixed to be zero.

If we set a=0 in the solution, we find that the solution reduces to the
Papapetrou-Majumdar-Myers solution in (1+N) dimensions [2].

We anticipate that an addition of a small amount of kinetic energy to
this static system can be treated by perturbation. This also presents the
situation that radiation reactions can be ignored. We apply the method
of Ferrell and Eardley [3] to the system of extreme charged dilaton
black holes to get the information on the slow motion of the holes at
arbitrary distances.

We first calculate the classical fields in the presence of the slow
motion of the black-hole sources perturbatively. Secondly substituting
the perturbative solutions into the action for the classical field, we
obtain the effective action for maximally charged dilaton black holes as
point sources.

Synthesizing all the contributions of small velocity perturbation, we
obtain the effective lagrangian up to O(v2) for # maximally charged
dilaton black holes:

and

1) n
L=-Y mi+} lm¥)}
LR

+ N-DN-ad) [Ny (F@}Z(l-a;)/(N-M’)" T A T
16m{N-2+a2f | 2:: 2P

where 1;=X-X; and n;=ry/ [f|. F(x) is defined by (3).
The integration must be carried out with care for the regularization
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of divergences and seemingly-divergent integrals.

If we set the dilaton coupling to zero and set N=3 in the above
expression, we reproduce the result of ref. {3]. Furthermore, in the
large-separation limit (where we approximate F(x) by 1), we find
exactly the same result obtained by the Lienard-Wiechert method [0].

An interesting point we soon become aware of is the existence of
many-body interactions. In general, we obtain infinite species of many-
body interactions by expanding the function F(x). Some special cases
arise: (1) when a2=0 and N=3, the black holes are governed only by
two-body, three-body, and four-body interactions [3], (2) when a2=0
and N=4, there are only two-body and three-body interactions, (3) when
a2=] (and any N), there are only two-body interactions, and (4) when
a2=N, there is no interactions to this order.

The slow motion of classical lumps or solitons in many kind of field
theoretical models is expressed by geodesic motion on the moduli space,
which is the space of the parameters in the static configuration.

In the presence case, the moduli space metric can be obtained from
the expression (7). Now we further focus our attention on the two-body
problem. Then the metric of the 2-dimensional moduli space for the
two-body system turns out to be

dshis = y(r)dr+r2dQR. | (8)
where

- N-22y(N-2+a2)

Y(T) = AN-I(N l) x llz;“b + Ugf 1+— Ub ") ¥ a
8m(N-2+a?) | Ha*Ho (N-2)rN-2

(N-2)i(N-2+2%) 2 Halt

o 1+————i““ “Ha-jtp- DB ablo 9)
"( (N-Z)rN'3) " No2+a? (N-2)r2

Moreover, we consider two-dimensional intersection of the moduli
space for simplicity. The two parameters are the distance between two
black holes (r) and the azimuthal angle (8) on the scattering plane.

The shape of this surface of the moduli space depends.on the spatial
dimension N as well as a2. The reduced metric can be written in the
form:
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dsys = y(r){dr’ +r2d6° |
= h(R)dR*+R*d6’
= dR*+dz2(R)+R%d6? (10)

where R(r) is a new radial coordinate. We can realize the surface
immersed in the three dimensional Euclidean space spanned by the
coordinates R, 8, and z(R). The surfaces for some case are sketched in
Figs. 1 and 2. The "throat” of the surface is located at the distance
where h(R(r)) diverges.

Suppose that the two black holes approach each other from spatial
infinity with low relative velocity and impact parameter b, the two
black holes coalesce if b is smaller than a certain critical value which is
in the same order of the radius of the throat. If a2>(N-2)2/N, moduli
surface has no throat, and then two black holes never coalesce.

For N=3 and a2=1, The black holes never coalesce according to the
geodesic approximation on the moduli space. The differential cross
section in this N=3 and a2=1 case turns out to be written in the form of
the Rutherford scattering:

2
do-1_ M (11)
dQ 4 5t (©72)

This behavior can be expected by observing the geometry of the
moduli space -- deficit angle= 7 near the origin for N=3 and a2=1.

To summarize: We have studied the interaction among the
maximally charged dilaton black holes in the low-velocity limit.

The nature of the interaction depends on the value of the dilaton
coupling "a”, in quality as well as in quantity.

a=1 is a special value, in any dimensions, for realizing a simple 2-
body interactions.

There is another critical value, for coalescence of two maximally
charged dilaton black holes: it is a2=(N-2)Z/N. (for N=3, aZ=1/3). The
global structure of moduli space depends on a2.

The geodesic approximation has been justified in the small mass and
low velocity limit, by using the test particle/wave analyses. The
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quantization on the moduli space have also been examined. For further
detail, see refs. [0]. Other aspects on charged dilaton black holes are
studied in refs. [00].
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Figure Captions

Fig. 1: The surface of the moduli space for the two-body system of
extreme charged dilaton black holes in three dimensional space (N=3).
(a) for a=0, (b) for a2=1/3, and (c) for aZ=1.

Fig. 2: The surface of the moduli space for the two-body system of
extreme charged dilaton black holes in string theory (a2=1). (a) for
N=5, (b) for N=4, and (c) for N=3. :
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(a) a“2=0
(b) a*2=1/3
a*2=1
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(a)
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Non-Equilibrium Thermodynamic Fluctuations of Black Holes

Osamu Kaburaki

Astronomical Institute, Facully of Science, Tohoku University, Sendas 980, Japan

Slow evolutions of Kerr black holes due to quantum particle-emission in a vacuum
are examined {rom a viewpoint of non-equilibrium thermodynamics. The spin-down
process of a Kerr hole takes place much faster than the mass evaporation process. It
is stressed that although the former is a relaxation process toward an equilibrium,
the latter is not. The non-equilibrium fluctuation theory by Landau and Lifshitz is
appied to the former and the correlation of the spin-down fluctuations are calculated.
However, this method does not seem to be as powerful as suggested in investigating
the thermodynamic properties of extreme Kerr holes which are expected to show a
laser-like phase transition.

1. Introduction

There are divergences, for instance, in the heat capacities of black holes: e. g. the heat ca-
pacity of Kerr holes for constant angular-momentum diverges at a, = 0.68 and that of Reissner-
Nordstrom holes for constant charge does at Q/M = 0.86 [1). Here, M, J and Q denote the
mass, angular momentum and charge of a black hole, respectively, and a. = of/M = J/M2.
These divergences have once interpreted as representing some kinds of phase transition at that
points [l]: It has been shown, however, that they ate actually the points of stability changes in
certain ensembles of black holes in various circumstances [2].

The existence of another kind of phase transition has been proposed by Curir [3] for rotating
holes based on an analogy between the holes and laser systems. She speculates that spontaneous
particle emission in the super-radiant mode, which is random as long as hole’s temperature is
non-zero, becomes coherent when the temperature reaches zero. This means that the threshold
temterature of Kerr holes as a laser system is absolute zero (i. e. holes are then in the extreme

Kerr states) and they may experience a phase transition there.
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From the analysis of equilibrium sequence of Kerr holes, it is difficult to check this point since
the extreme states are located at the end of these sequences. A seemingly promissing method
to attack this problem in the regime of thermodynamics is to examine the thermodynamic
fluctuations around the critical point. This has been done by Pavén and Rubi [4). Since
black holes in the universe are open systems which are evaporating continuously, the relevant
fluctuations are those in non-equilibrium states. They insist that some of the correlations in
the fluctuations of thermodynamic variables diverge in the limit of zero temperature with finite
mass,

However, there is a serious problem about their calculations. They applied the Landau-
Lifshitz theory (5] to the cases in which it is not allowed, and hence their conclusion should be

suspended until a correct treatment appears. We reconsider this problem here.

2. Evolution of Kerr Holes in a Vacuum

Hereafter we restrict our attention to Kerr holes in a vacuum, for definiteness. Their states
"are specified by only two independent-variables and evolve slowly as particles evaporate from
them, provided that their masses are not too small (the evaporation time is longer than the
present age of the universe for holes of M > 10'> g). We consider only such slow evolutions.

To this purpose it is convenient to adopt, for a set of variables, hole’s mass M and rotation
parameter k introduced in reference [6]: A = a/ry, where ry is the radius of inner or outer
horizon (r— or r4) and a = J/M. Therefore h satisfies

2
h2-2-A§—h+1=0, (1)

with 0 < h < 1 for outer horizons and 1 < k < oo for inner horizons. However, the inner hori-
zons are of no relevance in the present discussion. The expressions for various thermodynamic
variables in terms of M and h are found also in reference [6]

From dimensional considerations we obtain the formulae for the rates of change of mass and

angular momentum:
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=—f(h) M3, (2)
J=—g(h) IM~3, (3)

where f(h) and g(k) are some positive functions of 4 only. Page [7] has calculated the behaviours
of these fanctions for mass-less particles of spin 1/2, 1, and 2, in the whole range of rotation
partameter a. = ¢/M. His papameter coinsides with ours both in the limits of no rotation
(Schwarzschild holes, h = a. = 0) and maximal rotation (extreme Kerr holes, h = a. = 1).

Here we note important points about the mass evaporation.

o The process of mmass evaporation is not the one toward an equilibrium. Indeed, mass
evaporation under fixed k (e. g. at A = 0) results in the increase in black-hole temperature

while an equilibrium with surrounding vacuum space requires zero temperature.
o M is not proportional to M.

Pavén and Rubi [4] adopt M as a parameter which represents the degree of departure from the
equilibrium but this is not justified as we see above. They further apply the Landau-Lifshitz

theory to M while this is possible only when M o M. Therefore they treat f(R)/M?3 as if it

were the proportional constant. Of course, this is wrong.

3. Relaxation to Mechanical Equilibrium

The equation for the rate of change of the rotation parameter is derived by differentiating
Eq. (1) with respect to time and substituting Egs. (2) and (3):

h(l + h’)

-(9~2f) =3 M. (4)

It has been shown by Page [7] that, for sufficiently massive holes (M > 10'°® g), g —2f is positive
in the whole range of 4 (i. e. 0 < A < 1). Here, we deal with only such holes. Further, Eq. (4)
contains a diverging factor at k = 1 and h is proportional to k near A = 0. Thus we have the

following results:
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o The evolution of hole’s rotation due to particle emission is a relazation process toward a

mechanical equilibrium (i. e. to h = 0).

Téme scale for the mechanical relazation s much smaller than that for thermal evaporation.

The third law of black-hole thermodynamics has a tendency to be kept valid by particle

emission.

The fluctuation theory of Landau and Lifshitz is applicadle to the mechanical relaxation

process only when h < 1.

The change rates for other thermodynamic quantities are also calculated easily:

: -1 h? -1
S=]-{-_}12[f_(g—2f)l—_}12]M , (5)
[f(l ~ i)+ 2(g - 2020 -, (6)
_-[j (g - 2f)1+h]hM" (1)

It is interesting to note that the entropy (and hence the area of the event horizons) first increases
as particles are emitted near 2 = 1 but decreases near A = 0. Therefore, it has a maximum in
the course of spin-down (see also Page [7]). Both the rates for temperature and angular velocity

contain divergence at the extreme Kerr states.

4. Correlation of the Fluctuations in Spin-Down Rate

In this section we ragard a Kerr hole of mass M and rotation A as an excited state of a
Schwarzschild hole of the same mass. Therefore the Kerr hole is in a non-equilibrium state whose
deviation from an equilibrium state is expressed by non-zero A and, if this value is sufficiently
small, the Landau-Lifshitz theory is applicable to this spin-down process. According to Landau

and Lifshitz, we rewrite Eq. (4) around equilibrium states (i. e. A € 1) in the form
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h=—2Ah+6h, (8)

where A = (go — 2fo) M3 is a coefficient of k, and §h represents stochastic fluctuations in the
spin-down process.

Then the auto-correlation of the fluctuations in A is given by
< 6h(t) Sh(t + 1) >=21 < A% > §(r), (9)

and its spectrum is

§ >

[(6}1)2]w =Z<h?>, (10)

where the bracket < > denotes the time average which may be replaced by the ensemble average.

Since the probability that a state with & is realized, w(h), is proportional to exp[S(M, k)]
and (3S5/3h)p=o = 0, (825/0h?)4=0 = — M2, we have

2
w(k) = —% exp [—MThz] . (11)

Performing the average with this distribution function, we finally obtain

<h®>=M"% and [(6}})2] = 3°—Tzf°-M'5, (12)

o=
where fy and go mean f(0) and g(0), respectively.

Although we have applied the Landau-Lifshitz theory to mechanical relaxation processes of
Kerr black holes near equilibrium, it does not have the ability to predict about fluctuations near

the extreme-Kerr states which are of our real interest.
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ABSTRACT The coalescence of two bare rotating uncharged black holes is
examined on the thermodynamic grounds. We regard two Kerr holes before finding
each other to begin gravitational interactions as being respectively in thermodynamic
equilibrium. Using rotational parameter k& (angular momentum per unit mass
normalized by gravitational radius) the nature of inner horizon is discussed. After the
coalescence the total area of inner horizons can be shown to be strictly subadditive.
The situation is the same for charged holes that also have inner horizons. Further
application to thermodynamical stability problem in systems containing Kerr black
holes and radiation is developed with rotational parameters' treatment.

1 INTRODUCTION

The no-hair theorem of black holes insures holes' mass M, angular momentum J
and charge Q to be regarded as extensive state variables in black hole equilibrium
thermodynamics, with the aid of ideas that the black hole entropy is proportional to
the surface area of the event horizon and black hole temperature is proportional to
the hole's surface gravity. In this formalism the surface temperature is intensive
variable together with holes' angular velocity and electric potential.’

If two bare rotating (Kerr) black holes of masses M; and M; with angular
momentum J; and J; collide each other to coalesce a new Kerr hole of mass M3 with
angular momentum J3 , we can impose following conditions:

M+ My2 M, (1)
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S1+52553 ()

V1l + V2= V12l 2 P3) 3)

where Sj denotes the entropy of the i-th hole.

The condition (1) is self-explanatory, because the mass of the third hole can never
exceed the sum of the masses of the initial two holes. The condition (2) comes from
Hawking's area law, or equivalently from the second law of black hole
thermodynamics (Hawking 1976). The holes' angular momentum axes will not
generally coincide with each other; they may be in the same direction in some case,
but in the opposite in others. Thus, the case of J3=0 may happen. One can thus
express the situation about the holes' angular momenta as given in (3). The above
three conditions will in general hold for any kind of coalescence of two bare Kerr
holes, irrespective of after head-on collision or after at first the formation of a binary
system and then gradual release of orbital energy in the form of gravitational wave.

We use units in which c=G=h=8kp=1.

When we actually make some thermodynamic calculation on rotating or charged
black holes it is often useful to introduce non-dimensional parameters instead of
some of extensive variables, say,J or Q. To investigate the evolution of Kerr black
holes Okamoto and Kaburaki (1990) first introduced a non-dimensional parameterh
=a/ry, where a=//M is angular momentum radius and ry is gravitational radius. {As
for charged holes, independently, Braden et al (1990) introduced a parameter g=
e/ry, where e=Q2/M, to find stationary point with analysis of so-called "reduced
action." See also Katz, Okamoto and Kaburaki (1993).] Okamoto and Kaburaki
showed that a hole's entropy and the angular momentum can be written as

MI
= 4
S 2(1+4%) “)
2h .

The rotating Kerr black holes and charged Reisner-Nordstrom black holes have the
inner horizons that are known as the Cauchy horizons. It has been shown by Curir
(1979) that in the case of a rotating hole, the inner horizon may be interpreted as a
sort of negative temperature surface, satisfying a type of area theorem dissimilar to
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(2), and bearing some relation to the concept of the spir temperature and entropy on
the analogy of thermodynamics of the magnetic spin systems (e.g.,Ramsey 1956).
She interpreted the surface area of inner horizon as spin entropy of the rotating black
hole, and expressed the sum of the both spin and thermal entropy with the entropy of
a Schwarzschild black hole having mass corresponding to the total mass of the
system:

Sspin + Stherm. =S-+ S+ =M2/2.

It is, however, worth remarking that this 'spin' temperature is quite different from
the usual 'thermal' temperature. Because the inner horizons of black holes suffer
from similar quantum mechanical divergence of the energy momentum tensor the
quantum radiation from the outer horizon will pile up on the inner horizon, which
will be at a different temperature. So it seems that there has to be an exact quantum
gravitational definition of 'thermal temperature’ measured locally on the inner
horizon, which may be quite different from the negative spin temperature. The inner
horizon's temperature may not be so simple in physical interpretation.

Let us next write down the spin entropy using the rotational parameter A. The
surface of the inner horizon is a kind of mirror imageé of the event horizon (Okamoto
and Kaburaki 1992). If we write S4 the entropy of a black hole, and S- the spin
entropy, which is proportional to the surface area of inner horizon, relation S4S-
=(J/4)2 holds, and the outer horizon and inner horizon have respective A's satisfying
relations As=a/r+ and h4h=1. So S-is given by

M
S = -
201 +4%)

(6)

for Osh<1. It is easy to see that solving (5) yields the two roots for 4, one for the
outer horizon, satisfying Osh4+=h <1 and the other for inner horizon, given by h=1/h
and hence satisfying 1<h-<x,

2 MERGING OF TWO KERR BLACK HOLES

2.1 The case of h3=h1=h2=0 (Two Schwarzschild holes' merging)
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In the coalescence of two Schwarzschild holes, we need not take into account the
angular momentum problem. So we first make a simple vision with this non-rotating
case. Let's introduce notations [X]=X3-(X;+X3) for an arbitrary physical quantity X,
and then we can rewrite the conditions (1) and (2)

M] =0, [M2]=0, (8)
where (4) is used. Similarly we have in terms of entropy
[$12) =0, [S]=0. )

One can draw these conditions on the M|-M; and S$1-57 planes (see Fig. 1a,b). In
Fig. 1a, the pair of lwo masses M| and M, must be inside the region of M{2+M32s
M32. The farther the sum of the masses of the two holes from the line of
M1+Mo=M3, the greater the energy release in the form of gravitational energy, and
therefore there is the upper limit of energy release from the coalescence of two
Schwarzschild holes. This is given by well-known value (2 -1)M3 in the adiabatic
case with no increase of entropy, i.e., Mj=M;=M3/J2. We can see the same
situation in the S1-S; plane. In the case of §1=52=53/2, i.e., [S]=0, we see the initial
two holes lying in the middle of the line of S1+52=53.

s2

(M]=0
0.2 0.4 0.6 0.8 1™ 0.2 0.4 0.6 08 1°
Fig.1a. (m1,m2) plane. Here m1=M1/M3, Fig.1b. (s1,s2) plane. s1=51/53,52=52/S3.
m2=M2/M3, Intersection between m12+m12 Intersection between s14+52=1 and
=1 and mj+mj}21 is physically accepted area. J.-c,- + ,/g =1 is physically accepted area.
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(J1=0
0.8

0.6

0.2

ml

0.2 0.4 0.6 0.8 1
Fig.2a. hl,h2>h3. [M]<0,[S])>0,and [J]<0 can coincide.

m2

[J}=0

02040608 1 ™

Fig.2b. hl>h3>h2, A reasonable cross section exists.

ml

0.2 0.4 0.6 0.8 1

Fig.2c. h3>h2>hl. [J]<0 and [S]>0 can not coincide.

—288—



3 CHANGING OF STATE OF THE INNER HORIZON
AFTER MERGING

Recently Curir (1989) argued the subadditivity property of entropy function, in
contrast to the superadditivity of the black hole entropy that had been pointed out
before (e.g., Landsberg & Tranah 1980). She claimed that the behavior of spin
entropy, ie., the area of inner horizon's surface of a Kerr hole, is neither
superadditive, nor subadditive. Now we will show that this is incorrect, and the area
of inner horizon's surface must strictly subadditive for any type of merging.

Let us first give the proof in the former case of (11). From (2)~(6) we have

J1+J2=J3-J], Juh1+Johy=J3/h3-4[S4].

Solving these simultaneaus equations forJ; and J,, we obtain

iy =hy) | | by ( [/] hyh =hs) = hhy ( (/]
J, = 4 , = Jy- S,
PYOETS AT W m] ot —h) " -y 1 h,)

Substituting J1 and J3 into 4[S-]=h3/3(h1J1+h2J7) yields

[8.)= (S, 1+ -y - = tallo o) "4’,("‘3 by

Because [J]<0<[S+], we see that [S-]<0 for h>A3>h7,
For the latter case of (11), we have from (2), (3) and (6),

_h,’M, mM:  h'M h,M, _ (iaMl‘_iaM: o
2[S']_l+h (1+hl 1+hz) 1+h} h’l+h,2 1+}52)_2[J]so' (13)

One can conclude that the inner horizon's surfaces are always decrease after
coalescence. If we interpret following Curir (1979) that S. stands for the spin
entropy of a Kerr black hole, it is reasonable that if angular momentum decrease
after coalescence, the inner horizon's entropy also decrease. In this meaning the area

of inner horizon's surface of a Kerr hole must be subadditive.
For the case of h3=h1=hy we have an analogous equation to (12):

2[S-]=h32U)/2 < 0. (14)
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4 PROBLEM WITH RADIATION BACKGROUND

The equilibrium of systems containing one Schwarzschild black hole and black-body
radiation in a box have been discussed by many authors (e.g., Gibbons & Perry 1978).
Bishop & Landsberg extended the problem to that of two black holes (Bishop &
Landsberg 1987) or n identical black holes (Landsberg & Bishop 1988) in a box
separated by partitions. They estimated limits on the amount of gravitational wave
energy being emitted after removing the separating partitions. Here we discuss the
prospect to extension to the problem of the rotating black holes in a box.

In the following we assume that a single rotating black hole exists in a box. Normally
the hole will be spin down as its radiation carries angular momentum into environment
unless the box is rotating. At equilibrium, the black hole must radiate and accrete
angular momentum at the same time. Therefore, the environment must also be rotating
(Schumacher et al 1992). However, for simplicity, we neglect the contribution of the
rotating box to the total energy of the system, it will be given by just the sum of the
hole's mass and the energy of radiation.

First we assume the total energy in the box E=sM+Erad=M+aV'T4 is constant. Here a
is Stefan-Boltzman constant, which depends upon the number of radiation fills in the
heat bath. The total entropy in the box S=Sy+Srad=SH(M)+Srad(E-M) can be expressed
with the rotational parameter 4 :

M 4
S~2(1+h2)+5aVT3 . Qs)

If we introduce following scale transformations V—A5V, T—A-IT, both E and S are
modified homogeneously, E—AE and S—A2T, with maintaining consistency .Thus, the
extensive variables E and V have the scale invariance for the quantity ES/V. If we write
x=M/E and y=(4/3)(aV/ES)1/4, then the entropy can be given simply with x and y:

xZ

2 +h2) +y(1-x)"" | = E's(x,h). (16)

S =E?

The shapes of the normalized entropy function s¢x, k) decide the equilibrium states for
arbitrary value of y. Stable equilibrium state is at global maximum point of s(;A).
Unstable equilibrium is at local maximum . The changing of state from the unstable
equilibrium to the stable equilibrium is first order phase transition as was pointed out
by Gibbons and Perry. At y=0.7133, a saddle point exists on only h=1(maximally
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Fig.3.a. Entropy s as a function of x and h at y<0.7133.
Global maximum states exist at non zero x (BH phase).

Fig.3.b. Entropy s as a function of x and h at y=1. The stable
black hole phases are just localy stable. A sadle point exists.

Fig.3.c. Entropy s as a function of x and h at y=1.4. There is
no local stable hole state. Sadle point does't exist at h<1.
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rotating state) (see Fig. 3a). In this case the unstable equilibrium can always exist in
either the hole or radiation phase. There is a border line between the hole dominant
state and the radiation dominant state. At y<1 there exist such states that the black hole
phase are dominant for some rotational parameter £ (Fig. 3b). At y=1.4 every state
must be the radiation dominant phase (Fig. 3c). In this case, every black hole must be
unstable and will evaporate gradually, or rapidly.
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We consider gravitational collapse of a spherically symmetric dust shell coupled with a
massless scalar field. The rest mass can decrease as a resull of the scalar wave production.
Our purpose is to discuss the backreaction problem in the context of classical general relativity.
We construct junction conditions at the shell including the scalar field. Possible final fates of
the gravitational collapse are found by solving them when the shell is close to the apparent
horizon. Interestingly, as the collapsing shell shrinks to a point, it can completely evaporate
without forming a black hole and naked singularity. The mass-loss rate measured by a static
observer turns out to remain finite even at the final stage of the shell evaporation.

1 Introduction

Hawking has discovered that a black hole emits radiation like a blackbody with temperature
proportional to its surface gravity {1). This discovery has stimulated many researches on
quantum gravity and quantum field theory on curved space time. The black hole evaporation
is expected as a backreaction of the Hawking radiation. Although some Wheeler-DeWitt
approach has been developed in recent papers (2], a main approach to the backreaction problem
has been based on the semiclassical Einstein equations G,, = 8%G(T,,), where (T,,} is the
expectation ‘value of the stress-energy tensor of quantized matter fields, G, is the Einstein
tensor, and G is the gravitational constant. (Units are chosen so that ¢ = 1.) Unfortunately,
it is very difficult to give the expectation value (T},) in a self-consistent manner, and any
solutions representing evaporating black holes have not been found as yet.

As a preliminary step to discuss the quantum dynamics, it will be important to understand
possible backreaction effects in a classical level. This motivates us to study gravitational
collapse of classical matter coupled with a massless scalar field. We treat the matter as a thin
dust shell. The quantum backreaction is mimicked by considering dynamical production of
outgoing scalar waves from the collapsing shell. The shell’s mass will be carried away by the
radiation as the collapse goes on. Our main purpose is to discuss whether the evaporating shell
can radiate away all of its mass before a black hole has a chance to form. We have a good
model to observe the backreaction effect due to the emission of scalar waves.

In §2 we start with junction conditions for embedding the timelike 3-hypersurface of a
thin shell. This formalism was first elaborated by Israel [3] and has been extensively applied
to various problems [4]. The key point of our analysis is that we construct the junction
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conditions for the scalar field coupled to the gravitational field and the dust shell. To see a
shell evaporation, in §3, we introduce a locally defined gravitational mass (5] and calculate its
loss rate just outside the shell. In this paper our treatment is limited to a local geometry near
the shell. to check a black hole formation. In §4 we solve the junction conditions, when the
shell collapses close to the apparent horizon. Usually the collapsing shell will cross the apparent
horizon at a finite radius. However, we find the solutions representing a rapidly evaporating
shell which shrinks to a point without crossing the apparent horizon. Our conclusion is that
the classical scalar wave production can prevent some collapsing shell from forming a black
hole. Section 5 contains discussions on the naked singularity, and the mass loss rate in the
shell evaporation is compared with the backreaction of the Hawking radiation.

2 Dust shell model and junction conditions

Now let us give equations which describe the evolution of a dust shell coupled with a
massless scalar field. These equations are derived from the classical Einstein equations and are
called junction conditions.

We follow the usual procedure of the (3+1) splitting of spherically symmetric metric by
introducing a Gaussian normal coordinate system. The time coordinate is the proper-time
variable 7. The spatial coordinate 5 is taken as the proper distance from the shell.

In these coordinates the metric can be written as

ds? = —a?dr® + Ldn® + R*(d6? + sin 8d¢?) (2.1)

where «, L, R are functions of 7,7. Hereafter the partial derivatives with respect to 7 and 5
are denoted by dots and primes, respectively. Since the coordinates T and 5 are co-moving
along with shell, we can set a to be equal to unity on the shell. (Note that the derivative o’ is
not assumed to be zero there.) The extrinsic curvature of the hypersurface is a 3-dimensional
tensor whose components are defined by

1
Ki; = —nij = ———gi;n- 2.2
) &) 2 \/Zg 3 (2.2)
where n,, is the normal unit vector to a 5 =const hypersurface, and the semicolon and comma
denote 4-dimensional covariant derivative and ordinary derivative respectively.

The energy-momentum tensor T}, is composed of a dust shell and a massless scalar field
3. Since we use the approximation of a thin shell, T,,, can be written as

1 1
Ty = Spb(n) + G(a,,v;a.,:/; - Eg,wa”qbaw). (2.3)
The part of the shell contains the surface stress-energy S, given by
S¥ = qU"U”, (2.4)

where ¢ is the surface energy density, and U* is the 4-velocity of the shell.
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By virtue of the (3+1) splitting of the metric the Einstein equations have the form
G, = %(K’ KK ) - %("‘)R = 8xGT",, (2.5)
G = K- Ky =8rGT",;, (2.6)
G; = OG; 4 —=(K'; -§;K),,~KK*; + %6‘,(1{2 + K* K'Y
= 8xGT';, (2.7)

where the subscript vertical bar denotes 3-dimensional covariant derivative, and R and mGj-
are the Ricci scalar and the Einstein tensor, respectively, on the 5 =const hypersurface. We
assume that the metric components a, R, L and the scalar field 1 are continuous at the shell
n = 0. Then, the integration of Eq. (2. 7) with respect to n leads to the junction conditions

. . 1.
7'j=81rG\/Z(s'j-§6'jﬁS). (2.8)

where 7' ; is the discontinuity of the extrinsic curvature
75 = (K] = Im{(K (0 = +¢) = K s(n = —)}. (2:9)

From Eq. (2. 3) the equations for the energy-momentum conservation, we obtain

S+ (TE) = o, (2.10)
K89+ ([TPWVL = 0, (2.11)

where [T%"] is the discontinuity of the energy momentum tensor of the scalar field, and
= 1
Ky =lim 2{;(n = +¢) + Ki(n = —¢)}. (2.12)

Egs. (2. 8), (2. 10) and (2. 11) give the full set of the junction conditions. We have a
coordinate freedom to choose L' = 0 on the shell. Then these conditions can be written as
follows

[Rl] = —-4nGLoR, (2.13)

[¢] = 47GLa, (2.14)

om0 R = Ty, (2.15)
o 1 2

droa’ = _ﬂw )s (2.16)

where o is defined in similar manner to Eq. (2. 12). The quantities in these equations should
be understood as functions of 7 only, which are defined on the shell = 0. The remaining
equations (2. 5) and (2. 6) may be solved in outer and inner spacetimes. However we focus
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our attention on a local geometry near the shell. In the limit » — 0 at each side of the shell,
Egs. (2. 5) and (2. 6) reduce to

mE
YA +Ra*—Ri = GR¢¢*: (217)
.9
s Ruoy 1 R R}  G_ 1.2 .,
R I +2R+2R "——'ZRL = —ER(lel +1,b*). (2.18)

where the subscripts ‘+’ mean respectively the quantities at the outer and inner sides of the
shell. If taking the difference of Eq. (2. 17) between the inner and outer sides, we obtain
L = 0. Here we set L = 1 on the shell. The same difference of Eq. (2. 18) does not generate
any new condition. In the following we use Eq. (2. 17) and Eq. (2. 18) only for the outer
boundary.

The scalar field considered here must be generated through interaction with the shell, i.e.,
¥ o = wVESLH(), (2.19)

where & is a dimensionless coupling constant. Then, the integration of Eq. (2. 19) with respect
to n leads to
[¥]= -,V Go, (2.20)

In summary, we have the seven independent equations (2. 13) ~ (2. 18), and (2. 20),
which holds in the limit 7 — 0. The dynamical variables are functions of 7. To discuss a shell
evaporation due to scalar wave production, we must introduce a concept of the gravitational
mass in the -5 coordinate system. This is the problem in the next section.

3 Gravitational mass

In the spherically symmetric system the gravitational mass can be locally defined as follows
(5] R
—_— — k¥
M= 2G(l ¢*’3,RO,R), (3.1)

which becomes constant if the vacuum Einstein equations holds. Let us estimate it at the outer
side of the shell. From Eq. (2. 17) and Eq. (2. 18), we obtain

£= 3 R{(R, — R) (b + ¥4 ) = (Ry + R - ). (.2)

This clearly shows the time variation of the gravitational mass through the scalar wave pro-
duction.

As the collapse goes on, the shell may cross the apparent horizon, where the expansion for
outgoing null rays vanishes. The expansions denoted by 8, and #_ at the outer and inner sides
of the shell become

1 ..
s = % (R+ RL). (3.3)

Then we have 6 = 8, + 47Go > 8:. The apparent horizon will appear at the outer side
rather than the inner side. When 8, = 0, the time variation of M becomes positive. This is

—286—



analogous to the area law of the event horizon [7]. However, we can find the condition that M
becomes negative. Let us assume that the scalar field at the outer side of the shell is purely
outgoing, .

v+ ¥, =0 (3.4)

Since R + R’ is always positive in the exterior region of the apparent horizon [8], M can take
a negative value even if the shell is close to it. We expect that such an effective emission of
scalar waves can occur as a semiclassical backreaction of quantum shell evaporation induced
by an ingoing negative-energy flux.

In the following we will study the shell evaporation under the outgoing condition (3. 4).

4 Shell evaporation

Does an evaporating shell can always cross the apparent horizon to form a black hole? To
answer this question, let eliminate ¥, ,a’ and R. from Eqs.(2. 13) ~ (2. 18) and Eq. (2.
20) with the outgoing condition (3. 4), and solve them near the apparent horizon, where the
expansion 64 for the outgoing null rays will have the approximate form

0(7)4 = Boc”, (4.1)

with a constant §y. The time coordinate ¢ is defined by ¢ = 7y — 7, and is assumed to be very
small. The shell may cross the apparent horizon at 7 = 1. The dynamical variables can be
solved in the power of €. The approximate solutions valid up to the leading order are found as
follows

R(r) >~ Rpe, : (4.2a)
Y1) = e, (4.2b)
R(r) =~ Ry, (4.2¢)
(1) = ape™, (4.2d)
m(r) =~ mye", (4.2¢)

where vy, of, Ry, Rf are constants. The powers § and n are related to the arbitrary positive
parameter 8 in Eq. (4. 1) as follows,

5 = %(1-6), (4.3a)
n = 5(¢n=52+46(1—5)—x5). _ (4.3b)

All of 8, n, ¥ and af vanish in the limit § — 1. This limit means that the shell crosses
the apparent horizon at R = Ry. If #is in the range 0 < 8 < 1, the shell shrinks to a point
without crossing the apparent horizon. The gravitational mass given by

R 2 _ pay ., Roo0 2.4
M= = (1+R - R?) = 2% (1- 260 B}, (4.4)
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decreases in proportion to the radius R and finally vanishes. This is a complete evaporation
of the shell.

In this paper the parameter § is not determined. It of course depends on the initial
conditions of the shell collapse. If the initial radius is sufficiently small, # will be equal to
unity. If the initial value of | 9 | is sufficient large, the complete evaporation will be possible.
This interesting initial value problem can be solved from the global Cauchy data on the Cauchy
surface including the spatial infinity R — oco. Therefore it is beyond the scope of our local
analysis. In the final section B is assumed to be in the range 0 < # < 1 and the evaporating
process is discussed in some detail.

5 Discussions

First let us see the scalar-modified junction conditions in the neighborhood of the apparent
horizon. The discontinuities at the shell are estimated by equations

[R]

7= —4ra, (5.1)
[a'] = 4o, (5.2)
[¥] = -xVGo. (5.3)
The surface energy density ¢ is approximately given by
_ m ~ mo n_:s.
T 47 R? T 4w R{‘,’E ! (54)

where n — 26 > —1. The right-hand sides of Eqs. (5. 1)~ (5. 3) become much smaller than
"./R, o, 4 which are of the order of e~!. Therefore these quantities are continuous up to
‘the leading order. We can neglect the effect of the shell on the junction conditions. Recall that
Eq. (5. 3) is derived from Eq. (2. 20) in which the shell works as a source of the scalar field.
The explosive scalar field production is mainly driven by the time variation of the gravitational
field. If the shell crosses the apparent horizon at a finite radius (§ — 0), both sides of Eqgs. (5.
1)~ (5. 3) are of the order of €°. The effect of the shell remains important to form a black
hole.
Next, in the exterior of the shell, we introduce new coordinates ¢ and r which give the

metric
ds? = —y7'dt? 4 ydr® + R2dQ?, (5.5)

where y~! = 1 — 2GM;(t, r)/r. When the shell shrinks to a point, the time dilation becomes
dr/dt ~ '~%. The collapsing speed and the mass loss late measured by ¢ are given by

dR

Tu— ~ _00 Rg: (56)
d ]
d_ff ~ -0‘;?’(1—2600123). | (5.7)

The static observer can see the shell approaching to the origin with a finite speed. The
gravitational collapse with the mass evaporation terminates in a finite coordinate time ¢ even
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for the static observer. The mass loss is not so explosive, because dM/dt remains finite in the
limit M — 0. It will be a natural result that the mass loss rate is suppressed to a constant
value in the limit M — 0.

If a shell with conserved mass collapses to the origin R = 0, a singularity appears there.
For the evaporating shell, the geometrical structure of the origin is not clear. Since the energy-
momentum tensor and the Ricci-scalar () R of the spacetime contain the term §(5), we consider
the integration

im [ dn®R =
ll_r.r& /_ . dnp'YR = 8rGo (5.8)

This means that a singularity appears when o diverges. We have ¢ ~ ¢"~% in the limit ¢ — 0.
The condition n > 2§ leads to § < x2/(3x + 4). The coupling constant x must be large to
generate efficiently scalar waves and to avoid the naked singularity.

Finally, let us give a brief summary. We have analyzed the behavior of a spherically sym-
metric dust shell interacting with a scalar field in the neighborhood of the apparent horizon
by constructing the junction conditions. The junction conditions admits the solutions rep-
resenting the spacetime with no black hole and no naked singularity. In the final stage of
the shell evaporation, the scalar wave production is mainly driven by a time variation of the
gravitational field, though the formation of naked singularity crucially depends on the coupling
constant between the shell and the scalar field. The mass loss rate measured by a static ob-
server becomes finite even in the limit M — 0. To confirm the validity of the results in terms
of a global analysis of the spacetime remains in future works.
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STABILITY OF MAGNETOHYDRODYNAMICAL ACCRETION
ONTO A BLACK HOLE

Masayoshi YOKOSAWA

Department of Physics, Ibaraki University, Mito 310

Abstract

The formation of shock wave triggered by magnetic stress is studied by numerical calculation. The
radially symmetric accretion onto a black hole is possible to produce the shock wave near the event horizon.
The magnetohydrodynamical accretion produces the distribution of the Alfvénic Mach number M4 that
the upper stream is super-Alfvénic and the down stream is sub-Alfvénic. A perturbation near the Alfvén
point nonlinearly grows and evolves to a shock wave. The asymmetry of the flow increases the critical Mach
number M c; the flow with M, € M, is unstable and produces the discontinuity front of the shock
wave. We calculate the magnetohydrodynamical accretion with an initially uniform magnetic field directed
along the rotation axis of the hole. The peak of the magnetic pressure appears at the rotation axis. The
perturbations at the peak nonlinearly grow at M 4¢c = 10. After the slowdown of the radial motion the violent
expansion starts to the azimuthal direction. The expanding the shock wave reflects at the equatrial plane
and propagates into the up stream. Even the week magnetic field whose energy density is one-thousandth of
the energy density of the gas perturbs the flow and generates the shock wave. The temperature behind the
shock front reaches the virial temperature. The shock waves produced near the event horizon may generate
the large amount of X-ray radiation.

1. Introduction

According to the standard accretion disk model (Shakura and Sunyaev 1973), the effective temperature
T, of the emission from the optically thick disk decreases with increasing mass M, of a central collapsed
object, T, ox M, S (Rees 1984). The X-ray emission from the binary star systems can be explained by the
standard model. On the other hand this model can not directly account for the X-ray emission from active
galactic nuclei with a massive black hole, M, = 10°M. Babul, Ostriker and Mészdros (1989) proposed
the standing shock model for the radiation mechanism of the hard X-ray and <-ray in quasars and active
galactic nuclei. They showed that the steady state solution with shock can exist in a spherically symmetric
accretion onto a black hole including nonadiabatic radiative losses and gains, heat transport processes and
pair processes. The preheating of the infalling gas by emergent X-rays can suppress the accretion flow
(Ostriker et al 1976; Mészdros and Ostriker 1983; Chang and Ostriker 1985). We consider here an other
suppressing mechanism of the accretion flow due to the magnetic stress.

Yokosawa. et al.(1991) obtained an exact nonstationary solution for the variation of the magnetic field
with a given motion of particles falling into a rotating black hole. They considered the simple case that
initially the gas and magnetic field are uniformly distributed around a hole. At first, the magnetic field is so
week that the gas falls freely into the black hole with no specific angular momentum. The gas and the frozen-
in magnetic field near the event horizon increases with the matter falling. The proper gas density, p, and the
radla.l azimuthal and toroidal components of the the magnetic field in the comoving frame of particles, B,
B and B?, increas with the proper time 7 of the infalling particle such as p o 7, BF, B" B’P « 743, The
frozen-in magnetic field has a smaller compressibility than the gas. The magnetic stress BB grows with
higher rate than the inertial force pc? acting on the infalling gas. The infalling flow ncar the event horizon
will be suppressed by the magnetic stress in a finite time.

Williams(1975) showed that if the magnetohydrodynamical flow is super-Alfénic at infinity but sub-
alfvénic further in, a smooth transition at the Alfvén surface would be unstable. With a Newtonian treatinent
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of the accretion onto a star, the spherically symmetric steady flow has the approximate relations such
as in the supersonic region the flow density p, velocity v, and the strength of the magnetic field B are
p~1"42 u~ =12 and B ~ r=2. Thus the Alfvén velocity vs is v4 ~ r—5/% and the Alfvénic Mach
number M, becomes M, ~ r3/4, The Alfvénic Mach number M, decreases monotonically as the matter
falls in to a collapsed object. The C_ characteristics which correspond to disturbances moving outwards
against the flow converge to a Alfvén surface. The wavefronts of the Alfén waves steepen, amplitudes
increase exponentially and so does the wave energy: the flow is thus unstable. The smooth trans-Alfvénic
flow is locally unstable, which is called as the piling-up instability. The unstable flow might produce the
discontinuity surface of the shock wave front at the up-stream region.

The flow with nonradiality may require the different conditions for the formation of the shock wave.
We examine the calculation of the accretion flow in which the gas falls quasi-radially and the week magnetic
field is a little different from the spherically symmetric field. The magnetohydrodynamical accretion with an
initially uniform magnetic field directed along the rotation axis of the hole produces the gentle peak of the
magnetic pressure at the rotation axis. The force balance of the flow in the azimuthal direction is kept by the
magnetic stress in the case of the cool flow. The wave energy of the perturbations produced near the peak
increases with the work done by the falling gas. The disturbancesin the azimuthal direction easily grow and
result in the shock waves propagating in to the azimuthal direction. The disturbances grow exponentially
with the very small ratio of the energy density of the magnetic field to the kinetic energy density of the gas
flow in comparison with the spherically symmetric flow.

The numerical method for the general-relativistic magnetohydrodynamics was developed by Yoko-
sawa(1993). I proposed a new simulation method in which the Maxwell’s equations are solved with the
3+1 formalism and the momentum equations are solved with the four-dimensional form. Using the method
of the transformation law, the 3+1 components of the electro-magnetic field are transformed to the four
dimentional components. This algorithm of the simulation is very simple. With this method I calculate the
accretion flows which are spherically syminetric or the accretion with a bit of nonsphericity. I study the
conditions and the processes of the formation of the shock wave near a black hole.

2. Caluculation Methods of General-Relativistic Magnetohydrodynamics

The calculation method of MHD accretion and the accuracy of the numerical code were described in
Yokosawa(1993). Here I explain the calculation method in brief. The magnetohydrodynamic calculations
are performed in a fixed gravitational field; for accretion problems this field is represented by the Kerr metric
in the coordinates of Boyer and Lindquist(1967)

ds® = gudt? + 201,dtd + gppdp® + grrdr? + gopdd®. (1)

We use geometric units in which G = ¢ = M = 1{M= black hole mass). The motion of the fluid is governed
by the eguation of motion

T =0, ()
where T°Pis the total energy-momentum tensor for the fluid and electromagnetic field. The baryon number
is conserved :

(pu%)a =0, @)

where p and u® are the fluid density and four velocity. The magnetic field according to a comoving observer
is defined as ‘

1
B, = Efaﬂﬁuﬁpw’ (4)

where u? is a four-velocity of fluid and €agvs is the Levi-Civita antisymmetric tensor. The corresponding
electric field, E, = F,pu" ,» vanishes in the highly conducting fluid. When one is not interested in the
dissipative effects in the plasma, it is appropriate to regard it as a perfect fluid. Then one can write the
total energy-momentum tensor as

Beph
4r (5)

T = (p+ +P+Bz)°"+(P+B—2) b
=VTee mwr 8z /9
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wlhere € and P are the specific internal energy and the pressure of the fluid.

To express the time variation of the magnetic field we use the 3+1 formalism. Latin letters i,j,,..
represent indices in absolute space_ and greek letters a, 8, 7, - Tepresent indices in spacetime. The ph)sxcal
quantities, electromagnetic field E' Bt and fluid velocity v* , are measured by the observers in the locally
non-rotating frames(LNRF)(Bardecn, Press and Teukolsky, 1972) whose world lines are orthogonal to the
hypersurfaces of contant ¢. Faraday's law becomes

(5 - LB = - (aEy), (6)
8z’
where L is the Lie derivative along the shift vector B. The flux-freezing condition gives E; = —¢;; kv’B‘

Then the general relativistic magnetic induction equation has the form
0.B' = €7%8;¢y,,(av' - B')B™, )

The four-vector of the magnetic field B® is derived from the electromagnetic field Ei, B} measured iu LNRF
by using the standard transformation law between the LNRF and the Boyer- Lindquist coordinate framc

We introduce the set of LNRF basis vectors, e¥. The electro-magnetic tensor F, & consisting of E' and B!
is transformed into the coordinate tensor F,z as

Fog=el c‘,F (8)

Thus the magnetic four-vector B® is given by the relation (3).

The above equations, (2),(3),(7) and the equation of state, P = pe(T' — 1), where T is the ideal gas
adiabatic exponent, determine the evolutions of fluid and magnetic_ field. Our formalism, the time variation
of the magnetic field described in LNRF, and the fluid motion described in the frame of the Boyer-Lindquist
coordinate, is remarkably simple in all.

We use the numerical technique of the flux-corrected transport for evolving the fluid equations, which
is developed from the numerical code for the special relativistic hydrodynamics (Yokosawa, Ikeuchi and
Sakashita 1982). The magnetic induction is solved with the technique of the constrained transport (Evans
and Hawley 1988). We use the two types of spatial grids. In the maximum case, we take the spatial grids in
the spherical coordinates as 200 grids in the r-direction and 150 grids in the quarter of a circle. The three
grids are used for each boundary. The geometrical values of the curved space are given at 1000 points in the
r-direction and 150 points in the §-direction. In the usual case, we take 125 grids in the r-direction and 100
grids in the quarter of a circle. The geometrical values are given at 625 points in the r- direction and 100
points in the #-direction. The intermediate values of the geometry are calculated by the interpolation. The
inner edge of the calculation domain is taken as r;, = 1.04ry, , where rj is the radius of the event horizen.
The outer edge is taken as r,,, = 10ry or 20r,.

3. Formation Processes of Shock Wave in Magnetohydrodynamical Accretion

The evolution of perturbations in flow is descrobed by a second-order quasilinear differential equa-
tion(Landau and Lifshitz 1959). For the spherically symmetric accretion in the Newtonian case the perturba-

tion equations were derived by Williams(1975). The potential function & of the axisymmetric perturbations
is written as

By + 200, + (V2 - v3)®,, = v¥(log v’ ~ log B')®, + vlog B'®,, (9)
where &, = 0%/0t etc., / denotes the radial derivative, logv’ = 8logv/8r, v and B are the unperturbed
values of the flow velocity and the strength of radial magnetic field, and v, is the Alfvén velocity. The
perturbations of the toroidal component of the flow velocity and the magnetic field, vf,” and Bg ), are
derived from the derivatives of the potential, i.e. B = 8% /rdr and v&” = (6%/0t + v03/8r)/rB.
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Since the above differential equation (9) is a hyperbolic type, the characteristics are given by

dr
T=Y T v, (10)
The characteristics with the minus sign, C-, correspond to disturbances moving inwards with the flow, while
the characteristics with the plus sign, C,, correspond to disturbances moving outwards against the flow.
The radially symmetric accretion flow has the radial dependences at the super-sonic region such as the flow
velocity, v o 7=1/2, the density, p & r=3/? and the strength of magnetic field, B oc r=2. The Alfvén velocity
is then vq o r=%/%, Thus the Alfvénic Mach number M, becomes M, o 34, i.e. the the fluid passes
from super-Alfvénic to sub-Alfvénic speeds. The C.-characteristics converge to the Alfvén surface, r = ry4,
The wave energy of the disturbances increase exponentially and the amplitides of the physical variables are
divergent at the surface. This is called the 'piling-up instability’. The magnetohydrodynamical accretion
may be unstable at the Alfvénic surface.

We examine numerically the stability of the magnetohydrodynamical accretion onto a black hole. The
initial conditions of the fluid flow and the magnetic field are given by the following consideration. In view
of the stationary and spherical magnetic field in a spherically symmetric spacetime, the Maxwell equations,
Flapin) = 0, give

Fa,ﬁ, r=0. (11)

With reasonable asymptotic conditions we get
Fy, = By sind, (12)
where By is a constant, and other components, Fag(# Fo,,), can be taken to vanish. The radial magnetic

field is expressed by the equation (3) ,
r
B" =B, (—h) . (13)

r

The spherical accretion flow without the maguetic field was solved by Michel(1972). The hypersonic flow
has the asymptotic forms

exfE (@) W2 2

The parameter to determine the stability of the flow is the Alfvénic Mach number. The Alfvénic Mach
number M, is defined as

u
A

where u; is the poloidal velocity of the fluid measured in a locally inirtia frame, u} = u*? + u‘z, and u, is
the Alfvén velocity (Lichnerowicz 1967), u} = B}/(4rph + B? — B2). Here ph is the density of the total
inertia-carrying mass energy, ph = p + pe + P, and 33/417 is the energy density of the magnetic field in the
poloidal derection, B} = B.B" + ByB’ + B,B'.

We calculate the accretion by using the initial distributions (13) and (14). The specific internal energy
¢ is taken to be so small that the pressure of the fluid can be negligible, P € p, B2. The parameters, po and
By, are taken such as the Alfvén surface is located near the horizon. Initially the flow and the magnetic field
are slightly disturbed in the azimuthal direction such as the initial values of the azimuthal components of
the flow velocity and the magnetic field are taken to be v? = 10~? and B® = 10~?, where v° is the convective
velocity, v/ = u® Ju*. The results of the numerical calculations with the initial Alfvén sutface, r4 = 3rg, are
shown in figure 1, where the specific angular momentum of the black-hole, a, is ¢ = 0.001, and the other
parameters are pg = 1, By = 30 and ¢p = 10~%. The evolution of the disturbances is shown in figure 2.
Here the distributions of the flow and the magnetic field along the constant azimuthal angle § = 7 /4 are
represented. In the early stage the wavy disturbances in the azimuthal direction are generated (see figure
2a). The disturbances near the Alfvén surface begin to grow (figure 2b). The large disturbances alter the
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Figure 2.

Figure 1. Dynamical evolution of MHD accretion onto a black hole with ¢ = 0.001M , pp =1, Tp = 10797
, Bg = 30 . The initial geometry of the magnetic field lines are radial.

Figure 2. Evolutions of perturbations along the radius with # = /4. The profiles of the maguetic field,

B*,B® B® , the fluid velocity, v*,v%,v# , and the Alfvénic Mach number M, are shown for the times (a)
t=0.8, (b}t =4, and (c) t = 7. The initial parameters are same as in figure 1.
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radial components of the flow and the magnetic field (figure 2c). The radial flow begins to tremble near the
Alfvén surface (figure la-b). ,

The position of the most growing disturbances depends on the radius of the Alfvén surface. When the
strong magnetic field is taken as By = 10? and the other parameters are fixed, the Alfvén surface locates at
ra = 9.5r,. The numerical calculation shows that the disturbances more rapidly grow at the larger radius in
the domain of the calculation, rin < r < 5ry. When the week magnetic field is taken as By = 10, the Alfvén
surface is r4 = 1.57). The disturbances at the inner radius grow more rapidly. When the still more week
field is taken as Bp = 1, all over the flow becomes super-Alfvénic. The disturbances little grow. Though the
wavy disturbances are generated at the early stage, they are suppressed by the accreting flow. While there
are small disturbances near the horizon, these flickering lines become smooth lines after tenth dynamical
time, ¢ > 102M. The black hole swallows all fluctuations. These calculations show that the evolution of the
disturbances is determined by the magnitude of the Alfvénic Mach number.

The disturbed region expands in the outward direction (figure la-c). The accreting matter is wavily
disturbed in the early stage of the expansion. The dynamical evolution of the disturbed region is easily
seen in the expansion starting from the inner edge (figure2), where By = 10,p0 = 1,¢p = 10~%,a = 0.001
and r4 = 1.5rp. After the expanding wave propagates to the radius, about twice the starting radius, the
expanding front becomes a shock wave front. The accreting gas is rapidly decelerated and compressed at
the front. The discontinuities of the density p, the pressure P, and the magnetic pressure Py are produced.
Their jumped values are approximately consistent with the Hugoniot relation for the magnetohydrodynamics
(Lichnerowicz 1967 ; Hoffmann and Teller 1950). The expanding shell with the high density is formed and
the accreting gas accumulates onto the shell. The shock wave propagates in the outward direction against
the accreting MHD flow.

4. Shock Formation in MHD Accretion with Nonsphericity

We investigate the formation process of the shock wave in the MHD accretion with a bit of nonsphericity.
In the case of the spherically symmetric accretion the magnetic field induces the unstable flow at the Alfvénic
surface where the energy density of the magnetic field is comparable with the density of the kinetic energy
of the accreting fluid. There the distributions of the magnetic field and the fluid are spherically symmetric.
If the nonsphericity is included in the magnetic field, even the week magnetic field may induce the meridian
motion because the force balance in the azimuthal direction is kept by the magnetic stress and the gas
pressure and not by the inertia force. The evolution of the meridian motion will cause the disturbance on
the quasi-radial accretion. The nonsphericity of the magnetic field may exchange the critical Mach number
M, that causes the shock formation in the accretion flow. The shock wave formed in the accretion may
exchange the flow pattern near the black hole.

We consider the accretion that initially the gas and the magnetic field are homogenous around a black
hole. When the magnetic field is so week that the magnetic stress is negligible for the gas falling, the cool gas
may radially fall into a black hole. In this approximation the time evolutions of the gas density p(t,r,8) and
the magnetic field B*(¢,r,8) are analytically solved (Yokosawa et al. 1991). The approximate expressions
at the Newtonian region, r }» ry, are written as

3tV2M -
ppo(l+s—g) xtr A,
%t\/rf/f:’f Y o V32,
%Nr;i”)x/s o 13,172
3v2Mat
rd

Bf = By cosd(1 +

B? = —Bysind(1 +
B? ~ —Bysin 8 cosf (16)

Since the radial component B increases most rapidly, the configuration of the magnetic field becomes a
quasi-radial. At the distant region r 3> r, the azimuthal component B? becomes comparable with the
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radial component B”. Thus the magnetic pressure Py = B, B /4w may have a peak away from the axially
symmetric line. The velocities of the freely falling fluid at large radii are expressed approximately as

v 2M 9 2GM
u' = —1‘17, v =0, u¥ = 5 (17)
The Alfvénic Mach number is /A
My Y0t LA (18)

Initially the super-Alfvénic flow may produce the Alfvénic surface at first on the axially symmetric axis near
the horizon.

We calculate numerically the accretion with nonsphericity. The fluid is initially static in LNRF and the
magnetic field is homogenius around the black hole. The pressure of the fluid is taken as P < pu®u?, B® B,
Thus the initial parameters are adopted such as By = 0.02,pg = 1, Ty = 10~12 and the rotating parameter
of the black hole is a = 0.999. In a short time of the calculation the fluid begins to fall and its radial velocity
becomes steady. The tipical Alfvénic Mach number at the early stage of the accretion is about M4 =~ 30. At
the early stage of the evolution the accretion produces a peak of the magnetic pressure off the central axis.
The fluid near the axis slowly approaches to the central axis. The azimuthal components of the magnetic
field B? and the fluid velocity v° are not wavely disturbed but smoothly distributed. The azimuthal velocity

”(r,ﬂ) of the fluid is dynamically determined mainly by the magnetic pressure Pg(r,#). Its value is very
small and its sign is negative near the axis except for the vicinity of the horizon.

The approaching of the fluid to the central axis brings about the redistribution of the magnetic field
and produces the peak of the magnetic pressure on the central axis, When the Alfvénic Mach number A/,
reduces to about fifteen, the repulsion of the magnetic field begins to expand the fluid from the central axis.
The azimuthal velocity v? is negatwe in early stage, 0 < ¢ < 13.5, and returns to be positive at ¢ = 13.5. In
the expansion stage of the fluid, v* > 0, the wavy structures of the azimuthal components v"(r), B"(r) are
produced. The other components BY, B?, v*,v? remain smooth. When M4 = 10 and ¢t = 27, the radial and
the toroidal components, B*, B?, and v‘z’, are also wavily disturbed, while the radial velocity of the fluid v*
remains steady. From that time on the wavy magnetic field increases exponentially. The energy density of
the magnetic field at a point on the central axis becomes comparable with the kinetic energy density of the
fluid. The falling fluid is decelerated by the magnetic stress. The magnetized fluid rapidly expands in the
azimuthal direction. The azimuthal motion produces the shock wave.

The nonradial propagation of the shock wave drastically exchanges the flow structure of the accretion.
Figures 8 and 9 show the dynamical evolution of the MHD structures near the black hole. The primary force
of the shock drive is the magnetic pressure since Ppatahock front - Patahockfront. The shock wave starting
from the central axis propagates down the hill of the magnetic pressure. The shock wave is so strong that
the fluid and the magnetic field concentrate behind the shock front. The shock wave propagates to the
equatorial plane and the disc with high density is formed.

Since the magnetic pressure of the accretion flow distributes approxmately as Pp o r~*, the strength
of the shock wave is weak at the outer region. The weak shock wave can not sweep up the fluid and some
fiuid continues to fall. The falling fluid interacts with the equatorial disc. The MHD accretion with a bit of
nonsphericity produces the complexly shocked structure around the black hole.

5. Discussion

The shock formation in the spherically symmetric accretion is driven by the waves induced at the
Alfvén surface. On the other hand the accretion with nonsphericity produces the shock formation caused
mainly by the dynamical effect. In the latter case the magnetic field near the symmetric axis is wavily
disturbed. It is necessary to discuss the physics of the expansion caused by the wavily disturbed magnetic
field. In the above both cases the energy of the MHD waves is enhanced by the falling fluid. The mechanism
of this energy variation is satisfactorily understood by the split of the MHD flow into two compositions,
which are the smooth MHD flow and the assembly of wave trains(Bretherton 1970; Dewar 1970; Jacques
1977).
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The momentum equation of the azimuthal component and the Farady equation are approximately
expressed at the Newtonian region on the assumption that the pressure of the fluid is negligible, P < Pp,
and the radial component of the magnetic field is dominant, B* » B% 3» B¥,

005 10 32 ,-.1 17 é LR

Por S roeter) P R a ) H BT (19)
8B° 10 5.5 _+04

W-;a—rruB —UB), (20)
aB* 1 4, fpb _ . fni

Bt = remgpg o B - v B, @)

where J? = #%(rBé). When the magnetic field with the radially symmetry is perturbed in the azimuthal
direction such as the perturbation of the Alfvénic type, by the WKB approximation the linear theory drives
the wave solution from the equations (19) and (20):

6116 - _‘_Z_lei(ut-nr)’ 635 = %et‘(ut-nr)’
w= (V¥ L vy, (22)

where C,C3 are constants and v4 = B*//dmp. The both perturbations, §v°,5BY, have the same phase.
The small perturbations generated in the spherical or nonspherical accretion are approximately Alfvénic
type. Since §B7/B" = Gvé., the fluctuation in the radial component B* becomes remarkable at the large
azimuthal perturbation, v’ > 0.1 (figure 2c, figure 6¢?). In the case of the accretion with nonsphericity the
azimuthal motion is determined mainly by the gradient of the magnetic pressure. The expanding velocity
near the symmetry axis v°(t) increases with the radial component of the magnetic field B"(t) (figure 7). After
the remarkable fluctuation in B*, the gradient of the magnetic pressure rapidly increases. The increased
velocity v® accelerates the variation of B".

The increase of the energy of the wavy motion is brought about by the falling motion of the fluid. The
fiuid equation in the presence of MHD waves have been studied in the solar wind theory (Jacques 1977).
The equations of the flow with waves are expressed in the Newtonian form (Yokosawa 1982) as

dv B*. (B-V)B GM
PE+V(P+8_H)_T—,)T—3T——V’P0$: (23)
91 , P B 1 , TP GM
E(Epv +f_—i+‘8—n_')+v'{(§" +f\__—1' r )
(vxB)xBy __ o
ye }— v-V Pwi) (24)
iéi'{-V'(éng:b'i‘Pui'v)=U'V'Pwi$ (25)

at

where dfdt = 8/8t + v - V;ex, Pux and Vyx are the energy density, stress tensor and group velocity of
MHD waves propagating upward(+) and downward(-}). In the case of the spherically symmetric accretion
the smoothed magnetic field on the left side of the equations (23),(24) can do no effect on the fluid. The
pressure of the waves, V « P, 4, accelerates or decelerates the fluid. When v-V - Pz > 0, the work by the
falling fluid increases the energy of the waves ex. The gradient of the pressure, V - P4, depicted in figure
2b is negative at the outer region and positive at the inner region. Since v < 0, the wave energy at the
outer region rapidly increases and thus the peak of the wave energy shifts to the outer radius(figure 2c). In
the case of the accretion with nonsphericity the rapid increase of the wavy energy may be also given by the
falling fluid.
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6. Conclusions

The magnetic field could produce the shock wave in the accretion onto a black hole. The spherically
symmetric accretion results in the shock formation near the Alivénic surface. The nonsphericity of the MHD
accretion may reduce the critical strength of the magnetic field at which the shock wave can be produced.
In the case of the initial condition with homogencous magnetic field, the critical Alfvénic Mach number is
Myc = 10. The energy density of the magnetic field is about one-hundredths of the falling fluid. The
accretion with nonsphericity may produce the complexly shocked structure near the black hole. If the
strength of the magnetic field in the accretion flow is larger than the critical value, the high luminous X-ray
may be emitted from the vicinity of the black hole.
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Slow Evolution of Black Hole Magnetospheres
Toshio Uchida

Astronomical Institute, Faculty of Science, Tohoku University, Sendai 980, Japan

1. Introduction

Studies on black hole magnetospheres are important to understand activities of galactic nuclei.
For this purpose, we have developed a Lagrangian perturbation theory of the relativistic ideal
magnetohydrodynamics (Uchida 1993). By using this method, we will consider inﬁnitésimally
slow (quasi-static) evolutions of axisymmetric magnetospheres in this work.

The situation we will consider is as follows; Suppose a small axismmetric change takes
place in a stationary and axisymmetric magnetosphere and the magnetosphere settles in a
nearby stationary and axisymmetric configuration. If this change takes place slowly enough,
one can disregard time derivatives of the perturbation and it is sufficient to consider stationary
axisymmetric solutions for small perturbations.

In the following, changes in gravitational field are neglected and we assume that the metric

of the background spacetime is

ds? = —a?dt? + o?(d¢ — wdt)? + g, dr® + gepdb®. (1)

2.Basic equation
In the following, we will consider only the cold (massless) limit. In this limit, the energy
density p is given by p = nm (we use the units in which ¢ = G = 1) and the basic equations

of the relativistic ideal magnetohydrodynamics reduce to

Vun* =0, (2)
F,u =0, 3)
O\Fyy + 0, F 0+ 0,F), =0, (4)
VaF* = 4nJ*, (5)
mnu'V,u, = F,,J%, (6)

where equation (2) is the equation of continuity (n* = nu*), equation (3) is the degenerate
(ideal MHD) condition, equations (4) and (5) are Maxwell equation and equation (6) is Euler

equation.
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3. Stationary and axisymmetric configuration

In stationary and axisymmetric case, the electromagnetic field F,, is written as
Fg, = Qpa,\I’, Fw = Qpao\p, Fw =0
Fou=08,%, Fos=0%V, Fo= a—vz;ngT' (7)

where U is the stream function and chosen so as to coincide with the Boyer-Lindquist com-

ponents of A4. The poloidal components of velocity are

r n 8 n
u = 8,7, u=-———-4,V. 8
1/_gfl 6 /_gn ( )

Then equations (2)~ (6) yields the integrals on the poloidal field surface (surface on which

VU = const. in r — 6 space) and there remains one equation to be solved. For the derivation
of the following results, see e.g. Phinney (1983) or Carmenzind (1989).
The integrals are as follows;
n ; magnetic flux/ particle flux ,
Qr ; angular velocity of the magnetic field ,
E ; energy at infinity ,
L ; angular momentum at infinity ,

where E and L are given respectively by

E = -mu; — Q}.‘m, (9)
Br
L= — 10
mug + I (10)
Further, there is a relation
¢ —Qput= —1 B, 1
¢ P = g 7 (1)

By equations (9), (10) and (11), u*, u® and By are given by the integrals and the metric.
Further, by u*u, = —1, n is also written by ¥, the integrals and the metric. The poloidal

components of Euler equation yield

—_ 2
{50 - (@ — w)? - T oty 4

V=4, 2 dlp 4mmy? dy 2
+6A{a’w’ [@*(2r —w dv + n d‘I!] |ve|
—nu's; + nuk; = 0, (12)
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where

dE BT dﬂp Q;'BT df]

M= Gt T dy A 4T (13)
dL 1 dn
=TT 4rn? dU (14)

Then eliminating u‘, u#, By and n from equation (12), we have a closed set of equation for
¥ (for the explicit expression of this equation, see Nitta (1991)). This transfield equation
(Grad-Shafranov equation) has regular singularity at the Alfven and the fast magnetosonic
surface and the critical condition is necessary to ensure regularity of solutions. To summarize,
construction of the models of the stationary axisymmetric magnetosphere mathematically
equivalent to obtain solutions of transfield equation for given n,Qr, £ and L as functions of
v,

4. Linear perturbation theory of the relativistic MHD

When treating small perturbations, there are two theories. That is, the Eulerian perturbation
theory and the Lagrangian perturbation theory. Here we choose the Lagrangian approach.
In the Lagrangian perturbation theory, the dynamical variable is a vector field called the
Lagrangian displacement and the perturbations of the physical quantities are expressed by
the Lagrangian displacement. By the Lagrangian displacement ¢{* the first order changes in

' the physical quantities are expressed as follows;

§n = -Vy(n¢*) - nutu" V6, (15)
——_ N (16)
SuP = —4H £oud, (17
Av* = (WPuTV, Gk, (18)
8F, = V,u(Fa() = Vu(Fa?), (19)
AF,, =10, (20)

where y** = g** + ubu*, § denotes the Eulerian changes and A denotes the Lagrangian
changes. Their relation is given by
A= 6 + f(, ' (21)

where £, is the lie derivative with respect to the Lagrangian displacement ¢*. Further, it can
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be shown that the component of { parallel to u* does not contribute to the physical quantities
at all. Thus we can impose the condition (*u, = 0 without the loss of generality.

The advantage of the Lagrangian approach lies in the fact that it reduces the number of
equations to be solved greatly. In fact, as easily verified, the first order changes in the physical

quantitlies given above automatically satisfy

V,bn* =0, (22)
Fu v +6F,u" =0, (23)
OOF, + 0,6F, + 0,6F,, =0, (24)

(or equivalent equations for the Lagrangian changes). Thus the equation which we must solve

is only perturbed Euler equation given by
mnu*'V,8u, + m(énv’ + néu”)V,u, = F,. 60" + 6F, J". (25)

This equation has three independent components. Thus our basic equation is a three-

components equation for three independent components of ¢*.

5. Changes in ¥,n and Qpf
Before treating perturbed Euler equation, let us examine some consequences of equation (15)~
(20). By equation (), 6F4,4 and § F;4(A = rf) are given by

6FA'¢ = —3,4((*&\1!), (26)
6FgA = —BA(C“GAQF)BA\I! - QPBA((*GA\I!). (27)

By comparing these expressions with equation (7), we see that

50 = ~-C*8,¥, AV¥ =0, (28)
8 ==000r, AQp=0. (29)

Further, by equation (15), 6n” and 8n? are written as

V=gn' = —({*0n)0e¥ — 185(¢* D0 Y), (30)
v=gn® = +(¢*8:n)8, ¥ + 06, (¢ T). (31)

This implies that
bn=-Cdn,  An=0. (32)
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That is, in the quasi-static axisymmetric changes of the ideal MHD systems, the values of n

and Q2 on one poloidal field surface assigned by the value of ¥ are invariant.

6. Reduction of perturbed Euler equation

In order to treat Euler equation, it is convenient to rewrite equation (25) as
1
my/—gnu*(8,Au, — 8,Au,) = Z;F,.ya,\(f"'\),

where f* is defined by
2 = 8§F* +4n(J*¢* - JV¢*).

Thus f* is an antisymmetric tensor. It is to be noted that f is written as
fr® =6Br + (*8\Br = ABr,

where By is given in equation (7) and 6By = /=g§F"°.
Then t and ¢ components of equation (33) respectively lead to

Q
utd,(mAu, + aﬂ_—;ABT') =0,
1
u“aA(mA% - mABT) =0.
* Thus we have

—mAy, — i:r—';ABT = AE(YD),

mAu¢ - éﬂAB‘r = AL(‘I’),

(33)

(34)

(35)

(36)

(37)

(38)

(39)

where AE and AL are functions of ¥. That is, contrary to n or r, Lagrangian changes in

E and L change during the quasi-static evolution.

Two poloidal components of equation (33) are not independent. In fact, some manipula-

tions they read

= (8(£%4) = 0p0A(f*4)} + mn(@au, = 8, Au)

_ \/_n dAE +v=7n ‘,dAL
[ BT d?] de
41r17 a?w? d\Il

SZ)ABr =0.
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Further, by tedious manipulations this equation is rewritten as

4rmn? V=g 4mmn® .
oﬂ 2[o: -w)? - —]3"5‘1’} + aA{a’wz T&na v}
V=9, 1 dQF 4rmn? dn A

23,1{ [w (Qr - d‘I! +— dw]&'lla v}

+2—[w2(9r —w ‘%" 4 dmmn’ d" g T
2 &*Qp dﬂp 5 , 47mn d’n dr; 2
§

Y ([w(p - )0t 4 (S TN Sy | gy su

+41r\/ g[én'xy — 6n®k;) + dm/=g[n'bx, — n*6k;) = 0. (41)

By comparing above equation with equation (12), it is evident that this equation is nothing
but perturbed transfield equation. Although equation (41) contains perturbed quantities
which are not expressed explicitly by §¥, we can show that these quantities can be expressed
by §¥, AE, AL and background quantities and eliminated from equation (41). As a result,

equation (41) becomes a equation for §¥.

7. Conclusion

In this work, we showed following results.

(1) An and AQpF vanish.

(2) AE and AL are also functions of ¥.

(3) The poloidal components of perturbed Euler equation yield equation for §¥, which can

be regarded as perturbed transfield equation.
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Abstract

We study a magnetohydrodynamic (MHD) interaction between the accret-
ing matter and the magnetic field in a Kerr black hole magnetosphere. Adopting
the magnetically dominated limit, we analyze in detail the critical condition that
the MHD ingoing flows must pass through the fast magnetosonic point. It is
clearly shown that energy and angular momentum transport processes between
the fluid and the magnetic field should be sufficiently effective in the accretion.
Furthermore, studying non-stationary perturbations of MHD accretion in the
short wave-length limit, we find that the fluid becomes highly variable compared
with the electromagnetic field near the horizon. This is due to the effects of a
critical point and the existence of the horizon. This result may be responsible
for the variability of higher energy X-rays observed from active galactic nuclei.

1. Introduction

It is widely believed that an active galactic nucleus (AGN) contains a supermassive
black hole in the central region (Elliot & Shapiro 1974; e.g., Reés 1984). The black
hole will work as a central engine for producing the power output of an AGN, if its
rotational energy is efficiently extracted. Then, during the active lifetime of an AGN,
the total mass M and angular momentum J of the black hole should evolve with time.
This evolutionary process of the central black hole may derive the luminosity evolution
observed in AGNs (Park & Vishniac 1988;1990).

We expect that such an active black hole is surrounded by a magnetosphere and an

accretion disk. Plenty of plasma can be supplied from the disk into the magnetosphere.
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The plasma will be nearly neutral and can be treated by the perfect MHD approxima-
tion. In order to understand the long-term evolution of M and J, we must investigate
the MHD accretion onto the black hole in the magnetosphere.

The MHD energy and angular momentum flux carried across the event horizon
r =ry(= M +vVM? = a?) consists of electromagnetic and matter parts, where a is the
spin parameter defined by a = J/M. If the magnetospheric structure is assumed to be
stationary and axisymmetric, some useful results for the general relativistic MIID flows
have been obtained (see, e.g., Phinney 1983b). We can introduce the angular velocity
Qr of the magnetic field lines, which may thread the horizon. If QF is smaller than
the hole’s angular velocity wy = a/2Mry, the toroidal field can furnish an outgoing
Poynting flux of electromagnetic energy and angular momentum (Blandford & Znajek
1977). This electromagnetic process induces a mass loss and a spin-down of the black
hole. However the matter accretion carries an ingoing flux of positive energy and angular
momentum, unless the Penrose mechanism becomes important. In the cold limit that
thermal energy and pressure of fluid elements are negligible, the fluid’s energy and
angular momentum per unit rest mass are defined by the covariant components U; and
—Uy of fluid four-velocity U¥, respectively. If no magnetic field is present, U; and —Uj,
which are conserved along the flow line in this case, should be evaluated at the innermost
stable circular orbit which corresponds to the inner edge of the disk. As a result of the
accretion, the black hole is spun up to a limiting state (Bardeen 1970; Thorne 1974).
In a magnetosphere this spin-up process is more complex. Plasma particles interacting
with the magnetic field can flow from a more extended region of the disk towards the
horizon, and U; and —U, evolve along the flow line during its accretion owing to the
MHD transport. In this paper we focus our attention on a MID interaction in the black
hole magnetosphere especially on the critical condition that the accretion should pass
through the fast-magnetosonic point, and present first a general relativistic calculation
of U; and —Uy in section 2. We show that the MHD interaction is so effective that
typically 10% of the rest-mass energy of infalling plasma will be transported to the
magnetic field and be carried outwards as Poynting flux. 7

If a small-amplitude perturbation is superposed on such an active stationary black
hole magnetosphere, then a substantial perturbation energy may be transported between
the plasma and the magnetic field; a very small perturbation in the field may cause a
significant influence on the plasma flow. Therefore, it is attractive to consider a time-
dependent accretion onto a black hole, because short-term variabilities of X-rays which

are expected to be emmited from a very central region of an AGN are observed.
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It is to this end that we turn in section 3 to the investigation of nonstationary
and nonaxisymmetric perturbation superposed on a stationary and axisymmetric black
hole magnetosphere. Adopting the magnetically dominated limit, we show that the
fluid energy, angular momentum and poloidal velocity become highly variable near the
fast-magnetosonic point in the magnetically dominated limit, even if perturbations in
the electromagnetic field are very small. This result may be responsible for the observed
short-term variations of X-ray emission from AGNs; this will be discussed in the final
section.

2. MHD Interaction Between Plasma and Magnetic Field

2.1. Stationary Flows

In order to set the stage for our investigation of black hole magnetosphere and to
prepare us with a feeling for the physical principles invelved, it is helpful to consider for
a moment what is known about stationary MHD flows in Kerr geometry. Before coming
to this point, however, let us first present basic equations for general relativistic MHD
flows.

Since the self-gravity of electromagnetic field and plasma around the black hole is
very weak, the background geometry of the magnetosphere is described by the Kerr
metric

4Marsin® @ Asin®d

22
A-atsin b, dtdg - =2

L
ds* = 5 > d¢ dr* — Xdf*, (1)

where A =12 —2Mr + a2, T = r? +a%cos? 0, A = (r* +a?)? - Aa’sin? 8. Throughout
this paper we use geometrized units such that ¢ =G = 1.

Under ideal MHD conditions the electric field vanishes in the fluid rest frame,
thus we have F,, U# = 0, where F,, is the electromagnetic field tensor satisfying the
Maxwell equations F,,,,) = 0. The motion of the fluid in the cold limit is governed by
the equations of motion [m,nU»U” + (F*?F,* g** F,g F** [4)/(47)] ., =0, where the
proper rest-mass energy density mpyn obeys the continuity equation (mpynU¥),, = 0.

From the analysis of stationary and axisymmetric ideal MHD equations, it is known
that there exist four integration constants conserved along each flow line (e.g. Camen-
zind 1986a,b). These conserved quantities are the angular velocity of a magnetic field
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line (QF), particle flux per magnetic flux tube (), total energy (E) and total angular
momentum (L). A poloidal flow line is identical with a poloidal magnetic field line and
is given by ¥(r,8) = A4 = constant, where A, is the electromagnetic vector potential.
The conserved quantities are functions of ¥ only; the discussion in this paper is valid
for arbitrary V.

We next describe a stationary plasma accretion in a black hole magnetosphere. In
a black hole magnetosphere, there are two light surfaces. One is called the outer light
surface which is formed by centrifugal force in the same manner as in pulsar models.
The other is called the inner light surface which is formed by the gravity of the hole. In
a region between the horizon and the inner light surface plasma must stream inwards,
while in a region beyond the outer light surface it must stream outwards. The plasma
source where both inflows and outflows start with low poloidal velocity will be located
between these two light surfaces. This injection region (r = r;) of the accretion may
be a pair creation zone above the disk or the disk surface whose inner edge corresponds
to the innermost stable circular orbit in Kerr geometry. Before reaching the horizon,
plasma inflows must pass through the fast-magnetosenic point (r = rg). At r = rp, the
fluid velocity coincides with the propagation speed of the fast-magnetosonic wave. The
wave propagates outwards (inwards) in the r— coordinate at r > rp (r < rg). Such a
situation is illustrated in figure 1. From now on, we will use the subscript I and H to

indicate that the quantities are to be evaluated at » = r; and » = rg, respectively.

Fig. 1. Schematic figure (side view) of

Q\'b x- ra y a stationary axisymmetric black hole

(DH «— magnetosphere. The accretion starts

I from a disk surface or a pair creation

A ‘ zone above it. The points I, and F

Black F | correspond fo the injection, and fast-
Hole magnetosonic points, respectively.

Disk

In the next subsection, we will analyze the critical condition that the accretion
must pass through r = rp in the magnetically dominated limit, in which the MHD
interaction will exert a significant influence on fluids.
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2.2. Critical Condilions for Magnetically Dominated Accretion

To elucidate MHD interactions between the accreting plasma and the magnetic
field, we shall first focus our attention on the problem of energy and angular momentum
transport between them. The accretion onto the black hole occurs along the field lines
which originates from a thin disk and threads the horizon; such a situation is depicted
in Figure 1. The transport from the plasma to the field during the accretion can be
expressed as Uy — Uyr and —Ugy — (—Uys). Since the fluid is assumed to be in a
general relativistic Keplerian motion at r = r;, the initial values U;y and —Uy; can
be calculated from geometry at (r = ry, 8 = 8) as Uyr = (gu’ + g:4'QF)m, fe and
—Ugr = —(gts” + 944" QUFr)m, Je, where e = E — QpL =~ m,,. Let us next consider the
final values Uiy and —Uy. If the plasma dominates the field (E/m, = U; = 0.9),
then no transport occurs, i.e., Uyg = Uiy and —Ugy = —Uy; hold. On the contrary,
if the field dominates the plasma (E/m, > 1), the transport process will occur most
effectively. In the intermediate case, the transport is expected to be written in terms
of magnetized parameter (Hirotani et al. 1992), if its upper limit is known in the
magntically dominated limit. We will therefore consider the magnetically dominated
limit in this paper to estimate the maximum value of the transport.

Analyzing the critical condition, we can calculate fluid’s energy (U;) and angular
momentum (—Uy) at » = rp. In particular, in the magnetically dominated limit, the
fast-magnetosonic point is located close to the horizon ([rp — ry)/ry = m,/E < 1).
Therefore, we can compute U;# =~ U,F and —UsH =~ —Uy¥ by analyzing the critical
condition; the result is

1 1-awgsin®fy 1
U, )= ———— Kj———3H"— H . /Ki—-Kg), 2
(v, 61) wy —QFp (wH g 1-aQpsin’fy W Fvar H) (2)

1—awgsindy 1

Ki—Kn), 3
l—aQpsinog WV 7 ) (3)

1
- ;) = ———( Ky —
Usn(rr,01) on —ap\V
where W and K = g4r% + 29:40F + ge¢ are of order unity. Note that both U,y
and —Ugy do not depend on m,/E, which contains the strength of the magnetic field.
These quantities depend on the position of the injection point (r = r;,8 = 6;) through
the function Kj.

If we consider the accretion from a thin disk, we can choose ; = m/2. Then both
Uir and U,y (and also both —Usr and —Usp) can be described in terms of rf only. In
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1.0

-0.2

Figure 2 we present a comparison between U;; and Uy for the case a = 0.5M. Since the
result does not depend on Q2F very much, we present here the case 2 = 0.5wy only. The
plasma begins to fall from the injection point with U;; < 1 (denoted by the dashed curve)
because of the contribution of binding energy. In the same manner as in Figure 2, we
present —Usp(rr) and —Ugs(r;) in Figure 3. The angular momentum transport depends
on QF significantly, so we present three typical cases, QF = 0.8wy,0.5wg,0.2wy.

— T v T A T T — v ‘1

1 2t
] . F
: 1 o
:L"-'Llllz '.‘éll.l.l.l.l
2 3 4 5 rifM 2 3 4 5 6 r/M
Fig. 2. Curves for Uiy (solid) Fig. 3. Curves for Ugy (solid)
and U;s (dushed) as a function of the and Uy (dushed) as a function of the
position of r; for 8y = 0; = /2, position of ry for Oy = 8 = =n/2,
Qp/wy = 0.5 and a/M = 0.5. Qp/wy =0.8,0.5,0.2 and a/M = 0.5.

It is demonstrated in Figure 2 and 3 that the MHD interactions occur very effec-
tively in a magnetically dominated magnetosphere. Provided that the accretion starts
from a relatively outer region (with a large value of r;), typically 10% of the fluid’s
energy and substantial part of its angular momentum are transported to the magnetic
field. In the next section, we describe variabilities of fluid’s motion owing to such an
active MHD interaction.

3. Highly Variable Accretion

As we have seen, in a stationary and axisymmetric magnetically dominated black
hole magnetosphere, interactions between the plasma and the magnetic field are very
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effective. The next question now arises: will the plasma accretion become highly vari-
able if the magnetic field is slightly perturbed? It is worth while examining the subject
more closely, because highly variable accretion is favourable with X-ray obserbations.
We thus study non-stationary and non-axisymmetric perturbations and investigate rel-
ative amplitude among fluid quantities (velocity, energy and angular momentum) and
electromagnetic field.

Since we wish to examine the relative amplitude at each point along a flow line, we
shall henceforce adopt the short wave-length limit in which the characteristic scale of
radial and meridional variations are taken to be much shorter than any characteristic
radial and meridional scale in the unperturbed state, respectively. In the frame of
this approximation, neither the acceleration due to gravity nor the curvature of the
unperturbed magnetic field will be taken into account, because all covariant derivatives
can be replaced by normal derivatives and all the derivatives of unperturbed magnetic
field will not contribute. In this limit, every perturbed quantity is proportional to
exp(ik,z*) = expli(—wt + m¢ + k.r + kq0)).

In the frame of this short wave-length limit, we obtain two MHD wave modes, the
Alfvén mode and the fast-magnetosonic mode. For reasons that we shall go into later,
the fluid becomes highly variable for the outgoing fast-magnetosonic mode. We shall
therefore concentrate on this mode afterwards.

Before discribing relative amplitude, let us briefly describe the dispersion relation
for the outgoing fast-magnetosonic mode, which is essential for the discription of relative
amplitude. Near the horizon, the dispersion relation becomes

A-Ar A k__A—Ap
Ar+A2Mrg " Arp+A

ke (4)

Ww—mwy =

in the magnetically dominated limit. It is convenient to introduce the tortoise coordinate
r, satisfying dr,/dr = (r? + a?)/A. In this coordinate, we can easily express that the
characteristic scale of radial variations are much shorter than that of the gravitational
field (| Mk,. |> 1), because the interval (ry,c0) in the r-coordinate is stretched to
(—00,00) in r,.

At very close to the horizon (A € Ar), it follows from (4) that the outgoing fast-
magnetosonic wave propagates neatly with the velocity of light as w — mwy = —k,.,
or equivalently as k,k* = 0. We can also see that the outgoing fast-magnetosonic wave
propagates outwards (inwards) in the sub(super)-fast-magnetosonié region rp < r < 1;
(rg < r < rFp). At the fast-magnetosonic point (A = AF), it stagnates as expected.
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Let us now examine the relative amplitude. Inserting the dispersion relation (4) in
the expression of relative amplitude, we obtain

u z -EV
U A0 ey m, B )

near the horizon A € M? (, or equivalently z €| E/m, | ), where

42Mry)? wy — QF (1 — aQp sin? )W (k,e)?

A =
Lyt QF VK =Ky [m(wyg — QF) — k. )k;

1,

A r—rg

= =

AF rp—-r”,

" and % are perturbed fluid radial velocity U™ and the meridional component B® of
the magnetic field in the orthonormal frame, respectively. Note that the factor z/(1 +
z)?-(E/m,) crucially determines the relative amplitude and that | E/m, | 1 holds for
the magnetically dominated limit. The function f(z) = z/(1 + z)? becomes maximum
at z = 1. Therefore the fluid will become most variable at the fast-magnetosonic
point in the frame of the short wave-length limit. In the somewhat extended region
| mp/E |€ z <] Efm, |, we have | &7 /U || /B |. In addition, fluid energy
and angular momentum have same order amplitude as #" at an arbitrary point along
the flow line. Furthermore, B has the maximum amplitude among all components
of the electromagnetic field. Therefore, in the somewhat extended region | m,/F |«
z €| E/m, | near r = rp, fluid velocity, energy and angular momentum become
highly variable if the electromagnetic field is slightly perturbed. For another (Alfvén,
and ingoing fast-magnetosonic) wave modes, all perturbed quantities have same order
amplitude, and such amplification never occurs.

In summary, The analysis of the critical condition at the fast magnetosonic point
is very important, because it determines the fluid’s energy and angular momentum
accreted onto the black hole. Their initial values ¢; and {; at the injection point crucially
depend on the position r = r; and the angular velocity Qp(r;). The MHD transport
of ¢ and ! between the fluid and the magnetic field occurs efficiently along the field
lines connecting the disk with the horizon. Considering nonstationary perturbations,
we can further determine the relative amplitude of perturbed quantities and find that
the fluid becomes highly variable in the somewhat extended region near r = rp, even
if the fluctuations in the magnetic field is very small. This is due to the effects of a
critical point and strong gravity near the horizon. However, the fluid quantities are not
perturbed at all just at the horizon because of the regularity condition.
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4. Summary and Discussion

Let us first discuss the energy and angular momentum transport between the
plasma and the magnetic field in the magnetically dominated limit. Since Uy — Uiy
and —Uy; — (—Usy) are described only by (r;,8), the transport do not depend on the
global field line shape. It is surprising, because U; and —Uy are not conserved along
a flow line. From this fact we may say that the event horizon regulates the accretion
with the help of the magnetic field and makes the fluid energy and angular momentum
certain values there. This is a new conjecture on the property of the horizon.

Next discuss how the critical point and the horizon play an important role on the
fluid variability in the somewhat extended region near r = rp. Equation (5) can be
rewritten as

i (w — mwy + kp.)? [
o =¢ T ()

where C is of order unity. The denominator A~! describes the effect of redshift and the
numerator w — mwy + k,. crucially depends on the propagation speed of the outgoing
fast-magnetosonic wave. In the close vicinity of the horizon =z <| m,/E |, we have
w — mwy + kyo = O(A) and hence @ /U™ = A .38 /B". Since fluid disturbance cannot
propagate with light velocity owing to its inertia, electromagnetic disturbance decouples
with fluid disturbance. As a consequence, only the electromagnetic field is perturbed.
That is, the boufxdary condition at the horizon makes the fluid be unperturbed. Near
the fast-magnetosonic point z = 1 on the contrary, we have w — mwy + k. =~ 1 and
hence %" /UT ~ E/m, -7;5/3' because of the redshift factor Ap~! =~| E/m, |. Far
from the horizon, the amplification factor damps, because the redshift factor behaves
as (1/z)(E£/m,) in this region. )

Such amplification never occurs for the outflows even in the magnetically dominated
limit. Therefore, the existence of the horizon is essential for the amplification of the
fluid. In addition, if the magnetically dominated limit breaks down, fluid will never be
amplified at an arbitrary point. That is, the amplification occurs only when the fast-
magnetosonic point is located close to the horizon. Therefore, we can safely say that
the fluid inertia, the magnetic field, and the horizon are essential for the amplification
of the fluid. The amplification will never occurs in the Newtonian theory.

Let us next discuss briefly the possibility of emission around the hole. Since we
did not take the effect of any dissipative processes into account, the results derived in
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this paper are not directly applicable for the interpretation of X-ray emission observed
from AGNs. To connect the results with observation, we must further consider the
mechanisms which convert fluid’s kinetic energy into radiation. It is therefore impor-
tant to consider whether dissipative processes work effectively or not (see Nobili et al.
1991 for self-consistent treatment of radiative transfer and spherical plasma accretion;
Hanawa 1990, Hirotani et al. 1990 for Comptonization due to bulk motion of accreting
electrons). It needs future consideration.

The authors would like to thank Prof. Kato and Dr. Hanawa for helpful sugges-
tions, and to acknowledge discussion with Mr. S. Nitta on several points in this article.
This work is partially supported by the Grant-in-Aid for Scientific Research from the
Ministry of Education, Science and Culture (04640268).
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ACCRETION OF A HOT PLASMA ONTO
THE CENTRAL BLACK HOLE:
FOKKER-PLANCK FORMULATION

F.Yabuki and F.Takahara
Department of Physics, Tokyo Metropolitan University,
Minamiohsawa 1-1, Hachisji, Tokyo 192-03, Japan

ABSTRACT

We report on a preliminary study the accretion process of a hot plasma onto a central
black hole. We consider the steady-state distribution and consumption rate of particles
orbiting a Schwarzschild hole assuming the spherical symmetry. We take account of only
ion-ion Coulomb scattering and neglect effects of electrons except that they assure the
charge neutrality. We assume that diffusion approximation can be adopted. Under these
assumptions, we formulate relativistic Fokker-Planck equation in a general form and de-
rive the Fokker-Planck coefficients which are related to the velocity diffusion coefficients
measured by observer in local Lorentz frame.

Keywords: black hole, relativistic kinetic equation, accretion, hot plasma

1 INTRODUCTION

Accretion onto a central hole is believed to be a reasonable model of active galactic nuclei
and black hole candidates to explain the powerful radiative flux emerging from a very
small volume. If a particle falls into the hole from the innermost stable circular orbit,
the released energy is estimated as 0.0572 and 0.4235mc? for Schwarzschild and extreme
Kerr black hole, respectively (m:rest mass of a particle, c:light velocity)(Ref.1). This
estimation is appropriate only for a cold disk. However, it is quite probable that the
accreting matter becomes hot and that the particle orbit is non-circular in the vicinity of
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the central hole. The particles interact each other, change their momentum and energy
by binary Coulomb scattering and their orbits are also changed. Such processes may play
an important role in the formation of jets or extraction of rotation energy of the black
hole. The distribution function of infalling particles into the hole and the released energy
are an open problem at present. In this paper, for the first step, we formulate Fokker-
Planck equation which treat accretion of a hot plasma onto the central hole taking account
for interaction between particles. One of the objectives is to determine the steady-state
distribution and consumption rate of particles orbiting a hole. We adopt the relativistic
kinetic theory derived by Kandrup(Refs.2-4). Section 2 presents basic assumptions and
focuses upon the derivation of relativistic Fokker-Planck equations appropriate for weak
and short range interaction between particles. Section 3 discusses the direction of future

research. In this paper we employ geometrized units(G = ¢ = 1) and M = 1 (M: mass
of a black hole).

2 MODEL

2.1 Assumptions

We make the following assumptions for accreting particles to which we apply the kinetic
theory. The assumptions are as follows:

(1) The distribution of particles is spherically symmetric.

(2) The ba.ckgroﬁnd geometry is described by the Schwarzschild metric, and selfgravi-
tation is neglected.

(3) The interaction between particles is described by ion-ion binary Coulomb scattering
and effects of electrons are neglected except that they assure the charge neutrality
of plasma.

(4) Diffusion approximation can be adopted.
Under these assumptions, we derive a relativistic Fokker-Planck equ.ation for accreting
particles.
2.2 Relativistic Fokker-Planck equation for accreting particles

When we ignore the effects of electrons on interactions between particles, the evolution
of the system is described by a kinetic equation for ions. Many authors have exten-
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sively studied about relativistic kinetic theory (Refs.2-7). Here, we adopt the formalism
of general relativistic kinetic theory derived by Kandrup(Refs.2-4). Kandrup formulated
a relativistic Fokker-Planck equation in a general form, which is appropriate for a col-
lection of N identical particles, evolving in some fixed background spacetime. The most
important assumption in his formalism is that the system is evolved via experiencing
elastic binary collisions and these collisions may be modeled as instantaneous pointlike
events, characterized by a transition probability. In other words, he supposed that these
interactions are sufficiently short range, or very weak. In this case, we may use analysis
of a one-particle distribution function as a reasonable first approximation to the exact
solution, which is frequently adopted for an analysis of collisionless systems.

Following Kandrup, we define a distribution function as a number density in the
phase space, characterized by the cotangent bundle over the spacetime manifold. The
eight-dimensional phase space volume element takes the form

d*V = d'V,d'V. = (—g)'d*p(—g)'*d*z = p*dodwdmdr = d"Vdr. (1)

Here d*V stands for a-dimensional volume element. p*,do,,7 and m denote a four-
momentum, an element of spacelike hypersurface, the proper time and the particle’s
mass. Because of the mass shell constraint m? = —p,p, only three of the four momentum
components are independent and diw is a three-dimensional momentum space element on
the mass shell.

The distribution function f(z®,p,) is defined as

DN(2*,pe) = (%, pa)dV = (", pa)ilm — v=papldmd'ads. (@)

Here DN(z*,p,) denotes the number of particles with mass m passing through the ele-
ment do, with momentum p* in the element dw at proper time 7. Under the mass shell
constraint, f is rewritten by f, a function of seven independent variables. Introducing
the transition probability, the relativistic Chapman-Kolmogorov equation is given by

DN(z* + p*A1/m,pa + KoAT)
= /(_g)-lhdispDN(zasPa - SPG)X(:‘“, P — Jpa; spav AT): (3)

where K, = '—’n-I‘;\mp',{. Here, §p, stands for the random increment in p, induced by the

inter particle forces and x is the probability that a particle located at the phase space
point {z*, p,) experiences a random increment §p, in the time interval Ar. We expand
the left hand side of Eq.(3) about DN(z®,p,) to first order in A7 and the right hand
side, to second order in §p,. Using the normalization of probability x
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/ (—9)72d*6px(2°, Pai 6Py AT) = 1, (4)

we derive the relativistic Fokker-Planck equation which takes the form

Df(z*,pa)
dr
= "'—[f(:: )pa)<6pa)1‘] + 28 (9 [f(z ;Pa)(tspaSPB)r] (5)
where
(672} = [(=g) /a8 5 X pei ipa,Ar) b,

, Pa; 6, enA
(6pabps)r = / (—9)7V 2445FX(z i Arp T)5Pa5rp-

On the analogy of stellar dynamics (Ref.8), we regard that f is a function of two
isolated integrals E and L, here E and L are energy and angular momentum per unit
mass, respectively. Following Kandrup (Ref.9), we take orbital averages of Eq.(5),

e . A ims 2
1 i

+ { S GEP + Sl (00 + 252 16 ESL)] )
where .
(6,E) = j{ dr(§E),, (6,L1) = f dr{5L),.

Here, 6,E and §,L are defined as the changes of E and L during one orbital period.
The quantities {(§E), and (§L}, represent the mean value of §E and §L per unit time.
(6,E) and {6,L) stand for the mean values of §,F and §,L averaged over many orbits,
with a similar definition for ((6,E)?}, {(6,L)*) and {§,E6,L).

We rewrite these Fokker-Planck coefficients in terms of quantities measured by an
observer in the local Lorentz frame.

E and L are rewritten as

E =vv-gu ("N
L= TUr = mEvT (8)
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Here (Ay)), {(Ay)?) and {(Av,)?) are the velocity diffusion coefficients. The symbols
| and L stand for the directions parallel and perpendicular to #, respectively. We as-
sume that related velocity diffusion coefficients are given by the Newtonian value. The
velocity diffusion coefficients are calculated by giving the distribution of field particles
and the Fokker-Planck coefficients are then determined (Ref.8). To be self-consistent, the
distribution of field particles should be also described by f(E,L). We solve Eq.(6) for
the steady-state distribution function f(E, L) (%f- = 0) by the following procedure. We
give a certain initial distribution function of field particles, from which we compute the
velocity diffusion coefficients and the Fokker-Planck coefficients. For these coefficients,
we solve f(E, L) which is then used as a new field-particle distribution to compute a
new Fokker-Planck coefficients. This procedure is iterated until a converging solution is
obtained. The numerical code is now being developed.

2.3 Boundary Conditions

As mentioned in section 1, the objective of our work is to investigate the steady state
distribution of a hot plasma around a hole. To solve the Fokker-Planck equation derived
in subsection 2.2, we set four boundary conditions in E-L-space as shown in Fig.1. Though
each particle travels in various orbits determined by E and L, we pay attention to particles
in bound orbits around a hole. For Schwarzschild geometry, bound particles have energy
in the region, \/8/_9 < E < 1, and angular momentum, Jmin(E) < L < Jmaz(E) for each
E. Jnin(E) corresponds to a particle which travels in the marginally impinging orbit and
particles with L < Jmin(F) fall into the hole. Jmaz(E) corresponds to a particle which has
Keplerian circular orbit and no particles with L > Jinaz(E) exist. Jmin(E) and Jmaz(E)
are given as follows, respectively.

p= (-2 (1+5) (1)
=3 (1) o

Under the above constraint, bound particle is subject to the following boundary con-
ditions:

(1) The distribution function f(E,L) =0 at L = Jnin(E).
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(2) The distribution function f(E,L)=0at E =1.

(3) Flux of particles in the direction perpendicular to Jpnqe.(E) equal to zero, that is,
Ai-Vf(E,L) = 0. Here i is normal vector to Jma=(E).

In addition to the above boundary conditions, we should give an appropriate condition
on incident particles at L = Lpy,..

E_
mc
b
1ﬂ ? 1 1 I
Emax “T
*T Linax
Jmin “T
Jmax
/.8_
9 _ L
© Mm

W3

Fig.1 The boundary conditions in E-L-space

3 CONCLUDING REMARKS

In this paper, we have formulated the Fokker-Planck equation for a hot plasma around a
massive black hole with the boundary conditions to solve it numerically. We formulated
the Fokker-Planck coefficients for the particles under assumption of spherical symmetry.
Numerical calculations is now under way. In future, we will study more realistic prob-
lems. For example, in order to treat an accretion disk, it is necessary to improve these
coefficients for the case of axisymmetric systems. Although we ignored effect of electrons
on interaction between particles, this must be taken into account to know behavior of a
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plasma in realistic situations. When a hole rapidly rotates, particle orbits can be located
still more close to a hole. It is one of interesting problems how rotation of a hole affects
on a surrounding hot plasma.
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abstract : We studied a magnetosphere interaction model with orbiting objects for
y-ray bursts with the picture of a current circuit which consists of the magnetosphere
and the surface of a neutron star. The motion of objects, which is a good conductor and
rotating in the magnetosphere, works as the battery in the circuit system. The physical
condition on the surface of the neutron star is important to make a closed current circuit
inducing good conversion from the kinetic energy of a rotating objects to that of the
magnetosphere oscillation. An old and cooled neutron star with the temperature ~ 10eV
can prepare the condition for closing the current circuit in the surface of the neutron star.
The magnetosphere system is unstable to feedback instability related to the variability of
the 4-ray bursts.

Introduction
Gamma-ray bursts have been still a unsolved problem in astrophysics for fifteen years since
their discovery of Klebesadel et al. (1973). Recent observetions show the sources have
strong magnetic field ~ 10'?G which is consistent with the model of cyclotron absorption
for the observed spectrum feature (e.g. Murakami et al. 1988). Neutron star is only
one object whose magnetic field is strong enough to explain these strong field evidence
in our known objects in the universe. It suggests that gamma-ray bursts occur around
the neutron star with strong magnetic field. It was investigated that the magnetospheric
plasma oscillations accelarete energetic electrons which can produce y-ray ( Melia 1990).
Some possibilities for excitation mechanisum of the transient magnetospheric pertubations
have been proposed to account a starquake (Blaes et al. 1990), neutron star rotation or
a episodic accreting object (Harwit and Salpeter 1973). However, the total picture for
these magnetospheric oscillations and gamma-ray bursts still stands as an open question
in front of astrophysical theorists.

Recently some discoveries of planets around pulsars were reported. Wolszczan and
Frail (1992) observed the evidence for the existence of planets around the millisecond
pulsar PSR1257-12. These planets are about several times the mass of the Earth.

This discovery encourages us to consider that neutron stars can have planets around
itself generally (e.g. Nakamura and Piran 1991). This picture naturally arrows us to an
interesting speculation, in which planets and also comets, rotating in the magentosphere of
the neutron stars, drive gamma-ray bursts. We find similar situation to Jovian decametic
radiation related to the interaction between strong magnetic field of Jupiter and one of its

—334-



satellite Jo. One popular interpretation is that electrons or ions are somehow accelerated in
this system with plasma instabilities (Goldreich and Lynden-Bell 1969). This view point
for the Jovian decametric radiation may be expanded to the picture of the electrodynamics
of neutron star with the objects orbiting in it.

This paper deals with the electromagnetic coupling using current circuit analogy be-
tween the magnetosphere and the objects rotating around a neutron star and the possibilty
of strong particle acceleration for gamma-ray bursts.

Current Circuit with Magneotosphere
The starting point is that owing to the motion of a object with relative velocity v, through
the corotating magnetosphere, an induced electiric field E;,q4 = !cl x B appears in the
flame of the object. If the object is a good conductor, the electric field will be screened
by induced surface charges, so that the magnetic field in the column through the object
is zero. In the neutron star frame, there is an electric field due to these charges which is
uniform inside the column and given by E, = —E;,4. We can understand the rotating
motion of the object produces the electric potential gap in the circuit which is connected
by the magnetic field column between the objects and the surface of the neutron star. It
is shown schematically in Figure 1. We will assume that the axes of the magnetic moment
of the neutron star is perpendicular to the plane of the object orbit.

The circuit is closed by currents in the surface of the neutron star which should have
Pedersen conductance sufficient to carry current accross the magnetic field. The closed
circuit with Pedersen current may work for a particle acceleration.

For the collisionless plasma, then, we can easily see that the current cannot flow along
the electric field even if we have strong parpendicular electric field to the magnetic field.
Since the plasma in magnetosphere is collisionless, there exists no Pedersen current in the
magnetosphere. On the other hand, for the collisional plasma, we should point out that
the current can flow along the electric field even if it is perpendicular to the magnetic
field. Especially, the Pedersen current takes the maximum when the collision frequency
Vei = 3 x 10"®(n./3 x 10%cm=>)InA(T/10eV)~3/? has the same order of the cycrotron
frequency w. = 1.8 x 10'%(B/10'3G) for electrons. These results show us that Pedersen
current can flow most efficiently in the surface layer (n, = 3 x 10%cm™?) of neutron star
cooled with its temperature T' = 10eV.

From the consideration of the mobility, we consider two zone model which consists of
the magnetosphere and the surface layer, which are approximated to ideal MHD current
and Pedersen current system, respectively.

It shows that the coupling process between the magnetosphere and the surface gener-
ally induces the spontanious excitation of Alfvén wave with a AC current in the magne-
tosphere.

High Energy Particle Acceleration with Alfvén wave
The coherency of the excited wave takes an advantage for the particle acceleration. More-
over, the accelerated particle can be converted to the high energy photon like observed
v-ray . Then, using the numerical simulation code (Hoshino et al. 1992), we are try-

—335—




mirrors reflect the beams back to recombine at the beam splitter
forming an interference pattern.

In the proper reference frame of an observer, where the speed
of light is nearly constant, the force of gravitational waves on a
mass is proportional to the mass's coordinate position. Therefore
we can consider that end masses are shaken back and forth by
gravitational waves, whereas the beam splitter is at rest. The
relative change in the position of the end mirrors is then measured
by the light whose speed is constant, resulting in a change in the
interference pattern. This description of gravitational wave forces
is accurate only if the region of interest is spatially small enough
compared to a wavelength of the gravitational wave.

When the arm length is larger, TT coordinate system should be
used, where the spacetime metric can be regarded as the Minkowski
metric with a small perturbation due to gravitational waves. 1In the
TT coordinate system, gravitational waves don't impart any force on
masses which are falling freely, while they modify the speed of
light. Consequently the optical path difference, measured by such
modulated light, is altered and the interference pattern is changed.

Laser interferometers are ideally suited for detecting
gravitational waves, because changes of opposite sign will be
induced in the arms for a suitable gravitational wave. And the
difference in phase between the reflected beams can be increased by
scaling up the arm length. However, above an optimum total optical
path length, which is equal to half of the wavelength of the
gravitational wave, the gravitational wave changes its sign and the
difference in phase between two beams caused by the gravitational
wave is partially or totally canceled.

The optimum arm length for a 1kHz gravitational wave is 75km.
Since it is rather money-consuming to build a 75km vacuum tank, two
methods for achieving long storage time with a short arm length have
been tested: delay line type and Fabry-Perot type.

In the delay line type interferometer, a beam is folded many
times in the arms using additional mirrors; the gravitational-wave
signal can be multiplied by the number of reflections of the light.
The other method employs resonant Fabry-Perot cavities in each arm.
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On the other hand, Rainer Weiss and several other researchers
had come to seize on the idea of using light beams to detect
gravitational waves 3. The first detector that used laser interfer-
ometers was build by Robert Forward 4). Since then, several groups
over the world have developed laser interferometer detectors 5 61 7,
and most experimentalists have come to believe that interferometers
should ultimately be more sensitive to gravitational waves than bar
detectors.

At present a several projects for constructing km-class laser
interferometer detectors are going on or will soon start in the
world. Among them the most promising and the most advanced one is
the Laser Interferometer Gravitational-Wave Observatory (LIGO)
project. In near future LIGO is likely to open a totally new window
onto the Universe -- a window based on gravitational waves rather
than electromagnetic waves.

2. Principle of Laser Interferometer Detectors

The simplified layout of a Michelson interferometer is shown
in figure 1. A beam splitter splits a beam of light into two beams
of equal amplitude propagating in orthogonal directions. All
components are suspended by wires so that they respond as practi-
cally free masses above the resonant frequency of the pendula. End

WIRE

MIRROR

TEST
MASS

BEAM-
SPLITTER

LASER

PHOTODETECTOR

Fig.l Principle of laser interfercmeter antennas
for detecting gravitational waves.
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5. The 40m Prototype 7

A 40m prototype on the Caltech campus is an important testbed
for full scale LIGO interferometer. Figure 4 shows a schematic
diagram of the 40m prototype interferometer. An argon ion laser is
servo prestabilized in frequency by the RF modulation technique to a
mode cleaner cavity, which serves as a spatial mode filter as well
as frequency reference. A power stabilizer samples and controls the
amplitude of the light transmitted through the mode cleaner. The
beam is then directed to the beam splitter, each resulting beam
enters one 40m cavity. The frequency of the light is stabilized by
the RF technique to the primary cavity, and then the secondary
cavity is locked to the stabilized light. The required correction
in the secondary cavity servo is proportional to the difference in
natural lengths of the primary and secondary cavities, and thus to
the gravitational wave strain.

VACUUM ENCLOSURE

=
[

DATA RECORDNG
AND READQUT 22571

Figure 4. Schematic diagram of the 40m prototype.
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The bottom spectrum in Figure 5 is the 40m prototype's
displacement performance in June 1992. Progress of the sensitivity
since 1984 is also illustrated. The 1992 spectrum shows a number of
peaks, superimposed on a smooth background. All of these peaks can
be removed with further work, except peaks due to thermally excited
vibrational modes of the test masses' suspension wires. At high
frequencies (above 1kHz), the noise is dominated by shot noise and
is consistent with the level predicted for the current laser power
and interferometer optical configuration. At low frequencies (below
120Hz), the observed noise is due to ground vibrations coupling
through the suspensions to the test masses. In the intermediate
region, the noise spectrum contains contributions from a number of
sources, whose relative importance varies with frequency.

Experiments performed on the 40m prototype together with other
special purpose set-ups give us confidence that the fundamental
noise sources are understood and the LIGO noise performance goals
can be achieved.
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Figure 5. Displacement noise of the 40m prototype.
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6. LIGO Facility

LIGO will consist of two widely separated facilities {Hanford
in Washington and Livingston in Louisiana). It is necessary to
cross correlate data from the detectors at the two sites to
distinguish real gravitational-wave bursts from local noise. Each
LIGO facility will consist of a 4km x 4km L-shaped vacuum system
with access ports to the vacuum at corner-, end-, and mid-station.
The laser beams must travel through a high vacuum in order to avoid
spurious phase shifts due to fluctuations in the scattering by gas
molecules. LIGO construction is proposed to be staged over three
phases. LIGO's Phase A configuration is the minimum that can house
a three-interferometer detector system, consisting of two full-
length and one half-length interferometers (Figure 6-a). This
Phase A configuration has been designed to permit an upgrade into
the configuration. The upgraded LIGO (Phase C), as shown in Figure
6-b, can house three independent such detector systems that operate
simultanéously without interfering with the operations of the
others, and without breaking the main vacuum. Figure 7 shows how
this capability is designed in the vacuum chambers housing the test
masses.

7. Detectability of Astrophysical Signals

The capability to measure waveforms from astrophysical events
depends on both the strength of the signals and the rate of their
occurrence in order for the signal to be distinguished from detector
noises. The only amplitude that presently can be calculated with
reasonable certainty is that of coalescing neutron stars or black
holes. With the rate of neutron star coalescences, which is
reasonably well known, Figure 8 shows that LIGO's initial detectors
will be about good enough to detect three neutron star inspiral
events per yeér with the "optimistic® event rate, and the advanced
detectors will be about good enough with the *ultraconservative®
rate,
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@® Test Mass Chomber (Type2)
s Beom Splitter
© Beom Splitter Chamber
®m Lgser & Input Optics
O Output Optics
— Laoser Beom

00 -© ® -®
Site 1 Site 2
Phase A Phase A

Figure 6-a. LIGO Phase A configuration

SYMBOLS
0 Test Mass
© Test Mass Chamber (Typel)
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Figure 6-b. LIGO Phase C configuration
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Figure 7. Concept of LIGO test mass chamber.
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Figure 8. Expected gravitational wave signal and
noise in LIGO detector.

8. Conclusion

The initial LIGO, that will use only the technology now in
hand, will be operational in 1998 under the current schedule. This
initial LIGO detector may discover gravitational waves. If not,
then experimenters will press forward with detector improvements
(for which development is already underway), leading toward the
advanced LIGO.

These improvements are expected to lead to the
detection of waves from many sources each year. The scientific
community can then begin to harvest the rich information carried by
the waves.
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Introduction

64 element Radio Patrol Camera alL Waseda University is observing the
radio sky with a 200 GOPS direct imaging processor - FFT based Digital
Lens-[1]. Since each clement of the array anntena is a 2.4m¢ dish, the
toal collective area is the same as a 20m¢ single dish. The processor
generates 64 pixels in every 50 ns. Thus, it surveys the sky 64 times
fast as a 20m¢ single dish.. At first, we will search transient radio
sources like Cyg X-3 or SS 433. In next step, we will extend the present
2D processor to a 5D processor for the pulsar survey.

Ergodic and MNon-ergodic Signal in Imaging([2]

OQur system is a direct imaging one for both ergodic and non-ergodic
signals. It requires the maximum redundant configuration in the array
designe. This means the strategy of sensititvity maximum. Algorithm in
our Digital Lens is a spatial FFT, and it preserves the phase of the
radio waves processsed. Signals of pulsars or comunications are non-
ergodic. So, Digital Lens could be used for pulsar survey.

2D to 3D, 5D Signal Processing - Spatial and Temporal and more -

Phase rotation is done by the complex multiplyings befor 2D spatial
FFT in Digital Lens, and each pixel(or beam) could track pulsars inde-
pendently. The present Digital Lens transforms 8x8 complex amplitude
data of. E{u,v) in the real space(array plane) to 8x8 complex amplitude
E{a,&) in momentum space(k space), every 50 ns. This 2D processsor has
capability to be extended to a 3D processor. That is, combinning the two
Digital Lens could transform 8x8x64 3D complex data of E(u,v,t) to 3D
conplex data of E(a,&,f), every 50 ns. After squering and integratig
the data, they will be analysed by the floating point 2D FFT processors
for searching Lhe periods and the dispersion measure. This is 5D signal
processing for pulsar survey, which we are designing . When we use l5m¢
x 64 array, the sensitivity is better than Arecibo.

Referencs

(1)T.Daishido, XXII URS! General Assembly(Prague), Abstracts Vol.2, Ji,
689, 1990

[2)T.Daishido, K.Asuma, K.Nishibori, J.Nakajima, M.Yano, E.OLobe,
N.¥atanabe, A.Tsuchiya, S.Iwase, Radio Interferometry: Theory, Technique
, and Applications, A.S.P.Conf.Series, Vol. 19, 86, 1991
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Survey of the galactic transient radio sources with
the Spatial FFT Interfrometer

Eiichiro Otobe * Juntchi Nakajima * Tomohiro Saito *
Naoki Tanaka * Hiromi Kobayashi * Naoki Watanabe !
Yoshitaka Aramakit Tuneaki Daishido *

1 Introduction

We have constructed the two-dimensinal Spatial FFT Interferometer using
Digital Lens(the complex amplitdue equalizer + 2D FFT) at Waseda Uni-
versity to survey transient radio sources such as Cyg.X-3,55433, LSI61°4-303
and radio supernovae at frequency range 10.6 ~ 10.7GHz. The Large Ar-
ray (overall size 22.9m (north-south) x 21.5m (east-west)) is consituted
of 8 X 8 = 64 equally spaced array antennas,so that this interferometer is
a maximum redundant array. Two dimesional images are obtained as the
convolution of point spread function and the switched-beams synthesized
- by the Digital Lens. Hence , the complete system will provide 0.07° x 0.07°
angular resolution and sensitivity of ~ 500mJy. We have obtained the first

*Department of Physics, Gradnate School of Science and Engineering, Waseda University, 3-4-1 Ohkubo
. Shinjuku-kn , Tokyo 169.

tDepartment of Electronics and Comunications, Graduate School of Science and Engineering, Waseda
University, 3-4-1 Ohkubo , Shinjuku-ku , Tokyo 169.

!Department of School of Sciece and Education, Waseda University , 1-6-1 Nisthwaseda Shinjuku-ku,
Tokyo 169.

This papaer is the preprint for the 37th Yamada Conference "Evolution of the Universe

and its Observational Quest” on 1993 June 8-12.

—352—-



two-dimensional switched image of Tau.A with the the partially completed
arrays. ‘

2 Two dimensinal Imaging

Fourier synthesis radio telescopes are designed to obtain the fine angu-
lar structure of radio sources by a minimun redundant array. They are
indirect imaging system. However, the Digital lens can synthesize the two-
dimensinal sixty-four fan beam simultaneously;the digital lens is the facil-
ity of direct imaging [T.Daishido91]. The eleciric fields E(z.t) disiributed
on the Large Arrayy are superimposed radiation from the whole sky. Cor-
respondingly with the directional vector k,the electric fields E(k, t) have
the different spatial frequency on the array ,where k = (27 /A;, 27/ A,).
The radiowaves FE(x,t) are spatially sampled with the array where =
=(mD,nD) (D : minimun baseline) and using the spatial FFT, we can
directly obtain the electric fields E,;(k, ¢) in momentum space. Because
E, (k, t) is related with E(z, t) by Fourier transform
N N ; ;
Bk 1) = 5 jivgomz:o E(z, t)explik - - i27;\‘;n _ izj\',m) (1)
E, ((k, t) and the intesity I(k) = (E*(k)- E(k)) are the direct observable
value, while I(k) are indirectly obsereved in Fourier synthesis telescopes.
Therefore, two dimensional image of 8 x 8 pixels is obtained in the present
system.

3 Observation and Results

The obsevation of Tau.A were made on 1992 December 30 ,using the 5
east-west arrays each of which is composed of 8 elements. Each element is
a 2.4myp cassegrain antenna of which the feed is equiped with the low noise
reciver of 200K system temperature. The integlral time is 2.048sec and the
center frequency and the bandwidth is 10.65GHz and 20MHz respectively.
The phase errors in analogue transmission lines from antenna to base-
band, including PLO, can be controled by the complex equalisers on FFT
boards. [K.Asuma9l]. The relative phase error of two elements were
measured from the fringe period and peak shift value of time from transit
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time of Cas.A, observed on 1992 December 29. The complex equalizer
is also used in phase swiching for reducing gain fluctuation effects in the
recievers. Figure.l is the two-dimensional image of Tau.A. It is seen that
Tau.A passes over the synthesized beams.

Fig.l.Two Dimensional Image of Tau.A. 64-pixels correspond to the 64 direc-
tion. The right fignre shwos the 10sec later image of Tau.A than that in

ithe left figure.
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ABSTRACT

We have performed numerical simulations of coalescence of binary neutron stars
using a Newtonian hydrodynamics code including radiation reaction by gravitational
waves'! | In order to examine the effect of spin and plunging velocity, we start the

simulations from three distinct types of the initial conditions.

1) To see the dependence of results on the initial separation of binary, a Roche solution
of separation 27km, each mass ~ 1.5Mg and each radius ~ 9km, respectively, is given
as the initial condition. We found that the evolution sequence and the wave form of
gravitational waves are essentially the same as those in the previous simulations in which

computations are started when two neutron stars just contact.

2) We include spin of each star with —Q, where 2 is Keplerian angular velocity of orbital
motion, which is required from the conservation of the circulation. We found that the
wave pattern has high amplitude oscillation after coalescence contrary to the former
case. This means that it will be possible to determine the spin of coalescing neutron
stars from the observed wave form of gravitational waves. The maximum amplitude of

gravitational waves is 3.4 x 10~2! for a hypothetical event at the distance of 10Mpc.
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3) We include the plunging velocity half times as large as the Keplerian velocity. The
plunging velocity is realistic at the final coalescence phase because in binary neutrons
system the last stable circular orbit will exist. We found that at first two neutron stars
coalesce like a head on collision and then the coalescing object becomes the double core
structure. This structure is kept considerably long time because the angular momentum
is not lost so efficiently until contact. The wave pattern of gravitational waves is also at
first similar to that in the case of the head on collision and then similar to that in the
coalescence of spinning neutron stars. The maximum amplitude of gravitational waves

is 3.6 x 102! for a hypothetical event at the distance of 10Mpc.

1. Introduction

There are at least three neutron star-neutron star binaries, PSR 1913416, PSR
2127+11C and PSR 1534+12 in our galaxy. This suggests that about one percent of
neutron stars are in the binary system. These binaries will coalesce within 10® ~ 3 x 10°
yr due to the emission of gravitational waves. The statistical analysis shows that the
binary coalescence may occur ~ 1 event par year within the distance of ~ 100 Mpcm
B Therefore coalescing binary neutron stars is one of the most promising sources
of gravitational waves. Nakamura and QOohara performed the post-Newtonian three
dimensional simulations including the radiation reaction of gravitational waves to know
the amplitude and the wave form of gravitational waves at coalescing events!!) 1 [
M They found that the maximum amplitude of gravitational waves is ~ 102!
for a hypothetical event at a distance of 50 Mpc. This suggests that the sensitivity of
LIGO(Laser Interferometric Gravity Wave Observertory) project will enable us to know

the final phase of the coalescence.

Calculations by Nakamura and Oohara were performed for the various initial con-
ditions, but we must argue the following two points. In the calculations of Nakamura
and Oohara, the initial neutron stars are rigidly rotating around the center of mass.
However as recently suggested by Kochanek!® , if there is no or small viscosity in the
system, the neutron stars must have spin from the conservation of the circulation while
their separation decreases due to the emission of gravitational waves. Accordingly the
initial conditions of Nakamura a;ld Oohara is correct only when the viscosity works

sufficiently in the system until the coalescence. If the sufficient viscositly does not exist
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in the system, we must consider the initial condition in which the neutron stars are

spinning.

There is another point to consider in coalescence of binary neutron stars. Recently
Lincoln and Will® and Kidder et al'® showed that taking into account the general
relativistic effect, there exists the last stable circular orbit for binary neutron stars
similar to that for a test particle in Schwarzschild space-time. According to them, if
the separation of binary shrinks within ~ 4 — 5Mig , where M, is the total mass
of the system, the binary cannot keep the circular orbit and each neutron star must
plunge into each other. They also showed that in the final phase of the coalescence,

approaching velocity of binary becomes comparable to the orbital velocity.

Considering the above points, we use the initial condition in which each neutron
star has spin angular momentum assuming that the viscosity does not exist in the
system. We also use the initial condition, in which binary neutron stars initially have
approaching velocity comparable to the orbital one using the present code in this paper
although in our code the effects of general relativity except for radiation reaction are
not included. In section 2 we show the basic equations. In section 3 the initial models
are shown. In section 4 we show the numerical results. In section 5 we discuss the

astrophysical implications of our results.

2. Basic Equations

The basic equations are the three dimensional hydrodynamics equations with a back

reaction potential proposed by Blanchet et al' Although we should evaluate post-
(17]

Newtonian terms up to 2.5PN order , in this paper we only include the radiation

reaction terms.

o))

The basic equations are as follows

bp
ot

dpv*

t o

=0, (2.1)

» Note that in the Newtonian approximation, the isotropic coordinate are used as a radial coordinate.
Hence these values are in the unit of the isotropic radial coordinate. In the Schwarzschild radial
coordinate, these become ~ 6 — 7M.
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dpw'  Opuivi _ OP  O(Y + Yrean)

ot + S T 9z ' 2.2)
Ope 0pev’ Ot

Bl + - p = P-a;;, (2.3)

P = (T -1)pe, (2.4)

Ay =4xGp, (2.5)

AR = 4nG( Ly i O2. (2.6)

4 a I g '

.. 4G, :

v=w +§(d_t3Dij)wJ’ (2.7)

_2G @0y
'»bread = —5—(R - (F{Du)z’b—z,’)r (2'8)

The symmetric trace-free part of the quadrupole moment D;; and its third time deriva-

tive can be obtained by
Dj; = STF( / pzizidV)

and

& Qi 8y Oy dpv* 8¢
o .,-STF[?/(2P ~tpugh 4 e bl — e BNaY), (29)

where the notation STF means

STF(@i) = 5(Qi + Qi) - 36iQs

L

The time derivative of the gravitational potential v is determined by

dpv*
Ay = —4rGE2 8” - (2.10)
We take the units of
M=My, L= GMO =15km, T = % =5 x 10 3 msec. (2.11)

We fix the polytropic index T' = 2.
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and
Ay = 47Gp. (3.2)

Eq.(3.1)is the integrated representation of equation of motion and A = 2Kp. To deter-
mine the solution, we must fix three parameters. We fix the innermost points of the
stars, the centers of the neutron stars and the density there. Solving the above equa-
tions by the iteration, we obtain an equilibrium model. In this case, the mass of two
neutron stars and the orbital angular velocity are determined only from the equilibrium

model.

In the case that two neutron stars have spin, we do not know how to determine
an equilibrium model because this is a similar problem to determine the Dedekind

(3]

configuration . However as for an axisymmetric rotating star, we can obtain the
equilibrium configurations. We here consider axisymmetric equilibrium rotating stars as
the initial condition for each spinning neutron star. This initial condition is consistent
if the tidal force is much smaller than the self-gravity. An equilibrium axisymmetric

rotating star is determined by

p= H lpgric- ¥, (3.3)
and
0 2,0
1-2 81' s a'f 70z =l 1/)] = 4G, (34)

where z = cosf. To solve these equations, we must fix three quantities. In the absence
of viscosity, the circulation should be conserved, so that each neutron star should have
spin angular velocity the same as the Keplerian angular velocity with opposite sign.
Hence the angular velocity is fixed contrary to the usual case. We also fix the density
at the center and the major axis of the star. A numerical method to solve the above
equations is as follows. 1) We expect the trial density configuration and using this we
solve the axisymmetric Poisson equation (3.4). 2) The constant C and the polytropic

constant K are determined by

Ye+2Kp.=C

3.5
e — %Rﬁﬂ’ =C, (3:8)

where 1., ., pc and R, are the Newtonian potential at the center, the Newtonian
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potential at the surface of the star in equatorial plane, the density at the center and
the major axis of the star, respectively. 3) Using Eq.(3.3), we determine the new trial
density configuration. The procedure 1), 2) and 3) is repeated until convergence. We
use an axisymmetric rotating star determined by the above method as each neutron
star of the binary. As a result, it is found that the virial equilibrium is almost satisfied.

This means that the solution seems to be almost in a true equilibrium.

4. Numerical Results
4.1 EVOLUTION SEQUENCES FOR DENSITY CONTOURS

We show the contours of the density and the velocity vectors on the z — y plane for
Model I, II and I in Figs.1, 2 and 3. In both Model I and Model II, at ¢ $ 1msec, the
orbit of the neutron stars shrinks radiating almost periodic gravitational waves. After
the coalescence, however, two models show the different evolution sequences. In Model
I, in the outer region the spiral arms are formed and in the inner region the ellipsoidal
core is formed(t > lmsec). Then the spiral arms gradually wind round the core by
differential rotation and become axially symmetric disk. On the other hand, in Model
I, in the outer region, there is no spiral arm, so the configuration becomes a nearly
axially symmetric disk soon. This result seems to be reasonable. Since the velocity of
the outer region is smaller than in Model I due to the spin retrograde to the orbital
motion for each neutron star, the centrifugal force is weaker than in Model I. In the inner
region, the neutron stars are gradually coalescing because of the enhanced centrifugal
force, so that the double core structure is kept for a long time. By the radiation reaction,
the double cores merge at last. It does not become the rotating ellipsoid, but the ring.
At t ~ 3msec, B = T/|W| of the system is 0.143. This value is slightly larger than
that at the secular instability limit(*¥) (8 5 0.14). In the model EQS of ref.[5] the ring
slowly evolved to a disk, so that it is expected that the disk is formed in the subsequent

evolution.

In Model III we put the approching velocity half times as large as the Keplerian
velocity. Due to the approaching velocity, two neutron stars coalesce soon (¢ ~ 0.2msec).
After the coalescence, the cores of the neutron stars not only rotate around the center

of mass, but also oscillate radially like i;l a head on collision of the neutron stars!*’]
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Because of the large centrifugal force, they behave like a binary until £ ~ 1ms. Due
to the emission of gravitational waves they merge, but in the inner region the double
core structure is formed({ ~ 1 — 1.5ms) and this structure is kept for a long time. In
particular for ¢ & 2ms the nearly stationary state can be seen. For { R 2ms, 8 converges
at ~ 0.15 and for { ~ 3ms the system becomes almost in virial equilibrium, that is
(2T + W + 3I)/(2T + [W| + 3II) ~ 10~3, where Il is the thermal energy. However
B is larger than the value at the secular instability limit ~ 0.14" . Therefore the
double core will evolve the axially symmetric structure radiating gravitational waves in
the much longer time scale than the dynamical time scale. Let us estimate the time
scale for the system to become axially symmetric. § will become less than 0.14 if about
5% of the angular momentum is lost by the emission of gravitational waves. The time

(el

scale of this process is expressed as
T~ 0.0510(%3)-‘, (4.1)

where J is the angular momentum of the system, § is the rotational period of the double
core and dE/dt is the luminosity of gravitational waves. At the end of the calculation,
J =34, Q~ 0025 and dE/dt ~ 5 x 10~%, so that 7 ~ 750 in non-dimensional unit.
Therefore we stopped our simulation at { ~ 670 to save the computational time. 8 is
also larger than that in Model II. This is because the angular momentum is not lost so

efficiently until contact.

4.2 GRAVITATIONAL WAVES

In Figs.4, 5 and 6 we show the wave forms k4 and hy of gravitational waves observed

on the z-axis at 10 Mpc in Model I, II and III. They are defined by
(4.2)

In Figs.7, 8 and 9 we also show the luminosity of gravitational waves calculated by

dE _ 1 d*Dy

dt ( de3 =) (43)

In Model I the wave forms are made of the three part. One is the periodic wave

part(? S Imsec). The second is the burst part induced by the coalescence of the neutron
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stars({ ~ Imsec). The third is the damping part(t & 1msec). Contrary to Model I, the
wave form of Model II is composed of the four part. The first, the second and the last
part have the same tendency as Model I. However after the coalescence(t R lmsec), it
shows different tendency: The high amplitude oscillation continues for several times.
This difference of the wave form also affects the time variation of the luminosity. In
Fig.7 the peak of luminosity appears at the moment of the contact of the neutron stars
and then the luminosity decrease exponentially. On the other hand, in Fig.8 after the
first peak appears, the second large peak appears again. This is because in Model II the

double core structure is formed after the coalescence and it oscillates before merging.

In Fig.6 we show the wave forms of Model III. It is found that the wave forms are at

(13]

first similar to that in the case of the head on collision'"™" and then similar to those in
the coalescence of the spinning neutron stars with no plunging velocity(Model III). In
particular for ¢ S 1ms, the wave forms are quite similar to that in the head on collision:
At first a burst peak is observed(t ~ 0.2msec) and then the small peaks induced by the
radial oscillation are found. After { ~ 1ms, the wave forms resemble those in Model
II. Because the binary-like structure is kept till £ ~ Ims, the peaks of the periodic
waves are found. For { > 2ms, the nearly stationary double core structure is formed,

so the periodic waves are emitted. Because of the emission of gravitational waves, the

amplitude of gravitational waves dumps little by little.

In Fig.9 we also show the luminosity of gravitational waves calculated by

dE ___1_ daD,‘j

@ -5t (4.4)

At t ~ 0.2ms, the large peak is found. As mentioned above, it occurs at the moment
of the contact of each neutron star. In the case of Model II, the second large peak was
found after the contact. However in Fig.9, such peak is not found and instead, several
small peaks are found till ¢ ~ 1ms. This tendency is also similar to that in the case of

(1)

the head on collision of two neutron stars' ' . However for ¢ & 1.5ms, the luminosity
curve is similar to that in Model II. This is because in both model the double core is

formed at the late stage of the evolution.

In conclusion, the wave forms are considerably different in the case that the effects

of the conservation of the circulation and the plunging velocity are included. Inversely
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if gravitational waves from coalescing binary neutron stars are detected, we may know
whether each neutron star had spin and plunging velocity before the coalescence or not.
If the spin is not so large, this means that the viscosity was very effective before the

coalescence.

5. Discussion and Summary

The maximum amplitude of gravitational waves observed on the z-axis at 10 Mpc
is 4.0 x 102!, 3.4 x 10~?! and 3.6 x 10~2! for Model I, II and III. The efficiency
of the gravitational wave emission amounts to 2.6%, 2.3% and 1.4% for Model I, II
and III. The efficiency in Model III is smaller than those in Model I and II. This is
because the angular momentum is not lost so efficiently until coalescence. In Model 11
and III, a fraction of the angular momentum loss is 38% and 32%, respectively. More
angular momentum is lost, more gravitational waves are emitted, so that our results
are reasonable. J/M?*(= a/m) ~ 0.4 in all models and total mass of the coalescing
objects exceed the neutron star mass limit, so the final product's are expected to be
slowly rotating black holes. In conclusion, the amplitudes of gravitational waves are
not changed if the effects of the spin and plunging velocity are included. However the
wave form and the efficiency of the emission of gravitational waves is not the same in
each model. Therefore if gravitational waves from coalescing binary neutron stars are
detected, we may know whether each neutron star had spin and plunging velocity before

the coalescence.

The numerical calculations were performed on HITAC S820/80 at the Data Handling
Center of National Laboratory for High Energy Physics (KEK) and FACOM VP2600
of Data Proceeding Center of Kyoto University. This work was partly supported by a
Grant-in-Aid for Scientific Research on Priority Area of Ministry of Education, Science
and Culture(04234104).
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Gravitational Wave Induced by a Particle
Orbiting around a Schwarzschild Black Hole

Takahiro. Tanaka! Masaru. Shibata! Misao. Sasaki!
Hideyuki. Tagoshi! and Takashi. Nakamura?
IDepartment of Physics, Kyoto University, Kyoto 606-01, Japan
*Yukawa Institute for Theoretical PhysicsKyoto University, Kyoto 606-01, Japan

1 Introduction

Coalescence of two compact objects, such as Black Hole-Black Hole, Black
Hole-Neutron star and/or Neutron star-Neutron star binary is one of the promis-
ing source of gravitational waves. To investigate the gravitational waves radiated
in this process, the completely relativistic numerical calculation will be necessary.
But now there are many technical problems to be overcome to achieve the 3D

fully relativistic numerical calculation.

Instead, different approaches ,i.e., A) hydrodynamical simulation in Post-
Newtonian approximation , B) two body problem in Post-Newtonian approxima-
tion, and C) relativistic perturbation by the test particle approximation are stud-
ied extensively. As for A), Nakamura, Oohara and Shibataf?*! performed 3D
calculation of coalescence of neutron stars with a wide range of initial conditions.
They showed how the gravitational wave emission depends on the post-Newtonian
effect, the spin of each neutron star and the plunging velocity. However their sim-
ulations do not give the final answer because the reality of the initial conditions
they used, though seems plausible, has not been justified, not to mention the
need of a fully general relativistic treatment. As for the evolution of the orbit
before merging, there is the approach B). Lincoln and Will,w and Wiseman®
performed P3/2N calculations with radiation damping using the point particle
approximation. They found that for two equal mass particles, the final plunge
orbit begins around r = 8M;, where the radial velocity becomes equal to the

circular velocity. However, as is pointed out by Cutler e? al.,[G] to improve the
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signal-to-noise ratio in the detection of gravitational waves from a coalescing bi-
nary, we need to know the more accurate wave form theoretically, and to prepare
reasonable initial conditions for future 3D relativistic numerical simulations of a
coalescing binary we need to know the orbital parameters of the plunging orbit

more in detatil.

(8)

As a first step toward the above goal, we consider another approach C) here
. Although perturbations of a black hole by a test particle have been extensively
studied,m the gravitational radiation from general bound orbits has not been
investigated, except for circular ones. In our approach, although the nonlinear
effect of gravity is neglected, characteristic features of the gravitational radiation
induced by the fast motion in the strong gravitational field can be investigated.
Therefore the test particle calculations are still quite meaningful and in a sense

complementary to the approach B) for the study of the gravitational radiation.

2 Formulation

We calculate the perturbation by a test particle on the Schwarzschild geom-

etry
ds? = —(1 — r/2M)7Ydt? + (1 — r/2M)dr? + r2dQ. (1)

%)

Here, we skip the detail of the formulation'” , and just comment on what is

different in our case of bounded orbit from the other which have ever been done.

. The equation to be solved is the generalized Regge-Wheeler equation;

2 r_2
_—.+w —_ 1

dr*? r {('\ + 2)1” - 6} lew(") = Slmw(") ’ (2)

where r* = r+2log (r/2 — 1), and X, (r) and Sjmu(r) are something like metric
perturbation and projection of the energy momentum tensor of a test particle

which is Fourier transformed with respect to ¢ and expanded by the spherical
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harmonics ¥},,(2). The quantity Sy, (r) has the form like

Stma(r) = f : dt T (t, ), (3)

schematically. As the time interval which has the dominant contribution to the
integration is (—o0,00), this integration is divergent. Therefore the numerical
estimate can not be done directory in this form. But, by virtue of the symmetry
of the orbit like

r(t + At) = r(1), e(t + Al) = (1) + Ay, (4)
as for Ti(t, r), the relation;

Tlm(t + AT, r) = e-"mAéTlm(tt r): (5)
holds. Therefore, the integration of the eq.(3) is reduced to the integration on
finite time interval;

9% AT .
Simw(r) = Zﬂ: Es(w - W) o dtewn‘Tlm(t: r), (6)
where wy, is defined by
wn = (2n7 4+ myp)/AL. ¥))

3 Results and Discussions

Using the method which was outlined above, we study gravitational waves
emitted by a test particle moving in the Schwarzschild metric. We introduce
the semi-relativistic approximation here and show our main results in compar-
ison with those evaluated by this approximation. In this apprc;ximation, the
orbit of test particle is determined by the geodesic motion and is represented
by the Schwarzschild coordinate like (1), #(t). By regarding this orbit as that

T



in flat space-time, i.e. z)(f) = rcos¢g, z2(t) = rsing, z3(t) = 0, we define the
quadrupole moment Q;; = uz;z;, where u is the mass of a test particle. When
we want to know the energy flux of gravitational waves, for example, it can be

estimated by using the ordinary quadrupole formula
1 33 1.3),(03
P= 5 (QS,')QS,') - sta )Qg-j)) . (8)

The ordinary quadrupole formula does not contain the following four effects,
i.e., a) the effect that the orbit is determined not in fully relativistic manner
but in Newtonian one, b) the gravitational redshift effect, c¢) contribution from
the higher multipoles other than quadrupole, d) the curvature scattering and
amplification effects. The effects a) and b) are included in the semi-relativistic
approximation introduced here. Of course, it is difficult to distinguish the effects
a) and c). So we consider that the definition of the distinction of a) and c) is

given by the semi-relativistic approximation.

We show the ratio of the energy flux of the fully relativistic calculation to
that in the semi-relativistic approximation for many orbits of various eccentricity
in Fig.1. The horizontal axis represents the perihelion radius. As was know in
the case of circular orbit, the relative error of the semi-relativistic approxima-
tion is less than 8% at rpin & 10M for general bounded orbits. However, this
coincidence does not indicate that the semi-relativistic approximation is rather

good.

~ We pointed out that there are two effects which are not taken into the semi-
relativistic approximation, i.e., ¢c) and d). To see the effect of c), in Fig. 2,
we show the same plot as in Fig. 1 replacing the total energy flux of the fully
relativistic calculation by its quadrupole component. Now we can see there is
more than 10% discrepancy at rpin ~ 3J0M. To see the effect of d), in Fig. 3,
we show the ratio of the quadrupole component to the total energy flux. The
discrepancy is about 6% at r & 30M. These results show that the agreement of

the approximation is not so good as is expected from Fig. 1.
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Here, we did not consider the back action to the orbit by gravitational wave
emission, but our final aim is to calculate the wave pattern including the back
action. We can calculate the averaged energy and angular momentum flux radi-
ated as gravitational waves. If those values are known at each time, the orbit of a
test particle is completely determined and so the back action by the gravitational
wave emission is. However, since the energy and the angular momentum of the
gravitational waves are non-local quantities, the orbit of the test particle includ-
ing the effect of back action can not be determined directly from this calculation.
However, it can be easily shown that it is possible to include the back action
approximately as long as something like semi-relativistic approximation works in
the way analogous to the standard method in Post-Newtonian approximation by
virtue of its resemblance to the ordinary quadrupole formula. We have shown
above that the semi-relativistic approximation is not good enough, but it seems
possible to give an empirical good approximation by a small modification. On the
point c), we used a natural identification between the point in the Schwarzschild
geometry and that in the flat space-time, but we can replace it with an empirical
relation. Since the relative error shown in Fig. 2 is almost independent of the
eccentricity of the orbit, it can be reduced by changing the identification of the
radial coordinates. As for the point d), if we include the octapole component,
the approximation will be much improved. Our next step is to estimate the orbit
and the wave pattern approximately with back action effect, taking into account

those discussed above.
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FIGURE CAPTIONS

Fig. 1: Plot of relative errors in the semi-relativistic estimation of (a) the average
energy flux and (b) the average angular momentum flux, against the perias-
tron radius rmin. The vertical coordinate is 8g = (Q,emi—ret — Qtrue)/Qtrue,
where @ = E or J;. All orbits in Table 1 are plotted. The closed circles
denote the cases of almost circular orbits.

Fig. 2: Plot of the ratio of the quadrupole component to the total energy flux. The
closed circles are the same as above mentioned.

Fig. 3 : Same plot as Fig. 5(a) but compared with the energy flux where only the
quadrupole contribution is accounted.
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Abstract

When galaxies merge, the central black holes rapidly sink toward the center of the system,
and make a binary. We found that this black hole binary merges within < 10° years. This
merging of black holes produces an intense burst of the gravitational wave. We investigated
the nature of these gravitational wave bursts and found that the dimensionless amplitude
at the earth is as high as 1075 if black holes with the mass of 103 M merge at the distance
of 2 Gpc. The mean time between burst is about 2 years if the elliptical galaxies are the
merger remnants of galaxies having central black holes. In previous studies, the time scale
of merging of black hole binary was estimated to be much longer than Hubble time (~ 101°
yr.). In those studies, the orbit of binary was assumed to be circular. We found, however,
that the dynamical friction makes the orbit highly eccentric. The life time of a binary
with a highly eccentric orbit is much shorter than that with a circular orbit, because the
emission of the gravitational wave is much stronger for shorter periastron distance.

1. Introduction

Thorne and Braginsky (1976; hereafter TB) suggested that the formation and the collision
of supermassive black holes (M > 10° M) produce bursts of the gravitational wave strong
" enough to be detectable at the earth. TGLe dimensionless amplitude, k, and the period of
the burst, P, are estimated as A ~ 2 x 10715 x (M/108Mg) and P ~ 150 x (M£108M@)
minutes, respectively. Such bursts can be detectable by, e.g., the Doppler tracking of a
spacecraft (TB; Hellings 1979). TB estimated that the mean time between bursts is in
the range of 1 week to 300 years, assuming that quasar activities are associated with the
formation and the collision of black holes. The large uncertainty in their estimate mainly
comes from ambiguity in the number of quasars.

We estimate the mean time between bursts from the number of elliptical galaxies
(Fukushige, Ebisuzaki, and Makino1992b). A significant fraction of elliptical galaxies are
believed to have massive central black holes (Sargent et al. 1978; Young et al. 1978; Dressler
1989; Sadler 1984; Rees 1984). These central black holes would have experienced several
bursts of the gravitational wave through their growth. For example, when galaxies merge,
their central black hole also merge to produce a gravitational wave burst. Many theoret-
ical works (Toomre and Toomre 1972; Toomre 1978; Barnes 1988; Okumura, Ebisuzaki
and Makino 1991) and observations &Schweizer 1982; Bergvall, Ronnbeck and Johansson
1989; Wright et al. 1990) suggested that most elliptical galaxies have formed by merging.
Therefore, such merging of black hole are expected to be fairly frequent.

Begelman, Blandford and Rees (1980) argued that the lifetime of a black hole binary
formed in the core of a merger remnant is longer than the Hubble time (~ 10'%yr.). How-
ever, they overestimated the lifetime by a large factor, because they assumed that the orbit
became circular. Ebisuzaki, Makino and Okumura (1991) suggested that their assumption
is not correct and that the orbit of the black hole binary become highly eccentric. The
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evolution of the black hole binary is driven by the dynamical friction from field stars. The
strength of the dynamical friction is proportional to v=3, where v is the velocity of the
black hole. Therefore, the dynamical friction is strongest at the apocenter of the orbit, and
the eccentricity of the binary increase through the evolution. As a result, the periastron
distance of the black hole binary decreases much faster than the mean separation. Since
the energy loss rate through the emission of the gravitational wave is determined by the
periastron distance, the lifetime of the black hole binary would be much shorter than the
estimate of BBR.

Fukushige, Ebisuzaki, and Makino (1992a) investigated the orbital decay of the black
holes in a uniform distribution of field stars. They found that the orbital angular momen-
tum decreases much faster than the orbital separation. They concluded that the central
black holes merges within several dynamical times (~ 107yr) of the core of the parent
galaxy. Makino et al. (1992) performed self-consistent N-body simulations of the black
hole binary in the core of a galaxy. According to their simulations, the time scale of the
merging is as short as 10° years, although the decrease of the angular momentum slows
down when the core begins to rotate in the same direction as that of black hole binary.
One might think that the core of the merger would be rotating rapidly, if two galaxies
merged with relatively large initial angular momentum. This rapid rotation of the core,
if it would occur, might suppress the decrease of the angular momentum of the central
black hole binary. However, such a rapidly rotating core is not likely to be found, since
numerical simulations of mergers have shown that the inner half mass of the merger is
rotat)ing roughly rigidly. (Sugimoto and Makino 1989; Okumura, Ebisuzaki and Makino
1991).

We show that the mean time between bursts is in range of 2 to § years, assuming
that elliptical galaxies are the merger remnants of galaxies that have central black holes
(Fukushige, Ebisuzaki, and Makino 1992b). This mean time between bursts is consistent
with the estimate of TB, who used the number of quasars in the universe. In section 2, we
describe the expected character of the gravitational wave burst produced by the merging
of central black holes. In section 3, we estimate the burst frequency. In section 4, we
briefly discuss the detectability of these bursts.

2. Expected Character of The Burst

The period of the wave, P, is estimated as

Px —3‘56’;61” (1+2),

=8.1x10% (mfi{o) (1+2) (s), (1)

where M is the mass of the black hole, G is the gravitational constant, c is the light velocity
and z is the redshift. According to TB, the dimensionless amplitude, &, is obtained by

20\ 4
B (SWGCSP F) ' )

where F is the energy flux of the gravitational wave at the earth. The energy flux, F, is
given by
ceMc?

F= 47 R?P(1 + 2)’ (3)
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where ¢ is the efficiency of the energy release and R is the distance to the source from the

earth. Assuming that the universe is flat, the distance, R, is calculated by
z ¢

1 +z Ho,

(4)

where Hj is the Hubble constant. Using equations (2)(3)(4), the dimensionless amplitude,
h, is estimated as

- -15 1 + Z € % M Ho
h=21x10 ( Z (0.05) 108Mg ) \100km -5~ - Mpc—! /)~ (5)

The efficiency ¢ is estimated as about 0.05 by Nakamura, Oohara and Kojima (1987).

3. The Burst Frequency

The burst frequency, v, is calculated as
. pHofe
v =/ 47 R*Nn(R)dR (yr~?) (6)
o

where R is the distance to the burst source in the unit of Mpe, N, (R) is the frequency of
merging per Mpc3.

In the following, we estimate Np(R) from the number of observed elliptical galaxies.
The total number, nperge, of merging that have occurred per Mpc?, is given by

Nmerge = Nel * N, (7)

where n, is the number density of the elliptical galaxies, and N is the average number of
_ bursts that one elliptical galaxy experienced. Using Nm(R), Nmerge 1S calculated as

tH

Mot = Nm[c(tH - t)]dt: (8)
0

where ty is the Hubble time. Here, we assume that most merging events happened after
2=2.5. This assumption is consistent with the observation that the distribution of quasars
has a sharp peak around z=2.5 (e.g. Rees 1990). We consider two limiting cases for
Nm(R). First, we assume that all mergings have occurred at z=2.5, that is,

Nm(R) = cnelN . 6(R - Rz,s), (9)

where &(R) is the delta function. From equations (6) and (9), we get

- -1 el N Hy -1
v=52x10 (3 x 10'3Mpc‘3) (10) (lOOkms“Mpc") (yr™). (10)

Second, we assume that Nm(R) is constant from z=2.5 to z=0, that is,

cnelN
N(R) '={ Ras '’ (R < Ras) (11)
0, (R > Rz.s)
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where Ry s is the distance to the source at z=2.5. From equations (6) and (11), we get

~ af___ra (N Ho . (2
v=17x10 (3 X 10‘3Mpc'3) (10) (100kms‘lMpc‘1) (™). (12)

From equations (10) (12), equation (6) becomes

~ (17— S L Y Ho -1
v (L7-5.2) x 10 (3x10'3Mpc‘3) (10) (IOOkms'lMpc‘l) (=) (13)

The above equation shows that the burst occurs every 2 or 5 years. The burst frequency,
v, is insensitive to the assumption of functional form of N, (R).

We estimate the number density of ellipticals as 3 x 103 Mpc~3 using the CfA survey
data (Huchra et al. 1990). They made a complete sample of galaxies brighter than 15.5
mag. in the sky area of 7/13 str., and found 384 elliptical galaxies in this volume. If we
select the area of z < 0.03, n.; becomes 3.3 x 1073, Since the brightness of 15.5 mag.
corresponds to the absolute magnitude of —19.5 at 2=0.03, the sample in the volume of
z < 0.03 would give reasonable estimate for fairly bright ellipticals.

4. Detectability

Gravitational wave bursts produced by supermassive black holes are detectable by the
Doppler tracking of interplanetary spacecraft (Thorne and Braginsky 1976; Hellings 1979).
Using Voyager I, Hellings et al.(1981) performed one observation of 500 second long and
obtained an upper limit of A = 3 x 10~!%, Recently, Bertotti et al. (1992) performed the
measurement for much longer time using Ulysses, and they plan to continue their experi-
ment using subsequent planetary missions such as Galileo and CRAF /Cassini. Continuous
observations are essentially important to detect one event which may take place in several
years. Simultaneous observations with several spacecraft are also important to increase
the reliability of detections. The LAGOS project (Thorne 1992) aims at the detection of
the gravitational wave of h ~ 10~?° by means of laser interferometer in space. The burst
produced by merging of the black hole is much stronger than this detection limit.

We thank Daiichiro Sugimoto, Yoshiharu Eriguchi for helpful discussions.
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ABSTRACT

We discuss implications of the discovery of the cosmic microwave anisotropy
at 10° scale by COBE-DMR and the null result at 1° scale from the South-Pole
experiment to inflationary universe models. In doing so, we derive an approxi-
mate analytic formula which relates the anisotropies at 10° and at 1° without a
heavy numerical computation. The formula, when tested against the known nu-
merical results, turns out to reproduce those results quite accurately, and gives us
a clear insight into cause and effect of the intermediate and large angular CMB
anisotropies. Then applying the formula to models with adiabatic density pertur-
bations based on the inflationary universe scenario, we find that the only model
compatible with the claimed observational data is either (i) a power-law (or ex-
tended) inflation model which predicts the power spectrum of density fluctuations
with the power-law index n 5 0.8, in which case the gravitational wave contribution
to the CMB anisotropies on # > 5° FWHM is significant, or (ii) a natural inflation
model with n S 0.7, in which case the gravitational wave contribution is negligible
on all angular scales. In both of these cases, if the universe is dominated by cold
dark matter, the resulting bias factor turns out to be b R 2, i.e., a relatively large

bias is unavoidable.
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§ 1. Introduction

The first detection of cosmic microwave background (CMB) anisotropies by
COBE-DMR (1] has given much excitement in the field of cosmology [2]. From the
analysis of the data, Smoot et al. [1] concluded that the rms value of the anisotropy
at 10° scale is

(AT/T),, =(1.1£0.2) x 1075, (1.1)
10°FWHM

and the autocorrelation function is consistent with a power-law spectrum of the
primordial density fluctuation; P(k) &< k" with n = 1.1 & 0.5. Smoot ef al. also
claimed a finite detection of the quadrupole moment; (AT/T)Q = (6£1.5) x 1076,
However, here we disregard the reported value, since it may be an overestimate [3]
or at least it is subject to a large cosmic variance. At any rate, unless one considers
a rather eccentric scenario, Eq.(1.1) implies the existence of density fluctuations
on super-horizon scales in the very early universe with an almost scale-invariant
spectrum, a natural explanation of which is possible only in the context of the

inflationary universe scenario.

However, soon after the discovery of CMB anisotropy by COBE-DMR, Gaier
et al. [4) reported no detection of CMB anisotropy above (AT/T) . =10"%at1°
scale in the sky near the South Pole. This result is rather controversial, since the
predicted rms temperature fluctuation at 1° scale for the scale-invariant spectrum,
which is the case of the standard exponential inflationary scenario, is ~ 2 x 1075,
Hence one would naively expect that the probability of no signal detection is small.
In fact, assuming (AT/P), jopwnm = 1% 10~%, Gorski et al. [5] performed a detailed
statistical analysis and concluded that all conceivable = 1 universe models with

n = 1 spectrum are excluded at 95% C.L..

In this respect, the possible dominance of the tensor mode contribution to the
CMB anisotropy and its relation to the scalar mode power spectrum has been
discussed already by Davis et al. [6] and Lucchin et al. [7]. However, Davis et al.
relies their analysis on the value of quadrupole moment detected by COBE, which
is subject to large cosmic variations as mentioned above. Furth'er, they seem to

place too much emphasis on the tensor mode contribution to the CMB anisotropy.
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On the other hand, Lucchin ef al. gives a detailed analysis but only for power-law

inflation models.

In this paper, we investigate all conceivable inflation models with adiabatic
curvature perturbations having the spectral index » < 1 in a semi-quantitative
but analytically tractable way and derive the constraint on these models from the
results of 10° COBE-DMR and 1° South-Pole experiments. By doing so, we clearly
demonstrate the essential factors that determine the intermediate and large angular

CMB anisotropies.

§ 2. Scalar and tensor contributions to CMB anisotropy

If both of the results of COQBE-DMR and South-Pole experiments should be
taken seriously, one has to abandon at least the simplest scenario of exponential
inflation. It is then a matter of great concern if this means the death of the
inflationary universe scenario. Fortunately, it is not so but indeed there are other
viable inflationary scenarios in which the power spectrum of density perturbations
differs appreciably from n = 1. Among them are the scenarios of power-law inflation
(8], extended inflation [9] and natural inflation [10]. In particular, the former two
predict not only the matter density fluctuations but also a significant amplitude
of fluctuations in the transverse-traceless part of the metric, i.e., the gravitational

wave perturbations, which may be actually the ones detected by COBE-DMR [6,7).

In'what follows, we briefly review the origin of these fluctuations in the inflation-
ary universe and give an estimate of the predicted amplitude of CMB anisotropy.
Concerning the possible types of density perturbations, there is yet another possi-
bility, namely isocurvature perturbations. However, here we focus on the curvature,

(i.e., the so-called adiabatic type) perturbations.
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2.1 ORIGIN OF FLUCTUATIONS

In almost all of the inflationary scenarios, inflationary expansion of the universe
is driven by the potential energy of some scalar field ¢. At the stage when the
universe is under inflation, the quantum fluctuations of the scalar field are rapidly
redshifted to a macroscopic scale and give rise to super-horizon scale fluctuations
in the matter density and hence the scalar-type perturbations in the metric which

eventually turns into large scale structures of the universe.

The power spectrum of thus generated perturbation is given by [11,12]

47|'k3 — 2 _ H4
e = W= 0= g, )

where R is the spatial curvature perturbation measured on the comoving hypersur-
face and ¢, is the time at which the comoving scale k leaves the Hubble horizon scale
H~! during the inflation. After the inflation, this in turn gives rise to perturbations

in the Newtonian potential ¥ as

.2 !
(:-;-) (7?.2) , | matter-dominated stage;
(%), = o ? (2.2)
(5) (R’) , . matter-dominated stage.

On the other hand, the quantum fluctuations of the gravitational wave modes
are. also redshifted to a macroscopic scale and give rise to the transverse-traceless
(i.e., tensor-type) perturbations in the metric h';'J'T The power spectrum is given
by [13]

) (2.3)

t=t

4‘l|'k3 _ Tr 2 H2
—(2‘”)3 PT(IC) = <(h’J ) >k = 64#—41{2'”;‘

where m_, is the planck mass.
P
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2.2 CMB ANISOTROPY

The CMB anisotropy induced by the perturbations discussed above can be
calculated by solving the photon propagation equation in the perturbed Fried-
mann universe. Assuming the universe is spatially flat, matter-dominated after the

baryon-photon decoupling, it is approximately given by [14]

AT 1 f, [0KIT 1
14

where n = | 'dt/a(t) is the conformal time, 5, and 5, are the decoupling time
and the present time, respectively, 4* is the direction cosine and V. is the matier
velocity perturbation. As it is clear, the first term in the right-hand-side of Eq.(2.4)
is due to tensor-lype perturbations, and the second and third to scalar-type ones.
Following conventional terminology, we call the second the Sachs-Wolfe effect and
the third the Doppler effect.

When discussing the CMB anisotropy, it is often convenient to express it in

terms of its multipoles with respect to the spherical harmonics:

AT
== ;Z“:m"zm(ﬂq)- (2.5)
m

Quadrupole

Ar-nong the multipoles, the lowest non-trivial one is the dipole, but it is generally
believed (and is true for most of viable cosmological models) that the dipole is
dominated by our peculiar velocity at present, i.e., V.(n,)- Hence, the lowest non-
trivial multipole which carries the direct information of the early universe is the
quadrupole. The mean square of it can be estimated from Egs.(2.1)- (2.3), and
(2.4) as

H4
47Qi = Z (agm)s = s0nd?|
. o T$?|,,
2 (2.6)
4WQ%- = Z (a%m)T ~ 0.93;’—12— ,
m pl t
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where k = H, H  is the present value of the Hubble parameter and the scale factor

at present has been normalized to unity; a; = 1. From Eq.(2.6), one finds

Q? #? 142
<L 67— — =42 ———| . (2.7)
Qs my H 39* +V(4)|,,

Thus, the tensor mode contribution can dominate the quadrupole only if the ki-
netic energy of the scalar field is comparable to the potential energy of it at the

inflationary stage.

Intermediate scales

At intermediate angular scales (1° ~ 10°), it is convenient to express the degree

of anisotropy in terms of the temperature auto-correlation function,
AT, AT _\ 1 2
o) = (S E+ D0 = 5 el) s

where (a}) = T, (a},,). In the present case, {a}) can be approximately expressed

as
(af) = (af)aw + (az)sw + (ﬂf)po,,,,,,, ) (2.8)

where the first, second and third terms are the contributions from the gravitational
waves, the Sachs-Wolfe effect, and the Doppler effect, respectively. For inflation
models considered later, the primordial power spectrum is well approximated by
a power-law. In such a case, the Sachs-Wolfe contribution can be analytically
evaluated [15]. Further, for models of power-law (or extended) inflation, in which
case the tensor contribution can become significant, one may assume P (k) o

Pr(k) o k"4 [6,7). In this case, one approximately has

12 _
(af)cw x (a”sw = 5 (ag)sw e 2; £>»1. (2.9)

As for the Doppler term, noting that the Fourier component is given by

3 = l . —
(7“,,) = E,‘k kﬂd‘I’E; ,‘k = T) (2'10)
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it may be approximated as

2
£ ¢
<a3>Dopplcr ~ 1+ 2, (a”sw = (5) (ai)sw s (2.11)

where 2 ~ 103 is the redshift at decoupling and hence ¢ 4~ 30, which corresponds
to the angular scale 8, ~ 2° (= 5° FWHM) or to the horizon scale at decoupling.

From Eqgs.(2.9) and (2.11), one finds:
(a) (AT/T),q, is dominated by (a}) ., and/or (a}}g,,

and

<ag)DoppIer if QT < QS !
a}

(b) (AT/T),, is dominated by { ( )GW and/or (ag)DOPPler if Qp R Qs-

§ 3. (AT/T)-test of power spectrum

In order to evaluate the CMB anisotropy predicted in a given cosmological
model in a quantitatively accurate way, one of course has to do numerical inte-
grations, However, it is always useful to have an analytic formula to do a semi-
quantitative analysis, not only because we may gain more clear understanding of
cause ‘and effect, but also we can obtain predictions of other models without a
heavy numerical computation by simply varying the parameters in the formula.
Furthermore, considering uncertainties in the observational data, it is sometimes
meaningless to require a high accuracy in the resuiting numbers. In this section, we
give such a formula for cosmological models with a power-law spectrum discussed
above and compare the result with the observations.

3.1 (AT/T),,, VERSUS Q, .,

10°

According to Smoot et al.[1), the relevant theoretical formula which corresponds
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to the mean square temperature fluctuation at 10° discovered by COBE-DMR is

(AT_T) 100 Ceope(0) = Z ( -t’/t.’,

12 fdf ., _p
~ Qi X f Te-ietld (8.1
3

Q 12 _3’”3 an- -1 ) to n»—l
= Urms 1—n 3 [}

where Q,,,, = /Q;, + Q% is the rms quadrupole moment, £, = 17.8 is the smearing
scale relevant for COBE-DMR, and Eq.(2.9) has been used to approximate {a}).

The above formula gives

20Q,ms; n=1,
(-A-Z) ~{ 1.6Q,,,; n=08, (3.2)
T /e
14Q,,,; n=06,

which are in good agreement with more accurate numerical results {1}. This shows

our approximation is reasonable after all.

3.2 (AT/T),,. VvERSUS (AT/T),,

Given the evidence that our approximation works fairly well, let us now turn

to the anisotropies on intermediate angular scales.

The Sachs-Wolfe and tensor contributions

‘First consider contributions from the Sachs-Wolfe effect and gravitational waves.
Again, from Eq.(2.9), one has

=)
AT 2 12 [ d¢ - 2o
B — — | —¢ - 2:6.):
( T )le sw+6u(,n rms 5 / 1] € f( ) 0):
! 0

f(66,) =2 (1 — P,fcos oo)) ~2(1-J,(80,)); 6,<1,¢3>1,
(3.3)
where §, = 0.037 (2.1°) and ¢ = 0.011 (0.63°) are the beam separation and smear-
ing angles, respectively, and f is the filter function, relevant for the South-Pole
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experiment [4]. Unfortunately, the above integral cannot be done exactly. How-

ever, for n = 1, it may be evaulated as

4,
1
AT\? 12 l1—e?
(T) z_QEm:/ dz

1°,SW4+GW (3.4)

0
l2(9,,,,, (ln ==+ -y) S (107%)?,

QY

where v = 0.577... is the Euler constant and the last figure is obtained from
Eqs.(1.1) and (3.2) with n = 1. Now for a fixed value of (AT/T),., (AT/T),.(n)
is apparently a decreasing function of n since the dominant contribution to the
integral (3.3) comes from £ R 05! = 27 > £, = 17.8. Hence we may conclude that
the Sachs-Wolfe and gravitational wave contributions to the CMB anisotropy at 1°
scale will not make a conflict with the observational upper bound for all values of
n<l

The Doppler contribution

The above result tells us that the only contribution to the 1° anisotropy which
we have to worry about is the one due to the Doppler effect. Using Eq.(2.11), it is
approximately given by

2 @ 2
(F) m=eat [F (ei) £ f(10,)
[}

~ ol (A?T) (1),

where « is a constant of O(1). Since the appraximation (2.11) for the Doppler

(3.5)

contribution is very crude, we should regard ¢ ; as an adjustable parameter rather

than a given one, by absorbing the factor a. The adjustment can be done by using
the fact that (AT/T), (1) = 3Q, [5):

2 H
(). omiiin (=) war o

This happens to give ¢ 4 ~ 30; an interesting coincidence that errors due to the
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crudeness of Eq.(2.11) are canceled somehow by that of Eq.(3.5).
Combining the formulas (3.1) and (3.5) with Eq.(3.6), we obtain the final for-

mula,

(ATT) (W)= 15R () (ATT) i R= % (3.7)
where
1.00; n = 1.0,
_ [(1=n)@a)! " _ . p=
F(n) = \/1—_(3750—)—‘_7111“0/3) = ZZ;, n= 0.2, (3.8)
.60; n =0.6.

For the COBE-normalization; (AT/T),,, = 1.1 x 10=%, the above formula gives

1.6 x10°°R; n=1.0,
AT
(—) ~{13x107°R; n=08, (3.9)
T /e
1.0x 107°R; n=0.6.

Comparinbg these numbers with the rms noise level of the South-Pole experiment;
(AT/ T)noiae
tion (which we estimate as S 10%), we conclude that (i) if Qr R Qg all models
with n < 1 are consistent with the observational bound, but (ii) if Qr € Qg, even

= 10-5 [4], and taking into account the inaccuracy of our approxima-

a model with n = 0.8 seems marginally excluded and a moderate allowable range
would be n 5 0.7.

§ 4. Models of inflation withn < 1

Now, let us examine models of inflation which can explain the observational
data.
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4.1 POWER-LAW (OR EXTENDED) INFLATION

Although the extended inflation is basically different from the power-law infla-
tion in that the former is based on the Brans-Dicke type gravity theory [9) while the
latter on the conventional Einstein gravity [8), both of them gives effectively the
same law of inflationary expansion, i.e., the power-law expansion of the universe.

Hence, here we focus on the proto-type power-law inflationary model.

The power-law inflation is driven by a scalar field with an exponential potential

(8};
VEr
V(9) = Voexp(Arg); &= —. (4.1)
pl
The cosmic scale factor then approaches asymptotically to
P p= 2
at) s p=(>1), (4.2)

At this asymptotic stage of inflation, both fluctuations in the scalar and tensor parts
of the metric are produced with the same power-law index n = (p — 3)/(p — 1).
The ratio of the kinetic energy to the total energy density is given by

12
1 6 -
—2¢____=.1_=1_n, (4.3)

Qr 14 1-n
Q—§~;=143_n (4.4)

Hence QT R QS for p S 14, or n 5 0.85.

Thus, according to the power-law inflationary scenario, the conclusion of the
previous section implies that the detected anisotropy at 10° by COBE-DMR must
be dominated by the tensor mode contribution with the power-law index n S 0.8.
For cold dark matter (CDM) models, this implies the bias factor b & 2 as mentioned
in Davis et al. [6) and Lucchin et al.[7).
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4.2 NATURAL INFLATION

In the scenario of natural inflation [10], the potential has the form,
Vig) = M (l_+_C_0§s_(ﬂ_f_)_) , (4.5)

and inflation is assumed to occur when the scalar field is at |¢] < f. In this case,
the expansion is exponential;
87 M?
Ht, =.J22
a(t)xe; H T (4.6)
pl
and ¢2 € V(9) so that the tensor mode contribution is negligible, but the power-
law index of the density perturbation can differ appreciably from unity [10,12];

2

nx1-26; 6(5+3)= Syt (4.7)
- ' T 16w f?’ '

For example, for a typical GUT scale; M ~ 10!%GeV, a reasonable amplitude of
the scalar perturbation; ¥ S 10~4, is realized for f ~ 5 x 10'®GeV. This value

implies § ~ 0.1, hence n ~ 0.8.

Since the tensor perturbation must be necessarily negligible in this scenario, we
conclude that n S 0.7 if the natural inflation should be adopted. In this case, the
corresponding bias factor for CDM models is again b < 2 [16].

§ 5. Summary

In this paper, we discussed the implications of the results of COBE-DMR and
South-Pole experiments to inflationary universe models. For this purpose we de-
rived a semi-analytic formula which relates the CMB anisotropies at 10° and 1°
scales. In the context of inflationary cosmology, we found that only a power-law
inflation models with the spectral index n S 0.8 and a natural inflation models with
n S 0.7 are allowed, provided that the primordial power spectrum is of adiabatic
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type. In both of these cases, the resulting bias factor b for CDM models is found
to be b R 2. This coincidence happens because the difference in the scalar mode
amplitude at 10°, which corresponds to a scale ~ 200 Mpch™!, is compensated by
the difference in the rate of increase in the power spectrum as the scale goes down
to 8 Mpch~!. Of course, to justify the above conclusion in the strict sense, we
have to perform detailed numerical computations. However, as noted before, errors
due to the crudeness of our approximation are expected to be buried well under

uncertainties of the observational data.

Finally we note that if the existence of large-scale flow; V(40 Mpch~!) ~
400km, is proved and if it is found to be a typical value everywhere in the universe,
it will be a clear contradiction to the null result of the South-Pole experiment,
provided one relies on the standard gravitational instability scenario of large-scale
structure formation [17]. A possible resolution is to assume reionization of the
universe soon after decoupling until quite recently which smears out the CMB
anisotropies on 1° scales. For this to occur, it seems necessary to have baryon
isocurvature perturbations of a large amplitude on small scales [18], and inter-
estingly enough there exists such a scenario in the context of power-law inflation
models [19]. Therefore it may be worthwhile to investigate the predictions of such
a model in more detail, or a hybrid model which includes everything necessary,

though one cannot deny the feeling that the latter is too ad koc.

I would like to thank K.M. Gorski and E.D. Stewart for stimulating conversa-
tions. This work was supported in part by the Grant-in-Aid for Scientific Research
on Priority Areas of Ministry of Education, Science and Culture, No.04234104.
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Abstract

We calculate the CMB anisotropy which is induced from gravitational wave. As for the
gra.vitati;)na.l wave, we consider the gravitational wave which arises from inflation. To
compare with COBE'’s mesurements directry, we estimate the correlation function with .
7° FWHM.

As the results, we get constraint on GUT mass, that is , Mgyr < 3 x 10'® GeV. We
emphasize that the contribution to the CMB anisotropy from gravitational wave cannot

be ignored.
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1. Introduction

Recently magnitude of an anisotroipy of the cosmic microwave background ( here
after CMB ) radiarion was reported by COBE's group 1. Its observation clarified that
the CMB anisotropy AT/T has a quite small value 10~° at 10° scale (large scale). For
such large scale, it has been said that the CMB anisotropy is mainly induced from the
Sachs-Wolfe effect (2],

The relation between the CMB anisotropy and the Sachs-Wolfe effect concernd with
an initial density perturbation and a formation of the large scale structure was inves-
tigated by Gouda and Sugiyama [*l. However, many authers 1l suggested that cosmic
gravitational wave would make the CMB anisotropy through the Sachs-Wolfe effect.

Now we consider the contribution to the CMB anisotropy from only gravitational
wave. As for cosmic gravitational wave, we are going to consider the one which arises from
inflation. Because the inflationary theory predicts the production of the gravitational
wave I3, The initial quantum tensor perturbation grows to the gravitational wave due
to the huge redshift by the exponential expansion of the universe.

Many authers [ calculated the expectation values and variances of the lowest mul-
tipole moments of the < (AT/T)? >. However, it is difficult to compare their results
of calculation with the mesurements of COBE directry. In order to compare with COBE’e
mesurements, it is neccesary to calculate the correlation function < AT/T AT/T >(e=107)
with 7° FMHW. We shall calculate the correlation function as accurate as possible.

Note that ,in our paper, k and p are the momentum of photon and graviton, respec-

tively.
2. Basic equations
We consider for a spatially flat FRW universe with metric;
ds® = aly(—dn® + ¥;;dz'dz?), (2.1)

where n = [ dt/a is the conformal time and v;; is the metric of flat space. The full three

metric which contains the deviation from the FRW metric is given by

95 = aly)(¥ij + hiz), (2.2)
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where A;; describes a small deviation from FRW metric. As is well known, this deviation
exhibits the gravitayional wave under the weak field approxmation. Now we consider
only the gravitational wave, so h;; is regarded as the gravitational wave.

Graviton

The gravitational wave is governed by the equation of motion;
! (3)
R +2=hl,— A h; =0, (2.3)
a

) )
where prime denotes 3/8n, and A denotes the Laplacian. As the same manner of canon-
ical quantization, we can quantize the gravitational wave. The quantized gravitational

wave which aries from inflation is expanded in terms of mode function ¥,(n) as
q = V167G Z / oy )3,2(€,J(B)A,(g) 1/1,6 p":+hc) (2.4)

with

tAll=0. (2.5)

In the above fi,,(g) and /i:,( p) are the annihilation and creation operators, respectively,
€ij () the time-independent polarization tensor which satisfies €;;(4) p° = 0, €4y = 0
and €;;(4) € (8) = 204B-

In order to calculate the gravitational wave which exists in the matter-dominated uni-
verse, we consider a simple cosmological model, which describes the three stages of the
expanding universe: the inflation, the radiation-dominated and the matter-dominated .
epochs. We choose the Bunch-Davies vacuum for the initial condition in the inflatiuon
epoch. We calculate time evolution of the Bunch-Davies vacuum in our simple cosmolig-

ical model. The mode functions in the matter-dominated epoch is
vyl () = o™l + 5™ (M. (2.6)

Here a, B are the Bogoliubov cofficients and uM is the positive frequency part of the

mode function which is written in terms of the Hankel function. Concrete forms for the
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mode functions and the Bogoliubov cofficients are given by Nakamura et al I7l. Using
this mode function, 1/1,{" , we can estimate the power spectrum of gravitational wave. The
power spectrum is shown in Fig.1.

Sachs- Wolfe formula

We consider the light ( photon ) propagation in the FRW universe. The photon is
described by

null eq. guok'k =0, 2.7
geodesic eq. k¥ k¥ =0. (2.8)

We carry out the linear perturbation theory with setting k, = k, + 6k, and g, =
a®(7i; +hi;). From the perturbed null equation, g’,,,,i:"l;" = 0, and the perturbed geodesic

equation, k# k¥ = 0, we obtain the fluctuation of temperature:

AT _6k°

T k° ’
m Oh;; k'k
= - E ar’] k’ dT], (2.9)

where 1z and 1 are the conformal time at decoupling and present times, respectively.
Genarally the CMB anisotropy induced from the Sachs-Wolfe effect is related to the
formation of the large scale structure. However, the CMB anisotropy from cosmic grav-
itational wave also is evaluated by the same Sachs-Wolfe formula.

Correlation function

We caluculate a correlation function directly. The correlation function is given by

AT AT ~ , Ohi; Oy KK K
= [, L‘d (5 ) (2.10)

Substituting Eq.(2.4) into Eq.(2.10), we find

dhi; dhu KK EE G &p 61/;,81,0' Rk

(dn dn') K m 9n oy By DM TR

' P(x—x) (2.11)

where Py = 2 i () ERi(a) = bin 650 + iy b0 — 815 810 with &;; = 65 — pip; [p*.
In order to calcula.te above intagral, we set up coordinate system (Fig.2). At first,
we perform average over ¢ and 8, .i.e. ([ ...sin8d¢df)/2n2. We obtain
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AT AT 0 nu 3¢

+ 02 J2r) + Co Jopr))s (2.12)

with
Ci= —i(l —3cos’ @) + g(9<:os2 o+ 7)321:0 - -},;)‘-cos(E)sin2 eg:iz_’_:;z_x“’
C= —(1 —3cos’0) + —scosG)sm O—'
Co= —E(l —3¢os’ Q). (2.13)

In the above, ji(pr), J2(pr) and jo(pr) are the spherical bessel functions. The relation
between z,z’,r and nis given by z = n= 4,2’ =7 —ny and r® = 2% 4+ 2”2 — 222’ cos O,
respectively. Note that the above formula is written in any gravitational wave.

Here we use the mode function derived from inflation theory, i.e., eq.(2.6). First, we
perf&rm the momentum integral (J ...dp) exactly. Next we perform n-integral numerically.
As a result we get Fig.3. Moreover the correlation function smoothed by 7° FWHM is
Fig.4.

3. Conclusion and Discussions

It is possible to make constraint on any model of inflation. The GUT mass during
the inflation phase must be less than 3 x 10'® GeV, or else there gravitational wave will
produce unacceptably large CMB anisotropy.

Through the contribution to the CMB anisotropy from gravitational wave was ig-
nored, we emphasize that its contribition must not ignore. The CMB anisotropy mesured-
by COBE originate in not only primodial density. perturbation but also gravitational
wave. It is practically impossible to separate them. If we take the GUT mass to be 10¢
GeV, which is a caracteristic value, the contribution from gravitational wave is dominant
rather than the one from density perturbation.

More detailed discussion will be published by Kobayashi et al (8],
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6. Figure captions

Fig.1 the geometry and coodinate system.

Fig.2 The power spectrum of the gravitational wave h) is plotted as a function of the

frequency v. Here we identify the.present Hubble horizon with 6000Mpc (=~ 1.6 x 1078
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Hz ).

Fig.3 The barc correlalion function < AT/T AT/T > (e is plolted as a function of ©.

Fig.4 The correlation function < AT/T AT/T >(ey with 7° FWHM is ploiied as a

{uxlctiozz of ©.
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Abstract

The homogeneity of the cosmic microwave background radiation (CBR) is one of the most
severe constraint for the theory of the structure formation in the universe. We investigated
the effect of the gravitational scattering of galaxies, clusters of galaxies, and superclusters
on the anisotropy of the:‘CBR by numerical simulations. Although this effect was thought
to be unimportant, we found that the gravitational scatterings by superclusters reduce
the anisotropy of the CBR significantly. We took into account the exponential growth
of the distance between two rays due to multiple scatterings. This exponential growth is
caused by coherent scatterings, and was neglected in previous studies. The gravitational
.sca.ttering by superclusters reduces the observed temperature anisotropy of the CBR at
present time approximately by 30 % from that at the recombination time, for angular scale

up to a few degrees.

1. Introduction

Observations have shown that the cosmic microwave background radiation (CBR) is
extremely isotropic. Observed upper limit of the temperature fluctuation, AT/T, of the
CBR is ~ 4.5 x 1075 at 4'.5 1], and ~ 2.1 x 1075 at 7.15 [2]. Recent observation with
COBE shows that the temperature fluctuation is (1.1 & 0.18) x 10~% at 10 degrees [3],
and the observation at South Pole shows that the upper bound is 1.4 x 107° at a degree
scale [4]. If the density fluctuation is actually small as suggested by these observations,
the structure formation models which are consistent with the ”observed” temperature
anisotropy are rather few. For example, baryon dominant model is ruled out [5}[6]. In
addition, the standard CDM model is only marginally acceptable [7].
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During its travel from the last scattering surface, the CBR is gravitationally scattered
by astronomical objects such as galaxies, clusters of galaxies, and superclusters. We in-
vestigate this effect of gravitational scattering on the anisotropy of the CBR, taking into
account the exponential growth of the distance between nearby rays through multiple scat-
terings. We found that the temperature anisotropy of the CBR can be reduced by 30%
through scatterings by superclusters.

The smoothing of CBR by the gravitational lensing has been investigated by many
researchers [8]-(14]. Sasaki [11] and Linder [12] gave the mathematical formula of the
gravitational lensing on angular correlation function of the temperature anisotropy.

Kashlinsky [9] derived the equation that describes the multiple gravitational lensing
of the CBR, and concluded that the original fluctuation was smoothed out on scales up to
several arcminutes. Cole and Efstathiou [10] pointed out that Kashlinsky overestimated
this effect because he modeled galaxy clusters as point masses. They argued that the effect
is negligible using the formula of the increase of the beam width derived by Gunn [15].
Blanchard and Schneider [8] and Watanabe and Tomita [13] also obtained similar results.
Tomita and Watanabe [14] performed numerical simulations of the propagation of light,
and concluded that the effect of the gravitational lensing by clusters of galaxies was small.

Gunn [15] derived the formula for the change of the beam width under the assumption
that the total effect of increase of the beam width is expressed by a superposition of that
of small scatterings. However, this assumption is not appropriate. If the distance between
two rays is small, they are scattered coherently. In the case of two dimensional space, the
average increase of the distance between rays by one scattering is proportional to its width,
since the difference in the deflection angle is caused by the tidal force. As a result, the
distance increases exponentially by multiple scatterings. This exponential growth continues
until the scattering becomes incoherent. Therefore, the increase of the distance between
beams evidently cannot be expressed by a simple superposition.

In the three-dimensional space, the behavior of the rays is more complicated than
what is described above. The angle increases, if the rays and the scattering object are in
the same plane; the angle decreases, if the impact parameter vector is perpendicular to
its distance vector between two rays. The net change is positive and proportional to the
initial angle, if the amount of the change in the angle is averaged over the position angle
of encounters.

In the field of stellar dynamics, this exponential growth of a small difference of initial
condition has been well known [16]-[21]. However, a clear theoretical understanding of this
exponential growth was given only recently by Goodman, Heggie and Hut [22].

In this paper, we investigate this exponential growth of the distance between nearby
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rays by numerical calculations, and evaluate its effect on the anisotropy of the CBR. We
calculate sets of path of two photons in a uniform distribution of scattering objects. We
use the post-Newtonian equations of motion for photon [23] given by

d*x

S =2V4—dn(n- V4, (1)

where x is the position of photon, ¢ is the gravitational potential, and n is the initial
direction vector which satisfies |n| = 1. This post-Newtonian approximation is always
valid in a real universe, unless we consider a universe dominated by supermassive black
holes. The maximum deflection angle of a scattering by an object is determined by the
depth of its potential well. The depth of the potential well of galaxies, clusters of galaxies
or superclusters are by far smaller than ¢?. In the numerical calculation, we ignore the
second term of right hand-side of equation (1), since the purpose of our calculation is to
obtain the trajectory of a photon. The second term changes the deflection angle through
the change of the light velocity. Since the change of the velocity and the deflection are
both O(¢/c?), the contribution of the second term to the deflection is O[(¢/c?)?], which is
negligible.

Our calculation showed that the angle between two rays increases exponentially up to

an angle 6, given by

Bpr = VarN~4,’ (2)

where N is the number of the scattering objects within the horizon of the present universe,
'in the case of a flat universe. When the angle becomes larger than 8, it increases in
proportion to t!/2. This is because the scattering becomes incoherent within a beam [19).

The angle grows exponentially only when the size of the scattering objects, ¢, is smaller
than the projected mean particle distance d,:

dpe = Vax N~} Ry, (3)

where Ry is the distance to the horizon, We found that superclusters satisfies this con-
dition of exponential growth, ¢ < dp,, and that 8, is a few degrees for superclusters.
We, therefore, conclude that the anisotropy of the CBR is smoothed up to a scale of a
few degrees. We evaluated the angular correlation function using the formula derived by
Wilson and_ Silk{24), and Sasaki[l1l]. We found that the gravitational scattering due to
superclusters can decrease the anisotropy of the CBR approximately by 30% if the beam
width of antenna is not much smaller than the intrinsic angular scale of the fluctuation.

2. Numerical Simulations
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We calculate the trajectory of a photon using the gravitational potential expressed as

| X = Xg,j +GM
(I = %12+ €23 R

N
Vé=-Gm,; )y

i

X, (4)

where G is the gravitational constant, N and M are the number and the total mass of the
scattering objects, X, ; and m,; are the position and mass of the j-th scattering object, R
is the radius of the sphere in which scattering objects are uniformly distributed, and ¢ is
the size of the scattering object. We used the system of the unit in which G= R =1 and .
M =1/2, and we used the unit of time determined by this system of the unit.

The masses of the scattering objects are set to be equal to each other, ie., m,; =
M/N. The second term of the right hand side of equation (4) is introduced to cancel the
global harmonic potential due to scattering objects. We started the numerical integration
of the trajectory of photons at the surface of the sphere. The initial velocity vector, vg, of
a photon points to the center of the sphere and its length is unity. To calculate the growth
of the width of an initially narrow beam, we calculated the trajectory of a photon from
slightly different initial condition. We performed simulations for three cases: N = 128,
1024, 8192. We used GRAPE-2A [25], a special-purpose computer for N-body problem,
for the calculation of the gravitational force. We integrated the orbits with the 4-th order
Runge-Kutta scheme with an automatic timestep adjustment {26]. The details of our
discussion are presented elsewhere [27].

Figure 1 shows the growth of the angle, 8, between the velocity vectors of two photons
in the case of N = 1024 and € = 0 for eight different values for the initial angle between
velocity vectors. Each curve represents the median value of 200 orbit pairs. This angle
grows exponentially until # becomes close to 8.

ln figure 2, growth factor, a = 6, 5/, is plotted against 6o/f,c where 85 and 6, 5
are tle values of § at { = 0 and 1.5, respectively. Figure 2 is divided into three regions,
dependiﬁg on the value of 8y/8,,, i.e., exponential, transitional, and diffusive region. If
0o/0p. < 0.1, the growth factor, a, is about 10, independent of the initial condition. In
this region, the beam width grows exponentially. If 0.1 < /8, < 1, the growth factor
a is almost proportional to #;'. The growth factor a is roughly 8,./8o. In this region, 8
increases up to 8. If 8g/6;, > 1, the growth factor, a, is order of unii.y. This behavior is
independent of the number of the scattering objects, N.

The growth factor, a*, in an expanding universe is calculated as

. t(2=0) 1
a® = ex? [Az=:.) ;;mdt} , (5)
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where z* is the redshift at which the scattering objects were formed, and 7°(t) is the
e-folding time of the angle [21][22], which is calculated from the results of our calculations:

() =10 [%?] - , (6)

where p(t) is the density of scattering objects, and 7o and po are the e-folding time and
densitly in our calculation. The value of 7o is estimated by the relation; § = 8o exp(t/7o).
We estimate p() assuming that the universe is flat. The growth factor «* becomes

a* = (142", (7)

where

n=—

Here, €, is density parameter of scattering objects. The growth factor, ays, of the angle
between two photons that come from the last scattering surface is calculated as

1
foRys

aps =

[/0 9dR + a*(Rps — R*) :,"’Tl(uz')"-‘—n—_? (8)

where Rys is the distance to the last scattering surface from z =0, and R* is to z = 2*

In figure 3, the growth factor, «, is plotted against ¢/dp,. The initial angle is chosen
so that 8/6, < 1. Figure 3 is again divided into three regions, depending on ¢/dp,. If

' ¢/d,, < 0.08, the growth factor, e, is about 10, independent of ¢/dy,. In this region, the
beam width grows exponentially. If 0.08 < ¢/dp, < 0.3, the growth factor is proportional
to €1, If ¢/dp, > 0.3, the growth factor, a, is the order of unity.

In table 1, we summarize the estimate of é/dp, for galaxies, clusters of galaxies, and
superclusters. Here, we gave the value of ¢,d, and calculated the distance, d,, using the
relation (47/3)(RuQy1/?/dQ; ' /%)® = 4m(RyQ; /? /dp;)? where Ry is the distance to the
horizon and d is the mean particle distance between the scattering objects. We adopt Ry
of 3Gpc. For the cases of superclusters (Q, = 1), ¢/dp: € 1 and a* > 1. It increases the
angle of the CBR by a large factor. Here, we assume that the superclusters have a large
fraction of the mass in the Universe. This can be justified by the observation showing that
the universe consists of the void with very low density and the structures of the scale of
supercluster. Whether galaxies (2,=0.1) and clusters of galaxies (£2,=0.2) have significant
effect or not is unclear. This result is consistent with the result of Tomita and Watanabe
[14]. They considered the clusters of galaxies as scattering objects and concluded that the
clusters of galaxies had relatively small effect on the anisotropy of CBR.
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3. Angular correlation of the temperature anisotropy

In the following, we give a quantitati;le estimate of the anisotropy of CBR in terms
of the angular correlation function using the formula derived by Wilson and Silk [24] and
Sasaki[11]. Temperature fluctuation of the CBR averaged over antenna beam pattern is

given by )
<(-61—T:(0; a)) > = 2(C(0; o) - Cc(8;q)), (9)

Cloio) = 5oz [ s0W@ exp [~ 200 + 1] 1o (1) 0,

and ¢ is the beam width of antenna and I is the 0th order modified Bessel function. The

angular correlation function, C(8), is calculated as

where

(10)

c(8) = C(0) {1 +- G(g)” 2]

where G(0) = [a*(8) — 1)%. Here, 8. represents the coherence angle of the intrinsic temper-
ature fluctuation determined by the Silk dumping [29]. We use an interpolation formula
of G(8):

92
g2 + 62 G(O)"1 '

This formula well expresses the behavior of G(8) in the entire region of 4. In figure

G(8) ~ (11)

4, the average temperature anisotropy is plotted against 8 for the cases of 8. = 4', ¢ = 1,
2* = 2,4 and 10. For the case of z* = 4, the observed temperature anisotropy is smaller

than the intrinsic one approximately by 30%.

4. Summ;\ry

We found that the anisotropy of the CBR is reduced by the gravitational scatterings
due to superclusters. This smoothing occurs because the distance between néarby rays
increases exponentially through multiple scatterings. In previous studies, the effect of
gravitational scatterings was argued to be small, since the effect of the exponential growth

was neglected.

Acknowledgment

We thank Tomoyoshi Ito, who developed GRAPE-2A, and Shaun Cole for many crit-

ical comments on the original manuscript.

Reference

—-415-



(1] Uson, J. M. & Wilkinson, D. T. Nature, 312, 427-429 (1984).
[2] Readhead, A. C. S., Lawrence, C. R., Myers, S. T., Sargent, W. L. W., Hardebech,
H. E. & Moffet, A. T. Astrophys. J. 346, 566-587 (1989).
[3] Smoot, G. F., et al. Astrophys.-J., 396, L1-L5 (1992).
[4] Gaier, T., Schuster, J., Gundersen, J., Koch, T., Seiffert, M., Meinhold, P., & Lubin,
P. Astrophys. J., 398, L1-L4 (1992).
[5] Pecbles, P. I. E. & Silk, J. Nature, 348, 233-239 (1990).
[6] Gouda, N., Sasaki, M., & Suto, Y. Astrophys. J., 341, 557-574 (1989).
(7] Gouda, N., & Sugiyama, N. Astrophys. J., 395, L59-L63 (1992).
[8] Blanchard, A. & Schneider, J. Astr. Astrophys., 184, 1-6 (1987).
[9) Kashalinsky, A. Astrophys. J. 331, L1-L4 (1988).
[10] Cole, S. & Efstathiou, G. Mon. Not. R. astr. Soc., 239, 195-200 (1989).
[11] Sasaki, M. Mon. Not. R. astr. Soc., 240, 415-420 (1989)
[12] Linder, E. V. Mon. Not. R. astr. Soc., 243, 353-361 (1990).
[13] Watanabe, K. & Tomita, K. Astrophys. J. 370, 481-486 (1991).
[14] Tomita, K. and Watanabe, K. Prog. Theor. Phys., 82, 563-580 (1989).
(15] Gunn, J. E. Astrophys. J. 147, 61-72 (1967).
(16] Miller, R. H. Astrophys. J. 140, 250-256 (1964).
(17] Lecar, M. Bull. Astron., 3, 91-104 (1968).
[18) Gurzadyan, V. G. & Savvidy, G. K. Asir. Astrophys., 160, 203-210 (1986).
" [19] Sakagami, M. & Gouda, N. Mon. Not. R. astr. Soc. 249, 241-247 (1991).
[20] Kandrup, H. E. & Smith, H. Astrophys. J. 374, 255-265 (1991).
[21] Suto, Y. Publ. Astron. Soc. Japan. 43, L9-L15 (1991).
[22) Goodman, J., Heggie, D. C. & Hut, P., submitted to Astrophys. J..
[23) Will, C. M. Theory and,ezperiment in gravitational physics. (Cambridge Univ. Press,
London/New York, 1981).
[24] Wilson, M. L., & Silk, J. Astrophys. J. 243, 14-25 (1981).
[25] Ito, T., Makino, J., Fukushige, T., Ebisuzaki, T., Okumura, S. K., & Sugimoto, D.
Publ. Astron. Soc. Japan, in press.
(26] Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes.
(Cambridge Univ. Press, London/New York, 1986).
(27] leushige, T., Makino, J., Nishimura, O., & Ebisuzaki, T. submitted to Publ. Astron.
Soc. Japan. ‘ '
[28] Geller, M., & Huchra, J., Science, 246, 897-903 (1989).
[29] Silk, J. Astrophys. J. 151, 459-471 (1968).

—416—



Table 1. The growth of the beam width due to different astronomical objects.

object . € d Q de efdpe 8 7o 7 oS(z* =4)
galaxy 20kpc  5Mpc 0.1 530kpc -0.04 0.7 0.63 0.50 1.68
cluster of gal. 2Mpc 20Mpc 0.2 45Mpc 044 4.5 216 0.21 1.19

supercluster 10Mpc 200Mpc 1.0 90Mpc 0.11 100’ 0.68 1.5 5.35

Figure Caption

Fig.1 The growth of the angle between the velocity vectors of two photons for the case
of N = 1024 and € = 0. Each curve represents the median value calculated over 200 orbit
pairs.

Fig.2 Growth factor, o = 8, 5/6s, plotted against 0/6,;. The triangles, squares and
pentagons aré for N = 128, 1024, and 8192, respectively. The softening parameter, ¢, is
set to be 0.

Fig.3 Growth factor, a, plotted against €/d,,. The meanings of symbols are the same as
in figure 2. '

Fig.4 Averaged temperature fluctuation plotted against the chopping angle, 8, for 6. =
4’. The thin curve indicates the intrinsic temperature fluctuation for the beam width
of antenna, 0 = 1’. The thick curves indicate the observed temperature fluctuation for
z* =2,4 and 10.
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IMAGE DEFORMATION DUE TO GRAVITATIONAL
LENSING IN A UNIVERSE WITH HIGH-REDSHIFT
QUASAR CLUSTERING

IKENJI TOMITA
Uji Research Center, Yukawa Institute for Theoretical Physics
Kyoto Universily, Uji 611

ABSTRACT

The observational evidence for high-redshift quasar clustering has recently been reported.
In this note gravitational lens effect in a cosmological model with such a clustering is con-
sidered. It is shown that the image deformation due to lensing is too large compared with
the observational average images of galaxies, if the clustering means the real inhomogeneity of

density perturbation of all matter at the stage 0 € z < z; (~ 5).

[. INTRODUCTION

The existence of clustering of high-redshift quasars has so far been reported by many
workers (Shanks et al. 1987; Anderson, Kunth, & Sargent 1988; Andreani, Cristiani, & La
TFranca 1991). Recently its observational evidence has been shown more clearly by Andreani &
Cristiani (1992), with the remarkable property that the two point correlations of the quasars
have no or weak evolutional change. At present it does not seem clear whether this clustering
is associated with the real inhomogeneity of the total density distribution of matter, and how
the correlation can be kept to be constant, in the case when it is associated with the real

inhomogeneity.

With respect to the density perturbations associated with the quasar clustering we can
consider following two cases. In the first case the real density perturbations of all matter are
assumed to be associated with the quasar clustering at all epochs of z £ 2; (z; ~ 5). In the
second case it is assumed that the real density perturbations of all matter are associated with
it transiently at the interval z; < z < zy (z; ~ 10) and at epoch z; the real perturbations

disappeared leaving only an apparent inhomogeneity corresponding the quasar clustering.
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In this note we derive in the first case the image deformation of galaxies due to gravitational
lens effect brought by the real perturbations, and examine whether the resulting deformation

is allowed in comparison with the observational optical galactic images.

In §II the gravitational potentials corresponding to density perturbations with constant
correlation lenght are first derived in the linear approximation using the part of the Einstein
equations. Next in the above first case the image deformation is derived using our theory of
gravitational lensing in the linear approximation (tomita 1989), which has been proposed to
study the deformation of the cosmic microwave radiation in a cosmological model with the )

usual density perturbations.

II. NON-EVOLUTIONAL DENSITY PERTURBATIONS CORRESPONDING TO
QUASAR CLUSTERING AND IMAGE DEFORMATION

a) Non-evolutional density perturbations

As the background universe at the matter-dominant stage we assume the Einstein-de Sitter

model with the line-element
ds® = R*(1)[—(dz®)® + (dz')* + (dz°)? + (dz?)?), (1)

where 2% = 7, R(7) = (7/7)* and 79 is the present value of 7. The metric tensors of the

perturbed universe are expressed in Bardeen’s notation (Bardeen 1980) as

go0 = —R*[1 + 2/dk"*(k)Q]a goi = _Rz./dkB(k)Q'i]'

9ij = R*[6i; + /dk(2HL(k)5¢jQ + 2H7(k)Q;)] (2)

for scalar (density) perturbations, where dk = dkydk.dk;, Q = exp(iijj ) and 4,7 = 1,2,
and 3 (a,8 =0,1,2, and 3). The gauge-invariant metric perturbations ($4,$ ) and density

perturbations &, are given by
by = / k@ A(K)Q, By = / dk® 1 (K)Q, &m = / dkem(K)Q, (3)

where &4 = A+ k™ [B+ (R/R)B] - k'z[ﬁ'p +(R/R)HT), &y = Hp + %H'r + k"(R/R)[B +
k'lHT]. .
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Here it is assumed that all matter has the same density perturbations corresponding to
quasar clustering from an epoch z = zj(~ 5) to the present, and they have a non-evolutional

power form as

em(k) = Tole(k)a(k), (k) = Aok", (4)

where Ag and n(~ 1) are positive constants, and a(k) is a random variable with a*(k) = a(—k)

whose average satisfies the relation

< a(k)a*(K') >= é(k - k). (5)

The above behavior is clearly different from that of density perturbations for the perfect
fluid shown in the ordinary theory of gravitational instability, and is brought by the support of
hypothetical non-gravitational forces. Since we concerned only with the gravitational influence
upon the light rays, we will not touch upon these forces and derive only the gravitational
potentials associated with the density perturbations (4), assuming that the following part of

the Einstein equations are satisfied at least approximately :
2(k/RY’®y = Eém, —(k/R)*(®a+®y)= Prr, (6)

where the background energy density E is 12/(7R)? and the anisotropic stress in the latter

equation is regarded here as being negligibly small. Then from these two equations we obtain
By = ~b4 = 6(no/7)" [ dkk~e(k)alk)Q, (7

The density perturbation is normalized as follows using the window function w(x) defined by
1,2
w(z) = exp[-5(5-)'*a). (8)

The average of square mass perturbation at the radius r is

oo
< (SM/M)? >,= 2mm’ / kR (k2w (kr). (9)
0
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Here we normalize as < (6M/M)? >(r=8h-1Mpc)= 1. Then we have
2 a
Ao = (270*) (=) " (8K~ Mpe)"™**/ f (), (10)

where f(n) = /m(n + 1)I1/23+!, (ZHL)! for even, odd n, respectively, with f(0) = \/7/2 and
f(1) = 1. The average of the density perturbations is

4
n+4+3

< (€m)? >= 7 / dke(k)? = 70t Ao(kimaz"t2 = kmin™*3), (11)

where kpqy and ki, correspond to the maximum and minimum wavenumbers and the corre-
sponding linear sizes are Lyar = 27 /kypar and Ly = 27 /kypin. The linear approximation is
valid for Lygz > 8h~! Mpc. Here we take the values Ly, = 8h~! Mpc and Ly = 30h~!
Mpc. Since kmaz"? >> kmin™3, the following results are not sensitive to the value of Lypin

forn > 0.

b) Lens effect and image deformation

Next we consider the deflection of light rays with wave vector k#(= dz*/d)) satisfying the

basic equations:
Bk, =0, ki =o.
The solutions in the linear approximation are expressed as
=R+, F=R2r)(+1), (12)

where ' (= ¢;) is the three-dimensional unit vector [}j‘:’___l(e")2 = e'e; = 1] representing the
directions of light rays, and the perturbations { and !* are small. From the basic equations we

obtain (Tomita 1989)

dlfdr = [+1;e' = (2R/R)F - / dk[AQ +24,¢'Q+ Be'e’ Qi,; + HLQ + Hre'e?Qij), (13)

diijdr = (Fy + I ;e = / dk{(Hy - A)Q,i + BQi

—2H1eiQ —2H.Q ;¢ i + HTe™ e (Qmji — 2Qijim) + € [B(Qij — Qi) — 2HTQi5]), (14)
where [ = 3l/dr, |; = dl/dz'.
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For the gauge-invariant quantities I, ¥ such that { =, I = I in the Newtonian gauge with
B = Hp = 0, we obtain from eqgs. (13)~ (14)

dlfdr = - / dk(® o + 2ik;e’ @4 + d1)Q, (15)

dijdr = / dk[—ik;i® 4 — 2e;bpy + i(k; — 2k;e7e)D]Q. (16)

The integration of these equations leads to

[= 2/dk[q’uQ + ?./d'r'r"I(I)HQ], (17)
o
I = 2/(11([-—6"((1)11())]:0 +ik,‘/d‘r®]1Q] (18)
T
and
bat = /ﬁd‘r +e(br, — /Tdr). (19)
To To

Of the components of 8z, we are interested in the components 5,z on the two-dimensional
plane perpendicular to k#(= R~2(1,¢')) and the matter velocity u'(= R~16}). By the use of

the projection tensor h,, (Tomita 1989), it is defined as 5zt = hlitdz" and expressed as
b xt = 12irg° / dk(ki — kee'Yk~2e(k)a(k)I(€), (20)

where &k, = kjei, Q = eXP(ike(T - Tc);

Te r
I(e') = / dr' / dr"r"Q
To ]

= Te/To — cos ke AT — C(keTe) — keTeS(keTe) + t[sin ke AT = ket C(kete) — S(kete)] (21)

with At = 79 — 7e. Here C(k.7e) and S{ke7e) are defined and expressed in terms of the integral
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sine and cosine functions as follows:
C(kete) = coskete|ci(kete) — ci(keTo)) + sin ko7e[si(keTe) — si(keTo)) (22)

and

S(kete) = cos keTe[si(kere) — si(keT,)] — sin kere[ci(keTe) — ci{keT,))- (23)

If we notice two neighbouring rays with the directional vectors ef and (= ef + Ae') and put

the diference of 8,2 as Ay (8, 2"), it is defined as

Ay(6iat) = (B ad(a™) — i ai(e™)] (24)
and using (20) we obtain
A1 (B1ef) = 12ing? / dick=2e(k)a(K)E;, (25)
where
&i = (ki — k&) (@) — (K = ke')I(e™) (26)

and k, = kj&. If we put & = (1,0,0) and & = (V1= A2, A, 0) for a small separate angle

A, we have
Fo= 1= A2 + Ak, (27)

The ratio of the average relative angular displacement of neighbouring two rays to the separate

angle A, is given by
8 =< Z[A L8 > 142 = 12%(n/Ac)? / dkk~4e(k)? Y I6l%,  (28)

where the integration is performed for ki < & € kpaz, and €(k) is given by (4) and (10). The

quantitiy g shows the degree of the image deformation.
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The values of 8 were numerically calculated for various sets of n and Lpgz. The result is
shown in Table 1 for a representative case: n =1 and Lyps: = 8h—! Mpc. It is found in these
examples that 8 is about 0.12z, for A ~ 0 arcmin. Observational quasar clustering seems to
have Lmar < 84~ Mpc, and for such smaller Lmqz the values of 8 are larger than in those in
Table 1. Since the average change in the ellipticity due to deformation is 28, these values of
B show too much deformation, compared with observational images of high-redshift galaxies.
This result means that there are no real density perturbations of all matter associated with the

high-redshift quasar clustering, while it may exist as a non-dynamical pattern at present.

Table 1 Average relative angular displacement () of neighbouring two rays to the sep-

arate angle A, arcmin at the emission epochs z, = 1.0,2.0,3.0,4.0. The power index n is

L.

A, 2. =10 ze=2.0 2. =3.0 ze =4.0
0.0 0.117 0.244 0.357 0.457
7.2 0.111 0.218 0.303 0.372
14.1 0.097 0.166 0.211 0.245
21.0 0.080 0.123 0.149 0.169
27.8 0.066 0.095 0.113 0.128
34.7 0.054 0.076 0.091 0.102
41.6 0.046 0.064 0.075 0.084
48.5 0.040 0.055 0.064 0.072
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Abstract

Under the thin-shell approximation, we study the expansion of the shell formed
around a single spherical void in the dust universe. We find that the peculiar velocity
of the shell is determined mostly by the density parameter Qp. It also depends on the
interior dust energy density, but is not so sensitive to a cosmological constant. This
feature may open a possibility of determining the universe model from the surface
molion of voids.

1 Introduction

The enlargement of a less-dense region (void) was considered with the motivation to
explain the large voids in galaxy distributions [1,2,3]. In the non-linear stage of density
perturbation, the less-dense region behaves like an explosive source because the less-dense
region expands faster than the outer region, and a dense thin shell is formed behind the
shock [ront by a snow-plow mechanism. The formation of a thin shell is demonstrated
by numerical simulation [2]. These studies on shell expansion may also be relevant to the
theory of explosive galaxy formation [4], where such a shell is generated by an explosion of
pregalactic ohjects.

In Ref.[3], by using the metric junction method given by Israel [5], a relativistic motion
of the void’s shell was investigated. In the flat universe, the shell radius R expands asymp-
totically as R oc t03+VIWH that is, its peculiar velocity with respect to the background
cosmic expansion, v, approaches to [(V17 — 1)/16)H R, where H is the Hubble parameter.
For other universe models, the motion of the shell was calculated numerically. In the open
universe, the shell expansion is eventually frozen to the background expansion, while, in the
closed universe, the surface expands much faster and its velocity finally approaches the speed
of light. Thus, the peculiar velocity of the void’s shell is sensitively dependent on the back-
ground universe model. Then, from the observation of the less dense region in the universe,
we may be able to determine the universe model. This method can be contrasted to that of
determining the universe model from the Virgo infall, in which the peculiar velocity of the
lower densc region is used [6].

In this paper, we re-examine the dynamics of the expanding shell to sce a relation between
the expansion law of a void and the universe models. In particular we discuss the dependency
of the peculiar velocity on the cosmological parameters. In Sec.2, we present the fully

1.23electric mail: '62L506@jpnwas00.bitnet, "'niaeda@jpnwasOO.bitnet. 3MG6@jpnyitp.bitnet
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relativistic equations for a thin shell, which will be solved later numerically. In Sec.3, we
discuss general features of the motion of the shell, including the explosion cases. In Sec.4, we
show the relation between the present peculiar velocity of the shell and the universe model
parameters at present, such as the density parameter, a cosmological constant and interior
dust energy.

2 Basic Equations

Here we give the equations of motion for a spherical shell, by applying Israel’s method
[5). For the dust homogeneous universe model, the basic equations were derived in Ref.[2,3],
and the equations are extended to the homogeneous space-time with general matter fluid in
Ref.[7]. In those papers the equations of motion were written with the proper time of the
shell 7, but it is often convenient to use the cosmic time of the outer region ¢ in discussing the
evolution of a void in the expanding universe, in particular, when we observe the void’s shell
from outside. Hence in this paper, we present simpler and more tractable equations than
the previous ones, by applying the equation obtained by Berezin, Kuzumin and Tkachev
[8], which is expressed in terms of the outside physical variables except the density of inner
matter fluid and its velocity. In Rel.[9], we have applied those equations to analyze dynamics
of an inhomogeneous bubble in an inflationary scenario. We find that those equations are
also useful in our case where the metrics of both sides are given, as we will see helow.

Let a time-like hypersurface £, which denotes a world-surface of a spherical shell, divide a
space-time into two regions, V* (outside) and V- (inside). We define a unit space-like vector
N, which is orthogonal to ¥ and pointing from V= to V*. It is convenient to introduce

-a Gaussian normal coordinate system (n,2') [10] in such a way that the hypersurface of
n = 0 corresponds to X. From the assumption that a shell is infinitely thin, the surface
energy-momentum tensor of the shell is defined as

. €
S = !l_n&/_( Ty dn. (2.1)

Using the extrinsic curvature tensor of the hypersurface of the shell, Kij = N, and the
Einstein equations, we can write down the jump conditions on the shell as [§]

[Ki)* = —SRG(S; - %6}’1‘1’5), (2.2)
- 8l = (T7T, (2.3)
Ki*Si+4xG{S}8) - 5(TeS)} = (T2)*. (2.4)

where we have denoted the value of any field variable ¥ on T on the side of V* by ¥* and
defined a bracket as [¥]* = W* — ¥~. | denotes the covariant derivative with respect to
the three metric of £. By using E¢.(2.4), we can obtain a simple expression of the basic
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equation, because il does not contain the metric in ¥~. Notice that the above equations do
not change their forms even if the Einstein equation contains a cosmological constant term
Agy.

We assume the homogeneous space-times both in V* and in V~. The space-times are
described by the Friedman-Robertson-Walker metric as

ds® = g Fdxtidzy = —dth + ol (ta){dx} + f2(x2)(d0? + sin? 0d¢?)}, (2.5)
where
sinys (ke =41, closed universe)
Felxz) =14 xz (k£ =0, flat universe)
sinhys (kx = —1, open universe)

The direct calculation of I\'J‘:i yields [9]

th - 12(fi +veHe R) Kt = e dvg

I , T + vrveHy, (2.6)

where fi = dfi/dys, and the circumference radius of the shell R, the peculiar velocity of
the shell v, its Lorentz [actor 4 and the Hubble expansion parameter H are defined as

day/dty

l\i 1
R=a =a_f., vy =« Yy = ——=, and Hy = 2.7
+f+ f ) + E T ” £3 \/ma E as ( )
i
As the energy momentum tensor, we consider a dust fluid on ¥ and in V¥, ie.,
Sw =ovivE, T.%=prufu¥, (2.8)

where o and v, are the surface density and the four velocity of the shell, p; and u, are the
density and the four velocity of background dust, respectively. -
The background expansion obeys the following relation,

k 87G ., A
Hi+ % i =2 —pit+ = (2.9)
a} 3 3"
The effect of a cosmological constant appears only through this equation.
Now, with the help of Eqs.(2.6) and (2.8), we can write down E¢s.(2.3) and (2.4) explicitly
as :

2
1 QE0) _ fr Ry, (2.10)
(ll.'.

1 2.,2 ) +

dsve) _ = -y dly + 2xGo ~ ['7v_p,] (2.11)
di, g
The relationship between dR/dty and v, is given by

dR : '
E = f;_U.*. + H+R (2.12)
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Further, the conditions of the continuity of the metric;

drl=di? - a:‘;(t.,.)dx"'+ = dt? —a?(t_)dx?, (2.13)
(IR
i ( arfy) = E a_f-), (2.14)
are reduced to dt
a- _ 1=
==z | (2.15)
Y+(fiv+ + HeR) = v-(flv- + H_R). (2.16)

The equations of motion for the shell are designed by Eqs.(2.9), (2.10), (2.11) and (2.12). In
the case where the inside region is not vacuum (p; # 0), we have to know the values of v_
and p3. Then we use the above supplementary equations (2.15) and (2.16), which give ¢
and v_, respectively. Once we know i_, we can also find pJ.

The angular component of the jump condition (2.2);

(S + e H R = ~47GaR, (2.17)

gives a constraint for the value of surface density o, which guarantees both V+ and V- are
homogeneous.

In what follows, we omit the subscript + for variables in V* unless one may be confused.
The subscripts ¢ and 0 denote initial and present values, respectively. Here, the initial time
just means the time when we start our calculations. Free parameters we can choose initially
are v, R, O = 87Gpaf3H?, X = AJ3H?, and p7/p}. In the case where V'~ is not the

Minkowski space-time (A # 0 or p; # 0), we have chosen the spatial curvature of ¥V~ and
the time ¢; so as to satisfy H = H}. v] and o; are determined from Eqs.(2.16) and (2.17),
respectively. Setting up initial data, we numerically integrate the equations of motion for a
shell by Runge-Kutta method. Since we are interested in a dependence of the shell motion
on the universe model parameters at present, we will give our conclusion mainly in terms of
the present values, Qo, Ap and (p7 /pt o, rather than the initial values, £, A; and (p7 /o3 ):.

3 Void and Explosion

Before we are going to discuss the relation between the shell motion around the void and
the universe model, first we show a dependency of the shell motion on the initial velocity
v;. If the void is formed from the less-dense region, the initial peculiar velocity v; may be
negligible. However, if the void structure is formed by the explosion of pregalactic objects,
v; will take a large value. In this section we restrict our analysis to the case that A = 0 and
ps =0. '

In Fig.1 and Fig.2, the time-variation of v and its ratio to the Hubble velocity, ¥ = v/HR,
are shown, respectively. We find that after the universe expands by several times from its
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initial value, the effect of the background expansion gets more important rather than the
initial velocity v;. Although the void size and v vary depending on v;, the asymptotic
behavior of ¥ is determined only by the universe model. This is a usefu] feature which we
can utilize for the determination of the universe model {rom observation.
In the Newtonian approximation, we can discuss the dynamics of the shell analytically.
Setting ¥ = 1 and 470 R? = (4/3)wpaR® in Eq.(2.11), we get
dv Pt R -
- =4 R(I—v—:}v), (3.1)
This shows how the shell is accelerated or decelerated depending on & and Q. Then the
stationary velocity v where dv/dt = 0 is attained when

- -1+ 1T+30
S e—

cr —

(3.2)

The existence of the maximum value of v(t) at o = 9, is seen in Fig.1{a).

4 Void and Universe Model

For the determination of the universe model parameters from the shell motion, it is
convenient to give the relation between the present expansion velocity of the void’s shell and
the present values of the universe model parameters. As we show in Sec.3, the dimensionless
value of the shell velocity # is sensitive to f2. Thus its present value i, may be a key value.
Furthermore the asymptotic value of # is (V17 — 1)/16 = 0.195 for the flat model in the
Newtonian limit. This value may verify the flat model.

In this section, first, we will investigate the dependence of ©ig on g, which is the parameter
we hope to estimate in the obscrvational cosmology. Later, we will discuss the effect of a
cosmological constant and of interior dust density.

(1) Void and the Density Parameter

In Fig.3 we show the Q- relation for the case that A = 0 and the interior of the void
is empty (pg = 0). 9, is an increasing function of g. We also find that, for the voids which
are much smaller than the horizon scale and are generated at z;24, ¥ depends mainly on
2, although the value of # in general depends on Ry and z;.

As long as 2,24 and 1?050.1}10", which may be true for the observed voids, thus, we
can estimate )y [rom the observation of u, and HgRy. I should be remarked that these
values are observable at present. Hence we think there may be possibility of evaluating Qo
by observation of an expanding void.

(2) Effect of a Cosmological Constant
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Some observational analysis for the number count of faint galaxies has suggested the
existence of a non-vanishing cosmological constant [11]. Besides, in the context of the particle
physics cosmology, it is natural to include a cosmological constant as a vacuum energy.

In Fig.4(a) we show the time-variation of ¢ for various A; for ; = 1. Now, the background
expansion equation (2.9) includes A. Here we again assume that the interior of the void is
vacuum. We find that when a cosmological constant exists, the shell expansion is decelerated
and frozen soon to the background expansion regardless of the value of ;. This feature is
similar to that in the open universe model with A = 0.

We can discuss the above effect of a cosmological constant in terms of Eqs.(2.9) and (3.1).
From Eq.(2.9), Q2 is expressed as

_ 387G py
= $xCra ¥ A —3Kat (4.1)

This shows that §} gradually decreases independent of the initial value of spatial curvature if
A # 0, because the density py decreases when the universe expands. That is, A term works
to reduce Q. If Q decreases, ¥, also decreases, as we can see in Eq.(3.2). Hence, A term has
an effect to reduce the shell expansion.

The Ag-Dp relation is presented in Fig.4(h). We find that the present value 9y has a little
dependency on Ag for a fixed value of Qp, although temporal behaviour of ¥ in the past are
quite sensitive to the value of Ay. Notice that we can distinguish the dust energy density Qo

from the cosmological constant even if the universe model is flat (A = 0). (See the solid line
in Fig.4(b).)

(3) Effect of Interior Dust Energy
' So far we have assumed that the interior of a void is vacuum. However, the darkness does
not neccessarily imply its emptiness. Here we, therefore, examine the eflect of the interior
matter density.

We present time-variation of  for several values of (p7/p3): in Fig.5(a). As we may
expect, the expansion velocity of a shell is smaller for larger value of (p7/pJ):. Since p7
decreases faster than p}, p7'/pf approaches 0, and hence the asymptotic behaviour gets
similar to the previous model (p; = 0).

The relation between (p7/p3)o and o, is presented in Fig.5(b). We find that , is ap-
proximately proportional to 1 — (p7 /23 )o-

5 Summary and Discussions

We have investigated the expanding shell around a spherical void in the expanding dust
universe. Our main purpose is to relate the expansion law of a void to the universe model
parameters. ¥, the ratio of the peculiar velocity v to the background Hubble expansion HR,
is determined mainly by the present value of the density parameter §}y. It also depends on the
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ratio of the inside dust density to the outside one (p7 /p} )o. Aslong as z;24 and Ro<0.1H;5?,
however, it has little dependency on a cosmological constant A, the initial redshift z; and
the present size of void R,. Our result is summarized in Fig.6. From this contour map, we
can evaluate the value of Q from the observation of (v/H R)o and (p7/p3 )o.

In the actual situation, however, even if voids are formed by explosion mechanism or
from the less dense fluctuation, most of them may have already collided with each other,
and hence a simplified single void expansion may not be realistic. Further, it may also be
difficult to identify the peculiar velocity of a shell because of its finite thickness. Although
there are many problems for the application to realistic situation at present, an intrinsic
relation of the shell expansion to the universe model could be used in the future.
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Fig.1. Time-variation of the shell velocity v for ; = 0.98, 1, 1.02. The abscissa is the scale factor
a(t) in units of its initial value. We assume p7 = 0, A = 0 and R; = 10~2H}. The case (a)
corresponds the void formed from a less-dense region, i.e., v; = 0. The case (b) is the explosion
case, where we have chosen as v; = 10H; R; = 0.1, as an example. For the closed universe model,
there exist turning points where a(t) starts to decrease. When the universe recollapses, the shell
expansion velocity becomes very large. For each universe model in the expanding phase, v takes

the maximum value at v, =2 (=1 4+ /1 4+ 30)/6 (see text).
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Fig.2. Time-variation of 4 = v/H R is shown for the same models in Fig.1. The asymptotic
behaviour for each value of ©; is quite different, but they do not depend on the initial expansion

velocity v;.
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Fig.3. Qqo-bo relation. (a) We change the value of z;, setting A = 0, p;7 = 0, v, = 0 and R; =
0.12I7}. o is monotonically increasing with respect to £29. We find that all curves for z; 24 converge
to the same one. (b) We change the value of Ro, setting A =0, p; =0, v; =0 and z; = 4. For
ROSO.IHO'I, all curves coincide with each other.
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Fig.4. Effect of a cosmological constant. (a) Time-variation of ¥ for severa! values of A;. We assume
that Q; =1, p;y =0, v; = O0and Rt; = O.IH,"’. IfA =0, ¥ approaches to a constant, while, if A # 0,
¥ increases once and then eventually decreases to zero. [lence, such a model becomes similar to the
open universe (see Fig.2). (b) Ag-tg relation for several values of 9. The bold line corresponds to
values for the spatially flat universe; o + Ao = 1. The solid, dashed and dotted lines denote the
relations for g = 1, 0.5 and 0.1,-respect~ively. Weset py =0, v, =0, I; = O.IH,-" and z; = 4.
We find that the value of g depends just on the present density parameter (lp, but not on Ag.
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Fig.5. Effect of interior dust energy. (a) Time-variation of # for several values of (p] /p})i. We
set A=0, vy =0and R; =0.1H 1, §ip approaches to the case of empty void, because the interior
density p; decreases faster than p}', and then p7 /pT asymptotically (b) The relation between
(p;/p:)o and ¥ for several values of Q. Weset A=0, v; =0, R; = 0.1H! and z; = 4. We find
that i is proportional to 1 — (p7 /p3 )o.
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Fig.6. The contour map of {g with respect to (p;/p:)o and Q. If we observe vy, HoRop and
(p;/p}')o, we can determine the value of Qp.
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Abstract

We present a model of chaotic inflation driven by the superpartner of the right-
handed neutrino (sneutrino). This model naturally gives the correct order of magni-
tude of the density perturbation observed by COBE with a mass of the right-handed
neutrino ~ 10'3 GeV, which is also preferred by the Mikheyev-Smirnov-Wolfenstein
solution to the solar neutrino problem. The reheating process is the decay of the
coherently oscillating right-handed sneutrino. The reheating temperature is around
10! GeV, and hence gravitino problem is solved. This decay process also gener-
ates lepton number asymmetry via CP-violation, which will be converted to baryon
number asymmetry thanks to the clectroweak anomaly. This model can incorporate
the mass of the T-neutrino around 10 eV.

The inflationary expansion in the early universe is a desirable ingredient of modern
cosmology to solve the horizon and the flatness puzzles [1] as well as the monopole [2], the
domain-structure [3] and the gravitino problems [4]. Recently, COBE satellite [5] detected -
an anisotropy of the cosmic microwave background, and found that it is consistent with
the almost scale-invariant density perturbation generated by the quantum fluctuations
during the inflation era [6]. Furthermore, the observed temperature fluctuation at the
level of 6T /T ~ 1075 allows us to fix the scale of chaotic inflation around H ~ 10'® GeV
(7).

Even though we have sound motivations for inflation as above, it is very difficult to
make a convincing particle physics model which naturally predicts a scalar field driving
inflation (inflaton) with Einstein gravity. This is because it must be a gauge singlet,
and should be very weakly interacting, to have a very flat potential. The necessity of -
baryogenesis at or after the reheating stage makes it even harder since the reheating
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temperature is constrained to be much lower than the typical grand unification scale at
which baryogenesis takes place in the conventional scenario [8]. Furthermore, the baryon
asymmetry, if generated at all, would be washed out due to the electroweak anomalous
process [9] if there were no B — L asymmetry as in SU(5) grand unification. Thus we
have to search for a model which generates B — L asymmetry al lower temperature in the
post-inflationary universe [10].

On the other hand, supersymmetry (SUSY) is regarded as a necessary ingredient in
constructing models beyond the Standard Model, in order to stabilize the large hierarchy
between the weak and the unification or the Planck scales [11]. Combined with the SUSY
breaking induced by the supergravity interactions, it also gives a natural framework to
break the electroweak symmetry radiatively {12]. Furthermore, the only candidate of the
quantum gravity, the superstring, requires SUSY for its consistency. The discovery al
LEP [13] that all the three gauge coupling constants meet at a single point in the SUSY
Standard Model is also a strong support for the SUSY. Once we regard the SUSY as the
correct low-energy symmetry of the nature, we have to take the SUSY Standard Model
as a serious candidate to describe the nature below the Planck {or unification) scale. It
is natural to seek for a candidate of the inflaton among scalar partners of the fermion
species whose existence is known or suggested by experimental basis.

In the present letter we propose a scenario of chaotic inflation {14] by identifying the
inflaton with the scalar partner of a right-handed Majorana neutrino. Being gauge-singlet,
its scalar component can have large values at the Planck epoch, and automatically induces
chaotic inflation. Then the primordial density perturbation is proportional to its mass,

§T M

at the scales reflecting the anisotropy of the comic microwave background, with Mp be-
ing the Planck mass. The beautiful data by COBE 8T/T = 10-° has fixed the mass at
10'® GeV [7). The reheating process is nothing but the decay of the coherently oscillating
right-handed sneutrinos. If CP violation exists, the decay process generates lepton num-
ber asymmetry, since the Majorana mass of the right-handed neutrino breaks the lepton
number conservation. This lepton number asymmetry will be subsequently partially con-
verted to baryon number asymmetry due to the electroweak anomalous process {15]. On
the other hand, the existence of the right-handed neutrino is strongly supported by recent
confirmation of the deficit of solar neutrino flux at Homestake, Kamiokande and GALLEX
(16], at more than two sigma level. The Mikheyev-Smirnov-Wollenstein (MSW) solution
[17], combined with seesaw model (18], predicts the right-handed neutrino mass around
10'° o0 10'® GeV. Thus the mass preferred by the COBE data M ~ 10'® GeV naturally
fit into this window {19].

Now we begin to describe our model in more detail. We assume the existence of the
right-handed neutrinos N; for each generation, with a common mass at 10'* GeV for
simplicity. Their only possible interactions are the Yukawa couplings with the lepton and
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Higgs fields i;, H, and Hy, with the superpotential

W= —-MN"'N‘ 4 puH Ha + RINSGH, + kel Hy. (2)

l\?

Here we have assigned the odd R-parity for the right-handed sneutrinos, which inhibits
(N¢€)? term in the superpotential.

At the Planck epoch (¢t ~ Mp') when the classical description of spacetime becomes
possible, we expect that the universe was in a highly non-equilibrium state, since there
was not enough time for the thermal equilibrium to be realized. The only criterion at that
time is that every term in the Lagrangian can have the order of magnitude M3, varying
from one horizon to another {14]. Allowing each term in the potential to be ~ M3, all
the scalar fields can have values ~ Mp. However, only those fields with values larger
than ~ Mp can act as an inflaton. Any gauge non-singlet ficlds cannol have values larger
than ~ Mp due to the D-terms [20]. Thus the right-handed sneutrinos are the unique
candidates of the inflaton, and that with smallest Yukawa coupling (|)l(.sllll]db|)’ right-
handed electron sneutrino Ny) acts as an inflaton. We will only deal with N\ herealter,
and assume that its largest Yukawa coupling is that to the r-doublet, of the order of
hya 2 107" to 1075, Then it can have an initial value as large as IN,(O )~ Mp/hy;. U the
Yukawa couplings are larger than /87/3 M/Mp ~ 10~%, the slepton and Higgs fields get
larger masses from {N;) than the Hubble parameter H. Then those scalar fields oscillate
and the amplitudes will be damped away exponentially within the inflation era.

The field equation is very simple after the slepton and Higgs fields died away,

Ny +3HN, + TN, + M?N, = o, (3)
with
2 2 2 2
H 31\!2 [M NP + |V, |] (4)

and '), = |111,-|2M/41r ~ 102 to 10" GeV. Until the time H ~ M, the sneutrino field is
simply rolling down the potential,

Bl = 1M0) - M’it (5)

MWV
R(t) = R(0)exp [\’ |Nl(0)| ( TJ%)] (6)
) ! :

After the time fI ~ M, the snculrino field oscillates around its mininuwn, 7\7. = (), with
frequency M. This coherent oscillation will be slowly damped due to the expansion. Once
H ~ T, the coherent oscillation starts to decay into light particles, which will “rcheat”
the universe up to the temperature Try = 0.1/MpI; = 10° GeV to 10'° GeV, sufficiently .
low to avoid the gravitino problem [21]. Simultaneously, the decay of N, produces lepton
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Figure 1: The diagrams for decay of the right-handed sneutrino ¥, into lepton IH, and
anti-slepton I‘H : at tree and one-loop levels.

number asymmetry due to the CP-violation. This reheating period can be described by
the following equations.

pn+3Hpy + Tipn =0, (7)
Pr+4Hpp =Tipn, (8)

2 _ S_”PN + PR
i = 3 M (9)

where ﬁN is the energy density of the coherently oscillating right-handed sneutrino field,
and pg is the energy density of the produced radiation. The generated lepton number
asymmetry can be evaluated by the equation

pN 9 1133 1

M o Ma C (3)

oN 9 2Gtm? 1
iy 2R e
_ "M T2 sn'B ((3) "
This equation may require some e\planatlons The parameter ¢ is the asymmetry in the
N, decay between that into leptons { H, and that into anti- sleptons I* H: (see Fig. 1),

ln 2 g?)l(’ll:lllkhthu) ln =
w2 A2, 1
€= . hiihi; Sr —Sm (11)

ny + 3Hn,

——n.ny

ng. (10)
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Here we have assumed that k3 dominates over h;; and h;,, and took the convention
that both h;3 and right-handed neutrino masses are real. The first term in the right-
hand side of Eq. (10) is the production of lepton number asymmetry due to this CP-
violating decay of Nj. The second term represents the destruction of the lepton number
due to the lepton-number violating scattering process via the N3 exchange. The seesaw
formula m,, = |haa|?sin? 8/(v2Gr M) has been used to demonstrate that the rate of the
destruction is proportional to the square of the mass of v,. Here 8 is defined by the ratio
of two vacuum expectation values, tan 8 = (H,)/(H4), and Gr is the Fermi constant.

The maximum lepton number to entropy ratio (Y, = n./s) generated in this process
is .

Y ci?ﬂ (12)
14 M

The produced lepton number asymmetry will be rapidly converted to baryons with the
rate ~ af, T* [22], reaching the chemical equilibrium [22, 23)

8n, + 4

‘B = my >~ 035)/[, (13)
with the number of generations n, = 3. This maximum value gives the correct baryon to
entropy ratio 4 x 10~1! < Yp < 14 x 10! required from nucleosynthesis only if we take
unnaturally small values ¢ ~ 10~8 to 10-¢ depending on Try.

However, there are two processes which suppress the baryon number asymmetry. The
first one is the destruction of the lepton number asymmetry due to the Nj-exchange

scattering process appearing in Eq. (10). It gives a suppression factor of roughly

Y] 2
e MpTin (14)

exp [—0.012—=
sin

and is important for m,, 2 2 eV. For example, ¢ ~ 1073, Ty ~ 10° GeV and m,, ~ 10 eV
gives the correct baryon to entropy ratio. The second one is the dilution effect due to the
decay of scalar field in the flat direction of the potential. It is a general phenomenon in
the supersymmetric models that there are flat directions in the scalar potential. From the
chaotic configuration of the initial scalar fields, it may be occasionally possible that the
scalar fields will drop into the flat direction with values of ~ Mp during the inflation. It’
will begin to oscillate only at the time H ~ m, where m denotes the mass along the flat
direction, expected to be the order of the weak-scale. Since the decay rate of our inflaton
is also of the same order, the cold oscillation begins soon after the reheating. However
then the energy density will be dominated by the cold oscillation. Its decay will generate
a large amount of entropy, giving a dilution factor 24, 25] roughly of -

(&i)'/s(i) o= (L)'m (15)
x Mp Mp Mp !

where x is the initial value when the flat direction begins the oscillation. Then the CP-
violating parameter € should be at its maximum possible value ¢ ~ 10-2, and we will
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obtain an upperbound on m,, of the order of 2 ¢V so that the lepton number asynunetry
generated will not be suppressed further.

Now we discuss several points in our scenario.

1. It is not clear whether the scalar fields will drop into one of the flat directions
during the inflation. Note that the lepton doublets I; and Higgs field H, cannot have
a large value due to the coupling to the inflaton N, in the potential. Thus only the
squark fields and right-handed sleptons can have large values. Such flat directions may
be too special to be realized. If the scalar fields do drop into one of those flat directions,
one may question whether the decay of the flat direction will produce baryon number
asymmetry via the Affleck-Dine mechanism [24]. However, there are no terms in the tree-
level potential which violates B — L symmetry along this flat direction. We have also
checked that the higher order correction can generate B — L violating potential only at a
negligible magnitude. Thus the only effect of the flat direction, if present, is to dilute the
generated lepton number asymmetry.

2. During the reheating process, the lepton and Higgs fields mix due to the oscillating
right-handed sneutrino background, and one may worry that the produced lepton number
will be destroyed due to the mixing [26]. At the reheating period, the amplitude of the
oscillation is ~ TyAMp /M, and the mixing mass is m i ~ hy 3Py Mp/M ~ 103 GeV. On
the other hand, the right-handed sneutrino background is oscillating with the frequency of
M = 10" GeV > m,,;;. Then the mixing is estimated to be only of 16 m2,,_/M? ~ 1018,
and hence negligible. _

3. Our scenario can easily be incorporated in the SU(5) grand unification, since right-
handed neutrino is singlet under the SU(5) gauge group. The analysis in this letter applies
without any modifications. On the other hand, the right-handed sneutrino field cannot
have a large initial value if the U(1)g._L symmetry is gauged, like in SO(10) models.

4. This model can naturally incorporate a T-neutrino mass m,, ~ 10 eV as seen above.
Then v, can contribute to the energy density of the present universe §1,, ~ 0.1 as a hol
dark matter (HDM). On the other hand, the lightest superparticle (LSP) can account for
the cold dark matter (CDM) component. Thus our model can provide both CDM and
HDM, as a mixed dark matter model recently favored in the literatures [27].

In summary, we have demonstrated that the right-handed neutrino, combined with
SUSY, gives a natural model of chaotic inflation. This model also generates baryon
number asymmetry by the decay of the inflaton. The mass of the right-handed neutrino
M ~ 10" GeV is consistent both with the COBE data and the MSW solution to the
solar neutrino problem.
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Generation of Gravitational Wave
in the First Order Phase Transition

Y .Suzuki,
Department of Physics, Tohoku Universily

Abstract

We point out a possibility that the JBD field radiation from true vacuum bubble
may exist without any collision process in the context of extended inflation.

1 Introduction

The inflationary model based on the first order phase transition has recently been reviewed in
the context of extended inflationary scenario. Extended inflation was proposed as a solution
to the “graceful exit” problem by La and Steinhardt[l]. The essential difference with old
inflation is that gravity is described by the Jordan-Brans-Dicke(JBD) type theory with a
scalar field-¢ and the scale factor in the false vacuum grows according to a power law in
time rather than the exponential one. This “softened” behavior of the scale factor allows
percolation of the true vacuum. In the first order inflation the transition proceeds via the
nucleation of true-vacuum bubbles, and the reheating of the Universe may be caused by the
collision of bubbles. As pointed out by Turner and Wilzek, this collision may produce a large
amount of gravitational wave[2]. Recently the amount of gravitational radiation from bubble
collision has been computed(3).

In the following we will study the effect of the JBD type scalar field ¢ on the generation of

the gravitational wave. This is based on a work in progress in collaboration with Y. Tamiya
and M. Yoshimura[4].

—445—



2 Conservation law
We consider the theory described by the action
S= [d'a/=§(AR-BUr6 v} $ U +Lu), (1)

where ¢ is a real scalar field corresponding to the JBD field and A, B, and U are some functions
depending only on ¢. L) is the matter Lagrangean which includes the inflaton field ¥ of

which the true vacuum bubble is composed. The field equations in this theory are witten as

1 1
Gu - Z(VA Vv =9uwD)A = ﬂ(TMU + T;Et))s (2)
2B0¢=-AR+U - B v, ¢V ¢, (3)
68
E =0, (4)

where T, is the energy-momentum tensor of the matter field, T,Sf) is defined by
T = 2BV, Vv — gu(B V69 6+ V), (5)

and the prime denotes the ¢ derivative. The choice A = ¢/167, B = w/16xd,and U = 0
corresponds to the original JBD theory. It is important to bear in mind that the covariant
conservation law 7,7 = 0 holds if £ does not depend on ¢.

In the Einstein theory (A = 1/167G, B = 0, and U = 0), the ordinary conservation law is

obtaind by rewriting the Einstein equation[5) as follows:

1 1
- v ) — uivp
(=9) (T tl6rG" ) 6 O H" ©)

where H*»* = (—g)(g**g** —'g*?g**) and 7* is defind by
(—g)™ = 0x8,H" " — 2(—g)G*. (7

The conservation law 8,(—g)(T* + ¥ /167 G) = 0 follows immediately from the antisymme-
try of indices z and X of H#**, It can be shown that 7% has two significant properties, that
is, it is symmetric and contains no second derivatives of the metric.

As concerns the generalized JBD type theory(1l), we can also obtain the conservation law

by means of eq.(7)[6). There are an infinite number of conservation laws as pointed out by
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D.L.Lee (7). To see this, multiplying eq.(2) by some function F of ¢, we obtain
(—g)Fr* + (——g)%(T‘“’ +T®) + O\ F - 0, H* ? + 8,F . 8\ H***
HH0,0,F + 2=g) (9" 7 ~g" D)4 = B3, (FH), ®)
after using eq.(7). The conservation law of the form
dul(—9)F2**] =0, (9)

follows from the antisymmetric property of F H**? in the right hand side of eq.(8) and where
Z* is a complicated expression involving derivatives of gy,, ¢, and T#*. The point to observe
is that Z#¥ is symmetric for arbitrary F, but generally contains second derivatives of ¢. From
eq.(8), the requirement for Z#¥ not to contain second derivatives of ¢ uniquely determines
F = A? up to a constant factor. This requirement is natural in the sence of the energy-
momentum tensor for the ordinary matter field in the flat space-time, so we shall concentrate

on this choice below.

3 Radiation from one bubble

Let us leave the generality of the conservation law and turn to the generation of the gravita-
tional wave from bubble. Especially to clarify the difference between the Einstein theory and

the JBD type theory which contains a scalar field ¢, we consider the following case:
Guv = N + by (hu << 1),

d=¢do+o (¢/p << 1),
TS >> Uy, UL, UY,

where @ is constant, the subscript “0” denotes the value at ¢, and n,, is the Minkowski
metric. Such conditions are not always met in extended inflation senario; especially g, will
be far from 7,,. Nevertheless, we will make the weak field approximation since we discuss
only qualitative aspects in this article. Formulation for generation of gravitational wave in
general space-time background is very difficult. Thus, the lowest order field equations(8] are

A ) 1

D(hpu + A_Zﬂuu‘P) = _A_O(Tuv - ZUuuT:)a (10)
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Op = [Ty (ﬂo_’;{] (Bo+ Ao;};) ), (11)

where O = 9#*3,8,, and we impose the gauge condition

A
au(\/"—gAg"")onau( o+ 2y

where h = n**h,,. These linearlized equations can be solved using the retarted potential and

o — huu) - (12)

T, is determind by solving eq.(4) in flat space-time with appropriate boundary conditions.
The expression of the energy emitted from the source T, is obtained by substituting above
solution into Z#*. If T,,, vanishes at infinity, using Fourier components of Ty, the energy per

solid angle emitted in a direction k is

dE
7o) 87er _/ dvv? (Aijtm + BoAg u,lm)T"'(k V)T‘""(L v), (13)
Aiim = 8iibim — 2kikibim + —ict'ié'icl’}m - 15.' 6t + l&."icll.cm + -l-k E;tm,
e ’ 27 g udm T 5% 2™

Visim = (=kik; + 85)(=kikm + 81m),
Ti(k, v) = % [ d*zexplivt - ik 2)T(z, ),
where (k, v) is null vector, k' = k'/v(i.e. unit vector), and we have expressed 7 with the
purely spacelike components T/ by means of the flat space-time conservation law 9,T* =0.
In the Einstein theory, the second term of eq.(13) which is propotional to A vanishes.
Consider one growing bubble. The corresponding field configuration will be spherically

symmetric, that is, T% is of the form
Tk, v) = ¢;(v)67 + ca(w) kR, (14)

where ¢; and c; are some functions depending only upon v. From difinition of A, and
V;’j,lm’
8 Aijum = 0, FEAjjim =0,
6"51/,-,~',,,, = 2(—/}1;:"‘ + 5{,,.), ki’}jv',j'lm =0.
Here we can see the difference between the Einstein theory and the JBD theory. That is, in
the Einstein theory no gravitational wave is emitted from a spherically symmetric source (it
is knwon as Birkhoff’s theorem), but in the JBD type theory (A} # 0) the radiation may exist

even for a spherically symmetric source. It is a remarkable difference.
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4 Discussions

Finally we shall discuss the effect on extended inflation. First, the energy stored in a bubble
wall is liberated not only into the gravity wave but also into the scalar ¢ wave, since the
gravitational wave generated by the bubble wall will be reduced in comparison with the
Einstein theory. Second, when the back reaction is taken into account the velocity of the
wall will not become very large. If this is the case, the suppression of large bubbles will be

achieved, which may reduce inhomogeneity caused by large bubbles[9).
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Abstract

The dynamical evolution of a wall-string system is investigated. Walls intersect
each other and collapse at about ten percent of the light velocity. Such moving walls
attract matter as positive gravitational sources. They annihilate with few oscillation
so that the lost energy radiates as a scalar mode. Thus although the decays are
non-spherical, the production of gravitational waves is expected to be rare. As for the
N =1 axion domain wall model, walls prove to be harmless in the standard cosmology
since they do not dominate the universe.

1 Introduction

The union of cosmology and high energy physics has brought some interesting ideas to
the events in the very early universe. Topological defects stem from such ideas. They
come into existence at phase transitions accompanied by some symmetry breakings. Such
a phase transition takes place when the symmetries between elementary interactions vanish
away. For this process to occur, the restoration of the symmetries which are now broken is
* indispensable. The high energy density state in the early part of the cosmic history enables
this revival so that topological defects are produced during the thermal phase transition(1].
Thus it is natural that the energy scale of defects generation should be a unification scale. In
the GUT era, however, the universe must not be in the thermal equilibrium([2}, which makes
the Kibble mechanism impossible. Even in that case, the inflationary expansion[3] saves
the symmetry recovery due to the curvature correction and the quantum phase transition
generates topological defects[4]. Hence the creation of defects is a fairly general phenomenon
and its effect to the cosmological evolution is worth to notice. By the degree number of
the homotopy group concerning the true vacuum manifold, they can be classified to various
types such as domain walls, cosmic strings, monopoles or textures. Particularly, global
textures provide a promising scenario of the structure formation in the universe[5]. On the
other hand, domain walls were considered to be disastrous since they would soon grow to
dominate the energy density of the universe[6). To avoid this problem, the wall producing
transition has to happen on the sufficiently late time. Such a phase transition after the
recombination may explain the cosmological large-scale structure(7).

In the present paper, we concentrate on complex defects, that is, walls bounded by
strings. This kind of walls arises in various axion models(8]. Two different transitions are
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included in these theories. First, the Peccei-Quinn U(1) symmetry is broken and global
strings are produced. Then the second phase transition at QCD energy scale comes about
and the strings turn to be surrounded by N walls that spring out from each string. For the
axion model to work successfully, these walls should annihilate not to dominate the universe
with their energy. It is believed that in the cases of N > 1 the network of walls survives
too long so that the model fails, although N = 1 walls rapidly disappear, which means the
axion postulation does not conflict with the cosmology[9]. Ryden et al. got this result by
numerical simulations but they used a modified equation. Here we investigate the dynamics
of an individual string-wall system and confirm the justification of the N = 1 axion model.
Moreover, the detailed aspect of wall collapses is roughly reported.

2 Model and Method

We employ a complex scalar field of a single component that obeys a following Lagrangian

£ = 3(8,8)(8°9) ~ Vu(#) = Vld)s Vi(#) = JUI =, Vald) = Va1 = cost), (1)

where 8 signifies the phase of ¢. The first term of the potential, V,, gives rise to strings and
domain walls (N = 1) are originated from the second term, V,,, at # = x. The line energy
density of strings, u, and the core radius of them, §,, are

p~v?, 8, ~2(M%)YV2 (2)

respectively. The surface energy density of walls, o, and the width scale of them, §,, are

v

o~uV,, by~ . 3
VA ®)

To follow the time evolution of walls numerically, we have to solve the field evolution under
a certain space-time. As the most simple hypothesis, we assume that the background should
be a flat Robertson-Walker universe. Then the field equation is written by

8¢ 2 [da] 8¢ 2 0V
AR AT Poted I = —a?o 4
31"+a[d'r]37 v'é a@qS' )
where a = a(7) is a scale factor and 7 is conformal time defined by dr = dt/a. When we
pay attention to a single hybrid string-wall system well inside the cosmological horizon, we
can make use of the Minkowski metric, that is, the effect of the expansion can be neglected.
Then the evolution equation is expressed as

o~ Vie=-

v

¢
In numerical steps, the factor, a?, on the right-hand-side term of the equation (4) spoils

the calculations. The physical meaning of this breakdown is that the resolution becomes

&)
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lower with the increase of the expansion factor, a, since the lattice separation of the simula-
tion box is constant in comoving size although the wall width is constant in physical length.
To keep away from this restriction, Ryden et al.[9] dropped the a? factor and replaced the
coefficient, 2, in the second term of the left-hand-side in the equation (4) with 3. We are
not confident whether this modification alters the dynamics of walls fatally so we have used
two equations (4) and (5) without any reformation.

Numerical simulations are performed in 100? two-dimensional boxes and 643 three-
dimensional boxes. In both cases, the equations are solved by the discretized method in
the second order accuracy. The parameters are set such that §, ~ 2 meshes and §, ~ 10
meshes. As a result, the ratio of the string vacuum energy to the wall vacuum energy,
Avi/V,, becomes ~ 100. We have found that the change of p has little effect on the wall
dynamics since there is extremely small region where the field stays in the false vacuum of
V.. When the cosmic expansion is taken into consideration, the scale factor is normalized
as @ = 1 at the equipartition time of radiation and matter.

3 Evolution of Wall Area

At first we look over the time evolution of the wall area in the expanding universe. For this
purpose, we have to find a way to determine the total amount of walls in the simulation
box. This can be carried out by counting the number of cells in which the phase of the field,
0, takes m, that is, where the false vacuum of V,, remains. However, we can get the value
of 0 only at grid points. Thus it is rather difficult to find out the place at which 8 equals =
exactly. Instead, we have identified sides where the sign of sin § changes from plus to minus
and yet cos@ < 0 at the same time as the position where walls cross. Using this method,
we have calculated the evolution of domain walls numerically in the 64 box.

Initially the amplitude of the field equals v at every cell and the phase is chosen randomly.
The difference in the initial condition has no effect on the field evolution sufficiently after
the stabilizing era. Of course our following results are acquired from the analysis in this
post-stabilization period. Figure 1 shows the result in the radiation dominated universe.
Evidently the amount of walls has a tendency to decrease with time promptly. Figure 2
depicts the case that the expansion law is that in the matter universe. The same trend as
the previous figure is also observed here.

Hence the prediction that the N = 1 axion domain wall should not bother the cosmo-
logical framework seems to be right. However, these simulations are executed for a few
expansion time. This is because the resolution of the wall width becomes worse with the
growth of the scale factor as we have mentioned. Moreover, we have solved the field equa-
tion precisely so that the viewpoint that we regard walls as rigid is not necessary. We can
understand the dynamics of walls by using the distribution of the potential energy that is
related with domain walls, V,,, in the simulation box. Following two sections treat such
cases and the fact that walls surely collapse and disappear is examined in detail.
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Figure 1  This figure shows the evolution of the volume ratio of the cells that contain walls to
643, i.e., the number of the total cells in the comoving simulation box. The scale factor
is normalized such as a = 1 at the equality time.

1.0 ! 1 ' 1 I ! I 1 L)

L)

0.8
0.6
04
0.2

lllllll'lljlll

0.0 1 } 1 1 | 1 | ] 1
scale-factor

p—
[\
(9%

Figure 2 The same quantity asiFigure 1 is plotted but in the matter dominated era.
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4 Two Walls

In this section, we consider the interaction between two walls. Since defects fairly inside
the horizon are our concern, we can ignore the cosmic expansion and the equation (5)
is adopted. The initial condition is set so that one wall and one string-wall exist in the
simulation box. Here "one wall” means the wall that has no end in the simulation box. And
"one string-wall” means the wall that has only one end in the simulation box. They are
arranged such that the edge of the string-wall faces one side of another wall. The distance
between them is 10 meshes. Thus the translational symmetry in the z—direction is imposed
on the configuration in the 100? box. This initial distribution of V,, at the z—slice is shown
in Figure 3. This figure picks up the 50 x 50 meshes in the central principal part. The
string-wall has an initial velocity whose magnitude is equal to the light velocity, ¢, toward
the edgeless wall. Figure 4 shows the same quantity at the same slice as Figure 3 after the
period of 10Az/c, where Az represents the lattice separation. In this figure, the wall is cut
by the string-wall and a kind of intercommutation of walls happens. When t = 20Az/c, the
wall potential energy is almost dissipated away, which we can see in Figure 5. The speed
of wall motion is estimated to be about 0.1c. We have done these computation under the
periodic boundary. Other conditions, for example the reflective one, cause any deformation
to our conclusions since the box size is so large that the influence of the boundaries cannot
reach the main part where defects interact.

We have also checked how the behavior of walls is altered when the expansion of the
universe is taken into account. The value of V,, after the scale factor grows 20 times larger
than the initial one is shown in Figure 6. This calculation in the radiation dominant era
starts from the same initial setup as the non-expanding one. The configuration of ¢ is
practically unchanged from the outset and the collapse of walls is still on the way at this
- time. The walls move at almost the speed of light but the introduction of the expansion
decelerates the disintegration process. In the matter era, this reduction becomes stronger.

When we suppose that walls may construct the cosmological large-scale structures, it is
important how such wall decays work as a gravitational source. It is generally believed that
an infinite plane wall acts as a repulsive sheet[10]. This solution of the Einstein equation
is obtained under the approximation that the wall thickness is neglected. We have the
original field configuration of walls so we can calculate the source density directly. The
energy momentum tensor of a scalar field is written by

T, = 0,¢0.¢ - %guugopaa¢aﬁ¢ + 9..V(9)- (6)

Then using the Minkowski metric as g,, the gravitational source density, p, can be defined
as

p=2¢" -2V (4), (7)
under the Newtonian approximation. We have plotted this quantity in Figure 7 at the same
time and slice as Figure 4. In the region where the wall is shrinking into, p has a positive
value. Thus the contracting wall operates as a seed of attractive force. Unlike a simple
static wall whose thickness is zero, moving walls are quite natural gravitational sources.
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Figure 3 Two-dimensional distribution of the potential energy, V,,, in 50 x 50 z—slice is shown.
This is the initial configuration for the crash of a wall and a string-wall. The vertical
axis is normalized as V; = 0.01.

Figure 4  The value of V,, when the time, t = 10A/¢, has passed from Figure 3 is depicted.
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50 50

Figure 5 The value of V,, when the time, t = 20A /¢, has passed from Figure 3 is depicted.

Figure 6 The case in which the cosmic expansion is included is shown. The calculation begins at
a = 0.05 from the same configuration as Figure 3 and when a = 1 this figure is drawn.
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Figure 7 The distribution of the source energy density, p, at the same time and space as Figure
4 is demonstrated. The peaks correspond to the wall contracting region.

5 Disk Wall

Finally we have simulated the motion of a disk wall, a wall that is surrounded by a string
loop. A collision of a wall and a string-wall which we have surveyed in the previous section
is practically a two-dimensional simulation. On the other hand, a full three-dimensional
simulation becomes possible in this case. When the computations start, the wall whose
radius equals 15 meshes is placed in the z,z—plane centered on the 642 box. Therefore the
coordinate of the circular string that encloses the wall is expressed by

y=32, (z-32)%+(2-32)=15% (8)

The direction of the wall motion is that of the y—axis. Its magnitude is the speed of light at
the ends where (z,z) = (17,32), (47,32) and is zero at the middle of the wall, z = 32. The
distribution of V,, at y = 32 when ¢ = 0 is shown in Figure 8. At ¢ = 20Az/c this evolves to
Figure 9. Apparently the energy of the wall has diffused and the division to multiple wall
pieces is proceeding. Also in these situations, we have calculated the distribution of p that
is described in Eq. (7). The fact that the source density is positive in the wall interacting
region is verified as well.

When such loops decay, it is supposed that they oscillate many times and may radiate
gravitational waves[11]. Our simulations, however, cannot reproduce clear oscillations. The
intercommutations of walls are so frequent that there is no enough time for them to pursue
the global motion like fluttering or wriggling.
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Figure 8 The initial V,, potential energy distribution of the disk wall simulation is shown
at y =32, (z,2) = (8,8) — (57,57) slice. In this and the next figures, V, = 0.01.

50 50

After 20A/c from Figure 8 is plotted. The left-hand-side of the numbered axes is
r—one. The hight of this graph is magnified compared with the previous figure.
The real value of the potential energy is much smaller than that in Figure 8 since
most of it is transferred to the time derivative of the field.

Figure 9

—458—



6 Summary

We have investigated the dynamics of the scalar field that obeys a potential in (1). When
it settles on a true vacuum, a connected string-wall system develops. Thus the motion of
the hybrid topological defects has been understood. When the wall joined to the string is
only one, such walls annihilate and dissipate the energy at the speed of ~ 0.1c although this
process is slowed down by the expansion of the universe. This means the N = 1 domain
wall does not contradict the observation of our universe so that this gives a unique valid
axion model.

The gravitational source density is calculated from the field configuration in various
cases. All the results show that the interacting walls generate positive gravitational energy
and produce attractive force. This feature may help the scenario of the large-scale structure
formation by walls. It is an important distinction from an infinite static wall.

The interactions between walls are very violent. The oscillations of loops are hardly
observed. It indicates that the false vacuum energy of domain walls is released mainly by a
scalar field mode rather than by gravitational waves. Such a statement may be also realized
in the case of pure strings. Whether it is true or not depends on the further study.
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ABSTRACT
Bubble nucleation rate in theories including Brans-Dicke type scalar
gravity is discussed. The Euclidean action is obtained in thin-wall
approximation to calculate the rate. BD-scalar used in the estimate is
seemed to be consistent in four-dimensional Euclidean space-time.

Many works for investigating to effects of gravity on the false
vacuum decay have done(e.g. for non-zero vacuum energy [1] and for O(3)
symmetric bubble associate with a local gravitational source [2]). The decay
rate in the generalized Einstein gravity has also been studied in some
approximation, motivated by the extended inflation that avoids the so-called
"graceful exit problem"” without any fine-tuning [3][4]). The aim of this
paper is to study O(4) symmetric bubble solution in four-dimensional
Euclidean space-time and discuss the effects of the generalized Einstein
gravity on the bubble nucleation rate. For simplicity we consider the
system including Brans-Dicke type scalar gravity (Einstein-BD scalar-
Higgs system):

S=L | dx4vg[-0R+20"03,¢+16n(13"c0,0-V(c))]
l6m o 2

, 1

where ¢ denotes BD-scalar and & is the scalar(hereafter denoted o-field).

The o-field undertakes the phase transition with potential V(6) which
possesses double minima.
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Making use of Euclidean Path Integral(EPI) formalism, the decay
rate of the false vacuum per unit four-volume in the first WKB
approximation can be expressed by

I'=Aexp(-B), (2)
where
B=S&(0)-S&(0.),

The coefficient B is the difference between the Euclidean action for the
bubble solution and that of the space-time with no bubble [5]. The
coefficient A embodies the first order(O@f)) quantum correction to the
action, which is of dimension of (mass)*. In this paper we are concerned
with only evaluating the effect on the coefficient B.

We consider the scalar in metastable state with no local gravitational
sources. Not that in the system there is no static background solution
corresponding to the deSitter phase in Einstein-Higgs system (In extended
inflation it is the fact that can solve the graceful exit problem i.e., power-
low expansion ). The investigation of the false vacuum decay in such a non-
static background is in progress, so that we assume that the time-
dependence can be neglected in the transition. Then the bounce solution
with least action that make the dominant contribution to the rate I" may
have O(4) symmetry, viz. scalar and BD-type scalar depend only on the
four-radial coordinate { in four dimensional Euclidean space-time. The
metric has the form

ds?=d{%+a2({)dQ2? 3)

where dQ? represents the unit 3-sphere. The Euclidean action is reduced to
the simple form

Se= f A (BOV() - a0}
“ @)

The O(4) symmetric bounce solution satisfies the Euclidean field equations
obtained by variation of Euclideanized action (1). The boundary conditions
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for o-field are the same as in the presence of conventional Einstein gravity:
6(§=0)=6(¢=¢ ,,,)=0 and o(,, )=0_ where {__denotes a maximum
value for { (one of zeros of a({)). That for BD-scalar is not clear and is
assumed that ¢=0 at {=0. '

We consider the thin-wall approximation with BD-type scalar: the
frictional term in the equation of motion is assumed to be neglect for o-
field. The scalar field remains near to v.e.v of the true vacuum state ¢ until
{ becomes large and then the field change its expectation value. This means
that the field can be treated as a constant (vacuum value) both outside and
inside the bubble. Then if ¢-field is also a constant in Euclidean space-time
as in previous works, the bubble solution in Euclidean space-time is not
consistent because the energy-momentum tensor for o-field should have -
functional peak at the bubble wall in the thin-wall approximation. Indeed
BD-scalar is affected by the wall and should obey the junction condition at
the wall,

A N
0-(0)-0+(8) 2m+338' )

where s is the surface energy in the absence of BD-scalar. There is a trivial
solution when the true vacuum energy vanishes: ¢=const.=¢_, 0=6_, a=(,
while outside the wall the solution with bubble is equivalent to that without
bubble. Thus we may concern with only difference of Euclidean action
with and without bubble inside the wall. In order to see the effect of BD-
scalar, the solution of ¢ without bubble is approximated as

=¢. - L8 _4qv )2
¢=¢ l2(2m+3 ‘ X .
The difference of Euclidean action inside the bubble may be written as

4
. = - 2 r - d -_8.& 2 t 3,2- _23_ 2
Se(0)-Se(o.) %}ma (4 -136—%_(1 3 ¢.V_a ©» o3 fo dCa(C)¢ ©

¢, is determined by using the junction condition. The first and second
terms are the same as those obtained by ref.[3]. The third term arises from
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the fact that ¢ is not a constant in the presence of vacuum energy. When
contribution of the derivative of ¢ to the equation of motion for a(€) can
be neglected in the state without bubble and (¢-¢_)<<¢_, a(f) is of

conventional Einstein-Higgs system. Then the third term is written as

= -2 L{( H2(%+2)cosH.{+2H. sinH.L - 2)

2043 [-f , 7

where H_=(8=V_/3¢_)V/2 This result, together with contribution from

bubble wall, gives the coefficient B.

The consistent bubble solution involving BD-scalar in four-Euclidean
space-time has been taken account in thin-wall approximation for o-field.
In order to estimate the nucleation rate, We have used the O(4) symmetric
configuration of ¢ that satisfies the junction condition (5). Since
understanding of behavior of BD-scalar in EPI formalism is lack, it is not
clear that the result obtained by Eq.(6) determines really the nucleation
rate. The problem is left for future work.
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1 Introduction

The inflationary scenario is a favorable model to explain the homogeneity and isotropy
of the present universe. In this scenario, the vacuume energy of the matter field plays a
role of the cosmological constant, and the universe enters the phase of deSitter expansion.
Initial inhomogeneity of the universe damps due to the rapid cosmological expansion. To
utilize these aspects of inflation, it is necessary to discuss whether the universe can enter the
inflationary phase from the wide range of the initial condition. “Cosmic no hair conjecture”
. states that if a positive cosmological constant exists, all space-times approach deSitter space-
time asymptotically. But it is difficult to prove and formulate this conjecture for general
situation and we do not know whether it is true.

In the case of spherical symmetric space-time with cosmological constants, it is shown
that the space-time does not necessarily approaches deSitter but a black hole and a worm
hole may be created[1, 2]. The final global structure of the space-time depends the scale and
the amplitude of the initial inhomogeneity. In a practical sense, a whole universe does not
need to inflate but only a portion of our universe has to inflate(weak no hair conjecture)(3].
We can say that inflation works well if the “measure” of the initial condition, from which
the universe has a inflating region, is large.

To tackle this problm, we investigate the evolution of the inhomogeneity in the Schwartzshild-

deSitter space time. As a source of inhomogeneity, we use a false vacuume bubble. Our pur-
pose is to classify the parameter space that represents the degree of the initial inhomogeneity,
and check the effectiveness of “weak no hair conjecture”.

2 Metric Junction

We assume that the inside space-time of the bubble is described by deSitter metric with
cosmological constant A;, the outside is described by Schwartzshild-deSitter metric with
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mass m and cosmological constant As:

dsf, = —(1-xir)dt? + (1= xir®)~'dr® + r2d0?, (1)
dss, = —(1- ‘:Tg - x3r¥)dt® + (1 - I} - x3r¥)~tdr? + r2dQ2, 2)

where x? = 87GA,/3, x3 = 87GA2/3 and r; = 2Gm. The motion of the bubble can be
determined by the junction condition:

Kj(in) — K}(out) = 470G8;, (3)

where K ; is the extrinsic curvature of (2 + 1)—dimensional hypersurface swept out by the
domain wall. ¢ is the surface energy of the bubble and is a constant for the scalar field domain
wall. -6 component of this equation gives the equation of motion of the bubble’s radius
r(7) where 7 is the proper time on the wall. By introducing the dimensionless variable[4],
our basic equation becomes

(g)z +V(2) =E, (4)

where

z  =rfrg, ry=2Gm|/x%:, «=4rGo

1/2
=[x -3+ @2
2
Viz) =- (z - %) -z
Y =2+ 2sgn(m)(x? + 3 — x)/ X5,
2
B == (2) ol
X+
8-8 component of the extrinsic curvature of the bubble interior and exterior are given by
' _{Glm]\ 1 X =x3+6%\ 4
Bin = ( o ) ) [39"(m) - ( X S (5)
_ (GIml\ 1 X>—x3 =K\ 4
o = (B) 5 [oaniom - (22222) ). ©

3 Classification of the space-time

We can classify the global structure of the space-time using Eq.(4) and Eq.(6). The result
is shown in Fig.1. The horizontal axis is the ratio of the cosmological constant x»/x, and
the vertical axis is the gravitational mass 2Gmy,;. The parameter space (x3,m) is divied
to regions R1~R14. R1~R9 corresponds to the positive gravitational mass. In R1,R2,
Schwartzshild horizon disappers and the space-time becomes deSitter like. R4 and RS also
correspond to a deSitter like space-time. R2 is to a worm hole space-time. - R4,R5,R6
corresponds to a black hole space-time. If we take the limit x — 0, the motion of the bubble

—465—



becomes null and we get the same result of Maeda et al[1]. In this limit, R3,R4,R5,R10
and R11 disapper. Non zero value of the surface energy gives the same effect as to make x,
large(make x2/x1 small) and make the gravitational mass small. We found that the motion
with the negative gravitational mass is possible for the all value of x2/x; except x2/x1 = 0.
In this case, the singularity becomes time-like and is not hidden by the event horizon. But
if we use the spatially flat time slice to foliate this space-time, this naked singularity does
not appear to our universe.

Now let us consider the situation of the chaotic inflation at the Planck energy scale.
During the inflation, the effective vacuume energy varies spatially by the quantum fluctuation
of the inflaton field. The spatial correlation scale of the fluctuation is L ~ H~!, and the
amplitudeis 6p ~ m25¢?(6¢ ~ H) where m is the mass of the inflaton field. The gravitational
mass of the fluctuation is GM H ~ (87/3)(m/my)? and the cosmological constant is x; /x2 ~
1+ (4n/3)(m/mpu)?. Combining this value and the result of Fig.1, we can say that the
probability of a black hole formation in the chaotic inflation is less than 12% and the most
universe evolves to the globally deSitter like space-time.
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BEHZHEM. [FlitaEH—TEROEM] YIISROMBTEH - 7o RELAKI VWO 24>
TR 705, TRE] RSOHRVHUEVEES, WEEH” CHBEL” OASHIECRABERE LA
AHBBMETLOBHOTTH- MO TH S, [MAE) THAWMRERICEhICRRT HIUIEHTTE.
EWICEbH Do TR RIEER D P LLEA1oh LTV AYREEPRANOMEENNA TS
DRPETH 30

REGEZPEDCDVAVDODM S, Y, DWTRY A XY RERBFITHEIhEVI LN
OXEMiIcE TR b DETH %,

i IFlaEHE—TROEMN] LW O RBNBO TH- &bV THD TRV, 7o, —AUH
HERICEIORBE S TV DT T WAIIT AL BTt e EE L, 2ol HEEFFoMTIiIshc LT, %
KON - & [HIR] TH-DTIREd-, WS [BE]) RN HBLS 5, ERRLIEL,
HFEEREHENL T TR R b0, T, —AMBHIROBENE S TH-Te LS ic, KEILEN
EBT 51D MO —NBY B L 555D TH 5,

(b) —RBEXROEIN : £&BhO<F—

TF. BROYIH—RANBXREMADONR TIRFFOVIFUC b BB DH 2 b D, THbL, {bd4 4
x v AWK TA Uk GHELIHD) bORUVhos B Tolblff &Ibltto & 5 FRLEIH. %IE
Bl (E#IC!) EAETH B, TORERT~EIL, bALADIEHOHIELTELERHICA Y Y %>
HTWHCER, bBAA, CO” BUX" BAIRE-TEI LAV —rhid 3 D8R15 TR 05\
DREFEIIARD, ELTEMBHB LS RKEHERILEDEETH S,

Riitho5Fih SANL LIS S ICHRBMICMMEIES C & ThH 5. —AMEROELNIL [F7)
MEHF) 22Tl d M) Tt (FHEFNTLUL oY) | IKEAEATWHEEL L 5. [F
i) ICIREIREDSHIE LT L WEUEIAS, AR TR ARER L. W2 bbb, BIRR bBiENIcE
5 L5d0% & TELASI VY BEATIRRA O FHRDIIWYIERIR & ol b RIENIC RIS <& 5 D,

P B EAE DIZEE ST CHE 2 DTSV =1 HFEF A D Everett D{LWAE S TH- 1
&S IR EISN T OV HEIEE b OBA LS 5, BRFFHRIATFAFERXDO bOORFOMRES X
TED, FAEELNLT > UTHRERIBTIRIEV, HF 0 Y 7ARELITHBE RN, b, ERE
LTORFHEE W HIDR BRI T IENETNE, {BRF LR LE b D, ¥

(c) HIRYFE S FRAPE

ST HREFRTIR—RMBTRBRIIKE MHE) TREE TV, TS WIS 1 9 ok
K FL VRTHE NS LW O (MFEL RIS EOBRMEE O FL v RTH L bEDbhTY
3) HETHINUABEARDELILEE>TW S, BOBRAOHFETH S EMENRBZC EMbh
THEEDOMENIRE - 120 [HiHE) BEFORKIE b T ONICHEBSICENI > & WA 1 9 ik
Ehsot, —AAAXIAIL E SICE DRSBOREY » 120 £OH” MFRY” RYSSTH 2 DiMhE 5w
3 b OIIER LSS BHEIC I » 120 MO THY¥OIMITORETH - 1: X 5ic. RFIHHYEE
AL EINET 2E 0S5, BREH 2, HE—ITAEMC & TERVRVOIT) ERAMRTTIINOE
JUTEl THRI A2 M & X+ hid, T oIBEsTiERMERETH » T, 3EMIBONETSH 5,
& LTELOMRICH 5 ET, HERRIIRENICAEETRED LAEFLERNS 5, FEMEE L
TOREBIADIER (lattice 12 &) M LB I EMNLIVWERS,
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BFFEHCRFEND [ASLLE) TRWEOMMEL Z~E& [KEHE] »EPLIBEIALBA
3o BAUIMMOBALE (MR S (A HER]) BT ECRIEVWAER). ChDHIEY 1 = v
A &S ENRT, BUSEMEESRUZETH 5,

1 1. BMloh¥

2 BRECRRINIEE A THEERE NS, COMBIRBMER Folf. 1148 D Matzner & Shepley
OFPEOERG EFic N, RIEOFREMES &M BB TS 245, 1 Hciz—iMaxd
OHEMEE B LH SR, IS, <2 bl 74 —L&\Wa e J &M 53 —RMEXBAR b, W%
BhTbliflT 2. Bkl MER] B2RERFREIRSIEWEES, UTI~aC Lz ofiiseiz
MEE VL. DESFLOBWR EIEEDII W, BIERICE-» TWAE R oTRTREMSIBLTH .

(a) BhkoTF

— OO » 1o XR T S SR OMBIEEHIE —HTD world sheet 24Jakd 5. C1% target space D
hp_ZotHiE LTiahh 3 o & bdH 245, BRI bicEs (o, 7) 2E5A4 T, @Eirhsidicen=
Ué(i?’&ﬁ{*’&gaiﬁ‘ﬂ'é C & bTE B, i base space & L TR IR > T WA fiber 2FX 5

bTE D,

—RITTDAS 3 RITTOERICIE » - DDS—AMBXIIA T, world sheet Db D IT 4 KITTORFZESHRA L
g é o ;e C i3 target space IT S NEIRDAL C LR EE, ([ ORESREO LICYIERERETAH S

‘: :t 2 ’CL A 5 o

KIRTETT T, —RTORbVICOKTOTAREEZEL B &, HBRED > 2 DS world line &1
S—RTCDOENRETH 20 BE L8> T OHAEITIE, (AJBE S target space DT C DBREE T VTR
8423, CAOBBEONETH 5. LITTHAL &5 &S5 ORBANFEE MBI —RT S bk
LicREE - TWBEWIRARBMULTREI EVWSIETH S,

(b) 35 x5 —WHCcONE

C OBAIRT » LTH LW b DT HEKEACOMRAUIFE TR L Bilidi5h 50 413, HiXd
SBAHORE L ORFEIERIT 510, JHBHATEL S, &I AHE 5715 & Lagrangian 2FE T AT
BN IS Db IS 50" MIEEY” (CHERHADIERIE & W5 O —D DR TH B, LRETLNI T
CRRAMICIZ A Y LA BED non-linear realization &, I LTV Y b L OB TRHBZ E Vo 12
UBbH YR B, SO S URHIZIAEIIRERLOD Lagrangian 2 &5 H< ML T, BNLpET
bH2Y. CoriREFhMLI=—ohEIShEV-> LEHREERL T, BFRCPEE5LTHIRELED 3,

ZIRETIZ E OB b AR DTV S, Lagrangian i3 ¥ O—AWEEL I L THRE TR
LT ST © OEEIEEBEMIARIC & 20T OAEHIL time reparametrisation  ARZEHE EPRINT
W3, ¥ LTROZEY DFEHHSHhEY,

lqlﬁ

S= / L(q,8,q¢',4")dr, L= R t'V(g,t). (1)
lqn

S= / L.\ N)ds, L=35 - NV(g). (2)

CCTt= [N(r)dr&$hIHERNTRBIL bDTH 5, (1) KL EH & LThEFFicdo»
355, (A& Lagrangian [CI2BSAZEMIIRIOFCTA- TWA, EWHIRETH B, t BHITH>WTOHDY
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HiEid

EVS X RNF—RFFESABIBER V. —H. (2) RO 574 gauge T LTETH 30
§r=¢ 6g=¢q', 6N =(eN)'.

COZIRTO lapse NOFIRISHIATI VA, Nhidt = Ndriih s 1-form O TH 2 & L@t
i, Lie 3 DER, S dMh B,

6N=L.N=<F+Nd—1-_-c=

C DAZHE IR L TR Hamilton constraint ASH 3,

dN d .d_lzi
dr ’

lqn _
I N +NV =0

LLHSHTVS &S it CHIZBEEAD Lagrangian (C¢' B WOT VE = 0 BHI 2 DIt d 3,

(c) BYWEBOERE
—REHHREEOVEERE LT ok t EXFC- THME L WTH B, BUHEAEEE =0 (0 =

942 = t) &ﬁﬁ“f
(L)L
' \§g/) &

Eho o/t #0185, EHHERR—2 LMV, 5T, ¢t DD LB FEIC"gauge fixing” L TIE
DOERFIHIE VS CHONIBVEEFTIIETEMIL ( = &0V gauge fixing 2 LTWARTH 20 E12F
HEF NV TO conformal time i3 t = [ a(r)dr7L 5 non-trivial 1% gauge 2T\ 3, & & Tt a(r) HPHF
IBEINT WS, t HrOMTREIE S, 1 2 E RIS4 C S SMIERR VA, ' = 028 UBSII
ECTENEBS 2hFETLESDI S (BB)o LIS COBRERELTA 3,

C T gauge fixing &{3 1 ST D(TRMBE b > T 3L S5 BHIREEX 505, TR, [EUIS
TEEHE OB EEWATE VORI SHFRMOBHR (€5 £ 5 —BH) MCERAT, t9g. H30DE
@ combination | HMIH L THHICERX SHTVWA, ELTEV. 3T HE—RBFELHUFEIC map
T5C Nk, BRI

,\=/\/2(E_—V)dl, %(:—f\)z=l

i, EARED S BHETHCIL 5, EIFMEL WS DILIIBEEOBIELIVC &i2il 5, gauge (K
DEAMEWS T &L B, -

CHTBHEA) R MY ETHIRT, THEIADERRICANTI() 2HIL, o(1) 23 &0 5)F
L%, CHRBIMIT—AHLTE, Jacobi OEHFURE WS DM OBRTH S, EHE Y LT
MEHD (H — H = 0) ic&fd 3, Hamilton-Jacobi OFKE WS Db OB LIcH 21, HlETHE
DIFRY) & U S HBHDOXFNL gauge (RIFOHSICBE RV, RO, {ihbhbividtsilico
WTI{AH £ T OHTED gauge TOBEHERIICLTWIDTH 2,

(d) GIRA
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1 Ldie C o & 5 IHEIEMED map IFEEIC P> TWRWY, FHEFVORXE L L &ERRREN
P> TW5S, ENES. HIZEMeFvoliBhitg=a &L T

t=réFhidcuii V~ -1/ CoBde i3, &ABERETIE

¢\?

CCTet =1 LR Ara L, B T/IHRBIE D ¢ =Csinr, t =C [sintdr = C(1 ~cost) I&
5s¢5 4 9 —RREERE{E S .

ECATID5 49 —RROrEiBETEE, *+(C-1)* =CHi5MLIE5, (CRRIE, &) WD
BT 2y — 7 7 2 5 —TRIEVDS, ¢ = 0 LBEBLTADMICE S, L LERGETS 3 C
EIRIEBDREIhEI LV, CNR—DHIETEHRESHERA LV EIRERL, Yasrvvyvn
K525 CEED maximal extension AUIHETH - o & & iIXHET B0

RAEZRMI T flow

(IABZEMNL (9, 9", 1, 1) D 4 BGTENTC. B ¢ = 0 COMNTEH B S S DL T local analysis
20TH 20 =022 L 520D t DIRBOUDBEIFLR O, S, TDWEFET e ~Cre) gauge (¢ =
CsintdD1 ~ 0 TOMhH) kLTt ichid 2B HEREMC S &icT 50 ¢~ 0T}

l":q—"t'-i-i%-l”'vlﬂtu
' 2¢' 2dg
Vo-1/g?Tit, z=ty=1t'&LT
3
=y, !I'=’Z'3
Bho, CORR4AMDH-T
y=r, -1, |}, —-|7].

Lichio TRt hid2 =— 2 ICiBE 57\

winding number?

WE g =sinticEo L ETHEITRATHTH Y, —RTBHEIR S'TH B, LhLELTIDEA
OYEBOFEA ML= TR, 'EWSIRI FPVOREHICHHENH L LEWI CETH B, BRT
(¢ ) BBREEL (% +17=1) O~s FAVEEXBL, S EE-FTIHVRIRCOME SRR
T REH] BiRFE 2, —EIRT L HCbHRI L, HBALTRIBELH VX 5, ¢ ~sinnr(n i
B &rhid, —FAoMic n @Rt 2L I blRI L, TOMNAWADIBENED A 5.

% UT ¢ B ZEBhrd 2 &1 I305RIZEM S L TIRATHR 5,

(e) MFIEOMEYK
g& 1 Z3Fici® 5 Hamilton FiRD & 5128 5, (1) FD Lagrangian Ti3 Hamiltonian % ¢
5% (x=08L/fat")

H=pq'+wt';L=t'(h+7r)=0, h::-;-p7+V
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&3 constraint M, & THFFHED Dirac ORF{LICREAITIRERKXOKRMEL I+ ~<L &1 2,
[—:—+h( '8 )| ¥

EWS va b—F4 Y H—HBAN TS, /%5 2 7 —BMridtl 2R3 1o

LAWY a b—F 4 v i—HEXO t IPIBFEH S LWIRFEVVE LIt nWE EXLLD S s hTun
%o ( energy unbound,diffusion JH/Z L, 70 &) CHBXIECK-7c> b D b Lagrangian OCIHRESR
XRMH -1 5TH D, £ LT REMTIL /5 £ - R ERREE, BFHVLIKIERL paramerization
DOEFIESVWTHIMEL TELRITE S0, RI—hFROBKHMMOMEMEICH - 2, F DR, kIE
29 = [¢dt TRENB &MY, Vi
10
ol

&S Wheeler-DeWitt AR 2G4 C LI 3,

RFFESRELL va v—F 4 v H—FERORH L A DREIN DA EBRNICIREE S 45 Rk 1B
FHLBRES 5O TENHHHOBREZLTWS, EWS bDTH 3, BIIZNNERA STR LA [F
HOB3Gh (parts) | THBEWIREHTH B0 TYHORSMEIYLIL Born-Oppenheimer :&MTI&L
Wheeler-DeWitt B & &2 L—F 4 » H=BInsHE 510, & LESHIAC 5 LisAkric St o, it
FhE W EELHSRIBES DR BALWER S,

h(- Y =0

(1) BIEIEEREE R & BhIoRE

FEAENBRIITD (g, 1) 2EHE LIBA. FhooMicEEd 2BHPMEEZEX TA & 5, BT
T2 SEMENE. ZEH boost,Galilei ZHRT, ¢ n RITLILD, a(n —1)/2+ 20 HD/$5 2 5 —h3dH B,
BEREIEEMIT DWW Tid boost Dfihic dilatation & conformal ZFHAD 3 945%5 20 n =3 TRLET1 2{HEN

%0 COMA. BElloZeii
al+ 8

t+1

dilatation {3 { — at,g — g/a'/? conformal {3 1/t — 1/t + 4 T& %, conformal DX LIRS E v HISHh
TWIEWH, COFRT Lagrangian 32WA I E(LT 2 & & HEIBICTYE 3,

CHSDTRONCHDITHLTIRV £ 07h, MiMENS 2, COBERDL S ICERLL:
Schrodinger HIERD" Wit ©EXTH 3D, #hid

1 R g+y(1)

o - 6 o|— ‘3‘ 63—1

FFy e VVRCOFRTRO &L 5 IKFERE W20 5, TRBSTITERIH 4(2), v(1), (1) 2 M >
WTRILRIOHF v e M B LSt EhhiE L v,

VIt ') - EV(t,q) =
%d&q’ + mRg(ddy - &%) + %(ticiy2 - d%jy + d%i)

Bb CTEROR EOREN S DB LI, B UTOWT—R. 2RDOEF v v+ VicfRS1 5,
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LRI, HRELA T, ERBSUBMEBFEC &> BSICH T v v ¢ VOE S HI~D map
ZTOEME bARE S, CORBIIBMEHOTIR THIESOBE VW LS It T RN 3 kiR~
1- C & &N 3o FREMICHWT—R (A1) 2 ROES) (GBFHRY) 34~ TEEESNS map
Hik3', $120BbTEB, COMRMBENLEIEYPE G- EBLTHMHENS 2 L5 IKEL S,
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