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Preface

The eighteenth workshop on General Relativity and Gravitation (the 18th JGRG meeting) was held at
the faculty club in the campus of Hiroshima University from 17 to 21 November 2008.

There has been impressive progress in astrophysical/cosmological observations in recent years. Cos-
mology has entered an era of precision science. Astrophysical black holes have been observed in many
frequency bands with better resolutions and sensitivities. Observations of gamma-ray bursts have added
a new mystery to relativistic astrophysics. And, a new frontier is waiting to be explored by gravitational
wave interferometers. On the theoretical side, motivated by unified theories of fundamental interactions,
especially string theory, many efforts have been made for studies of physics in 5-dimensional or higher
dimensional spacetimes, and there is a growing interest in experimental verifications of extra dimensions.
There have been also important and interesting developments in various other areas, including alternative
theories of gravity, quantum gravity, and spacetime singularities, to mention a few.

This year, we invited eight speakers from various countries, who gave us clear overviews of recent
developments and future perspectives. We witnessed active discussions among the participants during
the meeting. We would like to thank all the participants for their earnest participation. This workshop
was supported in part by JSPS Grant-in-Aid for Scientific Research (B) No. 17340075, JSPS Grant-in-Aid
for Creative Scientific Research No. 19GS0219, and Satake memorial foundation.
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New phases of black holes in higher dimensions

Roberto Emparan1

Institució Catalana de Recerca i Estudis Avançats (ICREA), and
Departament de F́ısica Fonamental, Universitat de Barcelona

Marti i Franquès 1, E-08028 Barcelona, Spain

Abstract
I review recent progress in understanding black hole solutions of higher-dimensional
vacuum gravity.

1 Introduction

Classical General Relativity in more than four spacetime dimensions has been the subject of increas-
ing attention in recent years. Reasons for this interest include its application to string/M-theory, the
AdS/CFT correspondence (and its recent derivatives: AdS/QGP, AdS/cond-mat etc), the possible pro-
duction of higher-dimensional black holes in future colliders, and the mathematics of Lorentzian Ricci-flat
manifolds.

But higher-dimensional gravity is also of intrinsic interest. Just like we study quantum field theories
with a field content different than what might be directly relevant to Nature (e.g., SU(N) gauge theories
with large N), we may gain insight into the General Theory of Relativity, and its most fundamental
solutions: black holes, by studying it at different values of some adjustable parameter. The equations of
General Relativity in vacuum, Rµν = 0, appear to possess only one such tunable parameter: the number
of spacetime dimensions D. Thus, we would like to know which properties of black holes are peculiar
to four-dimensions, and which hold more generally. At the very least, this study will lead to a deeper
understanding of classical black holes and of what spacetime can do at its most extreme.

This contribution to the proceedings of the JGRG18 workshop consists mostly of excerpts from an
extensive review on the subject written in collaboration with Harvey Reall [1], to which interested readers
are directed for a more complete coverage.

2 Frequently asked questions

I will begin by trying to give simple answers to two frequently asked questions: 1) why should one
expect any interesting new dynamics in higher-dimensional General Relativity, and 2) what are the main
obstacles to a direct generalization of the four-dimensional techniques and results. A straightforward
answer to both questions is to simply say that as the number of dimensions grows, the number of degrees
of freedom of the gravitational field also increases, but more specific yet intuitive answers are possible.

2.1 Why gravity is richer in d > 4

The novel features of higher-dimensional black holes that have been identified so far can be understood
in physical terms as due to the combination of two main ingredients: different rotation dynamics, and
the appearance of extended black objects.

There are two aspects of rotation that change significantly when spacetime has more than four dimen-
sions. First, there is the possibility of rotation in several independent rotation planes [2]. The rotation
group SO(d− 1) has Cartan subgroup U(1)N , with

N ≡
⌊

d− 1
2

⌋
, (1)

1E-mail: emparan@ub.edu
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hence there is the possibility of N independent angular momenta. In simpler and more explicit terms,
group the d−1 spatial dimensions (say, at asymptotically flat infinity) in pairs (x1, x2), (x3, x4),. . . , each
pair defining a plane, and choose polar coordinates in each plane, (r1, φ1), (r2, φ2),. . . . Here we see the
possibility of having N independent (commuting) rotations associated to the vectors ∂φ1 , ∂φ2 . . . . To
each of these rotations we associate an angular momentum component Ji.

The other aspect of rotation that changes qualitatively as the number of dimensions increases is
the relative competition between the gravitational and centrifugal potentials. The radial fall-off of the
Newtonian potential

−GM

rd−3
(2)

depends on the number of dimensions, whereas the centrifugal barrier

J2

M2r2
(3)

does not, since rotation is confined to a plane. We see that the competition between (2) and (3) is
different in d = 4, d = 5, and d ≥ 6. In Newtonian physics this is well-known to result in a different
stability of Keplerian orbits, but this precise effect is not directly relevant to the black hole dynamics we
are interested in. Still, the same kind of dimension-dependence will have rather dramatic consequences
for the behavior of black holes.

The other novel ingredient that appears in d > 4 but is absent in lower dimensions (at least in
vacuum gravity) is the presence of black objects with extended horizons, i.e., black strings and in general
black p-branes. Although these are not asymptotically flat solutions, they provide the basic intuition for
understanding novel kinds of asymptotically flat black holes.

Let us begin from the simple observation that, given a black hole solution of the vacuum Einstein
equations in d dimensions, with horizon geometry ΣH , then we can immediately construct a vacuum
solution in d+1 dimensions by simply adding a flat spatial direction2. The new horizon geometry is then
a black string with horizon ΣH ×R. Since the Schwarzschild solution is easily generalized to any d ≥ 4,
it follows that black strings exist in any d ≥ 5. In general, adding p flat directions we find that black
p-branes with horizon Sq ×Rp (with q ≥ 2) exist in any d ≥ 6 + p− q.

How are these related to new kinds of asymptotically flat black holes? Heuristically, take a piece of
black string, with Sq×R horizon, and curve it to form a black ring with horizon topology Sq×S1. Since
the black string has a tension, then the S1, being contractible, will tend to collapse. But we may try to
set the ring into rotation and in this way provide a centrifugal repulsion that balances the tension. This
turns out to be possible in any d ≥ 5, so we expect that non-spherical horizon topologies are a generic
feature of higher-dimensional General Relativity.

It is also natural to try to apply this heuristic construction to black p-branes with p > 1, namely, to
bend the worldvolume spatial directions into a compact manifold, and balance the tension by introducing
suitable rotations. The possibilities are still under investigation, but it is clear that an increasing variety
of black holes should be expected as d grows. Observe again that the underlying reason is a combination
of extended horizons with rotation.

Horizon topologies other than spherical are forbidden in d = 4 by well-known theorems [3]. These
are rigorous, but also rather technical and formal results. Can we find a simple, intuitive explanation for
the absence of vacuum black rings in d = 4? The previous argument would trace this fact back to the
absence of asymptotically flat vacuum black holes in d = 3. This is often attributed to the absence of
propagating degrees of freedom for the three-dimensional graviton (or one of its paraphrases: 2+1-gravity
is topological, the Weyl tensor vanishes identically, etc), but here we shall use the simple observation that
the quantity GM is dimensionless in d = 3. Hence, given any amount of mass, there is no length scale
to tell us where the black hole horizon could be3. So we would attribute the absence of black strings in
d = 4 to the lack of such a scale. This observation goes some way towards understanding the absence
of vacuum black rings with horizon topology S1 × S1 in four dimensions: it implies that there cannot

2This is no longer true if the field equations involve not only the Ricci tensor but also the Weyl tensor, such as in
Lovelock theories.

3It follows that the introduction of a length scale, for instance in the form of a (negative) cosmological constant, is a
necessary condition for the existence of a black hole in 2 + 1 dimensions. But gravity may still remain topological.
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exist black ring solutions with different scales for each of the two circles, and in particular one could
not make one radius arbitrarily larger than the other. This argument, though, could still allow for black
rings where the radii of the two S1 are set by the same scale, i.e., the black rings should be plump. The
horizon topology theorems then tell us that plump black rings do not exist: they would actually be within
a spherical horizon.

Extended horizons also introduce a feature absent in d = 4: dynamical horizon instabilities [4].
Again, this is to some extent an issue of scales. Black brane horizons can be much larger in some of
their directions than in others, and so perturbations with wavelength of the order of the ‘short’ horizon
length can fit several times along the ‘long’ extended directions. Since the horizon area tends to increase
by dividing up the extended horizon into black holes of roughly the same size in all its dimensions,
this provides grounds to expect an instability of the extended horizon (however, when other scales are
present, as in charged solutions, the situation can become quite more complicated). It turns out that
higher-dimensional rotation can make the horizon much more extended in some directions than in others,
which is expected to trigger this kind of instability [5]. At the threshold of the instability, a zero-mode
deformation of the horizon has been conjectured to lead to new ‘pinched’ black holes that do not have
four-dimensional counterparts.

Finally, an important question raised in higher dimensions refers to the rigidity of the horizon. In
four dimensions, stationarity implies the existence of a U(1) rotational isometry [3]. In higher dimensions
stationarity has been proven to imply one rigid rotation symmetry too [6], but not (yet?) more than
one. However, all known higher-dimensional black holes have multiple rotational symmetries. Are there
stationary black holes with less symmetry, for example just the single U(1) isometry guaranteed in
general? Or are black holes always as rigid as can be? This is, in our opinion, the main unsolved
problem on the way to a complete classification of five-dimensional black holes, and an important issue
in understanding the possibilities for black holes in higher dimensions.

2.2 Why gravity is more difficult in d > 4

Again, the simple answer to this question is the larger number of degrees of freedom. However, this can
not be an entirely satisfactory reply, since one often restricts to solutions with a large degree of symmetry
for which the number of actual degrees of freedom may not depend on the dimensionality of spacetime.
A more satisfying answer should explain why the methods that are so successful in d = 4 become harder,
less useful, or even inapplicable, in higher dimensions.

Still, the larger number of metric components and of equations determining them is the main reason
for the failure so far to find a useful extension of the Newman-Penrose (NP) formalism to d > 4. This
formalism, in which all the Einstein equations and Bianchi identities are written out explicitly, was
instrumental in deriving the Kerr solution and analyzing its perturbations. The formalism is tailored
to deal with algebraically special solutions, but even if algebraic classifications have been developed
for higher dimensions [7], and applied to known black hole solutions, no practical extension of the NP
formalism has appeared yet that can be used to derive the solutions nor to study their perturbations.

Then, it seems natural to restrict to solutions with a high degree of symmetry. Spherical symmetry
yields easily by force of Birkhoff’s theorem. The next simplest possibility is to impose stationarity and
axial symmetry. In four dimensions this implies the existence of two commuting abelian isometries–
time translation and axial rotation–, which is extremely powerful: by integrating out the two isometries
from the theory we obtain an integrable two-dimensional GL(2,R) sigma-model. The literature on these
theories is enormous and many solution-generating techniques are available, which provide a variety of
derivations of the Kerr solution.

There are two natural ways of extending axial symmetry to higher dimensions. We may look for
solutions invariant under the group O(d − 2) of spatial rotations around a given line axis, where the
orbits of O(d − 2) are (d − 3)-spheres. However, in more than four dimensions these orbits have non-
zero curvature. As a consequence, after dimensional reduction on these orbits, the sigma-model acquires
terms (of exponential type) that prevent a straightforward integration of the equations (see [8, 9] for an
investigation of these equations).

This suggests looking for a different higher-dimensional extension of the four-dimensional axial symme-
try. Instead of rotations around a line, consider rotations around (spatial) codimension-2 hypersurfaces.
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These are U(1) symmetries. If we assume d − 3 commuting U(1) symmetries, so that we have a spatial
U(1)d−3 symmetry in addition to the timelike symmetry R, then the vacuum Einstein equations again
reduce to an integrable two-dimensional GL(d − 2,R) sigma-model with powerful solution-generating
techniques.

However, there is an important limitation: only in d = 4, 5 can these geometries be globally asymptot-
ically flat. Global asymptotic flatness implies an asymptotic factor Sd−2 in the spatial geometry, whose
isometry group O(d− 1) has a Cartan subgroup U(1)N . If, as above, we demand d− 3 axial isometries,
then, asymptotically, these symmetries must approach elements of O(d−1), so we need U(1)d−3 ⊂ U(1)N ,
i.e.,

d− 3 ≤ N =
⌊

d− 1
2

⌋
, (4)

which is only possible in d = 4, 5. This is the main reason for the recent great progress in the construction
of exact five-dimensional black holes, and the failure to extend it to d > 5.

Finally, the classification of possible horizon topologies becomes increasingly complicated in higher
dimensions [10]. In four spacetime dimensions the (spatial section of the) horizon is a two-dimensional
surface, so the possible topologies can be easily characterized and restricted. Much less restriction is
possible as d is increased.

3 The Schwarzschild-Tangherlini solution and black p-branes

The linearized approximation to the field of a static pointlike source in higher-dimensions is easily found
to be

ds2
(lin) = −

(
1− µ

rd−3

)
dt2 +

(
1 +

µ

rd−3

)
dr2 + r2dΩ2

d−2, (5)

where, to lighten the notation, we have introduced the ‘mass parameter’

µ =
16πGM

(d− 2)Ωd−2
. (6)

This suggests that the Schwarzschild solution generalizes to higher dimensions in the form

ds2 = −
(
1− µ

rd−3

)
dt2 +

dr2

1− µ
rd−3

+ r2dΩ2
d−2 . (7)

In essence, all we have done is change the radial fall-off 1/r of the Newtonian potential to the d-dimensional
one, 1/rd−3. As Tangherlini found in 1963 [11], this turns out to give the correct solution: it is straight-
forward to check that this metric is indeed Ricci-flat. It is apparent that there is an event horizon at
r0 = µ1/(d−3).

Having this elementary class of black hole solutions, it is easy to construct other vacuum solutions
with event horizons in d ≥ 5. The direct product of two Ricci-flat manifolds is itself a Ricci-flat manifold.
So, given any vacuum black hole solution B of the Einstein equations in d dimensions, the metric

ds2
d+p = ds2

d(B) +
p∑

i=1

dxidxi (8)

describes a black p-brane, in which the black hole horizon H ⊂ B is extended to a horizon H ×Rp, or
H × Tp if we identify periodically xi ∼ xi + Li. A simple way of obtaining another kind of vacuum
solutions is the following: unwrap one of the directions xi; perform a boost t → cosh αt + sinh αxi,
xi → sinhαt+cosh αxi, and re-identify points periodically along the new coordinate xi. Although locally
equivalent to the static black brane, the new boosted black brane solution is globally different from it.

4 Myers-Perry solutions

The generalization of the Schwarzschild solution to d > 4 is, as we have seen, a rather straightforward
problem. However, in General Relativity it is often very difficult to extend a solution from the static
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case to the stationary one (as exemplified by the Kerr solution). Impressively, in 1986 Myers and Perry
(MP) managed to find exact solutions for black holes in any dimension d > 4, rotating in all possible
independent rotation planes [2]. The feat was possible since the solutions belong in the Kerr-Schild class

gµν = ηµν + 2H(xρ)kµkν (9)

where kµ is a null vector with respect to both gµν and the Minkowski metric ηµν . This entails a sort
of linearization of the problem, which facilitates greatly the resolution of the equations. Of all known
vacuum black holes in d > 4, only the Myers-Perry solutions seem to have this property.

In this section I review these solutions and their properties, focusing on black holes with a single
rotation. The existence of ultra-spinning regimes in d ≥ 6 is emphasized.

4.1 Rotation in a single plane

Black holes that rotate in a single plane are not only simpler, but they also exhibit more clearly the
qualitatively new physics afforded by the additional dimensions.

The metric takes the form

ds2 = −dt2 +
µ

rd−5Σ
(
dt− a sin2 θ dφ

)2
+

Σ
∆

dr2 + Σdθ2 + (r2 + a2) sin2 θ dφ2

+r2 cos2 θ dΩ2
(d−4) , (10)

where
Σ = r2 + a2 cos2 θ , ∆ = r2 + a2 − µ

rd−5
. (11)

The physical mass and angular momentum are easily obtained and are given in terms of the parameters
µ and a by

M =
(d− 2)Ωd−2

16πG
µ , J =

2
d− 2

Ma . (12)

Hence one can think of a as essentially the angular momentum per unit mass. We can choose a ≥ 0
without loss of generality.4

As in Tangherlini’s solution, this metric seems to follow from a rather straightforward extension of
the Kerr solution, which is recovered when d = 4. The first line in eq. (10) looks indeed like the Kerr
solution, with the 1/r fall-off replaced, in appropriate places, by 1/rd−3. The second line contains the
line element on a (d− 4)-sphere which accounts for the additional spatial dimensions. It might therefore
seem that, again, the properties of these black holes should not differ much from their four-dimensional
counterparts.

However, this is not the case. Heuristically, we can see the competition between gravitational attrac-
tion and centrifugal repulsion in the expression

∆
r2
− 1 = − µ

rd−3
+

a2

r2
. (13)

Roughly, the first term on the right-hand side corresponds to the attractive gravitational potential and
falls off in a dimension-dependent fashion. In contrast, the repulsive centrifugal barrier described by the
second term does not depend on the total number of dimensions, since rotations always refer to motions
in a plane.

Given the similarities between (10) and the Kerr solution it is clear that the outer event horizon lies
at the largest (real) root r0 of g−1

rr = 0, i.e., ∆(r) = 0. Thus, we expect that the features of the event
horizons will be strongly dimension-dependent, and this is indeed the case. If there is an event horizon
at r = r0,

r2
0 + a2 − µ

rd−5
0

= 0 , (14)

its area will be
AH = rd−4

0 (r2
0 + a2)Ωd−2 . (15)

4This choice corresponds to rotation in the positive sense (i.e. increasing φ). The solution presented in [2] is obtained
by φ → −φ, which gives rotation in a negative sense.
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For d = 4, a regular horizon is present for values of the spin parameter a up to the Kerr bound: a = µ/2
(or a = GM), which corresponds to an extremal black hole with a single degenerate horizon (with
vanishing surface gravity). Solutions with a > GM correspond to naked singularities. In d = 5, the
situation is apparently quite similar since the real root at r0 =

√
µ− a2 exists only up to the extremal

limit µ = a2. However, this extremal solution has zero area, and in fact, has a naked ring singularity.
For d ≥ 6, ∆(r) is always positive at large values of r, but the term −µ/rd−5 makes it negative at small

r (we are assuming positive mass). Therefore ∆ always has a (single) positive real root independently
of the value of a. Hence regular black hole solutions exist with arbitrarily large a. Solutions with large
angular momentum per unit mass are referred to as “ultra-spinning”.

An analysis of the shape of the horizon in the ultra-spinning regime a À r0 shows that the black holes
flatten along the plane of rotation [5]: the extent of the horizon along this plane is ∼ a, while in directions
transverse to this plane its size is ∼ r0. In fact, a limit can be taken in which the ultraspinning black
hole becomes a black membrane with horizon geometry R2 × Sd−4. This turns out to have important
consequences for black holes in d ≥ 6, as we will discuss later. The transition between the regime in
which the black hole behaves like a fairly compact, Kerr-like object, and the regime in which it is better
characterized as a membrane, is most clearly seen by analyzing the black hole temperature

TH =
1
4π

(
2r0

r2
0 + a2

+
d− 5

r0

)
. (16)

At (
a

r0

)

mem

=

√
d− 3
d− 5

, (17)

this temperature reaches a minimum. For a/r0 smaller than this value, quantities like TH and AH

decrease, in a manner similar to the Kerr solution. However, past this point they rapidly approach the
black membrane results in which TH ∼ 1/r0 and AH ∼ a2rd−4

0 , with a2 characterizing the area of the
membrane worldvolume.

The properties of the solutions are conveniently encoded using the dimensionless variables aH , j
introduced in [12]. For the solutions (10) the curve aH(j) can be found in parametric form, in terms of
the dimensionless ‘shape’ parameter ν = r0

a , as

jd−3 =
π

(d− 3)
d−3
2

Ωd−3

Ωd−2

ν5−d

1 + ν2
, (18)

ad−3
H = 8π

(
d− 4
d− 3

) d−3
2 Ωd−3

Ωd−2

ν2

1 + ν2
. (19)

The static and ultra-spinning limits correspond to ν →∞ and ν → 0, respectively. The inflection point
where d2aH/dj2 changes sign when d ≥ 6, occurs at the value (17).

5 Black rings

Five-dimensional black rings are black holes with horizon topology S1 × S2 in asymptotically flat space-
time. The S1 describes a contractible circle, not stabilized by topology but by the centrifugal force
provided by rotation. An exact solution for a black ring with rotation along this S1 was presented in
[13]. Its most convenient form was given in [14] as5

ds2 = −F (y)
F (x)

(
dt− C R

1 + y

F (y)
dψ

)2

+
R2

(x− y)2
F (x)

[
−G(y)

F (y)
dψ2 − dy2

G(y)
+

dx2

G(x)
+

G(x)
F (x)

dφ2

]
, (20)

5An alternative form was found in [15, 16]. The relation between the two is given in [17].
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where
F (ξ) = 1 + λξ, G(ξ) = (1− ξ2)(1 + νξ) , (21)

and

C =

√
λ(λ− ν)

1 + λ

1− λ
. (22)

The dimensionless parameters λ and ν must lie in the range

0 < ν ≤ λ < 1 . (23)

The coordinates vary in the ranges −∞ ≤ y ≤ −1 and −1 ≤ x ≤ 1, with asymptotic infinity recovered as
x → y → −1. The axis of rotation around the ψ direction is at y = −1, and the axis of rotation around φ
is divided into two pieces: x = 1 is the disk bounded by the ring, and x = −1 is its complement from the
ring to infinity. The horizon lies at y = −1/ν. Outside it, at y = −1/λ, lies an ergosurface. A detailed
analysis of this solution and its properties can be found in [17] and [18], so we shall only discuss it briefly.

In the form given above the solution possesses three independent parameters: λ, ν, and R. Physically,
this sounds like one too many: given a ring with mass M and angular momentum J , we expect its radius
to be dynamically fixed by the balance between the centrifugal and tensional forces. This is also the case
for the black ring (20): in general it has a conical defect on the plane of the ring, x = ±1. In order to
avoid it, the angular variables must be identified with periodicity

∆ψ = ∆φ = 4π

√
F (−1)

|G′(−1)| = 2π

√
1− λ

1− ν
(24)

and the two parameters λ, ν must satisfy

λ =
2ν

1 + ν2
. (25)

This eliminates one parameter, and leaves the expected two-parameter (ν, R) family of solutions. The
mechanical interpretation of this balance of forces for thin rings is discussed in [12]. The Myers-Perry
solution with a single rotation is obtained as a limit of the general solution (20) [14], but cannot be
recovered if λ is eliminated through (25).

The physical parameters of the solution (mass, angular momentum, area, angular velocity, surface
gravity) in terms of ν and R can be found in [17]. It can be seen that while R provides a measure of the
radius of the ring’s S1, the parameter ν can be interpreted as a ‘thickness’ parameter characterizing its
shape, corresponding roughly to the ratio between the S2 radius and the S1 radius.

More precisely, one finds two branches of solutions, whose physical differences are seen most clearly
in terms of the dimensionless variables j and aH introduced above. For a black ring in equilibrium, the
phase curve aH(j) can be expressed in parametric form as

aH = 2
√

ν(1− ν) , j =

√
(1 + ν)3

8ν
. (26)

This curve is easily seen to have a cusp at ν = 1/2, which corresponds to a minimum value of j =
√

27/32
and a maximum aH = 1. Branching off from this cusp, the thin black ring solutions (0 < ν < 1/2) extend
to j → ∞ as ν → 0, with asymptotic aH → 0. The fat black ring branch (1/2 ≤ ν < 1) has lower area
and extends only to j → 1, ending at ν → 1 at the same zero-area singularity as the MP solution. This
implies that in the range

√
27/32 ≤ j < 1 there exist three different solutions (thin and fat black rings,

and MP black hole) with the same value of j. The notion of black hole uniqueness that was proven to
hold in four dimensions does not extend to five dimensions.

A remarkable vacuum black ring solution with rotation along both the S1 and the S2 was presented
in [19].

6 Vacuum solutions in more than five dimensions

With no available techniques to construct asymptotically flat exact solutions beyond those found by
Myers and Perry, the situation in d ≥ 6 is much less developed than in d = 5.
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However, despite the paucity of exact solutions, there are strong indications that the variety of black
holes that populate General Relativity in d ≥ 6 is vastly larger than in d = 4, 5. A first indication came
from the conjecture in ref. [5] about the existence of black holes with spherical horizon topology but with
axially symmetric ‘ripples’ (or ‘pinches’). The plausible existence of black rings in any d ≥ 5 was argued
in [20, 18]. More recently, ref. [12] has constructed approximate solutions for black rings in any d ≥ 5
and then exploited the conjecture of [5] to try to draw a phase diagram with connections and mergers
between the different expected phases. In the following I summarize these results.

6.1 Approximate solutions from curved thin branes

In the absence of exact techniques, ref. [12] resorted to approximate constructions, in particular to the
method of matched asymptotic expansions previously used in the context of black holes localized in
Kaluza-Klein circles in [21, 22, 23, 24]6. The basic idea is to find two widely separated scales in the
problem, call them R1 and R2, with R2 ¿ R1. Then try to solve the equations in two limits: first, as a
perturbative expansion for small R2, and then in an expansion in 1/R1. The former solves the equations
in the far-region r À R2, in which the boundary conditions, e.g., asymptotic flatness, fix the integration
constants. The second expansion is valid in a near-region r ¿ R1. In order to fix the integration
constants in this case, one matches the two expansions in the overlap region R2 ¿ r ¿ R1 in which both
approximations are valid. The process can then be iterated to higher orders in the expansion, see [22] for
an explanation of the systematics involved.

In order to construct a black ring with horizon topology S1 × Sd−3, we take the scales R1, R2 to be
the radii of the S1 and Sd−3 respectively7. To implement the above procedure, we take R2 = r0, the
horizon radius of the Sd−3 of a straight boosted black string, and R1 = R the large circle radius of a very
thin circular string. Thus, in effect, to first order in the expansion what one does is: (i) find the solution
within linearized approximation, i.e., for small r0/r, around a Minkowski background for an infinitely
thin circular string with momentum along the circle; (ii) perturb a straight boosted black string so as
to bend it into an arc of circle of very large radius 1/R. The latter step not only requires matching to
the previous solution in order to provide boundary conditions for the homogeneous differential equations:
one also needs to check that the perturbations can be made compatible with regularity of the horizon.

It is worth noting that the form of the solution thus found exhibits a considerable increase in com-
plexity when going from d = 5, where an exact solution is available, to d > 5: simple linear functions of
r in d = 5 change to hypergeometric functions in d > 5. We take this as an indication that exact closed
analytical forms for these solutions may not exist in d > 5.

We will not dwell here on the details of the perturbative construction of the solution –see [12] for
this–, but instead we shall emphasize that adopting the view that a black object is approximated by a
certain very thin black brane curved into a given shape can easily yield non-trivial information about
new kinds of black holes. Eventually, of course, the assumption that the horizon remains regular after
curving needs to be checked.

Consider then a stationary black brane, possibly with some momentum along its worldvolume, with
horizon topology Rp+1×Sq, with q = d−p−2. When viewed at distances much larger than the size r0 of
the Sq, we can approximate the metric of the black brane spacetime by the gravitational field created by
an ‘equivalent source’ with distributional energy tensor T ν

µ ∝ rq−1
0 δ(q+1)(r), with non-zero components

only along directions tangent to the worldvolume, and where r = 0 corresponds to the location of the
brane. Now we want to put this same source on a curved, compact p-dimensional spatial surface in a
given background spacetime (e.g., Minkowski, but possibly (Anti-)deSitter or others, too). In principle
we can obtain the mass M and angular momenta Ji of the new object by integrating T t

t and T i
t over

the entire spatial section of the brane worldvolume. Moreover, the total area AH is similarly obtained
by replacing the volume of Rp with the volume of the new surface. Thus, it appears that we can easily
obtain the relation AH(M,Ji) in this manner.

There is, however, the problem that having changed the embedding geometry of the brane, it is not
guaranteed that the brane will remain stationary. Moreover, AH will be a function not only of (M,Ji),

6The classical effective field theory of [25, 26] is an alternative to matched asymptotic expansions which presumably
should be useful as well in the context discussed in this section.

7The Sd−3 is not round for known solutions, but one can define an effective scale R2 as the radius of a round Sd−3 with
the same area.
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but it will also depend explicitly on geometrical parameters of the surface. However, we would expect
than in a situation of equilibrium some of these geometrical parameters should be fixed dynamically by
the mechanical parameters (M, Ji) of the brane. For instance, take a boosted string and curve it into a
circular ring so the linear velocity turns into angular rotation. If we fix the mass and the radius then the
ring will not be in equilibrium for every value of the boost, i.e., of the angular momentum, so there must
exist a fixed relation R = f(M,J). This is reflected in the fact that in the new situation the stress-energy
tensor is in general not conserved, ∇µTµν 6= 0: additional stresses would be required to keep the brane
in place. An efficient way of imposing the brane equations of motion is in fact to demand conservation of
the stress-energy tensor. In the absence of external forces, the classical equations of motion of the brane
derived in this way are [27]

Kρ
µνTµν = 0 , (27)

where Kρ
µν is the second-fundamental tensor, characterizing the extrinsic curvature of the embedding

surface spanned by the brane worldvolume. For a string on a circle of radius R in flat space, parametrized
by a coordinate z ∼ z + 2πR, this equation becomes

Tzz

R
= 0 . (28)

In d = 5, this can be seen to correspond to the condition of absence of conical singularities in the solution
(20), in the limit of a very thin black ring [16]. Ref. [12] showed that this condition is also required in
d ≥ 6 in order to avoid curvature singularities on the plane of the ring.

In general, eq. (27) constrains the allowed values of parameters of a black brane that can be put on
a given surface. Ref. [12] easily derived, for any d ≥ 5, that the radius R of thin rotating black rings of
given M and J is fixed to

R =
d− 2√
d− 3

J

M
(29)

so large R corresponds to large spin for fixed mass. The horizon area of these thin black rings goes like

AH(M, J) ∝ J−
1

d−4 M
d−2
d−4 . (30)

This is to be compared to the value for ultra-spinning MP black holes in d ≥ 6 (cf. eqs. (18), (19) as
ν → 0),

AH(M, J) ∝ J−
2

d−5 M
d−2
d−5 . (31)

This shows that in the ultra-spinning regime the rotating black ring has larger area than the MP black
hole.

6.2 Phase diagram

Equation (30) allows to compute the asymptotic form of the curve aH(j) in the phase diagram at large j
for black rings. However, when j is of order one the approximations in the matched asymptotic expansion
break down, and the gravitational interaction of the ring with itself becomes important. At present we
have no analytical tools to deal with this regime for generic solutions. In most cases, numerical analysis
may be needed to obtain precise information.

Nevertheless, ref. [12] has advanced heuristic arguments to propose a completion of the curves that is
qualitatively consistent with all the information available at present. A basic ingredient is the observation
in [5], discussed in section 4.1, that in the ultraspinning regime in d ≥ 6, MP black holes approach the
geometry of a black membrane ≈ R2 × Sd−4 spread out along the plane of rotation.

We already discussed how using this analogy, ref. [5] argued that ultra-spinning MP black holes should
exhibit a Gregory-Laflamme-type of instability [28]. Since the threshold mode of the GL instability gives
rise to a new branch of static non-uniform black strings and branes [29, 30, 31], ref. [5] argued that it is
natural to conjecture the existence of new branches of axisymmetric ‘lumpy’ (or ‘pinched’) black holes,
branching off from the MP solutions along the stationary axisymmetric zero-mode perturbation of the
GL-like instability.

Ref. [12] developed further this analogy, and drew a correspondence between the phases of black mem-
branes and the phases of higher-dimensional black holes. Although the analogy has several limitations,
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it allows to propose a phase diagram in d ≥ 6, see [12], which should be compared to the much simpler
diagram in five dimensions. It includes the presence of an infinite number of black holes with spherical
topology, connected via merger transitions to MP black holes, black rings, and black Saturns. Of all
multi-black hole configurations, the diagram only includes those phases in which all components of the
horizon have the same surface gravity and angular velocity: presumably, these are the only ones that can
merge to a phase with connected horizon. Even within this class of solutions, the diagram is not expected
to contain all possible phases with a single angular momentum: blackfolds with other topologies must
likely be included too. The extension to phases with several angular momenta also remains to be done.

Indirect evidence for the existence of black holes with pinched horizons is provided by the results of
[32], which finds ‘pinched plasma ball’ solutions of fluid dynamics that are CFT duals of pinched black
holes in six-dimensional AdS space. The approximations involved in the construction require that the
horizon size of the dual black holes be larger than the AdS curvature radius, so they do not admit a limit
to flat space space. Nevertheless, their existence provides an example, if indirect, that pinched horizons
make appearance in d = 6 (and not in d = 5).
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Abstract
The late time accelerated expansion of the Universe may indicate that General Rela-
tivity (GR) fails on cosmological scales. In this review, we study structure formation
in modified gravity models and explain how large scale structure of the Universe can
be used to distinguish between modified gravity models and dark energy models in
GR. An emphasize is made on the necessity to obtain the non-linear power spectrum
of dark matter perturbations by properly taking into a mechanism to recover GR on
small scales, which is essential to evade stringent constraints on deviations from GR
at solar system scales.

1 Introduction

The late-time acceleration of the Universe is surely the most challenging problem in cosmology. Within
the framework of general relativity (GR), the acceleration originates from dark energy. The simplest
option is the cosmological constat. However, in order to explain the current acceleration of the Universe,
the required value of the cosmological constant must be incredibly small. Alternatively, there could be
no dark energy, but a large distance modification of GR may account for the late-time acceleration of
the Unverse. Recently considerable efforts have been made to construct models for modified gravity as
an alternative to dark energy and distinguish them from dark energy models by observations (see [1–4]
for reviews). Although fully consistent models have not been constructed yet, some indications of the
nature of the modified gravity models have been obtained. In general, there are three regimes of gravity
in modified gravity models [2, 5]. On the largest scales, gravity must be modified significantly in order
to explain the late time acceleration without introducing dark energy. On the smallest scales, the theory
must approach GR because there exist stringent constraints on the deviation from GR at solar system
scales. On intermediate scales between the cosmological horizon scales and the solar system scales, there
can be still a deviation from GR. In fact, it is a very common feature in modified gravity models that
there is a significant deviation from GR on large scale structure scales. This is due to the fact that, once
we modify GR, there arises a new scalar degree of freedom in gravity. This scalar mode changes gravity
even below the length scale where the modification of the tensor sector of gravity becomes significant,
which causes the cosmic acceleration.

Therefore, large scale structure of the Universe offers the best opportunity to distinguish between
modified gravity models and dark energy models in GR. [6–19]. The expansion history of the Universe
determined by the Friedman equation can be completely the same in modified gravity models and dark
energy models. In fact, it is always possible to find a dark energy model that can mimic the expansion
history of the Universe in a given modified gravity model by tuning the equation of state of dark energy.
However, this degeneracy can be broken by the growth rate of structure formation. This is because
the scalar degree of freedom in modified gravity models changes the strength of gravity on sub-horizon
scales and thus changes the growth rate of structure formation. Thus combining the geometrical test and
structure formation test, one can distinguish between dark energy models and modified gravity models.

However, there is a subtlety in testing modified gravity models using large scale structure of the
Universe. In any successful modified gravity models, we should recover GR on small scales. Indeed,
unless there is an additional mechanism to screen the scalar interaction which changes the growth rate of
structure formation, the modification of gravity contradicts to the stringent constraints on the deviation
from GR at solar system scales. This mechanism affects the non-linear clustering of dark matter. We

1E-mail:Kazuya.Koyama@port.ac.uk
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expect that the power-spectrum of dark matter perturbations approaches the one in the GR dark energy
model with the same expansion history of the Universe because the modification of gravity disappears on
small scales. Then the difference between a modified gravity model and a dark energy model with the same
expansion history becomes smaller on smaller scales. This recovery of GR has important implications
for weak lensing measurements because the strongest signals in weak lensing measurements come from
non-linear scales.

In this review, we use two examples, branewrold models and f(R) gravity models to explain how
large scale structure of the Universe can be used to distinguish between modified gravity models from
dark energy models in GR. For this purpose, a general framework based on Brans-Dicke (BD) gravity
is introduced to describe inhomogeneities under horizon scales. The two examples are included in this
general framework. Then the mechanisms to recover GR is introduced and we study their effects on the
non-linear clustering of dark matter.

2 Quasi-static perturbations in modified gravity models

We consider perturbations around the Friedman-Robertson-Walker universe described in the Newtonian
gauge:

ds2 = −(1 + 2ψ)dt2 + a2(1 + 2φ)δijdxidxj . (1)

We will work on the evolution of matter fluctuations inside the Hubble horizon. Then we can use the
quasi-static approximation and neglect the time derivatives of the perturbed quantities compared with
the spatial derivatives. As mentioned in the introduction, the large distance modification of gravity which
is necessary to explain the late-time acceleration generally modifies gravity even on sub-horizon scales
due to the introduction of a new scalar degree of freedom. This modification of gravity due to the scalar
mode can be described by the Brans-Dicke (BD) gravity. The action of the BD theory is given by

S =
1

16π

∫
d4x

√−g4

(
ϕR− ωBD

ϕ
(∇ϕ)2

)
. (2)

Under the quasi-static approximations, perturbed modified Einstein equations give

φ + ψ = −ϕ, (3)
1
a2
∇2ψ = 4πGρmδ − 1

2a2
∇2ϕ, (4)

(3 + 2ωBD)
1
a2
∇2ϕ = −8πGρmδ, (5)

where we expanded the BD scalar as ϕ = ϕ0 + ϕ(x, t), G = 1/ϕ0, ρm is the background dark matter
energy density and δ is dark matter density perturbations. In general, modified gravity models that
explain the late time acceleration have ωBD ∼ O(1) on sub-horizon scales today. This would contradict
to the solar system constraints which require ωBD > 40000. However, this constraint can be applied only
when the BD scalar has no potential and no self-interactions. Thus, in order to avoid this constraint,
the BD scalar should acquire some interaction terms on small scales. In general we expect that the BD
scalar field equation is given by

(3 + 2ωBD)
1
a2

k2ϕ = 8πGρmδ − I(ϕ), (6)

in a Fourier space. Here the interaction term I can be expanded as

I(ϕ) = M1(k)ϕ +
1
2

∫
d3k1d

3k2

(2π)3
δD(k − k12)M2(k1, k2)ϕ(k1)ϕ(k2)

+
1
6

∫
d3k1d

3k2d
3k3

(2π)6
δD(k − k123)M3(k1, k2,k3)ϕ(k1)ϕ(k2)ϕ(k3) + ..., (7)

where kij = ki + kj and kijk = ki + kj + kk.
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There are two known mechanisms where the non-linear interaction terms I are responsible for the
recovery of GR on small scales. One is the chameleon mechanism [20]. In this case, the BD scalar has
a non-trivial potential. The potential gives a mass to the BD scalar. Then the BD scalar mediates the
Yukawa-type force and the interaction decays exponentially beyond the length scale determined by the
inverse of mass, the compton wavelength. Then the scalar interaction is hidden beyond the compton
wavelength and GR is recovered. The BD scalar is coupled to the trace of the energy momentum tensor.
Thus the effective potential depends on the energy density of the environment. The potential is tuned so
that the mass of the BD scalar becomes large for a dense environment such as the solar system. Then
the compton wavelength becomes very short for a dense environment and the scalar mode is effectively
hidden. In this paper, we deal with this mechanism perturbatively. M1 determines the mass term in the
cosmological background. The higher order terms Mi, (i > 1) describe the change of the mass term due
to the change of the energy density. If the chameleon mechanism is at work, the effective mass becomes
larger when the density fluctuations become non-linear.

The other mechanism relies on the existence of the non-linear derivative interactions. A typical
example is the Dvali-Gabadadze-Porratti (DGP) model where we are supposed to be living on a 4D
brane in a 5D Minkowski spacetime [21]. In this model, the BD scalar is identified as the brane bending
mode which describes the deformation of the 4D brane in the 5D bulk spacetime. The brane bending
mode has a large second-order term in the equation of motion which cannot be neglected even when the
metric perturbations remain linear [22–24]. This corresponds to the existence of a large M2(k) term. it
has been shown that once this second order term dominates over the linear term, the scalar mode is hidden
and the solutions for metric perturbations approach GR solutions. For a static spherically symmetric
source, we can identify the length scale below which the second order interaction becomes important.
This length scale is known as the Vainshtein radius [25]. In the cosmological situation, it is expected
that once the density perturbations become non-linear, the second order term becomes important and
we recover GR. In the next section, we apply the perturbation theory to solve the equations. Thus we
only keep up to the third order in the expansion of I which is necessary to calculate the quasi non-linear
power spectrum.

The evolution equations for matter perturbations are obtained from the conservation of energy mo-
mentum tensor, the continuity equation and the Euler equation:

∂δ

∂t
+

1
a
∇ · [(1 + δ)v] = 0, (8)

∂v

∂t
+ Hv +

1
a
(v · ∇)v = −1

a
∇ψ. (9)

Eqs. (4), (6), (8) and (9) are the basic equations that have to be solved.

3 Linear regime

In this section, we study the behaviour of perturbations on linear scales under horizon. First we study
two explicit examples and then discuss the possibility to distinguish between modified gravity models
and dark energy models.

3.1 Linear growth rate

By linearizing Eqs. (4), (6), the solutions for metric perturbations are given by

k2

a2
Φ = 4πG

(
2(1 + ωBD) + M1a

2/k2

3 + 2ωBD + M1a2/k2

)
ρmδm, (10)

k2

a2
Ψ = −4πG

(
2(2 + ωBD) + M1a

2/k2

3 + 2ωBD + M1a2/k2

)
ρmδm, (11)

where we only keep the linear order in I. There are two ways to recover GR solutions at linearized
level. One is to take ωBD → ∞. The other is to consider a large mass for the BD scalar which satisfies
M1 À k/a. However, modified gravity models that explain the late time acceleration do not satisfy
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these conditions in general and linearized gravity under horizon scales deviates from GR. The evolution
equation for density perturbations is obtained by Eq. (8) and (9) using the solutions (10) and (11):

L̂δm = 0, (12)

where the linear operator L̂ is given by

L̂ ≡ d2

dt2
+ 2H

d

dt
− κ2

2
ρm

(
2(2 + ωBD) + M1a

2/k2

3 + 2ωBD + M1a2/k2

)
, (13)

and we assumed the irrotationality of the fluid. In the following, we consider two explicit examples and
study the behaviour of density perturbations.

3.2 DGP models

In DGP models, we are supposed to be living in a 4D brane in a 5D spacetime. The model is described
by the action given by

S =
1

4κ2rc

∫
d4x

√−g5R5 +
1

2κ2

∫
d4x

√−g(R + Lm), (14)

where κ2 = 8πG, R5 is the Ricci scalar in 5D and Lm stands for the matter lagrangian confined to a
brane. The cross over scale rc is the parameter in this model which is a ratio between the 5D Newton
constant and the 4D Newton constant. The modified Friedman equation is given by

ε
H

rc
= H2 − κ2

3
ρ, (15)

where ε = ±1 represents two distinct branches of the solutions [26]. From this modified Friedman
equation, we find that the cross-over scale rc must be fine-tuned to be the present-day horizon scales in
order to modify gravity only at late times. The solution with ε = +1 is known as the self-accelerating
branch because even without the cosmological constant, the expansion of the Universe is accelerating as
the Hubble parameter is constant, H = 1/rc. On the other hand ε = −1 corresponds to the normal
branch. In this branch, we need a cosmological constant to realize the cosmic acceleration. However, due
to the modified gravity effects, the Universe behaves as if it were filled with the Phantom dark energy
with the equation of state w smaller than −1. It is known that the self-accelerating solution is plagued
by the ghost instabilities (see [27] for a review). Also it gives a poor fit to the observations such as
supernovae and cosmic microwave background anisotropies [28]. However, as we will see later, this model
is the simplest modified gravity model where the mechanism of the recovery of GR on small scales is
naturally encoded and it can be used to get insights into the effect of this mechanism on the non-linear
power spectrum.

In this model, gravity becomes 5D on large scales larger than rc. On small scales, gravity becomes
4D but it is not described by GR. The quasi-static perturbations are described by the BD theory where
the BD parameter is given by

ωBD(t) =
3
2

(
β(t)− 1

)
, β(t) = 1− 2εHrc

(
1 +

Ḣ

3H2

)
, (16)

where Ḣ is a cosmic time derivative of the Hubble parameter H. Note that the BD parameter depends on
time in this model. The BD scalar is massless M1 = 0. Then the solutions for the metric perturbations
are given by [29,30]

k2

a2
Φ = 4πG

(
1− 1

3β

)
ρmδm, (17)

k2

a2
Ψ = 4πG

(
1 +

1
3β

)
ρmδm, (18)
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and the linear growth rate is determined as

L̂δm = 0, L̂ ≡ d2

dt2
+ 2H

d

dt
− κ2

2
ρm

(
1− 1

3β

)
. (19)

In the self-accelerating branch, β < 0 and the BD parameter is negative which makes the Newton constant
effectively smaller than GR. Thus the growth rate receives additional suppressions compared with dark
energy models in GR. On the other hand, in the normal branch, β > 0 and the BD parameter is positive
which makes the Newton constant larger than GR. Then the growth rate is enhanced. In order to
demonstrate the effect of this modification, it is instructive to consider a dark energy model in GR which
follows the same expansion history of the Universe in the self-accelerating universe:

H2 =
8πG

3
(ρm + ρde), (20)

where ρde = H/rc. The equation of state of dark energy wde = pde/ρde is given by wde = −1/(1 + Ωm)
where Ωm = 8πGρm/3H2 [29]. Now let us consider the linear growth rate in this dark energy mode.
Since gravity is not modified, the linear growth rate is given by

L̂δm = 0, L̂ ≡ d2

dt2
+ 2H

d

dt
− κ2

2
ρm. (21)

Fig. 1 shows the comoving distance in the self-accelerating universe, the dark energy model and ΛCDM
model. Clearly, we cannot distinguish between the dark energy model and the self-accelerating universe.
However, if we look at the linear growth rate of density perturbations, this degeneracy is broken.
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Figure 1: The comoving distance r(z) and the growth rate g(a) = δm(a)/a are shown for the standard LCDM

(long dashed), DGP (solid, thick) and the equivalent GR dark energy model. From [30].

3.3 f(R) gravity models

We consider another class of modified theory of gravity that generalizes the Einstein-Hilbert action to
include an arbitrary function of the scalar curvature R:

S =
∫

d4x
√−g

[
R + f(R)

2κ2
+ Lm

]
, (22)

where κ2 = 8π G and Lm is the Lagrangian of the ordinary matter. This theory is equivalent to the BD
theory with ωBD = 0 but there is a non-trivial potential [31]. This can be seen from the trace of modified
Einstein equations:

3¤fR −R + fRR− 2f = −κ2ρ, (23)
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where fR = df/dR and ¤ is a Laplacian operator and we assumed matter dominated universe. We can
identify fR as the BD scalar field and its perturbations are defined as

ϕ = δfR ≡ fR − fR, (24)

where the bar indicates that the quantity is evaluated on the cosmological background. In this paper, we
assume |fR| ¿ 1 and |f/R| ¿ 1. These conditions are necessary to have the background which is close
to ΛCDM cosmology. Then the BD scalar perturbations satisfy

3
1
a2
∇2ϕ = −κ2ρ̄mδ + δR, δR ≡ R(fR)−R(fR). (25)

This is noting but the equation for the BD scalar perturbations with ωBD = 0 and the potential gives
the non-linear interaction term

I(ϕ) = δR(ϕ). (26)

By linearizing the potential we find

M1 = Rf (t) ≡ dR(fR)
dfR

. (27)

The solutions for the metric perturbations are then given by

k2

a2
Φ = 4πG

(
2 + M1a

2/k2

3 + M1a2/k2

)
ρmδm, (28)

k2

a2
Ψ = 4πG

(
4 + M1a

2/k2

3 + M1a2/k2

)
ρmδm, (29)

and the liner growth rate is given by

L̂δm = 0, L̂ ≡ d2

dt2
+ 2H

d

dt
− κ2

2

(
4 + M1a

2/k2

3 + M1a2/k2

)
ρm. (30)

In this paper, we consider a function f(R) of the form [32]

f(R) ∝ Rn

ARn + 1
, (31)

where A is a constant with dimensions of length squared and n is an integer. In the following we take
n = 1. In the limit R → 0, f(R) → 0 and there is no cosmological constant. For high curvature AR À 1,
f(R) can be expanded as

f(R) = −2κ2ρΛ − fR0
R̄0

R
, (32)

where ρΛ is determined by A, R̄0 is the background curvature today and we defined fR0 as fR0 = f̄R(R0).
As we mentioned before, we take |fR0| ¿ 1 and assume that the background expansion follows the ΛCDM
history with the same ρΛ. The M1 term determines the mass of the BD field mBD = (M1/3)1/2 as

mBD(t) ≡
√

Rf

3
=

(
R0

6|f̄R|

√
fR0

f̄R

)1/2

. (33)

Above the compton length m−1
BD, the BD scalar interaction decays exponentially and we recover GR. On

small scales, we recover the BD theory with ωBD = 0. Then the Newton constant is 4/3 times large than
GR. Thus the linear power spectrum acquires a scale dependent enhancement on small scales (Fig. 2).
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Figure 2: Left: Evolution of the effective equation of state wde for n = 1, 4 for several values of the
cosmological field amplitude today, fR0. Right: Fractional change in the matter power spectrum P (k)
relative to ΛCDM for a series of the cosmological field amplitude today, fR0, for n = 1, 4 models. For
scales that are below the cosmological Compton wavelength during the acceleration epoch k/a À M1

perturbation dynamics transition to the low-curvature regime where ωBD = 0 and density growth is
enhanced. From [32].

3.4 Distinguish between modified gravity and dark energy models

Fig.3 illustrates how one can detect the failure of GR from future observations. Suppose that our Universe
is described by the DGP model. However, astronomers still try to fit the data by dark energy models in
GR. For example, they use the parametrization of the equation of state of dark energy

w = w0 + w1z. (34)

Combining SN observations, CMB shift parameter and weak lensing, there appears an inconsistency. This
is because weak lensing probes the growth of structure and the growth rate in the DGP model cannot be
fitted by the growth rate in GR models given the same expansion history.

However, there is a subtlety in testing modified gravity models using large scale structure of the
Universe. In any successful modified gravity models, we should recover GR on small scales. Indeed,
unless there is an additional mechanism to screen the scalar interaction which changes the growth rate of
structure formation, the modification of gravity contradicts to the stringent constraints on the deviation
from GR at solar system scales. This mechanism affects the non-linear clustering of dark matter. We
expect that the power-spectrum of dark matter perturbations approaches the one in the GR dark energy
model with the same expansion history of the Universe because the modification of gravity disappears on
small scales. Then the difference between a modified gravity model and a dark energy model with the same
expansion history becomes smaller on smaller scales. This recovery of GR has important implications
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Figure 3: Equations of state found using two different combinations of data sets. Solid contours are for
fits to SN Ia and CMB data, while dashed contours are for fits to weak lensing and CMB data. The
significant difference (inconsistency) between the equations of state found using these two combinations is
a signature of the DGP model. The inconsistency is an observational detection of the underlying modified
gravity DGP model (assumed here to generate the data). From [8].

for weak lensing measurements because the strongest signals in weak lensing measurements come from
non-linear scales.

In almost all of the literature including the result in Fig. 3, the non-linear power spectrum in modified
gravity models was derived using the mapping formula between the linear power spectrum and the
non-linear power spectrum. This is equivalent to assume that gravity is modified down to small scales
in the same way as in the linear regime which contradicts to the solar system constraints. Thus this
approach overestimates the difference between modified gravity models and dark energy models. This
was explicitly shown by N-body simulations in the context of f(R) gravity [33–35]. By tuning the function
f , it is possible to make the Compton wavelength of the BD scalar short at solar system scales and screen
the BD scalar interaction [32,36,37]. N-body simulations show that, due to this mechanism, the deviation
of the non-linear power spectrum from GR is suppressed on small scales. It was shown that the mapping
formula failed to describe this recovery of GR and it overestimated the deviation from GR.

4 Non-linear clustering in modified gravity models

In the section, we develop a formalism to treat the quasi non-linear evolution of the power spectrum in
modified gravity models by properly taking into account the mechanism to recover GR on small scales [38].
Our formalism is based on the closure approximation which gives a closed set of evolution equations for
the matter power spectrum [39]. These evolution equations reproduce the one-loop results of the standard
perturbation theory (SPT) by replacing the quantities in the non-linear terms with linear-order ones. The
SPT in GR is tested against N-body simulations extensively recently and it has been shown that, at the
quasi non-linear regime, it can predict the power-spectrum with a sub-percent accuracy [40]. Although
the validity regime of the perturbation theory is limited, it is the most relevant regime to distinguish
between modified gravity models and dark energy models in GR because the difference in the two models
is large in the linear and quasi-non-linear regime.
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4.1 Evolution equations for perturbations

The Fourier transform of the fluid equations (8) and (9) become

H−1 ∂δ(k)
∂t

+ θ(k) = −
∫

d3k1d
3k2

(2π)3
δD(k − k1 − k2)α(k1, k2) θ(k1)δ(k2), (35)

H−1 ∂θ(k)
∂t

+

(
2 +

Ḣ

H2

)
θ(k)−

(
k

aH

)2

ψ(k) = −1
2

∫
d3k1d

3k2

(2π)3
δD(k − k1 − k2)β(k1,k2) θ(k1)θ(k2),

(36)

where the kernels in the Fourier integrals, α and β, are given by

α(k1,k2) = 1 +
k1 · k2

|k1|2 , β(k1, k2) =
(k1 · k2) |k1 + k2|2

|k1|2|k2|2 . (37)

We take into account the non-linear interaction terms I in the BD scalar equation. Due to the non-linear
interactions, the potential ψ is couples to δ through the BD scalar ϕ in a fully non-linear way. To derive
closed equations for δ and θ, we must employ the perturbative approach to Eq. (6). By solving Eq. (6)
perturbatively assuming ϕ < 1, ψ can be expressed in terms of δ as

−
(

k

a

)2

ψ =
1
2

κ2 ρm

[
1 +

1
3

(k/a)2

Π(k)

]
δ(k) +

1
2

(
k

a

)2

S(k), (38)

where

Π(k) =
1
3

(
(3 + 2ωBD)

k2

a2
+ M1

)
, (39)

and κ2 = 8πG. The function S(k) is the non-linear source term which is obtained perturbatively using
(4) as

S(k) = − 1
6Π(k)

(
κ2 ρm

3

)2 ∫
d3k1d

3k2

(2π)3
δD(k − k12)M2(k1, k2)

δ(k1) δ(k2)
Π(k1)Π(k2)

− 1
18Π(k)

(
κ2 ρm

3

)3 ∫
d3k1d

3k2d
3k3

(2π)6
δD(k − k123)

{
M3(k1,k2,k3)− M2(k1, k2 + k3)M2(k2, k3)

Π(k23)

}

× δ(k1) δ(k2), δ(k3)
Π(k1)Π(k2)Π(k3)

, (40)

The expression (40) is valid up to the third-order in δ.
The perturbation equations (35), (36) and (40) can be further reduced to a compact form by intro-

ducing the following quantity:

Φa(k) =
(

δ(k)
−θ(k)

)
. (41)

We can write down the basic equations in a single form as

∂Φa(k; η)
∂η

+ Ωab(k; η) Φb(k; η) =
∫

d3k1d
3k2

(2π)3
δD(k − k12) γabc(k1,k2; η)Φb(k1; η)Φc(k2; η)

+
∫

d3k1d
3k2d

3k3

(2π)6
δD(k − k123)σabcd(k1,k2, k3; η)Φb(k1; η)Φc(k2η)Φd(k3; η),(42)

where the time variable η is defined by η = ln a(t). The matrix Ωab is given by

Ωab(k; η) =




0 −1

−κ2

2
ρm

H2

[
1 +

1
3

(k/a)2

Π(k)

]
2 +

Ḣ

H2


 . (43)
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From the (2, 1) component of Ωab, we can define the effective Newton constant as

Geff = G

[
1 +

1
3

(k/a)2

Π(k)

]
. (44)

If M1=0, the effective Newton constant is given by

Geff =
2(2 + ωBD)
3 + 2ωBD

G. (45)

For a positive ωBD > 0, the effective gravitational constant is larger than GR and the gravitational force
is enhanced. On the other hand, if M1 À k2/a2, Geff becomes G. The quantity γabc is the vertex function
as in the GR case, but new non-vanishing components arise in the case of modified gravity:

γabc(k1, k2; η) =





1
2

α(k2,k1) ; (a, b, c) = (1, 1, 2),

1
2

α(k1,k2) ; (a, b, c) = (1, 2, 1),

− 1
12H2

(
κ ρm

3

)2 (
k2
12

a2

)
M2(k1, k2)

Π(k12)Π(k1)Π(k2)
; (a, b, c) = (2, 1, 1),

1
2

β(k1,k2) ; (a, b, c) = (2, 2, 2),

0 ; otherwise.

(46)

Here γ211 is absent in GR. Note that the symmetric properties of the vertex function, γabc(k1, k2) =
γacb(k2,k1), still hold in the modified theory of gravity. In Eq. (42), there appears another vertex
function coming from the non-linearity of Poisson equation. The explicit form of the higher-order vertex
function σabcd is given by

σabcd(k1,k2,k3; η) =





− 1
36H2

(
κρm

3

)3 (
k2
123

a2

)
M3(k1, k2, k3)

Π(k123)Π(k1)Π(k2)Π(k3)

×
[
1− 1

3
1

M3(k1,k2, k3)

{
M2(k1, k2 + k3)M2(k2,k3)

Π(k23)
+ perm.

}]
; (a, b, c, d) = (2, 1, 1, 1),

0 ; otherwise.

Again this term is absent in GR. The vertex function σabcd(k1,k2, k3; η) defined above is invariant under
the permutation of b ↔ c ↔ d or k1 ↔ k2 ↔ k3.

4.2 Evolution equations for power spectrum

In this paper, we are especially concerned with the evolution of the matter power spectrum, defined by
〈
Φa(k; η)Φb(k′; η)

〉
= (2π)3 δD(k + k′)Pab(|k|; η). (47)

Here the bracket 〈·〉 stands for the ensemble average. Note that we obtain the three different power
spectra: Pδδ from (a, b) = (1, 1), −Pδθ from (a, b) = (1, 2) and (2, 1), and Pθθ from (a, b) = (2, 2).

Let us consider how to compute the power spectrum. In the standard treatment of perturbation
theory, we first solve Eq.(42) by expanding the quantity Φa as Φa = Φ(1)

a + Φ(2)
a + · · · . Substituting the

perturbative solutions into the definition (47), we obtain the weakly non-linear corrections to the power
spectrum. This treatment is straightforward, but it is not suited for numerical calculations. Furthermore,
successive higher-order corrections generally converge poorly and SPT will be soon inapplicable at late-
time stage of the non-linear evolution. Here in order to deal with modified gravity models in which
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analytical calculations are intractable in many cases, we take another approach. Our approach is based
on the closure approximation proposed by Ref. [39], in which the evolution of power spectrum is obtained
numerically by solving a closed set of evolution equations.

Provided the basic equation (42), the evolution equation for power spectrum can be derived by
truncating the infinite chain of the moment equations with a help of perturbative calculation, called
closure approximation. We skip the details of the derivation and present the final results. Readers
interested in the derivation can refer to Ref. [39]. The resultant evolution equations are the coupled
equations characterized by the three statistical quantities including the power spectrum. We define

〈
Φa(k; η)Φb(k′; η′)

〉
= (2π)3 δD(k + k′)Rab(|k|; η, η′) ; η > η′,

〈 δΦa(k; η)
δΦb(k′; η′)

〉
= δD(k − k′)Gab(|k|; η, η′) ; η ≥ η′. (48)

The quantities Rab and Gab respectively denote the cross spectra between different times and the non-
linear propagator. Note that Rab 6= Rba, in general. Then, the closure equations become

Σ̂abcd(k; η)Pcd(k; η) =
∫

d3q

(2π)3
[
γapq(q, k − q; η)Fbpq(−k, q,k − q; η) + γbpq(q,−k − q; η) Fapq(k, q,−k − q; η)

]

+3
∫

d3q

(2π)3
[
σapqr(q,−q, k; η)Ppq(q; η)Prb(k; η) + σbpqr(q,−q,−k; η) Ppq(q; η)Pra(k; η)

]
,

(49)

Λ̂ab(k; η)Rbc(k; η, η′) =
∫

d3q

(2π)3
γapq(q, k − q; η)Kcpq(−k, q, k − q; η, η′)

+3
∫

d3q

(2π)3
σapqr(q,−q,k; η)Ppq(q; η)Rrc(k; η, η′), (50)

Λ̂ab(k; η)Gbc(k|η, η′) = 4
∫ η

η′
dη′′

∫
d3q

(2π)3
γapq(q, k − q; η) γlrs(−q, k; η′′)Gql(|k − q||η, η′′)Rpr(q; η, η′′)Gsc(k|η′′, η′),

+3
∫

d3q

(2π)3
σapqr(q,−q,k; η)Ppq(q; η)Grc(k|η, η′), (51)

where the operators Σ̂abcd and Λ̂ab are defined as

Σ̂abcd(k; η) = δacδbd
∂

∂η
+ δacΩbd(k; η) + δbdΩac(k; η), Λ̂ab(k; η) = δab

∂

∂η
+ Ωab(k; η), (52)

The explicit expressions for the kernels Fapq and Kcpq are summarized as

Fapq(k, p, q; η) = 2
∫ η

η0

dη′′
[
2 Gql(q|η, η′′) γlrs(k, p; η′′)Rar(k; η, η′′)Rps(p; η, η′′)

+ Gal(k|η, η′′) γlrs(p, q; η′′)Rpr(p; η, η′′)Rqs(q; η, η′′)
]
, (53)

Kcpq(k′, p, q; η, η′)

= 4
∫ η

η0

dη′′ Gql(q|η, η′′) γlrs(k′, p; η′′)Rps(p; η, η′′)

×
{

Rcr(k′; η′, η′′)Θ(η′ − η′′) + Rrc(k′; η′′, η′)Θ(η′′ − η′)
}

+ 2
∫ η′

η0

dη′′Gcl(k′|η′, η′′) γlrs(p, q; η′′) Rpr(p; η, η′′)Rqs(q; η, η′′). (54)

The closure equations (50)–(51) are the integro-differential equations involving several non-linear
terms, in which the information of the higher-order corrections in SPT is encoded. Thus, replacing all
statistical quantities in these non-linear terms with linear-order ones, the solutions of closure equations
automatically reproduce the leading-order results of SPT, called one-loop power spectra. Further, fully
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non-linear treatment of the closure equations is a non-perturbative description of the power spectra, and
have an ability to predict the matter power spectra accurately, beyond one-loop SPT. Strictly speaking,
the non-linear terms in the right-hand side of Eqs. (50)–(51) have only the information of the one-loop
corrections. However, it has been shown in Ref. [39] that the present formulation is equivalent to the
one-loop level of renormalized perturbation theory [41], and even the leading-order approximation still
contain some non-perturbative effects. The application of the closure approximation, together with the
detailed comparison with N-body simulations, is presented in Refs. [40, 42].

In this paper, we mainly use the closure equations for the purpose of computing the one-loop power
spectra. The results for fully non-linear treatment of the closure equations will be presented elsewhere.
The numerical scheme to solve the closure equations is basically the same as described in Ref. [39]. In
Appendix A, we briefly review the numerical scheme and summarize several modifications.

Before closing this section, we note here that the resultant equations (50)–(51) contain the additional
non-linear terms originating from the modification of the Poisson equation (see Eq.(38)). In particular,
for the terms containing the higher-order vertex function σabcd can be effectively absorbed into the matrix
Ωab. Since the non-vanishing contribution of the higher-order vertex function only comes from σ2111, this
means that the effective Newton constant Geff defined by (44) is renormalized as Geff → Geff + δGeff ,
with δGeff given by

δGeff =
3H2

4π ρm

∫
d3q

(2π)3
σ2111(q,−q, k; η) P11(q; η). (55)

This is a clear manifestation of the mechanism that non-linear clustering does generically alter the growth
rate of the structure formation through the renormalisation of the Newton constant and, due to this
mechanism, successful modified gravity models are expected to recover GR on small scales.

5 Non-linear power spectrum in modified gravity models

In this section, we show solutions for the non-lienar power spectrum in two examples, DGP models
and f(R) gravity models. We also extend these results to fully non-linear scales using the so-called
Parametrized Post Friedmann (PPF) framework.

5.1 PPF formalism

Sawicki and Hu proposed a fitting formula for the non-linear power spectrum in modified gravity models
[5]. The fitting formula based on the observation that the non-linear power spectrum should approach
the one in the GR model that follows the same expansion history of the Universe due to the recovery of
GR on small scales. They postulate that the full non-linear power spectrum in a modified gravity model
is given by the formula

P (k, z) =
Pnon−GR(k, z) + cnlΣ2(k, z)PGR(k, z)

1 + cnlΣ2(k, z)
, (56)

where z is a red-shift. Here Pnon−GR(k, z) is the non-linear power spectrum which is obtained without
the non-linear interactions that are responsible for the recovery of GR. This is equivalent to assume
that gravity is modified down to the small scales in the same way as in the linear regime. PGR(k, z) is
the non-linear power spectrum obtained in the GR dark energy model that follows the same expansion
history of the Universe as in the modified gravity model. The function Σ2(k, z) determines the degree
of non-linearity at a relevant wavenumber k. They propose to take Σ2(k) = k3Plin(k, z)/2π2, where
Plin(k, z) is the linear power spectrum in the modified gravity model. Finally, cnl is a parameter in this
framework which controls the scale at which the theory approaches GR.

Once we obtain the quasi non-linear power spectrum, we can check whether the PPF framework
works and determines cnl in the quasi non-linear regime. In our formalism, Pnon−GR(k, z) is obtained by
neglecting the non-linear interaction I. PGR(k, z) can be obtained by taking ωBD → ∞ limit and also
neglecting I. We again consider two explicit examples.
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5.2 DGP models

In DGP models, the BD scalar acquires a large second order interaction given by

I(ϕ) =
r2
c

a4

[
(∇2ϕ)2 − (∇i∇jϕ)2

]
. (57)

Note that rc is tuned to be the present-day horizon scale. Thus this second order term has a large effect.
The higher order terms than the second order are suppressed by the additional powers of the 4D Planck
scale and, in the Newtonian limit, we can safely ignore them. Therefore, in this model, we have

M1 = 0, M2(k1,k2) = 2
r2
c

a4

[
k2
1k

2
2 − (k1 · k2)2

]
, M3 = 0, (58)

Π(k, η) = β(η)
k2

a2
. (59)

In this paper, we only consider the self-accelerating branch solutions and use the best-fit cosmological
parameters for the flat self-accelerating universe: Ωm = 0.257,Ωb = 0.0544, h = 0.66, ns = 0.998 [28]. In
the left panel of Fig. 4, the solid (black) line shows the fractional difference between the power spectrum
in DGP models and dark energy models that follow the same expansion history obtained by solving the
linearized closure equation numerically. The dashed (red) line shows the result obtained by neglecting the
non-linear term M2, Pnon−GR. we can see that the non-linear interaction enhances the non-linear power
spectrum. This is natural because in the self-accelerating branch, the linear growth rate is suppressed
compared to the GR model that follows the same expansion history due to the negative BD parameter
ωBD < 0 which makes the Newton constant smaller than GR. This is closely related to the fact that
the BD scalar becomes a ghost in this model. Classically, the ghost mediates a repulsive force and
suppresses the gravitational collapse. The non-linear interaction makes the theory approach GR. Thus it
effectively increases the Newton constant by screening the BD scalar. Then the power-spectrum receives
an enhancement compared with the case without the non-linear interaction.

For DGP models, we find that the PPF formalism with

Σ2(k, z) =
k3

2π2
Plin(k, z) (60)

as proposed by Sawicki and Hu gives a nice fit to the results obtained in the perturbation theory. We
find that by allowing the time dependence in cnl, it is possible to recover the solutions for t he non-linear
power spectrum very well within the validity regime of the perturbation theory. At z = 0, cnl is given by
0.3 and there is a slight redshift dependence (the dotted (blue) line in the left panel of Fig. 4).

Armed with this result, it is tempting to extend our analysis to the fully non-linear regime. In GR,
there are several fitting formulae which provide the mapping between the linear power spectrum and
non-linear power spectrum. It is impossible to apply these mapping formulae to modified gravity models
as the mapping does not take into account the non-linear interaction terms in the Poisson equation I.
If we apply the GR mapping formula to the linear power spectrum, we would get the non-linear power
spectrum without I, Pnon−GR(k). In fact, there exist N-body simulations in DGP models performed by
neglecting the non-linear interaction terms [43]. It was shown that the power spectrum obtained in these
N-body simulations can be fitted well by the mapping formulae in GR. The mapping formulae should be
valid in GR models, so we can also predict PGR(k). Then using the PPF formalism (56), we can predict
the non-linear power spectrum if cnl is known. In the right panel of Fig. 4, we plotted the fractional
difference between the power spectrum in the DGP model and the GR model with the same expansion
history. We used the fitting formula developed by Smith et.al. [44]. If we could extrapolate the result
in the quasi non-linear regime, we would have cnl = 0.3 at z = 0. If this is correct, we find that even
at k = 10Mpc h−1, the difference between the power spectrum in DGP and that in the equivalent GR
model remains at 7% level. This is crucial to distinguish between the two models using weak lensing
as the signal to noise ratio is larger on smaller scales. Of course, we should emphasize that there is no
guarantee that cnl measured in the quasi non-linear regime is valid down to the fully non-linear scales
and this should be tested using N-body simulations. Still there is no N-body simulation available in DGP
models and it would be important to test the prediction against N-body simulations.
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Figure 4: The fractional difference between the power spectrum in the DGP model and the one in the GR
model which has the same expansion history as the DGP. The solid (black) line shows the perturbation
theory solution and the dashed (red) line shows the perturbation theory solution without the non-linear
interaction terms in the Poisson equation. The dotted (blue) line shows the PPF fitting. By allowing
the redshift dependence of cnl, we can fit the power spectrum very well within the validity regime of the
perturbation theory indicated by arrows. The right panel shows the results at z = 0 obtained from the
fitting formula by Smith et.al. for Pnon−GR and PGR. If cnl = 0.3 obtained by the perturbation theory is
applicable, the the solid (black) line is the prediction on non-linear scales. The cosmological parameters
are the same as in Fig 1.

5.3 f(R) gravity models

Next, we consider f(R) gravity models. In these models the potential gives the non-linear interaction
term

I(ϕ) = δR(ϕ). (61)

Then we find

M1 = Rf (η) ≡ dR(fR)
dfR

, M2 = Rff (η) ≡ d2R(fR)
df2

R

, M3 = Rfff (η) ≡ d3R(fR)
df3

R

,

Π(k, η) =
(

k

a

)2

+
Rf (η)

3
.

In this paper, we consider the model described in section 3.3 where f(R) is given by Eq. (31). We
adopt the cosmological parameters given by fR0 = 10−4, ns = 0.958, Ωm = 0.24,Ωb = 0.046, ΩΛ =
0.76, h = 0.73. In this model, the solar system constraints are satisfied but it has been pointed that
the chameleon mechanism does not work for strong gravity and Neutron stars cannot exist [45, 46]. A
fine-tuned higher curvature corrections to f(R) are needed to cure the problem [47]. In this paper, we
perturbatively take into account the chameleon mechanism in the cosmological background and the quasi
non-linear power spectrum would be insensitive to the high curvature corrections.

The left panel of Fig. 5, the solid (black) line shows the fractional difference between the power
spectrum in f(R) models and ΛCDM by solving the linearized closure equation numerically. The dashed
(red) line shows the result obtained by neglecting the non-linear terms, Pnon−GR. The linear power
spectrum acquires a scale dependent enhancement on small scales due to the larger effective Newton
constant Geff = 4G/3. The higher order terms Mi(i > 1) are responsible for the suppression of this
modification of gravity on small scales. Thus the non-linear interaction terms I suppress the non-linear
power spectrum.
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Figure 5: The same as Fig. 4 in f(R) gravity models

As in the DGP model, we first check if we can reproduce the perturbation theory results by the PPF
fitting. We find that the fitting is not very good if we adopt Σ(k, z) as is proposed by Hu and Sawicki.
Instead, if we choose Σ(k, z) as

Σ2(k, z) =
(

k3

2π2
Plin(k, z)

)1/3

, (62)

the solutions in the perturbation theory are fitted by the PPF formula very well by allowing the redshift
dependence in cnl. At z = 0, cnl = 0.085 gives an excellent fitting to the power spectrum within the
validity regime of the perturbation theory. In Fig. 5, we also show the prediction for the fractional
difference between the power spectrum in f(R) theory and that in ΛCDM model in fully non-linear
regime for several cnl.

In f(R) gravity models, it is possible to check our predictions against the No-body simulations. Fig. 6
shows the comparison between the PPF prediction and N-body simulations. The dashed line corresponds
to non-Chameleon case with cnl = 0. The corresponding N-body results are shown by triangles. We again
used the fitting formula by Smith et.al. to derive the non-linear power spectrum from the linear power
spectrum. Compared with the N-body results, the formula by Smith et.al. slightly underestimates the
power spectrum around 0.03hMpc−1 < k < 0.5hMpc−1 and overestimates the power at k > 0.5hMpc−1

though N-body simulations have large errors in this regime. The solid line shows the case with the
chameleon mechanism. Again the PPF formula underestimates the power spectrum in the same region
as the non-chameleon case. If we take the ratio between the non-chameleon case and chameleon case, the
PPF formalism nicely recovers the N-body results up to k ∼ 0.5hMpc−1.Beyond that, N-body simulations
have large errors. We should emphasize that the perturbation theory is valid only up to k = 0.08hMpc−1

at z = 0. Thus the PPF formula using cnl derived by the perturbation theory describe the effect of the
chameleon mechanism on non-linear scales beyond the validity regime of the perturbation theory.

This observation suggests that an improvement of the PPF formalism can be made by getting a more
accurate power spectrum without the chameleon mechanism because the PPF formalism describes the
effect of the chameleon mechanism very well. In order to demonstrate this fact, we derive the power
spectrum without the chameleon mechanism Pnon−GR by interpolating the N-body results. Using this
power spectrum as the non-chameleon power spectrum in the PPF formula, we find that the power
spectrum with the chameleon mechanism can be very well described by the PPF formula where cnl is
derived by the perturbation theory. We should emphasize that the ratio between the power spectra with
and without the chameleon mechanism is insensitive to the non-chameleon power spectrum. This also
indicates that the PPF formalism with cnl determined by the perturbation theory describes the effect of
the chameleon mechanism very well at least up to k ∼ 0.5hMpc−1. For larger k, N-body simulations also
do not have enough resolutions and it is difficult to tell whether this extrapolation is good or not. More
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Figure 6: Comparison between the PPF prediction and N-body simulations. In the left panel, Smith
et.al. fitting formula is used to predict Pnon and PGR. We used cnl determined by the perturbation
theory cnl = 0.085 at z = 0. In the left panel, we fitted N-body results without the chameleon mechanism
to derive Pnon.

detailed study is needed to address the power spectrum at larger k, but the PPF formalism is likely to
give a promising way to develop a fitting formula for the non-linear power spectrum in modified gravity
models.

6 Conclusion

Modified gravity models are still under developments and still no fully consistent models are developed.
Although DGP models and f(R) models provide us interesting indications of the nature of modified
gravity models, these models face severe problems. However, the general feature of these models that large
scale structure of the Universe is affected by the modification of gravity would be valid in many modified
gravity models. This feature can be used to distinguish modified gravity models from dark energy models
in GR. In the study of large scale structure in modified gravity models, an emphasis should be made on the
recovery of GR on small scales which is essential to evade the stringent constraints on the deviation from
GR at solar system scales. Any successful modified gravity models should have a mechanism to recover
GR at solar system scales and this mechanism affects the non-linear power spectrum of dark matter
perturbations. The study of non-linear clustering of dark matter has just started but the perturbations
theory and N-body simulations begin to reveal the nature of non-linear clustering in modified gravity
models. Cosmology is now experiencing a golden age of discovery driven by on-going and future massive
new surveys of the sky. Rapid progress in cosmological observations will enable us to distinguish modified
gravity models from dark energy models in general relativity, and to provide a test of general relativity
on cosmological scales
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Perturbation theory of N point mass gravitational lens

Hideki Asada1

Faculty of Science and Technology, Hirosaki University, Hirosaki 036-8561, Japan

Abstract
We make the first systematic attempt to determine using perturbation theory the
positions of images by gravitational lensing due to arbitrary number of coplanar
masses without any symmetry on a plane, as a function of lens and source parameters.
We present a method of Taylor-series expansion to solve the lens equation under a
small mass-ratio approximation. The advantage of our method is that it allows a
systematic iterative analysis. We determine image positions for binary lens systems
up to the third order in mass ratios and for arbitrary N point masses up to the
second order. The number of the images that admit a small mass-ratio limit is less
than the maximum number. It is suggested that positions of extra images could not
be expressed as Maclaurin series in mass ratios. Magnifications are finally discussed.

1 Introduction

Gravitational lensing has become one of important subjects in modern astronomy and cosmology. It plays
crucial roles as gravitational telescopes in various fields ranging from extra-solar planets to dark matter
and dark energy at cosmological scales. This work focuses on gravitational lensing due to a N-point mass
system. Definitely it is a challenging problem to express the image positions as functions of lens and
source parameters.

There are several motivations for this work. One is that gravitational lensing offers a tool of discoveries
and measurements of planetary systems (Schneider and Weiss 1986, Mao and Paczynski 1991, Gould and
Loeb 1992, Bond et al. 2004, Beaulieu et al. 2006), compact stars, or a cluster of dark objects, which
are difficult to probe with other methods. Gaudi et al. (2008) have recently found an analogy of the
Sun-Jupiter-Saturn system by lensing. Efficient methods for producing light curves beyond binary cases
are preferred.

Another motivation is to pursue a transit between a particle method and a fluid (mean field) one.
For microlensing studies, particle methods are employed, because the systems consist of stars, planets or
MACHOs. In cosmological lensing, on the other hand, light propagation is considered for the gravitational
field produced by inhomogeneities of cosmic fluids, say galaxies or large scale structures of our Universe. It
seems natural, though no explicit proof has been given, that observed quantities computed by continuum
fluid methods will agree with those by discrete particle ones in the limit N → ∞, at least on average,
where N is the number of particles.

Galois showed that the fifth-order and higher polynomials cannot be solved algebraically. Hence, no
formula for quintic equations is known.

In this work, we present a method of Taylor-series expansion to solve the lens equation under a small
mass-ratio approximation.

2 Complex Formalism

We consider a lens system with N point masses. The mass and two-dimensional location of each body is
denoted as Mi and the vector Ei, respectively. For the later convenience, let us define the angular size
of the Einstein ring as

θE =

√
4GMtotDLS

c2DLDS
, (1)

1E-mail: asada@phys.hirosaki-u.ac.jp
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where G is the gravitational constant, c is the light speed, Mtot is the total mass
∑N

i=1 Mi and DL, DS
and DLS denote distances between the observer and the lens, between the observer and the source, and
between the lens and the source, respectively. In the unit normalised by the angular size of the Einstein
ring, the lens equation becomes

β = θ −
N∑
i

νi
θ − ei

|θ − ei|2
, (2)

where β = (βx, βy) and θ = (θx, θy) denote the vectors for the position of the source and image,
respectively and we defined the mass ratio and the angular separation vector as νi = Mi/Mtot and
ei = Ei/θE = (eix, eiy).

Bourassa, Kantowski and Norton (1973), Bourassa and Kantowski (1975) introduced a complex nota-
tion to describe gravitational lensing. In a formalism based on complex variables, two-dimensional vectors
for the source, lens and image positions are denoted as w = βx + iβy, z = θx + iθy, and εi = eix + ieiy,
respectively. By employing this formalism, the lens equation is rewritten as

w = z −
N∑
i

νi

z∗ − ε∗i
, (3)

where the asterisk ∗ means the complex conjugate. The lens equation is non-analytic because it contains
both z and z∗.

3 Perturbation

The lens equation is written as

C(z, z∗) =
N∑

k=2

νkDk(z∗), (4)

where C(z, z∗) was defined by Eq. (5) and we defined

C(z, z∗) = w − z +
1
z∗

, (5)

Dk(z∗) =
1
z∗

− 1
z∗ − ε∗k

. (6)

We seek a solution in expansion series as

z =
∞∑

p2=0

∞∑
p3=0

· · ·
∞∑

pN=0

(ν2)p2(ν3)p3 · · · (νN )pN z(p2)(p3)···(pN ), (7)

where z(p2)(p3)···(pN ) is a constant to be determined iteratively.
It is convenient to normalise the perturbed roots in the units of the zeroth-order one as

σ(p2)(p3)···(pN ) =
z(p2)(p3)···(pN )

z(0)···(0)
. (8)

Here, we shall give perturbative roots when the zeroth order roots are not located at the lens position.
Please see Asada (2009) for the special case when the zeroth order roots are located at the lens position.

3.1 0th order (z(0)···(0) 6= εi for i = 1, · · · , N)

Zeroth-order solution is given as
z(0)···(0) = Aw, (9)

where, we defined

A =
1
2

(
1 ±

√
1 +

4
ww∗

)
. (10)
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3.2 1st order (z(0)···(0) 6= εi for i = 1, · · · , N)

We obtain the first order solution as

z(0)···(1k)···(0)

=
b(0)···(1k)···(0) − a(0)···(1k)···(0)b

∗
(0)···(1k)···(0)

1 − a(0)···(1k)···(0)a
∗
(0)···(1k)···(0)

. (11)

Here, we defined

a(0)···(1k)···(0) =
1

(z∗(0)···(0))
2
, (12)

b(0)···(1k)···(0) =
ε∗k

z∗(0)···(0)(z
∗
(0)···(0) − ε∗k)

. (13)

3.3 2nd order (z(0)···(0) 6= εi for i = 1, · · · , N)

There are two types of second-order solutions as shown below. First, we obtain

z(0)···(2k)···(0)

=
b(0)···(2k)···(0) − a(0)···(2k)···(0)b

∗
(0)···(2k)···(0)

1 − a(0)···(2k)···(0)a
∗
(0)···(2k)···(0)

. (14)

Here, we defined

a(0)···(2k)···(0) =
1

(z∗(0)···(0))
2
, (15)

b(0)···(2k)···(0) = −Dk(0)···(1k)···(0) +
(σ∗

(0)···(1k)···(0))
2

z∗(0)···(0)
. (16)

Next, let us assume k < `. We obtain

z(0)···(1k)···(1`)···(0)

=
b(0)···(1k)···(1`)···(0) − a(0)···(1k)···(1`)···(0)b

∗
(0)···(1k)···(1`)···(0)

1 − a(0)···(1k)···(1`)···(0)a
∗
(0)···(1k)···(1`)···(0)

.

(17)

Here, we defined

a(0)···(1k)···(1`)···(0) =
1

(z∗(0)···(0))
2
, (18)

b(0)···(1k)···(1`)···(0) = −Dk(0)···(1`)···(0) − D`(0)···(1k)···(0)

+
2σ∗

(0)···(1k)···(0)σ
∗
(0)···(1`)···(0)

z∗(0)···(0)
. (19)

4 Conclusion

Under a small mass-ratio approximation, we have developed a perturbation theory of N coplanar (in
the thin lens approximation) point-mass gravitational lens systems without symmetries on a plane. The
system can be separated into a single mass lens as a background and its perturbation due to the remaining
point masses.

The number of the images that admit the small mass-ratio limit is less than the maximum number.
This suggests that the other images do not have the small mass limit. Therefore, it is conjectured that

3



positions of the extra images could not be expressed as Maclaurin series in mass ratios. This is a topic
of future work.

There are possible applications along the course of the perturbation theory of N point-mass gravita-
tional lens systems. For instance, it will be interesting to study lensing properties such as magnifications
by using the functional form of image positions. Furthermore, the validity of the present result may be
limited in the weak field regions. It is important also to extend the perturbation theory to a domain near
the strong field.
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Abstract
We consider the evaporation of rotating micro black holes produced in highly energetic

particle collisions, taking into account the polarization due to the coupling between

the spin of the emitted particles and the angular momentum of the black hole. The

effect of rotation shows up in the helicity dependent angular distribution significantly.

By using this effect, there is a possibility to determine the axis of rotation for each

black hole formed, suggesting a way to improve the statistics. Deviation from thermal

spectrum is also a signature of rotation. This deviation is due to the fact that rapidly

rotating holes have an effective temperature Teff significantly higher than the Hawking

temperature TH . The deformation of the spectral shape becomes evident only for very

rapidly rotating cases. We show that, since the spectrum follows a blackbody profile

with an effective temperature, it is difficult to determine both the number of extra-

dimensions and the rotation parameter from the energy spectrum alone. We argue

that the helicity dependent angular distribution may provide a way to resolve this

degeneracy. We illustrate the above results for the case of fermions.

In this paper, we consider micro black holes resulting from the collision of two particles at energies
much higher than the higher dimensional Planck mass MP [1, 2, 3, 4]. We have in mind models with MP

of order of a few TeV and the standard model confined on a 3-brane, embedded in a (4 + n)-dimensional
bulk [5, 6]. These black holes have horizon radius smaller than the size of the extra dimensions, and are
expected to follow balding, spin-down, Schwarzschild, and Planck phases. Micro black hole formation has
been studied both analytically [7] and numerically [8], and their evaporation has also been the subject
of considerable attention (see for example [9, 10]). Previous work suggests that micro black holes mostly
evaporate into brane modes [12].

We analyze the fermion emission from spinning evaporating micro black holes, whose geometry can
be approximated by a vacuum higher dimensional Kerr [13]:

ds2 =

(

1 −
M

Σrn−1

)

dt2 +
2aM sin2 θ

Σrn−1
dtdϕ−

Σ

∆
dr2 − Σdθ2 −

(

r2 + a2 +
a2M sin2 θ

Σrn−1

)

sin2 θdϕ2

−r2 cos2 θdΩ2
n ,

where ∆ ≡ r2 + a2 −Mr1−n and Σ ≡ r2 + a2 cos2 θ. MP is normalized to one. Since we are interested in
the visible brane modes, the background spacetime will be given by the projection of the above metric
on the brane. Massless fermions emitted by the black hole are described by the Dirac equation:

eµ
aγ

a (∂µ + Γµ)ψ = 0 ,

where ψ is the Dirac spinor wave function, eµ
a a set of tetrads, Γµ the spin-affine connections determined

by Γµ = γaγbωabµ/4 , with ωabµ being the Ricci rotation coefficients. The matrices γµ = eµ
aγ

a are chosen
to satisfy the relation γµγν + γνγµ = gµν , with gµν being the metric on the brane.

Due to the symmetries of the Kerr spacetime, the spinor wave function factorizes as [14]

ψ = N ei(mϕ−ωt)

(

~φ

±~φ

)

,

where the + and − signs refer to negative and positive helicities, respectively. We illustrate the re-
sults for the case of negative helicity. The positive helicity case can be obtained by a trivial chirality
transformation. The field ~φ takes the form

~φ =

(

R−(r)S−(θ)
R+(r)S+(θ)

)

,

1
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Figure 1: Energy spectrum of the emitted fermions. The horizontal axis is rescaled by the effective
temperature determined by fitting the data by a black body profile. The overall amplitude is normalized
since the absolute magnitude is not observable. The first (last) two panels from left refer to n = 2 (n = 4).

and the normalization factor is N −1 = ∆1/4(r + ia cos θ)1/2 sin1/2 θ. The angular and radial modes obey

(

d

dθ
± ωa sin θ ∓

m

sin θ

)

S∓(θ) = ±κS±(θ) ,

(

d

dr
∓

i

∆

(

ω(r2 + a2) −ma
)

)

R∓(r) = κ∆−1/2R±(r) ,

where κ is a separation constant. Supplemented with regularity conditions at θ = 0 and π, the set of
angular equations provides an eigenvalue problem, which determines κ [16]. In order to compute the
particle flux, we impose ingoing boundary conditions at the horizon. The number of (negative helicity)
particles emitted, for fixed frequency ω, is distributed according to the Hawking radiation formula:

dN

dωd cos θ
=

1

2π sin θ

∑

l,m

|S−(θ)|2
σl,m

eω̃/TH + 1
, (1)

where ω̃ = ω−ma/(r2h + a2), TH = 1
4πrh

(n+1)r2

h
+(n−1)a2

r2

h
+a2

is the Hawking temperature, and σl,m the grey-

body factor (see Ref. [17]). The initial angular momentum of the produced black holes J = 2aM/(n+ 2)
is restricted by requiring the impact parameter b = J/M to be smaller than the horizon radius rh,
determined by ∆(rh) = 0. Then, the maximum value of the rotation parameter a turns out to be
amax = n+2

2 rh [9]. The upper bound on J might be even lower for n ≥ 2. In fact, there exists a critical
value for a, acrit ≡ (n + 1)(n − 1)−1r2h, where |∂(T,Ωh)/∂(M,J)| vanishes. If the same argument as in
the case of black branes applies, black holes with a > acrit suffer from the Gregory Laflamme instability
(See also Ref. [18]). Then, acrit represents the maximal value below which the higher dimensional Kerr
solution is adequate. Interestingly acrit < amax (for n = 2, 3, 4 extra dimensions, acrit = 1.09, 1.07, 1.06,
whereas amax = 1.25, 1.89, 2.46). Although it is widely believed that a dynamical instability exists, the
value of acrit obtained above is only heuristic. Thus, we consider two possible cases: the maximal value
allowed for a is acrit or amax. A set of representative values for the parameter a is chosen as a/amax = 0.3,
0.5, 0.7, and a/acrit = 0.3, 0.5, 0.7. M is set to unity. Having fixed a in the above way, we compute the
energy spectrum, shown in Fig. 1. We normalize the horizontal axis by using an effective temperature
Teff determined by fitting the data by a blackbody spectrum profile. The effective temperature Teff is
much higher than the Hawking temperature as shown in Fig. 2. However, the spectral shape is not so
different from the thermal one except for the cases with a ≈ amax (Fig. 1).

The renormalized spectra are enhanced for both lower and higher frequencies compared with the
black body spectrum at T = Teff (thick line). Except for very large values of a, the obtained spectra
can be fit well by superpositions of black body profiles with width of about 2ΩH × Teff . The motion
of the hypothetical emitting surface on the rotating black hole, relative to observers at infinity, causes
the additional blueshift factor which varies from place to place. However, because of the change in
the temperature and the rotation parameter during the evaporation, the broadening of the spectrum
due to the rotation will not be identified straightforwardly. Wiggles can be seen in the spectrum for a
small number of extra-dimensions, however, they are likely to disappear as T and a change during the
evaporation. For high rotation velocity, the deviation from the thermal spectrum is much clearer. As a
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parameter a normalized by acrit (left) and amax (right).
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Figure 3: Angular distribution of emitted negative helicity fermions.

novel signature, we find that the spectrum is sharply cut off at high-frequencies for rapid rotation. This
signature may survive even after taking into account the superposition of spectra along the evolutionary
track of an evaporating micro black hole. This highly spinning regime is realized for a > acrit.

In Fig. 3, the angular distribution of negative helicity particles is displayed for various parameters,
setting ω to a representative frequency ω̄. The value ω̄ is chosen by requiring that the fraction of particles
emitted with frequency below ω̄, N(ω̄) =

∫ ω̄

0
dN , to be 0.5.

The emission is suppressed in the direction anti-parallel to the black hole angular momentum. For
rapid rotation, the particles tend to be emitted towards the equatorial plane. This concentration in the
rapidly rotating case can also be seen in the helicity independent angular distribution [9]. The emission
around both poles looks suppressed, but the observed apparent suppression is simply due to the large
enhancement of emission in the directions close to the equatorial plane. The asymmetry in the helicity
dependent angular distribution is visible even for relatively slow rotation and becomes evident as a
increases. For very fast rotation, the concentration of the emitted particles around the equatorial plane
may affect the features of cosmic ray air showers mediated by black holes.

For slow (rapid) rotation, the asymmetry decreases (increases) as n grows. This tendency may be
used as an indicator to discriminate scenarios with different number of extra-dimensions. For a/acrit fixed
the peak position of the helicity dependent angular distribution is almost independent of n as shown in
upper panel, Fig. 3. If we can align the direction of the axis of rotation of the black hole for various
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events even approximately, we can collectively use the experimental data to achieve high statistics for
the angular distribution of emitted particles. The LHC may allow to perform such measurements and
for this reason it is important to estimate the error in the determination of the axis of rotation. A simple
estimation can be perfomed by identifying the direction of the black hole angular momentum with the
l = 1 (dipole) and l = 2 (quadrupole) moments (a more sophisticated statistical analyses may reduce the
error). Assuming that the angular distribution shown in Fig. 3, the error δ in degrees, for 100 particles
emitted, is summarized in Table 1.

a/amax 0.3 0.5 0.7 a/acrit 0.3 0.5 0.7
n = 2 18.20 15.17 9.47 n = 2 20.68 16.20 13.17
n = 3 19.93 13.43 8.19 n = 3 25.47 19.32 15.34
n = 4 20.03 10.97 7.50 n = 4 29.84 21.75 17.14

Table 1: Estimate of δ in degrees for the curves of fig. 3.
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Abstract
A new parabolic extension (PADM) of the standard 3+1 Arnowitt, Deser, Misner
(ADM) formulation of the equations of general relativity is presented. By paraboliz-
ing first-order ADM in a certain way, the PADM formulation turns it into a mixed
hyperbolic - second-order parabolic, well-posed system. The surface of constraints of
PADM becomes a local attractor for all solutions and all possible well-posed gauge
conditions. Numerical properties of PADM are compared with those of standard
ADM and its hyperbolic Kidder, Scheel, Teukolsky (KST) extension in a series of
standard tests. The PADM scheme is numerically stable, convergent and second-
order accurate. The new formulation has better control of the constraint-violating
modes than ADM and KST. Full details can be found in [1] and [2].

I. INTRODUCTION

For years people have tried to obtain analytic solutions of the complex field equations of Einstein’s
general theory of relativity (GR). Approximation methods have been developed over the course of time,
but the most promising tool for tackling problems such as gravitational waves arising from binary black
hole (BBH) or binary neutron star mergers, gravitational collapse etc., is numerical relativity.

The numerical integration of the Einstein equations is not an easy task because the computations can
become unstable and an exponential blow up of the numerical error may occur, even when the formulation
employed admits a well-posed initial value problem. If the numerical techniques employed and gauge and
boundary conditions chosen do not suffer from pathologies, perhaps the most important source that can
potentially lead to instabilities during a free evolution is the growth of the constraint violating modes.
Over the years, several methods have been proposed to deal with this type of instability [3–15].

The approach which has attracted most attention in recent years takes advantage of the fact that in
the ideal case where the constraint equations are satisfied, one has the freedom to add combinations of
the constraint equations to the right-hand-side (RHS) of the evolution equations of a given formulation.
By virtue of this freedom, it is also possible to introduce in the system of evolution equations terms which
act as “constraint drivers” and turn the constraint surface into an attractor. This technique is usually
termed as “constraint damping”.

One way to achieve efficient damping is to construct formulations of GR that under free evolution
force all constraint violating modes to evolve according to parabolic equations, which are known for their
damping and smoothing properties [16]. In [1] this goal was achieved by the construction of an evolution
system based on the first-order form of the standard Arnowitt, Deser, Misner (ADM) formulation [17],
through the addition of appropriate combinations of the derivatives of the constraints and the constraints
themselves at the RHS of the ADM evolution equations. We call this evolution system the Parabolized
ADM (PADM) formulation throughout this work. It was shown in [1] that the evolution of the constraint
equations with the PADM formulation are second-order parabolic, independently of the gauge conditions
employed. This in turn implies that the constraint surface becomes a local attractor. Finally, it was
proved, that the PADM system satisfies the necessary conditions for well-posedness and based on the
results of [18] an argument, which indicates strong evidence that the PADM system admits a well-posed
initial value problem, was given.

The purpose of this work is to test the numerical accuracy and stability of the PADM system, and
compare the PADM formulation with the first-order ADM and the Kidder, Scheel, Teukolsky (KST) [19]
formulations. The comparison between the three formulations is carried out in a series of standard one-
and two-dimensional tests, usually referred to as the “Apples with Apples” tests or the “Mexico City”
tests [20].
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II. THE PADM FORMULATION

The PADM system is obtained from the first-order ADM formulation [17] by addition of constraints
and their derivatives to the RHS of the ADM evolution equations. The PADM formulation is given by
(see [18] for details):

∂tγij = (ADM) + λγab∂bCaij , (1)

∂tKij = (ADM) + φγijγ
ab∂aMb + θ∂(iMj), (2)

∂tDkij = (ADM) + ǫγab∂aCbkij + ξγij∂kH + ζCkij , (3)

where λ, φ, θ, ǫ, ξ, ζ are the six parameters of the formulation and where H,Mb, Caij and Cbkij are the
constraint equations of the first order ADM formulation. We refer to the added terms of the PADM
formulation as the constraint driver. It was shown in [1] that for gauges which do not introduce second-
order derivatives of the dynamical variables in the evolution equations the PADM system satisfies the
Petrovskii condition for well-posedness [21], provided that

λ > 0, ǫ > 0, ξ < 0, φ < 0, θ > 0. (4)

Therefore, in this work we use the PADM equations in conjunction with the algebraic gauge condition
α = α(γ), βi = 0.

When the aforementioned conditions are satisfied, the PADM system has the following properties:
a) The PADM evolution equations can be classified as a set of mixed hyperbolic - second-order parabolic

quasi-linear partial differential equations.
b) The evolution equations of the constraint variables become second-order parabolic partial differ-

ential equations (PDEs) independently of the spacetime geometry and the gauge conditions employed.
Therefore, the constraint propagation equations admit a well-posed Cauchy problem themselves.

c) Because of the parabolic structure of the evolution equations of the constraints, the constraint
surface becomes a local attractor. All small amplitude, high-frequency constraint-violating perturbations
are exponentially damped in time as exp(−λκ2t), where κ is the magnitude of the wavevector of the
perturbations. This in turn implies that the hazardous high frequency perturbations will be damped
very efficiently. This is espcially of importance in numerical simulations since it is most often the high
frequency perturbations that kills a simulation.

III. NUMERICAL TESTS

To test the numerical performance of the PADM formulation, we used the so-called ”Apples With
Apples“ [20] tests, which were designed to provide the numerical relativity community with a set of stan-
dard tests that could be use to, quantitatively, compare different numerical implementations of different
formulations of GR.

The tests are briefly described below, for in-detail descriptions of the tests and their results, see [2].
The tests include both one- and two-dimensional solutions. For 1D tests the simulations are run for
1000 light crossings (or until the code crash) and for 2D tests, the simulations are run for 100 light
crossings (or until the code crash). Note that the dimensionality of the tests refers to the dimensionalty
of the solutions, not the grid, i.e. for a 1D test, the wave travels parallel to the computational mesh,
for a 2D test, the solution wave travels diagonally. However, all tests are carried out in a 3 dimensional
computational mesh, such that all cross derivatives are evaluated and the full Einstein equations are thus
evolved. The tests are :

• Standard Robust Stability Test : The standard robust stability test is based on small random
perturbations about Minkowski spacetime. In this test, all the dynamic variables are set equal to
their Minkowski space values and the initial data are then perturbed by random noise of sufficiently
small amplitude such that the evolution remains in the linearized regime unless any instabilities
arise. The perturbed initial data is then evolved for 1000 light crossing (or until the simulation
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crashes) Although being a very simple test, it is naturally a very important one since all codes will
experience such random perturbations due to numerical roundoff and truncation errors, hence all
codes must be able to pass this test sucessfully.

The main outcome of this test was that 1) ADM fails miserably due to the illposed nature of this
formulation, 2) KST pass this test, but the constraint violations are seen to grow linearly in time
since this formulation has no mechanism of dissipating constraint violations. 3) In strong contrast
to this, the PADM formulation not only pass this test perfectly, but the constraint violations are
seen to be quickly damped away. In particular, it is shown that high frequency perturbations are
damped away extremely quickly.

• Strong Robust Stability Test : Another version of the robust test (not included in the standard
”Apples With Apples“ testbed) requires perturbation by random noise not only at the initial time-
step, but at every time-step throughout the entire simulation. We call this test the “strong” robust
stability test. This test is much more challenging than the standard robust test and is much closer
to reality because in numerical simulations, truncation and round-off errors will unavoidably be
introduced into the solution of the PDE system at every time-step.

The result of this test is again that 1) ADM fails, 2) KST pass this test if the amplitude of the noise
is sufficiently small or if the simulation is run for only a short time. But since KST has no way
of dissipating the introduced noise, eventually KST will crash. 3) In contrast to this, PADM pass
this test for even high amplitude noise and show no indications of any instabilities or growth of the
constraint violations due to the PADM formulations unique ability to damp constraint violations.

• Gauge Wave Test : In the gauge wave test, a gauge wave is evolved in both a one-dimensional
and two-dimensional form. Both 1D and 2D tests are carried out for gauge waves with different
amplitudes. The gauge wave stability test has proven to be one of the most challenging tests
for most evolution schemes mainly due to the existence of a one-parameter family of exponential,
harmonic gauge solutions that is excited by truncation errors during numerical solutions. This
eventually causes the numerical solution to veer off the analytic one.

The result of this test is that PADM performs better than both ADM and KST. In particular it is
shown that PADM can pass the two-dimensional, high amplitude gauge wave test. We know of no
other formulations which can do this, including BSSN.

• Linear Weak Wave Test : The linear wave test evolves a traveling gravitational wave of
amplitude small enough so the evolution remains in the linear regime. This test is carried out in
both a one-dimensional and two-dimensional form.

This test pose no particular problems for most formulations and both ADM, KST and PADM can
pass this test. However, PADM is still seen to have better control of the constraint violations than
the other two formulations.

• Gowdy Wave Test : The polarized Gowdy T3 spacetimes are solutions of the Einstein equa-
tions which describe an expanding (or contracting) universe containing plane polarized gravitational
waves, see for example [20] and references therein. The previous tests can be considered as pertur-
bations about flat spacetime, so they probe the weak field limit of the Einstein equations, whereas
the Gowdy test probes the strong field regime of GR.

– The expanding Gowdy wave test has proved to be one of the most challenging problems
in numerical relativity. This is because the metric components grow exponentially with time
and hence the truncation errors introduced in the numerical solution grow with time, if the
resolution is fixed. Consequently, the numerical solution soon veers off the analytical one. An-
other result of the exponential growth is that the dynamical variables eventually grow so large
that the computations cannot be handled by using standard 64-bit floating-point arithmetic.
Therefore, all simulations of the expanding Gowdy solution will eventually terminate [20].

Our results for the expanding Gowdy wave test is that KST performs particularly bad in this
test and crash after just 20 lightcrossing times. The ADM formulation performs suprisingly
well and can do roughly 260 light crossings before accuracy is completely lost, but the winner
is still the PADM formulation which does not terminate until 275 light crossing times has
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passed. The reason why ADM performs relatively well in this test is that the solution is one-
dimensional and in the particular case of one-dimensional solutions, the ADM formulation can
be shown to be well posed [1].

– The collapsing Gowdy wave test is less challenging and all the formulations are able to
pass this test. However, still we see that PADM performs (marinally) better than the other
two formulations.

For all tests we thus find that PADM behaves better than the ADM and KST formulations. In
particular, PADM can pass the high amplitude gauge wave test and performs better in the expanding
gowdy wave test than any other formulations know to the authors.

The most important feature of the PADM formulation is that it damps away constraint violating
perturbations and thus drive the solution back to the surface of constraints. High frequency constraint
violations are damped away the most effectively, which is important for ensuring the numerical stability
of PADM implementations.

IV. CONCLUSIONS

In [1] is presented the PADM formulation of GR and in [2] we have described a stable, convergent and
second-order accurate numerical scheme for solving the equations of the PADM system. Also in [2] we
have tested the accuracy and stability of the PADM system and compared it with the first-order ADM
and KST evolution systems using the ”Apples with Apples” tests.

For all tests we find that PADM behaves significantly better than the ADM and KST formulations.
In particular, the PADM formulation damps away constraint violating perturbations and thus drive the
solution back to the surface of constraints. High frequency violations are damped away most effectively.

We conclude that PADM successfully passes the standard tests of numerical relativity and works equally
well with a variety of algebraic gauges. Via the comparison of the numerical performance of the PADM
formulation and those of the ADM and the KST formulations, we conclude that PADM has better control
of the constraint violations than both ADM and KST. This leads to hope that the PADM formulation
can lead to new advances in numerical relativity.
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Gravitational collapse of a dust ball from the perspective of
loop quantum gravity: an application
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Abstract
At an effective level, consistent versions of dynamics with corrections from loop quan-

tum gravity are presented which implement the conditions together with the dynami-

cal constraints of gravity in an anomaly-free manner. These are then used for analyt-

ical as well as numerical investigations of the fate of classical singularities, including

non-spacelike ones, as they generically develop in these models. None of the correc-

tions used here resolve those singularities by regular effective geometries. However,

there are numerical indications that the collapse ends in a tamer shell-crossing singu-

larity prior to the formation of central singularities for mass functions giving a regular

conserved mass density. Moreover, we find quantum gravitational obstructions to the

existence of exactly homogeneous solutions within this class of models. This indicates

that homogeneous models must be seen in a wider context of inhomogeneous solutions

and their reduction in order to provide reliable dynamical conclusions.

1 Introduction

Quantum gravity is supposed to solve the problems, such as, how we can deal with spacetime singularities
which appear in big bang and in gravitational collapse in classical general relativity, how black hole
entropy is related to the microscopic degrees of freedom, whether a black hole evaporates away completely
or leaves a Planck mass relic and how gravitational force behaves from low-energy scale to the Planck
scale? We here focus on the problem how loop quantum gravity (LQG) affects the scenario of spacetime
singularities in gravitational collapse. LQG is nonperturbative, background-independent quantum gravity
with no ultraviolet divergence. This is based on a canonical quantisation approach. LQG has inspired
loop quantum cosmology (LQC), which successfully avoids big bang singularity and predicts a bouncing
universe

This article is based on the collaboration with M. Bojowald and R. Tibrewala. Details of the present
analysis is given in Ref [1]. We use the unit in which c = 1.

2 Lemaitre-Tolman-Bondi spacetime in classical theory

The Lemaitre-Tolman-Bondi (LTB) solution is an exact solution to Einstein’s field equations, which
describes the evolution of a spherically symmetric inhomogeneous dust cloud. Here, we focus on the
marginally bound case, in which the energy function, which is the sum of kinetic energy and potential
energy, vanishes identically. The line element in this solution is given by

ds2 = −dt2 + R′2dx2 + R2(dθ2 + sin2 θdφ2), (1)

R(t, x) =

(

x3/2 − 3

2

√

F (x)t

)2/3

, (2)

where F (x) is an arbitrary function, which is twice the conserved dust mass, and the prime denotes the
derivative with respect to x. The density of the dust is given by

ε =
F ′

8πGR2R′
, (3)

1E-mail:harada@rikkyo.ac.jp
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where G is the gravitational constant.
LQG is formulated in terms of the densitised triad Ei and the Ashtekar connection Ai, where i = 1, 2, 3

is the index for internal gauge. In a spherically symmetric spacetime, we can choose the following canonical
pairs given by

{Ax(x), Ex(y)} = 2γGδ(x, y), (4)

{γKϕ(x), Eϕ(y)} = γGδ(x, y), (5)

where the brackets are the Poisson brackets and γ is a nondimensional constant called the Immirzi
parameter.

The spatial metric components can be expressed in terms of the densitised triad. Because of the
metric form (1), the densitised triad must satisfy the following relations:

R2 = |Ex(x)|, Eϕ(x) =
1

2
|Ex(x)|′ , K ′

ϕ = KxsgnEx, (6)

where Ki denotes the extrinsic curvature and we call the last two relations the LTB relations.
The Hamiltonian for this classical system is given by H = Hgrav + Hdust, where

Hgrav = − 1

2G

(

K2
ϕEϕ

√

|Ex|
+ 2KϕKx

√

|Ex|
)

, (7)

Hdust =
F ′(x)

2G
, (8)

in terms of the triad and the connection.

3 Effects of LQG in LTB system: formulation

For the moment, we need to recall the treatment for getting a finite Hamiltonian in full theory of LQG [2].
The classical gravitational Hamiltonian can be written in terms of the volume V of a three dimensional
region and the curvature F i and then the inverse factor of the determinant of the triad in the Hamiltonian
disappears apparently.

In LQG, the Hilbert space is spanned by spin-network states. The basic operator corresponding to
the connection is the holonomy

ĥγ = P exp

∫

γ

A, (9)

where γ is a link of a spin network. The volume operator is also defined on the Hilbert space and spin-
network states are its eigenstates. We can construct a finite Hamiltonian in terms of the holonomy and
the volume operator which has an appropriate classical limit.

n1 n2

j2=1/2

j1=1

j3=1/2

S=

Figure 1: A spin network

In this approach, we can expect semiclassical effects from
the regularisation of the factor of the inverse of the triad
determinant and from the introduction of the holonomy in
place of the connection. The former is called the inverse
triad effects, while the latter is called the holonomy effects.
We focus on the inverse triad effects in this article.

The inverse triad correction can be incorporated by con-
sidering the effective Hamiltonian

Heff
grav = − 1

2G

(

α(Ex)
√

|Ex|
K2

ϕEϕ + 2KϕKx

√

|Ex|
)

, (10)

where α is a function given by

α(Ex) := 2

√

|Ex + γ`2
P/2| −

√

|Ex − γ`2
P/2|

γ`2
P

√

|Ex|, (11)
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where `P =
√

Gh̄ is the Planck length. To get the LTB
relation consistent with the time evolution generated by the
above effective Hamiltonian, we also take into account the correction to the LTB relation such as

(Ex)′ = 2f(Ex)Eϕ, K ′

ϕ = f(Ex)Kx. (12)

1
R/R*

0

1

α(
R

/R
*)

, f
(R

/R
*)

Figure 2: α(R) (solid) and f(R) (dashed),
where R∗ :=

√

γ/2`P.

With the above correction effects, we can derive the fol-
lowing field equations for this system. The Hamiltonian con-
straint and the evolution equation are respectively given by

Ṙ2R′(α(R) − 1) + 2RṘṘ′ + Ṙ2R′ = f(R)F ′ (13)

2RR̈ + Ṙ2 + (α(R) − 1)Ṙ2 = 0 , (14)

where

α(R) = 2

√

|R2 + γ`2
P/2| −

√

|R2 − γ`2
P/2|

γ`2
P

R. (15)

Another correction function f must satisfy

df(R)

dR
= (1 − α(R))

f

R
. (16)

The correction functions are plotted in Fig. 2. In this figure,
we can see that the the classical value is recovered for R � R∗

and the deviation becomes significant for R <∼ R∗.

4 Effects of LQG in LTB system: analysis

The field equations of the effective theory are so complicated that we cannot expect to get an exact
solution in general. Nevertheless, we can find interesting results analytically.

Even for a vacuum static solution with vanishing mass, we find that the Minkowski spacetime is not
a solution but is replaced by a unique nontrivial geometry given by

ds2 = −dt2 + f(R)−2dR2 + R2(dθ2 + sin2 θdφ2). (17)

In this spacetime, there is a singularity at R = 0. We can also show that there is no bounce because
Ṙ = 0 is impossible. We can also show that there is no Friedmann solution, i.e, the system does not
allow a homogeneous solution and that there is no Oppenheimer-Snyder-like solution with a homogeneous
interior and a vacuum exterior. For a regular initial dust density, the central density remains constant in
time as long as the Taylor-series expansion is applicable.

We have also obtained numerical solutions of the field equations by the technique of numerical simu-
lations. In classical general relativity, the endstate of generic inhomogeneous spherical dust collapse is a
naked singularity formation at the centre. We have chosen the function F (x) so that the collapse ends
in the naked singularity formation in classical general relativity. The result of the numerical simulation
with the inverse triad correction is plotted in Fig. 3. In (a), the dashed lines denote the conserved dust
density defined by Eq. (3). As we can see in the figure, the gravitational collapse is strongly slowed
down for R <∼ R∗ There appears a density spike for 0 < R <∼ R∗. This will correspond to shell-crossing
singularity, which is gravitationally weak. The slow down near the centre implies repulsive effects of
quantum gravity but this is not so strong that the collapse may turn to expand. We have also studied
a different version formulation of the inverse triad correction and/or different initial density profiles and
found that the result is qualitatively the same.

5 Summary

LQG is a promising candidate for successful quantum gravity. We have considered the inverse triad
correction effects in the marginally bound LTB spacetime. We have formulated a consistent semiclassical
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Figure 3: The collapse of the quadratic density profile model with the initial dust radius and the mass
are given Rs = 0.1 and M = 0.01, respectively. R∗ =

√

γ/2`P ∼ 0.25 in the present unit. In (a), the
dashed lines denote the conserved dust density and the solid lines denote the effective density.

effective theory for this purpose. There is no bounce, no Friedmann solution or no self-similar solution
in this system. The Minkowski spacetime in classical general relativity is replaced with a nontrivial
geometry which is singular at the centre. The collapse in the central region is strongly slowed down and
shell-crossing singularity is generically appears. The present result will be a caution to LQC which is based
on purely homogeneous models because there is no tendency for bounce in the spherical inhomogeneous
system while there is bounce in the effective theory for the homogeneous system. However, it should be
noted that there are so many ambiguities in the interpretation of the present result. The present effective
theory would not be a unique one even for the inverse triad effects. The present model is spherically
symmetric with marginally bound dust fluid and may not be sufficiently generic. There will be other
effects from loop quantum gravity. From this point of view, it is interesting to see nonmarginally bound
cases, non spherically symmetric cases and different matter fields free from shell-crossing singularity.
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Abstract
The possibility that the existence of black holes as compact objects at the cores of
galaxies has become high. The black hole is said to cast an apparent shape (or a
shadow) as an optical appearance because of the strong gravitational field in the
black hole itself. The apparent shape is of varied forms mainly depending on the
spin parameter and the inclination angle of the object. In this paper, we investigate
whether it is possible to determine the spin parameter and the inclination angle by
observing the apparent shape, on the assumption that the intended compact object is
the Kerr space-time. In particular, we define observables which definitely characterize
the apparent shape. We find that one can estimate the spin parameter and the
inclination angle of the Kerr black hole even when it is naked singularity, by measuring
the observables. As a prerequisite, one needs only information of the mass of the
object to say so. The result will become a realistic method which come a step closer
to probe the Galactic centre using future advanced interferometers.

1 Introduction

It is widely believed that there exist black holes at the cores of many galaxies. Sagittarius A∗, which is
the ultra compact radio source at the centre of the Milky Way, is highly likely to be a black hole. The
possibility of direct observation of black holes by the future interferometers is becoming higher. However,
the research of the observation of black holes in a theoretical approach is still lacking.

The theory of gravitational lensing has been developed in the weak field approximation and has been
succeed to explain many physical and astronomical observations. The influence of the strong gravity of
the black hole appears when the photon passes the vicinity of the origin of the gravity. In order to obtain
a physical information of black holes holding the strong gravity, the direct imaging of the apparent shapes
are important to be investigated [1, 2, 3, 4, 5, 6].

As a final state of a realistic gravitational collapse, the solutions of Einstein equations with strong
gravity generally possess a space-time singularity. If the space-time singularity has appeared from physi-
cally reasonable initial conditions, the space-time singularity is hidden within the event horizon, so-called
the cosmic censorship hypothesis, which was proposed by Penrose. It implies that a naked singularity
which is a space-time singularity which is uncovered by event horizon does not existed. However, the
proof for the hypothesis have not been successful up to the present date. So it is still one of the most
important problem in general relativity. There is a possibility that the candidate of the black hole could
be a naked singularity [7, 8].

To reach the information of the black holes such as the spin parameter and the inclination angle, we
have to construct a method for a measurement of parameters with the flexibility to meet the case that
the compact object is not to be a black hole but to be a naked singularity. The detail calculations of the
following contents will be displayed in [9].
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2 Equations of geodesic motion

The Kerr space-time in Boyer-Lindquist coordinates [10] is given by

ds2 = −
(

1− 2Mr

ρ2

)
dt2 +

ρ2

∆
dr2 + ρ2dθ2 − 4Mra sin2 θ

ρ2
dtdφ +

A sin2 θ

ρ2
dφ2 , (1)

where ∆ := r2 − 2Mr + a2, ρ2 := r2 + a2 cos2 θ, and A :=
(
r2 + a2

)2 − ∆a2 sin2 θ. M and a are the
mass and the spin parameter of the Kerr space-time, respectively. The regular horizon condition for Kerr
space-time to be a black hole is |a| ≤ M . In this paper, we deal with both cases that regular horizon
condition is satisfied and not satisfied M < |a|, which the latter case is to be a naked singularity.

We can have the general solution of geodesic motion in the following first-order form [11],

ρ2 dr

dλ
= σr

√
R , R :=

[(
r2 + a2

)
E − aLz

]2 −∆[(Lz − aE)2 + mr2 + Q] ,

ρ2 dθ

dλ
= σθ

√
Θ , Θ := Q− [a2(m2 − E2) + L2

z csc2 θ] cos2 θ

ρ2 dt

dλ
=

1
∆

(AE − 2MraLz) ,

ρ2 dφ

dλ
=

1
∆

[2MarE + Lz csc2 θ(ρ2 − 2Mr)] . (2)

λ is the affine paramater and m is the mass of the particle. σr and σθ are sign functions, which changes
the signs independently at the turning point of the geodesic. E and Lz represent the energy and the
angular momentum with respect to rotation axis of the space-time of the particle, respectively. Q is
Carter constant, which is the additional conserved quantity. For considering null geodesics m = 0, E can
be gauged away by rescaling of the affine parameter λ as

R̃ := R/E2 , Θ̃ := Θ/E2 , ξ := Lz/E , η := Q/E2 .

The conserved quantities ξ and η completely identify the null geodesic.

3 Measurement of the parameters

The strong gravitational field of the Kerr space-time are said to cast an apparent shape as an optical
appearance. The apparent shapes of Kerr-Newman space-times were mutually complementary analyzed
in [3, 6]. We would like to investigate, whether it is possible to estimate the spin parameter and the
inclination angle by observing the apparent shape.

We assume that the observer is at the infinity of positive value r with inclination angle i. The celestial
coordinates (α, β) of the observer are defined as the apparent perpendicular distance of the image from
the rotational axis and the apparent perpendicular distance of the image from its projection on the
equatorial plane, respectively. The celestial coordinates have relations with conserved quantities ξ, η and
the inclination angle i as,

α (ξ, η; i) := lim
r→∞

rp(ϕ)

p(r)
= −ξ csc i , (3)

β (ξ, η; i) := lim
r→∞

rp(θ)

p(r)
=

√
η + a2 cos2 i− ξ2 cot2 i ,

where
(
p(t), p(r), p(θ), p(φ)

)
are the tetrad components of the momentum of null geodesics with respect to

locally nonrotating reference frames [12]. We define the apparent shape of the space-time as the region
in the celestial coordinates which is the set of points coincide to the null geodesics that were launch from
the infinity of positive value r toward the singularity and can not come back to the infinity of positive
value r again. We assume that the light sources are at the infinity of positive value r with an abundant
angular size.
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(a) BHs (b) NSs

Figure 1: Part (a) The contour map of the distorted rate d̂ (the green dashed curves) and the radius r̂ (the red solid
curves). From this figure, we can estimate the spin parameter a of the Kerr black hole and the inclination angle i of the
observer. Part (b) The contour map of the central angle ĉ (the green dashed curves) and the radius r̂ (the red solid curves).
From this figure, we can estimate the spin parameter a of the Kerr naked singularity and the inclination angle i of the
observer.

In the case of the Kerr black holes, we propose two observables that characterize the apparent shape,
precisely. First we approximate the contour of the apparent shape by the circle passing through the
three points which are at the extreme right, the upper limit, and the lower limit of the apparent shape
in celestial coordinates. We define the radius r̂ of the apparent shape as the radius of the circle which
we used for approximation. Calling into account the hollow of the extreme left of the apparent shape 4r̂
which is the maximal distance of the difference between the circle and the apparent shape, we define the
distortion rate d̂ of the apparent shape as d̂ := 4r̂/r̂.

We can obtain the contour maps of the radius and the distortion rate and get them together to a single
Fig. 1(a). If we can measure the radius r̂ and the distortion rate d̂ by observation, the spin parameter a
and the inclination angle i could be restricted by putting Fig. 1(a) to practical use.

In the case of the Kerr naked singularities, the apparent shape is not always a single object. It consists
of two isolated parts, at most. We have to consider which part of the apparent shape is important for
observation. Based on this standpoint, the “arc” is one of an interesting object. In the sense of the
capture region the “arc” is 1-dimensional object, which is measure zero, but in the realistic observation
the neighborhood of the “arc” can be dark enough to be observed as a black “lunate surface”. We suppose
a circle that passes both ends and the center of the “arc”, and prepare to define observables.

We propose here the radius r̂ and the central angle ĉ of the “arc”. The radius r̂ is defined as the
radius of the circle which we supposed. The central angle ĉ is defined as the angular distance of the arc
segment on the circle. The radius and the central angle feature the shape of the “arc”, which continuously
changes by the spin parameter and the inclination angle. Fig. 1(b) is the contour map of the radius and
the central angle, which enable one to estimate the spin parameter and the inclination angle by observing
the two observables r̂ and ĉ.

4 Conclusion

We defined new observables and proposed a method for the estimation of the parameters of the Kerr
space-time as the compact object. In fact, we have shown that one can estimate the spin parameter and
the inclination angle of the Kerr space-time by measuring the observables of the apparent shape without
degeneracy. However, the resolution capability of an observation equipment at present age makes a
limitation for the measurement. We must hold up a hope for further progress in technology of future
advanced interferometers.

References

[1] P. J. Young, Phys. Rev. D 14, 3281 (1976).

[2] H. Falcke, F. Melia and E. Agol, Astrophys. J. 528, L13 (2000) arXiv:astro-ph/9912263.

[3] A. de Vries, Class. Quant. Grav. 17, 123 (2000).

[4] R. Takahashi, J. Korean Phys. Soc. 45, S1808 (2004) [Astrophys. J. 611, 996 (2004)] [arXiv:astro-
ph/0405099].

[5] A. E. Broderick and R. Narayan, Astrophys. J. 638, L21 (2006) [arXiv:astro-ph/0512211].

3



[6] K. Hioki and U. Miyamoto, Phys. Rev. D 78, 044007 (2008) [arXiv:0805.3146 [gr-qc]].

[7] K. i. Nakao, N. Kobayashi and H. Ishihara, Phys. Rev. D 67, 084002 (2003) [arXiv:gr-qc/0211061].

[8] K. S. Virbhadra and G. F. R. Ellis, Phys. Rev. D 65, 103004 (2002).

[9] K. Hioki and K. Maeda, (in preparation).

[10] R. P. Kerr, Phys. Rev. Lett. 11, 237 (1963).

[11] B. Carter, Phys. Rev. 174, 1559 (1968).

[12] J. M. Bardeen, W. H. Press and S. A. Teukolsky, Astrophys. J. 178, 347 (1972).

4



Non-linear evolution of matter power spectrum in a closure
theory

Takashi Hiramatsu1, Kazuya Koyama2 and Atsushi Taruya3

1Institute for Cosmic Ray Research (ICRR), The University of Tokyo, Chiba 277–8582, Japan
2Institute of Cosmology & Gravitation, University of Portsmouth, Portsmouth, Hampshire, PO1 2EG,

UK
3Research Center for the Early Universe (RESCEU), The University of Tokyo, Tokyo 113–0033, Japan

Abstract
We study the non-linear evolution of cosmological power spectra in a closure the-
ory. Governing equations for matter power spectra have been previously derived by
a non-perturbative technique with closure approximation. Solutions of the resultant
closure equations just correspond to the resummation of an infinite class of pertur-
bation corrections, and they consistently reproduce the one-loop results of standard
perturbation theory. We develop a numerical algorithm to solve closure evolutions
in both perturbative and non-perturbative regimes. The present numerical scheme is
particularly suited for examining non-linear matter power spectrum in general cos-
mological models, including modified theory of gravity. As a demonstration, we apply
our numerical scheme to the Dvali-Gabadadze-Porrati braneworld model.

1 Introduction

Probing the nature of dark energy, accelerating the late-time universe, is one of the most tough issues
in cosmology and astrophysics. So far it remains to be clarified what the dark energy really is. A
simple solution is that it is the cosmological constant, or described by dynamics of unknown scalar fields.
Another solution may lie in the sector of gravity. The attention has been focused on the test of general
relativity (GR) in both solar system experiments and cosmological contexts. Several modified theories
of gravity beyond GR have passed these tests and been viable. A key to distinguish these possibilities is
to precisely predict the matter power spectrum considering non-linear dynamics of matter perturbations.
This situation motivates to develop a framework to compute the non-linear matter power spectrum in a
variety of cosmological models.

The naive perturbative approach (see [1] for a review) has been frequently used for predictions of
the power spectra, as well as fully numerical approach such as N-body simulations. Recently, alternative
to perturbation theory, several authors have recently proposed the renormalisation/resummation tech-
nique for the infinite series of the loop calculation appeared in the naive expansion of the perturbative
quantities. In those treatments, the fundamental quantities are not the density/velocity perturbations
but propagators, power spectra and vertex functions of density and velocity divergence [2]. In our previ-
ous paper [3], we have derived evolution equations of the non-perturbative quantities, power spectra and
propagators of matter fluctuations on the basis of the closure approximation used in the statistical theory
of turbulence [4]. This approach is suited for numerical purpose where we set the initial conditions and
track the time evolution of those quantities.

In this paper, we demonstrate the closure equations in the case of Dvali-Gabadadze-Poratti (DGP)
braneworld model. For the numerical scheme, please see [5] and, for the numerical analysis, [6].

2 Evolution equations for perturbations

We consider the cold dark matter plus baryon system as a pressureless perfect (irrotational) fluid neglect-
ing the contribution from massive neutrinos. The density contrast, δ ≡ δρ/ρ, and the velocity divergence,
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2E-mail:kazuya.koyama@port.ac.uk
3E-mail:ataruya@utap.phys.s.u-tokyo.ac.jp

1



θ ≡ ∇·u, are governed by the Euler and the continuity equations. The Newton potential, ϕ, satisfies the
Poisson equation with non-linear source terms, if exists,

−k2

a2
ϕ(k, τ) = 4πGeff(k, τ)ρmδ̃(k, τ) + (nonlinear terms), Geff = G

[
1 +

1
3

(k/a)2

Π(k)

]
, (1)

where we take the time coordinate as τ = log(a/a0), and Geff represents the effective gravity constant
generalising the Newton constant G in GR with a model-dependent function, Π(k).

For the purpose of quantitative estimation of the density/velocity perturbations, we consider their
statistical quantities, namely, power spectra. The perturbations are recasted in a vector form, Φa(k, τ) =
(δ̃(k, τ),−θ̃(k, τ))T. The standard approach of perturbative estimation of power spectra is then to expand
Φa = Φ(0)

a + Φ(1)
a + · · · , where Φ(i≥1)

a is iteratively obtained from the Euler and the continuity equations,
and to substitute it into the definition of the power spectra,

⟨Φa(k, τ)Φb(k′, τ)⟩ = (2π)3δD(k + k′)Pab(|k|; τ). (2)

In addition to this quantity, we here introduce the propagator, Gab(k|τ, τ ′), and the power spectra between
different times, Rab(k; τ, τ ′), defined as [2, 3]〈

δΦa(k, τ)
δΦb(k′, τ ′)

〉
= Gab(k|τ, τ ′)δD(k − k′), ⟨Φa(k, τ)Φb(k′, τ ′)⟩ = (2π)3δD(k + k′)Rab(|k|; τ, τ ′), (τ > τ ′).

(3)

Then using those quantities, the above näıve expansion is re-organised in a non-perturbative way.
In the closure theory, we truncate the non-perturbative expansions of the power spectra and the

propagator up to the one-loop level, and make them close. The resultant equations are [3, 5, 6]

Λ̂abGbc(k|τ, τ ′) =
∫ τ

τ ′
dτ ′′ Mas(k; τ, τ ′′)Gsc(k|τ ′′, τ ′) + Sar(k; τ)Grc(k|τ, τ ′), (4)

Λ̂abRbc(k; τ, τ ′) =
∫ τ

τ0

dτ ′′ Mas(k; τ, τ ′′)Rsc(k; τ ′′, τ ′) +
∫ τ ′

τ0

dτ ′′ Naℓ(k; τ, τ ′′)Gcℓ(k|τ ′, τ ′′) + Sar(k; τ)Rrc(k; τ, τ ′),

(5)

where we defined k = |k| and k′ = |k′|, and

Mas(k; τ, τ ′′) = 4
∫

d3k′

(2π)3
γapq(k − k′,k′)γℓrs(k′ − k,k)Gqℓ(k′|τ, τ ′′)Rpr(|k − k′|; τ, τ ′′), (6)

Naℓ(k; τ, τ ′′) = 2
∫

d3k′

(2π)3
γapq(k − k′,k′)γℓrs(k − k′,k′)Rqs(k′; τ, τ ′′)Rpr(|k − k′|; τ, τ ′′), (7)

Sar(k; τ) = 3
∫

d3k′

(2π)3
σapqr(k′,−k′,k; τ)Ppq(k′; τ). (8)

Here the functions γacd and σabcd are called as the vertex functions described as a simple function of
wavenumber. The non-linear terms in the Euler and continuity equations give rise to three non-vanishing
components, γ112, γ121 and γ222. In the case where the Poisson equation has non-linear source terms,
the components, γ211 and σ2111, become non-zero, while the other components remain to be zero. The
operator Λ̂ab is defined by

Λ̂ab = δab
∂

∂τ
+ Ωab(τ), Ωab(τ) =

(
0 −1

−4πGeff
ρm
H2 2 + Ḣ

H2

)
. (9)

Eqs. (4)(5) contain the non-linear quantities in those source terms. Since we truncated at the one-loop
level when the equations were derived, it is easy to see the recovery of the one-loop power spectrum in the
SPT by replacing all power spectra, Rab, and propagators, Gab, in the source terms with those calculated
in the linear theory, RL

ab, and GL
ab [3]. Here the linear quantities are given by Eqs. (4)(5) with neglecting

all of right-hand sides. Furthermore, it needs to be emphasised that, the formal solution of the closure
equations has been confirmed to coincide with the renormalised one-loop results presented by Crocce and
Scoccimarro apart from the vertex renormalisation [2]. Hence, the closure equation is basically equivalent
to the RPT truncated at the one-loop level.
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3 Results

3.1 Non-linear solution : ΛCDM model

We first present the results of closure equations (4)(5) in the flat ΛCDM model with the cosmological
parameters : ∆2

R(k0) = 2.457×10−9, ns = 0.960, ΩM0 = 0.279, h = 0.701. In this case, γ211 = σ2111 = 0,
and Π(k) = (k/a)2/3, resulting in Geff = G.

In the left panel of Fig. 1, the ratio of the non-linear power spectrum to the linear one at z = 3 is
plotted. We found that the non-linear effects of the closure equations suppress the amplitude on small
scales in comparison with the SPT (dashed line, see [1]). The dotted and the dotted-dashed lines are
the power spectra analytically obtained with the 1st and 2nd Born approximation, respectively, [3]. We
confirmed that the higher order approximation tends to agree with the result of the closure equations.

The behaviour of the propagators in the closure equations is shown in the middle panel where we
define G̃1 ≡ G11 + G12. The amplitude is normalised to unity on large scales by multiplying the linear
growth rate. While the propagator computed in SPT goes negative infinity shown as the dotted line,
the numerical solution in the closure equations tends to converge to zero on small scales. This damping
feature is caused by the non-linear effects as a result of taking into account the higher-order corrections
neglected in the SPT, leading to the suppression of the power on small scales.

As we mentioned in [3], in the small-scale limit, the propagator behaves as the Bessel function of the
first kind. On the other hand, in the large-scale limit, the propagator should coincide with the one-loop
result in the SPT. The dashed line in the right panel is the approximate solution matching the both
limits obtained in [3]. We found that the approximate solution agrees well with the numerical solution
of the closure equations even on intermediate scales between the limits.
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Figure 1: [Left] The resultant power spectra divided by the linear power spectra at z = 3, [Middle] the
propagators G̃1(k, z, z0) ≡ G11 +G12 evaluated at z = 3, and [Right] the perturbative solution normalised
by the linear power spectrum in the DGP model at z = 0.5 (next subsection). ’PPF’ is obtained from
the fitting formula proposed by [8] with cnl ≈ 0.36.

3.2 Perturbative solution : DGP model

As an application of our formalism, we apply it to the DGP braneworld model to compute the power
spectrum in the SPT. The perturbative solution, namely, the calculation in the SPT, can be done by a
simple replacement of Gab and Rab in the right-hand sides of the closure equations (4)(5) with the linear
propagator and power spectra, GL

ab and RL
ab, as discussed in the end of Sec.2.

The modified Friedman equation in the self-accelerating branch is given by

H

rc
= H2 − κ2

3
ρ, (10)

where rc is the parameter in this model which is a ratio between the 5D Newton constant and the 4D
Newton constant.
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In this model, gravity becomes 5D on large scales larger than rc. On small scales, gravity becomes 4D
but it is not described by GR. According to the quasi-static perturbations [7], the brane-bending mode
couples to the Newton potential on the brane. Therefore we have

γ211(k1,k2; τ) = − 1
12H2

(
8πGρm

3

)2 (
k2
12

a2

)
M(k1,k2)

Π(k12)Π(k1)Π(k2)
(11)

σ2111(k1,k2,k3; τ) =
8πGρm

324H2

(
k2
123/a2

Π(k123)Π(k1)Π(k2)Π(k3)

)(
M(k1,k2 + k3)M(k2,k3)

Π(k23)
+ perm.

)
(12)

where

M(k1,k2) = 2
r2
c

a4
[k2

1k
2
2 − (k1 · k2)2], β(τ) = 1 − 2Hrc

(
1 +

Ḣ

3H2

)
(13)

For the numerical calculation, we use the best fit parameters for the flat self-accelerating universe
Ωm = 0.257, Ωr = 0.138, h = 0.66, ns = 0.998. The resultant power spectrum normalised by the linear
one is presented as the solid line in the right panel of Fig. (1). The dashed line is the same calculation
neglecting the extra functions, γ211 and σ2111. From this figure, we found that γ211 gives a positive
contribution to the mode coupling, while σ2111 gives a negative and smaller contribution. Therefore the
resultant power is enhanced on small scales.

We also plotted the prediction in the Parameterised Post-Friedmann (PPF) framework proposed in
[8] as ’PPF’ in the right panel. It is possible to recover the numerical solution for the non-linear power
spectrum very well with the non-linear parameter cnl ≈ 0.36 introduced in [8].

4 Summary

In this paper, we showed the non-linear matter power spectra as a demonstration of our numerical scheme
for the closure equations derived in [3]. From the calculation in the ΛCDM model, we observed the extra
suppression of the power on small scales due to the non-linear effects which are neglected in the SPT,
as shown in the left panel of Fig (1). Moreover, the middle panel shows that the resultant propagator
converges to zero on small scales, and coincides with the approximate solution obtained in an analytic
way in [3]. These facts confirm that the closure equations contain non-linear contributions more than the
SPT, and that our numerical scheme works well from the qualitative viewpoint.

As an application, we applied the closure equations to compute the perturbative prediction of the
matter power spectrum in the DGP model. The perturbative calculation, namely, the calculation in the
SPT can be performed by the replacement of the right-hand sides of the closure equations (4)(5) with
the linear propagator and power spectra, GL

ab and RL
ab. As as result, the extra vertex function, γ211, gives

a positive, and large, contribution to the mode coupling, enhancing the power on small scales.
More detailed analysis can be seen in [6] together with the application to a f(R) gravity model.
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Abstract
We consider the position of the outer gap in a disk-hole system without solving the
Grad-Shafranov equation for the force-free magnetosphere. It is believed that the
magnetosphere around the rotating black hole surrounded by the accretion disk, such
as active galactic nuclei, mainly causes high energy phenomena. In the force-free
magnetospheres of pulsars, it is known that the accelerating electric field arises in a
charge depletion region from the so-called Goldreich-Julian charge density and can
influence to produce high energy gamma-rays, as the outer gap and polar-cap models.
We focus on the magnetosphere of the closed-field configuration in which the magnetic
field lines directly connect the hole to the disk, and apply outer gap models of a pulsar
to it. As a result, it is shown that gaps can arise in the region with both the closed
field from the hole to the disk and the open field from the disk to infinity. We also
estimate the size of the gap, the energy of a particle accelerated in the gap, and the
energy of gamma rays emitted from the gap.

1 Introduction

Recent observations show that the central engines of active galactic nuclei (AGN), the supermassive
black holes, most probably operate as powerful particle accelerators. Also, AGN are possible candidate
sites of high energy cosmic ray acceleration, which is supported by Auger observations [1] although there
also are arguments against it [2]. At the least, it’s considered that particles, such as electrons and
protons are accelerated to high energy in AGN. As the way to reveal it, it has been considered that
the black hole magnetosphere which is formed by a supermassive black hole in AGN operates on the
particle acceleration. Blandford-Znajek process in the force-free black hole magnetospheric model which
is the model of a stationary, plasma-filled magnetosphere around a rotating black hole is used to explain
extracting the energy from a black hole [3]. It’s well known as explanation for the energy of the jet. But,
it cannot show the concrete way to accelerate particles. So, as one model, we show that an “outer gap”
in the force-free magnetosphere effectively operate particle acceleration.

2 Outer gap and force-free magnetospheric model

The outer gap model is known as a model of γ-ray emission in pulsar magnetospheres and is successful in
explaining the observation [4, 5, 6]. This is a strong electric field sustained along a magnetic field line in
force-free magnetospheres. In force-free magnetospheres, the charge density should keep the Goldreich-
Julian charge density:

ρGJ = − 1
4π

∇ ·
(

δΩ
α

∇Ψ
)

, (1)

where δΩ ≡ ΩF − ω, ΩF = ΩF (Ψ) is angular velocity of the field line, Ψ(r, θ) is poloidal magnetic
flux function, and α and ω are the lapse function and the angular velocity of zero angular momentum
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Figure 1: Schematic drawing of a magnetically coupled configuration. The magnetic flux connects from
the disk to the black hole inside the separatrix and from the disk to infinity outside the separatrix. The
separatrix arrives at the point r = Rs above the pole from the point r = R

′

s in the equator.

observers, respectively, and the charge-separated plasma cannot be accelerated. But, the “null charge
surface” (or simply “null surface”) where ρGJ vanishes could be regions with a strong electric field E‖
sustained along a magnetic field line. Although the emerging E‖ would act to move available charge into
(from) the charge deficient (excess) region if the charge density ρe differed significantly from ρGJ in any
region, there is not enough available charge to redistribute near this surface. So, this carge deficit leads
to the emergence of the stationary gap. E‖ is given by the Poisson equation:

∇ · E‖ = 4π (ρe − ρGJ) , (2)

where ρe ≡ e(N+ − N−) is the charge density defined by the difference between positive and negative
charges.

Application of the outer gap to black hole magnetospheres was originally examined by Beskin et al.
[7] and the more quantitative study was developed by Hirotani & Okamoto [8]. However, we regard
the outer gap as the particle accelerator for the γ-rays and cosmic rays emission. Since it’s considered
that the accretion disk is the source of protons and heavy nuclei which are charged particles of cosmic
rays, we hope to consider a model that the charged particles flow from the disk to the outer gap and
are accelerated there. But this cannot be realized in the black hole magnetospheres with uniform or
monopole fields which the past study showed because no magnetic field line connected from the disk to
the gap exists in it. Neronov et al. showed that it’s possible to accelerate the particle flowing from the
disk in the gap of the polar region by absence of alignment of the magnetic field with the black hole
rotation axis [9]. However, since the magnetosphere which they assumed isn’t force-free magnetospheres
but vacuum ones, it was inadequate for the plasma-filled ones.

So, we focus on the particle acceleration in the gap and the paricle flow from the disk to infinity in the
force-free black hole magnetosphere. This is realized by the magnetically coupled configuration of which
the most simple model is that all magnetic field lines from the black hole connect to the disk and the
magnetic field line outside the separatrix which is the boundary between open field lines and closed field
lines connect from the disk to infinity (see Figure.1). Its one model is numerically solved by Uzdensky
[10]. We research the position of the outer gap in this topology and consider if it can accelerate the
particle from the disk. Also, we roughly estimate the gap width and the voltage drop.

3 The position of the outer gap

Since the outer gap emerges around the null charge surface, we search the position of null charge surface.
Although we need to solve the generally relativistic Grad-Shafranov equation for force-free magneto-
spheres in order to solve ρGJ = 0 (for need of magnetic flux Ψ), we don’t solve it exactly. Instead, we use
such equation as the second-order derivatives Ψ in the Grad-Shafranov equation is substituted for (1):

ρGJ =
1
D

[
α3

4π$2

δΩ2$4

α4
∇

(
α2

δΩ$2
+ ω

)
· ∇Ψ +

1
4πα

δΩI
dI

dΨ

]
, (3)
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(a) (b)

Figure 2: The possible configuration of null charge surfaces to eject from the disk to infinity. Both
configurations can accelerate the charged particle flowing along the field to infinity in polar region.
Directing our attention to the magnetic flux right outside the separatrix, the region of the gap is the gray
region.

where D ≡ α2− δΩ2$2, $ ≡ √
gϕϕ in Boyer-Lindquist coordinate and I = I(Ψ) is 2/c times the poloidal

electric current flowing through the circular loop r = const, θ = const. Of cource, it is difficult to solve
this equation. So, we expect the position of ρGJ = 0 by finding it in the polar region, on the equator,
and on the vent horizon.

As a result, we found that two surfaces are in the polar region, one surface is near the horizon and
one surface is on the equator. One surface in the polar region is on the separatrix and the other is on
the corotation point (δΩ = 0). The surface on the horizon is on the magnetic field line with the maximal
current (I(dI/dΨ) = 0). And, The surface on the equator is on the corotation surface if its surface is
on the plunging region which is between the black hole and the disk or between the magnetic field line
with the maximal current and the separatrix (r = R′

s in Figure.1) if the corotation surface is on the disk.
We can expect the configuration of the null charge surface by connecting their four boundaries. In the
expected configurations, the model where particles flowing from the disk are accelerated to infinity is
realized in the case where the gap emerges in the open field region near the polar axis (Figure.2). The
condition of this model is that the corotation surface in the polar region is outside the separatrix. The
difference between two configurations of Figure.2 is a difference of the position between the corotation
surface r = R0 and the separatrix r = Rs on the polar axis. They tend to select (b) in Figure.2 if there
is the corotation surface near the separatrix or the configuration of the separatrix is oblate (Rs < R′

s).
Since the inner null charge surface in (a) in Figure.2 always crosses to the inner light surface (which is
the surface of D = 0 and the singular surface of the Grad-Shafranov equation), appropriate regularity
conditions may be selected on this light surface in order to select (a).

Directing our attention to the magnetic field line in the open field region near the separatrix, charged
particles moving along this can be accelerated in the gap near the polar axis (gray color region in Figure.2)
and can be ejected to infinity. This field line crosses the null charge surface twice, but it’s thought that
the gap cannot grow around the inside null charge surface (around the point Q), because the direction
of the electric field is opposite and the global electric current is interfered. Such region is filled to the
Goldreich-Julian charge density with the charge from the disk or the other gap.

4 Rough estimation of the gap width and the voltage drop

We roughly estimate the gap width and the voltage drop by using one-dimensional equations along the
magnetic field lines. In particular, high energy γ-rays are observed not only from luminous AGN, such
as quasars and blazars (its luminosity is >∼ 1043 [ergs s−1]), but also from low luminosity AGN, such as
weak Seyfert (its luminosity is 1040-1043 [ergs s−1]). So, we show the luminosity dependence of them.
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The following static physical process is considered in the gap. First, the electric field emerges around
the null charge surface because of the charge depletions. Secondly, it accelerates the charged particles in
the gap and they emits the γ-ray photons by the curvature radiation or the inverse Compton scattering.
Finally, the emitted photons generate electrons & positrons with soft background photons by the pair
production and are reduced, whereas the charged particles increase. These processes is showed by self-
consistently solving the Poisson equation (2), the kinetic equation with the reaction force for γ-ray
emission, and the Boltzmann equation of particles and photons. We roughly estimate these equation and
get the gap width H and the voltage drop Vgap:

H ≈ 1011

(
M

108M¯

)0.79 (
L

LEdd

)−0.07

[cm], (4)

Vgap ≈ 1012

(
M

108M¯

)0.36 (
L

LEdd

)−0.21

[V], (5)

in the case where curvature radiation is dominant and

H ≈ 109

(
M

108M¯

)0.80 (
L

LEdd

)−0.40

[cm], (6)

Vgap ≈ 107

(
M

108M¯

)0.40 (
L

LEdd

)−1.20

[V], (7)

in the case where inverse Compton is dominant. Here, M is the black hole mass, and L is the luminosity
of the soft background photon emitted from the disk and is represented by the ratio of the Eddington
luminosity. We found that the curvature radiation is dominant because of the gap width being shorter
than the width by inverse Compton scattering if L is less than 10−5−10−6LEdd. Its width is 1012 [cm] and
the energy gained the proton, electron and so on is 1015 [eV]. Also, we found that the more luminosity
lowers, the more energy is high.

5 Summary

We considered the outer gap in the force-free magnetosphere with separatrix. We showed the configuration
of the outer gap in it and found that the separatrix formed the gap in the polar retion which can eject
the particle flowing from the disk to infinity. Also, we estimated the gap width and the energy gained
particles by roughly estimation. We found that curvature radiation is dominant and the high energy over
TeV is got if the Eddington ratio for accretion is low. So, it’s thought that the outer gap is expected as
the source of the high energy γ-ray and cosmic ray emission.
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Extremal Black Holes in Higher Dimensions and Symmetries
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Abstract
This is a brief introduction of the recent paper “On the ‘Stationary Implies Axisym-
metric’ Theorem for Extremal Black Holes in Higher Dimensions” by S. Hollands
and the present author arXiv:0809.2659 [gr-qc]. Main focus is on illustrating—using
a simple model—the key ideas of our proof of the black hole rigidity theorem that
applies to both extremal and non-extremal black holes in higher dimensions.

1 Introduction

It is known that in four-dimensional general relativity, a stationary rotating black hole must be ax-
isymmetric. More precisely, one can show under certain conditions that (i) the event horizon of an
asymptotically flat, stationary black hole must be a Killing horizon, and (ii) if the black hole is rotating,
then the spacetime must also be axisymmetric as well as stationary. This assertion—called the rigidity
theorem—provides a firm basis of the black hole thermodynamics, guaranteeing that the notion of the
surface gravity/temperature is well-defined, and in particular, plays an essential role in the proof of the
black hole uniqueness theorem. However, it is now known that in higher dimensions, the black hole
uniqueness theorem no longer holds as it stands, and there is a much richer variety of exact black hole
solutions, the classification of which is a major open problem in higher dimensional general relativity. In
view of this, it is of great interest to study whether the rigidity property also holds in higher dimensions
since (if holds) one may be able to place restrictions on possible exact black hole solutions from the view
point of spacetime symmetry.

The rigidity theorem for four-dimensional stationary black holes was first shown by Hawking long time
ago. In his original proof, a key role is played by the fact that the horizon cross section is topologically
two-sphere. For this reason, it would not appear to be obvious whether the rigidity property also holds
true in higher dimensions. Recently, Hollands, Wald, and the present author was able to generalise the
rigidity theorem to higher dimensions [1], by invoking the ergodic theorem. Our theorem [1] apply to
non-spherical black holes, which can occur in higher dimensions. However, the proof does not apply to
extremal black holes with degenerate event horizon. Since extremal black holes play an important role
in string theory, it is desirable to generalise the higher dimensional rigidity theorem to include extremal
black holes in higher dimensions. This has recently been done by Hollands and the present author [2] by
imposing seemingly artificial restrictive condition on the vector of horizon angular velocities. Although
it is unclear whether this additional condition is really needed or just an artefact of the proof, it has also
been shown in [2] that this condition is only violated by a measure zero set of the space of angular velocity
parameters. The purpose of this paper is to illustrate what the main difficulties are in generalising the
proof of the rigidity theorem to higher dimensions, and briefly sketch the key idea of our rigidity proof
by considering a simple, toy model.

2 Main issues and the key idea

Since the stationary Killing vector field ta generates a one-parameter group of isometries, it must be
tangent to the event horizon, H. Then, when ta is not normal to H (i.e., not tangent to the null geodesic
generators of H), the black hole is said to be rotating. We first show that there exists an additional
Killing vector field, Ka, that is normal to H on H, besides ta. Then, having the desired Ka, (a linear

1E-mail:akihiro.ishibashi@kek.jp
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Figure 1: The decomposition ta = na+sa depends on the choice of foliation Σ. We wish to find a ‘correct’ foliation
Σ̃ so that the corresponding ña = Ka satisfies—as a candidate Killing field—the desired properties (i)–(iii).

fixed point

Figure 2: A horizon cross-section Σ for a 4-dimensional black hole. The blue lines denote the flow of sa, which
has a fixed point on Σ ≈ S2 and closed orbits.

combination of) rotational symmetries may be expressed by Sa = ta−Ka. Such a desired Killing vector
field is (I) first to be constructed locally in a neighbourhood of H, and (II) then to be extended to
the domain of outer communication by invoking the assumption that all relevant fields, e.g., spacetime
metric components, are real, analytic. In the following we focus on Step (I): Find a candidate Ka on the
horizon. The properties that the desired candidate Killing field Ka should possess are: (i) KaKa = 0,
£tK

a = 0, (ii) £KΦ = 0, where Φ collectively denotes all relevant physical fields, such as the metric, and
(iii) Kc∇cK

a = αKa with α being constant that is to be identified with the surface gravity. Now let us
choose a foliation of the event horizon H by compact cross-sections Σ and decompose the vector ta on H
with respect to Σ as ta = na + sa, where na is null and sa spacelike, tangent to Σ. (One can construct
a well-behaved foliation by first choosing a single cross-section Σ0, and then Lie-dragging Σ0 over H by
the isometry of ta. Here and in the following, we use Σ to denote a single cross-section and foliation,
interchangeably.) Then, it is straightforward to check that na satisfies (i) and (ii). However, there is a
prior no reason that α with respect to na need be constant, since the decomposition na = ta−sa depends
on the choice of Σ. (See fig. 1.) Therefore our task is, starting from an arbitrary chosen Σ, to find the
correct foliation Σ̃ that gives rise to ña = Ka with α̃ being constant, satisfying the property (iii). It turns
out that to find such a correct foliation Σ̃, one has to solve the following type of differential equations
defined on a compact Σ,

saDaΨ = J , (1)

where J is some analytic function on Σ. Now when solving this equation, the spacetime dimension and
the topology of Σ play a role. For four-dimensions, it can be shown that the horizon cross-section must
be topologically two-sphere. Then, it immediately follows from this fact that the orbits of sa on Σ must
be closed (see fig. 2). Then, by integrating eq. (1) along a closed orbit of sa one can always find a
well-defined solution Ψ which gives our desired Σ̃ and Ka = ña. However, in higher dimensions, the
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S

Figure 3: We wish to integrate eq. (1) along a non-closed orbit of sa on Σ.

S

Figure 4: The fundamental region of two-dimensional torus. Two-dimensional flat torus admits two Killing fields,
each of which has closed orbits, but their linear combination sa does not necessarily have closed orbits.

orbits of sa are not necessarily closed. (This would be the case even in four-dimensions if the horizon
topology were non-spherical, e.g., torus). Therefore, in general, there is no guarantee that one can find
a well-defined solution, Ψ, for higher dimensional black hole case.

The problem may be nicely illustrated by considering the following simple, lower-dimensional case:
Consider the case in which Σ is two-dimensional flat torus and solve the same type of equation, eq. (1), on
Σ along a non-closed orbit of sa on Σ. Two-dimensional flat torus Σ has two Killing fields τa

1 = (∂/∂τ1)a

and τa
2 = (∂/∂τ2)a, each of which has closed orbits on Σ. Then, sa with non-closed orbits can be expressed

as a linear combination
sa = Ω1τ

a
1 − Ω2τ

a
2 , (2)

with the ratio, Ω1/Ω2, of the two coefficients being an irrational number. Then, it immediately follows
that in terms of Fourier transform Ĵ(x,m1,m2) of J(x, τ1, τ2), a formal solution Ψ is given by

Ψ(x) = i
∑

m1,m2

Ĵ(x,m1,m2)
m1Ω1 −m2Ω2

= i
∑

m1,m2

Ĵ(x,m1,m2)
m1Ω2

·
∣∣∣∣∣
Ω1

Ω2
− m2

m1

∣∣∣∣∣

−1

. (3)

Now recall that any irrational number, Ω1/Ω2 /∈ Q, can be approximated by some rational number
m2/m1 ∈ Q as close as possible, by taking m1, m2,→ ∞ in a certain way. This implies that the
denominator of the right side of the above equation can become arbitrarily small and therefore that Ψ
need not be convergent. However, if we impose the following additional condition

There exists q > 0 such that

∣∣∣∣∣
Ω1

Ω2
− m2

m1

∣∣∣∣∣ >
1

mq
1

,

then we can show that the formal solution, Ψ, becomes convergent and well-defined. This condition—
called the Diophantine condition—does not hold when Ω1/Ω2 is a Liouville number. However, such a
number is known to be in a set of measure zero. Therefore we can essentially always solve eq. (1).

Now applying this idea of imposing the Diophantine condition to the higher dimensional black hole
rigidity problem, we can show the following theorem [2]
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Theorem. Let all relevant fields be real, analytic. Suppose vector fields Ω = (Ω1, . . . , ΩN ) locally defined
on cross-sections Σ of H satisfy

∀m ∈ ZN , ∃ q > 0 such that |Ω ·m| > |Ω| · |m|−q .

Then, there exists a Killing field Ka which is normal to H. Therefore H is a Killing horizon. Furthermore,
there is an axial Killing field, φa

(i), such that Ka = ta −∑
i Ω(i)φ

a
(i).

Remarks: (i) Ω(i)’s turn out to be the angular velocities of H with respect to infinity. (ii) The proof
applies to both extremal and non-extremal black holes. (iii) For non-extremal (finite-temperature) case、
we do not need to impose the Diophantine condition [1].
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Can dissipative e�ets help the MSSM ination?Kohei Kamada1;2 and Jun'ihi Yokoyama2;31Department of Physis, Graduate Shool of Siene, The University of Tokyo, Tokyo 113-0033, Japan2Researh Center for the Early Universe (RESCEU), Graduate Shool of Siene, The University ofTokyo, Tokyo 113-0033, Japan3Institute for the Physis and Mathematis of the Universe,The University of Tokyo, Chiba 277-8582, JapanAbstratWe study the dissipative e�ets on the MSSM ination, whih su�ers from severe �ne-tuning problems on potential parameters and initial onditions. Dissipative e�etsappear as a onsequene of interations between an inaton and other �elds and theyat as a frition term in its equation of motion. Of ourse it also an emerge inthe ase of MSSM ination. However, we �nd that in the inationary stage it anneither overwhelm the frition term that is due to the osmi expansion nor a�etthe primordial utuations. Therefore it annot relax the �ne-tuning problem of theMSSM ination.1 IntrodutionMSSM ination [1℄ is a model of ination that is based on an extension of the Standard Model (SM) thatis motivated by the supersymmetry (SUSY), the Minimal Supersymmetri Standard Model (MSSM). Inthis model, the inaton is the at diretion in the MSSM, a gauge invariant ombination of either squarkor slepton �elds. Flat diretions an be lifted by the SUSY-breaking e�et and the non-renormalizablepotential. If a �ne-tuning of the potential parameters is realized, the potential for the at diretion hasa saddle point and ination an our near the point. If we take the inaton as the �u �d �d or the LL�e atdiretion, the saddle point loates at ' � 1014 GeV and the Hubble parameter during ination is about1� 10 GeV. Here ' is the inaton. Its most interesting feature is that the inaton ouplings to partilesin the SM are known and, at least in priniple, measurable in laboratory experiments suh as the LargeHadron Collider or a future Linear Collider. We do not need new physis beyond the MSSM.Despite these attrative features desribed above, the MSSM ination has some drawbaks, suh as the�ne-tuning of the potential parameters and worse, the �ne-tuning of the initial ondition. In partiular,the latter is a very diÆult problem. Beause the slow-roll region for the MSSM ination is extremelynarrow, if the former is solved by some mehanism, the inaton must reah the slow-roll region with anextremely small veloity in order to expand the Universe exponentially.However, previous analyses have been negleted the interations between the inaton and other MSSMpartiles, whih we know well, when they onsider the dynamis of the inaton. In general, interationsof the salar �elds with other �elds an ause the dissipative e�et. This phenomenon has been disussedin the high temperature regime [2, 3℄, in partiular, in the ontext of the warm ination [4℄. It ats as afrition term in the equation of motion of the inaton and an a�ets its dynamis. Therefore it has apossibility of relaxation of the �ne-tuning of the MSSM ination.We investigate the interation between the MSSM inaton and other �elds and the resultant dissipativee�et arefully. As a onsequene, dissipative e�ets arise but annot hange the dynamis of the MSSMinaton in the inationary stage. Moreover, it does not a�et the primordial utuations. Thereforedissipative e�ets annot relax the �ne-tuning problem of the MSSM ination.2 MSSM inationLet us summarize the main features of the MSSM ination [1℄ briey. We adopt a non-renormalizablesuperpotential of the form Wnon = �6M3G�6: (1)1



HereMG is the redued Plank mass and � is a supermultuplet whose salar omponent � parameterizesthe at diretion. in the ase where the �u �d �d at diretion ats as an inaton, � represents the following�eld on�guration. ~�u�i = ~�d�j = ~�dk = 1p3�; (j 6= k; � 6= � 6= ); (2)where i; j and k are the family indies and �; � and  are the olor indies. We assume that � is parameterof order unity. The at diretion is lifted by the superpotential (1). Hereafter we onsider the ase whenthe salar omponent of � aquires a large expetation value.Inluding the SUSY breaking e�et from the hidden setor, the salar potential is found to beV (') = 12m2�'2 � A�24M3G'6 + �232M6G'10; (3)where m� �100 GeV - 1 TeV is the soft-breaking mass of � and A is a parameter whose amplitude is alsojaj ' O(100) GeV - 1 TeV. This is justi�ed when SUSY-breaking is gravity-mediated. Here we minimizedthe potential along the angular diretion of �, and rewriting the at diretion as � = 1p2'ei�, with 'being a real quantity,If A is �ne-tuned as A2 = 20m2�(1 + �2=4), with �2 � 1, V (') has a inetion point '0 at'0 = �2AM3G5� �1=4 (1 +O(�2)); V 00('0) = 0; (4)where V ('0) = 415m2�'20(1 +O(�2)): V 0('0) = m2�'0 �O(�2); (5)Therefore ination an our near the inetion point and its Hubble parameter isHMSSM ' 2m�3p5MG'0 ' 10�16 � m�103GeV�'0: (6)The potential for MSSM ination V (') an be expanded around the inetion point asV (') = 415m2�'20 + 83m2�'0 ('� '0)3: (7)The slow-roll parameters, � � (M2G=2)(V 0=V )2 and � �M2G(V 00=V ), an be alulated from Eq. (7).We �nd that the required degree of �ne-tuning isj�j � 10�9 (8)in order to generate the orret primordial perturbations [1℄.Moreover we �nd that slow roll region is very narrow, j' � '0j='0 � 10�10 even if the above �ne-tuning is aomplished by some unknown mehanism. Therefore the inaton must reah the slow-rollregion with an extremely small veloity, H�1d(log')=dtj'='+ < '20=20M2G. Otherwise the inatonpasses through the slow-roll region within a time interval of H�1 beause the time interval of passing isshorter than the time sale of deeleration of the inaton. If the above ondition is aomplished, theUniverse goes through the self-reproduing regime when exatly ' = '0 and we have enough number ofe-folds and orret primordial perturbations.3 Dissipative e�etNext, we onsider the dissipative e�ets. So far, we have not onsidered the interations between theinaton and other �elds, whih might ause dissipative e�ets and modify the dynamis of the inaton.As a onsequene, the narrowness of the slow-roll region ould be relaxed if dissipative e�ets turned outto be strong enough. Here, we see whether it an relax the problems of the MSSM ination or not.2



3.1 Modi�ation to inationWhen an inaton � has interation with other �elds, espeially when they are in thermal bath, a dissipa-tive phenomenon takes plae and the inaton feels a damping fore. Although often a thermal orretionto the potential also auses and might a�et the slow-roll onditions, in the ontext of the MSSM ination,it is diÆult to onsider suh a ase. For the �elds that ouple to the inaton aquire large mass fromthe vauum expetation value of the inaton. Suh �elds are hard to be in thermal bath. Moreover, ifthey are in thermal bath, their energy density will overwhelm that of the inaton. Consequently, inatondoes not our. Instead, we onsider the ase where the inaton ouples to the radiation atalyzed byheavy �elds [5℄. In suh a ase, we do not have to worry about the thermal orretion to the potential.Aording to the disussion above, we take into aount dissipative e�ets and write down the equationof motion for the inaton � approximately as��+ (3H + Fr) _�+ �V�� = 0: (9)Here Fr is the dissipative oeÆient representing the dissipative e�et, whih may enhane ination [6℄anddepends on � and the temperature of radiation T . We estimate the value of Fr in the next subsetion.The relative strength of the dissipative e�et ompared to the frition term from the expansion an bedesribed by a parameter r, r � FrH : (10)If r is muh larger than unity, the dynamis of inaton would be modi�ed. In order to estimate itquantitatively, we evaluate the dynamis of the inaton and other omponents of the Universe further.Other equations that governs the universe are,3M2GH2 = V (�) + � ; (11)_� + 4H� = Fr _�2; (12)where � is the energy density of the radiation, that is, � = (�2=30)g�T 4. Here g� is the e�etive numberof relativisti degree of freedom. (11) is the Friedman equation and (12) is the Boltzmann equation forthe radiation.The slow-roll onditions in this ase are, then, the onditions that the time variations of H , _� and Tis negligible in omparison to the time sale of the osmi expansion. Using equations (9), (11) and (12),if r � 1, the slow-roll ondition hanges as [7℄�� r; � � r; � � r: (13)Here � is the new slow-roll parameter introdued in order to take into aount the time variation of Fr,� �M2G�V;�Fr;�V Fr � : (14)We an see from (13) that slow-roll ondition is relaxed by the fator of r. 1If we apply this e�et to the MSSM ination, the slow-roll region is determined by the ondition� � r. As a onsequene, the slow-roll region will be enhaned,j'� '0j'0 � 10�10r: (15)3.2 Dissipative oeÆients for the MSSM inatonThen, we estimate the dissipative oeÆients of the MSSM inaton. The relevant part of the potentialis, then, Vint =h21(j�j2j�1j2 + j�j2j�2j2 + j�1j2j�2j2) + h1h2(��2y�1y�2 +H::)+ h2(j�1j2jy1j2 + j�1j2jy2j2 + jy1j2jy2j2)+ h1 �� � �PL � + �� � �PR ��+ h2 ��1 � yPL y + ��1 � yPR y� ; (16)1Stritly speaking, the degree of relaxation is dependent on the form of the potential V and the dissipative oeÆientFr. 3



Here �; � and y are the salar �elds. PL(PR) = 1�5(1+5) is left-(right-)handed projetion operators. � and  y are the four-omponent Dira spinor . As derived in [2℄, the dissipative oeÆients arealulated using the in-in or the losed time-path formalism,Fr = h41'(t)2 Z t�1 dt0(t0 � t) Z d3q(2�)3 Im �G++�i (q; t� t0)G++�i (q; t0 � t)� ; (17)where G++� (k; t) is the Fourier transform of the Feynman propagator of � [2℄In order to inlude the dissipative proess, we dress the � propagator with  loop. The imaginarypart of its self energy generate non-zero value of Fr. At zero temperature, although there exists animaginary part of its self energy, its ontribution anels out. At non-zero temperature non-zero value ofthe dissipative oeÆient appears[5℄, Fr = Cg�T 3'2 : (18)Here C is a numerial onstant of O(10) and g� ' O(102) is the relativisti degree of freedom. However,the radiation must not overwhelm the vauum energy, (�2=30)g�T 4 < (4=15)m2�'20. As a result, thedissipative oeÆient Fr is smaller than 3H , the frition oeÆient from osmi expansion unless g� isextremely large. 2 Therefore, dissipative e�ets annot relax the �ne-tuning problem or the problem ofnarrowness of the slow-roll region.4 ConlusionWe have studied the e�et of the interation of the MSSM inaton. The interation between the MSSMinaton and the other �elds an ause the dissipative e�et. However, this e�et is very weak and annothange the dynamis of the MSSM inaton. It also does not hange the primordial perturbations that theMSSM inaton generates. Therefore, there still remains the problem of the narrowness of the slow-rollregion of the MSSM inaton. The �ne-tuning problem of the MSSM ination must be solved by othermehanisms.Referenes[1℄ R. Allahverdi, K. Enqvist, J. Garia-Bellido and A. Mazumdar, Phys. Rev. Lett. 97, 191304 (2006)[arXiv:hep-ph/0605035℄; R. Allahverdi, K. Enqvist, J. Garia-Bellido, A. Jokinen and A. Mazumdar,JCAP 0706, 019 (2007) [arXiv:hep-ph/0610134℄; J. C. Bueno Sanhez, K. Dimopoulos and D. H. Lyth,JCAP 0701, 015 (2007) [arXiv:hep-ph/0608299℄.[2℄ M. Gleiser and R. O. Ramos, Phys. Rev. D 50, 2441 (1994) [arXiv:hep-ph/9311278℄;[3℄ M. Morikawa and M. Sasaki, Prog. Theor. Phys. 72, 782 (1984). A. Hosoya and M. a. Sakagami,Phys. Rev. D 29, 2228 (1984); M. Morikawa, Phys. Rev. D 33, 3607 (1986); J. Yokoyama, Phys. Rev.D 70, 103511 (2004) [arXiv:hep-ph/0406072℄;[4℄ A. Berera, Phys. Rev. Lett. 75, 3218 (1995) [arXiv:astro-ph/9509049℄; J. Yokoyama and A. D. Linde,Phys. Rev. D 60, 083509 (1999) [arXiv:hep-ph/9809409℄.[5℄ I. G. Moss and C. Xiong, arXiv:hep-ph/0603266; A. Berera, I. G. Moss and R. O. Ramos,arXiv:0808.1855 [hep-ph℄.[6℄ J. Yokoyama and K. Maeda, Phys. Lett. B 207, 31 (1988).[7℄ L. M. H. Hall, I. G. Moss and A. Berera, Phys. Rev. D 69, 083525 (2004) [arXiv:astro-ph/0305015℄.2Even if g� is extremely large, the warm inationary solution requires extremely small temperature, whih is inonsistentwith the assumption that g� is large. 4
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Abstract
We study an anisotropic inflationary scenario. We show that the universe undergoes
anisotropic inflationary expansion due to a preferred direction determined by a vec-
tor. In particular, it is stressed that primordial gravitational waves can be induced
from curvature perturbations. Hence, even in low scale inflation, a sizable amount
of primordial gravitational waves may be produced during inflation. To verify this
expectation, we study perturbations in the anisotropic inflationary background.

1 Introduction

It is often mentioned that cosmology has entered into a new stage, so-called precision cosmology. Of
course, it is referring to developments of observational side. From theoretical point of view, however, we
have not yet exhausted possible phenomenology on the order of a few percent. Clearly, it is important
to explore qualitatively new scenarios at the percent level. Here, above all, we would like to point out
that an inflationary model with a few percent of anisotropy yields significant consequences. Indeed, a few
percent does not mean the consequent effects are negligible. Rather, it provides the leading component of
the primordial gravitational waves in low scale inflationary models which are preferred by recent model
construction in string theory [1].

In this talk, we propose an anisotropic inflation model with the vector impurity [2]. It is expected that
the anisotropic inflation yields the statistical anisotropy in fluctuations. More importantly, the primordial
gravitational waves could be induced from curvature perturbations through the anisotropic background.
In order to verify this expectation, we need to study perturbations around the anisotropic background.
This is a status report of the study in this direction.

2 Anisotropic Inflation

We consider the following action for the background gravitational field, the scalar field φ and the non-
minimally coupled massive vector field Aµ [3]:

S =
∫

d4x
√−g

[
1

2κ2
R− 1

2
(∂µφ)2 − V (φ)− 1

4
FµνFµν − 1

2

(
m2 − R

6

)
AµAµ

]
, (1)

where g is the determinant of the metric, R is the Ricci scalar, V (φ) is the scalar potential, m is the mass
of the vector field, and we have defined Fµν = ∂µAν − ∂νAµ. The equation of motion for Aµ from above
action:

1√−g
∂µ

( √−gFµν
)

=
(

m2 − R

6

)
Aν (2)

reduces A0(t) = 0 in the case of ν = 0 because of antisymmetry of Fµν . As we find the vector field has
only spatial components, we take x-axis in the direction of the vector,

Aµ = ( 0, Ax(t), 0, 0 ), φ = φ(t) . (3)
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Now, we will take the metric to be homogeneous but anisotropic Bianchi type-I, i.e.

ds2 = −dt2 + e2α(t)
[

e−4σ+(t)dx2 + e2σ+(t)
(
e2
√

3σ−(t)dy2 + e−2
√

3σ−(t)dz2
) ]

. (4)

With this ansatz, equations of motion become:

3
κ2

(−α̇2 + σ̇2
+ + σ̇2

−
)

+
1
2
φ̇2 + V +

1
2

(
Ẋ − 2σ̇+X

)2

+
m2

2
X2 +

(
1
2
σ̇2

+ +
1
2
σ̇2
− − 2α̇σ̇+

)
X2 = 0 , (5)

φ̈ + 3α̇φ̇ + V,φ = 0 , (6)

Ẍ + 3α̇Ẋ +
(
m2 − 2σ̈+ − 2α̇σ̇+ − 5σ̇2

+ − σ̇2
−

)
X = 0 , (7)

[
e3α

(
6
κ2

+ X2

)
σ̇−

]·
= 0 , (8)

[
e3α

{(
6
κ2

+ 5X2

)
σ̇+ − 2XẊ − 2α̇X2

} ]·
= 0 , (9)

α̈ + 3α̇2 − κ2V +
2
3
κ2σ̇+XẊ + κ2

(
1
3
σ̈+ + α̇σ̇+ − 1

2
m2

)
X2 = 0 . (10)

where X ≡ exp(−α + 2σ+)Ax and V,φ ≡ dV
dφ . Note that if the effective mass squared of X in Eq. (7) is

negative, the system will be tachyonic. To avoid this, we require the effective mass squared is positive,
m2 − 2σ̈+ − 2α̇σ̇+ − 5σ̇2

+ − σ̇2
− > 0, that is, m 6= 0 and σ̇± has to be sufficiently small. In fact, this latter

condition implies the amplitude of the vector field X should be small [2]. In this sense, the vector field
is a kind of impurity.

Let us consider the universe after a sufficient expansion, α →∞. It is straightforward in this limit to
integrate Eqs. (8) and (9) to find

σ̇− = 0 , σ̇+ =
1

6/κ2 + 5X2

(
2XẊ + 2α̇X2

)
. (11)

We find that the anisotropy in y-z plane, σ̇−, will disappear. This is reminiscent of the comic no-hair
theorem by Wald [4]. However, as long as the vector field exists X 6= 0, the anisotropy in x direction, σ̇+,
will still remain even if the universe undergoes a period of inflation. In the proof of the cosmic no-hair
theorem for Bianchi models, the strong and dominant energy conditions are assumed. The reason why
the anisotropy does not disappear in our model is that the non-minimal coupling breaks the strong energy
condition. Thus, we can restrict our metric to the following form:

ds2 = −dt2 + e2α(t)
[

e−4σ+(t)dx2 + e2σ+(t)
(
dy2 + dz2

) ]
. (12)

Now, we numerically solve Eqs. (5)-(10) by setting σ− = 0. We will use new variables H = α̇ and
Σ = σ̇+ below. We take V = 1/2µ2φ2 as the potential for the inflaton φ. The parameter of the system
is the ratio m/µ. For this calculation, we set κ = 1, µ = 10−5 and m = 2

√
2 × 10−5. And, we took the

initial values φ0 = 10 and H0 = 3 × 10−4 for all figures. In Fig. 1, we depicted the phase flow in X-Ẋ
plane. We set the initial value Σ0 = 0 and determined φ̇0 using the constraint equation (5). We see that
slow-roll phase of the vector field is an attractor when the amplitude of the vector field is sufficiently
small. For the appropriate parameter m/µ, the small value such as X2 ∼ 0.1 is easily attainable. In
Fig. 2, the phase flow in φ - φ̇ is plotted with the same initial conditions as Fig. 1. The trajectories are
almost same irrespective of the initial conditions for X, and show the slow-roll phase. After slow-rolling,
the inflaton field gets its damped oscillations. Therefore, the anisotropic inflation ends with reheating as
in the standard inflation. In Fig. 3, we have plotted H as a function of e-folding number N ≡ α − α0.
Actually, we plotted four lines for different initial conditions Σ0/H0 = 0, 0.05, 0.1, 0.15 with fixed initial
conditions X0 = 0.5 and Ẋ0 = 1.5 × 10−5. In the Fig. 3, all lines are degenerated. Irrespective of the
initial conditions, we see the slow-roll phase from this figure. In Fig.4, we have plotted Σ/H as a function
of the e-folding number with the same initial conditions as Fig. 3. We see the anisotropy remains sizable
for some period and then dumped down to zero around N ∼ 20 irrespective of its initial condition.
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Figure 1: The phase flow in X-Ẋ plane is depicted.
For various initial conditions with small amplitude
of X, we have plotted the trajectories. Every tra-
jectory converges to the slow roll attractor.

Figure 2: The phase flow in φ-φ̇ plane is depicted.
Every trajectory is degenerated irrespective of the
initial conditions for X.

Figure 3: The Hubble parameter H is plotted as a
function of e-folding number N . We see a slow-roll
phase clearly. We have e-folding number N ∼ 40
for this case.

Figure 4: The ratio Σ/H is plotted as a function of
e-folding number. In spite of the rapid expansion
of universe, the anisotropy remains sizable for some
period relevant to observations.

Since we succeeded to construct the anisotropic inflation model in which σ̇+/α̇ ∼ 0.01 at the early
stage of inflation, we expect that this scenario provide: statistical anisotropy of spectrum, source of
gravitational wave, linear polarization of gravitational wave. To see this explicitly, we need to calculate
perturbation on anisotropic inflation background.

3 Liner Perturbations

The metric (12) has the symmetry of two dimensional Euclidean space E2, so we can decompose perturbed
quantities to scalar and vector modes with respect to the symmetry as

hµνdxµdxν= h
(S)
ABSdxAdxB + 2dxA

[
h

(S)
AL(∂iS)dxi + h

(V )
AT Vidxi

]

+
[
h

(S)
L δijS+ h

(S)
T

(
∂i∂j − δij

2
∂`∂`

)
S+ h

(V )
T (∂iVj + ∂jVi)

]
dxidxj (13)

δAµdxµ = δA
(S)
A SdxA +

[
δA

(S)
L ∂iS+ δA

(V )
L Vi

]
dxi (14)

δφ = δφ(S)S (15)
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where A,B = t, x, i, j = y, z and S, Vi are scalar and vector harmonics on E2 given by

4E2S= QSS, 4E2Vi= QV Vi s.t. ∂iVi = 0 (16)

In this talk, as a first step, we focus on vector mode perturbations. We leave analysis of scalar mode
perturbations for future work1. After some calculation and gauge fixing, we get two coupled equations
for vector mode perturbations as

¨̃
h

(V )

T + 3H
˙̃
h

(V )

T + e−2αk2h̃
(V )
T = O(κ2X2) ˙̃

h
(V )

T + O(κ2X2)h̃(V )
T + O(κ2X2) ˙δX

(V )

L + O(κ2X2)δX(V )
L (17)

¨δX
(V )

L + 3H ˙δX
(V )

L + (e−2αk2 + m2
X)δX(V )

L = O(κ2X2) ˙δX
(V )

L + O(κ2X2)δX(V )
L + O(κ2X2) ˙̃

h
(V )

T (18)

where h̃
(V )
T ≡ exp(−2α − 2σ+)h(V )

T , δX
(V )
L ≡ exp(−α − σ+)δA(V )

L . Here, the right-hand side should be
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Figure 5: Typical behavior of h̃
(V )
T and δX

(V )
L .

understood schematically. We can numerically integrate the above equations for some initial conditions.
Typical behavior of h̃

(V )
T and δX

(V )
L is depicted in Fig.5 Since perturbative quantities does not diverge

for various initial conditions, we expect vector modes are stable. We have to quantize this system and
make a prediction for the spectrum. However, it is still under investigation.

4 Conclusion

We have shown the anisotropic inflationary scenario is viable. There are many attractive phenomenolog-
ical consequences in this scenario such as the conversion of the gravitational waves from curvature per-
turbations. Admittedly, our understanding of perturbations in the anisotropic inflationary background
is poor due to the complexity of perturbed equations. Surely, further investigations are necessary.
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Abstract
We investigate stability of Freund–Rubin compacti�cation from both thermodynamic
and dynamical perspectives. Freund–Rubin compacti�cation not only has trivial
Freund–Rubin solutions but also deformed solutions which are described as warped
product of external de Sitter space and internal deformed sphere. We study dynamical
stability by analyzing linear perturbations around the deformed solutions. Also we
study thermodynamic stability between the Freund–Rubin solutions and the deformed
solutions based on de Sitter entropy. We show close relations between thermodynamic
and dynamical stability exist in this system.

1 Introduction

The Freund–Rubin compacti�cation is a simple model with a stabilization mechanism by ux [1]. In
this model, considering (p + q)-dimensional spacetime, there is a q-form ux �eld for stabilizing the q-
dimensional compact space. Moreover, introducing a bulk cosmological constant allows an external de
Sitter space and an internal manifold with positive curvature. We obtain a (p + q)-dimensional product
spacetime of p-dimensional de Sitter space dSp and q-dimensional sphere Sq.

It has been shown that the Freund–Rubin solution has dynamical instabilities that are divided into
two classes [3, 4]; one is attributed to homogeneous excitation (l = 0 mode) in the internal space, which
corresponds to a change of the radius of the extra dimensions, and the other is inhomogeneous excitation
with quadrupole moment and higher multi-pole moments (l ≥ 2 modes), which represents the deformation
of the internal space. The l = 0 mode is a so-called volume modulus or radion, and becomes tachyonic
when the Hubble parameter of the external de Sitter space is too large (in other words, the ux density
on the internal space is small). This fact implies that if the energy scale of the inationary external
spacetime is sufficiently larger than the compacti�cation scale of the internal space, stabilization by ux
will be broken. In order to avoid the emergence of this instability, con�gurations with small Hubble
parameters would be preferable. On the other hand, instabilities arising from inhomogeneous excitations
will emerge only if the number of extra dimensions is larger than or equal to four. In the unstable region,
in which the l ≥ 2 modes are tachyonic, the external spacetime has small Hubble parameters including
the Minkowski spacetime. It means that the ux densities are very large. It should also be added that
for more than four extra dimensions, the two unstable regions overlap so that stable con�gurations for
the FR solution no longer exist.

Little has been known about the non-perturbative nature of the instability from higher multi-pole
modes; how it turns out after the onset of this instability and whether any stable con�guration as a
possible end-state exists in this model, and so on. In [2] we have shown that in the Freund–Rubin
compacti�cation there is a new branch of different solutions other than the FR solutions. Those solutions
are described as the warped product of an external de Sitter space and an internal deformed sphere.
It has been found that the branch of the FR solutions and that of the deformed solutions intersect at
one point where the FR solution becomes marginally stable for the l = 2 mode. Although we have seen
existence of solution other than the FR solution, its stability remains unanswered.

1E-mail:kinoshita@utap.phys.s.u-tokyo.ac.jp
2E-mail:shinji.mukohyama@ipmu.jp
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Here we are particularly concerned with the close connection between dynamical stability and ther-
modynamic stability for revealing nature. The interesting relationship between dynamical and ther-
modynamic stability, which is well known as the correlated stability conjecture (or the Gubser–Mitra
conjecture), has been suggested and ensured for some black objects (strings, branes and so on) by many
authors. It is signi�cant to examine whether such connections will exist and whether the idea can be
extended to systems such as spacetimes with de Sitter horizons other than black objects.

Consequently, the aim of this study is to examine the stability of the new branch of deformed solutions
from both dynamical and thermodynamic perspectives. This opens up new possibilities of the applicability
of close connection between dynamical and thermodynamic stabilities.

2 Dynamical stability

We investigate dynamical stability of deformed solution by considering perturbation around background
solution. We will concentrate on scalar-type perturbation with respect to the external de Sitter space
because in the case of the FR solution instability arises from this type perturbation.

We suppose that the background (p + q)-dimensional metric and q-form �eld strength are given by

ds2 = A2(y)gµν(x)dxµdxν + dy2 + B2(y)dΩ2
q�1, F(q) = b

Bq�1

Ap
dy ∧ dΩq�1, (1)

where gµν is the metric of p-dimensional de Sitter space with a Hubble parameter h and dΩ2
q�1 is the

metric of the unit round (q � 1)-sphere. Here b is a ux density.
All we need to consider are perturbations which are scalar-type quantities with respect to not only

p-dimensional de Sitter symmetry of the external space but also SO(q) symmetry of the internal space.
For simplicity we assume that the perturbations have SO(q) symmetry on the internal space. By choosing
an appropriate gauge, we can write the perturbed metric and �eld strength as follows:

ds2 = (1 + �Y) A2(y)gµνdxµdxν + [1 + (� � Ω)Y] dy2 +
[
1 +

(
Ω

q � 1
� p � 1

q � 1
�

)
Y

]
B2(y)dΩ2

q�1, (2)

and

F(q) = b
Bq�1

Ap
dy ∧ dΩq�1 + d (φY) ∧ dΩq�1 (3)

where Y(x) is scalar harmonics on the de Sitter space with the Hubble parameter h and perturbed
variables �, Ω and φ depend on only y-coordinate due to SO(q)-symmetry.

From the linearized Einstein equation and Maxwell equation, we obtain a set of two perturbation
equations in terms of two variables � and Ω:

(p + q � 2)�′′ + (q � 2)Ω′′+(p + q � 2)
[
p
A′

A
� (q � 1)

B′

B

]
�′ + (q � 2)

[
p
A′

A
+ (q � 1)

B′

B

]
Ω′

+
[

µ2

A2
+

2(q � 2)
B2

]
[(p + q � 2)� � qΩ] = 0,

Ω′′ +
[
(3p � 2)

A′

A
+ 3(q � 1)

B′

B

]
Ω′�

[
2(p + q � 2)(q � 2)

B2
� 4�

]
�

+
[
µ2 + 2h2(p � 1)2

A2
+

2q(q � 2)
B2

� 4�
]

Ω = 0,

(4)
where µ2 is the KK mass squared which is de�ned by ∇2Y(x) = µ2Y(x). Thus the perturbation equations
are reduced to eigenvalue problems with eigenvalue µ2. If the spectrum of µ2 is non-negative, we can
conclude that the background spacetime is dynamically stable.

For the deformed solution we will numerically solve the eigenvalue problem for a set of differential
equations (4) in order to �nd the mass spectrum µ2. In Fig 1, we present numerical result of the mass
spectrum of the deformed branch for p = 4 and q = 4. The solid lines represent µ2 for the deformed
branch and the dashed lines for the FR branch. We will focus our attention on the l = 2 mode because
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Figure 1: The mass spectrum for scalar perturbations. Solid lines and dashed lines indicate the deformed
branch and the FR branch, respectively. The vertical line indicates the critical value at which two
branches merge. In the low Hubble region where the FR branch is unstable, the deformed branch is
stable.

it is the �rst unstable mode for inhomogeneous perturbations on the FR branch. It turns out that, for
the Hubble parameters h2 below the critical value, µ2 of the deformed branch is positive, while the l = 2
mode of the FR branch becomes tachyonic. Thus the deformed branch is stable con�guration in the low
Hubble region, in which the FR branch is unstable.

The mass squared for some modes with other multi-pole moments than l = 2 is shown in Fig 1, also.
As the mass spectrum, the deformed branch has no unstable mode in the low Hubble region. In addition
we �nd that µ2 of the deformed branch tends to lift up at the side of lower h2 solutions. Deformation
will stabilize the internal space for the low Hubble region.

3 Thermodynamic stability

Assuming SO(p + 1) � SO(q) isometry, we can take the metric and the q-form �eld strength as

ds2
E = e2ϕ(r)h�2dΩ2

p + e�
2p

q−2 ϕ(r)[dr2 + a2(r)dΩ2
q�1], F(q) = A′(r)dr ∧ dΩq�1, (5)

where dΩ2
p and dΩ2

q�1 denote the metrics of the unit round p and (q � 1)-sphere, respectively. The
Euclidean action is given by

IE[a, ϕ, A] = � 1
16�

∫
dp+qxE

√
gE

(
R � 2� � 1

q!
F 2

(q)

)
= � ΩpΩq�1

16�hp

∫ r+

r−

dr

[
(q � 1)(q � 2)

a′2 + 1
a2

� p(p + q � 2)
q � 2

ϕ′2 + p(p � 1)h2e�
2(p+q−2)

q−2 ϕ

�2�e�
2p

q−2 ϕ � e
2p(q−1)

q−2 ϕ

a2(q�1)
A′2

]
aq�1,

(6)

where the boundary terms have vanished since the boundary conditions require a(r±) = 0, |a′(r±)| = 1
and ϕ′(r±) = 0 at the boundaries r = r±.

Here we de�ne an entropy as one quarter of the total area A which is that of de Sitter horizon
integrated over the internal space:

S � A
4

=
Ωp�2Ωq�1

4hp�2

∫ r+

r−

dr e�
2(p+q−2)

q−2 ϕaq�1. (7)

Using the equations of motion, we evaluate the Euclidean action IE on shell and it turns out IE = �S.
The total ux of the form �eld, which is de�ned as � �

∮
F(q), is given by

� = Ωq�1 [A(r+) � A(r�)] = bΩq�1

∫ r+

r−

dr e�
2p(q−1)

q−2 ϕaq�1, (8)
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Figure 2: The difference between the entropy of the deformed branch SD and that of the FR branch SFR.

where b is an integration constant which is de�ned by A′ = be�
2p(q−1)

q−2 ϕaq�1 from the equation of motion
for the form �eld.

We now proceed to discuss the differential thermodynamic relation such as the �rst law of thermody-
namics. We consider the �rst variation of the action IE[a, ϕ,A] with respect to a, ϕ and A. Suppose both
{a, ϕ, A} and {a + �a, ϕ + �ϕ, A + �A} are different sets of solutions satisfying the equations of motion,
the �rst variation of the action �IE is given by

�IE =
ΩpΩq�1

8�hp

e
2p(q−1)

q−2 ϕ

aq�1
A′�A

∣∣∣∣∣
r+

r−

+
∫ r+

r−

dr (EOM for a, ϕ and A) . (9)

Integrand functions in the last term will vanish because of the equations of motion for a, ϕ and A. Only
the boundary term contributes to the �rst variation of the action. Thus the �rst law can be derived as

dS = � Ωp�2b

4(p � 1)hp
d�. (10)

This implies that the entropy is described by a function of the total ux. Hence the entropy S is a
thermodynamic potential with respect to the total ux � as a natural thermodynamic variable. We shall
call a sequence of solutions which satis�es the �rst law a “branch” of solutions.

We will discuss thermodynamic stability for the FR branch and the deformed branch of solutions.
As we have seen the entropy S is the thermodynamic potential when we choose the total ux � as a
natural variable. Therefore, the second law of thermodynamics states that, if the total ux is given, a
con�guration with larger entropy is thermodynamically favored. We shall now proceed to the issue of the
deformed branch and focus on the case for p = 4 and q = 4 as a explicit example. We denote the entropy
of the FR branch and that of the deformed branch as SFR and SD, respectively. A difference of entropy
between SD and SFR for �xed uxes is shown in Fig. 2. It turns out that in the lower side for the total
ux �, in which the Hubble parameter become small, the difference is positive and the deformed branch
is stable. On the other hand, in the higher side the difference is negative and the FR branch is stable.
At the critical point where two branches merge it is marginally stable. It is worth noting that the FR
branch has dynamical instability arising from inhomogeneous excitation where the deformed branch is
favored thermodynamically.
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Abstract
General relativistic simulation for the merger of binary neutron stars is performed
in a modified method, as an extension of a previous work [1]. We prepare bi-
nary neutron stars with a large initial orbital separation and employ the moving-
puncture formulation, which enables to follow merger and ringdown phases for a long
time, even after black hole formation. Three equal-mass binaries with each mass
1.4M¯, 1.45M¯, 1.5M¯ and two unequal-mass binaries with mass 1.3–1.6M¯, 1.35–
1.65M¯ are prepared. We focus primarily on the black hole formation case, and
explore mass and spin of the black hole, mass of disks which surround the black hole,
and gravitational waves emitted during the black hole formation.

1 Introduction

Coalescence of binary neutron stars is one of the most promising sources for kilometer-size laser interfer-
ometric detectors such as the LIGO, GEO,VIRGO, and TAMA. Latest statistical estimate indicates that
detection rate of gravitational waves from binary neutron stars will be 1 event per 4–100 years for the
first-generation interferometric detectors and 10–500 events per year for the advanced detectors. This
suggests that gravitational waves from binary neutron stars will be detected within the next decade.

For theoretically studying the late inspiral, merger, and ringdown phases of the binary neutron stars,
numerical relativity is the unique approach. Until quite recently, there has been no general relativistic
simulation that quantitatively clarifies the inspiral and merger phases because of limitation of the com-
putational resources or difficulty in simulating a black-hole spacetime, although a number of simulations
have been done for a qualitative study. The most crucial drawbacks in the previous works were summa-
rized as follows ; (i) the simulation were not able to be continued for a long time after formation of a
black hole and/or (ii) the simulations were short-term for the inspiral phase; the inspiral motion of the
binary neutron stars is followed only for ∼ 1–2 orbits.

In the present work, we perform an improved simulation overcoming these drawbacks; (i) we adopt the
moving-puncture approach [2], which enables to evolve black hole spacetimes for an arbitrarily long time;
(ii) we prepare binary neutron stars in quasicircular orbits of a large separation as the initial condition. In
the chosen initial data, the binary neutron stars spend in the inspiral phase for 3–4 orbits before the onset
of merger, and hence, approximately correct non-zero approaching velocity and nearly zero eccentricity
will be results. We focus in particular on quantitatively clarifying formation process of a black hole for
the case that it is formed promptly (i.e., in the dynamical time scale ∼ 1–2 ms) after the onset of merger.
More specifically, the primary purpose of this paper is (1) to determine the final mass and spin of the
black hole formed after the merger, (3) to clarify quantitative features of gravitational waves emitted in
the merger and ringdown phases.

1E-mail:kiuchi@gravity.phys.waseda.ac.jp
2E-mail:sekig@th.nao.ac.jp
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Figure 1: Evolution of the minimum value of the lapse function, αmin, and the maximum rest-mass
density ρmax for models APR1414, APR145145, APR1515, APR1316, and APR135165.

2 Summary of basic equation and numerical issue

For solving the Einstein evolution equation, we use the original version of the Baumgarte-Shapiro-Shibata-
Nakamura formulation [3]: The numerical code for solving the Einstein equation and for the hydrody-
namics is the same as that in Ref. [4].

3 Result

3.1 General feature for merger process

We have already performed the simulation for binary neutron stars with realistic EOSs [1]. Although the
qualitative feature for the merger process found in the present work is the same as in the previous works,
we here summarize generic feature of the merger again.

Figure 1 plots the evolution of the minimum lapse function, αmin, and maximum baryon rest-mass
density, ρmax, for all the models studied in this paper. For models APR145145, APR1515, APR1316, and
APR135165 for which a black hole is formed soon after the onset of the merger, αmin (ρmax) decreases
(increases) monotonically. For these runs, two neutron stars come into the first contact at t ∼ 7.5 ms. For
all the cases, apparent horizon is formed when αmin reaches ∼ 0.03. For model APR1414, αmin (ρmax)
steeply decreases (increases) after the onset of the merger, but then, they start oscillation and eventually
settle down to relaxed values. This indicates that a hypermassive neutron star is the outcome.

In the unequal-mass case, less massive neutron star is tidally deformed ∼ 1 orbit before the onset
of merger. Then, mass shedding occurs, and as a result, the material in the less massive neutron star
acrretes onto the massive companion. During the merger, it is highly tidally deformed, and thus, an
efficient angular momentum transport occurs. Due to this, the material in the outer region of the less
massive neutron star spreads outward to form a spiral arm. This process helps formation of accretion
disks around the formed black hole.

3.2 Black hole mass and spin

As mentioned in the previous subsections, the final outcome after the merger for models APR145145,
APR1515, APR1316, and APR135165 is a rotating black hole. We here determine the black-hole mass,
MBH,f , and spin, af , using the same method as those used in Refs. [1]. All the results for the black-hole
mass and spin are summarized in Table 1. We find that MBH,f and Ce/4π agree within 0.2% error for all
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Table 1: Black-hole mass MBH,f and nondimensional spin parameter af for models
APR145145, APR1515, APR1316, and APR135165. ∆E, ∆J , Mr>rAH , Jr>AH, Cp, Ce,
and fQNM denote energy and angular momentum carried by gravitational waves, rest mass
and angular momentum of the material located outside apparent horizon, and polar and
equatorial circumferential radii of the apparent horizon, respectively. Mr>rAH and Jr>rAH ,
are given in units of M0 and J0, respectively.
Model ∆E/M0 ∆J/J0 Mr>rAH Jr>rAH MBH,f/M0 Ce/4πM0 Cp/Ce af1 af2

APR145145 1.15% 16.7% – – 0.988 0.9880 0.8628 0.77 0.77
APR1515 1.19% 16.9% 0.004% – 0.988 0.9864 0.8576 0.79 0.78
APR1316 1.14% 16.8% 1.13% 2.69% 0.977 0.9768 0.8692 0.75 0.75
APR135165 1.10% 16.4% 0.26% 0.58% 0.986 0.9859 0.8625 0.77 0.77

the models. This indicates that both quantities at least approximately denote the black-hole mass and
that we obtain the black-hole mass within ∼ 0.2% error.

The spin parameters af1 and af2, which are determined from the aparent horizon area ÂAH and horizon
shape Cp and Ce, respectively, agree within 2% error for all the models. We find that Cp/Ce and ÂAH

depend weakly on the grid resolution, and so do af1 and af2. This suggests that the convergent value
of the black-hole spin is close to af1 and af2, and for all the models, we estimate the black-hole spin as
af ≈ 0.77± 0.03.

In the merger of equal-mass, nonspinning binary black holes, af is ≈ 0.69, which is by about 0.1 smaller
than that for the merger of binary neutron stars. This difference arises primarily from the magnitude of
∆J in the final phase of coalescence. In the merger of binary black holes, a significant fraction of angular
momentum is dissipated by gravitational radiation during the last inspiral, merger, and ringdown phases,
because a highly nonaxisymmetric state is accompanied with a highly compact state from the last orbit
due to the high compactness of black holes. By contrast, compactness of the neutron stars is by a factor
of ∼ 5 smaller, and as a result, such a highly nonaxisymmetric and compact state is not achieved for the
binary neutron stars. Indeed, angular momentum loss rate by gravitational waves during the last phases
is much smaller than that of binary black holes.

3.2.1 Merger and ringdown gravitational waves

The waveforms in the ringdown phase are primarily characterized by the fundamental quasinormal mode
of the formed black holes for models APR145145, APR1515, APR1316, and APR135165. To clarify this
fact, Fig. 2 plots Ψ4 together with a fitting formula in the form

Ae−t/td sin(2πfQNMt + δ) (1)

where A and δ are constants, and the frequency and damping time scale are predicted by a linear
perturbation analysis as

fQNM ≈ 10.7
(

MBH,f

3.0M¯

)−1

[1− 0.63(1− af)0.3] kHz, td ≈ 2(1− af)−0.45

πfQNM
. (2)

Figure 2 (a) shows that gravitational waves for model APR1515 are well fitted by the hypothetical
waveforms given by Eq. (1) for tret & 8.4 ms. [Here, we set af = af1 for the fitting (cf. Sec. 3.2)].
This is reasonable because the final outcome for model APR1515 is a stationary rotating black hole with
negligible disk mass, and hence, the black-hole perturbation theory (i.e., Eq. (1)) should work well. This
is also the case for the gravitational waveforms for model APR145145, for which the merger proceeds in
essentially the same manner as that for model APR1515.

3.2.2 Fourier spectrum

We define Fourier power spectrum of gravitational waves by

h(f) ≡ D

M0

√
|h+(f)|2 + |h×(f)|2

2
, h+(f) =

∫
e2iπfth+(t)dt, h×(f) =

∫
e2iπfth×(t)dt. (3)
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Figure 2: Ringdown waveforms associated primarily with the fundamental quasinormal mode for model
APR1515. We plot the real part of Ψ4. For the figure(a), the dashed curves denote the fitting curves
calculated by Eq. (1). (b) Spectrum of gravitational waves for all the black hole formation models.

Here, h+ and h× denote the + and × modes of gravitational waves of l = |m| = 2. From h(f), we define
a nondimensional spectrum (or effective amplitude) as heff(f) ≡ h(f)fM0/D.

In Fig. 2, we show the spectrum (heff) of gravitational waves for models APR1414, APR1515,
APR1316, and APR13516. To plot Fig. 2, we assume D = 100 Mpc. The Fourier spectrum shows
universal features, irrespective of the total mass and mass ratio of the binary neutron stars. We quantita-
tively summarized as follows: (i) For f ≤ fcut ≈ 2.5–3 kHz, the spectrum amplitude gradually decreases
according to the relation ∝ f−n where n is a slowly varying function of f ; n = 1/6 for f → 0, and n ∼ 1/3
for f → fcut. fcut is much larger than the frequency at the ISCO. This is due to the fact that even after
the onset of the merger, the merged object has two high-density peaks, and emits gravitational waves
for which the waveform is similar to the inspiral one. (ii) For f ≥ fcut, the spectrum amplitude steeply
decreases. This seems to reflect the fact that at such frequency, two density peaks disappear duering the
collapse to a black hole. (iii) For f = fpeak ≈ 5–6 kHz, which is slightly smaller than fQNM ∼ 6.7–6.9 kHz,
a broad peak appears. Because the frequency is always smaller than fQNM, this peak is not associated
with the ringdown gravitational waveform but with the merger waveform. (iv) For f > ffin ≈ fQNM, the
amplitude damps in an exponential manner.

Although the features (i)–(iv) are qualitatively universal, the values of fcut, fpeak, fQNM, and ffin, and
the height and width of the peak at f = fpeak depend on the total mass and mass ratio of binary neutron
stars, i.e., merger and black hole formation processes. This indicates that if we can detect gravitational
waves of high frequency f = 2–8 kHz, we will be able to get information about merger and black hole
formation precesses.
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Abstract
According to recent observation, it is possible to see the event-horizon-scale struc-
ture in the supermassive black hole candidate at the Galactic Centre. Therefore, it
is important to consider the electromagnetic waves emitted by disk surface near the
black hole horizon. In general, the electromagnetic waves are essentially influenced
by gravitation around the black hole (cf. doppler shift, lensing effects, and super-
radiance). Using ray-tracing, there is the study of black hole shadow, which is the
image of disk configuration influenced by black hole. However, in ray-tracing, the
influence of waves (cf. superradiance) is not treated. We focus on the superradiance
of electromagnetic waves emitted from disk surface around Kerr black hole. Then
it is interesting to see the amplification of disk radiation, and estimate the energy
radiated away to infinity.

1 Introduction

It is widely believed that there exists a rotating black hole surrounded by a disk in the central region
of highly energetic astrophysical objects, such as active galactic nuclei (AGNs), x-ray binary systems,
and gamma-ray bursts (GRBs). Because the electromagnetic waves cannot be emitted from horizon of
black hole, the electromagnetic waves emitted from disk surface are observed in the observation of black
hole candidates. Then the electromagnetic waves near the horizon are influenced by strong gravitational
field. Furthermore, according to recent observation, it is possible to see the event-horizon-scale structure
in the supermassive black hole candidate at the galactic centre[1]. In these situations, it is important to
consider the behavior of electromagnetic waves around Kerr black holes.

On the other hand, there is the study of radiation from disk around Kerr black holes, called by
“Ray-tracing” method[2]. In this method, the effects of gravitation, such as the bending of light and
gravitational red shift, are considered. However, the interaction between wave and black hole, is not
treated. One of effect is super-radiance which is energy extraction process from black hole due to elec-
tromagnetic waves.

In a previous study of well-known super-radiance scattering[3], an disk boundary condition is not
considered. Therefore we consider the vacuum electromagnetic fields with a disk boundary condition on
the equatorial plane around Kerr black holes. Then we focus on super-radiance and energy transport due
to electromagnetic waves.

2 Formalism

To treat vacuum electromagnetic fields in the disk-black hole system, it is convenient to use the Kerr-
Schild formalism for solving the Einstein-Maxwell equation[4]. If this formalism is applied to obtain
electromagnetic perturbations on Kerr background, it is known that all the field components are simply
derived by two arbitrary complex functions ψ and φ, which can be appropriately chosen according to the
disk boundary condition. Here, we put a branch cut in arbitrary complex function ψ on the equatorial
plane. Then, the component of Ftθ, Fθϕ and Frθ become discontinuous at θ = π/2. This discontinuties
correspond to the existence of disk current on the equator[5].

1E-mail:kobayashi@gravity.phys.nagoya-u.ac.jp
2E-mail:onda@gravity.phys.nagoya-u.ac.jp
3E-mail:atomi@gravity.phys.nagoya-u.ac.jp
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Using Newman-Penrose formalism[6], the electromagnetic fields derived from Kerr-Schild formalism
(called by KS solution) are described as

φKS
0 = 0, (1)

(r − ia cos θ)2φKS
1 = ψ(X)/2, (2)

(r − ia cos θ)φKS
2 =

eiϕ̃φ(Y, τ)
2
√

2 cos2(θ/2)
+

XψX√
2(r + ia cos θ) sin θ

[
(r − ia)2iσ cos2(θ/2) − 1

]
. (3)

Here, Y = eiϕ̃ tan(θ/2), τ = −t̃ + r + ia cos θ, X = eiστY , σ is corresponding to frequency, and t̃ and ϕ̃
are Kerr-Schild coordinates which remain finite even on the horizon. Here we consider the expansion of
arbitrary complex function ψ. By using the expansion form, for example, we obtain

Xψ,X =
∑
m

mamXm. (4)

As a result, we choose an azimuthal mode m. Then the electromagnetic field is described as

φKS
0 m = 0, (5)

(r − ia cos θ)2φKS
1 m = ame−iωt+imϕe

iωr∗+i
∫

ma
r2+a2 dr∗ tanm(θ/2)/2, (6)

(r − ia cos θ)φKS
2 m =

eiϕ̃φ(Y, τ)
2
√

2 cos2(θ/2)

+
ame−iωt+imϕe

iωr∗+i
∫

ma
r2+a2 dr∗ tanm(θ/2)√

2(r + ia cos θ) sin θ

[
(r − ia)2iω cos2(θ/2) − m

]
, (7)

in Boyer-Lindquist coordinates, where we define ω ≡ mσ and dr∗/dr = 2mr/(r2 + a2). However, if
the Kerr-Schild formalism is applied to the radiation from disk, the pure outgoing waves are emitted
on the horizon. Therefore to require the elimination of outgoing wave on the horizon, we consider the
superposition between Kerr-Schild solution and well-known electromagnetic perturbations (called by TP
solution)[3]. The electromagnetic fields are described as

φa = φKS
a + φTP

a , [a = 0, 1, 2]. (8)

Then, we consider the boundary conditions as follows: ingoing waves on the horizon and outgoing waves
at infinity. Our model differ from the “well-known” perturbations, such as analysis of quasi-normal mode,
because on the disk boundary there are emission and absorption of electromagnetic waves.

3 Energy flux in each regions

In this section, we consider the distribution of the energy flux. The energy flux is written by

E¹ = −T¹
t, (9)

where

T¹º =
1
4π

[
φ0φ̄0n¹nº + φ2φ̄2l¹lº2φ1φ̄1(l(¹nº) + m(¹m̄º))

−4φ̄0φ1n(¹mº) − 4φ̄1φ2l(¹mº) + 2φ2φ̄0m¹mº

]
+ C.C., (10)

and, l¹, n¹ and m¹ are Kinnersley’s tetrad written by

l¹ =
[
1, −Σ/∆, 0, −a sin2 θ

]
, (11)

n¹ = (∆/2Σ)
[
1, Σ/∆, 0, −a sin2 θ

]
, (12)

m¹ =
[
ia sin θ, 0, −Σ, −i(r2 + a2) sin θ

]
/
√

2(r + ia cos θ), (13)
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in Boyer-Lindquist coordinates. In particular, the radial and angular components of energy flux are
described as

Er =
1
4π

[
− ∆2

4Σ2
φ0φ̄0 + φ2φ̄2 +

ia sin θ√
2(r + ia cos θ)

∆
Σ

φ̄0φ1 −
2ia sin θ√

2(r + ia cos θ)
φ̄1φ2

]
+ C.C., (14)

Eθ = − 1
4πΣ

[
∆√

2(r + ia cos θ)
φ̄0φ1 +

2Σ√
2(r + ia cos θ)

φ̄1φ2 −
Σia sin θ

(r + ia cos θ)2
φ̄0φ2

]
+ C.C., (15)

where ∆ = r2 + a2 − 2Mr, Σ = r2 + a2 cos2 θ.
First we see the total energy on the horizon written by

EH =
∫ π

0

Er
HΣH sin θdθ. (16)

Using Maxwell equations, the total energy is described as

EH ∝ −
(ω

k
A +

ωH

k
B

)
, (17)

where ω and ωH are frequency of wave and angular velocity of black hole, respectively, and k = ω−mωH.
Here, if superradiant condition (0 < ω < ωH) is filled, the rotational energy is extracted due to the
electromagnetic waves.

Secondly, to see the energy transport, we consider the low-frequency limit (aω ¿ 1). In this limit,
we can solve the radial equation of electromagnetic field. As a result, we get the relations between each
coefficients of waves, which is corresponding to amplitude. This relations are written by

(out)∞s
(out)Hs

= (−1)−l(r1 − r2)2s+1(2κ)l−s (l + s)!(l − s)!
(2l)!(2l + 1)!

Γ(l + 1 + 2iQ)
Γ(−s + 2iQ)

, (18)

(In)Hs
(out)Hs

=
(−1)−s+1

(r1 − r2)−2s

(l − s)!
(l + s)!

Γ(s + 1 − 2iQ)Γ(l + 1 + 2iQ)
Γ(l + 1 − 2iQ)(Γ(1 − s + 2iQ)

, (19)

where κ = −i(r1−r2)ω, Q = (r 2
1 +a2)(ωH−ω)/(r1−r2), r1 and r2 are distance of outer and inner horizon,

respectively, the electromagnetic field is described as s = ±1, and s = 1 and s = −1 are corresponding
to coefficients of φ0 and φ2, respectively. Then we can see the dependence on frequency in the energy
fluxes. As a result, it is easy to see that the extracted energy is transported to disk region.

4 Summary

We consider the electromagnetic perturbations considered by disk boundary. Then we put the boundary
conditions as follows: ingoing waves on the horizon and outgoing waves at infinity. However, because
the source of radiation exist, Our model differ from the “well-known” perturbations, such as analysis of
quasi-normal mode. As a result, we find the energy extracted from black hole due to super-radiance, and
the extracted energy is transported to disk regions.
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Abstract
We investigate density perturbations generated through modulated reheating while
inflation is driven by a conformally coupled scalar field. A large running of the spec-
tral index is obtained, which reflects the basic nature of conformal inflation that
higher-order time derivatives of the Hubble parameter during inflation are not nec-
essarily small. This feature may allow us to distinguish between conformal inflation
models and standard minimally coupled ones. We also investigate how the resulting
fluctuations are modified when there is a deviation from an exact conformal coupling
between the inflaton and gravity. Finally, we apply our results to the warped brane
inflation model and see that observational bounds from the WMAP5 data suggest
a blue tilted density perturbation spectrum. The discussion here is based on the
paper [1].

1 Introduction

Ever since the idea of cosmic inflation was proposed, inflationary model building has largely focused on
slow-rolling scalar fields minimally coupled to gravity as candidate inflatons. However, recently it was
pointed out in [2] that conformally coupled scalar fields are also capable of accelerating the universe.
Since the existence of such conformally coupled fields are rather common in models from string theory, it
is of great interest to explore the possibility of conformally coupled fields driving inflation. In this light,
we also come up with a new question of how we can distinguish between these “conformal inflation”
models and standard minimally coupled ones.

The aim of our work is to focus on density perturbations and seek for distinctive features confor-
mal inflation might have left. A conformally coupled inflaton itself cannot be responsible for generating
primordial fluctuations, but instead string theory suggests alternative scenarios such as modulated re-
heating [3, 4]. Thence, we consider the case where modulated reheating generates density perturbations
while inflation is driven by an almost conformally coupled inflaton. We study the scale dependence of
the generated density perturbations.

We also investigate how the resulting density perturbations are modified when there is a deviation
from an exact conformal coupling between the inflaton and gravity. The result will allow us to impose
constraints on the inflaton’s coupling from observational data. As a concrete example, our generic results
are applied to the well-studied warped brane inflation model [5].

2 Review of Conformal Inflation

Here we give a brief review of conformal inflation. Consider the action

S =
∫

dx4√−g

[
M2

p

2
R− 1

2
gµν∂µφ∂νφ− V (φ)− ξ

2
Rφ2

]
(1)
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where R is the scalar curvature and ξ is the non-minimal coupling to gravity. Choosing a flat FRW
background ds2 = −dt2 + a(t)2dx2 and also introducing π ≡ φ̇ + Hφ, the Friedmann equation is

M2
p H2 =

1
3
V +

1
6
π2 +

(
ξ − 1

6

)
(2Hφπ −H2φ2), (2)

and the equation of motion of φ is

π̇ + 2Hπ + V ′ + 6
(

ξ − 1
6

)
(Ḣ + 2H2)φ = 0. (3)

The conformal case ξ = 1/6 was investigated in [2], where inflation was realized while the equations
(2) and (3) could be approximated to

M2
p H2 ' 1

3
V, cHπ ' −V ′. (4)

Here, c is a dimensionless constant3. Let us define three “flatness parameters” as

ε ≡
M2

p

2

(
V ′

V

)2

, ε̃ ≡ φV ′

2V
, ηc ≡ η +

c

3

(
V ′′φ

V ′ + c− 2
)

, (5)

where η ≡ M2
p V ′′/V . When |c| ∼ O(1), one can check that the necessary conditions for (4) and |Ḣ/H2| �

1 are simply
ε � 1, |ε̃| � 1, |ηc| � 1. (6)

The proportionality constant c is chosen such that it is the largest constant to minimize |ηc|/c2 [1].
It is clear from (2) and (4) that π2/V is small during inflation. Especially when the potential is flat

enough to satisfy |M2
p V ′| � |cφV |, then φ̇ ≈ −Hφ, which suggests that the inflaton is rapidly rolling

towards its origin.

3 Density Perturbations from Modulated Reheating

We analyze the case where density perturbations are generated through modulated reheating [3, 4] after
conformal inflation. The scale dependence of the perturbations can be expressed by expansion in terms of
the flatness parameters. Furthermore, we take account of the inflaton’s slight deviation from a conformal
coupling (ξ − 1/6). This procedure allows us to deal with a wide variety of situations, e.g., when there
exists additional corrections to the action which ruins the exact conformal coupling, when the frame
where the inflaton φ is conformally coupled to gravity differs from the frame where the light modulus χ
is minimally coupled. In [1] the resulting spectral index and its running were shown to take the form,

ns − 1 =
d lnH2

d ln k
= 2

Ḣ

H2

(
1 +

Ḣ

H2

)−1

= −2ε̃−
(

12
c2

+ κ2

)
ε +O(ε3/2, εηc) +

(
ξ − 1

6

){
2κ2 +O(ε1/2)

}
+O

((
ξ − 1

6

)2
)

, (7)

dns

d ln k
= 2

(
1 +

Ḣ

H2

)−3
1
H

(
Ḣ

H2

)·

= 2
(

3− c +
3
c
ηc

)
ε̃ +

(
6(8− 3c)

c2
+ (7− 3c)κ2

)
ε +O(ε3/2, εηc)

+
(

ξ − 1
6

){
−4κ2 +O(ε1/2)

}
+O

((
ξ − 1

6

)2
)

, (8)

3Our parameterization of c differs from that of [2] by cours = c[2] + 2.
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where the right hand sides should be estimated at the moment of horizon crossing k = aH. We imme-
diately see that |dns/d ln k| can become large, comparable to |ns − 1|. This is due to the fact that the
derivatives of the flatness parameters do not necessarily become smaller than the parameters themselves.
Since this is a generic feature of conformal inflation, a large running is expected even if we consider
mechanisms other than modulated reheating for generating fluctuations (e.g. curvaton models). Also,
our results indicate that (ξ−1/6)-corrections can dominantly determine the values of the cosmological
observables unless |ξ−1/6| is smaller than the flatness parameters.

4 Application to Warped Brane Inflation

Let us now apply the results obtained in the previous section to a specific model. Here we consider
the warped brane inflation model [5], where the universe experiences inflation while a D3-brane moves
towards the tip of a flux compactified warped throat. The D3-brane is pulled by a stack of D3-branes
sitting at the tip. If the position of the D3-brane is a conformally coupled scalar (for a discussion on this
issue, see e.g. [7]), then this model serves as a realization of conformal inflation.

Considering a throat whose geometry is AdS5 ×X5, the potential of the inflaton takes the form

V (φ) = 2ph4
0T3

(
1− h4

0T
2
3 R4

Nφ4

)
. (9)

Here, the inflaton is related to the radial position ρ of the D3 through φ =
√

T3ρ, p is the number
of D3s at the tip, h0 = ρ0/R is the warping at the tip, T3 = 1/(2π)3gs(α′)2 is the D3 tension, R4 =
22π4gs(α′)2N/Vol(X5) is the AdS radius of the throat, Vol(X5) is the dimensionless volume of the base
space X5, and N(> 1) is the 5-form charge.

The conformally coupled inflaton satisfies φ̇ ≈ −φH during inflation, hence the number of e-foldings
generated is N ≈ log (ρi/ρf ) ≈ − log (h0/λi) , where we have set the initial position of the D3 by a
dimensionless constant λi as ρi = λiR, and assumed inflation to end when the D3 approaches the tip
ρf ≈ ρ0. This shows that in order to obtain enough e-foldings, the throat should be strongly warped
h0/λi � 1.

The scale dependence of the perturbations can be computed by (7) and (8). We parametrize the posi-
tion of the D3 when the CMB scale was originally produced by ρCMB = λR. Furthermore, for simplicity,
we ignore the compactified bulk to which the throat is glued, hence M2

p ' 2
(2π)7g2

s(α′)4

∫ R

ρ0
dρ Vol(X5) ρ5

h4 '
Vol(X5)R

6

(2π)7g2
s(α′)4 . Then under the assumption h0/λ � 1, the flatness parameters and κ can be calculated (note

that c = 7)

ε ' 2h8
0

λ10N
, ε̃ ' 2h4

0

λ4N
, ηc = η ' −5h4

0

λ6
, κ2 ' 4λ2

N
. (10)

Since ε is extremely small compared to the other flatness parameters, the cosmological observables can
be estimated as follows:

ns − 1 ' − 4
N

{
h4

0

λ4
− 2λ2

(
ξ − 1

6

)}
,

dns

d ln k
' −16

N

{
h4

0

λ4
+ λ2

(
ξ − 1

6

)}
. (11)

The 5-year WMAP+BAO+SN data gives bounds ns = 1.022+0.043
−0.042 (68% CL) and dns/d ln k =

−0.032+0.021
−0.020 (68% CL) when tensor mode perturbations are negligible [6]. Since the h4

0/λ4 terms are
too small to be constrained by the observational bounds, we ignore them. Then the observables are
determined only by the inflaton’s deviation from an exact conformal coupling,

ns − 1 ' 8
λ2

N

(
ξ − 1

6

)
,

dns

d ln k
' −16

λ2

N

(
ξ − 1

6

)
. (12)

It is easy to see that the spectral index and its running are related by

dns

d ln k
' −2(ns − 1). (13)
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Using the observational bound on dns/d ln k to constrain λ2(ξ−1/6)/N ,

0.001 .
λ2

N

(
ξ − 1

6

)
. 0.003. (14)

If we further make use of this bound to constrain the spectral index, we obtain

0.006 . ns − 1 . 0.026. (15)

Thus the 1σ observational bound on the running allows us to predict a blue tilt for the warped brane
inflation model. Moreover, the values of the observables were dominantly determined by the inflaton’s
deviation from a conformal coupling. The bound (14) suggests that this deviation can be fairly large,
e.g., (ξ−1/6) ∼ 10−1 when λ ∼ 1, N ∼ 102.

5 Conclusion

We have investigated the scale dependence of the density perturbations that are generated through
modulated reheating after conformal inflation. We have written down the spectral index and its running
in terms of the flatness parameters and the inflaton’s deviation from an exact conformal coupling. The
general results we have obtained are that (i) modulated reheating together with conformal inflation can
produce a nearly scale-invariant spectrum, (ii) the running of the spectral index |dns/d ln k| turns out
to be as large as |ns − 1|. The latter result reflects the nonexistence of hierarchy among higher-order
time derivatives of the Hubble parameter dn lnH2/dtnHn during conformal inflation. This is in strong
contrast to standard minimal models where higher-order derivatives are suppressed by higher orders of the
slow-roll parameters (and their derivatives). Hence this feature offers a chance of obtaining a smoking-gun
signal for non-minimally coupled inflation models.

We also applied our results to the warped brane inflation model, where it was shown that observables
were dominantly determined by the deviation from the conformal coupling. We have shown that the
spectral index and its running are related by (13) for this model. Since the running is highly constrained
by the WMAP5 data, a stringent bound on the coupling of the inflaton to gravity was obtained. Also,
comparison with the WMAP5 data suggested a blue tilt of the spectrum.

While our analysis focused on general aspects of modulated reheating after conformal inflation, we
have not presented the light modulus responsible for generating fluctuations in a concrete setup. In
the warped brane inflation case, potential candidates for such light fields are angular positions of the
D3(D3)-branes sitting in throats with angular isometries, and/or axions associated with shift symmetries
of the Kähler potential. For further study, it is important to come up with an explicit realization of our
mechanism based on fundamental theories. We leave this for future work.

One of the general lessons of our work is that a non-minimal coupling with gravity can drastically
change the behavior of inflation. Large values for higher-order time derivatives of the Hubble parameter
is a special nature of conformal inflation. Cosmological observations are imposing (not necessarily direct
but) important constraints on such features even at the present stage.
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Abstract
In this talk, we point out that curvature-regular asymptotically flat solitons with neg-
ative mass are contained in the Myers-Perry family in five dimensions. These solitons
do not have horizon, but instead a conical NUT singularity of quasi-regular nature
surrounded by naked CTCs. We show that this quasi-regular singularity can be made
regular for a set of discrete values of angular momentum by introducing some periodic
identifications, at least in the case in which two angular momentum parameters are
equal. Although the spatial infinity of the solitons is diffeomorphic to S1 × S3/Zn

(n ≥ 3), the corresponding spacetime is simply connected and asymptotically flat.

1 Introduction

In four dimensions, there are some asymptotically flat regular black hole solutions with CTCs inside
horizon. However, no asymptotically flat regular simply-connected vacuum solution with naked CTCs
has been found so far. For example, the Kerr and the Kerr-Newman solutions have CTCs, but they
become naked only in the superextreme case with naked ring singularity. Similarly, the Tomimatsu-Sato
solution with δ = 2[1] has double horizons and circles generated by the rotational Killing vector become
time-like near the z-axis segment connecting two horizons, but the spacetime has the well-know naked
ring singularity and a conical singularity along the segment[2](see Fig. 1). Here, the asymptotically
flatness is a crucial condition, because we have the Taub-NUT solution and the Gödel solution as famous
examples of curvature-regular vacuum solutions that have CTCs but are not asymptotically flat.

In higher dimensions, the situation changes. For example, the BMPV solution[3, 4] in a five-
dimensional gauged supergravity theory represents a rotating charged BPS black hole for slow rotations,
while when its angular velocity exceeds some critical value, the horizon turns to a surface called a repulson
which is surrounded by CTCs and cannot be penetrated[5]. Similar BPS solutions were found in other
supergravity theories in five dimensions[6, 7].

These BPS solutions show that the existence of CTCs and regularity and asymptotically flatness can
coexist in higher dimensions. The main purpose of this talk is to point out that another set of examples of
such spacetimes are contained in the five dimensional Myers-Perry solution[8]. They are asymptotically
flat regular spacetimes with negative mass and naked CTCs.

χ

φ

t

Figure 1: TS2 solution.
The left panel show the
two horizons connected by
a region where the angular
Killing vector becomes time-
like and the ring singularity
on its boundary. The right
panel show the helical struc-
ture of the time coordinate
on the z-axis connecting the
two horizons[2].
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2 Internal Structure of the 5D Myers-Perry Solution

2.1 Metric and regularity

In terms of the Boyer-Lindquist coordinates (t, φ1, φ2, r, θ), the 5D Myers-Perry solution can be written
as[8]

ds2 =
r2ρ2

∆
dr2 + ρ2dθ2 + (r2 + a2) sin2 θdφ1

2 + (r2 + b2) cos2 θdφ2
2

−dt2 +
µ

ρ2

[
dt + a sin2 θdφ1 + b cos2 θdφ2

]2
, (1)

where ∆ := (r2 + a2)(r2 + b2) − µr2.
Because the determinant of the metric is given by −g = r2ρ4 sin2 θ cos2 θ, apart from the angular

coordinate singularities at θ = 0, π/2, the metric (1) is apparently singular at r = 0 and at ∆ = 0 in
addition to ρ = 0, which is curvature singularity from the expression for the Kretchman invariant,

RµνλσRµνλσ = 24µ2 (3r2 − a2 cos2 θ − b2 sin2 θ)(r2 − 3a2 cos2 θ − 3b2 sin2 θ)
ρ12

. (2)

Among these apparent singularities, we can confirm that the points with r = 0 are not real singularity
by expressing the metric in terms of x = r2 as[8]

ds2 =
ρ2

4∆
dx2 + ρ2dθ2 + (x + a2) sin2 θdφ1

2 + (x + b2) cos2 θdφ2
2

−dt2 +
µ

ρ2

[
dt + a sin2 θdφ1 + b cos2 θdφ2

]2
. (3)

Now, ∆ and ρ2 become polynomials in x as

∆ = (x + a2)(x + b2) − µx, ρ2 = x + a2 cos2 θ + b2 sin2 θ, (4)

and −g is expressed as −g = ρ4 sin2 θ cos2 θ/4.

2.2 Structure of Killing orbits

On a Killing horizon, the induced metric on the orbit space of the Killing vectors ∂t, ∂φ1 and ∂φ2 becomes
degenerate. From |gab|a,b=t,φ2,φ1

= −∆sin2 θ cos2 θ, this condition can be written ∆ = 0. When ab 6= 0
and µ > 0, this equation for x has a root in the region ρ2 > 0 iff µ > (|a| + |b|)2. In this case, there
actually exist two positive roots, which are both regular horizons.

In contrast, when µ < 0, we have only negative roots, but one of them, x = xh, is larger than −b2 and
in the region with ρ2 > 0. This apparently indicates that even in the negative mass case, the spacetime
has a regular horizon and a regular domain of outer communication. However, this is not the case. In
fact, the spacetime has pathological features around x = xh, when xh 6= 0. For example, the Killing
vector k whose norm vanishes at x = xh becomes spacelike outside the horizon. Further, the norm of the
Killing vector ∂t is negative definite for x ¸ xh.

2.3 CTCs

Let Φ be the symmetric matrix of degree 2 defined by Φ := (gij)i,j=φ1.φ2
. Then, we can show that

detΦ = D1 sin2 θ cos2 θ/ρ2 is non-negative in x > 0 for µ > 0, and therefore that there occurs no
causality violation at or outside the outer horizon for µ > (|a| + |b|)2.

In contrast, for µ < 0, causality violation occurs in the region x ¸ xh. In fact, D1 can be written as

D1 = ∆(x + a2 sin2 θ + b2 cos2 θ + µ) + µ2x. (5)

From this, around x = xh at which ∆ = 0, the sign of D1 is determined by the sign of xh. Hence, when
xh < 0, 2-tori generated by ∂φ1 and ∂φ2 become timelike surfaces around x = xh, which always contain
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CTCs. As we show in the next section, this feature together with the fact that gtt is netative and Φ has
a finite non-degenerate limit at x = xh implies that x = xh is not a horizon but rather something like a
repulson, which was first found by Gibbons and Herdeiro for supersymmetric rotating black holes in five
dimensions[5, 6].

3 Repulson

3.1 U(2) MP solution

In the case a = b 6= 0, the metric in the Boyer-Lindquist coordinates reads

ds2 =
ydy2

4(y2 − µy + a2µ)
+ yds2(S3) − dt2 +

µ

y

(
dt + aχ3

)2
, (6)

where y = ρ2 = x + a2, and χ3 is the 1-form on S3 invariant under the action of SU(2)

χ3 = sin2 θdφ1 + cos2 θdφ2. (7)

3.2 Negative mass soliton

Now, we show that the surface corresponding to the root x = xh(> −a2) of ∆ = 0 for µ < 0, which is
intrinsically S2, is not a regular submanifold of the spacetime, but rather a quasi-regular singularity. For
that purpose, let us introduce the coordinate

ξ =
(

a2 − yh

2a2 − yh
(y − yh)

)1/2

, (8)

where yh = xh + a2 > 0. Then, in terms of the 1-forms

τ̃ = − a

yh
dt + χ3, χ̃ = χ3 +

yh

2a2 − yh
τ̃ , (9)

the metric can be written near the locus y = yh as

ds2 ' − y2
h

(a2 − yh)
τ̃2 + dξ2 + c2ξ2χ̃2

3 + yhds2(S2), (10)

where
c =

2a

(a2 − yh)1/2

(
1 − yh

2a2

)
. (11)

The curvature tensor of this metric is bounded everywhere. However, it has a kind of conical singularity
at ξ = 0 because c > 2 and t is not a periodic coordinate. This conical singularity cannot be removed
even by a periodic identification of t in general. For some discrete values of yh, however, the spacetime
can be made regular by such an identification. To see this, we utilise the local charts, (z+, w+, t+) for
θ 6= π/2 and (z−, w−, t−) for θ 6= 0 defined by

z± := (tan θ)±1e±iφ, w± := ξeic(ψ±φ)/2, t± := t − yh

4a
(ψ ± φ). (12)

It is easy to see that in each of these coordinate system, the metric (10) has regular expressions.
In the region 0 < θ < π/2 covered by both charts, the two set of coordinates are related by

z− =
1
z+

, w− = w+

(
z+

|z+|

)−c

, t− = t+ + i
yh

a
ln

z+

|z+|
. (13)

From the relation for w±, we find that c must be an integer n > 2 for the coordinate transformation to
be well-defined. Further, because the ln-term in the relation for t± produces ambiguity in the values of
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t± written as an integer multiple of 2πyh/a, these two charts are consistent only when we identify t±
periodically with a period 2πyh/(ma) where m is some positive integer.

For ξ 6= 0, by this identification, each ξ = const surface becomes a S1 bundle over S3/Zn. However,
since we can easily show that the regular manifold constructed above from the region around ξ = 0 is
simply connected for m = 1, the whole spacetime is also simply connected for m = 1. In that case, CTCs
along S1 produced by the above identification at ξ 6= 0 cannot be removed by taking a covering space.

4 Summary and Discussion

In the present paper, we have shown that the five-dimensional Myers-Perry solution with negative mass
describes an asymptotically flat rotating spacetime with naked CTCs, no horizon and no curvature
singularity. We further pointed out that we can construct a regular repulson-type asymptotically flat
soliton from them for a discrete set of values of the angular momentum for a fixed mass parameter µ.

Although the structure of the original metric when the repulson appears is similar to that of BPS
solutions with repulsons, there exist several big differences between our family and the BPS families. In
particular, our solutions are non-BPS solution to the purely vacuum Einstein equations, and the repulson
is a regular submanifold of the whole spacetime. This should be contrasted to the BPS case in which
the repulson is at spatially infinite distance. Further, the soliton spacetime obtained after regularisation
is not asymptotically flat in the standard sense because it has some time periodicity at spatial infinity
and its spatial infinity is S3/Zn with n ¸ 3, although it is topologically simply connected. Finally, the
repulson appears only for negative mass. This is rather striking because a regular soliton spacetime with
negative mass can exist in higher dimensions.

Finally, we note that our analysis can be extended to the U(N) symmetry Myers-Perry solutions in
2N +1 dimensions[9]. It can be also extended to the rotating black-hole type solutions with cosmological
constant[10] and to the black holes with generic angular momentum parameters. These extensions are
under investigation.
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Abstract
We study the nucleation of a vacuum bubble in the presence of gravity and consider
the pair production of blak holes in the background of bubble solutions. This article
is prepared for the proceedings of The 18th Workshop on General Relativity and
Gravitation in Japan (JGRG18) in Hiroshima, Japan, 17-21 Nov 2008.

1 Introduction

Recently, we have investigated the possible types of the nucleation of vacuum bubbles [1]. We classified
true vacuum bubbles in de Sitter background and present some numerical solutions. The nucleation
rate and the radius of true and false vacuum bubbles are analytically computed using the thin-wall
approximation. We obtained static bubble wall solutions of junction equation with black hole pair. In
this article, we will summarize our results.

It has been shown that the first-order vacuum phase transitions occur via the nucleation of true
vacuum bubble at zero temperature both in the absence of gravity [2] and in the presence of gravity [3].
This result was extended by Parke [4] to the case of arbitrary vacuum energy densities. An extension of
this theory to the case of non-zero temperatures has been found by Linde [5] in the absence of gravity,
where one should look for the O(3)-symmetric solution due to periodicity in the time direction β with
period T−1 unlike the O(4)-symmetric solution in the zero temperature. These processes as cosmological
applications of false vacuum decay have been applied to various inflationary universe scenarios by many
authors [6]. The Hawking-Moss transition describes the scalar field jumping simultaneously at the top of
the potential barrier [7]. A new method to calculate the tunneling wave function that describes vacuum
decay was studied by Gen and Sasaki [8]. The effect of the Gauss-Bonnet term on vacuum decay was also
studied [9]. Marvel and Wesley studied thin-wall instanton with negative tension wall and its relation to
Witten’s bubble of nothing [10]. In Ref. [11], the authors discussed the possible four different instantons
in Euclidean de Sitter space.

As for the false vacuum bubble formation, Lee and Weinberg [12] have shown that if the vacuum
energies are greater than zero, gravitational effects make it possible for bubbles of a higher-energy false
vacuum to nucleate and expand within the true vacuum bubble in the de Sitter space which has a topology
of 4-sphere. The false vacuum bubble nucleation is described as the inverse process of the true vacuum
bubble nucleation. However, their solution is larger than the true vacuum horizon [13]. The oscillating
bounce solutions, another type of Euclidean solutions, have been studied in detail by Hackworth and
Weinberg [14]. On the other hand Kim et al. [15] have shown that false vacuum region may nucleate
within the true vacuum bubble as global monopole bubble in the high temperature limit.

Next, we will consider black hole pair creation. Caldwell et al. studied black hole pair creation in the
presence of a domain wall [16] using the cut-and-paste procedure, where the background has vanishing
cosmological constant and the probability was obtained. The repulsive property of the domain wall give
rise to black hole pair creation. However, our solutions give rise to the background for the black hole pair
creation with a bubble wall more naturally.

1E-mail:bhl@sogang.ac.kr
2E-mail:warrior@sogang.ac.kr
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2 The vacuum bubble

The bubble nucleation rate or the decay rate of background vacuum is semiclassically given by

Γ/V = Ae−B/h̄, (1)

where B is the difference between Euclidean action corresponding to bubble solution and that of the
background and the prefactor A is discussed in Ref. [17], that with some gravitational corrections in Ref.
[18]. We are interested in finding the coefficient B.

Let us consider the action

S =
∫

M

√−gd4x

[
R

2κ
− 1

2
∇αΦ∇αΦ− U(Φ)

]
+

∮

∂M

√
−hd3x

K

κ
, (2)

where κ ≡ 8πG, g ≡ detgµν , and the second term on the right-hand side is the boundary term. U(Φ) is
the scalar field potential with two non-degenerate minima with lower minima at ΦT and higher minima
at ΦF , R denotes the Ricci curvature of spacetime M, and K is the trace of the extrinsic curvature of
the boundary ∂M.

We will take O(4) symmetry for both Φ and the spacetime metric gµν , expecting its dominant con-
tribution [19].

The Euclidean field equations for Φ and ρ have the form

Φ′′ +
3ρ′

ρ
Φ′ =

dU

dΦ
, (3)

ρ′′ = −κ

3
ρ(Φ′2 + U), (4)

respectively and the Hamiltonian constraint is given by

ρ′2 − 1− κρ2

3

(
1
2
Φ′2 − U

)
= 0. (5)

We will consider only the case with initial de Sitter space. The boundary conditions for the bounce are

dΦ
dη

∣∣∣
η=0

= 0,
dΦ
dη

∣∣∣
η=ηmax

= 0, ρη=0 = 0, and ρη=ηmax = 0, (6)

where ηmax is a finite value in Euclidean de Sitter space.
In this article, we consider only several cases including true, false, and degenerate vacua. Firstly, we

consider the large true anti-de Sitter bubble with small false de Sitter background. The size of the bubble
and the nucleation rate are evaluated to be

ρ̄2 =
ρ̄2

o

D
and B =

2Bo(λ2
λ1

)2[{1 + (λ1
λ2

)2( ρ̄o

2λ2
)2} − (λ1

λ2
)2D1/2 + E]

[( ρ̄o

2λ2
)4{(λ2

λ1
)4 − 1}D1/2]

, (7)

where D =
[
1 + 2( ρ̄o

2λ1
)2 + ( ρ̄o

2λ2
)4

]
, λ2

1 = [3/κ(UF + UT )], λ2
2 = [3/κ(UF − UT )], UT < 0, and E =

2{(λ2
λ1

)4 − 1}( ρ̄o

2λ1
)2[1− ( ρ̄o

2λ2
)2]D−1.

Secondly, we consider the large false de Sitter bubble with the small true de Sitter background. The
size of the bubble has the same as above case. The nucleation rate is given by

B =
2Bo[{1 + ( ρ̄o

2λ1
)2}+ {1 + 2( ρ̄o

2λ1
)2 + ( ρ̄o

2λ2
)4}1/2]

[( ρ̄o

2λ2
)4{(λ2

λ1
)4 − 1}{1 + 2( ρ̄o

2λ1
)2 + ( ρ̄o

2λ2
)4}1/2]

. (8)

Thirdly, we consider the transition between degenerate vacua in de Sitter space. The critical radius
of the wall is given by

ρ̄ =
2

κ
√

S2
o

4 + 4
3κUo

. (9)

The nucleation rate is given by

B =
12π2So

κ2Uo

√
S2

o

4 + 4
3κUo

. (10)
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3 Black hole pair creation

We consider several types of the configuration as the background space for black hole pair creation. In
this work the general Euclidean junction condition becomes

√
1− 2GM

r
± Λ−

3
r2 − ṙ2 +

√
1− 2GM

r
− Λ+

3
r2 − ṙ2 = 4πGσr, (11)

where So = σ and · denotes the differentiation with respect to the proper time measured by the observer
moving along with the wall. The signs (−) and (+) as a subscript of Λ represent left and right spacetime,
respectively. After squaring twice, we define the effective potential for Euclidean junction equation to be

Veff =
1
2
− 1

2

[(
2πGσ +

(Λ+ − Λ−)
24πGσ

)2

+
Λ−
3

]
r2 − GM

r
, (12)

with total energy is 0. The static bubble wall solution satisfies the following conditions

Veff (rb) = 0, and
dVeff

dr

∣∣
rb

= 0. (13)

The solution can exist at rb = 3GM . The masses of created black holes are uniquely determined by the
given cosmological constant and surface tension on the wall:

M =
1

3G

√
3

[(
2πGσ + (Λ+−Λ−)

24πGσ

)2

+ Λ−
3

] . (14)

In this process the location of the wall with black holes is given by

rb = 3GM or rb =
1√

3
[(

2πGσ + (Λ+−Λ−)
24πGσ

)2

+ Λ−
3

] . (15)

This case is that the left of the wall corresponds to flat space and the right corresponds to de Sitter
space. The action turns out to be

SE = SC
E − σ

4

(√
1− 2GM

r

∫ τ−

0

dτ− +

√
1− 2GM

r
− Λ+

3
r2

∫ τ+

0

dτ+

) ∫ π

0

dθ

∫ 2π

0

dφr2 sin θ

− SE(bulk)− SB
E

= SC
E − πσr2

b

(
8πGM√

3
+

(
4πGσrb − 1√

3

)
2πrh

√
1− (9Λ+G2M2)1/3

1− Λ+r2
h

)

− 2πU+

3
r3
b

(
2πrh

√
1− (9Λ+G2M2)1/3

1− Λ+r2
h

)
+

2π2U+√
3Λ+

r3
wob

+ σπr2
wob

(
πr

2
+ 2

√
3

Λ+
(4πGσr − 1)

)
, (16)

where U+ > 0 and we use the Bousso-Hawking normalization for Schwarzschild-de Sitter space.

4 Summary and Discussions

In this paper we classified the possible types of vacuum bubbles and calculated the radius and the
nucleation rate. We present analytic computation using the thin-wall approximation. There are nine
types of true vacuum bubbles, three false vacuum bubbles, and Hawking-Moss transition in which the
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thin-wall approximation is not considered. Our results, including the half sized and the large bubble for
true vacuum bubbles, false vacuum bubbles, and degenerate case, extend Parke’s results. We considered
the pair creation of black holes in some of these vacuum bubble backgrounds. These solutions give rise
to the background for the black hole pair creation more naturally.

Our solutions, even if it has simple structure, can be used to understand the mechanism how the
complicated spacetime structure could be created in the early universe as well as tunneling phenomena
occur in the string landscape and eternal inflation.
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Abstract
We study the non-gaussianity from the bispectrum in multi-field inflation models
with a general kinetic term. The models include the multi-field K-inflation and the
multi-field Dirac-Born-Infeld (DBI) inflation as special cases. We derive the three
point function for the curvature perturbation which depends on both adiabatic and
entropy perturbations, in the small sound speed limit and at leading order in the
slow-roll expansion. The contribution from the entropy perturbations has a different
momentum dependence if the sound speed for the entropy perturbations is different
from the adiabatic one, which provides a possibility to distinguish the multi-field
models from single field models.

1 Introduction

The non-gaussianity of the primordial fluctuations will provide powerful ways to constrain models (see
e.g. [1] for a review). The simplest single field inflation models predict that the non-gaussianity of the
fluctuations should be very difficult to be detected even in the future experiments such as Planck. If we
detect large non-gaussianity, this means that the simplest model of inflation would be rejected.

There are a few models where the primordial fluctuations generated during inflation have a large non-
gaussianity. One way to obtain the large primordial non-gaussianity is to consider Multi-field inflation
models where the curvature perturbation is modified on large scales due to the entropy perturbations
[2]. Since it is shown that in the case of the standard kinetic term, it is not easy to generate large
non-gaussianity from multi-field dynamics, it is interesting to consider the multi-field generalization to
the models with non-canonical kinetic term like K-inflation [3, 4] and Dirac-Born-Infeld (DBI) inflation
[5, 6], motivated by string theory. Especially, since in the DBI-inflation, the inflaton is identified with
the position of a moving D3 brane where each compact direction is described by a scalar field, the
DBI-inflation is naturally a multi-field model [7].

In this paper, based on [8], we study a fairly general class of multi-field inflation models with a general
kinetic term which includes K-inflation [9] and DBI-inflation [10, 11]. We study the sound speeds of the
adiabatic perturbations and entropy perturbations and clarify the difference between K-inflation and
DBI-inflation. Then we calculate the third order action by properly taking into account the effect of
gravity. Then three point functions at the leading order in slow-roll and in the small sound speed limit
are obtained. We can recover the results for K-inflation and DBI-inflation easily from this general result.

2 The model

We consider a very general class of models described by the following action

S =
1
2

∫
d4x

√−g
[
M2

PlR + 2P (XIJ , φI)
]
, (1)

1E-mail:mizuno@resceu.s.u-tokyo.ac.jp
2E-mail:Frederico.Arroja@port.ac.uk
3E-mail:Kazuya.Koyama@port.ac.uk
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where φI are the scalar fields (I = 1, 2, ..., N), MPl is the Planck mass that we will set to unity hereafter,
R is the Ricci scalar and

XIJ ≡ −1
2
gµν∂µφI∂νφJ , (2)

is the kinetic term, gµν is the metric tensor. We label the fields’ Lagrangian by P and we assume that it
is a well behaved function. Greek indices run from 0 to 3. Lower case Latin letters denote spatial indices.
Upper case Latin letters denote field indices.

In the background, we are interested in flat, homogeneous and isotropic Friedmann-Robertson-Walker
universes. For this background, we consider perturbations beyond linear order. For this purpose, we will
construct the action at second and third order in the perturbations and it is convenient to use the ADM
metric formalism where the ADM line element reads

ds2 = −N2dt2 + hij

(
dxi + N idt

) (
dxj + N jdt

)
, (3)

where N is the lapse function, N i is the shift vector and hij is the 3D metric. For convenience, we define
background scalar fields φI

0 and scalar field perturbations QI in the flat hypersurface as

φI(x, t) = φI
0(t) + QI(x, t). (4)

Furthermore, we decompose the perturbations into the instantaneous adiabatic and entropy pertur-
bations, where the adiabatic direction corresponds to the direction of the background fields’ evolution
while the entropy directions are orthogonal to this. Similar to [8], we introduce an orthogonal basis
eI
n(n = 1, 2, ..., N) in the field space so that the orthonormalily condition and the adiabatic basis are

given by

P,XIJ eI
neJ

m = δnm , eI
1 =

φ̇I

√
P,XJK φ̇J φ̇K

. (5)

Furthermore, for simplicity, let us consider models described by

P (XIJ , φI) = P̃ (Y, φI) , where Y = GIJ (φK)XIJ +
b(φK)

2
(X2 −XJ

I XI
J) . (6)

The functional form of Y is chosen so that Y = X ≡ GIJXIJ in the background as in the DBI-inflation
model. This model includes as particular cases the K-inflation model for b = 0 and the DBI-inflation for
b = −2f and if P̃ has the DBI form. This might be surprising as the DBI action contains additional
terms of order f2, f3 and f4, but it turn out that these terms do not contribute to the leading order
third order action.

3 Second and Third-order actions

The second order action can be written in terms of the decomposed perturbations as

S(2) =
1
2

∫
dtd3xa3

[{
δmn +

2XP̃,Y Y

P̃,Y

δ1mδ1n +
bX

1 + bX
(δn1δm1 − δmn)

}
(DtQm)(DtQn)

− 1
a2

δmn∂iQm∂iQn − M̃mnQmQn + ÑmnQn(DtQm)
]

, (7)

From this, we can see that the sound speed for adiabatic perturbations c2
ad and for entropy perturbations

c2
en are given by

c2
ad =

P̃,Y

P̃,Y + 2XP̃,Y Y

, c2
en = 1 + bX . (8)

Similarly, at the leading order in slow-roll approximation where the following parameters are small,

ε = − Ḣ

H2
=

XP̃,Y

H2
, η =

ε̇

εH
, χad =

ċad

cadH
, χen =

ċen

cenH
, (9)
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the third-order action can be written as

S(3) =
∫

dx3dta3

[
1
2
ΞnmlQ̇nQ̇mQ̇l − 1

2a2
ΥnmlQ̇n(∂iQm)(∂iQl)

]
, (10)

where we define the coefficients Ξnml and Υnml as

Ξnml = (2XP̃,Y )−
1
2

[
(1− c2

ad)
c2
adc

2
en

δ1(nδml) +

(
4
3

X2P̃,Y Y Y

P̃,Y

− (1− c2
ad)(1− c2

en)
c2
adc

2
en

)
δn1δm1δl1

]
, (11)

Υnml = (2XP̃,Y )−
1
2

(
1− c2

ad

c2
ad

δn1δml − 2(1− c2
en)

c2
en

(
δn1δml − δn(mδl)1

))
, (12)

and it is obvious that the DBI-inflation is a specific case of the general model with c2
ad = c2

en = c2
s.

4 Three-point functions

We derive the three point functions of the adiabatic and entropy fields in the generalized case and at
leading order in slow-roll and in the small sound speeds limit. We consider the two-field case with the
adiabatic field σ and the entropy field s.

The vacuum expectation value of the three point operator in the interaction picture is

〈Ω|Ql(t,k1)Qm(t,k2)Qn(t,k3)|Ω〉 = −i

∫ t

t0

dt̃〈0| [Ql(t,k1)Qm(t,k2)Qn(t,k3),HI(t̃)
] |0〉, (13)

where t0 is some early time during inflation when the field’s vacuum fluctuation are deep inside the
horizons, t is some time after horizon exit. |Ω〉 is the interacting vacuum which is different from the free
theory vacuum |0〉. At this order, the only non-zero three point functions are

〈Ω|Qσ(0,k1)Qσ(0,k2)Qσ(0,k3)|Ω〉 = (2π)3δ(3)(k1 + k2 + k3)
2cad|Aσ|6

H

1
Π3

i=1k
3
i

1
K

×
[
6c2

ad(C3 + C4)
k2
1k

2
2k

2
3

K2
− C1k

2
1k2 · k3

(
1 +

k2 + k3

K
+ 2

k2k3

K2

)
+ 2 cyclic terms

]
, (14)

〈Ω|Qσ(0,k1)Qs(0,k2)Qs(0,k3)|Ω〉 = (2π)3δ(3)(k1 + k2 + k3)
|Aσ|2|As|4

H

1
Π3

i=1k
3
i

1
K̃

×
[
C2c

2
enk2

3k1 · k2

(
1 +

cadk1 + cenk2

K̃
+

2cadcenk1k2

K̃2

)
+ (k2 ↔ k3)

+4C3c
2
adc

4
en

k2
1k

2
2k

2
3

K̃2
− 2(C1 + C2)c2

adk
2
1k2 · k3

(
1 + cen

k2 + k3

K̃
+ 2c2

en

k2k3

K̃2

)]
, (15)

where K = k1 + k2 + k3, K̃ = cadk1 + cen(k2 + k3), cyclic terms means cyclic permutations of the three
wave vectors and (k2 ↔ k3) denotes a term like the preceding one but with k2 and k3 interchanged.

Then, we calculate the leading order in slow-roll three point function of the comoving curvature
perturbation. In this work we will ignore the possibility that the entropy perturbations during inflation
can lead to primordial entropy perturbations that could be observable in the CMB. But we shall consider
the effect of entropy perturbations on the final curvature perturbation. We will follow the analysis, where
it has been shown that even on large scales the curvature perturbation can change in time because of
the presence of entropy perturbations. The way the entropy perturbations are converted to curvature
perturbations is model dependent but it was shown that this model dependence can be parameterized by
a transfer coefficient TRS like

R = AσQσ∗ + TRSAsQs∗, (16)

with

Aσ =


 H

σ̇
√

P̃,Y



∗

, As =


 H

σ̇
√

P̃,Y

√
cen

cad



∗

. (17)
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Using the previous expressions we can now relate the three point function of the curvature perturbation
to the three point functions of the fields obtained in the previous subsection. The three point function
of the curvature perturbation is given by

〈R(k1)R(k2)R(k3)〉 = A3
σ〈Qσ(k1)Qσ(k2)Qσ(k3)〉+AσA2

s (〈Qσ(k1)Qs(k2)Qs(k3)〉+ 2 perms.) . (18)

For the DBI-inflation case the previous equation can be simplified and the total momentum dependence
of the three point function of the comoving curvature perturbation is the same as in single field DBI.
For our general model this is no longer the case, i.e., the different terms of the previous equation have
different momentum dependence. Once again one can see that DBI-inflation is a very particular case
and more importantly it provides a distinct signature that enables us to distinguish it from other more
general models.

5 Conclusions

In this paper, we studied the non-gaussianity from the bispectrum in general multi-field inflation models
with a generic kinetic term. We derived the second and third order action for the perturbations including
the effect of gravity. The second order action is written in terms of adiabatic and entropy perturbations.
It was shown that the sound speeds for these perturbations are in general different. The K-inflation and
the DBI-inflation are special cases where the sound speed for entropy perturbations is one and the same
as the adiabatic perturbations, respectively.

Then we derive the three point function in the small sound speeds limit at the leading order in slow-roll
expansion. In these approximations there exists a three point function between adiabatic perturbations
Qσ and entropy perturbations Qs, 〈Qσ(k1)Qs(k2)Qs(k3)〉, in addition to the pure adiabatic three point
function. This mixed contribution has a different momentum dependence if the sound speed for the
entropy perturbations is different from the adiabatic one. This provides a possibility to distinguish
between the multi-field models and the single field models. Unfortunately, in the multi-field DBI case,
the sound speed for the entropy perturbation is the same as the adiabatic one and the mixed contribution
only changes the amplitude of the three point function. This could help to ease the constraints on DBI-
inflation. For the specialty of the DBI inflation model, we can see that the trispectrum can distinguish
the multi-field inflation from the single field DBI inflation model [12].
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Abstract
We study N = 4 super Yang-Mills theories on a three-sphere with two types of
chemical potential. One is associated with the R-symmetry and the other with the
rotational symmetry of S3 (SO(4) symmetry). These correspond to charged Kerr-
AdS black holes via AdS/CFT. The exact partition functions at zero coupling are
computed and the thermodynamical properties are studied. We �nd a nontrivial
gap between the con�nement/decon�nement transition line and the boundary of the
phase diagram when we include more than four chemical potentials. In dual gravity,
we �nd such a gap in the phase diagram by studying the thermodynamics of the
charged Kerr-AdS black hole. This shows that the qualitative phase structures agree
between both theories.

1 Introduction

The AdS/CFT correspondence has played a central role for about ten years in the study of the strongly
coupled region of N = 4 super Yang-Mills theory with SU(N) gauge group because it is simply described
by type IIB supergravity on AdS5�S5. In the AdS space, there is a phase transition between the thermal
AdS space and the AdS-Schwarzschild black hole, the so-called Hawking-Page transition. As the dual
picture of the Hawking-Page transition, the con�nement/decon�nement transition was found even at zero
coupling by studying large-N gauge theories. [1�3]

In this paper, we study N = 4 SYM theory on a three-sphere with general (R- and SO(4) symmetry)
chemical potentials. In gravity theory, we study the thermodynamics of the charged Kerr-AdS black
hole [4] and compare the result with that of the gauge theory. This paper is based on [5].

2 Large-N gauge theory

2.1 Symmetry of N = 4 super Yang-Mills theory and chemical potentials

The AdS boundary of a charged Kerr-AdS black hole has S3 topology in global coordinates. Therefore,
we need to study N = 4 SYM on S3. The action is given by

S = �
∫

d4x
√
�g tr

[
1
2
(Fµν)2 + (Dµ�m)2 + l�2�2

m + i�λA�µDµλA � g2

2
[�m, �n]2 � g�λA�m[�m, λA]

]
, (1)

and the background metric is
ds2 = gµνdxµdxν = �dt2 + l2d
2

3 , (2)

where µ = 0, 1, 2, 3, m = 1, 2, . . . , 6, A = 1, . . . , 4, Fµν = ∂µAν �∂νAµ + ig[Aµ, Aν ], Aµ is the gauge �eld
of U(N). �m is a scalar �eld and λA is a four-dimensional spinor in the (2, 4̄) + (2̄,4) representation
under SO(1, 3) � SU(4). All �elds are adjoint representation of U(N). l is the radius of S3 and we set
l = 1 for simplicity. The mass term of the scalar �eld (R/6)�2

m = l�2�2
m is needed to make the theory

conformal invariant, where R is the Ricci scalar in (2). This action has two types of global symmetry.
One of them is Rt � SO(4), which arises from the symmetry of the background spacetime (2), where Rt

1e-mail:murata@tap.scphys.kyoto-u.ac.jp
2e-mail:nishioka@gauge.scphys.kyoto-u.ac.jp
3e-mail:tanahashi@tap.scphys.kyoto-u.ac.jp
4e-mail:yumisak@scphys.kyoto-u.ac.jp
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represents the time translation invariance. The other one is SO(6) ' SU(4), which originates from the
R-symmetry of N = 4 supersymmetry.

The conserved charges are associated with commutative (Cartan) subgroups of global symmetry Rt �
SO(4)� SU(4). Due to the time translation symmetry Rt, the Hamiltonian Ĥ is conserved. The SO(4)
group contains a U(1)2 Cartan subgroup and we denote the associated charges as Ĵ1 and Ĵ2. These
charges represent angular momenta on S3. The SU(4) group also contains a U(1)3 Cartan subgroup and
we will denote the associated charges as Q̂a (a = 1, 2, 3). Therefore, we can consider a grand canonical
ensemble with �ve chemical potentials in SYM at a �nite temperature. The grand canonical partition
function is given by

Z(�) = Tr
[
e�β(Ĥ�

∑3
a=1 µaQ̂a�Ω1Ĵ1�Ω2Ĵ2)

]
(3)

where µa, 
1 and 
2 are the chemical potentials conjugate to Q̂a, Ĵ1 and Ĵ2, respectively. We study the
thermodynamics of N = 4 SYM theory using the partition function (3).

2.2 Phase structure

We can �nd the con�nement/decon�nement transition in SYM theory and depict the transition
lines on the phase space. The phase space is the six-dimensional space of (T, 
1, 
2, µ1, µ2, µ3) and
we cannot cover the whole phase space. We thus focus on several slices, which are (µ1, µ2, µ3) =
(µ, 0, 0), (µ, µ, 0), (µ, µ, µ) and µ,
1, 
2 > 0. The con�nement/decon�nement phase transition lines of
these slices are depicted in Fig. 1.

(a) µ1 ≡ µ, µ2 = µ3 = 0 (b) µ1 = µ2 ≡ µ, µ3 = 0 (c) µ1 = µ2 = µ3 ≡ µ

Figure 1: Phase diagrams ofN = 4 large-N SYM theory with R-symmetry and SO(4)-symmetry chemical
potentials. We plot the critical temperature TH for nonzero R-charge chemical potentials (µ1, µ2, µ3) in
the cases of 
1 = 
2 � 
 and 
 = 0, 0.5, 0.7 and 0.9 in (a), (b) and (c). The con�nement phase is below
the line and the decon�nement phase is above it. We set the R-charge chemical potentials as (a) (µ, 0, 0),
(b) (µ, µ, 0) and (c) (µ, µ, µ).

Fig. 1 shows that the critical line becomes lower as the SO(4) chemical potential increases irrespective
of the values of the R-symmetry chemical potentials. Almost all lines converge to the point where T = 0
and µ = 1 for (µ, 0, 0) and (µ, µ, µ) (Fig. 1(a) and 1(c)), while the lines for (µ, µ, 0) with large 
 end at
some maximal chemical potential µmax(
) (Fig. 1(b)).

2.3 Unitarity line

We determine the unitarity line where the phase diagram is bounded. In the presence of the chemical
potentials, the time derivative in the Lagrangian shifts as ∂0 → ∂0�i(

∑3
a=1 µaQa+

∑2
i=1 
iJi). Then, the

Hamiltonian is shifted as H → H �
∑3

a=1 µaQa �
∑2

i=1 
iJi, and the chemical potentials are introduced
into the path integral. By the replacement of the time derivative, the mass of the scalar with the
representation (Es = 2j + 1,mL,mR, Q1 = 1, Q2 = 0, Q3 = 0), |mL| ≤ j, |mR| ≤ j shifts as

m2
scalar = E2

s = (2j + 1)2 → m2
scalar = E2

s � (µ1 + (
1 + 
2)mL + (
1 � 
2)mR)2 . (4)
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(a) µ1 ≡ µ, µ2 = µ3 = 0 (b) µ1 = µ2 ≡ µ, µ3 = 0 (c) µ1 = µ2 = µ3 ≡ µ

Figure 2: Phase diagrams for charged Kerr-AdS black holes with two equal rotations and three indepen-
dent R-charges: (J, J,Q1, Q2, Q3). We plot the transition lines for the R-symmetry chemical potentials
(a) (µ, 0, 0), (b) (µ, µ, 0) and (c) (µ, µ, µ), varying the angular velocities 
 = 
1 = 
2. The thermal AdS
space is preferentially realized below the lines, and the black hole is preferentially formed above the lines.
These �gures are drawn in the same scale as the phase diagrams for the gauge theory in Fig. 1.

The j = 0 mode �rst becomes tachyonic as the chemical potentials increase, and this gives the bound
µ1 = 1 above which the theory breaks down. The scalar modes with (Q1, Q2, Q3) = (0, 1, 0) and (0, 0, 1)
also give the bounds µ2 = 1 and µ3 = 1, respectively. Similarly, the j = ∞ mode also requires the upper
bound 
i = 1. The j = ∞ mode of the vector �eld also becomes tachyonic for 
i > 1, and thus it
imposes the same upper bound on 
i.

This unitarity line meets to the transition line at T = 0 for many cases as shown in Fig. 1, while in
general a gap appears between these two lines when there are more than four. chemical potentials. we
will provide a dual description of this unitarity line, which we think is the line representing the black hole
instability, and we �nd remarkable agreement between their behaviors.

3 Comparison with dual gravity

3.1 Phase structure

The dual gravity theory is given by U(1)3-gauged N = 2 �ve-dimensional supergravity. These U(1)3

charges correspond to the R-charges in dual gauge theory. In general, the solution of the U(1)3-gauged
supergravity can have two independent rotations and three independent charges. Unfortunately such a
general solution has not yet been discovered and we concentrate on one of the currently known charged
Kerr-AdS solution (J1, J1, Q1, Q2, Q3) [4].

Now let us consider the phase structure of the charged Kerr-AdS black hole. The transition tempera-
ture is determined by the condition that the free energy of the black hole is zero. We plot the diagrams
numerically, which are shown in Fig. 2. The phase diagrams of the charged Kerr-AdS black hole (Figs. 2)
are similar to the phase diagrams for the dual gauge theory (Figs. 1). In particular, we can see the
strong agreement between Fig. 1(b) and Fig. 2(b). In this case, for 
 & 0.9, the transition line ends
at (µ, T ) = (µmax, 0), where µmax < 1. This appearance of µmax also occurs in the gauge theory for

 > 0.5 (see Fig. 1(b)). These similarities show that a global phase structure such as a con�nement/
decon�nement transition does not depend on the coupling constant if we regard the gravity theory to be
the strongly coupled gauge theory via AdS/CFT.

3.2 Instability of charged Kerr-AdS black hole

In �2.3, we studied the unitarity line for gauge theory. This unitarity line in the gauge theory corre-
sponds to the local thermodynamical instability line in dual gravity theory. The local thermodynamical
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instability means that the Hessian matrix of second derivatives of the mass with respect to the entropy
and the conserved charges has a negative eigenvalue. Fig. 3 shows the resultant instability lines on which
the Hessian matrix has zero eigenvalue, along with the Hawking-Page transition lines. We also depict the
con�nement/decon�nement transition lines and the unitarity lines of the dual gauge theory.

In Fig. 3, we can see qualitative similarities between the instability line of the gravity theory and the
unitarity line of the dual gauge theory. In particular, in Fig. 3(b) for the case (µ1, µ2, µ3) = (µ, µ, 0), a
gap appeared between the Hawking-Page line and the instability line. We found such a gap in the dual
gauge theory in �2.3.

(a) µ1 ≡ µ, µ2 = µ3 = 0 (b) µ1 = µ2 ≡ µ, µ3 = 0 (c) µ1 = µ2 = µ3 ≡ µ

Figure 3: Phase diagrams for 
 = 0.9 including the unitarity lines. The solid lines are the Hawking-
Page transition line and the instability line of a charged Kerr-AdS black hole. The dashed lines are the
con�nement/decon�nement transition line and the unitarity line of the dual gauge theory.

4 Conclusion

We have studied the free N = 4 SYM theory dual to the charged Kerr-AdS black hole. We found
the con�nement/decon�nement transition and speci�ed the unitarity bound for this theory. In the dual
gravity theory, the Hawking-Page transition and the thermodynamical instability of charged Kerr-AdS
black holes have been investigated. The resulting phase diagrams for gauge theory and charged Kerr-AdS
black holes resemble each other, and, in particular, we have found that the con�nement/decon�nement
transition line and the unitarity line of gauge theory correspond to the Hawking-Page transition line and
the instability line in dual gravity theory, respectively.
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Abstract
The constraints on the time variation of the fine structure constant at recombination
epoch relative to its present value,∆α/α ≡ (αrec − αnow)/αnow, are obtained from
the analysis of the 5-year WMAP cosmic microwave background data. As a result of
Markov-Chain Monte-Carlo analysis, it is found that, contrary to the analysis based
on the previous WMAP data, the mean value of ∆α/α = −0.0009 does not change
significantly whether we use the Hubble Space Telescope (HST) measurement of the
Hubble parameter as a prior or not. The resultant 95% confidence ranges of ∆α/α
are −0.028 < ∆α/α < 0.026 with HST prior and −0.050 < ∆α/α < 0.042 without
HST prior.

1 Introduction

The variation of the fundamental physical constants is a long-standing issue. Dirac first considered such
a possibility [1] and proposed that the Newton constant should be inversely proportional to time. While
his claim is not compatible with the current observations, recent unification theories such as superstring
theories naturally predict the variation of the fundamental constants [2]. Because of these theoretical
motivations, it is important to measure their possible time variation observationally.

Among various fundamental constants, the time variation of the fine structure constant α has been
most extensively discussed in observational contexts. We briefly summarize those terrestrial and celestial
limits on α as follows.

• α̇/α = (−1.6 ± 2.3) × 10−17 yr−1 from the measurement of the frequency ratio of aluminium and
mercury single-ion optical clocks[3].

• ∆α/α = (−0.8 ± 1.0) × 10−8 or ∆α/α = (0.88 ± 0.07) × 10−7 from the Oklo natural reactor in
Gabon (z ∼ 0.1)[4].

• ∆α/α = (−0.57±0.11)×10−5 (z ∼ 0.2−4.2) [5] and ∆α/α = (−0.64±0.36)×10−5 (z ∼ 0.4−2.3)
[6] from spectra of quasars.

• −5.0×10−2 < ∆α/α < 1.0×10−2 (95%C.L.) from big bang nucleosynthesis (BBN, z ∼ 109−1010)[7].

• −0.048 < ∆α/α < 0.032,[8] −0.06 < ∆α/α < 0.01 [9] or −0.039 < ∆α/α < 0.010 [10] (95%C.L.)
from the cosmic microwave background (CMB, z ∼ 103), the former two of which are based on the
analysis of the 1-year WMAP data and the last one on the 3-year WMAP data.

Here, we focus on the CMB constraint on α from 5-year WMAP data, finding new limits on its value
at the recombination epoch[11]. While the other physical constants may vary in time simultaneously,
they are so model-dependent that we consider only the variation of α.

Both CMB and BBN are useful for obtaining the constraints of the variation of α over a cosmological
time scale. Although BBN is superior in the sense that it can probe a longer timespan, it has a drawback
that the effect of α in Helium abundance Yp is model-dependent so that we cannot obtain a robust result
from BBN analysis. On the other hand, the physics of the CMB is much simpler and well understood
with high-precision data, so we can obtain a meaningful limit on the variation of α from the CMB data.

1



2 CMB and varying fine structure constant

As is well known, changing the value of the fine structure constant affects the CMB power spectrum
mainly through the change of the recombination time[12]. Hence, CMB probes the value of α in this
particular epoch.

The recombination process is well approximated by the evolutions of three variables: the proton
fraction, the fraction of the singly ionized Helium, and the matter temperature. Their evolution equations
are so complicated that we solve them numerically by public RECFAST code[13]. Incorporating the α-
dependence into RECFAST code and calculating the ionization fraction (or visibility function), we can
find two charastrictic signatures of changing α: the higher redshift of the last scattering surface and the
narrower width of the visibility function due to the larger value of alpha at the recombination epoch.

Then, increasing α results in three features in the angular power spectrum of the temperature
anisotropy, namely, shift of the peaks to higher multipoles, increase in the height of the peaks due
to the enhanced early integrated Sachs Wolfe effect, and decrease in the small-scale diffusion damping
effect.

3 Results

We constrain the variation of α using three types of CMB anisotropy spectra, namely, angular power
spectrum of temperature anisotropy, CTT

ℓ , that of E-mode polarization, CEE
ℓ , and cross correlation of

temperature and E-mode polarization CTE
l of the 5-year WMAP data[14]. For this purpose, we have

modified the CAMB code [15] including the RECFAST code to calculate the theoretical anisotropy spectra
for different values of α at recombination and we performed the parameter estimation using Markov-Chain
Monte-Carlo (MCMC) techniques implemented in the CosmoMC code[16].

We have run the CosmoMC code on four Markov chains. To check the convergence, we used the
”variance of chain means”/”mean of chain variances” R statistic and adopted the condition R−1 < 0.03.

First, we consider the modified version of the flat ΛCDM model, that is, as for cosmological parameters,
we take (ΩBh2, ΩDMh2, H0, ns, As, τ, ∆α/α), where ΩBh2 is the normalized baryon density, ΩDMh2 is
the normalized cold-dark-matter density, H0 ≡ 100h

[
km sec−1 Mpc−1

]
is the Hubble constant, ns is

the spectral index of the primordial curvature perturbation, As is its amplitude, and ∆α/α ≡ (αrec −
αnow)/αnow is the variation of the fine structure constant at recombination relative to its present value.
We have also analyzed the standard flat ΛCDM model without ∆α/α and compared the other parameter
values between these two models.

The results obtained from MCMC calculations are given in Fig. 1, which shows the one-dimensional
marginalized posterior distributions of the parameters. From the result, it can be seen that the effect of
the additional parameter ∆α/α is only to increase the errors of the other parameters, and the mean values
of the other parameters in modified flat ΛCDM are practically the same as in the standard flat ΛCDM.
The marginalized distributions of H0 and ΩB in Fig. 1 suggest the degeneracy of these parameters with
∆α/α.

Actually, in the above calcutions, we have incorporated the result of the Hubble Key Project of the
Hubble Space Telescope (HST) on the Hubble parameter H0,[17] that is, we have imposed a prior that
H0 is a Gaussian with the mean 72

[
km sec−1 Mpc−1

]
and the variance 8

[
km sec−1 Mpc−1

]
. If we do not

use the HST prior, we can only obtain weaker constraints on the parameter values because of projection
degeneracy. To check the effect of the HST prior, we show one-dimensional distributions in Fig. 2. It is
confirmed that the HST prior is very important to realistically constrain the time varition of α.

The 95% confidence interval and the mean value of ∆α/α from 5-year WMAP data with HST prior
are

−0.028 < ∆α/α < 0.026 and ∆α/α = −0.000894, (1)

respectively. Without the HST prior, they read

−0.050 < ∆α/α < 0.042 and ∆α/α = −0.00181, (2)

respectively. Previous results from 1-year WMAP data are −0.048 < ∆α/α < 0.032 and −0.107 <
∆α/α < 0.043, with and without HST prior, respectively[8], so our results from 5-year WMAP data are

2



Figure 1: (colour online) One-dimensional marginalized posterior distributions for the parameters of the
modified flat ΛCDM model (solid red curve), and for the standard flat ΛCDM model (dotted blue curve).

Figure 2: One-dimensional marginalized posterior distributions for the results with HST prior (solid red
curve), and without it (dotted blue curve).
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about 30% tighter than those from the 1-year WMAP data. We also note that for the 1-year data, the
mean value of ∆α/α was found to be ∆α/α = −0.04 without the HST prior although it was practically
equal to 0 with it. For the 5-year data, we have found that the mean value remains practically intact
whether we use the HST prior or not. This may be interpreted as an indication that the observational
cosmology has made a step forward to the concordance at an even higher level.

4 Conclusion

In terms of the MCMC analysis using CosmoMC code, we have updated constraints on the time variation
of the fine structure constant α based on 5-year WMAP data. We obtained tighter constraints compared
with previous results from 1-year WMAP data owing to the inclusion of the polarization data and the
decrease in the statistical errors. Compared with the result based on the 3-year WMAP data[10], where
no comparison between the cases with and without HST prior has been made, the resultant limit is almost
of the same order of magnitude but the mean value of ours is closer to 0. We have verified that the null
result is favored concerning the variation of α, and the addition of this new parameter ∆α/α does not
essentially affect the determinations of the other standard parameters contrary to the case of the analysis
based on the 1-year WMAP data[8].
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Non-Gaussianity from Isocurvature Perturbations
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Abstract
We develop a formalism to study non-Gaussianity in both curvature and isocurvature
perturbations. It is shown that non-Gaussianity in the CDM/baryonic isocurvature
perturbation leaves distinct signatures in the CMB temperature fluctuations, which
may be confirmed in future experiments, or possibly, even in the currently available
observational data. As an explicit example, we consider the QCD axion and show
that it can actually induce sizable non-Gaussianity.

1 Introduction

Non-Gaussianity in the cosmological perturbation is currently a hot topic since simple slow-roll inflation
models predict negligible non-Gaussian fluctuations, and a large non-Gaussianity, if detected, means that
there is a need for some modifications on a standard scenario where the curvature perturbation on the
Universe comes from quantum fluctuation of the inflaton. Yadav and Wandelt reported a detection of non-
zero non-Gaussianity using WMAP3 year data [1], but WMAP5 results were consistent with vanishing
non-Gaussianity [2]. Although it is not settled yet a large non-Gaussianity exists or not, it is important
to know in which situation a non-Gaussianity can be significantly large.

Recently we have pointed out that large non-Gaussian fluctuation can exist in the CDM/baryonic
isocurvature perturbation [3, 4, 5]. This point was missed in the previous literature except for a few works
[6]. We have developed a formalism for studying non-Gaussianity of both adiabatic and isocurvature type
systematically and also studied their characteristic effects on CMB bispectrum [3, 5]. It is found that
non-Gaussian fluctuations in the isocurvature perturbations have distinct signatures on CMB anisotropy
and can be detected in future experiments.

2 Non-Gaussianity from isocurvature perturbations

We are interested in the case where the (CDM) isocurvature perturbation S exists in addition to the
usual curvature perturbation ζ generated during inflation. For the long wavelength limit, the curvature
perturbation in the matter dominated era can be written as

ζMD = ζ +
1
3
S. (1)

In the most literature, only the case where the non-Gaussian fluctuation resides in the primordial curva-
ture perturbation (ζ) was studied. However, the isocurvature perturbation (S) can also have significant
non-Gaussianity. The bispectrum is a useful tool for characterizing the non-Gaussianity. Thus, in order
to see this, we define the bispectrum of ζMD, BMD

ζ by the following equation [3, 5],

〈ζMD
k⃗1

ζMD
k⃗2

ζMD
k⃗3

〉 ≡ (2π)3δ(k⃗1 + k⃗2 + k⃗3) BMD
ζ (k1, k2, k3). (2)

This contains four kind of terms, like 〈ζζζ〉, 〈ζζS〉, 〈ζSS〉 and 〈SSS〉. Performing the integration, we can
express BMD

ζ in terms of the four combinations of the bispectrum of ζ and S,

BMD
ζ (k1, k2, k3) ≅

(
βζζζ +

1
3
βζζS +

1
9
βζSS +

1
27

βSSS

)
[Pδφ(k1)Pδφ(k2) + 2 perms.] , (3)

1E-mail:nakayama@icrr.u-tokyo.ac.jp
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where each term on the right hand side (RHS) is given by

βζζζ = NaNbNab + NabNbcNca∆2
δφ ln(kbL), (4)

βζζS = NaNbSab + 2NabNaSb + 3NabNbcSca∆2
δφ ln(kbL), (5)

βζSS = SaSbNab + 2SabSaNb + 3SabSbcNca∆2
δφ ln(kbL), (6)

βSSS = SaSbSab + SabSbcSca∆2
δφ ln(kbL), (7)

in a squeezed configuration that one of the three wave vectors is much smaller than the other two (e.g.
k1 ≪ k2, k3), where kb ≡ min{k1, k2, k3}, ∆δφ = Hinf/2π and L is taken to be a few times larger than
the present Hubble scale. These terms except for the first one exist when the isocurvature perturbation
has non-Gaussian fluctuation. Here we have used a δN expansion such that ζ = Naδφa + . . . and
also S = Saδφa + . . . . Since a single parameter is not enough to parametrize the non-Gaussianity in
the presence of both the adiabatic and isocurvature perturbations because of their different effects on
matter spectrum or temperature anisotropy of the CMB (see below), we define four types of non-linerity
parameters as following [5],

6
5
f

(adi)
NL =

βζζζ

α2
ζ

,
6
5
f

(cor1)
NL =

1
3

βζζS

α2
ζ

,
6
5
f

(cor2)
NL =

1
9

βζSS

α2
ζ

,
6
5
f

(iso)
NL =

1
27

βSSS

α2
ζ

, (8)

where αζ = NaNa. The first one, f
(adi)
NL , is the “well-known” fNL often used in many literature. However,

in general, all the four non-linearity parameters can be concomitant and their effects on the temperature
anisotropy have not been investigated in the previous literatures.

Now let us move to their effects on the bispectrum of the CMB anisotropy [3, 5]. From temperature
anisotropies originated from the adiabatic and isocurvature perturbations ∆T (adi)(n⃗) and ∆T (iso)(n⃗) for
a given direction n⃗, we define aℓm by

aℓm =
∫

dn⃗

[
∆T (adi)(n⃗)

T
+

∆T (iso)(n⃗)
T

]
Y ∗

ℓm(n⃗). (9)

Transfer functions, which connect the curvature perturbation ζ and isocurvature perturbation S to the
temperature fluctuation, are defined as Θ(adi)

ℓ (k⃗) ≡ g
(adi)
Tℓ (k)ζk⃗ and Θ(iso)

ℓ (k⃗) ≡ g
(iso)
Tℓ (k)Sk⃗, where

Θ(adi/iso)
ℓ (k⃗) is the multipole moment of CMB temperature anisotropy from the adiabatic/isocurvature

perturbation. The angular bispectrum of aℓm, given by

〈aℓ1m1aℓ2m2aℓ3m3〉 ≡ Gm1m2m3
ℓ1ℓ2ℓ3

bℓ1ℓ2ℓ3 , (10)

where Gm1m2m3
ℓ1ℓ2ℓ3

≡
∫

dn⃗ Yℓ1m1(n⃗)Yℓ2m2(n⃗)Yℓ3m3(n⃗) (Gaunt integral), bℓ1ℓ2ℓ3 can be expressed in terms of
fNL

′s defined above and transfer functions. In general bℓ1ℓ2ℓ3 has complicated form, and here we focus
on the following two terms, which are relevant when the isocurvature perturbation is uncorrelated with
the curvature perturbation,

b
(adi)
ℓ1ℓ2ℓ3

=
48
5π3

∫ ∞

0

dr r2

∫ ∞

0

dk1 k2
1g

(adi)
Tℓ1

(k1)jℓ1(k1r)Pζ(k1)
∫ ∞

0

dk2 k2
2g

(adi)
Tℓ2

(k2)jℓ2(k2r)Pζ(k2)

×
∫ ∞

0

dk3 k2
3g

(adi)
Tℓ3

(k3)jℓ3(k3r) f
(adi)
NL + (2 perms), (11)

b
(iso)
ℓ1ℓ2ℓ3

=
1296
5π3

∫ ∞

0

dr r2

∫ ∞

0

dk1 k2
1g

(iso)
Tℓ1

(k1)jℓ1(k1r)Pζ(k1)
∫ ∞

0

dk2 k2
2g

(iso)
Tℓ2

(k2)jℓ2(k2r)Pζ(k2)

×
∫ ∞

0

dk3 k2
3g

(iso)
Tℓ3

(k3)jℓ3(k3r) f
(iso)
NL + (2 perms). (12)

Total bispectrum in this case is bℓ1ℓ2ℓ3 = b
(adi)
ℓ1ℓ2ℓ3

+ b
(iso)
ℓ1ℓ2ℓ3

. Expressing these terms as

b
(adi/iso)
ℓ1ℓ2ℓ3

= b
L, L, NL(adi/iso)
ℓ1ℓ2ℓ3

+ b
L, NL, L(adi/iso)
ℓ1ℓ2ℓ3

+ b
NL, L, L(adi/iso)
ℓ1ℓ2ℓ3

, (13)

we plot the bispectrum of the CMB anisotropy bL, L, NL
ℓ1ℓ2ℓ3

and bNL, L, L
ℓ1ℓ2ℓ3

in Fig. 1, for both adiabatic and

isocurvature cases with (6/5)f (adi)
NL = 1 and (6/5)f (iso)

NL = 1/27, respectively.
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Figure 1: Bispectrum of the CMB anisotropy bNL, L, L
ℓ1ℓ2ℓ3

and bL, L, NL
ℓ1ℓ2ℓ3

for (6/5)f (adi)
NL = 1 and (6/5)f (iso)

NL =
1/27. Shaded regions are unphysical. (Courtesy of T. Sekiguchi.)

3 Application to the axion

In this section we apply our formulation to the axion as a concrete example [3]. The axion, a, is a pseudo
Nambu-Goldstone boson associated with the spontaneous breaking of the PQ symmetry. The existence
of the axion is strongly motivated, since it naturally solves the strong CP problem in QCD. Let us denote
the breaking scale by Fa, whose magnitude is constrained from various experiments, astrophysical and
cosmological considerations. The most strict lower bound on Fa comes from the observation of 1987A. In
order to prevent too fast cooling by the axion emission, Fa

>∼ 1010 GeV is required. On the other hand,
the upper bound is provided by the cosmological argument. The axion obtains a tiny mass after the QCD
phase transition due to the anomaly effect which explicitly breaks the PQ symmetry. The axion begins
to oscillate coherently after that. Since the lifetime of the axion is very long, it survives until now and
contributes to DM of the universe. The abundance is estimated as

Ωah2 ≅ 0.2
(

Fa

1012 GeV

)−0.82 ( a∗

1012 GeV

)2

, (14)

where a∗ = max{Faθ, Hinf/2π} and θ denotes the initial misalignment angle of the axion.
If the PQ symmetry is already broken before or during inflation and if it is never restored after inflation,

the axion has unsuppressed quantum fluctuations during inflation because it remains practically massless
during inflation. Since the axion contributes to some fraction of DM, such an axionic isocurvature
fluctuation is converted to the CDM isocurvature fluctuation. Thus the axion is a plausible candidate
for generating the non-Gaussianity from the isocurvature perturbation. The isocurvature perturbation is
given by

S ≅
(

Ωa

ΩCDM

)[
2aiδa

a2
∗

+
(

δa

a∗

)2]
, (15)

where ai = Faθ. The second term denotes the non-Gaussian isocurvature fluctuation. In Fig. 2, f
(iso)
NL

is shown for Fa = 1012 GeV. Constraint on the uncorrelated isocurvaure perturbation from CMB power
spectrum [2] is also shown. Thus we can see that large enough f

(iso)
NL can be obtained with satisfying the

isocurvature constraint.2
2In the case where the axion rolls down from the top of the cosine-type potential, see Ref. [7].
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Figure 2: Contours of f
(iso)
NL (= 1, 10 and 100) and r ≡ Ωa/ΩCDM for Fa = 1012 GeV.

4 Conclusions

We have investigated a possibility that large non-Gaussianity is generated by isocurvature fluctuations.
One interesting feature of this scenario is that the bispectrum and the power spectrum of the CMB
temperature fluctuations exhibit characteristic scale dependence. Furthermore, our results indicate that
large non-Gaussianity may be accompanied with an observable fraction of the isocurvature perturbation.
If future observations confirm both large non-Gaussianity and a certain amount of isocurvature fluctuation
component, our scenario will become very attractive. Although we have restricted ourselves to the
CDM isocurvature perturbation, the baryonic isocurvature perturbation can also generate large non-
Gaussianity in a similar fashion [4]. Another example is a curvaton scenario with correlated CDM
(baryonic) isocurvature perturbations [5]. For some recent related works see Refs. [8, 9, 10].
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Abstract
A model of multi-component hybrid ination, dubbed multi-brid ination, which may
yield a large non-Gaussian paramter fNL, was proposed recently. In particular, for
a two-brid ination model with an exponential potential and the condition that the
end of ination is an ellipse in the �eld space, it was found that, while keeping the
other observational quantities within the range consistent with observations, large
non-Gaussianity is possible for certain inationary trajectories. In this talk, in order
to see if this result is a general feature of multi-brid ination, we consider a model
with a potential with an exponent quadratic in the scalar �eld components. We also
consider a more general class of ellipses for the end of ination. Focusing on the case
of two-brid ination, we �nd that large non-Gaussianity is also possible in the present
model. Then by tuning the model parameters, we �nd that there exist models for
which both the non-Gaussianity and the tensor-to-scalar ratio are large enough to be
detected in the very near future.

1 Introduction

The primordial non-Gaussianity has been one of the hottest topics in cosmology in recent years. The
conventional, single-field slow-roll inflation predicts that the curvature perturbation is Gaussian to an
extremely high accuracy. In other words, if any primordial non-Gaussianity is detected, it strongly
indicates that the dynamics of inflation is not as simple as we thought it to be.

The primordial non-Gaussianity is conveniently represented by a parameter denoted by fNL [1].
Roughly, it is the ratio of the 3-point correlation function (or the bispectrum) to the square of the 2-
point correlation function (or the square of the spectrum). It is expected that near-future experiments
such as those of PLANCK will be able to detect fNL at a level as small as 5 [2].

Finding even a small deviation from Gaussianity will have profound implications on the theory of
the early universe. Consequently, numerous types of inflationary models that produce detectable non-
Gaussianity have been proposed and studied. In terms of the nature of non-Gaussianities, most of
these models can be classified into two categories; those with non-Gaussianities arising intrinsically from
the quantum fluctuations, and those with non-Gaussianities due to nontrivial classical dynamics on
superhorizon scales. A typical example of the former is the DBI inflation, in which the slow-roll condition
can be fully violated. In this case, the equilateral fNL (denoted by f equil

NL ) representing the amplitude
of the bispectrum of the equilateral configurations, is found to play an important role. On the other
hand, in the latter case where non-Gaussianities are produced on superhorizon scales, by causality the
local fNL (denoted by f local

NL ) characterizes the level of the non-Gaussianity. It is defined in terms of the
coefficient in front of the second order curvature perturbation [1],

Φ = ΦL + f local
NL Φ2

L , (1)

where Φ is the curvature perturbation on the Newtonian slice and ΦL is its linear, Gaussian part.
In this paper, we focus on the latter case, that is, we consider models that may produce a large

value of f local
NL , for example 10–100. More specifically, we consider hybrid inflation with multiple inflaton

fields, dubbed multi-brid inflation [3]. The inflaton fields are assumed to follow the slow-roll equations of
motion, and their fluctuations are assumed to be Gaussian. In this case, the δN formalism is most useful
for the evaluation of the curvature perturbation and non-Gaussianity [4].

1E-mail:naruko@yukawa.kyoto-u.ac.jp
2E-mail:misao@yukawa.kyoto-u.ac.jp
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As in the conventional hybrid inflation, the inflaton fields are coupled to a water-fall field, and inflation
ends when the inflaton fields satisfy a certain condition that triggers the instability of the water-fall field.
However, unlike the case of a single inflaton field in which there is essentially no degree of freedom in the
condition for the end of inflation, there is a substantial increase in the degree of freedom at the end of
inflation in multi-brid inflation and it widens the viable range of the parameter space considerably and
leads to the possibility of generating large non-Gaussianity.

As a model of multi-brid inflation, an analytically solvable two-brid inflation model was recently
investigated in detail [3], where the potential was assumed to be exponential with the exponent given
by a linear combination of the inflaton fields. In this paper, we consider a two-brid model with again
an exponential potential but with the exponent given by a quadratic function of the inflaton fields. The
potential has point symmetry about the origin of the field space, in contrast to the case of the linear
exponent which has no symmetry. Thus by investigating the quadratic case, we will be able to see if the
generation of large non-Gaussianity is a generic feature of multi-brid inflation or if it is due to the lack
of symmetry that leads to large non-Gaussianity in the linear exponent case.

2 Two-brid ination

We consider a two-component scalar field whose action is given by

S = −
∫

d4x
√
−g

1
2
gµν

∑
A=1,2

∂µϕA∂νϕA + V (ϕ)

 , (2)

where the potential is given by

V = V0(χ, ϕ1, ϕ2) exp
[
1
2

(
m2

1ϕ
2
1 + m2

2ϕ
2
2

)]
, (3)

with V0 being a function of a water-fall field χ as well as of ϕ1 and ϕ2, but is assumed to be constant in
time during inflation.

The slow-roll equations of motion are obtained by neglecting the kinetic term in the Friedmann
equation and the second time derivative in the field equations. Thus the slow-roll equations of motion
are

3H2 = V ,
dϕA

dN
=

1
V

∂V

∂ϕA
= m2

AϕA , (4)

where H = ȧ/a and the dot ˙ denotes a derivative with respect to the cosmic proper time. The number
of e-folds counted backwards in time, dN = −Hdt, is used as the time variable for later convenience.
Hence we immediately obtain

N =
1
2

ln
[
ϕ

2/m2
1

1 + ϕ
2/m2

2
2

]
− 1

2
ln

[
ϕ

2/m2
1

1,f + ϕ
2/m2

2
2,f

]
, (5)

where the number of e-folds is set to zero at the end of inflation and ϕA,f is the final value of the inflaton
fields.

We assume that inflation ends at

σ2 = G(ϕ1, ϕ2) ≡ g2
1(ϕ1 cos α + ϕ2 sinα)2 + g2

2(−ϕ1 sin α + ϕ2 cos α)2 , (6)

which is realized by the potential V0 given by

V0 =
1
2
G(ϕ1, ϕ2)χ2 +

λ

4

(
χ2 − σ2

λ

)2

. (7)

We parametrize the scalar fields at the end of inflation as

σ

g1
cos γ = ϕ1,f cos α + ϕ2,f sinα ,

σ

g2
sin γ = −ϕ1,f sinα + ϕ2,f cos α , (8)
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The angle α describes the amount of rotation of the ellipse relative to the ϕ1 and ϕ2 axes. The angle γ
describes the position of the inflaton trajectory at the end of inflation.

Since there is a constant of motion from Eq.(4), we have

lnϕ1

m2
1

− lnϕ2

m2
2

=
1

m2
1

ln
σ

g1g2
(g2 cos α cos γ − g1 sinα sin γ) − 1

m2
2

ln
σ

g1g2
(g2 sin α cos γ − g1 cos α sin γ). (9)

This equation determines the parameter γ in terms of ϕ1 and ϕ2: γ = γ(ϕ1, ϕ2). Hence, from Eq. (8),
ϕ1,f and ϕ2,f become functions of ϕ1 and ϕ2,

ϕ1,f = ϕ1,f (ϕ1, ϕ2) , ϕ2,f = ϕ2,f (ϕ1, ϕ2) . (10)

With this understanding, the number of e-folds given by Eq. (5) becomes a function of (ϕ1, ϕ2). It is
then straightforward to obtain δN to full nonlinear order. It can be straightforwardly calculated as

δN = N(ϕ1 + δϕ1, ϕ2 + δϕ2) − N(ϕ1, ϕ2) . (11)

3 Case for large non-Gaussianity

In this section, we compute the curvature perturbation of our model explicitly, and evaluate the curvature
perturbation spectrum PS , the spectral index nS , the tensor-to-scalar ratio r, and the non-Gaussianity
parameter f local

NL . But, because these expressions are very complicated, it is not easy to study all possible
cases in detail. However, there are some limiting cases in which we have a substantially simplified
expression for PS , nS , r and f local

NL , but which are yet sufficiently of interest.
One case of interest is when the two masses are equal, m1 = m2. In this case, the potential during

inflation is O(2) symmetric. This symmetry is broken at the end of inflation because of condition (6),
unless g1 = g2. This model was discussed by Alabidi and Lyth [5] as a new mechanism of generating
curvature perturbations. Another case of interest is when the ratio of the mass parameters are large, for
example, m1 ≫ m2.

Using δN -formalism, the expressions of PS , nS , r and f local
NL are given. In equal mass case, the formulas

simplify considerably to

PS =
( g

σm2em2Nk

)2 1 + cos 2β cos 2γ

2

(
H

2π

)2

tk

=
8
r

(
H

2π

)2

tk

, (12)

nS − 1 = 2m2 − 2

(
σm2em2Nk

g

)2
1 − cos 2β cos 2γ

sin2 2β
= 2m2 − r

8
1 − cos2 2β cos2 2γ

sin2 2β
, (13)

r = 8

(
σm2em2Nk

g

)2
2

1 + cos 2β cos 2γ
, (14)

f local
NL =

5m2

6

{(
cos 2β sin 2γ

1 + cos 2β cos 2γ

)2

− 1

}
, (15)

here g and β is giben by g =
√

g2
1 + g2

2 and tanβ = g2/g1 respectively. Note that the α-dependence has
disappeared because of the symmetry.

As is clear from Eq. (15) for f local
NL , in order to obtain large non-Gaussianity, it is necessary for the

factor in the curly brackets to become large, that is, cos 2β sin 2γ/(1+cos 2β cos 2γ) ≫ 1. This is possible
either in the limit (β, γ) → (0, π/2) or (β, γ) → (π/2, 0). Since these two limits are equivalent, let us take
the limit (β, γ) → (0, π/2). This corresponds to the situation in which the ellipse is highly elongated and
the inflaton trajectory hits the ellipse close to one of the tips of the majoraxis.

To investigate in more detail the theoretical predictions of this model, let us derive expressions for r
and f local

NL in terms of the observational data as much as possible. We fix the amplitude of the spectrum
PS and the spectral index nS . The WMAP normalization at the present Hubble horizon scale and the
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WMAP 5-year analysis [6] gives

PS =
8
r

(
H

2π

)2

tk

= 2.5 × 10�9 , nS = 0.96 +0.014
−0.015 . (16)

Below we replace PS and nS by these observed values.
The useful expression may be obtained by combining the two expressions of r and f local

NL :

f local
NL ∼ 52

( r

0.1

) (
10�4

β2

)
m2

m2 + 0.02
. (17)

This tells us that for m2 >∼ 0.02, in the very near future, both r and f local
NL may be large enough to be

detected upon tuning the model parameters to some extent. As we can see, although the values of f local
NL

and r are relatively sensitive to the values of m2 and β, there indeed exist models with large f local
NL and

r simultaneously.

4 conclusion

We analytically investigated the curvature perturbation and its non-Gaussianity in a model of multi-field
hybrid inflation, dubbed multi-brid inflation. The model we considered is a two-field hybrid inflation
(two-brid inflation) model with the potential mimicking conventional quadratic potentials. The new
ingredient of the model is the generalization of the condition for the end of inflation. We considered a
very general coupling of the two inflaton fields to a water-fall field.

Then, using the δN formula, we derived an analytical expression for the curvature perturbation.
Based on this expression, we obtained the curvature perturbation spectrum PS , the spectral index nS ,
the tensor-to-scalar ratio r, and the non-Gaussian parameter f local

NL . We found that a large positive f local
NL

is possible in this model. Then, at least for a certain limited range of the parameters, we explicitly
showed that it is possible to have large non-Gaussianity while keeping the values of the other quantities
consistent with those of the observation. In particular, we showed that when the two inflaton masses are
equal, the parameters can be tuned so that they lead to a fairly large tensor-to-scalar ratio, r ∼ 0.1, as
well as a large non-Gaussian parameter, f local

NL ∼ 50. These values will be at a detectable level in the very
near future. On the other hand, interestingly, we found that having a large mass ratio in the present
model does not help in producing both r and f local

NL large enough to be detected. This is in contrast to
the model studied in [3].

The standard lore has been that f local
NL is too small for models with large r or vice versa. We have

shown, in this paper, not be the case, particularly in this model of spontaneously symmetry breaking at
the end of inflation. This may be the most important conclusion of this work. At the moment, we have
no clear physical explanation for this result. We hope we will be able to answer this question in the near
future.
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Abstract
The gauge theory - gravity duality has provided us a way of studying QCD at high
energies or short distances from straightforward calculations in classical general rel-
ativity. Among numerous results obtained so far, one of the most striking is the
universality of the ratio of the shear viscosity to the entropy density. For all gauge
theories with Einstein gravity dual this ratio has been found to be η/s = 1/4π. In
this talk, we consider higher curvature-corrected black hole solutions for which η/s
can be smaller than 1/4π, thus violating the conjecture bound. Here we shall argue
that the Gauss-Bonnet and (Riemann)2 gravities, in particular, provide concrete ex-
amples in which inconsistency of a theory, such as, a violation of microcausality at
short distances, and a classical limit on black hole entropy are correlated.

1 Introduction

Anti de Sitter conformal field theory (CFT) correspondence [1] has proven an excellent tool to study
strongly coupled gauge theories. Through AdS holography one can also study hydrodynamic properties
of a certain class of boundary CFTs. Indeed, for a large class of four-dimensional CFTs, the ratio of the
shear viscosity η to the entropy density s is (in units where h̄ = kB = 1) given by [2],

η

s
=

1
4π

. (1)

This result is universal for all theories with Einstein gravity dual. The reason of this uniqueness is due
to the fact that in pure Einstein gravity all black holes satisfy the Bekenstein-Hawking entropy law

S =
kBc3

h̄

A

4GN
, (2)

where h̄ is the Planck’s constant, A is the area of the horizon corresponding to the surface at r = r+

and GN is the Newton’s constant. However, the ratio η/s can be different from 1/4π in general gravity
theories (with higher derivative or higher-curvature corrections). A violation of causality may occur in
the boundary CFT when η/s is too low. This violation can be related to black hole entropy bounds.

To establish better contact with QCD via AdS holography, it is essential to understand the effect
of curvature corrections to Einstein-Hilbert action in the holographic framework, see [3] and references
therein. As the simplest modification to Einstein gravity, we consider the following quadratic action

I =
1

16πGN

∫
ddx

√−g
[
R− 2Λ + α′L2

(
aR2 + bRµνRµν + cRµνλρR

µνλρ
)]

, (3)

where α′ is a dimensionless coupling and the bulk cosmological term Λ = −(d − 1)(d − 2)/2L2. We
will focus our discussion to the gravity sector in AdS5, for which we have from AdS/CFT dictionary,
GN ≡ (πL3/4N2

c ) and L = (4πgsNc)1/4`s, where `s is the string scale and gs the string coupling and Nc

is the number of color charges or rank of the gauge group. Since α′ ∼ 1/
√

λ, in the dual supergravity
description, a small α′ corresponds to the strong coupling limit, λ ≡ g2

Y MNc À 1. The Gauss-Bonnet
(GB) term obtained by setting a = c = 1 and b = −4 in (3), in which case the equations of motion are

1E-mail:ishwaree.neupane@canterbury.ac.nz
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second order in the metric and there would be no need to treat α′ as small. For a class of CFTs in flat
space with Gauss-Bonnet gravity dual, we find [4]

η

s
=

1
4π

(
1− 2(d− 1)λGB

(d− 3)

)
, (4)

where λGB ≡ (d − 3)(d − 4)α′, which is smaller than 1/4π with λGB > 0. Based on the bulk causal
structure of an AdS5 black brane solution, the authors of [4] found a more stronger bound for λGB, i.e.

λGB <
9

100
, or, equivalently,

η

s
≥ 16

25

(
1
4π

)
, (5)

which otherwise violates a microcausality in the dual CFT defined on a flat hypersurface. Here we argue
that the critical value of λGB beyond which the theory becomes inconsistent is related to the entropy
bound for a large class of AdS black holes. Further, in the holographic context, we find that the AdS black
hole solutions with spherical and hyperbolic event horizons allow much wider possibilities for η/s [5].

2 Entropy and Viscosity Bounds

For pure AdS GB black hole solutions, the entropy and Hawking temperature are given by [6]

S =
A

4GN

(
1 +

2(d− 2)kλGB

(d− 4)x2

)
, T =

(d− 1)x4 + k(d− 3)x2 + (d− 5)k2λGB

4πLx(x2 + 2kλGB)
(6)

(in units c = h̄ = kB = 1) where x ≡ r+/L, A ≡ Vd−2r
d−2
+ , with Vd−2 being the unit volume of the

base manifold or hypersurface M. The entropy of a GB black hole depends on the curvature constant
k, whose value determines the geometry of event horizon M = Sd−2, IRd−2 and Hd−2, respectively, for
k = +1, k = 0 and k = −1 2. Especially, at the k = −1 extremal state with zero Hawking temperature,

S|T→0 =
V3

GN

L3

27/2
(1− 12λGB) , E|T→0 = 0. (7)

Thus, beyond a critical coupling λGB > λcrit, the entropy S becomes negative, which indicates a violation
of cosmic censorship or the second law of the thermodynamics. In the AdS5 case, λcrit = 1/12. This
critical value of λGB above which the theory is inconsistent nearly coincides with the bound λGB < 9/100
required for a consistent formulation of a class of CFTs with Gauss-Bonnet gravity dual.

Next let us consider small metric fluctuations φ = h1
2 around an AdS GB black hole metric

ds2 = −r2
+

L2
f(z)N2

∗dt2 +
L2

f(z)
dz2 +

r2
+z2

L2

(
dx2

3

1− kx2
3

+ x2
3

2∑

i=1

dx2
i + 2φ(t, x3, z)dx1dx2

)
, (8)

where k = 0,±1 and N∗ ≡ a = [(1 +
√

1− 4λGB)/2]1/2. The scalar metric fluctuation

φ(t, x3, z) =
∫

dwdq

(2π)3
φ(z; k) e−iwt+iqx3 , φ(z;−k) = φ∗(z, k), (9)

(where k = (w, 0, 0, q)) satisfies the following (linearized) equation of motion

K∂2
zφ + ∂zK∂zφ + K2φ = 0. (10)

This structure is not affected by Maxwell type charges but can be affected by scalar charges. In pure GB
gravity, K = z2f̃ (z − λGB∂zf) , K2 = (z2w̃2/N2

∗ f) (z − λGB∂zf)− z(1− λGB∂2
z f̃)

(
q̃2 + 2k̃

)
,

f(z) = k̃ +
z2

2λGB

[
1−

√
1− 4λGB +

4λGB

z4

(
1 +

k

x2
+

λGBk2

x4

)]
,

2The GB term is topological in d = 4, especially, with a constant coupling, α′L2 = const, so we shall take d ≥ 5.
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where z ≡ r/r+, x ≡ r+/L, k̃ = k/x2, w̃ ≡ wL/x and q̃ ≡ qL/x. Equation (10) may be solved with
the following incoming boundary conditions at the horizon: φ(z; k) = ain(k)φin(z; k) + aout(k)φout(z; k),
aout ≡ 0 and ain ≡ J(k), where J(k) is an infinitesimal boundary source for the fluctuating field φ. To
the leading order in w̃, and in the limit q̃ → 0, the solution is given by [5]

φ(z; k) = J(k)

[
1 +

iw̃

4N∗
a2

√
1− 4λGB

(
1
z4
− 4λGBk̃

3(1 +
√

1− 4λGB)
1
z6

+O(z−8)

)
+O(w̃2)

]
. (11)

By identifying φ ∼ T 2
1 , one obtains the retarded two-point Green’s function

GR
12,12(w, 0) = −i

∫
d4xeiwtθ(t)〈[T12(t, ~x), T12(0,~0)]〉, (12)

which satisfies GA(w, ~q) ≡ GR(w, ~q)∗. The shear viscosity η is obtained by using the Kubo formula

η = lim
w→0

1
2iw

[
GA

12,12(w, 0)−GR
12,12(w, 0)

] ≡ lim
w→0

1
w

ImGR
12,12(w, 0). (13)

It is not difficult to see that the curvature on a boundary does not affect the result on a flat hypersurface,
namely η = 1

16πGN

(
r3
+

L3

)
(1− 4λGB). However, the ratio η/s is modified to be

η

s
=

1
4π

(1− 4λGB)
(1 + 6k̃λGB)

. (14)

One obtains the standard result in Einstein gravity, i.e. η/s = 1/4π, only at a fixed k̃, i.e. when k = −1
and x = r+/L =

√
3/2. The minimum of entropy density occurs at x =

√
1/2, implying that

s =
1

GN

1
27/2

(1− 12λGB) , η =
1

4πGN

1
27/2

(1− 4λGB) . (15)

The positivity of extremal entropy density implies λGB ≤ 1/12 and hence η/s ≥ 1/6π for k = 0 and
η/s ≤ 5/12π for k = −1. Quite remarkably, the lower bound η/s ≈ 0.66/4π is similar to a lower value of
η/s anticipated at relativistic heavy ion collision experiments [7]. In the k = +1 case, the lower bound on
η/s could be very close to that in flat space which however arises as a consequence of boundary causality,
which requires that the square of local speed of graviton on a constant z-hypersurface is less than unity,

c2
g = 1−

(
5
2
− 2

1− 4λGB
+

1
2
√

1− 4λGB

)
1
z4

+O(z−8) < 1

or λGB < 0.09. This limit is only very weakly affected by the Maxwell term FµνFµν and the possible F 4

type corrections to Maxwell field [8, 9]. In d = 6 and d = 7, the consistency of GB gravity requires

λd=6
GB

<∼ 0.1380, λd=7
GB

<∼ 0.1905. (16)

Next consider the (Riemann)2 gravity which is obtained by setting a = b = 0 in eq. (3), for which [5]

η =
r3
+N2

c

4π2L3

(
1− 4λRiem +O(λ2

Riem)
)
, s =

r3
+N2

c

πL3

(
1 + 4λRiem

(
1 +

3
2
k̃

)
+O(λ2

Riem)
)

. (17)

For a class of boundary field theories with (Riemann)2 gravity dual in flat space (k = 0), this yields

η

s
=

1
4π

(
1− 4λRiem

1 + 4λRiem

)
≈ 1

4π
(1− 8λRiem) =

1
4π

(
1− 1

Nc

)
. (18)

The limit λRiem > 1/8 is the same as implied by the positivity of extremal entropy of a (Riemann)2 black
hole. Taking into account all three possibilities for the boundary topology that k = 0 or k = ±1, we find

0 <
η

s
≤ 3

2

(
1
4π

)
. (19)

It would be interesting to know whether either of these limits applies to nuclear matter at extreme
densities and temperatures, or heavy ion collision experiments and study further a universality of the
result η/s ≈ 1/4π through numerical hydrodynamic simulations of data from RHIC and LHC.
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3 Conclusion

The Gauss-Bonnet gravity with a coupling λGB < 1/4 could be viewed as a classical limit of a consistent
theory of quantum gravity. It is conceivable that the bound on the shear viscosity of any fluid in
terms of its entropy density is saturated, η/s = 1/4π, for gauge theories at large ’t Hooft coupling,
which correspond to the cases where all higher-order curvature contributions are absent. But this bound
is naturally in immediate threat of being violated in the presence of generic higher-order curvature
corrections to the Einstein-Hilbert action. It is remarkable that by tuning of the Gauss-Bonnet and/or
generic higher curvature couplings, the ratio η/s can be adjusted to a small positive value.

In this note, the limits on GB coupling are imposed by demanding the positivity of extremal black hole
entropy and non-violation of boundary causality. We have not found any obvious explicit bound on λGB

from the thermodynamics of spherically symmetric AdS Gauss-Bonnet black holes, which could however
arise as a consequence of causality violation of a boundary CFT. The critical value of λGB beyond which
the theory becomes inconsistent is found to be related to the entropy bound for an AdS GB black hole
with a hyperbolic or Euclidean anti-de Sitter event horizon. This remark applies also to the (Riemann)2

gravity. Some other inconsistencies of higher-derivative gravity, such as an appearance of tacyonic mode,
or semi-classical instability at short distances, are often related to a classical limit on black hole entropy.

Finally, we make the following remark. In the presence of a Maxwell type charge q, the ratio η/s is
generally modified, which is given by 4π(η/s) = 1− 4λGB(1− a/2), where a ≡ q2L6/r2

+. In the extremal
limit (a → 2), one may restrict the coupling λGB such that λGB ≤ 1/24. The latter ensures that the
gravitational potential of a black brane is positive and bounded. The conjecture bound η/s ≥ 1/4π is
saturated only in the extremal limit, while in general it is violated also by charged Gauss-Bonnet black
brane solutions. The bound 4π(η/s) ≥ 5/6 found in [8] with a nonzero charge is stronger than for pure
EGB gravity in flat space, namely 4π(η/s) ≥ 2/3. In d = 5 dimensions, the entropy of a GB black hole
could be negative for 1

12 < λGB < 1/4, leading to a possible violation of unitarity in this range. This
suggests some deeper connections between bulk causality violation and limits on black hole entropy.
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Does the Entropy-Area Law hold

for Schwarzschild-de Sitter spacetime ?

Hiromi Saida1
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Abstract
Multi-horizon means multi-temperature unless all of the Hawking temperatures of
horizons coincide. Multi-temperature system is a nonequilibrium system, and gener-
ally the equation of state in nonequilibrium is different form that in equilibrium. This
may imply that the horizon entropies in multi-horizon spacetime do not satisfy the
entropy-area law which is an equation of state of a horizon in thermal equilibrium.
This report examines whether the entropy-area law holds for Schwarzschild-de Sitter
(SdS) spacetime, which is two-temperature system due to the difference of Hawk-
ing temperatures of black hole event horizon (BEH) and cosmological event horizon
(CEH). We propose a reasonable evidence of breakdown of entropy-area law for CEH
in SdS spacetime. The validity of the law for BEH in SdS spacetime can not be
judged, but we point out the key issue for BEH’s entropy.

1 Simple question from the Nonequilibrium viewpoint

Entropy-area law, which claims the entropy of horizon is equal to one quarter of its spatial area, is the
equation of state for equilibrium systems which consist of horizons and matter fields. Now this law seems
accepted as the universal law of thermodynamic aspects of any horizon in thermal equilibrium. However
nothing is known about nonequilibrium situations of horizons.

On the other hand, generally in nonequilibrium physics, once the system under consideration comes in
a nonequilibrium state, the equation of state for nonequilibrium case takes different form in comparison
with that for equilibrium case. Especially the nonequilibrium entropy deviates from the equilibrium
entropy (when a nonequilibrium entropy is well defined). Indeed, although a quite general formulation of
nonequilibrium thermodynamics remains unknown at present 2, the differences of nonequilibrium entropy
from equilibrium one are already revealed for some restricted class of nonequilibrium systems [1].

Then, for horizon systems, a simple question arises; does the entropy-area law of horizons hold for
horizon systems in nonequilibrium states? We try to resolve this question and discuss to what extent
the entropy-area law is universal. The representative nonequilibrium system of horizons may be multi-
horizon spacetimes whose horizons have different Hawking temperatures. As a simple example of such
system, we focus our discussion on Schwarzschild-de Sitter (SdS) spacetime, which is in two-temperature
nonequilibrium state due to the difference of Hawking temperatures of black hole event horizon (BEH)
and cosmological event horizon (CEH). We examine the entropy-area law for SdS spacetime.

However, applying some existing nonequilibrium thermodynamics to SdS spacetime is difficult at
present. Then as one trial to search for SdS horizon entropy, we make a good strategy: We construct
carefully two thermal EQUILIBRIUM systems separately for BEH and CEH which are designed so that
the origin of nonequilibrium effect of CEH (BEH) on thermodynamic state of BEH (CEH) is retained
and the Euclidean action method is applicable (see next section for a more concrete explanation). The
subtraction term in Euclidean action is determined with referring to Schwarzschild thermodynamics for
BEH and de Sitter thermodynamics for CEH. Although our systems are in thermal equilibrium states,
some implication for nonequilibrium states of SdS horizons can be extracted, because the thermal states
are “fine tuned” to include the origin of nonequilibrium nature of SdS spacetime. In this report, we will
propose a reasonable evidence of breakdown of entropy-area law for CEH. The validity of the law for
BEH can not be judged, but we will point out the key issue for BEH’s entropy.

Recall that every existing verification of entropy-area law requires the thermal equilibrium of horizons.
However, strictly speaking, it is not clear whether the thermal equilibrium is the necessary and sufficient

1E-mail: saida@daido-it.ac.jp
2Or, a completely general formulation of nonequilibrium thermodynamics may not exist in our physical world.
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condition for the entropy-area law. Then, if the breakdown of the law will be confirmed for our thermal
systems of BEH and CEH in SdS spacetime, it implies that the thermal equilibrium is not the necessary
and sufficient condition but it is just the necessary condition for the entropy-area law. The sufficient
condition for the law will be also suggested by this report.

2 Nonequilibrium nature of Schwarzschild-de Sitter spacetime

In general, the clear evidence of nonequilibrium is the existence of an energy flow inside the system under
consideration, since no energy flow arises in thermal equilibrium systems. In SdS spacetime, because the
Hawking temperature of BEH is always higher than that of CEH [2], a net energy flow arises inevitably
from BEH to CEH. SdS spacetime is obviously a two-temperature nonequilibrium system. When one
tries to analyze the SdS thermodynamics with the presence of the net energy flow, there arise difficult
problems of nonequilibrium physics due to the net energy flow [1]; which quantity does the net energy
flow raise as a new state variable to describe the degree of nonequilibrium nature?, how does the net
energy flow cause the time evolution of the two-horizon system?, and so on. Therefore, at present, we
need a good strategy to research the SdS thermodynamics with avoiding such difficult problems.

Here let us dare to ask: Is the existence of net energy flow the principal origin of the nonequilibrium
nature of SdS spacetime? This can be rephrased as: Does the net energy flow originate from some
other physical factor? The answer to the latter question seems Yes (No for the former) at least for
SdS spacetime, because the energy flow between BEH and CEH is due to the difference of Hawking
temperatures of horizons 3. Furthermore, since the Hawking temperature is given by the surface gravity,
the temperature difference is produced by the gravitational interaction between BEH and CEH. Therefore
we recognize the gravitational interaction between BEH and CEH as the principal origin of nonequilibrium
nature of SdS spacetime. Hence, if we can construct a system including a horizon (BEH or CEH) under
the influence of gravitational interaction but excluding the net energy flow, then such system may reveal
the nonequilibrium properties of BEH and CEH with avoiding the difficulties due to net energy flow.
Then we introduce the following setup:

Setup (Heat Wall): Place a “heat wall” at r = rw in the region, rb < r < rc, as shown in the fig-
ure below, where r is the areal radius in SdS metric, and rb and rc are radii of BEH and CEH
respectively. This heat wall reflects perfectly Hawking radiation of each horizon, and shields BEH
(CEH) from the Hawking radiation emitted by CEH (BEH). The BEH (CEH) side of heat wall
is regarded as a “heat bath” of Hawking temperature of BEH (CEH), and the net energy flow
from BEH to CEH disappears. Then it is obvious that the region Mb enclosed by BEH and heat
wall (rb < r < rw) forms a thermal EQUILIBRIUM system for BEH which is filled with Hawking
radiation emitted by BEH and reflected by heat wall. Similarly the region Mc enclosed by CEH
and heat wall (rw < r < rc) is also regarded as a thermal EQUILIBRIUM system for CEH. And
we place the observer at the heat wall who measures all state variables of horizons. (Mb and Mc

with the observer at rw are already used to calculate Hawking temperatures in [2].)

..... .....BEH CEH

observer : r = rw  (constant)

As discussed hereafter, we can regard the thermal systems Mb and Mc as the desired systems which are
under the influence of gravitational interaction between BEH and CEH without the net energy flow:

To explain it, we should remark that, while the heat wall shields the energy flow between the two
horizons (which is mediated by matter fields of Hawking radiation), however the heat wall does not
shield the gravitational interaction between the horizons (which is not mediated by matter field but

3For example, for ordinary gases in laboratory, an energy flow can arise by not only temperature difference but also
viscosity, differences of pressure, number density and chemical potential, and so on. Energy flow is not the “cause” but the
“effect” of nonequilibrium nature.
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by gravitational field). This means the following; if we find that all state variables of thermal system
Mb depend on a parameter of such gravitational interaction, then it is reasonable to regard the system
Mb as a thermal equilibrium system for BEH under the influence of gravitational interaction of two
horizons but excluding net energy flow, and similarly for Mc as a thermal system for CEH. Here it
seems natural that the control parameter of the gravitational interaction between BEH and CEH are the
mass parameter M and the cosmological constant Λ. Furthermore, concerning the state variables, we
can assume very reasonably that every state variable of BEH depends on horizon radius rb or its surface
gravity κb, and similarly for CEH. Here the radii rb, rc and surface gravities κb, κc depend on M and Λ,
because, for example, rb(M, Λ) and rc(M, Λ) are the positive roots of algebraic equation f(r) = 0, where
f(r) := −gtt = 1−2M/r−Λ r2/3 and t is the time coordinate in the static chart of SdS metric gµν . Then,
obviously, every state variable of BEH (CEH) is under the influence of CEH’s (BEH’s) gravity through
its dependence on horizon radii and surface gravities. Consequently, as mentioned above, we can regard
the thermal systems Mb and Mc as the desired systems which are under the influence of gravitational
interaction between the two horizons without the net energy flow.

Here note that the gravitational interaction on Mb is expressed as an external gravitational field
produced by CEH which acts on BEH, and that on Mc is an external field by BEH acting on CEH.
This situation is analogous to a magnetized gas under the influence of an external magnetic field. The
magnetized gas consists of molecules possessing magnetic moment, and its thermodynamic state is charac-
terized by three independent state variables; for example, temperature, volume and magnetization vector
(response of the gas to external field), where the temperature and volume are variables required even for
ordinary non-magnetized gas, and the magnetization vector is responsible for the magnetic property of
the gas. The existence of three independent variables is mandatory for thermodynamic consistency of
the magnetized gas. Then, as a strict thermodynamic requirement, our thermal systems Mb and Mc

should also have three independent state variables to ensure thermodynamic consistency. This implies
that every state variable of Mb and Mc is a function of three independent variables. Consequently, as a
working hypothesis, we have to require that three parameters M , rw and Λ are independent variables:

Working Hypothesis (three independent variables): To ensure thermodynamic consistency of our
thermal systems Mb and Mc, the radius of heat wall rw, the mass parameter M and the cosmo-
logical constant Λ are regarded as three independent variables.

When one consider a non-variable Λ as a physical situation, it is obtained by setting the variation of Λ
zero (δΛ = 0) in thermodynamics of Mb and Mc after constructing them with regarding Λ as an
independent variable. In such case, the variable Λ is interpreted as a “working variable” to obtain SdS
thermodynamics.

3 Entropies of horizons in Schwarzschild-de Sitter spacetime

As page space is limited, this section gives only a brief sketch of discussion of entropy-area law.
As a technique to obtain the state variables of Mb and Mc, we make use of the Euclidean action

method [3] which is applicable for any thermal equilibrium systems. The Euclidean action IE is obtained
by the imaginary unit i times the Wick rotation t → −iτ of Lorentzian Einstein-Hilbert action,

IE =
1

16π

∫

M
dx4√gE (RE − 2Λ) +

1
8π

∫

∂M
dx3

√
hE KE − I0 , (1)

where RE is the scalar curvature of Euclidean spacetime region M, ∂M is the boundary of M, KE is the
trace of the extrinsic curvature of ∂M, gE is the determinant of Euclidean metric, hE is the determinant
of metric on ∂M, and I0 is the so-called subtraction term. I0 is independent of the bulk metric gEµν of
M and determines the integration constant of action integral with eliminating unexpected divergences
of the other two integral terms. For our thermal systems for BEH and CEH in SdS spacetime, M = Mb

for BEH, M = Mc for CEH, and ∂M is the heat wall for both horizons. (I0 is determined later.)
The Euclidean spaces of Mb and Mc respectively have topology D2 × S2, where D2 is the time-

radial part and S2 reflects the spherical symmetry of Lorentzian SdS spacetime. The event horizon
in Euclidean space is the center of D2 and the boundary of D2 has radius rw. The regularity at the
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center of D2 (excluding a conical singularity) determines the temperatures Tb of BEH and Tc of CEH,
Tb = κb/(2π

√
fw) and Tc = κc/(2π

√
fw), where fw = f(rw) and f(r) = −gtt. The factor

√
f(rw) is

equal to the so-called Toleman factor which expresses the gravitational redshift on the Hawking radiation
propagating from horizon to observer. Therefore, these temperatures are consistent with our setting that
the observer is at the heat wall.

We determine the subtraction term I0 to match with Schwarzschild thermodynamics for BEH and
de Sitter thermodynamics for CEH. Referring to [4] which established precisely the Schwarzschild thermo-
dynamics, it is natural to set I0 = Iflat, where Iflat is the Euclidean action for Minkowski spacetime. On
the other hand, the existing formulation of de Sitter thermodynamics does not introduce any boundary,
since the spacetime is closed [5]. This corresponds to considering the micro-canonical ensemble, while
the introduction of the boundary (heat wall) corresponds to the canonical ensemble. We can construct
the canonical ensemble for de Sitter thermodynamics with introducing an appropriate boundary term in
IE to reproduce the same equations of state which the micro-canonical ensemble gives. Then, referring
to the de Sitter’s canonical ensemble, we find it is natural to set I0 = (1 − rc/rw)

√
fw Iflat. With these

subtraction terms, the Euclidean actions Ib for Mb and Ic for Mc are

Ib =
π

κb

[
3M − rb + 2rw

(
fw −

√
fw

) ]
, Ic =

π

κb
[ 3M − rc + 2rcfw ] . (2)

Hence, following the argument of Euclidean action method [3], the free energies Fb for BEH and Fc for
CEH are given by Fb(Tb, Aw, Xb) := −Tb Ib and Fb(Tc, Aw, Xc) := −Tc Ic, where Aw := 4πr2

w is the
extensive state variable of system size which mimics the volume of ordinary gases (see [4] for detail of this
variable), and Xb and Xc are respectively the response of thermal systems Mb and Mc to the external
gravitational field. These free energies are functions of three independent state variables as discussed at
the working hypothesis in previous section.

Since Xb is the response of Mb to the external gravitational field by CEH, Xb should be a function of
the quantity which characterizes the gravity of CEH and is measured by the observer at rw. This implies,

Xb = r2
w Ψb(Λ r2

w) or Xb = r2
w Ψb(κc rw) , (3)

where Ψb is an arbitrary function of single argument, and the factor r2
w is due to the detail of extensive

nature of state variable [4] but not an essence of present discussion. Here we can not judge which of Λ
and κc is appropriate as the characteristic quantity of CEH’s gravity. Similarly, it is natural for Xc to
require Xc = r2

w Ψc(M/rw) or Xc = r2
w Ψc(κb rw), where Ψc is an arbitrary function. Then, following

the argument of thermodynamics, the entropy of BEH Sb and that of CEH Sc are define by the partial
derivatives; Sb := −∂Fb(Tb, Aw, Xb)/∂Tb and Sb := −∂Fc(Tc, Aw, Xc)/∂Tc, which are rearranged to be
first order partial differential equations of Ψb and Ψc. We can find these differential equations imply:

Result for BEH: BEH’s entropy Sb = π r2
b for the choice Xb = r2

w Ψb(Λ r2
w), but Sb 6= π r2

b for the
choice Xb = r2

w Ψb(κc rw). The entropy-area law for BEH holds if ∂MXb = 0, but breaks down if
∂MXb 6= 0. This denotes that the sufficient condition of entropy-area law for BEH is ∂MXb = 0.
Hence it is the dependence of Xb on M that determines the validity of entropy-area law for BEH.

Result for CEH: CEH’s entropy Sc 6= π r2
c for either choice Xc = r2

w Ψc(M/rw) and Xc = r2
w Ψc(κb rw).

The entropy-area law seems break down for CEH in SdS spacetime.
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Faraday Resonance in Dynamically Bar Unstable Stars
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Abstract
We investigate the nonlinear behaviour of the dynamically unstable rotating star for
the bar mode by both three-dimensional hydrodynamics in Newtonian gravity and our
simplified mathematical model. We find that an oscillation along the rotation axis is
induced throughout the growth of the unstable bar mode, and that its characteristic
frequency is twice as that of the bar mode, which oscillates mainly along the equatorial
plane. We also find that, by examine several azimuthal modes, mode coupling to even
modes, i.e., the bar mode and higher harmonics, significantly enhances the amplitudes
of odd modes, unless they are exactly zero initially. Therefore, non-axisymmetric
azimuthal modes cannot be neglected at late times in the growth of the unstable
bar-mode even when starting from an almost axially symmetric state.

Dynamical bar instability in a rotating equilibrium star takes place when the ratio β (≡ T/W )
between rotational kinetic energy T and the gravitational binding energy W exceeds the critical value
βdyn (≈ 0.27 for an uniformly rotating incompressible body in Newtonian gravity [1]). Determining
the onset of the dynamical bar-mode instability, as well as the subsequent evolution of an unstable
star, requires a fully nonlinear hydrodynamic simulation. Recent numerical simulations also show that
dynamical bar instability can occur at significantly lower β than the threshold βcrt ≈ 0.27 in some cases.

Our main concern in this paper is not to determine the onset of the instability, but to study the
dynamical features of the bar. For this purpose, we numerically study the growing behaviour of the
azimuthal modes in the nonlinear regime for a longer timescale. One interesting issue of nonlinear
evolution is the possibility of resonant growth of other azimuthal modes triggered by the dynamical bar-
mode instability. One candidate for such resonance is Faraday resonance, which is excited by the external
periodic force. The dynamically unstable bar mode may work for other azimuthal oscillation modes as
an external periodic force. Although the oscillation is not exactly periodic, but rather quasi-periodic, it
may trigger a parametric resonance.

The other interesting issue of nonlinear evolution is to study the physical mechanism of the growth of
odd modes. Are there unstable modes with odd numbers (e.g., m = 1 or 3) in addition to the unstable
bar mode? Are the amplitudes of the odd modes enhanced by mode coupling? In order to understand the
growth of odd modes, we investigate the evolution of a simplified model. The model’s description of mode
coupling, unstable growth, and decay mimics the realistic system very well. Moreover, the number and
growth rates of the unstable modes are easily controlled. The model, therefore, deepens our understanding
of the nonlinear behavior of unstable bar-mode growth in rotating stars. The physical mechanism is
confirmed by comparing the model problem with a more realistic calculation of a dynamically unstable
star simulated using three-dimensional hydrodynamics in Newtonian gravity.

A more detailed discussion is presented in Refs. [2, 3]. Throughout this paper, we use the geometrized
units with G = 1 and adopt Cartesian coordinates (x, y, z) with the coordinate time t.

We study four different differentially rotating stars, which are detailed in Table 1 of Ref. [2] to investi-
gate the nonlinear behaviour of the non-axisymmetric dynamical bar instabilities using three dimensional
hydrodynamics in Newtonian gravity. We disturbed 1% of the equilibrium density by a non-axisymmetric
perturbation to enhance any dynamically unstable mode.

We show the diagnostics of the model III (the weakest dynamically bar unstable system among model
I – III) here, which contain both amplitude and phase in Fig. 1. The behaviours in the diagnostics

1E-mail: saijo@rikkyo.ac.jp
2E-mail: kojima@theo.phys.sci.hiroshima-u.ac.jp
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Figure 1: Diagnostics <[D], <[Q], <[O], <[M4], and Dz as a function of t/Pc for the differentially rotating
star of model III (see Table 1 of Ref. [2]). Note that the five diagnostics are defined in Ref. [2]. Hereafter,
Pc is the central rotation period of the equilibrium star.

are clearly understood once we compute the spectra of the diagnostics (Fig. 2). From the spectra we
find the following two remarkable features. One is that the spectra |F1|2, |F2|2, |F3|2 take a peak
around ωbar ≈ 5 ∼ 6P−1

c for model III, and the other is that |F3|2, |F4|2, |Fz|2 take a peak around
ωquad ≈ 2ωbar ≈ 10 – 12P−1

c for bar unstable stars. Combining the present feature with the behaviour of
the amplitude of the diagnostics (Fig. 1) [2], the dynamically unstable bar acts as follows.

Firstly the m = 2 mode grows and acts as a dominant mode of all because of the dynamical bar
instability. Next the m = 4 mode grows because of the secondary harmonic of the m = 2 mode. In fact
the saturation amplitude of the m = 4 is approximately ≈ 0.04, which is the order of the square of the
saturation amplitude of the m = 2 (≈ 0.22). After that Faraday resonance occurs, which is clearly found
in both Dz and |Fz|2 from the fact ωquad ≈ 2ωbar.

Note that Faraday resonance occurs in the fluid mechanics when the oscillation of the vertical direction
is twice (2ω) as much as the one in the horizontal direction (ω) in the weakly nonlinear interaction [4].
Then, there is a resonance between m = 1 and m = 2, m = 3 and m = 4. The possibility of such
resonances is three wave interaction: either m = 1 (ωbar) and m = 2 (ωbar) generates m = 3 (ωbar +ωbar)
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Figure 2: Spectra |Fm|2 and |Fz|2 as a function of ωPc for the differentially rotating star of model III
(see Table 1 of Ref. [2]). Red, blue, green, and black line of |Fm|2 denote the values of m = 1, 2, 3, and
4, respectively. Note that the spectra |Fm|2 and |Fz|2 are defined in Ref. [2].
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Figure 3: The time-evolution of the amplitudes of the lowest six Fourier modes (m = 1, · · · , 6). Panel
(a) is the result for ν = 0.15 (m = 2 stable), (b) for ν = 0.05 (m = 2 unstable). The initial coefficients
(am, bm) of the Fourier series expansion of the flow velocity u(t, x) are a2 = a3 = 10−2 for both cases.
The behaviour of very small amplitude, say, log(Cm) (Cm =

√
am

2 + bm
2) approximately less than −10

in panel (a), mostly comes from numerical truncation errors, and is therefore unimportant.

or m = 3 (2ωbar) and m = 2 (ωbar) generates m = 1 (2ωbar − ωbar) in the dominant part. It is the fact
found in the nonlinear behaviour of the dynamically unstable bar system.

We introduce a simplified model [3] to examine the nonlinear evolution of the unstable modes, es-
pecially taking into account the nonlinearity and instability caused by an external force. Our model is
Burgers’ equation for a flow velocity u(t, x) coupled to a scalar field φ(t, x):

∂tu + u∂xu = ν∂2
xu + ¸φ, (1)

∂2
xφ + 2φ = −u + 1, (2)

where ν is a diffusion constant. We regard u = 1 and φ = 0 as the background state and consider linear
stability and nonlinear growth using Fourier series expansion from this uniform state.

The amplitudes of Fourier series expansion of the flow velocity u(t, x) are shown in Fig. 3. Note
that case (a) is stable to m = 2 mode, while case (b) unstable. In Fig. 3(b), the m = 2 mode grows
exponentially until t ∼ 15, where the amplitude of the m = 2 mode reaches the nonlinear regime:
10−2 × exp(0.3 × 15) ∼ 1. All other even modes, originating from the bilinear coupling term u∂xu, also
grow. The m = 6 mode is produced from the coupling between m = 2 and m = 4 and also from the
quadric coupling of m = 3. Therefore, the amplitude of the m = 6 mode is not always smaller than
that of m = 4. The growth of all even modes is slightly suppressed after the turning time t ∼ 15. The
turning time is also important for the odd modes. The odd modes decay for t <∼ 15, but grow after that.
Therefore, the nonlinearity of the amplitude of the m = 2 mode cannot be ignored even for the odd
modes. The turning time corresponds to shock formation as will be discussed later. For Eqs. (1) and (2)
all odd modes are always zero, if they are exactly zero initially. When there is at least one odd mode
with a finite amplitude, the nonlinearity of the m = 2 mode enhances all odd modes.

The similarity can be seen in the time evolution of the Fourier components both in mathematical and
three-dimensional numerical models [3]. The time evolution of the shape u(t, x) is shown in Fig. 4. The
m = 2 mode initially grows and the shape is enhanced before the turning time t ∼ 15. The curve at
t = 4π clearly shows symmetric features due to the m = 2 mode. That is, the shape is the symmetry
under translations x → x + π, a “π-symmetry”. The nonlinearity causes a shock as in the original
Burgers’ equation. After shock formation, the Gibbs phenomenon associated with Fourier series is seen
at t = 8π, 16π. The overshoot is a numerical artifact and such behaviour always appears when a function
having a sharp discontinuity is expressed as a Fourier series. Neglecting the Gibbs phenomenon, the
symmetry due to the m = 2 mode can still be seen in the shape at t = 8π, whereas it is partially
broken at t = 16π. The time t = 16π in the mathematical model is much longer than that of nonlinear

3
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Figure 4: Snapshots of the flow velocity u(t, x) are shown as a function of x′ = x/2π for t = 0, 4π, 8π, 16π
for case (b) in Fig. 3. The attached labels denote the time t.

saturation and that of growth of odd modes. Therefore, there is no counterpart in three-dimensional
numerical simulations. The mathematical model suggests that a “π-symmetry” (i.e., symmetry under a
180◦ rotation around the z-axis) in the shape is broken in a longer timescale.

We investigate the nonlinear effects of dynamically bar unstable stars by means of both three dimen-
sional hydrodynamic simulations in Newtonian gravity and our simplified mathematical model.

We find interesting mode coupling in the dynamically unstable system in the nonlinear regime, and
that only before the destruction of the bar. The quasi-periodic oscillation mainly along the rotational
axis is induced. The characteristic frequency is twice as big as that of the dynamically unstable bar
mode. This feature is quite analogous to the Faraday resonance. Although our finding is only supported
by the weakly nonlinear theory of fluid mechanics, we have also found the same feature of parametric
resonance even in the strongly nonlinear regime [2].

We also find that our mathematically simplified model provides a concrete example showing the
importance of mode coupling. The amplitudes of odd modes increase without unstable odd modes being
present in the axially symmetric state; instead, they are enhanced by the bar instability with m = 2.
We also confirmed that this physical picture is consistent with the results from a three-dimensional
hydrodynamics simulation. Generally, the odd modes grow only after the bar instability reaches the
nonlinear regime. The timescales of the mode coupling and the growth of unstable modes may depend on
the rotation law and the strength of the initial instabilities. It is very rare that the initial perturbations in
the hydrodynamics simulation should consist of purely even or odd modes only. Therefore, the unstable
bar mode enhances the amplitudes of the all other modes at late times, no matter whether they are even
or odd.

A similar mode coupling can be seen in numerical simulations for the one-armed spiral instability
and the elliptical instability of rotating stars in Newtonian gravity. The initial models and the growth
mechanism are different, but the turbulent-like behaviour appears in diagnostics of the azimuthal Fourier
components at late times of nonlinear growth. The behaviour is also important for the nonlinear sat-
uration of the unstable mode. Further study is necessary to explore the origin of the similarity seen
in the development of different unstable modes. It is reasonable to assume that the nonlinearity in
hydrodynamics is the source of this similarity.
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Abstract
Formation of primordial black holes (PBHs) requires a large root-mean-square ampli-
tude of density fluctuations, which generate second-order tensor perturbations that
can be compared with observational constraints. We show that pulsar timing data
essentially rules out PBHs with 102−4M¯ which were previously considered as a can-
didate of intermediate-mass black hoes and that PBHs with mass range 1020−25 g
which provide an astrophysical candidate for dark matter may be probed by future
space-based laser interferometers.

1 Introduction

Primordial black holes (PBHs) are produced when density fluctuations with a large amplitude enters the
horizon in the radiation dominated stage of the early universe with their typical mass given by the horizon
mass at that epoch [1, 2]. PBHs with their mass smaller than 1015g would have been evaporated away
by now due to the Hawking radiation and a number of cosmological constraints have been imposed on
the abundance of these light holes by big-bang nucleosynthesis (BBN) and gamma-ray background etc.
Heavier PBHs can play some astrophysical roles today. For example, they may serve as the origin of the
intermediate-mass black holes (IMBHs), which are considered to be the observed ultra-luminous X-ray
sources, if their mass and abundance lie in the range MPBH ∼ 102M¯−104M¯ and ΩPBHh2 ∼ 10−5−10−2,
respectively [3], while PBHs with mass MPBH ∼ 1020g−1026g (10−13M¯−10−7M¯) [2] and the abundance
ΩPBHh2 = 0.1 can provide astrophysical origin of dark matter (DM) which is yet free from the constraint
imposed by gravitational lensing experiments [4]. In order to produce the relevant density of PBHs, it
is necessary to produce density fluctuations whose power spectrum has a high peak with an amplitude
10−2 − 10−1 on the corresponding scales.

Second-order effects also generate tensor fluctuations to produce stochastic background of gravi-
tational waves (GWs) from scalar-tensor mode coupling [6, 7], whose amplitude may well exceed the
first-order tensor perturbation generated by quantum effect during inflation in the current set up since
the amplitude of density fluctuations required for a substantial density of PBHs is so large.

In the following sections, we show the GWs induced by scalar fluctuations as a second-order effect
[6, 7] is a useful probe to investigate the abundance of the PBHs. We calculate spectrum of these
second-order GWs in the case scalar fluctuations have a sufficiently large peak to realize formation of
relevant numbers of PBHs. As a natural consequence we find that the spectrum of GWs has a peak on
a scale approximately equal to the scale of the peak of the scalar fluctuations. We can therefore obtain
information on the abundance of PBHs with the horizon mass when the scale of the peak entered the
Hubble radius by observing GWs with the frequency corresponding to the same comoving scale, namely,
10−9Hz − 10−8Hz for IMBHs and 10−3Hz − 1Hz for dark-matter PBHs. Fortunately, the former band is
probed by the pulsar timing observations [8, 9] while the latter band can be observed in future by the
space-based interferometers for dark matter PBHs.

1E-mail:r-satio@resceu.s.u-tokyo.ac.jp
2E-mail:yokoyama@resceu.s.u-tokyo.ac.jp
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2 The induced gravitational waves

We write the perturbed metric as

ds2 = a(η)2
[
−e2Φdη2 + e−2Ψ(δij + hij)dxidxj

]
, (1)

including both scalar perturbations, Φ and Ψ, and tensor perturbation, hij , which satisfies ∂ih
i
j =

hi
i = 0 with hi

j ≡ δikhkj . We assume the lowest-order tensor perturbation is negligible and consider
that generated by the scalar mode as a second-order effect. The relevant part of the Einstein equation
therefore reads

hi
j

′′
+ 2Hhi

j

′ − ∂2hi
j = 2Pis

rjS
r
s , (2)

where a prime denotes differentiation with respect to the conformal time, Pis
rj represents the projection

operator to the transverse, traceless part, and H ≡ a′/a [6, 7]. The source term reads

Sr
s = 2∂rΨ∂sΨ − 4

3(1 + w)
∂r(Ψ + H−1Ψ′)∂s(Ψ + H−1Ψ′), (3)

with w ≡ ρ/p being the equation-of-state parameter of the background fluid. In practice, only the
radiation dominated era is relevant, so we take w = 1/3 hereafter. We also neglect anisotropic stress,
which is expected to give only a small correction [7], and set Φ = Ψ at linear order. In order to calculate
the induced GWs up to second order, it is sufficient to use the linear scalar modes. Hence, we only need
to solve the linear evolution equation,

Ψ′′
k(η) +

4
η
Ψ′

k(η) +
k2

3
Ψk(η) = 0, (4)

for the scalar modes where Ψk represents a Fourier mode.
For our purpose we assume the following approximate form of the power spectrum of the initial

fluctuations,

PΨ(k) ≡ k3

2π2
〈|Ψk(0)|2〉 = A2δ(ln(k/kp)), (5)

where kp and A2 represent the wavenumber of the peak and (amplitude)2× ln(peak width) of the original
spectrum, respectively. With this power spectrum the fractional energy density of the region collapsing
into PBHs at their formation time is estimated as

β(MPBH) ∼ 0.1 exp
(
− Ψ2

c

2A2

)
, (6)

where MPBH is of the order of the horizon mass when the comoving scale k−1
p enters the Hubble radius

and Ψc is the threshold value of PBH formation. Carr [5] takes the threshold value of the density contrast
to be δc = 1/3 corresponding to Ψc = 1/2. One can express the current value of the density parameter
of PBHs in terms of β(MPBH) as

ΩPBH,0h
2 = 2 × 106β(MPBH)

(
MPBH

1036 g

)−1/2 ( g∗p

10.75

)−1/3

, (7)

where g∗p is the effective number of the relativistic degrees of freedom when kp entered the Hubble radius.
We define the Fourier modes hk as

hij(x, η) =
∫

d3k

(2π)3/2
eik·x [

h+
k (η)e+

ij(k) + h×
k (η)e×ij(k)

]
, (8)

where e+
ij(k), e×ij(k) are polarization tensors which are normalized as

∑
i,j eα

ij(k)eβ
ij(−k) = 2δαβ . The

Fourier transform of the source term (3) is also defined similarly. We find the source term is constant
when kpη/

√
3 ¿ 1, while it decreases in proportion to η−2 for kpη/

√
3 À 1. As a result the production

of scalar-induced GWs mostly occurs around the time when kp crosses the sound horizon. In the mass
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range of the PBHs of our interest, creation of scalar-induced GWs is terminated well before the equality
time. After that the energy density of GWs decreases in proportion to a−4. Using the Green function
method one can easily find a formal solution to (2) from which we can evaluate the density parameter of
GWs contributed by a logarithmic interval of the wavenumber around k. It is formally expressed as

ΩGW(k, η) =
k3

12π2H2

(
|h+

k

′|
2

+ |h×
k

′|2
)

, (9)

when k-mode is well inside the horizon. The overall feature of the spectrum of ΩGW(f, η0) today can be
estimated to be

ΩGW(f)h2 = 7 × 10−9
( g∗p

10.75

)−1/3
(

A2

10−3

)2 (
Ωradh2

4 × 10−5

) (
f

fp

)2
[
1 −

(
f

2fp

)2
]2

θ

(
1 − f

2fp

)
(10)

≡ AGW

(
f

fp

)2
[
1 −

(
f

2fp

)2
]2

θ

(
1 − f

2fp

)
,

for f . fGW ≡ 2fp/
√

3 where we have used the frequency f ≡ 2πk/a0 instead of the wavenumber. The
above expression has the peak value ΩGW(fGW)h2 = (16/27)AGW at fGW.

3 Constraints on the PBH abundance

We now compare our results with observational constraints. For definiteness we identify MPBH with the
horizon mass when the peak scale k−1

p entered the Hubble radius. Then MPBH is related with the peak
frequency of GWs as

fGW = 1 × 10−8 Hz
(

MPBH

1036 g

)−1/2( g∗p

10.75

)−1/12

. (11)

The pulsar timing observations are sensitive to GWs with f > 1/T where T is the data span. The 7-year
data of observation of PSR B1855+09 gives an upper limit

ΩGW(f)h2 < 4.8 × 10−9

(
f

4.4 × 10−9Hz

)2

, (12)

for f > 4.4× 10−9Hz at 90% confidence level [8]. By using this limit, we can constrain the abundance of
PBHs with mass MPBH . 1 × 1037 g = 5 × 103M¯.

The space-based interferometers are sensitive to GWs with 10−5Hz . f . 10Hz [10, 11], which covers
the entire mass range of the PBHs which are allowed to be DM, 1020g < MPBH < 1026g. LISA will
have its best sensitivity ΩGWh2 ∼ 10−11 at f ∼ 10−2Hz (MPBH ∼ 1024g), BBO and the ultimate-
DECIGO are planned to have sensitivity to ΩGWh2 ∼ 10−13 and ΩGWh2 ∼ 10−17, respectively at
f ∼ 10−1Hz (MPBH ∼ 1022g).

Figure 1 shows the energy density of the induced GWs, whose approximate form is given by (10).
As is seen in the figure the pulsar timing constraint is so stringent that one cannot achieve ΩPBHh2 ¸

10−5 for PBHs with 4 × 102M¯ . MPBH . 5 × 103M¯, ruling out the major mass range of IMBHs.
On the other hand, if pulsar timing experiments should find any nontrivial modulation in near future, it
might be due to the PBHs with mass around 102M¯ [9].

It is clear from Fig. 1 that the future space-based interferometers can test the feasibility of PBHs as
the dominant constituent of the DM. The ground-based interferometers, on the other hand, have good
sensitivity at f ∼ 10−102Hz [12]. This frequency band corresponds to mass scale MPBH ∼ 1016g−1018g.
Though the sensitivity of LIGO is too low now and in near future to detect GWs from the second-order
effect associated with PBH formation, we could improve the sensitivity by correlation analysis to reach the
desired level to probe PBHs. Because the spectrum has a tail to lower frequencies, it may be possible to
constrain the abundance of the PBHs with MPBH < 7×1014g (fGW > 6×102Hz), which have evaporated
by the present epoch and could contribute to cosmic rays. Further study, however, is necessary in order
to obtain the conclusion because there are astronomical sources of GWs in this frequency band, too.
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Figure 1: Energy density of scalar-induced GWs associated with PBH formation together with current
pulsar constraint (thick solid line segment) and sensitivity of various GW detectors (convex curves). The
planned sensitivity of the space-based interferometers depicted [10] with the instrumental parameters
used in [11] as well as those of LIGO [12]. Left and right wedge-shaped curves indicate expected power
spectra of GWs from two different peaked scalar fluctuations corresponding to (ΩPBHh2, MPBH, g∗p) =
(10−5, 6×102M¯, 10.75) (left) and (10−1, 3×1022g, 106.75) (right), respectively. The dotted (broken) line
shows an envelope curve, (16/27)AGW, corresponding to ΩPBH = 10−1 (10−5) obtained by moving kp

and A.
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Abstract
We consider a moduli stabilization in a brane gas model based on Type II string
theories. We show that gauge fields on D-branes, NS5-branes and KK5-monopoles
are required in order to stabilize radial moduli fields of a six-dimensional torus as an
internal space and dilaton, simultaneously.

1 Introduction

One of most interesting problems in string theories is to reveal a mechanism of a moduli fixing of higher
dimensions and a dilaton field. In a higher dimensional theory like the string theories, the scales of
a compactified space and the dilaton are dynamical variables. Those variables are related to gauge
couplings of the theories by a Kaluza-Klein reduction. We should stabilize the moduli fields to obtain a
four-dimensional theory describing a realistic universe, because the gauge coupling has a fixed value.

Brandenberger and Vafa proposed the string gas model [1]. According to this model, at a very early
universe, It was assumed that fundamental strings fill the universe which has T 9 as the spatial part.
In this setup, they considered an interesting mechanism of compactifications. If strings remain without
annihilations in the 6-dimensions of T 9, it is expected that the internal space is stabilized by the tension
of the strings. On the other hand, the 3-dimensional space decompactifies from T 9, because strings easily
annihilate each other in the 3-dimensional space.

A lot of models on the moduli stabilizations have been proposed, using brane gas models [2] as well
as string gas models [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16], since string theories neutrally include
branes. However, it has been known that a simple compactification with only winding modes of branes
or strings cannot stabilize radial moduli fields and the dilaton field, simultaneously [15].

The purpose of this work is to construct brane gas models with stabilized moduli fields in Type II
string theories. We consider gauge fields on D-branes, NS5-branes and Kaluza-Klein monopoles (KK5)
as new ingredients. It will be found that those objects are required for the stabilization of the dilaton
field. This talk is based on the work in collaboration with Hisao Suzuki [17].

2 Moduli fixing with D-brane, KK5-monopole and NS5-brane
in Brane gas model

2.1 Preliminaries

Before discussing a detail of the moduli stabilization in brane gas models, we give a setup of the 10-
dimensional metric, the 4-dimensional Einstein frame and a bulk action. In this talk, we do not take a
varying Newton constant, therefore the 4-dimensional Einstein frame is required when the Kaluza-Klein
reduction is performed.

We consider a case where the 3-dimensional space has already been large and take the following
homogeneous metric:

ds2
10 = −e2λ0(t)dt2 + e2λ(t)dx2 +

9∑
m=4

e2λm(t)(dym)2. (1)

The 3-dimensional space is R3 and the internal space is T 6. The coordinate of a cycle ym is defined as
0 ≤ ym ≤ 2π

√
α′ where

√
α′ is related to the string length, ls =

√
α′. We assume that all fields depend

1E-mail:sano hokudai@mail.sci.hokudai.ac.jp
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only on time and fluxes are canceled each other. This assumption implies that the dynamics of the brane
gas models are decided by gases of world volume action of branes. In the system, a total action is given
by S0 + Sbrane gases. S0 is the 10-dimensional action which gives the following 4-dimensional effective
action:

S0 =
1

16πG10

∫

M10
d10X

√
−Ge−2φ(t)(R + 4(∇φ)2)

=
1

16πG4

∫

M4
d4xen(t)+3A(t) × e−2n(t)

(
−6Ȧ2(t) + 2β̇2(t) +

9∑
m=4

λ̇2
m(t)

)
(2)

where we have defined the 4-dimensional Einstein frame as follows (G(4) = G(10)(2π
√

α′)−6):

λ0(t) = n(t) + β(t), λ(t) = A(t) + β(t), β(t) ≡ φ(t)− 1
2
λ(t), λ(t) ≡

9∑
m=4

λm(t). (3)

The new variable β(t) is useful in order to obtain the diagonal kinetic term. Then, we can analyze a
minimum condition of a potential given by the energy-momentum tensor in term of brane gases:

u
(m1···mp)

Dp/KK5/NS5 ≡ −T 0
0 =

2g00

√
−g4(x)

δL(m1···mp)

Dp/KK5/NS5

δg00
= −e−n(t)−3A(t)

δL(m1···mp)

Dp/KK5/NS5

δn(t)
. (4)

2.2 Brane gas

We will consider a Dp-brane which wraps over a cycle of T 6. It is known that gauge fields can be generated
on the Dp-brane whose action is

S
(m1···mp)
Dp = −Tp

∫

R×Σp

dp+1ξe−φ(t)
√
− det(γab + 2πα′Fab) (5)

where Σp ⊂ T 6. We have assumed the homogeneous metric and fields, and then the electric fields F0i =
Ȧi(t) flow on the Dp-brane. If fluxes are canceled each other and only brane gases dominate as ideal gases,
the electric fields, Ȧm(t) and velocity along the internal space, Ẋm(t) are free. Then, we can integrate
those variables once and, by Eq.(4), we obtain the potentials of brane gases (Tp = (2π)−p(α′)−(p+1)/2):

u
(m1···mp)
Dp =e−3A(t)(2π

√
α′)pTp ×

{
e−λ(t)+2

Pp
a=1 λma (t) + Ã(t)

} 1
2

(6)

where

Ã(t) ≡
p∑

a=1

e2β(t)+2λma (t)

(
fma

2πα′

)2

+
6∑

b=p+1

e2β(t)−2λmb
(t)(vmb)2. (7)

fma and vmb are constants of integration of equations of motion on Ȧ(t) and Ẋm(t). Similarly, the
potential of gases of NS5 and KK5 [18, 19, 20] whose action is

S
(m1···m5)
NS5 = −TNS5

∫

R×Σ5

d6ξe−2φ(t)
√
− det γab, (8)

S
(m1···m5)
KK5 = −TKK5

∫

R×Σ5

d6ξe−2φ(t)k2
√
− det γ̃ab, γ̃ab ≡ ∂Xm

∂ξa

∂Xm

∂ξa
(Gmn − k−2kmkn), (9)

(km ≡ δmm6 is the killing vector of the S1 isometry of the (m6)-cycle) are given by

u
(m1···m5)
NS5 = e−3A(t)(2π

√
α′)5TNS5 × e−β(t)−λ(t)+

P5
a=1 λma (t), (10)

u
(m1···m5)
KK5 = e−3A(t)(2π

√
α′)5TKK5 × e−β(t)−λ(t)+2λm6+

P5
a=1 λma (t) (11)
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where TNS5 = TKK5 = TD5.
We find two important facts from (6), (10) and (11). First, the energy density is proportional to

e−3A(t) where eA(t) is the scale factor of the three dimensions in the 4-dimensional Einstein frame. If
all moduli fields are fixed, this gives the energy density of a pressureless dust. This property result
from brane gases whose all spatial parts wrap over cycles of T 6. We see those branes as gases of point
particles on the 3-dimensional space. Second, It is found that the the potential of the Dp-brane cannot
stabilize the dilaton field. The winding mode of the world volume action has no dilaton dependence in
the 4-dimensional Einstein frame. The terms derived by electric fields and velocities have the dilaton
dependence of e+2β(t) in (7). On the other hand, the potential of NS5 and KK5 has the inverse dependence
of the dilaton field like Eq.(10) and Eq.(11). Therefore, It is expected that the dilaton field is stabilized
by the electric fields and NS5/KK5.

2.3 D1-brane(+gauge field), KK5-monopole(IIB)

We will investigate an explicit brane gas model in Type IIB theory. This model is constructed by D1-
branes wrapping over each cycle and KK5 wrapping over (45678)-cycle and its cyclic permutations. Using
T-duality [17], we are able to map this system to a dual model including NS5-branes. We take the initial
conditions as vm = 0 and fm = 2πα′f . Then, the energy density of this system is given by

U IIB =
ND1

e3A(t)
(2π

√
α′)T1

9∑
a=4

e−
1
2 λ(t)+λa(t)(1 + f2e2β(t)+λ(t))

1
2 +

NKK5

e3A(t)
(2π

√
α′)5TKK5

9∑
a=4

e−β(t)+λa(t)

(12)

where ND1 and NKK5 are constants and indicate the number density of the pressureless dust at present,
eA(t=t0) = 1. The condition of a minimum of U IIB is given by ∂U IIB/∂β = ∂U IIB/λm = 0. The solution
of this condition is

e2φmin. =
1
f2

, e2λ′min. =
( ND1

NKK5

)1/3( 1
2f2

)1/6

. (13)

This condition shows eλm = eλ′min. (m = 4, 5, · · · , 9), because of the isotropic initial condition for the
electric fields like fm = 2πα′f .

This mechanism of the moduli stabilization is intuitively understood as follows. For example, in the
4-dimensional Einstein frame, one of the winding modes of D1-brane and KK5-monopole are exp[(λ4 −
λ5 − · · · − λ9)/2] and exp[−β + λ4], respectively. Those windings bind a cycle where the branes wrap
around. The expanding directions are bound by another brane. The electric fields on D1-brane and
KK5-monopoles stabilize the dilaton field. All forces are canceled each other, and then the radial moduli
fields of T 6 and the dilaton field are stabilized, simultaneously. After the moduli stabilization, it is found
that this potential gives the energy density of the pressureless dust like U IIB ∝ e−3A(t).

3 Conclusions and Discussions

We have considered the mechanism of the moduli stabilization in the brane gas model based on Type II
string theories. It has been found that the gauge fields on D-branes, NS5-branes and KK5-monopole are
required in order to stabilize the radial moduli fields of T 6 and the dilaton, simultaneously.

Once all moduli fields are stabilized, it is expected that there is a possibility of a dark matter candidate
for this wrapped brane gases, because the energy density with fixed moduli fields gives rise to ρ ∼ e−3A

which is the energy density of a pressureless dust. To realize this statement, we have to check a mass
scale of wrapped branes and interactions in term of RR-flux in the 4-dimensional Einstein frame.
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Abstract
We study higher curvature corrections to the scalar spectral index, the tensor spectral
index, the tensor-to-scalar ratio, and the polarization of gravitational waves. We find
that there are cases where the higher curvature corrections can not be negligible. It
turns out that the tensor-to-scalar ratio could be enhanced and the tensor spectral
index could be blue due to the Gauss-Bonnet term.

1 Introduction

According to the Wilkinson Microwave Anisotropy Probe (WMAP) data [1] and other observations, it
seems plausible that the large scale structure of the universe stems from quantum fluctuations during
the slow-roll inflation. Considering the accuracy of future observations, it would be worth to study the
corrections due to higher curvature terms to the slow-roll inflation. To the leading order, the corrections
come from the Gauss-Bonnet and the axion-like parity violating coupling terms [2]. In fact, the same type
of corrections can be derived from a particular superstring theory [3]. Hence, we hope the understanding
of such corrections to the inflationary scenario provides a clue to the study of superstring theory.

There have been many works concerning the Gauss-Bonnet and the parity violating corrections to the
Einstein gravity [3, 4, 5]. However, since no one has systematically investigated both terms simultaneously
in the context of the slow-roll inflation, the combined effect on the slow-roll inflation is not so clear.
Hence, we study the slow-roll inflation with higher curvature corrections and derive the formula for the
observables in terms of slow-roll parameters.

The organization of the paper is as follows: In section 2, we define slow-roll parameters in the infla-
tionary scenario with higher curvature corrections. In section 3, we obtain the scalar and tensor spectral
index and the tensor-to-scalar ratio. In section 4, the concrete example is presented as an illustration.
The final section is devoted to the conclusion.

2 Slow-roll inflation

We consider the gravitational action with the Gauss-Bonnet and the parity violating terms

S =
M2

Pl

2

∫
d4x

√
−gR −

∫
d4x

√
−g

[
1
2
∇µφ∇µφ + V (φ)

]
− 1

16

∫
d4x

√
−gξ(φ)R2

GB +
1
16

∫
d4x

√
−gω(φ)RR̃ , (1)

where M2
Pl ≡ 1/8πG denotes the reduced Planck mass and gµν is the metric tensor. The Gauss-Bonnet

term RGB and the parity violating term RR̃ are defined by

R2
GB ≡ RαβγδRαβγδ − 4RαβRαβ + R2 , RR̃ ≡ 1

2
εαβγδRαβρσRγδ

ρσ . (2)

The inflaton field φ has the potential V (φ). We have introduced coupling functions ξ(φ) and ω(φ). In
principle, these functions should be calculated from the fundamental theory, such as superstring theory.
Hence, it might be important to put constraints on these functions through observations.

1E-mail:satoh@tap.scphys.kyoto-u.ac.jp
2E-mail:jiro@tap.scphys.kyoto-u.ac.jp
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Let us take the flat Friedmann-Robertson-Walker(FRW) metric

ds2 = −dt2 + a2(t)δijdxidxj , (3)

where a is the scale factor. From the action (1), we obtain following background equations

3M2
PlH

2 =
1
2
φ̇2 + V +

3
2
H3ξ̇ , φ̈ + 3Hφ̇ +

3
2
H2(Ḣ + H2)ξ,φ + V,φ = 0 , (4)

where a dot denotes the derivative with respect to the cosmic time, and H is the Hubble parameter
defined by H ≡ ȧ/a. Note that coupling function ξ works as the effective potential for the inflaton φ.

We consider the friction-dominated slow-roll inflation phase where the following inequalities hold:

φ̇2

M2
PlH

2
¿ 1 ,

H3ξ̇

M2
PlH

2
=

Hξ̇

M2
Pl

¿ 1 ,
Ḣ

H2
¿ 1 ,

φ̈

Hφ̇
¿ 1 . (5)

Under these circumstances, Eqs.(4) read

H2 =
V

3M2
Pl

, φ̇ = −V,φ

3H
− 1

2
H3ξ,φ . (6)

The inflation is driven by the potential V , whereas the dynamics of the scalar field is also determined
by the Gauss-Bonnet term.

From consistency conditions, we define five slow-roll parameters,

ε ≡ M2
Pl

2
V 2

,φ

V 2
, η ≡ M2

Pl

V,φφ

V
, α ≡ V,φξ,φ

4M2
Pl

, β ≡ V ξ,φφ

6M2
Pl

, γ ≡
V 2ξ2

,φ

18M6
Pl

=
4
9

α2

ε
, (7)

and impose that ε, |η|, |α|, |β|, γ ¿ 1. Note that, due to the Gauss-Bonnet term, the number of parameters
and accompanying conditions increased. What we want to know is the effect of new parameters α, β, γ
on the cosmological fluctuations.

3 Perturbations

In this section, we show the higher curvature corrections to the scalar and tensor perturbations. We
consider the scalar perturbations A,B,ψ,E and tensor perturbations hij defined by the perturbed metric

ds2 = a2(τ)
[
−(1 + 2A)dτ2 + B|idηdxi + (δij + 2ψδij + 2E|ij + hij)dxidxj

]
, (8)

where τ is conformal time defined by a(t)dτ = dt, the bar denotes the spatial derivative and the prime
represents the derivative with respect to the conformal time. We take the gauge, E = δφ = 0.

We can calculate perturbation quantities following same procedures in the case of ordinary slow-roll
inflation. Hence we skip tedious but straightforward calculations. We define power spectrum as

〈0|ψ̂†ψ̂|0〉 =
∫

d(logk)Pψ(k) , 〈0|ĥij ĥ
ij |0〉 =

∑
±

∫
d(log k)P±

T =
∫

d(log k)PT , (9)

where ± denotes helicity of gravitational waves. The results are

Pψ(k) =
1

2ε + 4α/3 + γ/2

(
H

2π

Γ(νψ)
Γ(3/2)

)2 (
−kτ

2

)3−2νψ

(10)

P±
T (k) =

4
1 + ε − α − γ

(
H

2π

Γ(νT)
Γ(3/2)

)2 (
−CTkτ

2

)3−2νT
(

1 ± π

2
H

Mc
Ω

)
, (11)

where we defined νψ ≡ 3/2 + 3ε− η − α/3− β and νT ≡ 3/2 + ε + α/3, and Ω is another small quantity,
representing effect of parity violating term, defined by

Ω ≡ 1
2

Mc

MPl

ω̇

MPl
' const. , (12)
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where Mc is the physical wave-number corresponding to the cut-off scale, e.g. string scale. We can read
the scalar and tensor spectral indices nψ, nT

nψ − 1 = 3 − 2νψ = −6ε + 2η +
2
3
α + 2β , nT = 3 − 2νT = −2ε − 2

3
α . (13)

Of course, in the absence of the Gauss-Bonnet term, α = β = 0, we recover the conventional formula.
The most impressive result is shown in Eq.(13). In the usual case, because ε > 0, nT takes a negative

value, namely, the tensor spectrum is red. However, if we incorporate the effect of the Gauss-Bonnet
term, tensor spectrum could be blue, because α takes either positive or negative value. Hence, detection
of the blue spectrum in the gravitational waves through the observation of B-mode polarization might
indicate the existence of the Gauss-Bonnet term.

From the scalar and tensor spectrum, we can deduce the tensor-to-scalar ratio r:

r ≡ PT

Pψ
∼ 16ε +

32
3

α + 4γ = 16ε +
32
3

α +
16
9

α2

ε
¸ 32

3
(α + |α|) . (14)

For a negative α, we have the minimum, that is, r = 0. In the case 1 ¸ α ¸ ε, the last term dominates
and give rise to the sizable tensor-to-scalar ratio even if ε is extremely small.

Another interesting observable is the circular polarization Π, which is defined as difference between
left and right helicity modes

Π ≡
P+

T − P−
T

P+
T + P−

T

=
π

2
H

Mc
Ω . (15)

This result for circular polarization is the same as the previous work [5], although they considered only
parity violating term. Let us consider some extreme case, H = 10−4MPl, Mc = 10−3MPl, Ω = 0.1, then,
the ratio becomes Π ' 0.015. This means we have a hope to measure the sub-percent order of polarization
due to the parity violating term [6]. It should be stressed that the effect of the Gauss-Bonnet term could
enhance the amplitude of the primordial gravitational waves. That also enhances the detectability.

4 Observational implications

In the previous sections, we have derived general formula for observables in slow-roll inflation with higher
curvature corrections. Here, we will discuss one model as an illustration. Let us consider chaotic inflation
models with higher curvature corrections. We take the functions as

V =
1
2
m2φ2 , ξ = λe−κφ/MPl , (16)

where m is the mass of the inflaton and λ, κ are parameters of the coupling function ξ. Then, the slow-roll
parameters can be calculated as

ε = η = 2
M2

Pl

φ2
, α = −κλ

4
m2φ

M3
Pl

e−κφ/MPl , β =
κ2λ

12
m2φ2

M4
Pl

e−κφ/MPl , γ =
κ2λ2

72
m4φ4

M8
Pl

e−2κφ/MPl . (17)

We can evaluate the spectral index and the tensor-to-scalar ratio. The results are shown in FIG.1.
We have also plotted constraints from WMAP 5-year result, combined with baryon acoustic oscillations
(BAO) and Type I supernova (SN). We see these observables are sensitive to higher curvature corrections.
Hence, it implies that the higher curvature corrections are relevant to precision cosmology. Here, we notice
that there exist parameter regions represented by blue lines which leads to the blue spectrum in tensor
modes. We plotted some typical values of nT in Fig.1.

5 Conclusion

We have studied the slow-roll inflationary scenario with the leading corrections, namely, the Gauss-Bonnet
and the parity violating terms. We have obtained the higher curvature corrections to the scalar spectral
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Figure 1: Expected spectral index nψ and tensor-to-scalar ratio r of the model (16) are shown. We have
also plotted constraints from WMAP 5-year result, combined with BAO and Type I SN. The contours
denote 68% and 95% confidence level. We used the out-put from Cosmological Parameters Plotter at
LAMBDA [7]. Each line corresponds to the parameter (i) m = 10−5 × MPl, λ = 0, κ = 0 (ordinary
slow-roll), (ii) m = 10−5 × MPl, λ = 1010, κ = 0.003 and (iii) m = 10−5 × MPl, λ = 1010, κ = 0.01, from
upper to lower, taking φ > 0. Blue-colored lines denote the region that generate blue spectrum in tensor
modes, and we plot some values of nT.

index, the tensor spectral index, and the tensor-to-scalar ratio. We found that the higher curvature
corrections can not be negligible in the dynamics of the scalar field, although they are negligible in the
Friedmann equation. It turned out that the tensor-to-scalar ratio could be enhanced because of the
modified dynamics of the scalar field. We have found the tensor spectral index could be blue due to the
Gauss-Bonnet term. We have also calculated the degree of circular polarization of gravitational waves
generated during the slow-roll inflation. We discussed that the circular polarization can be observable
due to the Gauss-Bonnet and parity violating terms. We revealed that the observables are sensitive to
the higher curvature corrections.
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Abstract
By the recent study of the quantum gravity, we can solved the inhomogeneous space-
time. And we quantized the enlarged Bianch I universe. As a result of quantization,
we know the universe are entangled. The x,y, and z direction are entangled. So if we
measure the x direction we know the information of the y and z directions.

1 Introduction

In the quantum gravity there are many difficulties i.e. problem of the time and problem of the norm and
interpretation problem and problem of the inhomogeneous spacetime. One of the main difficulty comes
form the Wheeler-DeWitt equation. The difficulty of the Wheeler-DeWitt still remain the Hamiltonian
constraint of the loop quantum gravity. So we should remove the difficulty of the Wheeler-DeWitt
equation.

So we construct the one method which called the up-to-down method. We explain what is the up-
to-down method simply. Once we add an additional dimension to the usual 4-dimensional gravity. And
we remove the additional dimension by using the problem of the time inversely. Then there appear the
additional constraint equation. This is the up-to-down methodl.

The up-to-down method comes from the Isham’s idea, that is quantum category. Imagine many world
interpretation, and we assume may world is the infinitely many brane. We quantize the many brane at
the same time.

In section II we write the result of the up-to-down method. In section III we quantize the enlarged
Bianch I universe. And in section IV we discuss and conclude the presentation.

2 Up-to-down method

We skip the up-to-down method, because it is long. We cite the paper [5]. We start from 5-dimensional
spacetime. There appear one additional constraint equation as,

ĤS → −mĤS := −K̂2 + K̂abK̂ab −
1
2
Ṗ . (1)

Here, ĤS is the Hamiltonian constraint of the 4+1 decomposition, and K̂ab is the 4+1 extrinsic curvature
and K̂ is the it’s trace and P is the 3+1 momentum. Now 4+1 decomposition is carried on the additional
dimension s. This is the not usual decomposition. However, because we use the problem of the time
inversely, the s direction vanished. We only consider the 4-dimensional quantum gravity. We obtain the
next theorem.

Theorem 1. In this method, in the H4 additional constraint mĤSΠ3 = 0 appears which we call static
restriction, if there is no time evolution and the projection is defined by the difinition 3.

Here, Π3 is the projection defined by Π3|gµν⟩ = |gsµ = constgij⟩.
For example we first consider the Freedman universe as

gab :=


b 0 0 0
0 a 0 0
0 0 a 0
0 0 0 a

 . (2)

1E-mail:sawayama0410@gmail.com
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The modified Hamiltonian constraint becomes as

mĤS = 6ab
∂

∂a

∂

∂b
+ a2 ∂2

∂a2
(3)

= 6
∂

∂η

∂

∂ηb
+

∂2

∂η2
= 0, (4)

And the Hamiltonian constraint becomes as well known,

HS =
9
2
a2 ∂

∂a2
+ Λ (5)

=
9
2

∂

∂η2
+ Λ = 0. (6)

The 4-dimensional state becomes as

|Ψ4(η)⟩ = exp(i
√

2
3

Λ1/2η). (7)

And it’s enlargement of 4+1 is

|Ψ5(4)(ηb, η)⟩ = exp
(
− i

√
2

3
Λ1/2ηb

)
exp(i

√
2

3
Λ1/2η). (8)

We can proof the one of the universe are appropriated to the up-to-down method. There is one enlarge-
ment and measure of the projection is not zero.

Secondary, we think about the off-diagonal metric case.

gab =


−c 0 0 0
0 a b 0
0 b a 0
0 0 0 a

 . (9)

The modified Hamiltonian constraint become,

mĤS = −6ac
∂

∂a

∂

∂c
+ (6a2 − 2b2)

∂2

∂a2
+ 2(b2 − a2)

∂2

∂b2
= 0, (10)

And the Hamiltonian constraint becomes as,

HS = −(5a2 − b2)
∂

∂a2
− (2b2 − a2)

∂2

∂b2
= 0. (11)

This Hamiltonian constraint can not solved simply because this is the elliptic differential equation. How-
ever, if we use additional constraint as,

mĤSΠ3 = (6a2 − 2b2)
∂2

∂a2
+ 2(b2 − a2)

∂2

∂b2
= 0, (12)

The Hamiltonian constraint can be solved.

|Ψ4(5)(a, b)⟩ = E1ab + E2a + E3b + E4. (13)

And the enlargement is

|Ψ5(4)(a, b, c)⟩ = F1ab + F2a + F3bc + F4c + F5. (14)

This enlargement has also non zero measure of the projection.
Next we consider the Schwarzchild black holes as

gab =


−f 0 0 0
0 f−1 0
0 0 A 0
0 0 0 A sin2 θ

 . (15)
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The Hamiltonian constraint becomes as

HS =
1
2

(
− f2 ∂2

∂f2
+ Af

∂

∂f

∂

∂A
− 2A2 ∂2

∂A2

)
+ R = 0, (16)

Usually this Hamiltonian constraint does not solved. However, if we think the additional constraint
equation as,

mĤSΠ3 = −2fA
∂

∂f

∂

∂A
+ A2 ∂2

∂A2
(17)

= A
∂

∂A

(
− 2f

∂

∂f
+ A

∂

∂A

)
= 0, (18)

we can solve the Hamiltonian constraint equation. Although the Hamiltonian and the additional con-
straint equation does not commute, if we make additional constraint parameter relations, we can solve
the Hamiltonian constraint. The Hamiltonian constraint become simple second order ordinal functional
equations.

HS = −7
8
A2 ∂2

∂A2
+

1 − c2A2

2A
= 0. (19)

And this equation is solved easily by numerical method. The additional constraint or the enlargement is
given by next formula.

mĤS = −f2 ∂2

∂f2
+

4
7

c − cf

f1/2
= 0. (20)

In this case the enlargement be able and measure of the projection does not zero.

3 Enlarged Bianchi I universe

Now we consider the metric diagonal case. In this case the Hamiltonian constraint becomes as,

HS =
∑
ij

δ2

δϕiδϕj
+

∑
i ̸=j

(ϕi,jj + ϕi,iϕj,i)eϕi . (21)

Here, gii = eϕi . And the commutation relation of the additional and the Hamiltonian constraint becomes
as

[mĤS ,H4] = δ2
∑
i ̸=j

(ϕi,ii + ϕ2
i,i +

1
2
ϕi,iϕj,i)eϕi − 1

2
δ2

∑
i ̸=j

ϕi,0(ϕj,ii − 2ϕi,ij − ϕi,jϕi,i)eϕi

−1
2
δ2

∑
i ̸=j

(ϕi,0jj + ϕi,0jϕj,j − ϕi,0ji − ϕi,0iϕi,j)eϕi . (22)

We know there are two case whose commutation relation is always zero. Such spacetime is following,
g00 0 0 0
0 q11(x1) 0 0
0 0 q22(x2) 0
0 0 0 q33(x3)

 . (23)

and 
g00 0 0 0
0 q11(x2, x3) 0 0
0 0 q22(x1, x3) 0
0 0 0 q33(x1, x2)

 . (24)
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If we treat first metric, the Hamiltonian constraint become,

HS =
∑

i

δ2

δϕ2
i

= 0. (25)

And the additional constraint with cosmological constant becomes as

S =
∑
i ̸=j

δ2

δϕiδϕj
= Λ (26)

The solution of the usual Hamilton constraint is,

|Ψ4(ϕ)⟩ =
∏

exp(aiΛ1/2

∫
ϕiδϕi(xi)). (27)

In the ai there are two equation as

a1a2 + a1a3 + a2a3 = 1 (28)
a2
1 + a2

2 + a2
3 = 1. (29)

Because there are two equation and three parameter, there are infinitely many basis. However, if we
assume the one of the norm of ai is one, we can obtain 12 basis as follows

a1 = ±
√

3, a2 = ±i, a3 = ∓i (30)

a1 = ±i, a2 = ±
√

3, a3 = ∓i (31)

a1 = ±i, a2 = ∓i, a3 = ±
√

3. (32)

Looking these basis we can easily know that the state is entangled.

4 Conclusion and Discussions

If we only solve the usual Bianch I universe, the spacetime are entangled. The difference of the enlarged
Bianch I and usual Bianch I universe are eta square or only eta. Because three direction are entangled,
by the measurement of the x direction, we know y direction and z direction. And we justify the up-to-
down method. the measure of the all the projection treated here has non zero measure. In this case
we only consider the cosmological constant. But we can consider the Schrodinger or the Krein-Gordon
field instead of the cosmological constant. Then we can know the information of the spacetime by the
measurement of the field. We can answer the philosophical problem“what is existence”by the physics.
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Invariances of generalized uncertainty principles

Fabio Scardigli1
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Abstract
In Ref.[1] we use two different generalized uncertainty principles to compute mass
thresholds and lifetimes for micro black holes close to their Planck phase. Motivated
by that paper, we study here in detail the conditions for the translation and rotation
invariance of these two different kinds of deformed commutation relations.

1 Introduction

When we consider a high energy collision, we know that Heisenberg principle ∆p∆x ≥ h̄/2 can be casted
in the form ∆E∆x ≥ h̄c/2 (since ∆E ' c∆p). Actually, the main reason since larger and larger energies
are required to explore smaller and smaller details is that the size of the smallest detail theoretically
detectable with a beam of energy E is δx = h̄c/(2E). An equivalent argument comes from considering
the resolving power of a ”microscope”: the smallest resolvable detail goes roughly as the wavelength of
the employed photons, and therefore δx ' λ = c

ν = hc
ε .

The research on viable generalizations of the Heisenberg uncertainty principle traces back to many
decades (see for early approaches [2], etc. See for a review [3] and for more recent approaches [4]). In the
last 20 years, there have been seminal studies in string theory [5] suggesting that for very high energy
scattering the uncertainty relation (ST GUP) should be written (in 4 + n dimensions) as

δx ≥ h̄c

2E
+ β`4n

E

E4n
, (1)

where `4n is the 4 + n dimensional Planck length and E is the energy of the colliding beams (we use the
relation E4n`4n = h̄c/2). If however we take into account the possibility of a formation of micro black
holes in the scattering, with a gravitational radius of RS ∼ (E)1/(n+1), then we easily see that in 4 + n
dimensions (and n ≥ 1) the stringy principle seems to forbid the very observation of the micro hole itself.
In fact, at high energy the error predicted by the stringy GUP goes like δx ∼ E, while the size of the
hole goes like RS ∼ (E)1/(n+1). For E large enough and n ≥ 1, we always have E > (E)1/(n+1), thereby
loosing the possibility of observing micro black holes, just when they become massive (that is, when
they should approach the classicality). Also to avoid this state of affairs, and on the ground of gedanken
experiments involving the formation of micro black holes, it has been proposed [6] a modification of the
uncertainty principle, that in 4 + n dimensions reads

δx ≥ h̄c

2E
+ βR4n(E) , (2)

where R4n is the 4 + n dimensional Schwarzschild radius associated with the energy E (see [7])

R4n =
[

16πG4nE

(N − 1)ΩN−1c4

] 1
N−2

= `4n

(
ωn

E

E4n

) 1
n+1

(3)

and N = 3+n is the number of space-like dimensions, ωn = 8π/((N−1)ΩN−1), ΩN−1 = 2πN/2/Γ(N/2) =
area of the unit SN−1 sphere. Thus, the GUP originating from micro black hole gedanken experiments
(MBH GUP) can be written as

δx ≥ h̄c

2E
+ β`4n

(
ωn

E

E4n

) 1
n+1

, (4)

1E-mail: fabio@phys.ntu.edu.tw

1



where β is the deformation parameter, generally believed of O(1). Remarkably, in 4 dimensions (N = 3,
n = 0) the two principles coincide. The deformation parameter β, supposed independent from the
dimensions N , can be therefore chosen as the same for both principles.

2 Translation and rotation invariance of the GUPs

In this section we shall prove that the GUPs previously introduced do respect the constraints posed
by requiring the conventional translation and rotation invariance of the commutation relations. First,
we show what these kinematic constraints imply about the structure, in 4 + n dimensions, of the [x, p]
commutations relations. In this, we follow closely Ref. [8]. As a general ansatz for the x, p commutation
relation in 4 + n dimensions we take

[xi, pj ] = i h̄ Θij(p) (5)

and we require that Θij(p) differs significantly from δij only for large momenta. We assume also [pi, pj ] = 0
and we compute the remaining commutation relation through the Jacobi identities, obtaining

[xi, xj ] = ih̄{xa, Θ−1
ar Θs[iΘj]r,s} (6)

where {} are the anti-commutators and Q,s := ∂Q/∂s. The commutation relations (5) are translation
invariant (they are preserved under the transformations xi → xi + di, pi → pi). However, the com-
mutation relations (6) are not invariant under translation, unless we require Θij(p) to be such that it
yields [xi, xj ] = 0. Thus, in order to implement translation invariance, Θij must satisfy the necessary
and sufficient condition (read off from the (6))

Θia∂piΘbc = Θib∂piΘac (7)

where sum over i is understood. The rotation invariance can be implemented by requiring Θij to have
the form

Θij(p) = f(p2)δij + g(p2)pipj . (8)

Together, conditions (7) and (8) imply that f and g must satisfy the differential equation

2f ′f + (2p2f ′ − f)g = 0 (9)

where f ′(p2) = df/d(p2). Under these conditions, commutation relations do obey translation and rotation
invariance. Considering, for sake of simplicity, the mono-dimensional case i = j, we write for the main
commutator

[x, p] = ih̄(f(p2) + g(p2)p2) . (10)

The usual Heisenberg commutator is recovered by choosing, for example, f(p2) = 1. Then Eq.(9) implies
g(p2) = 0 and [x, p] = ih̄. The stringy inspired commutator is obtained, to the first order in β, by
choosing g(p2) = β (see [8]). Then, in fact, solving (9) (a Manfredi equation, in such case), we find

f(p2) =
βp2

√
1 + 2βp2 − 1

' 1 +
β

2
p2 + O((βp2)2) (11)

and, to the first order in β (or, equivalently, for small p) we have

[x, p] = ih̄

(
1 +

3
2
βp2 + O(β2)

)
. (12)

The MBH GUP (4) can be written in terms of momentum transferred as p δx >∼ h̄
2

(
1 + γp

n+2
n+1

)
where

γ = β(ωn)
1

n+1
(

2`4n

h̄

)n+2
n+1 and this in terms of commutators becomes

[x, p] = ih̄
(
1 + γp

n+2
n+1

)
. (13)
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To show that MBH GUP is translation and rotation invariant we must show that the commutator (13)
is of the same form of commutator (10) (when p → 0), with f and g satisfying (9) (in particular we
would like to have f(p2) → 1 for p → 0). However, the previous strategy, namely to fix a priori a
given form for g(p2) and then to compute f(p2) by solving (9) (as we did for HUP, g(p2) = 0, and for
stringy GUP, g(p2) = β), in this case does not work. Even if one puts p2g(p2) = γp(n+2)/(n+1), Eq.(9)
becomes however rather complicated (it is an Abel equation of 2nd kind), and hardly we can hope it
gives f(p2) → 1 for p → 0. Moreover, an explicit solution could not be so useful, since we are mainly
interested in an asymptotic behaviour. Therefore we ask the following general properties to be satisfied
by the functions f and g





[f(p2) + g(p2)p2] → [1 + γp
n+2
n+1 ] for p → 0

2f ′f + (2f ′p2 − f)g = 0 ,

(14)

We shall look if there actually exist f and g such that the above two properties can be simultaneously
satisfied. In this way the rotational and translational invariance of GUP (4) will result proved. In what
follows such solutions are proved to exist, provided we allow g to develop poles (of course, the function
f and the whole function f + gp2 remain perfectly finite).

In the differential equation (9) everything is function of p2 and f ′(p2) = df/d(p2). So, let’s set
y := p2 (y > 0, p = y1/2) and, to avoid fractionary powers, set also y

1
2(n+1) =: λ, y = λ2(n+1). Then

f ′(y) = 1
2(n+1)λ

−(2n+1)F ′(λ) , and the system (14) becomes




[F (λ) + G(λ)λ2(n+1)] → [1 + γλn+2] for λ → 0

F ′(λ)F (λ) + [λF ′(λ)− (n + 1)F (λ)]G(λ)λ2n+1 = 0 .
(15)

We have to see if the two conditions are compatible, and what this implies for f and g. To check this
compatibility we can use power series representations of the functions F (λ), G(λ). We allow G(λ) to
develop poles. Since the factor λ2(n+1) multiplies G(λ) in the boundary condition, we could allow poles
until λ−2(n+1) and still the combination [F + Gλ2(n+1)] would remain analytical. However, we’ll show
that the result can be obtained by allowing poles just until λ−n only. So we write

F (λ) =
∞∑

k=0

akλk and G(λ) =
∞∑

k=−n

bkλk . (16)

and we look for what the two conditions imply on the coefficients ak, bk. We have

F (λ) + G(λ)λ2(n+1) =
∞∑

k=0

(ak + bk−2(n+1))λk (17)

where bk−2(n+1) = 0 for k = 0, 1, 2, ..., n + 1 and b−n 6= 0, b−n+1 6= 0, etc.
At small λ we should have the matching, for λ → 0,

∞∑

k=0

(ak + bk−2(n+1))λk −→ 1 + γλn+2 . (18)

This means

k = 0; [a0 + b−2(n+1)] = 1 ⇒ a0 = 1
k = 1; [a1 + b1−2(n+1)] = 0 ⇒ a1 = 0
k = 2; [a2 + b2−2(n+1)] = 0 ⇒ a2 = 0

... ... ...

k = n + 2; [an+2 + b−n] = γ ⇒ (∗)
k = n + 3; [an+3 + b−n+1] = any quantity

... ... ... (19)
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(*) here at least b−n is 6= 0, therefore at least b−n can be chosen equal to γ.
Now let’s see if the conditions on ak, bk just found above, required by the first of Eqs.(15), are com-
patible with those required by the differential equation (15). Since F ′(λ) =

∑∞
k=0(k + 1)ak+1λ

k,
G(λ) =

∑∞
k=−n bkλk =

∑∞
k=0 bk−nλk−n (with b−n 6= 0, b−n+1 6= 0,..., b0 6= 0), we have F (λ)F ′(λ) =∑∞

k=0 Ckλk, G(λ)F ′(λ) =
∑∞

k=0 Dkλk−n, F (λ)G(λ) =
∑∞

k=0 Ekλk−n, where Ck =
∑k

q=0(q+1)ak−qaq+1,

Dk =
∑k

q=0(q + 1)bk−n−qaq+1, Ek =
∑k

q=0 ak−qbq−n and the differential equation (15) becomes

∞∑

k=0

[
Ckλk + Dkλk+n+2 − (n + 1)Ekλk+n+1

]
= 0 (20)

Reshuffling indexes a bit in Eq.(20) we get
∞∑

k=0

[Ck + Dk−n−2 − (n + 1)Ek−n−1] λk = 0 (21)

where D−n−2 = 0, D1−n−2 = 0, ..., D−1 = 0, and E−n−1 = 0, E1−n−1 = 0, ..., E−1 = 0, and
it is easy to see that these relations are direct consequences of the definitions for bk in Eq.(17) and
of relations (19). Equation (21) can be satisfied only if all the coefficients of λk are identically zero.
We can now check explicitly that this requirement is in full agreement with conditions (19). In fact:
k = 0; C0 + D−n−2 − (n + 1)E−n−1 = a0a1 = 0 ⇒ a1 = 0 (since a0 = 1) and this agrees with (19).
And then k = 1; C1 + D1−n−2 − (n + 1)E1−n−1 = a1a1 + 2a0a2 = 0 ⇒ a2 = 0 (since a0 = 1) and this
agrees with (19). Again, for k = 2 we have C2 + D2−n−2 − (n + 1)E2−n−1 = 0 ⇒ a3 = 0 and so on for
k = 3, 4, .... For k = n we find an+1 = 0 in agreement with (19). For k = n + 1 we have

Cn+1 + D−1 − (n + 1)E0 =
n+1∑
q=0

(q + 1)an+1−qaq+1 − (n + 1)
0∑

q=0

a0−qbq−n = (n + 2)a0an+2 − (n + 1)a0b−n = 0

Since a0 = 1, then (n + 2)an+2 − (n + 1)b−n = 0 and this equation is compatible with the ”k = n + 2”
condition of (19). In fact, we have two equations in two unknowns

(n + 2)an+2 − (n + 1)b−n = 0 and an+2 + b−n = γ , (22)

which allow us to compute an+2 (the first non zero coefficient for F (λ), after a0 = 1) and b−n (pole of
order n of G(λ)). For the next case, k = n + 2, we don’t have evidently any problem, since Eq.(19)
simply gives (an+3 + b−n+1) =any quantity. Therefore any relation between an+3, b−n+1 required by the
differential equation in (15) is acceptable. Note moreover that if we allowed poles for G(λ) with a degree
less than n, we would find contradiction between the conditions (18)-(19), and the differential equation
in (15). Thus, we conclude that the two conditions (15) are compatible (if we allow G(λ) to develop
poles). So the MBH GUP, as well as the ST GUP, are translational and rotational invariant. Q.E.D.
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Towards clarifying the central engine of long gamma-ray bursts
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Abstract
Towards clarifying the formation processes of a system of black hole and massive
accretion disk, we updated our full GR numerical code with microphysics (a finite
temperature EOS, electron capture, local neutrino emission, and simplified treatment
of neutrino cooling). Our new code shows an advanced performance that our results
of spherical collapse agree quite well with those by the Boltzmann transport. We also
calculate the gravitational-wave spectrum from convective activities occurred after
the bounce.

1 Introduction

The observed spectroscopic connections between several SNe and long gamma-ray bursts (LGRBs) with
SNe suggested that at least some LGRBs are associated with supernovae and the core collapse of massive
stars. The collapsar model [1], in which the central engine of LGRBs is composed of a rotating black
hole (BH) surrounded by a massive accretion disk formed after the collapse of rapidly rotating massive
stellar core is currently one of the promising models of central engine of LGRBs.

To clarify the formation process of such BH-disk system, it is necessary to perform multidimensional
simulations in full general relativity employing a finite temperature EOS and detailed microphysics. In
this article, we briefly report our recent progress of the works.

2 Basic equations

The basic equations are the baryon conservation equation

∇α(ρuα) = 0, (1)

the lepton conservation equations,

∇α(ρYeu
α) = SYe , (2)

∇α(ρYνiu
α) = SYνi

, (3)

where νi = νe, ν̄e, νµ, and ντ , and the local conservation equation of the energy-momentum∇α(TTotal)α
β =

0. Here ρ and uµ are the rest mass density and the 4-velocity.
The total stress-energy-momentum tensor is the sum of the fluid part (T (f)

αβ ) and the neutrino part

(T (ν)
αβ ) as (TTot)αβ = (TF)αβ + (T ν)αβ , where (TF)αβ is the stress-energy-momentum tensor of the fluid

assumed to take the form of the perfect fluid (TF)αβ = (ρ + ρεF + PF)uαuβ + PFgαβ , and εF and PF

denote the specific internal energy density and the pressure of the fluid. The neutrino part (T ν)αβ is
formally divided into ’trapped-neutrino’ ((T ν,t)αβ) and ’streaming-neutrino’ ((T ν,s)αβ) parts as

(T ν)αβ = (T ν,t)αβ + (T ν,s)αβ .

We assume that the stress-energy-momentum tensor of the trapped-neutrino part takes the form of the
perfect fluid and is combined with the fluid part to give

Tαβ ≡ (TF)αβ + (T ν,t)αβ = (ρ + ρε + P )uαuβ + Pgαβ .

1E-mail:sekig@th.nao.ac.jp
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Figure 1: Radial profiles of density (the left panel), electron fraction (the middle panel), and entropy per
baryon profile (the right panel) at selected time slices.

Thus, the specific internal energy density and the pressure are the sum of the contributions from
the baryons (free protons, free neutrons, α-particles, and heavy nuclei), leptons (electrons, positrons, and
trapped neutrinos), and radiation P = PF+Pν = PB +Pe +Pr +Pν , ε = εF+εν = εB +εe +εr +εν , where
subscripts ’B’, ’e’, ’r’, and ’ν’ denote the components of the baryons, electrons and positrons, radiation,
and trapped neutrinos, respectively. We employ a finite temperature equation of state by Shen et al [2]
for baryons. Fermions are treated as ideal Fermi gases. For radiation, we set εr = arT

4/ρ Pr = arT
4/3,

where ar is the radiation constant.
On the other hand, the streaming-neutrino part is assumed to have the form

(T ν,s)αβ = Eνnαnβ + Fαnβ + Fβnβ + 1/3γαβEν ,

where nα and γαβ are the unit normal and the metric of a three-dimensional hypersurface.
In terms of the above decomposition, we solve

∇βT β
α = −Qα, (4)

∇β(T ν,s)β
α = Qα, (5)

where the source term Qα = Quα is interpreted as the cooling rate due to the emission of (streaming)
neutrinos. To summarize we solve Eq. (1), (2), (3), (4), and (5).

The source terms consists of the local and ’leakage’ processes (SYνi
= Slocal

Yνi
+ Sleak

Yνi
, Q = Qleak =∑

Qleak
Yνi

). The local processes are the electron, positron, and neutrino captures [3] which is responsible
to SYe and SYi electron-positron pair annihilation [4], plasmon decay [5], and Bremsstrahlung [6] which
are to SYi .

The leakage processes are the local emission of neutrinos according to the local diffusion timescale. In
general the cross sections of neutrinos with matter can be written as σi(εν) = σ̃iε

2
ν . The the opacity and

the optical depth are similarly given by κ(εν) = κ̃ε2ν and τ(εν) = τ̃ ε2ν . We include neutrino absorption
on free nucleons and heavy nuclei, neutrino scattering by electrons, free nucleons and heavy nuclei as
opacity sources [6]. Then we define the diffusion timescale by

tdiff
ν (εν) ≡ fdiff τ2

cκ
= fdiff τ̃2

cκ̃
ε2ν , (6)

where fdiff is the constant of order unity. Then we define the local leakage rates by taking spectral
average

Sleak
Yνi

∝
∫

n̂(εν)
tdiff
ν (εν)

dεν =
1

fdiff

4πgνi

h3c2

κ̃

τ̃2
(kBT )F0(ηνi), (7)

QYνi
∝

∫
εν

n̂(εν)
tdiff
ν (εν)

dεν =
1

fdiff

4πgνi

h3c2

κ̃

τ̃2
(kBT )2F1(ηνi), (8)

where nν =
∫

n̂(εν)dεν , h and kB are the Plank constant and Boltzmann constant, gν is the weight factor
and Fk(x) is the Fermi-Dirac function.
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Figure 2: Radial profiles of electron-neutrino energy (the left panel) at selected time slices and time
evolution of neutrino luminosities (right panel).

3 Results

First we compare the results of collapse of spherical core (model S15 [7]) with the results by Liebendöfer
et al [8] in which the Boltzmann equations are solved for neutrinos. Figure 1 shows Radial profiles of
density, electron fraction, and entropy per baryon profile at selected time slices after the bounce. Figure
2 shows radial profile of electron-neutrino energy and time evolution of neutrino luminosity. As the
collapse proceeds, the central density exceeds the nuclear density and a bounce occurs (t ≈ 184 ms) then
a shock wave is formed and propagated outward. When the front of the shock wave pass through the
neutrino sphere, a neutrino burst occur (see Fig. 2) and electron (lepton) fraction and entropy per baryon
decreases rapidly (t ≈ 185–187 ms). Note that negative gradients of electron fraction and entropy per
baryon are formed in the core. Due to this neutrino burst, the shock wave eventually stalls at r ≈ 90 km
Our results shows good agreement with those by Liebendöfer et al.

It is well known that configuration with the negative gradients of lepton fraction and entropy per
baryon are unstable against the Ledoux convection:

(
∂ρ

∂Yl

)

P,s

dYl

dr
+

(
∂ρ

∂s

)

P,Yl

ds

dr
> 0, (unstable). (9)

The left panel of Fig. 3 shows contour of entropy per baryon at a time slice after the neutrino burst. As
this figure clearly show, the steep negative gradients of entropy and Yl formed above the neutrino sphere
lead to the convective overturn.

We approximately estimate the energy available by the convective overturn. The gravitational energy
per unit mass released as a result of convective overturn ∆h is given by

w = −geff

[(
∂ ln P

∂s

)

ρ,Ye

(
∂ lnP

∂ ln ρ

)−1

s,Ye

(ds)amb +
(

∂ ln P

∂Ye

)

ρ,s

(
∂ ln P

∂ ln ρ

)−1

s,Ye

(dYe)amb

]
∆h, (10)

where ’amb’ and ’blob’ denote ambient and convective blob fluid element, and ∆h is the overturn distance.
Thus, the energy available in the convective overturn of a region of mass ∆M and thickness ∆h with

a value of ∆s at a distance r from the center of a proto-neutron star of mass M is approximately given
by W ∼ 1051 ergs

(
∆M

0.3M¯

) (
∆h

10km

) (
|∆s|

s

) (
50km

r

)2
(

M
M¯

)
, Similarly, with a value of ∆Ye, the available

energy is given by W ∼ 1051 ergs
(

∆M
0.3M¯

) (
∆h

10km

) (
|∆Ye|

Ye

) (
50km

r

)2
(

M
M¯

)
.

We see that if ∆s ∼ s and ∆Ye ∼ Ye, W ∼ 1051 ergs. These numbers are achieved in our simulations
for the regions below the neutrino sphere. Since the convection timescale in the proto-neutron star seems
to be τot

<∼ RNSvot ∼ 10 ms the energy gain by the overturn will be Lot
>∼ 1053 ergs/s. Since this free

energy compensates the energy loss due to the photo-dissociation (Ldiss ∼ 1053 ergs/s) and the neutrino
emission (Lν ∼ 1053 ergs/s at the time when the shock wave stalls), the shock wave are pushed outward.

Associated with the convective motions, gravitational waves are emitted. The gravitational waveforms
are computed using a quadrupole formula. In the left panel of Fig. 3, we show the spectra of hchar due
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Figure 3: Contour of entropy per baryon (left panel) and gravitational-wave spectrum from convective
motion (right panel).

to the convective motions. In contrast to spectra due to the core bounce, there is no dominant peak
frequency in the power spectra. Instead, several maxima for the frequency range 100–500 Hz are present.
This indicates that there exist a wide variety of scales of convective eddies with characteristic overturn
timescales of 2–10 ms. The effective amplitude of the gravitational waves observed in the most optimistic
direction is hchar ∼ 10−21 for a event at a distance of 10 kpc, which is as large as that emitted at the
bounce of rotating core collapse.

4 Summary

We perform a simulation of collapse of stellar core comparing results with those by spherical Boltzmann
solver [8] and calculating spectrum of gravitational wave from convective activities. Our new code shows
an advanced performance and can be used to clarify the formation process of LGRB engine. Fruitful
scientific results will be reported in near future.

Numerical computations were performed on the NEC SX-9 at the data analysis center of NAOJ and
on the NEC SX-8 at YITP.
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Abstract
In loop quantum cosmology there may be a super-inflation phase in the very early
universe, in which a single scalar field with a negative power-law potential V = �fϕβ

in Planck units plays important roles. Since the effective horizon
√

SD/H controls
the behavior of quantum fluctuation instead of the usual Hubble horizon, we assume
the inflation scenario; the super-inflation starts when the quantum state of the scalar
field emerges into the classical regime and ends when the effective horizon reaches the
Hubble horizon, and the effective horizon scale never gets shorter than the Planck
length. From consistency with the WMAP 5-year data, we place a constraint on the
parameters of the potential (β and f) and the energy density at the end of the super-
inflation, depending on the volume correction parameter n, and we also determine
the allowed range for n.

1 Introduction

Loop Quantum Gravity (LQG) is the candidate of the quantum gravity, and which is the canonical
approach with triad variables instead of the metric. In the end of the previous century, LQG has inspired
loop quantum cosmology (LQC), which is an application of loop quantization to the homogeneous universe
models [5, 6, 7, 8]. This is featured with the avoidance of a big bang singularity and a super-inflation,
where the Hubble parameter increases with time. If the loop quantum effects may have been significant
in the early universe, quantum fluctuation generated in that phase must be consistent with the currently
observed nearly scale-invariant power spectrum. The power spectrum for the LQC super-inflation was
calculated in [11] and scale invariant conditions were obtained in [9] with the volume correction, which is
one of the loop quantum effects. The scale invariant conditions are the following: i) the scalar field satisfies
a scaling condition and ii) the scalar field has a negative potential, and iii) the potential is a power-law
form and the index is infinitely large. In this paper we assume i) and ii) conditions and the following
inflation scenario; the super-inflation starts when the scalar field emerges into the classical regime from
the quantum regime, and since the effective horizon

√
SD/H controls the behavior of quantum fluctuation

and its scale decreases with time, the super-inflation ends when the effective horizon reaches the Hubble
horizon. We need to assume that the effective horizon never gets smaller than the order of the Planck
length so that we can calculate quantum fluctuation at semiclassical region. We consider the above
scenario and require consistency with the WMAP 5-year data [10] to place a constraint on the parameters.
In this paper we use the units in which c = h̄ = 1.

2 The quantum uctuation in LQC

2.1 Loop Quantization

We first consider the homogeneous and isotropic universe described by the FRW metric

ds2 = −dt2 + a(t)2
[
dr2 + r2

(
dθ2 + sin2 θdϕ2

)]
, (1)

where a is the scale factor. In LQC the Hamiltonian for the gravitational and the single scalar fields
is given by H = Hgrav + Hmatter, where[1, 15] : Hgrav = −3/(8πγG)aS(q)ȧ2, Hmatter = D(q)(2a3)p2

ϕ +
1E-mail:shimano@rikkyo.ac.jp
2E-mail:harada@rikkyo.ac.jp
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a3V (ϕ). S(q) and D(q) are respectively the loop correction factors for the gravitational Hamiltonian and
the inverse volume in the matter Hamiltonian, and the dot denotes the derivative respect to t. The scalar
field depends only on time, i.e. ϕ = ϕ(t). pϕ is a conjugate momentum of ϕ, defined as pϕ = −a3ϕ̇/D,
and q is defined as [2, 3, 4]: q ≡ (a/a∗)

3, where

a∗ =
(

2j

K

) 1
3

√
4πγ

3
lpl, K =

2
√

2

3
√

3
√

3
, l2pl = G, (2)

j is an SU(2) parameter which is associated with the link of the spin network state in LQG (we assume
j is sufficiently large), and γ is the Immirzi parameter which is here assumed γ = ln(2)/(π

√
3) by the

black hole entropy argument in LQG [13], but see also [14]. Note that a∗ is the characteristic scale factor
in LQC: if the scale factor is smaller than a∗, the LQC effects are remarkable. In the semiclassical region
(lpl ≪ a ≪ a∗), S(q) and D(q) take the following forms [12]: S(q) = S∗a

r, and D(q) = D∗a
n, where,

S∗ = S̃∗a
−r
∗ = (3/2)a−r

∗ and D∗ = D̃∗a
−n
∗ = {(9(9 − n))/(81 − 5n)}(n−9)/12

a−n
∗ , n = 9(3 − l)/(1 − l)

and r = 3. We assume 0 < l < 1 or 9 < n < ∞ to remove the divergence of the inverse volume factor,
while, in the classical region (a ≫ a∗), these are S(q) ∼ 1, and D(q) ∼ 1 so that the classical theory is
recovered.

From the gravitational and scalar field Hamiltonians, we can obtain the following modified Friedmann
equation and the scalar field equation:

H2 =
8πG

3
S(q)

[
ϕ̇2

2D(q)
+ V (ϕ)

]
, (3)

ϕ′′ +
(

2 − d lnD

d ln a

)
a′

a
ϕ′ + a2DVϕ = 0, (4)

where Vϕ ≡ dV/dϕ, the prime denotes the derivative with respect to τ (we also use the conformal
time τ where dt = adτ), H ≡ ȧ/a is the Hubble parameter. In the classical regime a ≫ a∗, since
D(q) = S(q) = 1, these equations reduce to the classical ones. However, in the semiclassical regime
lpl ≪ a∗ ≪ a, the second term acts an anti-friction term and the scalar field may climb the potential.

More remarkably, the time derivative of the Hubble parameter

Ḣ = −4πGSϕ̇2

D

[
1 −

(
1
6

d lnD

d ln a
+

1
6

d lnS

d ln a

)]
+

4πGS

3
d lnS

d ln a
V, (5)

is positive in the semiclassical regime. The inflation with this feature is called super-inflation.

2.2 The scaling solution and the power spectrum

We review the scaling solution and its stability according to Refs [11, 9]. We write the dynamics of the
homogeneous system in terms of the following three variables,

x =
ϕ̇√
2Dρ

, y =

√
|V |
√

ρ
, λ = −

√
3D

16πGS

Vϕ

V
, (6)

where we use the negative potential, and we also need a constraint x2 − y2 = 1 to satisfy the Friedmann
equation Eq. (3). Then we can derive the set of ordinary differential equations, and we can find the stable
fixed points in this equations. The one of the stable fixed points correspond to the scaling solutions where
the ratio of the kinetic term to the potential term is kept constant. For simplicity, we only consider a
constant Γ and then we can determine the potential from the definition of the Γ. For Γ ̸= 1, the potential
is given by V = −f |ϕ|β , where β and f are constants. Moreover, we can calculate the scale factor on this
fixed points as a = A(−τ)p, where

A =

−1
p

√
8πfS̃∗

3(x2
0 − 1)

∣∣∣∣∣∣ 2x0

n − r

√
3D̃∗

4πS̃∗

∣∣∣∣∣∣
β
2


p [(
2j

K

) 1
3

√
4πγ

3

]p+1

lPl, (7)

p = − 4
2(r + 2) + (n − 3)β

, (8)
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here x0 is the coordinate of the fixed points. As for the fluctuation scale and the effective horizon
scale, for p > −2/(n + r) the fluctuation scale becomes longer than the effective horizon scale, while for
p < −2/(n + r) the fluctuation scale gets shorter than the effective horizon scale. We assume that the
horizon problem can be solved by the super-inflation in LQC, and then we impose the following condition
on p,

p > − 2
n + r

(9)

We call this condition “the horizon problem condition”. Since only scaling solution satisfies this condition,
we use this fixed point in LQC.

We calculate the power spectrum in the same way as in [11]. However, note that we also incorporate
the correction factor S(q) into the matter Hamiltonian. We put the scalar field perturbation as ϕ =
ϕ(t) + δϕ(x, t) into the matter Hamiltonian as

Hϕ+δϕ =
1
2

D(q)p2
ϕ+δϕ

a3
+

1
2
aS(q)δab∂a(ϕ + δϕ)∂b(ϕ + δϕ) + a3V (ϕ + δϕ), (10)

where pϕ+δϕ = a3(ϕ̇+ ˙δϕ)/D. We calculate the power spectrum with using the effective horizon
√

SD/H
and a = (−τ)p, then the tilt becomes the following

b = 3 −
2
√

9 − (6 − 4n − 3r)2p − (12 + 4n − 2nr − r2 − 2n2)p2

2 + (n + r)p
, (11)

where the scale-invariant power spectrum is achieved by p = 0, corresponding to β → ∞ with r = 3 and
fixed n in Eq. (8).

3 The consistency with WMAP 5-year data

According to the WMAP 5-year data, the CMB power spectrum index is in the range ns = 0.963+0.014
−0.015

[10]. Since the relation between the spectrum index ns and the tilt b is b = ns − 1, for inserting this data
into Eq. (11) we can take two solutions of p. Because only one of these can solve the horizon problem
condition (9), we take the power of potential β with this p in Eq. (8).

In FIG.1, we plot the allowed region of β against n. If we can specify the value for n, then we can
place a rather stringent constraint on β. However, if we do not have any information about n, β is only
weakly constrained to 15 <∼ β <∼ 150. In any case, β is bounded from above in the present scenario and
an infinitely large value is not allowed from WMAP 5-year data.
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Figure 1: The allowed region of β. The solid line corresponds to the best-fit value, while the dashed lines
denote the boundary of measurement error ranges.
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Moreover, we can take the constraint on the energy density and the potential constant with the
following inflation scenario: the super-inflation starts when the quantum state of the scalar field emerges
into the classical regime and ends when the effective horizon gets equal to the Hubble horizon before the
effective horizon scale gets shorter than the square root of the smallest area element.

4 Conclusion

We have considered a single scalar field with the negative power-law potential V ∝ −fϕβ in LQC, then
we have determined the allowed region of the potential power β and the energy density at the end of
the super-inflation, and the potential constant f , and the volume correction parameter n by using the
consistency with the WMAP 5-year data.

First we have reviewed Ref [9]. Using dynamical systems theory we have found a scaling solution
which is a stable fixed point and satisfies the horizon problem condition. Second, we have assumed
the super-inflation scenario. By using this inflation scenario and the consistency with the WMAP 5-
year data, we have reached the following conclusion. If we can specify the volume correction parameter
n, we can determine the potential parameters β and f rather stringently. Even if we only know the
volume correction parameter n, then we can determine β and f , and the energy density at the end of the
super-inflation.

In this paper we have only considered the scalar field perturbation. However, the CMB power spectrum
is actually the temperature perturbation on the last scattering surface, so we should derive the curvature
perturbations as well as matter perturbations and their evolution in different scales in LQC. To get more
stringent constraint on the super-inflation scenario, we will need to use other independent observations:
large scale structure, non-gaussianity, gravitational waves and so on. These problems will be our next
work.
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Non-Gaussianity in the Curvaton Scenario

Tomo Takahashi1
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Abstract
We discuss the signatures of non-Gaussianity in the curvaton model where the poten-
tial includes also a non-quadratic term. In such a case the non-linearity parameter
fNL can become very small, and we show that non-Gaussianity is then encoded in
the non-reducible non-linearity parameter gNL of the trispectrum, which can be very
large. Thus the place to look for the non-Gaussianity in the curvaton model may be
the trispectrum rather than the bispectrum. We also show that gNL measures directly
the deviation of the curvaton potential from the purely quadratic form.

1 Introduction

The high precision of cosmological observations such as WMAP [1, 2] and the forthcoming Planck Surveyor
Mission [3] will soon make it possible to probe the actual physics of the primordial perturbation rather
than merely describing it. As is well known, the primordial scalar and tensor power spectra, characterized
by spectral indices the and tensor-to-scalar ratio, can be used to test both models of inflation and other
mechanisms for the generation of the primordial perturbation such as the curvaton [4, 5, 6]. However,
many models can imprint similar features on the primordial power spectrum. Thus a possible deviation
from Gaussian fluctuations, which may provide invaluable implications on the physics of the early universe,
has been the focus of much attention recently.

The simplest inflation models generate an almost Gaussian fluctuation. In contrast, in the curvaton
scenario there can arise a large non-Gaussianity. However, in most studies on the curvaton so far, one
simply assumes a quadratic curvaton potential. Since the curvaton cannot be completely non-interacting
(it has to decay), it is of interest to consider the implications of the deviations from the exactly quadratic
potential, which represent curvaton self-interactions. Such self-interactions would arise e.g. in curvaton
models based on the flat directions of the minimally supersymmetric standard model (MSSM). Even
small deviations could be important for phenomenology, as was pointed out in [7] where it was shown
that the non-Gaussianity predicted by the curvaton model can be sensitive to the shape of the potential.
In particular, the nonlinearity parameter fNL which quantifies the bispectrum of primordial fluctuation
can, in contrast to the case of the quadratic curvaton potential, be very small in some cases. However, the
signatures of non-Gaussianity can be probed not only with the bispectrum but also with the trispectrum.
In the following, we will show that even when fNL is negligibly small, gNL can be very large, indicating
that the first signature of the curvaton-induced primordial non-Gaussianity may not come from the
bispectrum but rather from the trispectrum.

2 Non-linearity parameters

To discuss non-Gaussianity in the scenario, we make use of the non-linearity parameters fNL and gNL

defined by the expansion

ζ = ζ1 +
3
5
fNLζ2

1 +
9
25

gNLζ3
1 + O(ζ4

1 ), (1)

where ζ is the primordial curvature perturbation. Writing the power spectrum as

〈ζk⃗1
ζk⃗2

〉 = (2π)3Pζ(k1)δ(k⃗1 + k⃗2), (2)

1E-mail:tomot@cc.saga-u.ac.jp
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the bispectrum and trispectrum are given by

〈ζk⃗1
ζk⃗2

ζk⃗3
〉 = (2π)3Bζ(k1, k2, k3)δ(k⃗1 + k⃗2 + k⃗3). (3)

〈ζk⃗1
ζk⃗2

ζk⃗3
ζk⃗4

〉 = (2π)3Tζ(k1, k2, k3, k4)δ(k⃗1 + k⃗2 + k⃗3 + k⃗4), (4)

where Bζ and Tζ are products of the power spectra and can be written as

Bζ(k1, k2, k3) =
6
5
fNL (Pζ(k1)Pζ(k2) + Pζ(k2)Pζ(k3) + Pζ(k3)Pζ(k1)) , (5)

Tζ(k1, k2, k3, k4) = τNL (Pζ(k13)Pζ(k3)Pζ(k4) + 11 perms.)

+
54
25

gNL (Pζ(k2)Pζ(k3)Pζ(k4) + 3 perms.) . (6)

Note the appearance of the independent non-linearity parameter τNL. However, in the scenario we are
considering in the following, τNL is related to fNL by

τNL =
36
25

f2
NL . (7)

To evaluate the primordial curvature fluctuation in the curvaton model, we need to specify a potential
for the curvaton. Here we go beyond the usual quadratic approximation and consider the following
potential:

V (σ) =
1
2
m2

σσ2 + λm4
σ

(
σ

mσ

)n

, (8)

which contains a higher polynomial term in addition to the quadratic term. For later discussion, we
define a parameter s which represents the size of the non-quadratic term relative to the quadratic one:

s ≡ 2λ

(
σ∗

mσ

)n−2

. (9)

Thus the larger s is, the larger is the contribution from the non-quadratic term.
When the potential is quadratic, the fluctuation evolves exactly as the homogeneous mode. However,

when the curvaton field evolves under a non-quadratic potential, the fluctuation of the curvaton evolves
non-linearly on large scales. In that case the curvature fluctuation can be written, up to the third order,
as [8]

ζ = δN =
2
3
r
σ′

osc

σosc
δσ∗ +

1
9

[
3r

(
1 +

σoscσ
′′
osc

σ′2
osc

)
− 4r2 − 2r3

](
σ′

osc

σosc

)2

(δσ∗)2

+
4
81

[
9r

4

(
σ2

oscσ
′′′
osc

σ′3
osc

+ 3
σoscσ

′′
osc

σ′2
osc

)
− 9r2

(
1 +

σoscσ
′′
osc

σ′2
osc

)
+

r3

2

(
1 − 9

σoscσ
′′
osc

σ′2
osc

)
+ 10r4 + 3r5

](
σ′

osc

σosc

)3

(δσ∗)3 , (10)

where σosc is the value of the curvaton at the onset of its oscillation and the prime represents the derivative
with respect to σ∗. r roughly represents the ratio of the energy density of the curvaton to the total density
at the time of the curvaton decay. The exact definition is given by

r ≡ 3ρσ

4ρrad + 3ρσ

¯̄̄̄
decay

. (11)

Notice that σ′
osc/σosc = 1/σ∗ for the case of the quadratic potential. With this expression, we can write

down the non-linearity parameter fNL as

fNL =
5
4r

(
1 +

σoscσ
′′
osc

σ′2
osc

)
− 5

3
− 5r

6
. (12)
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Figure 1: (Left) Plot of fNL as a function of n for several values of s. (Right) Plot of gNL as a function
of fNL for several values of s. Notice that fNL and n have one-to-one correspondence. In both panels,
r = 0.01.

Also notice that, although the curvaton scenario generally generates large non-Gaussianity with fNL
>∼

O(1), the non-linearity parameter fNL can be very small in the presence of the non-linear evolution of
the curvaton field which can render the term 1 + (σoscσ

′′
osc)/σ′2

osc ≅ 0 [7, 8].
In the curvaton model, the non-linearity parameter gNL can be written as

gNL =
25
54

[
9

4r2

(
σ2

oscσ
′′′
osc

σ′3
osc

+ 3
σoscσ

′′
osc

σ′2
osc

)
− 9

r

(
1 +

σoscσ
′′
osc

σ′2
osc

)
+

1
2

(
1 − 9

σoscσ
′′
osc

σ′2
osc

)
+ 10r + 3r2

]
. (13)

As one can easily see, even if the non-linear evolution of σ cancels to give a very small fNL, such a
cancellation does not necessarily occur for gNL. This indicates an interesting possibility where the non-
Gaussian signature of the curvaton may come from the trispectrum rather than from the bispectrum.

3 Signatures of non-Gaussianity

Let us now consider non-Gaussianity in curvaton models, paying particular attention to the non-linearity
parameters fNL and gNL. We show the values of fNL and gNL as a function of the power n in Fig. 1. In
the left panel of the figure, the value of fNL is plotted as a function of the power n for several values of
s. There we have fixed the value of r to r = 0.01. As can be read off from Eq. (12), when r is small, fNL

can be well approximated as

fNL ≅ 5
4r

(
1 +

σoscσ
′′
osc

σ′2
osc

)
. (14)

Notice that the combination σoscσ
′′
osc/σ′2

osc is zero when n = 2. As the value of n becomes larger, the
above combination yields a negative contribution. Thus, fNL decreases to zero as the potential deviates
away from a quadratic form and then becomes zero for some values of n and s. For small values of s,
which correspond to the cases where the size of the non-quadratic term is relatively small compared to
the quadratic one, the power n should be large to make fNL very small. It should also be mentioned
that, for a fixed s, if we take larger values of n beyond the “cancellation point” fNL = 0, fNL becomes
negative.

However, as already discussed, even if we obtain very small values for fNL, it does not necessarily
indicate that non-Gaussianity is small in the model but may show up in the higher order statistics.
Indeed, this appears to be a generic feature of the curvaton model: the trispectrum cannot be suppressed
and gNL can be quite large and is always negative for small values of r. Interestingly, even if fNL is zero,
the value of |gNL| can be very large, as can be seen Fig. 1. This is because a cancellation which can occur
for fNL does not take place for gNL, which is a smooth function of n. When r is small, gNL is mainly
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determined by the first term in Eq. (13):

gNL ≅ 25
54

[
9

4r2

(
σ2

oscσ
′′′
osc

σ′3
osc

+ 3
σoscσ

′′
osc

σ′2
osc

)]
. (15)

In fact, one can show that the terms (σoscσ
′′
osc)/σ′2

osc and (σ2
oscσ

′′′
osc)/σ′3

osc give negative contributions for
the cases being considered here, which indicates that the cancellation between these terms never occurs
[9]. Therefore gNL is always negative for small values of r even when fNL is very small. Thus, it may
turn out that the best place to look for non-Gaussianity in curvaton models is the trispectrum and gNL

in particular.

4 Summary

We have discussed the signatures of non-Gaussianity in the curvaton model with the potential including
a non-quadratic term in addition to the usual quadratic term. When the curvaton potential is not purely
quadratic, fluctuations of the curvaton field evolve nonlinearly on superhorizon scales. This gives rise
to predictions for the bispectrum, characterized by the non-linearity parameter fNL, which can deviate
considerably from the quadratic case. However, by studying the trispectrum which is characterized by
gNL along with fNL, we find that even when fNL is negligibly small, the absolute value of gNL can be
very large. Thus the signature of non-Gaussianity in the curvaton model may come from the trispectrum
rather than from the bispectrum if its potential deviates from a purely quadratic form, as one would
expect in realistic particle physics models.

Here we discussed the case where a non-quadratic term is also taken into account in the curvaton
potential, however the cases where fluctuations from the inflaton can also be responsible for cosmic
density perturbations today would also be interesting since such a case can arise in general. Such mixed
fluctuation scenarios have been investigated in Refs. [10, 11, 12].
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Abstract
We develop a theory of non-linear cosmological perturbations at superhorizon scales
for a scalar field with a Lagrangian of the form P (X,φ), where X = −∂µφ∂µφ and φ
is the scalar field. We employ the ADM formalism and the spatial gradient expansion
approach to obtain general solutions valid up to the second order in the gradient
expansion. This formulation can be applied to, for example, DBI inflation models
to investigate superhorizon evolution of non-Gaussianities. With slight modification,
we also obtain general solutions valid up to the same order for a perfect fluid with a
general equation of state P = P (ρ).

1 Introduction

Generation of primordial fluctuations during inflation is one of the most interesting predictions of quantum
field theory. Indeed, those quantum fluctuations are considered as seeds of the large scale structure of the
present universe, and this picture has been accepted by many researchers as a standard scenario. The
recent more accurate observation by WMAP has revealed deviation from exact scale invariance, with a
slight red tilt. Moreover, there is a good possibility that deviation from Gaussianity can be detected by
the future experiments such as PLANCK. With those current and future precision observations, deviation
from the exact scale invariance and Gaussianity can be a powerful tool to discriminate many possible
inflationary models. On the theoretical side, there are at least two known mechanisms to generate
large non-Gaussianity: isocurvature perturbations and non-canonical kinetic terms. As for the former
case, a typical example is the curvaton scenario is responsible for isocurvature perturbations during
inflation. Now let us consider the later case, where non-canonical kinetic terms are responsible for large
non-Gaussianity. Examples of this type include k-inflation [1] and DBI inflation [2]. In k-inflation and
DBI inflation, large non-Gaussianity is expected when the non-linear nature of the non-canonical kinetic
action becomes significant. To quantify the non-Gaussianity and clarify its observational signature, it is
important to develop a theory that can deal with nonlinear cosmological perturbations. There are couple
of methods to tackle this problem. One is a second-order perturbation theory. Another is based on spatial
gradient expansion [3]. Closely related to the gradient expansion method, cosmological perturbations on
superhorizon scales have been studied extensively in the so-called separate universe approach or δN
formalism [4]. Actually, these approaches are essentially the leading order approximation to the gradient
expansion. Including these, many of the previous studies were confined to the leading order approximation
to the gradient expansion. However, higher order corrections to the leading order results can be important
to get more detailed information about non-Gaussianity. One good example is the case studied by Leach
et al [5]. They considered linear perturbations in single-field inflation models and supposed that there is a
stage at which slow-roll conditions are violated. It has been then shown that, due to the decaying mode,
the O(ε2) corrections in spatial derivative expansion do affect the evolution of curvature perturbations
on superhorizon scales. However, the linear perturbation theory is not capable for calculation of non-
Gaussianity. Thus, it is necessary to develop nonlinear theory of cosmological perturbations valid up to
O(ε2) in the spatial gradient expansion. Gradient expansion formalism has been developed and used by
many authors [3, 4, 6, 7]. Formulation valid up to O(ε2) was developed, for example, by Tanaka and

1E-mail:takamizu@gravity.phys.waseda.ac.jp
2E-mail:shinji.mukohyama@ipmu.jp
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Sasaki for a universe dominated by a perfect fluid with a specific equation of state P/ρ = const [6] and
that dominated by a canonical scalar field [7]. However, as far as the authors know, those works have not
extended to a perfect fluid with general equation of state P = P (ρ) nor to a scalar field with non-canonical
kinetic action, which is essential for the second type of mechanism of generating non-Gaussianity. The
purpose of this paper is to fill this gap. Namely, we shall develop a theory of nonlinear superhorizon
perturbations valid up to the order O(ε2) for a scalar field with non-canonical kinetic action and a perfect
fluid with general equation of state.

2 Formalism

Throughout this paper we consider a minimally-coupled scalar field described by an action of the form
I =

∫

d4x
√−gP (X,φ) where X = −gµν∂µφ∂νφ, and suppose that −gµν∂νφ is timelike and future-

directed. The following relation among first-order variations of P , ρ and φ will be useful in the analysis
below. δP = c2sδρ+ ρΓδφ, where

c2s =
PX

2PXXX + PX
, Γ =

1
ρ

(

Pφ − c2sρφ
)

, (1)

where the subscripts X and φ represent derivative with respect to X and φ, respectively. Note that cs is
the speed of sound for the gauge invariant scalar perturbation in the linear theory.

We shall develop a theory of nonlinear cosmological perturbations on superhorizon scales. For this
purpose we employ the ADM formalism and the gradient expansion in the uniform Hubble slicing. In the
(3+1)-decomposition, the metric is expressed as ds2 = gµνdx

µdxν = −α2dt2 +γij(dxi+βidt)(dxj+βjdt)
where α is the lapse function, βi is the shift vector and Latin indices run over 1, 2, 3. Since α and
βi represent gauge degrees of freedom for diffeomorphism and appear as Lagrange multipliers in the
action, the corresponding equations of motion leads to constraint equations. Contrary to α and β,
components of the spatial metric γij are dynamical variables (subject to the constraint equations) and
the corresponding equations of motion are called dynamical equations. In what follows we shall express
the dynamical equations as a set of first-order differential equations with respect to the time t. For this
purpose we introduce the extrinsic curvature Kij defined by Kij = − 1

2α (∂tγij −Diβj −Djβi) where D
is the covariant derivative compatible with the spatial metric γij . For the stress-energy tensor in the
perfect fluid form, we define the 3-vector vi as vi ≡ ui/u0. Hereafter, we shall use γij and its inverse
γij to raise and lower indices of K, D, v, β. In addition to the standard ADM decomposition briefly
reviewed above, we further decompose the spatial metric and the extrinsic curvature as

γij = a2ψ4γ̃ij , Kij = a2ψ4

(

1
3
Kγ̃ij + Ãij

)

, (2)

where a(t) is the scale factor of a fiducial Friedmann background (specified later) and the determinant of
γ̃ij is constrained to be unity: det γ̃ij = 1. Throughout this paper we adopt the uniform Hubble slicing

K = −3H(t), H(t) ≡ ∂ta

a
. (3)

In the gradient expansion approach we introduce a flat FRW universe (a(t), φ0(t)) as a background
and suppose that the characteristic length scale L of perturbations is longer than the Hubble length scale
1/H of the background, i.e. HL � 1. Therefore, we consider ε ≡ 1/(HL) as a small parameter and
systematically expand our equations by ε, considering a spatial derivative acted on perturbations is of
order O(ε). The background flat FRW universe (a(t), φ0(t)) satisfies the Friedmann equation and the
equation of motion. Since the FRW background is recovered in the limit ε → 0, we naturally have the
assumptions vi = O(ε), βi = O(ε) and ∂tγ̃ij = O(ε). Actually, following the arguments in refs. [6, 7], we
assume a stronger condition ∂tγ̃ij = O(ε2). This assumption significantly simplifies our analysis and, we
believe, still allows many useful applications of the formalism. On the other hand, we consider ψ and γ̃ij
(without derivatives acted on them) as quantities of order O(1). We can estimate orders of magnitude
of various quantities by using the above assumption and the basic equations. In summary, we have the
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following estimates (including assumptions):

ψ = O(1), γ̃ij = O(1), vi = O(ε), βi = O(ε), χ ≡ α− 1 = O(ε2),

Ãij = O(ε2), δ ≡ ρ− ρ0

ρ0
= O(ε2), π ≡ φ− φ0 = O(ε2), p ≡ P − P0 = O(ε2),

∂tγ̃ij = O(ε2), ∂tψ = O(ε2), vi + βi = O(ε3). (4)

We substitute the order of magnitude shown in (4) into the conservation equations ∇µT
µ
ν = 0, the

Hamiltonian and momentum constraint equations, and the evolution equations for the spatial metric
and for the extrinsic curvature. By using these equations and the background conservation equation
∂tρ0 + 3H(ρ0 + P0) = 0, a single equation for δ is easily obtained, ∂t(a2ρ0δ) = O(ε4). It is intriguing to
note that we have not yet specified the form of p. The form of p for the scalar field system is specified
by the relation as

p = ρ0(c2s0δ + Γ0π) +O(ε4), (5)

where c2s0 = P0X/(2P0XXX0+P0X) and Γ0 = (P0φ−c2s0ρ0φ)/ρ0. We can obtain another equation relating
p and π, by expanding p as p = P0X(X−X0)+P0φπ+O(ε4), where X−X0 = 2(∂tφ0∂tπ−χX0)+O(ε4).
Actually, this equation can be interpreted as a first-order equation for π.

3 General solution

Having written down all relevant equations up to the order O(ε2) in the gradient expansion, we now seek
a general solution. First, ψ = O(1) and ∂tψ = O(ε2) imply that ψ = L(0)(xk) + O(ε2) where L(0)(xk) is
an arbitrary function of the spatial coordinates {xk} (k = 1, 2, 3). Hereafter, the superscript (n) indicates
that the corresponding quantity is of order O(εn). Similarly, γ̃ij = O(1) and ∂tγ̃ij = O(ε2) imply that
γ̃ij = f

(0)
ij (xk) + O(ε2) where f

(0)
ij (xk) is a (3 × 3)-matrix with unit determinant whose components

depend only on the spatial coordinates. By using these equations and background conservation equation,
equations for δ and ui are easily obtained. The traceless part of the extrinsic curvature Ãij is solved by
using the leading part of ψ and γ̃ij . The ‘constants‘ of integration are not independent but are related
to each other by the two constraint equations. Indeed, by solving the Hamiltonian and momentum
constraints, the ‘constants‘ are expressed in terms of other integration ‘constants‘. Until now, we have
not used (5). Therefore, the general solutions presented above are valid not only for the scalar field
system but also for radiation, dust or any other sources, provided that the stress-energy tensor is of the
perfect fluid form and that p = O(ε2). We now use (5) to proceed further. It is easy to integrate the
corresponding eqs to give the solutions of π and χ.

Solutions obtained so far are correct up to leading order in the gradient expansion. Among them, the
spatial metric ψ and γ̃ij have been obtained only up to O(1) while all other variables are correct at least
up to O(ε2). In this subsection we seek O(ε2) corrections to ψ and γ̃ij . For this purpose it is convenient
to specify the shift vector βi more accurately than indicated by (4) as βi = O(ε3). With this gauge
choice, in summary we have obtained the following solutions in the gradient expansion for the scalar field
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system.

δ =
R(0)

2κ2ρ0a2
+O(ε4),

ui =
1

6κ2(ρ0 + P0)a3
∂i

(

R(0)

∫ t

t0

a(t′)dt′ + C(2)

)

+O(ε5),

π = − ∂tφ0

6κ2(ρ0 + P0)a3

(

R(0)

∫ t

t0

a(t′)dt′ + C(2)

)

+O(ε4),

χ = − 1
6κ2(ρ0 + P0)a2

[(

1 + 3c2s0 −
ρ0Γ0∂tφ0

(ρ0 + P0)a

∫ t

t0

a(t′)dt′
)

R(0) − ρ0Γ0∂tφ0

(ρ0 + P0)a
C(2)

]

+O(ε4),

ψ = L(0)

(

1 +
1
2

∫ t

t0

H(t′)χ(t′)dt′
)

+O(ε4),

γ̃ij = f
(0)
ij − 2

(

F
(2)
ij

∫ t

t0

dt′

a3(t′)

∫ t′

t0

a(t′′)dt′′ + C
(2)
ij

∫ t

t0

dt′

a3(t′)

)

+O(ε4),

Ãij =
1
a3

(

F
(2)
ij

∫ t

t0

a(t′)dt′ + C
(2)
ij

)

+O(ε4), (6)

where R(0) = R
[

(L(0))4f (0)
]

, C(2) in this expression is related to Π(2), and ‘constants‘ of integration
L(0), f (0)

ij , C(2) and C(2)
ij depend only on the spatial coordinates {xk} (k = 1, 2, 3).

4 Summary and discussion

We have developed a theory of nonlinear cosmological perturbations on superhorizon scales for a scalar
field described by a Lagrangian of the form P (X,φ), whereX = −∂µφ∂µφ and φ is the scalar field, and also
for a perfect fluid with a general equation of state P = P (ρ). The general solutions valid up to the order
O(ε2) in the spatial gradient expansion have been presented for the scalar field system and in Appendix
of [8] for the perfect fluid. This formalism can be applied to many interesting circumstances. Some
particular examples including a scalar with shift symmetry, a canonical scalar and a DBI scalar. Thus,
the formalism can be used to investigate superhorizon evolution of nonlinear cosmological perturbations in
k-inflation and DBI inflation. If matching subhorizon perturbation with superhorizon perturbation occurs
in enough large scale (or enough late time), the O(ε0) effect becomes dominant. However, near crossing
the horizon, there is the case where the O(ε2) corrections need to estimate. In order to quantify the
non-Gaussianity, it needs to translate curvature perturbation ψ in our solutions which has been obtained
on the uniform Hubble hypersurface, into ones on the uniform density ζ, which have been discussed in
the first section. Calculating three point correlation function of ζ including the O(ε0) corrections will be
addressed in future publication.
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Abstract
We analyze stability of gravitating Q-balls.

1 Introduction and our model

It has been argued that scalar solitons play important roles as dark matter candidates. Boson stars are
one of their possibilities. Depending on their potentials and couplings, we can consider various sizes. For
example, it has been argued that axidilaton star of ∼ 0.6M� accounts for some fraction of the MACHOs
(massive compact halo object) [1]. Supermassive boson stars of 106− 109M� as an alternative to a black
hole in the galaxy center has also been discussed [2]. For these reasons, it is important to argue their
stabilities. To tackle this problem, it is instructive to consider their flat limit and examine the method
which is useful for stability analysis in this case. In general, boson stars do not have a flat limit. The
case having the flat limit is classified as Q-balls [3]. Kusenko showed that Q-balls are stable under the
thick-wall approximation for the potential [4]

V3(φ) =
m2

2
φ2 − μφ3 + λφ4 with m2, μ, λ > 0 . (1)

The work by Pacceti Correia and Schmidt is very useful which showed that stability of Q-balls is
guaranteed if and only if

ω

Q

dQ

dω
< 0 , (2)

where Q and ω are the Q-ball charge and the phase velocity, respectively [5]. Whether or not this criterion
can be extended to gravitational Q-balls is one of our interest.

We take the action described by

S =
∫

d4x
√−g

(

mPl
2

16π
R + Lφ

)

, Lφ ≡ √−g
{

−1
2
gμν∂μφ · ∂νφ − V (φ)

}

, (3)

where φ = (φ1, φ2) is an SO(2)-symmetric scalar field and φ ≡ √
φ · φ =

√

φ2
1 + φ2

2. We assume a
spherically symmetric and static spacetime, ds2 = −α2(r)dt2+A2(r)dr2+r2(dθ2+sin2 θdϕ2). We consider
spherically symmetric configurations of the field and assume homogeneous phase rotation, (φ1, φ2) =
φ(r)(cosωt, sinωt). Then the field equations become

A′ +
A

2r
(A2 − 1) =

4πrA3

mPl
2

(

φ′2

2A2
+
ω2φ2

2α2
+ V

)

, α′ +
α

2r
(1 −A2) =

4πrαA2

mPl
2

(

φ′2

2A2
+
ω2φ2

2α2
− V

)

, (4)

φ′′ +
(

2
r

+
α′

α
− A′

A

)

φ′ +
(

ωA

α

)2

φ = A2 dV

dφ
, (5)

where ′ ≡ d/dr. We solve (4)-(5) with boundary conditions,

A(0) = A(∞) = α(∞) = 1, A′(0) = α′(0) = φ′(0) = φ(∞) = 0. (6)
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Due to the symmetry there is a conserved charge,

Q ≡
∫

d3x
√−ggμν(φ1∂νφ2 − φ2∂νφ1) = ωI, where I ≡ 4π

∫

Ar2φ2

α
dr. (7)

One finds the canonical momentum of φ and the matter part of the Hamiltonian density,

Pa =
∂Lφ
∂φa

=
√−g
α2

φ̇a, Hφ = Paφ̇a − Lφ =
α2P2

a

2
√−g +

√−g
{

(φ′a)
2

2A2
+ V

}

. (8)

Because we will consider only virtual displacement of φ, we do not have to take the gravity part into
account. Then the Hamiltonian is given by

E =
∫

Hφd
3x =

Q2

2I
+ 4π

∫

r2αA

{

(φ′)2

2A2
+ V

}

dr. (9)

We consider (1) which we call V3 model. For V3 model, we rescale the quantities as

t̃ ≡ μ√
λ
t, r̃ ≡ μ√

λ
r, φ̃ ≡ λ

μ
φ, Ṽ3 ≡ λ3

μ4
V3, m̃ ≡

√
λ

μ
m, ω̃ ≡

√
λ

μ
ω, κ ≡ μ2

λmPl
2
, (10)

To estimate the parameter regions of ω̃2 where solutions exist, we consider the flat case. In this case,
the field equation is

d2φ̃

dr̃2
= −2

r̃

dφ̃

dr̃
− ω̃2φ̃+

dṼ

dφ̃
. (11)

This is equivalent to the field equation for a single static scalar field with the potential Vω ≡ Ṽ − ω̃2φ̃2/2.
For this case, solutions satisfying boundary conditions (6) exist if min(Vω) < Ṽ (0) and d2Vω/dφ̃

2(0) > 0,
which is equivalent to

ω̃2
min < ω̃2 < m̃2 with ω̃2

min ≡ min

(

2Ṽ
φ̃2

)

. (12)

The two limits ω̃2 → ω̃2
min and ω̃2 → m̃2 correspond to the thin-wall limit and the thick-wall limit,

respectively. For V3 potential, we have ω̃2
min = m̃2 − 1

2 . As we explain below, qualitative features of
solutions change at m̃2 = 1

2 .
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Figure 1: (a) Q̃-Ẽ and (b) Q̃-ω̃2 for m̃2 = 0.6. We compare solutions for κ = 0 with those for 0.01. Spiral
structures can be seen for the case with κ = 0.01.
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2 Comparison of gravitating cases with flat cases

2.1 The case for m̃2 > 0.5

First, we compare Q̃-Ẽ and Q̃-ω̃2 in the case for m̃2 = 0.6 with κ = 0 (i.e., flat case), and with 0.01 in
Fig. 1 (a) and (b), respectively. For the flat case, there is an one to one correspondence between Q̃ and
Ẽ while there is a spiral structure for the gravitating case as shown in Fig. 1 (a). As a result, we find the
Q̃-maximum (the point A) and its local minimum (the point B). It is expected that this property would
affect their stability. Actually, if we see Fig. 1 (b), we find that the stability criterion (2) is satisfied for
the flat case while it is not necessarily satisfied for the gravitating case. However, since (2) is established
by using the explicit form of the perturbative equation for the flat case, it is not evident whether or not
it is applicable for the gravitating case.

It is natural to ask what cause these differences. To answer this question, we show the field profiles
of the scalar field for κ = 0 with Q̃ = 200 and 800 (dotted lines) and those for κ = 0.01 with Q̃ = 200
and 800 (solid lines) in Fig. 2. If we pay attention to the case Q̃ = 200, we notice that the scalar field
is a little bit concentrated near the origin if the gravity is taken into account. This tendency becomes
clear for the case Q̃ = 800 where two solutions exist for κ = 0.01 (See, Fig. 1). The solution with
more condensed configuration around the origin corresponds to that shown by a dotted line in Fig. 1.
This implies that the Q-ball having larger charge than that of the point A can not support itself and
will collapse or disperse. Limitation of the Q-ball size due to gravity has been pointed out in [6]. This
implies that stability changes at the point A. Although we show the example m̃2 = 0.6 with κ = 0 and
0.01, qualitative properties for m̃2 > 0.5 and other κ do not change from these cases. The quantitative
properties which are changed by other parameters are sizes of spiral structures in these diagrams. If we
take large (small) κ and m̃2, maximum of Q̃ becomes small (large).
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Figure 2: r̃-φ̃ relation for κ = 0 with Q̃ = 200 and 800 (dotted lines) and for κ = 0.01 with Q̃ = 200 and
800 (solid lines).

2.2 The case for m̃2 < 0.5

Next, we show (a) Q̃-Ẽ and (b) Q̃-ω̃2 for m̃2 = 0.2 in Fig. 3. First, we pay attention to Fig. 3 (a).
We should notice that the case κ = 0 has a cusp structure and has a Q̃-maximum different from that
for m̃2 > 0.5. As a result, we have two solutions for a fixed Q̃ for the flat case. It has been shown
that the dotted line is unstable while the solid line stable. We find that the case κ = 1.0 and 1.3 only
show the slight difference from the flat case. However, there is an important difference that the cusp
structure disappears. Its disappearance suggests that the catastrophe type is changed by gravity. Intrinsic
differences occur for κ > 1.3 where two spiral structures appear for each κ (we call each of them lower
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and higher branch corresponding to their energy, respectively). If one considers the analogy with the
flat case where the solid (dotted) line is the stable (unstable), one may suppose that the lower (higher)
branch is stable (unstable). However, we should suppose that two spiral structures appear for the same
reason for the corresponding one for m̃2 > 0.5 where gravity makes a Q̃-maximum. Thus, it is natural
to guess that the lower branch shown by a solid (dotted) line is stable (unstable). The stability of the
higher branch is more puzzling. If we compare the case κ = 1.4 with the case κ = 1.3, we may suppose
that the interval between B and C is stable. However, the case κ = 1.5 does not have such an interval.
Therefore, it is difficult to judge the stability without other criteria.

We also comment on the diagram (b) and the stability criterion (2). The solid (dotted) lines correspond
to those in the diagram (a). For the flat case, we can confirm that the solid line satisfies (2) while the
dotted line does not. For the gravitating with κ < 1.4, we also confirm it while it is not for κ ≥ 1.4. In
particular, the solution shown by the solid line and that by the dotted line, both satisfying (2), merge
at the cusp for κ = 1.4. Since the cusp is a typical structure which suggests a stability change via a
catastrophe theory, (2) would not be applicable for gravitating Q-balls.
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Figure 3: (a) Q̃-Ẽ and (b) Q̃-ω̃2 for m̃2 = 0.2.

3 Conclusion

We have analyzed stability of gravitating Q-balls for a V3 model and revealed their structures.
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Kerr black hole and rotating black string by intersecting
M-branes
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Abstract
We find eleven dimensional non-BPS black M-brane solutions from Kerr solution in
M-theory by using U-duality. Under the transformation four dimensional Kerr met-
ric change to non-BPS rotating intersecting M-brane solutions. To easy application
for AdS/CFT correspondence we must need a supersymmetric black brane solution,
which limits special configuration of M-branes, e.g., M2-M2-M2 branes in five dimen-
sional black brane and M5-M5-M5 brane with pp-wave in four dimensional one. In
this case we may easily apply the AdS/CFT correspondence for non-BPS black hole
solutions.

1 Introduction

AdS/CFT correspondence [1] is the most successful theory to describe strong coupling limit for boundary
conformal field theory. There is a holographic duality between bulk quantum gravity and boundary
quantum field theory. Four dimensional CFT is studied in all aspects because of CFT interests, and its
dual theory is based on five dimensional supergravity black hole solutions. In recent years, Kerr/CFT
correspondence are found only for the extremal limit case [2]. The paper shows the reason of the finite
entropy of the extremal Kerr black hole, even the Hawking temperature is zero. AdS/CFT correspondence
are very useful to show that reason. However non-extremal case we have no information about AdS/CFT
correspondence, thus for non-extremal Kerr/CFT correspondence we will give the M-brane configuration
about non-extremal Kerr solution.

Non BPS black ring solutions [3] using the same method we use below, but these solutions related
to intersecting M2 ⊥ M2 ⊥ M2-brane solution in M-theory, or intersecting F1 ⊥ D2 ⊥ D2-brane
solution in type IIA string theory with compactification on one-dimensional torus of M-Theory. These
configuration in string theory is impossible to analysis for AdS/CFT correspondence [1], because we must
choose typical coordinates for the compact space for near horizon limit, which is the kk-wave direction,
but this solution has not any typical direction for compact spaces. Thus we show the NS5 ⊥ D4 ⊥ D4-
brane solutions from general axisymmetric four-dimensional vacuum solution with two Killing vector, e.g.,
Kerr metric. We also get the general rotating black string solutions, which is rotating four-dimensional
black hole with extra one dimension, by the M2 ⊥ M2 ⊥ M2-brane solutions from the Kerr metric.

In our previous work [4], black hole solutions with flat extra dimensions in M-theory are only exist
the specific configuration of intersecting M-branes. However the earlier study for the micro state of Kerr
black hole [5] using the D0⊥D6 branes, which is impossible to extension to the supersymmetric black
brane solution in four dimension. The supersymmetric black brane means which have the regular event
horizon with finite surface area.

Adding the new charge for the solution, we apply the boost for the ordinary metric along the extra
dimension. Applying T-duality for the boost solution, we find D3-brane given by four-form field D4,
which is the self-dual field strength dD4 = ∗(dD̃4). There are some technical difficulties for the Hodge
dual for the stationary spacetime, since the stationary black hole remains the non-diagonal component
after the boost. Such a component makes problem for integration in order to get the explicit description
of the dual field D̃4.

We will construct the intersecting M-brane solution consistent to the intersecting rule, and avoiding
the difficulties of integration we apply the final boost after the lifting up to the eleven dimension. Thus
we try to find the sequence to get the M5⊥M5⊥M5-brane soltuion, which is related to the D4⊥D4⊥NS5
brane solutions in type IIA superstring theory.

1E-mail:tanabe@gravity.phys.waseda.ac.jp
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2 From Kerr metric to Intersecting D-branes

Before charging up the vacuum solution, we introduce the Kerr metric, which is a stationary solution of
four-dimensional vacuum Einstein equation. The Kerr metric in spherical coordinate is written in

ds2 = −f (dt + Ω)2 + Σ2

(
dr2

∆
+ dθ2

)
+

∆
f

sin2 θdφ2

where the metric functions are defined by

Σ2 = r2 + a2 cos2 θ , ∆ = r2 − 2mr + a2

Ω =
2mr

Σ2 − 2mr
a sin2 θdφ , f = 1 − 2mr

Σ2
.

The mass of the black hole is m and a is the specific angular momentum witch bounded for m ≥ a. In
the Kerr/CFT correspondence, we take the extremal limit m = a and near horizon limit r → r+, where
the event horizon r+ is determined by ∆ = 0. For simplicity we denote ds2 = −f(dt + Ω)2 + ds2

base in
below. The base metric ds2

base = γijdxidxj are the orthogonal three-dimensional metric written by the
variables r, θ, φ. The metric has the two Killing vector ξt and ξφ.

Adding the extra six flat dimension, the metric change to ds2 + −f(dt + Ω)2 + ds2
base +

∑6
i=1 dz2

i .
This metric is also a solution of ten dimensional vacuum Einstein equation Rµν = 0. To add first charge
(D3-brane), we apply a sequence in below;

Bα2(z1) → T (z1) → S → T (z2) → T (z3) ,

then we find a D3-brane solution in type IIB supergravity. We denote Bα(z1) is boost for zi direction
with boost parameter α, T (zi) is T-dual for zi direction, and S is S-dual. To add second and third
charges, we take next sequence in below,

T (z4) → Bα1(z1) → T (z1) → S → T (z5) → T (z6) → T (z2) → B(z6) → T (z6) → S → T (z5) ,

then we find a D2 ⊥ D2 ⊥ D2 intersecting brane solution as

ds2 = −ξ−1/2f(dt + c1c2c3Ω)2 + ξ1/2ds2
base + ξ1/2

[
h−1

1

2∑
i=1

dz2
i + h−1

2

4∑
i=3

dz2
i + h−1

3

6∑
i=5

dz2
i

]
,

where ξ = h1h2h3 −β2
t , βt = s1s2s3

ma cos θ
Σ2 . The dilaton field is e−2ϕ = ξ−3/2h1h2h3 and the gauge fields

are

Bzizj = h−1
α

cα

sα
βt , Ãt = −ξ−1βtf , Ãφ = −ξ−1βtfω

C̃zizjt =
2
3
h−1

α sαcα(f − 1) , C̃zizjφ =
2
3
h−1

α fc−1
α sαω .

where the pair of indices (i, j) = (1, 2), (3, 4), (5, 6) are corresponding to α = 1, 2, 3, and ω = c1c2c3Ω.
For the first example of a black hole solution, we continue to apply the U-duality for the charging up

the four-dimensional Kerr solutions. Next we try to apply another example related to the rotating black
string, which can be described by the Kerr metric with another one extra dimension, and these solutions
must possess the Gregory-Laflamme instability [6].

In order to get M5⊥M5⊥M5 brane solution, we must apply the sequence in following as

T (z1) → T (z3) → T (z5) → T (z2) → T (z4) → T (z6) ,

then we find the D4 ⊥ D4 ⊥ D4-brane solutions and we lift up the z7 direction and boost for the same
direction z7, then we find the M5 ⊥ M5 ⊥ M5-brane with pp-wave solutions in M-theory;

ds2 = Ξ1/3

[
h̄−1

1

2∑
i=1

dz2
i + h̄−1

2

4∑
i=3

dz2
i + h̄−1

3

6∑
i=5

dz2
i

]

+ Ξ1/3
[
−ξ−1f(dt + ωdφ)2 + ds2

base

]
+ Ξ−2/3ξ

(
dz7 + Âtdt + Âφdφ

)2

, (1)
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where the conformal factor can be written by Ξ = h̄1h̄2h̄3 and h̄i = ξĥ−1
i with ĥi = −s2

i f + c2
i g

−1
i . The

function gi is determined by gi = 1 + (h1h2h3)−1h−1
i s−2

2 β2
t . The three-form fields related to M5-brane

are given by

Ĉ
(α)
7 ≡ Czizjz7 =

2
3
h̄−1

α s−1
α cαβt , Ĉ(α)

a ≡ C̃zizja =
8
3
D̂(α)

a + h̄−1
α s−1

α cαβtÂa ,

where the component of M5-brane fields and the metric components are given by

D̂
(1)
t = −ξ−1h2s1c2c3D̃t , D̂

(1)
φ = s2c2

[
D̃φ + (1 − ξ−1h2c

2
1c

2
3)D̃tΩφ

]
D̂

(2)
t = −ξ−1h1c1s2c3D̃t , D̂

(2)
φ = s1c1

[
D̃φ + (1 − ξ−1h1c

2
2c

2
3)D̃tΩφ

]
D̂

(3)
t = −ξ−1h3c1c2s3D̃t , D̂

(3)
φ = s3c3

[
D̃φ + (1 − ξ−1h3c

2
1c

2
2)D̃tΩφ

]
Ât = s1c1s2c2s3c3

ma2 cos2 θ

Σ4

Âφ = −s1s2s3

(
c2
1c

2
2c

2
3 +

2rΣ2h1h2h3

r2 − a2 cos2 θ

)
ma3 sin2 θ cos2 θ

Σ4
.

We note that Kerr metric with flat dimensions has no Chern-Simons term, but there are exist in eleven
dimension after the charging up sequence, e.g., Ĉ

(1)
7 ∧dĈ

(2)
t ∧ Ĉ

(3)
φ or like that combinations. The Chern-

Simons terms gives the non-trivial effect of the topology for BPS black ring solutions, and this effect
change the Laplace equation for the harmonic function hi to the Poisson equation for the non-harmonic
function h̄i. Because of non conformally flat base space, supersymmetrie breaks for φ direction, thus in
the ordinary base space configuration we took maximally charge for three.

Finally we apply the boost for the z7 direction, then we find non-BPS four charge solution. However
if we took same special value for physical parameters, we find supersymmetric solution with conformally
flat base space. To Compactify extra seven dimensions (z1, · · · , z7) on torus, we find the four dimensional
charged solution as

ds2 = −Υf(dt + ω̄dφ)2 + Υ−1ds2
base , (2)

where ω̄ and Υ are determined by

ω̄ = c4ω + s4(ωÂt − Âφ)

Υ−2 = Ξ
(
−ξ−1fs2

4 + Ξ−1ξ(c4 + s4Ât)2
)

,

In the Kerr metric case, the regularity condition for the rotating axis are the same as before, thus the
metric has no conical singularity at the ordinary event horizon r+ = m +

√
m2 − a2.

In the asymptotic region (r → ∞) the metric becomes flat and the ADM mass M = m(1+
∑4

i=1 s2
i /2),

the conserved charge Q =
√

2m
∑4

i=1 sici/2 and the angular momentum J = c1c2c3c4a are given in the
asymptotic metric form. The surface gravity change as below

κ =
1

β2
t+(c4 + s4Ât+)

r2
+ − a2

4mr2
+

, (3)

where βt+ and Ât+ are defined by the substitution for r = r+. The surface area of the outer event horizon

A =
∫

dθdφ
√

Σ2 (Υ−2γφφ − fω̄2)
¯̄̄̄
r=r+

= 8πmr+c1c2c3

[
c4 −

1
2
a3s4

(
π

4
− a

r+
arctan

r+

a

)]
,

and we can show the thermodynamics with the physical parameter as the charge and angular momentum
and the temperature, but the dilaton fields does not contribute.
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The extremal solution (κ = 0) is given by m = a, which is as the same as ordinary Kerr metric. The
area surface is vanishing in the extremal limit of the ordinary Kerr metric, however the area surface in
M-theoretical Kerr metric doesn’t vanishing (A = 8πm2c1c2c3c4). Since cα is related to the charge of
M-brane (or D-brane), this non-vanishing area surface gives the microstate of M-brane.

Sen gave the rotating charged black hole solution [7], which metric is given in

ds2 = −h−1
α f

(
dt + c2

αΩ
)2

+ hαds2
base , (4)

where hα = −s2
αf + c2

α. Sen’s solution is included in our solution with the parameter c1 = c2 = cα and
c3 = c4 = 1, and this case the action is changing as φ1 = φ2 and φ3 = φ4 = 0 and ρα = 0 and only
A(1)

a = A(2)
a are exist.

3 Concluding remark

In this paper we have presented the charging up Kerr solution using the U-duality method. Black hole
solutions are presented by intersecting M-brane, and we have construct the intersecting M-brane solution,
which consistent to the supersymmetrical black hole solution given by our previous work [4]. The four-
dimensional black hole solution is given by M5⊥M5⊥M5 brane solution with traveling wave, and the
five-dimensional black string solution is given by M2⊥M2⊥M2 brane solution. Both of the solution exist
the non-vanishing Chern-Simons term in M-theory, although the Chern-Simons term in the ordinary
Kerr metric with additional flat extra dimensions must be vanishing. The Chern-Simons terms change
the metric function given by Laplece equation to the function given by Poisson equation.

The four-dimensional solution is represented by the charged dilaton black hole. The Maxwell charge
and the dilatons are coupled to each other, and the angular momentum are represented by the charges.
Thus we are only possible to take the limit to vanishing the charges with the trivial dilaton, and this limit
gives static black brane solution [?]. The black hole has the regular extremal limit to the BPS solution
in four dimension with non-vanishing are surface, and the area surface are represented by the micro state
of M- or D-branes.

Since there are kk-wave mode in the ten-dimensional metric, the D-brane configuration of this metric
is suitable to apply the AdS/CFT correspondence. We will show the micro state of these solutions in
the context of AdS/CFT correspondence, and we will also show the regular solutions with the specific
physical parameters in subsequent paper, witch we are writing now. In the limit for the CFT, we compare
the micro state of Kerr black hole by D0 ⊥ D6-brane solutions given by Horowitz et. al., [5].

By the way of this paper we only consider from the vacuum solutions, but adding the extra dimension
we can extend to the Einstein manifold with the constant gauge field, which satisfy the Einstein and
Maxwell equation in lower and higher dimension. In this formalism, including the one rotating black ring
case, we can apply the more interesting case, especially cosmology and black hole dynamics.
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Initial data of black hole
localized on Karch-Randall brane
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Abstract
Based on the conjectured duality in the Karch-Randall braneworld models, it is sug-
gested that a static brane-localized black hole larger than bulk curvature length does
exist in this model. It is also suggested that the Hawking-Page transition of the four-
dimensional black hole may be reproduced as a change in the shape of five-dimensional
black hole in the bulk. In order to test these suggestions, we try to construct time-
symmetric initial data of brane-localized black hole in the Karch-Randall braneworld
model and study its properties. I will explain the method of the analysis and illustrate
expected results.

1 Introduction

The Randall-Sundrum II (RS-II) model [1] is a brane world model, which provides a way to realize our
four-dimensional world in a higher-dimensional spacetime. This model is composed of five-dimensional
bulk spacetime with negative cosmological constant and a four-dimensional brane with positive tension.
Weak gravitational field on the brane obeys the usual four-dimensional Newton law with a correction
suppressed at a large distance from the gravitational source [1, 2], though the extra-dimension extends
infinitely in this model. If we weaken the brane tension a little, a small negative cosmological constant
appears in the effective Einstein gravity on the four-dimensional brane, and the spacetime on the brane
becomes AdS4. It is known that there is an “almost” massless graviton even in this model, and four-
dimensional gravity is realized if length scale of interest is shorter than the curvature scale on the brane.
This model with an AdS brane is called the Karch-Randall (KR) model [3]. Since four-dimensional
gravity is realized effectively in these models, it is difficult to distinguish them from ordinary four-
dimensional models as long as we investigate only in the weak gravity regime. Essential features of these
models will appear in strong gravitation phenomena on them. In order to assess viability of these models
observationally, we should study how these models behave when strongly gravitation exists in them.

Now, consider a gravitational collapse on the brane in each of these models for an example of such
strong gravitation phenomena. Naively thinking, a static black hole (BH) whose horizon is localized near
the brane will form as a final state of this collapse, since ordinary four-dimensional gravity is realized
on the brane. There are exact static solutions of black objects, which are black strings (BS) in those
models [4,5], and they also are candidates of the black object which is formed after the collapse. However,
it seems unlikely that a BS is formed as a result of gravitational collapse, since it is singular at the bulk
AdS horizon and also unstable due to so-called Gregory-Laflamme instability [6]. Thus, a brane-localized
BH seems to be most likely to form after the collapse on the brane.

Contrary to this expectation of brane-localized BH formation, such an exact static solution has not
been discovered yet though much effort has been devoted into this issue (e.g. Ref. [7]). Numerical solution
of a static brane-localized BH was constructed when the horizon size is not much larger than the bulk
curvature scale, but the construction becomes harder as the horizon size becomes larger [8, 9]. A work
on brane-localized BH issue [10] reports that there are some problems in numerical solution construction
even when the brane-localized BH is smaller than the bulk curvature scale. These facts do not exclude
the possibility that a static solution of brane-localized BH larger than the bulk curvature scale does exist,
but we do not have any strong evidence of its existence. As an explanation of the lack of static solution,
there is a conjecture that brane-localized static BHs larger than bulk curvature scale do not exist in RS-II
model based on the AdS/CFT correspondence in this model [11,12].

1E-mail:tanahashi@tap.scphys.kyoto-u.ac.jp
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There are several works related to this conjecture (e.g. [13,14]), but no definite conclusion is obtained
yet. It is desirable to investigate the properties of static BH solution directly in order to test the validity
of this conjecture, but it is technically difficult to construct a static large BH solution numerically. Thus,
we consider time-symmetric initial data which have a brane-localized apparent horizon (AH), expecting
that their properties may give some insight into the brane-localized BH.

We have done this initial data construction and analysis of their properties in [15]. It was confirmed in
this work that there exists an initial data with an arbitrariry large blane-localized BH. We analyzed their
themodynamic properties by comparing this initial data with a black string solution which have the same
four-dimensional ADM mass. This analysis revealed that such a large brane-localized BH have smaller
entopy than than the black string of the same mass has, and thus it seems to be unstable and tend to
evolve into some other black object. This tendency changes as we decrease the size of the brane-localized
BH; when it is smaller than the bulk curvature scale, it have more entropy than the black string has.
This result is consistent that a static stable brane-localized BH does exists when it is smaller than the
bulk curvature scale, and it becomes unstable when it is larger than that scale.

This time, we do a similar analysis on the KR model. One of the differences from the RS-II model is
the behavior of warp factor in the bulk; in the RS-II model, it just decreases down to zero as we move
into the bulk from the brane; in KR model, it first decreases, but it begins to grow again after we passed
over a critical point which is at a distant of the bulk curvature scale. The effective potential for a small
particle behaves in a similar manner to the warp factor. If we put a small black hole at that minimum
point of the effective potential, it will stay there stably. At this stage, no black object is visible from an
observer on the brane; radiation field of nonzero temperature is induced on the brane by that BH, and
the brane observer will see only a lump of this thermal radiation.

Now, let us gradually increase the size of that BH which sits at that potential minimum. It will
keep to stay there as long as its size is smaller than the bulk curvature scale. A curious phase transition
occurs when its size become comparable to the bulk curavature scale: the BH touches the brane, and it
becomes observable from an observer on the brane. By the way, in the four-dimensional AdS spacetime,
it is known that such a phase transition occurs between thermal AdS phase and AdS BH phase. This
phenomenon is known as the Hawking-Page transition [16]. We conjecture that the transition of the bulk
BH shape to be a holographic dual of the Hawking-Page transition on the brane [11]. In order to check
this conjecture, we construct initial data of bulk BHs and brane-localized BHs in the KR model, and test
the thermodynamic property of those BHs.

2 Initial data construction method

In this section, we introduce a construction method of time-symmetric initial data with a BH in the KR
model. This model is composed of two copies of five-dimensional empty bulk with negative cosmological
constant Λ, and they are separated by a Z2-symmetric positive tension brane. The tension of the brane is
given by λ = 3k(1 + δ)/4πG5 with k =

√
−Λ/6, where G5 is the five-dimensional gravitational constant.

The parameter δ describes how a brane tension is detuned from that of the RS-II model; when δ = 0,
this model reduce to the RS-II model with a Minkowski brane. Four-dimensional cosmological constant
is given by Λ4D = 3k2

(
2δ + δ2

)
, thus a negative cosmological constant appears when δ < 0. In this

work, we assume δ < 0. The initial data we consider have O(3)-symmetry in the spacelike dimension as
well as the symmetry with respect to time reversal. These symmetries are property shared with static
brane-localized BH solutions. Hence, we think it appropriate to restrict our attention to this class of
initial data.

The starting point of our construction procedure is to choose an asymptotically AdS vacuum solution
of the Einstein equations with negative cosmological constant Λ. In this study, we use the well-known
AdS-Schwarzschild solution. The metric is given by

ds2 = −U(r)dt2 +
dr2

U(r)
+ r2

(
dχ2 + sin2 χdΩII

)
, U(r) = 1 + k2r2 − µ

r2
, (1)

where dΩII is the line element on a unit S2, and µ is the mass parameter of the AdS-Schwarzschild
BH. The spacetime described by this metric is asymptotically AdS, and has an spherical event horizon
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at r = rg where U(r) vanishes. In the following discussion, we set k to unity by rescaling the unit of
length. In this sense, this background spacetime has only one free parameter µ, which becomes one of
free parameters of the initial data.

We put a vacuum brane with Z2-symmetry in this AdS BH bulk. We denote the unit normal of
the brane by s̃µ, and take this s̃µ in the direction toward the bulk from the brane. We introduce the
induced metric γ̃µν ≡ gµν − s̃µs̃ν on the brane. The extrinsic curvature K̃ab on the brane is defined by
K̃ab = −γ̃ µ

a γ̃ ν
b ∇µs̃ν . Here Latin indices starting from the beginning of the alphabet (a, b, · · · ) run the

four-dimensional coordinates on the brane. A vacuum brane has the four-dimensional energy-momentum
tensor localized on the brane given by Tab = −λγ̃ab. Israel’s junction condition [17] on the brane is given
by K̃ab − K̃γ̃ab = 1

2 · 8πG5Tab, where we used Z2-symmetry across the brane. At the moment of the
time-reversal symmetry, we only have to solve the Hamiltonian constraint, which is the (t, t)-component
of the junction condition. Using the normal vector s̃µ, this equation is written as

Dis̃
i = −3k (1 + δ) , (2)

where Di is a covariant differenciation with respect to the induced metric γ̃ij . Assuming O(3)-symmetry
of the brane, we specify the brane trajectory by (r, χ) = (rb(ξ), χb(ξ)), where ξ is the proper radial length
along the brane. The spacelike unit normal s̃µ is given by

s̃µ =
(√

Urbχ′
b,− r′b√

Urb

)
. (3)

Then the Hamiltonian constraint (2) becomes a second order ODE of rb(ξ) and χb(ξ). We solve Eq. (2)
numerically to obtain the brane trajectory. In this way, we can construct a system of a brane and a BH
which floats on it. We can change the brane position with respect to the bulk BH, and also we can change
the mass parameter µ of the bulk BH as well as the detune paramter δ of the brane tension. Namely, we
can construct a three-parameter family of the initial data. We note here that we can construct an initial
data which have a BH localized on the brane, not one floating in the bulk.

3 Analysis method

In order to study thermodynamic properties of these BHs in the KR model, we have to calculate mass and
entropy of them. When we studied the system with a flat brane, we calculated four-dimensional ADM
mass measured on the brane and five-dimensional BH horizon area, and conducted a thermodynamic
analysis using them. We obtained some pieces of evidence that brane-localized BHs larger than the bulk
curvature scale are unstable. We would like to do a similar analysis using BH initial data on the KR
model, but there is a difficulty in the calculation of mass. In the RS-II model, the localization of the four-
dimensional graviton is perfect, and the four-dimensional ADM mass is expected to be an appropriate
quantity to characterize the system. On the other hand, the bulk of the KR model largely opens up
to the AdS boundary, and then the localization of the graviton is not perfect; the lowest Kaluza-Klein
mode have very small mass, and since it behaves differently from zero mass graviton when it propagates
a long length. In order to calculate mass in this system with imperfectly localized gravitation, we have to
calculate five-dimensionally defined mass, not the mass which is four-dimensionally defined on the brane.
However, there are no definite way to define five-dimensional mass in the KR model.

In [18], a way to define mass in AdS spacetime is proposed. They construct a conserved quantity
which is expressed as a surface integral of metric perturbation. Our proposal is to use this definition to
calculate mass in the KR model. We regard pure AdS5 spacetime as background spacetime, calculate
metric perturbation which is induced by the brane and the BH, and then calculate mass by integrating
the metric perturbation on some surface which is located near spatial infinity.

When we applied this Abbott-Deser definition of mass to the KR model, we found that the mass
defined in this way is conserved only when we keep to take the Gaussian-Normal coordinates. Thus, the
mass defined in this way is coordinate dependent. It is not so clear that this mass satisfies the laws of
thermodynamics, but we expect that we can obtain some information of the system using mass defined
in this way.
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Consider a family of initial data for a fixed value of mass. There are initial data of two types in
this family: one with a BH floating in the bulk, and one with a BH localized on the brane. In this
two-parameter family of the initial data for a fixed mass, we can find one which extremizes the entropy.
We expect this initial data to be one with a floating BH in the bulk when the temperature on the brane
is low, and to be one with a brane-localized BH when the temperature is above a critical temperature
which is determined by the curvature scale on the brane.

From this analysis, we will obtain useful information about the holography in RS-II and KR models.
Based on this result, we would like to tackle more difficult problems toward proof of the classical evapo-
ration conjecture. Especially, we would like to simulate a time-evolving brane-localized black hole using
numerical relativity technique. This analysis will clarify the behavior of BH solutions on these models,
and will provide essential knowledge about the holography on these braneworld models.
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Abstract
We consider the possibility that the horizon area is expressed by the general area
spectrum in loop quantum gravity and calculate the black hole entropy by counting
the degrees of freedom in spin-network states related to its area. Although the general
area spectrum has a complex expression, we succeeded in obtaining the result that the
black hole entropy is proportional to its area as in previous works where the simplified
area formula has been used. This gives new values for the Barbero-Immirzi parameter
(γ = 0.5802 · · · or 0.7847 · · · ) which are larger than that of previous works.

1 Introduction

Statistical mechanics in a self-gravitating system is quite different from that without gravity. For example,
particles in the box have maximal entropy when they spread out uniformly in the box if gravity is not
taken into account. On the other hand, if particles are self-gravitating, we can suppose that clusters
appear as an entropically favorable state. Then, if the pressure of particles can be neglected, it is likely
that a black hole appears as a maximal entropy state. Thus, black hole entropy would be the key for
understanding statistics in a self-gravitating system.

One of the most mysterious things about black holes is their entropy S which is not proportional to
its volume but to its horizon area A. This was first pointed out related to the first law of black hole
thermodynamics. The famous relation S = A/4 has been established by the discovery of the Hawking
radiation. Recently, its statistical origin has been discussed in the candidate theories of quantum gravity,
such as string theory, or loop quantum gravity (LQG) [1], etc. It has been discussed that LQG can
describe its statistical origin independent of black hole species because of its background independent
formulation [2]. For this reason, we concentrate on LQG here.

Quantum states in LQG are described by spin-network [3], and basic ingredients of the spin-network
are edges, which are lines labeled by spin j(j = 0, 1/2, 1, 3/2, · · · ) reflecting the SU(2) nature of the gauge
group, and vertices which are intersections between edges. For three edges having spin j1, j2, and j3 that
merge at an arbitrary vertex, we have following conditions.

j1 + j2 + j3 ∈ N, (1)
ji 5 jj + jk, (i, j, k different from each other.). (2)

These conditions guarantee the gauge invariance of the spin-network.
Using this formalism, general expressions for the spectrum of the area and the volume operators can

be derived [4, 5]. For example, the area spectrum Aj is

Aj = 4πγ
∑

i

√
2ju

i (ju
i + 1) + 2jd

i (jd
i + 1) − jt

i (j
t
i + 1) , (3)

where γ is the Barbero-Immirzi parameter related to an ambiguity in the choice of canonically conjugate
variables. The sum is added up all intersections between a surface and edges. Here, the indices u, d, and
t mean edges upper side, down side, and tangential to the surface, respectively (We can determine which
side is upper or down side arbitrarily).

1E-mail:tomo@gravity.phys.waseda.ac.jp
2E-mail:tamaki@gravity.phys.waseda.ac.jp
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In [1], it was proposed that black hole entropy is obtained by counting the number of degrees of
freedom about j when we fix the horizon area where a simplified area formula is used. This simplified
area formula is obtained by assuming that there are no tangential edges on black hole horizon, that is
jt
i = 0. We obtain ju

i = jd
i := ji by using the condition (2). Then, we consider the degrees of freedom

about j satisfying

Aj = 8πγ
∑

i

√
ji(ji + 1) = A. (4)

The standard procedure is to impose the Bekenstein-Hawking entropy-area law S = A/4 for large black
holes in order to fix the value of γ. Ashtekar et al. in [2] extended this idea using the isolated horizon
framework (ABCK framework) [6]. Error in counting in this original work has been corrected in [7, 8].
Similar works appear related to how to count the number of freedom in [9, 10].

However, should we restrict to the simplified area spectrum (4) ? Thiemann in [11] used the boundary
condition that there is no other side of the horizon, i.e., jd

i = 0. Then, by using (2), we obtain ju
i = jt

i := ji

which gives Aj = 4πγ
∑

i

√
ji(ji + 1). Based on this proposal, the number counting has been performed

in [12] which gives γ = 0.323 · · · .
Another interesting possibility is to use (3) motivated by the hypothesis that a black hole is a maximal

entropy state in a self-gravitating system. If we agree that the origin of the black hole entropy is related
to degrees of freedom in j (or m = −j,−j + 1, · · · , j considered in [2]), it is evident that (3) can gain
larger number of states than (4) for the fixed area. See, also [13] which also discuss using (3) as expressing
the horizon area. Of course, it is speculative and the typical objection to the idea is that since the black
hole evaporates, it is not the maximal entropy state. However, the black hole we consider is the limit
A → ∞ where the evaporation process can be negligible. The second objection is that if we require the
entropy-area law S = A/4, the black hole entropy does not depend on what types of area formula we use,
so it is not relevant to the above hypothesis. This is a delicate question to be answered carefully. From
the view point that the Barbero-Immirzi parameter is determined a priori, the formula S = A/4 only
provides us the method to know the value of γ. If this is the case, using (3) would enhance the entropy.
Therefore, we concentrate on evaluating the number of states using (3) by adopting this view point. To
answer whether this view point is true or not, we need independent discussion to know the value of γ
through, e.g., cosmology [14] or quasinormal modes of black holes [15, 16, 17].

Our strategy is as follows [18]. Based on the observation that the value of γ in [2] is qualitatively same
as that inferred in [1] which counts the degrees of freedom of j without imposing the horizon conditions
for the case (4), we restrict counting the corresponding j freedom for (3) as a first step. We can perform
it by carefully reanalyzing the case (4). This paper is organized as follows. In section 2, we count the
degrees of freedom for (3). In section 3, we mention concluding remarks.

2 Consideration of the general area spectrum

In the case for (4), horizon conditions does not affect entropy formula. Therefore in the case for (3) we
consider only degrees of freedom about area. In this case, we also denote number of states as N(A) which
is defined as

N(A) :=
{

(ju
1 , jd

1 , jt
1, · · · , ju

n , jd
n, jt

n)|0 ̸= ju
i , jd

i ∈ N
2

, 0 ̸= jt
i ∈ N, ju

i , jd
i , jt

i should satisfy (1) and (2).

∑
i

√
2ju

i (ju
i + 1) + 2jd

i (jd
i + 1) − jt

i (j
t
i + 1) =

A

4πγ

}
. (5)

We adopt the condition jt ∈ N motivated by the ABCK framework where the “classical horizon” is
described by U(1) connection. This is, of course, not verified in the present situation and should be
reconsidered in future.

Then, we perform counting as follows. If we use the condition jt ∈ N, we have ju + jd := n ∈ N by
(1). If we fix n, we can classify the possible ju, jd, jt as follows, which is one of the most important parts
in this paper. First, we have (ju, jd) = (n

2 ± s
2 , n

2 ∓ s
2 ) (double-sign corresponds) for 0 5 s 5 n, s ∈ N to
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satisfy (2). Then, for each s, possible value of jt is jt = s, s + 1, · · · , n to satisfy (2). For any eigenvalue
x := 4πγ

√
2ju

x (ju
x + 1) + 2jd

x(jd
x + 1) − jt

x(jt
x + 1) (0 < x 5 A) of the area operator, we have

(j1, · · · , jn) ∈ N(A − x) ⇒ (j1, · · · , jn, jx) ∈ N(A), (6)

where we used the abbreviation as ji = (ju
i , jd

i , jt
i ). We have (j1, · · · , jn, jx) ̸= (j1, · · · , jn, jx′), if jx ̸= jx′ .

Therefore, as for the case in (4), if we consider all 0 < x 5 A and (j1, · · · , jn) ∈ N(A−x), (j1, · · · , jn, jx)
form the entire set N(A).

Then, if we use the notation ju = n
2 + s

2 , jd = n
2−

s
2 , jt = t, we have x(n, s, t) = 4πγ

√
n2 + 2n + s2 − t(t + 1)

and

N(A) =
∞∑

n=1

[
n∑

s=1

n∑
t=s

2N(A − x(n, s, t)) +
n∑

t=0

N(A − x(n, s = 0, t))

]
, (7)

where the factor 2 in front of N(A − x(n, s, t)) for s ̸= 0 corresponds to the fact that same x(n, s, t)

appears twice for the exchange of ju and jd. For A → ∞, by assuming N(A) = Ce
AγM
4γ , where C is a

constant and substituting to the recursion relation (7), we obtain the beautiful formula as a generalization
of the case (4) as,

1 =
∞∑

n=1

[
n∑

s=1

n∑
t=s

2 exp(−γMx(n, s, t)/4γ) +
n∑

t=0

exp(−γMx(n, s = 0, t)/4γ)

]
. (8)

If we require S = A/4, we have γ = γM = 0.5802 · · · . This means that even if we use (3) as the horizon
spectrum, we can reproduce the entropy formula S = A/4 by adjusting the Barbero-Immirzi parameter.
This is nontrivial and is our main result in this paper.

Let us turn back to our assumptions. Although we obtained γ satisfying S = A/4 for the case (3),
there may be a criticism that the result is underestimated by only counting j freedom. To answer it, we
consider the following counting. When the simplified area formula was used, there is an proposal that
we should count not only j but also m = −j,−j + 1, · · · , j freedom based on the ABCK framework [9].
Although it is nontrivial whether this framework can be extended to the general area formula, let us count
also the m freedom for each ju to maximize the estimate. Counting only m related to ju is reasonable
from the point of view of the entanglement entropy or the holography principle.

If we notice that there are (n+ s+1) and (n− s+1) freedoms for m (total 2(n+1)) corresponding to
(ju, jd) = (n

2 + s
2 , n

2 − s
2 ) and (n

2 − s
2 , n

2 + s
2 ), respectively, the factor 2 in the first term of the right-hand

side of (8) is replaced by 2(n + 1) in this case. For s = 0, the factor 1 in the second term is replaced by
(n + 1). Then, we obtain

1 =
∞∑

n=1

[
n∑

s=1

n∑
t=s

2(n + 1) exp(−γMx(n, s, t)/4γ) +
n∑

t=0

(n + 1) exp(−γMx(n, s = 0, t)/4γ)

]
, (9)

which gives γ = γM = 0.7847 · · · . Thus, we confirm that the black hole entropy is proportional to the
area again. Naively speaking, we expect that there is no qualitative deviation from these two values of γ
even if we take into account the ABCK framework for (3) appropriately.

3 Conclusion and Discussion

In this paper, we obtained the black hole entropy by considering the general area formula. It is surprising
that we succeeded in obtaining the black hole entropy proportional to the horizon area even in this case.
Then, it is natural to ask what the area formula should be in describing the horizon area. There are
many possibilities examining the area spectrum. For example, we have not yet established the black
hole thermodynamics in LQG which is one of the most important topics to be investigated. There is an
idea that black hole evaporation process should also be described by using the general area formula [13].
Therefore, whether we can establish the generalized second law of black hole thermodynamics might be
one of the criteria in judging which area formula is appropriate. For this purpose, it is desirable to extend
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the ABCK framework for the general area formula since the exact counting is required. Though we do
not take care of the topology of the horizon, discussing the difference caused by the topology is important
as considered for the simplified area formula [19].

Of course, as we mentioned in the introduction, we should check the value of the Barbero-Immirzi
parameter in several independent discussions. Therefore, we should also take care of cosmology [14] and
quasinormal modes of black holes [15, 16, 17] in determining the Barbero-Immirzi parameter. Confirming
LQG in many independent methods would be the holy grail of the theory.
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Abstract
We explain the relation between the large scale structure (the cosmology) and the
low energy particle physics, e.g. the observed mysterious relation between the (dark)
energy density of the universe and the neutrino mass, which gives a new insight into
the origin of mass, based upon nonlinear supersymmetric general relativity towards
the unity of nature beyond (behind) the standard model.

Nonlinear supersymmetric general relativity (NLSUSY GR) [1], which is based upon the general relativity
(GR) principle and the nonlinear (NL) representation [2] of supersymmetry (SUSY) [3, 4], proposes a
new paradigm called the SGM (superon-graviton model) scenario [1, 5, 6] for the unified description of
space-time and matter beyond (behind) the standard model.

The NLSUSY [2] is known as a symmetry which represents a priori spontaneous SUSY breaking (SSB)
and the basic NLSUSY action [2] is described in terms of only spin-1/2 Nambu-Goldstone (NG) massless
fermions. Also, the NLSUSY model is recasted (related) rigorously to various linear (L) SUSY theories
with the SSB (NL/L SUSY relation), which has been shown by many authors in the various cases [7]-[12].

In NLSUSY GR, a new (generalized) space-time, SGM space-time [1], is introduced, where the tangent
space-time has the NLSUSY structure, i.e. it is specified not only by the SO(3, 1) Minkowski coodinates
xa but also by SL(2, C) Grassmann coordinates ψi

α (i = 1, 2, · · · , N) for NLSUSY. The new Grassmann
coordinates in the new (SGM) space-time means the coset parameters of superGL(4R)

GL(4R) which can be
interpreted as the NG fermions (superons) associated with the spontaneous breaking of super-GL(4R)
down to GL(4R). The fundamental action in NLSUSY GR is given in the Einstein-Hilbert (EH) form
in SGM space-time by extending the geometrical arguments of GR in Riemann space-time, which has a
priori promising large symmetries isomorphic to SO(10) (SO(N)) super-Poincaré (SP) group [5].

The SSB in NLSUSY GR due to the NLSUSY structure is interpreted as the phase transition of SGM
space-time to Riemann space-time with massless superon (fermionic matter), i.e. Big Decay [6, 11] which
subsequently ignites the Big Bang and the inflation of the present universe. In the SGM scenario all
(observed) particles are assigned uniquely into a single irreducible representation of SO(N) (SO(10)) SP
group as an on-shell supermultiplet of N LSUSY. And they are considered to be realized as (massless)
eigenstates of SO(N) SP composed of N NG fermion-superons through the NL/L SUSY relation after
Big Decay.

Since the cosmological term in NLSUSY GR gives the NLSUSY model [2] in asymptotic Riemann-flat
(an ordinary vierbein ea

µ → δa
µ) space-time, the scale of the SSB in NLSUSY GR induces (naturally) a

fundamental mass scale depending on the cosmological constant and through the NL/L SUSY relation it
gives a simple explanation of the mysterious (observed) numerical relation between the (four dimensional)
dark energy density of the universe and the neutrino mass [6] in the vacuum of the N = 2 SUSY QED
theory (in two-dimensional space-time (d = 2) for simplicity) [13].

In order to explain the above low energy physics in NLSUSY GR, i.e. the relation between the large
scale structure and the low energy particle physics, let us begin with the fundamental EH-type action of
NLSUSY GR in SGM space-time given by [1]

LNLSUSYGR(w) =
c4

16πG
|w|{Ω(w)− Λ}, (1)

1E-mail:shima@sit.ac.jp
2E-mail:tsuda@sit.ac.jp
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where G is the Newton gravitational constant, Λ is a (small) cosmological constant, Ω(w) is the the
unified scalar curvature in terms of the unified vierbein wa

µ(x) (and the inverse wa
µ) defined by

wa
µ = ea

µ + taµ(ψ), taµ(ψ) =
κ2

2i
(ψ̄iγa∂µψi − ∂µψ̄iγaψi), (2)

and |w| = det wa
µ. In Eq.(2), ea

µ is the ordinary vierbein of GR for the local SO(3, 1), taµ(ψ) is the
stress-energy-momentum tensor (i.e. the mimic vierbein) of the NG fermion ψi(x) for the local SL(2, C)
and κ is an arbitrary constant of NLSUSY with the dimemsion (mass)−2. Note that ea

µ and taµ(ψ)
contribute equally to the curvature of space-time, which may be regarded as the Mach’s principle in
ultimate space-time.

The NLSUSY GR action (1) possesses promissing large symmetries isomorphic to SO(N) (SO(10))
SP group [5]; namely, LNLSUSYGR(w) is invariant under

[new NLSUSY] ⊗ [local GL(4,R)] ⊗ [local Lorentz] ⊗ [local spinor translation]
⊗ [global SO(N)] ⊗ [local U(1)N ].

Note that the no-go theorem is overcome (circumvented) in a sense that the nontivial N -extended SUSY
gravity theory with N > 8 has been constructed in the NLSUSY invariant way.

The SGM (empty) space-time for everything described by the (vacuum) EH-type NLSUSY GR action
(1) is unstable due to NLSUSY structure of tangent space-time and decays spontaneously to Riemann
space-time with the NG fermion-superons (matter) described by the ordinary EH action with the cosmo-
logical term, the NLSUSY action for the N NG fermions and their gravitational interactions, i.e. by the
following SGM action;

LSGM(e, ψ) =
c4

16πG
e|wVA|{R(e)− Λ + T (e, ψ)}, (3)

where R(e) is the scalar curvature of ordinary EH action, T (e, ψ) represents highly nonlinear gravitational
interaction terms of ψi, and |wVA| = det wa

b = det(δa
b + tab) is the determinant in the NLSUSY model

[2]. The second cosmological term in the action (3) reduces to the NLSUSY action [2], LNLSUSY(ψ) =
− 1

2κ2 |wVA|, i.e. the arbitrary constant κ of NLSUSY is now fixed to

κ−2 =
c4Λ
8πG

(4)

in Riemann-flat ea
µ(x) → δµ

a space-time. Note that the NLSUSY GR action (1) and the SGM one
(3) possess different asymptotic flat space-time, i.e. SGM-flat wa

µ → δµ
a space-time and Riemann-

flat ea
µ → δa

µ space-time, respectively. The scale of the SSB in NLSUSY GR (Big Decay) induces a
fundamental mass scale depending on the Λ through the relation (4).

It is interesting and important to investigate the low energy physics of NLSUSY GR through the
NL/L SUSY relation. In asymptotic Riemann-flat space-time, we focus below on the relation between
the NLSUSY model and a LSUSY QED theory for the minimal and realistic N = 2 [10] SUSY (in the
d = 2 case for simplicity) [11, 12]; namely,

LN=2SGM(e, ψ)
ea

µ→δa
µ−→ LN=2NLSUSY(ψ) = LN=2SUSYQED(V, Φ) + [tot. der. terms]. (5)

In the relation (5), the N = 2 NLSUSY action LN=2NLSUSY(ψ) for the two (Majorana) NG-fermion
superons ψi (i = 1, 2) is written in d = 2 as follows;

LN=2NLSUSY(ψ) = − 1
2κ2

|wVA| = − 1
2κ2

{
1 + taa +

1
2!

(taatbb − tabt
b
a)

}

= − 1
2κ2

{
1− iκ2ψ̄i6∂ψi − 1

2
κ4(ψ̄i6∂ψiψ̄j 6∂ψj − ψ̄iγa∂bψ

iψ̄jγb∂aψj)
}

, (6)

where κ is a constant with the dimension (mass)−1, which satisfies the relation (4) in the d = 4 case.
On the other hand, in Eq.(5), the N = 2 LSUSY QED action LN=2SUSYQED(V, Φ) is constructed

from a N = 2 minimal off-shell vector supermultiplet V and a N = 2 off-shell scalar one Φ. Indeed, the
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most general LN=2SUSYQED(V, Φ) in d = 2 with a Fayet-Iliopoulos D term and Yukawa interactions, is
given in the explicit component form as follows for the massless case;

LN=2SUSYQED(V, Φ) = −1
4
(Fab)2 +

i

2
λ̄i6∂λi +

1
2
(∂aA)2 +

1
2
(∂aφ)2 +

1
2
D2 − ξ

κ
D

+
i

2
χ̄6∂χ +

1
2
(∂aBi)2 +

i

2
ν̄ 6∂ν +

1
2
(F i)2

+f(Aλ̄iλi + εijφλ̄iγ5λ
j −A2D + φ2D + εabAφFab)

+e

{
ivaχ̄γaν − εijvaBi∂aBj + λ̄iχBi + εij λ̄iνBj

−1
2
D(Bi)2 +

1
2
A(χ̄χ + ν̄ν)− φχ̄γ5ν

}
+

1
2
e2(va

2 −A2 − φ2)(Bi)2. (7)

where (va, λi, A, φ,D) (Fab = ∂avb − ∂bva) is the V containing va for a U(1) vector field, λi for doublet
(Majorana) fermions and A for a scalar field in addition to φ for another scalar field and D for an
auxiliary scalar field, while (χ, Bi, ν, F i) is the Φ containing (χ, ν) for two (Majorana) are fermions, Bi

for doublet scalar fields and F i for auxiliary scalar fields. Also ξ is an arbitrary dimensionless parameter
giving a magnitude of SUSY breaking mass, and f and e are Yukawa and gauge coupling constants with
the dimension (mass)1 (in d = 2), respectively. The N = 2 LSUSY QED action (7) can be rewritten
as the familiar manifestly invariant form under the local (U(1)) gauge transformation in the superfield
formulation (for further details see Ref.[12]).

In the relation (equivalence) of the two theories (5), the component fields of (V, Φ) in the N = 2
LSUSY QED action (7) are expanded as composites of the NG fermions ψi, i.e. as SUSY invariant
relations,

(V, Φ) ∼ ξκn−1(ψi)n|wVA|+ · · · (n = 0, 1, 2), (8)
where (ψi)2 = ψ̄iψj , εijψ̄iγ5ψ

j , εijψ̄iγaψj , which are very promissing features for SGM scenario. The
explicit form [11] of the SUSY invariant relations (8) are obtained systematically in the superfield for-
mulation (for example, see Refs.[7, 9, 12]) and the familiar LSUSY transformations on the component
fields of the supermultiplet are reproduced in terms of the NLSUSY transformations on the ψi contained.
Note that a four NG-fermion self-interaction term (i.e. the condensation of ψi) appears only in the
auxiliary fields F i of the scalar supermultiplet Φ as the origin of the familiar local U(1) gauge symmetry
of LSUSY theory [11, 12]. Is the condensation of NG-fermion superons the origin of the local U(1) gauge
interaction? The relation (5) are shown explicitly (and systematically) by substituting Eq.(8) into the
LSUSY QED action (7) [11, 12].

Now we briefly show the (physical) vacuum structure of N = 2 LSUSY QED action (7) related
(equivalent) to the N = 2 NLSUSY action (6) [13]. The vacuum is determined by the minimum of the
potential V (A,φ, Bi, D) in the action (7), which is given by using the equation of motion for the auxiliary
field D as

V (A,φ, Bi) =
1
2
f2

{
A2 − φ2 +

e

2f
(Bi)2 +

ξ

fκ

}2

+
1
2
e2(A2 + φ2)(Bi)2 ≥ 0, (9)

In the potential (9) the configurations of the fields corresponding to vacua in (A,φ,Bi)-space, which are
SO(1, 3) or SO(3, 1) invariant, are classified according to the signatures of the parameters e, f, ξ, κ. The
particle (mass) spectra are obtained by expanding the field (A, φ,Bi) around the vacua. We have found
that two different vacua appear in the SO(3, 1) isometry [13], one of which are described by means of the
resulting (physical) model with

one charged Dirac fermion (ψD
c ∼ χ + iν), one neutral (Dirac) fermion (λD

0 ∼ λ1 − iλ2),
one massless vector (a photon) (va),
one charged scalar (φc ∼ θ + iϕ), one neutral complex scalar (φ0 ∼ ρ + iω),

which are the composites of NG-fermion superons and the vacuum breaks SUSY spontaneously (the local
U(1) is not broken) (for further detailes, e.g. mass spectra, · · · etc., see [13]).

As for the cosmological significances of N = 2 SUSY QED in SGM scenario, the (physical) vacuum
for the above model simply explains the observed mysterious (numerical) relation between the (dark)
energy density of the universe ρD (∼ c4Λ

8πG ) and the neutrino mass mν ,
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ρobs
D ∼ (10−12GeV )4 ∼ (mν)4 ∼ Λ

G (∼ gsv
2),

provided −ξf ∼ O(1) and λi is identified with neutrino (m2
λi = −4ξf

κ ), which gives a new insight into the
origin of mass [6, 13]. (gsv is the superon-vacuum coupling constant.) Furthermore, the neutral scalar
field ρ (∼ mν) of the radial mode in the vacuum may be a candidate of the dark matter, provided the
N = 2 LSUSY QED structure is preserved in the realistic large N SUSY GUT model. (Note that ω in
the model is a NG boson and disappears provided the corresponding local gauge symmetry is introduced
as in the standard model.)

Recently, we have been shown that the magnitude of the bare electromagnetic coupling constant e

(i.e. the fine structure constant α = e2

4π ) is determined in the NL/L SUSY relation (i.e. the over-all
compositness condition) between the N = 2 NLSUSY model and the N = 2 LSUSY QED theory (in
d = 2) from the general auxiliary-field structure in the general off-shell vector supermultiplet [14].

The similar investigations in d = 4 are urgent, and the extension to N = 5 is important in SGM
scenario and to N = 4 is suggestive for the anomaly free nontrivial d = 4 field theory. Also NLSUSY GR
with extra space-time dimensions equipped with the Big Decay is an interesting problem, which can give
the framework for describing all observed particles as elementary à la Kaluza-Klein. Linearizing the SGM
action (3), LSGM(e, ψ), on curved space-time, which elucidates the topological structure of space-time,
is a challenge. The corresponding NL/L SUSY relation will give the supergravity (SUGRA) [15, 16]
analogue with the vacuum breaking SUSY spontaneously. The physical and mathematical meanings of
the black hole as a singularity of space-time and the role of the equivalence principle are to be studied in
detail in NLSUSY GR and SGM scenario. Finally we just mention that NLSUSY GR and the subsequent
SGM scenario for spin-3/2 NG fermions [5, 17] is in the same scope.
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Abstract
In the direct computation of the fluctuations generated during inflation, we will easily
find the logarithmic divergence in the infrared(IR) limit. We focus on the fact that
the usual gauge invariant perturbation theory cannot describe the fluctuations that
we actually observe. This is because we can observe the fluctuations only within the
causally connected region to us. In this paper, we show that, taking an appropriate
gauge, we can compute the evolution of fluctuations which better correspond to what
we actually observe. In this gauge we no longer encounter the IR divergence.

1 Introduction

Inflation has become the leading paradigm to explain the initial condition of the universe as seen in the
Cosmic Microwave Background (CMB) anisotropies. Despite its attractive aspects, there are still many
unknowns about the inflation theory When we discuss the primordial fluctuations within linear analysis,
many inflation models predict almost the same results, which are compatible with the observational data,
although the underlying models are quiet different. To discriminate between different inflationary models,
it is important to take into account nonlinear effects However, it is widely known that we encounter the
divergence coming from the infrared (IR) corrections in computing the non-linear perturbations generated
during inflation This divergence is due to the massless (or quasi massless) fields including the inflaton
which gives the almost scale invariant power spectrum, i.e., P(k) ∝ k−3. In the gauge-invariant treatment,
the curvature perturbation in the comoving gauge, ζ, is often used to describe fluctuations of the inflaton
field. Fluctuations in ζ are directly related to the observed CMB anisotropies, and ζ is not free from the
IR divergence problem, either.

We can easily observe the appearance of the logarithmic divergence in the IR limit from the direct
computation of the loop corrections under the assumption of scale invariant power spectrum. As the
simplest example, let us consider the one loop diagram containing only one four-point vertex, in which
the end points of the loop are connected to the same four-point vertex. Therefore the factor coming
from the integral of this loop becomes

∫
d3kP(k). Substituting the scale invariant power spectrum

into P(k) ∝ k−3, we find that the integral is logarithmically divergent in the IR limit like
∫

d3k/k3.
As is seen also in this simple example, the IR divergence on the primordial perturbation is typically
logarithmic To be a little more precise, we also need to care about UV divergence, since the loop integral
is also UV divergent in general. However, since the fluctuation modes whose wavelength is well below the
horizon scale (sub-horizon modes) do not feel the cosmic expansion, they are expected to behave as if in
Minkowski spacetime. Namely, the quantum state of sub-horizon modes is approximately given by the
one in the adiabatic vacuum. Hence, the sub-horizon modes will not give any time-dependent cumulative
contribution to the loop integral after appropriate renormalization. They are therefore irrelevant for the
discussions in this paper.

As a practical way to make the loop corrections finite, we often introduce the IR cut-off at the co-
moving scale corresponding to the Hubble horizon scale at the initial time, aiHi This kind of artificial
IR cut-off is not fully satisfactory because it leads to the logarithmic amplification of the loop corrections
as we push the initial time to the past like

∫ aH
aiH

d3k k−3 ∝ log(a/ai) where ai is the scale factor at the
initial time and we neglected the time dependence of the Hubble parameter. Due to the non-vanishing
IR contribution, the choice of the IR cut-off affects the amplitude of loop corrections. Furthermore, the

1E-mail:yuko@gravity.phys.waseda.ac.jp
2E-mail:tanaka@yukawa.kyoto-u.ac.jp
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reason why we select a specific IR cut-off is not clear. This means that, in order to obtain a reliable
estimate for the IR corrections, we need to derive a scheme to make the corrections finite from physically
reasonable requirements. This is what we wish to discuss in this paper.

To begin with, we point out that the usual gauge invariant perturbation theory cannot describe the
fluctuations that we actually observe. This is because we can observe the fluctuations only within the
causally connected region to us. [1] To discuss the so-called observable quantities in the framework of
the gauge invariant perturbation, in general, it is necessary to fix the gauge in all region of the universe.
However, in reality it is impossible for us to make observations imposing the gauge conditions in the region
causally disconnected from us. We need to be careful in defining what is the observable fluctuation. We
usually define the fluctuation by the deviation from the background value which is the averaged value over
the whole universe. However, since we can observe only a finite volume of the universe, the fluctuations
evaluated in such a way are inevitably influenced by the information contained in the unobservable
region. In general, the deviation from the global average is much larger than the deviation from the
local average, which leads to the over-estimation of the fluctuations due to the contribution from long
wavelength fluctuations. In this paper, we show that, taking an appropriate gauge, we can compute the
evolution of fluctuations which better correspond to what we actually observe. It is often the case to
adapt the flat gauge or the comoving gauge in computing non-linear quantum effects.

2 A Solution to IR problem

2.1 Setup of the problem

We first define the setup that we study in this paper. We consider the single field inflation model with
the conventional kinetic term. The total action is given by S = 1

2

∫ √
−g [R − (∇φ)2 − V (φ)] . where

m−2
pl ≡ 8πG = 1. In order to discuss the non-linearity, it is convenient to use the ADM formalism, where

the line element is expressed in terms of the lapse function N , the shift vector N i, and the purely spatial
metric hij : ds2 = −N2dt2 + hij(dxi + N idt)(dxj + N jdt) . Using this metric ansatz, we can denote the
action as

S =
1
2

∫ √
h
[
N (3)R− 2NV (φ) +

1
N

(EijE
ij − E2) +

1
N

(φ̇−N i∂iφ)2 −Nhij∂iφ∂jφ
]

(1)

where Eij = Nκij = 1
2{ḣij − DiNj − DjNi} and E = hijEij . In the ADM formalism, we can obtain

the constraint equations easily by varying the action with respect to N and N i, which can be though
of as Lagrange multipliers. Hereafter, neglecting the vector perturbation, we denote the shift vector as
Ni = ∂iχ. In this paper, we work in the flat gauge, defined by hij = e2ρδij where a = eρ is the background
scale factor, and we focused on the scalar perturbation, in which the IR divergence of our interest arises .
In this gauge, we find two constraint equations as

2N2
∑

n=0

1
n!

(∂n
φV (φ))ϕn − 6ρ̇2 + 4ρ̇e−2ρ∂2χ + e−4ρ{∂i∂jχ∂i∂jχ− (∂χ)2}

+(φ̇ + ϕ̇− e−2ρ∂iχ∂iϕ)2 + N2e−2ρ(∂ϕ)2 = 0 (2)
(∂iN){2ρ̇δi

j + e−2ρ(∂i∂jχ− δi
j∂

2χ)}− (∂jϕ)N (φ̇ + ϕ̇− e−2ρ∂iχ∂iϕ) = 0 . (3)

Expanding N and χ as N = 1 + δN1 + 1
2δN2 + · · · and χ = χ1 + 1

2χ2 + · · · , for instance, we find that
the first order constraint equations are written as

Vφϕ + 2V δN1 + 2ρ̇e−2ρ∂2χ1 + φ̇ ϕ̇ = 0 , ∂i(2ρ̇ δN1 − φ̇ ϕ) = 0 . (4)

Taking the variation of the action with respect to ϕ, we can derive the equation of motion for ϕ, which
includes the Lagrange multipliers δN and χ. Solving the constraint equations for the lapse function and
shift vector at each order, we can express N and χ as functions of ϕ.

To compute n-point functions of ϕ(x), we expand the Heisenberg field ϕ(x) in terms of the interaction
picture field ϕI(x). Here we shall adopt the expansion in which we take the full advantage of using
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the retarded Green function GR(x, x′). It is because the retarded Green function has a finite non-
vanishing support for fixed t and t′, its three dimensional Fourier transform becomes regular in the IR
limit, while the other Green functions behave like k−3. Let us denote the equation of motion for ϕ
schematically as ( ∇2 − m2

eff )ϕ = Γint[ϕ] . The left hand side is identical to the linear equation for
ϕ. Γ[ϕ] represents the non-linear interaction terms. Using the retarded Green function GR(x, x′) that
satisfies ( ∇2 −m2

eff )GR(x, x′) = e−3ρδ(x− x′) , we can solve the equation of motion for ϕ as

ϕ(x) = ϕI(x) +
∫

d4x′ GR(x, x′)e3ρΓint[ϕ](x′). (5)

Substituting this expression for ϕ(x) iteratively into ϕ(x) on the R.H.S., we obtain the Heisenberg field
ϕ(x) expanded in terms of ϕI(x) to any order using the retarded Green function GR(x, x′).

When we compute the expectation value for n-point functions of the Heisenberg field, the interaction
picture fields ϕI are contracted to make pairs. Then, when we evaluate the expectation value, the pairs of
ϕI are replaced with Wightman functions, G+(x, x′) or G−(x, x′). As these propagators are IR singular
in contrast to GR(x, x′), they are the possible origin of IR divergence in momentum integrations.

2.2 Gauge degree of freedom in flat gauge

On the most computation of non-linear quantum effects, either the flat gauge or the comoving gauge
(in which ϕ = 0 and hij = e2(ρ+ζ)δij) has been adapted. It is partly because these gauges do not have
any residual gauge degrees of freedom. However, we claim that this statement is not strictly correct.
For instance, in the flat gauge we have to solve the constraint equations to determine the lapse function
and the shift vector. As is shown in Eqs. (4), these equations are differential equations which are not
hyperbolic. The solutions of these equations depend on the boundary conditions when they are solved
within a finite volume. At the linear order, these extra degrees of freedom appears as arbitrary time-
dependent integration constants. Indeed, we can solve the first order momentum constraint equation as
δN1(x) = f1(t) + φ̇

2ρ̇ϕ1(x) where an arbitrary function f1(t) was introduced. Substituting this into the

Hamiltonian constraint, we can solve it to obtain χ1(x) = − φ̇2

2ρ̇2 e2ρ∂−2∂t

(
ρ̇
φ̇
ϕ1

)
− V

6ρ̇f1(t)e2ρxixi. The
last term proportional to xixi cannot be expanded in terms of the spatial harmonics (≈ ei ), we do not
have this residual gauge degree of freedom in the standard cosmological perturbation scheme.

The degree of freedom α(t) introduced above corresponds to scale transformation: xi −→ x̃i =
eρ̇α(t)xi . Such a scale transformation is compatible with the perturbative expansion only when our
interest is concentrated on a finite region of spacetime. Once we consider an infinite volume, this
transformation does not remain to be a small change of coordinates irrespective of the amplitude of
α(t). Simultaneously, we apply the temporal coordinate transformation t → t̃ such that t̃ satis-
fies ρ(t̃) = ρ(t) − ρ̇α(t) . Under this transformation, (i, j) component of the metric transforms as
h̃ij(x̃) = e−2ρ̇α(t) hij(x) = e2ρ(t̃)δij . Thus we find that this scale transformation keeps the flat gauge
conditions that we imposed on the spatial metric unchanged, and therefore it is in fact a residual gauge
degree of freedom. Under the same coordinate transformation with the identification f1 = α̇− φ̇2

2ρ̇ α , we
can easily confirm that the first order lapse function and the shift vector transform as given above. Here
we have explained only for the first order lapse function and the shift vector, the corresponding degree of
freedom also exists in the higher order. In this paper we focus on the flat gauge, but a similar discussion
applies for the comoving gauge, too.

2.3 Local gauge condition

As is mentioned in Sec. 1, our final goal is to define finite observable quantities in place of the naively
divergent quantum correlation functions. Here, we propose a minimum necessary regularization scheme
which naturally requires to control the residual gauge degree of freedom discussed in the preceding
subsection as is explained immediately below.

We consider the time evolution for t ∈ [ti, tf ], where tf represents the observation time. We denote
the region which is causally connected to us by O. On a final time slice Σtf , where we evaluate the n-point
functions, we evaluate the fluctuation at x ∈ O ∩ Σtf . We require that the fluctuation at x ∈ O ∩ Σtf
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not to be affected by the evolution of the field in Oc. Thus, we fix the residual gauge only using the
information within the observable region O. We impose the gauge condition:

Wt · ϕ(t) ≡ 1
L3

t

∫
d3x Wt(x) ϕ(t, x) = 0 (6)

where Wt(x) is the window function, whose non-vanishing support is limited to the finite region Ot ≡
O ∩ Σt. We assume that Wt(x) is almost a step function except in the region near the boundary
of Ot. Near the boundary Wt(x) is supposed to smoothly continue to zero so as to avoid artificial
UV contribution due to sharp cutoff. Lt, an approximate radius of the region Ot, is defined by the
normalization condition Wt · 1 = 1. By construction, ϕ represents the deviation from the local average
value in Ot. By choosing the corresponding function f(t) on each time slice, we can adapt this local gauge
condition. The detailed explanation will be described in [2]. In addition, to be completely determined by
the information in Ot, we define ∂−2 by ∂−2F (x) = −(4π)−1

∫
Ot

d3y/|x − y| F (t,y) where F (x) is an
arbitrary function. As the observable fluctuation, inserting the window function, we compute the Fourier
mode of ϕ : ϕobs(t) =

∫
d3x Wτ (x) eik·xϕ(x) .

2.4 IR regularity

In this subsection, we show that once we impose the local gauge condition, the n-point functions for ϕ
become IR regular for the most of inflation models. Thanks to the gauge condition Eq.(6), ϕ(x) does not
include the long wave-length modes such that k < 1/Lt. Indeed, ϕ(x) is rewritten as ϕ(x) = (1−Wt·)ϕ(x)
The long wave-length modes with k < 1/Lt in ϕ is also included in WOt · ϕ and they are canceled with
each other. Here, appealing the intuitive understanding, we briefly describe how the n-point function
for ϕobs(t) is regularized. The IR divergence can appear both from the temporal and the spatial(or
momentum) integrals. To assure their regularity, the preservation of the causal evolution is necessary.
All the interaction vertexes, mediated by the retarded Green function, are confined within the causal
past O. In addition, thanks to the local gauge condition, the integral region of ∂−2 in δN and χ is set
to the causal past O. Therefore, all the interaction vertexes which contribute to ϕobs(tf ) are limited
only within the finite region O. Furthermore, in this gauge the IR modes of ϕI are removed. Therefore,
the momentum integrals no longer give IR divergence. Similarly, since the IR modes of GR · Γ[ϕ] are
removed, the temporal integrals are also regularized. It is because the logarithmically increasing terms
appear from the temporal integrals of these IR corrections. More accurate proof will be given in [2].

3 Conclusion

In this paper, we have showed that adapting the local gauge in which the fluctuation mimics to what
we actually observe, we can regularize the IR corrections. Nevertheless, since we have only one residual
gauge degree of freedom, our argument is not enough to regularize more than one IR divergent fields.
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Abstract
We present general intersecting dynamical brane solutions in higher-dimensional grav-

itational theory coupled to dilaton and several forms. The dynamical solutions give

rise to a static geometry in a certain spacetime region.

1 Introduction

Recently there have been works on dynamical solutions of supergravity which are of cosmological interest.
The dynamical solution of supergravity has a number of important applications. In the original version
[1], one considers a time-dependent solution with five-form flux and gravity in the ten-dimensional type
IIB supergravity. In the presence of the time dependence in the background metric, one finds, even for
the general black p-brane system, that the structure of warp factor which depends on the time is different
from the usual “product type” ansatz.

In addition to time-dependent solutions in higher-dimensional supergravity, there are several analysis
of lower-dimensional effective theory after compactifying the internal space [2]. Since the four-dimensional
cosmology can be understood in terms of the dynamics of the original higher-dimensional theory, the same
considerations apply to the string theories which are of much interest as an approach to behavior of the
early universe. However, there can be four-dimensional effective theories for warped compactification
of ten-dimensional type IIB supergravity that cannot be obtained from solutions in the original higher-
dimensional theories [2]. These remarks can be generalized in various p-brane solutions [3]. Another,
equally significant fact is that the dynamical solutions arise if the gravity are coupled not only to single
gauge field but to several combination of the scalar and gauge fields, as intersecting brane solutions in
the supergravity. For instance, in a supergravity theory with several antisymmetric tensor fields, one can
obtain the solution to the equations of motion. The intersecting brane solutions were originally found
by Güven in eleven-dimensional supergravity. After that, many authors investigated related solutions
such as intersecting membranes, and they constructed static new solutions of intersecting branes. At the
same time, the concepts in string theory such as dualities and discovery of D-branes led to the relation
between several types of superstring theory. Among others, dynamical solutions which depend both on
time and space coordinates have been found in [4], and special intersecting dynamical solutions of D4-D8
are given in [3].

In the proceeding, we give general dynamical solutions for intersecting brane systems in D-dimensional
theory, which may have more general applications to cosmology.

2 Dynamical intersecting p-branes solutions

In this section, we consider dynamical intersecting p-brane systems in D dimensions. We write down the
Einstein equations under a certain ansatz on the metric, which is a generalization of that of known static
intersecting p-brane solutions. We then solve the Einstein equations and present the solutions explicitly.

Let us consider a gravitational theory with the metric gMN , dilaton φ, and an anti-symmetric tensor
field of rank (pI + 2), I = 1, · · ·m. The most general action for the pI-brane system is written as

S =
1

2κ2

∫

[

R ∗ 1D −
1

2
dφ ∧ ∗dφ −

∑

I

1

2(pI + 2)!
ecIφF(pI+2) ∧ ∗F(pI+2)

]

, (2.1)
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where κ2 is the D-dimensional gravitational constant, ∗ is the Hodge dual operator in the D-dimensional
spacetime, cI is a constant given by c2

I = 4− 2(pI + 1)(D − pI − 3)(D − 2)−1. The expectation values of
fermionic fields are assumed to be zero.

The field equations are given by

RMN =
1

2
∂Mφ∂Nφ +

1

2

∑

I

1

(pI + 2)!
eǫIcIφ

[

(pI + 2)FMA2···ApI+2
FN

A2···ApI +2 −
pI + 1

D − 2
gMNF 2

(pI+2)

]

,

△φ =
1

2

∑

I

ǫIcI

(pI + 2)!
ecIφF 2

(pI+2), d
(

ecIφ ∗ F(pI+2)

)

= 0, (2.2)

where △ is the D-dimensional D’Alambertian.
To solve the field equations, we assume the D-dimensional metric of the form

ds2 = −B(t, y)dt2 +

p
∑

µ=1

Cµ(t, y)(dxµ)2(X) + A(t, y)uij(Y)dyidyj

= −
∏

I

ha
I (t, y)dt2 +

p
∑

µ=1

∏

I

h
δ

µ
I

D−2

I (t, y)(dxµ)2(X) +
∏

I

hb
I(t, y)uij(Y)dyidyj , (2.3)

where uij is the (D − p − 1)-dimensional metric which depends only on the (D − p − 1)-dimensional
coordinates yi, which are also written as a vector y. The parameters a, δµ

I and b are given by

a = −
D − pI − 3

D − 2
, b =

pI + 1

D − 2
, δµ

I =

{

−(D − pI − 3) for µ ‖ I
pI + 1 for µ ⊥ I

(2.4)

The metric (2.3) is a straightforward generalization of a static p-brane system with a dilaton coupling.
We also assume that the scalar field φ and the gauge field strength F(p+2) are given by

eφ =
∏

I

h
ǫIcI/2
I , F(pI+2) = d(h−1

I ) ∧ Ω(XI ), (2.5)

where ǫI is defined by

ǫI =

{

+ if pI−brane is electric
− if pI−brane is magnetic

(2.6)

and Ω(XI) denotes the volume (pI + 1)-form Ω(XI ) = dt ∧ dxp1 ∧ · · · ∧ dxpI . The form (2.5) is written
for electric ansatz, but the final results are basically the same for magnetic ansatz. In what follows, we
write our formulae mainly for electric case with comments on modifications for magnetic case.

Let us assume B1/2
(

∑

µ Cµ
)1/2

A(D−p−3)/2 = 1, and define VI , V ⊥
I as VI = B1/2

(

∏

µ||I Cµ
)1/2

,

V ⊥
I =

(

∏

µ⊥I Cµ
)1/2

. We also make the following ansatz V −2
I eǫIcIφ = h2

I , where B, Cµ, A are given by

B =
∏

I h
−

D−pI−3

D−2

I , Cµ =
∏

I h
δ

µ
I

D−2

I , A =
∏

I h
pI+1

D−2

I . The Einstein equations (2.2) then reduce to

1

2

∑

I,I ′

[

MII ′ − 2δII ′ +
2

D − 2
{(pI + 1) − δII ′(pI ′ + 1)}

]

∂t lnhI∂t ln hI ′

+
∑

I

(D + pI − 1)

(D − 2)
h−1

I ∂2
t hI + 2

∏

I

h−1
I

∑

I ′

D − pI ′ − 3

D − 2
h−1

I ′ △YhI ′ = 0, (2.7)

2
∑

I

h−1
I ∂t∂ihI +

∑

I,I ′

(MII ′ − 2δII ′) ∂t ln hI∂i lnhI ′ = 0, (2.8)
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δab

∏

J′

h
D−p

J′ −3

D−2

J′

∑

µ

∏

J

h
δ

µ
J

D−2

J

∑

I

[

δµ
I h−1

I ∂2
t hI −

(

δµ
I ∂t ln hI −

∑

I ′

δµ
I ′∂t ln hI ′

)

∂t ln hI

]

− δab

∏

J′

h
−

p
J′+1

D−2

J′

∑

µ

∏

J

h
δ

µ
J

D−2

J

∑

I

δµ
I h−1

I △YhI = 0, (2.9)

Rij(Y) +
1

2
uij

∏

J

hJ

∑

I

[

(pI + 1)h−1
I ∂2

t hI +

{

(pI + 1)∂t ln hI −
∑

I ′

(pI ′ + 1)∂t ln hI ′

}

∂t ln hI

]

−
1

2
uij

∑

I

h−1
I

pI + 1

D − 2
△YhI −

1

4

∑

I,I ′

(MII ′ − 2δII ′) ∂i ln hI∂j ln hI ′ = 0, (2.10)

and Rij(Y) is the Ricci tensor of the metric uij , MII ′ is given by

MII ′ ≡
1

(D − 2)2

[

(D − pI − 3)(D − pI ′ − 3) +
∑

µ

δµ
I δµ

I ′ + (d − 2)(pI + 1)(pI ′ + 1)

]

+
1

2
ǫIǫI ′cIcI ′.(2.11)

Let us consider Eq. (2.8). We can rewrite this as

∑

I,I ′

[

MII ′ + 2δII ′

∂t∂i ln hI

∂t ln hI∂i ln hI

]

∂t ln hI∂i ln hI ′ = 0. (2.12)

In order to satisfy this equation for arbitrary coordinate values and independent functions hI , the second
term in the square bracket must be constant

∂t∂i ln hI

∂t ln hI∂i ln hI
= c. (2.13)

Then in order for (2.12) to be satisfied identically, we must have MII ′ + 2cδII ′ = 0. Using the expression
cI , (2.4) and (2.11), we get

MII =
1

(D − 2)2
[(pI + 1)(D − pI − 3)2 + (p − pI)(pI + 1)2 + (d − 2)(pI + 1)2] +

1

2
c2
I = 2. (2.14)

This means that the constant c in (2.13) is c = −1, namely MII ′ = 2δII ′. It then follows from Eq. (2.13)
that ∂i∂t[hI(t, y)] = 0, and hence the warp factor hI must be in the form hI(t, y) = HI(t) + KI(y).

For I 6= I ′, the equation MII ′ = 2δII ′, gives a restriction on the dimension p̄ of the intersection for
each pair of branes I and I ′ (p̄ ≤ pI , pI ′) : 2p̄ = 2(pI + 1)(pI ′ + 1)(D − 2)−1 − 2 − ǫIcIǫI ′cI ′.

Let us next consider the gauge field. Under the ansatz (2.5) for electric background, we find dF(pI+2) =
0. Thus, the Bianchi identity is automatically satisfied. Also the equation of motion for the gauge field
becomes d

[

e−cI φ ∗ F(pI+2)

]

= 0. Hence we again find the condition hI(t, y) = HI(t) + KI(y), and
△YhI = 0. We note that the roles of the Bianchi identity and field equations are interchanged for
magnetic ansatz but the net result is the same.

Let us finally consider the scalar field equation. Substituting the scalar field, the gauge field (2.5),
and the warp factor hI(t, y) = HI (t) + KI(y) into the equation of motion for the scalar field (2.2), we
obtain

−
∏

J

h
(D−pJ−3)/(D−2)
J

∑

I,I ′

ǫIcI

[

h−1
I ∂2

t HI + (−δII ′δµ
I + δµ

I ′) ∂t ln hI∂t ln hI ′

]

+
∏

J

h
−(pJ+1)/(D−2)
J

∑

I

h−1
I ǫIcI△YKI = 0. (2.15)

This equation is satisfied by

∂2
t HI = 0, △YKI = 0,

∑

I,I ′

ǫIcI (−δµ
I + δII ′δµ

I ′) ∂t ln hI∂t ln hI ′ = 0. (2.16)
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Equation (2.16) can be satisfied only if there is only one function hI depending on both yi and t and

other functions depend either on yi or constant. The Einstein equations (2.7)- (2.10) now reduce to

∑

I,I ′

[(pI + 1) − δII ′(pI ′ + 1)]∂t lnhI∂t ln hI ′ = 0,
∑

I,I ′

(−δµ
I + δII ′δµ

I ′) ∂t ln hI∂t ln hI ′ = 0,(2.17)

Rij(Y) = 0, hI(t, y) = HI(t) + KI(y), (2.18)

where Eq. (2.18) is valid only for one I, and other h’s can depend on either on y or constant only and
must satisfy △YhI = 0. Obviously the first two sets of equations (2.17) are automatically satisfied
for our solutions in which there is only one function hI depending on both t and yi. Given the set
of solutions to Eq. (2.18), (2.16), and △YhI = 0, we have thus derived general intersecting dynamical
brane solutions (2.3). For static (time-independent) case, our solutions are consistent with the harmonic
function rule, but are more general with time-dependent functions. Note that the internal space is not
warped [2] if the function KI is trivial.

As a special example, we consider the case uij = δij , where δij is the (D − p − 1)-dimensional
Euclidean metric. In this case, the solution for hI can be obtained explicitly as

hI(t, y) = At + B +
∑

α

Mα,I

|y − yα|D−p−3
, (2.19)

where A, B and Mα are constant parameters and yα represent the positions of the branes in Y. For
A = 0, the metric describes the known extremal multi-black hole solution with black hole masses Mα,I .

Here let us point out an important fact on the nature of the dynamical solutions described in the above.
In general, we consider the (pI +1)-dimensional spacetime to contain our four-dimensional universe while
the remaining space is assumed to be compact and sufficiently small in size. Then one would expect that
an effective (pI + 1)-dimensional description of the theory should be possible at low energies. However,
the dynamical solutions of the above type have the warp factor which is a sum of time-dependent and
internal space parts. This means that they are genuinely D-dimensional so that one can never neglect
the dependence on the internal space Y in hI .

3 Summary

In this proceeding, we have derived general intersecting dynamical brane solutions and discussed the
dynamics of the higher-dimensional model. The solutions we have found are the time-dependent solu-
tions. These solutions were obtained by replacing a constant A in the warp factor h = A + h1(y) of a
supersymmetric solution by a function h0(x) of the coordinates xµ [4, 3]. Our solutions can contain only
one function depending on both time and transverse space coordinates.

In the viewpoint of higher-dimensional theory, the dynamics of four-dimensional background are given
by the solution of higher-dimensional Einstein equations. For instance, in the black p-brane system, the
solution tells us that the (p+1)-dimensional spacetime X is Ricci flat. The (p+1)-dimensional spacetime
is then similar to the Kasner solution for the (p+1)-dimensional background [3]. Although the examples
considered in the present paper do not provide realistic cosmological models, this feature may be utilised
to investigate a cosmological analysis in a realistic higher-dimensional cosmological model.
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Stringent Constraints on Brans-Dicke Parameter using deci-Hz
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Abstract
We calculate how strong one can put constraints on Brans-Dicke parameter ωBD

using 0.1Hz space laser interferometers such as DECIGO and BBO. We consider
situations where neutron stars inspiral into small mass black holes whilst radiating
gravitational waves. Compared to General Relativity, gravitational waves in Brans-
Dicke theory have dipole radiation. For the amplitudes of the waveforms, we only
take the leading quadrupole term and for the phases, we take subleading terms up to
2PN including spin-spin coupling term. For simplicity, we assume that the orbits are
circular and we neglect the effect of spin precessions. We find that we can put 100
times stronger constraints on ωBD than the Cassini bound ωBD > 40000, which is the
current greatest constraint found by solar system experiments. This certainly gives a
big scientific significance for DECIGO/BBO projects.

1 Introduction

One of the approaches to solve dark energy problem is to modify gravitational thoery from general
relativity. The simplest modification is to add scalar degree of freedom to gravity. This theory is called
scalar-tensor theory. This theory also appears in inflation problem and superstring theory. A prototype
of scalar-tensor theory is Brans-Dicke theory. This theory is characterised by a parameter ωBD and by
taking the limit ωBD → ∞, it reduces general relativity. The current strongest bound on ωBD is the
Cassini bound obtained in the solar system experiment [1]; ωBD,Cassini > 40000.

The aim of our work is to investigate how strongly we can constrain ωBD in the strong field regime
by detecting gravitational waves from NS/BH binaries. Berti et al. [2] estimated this by using space
interferometer LISA [3] and we estimated this by using deci-Hz interferometer DECIGO [4]. We take
spin-spin coupling effect into account which Berti et al. [2] does not include. We find, by using DECIGO,
we can put at least 100 times stronger constraint on ωBD than the Cassini bound.

2 Binary Gravitational Waveforms in Brans-Dicke Theory

Gravitational waveforms in general depend on the orientations of the binaries and the orbital angular
momentum, but here, we average over these orientations. We adopt the restricted 2nd post-Newtonian
(2PN) waveforms in which the amplitude is expressed to the leading order in a post-Newtonian expansion
whilst the phase is taken up to 2PN order. (Post-Newtonian approximation is an expansion for slow-
motion, weak-field systems in powers of binary velocity v.) For point masses, the phase evolution is
calculated up to 3.5PN order but spin terms are known only up to 2PN order. Therefore to be consistent,
we take the phase up to 2PN. Under the stationary phase approximation, the Fourier component of the
waveform is [2]

h̃(f) =
√

3
2
Af−7/6eiΨ(f). (1)

Here, f is the frequency of the gravitational waves. The amplitude is given by

1E-mail:kent@tap.scphys.kyoto-u.ac.jp
2E-mail:tanaka@yukawa.kyoto-u.ac.jp
3E-mail:seto@tap.scphys.kyoto-u.ac.jp

1



A =
1√

30π2/3

M5/6

D
, (2)

where M = η3/5M is the chirp mass, with total mass M = m1 + m2 and dimensionless mass parameter
η = m1m2/M

2, and D is the luminosity distance to the source.
The phase is given by

Ψ(f) =2πftc − φc +
3

128
(πMf)−5/3

[
1− 5

84
S2ω̄x−1 +

(
3715
756

+
55
9

η

)
x

− 4(4π − β)x3/2 +
(

15293365
508032

+
27145
504

η +
3085
72

η2 − 10σ

)
x2

]
,

(3)

where x = v2 = (πMf)2/3 = η−2/5(πMf)2/3. The first two terms are related to the time tc and
phase φc of coalescence. The first term (”1”) inside the brackets corresponds to the leading quadrupole
approximation of general relativity. The second term represents the dipole gravitational radiation in
Brans-Dicke theory. ω̄ ≡ ω−1

BD is the inverse of the Brans-Dicke parameter. S = s2− s1 where si is called
the sensitivity of the i-th body defined as

si ≡
(

∂(lnmi)
∂(lnGeff)

)

0

. (4)

Here, Geff is the gravitational constant at the location of the body and is proportional to the inverse of
the Brans-Dicke scalar field there. The subscript 0 denotes that we evaluate si at infinity. This sensitivity
roughly equals to the binding energy of the body per unit mass. For example, sWD ∼ 10−3 and sNS ∼ 0.2.
Because of No Hair Theorem, black holes cannot have scalar charges and sBH = 0.5. From Eq. (3), larger
the S, greater the contribution of dipole radiation. Binaries with large S are the ones with bodies of
different types. Here, we consider NS/BH binaries. The event rate of NS/BH mergers is still uncertain,
but it seems that it is considerably small for LISA, so only a lucky detection can constrain Brans-Dicke
parameter. In contrast, for DECIGO, it is said to be around 104 merger events per year so NS/BH
binaries should be the definite sources [5]. The rest of the terms in brackets are usual higher order PN
terms in general relativity.

The quantities β and σ represent spin-orbit and spin-spin contributions to the phase respectively,
given by

β =
1
12

2∑

i=1

χi

(
113

m2
i

M2
+ 75η

)
L̂ · Ŝi, (5)

σ =
η

48
χ1χ2(−247Ŝ1 · Ŝ2 + 721(L̂ · Ŝ1)(L̂ · Ŝ2)), (6)

where L̂ and Ŝi are unit vectors in the direction of the orbital angular momentum and spin angular
momenta respectively. The spin angular momenta are given by Si = χim

2
i Ŝi where χi are the dimen-

sionless spin parameters. For black holes, they must be smaller than unity, and for neutron stars, they
are generally much smaller than unity. It follows that |β| . 9.4 and |σ| . 2.5.

3 Parameter Estimation

The detected signal s(t) is the sum of the gravitational wave signal h(t;θ) and the noise n(t). We
use the matched filtering analysis to estimate the binary parameters θ. We assume that the noise is
stationary and Gaussian. Then, the probability that the GW parameters are θ given by [2]

p(θ|s) ∝ p(0)(θ) exp
[
−1

2
Γij∆θi∆θj

]
, (7)
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Figure 1: Noise curves for LISA(blue) [2] and DECIGO(red). Both horizontal and vertical axes are in log
scales. Horizontal axis represents frequency[Hz] and vertical axis shows noise spectral density[Hz−1/2].

where the Fisher matrix Γij is given by

Γij =

(
∂h

∂θi

∣∣∣∣∣
∂h

∂θi

)
. (8)

Here, we define the inner product as

(A|B) = 4Re
∫ ∞

0

df
Ã∗(f)B̃(f)

Sn(f)
, (9)

where Sn(f) is the noise spectral density. LISA and DECIGO noise strain sensitivity
√

Sn(f) are shown
in Fig.1. We denote estimates of rms errors as ∆θi = θi− θ̂i where θ̂i is the fitted parameters. Then, ∆θi

can be calculated by taking the square root of the diagonal elements of the covariant matrix Σij , which
is the inverse of the Fisher matrix Γij ;

〈
∆θi∆θj

〉
= Σij , Σij ≡ (Γ−1)ij . (10)

We take into account our prior information on the maximum spin by assuming

p(0)(θ) ∝ exp

[
−1

2

(
β

9.4

)2

− 1
2

( σ

2.5

)2
]

. (11)

The signal to noise ratio(SNR) for a given h is given by ρ[h] ≡
√

(h|h).

4 Numerical Calculations and Results

4.1 Set Up

We think of detecting NS/BH inspiralling gravitational waves by LISA and DECIGO, and calculate
how accurately we can deterimine the binary parameters, especially ωBD. We assume that the orbit is
circular and observation lasts 1 year. Also, we neglect spin precessions for simplicity.

The binary parameters are as follows; chirp mass lnM, dimensionless mass parameter ln η, coalescence
time tc, coalescence phase φc, distance to the source ln D, spin-orbit coupling β, spin-spin coupling σ,
and reciprocal of Brans-Dicke parameter ω̄. We assume tc = 0, φc = 0, β = 0, σ = 0, ω̄ = 0 and S = 0.3.
We fix mNS = 1.4M¯. We also fix the distance to be the one that gives SNR ρ = 10. We change mBH

and see how the constraints on ωBD change. Berti et al. did not take σ into binary parameters. We

3



Table 1: Constraints on ωBD/104 with different mBH by using DECIGO and LISA. 1st row shows the
constraints with σ taken into parameters, and 2nd row shows the ones without σ.

DECIGO LISA
3M¯ 10M¯ 50M¯ 400M¯ 400M¯ 1000M¯ 5000M¯ 104M¯

parameters without σ 539.5 269.8 81.72 10.22 3.891 2.110 0.6432 0.3048
parameters with σ 429.4 162.9 35.94 4.254 2.472 0.8154 0.1916 0.0854

evaluate the constraints on ωBD in both cases where σ is not taken into binary parameters and where σ
is taken into parameters, and compare both results.

4.2 Results

Table 1 shows the estimated constraints on ωBD/104 with different mBH by using DECIGO and
LISA. The 1st row shows the constraints in the case where we do not take σ into binary parameters, and
the 2nd row shows the ones where we do take σ into binary parameters.

From the table, including σ into parameters reduces the constraint by a factor of a few. Generally,
the more the number of parameters increases, the worse the parameter determination accuracies are. You
can also see that DECIGO can put about 200 times stronger constraint than LISA. There are mainly
2 reasons for this. First reason is because the number of GW cycles NGW =

∫ ffin

fin
df (f/ḟ) are larger

for DECIGO sources than LISA sources. Another reason is that the sensitivity of DECIGO is much
better than that of LISA. Again from the table, you can see the constraint becomes more stringent as
the BH mass decreases. This is because the bodies of the binaries become slower, which makes the dipole
contribution greater. Even if we include σ as binary parameters, DECIGO can put at least 100 times
stronger constraint than the current strongest one (ωBD,Cassini > 40000).

5 Conclusions

We estimate how strongly we can put constraint on ωBD by detecting gravitational waves from
inspiralling NS/BH binaries using LISA and DECIGO. We found that including σ as binary parameters
reduces the constraint by a factor of a few. We also found that DECIGO can put at least 100 times
stronger constraint than the current strongest one.

We have also calculated the constraint including eccentricity of the orbit and the effect of spin preces-
sions [6]. We took the source orientation dependence into account. We performed following Monte Carlo
simulation. We randomly distribute 104 binaries, evaluate the parameter estimation accuracies for each
binary, and take the average. We found that for binaries with ρ = 10, DECIGO can put at least 10 times
stronger constraint than the Cassini bound. For binaries with D = 200Mpc, whose event rate is thought
to be roughly 1 merger per year, DECIGO can put 1000 times stronger constraint than Cassini bound.
This certainly gives a big scientific significance to DECIGO project.
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Abstract
The recent observational data indicate that the universe is almost spatially flat. Nev-
ertheless, the open inflationary scenario is attracting a renewed interest in the context
of string landscape. Since there are a large number of metastable de Sitter vacua in
string landscape, tunneling transitions to lower metastable vacua through the bubble
nucleation occur quite naturally, which leads to a natural realization of open infla-
tion. Recently, it was argued anthropically that string landscape would lead to an
estimate of the density parameter in the range Ω0 ≈ 0.998 ∼ 0.9996. Although the
deviation of Ω0 from unity, the effect of this small deviation on the CMB anisotropies
might be significant. If their estimate of the value of Ω0 is correct, although yet there
is no consensus about the problem of the probability measure, we might be able to
discriminate the string landscape scenario from others. We argue that although the
deviation of Ω0 from unity may be small, the effect of this small deviation on the
large angle CMB anisotropies may be significant for large angle mode in tensor-type
perturbation. We found that the large amplification of power spectrum occurs when
the difference of false and true vacuum potential energy is exponentially large.

1 Introduction

The recent observational data indicate that the universe is almost spatially flat. Nevertheless, the open
inflationary scenario is attracting a renewed interest in the context of ”string landscape” [2]. It realized
that inflation may divide our universe into many exponentially large domains corresponding to different
metastable vacuum, so-called ”inflationary multiverse”. Since in this context there are a enormous number
of metastable de Sitter vacua in the range of 10100 or 101000 and the global universe is an eternally inflating
”megaverse” that is continually producing small pocket universes, the tunneling transitions to a lower
metastable vacuum and the bubble nucleation occurs quite naturally, which leads to a natural realization
of the open inflation scenario.

The basic idea of the one-bubble open inflationary scenario is following. Initially the scalar field
is trapped in the false vaccum during the sufficiently long period such that it solve the homogeneity
problem and the our universe becomes well-approximated by a pure de Sitter space. Then, bubble
nucleation occurs through quantum tunneling. The process is described by a Euclidean O(4)-symmetric
bounce solution called Coleman-De Luccia (CDL) instanton [3]. The expanding bubble after nucleation
is described by analytic continuation of the bounce solution to Lorentzian regime. The bubble formed by
CDL instanton looks from the inside like an infinite open universe [3, 2]. If we assume that the vacuum
energy inside the bubble is nonzero, the second stage of inflation inside the bubble occurs and it solves
entropy problem and is necessary to avoid the curvature dominant universe.

Although the open inflation scenario, by definition, predicts nonzero spatial curvature of the universe,
as long as the curvature is sufficiently small, this scenario will not contradict with observations. Recently,
string theorists are interested in this kind of scenario [2] in context of string landscape by means of
anthropic argument. The most important cosmological consequence they claimed was that there was
a tunneling event in our past. Especially Freivogel et al. have estimated the present value of density
parameter Ω0 by using their landscape measure and the estimated value is given by Ω0 ≈ 0.998 ∼ 0.9996

1E-mail:yamauchi@yukawa.kyoto-u.ac.jp
2E-mail:alinde@stanford.edu
3E-mail:misao@yukawa.kyoto-u.ac.jp
4E-mail:tanaka@yukawa.kyoto-u.ac.jp
5E-mail:naruko@yukawa.kyoto-u.ac.jp
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by means of anthropic argument. Although the deviation of Ω0 from unity, the effect of this small
deviation on the CMB anisotropies might be significant. If their estimate of the value of Ω0 is correct,
although yet there is no consensus about the problem of the probability measure, we might be able to
discriminate the string landscape scenario from others.

We also have to comment the another distinct feature for the string landscape. Almost inflationary
model inspired by string theory are formulated in the context of type IIB string theory with the Kachru-
Kallosh-Linde-Trivedi(KKLT) stabilization mechanism [5]. There exists strong constraints on particle
phenomenology and on inflation model and one can expect that the final slow-roll inflation must be
low-scale inflation. Also, one can naively expect that the shape of the global potential for landscape is
decided only by fundamental scale corresponding to Planck scale. Thus, the distinctive feature for string
landscape is expected as the large difference of the hight of potential between false and true vacua. In this
paper, we will consider the possibility that ”open inflation scenario” can realize in ”string landscape”.
Especially, we will focus on the power spectrum and power spectrum in open inflation scenario under the
condition one can expect that it is satisfied in string landscape [1].

2 Power spectrum for one-bubble open inflation model

We consider the system that consists of a minimally coupled scalar field, φ with the Einstein gravity. We
denote the potential of the scalar field by V (φ). Let us consider the O(4)-symmetric bubble solution.
We are, in particular, interested in the wall fluctuation mode, which will show up a distinctive feature of
open inflation in the context of string landscape. An O(4)-symmetric bubble nucleation is described by
the Euclidean solution (instanton). The metric is given by

ds2 = dτ2
E + a2

E(τE)(dχ2
E + sin2 χEdΩ2) , (1)

and the background scalar field is denoted by φ = φ(τ). The Euclidean background equations are(
ȧE

aE

)2

− 1
a2

E

=
κ

3

(
1
2
φ̇2 − V (φ)

)
,

(
ȧE

aE

)·

+
1

a2
E

= −κ

2
φ̇2 , φ̈ + 3

ȧE

aE
φ̇ − V ′(φ) = 0 , (2)

where a dot “ ˙ ” represents differentiation with respect to τE . The background geometry and the field
configuration in the Lorentzian regime are obtained by the analytic continuation of the bounce solution.
Sometimes it is convenience to use the coordinate η defined by dτ = a(η)dη. The coordinates in the
Lorentzian regime are given by ηE = ηC = −ηR − π

2 i = ηL + π
2 i , χE = −iχC + π

2 i = −iχR = −iχL , aE =
aC = iaR = iaL.

From a gauge-invariant method developed by Garriga, Motes, Sasaki, Tanaka [4] in the one-field
model of one-bubble open inflation, the tensor-type perturbation is conveniently described by a variable
w, which is related to the transverse-traceless metric perturbation in the open universe. When we expand
this mode function in terms of the sherical harminics and spatial eigenfunction wp with eigenvalue p2,
the equation for wp is given by [

− d2

dη2
E

+ UT (ηE) − p2

]
wp = 0 , (3)

where ηE denotes Euclidean conformal time defined by ηE =
∫

dτE/aE and UT (ηE) = κφ′2/2.
In order to compute the power spectrum at the end of inflation, we will define ”tansfer function” given

by In order to compute the power spectrum at the end of inflation, we will define an auxiliary ”transfer
function” given by

T p
T = lim

ηR→ηend
R

− κ

a2(p2 + 1)
d

dηR
(aw̃p) , (4)

where ηend
R denotes the value of the conformal time ηR for which a → ∞ and w̃p is the solution of the

equation which analytic continuation of Eq. (3) to region-R which satisfies the appropriate boundary
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condition, i.e., behaves as w̃p → eipηR when ηR → −∞. Then, the power spectrum for tensor-type
perturbation can be expressed as [4]〈¯̄

Up

¯̄2〉 = 2
|T p

T |2(p2 + 1) coth πp

κp

[
1 − yeff

]
, (5)

where yeff represents the effects of the bubble wall and the phase factor of the transfer function.

3 CMB anisotropy in string landscape

3.1 Assumption

Before calculating the CMB anisotropy in the string landscape, we take the some assumption: As one
can expect naively, almost all information about the string landscape can be determined only by the
fundamental scale (at least this is valid at sufficiently high energy region), i.e. Planck scale and/or string
scale, which leads that the shape and width of the potential for the scalar field are also determined
only by fundamental scale. Futhermore, we assume that the final tunneling transition occurs through
CDL instanton. Typically, CDL instantons exists only if m2 ≡ V ′′ > H2

L ≡ κVfalse/3 during tunneling.
Therefore we have to consider the steep potential after the tunneling. From the approximated equations
of motion, e.g., H2

L ∼ Vfalse/M
2
pl ,m

2 ∼ Vb/(4φ)2, we have the condition for the CDL instanton as

H2
L

m2
∼ Vfalse

Vb

(4φ)2

M2
pl

<∼ 1 . (6)

In this paper, we will assume this CDL condition Eq. (6).
Under these condition, one can show that the thin-wall approximation in region-C is almost valid, i.e.

the effective potential UT of the mode function wp in Eq. (3) has only local and small contribution in
region-C : UT ≈ 4sδ(ηC − ηW ) where 4s =

∫
dηCUT (ηC) and ηW denotes the value of the conformal

time at the bubble wall. However, the tunneling transition through CDL instanton in our setup is not
approximated by exact thin wall since one can expect that the energy scale of the final inflation is pretty
lower than the fundamental scale due to the strong constrants from the particle phenomenology, i.e.
there exists very large difference of the potential hight at the nucleation point of the bubble and at true
vacuum. Thus, we find that the evolutionary behavior of scalar field inside the bubble is significant due
to the large potential gap.

3.2 Evolutionary behavior of scalar field inside bubble

Since the amplitude for the open inflation Eq. (5) is almost determined by the transfer function Eq. (4).
The transfer function becomes constant for p2 +1 ¿ H2 except for the decaying mode. Then the transfer
function is approximated at the froze-in time tfroze(p) s.t. (p2 + 1) ≈ a2H2(tfroze):

T p
T ≈ − κ

p2 + 1
Hwp

¯̄̄
t=tfroze(p)

, (7)

If one can neglect the effects of the evolution inside the bubble, mode function becomes the plane wave
solution in the all range and the transfer function is given by T p

T ≈ −κHR/(p2 + 1) where H2
R = κVtrue.

However, in general the scale factor in Eq. (7) is no longer exactly de Sitter space and can evolve through
the evolution of the scalar field. Also the mode function is no longer plane wave solution. Especially when
we consider the large effects of the evolution or small p mode, i.e. (κφ′)max À p2, the mode function is
well-approximated by WKB solution from Eq. (3). In this case, one can see that the norm of wp can be
exponentially enhanced. Reminding the boundary condition and the connection formulas at the turning
point η = ηcrit(p) such that p2 = UT (ηcrit), one can obtain the WKB solution at η → ηfroze(p) as follow:

ln
¯̄
wp(ηfroze(p))

¯̄
= A(small p) ∼

∫ ηfroze(p)

ηcrit(p)

dη′
√

UT (η′) − 1
4

ln

[
UT (ηfroze(p))
UT (ηcrit(p))

]
, (8)

Thus, in this case the amplitude becomes exponentially larger than usual ones.
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3.3 Power spectrum and multipole moment

Under these consideration in Sec. 3.1, 3.2, one can calculate the power spectrum by using the general
formula Eq. (5). In order to investigate the feature of the power spectrum, we assume that the energy
density of the scalar field at the nucleation point is not exponentially smaller than the wall tension. This
condition is naturally valid under the assumption in Sec. 3.1. One can see that the power spectrum for
tensor-type perturbation is sharply peaked around p ≈ 0 mode, so-called ”wall fluctuation mode”. Note
that the amplitde can be larger than the usual ones in exact thin wall approximation due to the evolution
inside the bubble as we already mentioned in Sec. 3.2. For the large p mode, the amplitude becomes scale
invariant spectrum : |Up|2p3 → κH2

R.
Here we study how severely the revised open inflation scenarios based on the string landscape are

constrained after more detailed comparison with the observed CMB anisotropies. Although the observa-
tional date indicate that our universe is almost spatially flat, the deviation of Ω0 from unity might be
significant in string landscape. Expanding all the quantities with respect to |1 − Ω0|, one can calculate
the approximateed multipole moment:

C
(T )
` ≈ f`

κH2
Re2A0

4s
(1 − Ω0)` ; f` =

(` + 1)(` + 2)
100π

¯̄̄̄
¯ Γ(` + 1)
Γ(` + 3/2)

¯̄̄̄
¯
2 ¯̄̄̄
¯1 + ` × z

1/2
LSS

¯̄̄̄
¯
2

. (9)

where zLSS ≈ 1100 and A0 denotes the amplification factor due to the evolution of the scalar field inside
the bubble. By a certain fine-tunining of parameters one can obtain Eq. (8) as amplification factor.

4 Summary

In this paper we considered the possibility that ”open inflation scenario” can realize in ”string landscape”.
We focused on the power spectrum and power spectrum in open inflation scenario under the condition
one can expect that it is satisfied in string landscape. We find that the multipole moment is in proportion
to |1−Ω0|`. This means that the wall fluctuation mode corresponding to small p modes affects only small
` mode in CMB fluctuations, especially when Ω is close to unity. An interesting observation is that there
can exist the enhancement factor A(p) due to the evolution inside the bubble. We found that the wall
fluctuation mode is significant even in string landscape and the evolutionary behavior of scalar field inside
the bubble is sufficiently important the due to large difference of false and true potential energy. If the
potential energy at the nucleation point becomes pretty higher than the true one, the power spectrum
becomes amplified. The multipole moment for higher ` modes are highly suppressed by the deviation
of the density parameter |1 − Ω0|. Thus, the wall fluctuation mode affects only small ` mode in CMB
fluctuations. From these interesting oservations, we might be able to discriminate the string landscape
scenario from others.
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Abstract
We construct the Lemâıtre-Tolman-Bondi (LTB) dust universe whose distance-
redshift relation is equivalent to that in the concordance Λ cold dark matter (ΛCDM)
cosmological model. In our model, the density distribution and velocity field are
not homogeneous, whereas the big-bang time is uniform, which implies that the uni-
verse is homogeneous at its beginning. We also study the temporal variation of the
cosmological redshift and show that, by the observation of this quantity, we can dis-
tinguish our LTB universe model from the concordance ΛCDM model, even if their
redshift-distance relations are equivalent to each other.

1 Introduction

Λ cold dark matter (ΛCDM) models have achieved wide acceptance as concordance models due to the
results of observations over the last decade. The isotropy of our universe is strongly supported by the
CMB observations. Thus, if we assume that our universe is homogeneous, results from SNe observation
suggest that the volume expansion of our universe is accelerating. The accelerating expansion of a
homogeneous and isotropic universe means the existence of exotic energy components, the so-called dark
energy, within the framework of general relativity (GR). However, there are several crucial problems
regarding the existence of the cosmological constant or other dark energy candidates (see, for example,
Ref.[1]). No one knows the origin of dark energy and there has not yet been a conclusive illustration of
dark energy.

There are other possibilities that explain the observations. The basic idea is that we are in a large
underdense region, i.e., a large void; we reject the Copernican principle, which states that we live at
a typical position in the universe. For inhomogeneous universe models, Lemâıtre-Tolman-Bondi (LTB)
solutions[10, 11, 12] are often employed. At present, the Copernican principle is not based on sufficient
observational facts. However, by virtue of the recently improved observational technologies, we might
reach the stage at which we are able to investigate through observation whether our location in the
universe is unusual or not . In order to test inhomogeneous universe models by observations, it is
important to know the types of inhomogeneous universe models that can be used to explain current
observations, and to reveal what predictions are given by these universe models. This is the subject of
this paper.

The inverse problem using LTB universe models is a useful method for investigating the possibility of
explaining observational results with inhomogeneities in the universe [15, 6, 7, 16]. LTB dust solutions
contain three arbitrary functions of the radial coordinate: the mass function M , the big-bang time tB
and the curvature function k, and the inverse problem means determining M , tB and k so that a given
distance-redshift relation is realized on the past light-cone of an observer. In order to specify the three
arbitrary functions, we need three conditions. One of these conditions corresponds to the choice of
the radial coordinate and thus has no physical meaning. Hence, one more condition in addition to the
distance-redshift relation is necessary.

In terms of perturbation theory, the inhomogeneity of the big-bang time corresponds to the decaying
mode. The condition of uniform big-bang time might guarantee the consistency of the present model with
the inflationary scenario, since a universe that experiences inflation is almost homogeneous immediately
after the inflationary period is over.
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The time derivative of the cosmological redshift is a very important observable quantity in distin-
guishing LTB models from concordance ΛCDM universe models. We study it and show that it gives a
criterion for observationally deciding whether the universe is described by an LTB model with uniform
big-bang time.

Throughout this paper, we use the unit of c = G = 1, where c and G are the speed of light and the
gravitational constant, respectively.

2 LTB dust universe and conditions to fix the model

LTB solutions are exact solutions to the Einstein equations, which describe the dynamics of a spherically
symmetric dust fluid and whose line element is written in the form

ds2 = −dt2 +
(∂rR(t, r))2

1− k(r)r2
dr2 + R2(t, r)dΩ2, (1)

where k(r) is an arbitrary function of the radial coordinate r. The LTB solutions include homogeneous
and isotropic universes as special cases; in this case, k is a constant called the curvature parameter in
the appropriate gauge, and thus we call it the curvature function. The stress-energy tensor of the dust is
given by Tµν = ρ(t, r)uνuν , where ρ(t, r) is the rest mass density of the dust and uµ = δµ

0 is the 4-velocity
of a dust particle. The Einstein equations lead to the equations for the areal radius R(t, r) and the rest
mass density ρ(t, r),

(∂tR)2 = −k(r)r2 +
2M(r)

R
(2)

and

4πρ =
∂rM(r)
R2∂rR

, (3)

where M(r) is an arbitrary function of the radial coordinate r. We assume that ρ is nonnegative and
that R is monotonic with respect to r, i.e., ∂rR > 0.

Following Tanimoto and Nambu [17], the solution to Eqs. (2) and (3), which represents the expanding
universe, is written in the form

R(t, r) = (6M(r))1/3(t− tB(r))2/3S(x), (4)

x = k(r)r2

(
t− tB(r)
6M(r)

)2/3

, (5)

where tB(r) is an arbitrary function of the radial coordinate r and S(x) is the function defined in Ref.
[17].

Following Refs.[8] and [9], we define the local Hubble function by

H(t, r) =
∂tR

R
(6)

and the density-parameter function of dust as

ΩM(t, r) =
2M(r)

H(t, r)2R(t, r)3
. (7)

In LTB universes, we can define another expansion rate of the spatial length scale, the so-called longitu-
dinal expansion rate, by

HL(t, r) =
∂t∂rR

∂rR
. (8)

In the case of homogeneous and isotropic universes, HL agrees with H. Thus, if we can measure the
difference between H and HL, it can be used as an indicator of the inhomogeneity in the universe[13].
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3 Numerical results

The two physical functional degrees of freedom are fixed by imposing the following conditions.

• Uniform big-bang time tB = 0.

• The angular diameter distance D(z) is equivalent to that in the ΛCDM universe in all the redshift
domain except in the vicinity of the symmetry center in which D is appropriately set so that the
regularity of the spacetime geometry is guaranteed.

We have obtained the solution of the inverse problem by using the numerical procedure described in
Ref.[20]. First, we express ΩM(t0, r(z)), H(t0, r(z)), HL(t0, r(z)) as functions of the cosmological redshift
z. We can see from these figures that the resultant inhomogeneity is a large-scale void structure. We
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Figure 1: (left figure)Density-parameter functions ΩM(t0, r(z)) depicted as functions of the cosmological
redshift. (right figure)Local Hubble function H(t0, r(z)) and longitudinal expansion rate HL(t0, r(z))
depicted as functions of the cosmological redshift.

note that H(t0, r(z)) = HL(t0, r(z)) in homogeneous and isotropic universes, whereas H(t0, r(z)) and
HL(t0, r(z)) are different from each other by about 10% for 2 <∼ z < 10 in the inhomogeneous case. This
result means that, in order to fit the distance-redshift relation of the LTB model with observations that
agree with that predicted by the concordance ΛCDM universe with (ΩM0,ΩΛ0) = (0.3, 0.7), the scale of
the inhomogeneity should be at least a few Gpc.

It is very important to study how to observationally distinguish these two models from each other.
Here, we show that the temporal variation of the cosmological redshift is a useful observational quantity.
In Fig. 2, we depict the derivative dz/dt0 of the cosmological redshift with respect to the time t0 of the
observer at the symmetry center r = 0 as a function of the cosmological redshift itself. As can be seen
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Figure 2: Time derivatives of the cosmological redshift depicted as functions of the cosmological redshift.

from this figure, dz/dt0 is positive for 0 < z <∼ 2 in the case of the concordance ΛCDM model, while it is
negative for all z in the LTB universe models with the uniform big-bang time. Therefore, if we observe
whether dz/dt0 is positive or negative for z <∼ 2, we can distinguish our LTB model from the concordance
ΛCDM model.
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4 Summary and discussion

We have solved the inverse problem to construct an LTB universe model that has the same distance-
redshift relation as that of the concordance ΛCDM model with (ΩM0, ΩΛ0) = (0.3, 0.7), and we obtained
solutions by numerical integration. Our results imply that it is possible to construct an inhomogeneous
but isotropic universe model with a distance-redshift relation that agrees quite well with the observational
data of the distance-redshift relation.

Our LTB universe model is regarded as an unnatural model from the viewpoint of the Copernican
principle, because the observer stands exactly at the center of the isotropic universe. However, no obser-
vational data has yet been reported that entirely excludes inhomogeneous universe models. Therefore, it
is important to know the type of inhomogeneous universes that can explain current observations and to
propose observational methods for testing inhomogeneous universe models.

In this paper, we have also studied the temporal variation of the distance-redshift relation in our
LTB universe model whose distance-redshift relation is the same as the concordance ΛCDM model with
(ΩM0, ΩΛ0) = (0.3, 0.7). The result implies that if we can observe the time derivative of the cosmological
redshift with sufficient accuracy, we can distinguish our LTB model from the concordance ΛCDM universe
model. We have dz/dt0|z=1 ∼ 0.24H0 for the concordance ΛCDM model, and thus, the variation of the
cosmological redshift in one year is ∆z|z=1 ∼ 1.8×10−11(H0/75 km/s/Mpc). Thus, over ten years, ∆z|z=1

is larger than 10−10 for the concordance ΛCDM universe model, and this value will become observable
in the near future as a result of technological innovations[18, 19].
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Abstract
We study evolution of gravitational perturbations of black strings. Using numerical
methods, we find the quasinormal modes and time-domain profiles of the black string
perturbations in the stable sector and also show the appearance of the Gregory-
Laflamme instability in the time domain. We observe the static solution of the wave
equation at the threshold point of instability. The presented results were obtained
together with R.A. Konoplya, Keiju Murata and Jiro Soda in [1].

1 Introduction

Unlike four dimensional Einstein gravity, which allows existence of black holes, higher dimensional theo-
ries, such as the brane-world scenarios and string theory, allow existence of a number of “black” objects:
higher dimensional black holes, black strings and branes, black rings and saturns, D-branes and others.
In higher than four dimensions we lack the uniqueness theorem, so that stability may be that criteria
which will select physical solutions among this variety of solutions.

It is well known that the such black strings suffer from the so-called Gregory-Laflamme instability,
which is the long wavelength gravitational instability of the scalar type of the metric perturbations [2, 3].
The threshold values of the wave vector k at which the instability appears are known [4]. We study
the evolution of linear perturbations of D-dimensional black strings: quasi-normal ringing and late-time
tales. We consider what happen on the edge of instability of black strings and how the perturbation
develop in time in the stable and unstable sectors.

2 Perturbations of black strings

According to the brane-world scenarios, after a gravitational collapse of brane-localised matter, black
objects with the horizon extended to the transverse extra direction will form. The simplest of such
objects is black string, which looks like a black hole on the brane, being a direct product of a black hole
and a circle.

ds2 = −
(
1−

(r+

r

)n)
dt2 +

dr2

1−
(r+

r

)n + r2dΩn+1 + dz2,

where
D = n + 4, z → z + 2πR,

and dΩ2
n+1 is the metric on a unit (n + 1)-sphere.

The equations of the (n+1)-spherically symmetric perturbations of this metric can be reduced to the
wave-like equations (

∂2

∂t2
− ∂2

∂r2
?

+ V (r)
)

Ψ = 0, (1)

where dr? = dr
f(r) is the tortoise coordinate and the effective potential V (r) is given by

V (r) =
f(r)
4r2

U(r)
(2k2r2 + n(n + 1)(r+/r)n)2

,

1E-mail:zhidenko@fma.if.usp.br
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Figure 1: Time-domain profiles of black string (n + 1)-spherically symmetric perturbations for n = 1
k = 0.84 (magenta, top), k = 0.87 (red), k = 0.88 (orange), k = 0.9 (green), k = 1.1 (blue, bottom). We
can see two concurrent modes: for large Kaluza-Klein momentum k the oscillating mode dominates, near
the critical value of k the dominant mode does not oscillate, for unstable values of k the dominant mode
grows. The plot is logarithmic, so that strict lines correspond to an exponential decay. All quantities are
measured in units of the radius of the event horizon r+.

U(r) = 16k6r6 + 4k4r4(n + 5)(3f(r)− 2n + 3nf(r))−
−4k2r2n(n + 1)

(
n(n + 5) + f(r)(2n2 + 7n + 9)

) (r+

r

)n

−

−n2(n + 1)3 (f(r)− 2n + nf(r))
(r+

r

)2n

,

k is the Kaluza-Klein momentum.
The equation (1) can be integrated using the Gundlah-Price-Pullin method [5].
On the figure 1 one can see the time-domain profiles of black string perturbations for various values

of the Kaluza-Klein momentum.

• At large values of k, far from instability, the profile has qualitatively the same form as that for
massive fields.

• When approaching the instability point, the non-oscillating mode becomes dominant.

• For low values of k (unstable regime), this non-oscillating mode is unstable.

• Exactly in the threshold point of instability we can find the non-oscillating and non-growing mode
which correspond to a static solution of the perturbation equations of motion.

From the figure 2, we see that at the asymptotically late time the behavior is qualitatively the same
as for massive fields. The Kaluza-Klein momentum k plays the role of the effective mass [6]

Ψ ∝ t(D+2)/2sin(kt), D ≥ 7.
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Figure 2: Time-domain profiles of black string (n + 1)-spherically symmetric perturbations for k = 2.5
n = 2 (red, top), n = 3 (orange), n = 4 (green), n = 5 (blue, bottom). Late-time decay of perturbations
for n ≥ 3 is ∝ t−(n+6)/2. All quantities are measured in units of the radius of the event horizon r+.
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The first overtone’s behavior is qualitatively similar to that of the fundamental mode for massive
fields of higher-dimensional Schwarzschild black holes [7, 8]:

• For D = 5, as k grows, the imaginary part of the first overtone quickly decreases and vanishes for
some threshold value of k, while its real part stays smaller than the threshold value of k. After the
threshold value is reached, the first overtone “disappears”.

• For D ≥ 6, the imaginary part of the first overtone becomes small for large k, while the real part
asymptotically approaches k.

3 Conclusions

1. We have found the quasinormal modes and late-time tails for scalar type of gravitational pertur-
bations of D-dimensional black strings, that is for the type of perturbations where the Gregory-
Laflamme instability forms.

2. In the stable sector the behavior of the perturbations evolution is qualitatively similar to the
behavior of the scalar field in the Schwarzschild background.

3. The time domain profiles indicate that the threshold instability value of k corresponds to dominance
of some static solution.
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Deparametrized Quantum Cosmology with Phantom Dust
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Abstract
We study a canonical, reduced phase space quantization of the at Friedmann-
Robertson-Walker universe which is formulated as a gauge invariant fashion in the
classical theory. We construct a wave packet as the wave function of the universe and
compute the expectation value of the scale factor. As a results, it is shown that the
initial singularity of the universe is avoided in our models.

1 Introduction

The modern cosmolgy is mainly based on General Relativity (GR). However, since GR breaks down at
the singularity, one must construct a quantum theory of gravity in order to understand what is occuring
near the singularity. Because we still do not have a complete quantum theory of gravity, a number of
works for this purpose have been done by first carrying out a symmetry reduction, e.g. homogeneous
and isotropic one, and then quantizing the resulting models. Although various interesting results are
suggested so far, these previous works seem imcomplete at least in the sense that there are not enough
considerarions for the problem of time, which is inevitable when one tries to quantize GR canonically.
Roughly speaking, the problem of time is that the time evolution of a wave function is lost in canonical
quantum gravity because time has no physical meaning in GR.

Recently Dittrich developed Rovelli’s relational formalism [1] for constructing gauge invariant quan-
tities [2, 3]. The application of this formalism to the Friedmann-Robertson-Walker (FRW) universe with
dynamical dust [4] provide a possible resolultion to the problem of time. We assume that this dynamical
dust has negative energy in order for the physical Hamiltonian to become positive difinite, and this dust
is called Phantom dust [5]. In our study, we canonically quantize this gauge-invariantly reformulated
FRW universe with Phantom dust by using a reduced phase space quantization method [6].

2 Relational formalism for deparametrized theories

In this section we summarize the relational formalism especially for deparametrized theories, which is
enough to treat the FRW universe. Here, “deparametrized theory” means that one can find phase space
coordinates {qa, T ; pa, P} such that the constraints can be written in the form C = P + h(qa, pa).

We consider the system which contains only one constraint for simplisity. In the relational formalism,
the key observation to define gauge invariant quantities is as follows: Take two functions F and T . Then
the value of F when T = � is gauge invariant even if F and T themselves are gauge variant respectively.
We can interpret the function T as a clock. The mathematical definition of the gauge invariant quantity
OF (�) is given by

OF (�) := �t
C(F )|�t

C(T )=� . (1)

Here, �t
C(F ) denotes the action of the gauge transformation generated by C on the function F , which is

defined as

�t
C(F ) :=

∞∑
n=0

tn

n!
{C,F}(n), (2)

{C,F}(0) := F, {C,F}(n+1) :=
{
C, {C,F}(n)

}
,

1E-mail:famemiya@rk.phys.keio.ac.jp
2E-mail:koike@phys.keio.ac.jp
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where t is a gauge parameter. In other words, OF (�) can be interpreted as the gauge invariant extention
of F along gauge orbits.

In order to reduce the phase space, we consider the map O� : F 7→ OF (�) on the phase space
coordinates {qa, T ; pa, P}. The homomorphism property of the map O� is used in the calculation below.
The gauge invariant quantity associated to T ,

OT (�) = �t
C(T )|�t

C(T )=� = �, (3)

becomes simply a constant value � . Then the same calculation associated to P on the constraint surface
yields

OP (�) = −Oh(�) = h (Oqa(�), Opa(�)) =: −H. (4)

Thus OP (�) is expressed in terms of Oqa(�) and Opa(�) on the constraint surface. Finally, the Poisson
bracket of Oqa(�) and Opa(�) is given by

{Oqa(�), Opa(�)} = O{qa,pb}(�) = O�a
b
(�) = �a

b . (5)

The above discussion shows that the reduced phase space is coordinatized by a conjugate pair (Oqa(�), Opa(�))
and the symplectic structure has a simple expression in terms of them. Moreover, it is shown that the
functionH becomes a true physical Hamiltonian which generates the time evolution of the gauge invariant
quantities:

∂OF (�)
∂�

= {H,OF (�)} . (6)

Thus we now have the time evolution of the gauge invariant quantity, so that the problem of time has
completely been resolved in the present case. Since the reduced phase space is characterized by (5) and
(6), we can quantize the system by the ordinary quantization method with no constraints.

3 FRW universe with Phantom dust

In order to use the reduced phase space quantization method to the FRW universe, we must first de-
parametrize the system. It is known that the system is completely deparametrized by adding the pressure
free dust Lagrangian to the usual Einstein-Hilbert action [4]. We add the dust with negative energy, which
is called Phantom dust as mentioned above.

The action of Phantom dust is given by

Sdust = −1
2

∫
M

d4x
√
−g�(gµνUµUν + 1). (7)

Here, g is the determinant of the metric tensor gµν on the spacetime manifold M , � is the energy density
and the 1-form U is defined by U = −dT +WidS

i, where the vector field Uµ = gµνUν is tangent to an
affinely parametrized geodesic, T defines the proper time along each geodesic and Wi and Si are constants
along geodesics. The variable Si labels the geodesics along the fluid particles. Phantom dust fills the
spacetime, so that (T, Si) can be used as coordinates on M .

In the case of the FRW universe, the Einstein-Hilbert action with Phantom dust is written as

S =
∫
dt

(
paȧ+ PT,t −NCtot

)
, (8)

Ctot = C + P, (9)

C = −�c2 p
2
a

12a
+

Λa3

�
+ �ma

3 − 3ka
�
. (10)

Here, a is the scale factor, pa is its conjugate momentum, c is the speed of light, Λ is the cosmological
constant, �m is the energy density of the matter except Phantom dust and the constant k = ±1, 0
determine the curvature of the three dimensional space. In this work, we consider the k = 0 case which
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corresponds to the flat universe. In general, since the volume of the three-space and the Hamiltonian will
diverge in the flat case, we must get rid of this divergence. In the present work, we solve this problem
by assuming that the topology of the universe is compact. For simplisity, we only consider the case of
three-dimensional torus where the fiducial cell is a cube. We shall interpret the scale factor as the length
of an edge of the cube, which in fact represent the physical size of the universe.

The reduced phase space are coordinatized by

A(�) := Oa(�), PA(�) := Opa
(�) (11)

and the symplectic structure is given by

{A(�), PA(�)} = 1. (12)

The Hamiltonian which generates time evolution of gauge invariant variables becomes

H : = h′(A,PA)

= −�c2 P
2
A

12A
+

ΛA3

�
+ �mA

3. (13)

4 Quantization of the model

In order to quantize the previously derived system, we simply replace the classical Poisson bracket relation
and the Hamilton equation,

{A,PA} = 1 ,
dF

d�
= {H,F} , F = F (A,PA), (14)

with the quantum commutation relation and the Heisenberg equation,

[Â, P̂A] = i~ ,
dF̂

d�
=

1
i~

[Ĥ, F̂ ]. (15)

We choose the Schrödinger representation,

|Ψ⟩ → Ψ(A), Â|Ψ⟩ → AΨ(A), P̂A|Ψ⟩ → −i~ ∂

∂A
Ψ(A). (16)

Since we would like to restrict the range of the scale factor as A ≥ 0, it is necessary to consider a condition
to ensure the self-adjointness of the Hamiltonian in the space L2(0,∞).

To this end, we choose the operator ordering of the Hamiltonian as

Ĥ = −�c2 1
12Â

P̂ 2
A +

ΛÂ3

�
+ �m(Â)Â3 (17)

and define the inner product by

⟨Ψ,Φ⟩ :=
∫ ∞

0

Ψ∗(A)Φ(A)AdA. (18)

Then, it can be shown that the following boundary conditions to a wave function ensure the self-
adjointness of the Hamiltonian [7]:

(1)  (0, t) = 0, or (2)
d 

dt
(0, t) = 0. (19)

The Schrödinger-Wheeler-DeWitt equation (time-dependent Schrödinger equation) is

i~
∂Ψ
∂�

=
�c2~2

12A
∂2Ψ
∂A2

+
(

ΛA3

�
+
R

A

)
Ψ, (20)

3



where R is a constant which corresponds to the total energy of a radiation in the universe.
In this proceeding, we consider only the case Λ = R = 0 in which one can analytically solve the

differential equation (20). The energy eigenvalue equation is

1
4x

d2 (x)
dx2

= E (x). (21)

Here, we have introduced the dimensionless variables x := A
A0

and t := H0� , where A0 := ~H0
�c0

, �c0 = 3H2
0

�c2

and H0 is the present value of Hubble’s constant. The general solution of this equation takes the form

 (x) = C1Ai(−y) + C2Bi(−y)

=
√
y

[
C3J 1

3

(
2
3
y

3
2

)
+ C4J− 1

3

(
2
3
y

3
2

)]
, (22)

where y is given by y := [4(Ωm − E)]
1
3x, Ai and Bi are Airy functions, J± 1

3
are Bessel functions and

Cj ’s are arbitrary constants. We can construct the following wave packets by superposing the energy
eigenstates,

Ψ(1)(x, t) =
x

(2�)
4
3
e−

x3
4α−iΩmt, (23)

Ψ(2)(x, t) =
1

(2�)
2
3
e−

x3
4α−iΩmt, (24)

where � :=  − i 9
16 t. These wave packets correspond to the two types of boundary conditions (19). The

expectation value of x is given by

⟨x⟩ =

∫ ∞
0
xΨ∗(x, t)xΨ(x, t)dx∫ ∞

0
xΨ∗(x, t)Ψ(x, t)dx

. (25)

The calculation of the right hand side for the wave packets above leads to

⟨x⟩(1) =
2Γ

(
5
3

)
3Γ

(
7
3

) (
2 +

(
9
16 t

)2

2

) 1
3

, (26)

⟨x⟩(2) =
4

3 · 2 1
3 Γ

(
5
3

) (
2 +

(
9
16 t

)2

2

) 1
3

. (27)

These solutions represent a bounsing universe with no singularity because the expectation value of x
never goes to zero in both cases.
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Abstract
We investigated the influence of dark matter on light/signal propagation in the solar
system. We concentrated on the gravitational time delay and relative frequency shift
and took the effect of solar system-bound dark matter into consideration. As the
application of results, we considered the secular increasing of the astronomical unit
reported by Krasinsky and Brumberg (2004).

1 Introduction

It is considered the dark matter is the essential component of the Universe, then it is worth to investigate
the possibility to detect and estimate its abundance in our Solar System. Especially, recent astronomi-
cal/astrophysical measurements in the solar system have been grown drastically. Due to such a context,
till now, the gravitational influence of dark matter on the planetary motion, such as the additional peri-
helion advance, has aroused interest and studied by several authors. The effect of galactic dark matter on
the planetary dynamics are considered by [6, 12, 14, 15]. On the other hand, the upper limit of density of
dark matter bound in the solar system has been estimated by [3, 8, 11, 9, 17, 10, 7]. Also planet-bound
dark matter is evaluated by [1, 2].

While its contribution to the light/signal propagation has hardly been examined in disregard of the
fact the current accurate observations are archived by the improvement of observational of light/signal
and perhaps this advance will go on. Then from these situations, it is interesting to examine how the
existence of dark matter bound in solar system affects the light/signal propagation and whether we can
detect its traces from the observations of light/signal.

We will study the influence of dark matter on the light/signal propagation in the solar system. First,
under the spherical symmetry, we derive the approximate solution of Einstein equation which consists
of gravitational field due to the central celestial body as the Sun and the thin distributed dark matter
surrounding to the external region of central body. Then we will concentrate on the light/signal prop-
agation and calculate the additional effects due to the dark matter on the gravitational time delay and
the relative frequency shift. As the application of results, we consider the problem of secular increase of
astronomical unit (of length) AU reported by Krasinsky and Brumberg (2004) [13].

2 Approximate Solution of Einstein Equation

We seek the spherically symmetric form of spacetime as,

ds2 = −eµc2dt2 + eνdr2 + r2(dθ2 + sin2 θdφ2), (1)

where µ, ν are the function of time t and radius r, and c is the speed of light in vacuum. As the
stress-energy tensor Tα

β , we suppose as,

T 0
0 = −%(t, r)c2, T 1

0 = σ(t, r)c, T i
j = 0. (2)

T 0
0 is due to the dark matter density %(t, r) and let us choose the form of %(t, r) as,

%(t, r) = ρ(t)
(

`

r

)k

, (3)

1E-mail:arakida@edu.waseda.ac.jp
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in which ` is the normalizing factor and we put ` ' rE where rE is the orbital radius of Earth, k is the
exponent characterising r-dependence of %(t, r), and ρ(t) represents the time variation of dark matter
density, which is considered as the dark matter density around the Earth since ` ∼ rE. We retain
time-dependence of ρ(t) in order to formulate as general as possible and to apply to secular increase
of astronomical unit discussed in Section 5. Nonetheless for the sake of simplicity, we specify ρ(t) as,
presuming the time variation of dark matter density in solar system is much slower,

ρ(t) ' ρ0 +
dρ

dt

¯̄̄̄
0

(t − t0). (4)

here subscript 0 denotes the initial epoch of ephemerides.
From Einstein equation Gµν ≡ Rµν − (1/2)gµνR = (8πG/c4)Tµν , as the approximate solution, we

have,

ds2 = −
[
1 − 2

c2
U(t, r)

]
c2dt2 +

[
1 +

2
c2

V (t, r)
]

dr2 + r2dΩ2, (5)

where

U(t, r) =
GM

r
− 4πGρ(t)`k

(2 − k)(3 − k)
r2−k, V (t, r) =

GM

r
+

4πGρ(t)`k

3 − k
r2−k. (6)

3 Gravitational Time Delay

In this section, we calculate the additional time delay due to the existence of dark matter. To begin with,
we transform (5) into rectangular coordinates by the coordinate transformation x = r sin θ sin φ, y =
r sin θ cos φ, z = r cos θ. And as the first approximation of light/signal path, we suppose the rectilinear
motion along x-direction, y = b = constant, z = 0, r =

√
x2 + b2. Then we have,

ds2 = −
(

1 − 2
c2

U

)
c2dt2 +

(
1 +

2
c2

V
x2

r2

)
dx2. (7)

World line of the light/signal is the null geodesic ds2 = 0, hence we have from (7),

c
dt

dx
= 1 +

1
c2

[
GM

r

(
1 +

x2

r2

)
− 4πG`kρ(t)

(2 − k)(3 − k)
r2−k +

4πG`kρ(t)
3 − k

x2

rk

]
. (8)

As the ρ(t) we adopt (4) and from (8) we reckon the time lapse. We assume the lapse time ∆t is the
linear combination of each effect as,

∆t = ∆tpN + ∆tdm0 + ∆tdmt (9)

here ∆tpN corresponds to the Shapiro time delay in 1st post-Newtonian approximation, ∆tdm0 is due to
the static part of dark matter density (ρ0 of (4)) and ∆tdmt is the contribution of time dependent part
of dark matter density (dρ/dt|0t of (4)). The round-trip time in the coordinate time, ∆T is given by,

∆T = 2
aE + aR

c
+

2GM

c3

[
2 ln

(aE +
√

a2
E + b2)(aR +

√
a2
R + b2)

b2

−

(
aE√

a2
E + b2

+
aR√

a2
R + b2

)]
+

2πG

c3

(
ρ0 +

dρ

dt

¯̄̄̄
0

T

)
H(aE, aR; k).

H(aE, aR; k) = H(0, aE; k) + H(0, aR; k) (10)

H(x1, x2; k) =



−2`b2 ln x2+
√

x2
2+b2

x1+
√

x2
1+b2

(k = 1)
2
3

[
1
3 (x3

2 − x3
1) − b2(x2 − x1)

]
(k = 0)

− 1
12`

[
3b4 ln x2+

√
x2
2+b2

x1+
√

x2
1+b2

−2(x2

√
x2

2 + b2
3
− x1

√
x2

1 + b2
3
)

+ 3b2(x2

√
x2

2 + b2 − x1

√
x2

1 + b2)
]

(k = −1)

(11)
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Let us estimate the extra time delay ∆Tdm. In this estimation, we set ρ0 ' 10−16 [g/cm3] which is the
largest upper limit from the dynamical perturbation on planetary motion. Since the part of dρ/dt|0T is
anticipated to be much smaller than the dominant part of ρ0, then we drop the dρ/dt|0T term here and
evaluate,

∆Tdm ' 2πGρ0

c3
H(aE, aR; k). (12)

∆Tdm is approximately order of 10−20 [s] in the inner planetary region, while in the outer planetary
region, 10−19 < ∆Tdm < 10−17 [s] for k = 0 and 10−16 < ∆Tdm < 10−14 [s] for k = −1. However, the
current observational limit in the solar system is ∼ 10−8[s] or a few 100 [m] for planetary radar, 10−11[s]
or a few [m] for spacecraft ranging, and synchronization (internal) error of atomic clocks is ∼ 10−9 [s].
Then at this time, it is hard to extract the trace of dark matter from the existing observational data.

4 Relative Frequency Shift

Next using (11), we derive the relative frequency shift of light/signal y which is defined as,

y =
δν

ν
≡ −d∆T

dt
. (13)

When the light/signal passes near the limb of the Sun as the Cassini experiment [5], the conditions
aE, aR À b, daE/dt, daR/dt ¿ db/dt hold, here b =

√
b2
0 + (vt)2. Then the relative frequency shift due to

the gravitational field of the Sun ypN and dark matter ydm are obtained as,

ypN =
8GM

c3b

db

dt
(14)

ydm =
πG

c3

(
ρ0 +

dρ

dt
T

)
K(aE, aR; k) (15)

K(aE, aR; k) =


8b`

(
ln 4aEaR

b2 − 1
)

db
dt (k = 1)

8
3b(aE + aR)db

dt (k = 0)
2
` b

[
b2 ln 4aEaR

b2 − (a2
E + a2

R)
]

db
dt (k = −1)

(16)

Approximately, the order of magnitude of ydm is ∼ 10−25 but current threshold of relative frequency shift
measurement is around 10−15 or better. Therefore expected frequency shift due to the dark matter is
about 10 order of magnitude smaller than the present observational limit of relative frequency shift.

5 Application to Secular Increase of Astronomical Unit

In this section, we apply our result to the secular increase of astronomical unit (of length) AU reported
by Krasinsky and Brumberg (2004) [13]. Astronomical unit AU is one of the important and fundamental
astronomical constants which gives the relation of two length unit; 1 [AU] of astronomical system of
units and 1 [m] of SI ones. Presently the astronomical unit AU is determined by using the planetary
radar and spacecraft ranging data (the round-trip time of light/signal), and the latest value is, 1 [AU] =
1.495978706960×1011±0.1 [m] [16]. From the planetary ephemerides (the solution of equation of motion
of planet), the theoretical value of round-trip time ttheo is calculated as, ttheo = dtheoAU/c [sA] where
dtheo [AU] is the interplanetary distance calculated from the planetary ephemerides. Then ttheo [s] is
compared with the observed round-trip time tobs [s], and AU is optimized by the least square method.
See e.g. Section 5 of [4] for more detail.

However, when Krasinsky and Brumberg set ttheo as,

ttheo =
dtheo

c

(
AU +

dAU
dt

T

)
, (17)

and fit to observational data, they found non-zero and positive value dAU/dt = 15±4[m/century], where T
is the time interval counted off from some initial epoch. The evaluated value dAU/dt = 15±4 [m/century]
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is about 100 times larger than the current determination error of AU. Here it is worth to note the observed
dAU/dt does not mean the expansion of planetary orbit and/or increase of orbital period of planet. As
a matter of fact, the determination error of the latest planetary ephemerides is much smaller than the
reported dAU/dt. The recent orbital determination error of lunar and planetary ephemerides is shown
e.g. in Table 4. of [16]. Hence, dAU/dt may be caused not by dynamical perturbation on planetary
motion but by the some influences on light/signal propagation.

Then, let us investigate whether the time variation of dark matter density in (11) explains the observed
dAU/dt. If we assume dAU/dt is related with dρ/dt|0, it follows,

dtheo

c

dAU
dt

T ∼ 2πG

c3

dρ

dt

¯̄̄̄
0

TR3, (18)

where approximately we set H(aE, aR; k) ∼ R3 and R is the radius of sphere in which the light/signal
propagates. Taking Earth–Mars ranging into account, we put R ∼ 1.52 [AU] (the orbital radius of
Mars). To cause the observed dAU/dt, dρ/dt|0 must be the order of 10−9 [g/(cm3s)] and we have
dρ/dt|0T ∼ 1[g/cm3] for T ∼ 100 [y]. But this value corresponds to the density of water, thus this
possibility is made an exception.

Krasinsky and Brumberg (2004) [13], and Arakida (2008) [4] attempted to explain dAU/dt in terms
of the cosmological expansion. Further Krasinsky and Brumberg (2004) also considered the effect of solar
mass loss and variation of gravitational constant, G. However it is shown that these effect is too small
to give an explanation of observed dAU/dt.
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Abstract
We derive the analytical solutions of the bound timelike geodesic orbits in Kerr space-
time. The analytical solutions are expressed in terms of the elliptical integrals using
Mino time λ. Mino time is useful to understand physical properties of Kerr geodesics
since it decouples radial and polar motion of a particle. Then, we can estimate the
fundamental frequencies of the orbits such as radial, polar and azimuthal motion, and
the Fourier series of arbitrary functions of particle’s orbits. In this paper, we derive
the analytical expression of both the fundamental frequencies and the orbits in terms
of the elliptical integrals using Mino time. We can use these analytical expressions to
investigate physical properties of Kerr geodesics and immediately apply them to the
estimation of gravitational waves from the extreme mass ration inspirals.

1 Introduction

One of the main subjects to understand the properties of Kerr black hole spacetime is the geodesic motion.
A lot of studies of the geodesic motion in black hole spacetime are summarized in the classical text book
of Chandrasekhar[1]. In the weak field regime, the orbits of a particle is almost same as that of Newton
gravity. In the strong field regime, however, the orbits show quite complicated trajectories. For the
case of bound geodesics, this can be explained by mismatches between fundamental frequencies of radial,
Ωr, polar, Ω� and azimuthal-motion, Ωφ. Ωφ � Ω� shows the precession of orbital plane and Ωφ � Ωr

shows the precession of orbital ellipse. These mismatches become larger as the particle goes to strong
gravity region around black hole horizon or separatrix, which is the boundary between stable and unstable
orbits. These relativistic effects are studied for some cases and some sorts of extreme phenomena, such
as horizon-skimming orbits[2, 3, 4] and zoom-whirl orbits[5], are found.

Therefore the fundamental frequencies play important roles to understand geodesic orbits. However,
the coupling of both r and � motions in geodesics equation has been preventing us from deriving the
fundamental frequencies, Ωr, Ω� and Ωφ, for bound geodesic orbits until recently. Using elegant Hamilton-
Jacobi formalism, Schmidt[6] derived the fundamental frequencies without discussing the coupling of both
r and � motions. Mino[7] decoupled both r and � motions introducing a new time parameter λ, which is
called Mino time. Then Drasco and Hughes[8] rederived the fundamental frequencies using Mino time and
showed how to compute the Fourier components of arbitrary functions of orbits. These facts enable us to
compute gravitational waves from extreme mass ratio inspirals(EMRIs) in the case of bound geodesics.

In this paper, we derive the analytical expression of both the fundamental frequencies and the orbits
in Kerr spacetime. This analytical expressions help us to discuss bound geodesics in Kerr spacetime.
Moreover, it enables us to compute gravitational waves from EMRIs more accurately since we can compute
the orbits with the arbitrary accuracy in principle. This paper is organized as follows. In Sec. 2, we review
Kerr geodesics in Mino time. In Sec. 3, we briefly show how to derive the analytical expressions of the
fundamental frequencies of bound geodesics in terms of the elliptic integrals. And we summarize this
paper in Sec. 4. Throughout this paper, we use units with G = c = 1.

1E-mail:draone@rri.res.in
2E-mail:hikida@vega.ess.sci.osaka-u.ac.jp
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2 Geodesic Orbits in Kerr Spacetime

The geodesic equations that describes particle’s orbits in Kerr spacetime are given by(
dr

dλ

)2

= R(r),
(

d cos �

dλ

)2

= Θ(cos �),

dt

dλ
= Tr(r) + T�(cos �) + aLz,

d�

dλ
= Φr(r) + Φ�(cos �) � aE , (1)

where the functions R(r), Θ(cos �),Tr(r), T�(cos �), Φr(r) and Φ�(cos �) are defined by

R(r) = [P (r)]2 � ∆[r2 + (aE � Lz)2 + C],
Θ(cos �) = C � (C + a2(1 � E2) + L2

z) cos2 � + a2(1 � E2) cos4 �,

Tr(r) =
r2 + a2

∆
P (r), T�(cos �) = �a2E(1 � cos2 �),

Φr(r) =
a

∆
P (r), Φ�(cos �) =

Lz

1 � cos2 �
,

with P (r) = E(r2 + a2) � aLz, Σ = r2 + a2 cos2 � and ∆ = r2 � 2Mr + a2. Here M and a are the mass
and the angular momentum of the black hole, respectively. λ is Mino time defined by λ =

∫
d�/Σ, where

� is proper time along geodesics. There are three constants of motion, E , Lz and C, which are the energy,
the z-component of the angular momentum and the Carter constant per unit mass, respectively.

In Eq. (1), dr/dλ depends only on r and d cos �/dλ depends only on cos �. Thus, for the bound orbits,
r(λ) and cos �(λ) become periodic functions which are independent of each other. The fundamental
periods for the radial and polar motion, Λr and Λ�, with respect to λ are given by

Λr = 2
∫ rmax

rmin

dr√
R(r)

, Λ� = 4
∫ cos �min

0

d cos �√
Θ(cos �)

, (2)

where

rmin =
pM

1 + e
, rmax =

pM

1 � e
, �inc + (sgnLz) �min =

�

2
. (3)

Here rmin and rmax is periapsis and apoapsis for the radial motion respectively, and �inc is the inclina-
tion angle from the equatorial plane of black hole. Of course, (E ,Lz, C) are described by these orbital
parameters (p, e, �inc) and given in Ref.[6, 8].

Then the angular frequencies of the radial and the polar motion become

Υr =
2�

Λr
, Υ� =

2�

Λ�
. (4)

Integral forms of t(λ) and �(λ) sre given by

t(λ) = Γλ + t(r)(λ) + t(�)(λ), �(λ) = Υφλ + �(r)(λ) + �(�)(λ), (5)

where Γ and Υφ are the frequencies of coordinate time t and � with respect to λ respectively, which are
given by

Γ = Υt(r) + Υt(θ) + aLz, Υφ = Υφ(r) + Υφ(θ) � aE , (6)

where

Υt(r) = 2
Λr

∫ rmax

rmin

Tr(r)√
R(r)

dr, Υt(θ) = 4
Λθ

∫ cos �min

0
Tθ(cos �)√

Θ(cos �)
d cos �,

Υφ(r) = 2
Λr

∫ rmax

rmin

�r(r)√
R(r)

dr, Υφ(θ) = 4
Λθ

∫ cos �min

0
�θ(cos �)√

Θ(cos �)
d cos �, (7)

and t(r)/(�) and �(r)/(�) are given by

t(r)(λ) =
∫ r[�]

rmin

Tr(r) � Υt(r)√
R(r)

dr, t(�)(λ) =
∫ cos �[�]

0

T�(cos �) � Υt(θ)√
Θ(cos �)

d cos �,
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�(r)(λ) =
∫ r[�]

rmin

Φr(r) � Υφ(r)√
R(r)

dr, �(�)(λ) =
∫ cos �[�]

0

Φ�(cos �) � Υφ(θ)√
Θ(cos �)

d cos �. (8)

Eq. (5) shows that both t(λ) and �(λ) are decomposed into two parts, in which the first term represents
accumulation over λ-time and the last two terms represent oscillation from it with periods 2�/Υr and
2�/Υ�. We note that the frequencies with respect to λ are related to the frequencies with distant observer
time as[8]

Ωr =
Υr

Γ
, Ω� =

Υ�

Γ
, Ωφ =

Υφ

Γ
. (9)

3 Analytical solutions of bound geodesics

Since both R(r) and Θ(cos �) are forth order polynomials, Eq. (2) can be expressed in terms of the elliptic
integrals. It is useful if we know the four zero points of both R(r) and Θ(cos �). We rewrite R(r) and
Θ(cos �) as[8]

R(r) = (1 � E2)(r1 � r)(r � r2)(r � r3)(r � r4),
Θ(cos �) = L2

z�0(z− � cos2 �)(z+ � cos2 �), (10)

where

r1 =
pM

1 � e
, r2 =

pM

1 + e
, r3 =

(A + B) +
√

(A + B)2 � 4AB

2
, r4 =

AB

r3
,

A + B =
2M

1 � E2
� (r1 + r2), AB =

a2C
(1 � E2) r1r2

, (11)

and where �0 = a2(1 � E2)/L2
z, z− = cos2 �min and z+ = C/(L2

z�0z−). We note that two zero points, r1

and r2, of R(r) are apoapsis and periapis respectively and two zero point, z− and �z−, of Θ(cos �) are
�min and � � �min respectively. These zero points correspond to turning points, defined in Eq. (3), of
radial and polar motion. But the other two zero points of both R(r) and Θ(cos �), r3, r4 and �z+, do
not correspond to turning points of radial and polar motion, but represent zero points of them.

Using Eq. (10), we can express Eq. (2) in terms of the elliptic integrals as∫ r

r2

dr√
R(r)

=
2√

(1 � E2)(r1 � r3)(r2 � r4)
F (arcsin yr, kr),∫ cos �

0

d cos �√
Θ(cos �)

=
1

Lz
√

�0z+
F (arcsin y�, k�), (12)

where

yr =
√

r1 � r3

r1 � r2

r � r2

r � r3
, kr =

√
r1 � r2

r1 � r3

r3 � r4

r2 � r4
,

y� =
cos �
√

z−
, k� =

√
z−
z+

, (13)

and F (ϕ, k) is the incomplete elliptic integral of the first kind.
Therefore orbital frequencies of radial and polar motion with respect to λ are given by

Υr =
�
√

(1 � E2)(r1 � r3)(r2 � r4)
2K(kr)

, Υ� =
�Lz

√
�0z+

2K(k�)
. (14)

Here K(k) is the complete elliptic integral of the first kind defined by K(k) = F (�/2, k). Using Eq. (13),
it is straightforward to express Γ and Υφ in terms of the complete elliptic integrals. Explicit forms of Γ
and Υφ will be given in elsewhere. Basically, geodesic orbits are derived by replacing the complete elliptic
integrals of the fundamental frequencies with the elliptic integrals. Again, explicit forms of geodesic orbits
will be given in elsewhere. We compare our analytical results of bound geodesics with that of numerical
integration method as a consistency check in Fig. 1. This figure shows that the analytical solutions of
geodesic equation in this paper exactly represent the solutions of bound geodesics in Kerr spacetime.
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Figure 1: Plots of function x(t) = r(t) sin �(t) cos �(t) using both analytical expressions and numerical
integration method. In this figure, we set orbital elements as a = 0.9M , p = 4M , e = 0.7 and �inc = 40◦.
Upper figure shows plots of both analytical solution, xA(t), and numerical integration method, xN(t).
Lower figure shows the residual errors, xA(t) � xN(t).

4 Summary

We derived the analytical solutions of the bound timelike geodesics in Kerr spacetime. We expressed
these solutions in terms of the elliptic integrals using Mino time. Since Mino time decouples both r
and �-motion, it is straightforward to express the orbits in terms of the elliptic integrals if we suitably
transform variables, r and �.

We can apply these solutions to the computation of gravitational waves from extreme mass ratio
inspirals, which are one of the main targets for space-based gravitational waves antenna LISA[9]. Using
the analytical solution in this paper, we can compute the orbits arbitrary accuracy in principle. Thus it is
very useful to compute gravitational waves from EMRI. We may also apply these solutions to investigate
the properties of timelike and null geodesics in the case of both bound and unbound orbits. All of them
will be discussed in future work.
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Abstract
We have constructed a nonlinear multi-graviton theory. An application of this theory
to cosmology is discussed. We found that scale factors in a solution for this theory
repeat acceleration and deceleration.

1 Introduction

We have constructed a nonlinear multi-graviton theory [1] so far. The features of our model are following:
(i) Gravitons as the fluctuation from Minkowski spacetime have a Fierz-Pauli (FP) type mass [2]. (ii)
This model based on dimensional deconstruction method. So, we can tune the mass spectrum more easily
than Kaluza-Klein theory. (iii) The mass term has a reflection symmetry at each vertex and a exchange
symmetry at each edge of a graph.

In this article, beginning with graph theory, dimensional deconstruction [3, 4] and our model are
reviewed (see also [5, 6]). Next, we consider the vacuum cosmological solutions of the case with the
four-site star graph and the four-site path graph. Finally, we summarize our work and remark about the
outlook.

2 A review of graph theory and dimensional deconstruction

2.1 Graph theory

We consider the matrix representation of graph theory.4 A graph G is a pair of V and E, where V is
a set of vertices while E is a set of edges. An edge connects two vertices; two vertices located at the
ends of an edge e are denoted as o(e) and t(e). Then, we introduce two matrices, an incidence matrix
and a graph Laplacian, associated with a specific graph. The incidence matrix represents the condition
of connection or structure of a graph, and the graph Laplacian ∆ can be obtained by EET . By use of
these matrices, a quadratic form of vectors aT ∆a(= aT EET a) can be written as a sum of (ai∆ijaj). If
all ai(i = 1, 2, ..., ]V ), components of a, take the same value, ET a = 0 and then a = 0.

2.2 Dimensional deconstruction

It is assumed that we put fields on vertices or edges. An idea that there are four dimensional fields on the
sites (vertices) and links (edges), dubbed as dimensional deconstruction, is introduced by Arkani-Hamed
et al.. In this scheme, the square of mass matrix is proportional to the Laplacian of the associated graph.
In the case of a cycle graph (a ‘closed circuit’) with N sites (CN ), when N becomes large, the model on
the graph corresponds to the five-dimensional theory with S1 compactification. In other words, the mass
scale of the model f over N corresponds to the inverse of the compactification radius L/(2π):

M2
` = 4f2(sinπ`/N)2 → M2

` = (2π`/L)2 (f/N → 1/L).

For a cycle graph, the linear graviton model presented in the previous work [1] coincides with the FP
model proposed in [2]. The model is a most general linear graviton theory on a generic graph.

1E-mail:k004wa@yamaguchi-u.ac.jp
2E-mail:k009vc@yamaguchi-u.ac.jp
3E-mail:shiraish@yamaguchi-u.ac.jp
4Please see [7] for a review of application of graph theory to field theory.
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3 Nonlinear multi-graviton theory on a graph

We consider a nonlinear multigravity on a graph. Following Nibbelink et al. [8, 9], we introduce the
important ‘tool’:

〈ABCD〉 ≡ −εabcdε
µνρσAa

µBb
νCc

ρDd
σ,

where ε is the totally antisymmetric tensor. Using this tool, we have the Einstein-Hilbert term replacing
A and B by vierbeins and C and D by a curvature 2-form. In addition, because fourth power of vierbein
in the angle brackets is equal to the determinant of vierbeins, the use of this tool illuminates that the
Einstein-Hilbert term and the cosmological term have the same structure.

We assume the following term for each edge of a graph form;

〈(e1e1 − e2e2)2〉,

where e1 and e2 are vierbeins at two ends of one edge. This term has a reflection symmetry e ↔ −e at
each vertex and an exchange symmetry e1 ↔ e2 at each edge.

In the weak-field limit, e1 = η + f1, e2 = η + f2,

〈(e1e1 − e2e2)2〉 = 8
(
([f1]− [f2])

2 −
[
(f1 − f2)

2
])

+ O(f3),

where η is Minkowski metric, and [f ] = trf for notational simplicity. This quadratic term corresponds
to the FP mass term 5 . On the other hand, 1

2 |e|R contains the kinetic terms of a graviton in the leading
order.

Therefore, in the case of the tree graph, we have the nonlinear Lagrangian of multi-graviton theory
without higher derivertive and non-local terms,

L0 =
1
2

expΦ
∑

v∈V

|ev|Rv + M2
∑

e∈E

〈(
eo(e)eo(e) − et(e)et(e)

)2
〉

,

where M2 ≡ m2/16 and we assume φ1 = φ2 = · · · = φN = Φ.

4 Vacuum cosmological solution

Now we consider two vacuum cosmological models, based on the four-site star graph and the four-site
path graph. We assume the following metric;

gµνdxµdxν = −eΦ(t)dt2 + eΦ(t)+2ai(t)(dr2 + r2dΩ2)

where Φ(t) is a scalar field and ai(i = 1, · · · , 4) are scale factors. Then,
〈
(eiei − ejej)2

〉
= e−2Φ(t)(e2ai(t) − e2aj(t))2.

In the case of the star graph, the Lagrangian is following;

L =
1
2

expΦ(t)
4∑

i=1

|ei|Ri + M2
4∑

i=2

〈
(e1e1 − eiei)2

〉
,

where, a1 is on the center of the graph. On the other hand, the Lagrangian of the case of the path graph
is

L =
1
2

expΦ(t)
4∑

i=1

|ei|Ri + M2
∑

i<j

〈
(eiei − ejej)2

〉
,

where, a1 and a4 are on each end of the graph.
We show the results of numerical calculations of the two models on the same initial conditions in

Figure 1 and Figure 2. Both scalar fields behave similarly and each scale factor repeats the increase and
5It is known that the asymmetric part of f can be omitted. [10]
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the decrease. However, the scalar field in the star graph case changes slightly slower than the other. The
oscillation of the scale factors in the path graph case include more modes of different frequencies than
that of the scale factors in the star graph case.

The star graph model has more symmetries than the path graph model. A lot of modes in the star
graph case degenerate. In the path graph case, increase of the number of sites gives the more complicated
behaviors of the scale factors. On the other hand, in the star graph case, the symmetries are preserved
if the number of sites are inceased. Therefore, the behaviors of the scale factors are the same as the
four-site model, essentially.

5 Summary and prospects

We considered the four-site star and path graph model and found that vacuum cosmological solutions with
the scale factors show the repeated accelerating and decelerating expansions. The differences between
these two models were discussed from a viewpoint about symmetries.

As the future works, we should investigate the case that the matter fields exist. We also should
investigate the models based on arbitrary tree graphs.
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Figure 1: A numerical solutions of the scale factors in the case of the four-site star graph.
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Abstract
Recently, there have been a indication that the universe is in a state of accelerated
expansion. This accelerated expansion is supposed to be caused by unidentified dark
energy as a result of fitting the observations of type Ia supernovae to a distance-
redshift relation of homogeneous and isotropic universe model. But the universe is
not perfectly homogeneous and isotropic because of structures such as galaxies or
groups of galaxies. In this work, by taking into account effects of such inhomo-
geneities and anisotropies of the matter distribution, we explain the distance-redshift
relation suggested by the observations of type Ia supernovae without dark energy.
First, we show that after averaging the optical scalar equation of an inhomogeneous
and anisotropic spacetime over the sphere, we can obtain a simplified optical scalar
equation, which coincides with that in the Lemâıtre-Tolman-Bondi spacetime with
a Dyer-Roeder-like extention. Then, we show that the distance-redshift relation ob-
tained from our equation provides better fitting of the observational data than the
ΛCDM model and the void model.

1 Introduction

Conparisons of reliable distance-redshift relation obtained from Type Ia supernova (SNIa) observa-
tions(e.g. [1]) with the predictions from Friedmann-Lemâıtre (FL) homogeneous and isotropic universe
models suggest that the Universe is in a phase of accelerated expansion, and there must exist undefined
dark energy that causes the acceleration.

On the other hand, the possibilities have been discussed that the distance-redshift relations provided
by the SNIa observations could be reproduced by taking account of the inhomogeneties in the matter
distibution and geometry even without dark energy. One of such models is the so-called void model,
in which existence of a large scale underdense region (void). Alnes et al. [2] showed that there exists a
model that provides a good fit to the SNIa observations, assuming that the outside if a spherical region
is homogeneous and isotropic but the inside of it is described by the Lemâıtre-Tolman-Bondi (LTB)
spherically symmetric dust solution (e.g. see [2]).

In reality, however, the matter distribution in the Universe is not isotropic, and the distance-redshift
relation inferred by the observational data should be considered as an average over all the directions of
sight. This point seems to have been mostly ignored in the literature. To take into account the effect
caused by these anisotropies, we start with the optical scalar equation in general inhomogeneous and
anisotropic spacetimes, and then take an average of a form of this equation (distance equation) over the
spheres on the past light cone. With this averaged distance equation, we numerically investigate a void
model.

1E-mail:iwata@gravity.phys.nagoya-u.ac.jp
2E-mail:nambu@gravity.phys.nagoya-u.ac.jp
3E-mail:tanimoto@gravity.phys.nagoya-u.ac.jp
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2 The distance equation for inhomogeneous and
anisotropic spacetime

2.1 The distance equation in general spacetime

Let us consider a null geodesic congruence which arrive at the observer. We start with the optical scalar
equation [3], which determines the variations of the cross sectional area of a null geodesic congruence.
For simplicity, let us assume the spacetime which there is no the shear and rotation of the congruence.
The optical scalar equation in this case becomes

2√
A

d2
√

A

dλ2
+ Rµνkµkν = 0, (1)

where A is the cross sectional area of the congruence, kµ the null geodesic generator, λ the affine param-
eter, and Rµν the Ricci tensor. With the relation DA ∝

√
A for the angular diameter distance DA, we

obtain
1

DA

d2DA

dλ2
+ 4πGTµνkµkν = 0, (2)

from Eq.(1) and Einstein’s equation. The only energy content we consider is dust, so that Tµν = ρuµuν ,
where ρ is the energy density for dust, uµ the 4-velocity of dust. The frequency of the light observed by
the comoving observer at a given λ with 4-velocity uµ is given by ω(λ) = −uµkµ.Therefore the second
term in the left hand side of Eq.(2) yields Tµν = ω(0)(1 + z)2ρ, where we have used the definition of
redshift z, z ≡ ω(λ)/ω(0) − 1. Thus, Eq.(2) can be written as

L2DA + 4πGρDA = 0, (3)

where L2 is the second order linear derivative operator defined by L2 = 1
ω2(0)(1+z)2

d2

dλ2 . We stress that
this equation is valid for any dust universem, as long as the shear and rotation of the congruence can be
ignored. Note also that solving this equation requires another equation (geodesic equation) to relate λ
with z, for a given ρ.

2.2 Averaging of anisotropies

In this subsection, we take a spherical average of Eq.(3).
For our purpose, it is most convenient to take a particular coordinate system that is based on a

foliation of spacetime by past light cones of a timelike curve. We employ a spherical null coordinate
system (t, z, θ, ϕ) such that on each light cone t = constant, that z = 0 corrsponds to the vertex of each
light cone, that the timelike curve the vertices z = 0 comprise coincides with the orbit of matter flow
there, and that the angular coordinates (θ, ϕ) are constant along every null geodesic that reaches the
vertex z = 0. (This choice of angular coordinates is possible each other.) The radial null coordinate z is
chosen to give the redshift along each null geodesic labeled by (t, θ, ϕ). Our observation is supposed to
be done at the coordinate center z = 0 at a certain instant t = t0.

Let DA(z; θ, ϕ) be the angular-diameter distance to an object observed in the direction (θ, ϕ) with
redshift z. This is a function of z, θ, ϕ, but we will often regard this as a function of z with θ and ϕ being
parameters, since we mostly consider its variations along the null geodesic, in which situation θ and ϕ
are constant. We will therefore use d/dz instead ∂/∂z when it acts on DA(z; θ, ϕ). The same rule will be
applied to other functions as well.

Let us define the spherical average of function f(z; θ, ϕ) by

f̄(z) ≡ ⟨f(z; θ, ϕ)⟩ ≡ 1
4π

∫
f(z; θ, ϕ)dΩ, (4)

where dΩ = sin θdθdϕ. Then, then spherical average of Eq.(3) can be written as

⟨L2DA(z; θ, ϕ)⟩ + 4πG⟨ρ(z; θ, ϕ)DA(z; θ, ϕ)⟩ = 0. (5)
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Here, the derivative operator L2 becomes under our coordinates

L2 =
1

ω2(0)(1 + z)2

(
d

dλ

)2

= H(z; θ, ϕ)
d

dz

[
H(z; θ, ϕ)(1 + z)2

d

dz

]
, (6)

where the function H(z; θ, ϕ) is defined by H(z; θ, ϕ) ≡ 1
ω(0)(1+z)2

dz
dλ .

Note that in the averaged equation (5), each term in the left hand side depends only on z. We
wish to estimate how much different the averaged distance function D̄A(z) = ⟨DA(z; θ, ϕ)⟩ is from an
spherically symmtetric LTB distance function D

(LTB)
A (z). To this, we match an LTB solution with the

given inhomogeneous and anisotropic universe according to the following correspondence: ρ̄(z) = ρLTB(z),
H̄(z) = HLTB(z). Since the LTB solution possesses two arbitrary physical functions, it is natural to expect
that these two conditions are satisfied for a suitable choice of these functions.

Keeping this correspondence in mind, we formally rewrite Eq.(5) in the form

β(z)L2
LTBD̄A(z) + 4πGα(z)ρLTB(z)D̄A(z) = 0, (7)

where

α(z) ≡ ⟨ρ(z; θ, ϕ)DA(z; θ, ϕ)⟩
ρLTB(z)D̄A(z)

, β(z) ≡ ⟨L2DA(z; θ, ϕ)⟩
L2

LTBD̄A(z)
, L2

LTB ≡ HLTB(z)
d

dz

[
HLTB(z)(1 + z)2

d

dz

]
.

(8)

To estimate the magnitude of the ratio function α(z) and β(z), let us decompose physical function as

ρ(z; θ, ϕ) = ρLTB(z) + δρ(z; θ, ϕ), (9)
H(z; θ, ϕ) = HLTB(z) + δH(z; θ, ϕ), (10)

DA(z; θ, ϕ) = D̄A(z) + δDA(z; θ, ϕ), (11)

where ⟨δρ⟩ = ⟨δH⟩ = ⟨δDA⟩ = 0. Then α can be calculated as

α(z) = 1 + ⟨δρ(z; θ, ϕ)
ρLTB(z)

δDA(z; θ, ϕ)
D̄A(z)

.⟩ (12)

In general, the emptier the region the light we observe travels, the longer the distance, which implies that
δρ and δDA have opposite signs each other. This in turn implies α(z) ≤ 1 with equality being satisfied
only in the LTB isotropic universe.

For β, we can roughly estimate as

β(z) ∼ 1 + ⟨
(

δH(z; θ, ϕ)
HLTB(z)

)2

⟩, (13)

where we have used δDA/D̄A ∼ δH/HLTB because the perturbation of distance is mainly caused by the
perturbation of the expansion rate. According to the CMB observation, however, the perturbation of the
expansion rate is about 0.1 on scales of z ∼ 0.1. This implies that ∆β ≡ |β − 1| is much smaller and can
be neglected as compared to ∆α ≡ |α − 1|.

Putting β ∼ 1 in Eq.(7), we finally obtain

L2
LTBD̄A(z) + 4πGα(z)ρLTB(z)D̄A(z) = 0 (14)

This is the distance equation the averaged distance function D̄A(z) should satisfy. We obtained this
equation for a given inhomogeneous and anisotropic universe, but in practice, we will use it to determine
a matched LTB solution and α(z) so that the solution D̄A(z) well describes observational data.

3 Numerically Analysis

Using Eq.(14), we numerically seek in a space of control parameters the best confuguration that can
explain observational data of SNIa. For inhomogeneity, we employ the same void model considered by
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Alnes et al. [2] as the parametrization of the LTB solution. In their model, the arbitrary functions tB(r),
M(r), E(r) are chosen to be

tB(r) = 0, M(r) =
1
2
H2

0r3

[
1 − ∆M

2

(
1 − tanh

r − r0

2∆r

)]
, E(r) =

1
4
H2

0r2∆M

(
1 − tanh

r − r0

2∆r

)
.

(15)

The model represents FL universe near the center, since M(r) ∝ r3, E(r) ∝ r2 there. From this fact, we
can define the following density parameters at the center: Ωk ≡ −E′′(0)

H2
0

, Ωm ≡ M ′′′(0)
3H2

0
= 1 − Ωk. These

equation allow us to use observational value Ωm instead of ∆M .
For anisotropy, we define the function α(z) as

α(z) = 1 − 1 − α0

2

(
1 − tanh

r(z) − rα0

2∆rα

)
(16)

Thus, our paramter space consists of (Ωm, r0,∆r, α0, rα0,∆rα). But, for simplicity, we set ∆rα = 0.001.
As for the observational data to consider, we use the so-called gold samples of Riess et al. [4].

The best-fit parameters for our model are summarized in Table 1. Our best-fit value χ2 = 174.046
is smaller than χ2

ΛCDM = 174.046 in the ΛCDM model [4] and χ2
void = 176.5 in the void model of Alnes

et al. [2]. From the value α = 0.42(z < 2), we can estimate the characteristic magnitude of density
fluctuation on the scale z ∼ 1 as δρ/ρ ∼ 5.8, since δH/H is of the magnitude about 0.1 on this scale.
Our value Ωm = 0.31 coincides with the galaxy survey. The scale z0 = 0.199 corresponds to large-scale
structure of the Universe.

Table 1: Our best-fit parameters.

(Ωm, r0, ∆r, α0) χ2 z0 zα0
(0.31, 0.18, 0.085, 0.42) 174.046 0.199 zα0 > 2

4 Conclusion

Since SNIae are observed in various directions in the sky, the distance-redshift relation inferred by a
collective data of them should be considered as an averaged over the solid angle. On the other hand,
the distance-redshift relation DA(z) for a given direction of sight can theoretically be determined by a
distance equation that is equivalent to the optical scalar equation. To obtain an effective equation for
the spherically averaged distance D̄A, with which the observed distance-redshift relation can directly be
compared, we took an average of the distance equation.

The function α(z) introduced in our effective equation represents the degree to which the Universe
fluctuates from an isotropic configulation. This newly introduced freedom enabled us to obtain a better
fit to the observation, and our best-fit value of α suggests that the dark matter fluctuation δρ/ρ̄ ∼ 6.
Although it is very rough, this is perhaps the first estimation of the fluctuation determined from the
observational data of SNIae.
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The correlation of black hole mass with metallicity index of host
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Abstract
We investigate the correlation between the mass of the supermassive black holes
(SMBHs) and metal abundance, using existing data sets. The SMBH mass Mbh is
well correlated with integrated stellar feature of Mgb. For 28 galaxies, the best-fitting
Mbh-Mgb relation has a small scatter, which is an equivalent level with other well-
known relation, such as a correlation between the stellar velocity dispersion and the
mass. An averaged iron index 〈Fe〉 also positively correlates with Mbh, but the best-
fitting Mbh-〈Fe〉 relation has a larger scatter. The difference comes from the synthesis
and evolution mechanisms, and may be important for the SMBH and star formation
history in the host spheroid.

1 Introduction

Recent observations of nearby massive spheroids (ellipticals, lenticular and spiral bulges) have established
that supermassive black holes (SMBHs) are present in the nuclei of galaxies. The mass Mbh of SMBHs
ranges from 106 to 109 M¯. Several statistical correlations between supermassive black hole mass and
characteristic parameter of host spheroid (e.g., the luminosity, L; the stellar velocity dispersion, σ) have
been explored (e.g., [1], [2]). If the fitting models are good, the correlations may provide some clues to
the co-evolution of SMBHs and the host spheroids.

The galaxies have some aspect as an assemble of stars, gases and dark matters. The quantity σ
represents the dynamical aspect, while L represents the photometrical one, although they are closely
related to each other. Very little attention is paid to the chemical one. Both the metal abundance
and black hole mass increase with time and we therefore expect some correlations between them. It
is important to clarify the correlation, and the extent, if any. The chemical parameter using Lick/IDS
absorption line indices, for example [3], especially Mg and Fe are systematically studied in literatures
(e.g., [4]) for the galaxies in which presence of SMBH is reliable. Using the published data, we investigate
the correlation with SMBH mass.

2 The sample

Our sample consists of 28 neargy galaxies. We put two criteria to pick up the sample from literatures.
First, the black hole masses are measured by good spatial resolution. The sources are limited to Mbh >
σ2rres/(2G), where σ2 is stellar velocity dispersion, rres is the instrumental spatial resolution. Secondly,
metal indices of Mg or Fe are measured. For the chemical parameter of spheroids, we use spectral
absorption line indices in the visual as defined by the Lick group, for example [5]. Lick indices have
proven to be a useful tool for the derivation of ages and metallicity of unresolved stellar population ([6]).
In this paper, we use Mgb, Fe5270, Fe5335 indices, measuring, respectively, the strength of MgI at ¸ '
5156-5197 Å, FeI at ¸ ' 5246-5286 Å and ¸ ' 5312-5352 Å. These indices in mag are calculated by the
standard equations:

EWmag = −2.5 log
{∫ λ2

λ1
[F (¸)/C(¸)]d¸

¸2 − ¸1

}
, (1)

1E-mail:kisaka@theo.phys.sci.hiroshima-u.ac.jp
2E-mail:kojima@theo.phys.sci.hiroshima-u.ac.jp
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where
C(¸) = Fb

¸r − ¸

¸r − ¸b
+ Fr

¸ − ¸b

¸r − ¸b
(2)

and ¸b and ¸r are the mean wavelength in the blue and red pseudo-continuum intervals, respectively. We
have adopted the spectral pseudocontinua and band passes of the Mgb, Fe5270, Fe5335 Lick/IDS indices
defined in [3]. We use a combined “iron” index, 〈Fe〉 defined by

〈Fe〉 ≡ 1
2
(Fe5270 + Fe5335). (3)

This index has smaller random error than either that of Fe5270 or that of Fe5335. These index values
used from the literatures, are the measurements within the central region r < re/8, where re is effective
radius of the spheroids. The details of galaxy parameters uesd in the fits are listed in [7].

3 Results

In order to fit the data to the linear relation y = a + bx, we use a version of the routine FITEXY [8]
modified by [9].

3.1 Dynamical and photometric properties

In order to check the dependence on the sampling data, we derive Mbh-σ and Mbh-MB relations from
our sample. First, for the dynamical aspect, we show a relation between the SMBH mass and the stellar
velocity dispersion. Our result of Mbh-σ relation is given by

log(Mbh/M¯) = (3.98 ± 0.35) log(σ/200) + 8.23 ± 0.06 (4)

with ε = 0.25+0.06
−0.03dex in log Mbh. This relation is consistent with previous relations. For example, recent

updated one by [2] using a sample of 23 galaxies is

log(Mbh/M¯) = (3.79 ± 0.32) log(σ/200) + 8.16 ± 0.06 (5)

with ε = 0.23 dex. Figure 1 shows our Mbh-σ relation (4) in comparison with (5).
Next, for the photometric aspect, we derive the Mbh-MB relation. Our result is

log(Mbh/M¯) = (−0.42 ± 0.05)(MB + 19.5) + 8.14 ± 0.08 (6)

with ε = 0.36+0.07
−0.05dex. Graham obtained

log(Mbh/M¯) = (−0.40 ± 0.05)(MB + 19.5) + 8.27 ± 0.08 (7)

with ε = 0.30+0.04
−0.05dex. Although intrinsic scatter in our relation is a little high, both two relations agree

within the uncertainties. Both relations (6) and (7) are plotted in Figure 2. By comparing with previous
results, we may say that there is no serious bias in our sampling data.

3.2 Chemical property

In Figure 3, we plot Mbh as a function of the integrated stellar feature of Mgb for the 28 galaxies. It is
found that the mass Mbh significantly correlates with the index Mgb. The best fit relation is obtained as

log(Mbh/M¯) = (27.23 ± 3.00)(Mgb − 0.16) + 8.13 ± 0.07 (8)

with ε = 0.32+0.06
−0.04dex. The scatter is not so bad as that of well-fitted Mbh-σ and Mbh-MB relations. The

index Mgb is a good indicator, but other indicator of the metal abundance is not so good. We have tested
the correlation with different index. For instance, we show Mbh as a function of 〈Fe〉 index in Figure 4.
The best fit relation is

log(Mbh/M¯) = (60.25 ± 26.01)(〈Fe〉 − 0.083) + 8.34 ± 0.13 (9)

with ε = 0.58+0.12
−0.07 dex. This relation has much larger scatter than that of eqs.(5)-(9). It is clear from

Figure 4 that the index 〈Fe〉 is not good one. Summarizing the relationships obtained in our own study,
we find that Mbh-σ is the best, Mbh-Mgb and Mbh-MB are moderate, and Mbh-〈Fe〉 is the worst.
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Figure 1: Relationship between SMBH mass
and effective stellar velocity dispersion for 28
galaxy samples. The solid line represents our
best fit relation (4). For a comparison, the rela-
tion by [2] is shown by a dashed line. Elliptical
galaxies are denoted by open circles, lenticulars
and spirals by filled circles.
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Figure 2: Relationship between SMBH mass
and absolute B-band luminosity of the spheroid
for 28 galaxy samples. The solid line represents
our best fit relation (6). For a comparison, the
relation found by [1] is shown by a dashed line.
The symbols are the same as Figure 1.
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Figure 3: Relationship between SMBH mass
and Mgb index value within a circular aperture
of re/8 for our samples. The symbols and line
are the same as in Figure 1.
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and 〈Fe〉 index within re/8 for our samples. The
symbols and line are the same as in Figure 1.
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4 Discussion

We have shown that a good correlation between SMBH mass and Mgb index value. The best-fitting Mbh-
Mgb relation has small intrinsic scatter 0.32 dex which is comparable one in other strong correlations
found so far. Such a new correlation in the chemical aspect is expected through other relations in
dynamical/photometric aspects. The metal abundance is roughly correlated with total stellar mass,
absolute magnitudes etc. e.g., [10]. In particular, there is a remarkably tight relation between Mg2

and the central velocity dispersion of stars[11]. The positive correlations have been found between some
quantities characterizing the hosts and SMBH mass. A positive correlation is also suggested between
the SMBH mass and the metallicity derived from emission line ratios in 578 AGNs spanning a wide
range in redshifts[12]. Our result of Mgb for nearby galaxies is more tight. Thus, positive correlation
is expected, but the degree was not clear beforehand. It was not clear which indicators of the metal
abundance strongly correlate with the SMBH mass. The index 〈Fe〉 correlates with it, but the intrinsic
scatter is not so small as that of Mgb. Heavy elements Mg and Fe are synthesized by two different types
of supernovae (Type Ia and II), with different time scales. This evolutionary difference causes the scatter
in the correlations.

The growth of black hole mass is mainly determined by the accretion rate and the lifetime of the
activity. The environmental factors near the central region of galaxies may partially be affected by some
global quantities, such as the mass and size of the host. If the mass Mbh of SMBH is determined solely
by the spheroid mass Ms as Mbh = εMs (ε ∼ 10−3), then we have Mbh ∝ Ms ∝ L ∝ σ4, where we
assume that a constant mass-to-light ratio and the Faber-Jackson relation in elliptical galaxies hold in
the spheroids. The features in the host spheroids are transferred to the relations with the black hole
mass, Mbh-L and Mbh-σ relations. Other features in the hosts, binding energy, light concentration and
so on also give some relations with Mbh. Bender et al. discuss that the strength of Mg2 is determined not
only by the global mass Ms, but also by the local stellar density, which is related with the star-formation
rate etc. It is therefore important to examine the correlation of Mbh with the other physical quantities
of the spheroid, in addition to Ms. The metal abundance is a tracer for integrated stellar populations.
The tight relation Mbh-Mgb, which is discovered here but is still tentative, may be useful for the better
understanding of the coevolution of SMBH and host spheroid, if it is not accidental. Further work is
needed to clarify whether this relation is fundamental or not.
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Abstract
We investigate the integrability of Nambu-Goto strings with a cohomogeneity-one
symmetry in the Minkowski spacetime. By virtue of the symmetry, the equations
of motion reduce to the geodesic equations in a three dimensional orbit space. The
orbit space inherits the Killing vectors from the Minkowski spacetime, which help us
to integrate the geodesic equations. The cohomogeneity-one strings are fallen into
seven families (Type I ∼ VII) in the Minkowski spacetime. We find that the strings
of Type I ∼ VI are integrable due to the existence of two or more inherited Killing
vectors. We also find that the strings of Type VII are integrable due to the existence
of an inherited Killing vector and a Killing tensor.

1 Introduction

Recently, cosmic strings gather much attention in the context of the superstring theories, since it was
pointed out that the fundamental strings and other string-like solitons such as D-strings could exist in
the universe as cosmic strings [1]. In the brane inflation models, these cosmic superstrings are produced
at the end of inflation [2, 3] and stretched by the expansion of the universe. Existence of the cosmic
superstrings is a strong evidence of the superstring theories.

Jackson et al. showed that the reconnection probability of the cosmic superstrings can be much more
suppressed than that of the gauge theoretic cosmic strings [4]. If the reconnection probability is much
suppressed, the cosmic superstrings exist stably in the universe. When the cosmic superstrings stay in
isolation in effect, they must have gone through some kind of relaxation process such as gravitational
radiations. Then, they are considered to be in stationary motions.

The stationary string has a world surface which is tangent to a timelike Killing vector field. Existence
of the tangential Killing vector reduces the equations of motions of the string to ordinary differential
equations, which are much more tractable than partial differential equations. Stationary strings in various
spacetimes have been studied so far, and many non-trivial solutions were found even in the Minkowski
spacetime [5, 6, 7].

The notion of stationary strings is generalized to that of cohomogeneity-one strings. A cohomogeneity-
one string is defined as a string whose world surface is tangent to a Killing vector field which is not
restricted to being timelike. The cohomogeneity-one string is characterized by the Killing vector to
which the world surface is tangent. When the spacetime admits multiple independent Killing vectors,
there are infinitely various Killing vectors in the form of linear combination of the independent Killing
vectors. Hence, correspondingly various cohomogeneity-one strings are possible. However, all of the
cohomogeneity-one strings do not have equal importance. For example, two stationary rotating strings
with equal angular velocity but different rotational axis, e.g. x-axis and y-axis, are physically equivalent.
This kind of equivalence are generalized as follows: two strings are equivalent if their world surfaces, say

1E-mail:kozaki@ishikawa-nct.ac.jp
2E-mail:koike@phys.keio.ac.jp
3E-mail:ishihara@sci.osaka-cu.ac.jp
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Σ1 and Σ2, are mapped by an isometry ϕ : Σ1 → Σ2. In terms of the Killing vectors of the cohomogeneity-
one strings, we identify the strings if the tangential Killing vectors, say ξ1 and ξ2, are mapped by the
isometry ϕ∗ : ξ1 → ξ2.

In the Minkowski spacetime, the Killing vectors are classified into seven families (Type I ∼ VII) under
the identification by the isometries, and then, the cohomogeneity-one strings are fallen into seven families
[8]. The Type I family includes stationary rotating strings. The Nambu-Goto equations of motion for this
class are exactly solved and various configurations are found. By using the exact solutions, the energy
momentum tensors are calculated and the properties of the stationary rotating strings are clarified [7].
The gravitational perturbations are also studied in detail and the wave form of the gravitational waves
are obtained [9].

The studies of Type I family show that exact solutions are useful for investigating the gravitational
phenomena such as gravitational lensing and gravitational waves, which are indispensable to verifying
the existence of cosmic strings. Furthermore, exact solutions provide us a deeper insight to the string
dynamics. In this article, we clarify the integrability of the remaining families (Type II ∼VII). We assume
that the motions of the strings are governed by the Nambu-Goto action.

2 Integrability of the cohomogeneity-one string

A trajectory of the string is a two-dimensional surface, say Σ, embedded in a spacetime (M, g). We
denote the embedding

ζa → xµ = xµ(ζa), (1)

where ζa(ζ0 = τ, ζ1 = σ) are the coordinate on Σ and xµ (µ = 0, 1, 2, 3) are the coordinate in M. The
Nambu-Goto action is written as

S =
∫

Σ

√
−γd2ζ, (2)

where γ is the determinant of the induced metric γab on Σ which is given by

γab = gµν
∂xµ

∂ζa

∂xν

∂ζb
. (3)

Let us consider the case that the spacetime M admits a Killing vector field ξ. We denote the one-
parameter isometry group generated by ξ as H. The group action on a point in M makes an orbit of H,
or an integral curve of ξ. If the string world surface Σ is foliated by the orbits of H, the string is called
cohomogeneity-one associated with the Killing vector ξ. It is obvious that Σ is tangent to ξ. Stationary
strings are examples of cohomogeneity-one strings, where the Killing vectors are timelike.

When we identify all the points in M which are connected by the action of H, we have the orbit space
O := M/H. Under this identification, the cohomogeneity-one world surface Σ turns out to be a curve in
O. This curve is shown to be a spacelike geodesic in O with the norm-weighted metric

h̃µν = −fhµν , (4)

where f is the norm of ξ and hµν is a naturally induced metric on O:

hµν = gµν − ξµξν/f. (5)

Therefore, the problem of solving the equations of motion for the cohomogeneity-one string is reduced to
solving the geodesic equations in (O, h̃).

Integrability of the geodesic equations is related to the existence of the Killing vectors. The geodesic
equations in (O, h̃), where dimO = 3 , are integrable if (O, h̃) admits two or more linearly independent
Killing vectors which commute with each other. In the orbit space (O, h̃), we can investigate such
Killing vectors without solving the Killing equations. Let us consider a Killing vector X in (M, g) which
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commutes with ξ. We can easily find that the projection of X, say π∗X, where π : M → O is the
projection, is a Killing vector in (O, h̃):

Lπ∗X h̃µν = LX(−fgµν + ξµξν) = LX

{
(−gαβgµν + gµαgνβ)ξαξβ

}
= (−gαβgµν + gµαgνβ)

{
(LXξα)ξβ + ξαLXξβ

}
= (−gαβgµν + gµαgνβ)

{
[X, ξ]αξβ + ξα[X, ξ]β

}
= 0. (6)

Killing vectors which commute with ξ constitute a Lie subalgebra, called centralizer of ξ which we denote
C(ξ). Let X,Y ∈ C(ξ) commute with each other. We see that the projections of them on O also
commutes;

[π∗X,π∗Y ] = π∗[X,Y ] = 0. (7)

Therefore, if there are two or more linearly independent and commuting Killing vectors in C(ξ) except for
ξ itself, (O, h̃) inherits the same number of commuting Killing vectors, and then the geodesic equations in
(O, h̃) are integrable. In the Minkowski spacetime, all of the cohomogeneity-one strings are classified into
seven families (Type I ∼ VII). For each type, we list the Killing vector ξ, basis of C(ξ) and the number
of commuting basis of C(ξ) except for ξ in Table 1. For type I ∼ VI, there are two or more commuting
Killing vectors in C(ξ), hence, the geodesic equations in (O, h̃) are integrable. For the strings of Type
VII, there is only one Killing vector in (O, h̃) which is inherited from (M, g). Nevertheless, the geodesic
equations are solved exactly. This is due to the existence of a nontrivial conserved quantity which is
related to a Killing tensor field. In the next section, we solve the geodesic equation in (O, h̃), and show
the existence of the Killing tensor.

Type tangential Killing vector ξ basis of C(ξ) n
I Pt + aLz (a 6= 0) Pt, Pz, Lz 2
I Pt Pt, Px, Py, Pz, Lx, Ly, Lz 3
I Lz Pt, Pz, Lz, Kz 3
II (Pt + Pz) + aLz (a 6= 0) Pt, Pz, Lz 2
II Pt + Pz Pt, Px, Py, Pz,Ky + Lx,Kx − Ly, Lz 3
III Pz + aLz (a 6= 0) Pt, Pz, Lz 2
III Pz Pt, Px, Py, Pz, Lz,Kx, Ky 3
IV Pz + a(Ky + Lz) Pt − Px, Pz, Py + a(Kz − Ly),Ky + Lz 2
V Pz + aKy (a 6= 0) Px, Pz,Ky 2
V Ky Px, Pz, Ly,Ky 2
VI Ky + Lz + aPx (a 6= 0) Ky + Lz + aPx, Pt − Px, Pz 2
VII Kz + aLz (a 6= 0) Lz,Kz 1

Table 1: Inherited symmetry of (O, h̃) from the Minkowsiki space. Pα is the generator of translation
along α-direction. Li (i = x, y, z) are the generators of rotation around i-axis. Ki (i = x, y, z) are the
generators of Lorentz boosts along i-directions. n is the number of commuting basis in C(ξ).

3 Integrability of Type VII strings

For the conventional cylindrical coordinate (t̄, ρ̄, φ̄, z̄), we take a new coordinate (t, ρ, φ, z);

(t̄, ρ̄, φ̄, z̄) = (z sinh t, ρ, φ + at, z cosh t). (8)

In this coordinate, the tangential Killing vector ξ is written as ξ = Kz + aLz = ∂t, i.e., t is a coordinate
along the orbits of H. The metric is represented as

g = (−z2 + a2ρ2)dt2 + 2aρ2dφdt + dρ2 + ρ2dφ2 + dz2, (9)
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then, the norm weighted metric h̃ is

h̃ = (z2 − a2ρ2)(dρ2 + dz2) + z2ρ2dφ2. (10)

We solve the geodesic equation for this metric. Let σ be a parameter of the geodesic curve; (ρ(σ), φ(σ), z(σ)).
The cohomogeneity one string solution, i.e., embedding (τ, σ) → (t, ρ, φ, z), is given as

(τ, σ) → (τ, ρ(σ), φ(σ), z(σ)). (11)

In order to solve the geodesic equation in (O, h̃), we start from the action

S =
∫ [

1
N

{
(z2 − a2ρ2)(ρ′2 + z′2) + z2ρ2φ′2} + N

]
dσ, (12)

where the prime represents the differentiation with σ and N is a function of σ. N determines the
parameter choice of the geodesic curve. For example, when we set N(σ) = 1, σ becomes an affine
parameter. Fixing the re parametrization freedom by taking the function N as N = z2 − a2ρ2, we can
solve the geodesic equations as

z2 = C +
√

C2 − a2L2 cosh 2(σ + σ0), (13)

a2ρ2 = C +
√

C2 − a2L2 cos 2aσ, (14)

φ = tan−1

{
C −

√
C2 − a2L2

aL
tan aσ

}
− a tanh−1

{
C −

√
C2 − a2L2

aL
tanh(σ + σ0)

}
. (15)

where L, σ0 and C > 0 are constants. The constant L is related to φ-independence of h̃ which is the
result of the inherited Killing. The constant C is related to the Killing tensor

K = a2ρ2(z2 − a2ρ2)dz2 + z2(z2 − a2ρ2)dρ2 + z2ρ2(z2 + a2ρ2)dφ2. (16)

4 Conclusion

We have found that the equation of motion for the cohomogeneity-one Nambu-Goto strings in the
Minkowski spacetime are integrable. The equations of motion for the cohomogeneity-one strings are
reduce to the geodesic equations in the orbit space. For the Type I ∼ VI, integrability of the geodesic
equations comes from two or more inherited Killing vectors. For the Type VII, integrability comes from
an inherited Killing vector and a non-trivial Killing tensor.
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Abstract
We explore the possibility of generating large-scale magnetic fields from second-order
cosmological perturbations during the pre-recombination era [1]. The key process for
this is Thomson scattering between the photons and the charged particles within the
cosmic plasma. To tame the multi-component interacting fluid system, we employ
the tight coupling approximation. It is shown that the source term for the magnetic
field is given by the vorticity, which signals the intrinsically second-order quantities,
and the product of the first order perturbations. The vorticity itself is sourced by
the product of the first-order quantities in the vorticity evolution equation. The
magnetic fields generated by this process are estimated to be ∼ 10−29 Gauss on the
horizon scale.

1 Introduction

Magnetic fields are known to be present on various scales in the universe [2, 3]. For example, magnetic
fields are observed in galaxies and clusters, with intensity ∼ 1 µGauss. Only an upper limit has been
given for magnetic fields on cosmological scales, < 10−9 Gauss. Primordial large-scale magnetic fields
may be present and serve as seeds for the magnetic fields in galaxies and clusters, which are amplified
through the dynamo mechanism after galaxy formation [4].

A number of models have been proposed for generating large-scale magnetic fields in the early universe.
However, they rely more or less on some unknown physics. In the present paper, we discuss magneto-
genesis in the pre-recombination era using only the conventional physics that has been established. The
generation of magnetic fields in this era has been studied in Refs. [5, 6, 7, 8]. Now it is widely accepted
that large-scale cosmological perturbations, generated from inflation in the early universe, evolve into
a variety of structures such as the cosmic microwave background anisotropies and galaxies. However,
inflation produces only density fluctuations (scalar perturbations) and gravitational waves (tensor per-
turbations); vector perturbations, and hence large-scale magnetic fields, are quite unlikely to be generated
in the context of standard inflationary scenarios. Even if they were generated due to some mechanism,
they only decays without any sources. This argument is based on linear perturbation theory, and so we
will be studying second-order perturbations to overcome this difficulty. We consider a multi-fluid system
composed of photons, electrons, and protons, which are tightly coupled via Thomson and Coulomb scat-
tering but slightly deviate from each other [9]. Thomson scattering is important for the generation of
large-scale magnetic fields in the pre-recombination era, because a rotational current will be produced by
the momentum transfer due to the Thomson interaction. We shall see how this process occurs by doing
the tight coupling expansion.

1E-mail:maeda”at”th.phys.titech.ac.jp
2E-mail:satoshi”at”gravity.phys.waseda.ac.jp
3E-mail:tsutomu”at”gravity.phys.waseda.ac.jp
4E-mail:shiromizu”at”tap.scphys.kyoto-u.ac.jp
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2 Basic equations in second-order cosmological perturbation the-
ory

The background spacetime is given by the spatially flat Friedmann-Lemaitre-Robertson-Walker metric.
We write the perturbed metric in the Poisson gauge as

ds2 = a2(η)
[
−

(
1 + 2ϕ(1) + 2ϕ(2)

)
dη2 + 2χ

(2)
i dηdxi +

(
1 − 2R(1) − 2R(2)

)
δijdxidxj

]
, (1)

where a is the scale factor and η is the conformal time We have dropped the first order vector perturbations
χ

(1)
i since they are not generated from inflation in the standard scenarios. We also neglect the tensor

perturbations (gravitational waves) for simplicity.
We consider a multi-fluid system composed of photons (γ), electrons (e), and protons (p). We assume

that the energy-momentum tensor for each fluid component is given by that of a perfect fluid (i.e., we
neglect anisotropic stresses):

T ν
(I)µ = (ρI + pI)u(I)µuν

(I) + pIδ
ν

µ (I = γ, p, e), (2)

where pI = wIρI (wp = we = 0, wγ = 1/3) and uµ
(I) is the 4-velocity of the fluid satisfying gµνu(I)µu(I)ν =

−1. We define δv(IJ)i ≡ v(I)i − v(J)i, β ≡ me/mp and v(b)i as the center of baryon’s mass velocity.
The equations of motion governing the present 3-fluid system are given by

∇νT(γ)i
ν = κγp

i + κγe
i , (3)

∇νT(p)i
ν = enpEi + κpe

i + κpγ
i , (4)

∇νT(e)i
ν = −eneEi + κep

i + κeγ
i , (5)

where we neglected the Lorentz force from the magnetic field because it will give rise to higher order
contributions and scattering term is

κγe
i = −κeγ

i = −σT neργ

(
u(γ)i − u(e)i

)
, (6)

κγp
i = −κpγ

i = −m2
e

m2
p
σT npργ

(
u(γ)i − u(p)i

)
, (7)

where σT , ργ , ne, np and me, mp are the Thomson cross section, the energy density of photons, the
number density and mass of electrons and protons [6, 8]. The momentum transfer due to Coulomb
scattering is written as

κpe
i = −κep

i = −e2npneηC

(
u(p)i − u(e)i

)
, (8)

where ηC is a electric resistivity which comes from Coulomb scattering.
We get “Ohm’s law” from Eq.(4) and Eq.(5):

Ei =
1 − β3

1 + β

σT

e
aργ(1 − 2R)δv(γb)i. (9)

where we neglect δv(pe)i because δv(pe)i ≪ δv(γb)i in our case [8]. This equation may be regarded as
“Ohm’s law” in some sense. In the standard Ohm’s law, the electric field is proportional to the electric
current density ∼ eδv(pe)i. It is reminded that the contribution from the electric current gives us the
diffusion term in the evolution equation for the magnetic field, and then the source for the magnetic field
cannot be induced. However, the electric field is proportional to δv(γb)i in the above formula. The current
in our “Ohm’s law”is originated from the velocity difference between protons and electrons through the
interaction with photons. Indeed, if one takes the same mass limit of β → 1 (though it is not realized in
the nature), the electric field cannot be generated.

Maxwell equation, ∇[λFµν] = 0, is(
a3Bi

)′
= −ϵijk∂j [a (1 + ϕ)Ek] − ϵijk (avjEk)′ . (10)
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Thus we substitute Eq.(9) into Eq.(10) and get(
a3Bi

)′
= −1 − β3

1 + β

σT

e
ϵijka2

[
∂j

(
ργδv(γb)k

)
+ ργ∂j(ϕ − 2R)δv(γb)k +

1
a2

(
ργvja

2δv(γb)k

)′]
. (11)

Our remaining task is to evaluate δv(γb)i. The evolution equation of δv(γb)i is (4ργ/3)−1 × (3) −
[mp (1 + β) n]−1 × [(4) + (5)] :

ρ′γ
ργ

(
v(γ)i + χi

)
− n′

n

(
v(b)i + χi

)
+

(
δv(γb)i

)′ + 4Hδv(γb)i − (ϕ + 2R)
[
ρ′γ
ργ

v(γ)i −
n′

n
v(b)i +

(
δv(γb)i

)′ + 4Hδv(γb)i

]
−5R′δv(γb)i +

1
4

∂iργ

ργ
+ ∂j

(
v(γ)iv

j
(γ)

)
− 1

1 + β
∂j

(
v(p)iv

j
(p) + βv(e)iv

j
(e)

)
= −α(1 − 2R)δv(γb)i, (12)

where α is defined as

α :=
1 + β2

1 + β
(1 + R)

aσT ργ

mp

(
=

β(1 + β2)
1 + β

(1 + R)
1
τT

)
(13)

with R := 3mp (1 + β) n/4ργ and τT is the timescale of Thomson scattering for electrons.

3 Tight coupling approximation

We are to solve Eq. (12) using the tight coupling approximation (TCA) [9]. In this approximation
the time scale of Thomson scattering, τT , is assumed to be much smaller than the wavelengths of the
perturbations (k−1). Thus, the small expansion parameter of the TCA is kτT , which is dimensionless.
During the pre-recombination era, photons, protons, and electrons are strongly coupled via Thomson
scattering, and hence the TCA will be a good approximation.

At zeroth order in the TCA, all fluid components have the same velocity vi and the density fluctuations
are adiabatic. Following Ref. [8], we define the deviation from the adiabatic distribution for baryons by
nb = n̄b (1 + ∆b) . Then, we expand various quantities such as ∆b and v(I)i in terms of the tight coupling
parameter kτT :

∆b = ∆(I)
b + ∆(II)

b + · · · , (14)

v(γ)i = vi, v(b)i = vi + v
(I)
(b)i + v

(II)
(b)i + · · · , (15)

δv(γb)i = δv
(I)
(γb)i + δv

(II)
(γb)i + · · · , (16)

where vi is the common velocity of photons and baryons in the tight coupling limit. Our notation is that
Roman and Arabic numerals stand for the order of TCA and that in cosmological perturbation theory,
respectively. Here, we adopt the photon frame, so that ∆(I)

γ = ∆(II)
γ = 0. In other words, the quantities

associated with photons give the “background” in the TCA. Note that we consider cosmological pertur-
bation theory and the TCA simultaneously. The following analysis includes cosmological perturbations
up to second-order and the tight coupling expansion up to TCA(II), where TCA(n) denotes the tight
coupling approximation at n-th order.

4 Generation of magnetic fields

We solve Eq.(12) for δv(γb)i using TCA and substitute the results into Eq.(11). When we consider up to
TCA(I), the equation of the magnetic field is

(a3Bi)′ = 2
1 − β3

1 + β

σT

e
a4ρ̄(0)

γ

H
ᾱ(0)

ω(2)i. (17)

where ω(2)i is photon’s vorticity, ωi ≡ − 1
2εiνρλu(γ)λ∇νu(γ)ρ. The evolution equation of the vorticity is

obtained by taking the curl of the total momentum conservation:(
2a2ρ̄

(0)
T ωi(2)

)′
+ 8a2Hρ̄

(0)
T ωi(2) = 0. (18)
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It is important to note here that there is no source for the vorticity at TCA(I). Therefore, the vorticity
decays and the magnetic field is not generated at TCA(I).

Next we consider up to TCA(II). Then the equation of the magnetic field is

(a3Bi)′ =
1 − β3

1 + β

σT

e
a2ρ̄(0)

γ

[
2a2H
ᾱ(0)

ω(2)i + ϵijk R̄(0)

1 + R̄(0)
∂j∆

(I,1)
b δv

(I,1)
(γb)k

]
. (19)

In the same way the evolution equation of the vorticity is

(a2ω(2)i)′ +
HR̄(0)

1 + R̄(0)
a2ω(2)i =

R̄(0)

2(1 + R̄(0))2
ϵijk∂j∆

(I,1)
b δv

(I,1)
(γb)k. (20)

Since the right hand side in Eq. (20) contain the source term for the vorticity at TCA(II), the vorticity
can be generated at this order. Thus the magnetic field is generated. We estimate roughly the value
of the generated magnetic field at the recombination epoch. When we consider the horizon scale, B ∼
10−29 Gauss. According to [4], this will be amplified enough to explain the present observed magnetic
fields.

5 Summary and future works

We have derived an analytic formula for the magnetic fields generated from second-order cosmological
perturbations in the pre-recombination era. Photons and charged particles are strongly coupled via
Thomson scattering within the cosmic plasma, and hence the system behaves almost as a single fluid. In
this single-fluid description magnetic fields are never generated, and therefore the tiny deviation from the
single-fluid description is crucial here. Using the tight coupling approximation (TCA) to treat the small
difference between photons and charged particles, we have seen how magnetic fields are generated from
cosmic inhomogeneities. It was found that magnetic fields are not generated at first order in the TCA.
Therefore, we conclude that magnetogenesis requires both the second-order cosmological perturbations
and the second-order TCA. The resultant magnetic fields are expressed in terms of the vorticity and
the product of the first-order perturbations. The latter can be computed by solving the linear Einstein
equations, while the former is governed by the vorticity evolution equation, with the source term given
by the product of the first order terms.

We have not included the effect of anisotropic stresses of photon fluids and the recombination process,
though they will be equally important for magnetogenesis on small scales [7]. Taking into account these
effects and computing the power spectrum of the generated magnetic fields require detailed numerical
calculations, which are left for future works.
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Abstract
The solutions of dilaton gravity theory is investigated in arbitrary dimensions. We
¯nd a class of the solutions depending only on one space-like or time-like co-ordinate
for Einstein-Dilaton theory with cosmological constant. Also the con¯gurations and
behaviors of these solutions are illustrated for typical cases.

1 Introduction

Motivated by higher dimensional uni¯ed theories and the related cosmologies[1]-[3], we study the one-
parameter solutions of dilaton gravity in arbitrary dimensions. The action of Einstein-dilaton theory
with cosmological constant is given by

S =

Z
dxN+1

p¡g
½
R ¡ 4

N ¡ 1 (@Á)
2 ¡ e4bÁ=(N¡1)¤

¾
; (1)

where R is the scalar curvature and ¤ is the cosmological constant. The scalar Á is the dilaton ¯eld. The
constant b represents the dilaton coupling constant to ¤[4].
We ¯nd a class of static solutions which depend only on a space-like or a time-like co-ordinate of Einstein-
dilaton theory with ¯nite cosmological constant and Maxwell ¯eld.

2 Field Equations and Solutions

First we consider one-parameter solutions of the action.(1). We describe the metric by

ds2 = ¨e½0dx20 § e½1dz2 +
NX

i=2

e½idx2i ; (2)

Note that we can study two cases of one-parameter solutions of dilaton gravity theory. For the upper
sign of (2) z is a space-like co-ordinate(Case(A)). while for the lower sign z are time-like co-ordinates
(Case(B)).
Suppose that all metric components and the dilaton ¯eld Á depend only on z.
Furthermore we choose the following ansatz:

½1 = ½0 +
NX

i=2

½i: (3)

The ¯eld equations can be obtained as the following simple form:

Ä½¹ = ¨
2

N ¡ 1¤e
Ã1 ; ÄÁ = § b

2
¤eÃ1 (4)

1E-mail:maki@jwcpe.ac.jp
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where ¹ = 0;2; ¢ ¢ ¢; N and the dot denotes the derivative with respect to z. Hereafter the upper sign
corresponds to the case(A) in equations and the lower sign is the case(B).

De¯ning a variable Ã1(z) as

Ã1 := ½0 +
NX

i=2

½i + 4bÁ=(N ¡ 1); (5)

we obtain the equation of motion for the variable Ã1 as

ÄÃ1 = §
2(b2 ¡N )
N ¡ 1 ¤eÃ1 ; (6)

where i; j;k = 2; 3; ¢ ¢ ¢; N .
Also we obtain the Hamiltonian constraint

1

2

X

º 6=¹

X

¹

_½¹ _½º = ¡
8

N ¡ 1
_Á2 ¨ 2¤eÃ1 : (7)

(6) is the Liouville equation for Ã1 when b 6= 2 and can be analytically integrable:

eÃ1 =

µ
2c1(N ¡ 1)
j §(b2 ¡N )¤ j

¶Á³
e
p
c1=2(z¡z01) ¡ "e¡

p
c1=2(z¡z01)

´2
; (8)

where c1 and z01 are integration constants and the symbol " denotes the sign of §(b2 ¡N)¤, i.e. when
§(b2 ¡N)¤ > 0, " = +1 and then ¡1 < c1 < 1, while §(b2 ¡ N)¤ < 0 corresponds to " = ¡1 and
0 < c1 <1.
Substituting this solution into the r:h:s of Eq.(4), one can obtain the general solutions:

½1 = § 2N

(b2 ¡N ) ln
³
e
p
c1=2(z¡z01) ¡ "e¡

p
c1=2(z¡z01)

´
+ d1z + d01; (9)

½¹ = § 2

(b2 ¡N ) ln
³
e
p
c1=2(z¡z01) ¡ "e¡

p
c1=2(z¡z01)

´
+ d¹z + d0¹; (10)

Á = § b(N ¡ 1)
2(b2 ¡N ) ln

³
e
p
c1=2(z¡z01) ¡ "e¡

p
c1=2(z¡z01)

´
+ dÁz + d0Á; (11)

where d¹, d0¹ (¹ = 0; 2; 3; ¢ ¢ ¢; N), dÁ and d0Á are the integration constants which satisfy

d1 =
X

¹

d¹ = ¡
4b

N ¡ 1dÁ; (12)

d01 =
X

¹

d0¹ = ln
2c1(N ¡ 1)
j (b2 ¡N)¤ j : (13)

The Hamiltonian constraint (7) gives the relation between the constants of integration:

c1(N ¡ 1)
2(N ¡ b2) =

4(b2 ¡N + 1)

(N ¡ 1)2 d2Á ¡
1

4

X

¹

d2¹: (14)

Some Special Solutions
The case of upper sign of (2)-(7) corresponds to the universe described by a space-like co-ordinate(case(A)).
The other one describes the time development of the universe(case(B)). We demonstrate some special
solutions. In Figure 1 we show the case(A) when N = 4, b = 1, d0¹ = 0, d¹ = 1=4, z01 = 0. In Figure 2
the case(B) is illustrated which N = 4, b = 1, d0¹ = 0, d¹ = 1=4, z01 = 0. The horizontal axis corresponds
to z and the variables are rescaled.in these ¯gures.

2



Figure 1: case(A) The solid line is dilaton Á,
the doted line is g00 = e½0 and the dashed
line is g11 = e½1 .

Figure 2: case(A) The solid line is dilaton Á, the
doted line is g00 = e½0 and the dashed line is g11 =
e½1.

3 Charged Dilatonic Universe

Next we consider the case of Einstein-Maxwell-Dilaton system given by the action

S =

Z
dxN+1

p¡g
½
R ¡ 4

N ¡ 1 (@Á)
2 ¡ e¡4aÁ=(N¡1)F2

¾
; (15)

where F is the strength of Maxwell ¯eld, and a = 1 corresponds to the low energy string action in Einstein
frame.

De¯ne a set of the variables Ã¹ where ¹ = 0;2; :::N as

Ã¹ = ½¹ +
4a

N ¡ 1Á: (16)

For the case(A) the ¯eld equations are described by Ã's as

ÄÃ¹ = 4
X

®

´¹®q®q¹e
Ã¹ +

4(a2 ¡ 1)
N ¡ 1

X

®;¯

´®¯q®q¯e
Ã® ; (17)

ÄÁ = a
X

¹;º

´¹ºq¹qºe
Ã¹ ; (18)

where ´¹º = diag(¡1;+1;+1; :::;+1) and q¹ = (qe; qmj) are the constants of integration with respect to
Maxwell ¯eld:

F1¹ = _A¹ = q¹e
Ã¹ : (19)

The Hamiltonian constraint is

1

2

X

º 6=¹

X

¹

_½¹ _½º =
¡8

N ¡ 1
_Á2 ¡ 4

X

®;̄

´®¯q®q¯e
Ã® (20)
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From (¹; º)-components(¹ 6= º) of the Einstein equations

q¹qº = 0; (q¹ 6= qº): (21)

For the case(B) we obtained the equation of motion by exchanging ´¹º to ±¹º in (17)-(20) This result
means that only one of q¹ is not zero.

The electric solutions with vanishing cosmological constant
In this case, i.e. q¹ = (qe; 0; 0; ¢ ¢ ¢; 0) and ¤ = 0, the ¯eld equations are

ÄÃ0 = ¨4
µ
1 +

a2 ¡ 1
N ¡ 1

¶
q2ee

Ã0 ; ÄÃj = ¨4
µ
a2 ¡ 1
N ¡ 1

¶
q2ee

Ã0 ; (22)

Ä½0 = ¨4(1§ 1

N ¡ 1)q
2
ee
Ã0 Ä½j = §

4

N ¡ 1q
2
ee
Ã0 ; (23)

ÄÁ = ¡aq2eeÃ0 ; (24)

F10 = _A0 = qee
Ã0 : (25)

The Hamiltonian constraint is

1

2

X

º 6=¹

X

¹

_½¹ _½º =
¡8

N ¡ 1
_Á2 ¨ 4qeeÃ0 (26)

One can integrate these equations and obtain the `electric solutions':

½0 =
2(N ¡ 2)
N + a2 ¡ 2 ln cosh

r
c1
2
(z ¡ z01) + d0z + d00 ; (27)

½1 =
2(2N ¡ 3)
N + a2 ¡ 2 ln cosh

r
c1
2
(z ¡ z01) + d1z + d01 ; (28)

½i =
2

N + a2 ¡ 2 ln cosh
r
c1
2
(z ¡ z01) + diz + d0i ; (29)

Á =
¡a(N ¡ 1)
N + a2 ¡ 2 ln cosh

r
c1
2
(z ¡ z01) + dÁ + d0Á ; (30)

F10 = :
(c=4qe)(N ¡ 1)
N + a2 ¡ 2

1

cosh2
p

c1
2 (z ¡ z01)

: (31)

The con¯gurations of the solution are researching now and will be studied in a separate publication.

4 Summary and Outlook

We have investigated the universe of the dilaton gravity in arbitrary dimensions. The metric given in
this paper describes two type solutions, i.e. the static dilatonic universe depending only on a space-like
co-ordinate and the universe which behaves by a time-like co-ordinate. A class of the solutions have been
found for ¯nite cosmological constant and Maxwell ¯eld. We have shown some special con¯gurations of
the solutions.
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Abstract
We present thick de Sitter brane solutions which are supported by two interacting
phantom scalar fields in five-, six- and seven- dimensional spacetime. It is shown that
for all cases regular solutions with anti-de Sitter asymptotic (5D problem) and a flat
asymptotic far from the brane (6D and 7D cases) exist. We also discuss the stability
of our solutions.

1 Introduction

In recent years, there is growing interest in higher-dimensional cosmological models inspired by the
recent progresses in string theory. In these models, branes which are submanifolds embedded into the
higher-dimensional spacetime play an important (even essential) role, for instance, in a description of
the confinement of the nongravitational interactions and/or stabilization of the extra dimensions. Much
effort to reveal cosmology on the brane has been given in the context of five-dimensional spacetime (see
the review [1]). But of course there is no particular reason to restrict the number of dimensions to be
five. In recent years, the focus has been turned to higher-dimensional braneworld models.

It is still unclear how the gravity and cosmology on the brane embedded in the higher-dimensional
spacetime behave. In higher dimensions, there would be many kinds of classes of possible braneworld
models. Here we focus on the generic feature of higher-dimensional braneworld models and from this we
deduce the subject to be revealed in this paper.

It is commonly assumed that a brane is an infinitely thin object. In five dimensions, this is a good
approximation as long as one is interested in the scales larger than the brane thickness. Then, the
cosmology on the brane in five dimensions, i.e., dynamics of the brane in one bulk spacetime, is uniquely
determined by the Israel junction conditions once the matter on the brane is specified. But, in higher
dimensions the situation is quite different. It happens because self-gravity of an infinitesimally thin
three-brane in a higher-dimensional spacetime develops a severe singularity and one cannot put any
kind of matter on the brane if the number of codimensions is larger than 2. Also in the case of a
codimension-two brane, one cannot put any kind of matter on the brane other than the pure tension.
The cosmology on such a brane must be investigated under some prescription of the singular structure of
the brane. The well-motivated prescription is to regularize the brane by taking its microscopic structure
into consideration. However, in the case of six-dimensional models, the cosmology on the brane strongly
depends on the way of regularization. This implies that there is no unique brane cosmology in the case
of higher codimensions.

Thus, in this paper we take a different point of view. We shall take the brane thickness into account
from the beginning and look for the regular braneworld solutions with finite thickness, called thick brane
solutions, in a field theory model. The thickness of the brane may be very close to the length scale of the
quantum gravitational theory, e.g., the string length scale. As we mentioned, the brane thickness must
be more essential in higher-dimensional spacetimes, than in the five-dimensional one. Thus, we look for
the thick brane solutions in higher dimensions as well as in five dimensions. Bearing the cosmological

1Email:vdzhunus”AT”krsu.edu.kg
2Email: vfolomeev”AT”mail.ru
3Email: minamituzi”AT”sogang.ac.kr
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applications, we focus on the thick brane solutions which have de Sitter geometry in the ordinary four-
dimensions.

The thick brane solutions and their properties in five dimensions have been explored in the literatures
(see Ref. 3 and 4 in [2]). In this paper, we consider thick brane solutions supported by two interacting
scalar fields φ and χ, whose potential is given by

V (φ, χ) =
λ1

4
(φ2 −m2

1)
2 +

λ2

4
(χ2 −m2

2)
2 + λ3φ

2χ2 + Λ. (1)

A stronger interaction between two scalar fields develops the local metastable vacua, which may be able
to support our brane universe, other than the global one. Several works on thick brane solutions in such a
setup have already been performed. Minkowski brane solutions were derived in [3]. Bearing cosmological
applications in mind, our goal in this work is to find thick de Sitter brane solutions.

In Ref. [4] there are some arguments in favor of the fact that the scalar fields, used in [3], are a quan-
tum nonperturbative condensate of a SU(3) gauge field. Briefly these arguments consist of the following:
components of the SU(3) gauge field can be divided in some natural way into two parts. The first group
contains those components which belong to a subgroup SU(2) ∈ SU(3). The remaining components
belong to a factor space SU(3)/SU(2). Following Heisenberg’s idea [5] about the nonperturbative quan-
tization of a nonlinear spinor field the nonperturbative quantization for the SU(3) gauge field is being
carried out as follows. It is supposed that two-point Green functions can be expressed via the scalar
fields. The first field φ describes two-point Green functions for SU(2) components of a gauge potential,
and the second scalar field χ describes two-point Green functions for SU(3)/SU(2) components of the
gauge potential. It is supposed further that four-point Green functions can be obtained as some bilinear
combination of the two-point Green functions. Consequently, the Lagrangian of the SU(3) gauge field
takes the form (2). It allows us to regard such sort of thick brane solutions as some defect in a spacetime
filled by a condensate of the gauge field living in the bulk.

2 Basic theory

Our interest is in the D = (4 + n)-dimensional Einstein-scalar theory whose action is given by

S =
∫

dDx
√−g

{
−Mn+2

n+4

2
R + ε

[
1
2
∂Aφ∂Aφ +

1
2
∂Aχ∂Aχ− V (φ, χ)

]}
, (2)

where Mn+4 is the gravitational energy scale in the spacetime with n extra dimensions. The potential
energy V is defined by Eq. (1). ε = +1(−1) corresponds to the case of normal (phantom) scalar fields
and Λ is an arbitrary constant. As we mentioned in the introduction, in Ref. [4], it was argued that
such a theory composed of two interacting scalar fields coupled to the remaining U(1) degrees of freedom
appears as a result of the gauge condensation in the original SU(3) gauge theory. In this case, the scalar
fields φ and χ correspond to the vacuum expectation values of the SU(2) and SU(3)/(SU(2) × U(1))
gauge sectors, respectively.

We assume that the generalized D-dimensional metric has the static form

ds2 = a2(r)γαβ(xν)dxαdxβ − λ(r)(dr2 + r2dΩ2
n−1) , (3)

where dΩ2
n−1 is the solid angle for the (n− 1) sphere. γαβ is the metric of the four-dimensional de Sitter

space whose scalar curvature is given by Rµν [γ] = 3H2γµν . The detailed forms of Einstein and scalar
field equations for our ansatz can be found in Ref. [2].

The extremum of the bulk potential are located at the following four points
(
φ = ±φ0 := ±

√
2λ3λ2m2

2−λ1λ2m2
1

4λ2
3−λ1λ2

, χ = ±χ0 := ±
√

2λ3λ1m2
1−λ1λ2m2

2
4λ2

3−λ1λ2

)

(φ := 0, χ := 0)
(φ := ±m1, χ := 0)
(φ := 0, χ := ±m2) . (4)

2
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Figure 1: The scalar field configurations φ and
χ are shown as functions of the dimensionless
r.
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Figure 2: The metric function λ(r) is shown as
functions of dimensionless r.

We call these points 0, 1, 2 and 3, respectively, with correspoding potentials Vi (i = 0, 1, 2, 3). Clearly,
max(V2, V3) ≤ V1. The potential (1) has two global minimums 3 and two local minima 2 at values of
the parameters λ1, λ2 used in this paper. The conditions for existence of local minima are λ1 > 0,m2

1 >
λ2m

2
2/(2λ3), and for global minima λ2 > 0,m2

2 > λ1m
2
1/(2λ3). From comparison of the values of the

potential in global and local minima we have (taking into account that Vloc = 0 at V0 = λ2m
4
2/4, see

below for the six- and seven-dimensional cases) Vgl < Vloc =⇒ Vgl < 0, i.e. λ2m
4
2 > λ1m

4
1. Besides two

local and two global minima, four unstable saddle points (0) and the local maximum (1) exist. In the
next sections, we look for thick brane solutions starting and finishing in one of local minima 2 of the
potential (1).

For our purpose, in the following sections the bulk coordinate and scalar field variables are rescaled to
made them dimensionless as r → H−1r, φ → M

−(n+2)/2
n+4 φ and χ → M

−(n+2)/2
n+4 χ. Correspondingly, the

potential and its parameters are also rescaled as V → H2Mn+2
n+4 V , λi → λiH

2/Mn+2
n+4 and m2

j → Mn+2
n+4 m2

j ,
where i = 1, 2, 3 and j = 1, 2.

Then, the boundary conditions at r → 0 are given by a′(0) = 0, φ′ = 0 and χ′ = 0. And from the
constraint relation of Einstein equations, we find the boundary value of scale factor a(0) =

√
6ε/V (0). At

the asymptotic infinity, the scalar fields approach the local minimum where φ′(∞) = χ′(∞) = 0. Also at
the asymptotic infinity, the bulk geometry is assumed to be anti-de Sitter (AdS) for the five-dimensional
model and Minkowki for the six- and seven-dimensional models.

3 Solutions

We present the numerical examples of thick de Sitter brane solutions for the case of phantom scalar field
ε = −1. We solved the coupled Einstein-scalar system by the iteration method. The detailed descriptions
of the method can be found in Ref. [2, 3].

We set the parameters as: λ1 = 0.1, λ2 = 1.0, λ3 = 1.0. For the five-dimensional case we have chosen
φ(0) = 1.0, χ(0) =

√
0.6 and Λ = −3.6. For these parameters we solved the nonlinear eigenvalue problem

for m1 and m2. After 11 iterations the following eigenvalues m1 ≈ 1.989512 and m2 ≈ 1.964764 were
found. In Figs. 1-4 we showed our numerical solutions. The spacetime is an asymptotically anti-de Sitter
one: the asymptotic value of the potential (1) εV∞ = ε(λ2m

4
2/4 + Λ) < 0 plays the role of a negative

cosmological constant.
For the six-dimensional case we take the boundary condition φ(0) =

√
3 ≈ 1.73205 and χ(0) =

√
0.6 ≈

0.774597. We also choose the bulk cosmological constant as Λ = −λ2m
4
2/4, in order for our solutions

to be asymptotically flat in the bulk. After 10 iterations, we find the eigenvalues m1 ≈ 2.3590 and
m2 ≈ 3.0599. In Figs. 1-4 we showed our numerical solution for a given set of parameters.

For the case of the seven-dimensional case, we also choose the bulk cosmological constant as Λ =

3
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−λ2m
4
2/4. After 10 iterations, we find the eigenvalues m1 ≈ 2.24633 and m2 ≈ 3.11911. The obtained

solutions for this case are presented in Fig. 1-4.

4 Summary and Discussions

In this presentation, we have presented five-, six- and seven-dimensional thick de Sitter brane solutions
supported by two interacting (phantom) scalar fields. The special form of the potential (1) allows us to
find regular solutions with finite energy density. It was shown that asymptotically there exist anti-de
Sitter spacetime for the five-dimensional case and flat spacetime for the six- and seven-dimensional cases.

Also we have confirmed that our solutions in five-dimensional spacetime are stable. It is also quite
reasonable to expect that our thick brane solutions in higher dimensions are also stable since the spacetime
and vacuum structures are essentially the same as in the case of five spacetime dimensions. For more
details, see [2].
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Informational interpretation on volume operator and physical
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Abstract
From informational viewpoint on volume operator in loop quantum gravity, following
conjecture is suggested: a logic gate must occupy finite volume which has the mini-
mum value, and number of logic gates contained within a region of space are bounded
by the volume of the region.

1 Introduction

Since information is registered and processed by physical system, it is necessarily restricted by physical
law. Several physical bounds on information are well-known. The most famous example is causality:
information cannot travel faster than the speed of light. As for thermodynamics, it must consume free
energy kT ln 2 to erase a bit [1, 2]. In addition, entropy (or information) that can be contained within
a region of a space are bounded by the area of the region as S ≤ A/4, so-called holographic bound (see
e.g. [3]). Margolus-Levitin theorem gives the bound on the maximum speed of dynamical evolution (i.e.
bound on information processing rates) [4]. This bound depends on the energy of the system. Using this,
Lloyd estimated the bound for the total number of elementary operations in the universe [5].

In this article, a new physical bound on information is conjectured: a logic gate must occupy finite
volume and this volume has the minimum value. Then, number of logic gates contained within a region
of a space are bounded by the volume of the region.

2 Informational viewpoint on loop quantum gravity

At the beginning, we review some facts about loop quantum gravity (for detail, see e.g. [6]). Loop quantum
gravity is the nonperturbative quantization of the general relativity as a diffeomorphism-invariant gauge
theory. Its quantum states are gauge invariant and diffeo-invariant. The spin network states satisfy such
invariances, and they span the state space of loop quantum gravity as the ortho-normal bases. A spin
network state is labeled by a spin network. A spin network is a graph with edges labeled by half-integer
spin and can be interpreted as a linear combination of some loops. As a functional of connection field, a
spin network state takes value of the trace of the holonomy along its spin network.

In loop quantum gravity, area and volume are defined as operators. These operators geometrically
operate on spin network states, and spin network states are eigen states of area and volume operators.
Area operator for a surface is constructed from area integral with regularization. Its discrete eigenvalue is
the form of A = 8πγl2Planck

∑N
n=1

√
jn(jn + 1). Where n = 1 . . . N labels the edges (of the spin network)

crossing the surface, and each edge has spin jn. The area of the surface is sum over the area of the
edges crossing the surface. Volume operator for a region is also constructed from volume integral with
regularization. The volume of the region is sum over the volume of vertices within the region. It has also
discrete eigenvalues: 3-valent vertex has 0 volume, and 4(or more)-valent vertex has finite volume.

Now, let us see the loop quantum gravity from informational viewpoint. Consider a spin network
state with spin 1/2 edge. How is this state different from the state without such edge as a functional of
connection? The difference is (trace of) holonomy along that edge. By existence of the edge, this state
can probe the connection there like as spin 1/2 degree of freedom. It seems there is 1 bit information
along spin 1/2 edge.

1E-mail:morisawa@keiho-u.ac.jp
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Then, consider the situation that the spin 1/2 edge across some surface. There is 1 bit information
along the spin 1/2 edge and this edge produces area on the surface. It seems that a channel where 1
bit information can pass must have the area

√
3

4 l
2
0 where l20 = 8πγl2Planck. This is a kind of holographic

bound.
Finally, let us reinterpret the volume operator from informational viewpoint. The spin 1/2 edges can

be regarded as 1 bit channels and an invertible logic gate such as controlled-NOT has at least 2 inputs
and 2 outputs. Then, can 4-valent vertices be regarded as invertible logic gates? 4-valent vertices produce
finite volumes under operation of the volume operator. Thus, the logic gate must occupy finite volume

at least
√√

3
8 l

3
0.

3 Summary and discussion

A new kind of physical bound on information is conjectured. A logic gate must occupy finite volume and
this volume has the minimum value. Then, number of logic gates contained within a region of a space
are bounded by the volume of the region.

Roughly estimation shows that computation with only 10183 logic gates can be executed in the uni-
verse. Of course this bound is not so severe on present CPUs. They have about 109 gates in about
10−6m3 volume. It takes about 600 years to become effective even if “Moore’ s law” is correct.

It should be mentioned that the dynamical feature is not treated here. The spin foam model might
show the bound for executable operations in a finite spacetime region.
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Consistency relations between the source terms in the
second-order Einstein equations for cosmological perturbations
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Abstract
In addition to the second-order Einstein equations on four-dimensional homogeneous
isotropic background universe filled with the single perfect fluid, we also derived the
second-order perturbations of the continuity equation and the Euler equation for a
perfect fluid in gauge-invariant manner without ignoring any mode of perturbations.
The consistency of all equations of the second-order Einstein equation and the equa-
tions of motion for matter fields is confirmed. Due to this consistency check, we may
say that the set of all equations of the second-order are self-consistent and they are
correct in this sense.

1 Introduction

The general relativistic second-order cosmological perturbation theory is one of topical subjects in the
recent cosmology. By the recent observation[1], the first order approximation of the fluctuations of our
universe from a homogeneous isotropic one was revealed. The observational results also suggest that the
fluctuations of our universe are adiabatic and Gaussian at least in the first order approximation. We are
now on the stage to discuss the deviation from this first order approximation from the observational[2]
and the theoretical side[3] through the non-Gaussianity, the non-adiabaticity, and so on. To carry out
this, some analyses beyond linear order are required. The second-order cosmological perturbation theory
is one of such perturbation theories beyond linear order.

In this article, we confirm the consistency of all equations of the second-order Einstein equation and
the equations of motion for matter fields, which are derived in Refs. [4, 5]. Since the Einstein equations
include the equation of motion for matter fields, the second-order perturbations of the equations of motion
for matter fields are not independent equations of the second-order perturbation of the Einstein equations.
Through this fact, we can check whether the derived equations of the second order are self-consistent or
not. This confirmation implies that the all derived equations of the second order are self-consistent and
these equations are correct in this sense.

2 Metric perturbations

The background spacetime for the cosmological perturbations is a homogeneous isotropic background
spacetime. The background metric is given by

gab = a2
{−(dη)a(dη)b + γij(dxi)a(dxj)b

}
, (1)

where γab := γij(dxi)a(dxj)b is the metric on the maximally symmetric three-space and the indices
i, j, k, ... for the spatial components run from 1 to 3. On this background spacetime, we consider the
perturbative expansion of the metric as ḡab = gab + λXhab + λ2

2 Xlab + O(λ3), where λ is the infinitesimal
parameter for perturbation and hab and lab are the first- and the second-order metric perturbations,
respectively. As shown in Ref. [6], the metric perturbations hab and lab are decomposed as

hab =: Hab + £Xgab, lab =: Lab + 2£Xhab +
(
£Y −£2

X

)
gab, (2)
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where Hab and Lab are the gauge-invariant parts of hab and lab, respectively. The components of Hab

and Lab can be chosen so that

Hab = a2

{
−2

(1)

Φ (dη)a(dη)b + 2
(1)
ν i (dη)(a(dxi)b) +

(
−2

(1)

Ψ γij+
(1)
χ ij

)
(dxi)a(dxj)b

}
, (3)

Lab = a2

{
−2

(2)

Φ (dη)a(dη)b + 2
(2)
ν i (dη)(a(dxi)b) +

(
−2

(2)

Ψ γij+
(2)
χ ij

)
(dxi)a(dxj)b

}
. (4)

In Eqs. (3) and (4), the vector-mode
(p)
ν i and the tensor-mode

(p)
χij (p = 1, 2) satisfy the properties

Di (p)
ν i= γijDp

(p)
ν j= 0,

(p)

χi
i= 0, Di

(p)
χ ij= 0, (5)

where γkj is the inverse of the metric γij .

3 Background, First-, and Second-order Einstein equations

The Einstein equations of the background, the first order, and the second order on the above four-
dimensional homogeneous isotropic universe are summarized as follows.

The Einstein equations for this background spacetime filled with a perfect fluid are given by

(0)
(p)E(1):= H2 + K − 8πG

3
a2ε = 0,

(0)
(p)E(2):= 2∂ηH+H2 + K + 8πGa2p = 0, (6)

where H = ∂ηa/a, K is the curvature constant of the maximally symmetric three-space, ε and p are
energy density and pressure, respectively.

On the other hand, the second-order perturbations of the Einstein equation are summarized as

(2)
(p)E(1) := (−3H∂η + ∆ + 3K)

(2)

Ψ −3H2
(2)

Φ −4πGa2
(2)

E −Γ0 = 0, (7)
(2)

(p)E(2) :=
(

∂2
η + 2H∂η −K − 1

3
∆

)
(2)

Ψ +
(
H∂η + 2∂ηH+H2 +

1
3
∆

)
(2)

Φ

−4πGa2
(2)

P −1
6
Γ k

k = 0, (8)

(2)
(p)E(3) :=

(2)

Ψ −
(2)

Φ −3
2

(∆ + 3K)−1

(
∆−1DiDjΓij − 1

3
Γ k

k

)
= 0, (9)

(2)
(p)E(4)i := ∂ηDi

(2)

Ψ +HDi

(2)

Φ −1
2
Di∆−1DkΓk + 4πGa2(ε + p)Di

(2)
v = 0, (10)

(2)
(p)E(5)i := (∆ + 2K)

(2)
νi +2

(
Γi −Di∆−1DkΓk

)− 16πGa2(ε + p)
(2)

Vi= 0, (11)
(2)

(p)E(6)i := ∂η

(
a2 (2)

νi

)
− 2a2 (∆ + 2K)−1 {

Di∆−1DkDlΓkl −DkΓik

}
= 0, (12)

(2)
(p)E(7)ij :=

(
∂2

η + 2H∂η + 2K −∆
) (2)

χij −2Γij +
2
3
γijΓ k

k

+3
(

DiDj − 1
3
γij∆

)
(∆ + 3K)−1

(
∆−1DkDlΓkl − 1

3
Γ k

k

)

−4
(
D(i (∆ + 2K)−1

Dj)∆−1DlDkΓlk −D(i (∆ + 2K)−1
DkΓj)k

)
= 0, (13)

where we denote Γ j
i = γjkΓik. In these equations,

(2)

E and
(2)

P are the second-order perturbations of the

energy density and the pressure, respectively. Further, Di

(2)
v and

(2)

Vi are the scalar- and the vector-parts
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of the spatial components of the covariant fluid four-velocity, in these equations. Γ0, Γi, and Γij are the
collections of the quadratic terms of the linear-order perturbations in the second-order Einstein equations
and these can be regarded as the source terms in the second-order Einstein equations. The explicit form
of these source terms are given in Refs. [4, 7]. First-order perturbations of the Einstein equations are

given by the replacements
(2)

Φ→
(1)

Φ ,
(2)

Ψ→
(1)

Ψ,
(2)
νi→

(1)
νi ,

(2)
χij→

(1)
χij ,

(2)

E →
(1)

E ,
(2)

P→
(1)

P , Di

(2)
v → Di

(1)
v ,

(2)

Vi→
(1)

Vi ,
and Γ0 = Γi = Γij = 0.

4 Consistency with the equations of motion for matter field

Now, we consider the second-order perturbation of the energy continuity equation and the Euler equations.
In terms of gauge-invariant variables, the second-order perturbations of the energy continuity equation
and the Euler equation for a single perfect fluid are given by[5]

a(2)C(p)
0 := ∂η

(2)

E +3H
(

(2)

E +
(2)

P
)

+ (ε + p)
(

∆
(2)
v −3∂η

(2)

Ψ
)
− Ξ0 = 0, (14)

(2)C(p)
i := (ε + p)

{
(∂η +H)

(
Di

(2)
v +

(2)

Vi

)
+ Di

(2)

Φ

}
+ Di

(2)

P +∂ηp

(
Di

(2)
v +

(2)

Vi

)
− Ξ(p)

i = 0,(15)

where Ξ0 and Ξ(p)
i are the collection of the quadratic terms of the linear order perturbations and its

explicit forms are given in Ref. [5, 7].
To confirm the consistency of the background and the perturbations of the Einstein equation and the

energy continuity equation (14), we first substitute the second-order Einstein equations (6)–(8), and (10)
into Eq. (14). For simplicity, we first impose the first-order version of Eq. (9) on all equations. Then, we
obtain

4πGa3(2)C(p)
0 = −∂η

(2)
(p)E(1) −H

(2)
(p)E(1) −3H

(2)
(p)E(2) +Di

(2)
(p)E(4)i +

3
2

(
3

(0)
(p)E(1) −

(0)
(p)E(2)

)
∂η

(2)

Ψ

−∂ηΓ0 −HΓ0 − 1
2
HΓ k

k +
1
2
DkΓk − 4πGa2Ξ0. (16)

This equation shows that the second-order perturbation (14) of the energy continuity equation is consis-
tent with the second-order and the background Einstein equations if the equation

4πGa2Ξ0 + (∂η +H) Γ0 +
1
2
HΓ k

k − 1
2
DkΓk = 0 (17)

is satisfied under the background, the first-order Einstein equations. Actually, through the background
Einstein equations (6) and the first-order version of the Einstein equations (7)–(13), we can easily see
that Eq. (17) is satisfied under the Einstein equations of the background and of the first order[7].

Next, we consider the second-order perturbations of the Euler equations. For simplicity, we first
impose the first-order version of Eq. (9) on all equations, again. Through the background Einstein
equations (6) and the Einstein equations of the second order (8)–(10), we can obtain

8πGa2(2)C(p)
i = −8πGa3

(0)

C
(p)
0

(
Di

(2)
v +

(2)

Vi

)
−Di

(2)

Φ

(
3

(0)
(p)E(1) −

(0)
(p)E(2)

)
− 2Di

(2)
(p)E(2)

−2
3
Di (∆ + 3K)

(2)
(p)E(3) +

1
2

(∂η + 2H)

(
+4

(2)
(p)E(4)i −

(2)
(p)E(5)i

)

+
1

2a2
(∆ + 2K)

(2)
(p)E(6)i −8πGa2Ξ(p)

j + (∂η + 2H) Γj −DlΓjl. (18)

This equation shows that the second-order perturbations of the Euler equations is consistent with the
Einstein equations of the background and the second order if the equation

(∂η + 2H) Γj −DlΓjl − 8πGa2Ξ(p)
j = 0 (19)
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is satisfied under the Einstein equations of the background and the first order. Actually, we can easily
confirm Eq. (19) due to the background Einstein equations and the first-order perturbations of the
Einstein equations[7], and implies that the second-order perturbation of the Euler equation is consistent
with the set of the background, the first-order, and the second-order Einstein equations.

The consistency of equations for perturbations shown here is just a well-known result, i.e., the Einstein
equation includes the equations of motion for matter field due to the Bianchi identity. However, the
above verification of the identities (17) and (19) implies that our derived second-order perturbations of
the Einstein equation, the equation of continuity, and the Euler equation are consistent. In this sense, we
may say that the derived second-order Einstein equations, especially, the derived formulae for the source
terms Γ0, Γi, Γij , Ξ0, and Ξi in Ref. [7] are correct.

5 Summary

In summary, we show the all components of the second-order perturbation of the Einstein equation
without ignoring any modes of perturbation in the case of a perfect fluid. The derivation is based on the
general framework of the second-order gauge-invariant perturbation theory developed in Refs. [8]. In this
formulation, any gauge fixing is not necessary and we can obtain any equation in the gauge-invariant form
which is equivalent to the complete gauge fixing. In other words, our formulation gives complete gauge
fixed equations without any gauge fixing. Therefore, equations which are obtained in gauge-invariant
manner cannot be reduced without physical restrictions any more. In this sense, these equations are
irreducible. This is one of the advantages of the gauge-invariant perturbation theory.

We have also checked the consistency of the set of equations of the second-order perturbation of the
Einstein equations and the evolution equation of the matter field in the cases of a perfect fluid. Therefore,
in the case of the single matter field, we may say that we have been ready to clarify the physical behaviors
of the second-order cosmological perturbations. The physical behavior of the second-order perturbations
in the universe filled with a single matter field will be instructive to clarify those of the second-order
perturbations in more realistic cosmological situations. We leave these issues as future works.
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Abstract
In this paper, we compare the waveforms from the post-Newtonian (PN) approach
with the numerical simulations of generic black-hole binaries which have mass ratio
q ∼ 0.8, arbitrarily oriented spins with magnitudes S1/m2

1 ∼ 0.6 and S2/m2
2 ∼ 0.4,

and orbit 9 times from an initial orbital separation of r ≈ 11M prior to merger. We
observe a reasonably good agreement between the PN and numerical waveforms, with
an overlap of over 98% for the first six cycles of the (` = 2, m = ±2) mode and over
90% for the (` = 2, m = 1) and (` = 3, m = 3) modes.

1 Introduction

In 2005, two complementary and independent methods were discovered that allowed numerical relativists
to completely solve the black-hole binary problem in full strong-field gravity [1, 2, 3]. On the other hand,
there are currently major experimental and theoretical efforts underway to measure these gravitational
wave signals. Therefore, one of the most important tasks of numerical relativity (NR) is to assist grav-
itational wave observatories in detecting gravitational waves and extracting the physical parameters of
the sources. Given the demanding resources required to generate these black-hole binary simulations,
it is necessary to develop various techniques in order to model arbitrary binary configuration based
on numerical simulations in combination with post-Newtonian (PN) and perturbative (e.g. black-hole
perturbation) calculations.

In this paper, we compare the NR and PN waveforms for the challenging problem of a generic black-
hole binary, i.e., a binary with unequal masses and unequal, non-aligned, and precessing spins. Compar-
isons of numerical simulations with post-Newtonian ones have several benefits aside from the theoretical
verification of PN. From a practical point of view, one can directly propose a phenomenological de-
scription and thus make predictions in regions of the parameter space still not explored by numerical
simulations. From the theoretical point of view, an important application is to have a calibration of the
post-Newtonian error in the last stages of the binary merger.

The paper is organized as follows. In Sec. II we present our method to derive the PN gravitational
waveforms from generic black-hole binaries, and in III we compare the NR and PN waveforms. Finally in
Sec. IV we summarize this paper and discuss remaining problems. The detailed numerical method and
PN calculation presented here have been given in [4].

2 Gravitational waveforms in the PN approach

In order to calculate PN gravitational waveforms, we need to calculate the orbital motion of binaries
in the post-Newtonian approach. Here we use the ADM-TT gauge, which is the closest to our quasi-
isotropic numerical initial data coordinates. In this paper, we use the PN equations of motion (EOM)
based on [5, 6, 7]. The Hamiltonian is given in [5], with the additional terms, i.e., the next-to-leading

1E-mail:hxnsma@rit.edu
2E-mail:manuela@astro.rit.edu
3E-mail:colsma@rit.edu
4E-mail:yrzsma@rit.edu
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order gravitational spin-orbit and spin-spin couplings provided in [6, 7], and the radiation-reaction force
given in [5]. The Hamiltonian which we used here is given by

H = HO,Newt + HO,1PN + HO,2PN + HO,3PN

+HSO,1.5PN + HSO,2.5PN + HSS,2PN + HS1S2,3PN , (1)

where the subscript O, SO and SS denote the pure orbital (non-spinning) part, spin-orbit coupling and
spin-spin coupling, respectively, and Newt, 1PN, 1.5PN, etc., refer to the perturbative order in the post-
Newtonian approach. From this Hamiltonian, the conservative part of the orbital and spin EOM is
derived using the standard techniques of the Hamiltonian formulation. For the dissipative part, we use
the non-spinning radiation reaction results up to 3.5PN (which contributes to the orbital EOM at 6PN
order), as well as the leading spin-orbit and spin-spin coupling to the radiation reaction [5].

The above PN evolution is used both to produce very low eccentricity orbital parameters at r ≈ 11M
from an initial orbital separation of 50M , and to evolve the orbit from r ≈ 11M . We use these same
parameters at r ≈ 11M to generate the initial data for our numerical simulations. The initial binary
configuration at r = 50M had the mass ratio q = m1/m2 = 0.8, ~S1/m2

1 = (−0.2,−0.14, 0.32), and
~S2/m2

2 = (−0.09, 0.48, 0.35).
We then construct a hybrid waveform from the orbital motion by using the following procedure. First

we use the 1PN accurate waveforms derived by Wagoner and Will [8] (WW waveforms) for a generic orbit.
By using these waveforms, we can introduce effects due to the black-hole spins, including the precession
of the orbital plane. On the other hand, Blanchet et al. [9] recently obtained the 3PN waveforms (B
waveforms) for non-spinning circular orbits. We combine these two waveforms to produce a hybrid
waveform. In order to combine the WW and B waveforms, we need to take into account differences in
the definitions of polarization states and the angular coordinates. The WW waveforms use the standard
definition of GW polarization states, which are the same as those derived from the Weyl scalar, but the
B waveforms use an alternate definition. The angular coordinates in the B waveforms are derived from
circular orbits in the equatorial (xy) plane. To directly compare the NR and PN waveforms, we must
add a time dependent inclination to the B waveforms because in the generic case the orbital planes are
inclined with respect to the xy plane.

We note that since there is no gauge ambiguity for combining the two waveforms, the combination of
the WW and B waveforms is unique. Also, it should be noted that we calculate the spin contribution to
the waveforms through its effect on the orbital motion directly in the WW waveforms and indirectly in
B waveforms through the inclination of the orbital plane.

For the NR simulations we calculate the Weyl scalar ψ4 and then convert the (`,m) modes of ψ4 into
(`,m) modes of h = h+ − ih×.

3 Comparison of the NR and PN waveforms

To compare PN and numerical waveforms, we need to determine the time translation δt between the
numerical time and the corresponding point on the PN trajectory. That is to say, the time it takes for
the signal to reach the extraction sphere (r = 100M in our numerical simulation). We determine this by
finding the time translation near δt = 100M that maximizes the agreement of the early time waveforms
in the (` = 2,m = ±2), (` = 2,m = ±1), and (` = 3,m = ±3) simultaneously. We find δt ∼ 112, in
good agreement with the expectation for our observer at r = 100M . Since our PN waveforms are given
uniquely by a binary configuration, i.e., an actual location of the PN particle, we do not have any time
shift or phase modification other than this retardation of the signal. It is noted that other methods which
are not based on the particle locations, have freedom in choosing a phase factor.

In the left panel of Fig. 1, we show the real part of the (` = 2,m = 2) mode of the strain h with
this time translation. (The other modes are shown in [4].) We note that the reasonable agreement of the
numerical and PN waveforms for 700M .

From the analysis of the amplitudes of each mode, we see that the precession and eccentricity of the
orbit impart signatures on the modes of the waveform at the orbital frequency. However, the long-time
oscillations in the amplitudes, here apparent only in the (` = 2, m = ±1) modes, seem to be due purely to
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Figure 1: Left: The real part of the (` = 2,m = 2) mode of h from the numerical and 3.5PN simulations.
Here 3.5PN predicts an early merger and has a higher frequency than the numerical waveform. Right:
The amplitude of the (` = 2,m = 1) mode of h from the numerical and 3.5PN simulations. The secular
oscillation in the numerical amplitude occurs at roughly the precessional frequency. The timescale is of
order 1000M . Here the shorter-timescale oscillations correspond roughly to the orbital period.

precession, and occur at the precessional frequency. In the right panel of Fig. 1, we show the amplitudes
of the (` = 2,m = 1) mode of h.

Next, in order to quantitatively compare the modes of the PN waveforms with the numerical waveforms
we define the overlap, or matching criterion, for the real and imaginary parts of each mode as

M<
`m =

< RNum
`m , RPN

`m >√
< RNum

`m , RNum
`m >< RPN

`m , RPN
`m >

, M=
`m =

< INum
`m , IPN

`m >√
< INum

`m , INum
`m >< IPN

`m , IPN
`m >

, (2)

where R`m and I`m are defined by the real and imaginary parts of the waveform mode h`m, respectively,
and the inner product is calculated by < f, g >=

∫ t2
t1

f(t)g(t)dt. Hence, M<
`m = M=

`m = 1 indicates
that the given PN and numerical mode agree. The results of these matching studies are summarized in
Table 1.

Table 1: The match of the real and imaginary parts of the modes of h of the G3.5 configuration for the
3.5 PN waveforms and the numerical waveforms with the time translation δt = 112.5.

Integration Time 600 800 1000
M<

22 0.986 0.964 0.895
M=

22 0.987 0.962 0.900
M<

2−2 0.986 0.964 0.895
M=

2−2 0.987 0.962 0.901
M<

21 0.904 0.912 0.843
M=

21 0.916 0.901 0.820
M<

2−1 0.920 0.908 0.833
M=

2−1 0.917 0.903 0.816
M<

33 0.938 0.891 0.738
M=

33 0.919 0.868 0.721
M<

3−3 0.931 0.880 0.733
M=

3−3 0.906 0.857 0.721
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We also determine an alternate time translation, one wavelength in the (` = 2,m = 2) mode, that
increases the matching of the (` = 2,m = 2) mode over longer integration periods. On the other hand,
this new time translation, δt = 233, causes the (` = 3) modes to be out of phase, leading to negative
overlaps. Thus by looking at the (` = 2) and (` = 3) modes simultaneously, we can reject this false
match.

4 Conclusion and discussion

We analyzed the first long-term generic waveform produced by the merger of unequal mass, unequal spins,
precessing black holes. It is found that a good initial agreement of waveforms for the first six cycles,
with overlaps of over 98% for the (` = 2,m = ±2) modes, over 90% for the (` = 2,m = ±1) modes, and
over 90% for the (` = 3, m = ±3) modes. These agreement degrades as we approach the more dynamical
region of the late merger and plunge.

There are some remaining problems. The PN gravitational waveforms used here do not include direct
spin effects. We considered the spin contribution to the waveform only through its effect on the orbital
motion. Recently, the direct spin effects have been discussed in [10]. And also in the PN approach, the
waveforms are derived from binaries whose each body is considered as a point particle. The finite size
effects of the bodies is also important in the late-inspiral region. Furthermore, we will need higher-order
post-Newtonian calculations of both spin-orbit and spin-spin terms, especially for the phase evolution of
gravitational waves.

We also have a important issue. In order to detect the gravitational waves from binaries, it is necessary
to study the data analysis. (For example, the Numerical INJection Analysis (NINJA) project [11].)
Here, we must treat a very large parameter space for intrinsic parameters of black-hole binaries, The
development of effective GW templates for the whole history of binaries, i.e., the inspiral, merger and
ringdown should be done.
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Damping of the baryon acoustic oscillations in the matter power
spectrum as a probe of the growth factor1
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Abstract
We investigate damping of the baryon acoustic oscillations (BAO) in the matter power

spectrum due to quasi-nonlinear clustering of density perturbations. On the basis of

third order perturbation theory, we construct a fitting formula of the damping in

an analytic way. This demonstrates that the damping is closely related with the

growth factor and the amplitude of the matter power spectrum. Then, we investigate

the feasibility of constraining the growth factor through a measurement of the BAO

damping. An extension of our formula based on the Lagrangian perturbation theory

is also discussed.

1 Introduction

The Baryon Acoustic Oscillations (BAO) imprinted in galaxy clustering has recently attracted remarkable
attention, as a powerful probe for exploring the nature of mysterious dark energy component commonly
believed to be responsible for the accelerated expansion of the universe [2]. The usefulness of the BAO to
constrain the dark energy has been demonstrated, and a lot of the BAO survey projects are in progress
or planned.

Even though the BAO surveys will precisely measure the galaxy power spectrum, but we also need
precise theoretical templates, in order to obtain a useful cosmological constraint from observational data.
In practice, the observed galaxy power spectrum is contaminated by nonlinear evolution of the density
perturbations, redshift-space distortions and galaxy clustering bias. These uncertainties might yield
some systematic effects on the BAO signature. Therefore the comparison of theoretical templates with
observation is complicated.

We examine one of the above uncertainties about the nonlinear correction due to the gravitational
clustering. This effect cause shift of peaks (troughs) and damping of the amplitude of the BAO signature.
In this work, we focus on the BAO damping, and investigate the nonlinear correction in an analytic way.
As a result, we construct a fitting formula of the BAO damping in weakly nonlinear regime. We also
discuss the feasibility of constraining the growth factor of density fluctuations using a measurement of
the BAO damping.

2 Damping of the baryon acoustic oscillations

In this section, we examine the BAO damping due to the nonlinear gravitational clustering with employing
the third order perturbation theory. The BAO signature in the matter power spectrum can be extracted
as follows:

B(k, z) ≡ P (k, z)

P̃ (k, z)
− 1, (1)

where P (k, z) is the matter power spectrum including the BAO, but P̃ (k, z) is the matter power spectrum
without the BAO, which is calculated using the no-wiggle transfer function in [3]. Hereafter, the quantity
with the ’tilde’ implies the quantity calculated using the no-wiggle transfer function.

1This work is based on a collaboration with Kazuhiro Yamamoto and Takahiro Nishimichi, which is published in Ref.[1].
2E-mail:hide@theo.phys.sci.hiroshima-u.ac.jp
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2.1 Analytic approach

Within the standard perturbation theory (SPT) up to the third order of density perturbation, the second
order power spectrum is expressed by

PSPT(k, z) = D2
1(z)Plin(k) + D4

1(z)P2(k), (2)

with

P2(k) = P22(k) + 2P13(k), (3)

where D1(z) is the growth factor of the density perturbation, Plin(k) is the linear power spectrum, and
P22(k) and 2P13(k), which describe mode-couplings of density perturbations, are explicitly given by

P22(k) =
k3

392π2

∫

∞

0

drPlin(kr)

∫ 1

−1

dxPlin

[

k(1 + r2 − 2rx)1/2
] (3r + 7x − 10rx2)2

(1 + r2 − 2rx)2
, (4)

2P13(k) =
k3

1008π2
Plin(k)

∫

∞

0

drPlin(kr)

[

12

r2
− 158 + 100r2 − 42r4

+
3

r3
(r2 − 1)3(7r2 + 2) ln

∣

∣

∣

∣

1 + r

1 − r

∣

∣

∣

∣

]

. (5)

From Eq.(1), we have

BSPT(k, z) =
PSPT(k, z)

P̃SPT(k, z)
− 1 =

Plin(k) + D2
1(z)P2(k)

P̃lin(k) + D2
1(z)P̃2(k)

− 1. (6)

One of the aim of this work is to understand the BAO damping in detail. To this end, we here adopt
the following approximations;

P22(k) ' P̃22(k), (7)

2P13(k) ' 2P̃13(k) [1 + Blin(k)] . (8)

Using these approximations and taking up to the second order of D1(z), Eq.(6) yields

BSPT(k, z) '
[

1 − D2
1(z)

P̃22(k)

P̃lin(k)

]

Blin(k), (9)

where Blin(k) ≡ Plin(k)/P̃lin(k) − 1. This expression indicates that the leading effect of the nonlinear
mode-coupling on the damping is described by the factor −D2

1(z)P̃22(k)/P̃lin(k), and that the sign of the
term clearly shows that this effect is a damping.

From a detailed analysis of P̃22(k)/P̃lin(k) as a function of k, we find that the following fitting formula
works well,

P̃22(k)

P̃lin(k)
= σ2

8

(

k

kn

)2
(

1 − γ

k

)

, (10)

where σ8 is the rms matter density fluctuations averaged over the sphere with the radius of 8h−1Mpc,
kn and γ are fitting parameters which depend on Ωmh2, Ωbh

2 and ns,

kn = −1.03(Ωmh2 + 0.077)(Ωbh
2 − 0.24)(ns + 0.92) hMpc−1, (11)

γ = −11.4(Ωmh2 − 0.050)(Ωbh
2 − 0.076)(ns − 0.34) hMpc−1. (12)

Though these dependence on the cosmological parameter might have to be investigated more carefully,
but the validity is guaranteed in the following narrow range: 0.13 <∼ Ωmh2 <∼ 0.15, 0.022 <∼ Ωbh

2 <∼ 0.024,
0.94 <∼ ns

<∼ 0.98.
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Figure 1: The square with the error bar is
the result of N -body simulation. The solid
curve is the fitting formula based on the SPT,
Eq.(9), while the dotted curve is the linear
theory. The dashed curve is the result of an
extended fitting formula, Eq.(15).

Figure 2: Constraint on σ8D1(z) and Ωmh2.
The solid and the dotted circle correspond to
∆A = 2000deg2 and ∆A = 4π, respectively.
Inner and our circle indicate 1σ and 2σ confi-
dence level, respectively.

2.2 Possible extension

The SPT formula is useful to analyse the BAO damping in an analytic way, however, it is not enough
for precise predictions that match with result of N -body simulations in the regime where the nonlinear
effect becomes significant. Recently, several authors have developed new formalism beyond the SPT.As an
alternative to the SPT, we here consider the work proposed by [4], which uses the technique of resumming
infinite series of higher order perturbations on the basis of the Lagrangian perturbation theory (LPT).
One of the advantage of this approach is the simplicity of the resulting expression of the nonlinear power
spectrum, which enable us to incorporate the result into our formula.

In the framework of the LPT[4], the matter power spectrum is given by

PLPT(k, z) = e−D1(z)2g(k)
[

D1(z)2Plin(k) + D1(z)4P2(k) + D1(z)4Plin(k)g(k)
]

, (13)

where

g(k) =
k2

6π2

∫

dqPlin(q). (14)

With an approximation g(k) ' g̃(k) in addition to Eq.(7) and Eq.(8), we can obtain the leading correction
of the BAO,

BLPT(k, z) '
[

1− D2
1(z)

1 + D2
1(z)g̃(k)

P̃22(k)

P̃lin(k)

]

Blin(k). (15)

Comparing Eq.(15) and Eq.(9), the difference is the contribution from D2
1(a)g̃(k) in the denominator in

front of P̃22(k)/P̃lin(k). Since g̃(k) is positive, this correction make the BAO damping weaker compared
with Eq.(9).

Figure 1 shows an example to show the agreement of our fitting formula with the result of N -body
simulation. As one can see from this figure, the fitting formula of BLPT (dashed curve) better reproduces
the result from N -body simulation (square with error bar) compared with the case of the SPT (solid
curve), especially for larger wavenumber even at lower redshift.
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3 Future feasibility of constraining the growth factor

As shown in the previous section, the BAO damping is closely related with the amplitude of the power
spectrum, which is determined by σ8D1(z). In this section, we discuss the feasibility of constraining
σ8D1(z) by measuring the BAO damping in the power spectrum in quasi-nonlinear regime. To this end,
the formula developed in the previous section is useful.

As mentioned in section 1, the redshift-space distortions and the clustering bias might be additionally
influential to the BAO damping[6]. However, we here assume an optimistic case that the damping is
determined by the quasi-nonlinear clustering effect and neglect the effects of the redshift-space distor-
tions and the clustering bias. Then, we study how a measurement of the damping is useful to determine
σ8D1(z). Very recently, it is recognized that a measurement of the growth factor of the density pertur-
bations is a key to distinguish between the dark energy model and modified gravity model for the cosmic
accelerated expansion (e.g., [5], and references therein). Our investigation is the first step to investigate
if a measurement of the BAO damping is useful to measure the growth factor.

In our investigation, we adopt a simple Monte Carlo simulation (for detail, [1]) of the galaxy power
spectrum assuming the ΛCDM model and assess χ2 as

χ2 =
∑

i

[

B(ki, z)th − B(ki, z)obs
]2

4B2(ki, z)
, (16)

where B(ki, z)th is the theoretical one of a fiducial target model at the wavenumber ki, which corresponds
to the cosmological model of h = 0.7, Ωm = 0.28, Ωb = 0.046, σ8 = 0.82 and ns = 0.96, while B(ki, z)obs

is the corresponding observational one which obtained through a Monte Carlo simulation.
Figure 2 shows an example of the constraint of σ8D1(z). Solid curves show the contour of 4χ2 = 2.3

(inner curve) and 4χ2 = 6.17 (outer curve), which corresponds to the 1 σ and the 2 σ confidence
level, respectively, in the Ωmh2 and σ8D1(z = 0.9) plane, for the WFMOS-like galaxy sample of ∆A =
2000 deg2. The dotted curves show the same but with the sample of the survey area ∆A = 4π steradian.

4 Summary

In this work, we examined the effect of the nonlinear gravitational clustering on the BAO signature in
the matter power spectrum. In particular, we focus on the BAO damping in the weakly nonlinear regime.
With the analytic approach based on the third order perturbation theory, we found a simple expression
that describe the BAO damping. We showed that the leading correction for the damping is in proportional
to the amplitude of the power spectrum. On the basis of the result, we construct a fitting formula for the
BAO damping in weakly nonlinear regime and discussed a possible extension of our formula by using the
Lagrangian perturbation theory. This formula was compared with a result of N -body simulation, which
showed the validity of the extended formula. A measurement of the BAO damping might be useful as
an unique probe of the growth factor of the density perturbations. As a first step to investigate such
a possibility, we assessed the feasibility of constraining σ8D1(z) by measuring the BAO damping. We
need a very wide survey area of the sky. For a definite conclusion, however, we must include the effect
redshift-space distortion on the BAO damping. More detailed discussions are given in Ref.[6].
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Quasinormal Modes of Black Holes Localized on the
Randall-Sundrum 2-brane
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Abstract
We explore the quasinormal modes of a black hole localized on the Randall-Sundrum
2-brane against the test field perturbations [1]. The background metric admits a
conformal Killing tensor, which allows us to obtain tractable–indeed separable–field
equations for the conformally coupled scalar, the massless Dirac and the Maxwell
fields. We find that each radial equation obeys the same equation as the corresponding
equation in the Schwarzschild background with the same horizon radius. The angular
equation reflects the impact of brane tension, resulting in a distinct quasinormal mode
prediction.

1 Exact description of a braneworld black hole

The Randall-Sundrum scenario has attracted much attention for intriguing phenomenological prediction
in particle physics and cosmological scenario [2]. In order to further validate this model, the strong
gravity test is imperative. Black holes are the best experimental fields for this purpose. Despite that
a lot of effort has been devoted toward finding an exact solution describing a black hole localized on
the Randall-Sundrum 3-brane, none of them are successful yet. Some authors discussed based on the
AdS/CFT correspondence that the static (and large) back holes fail to exist [3, 4]. Under the present
circumstances, it is very illustrative to look in a bird’s-eye view. We consider a simple toy model and
extract useful information. Emparan, Horowitz and Myers succeeded in constructing the desired black
hole solution in a 3+1-dimensional Randall-Sundrum model [5], on which we will focus hereafter.

The Randall-Sundrum braneworld has a negative cosmological constant in the bulk, so as to reproduce
a Newtonian gravity on the brane. An important point to notice is the fact that the brane undergoes a
uniform acceleration in the background AdS. So the repelling acceleration is required to obtain a static
black hole. In 4-spacetime dimensions, the C-metric in AdS is the desired solution. For the Z2-symmetry
across the brane, the metric describing a localized black hole is given by

gabdxadxb =
`2

(|x|− y)2

∑
F (y)dt2 − dy2

F (y)
+

dx2

G(|x|) + G(|x|)dϕ2

∏
, (1)

where

F (y) = −y2 − 2µy3, G(x) = 1− x2 − 2µx3. (2)

The metric (1) solves Einstein’s equations with a negative cosmological constant, Rab = −(3/`2)gab, for
|x| > 0. The brane locus is x = 0, across which the bulk has a mirror symmetry. Israel’s junction
condition shows that the brane tension is proportional to 1/`. The x and y-coordinates are the direction
cosine x = cos θ and the radial coordinate y = −`/r. x ranges from the brane x = 0 to the axis x = x2–the
largest root of G(x2)–and y from the horizon y = −1/2µ to infinity y = x. Observe that in order to avoid
conical singularities on the axis x = x2, the period of ϕ is fixed by ∆ϕ = 2πβ, where β−1 = −G0(x2)/2.

The parameter µ corresponds to the mass of the black hole, hence we take µ ≥ 0. The black hole
with small µ mimics the isolated black hole. Indeed, one can confirm easily that the µ → 0 limit with
rh = 2µ` fixed recovers the Schwarzschild black hole with the horizon radius rh(ø `). On the other hand,
the horizon will become flattened in the µ ¿ 1 limit (see Fig. 1). In the latter case, the brane tension
has a distinguished effect on the properties of black holes from the isolated ones.

1Email:nozawa“ at”gravity.phys.waseda.ac.jp
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Figure 1: Schematic picture of a black hole localized on the brane. For µø 1, the horizon is round (left).
As µ increases, the horizon tends to deform into a flattened pancake (right).

The induced metric on the brane reads

ds2 = −
≥
1− rh

r

¥
dt̃2 +

≥
1− rh

r

¥−1
dr2 + r2dϕ2, (3)

where t̃ = `t. Since ∆ϕ is less than 2π, the 2+1 dimensional gravity is recovered on the brane, as we
desired.

2 Quasinormal frequencies

Since the black hole metric (1) is so involved, little is known about the quantitative properties of the
solution. Quasinormal modes of black holes are the highly suggestive quantities to identify the intrinsic
properties black holes.

At first glance, the background metric would not allow a separation of variables. Indeed, the massless
scalar field equation are not separable, due to the overall factor (x− y)−2 in front of the metric. We will
circumvent this difficulty by restricting ourselves to conformally invariant field equations–the conformally
coupled scalar field, the massless Dirac field and the Maxwell fields. For these fields, we can discard the
annoying factor (x− y)−2 from the equations of motion via the simple conformal transformation

ĝab = Ω2gab, Ω = x− y. (4)

In this article, only the conformally coupled scalar field is discussed. But we can proceed analogously for
the Dirac and Maxwell fields, the behavior of which are qualitatively the same. A more detailed analysis
can be found in Ref. [1].

A conformally coupled scalar field evolves according to
µ
∇a∇a − 1

6
R

∂
Φ = 0, (5)

which is form-invariant under the conformal transformation (4) with Φ→ Φ̂ = Ω−1Φ. Let us assume the
separable form Φ̂ = e−iωt+imϕ/βR0(y)S0(x). Noticing that the Ricci scalar of the conformally related
metric ĝab is R̂ = 12µ(x − y) and working in the x > 0 region, we can reduce the field equation to
“angular” and “radial” equations as

d
dx

∑
G(x)

d
dx

S0

∏
+

∑
ν(ν + 1)− 2µx− m2/β2

G(x)

∏
S0 = 0, (6)

d
dy

∑
F (y)

d
dy

R0

∏
+

∑
ν(ν + 1)− 2µy +

ω2

F (y)

∏
R0 = 0, (7)

where ν is the separation constant. Taking into account the Z2-symmetry across the brane, equation (6)
gives rise to the Neumann boundary condition at the brane, dSs/dx|x=0 = 0. The boundary condition at
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Figure 2: Quasinormal modes of a conformally coupled scalar for m = 2. The plots are for the second
lowest ν modes.

x = x2, on the other hand, is read off by defining S̃0 := (x2 − x)−|m|/2S0 and requiring the regularity for
S̃0 at x = x2. The angular eigenvalue is obtained numerically [1]. The numerical result shows that as µ
increases, the angular eigenvalue ν will become large. This tendency is also found for the codimension-two
brane (see, e.g., [6]). For µø 1, ν −m is approximated by an even integer, recovering the (even mode)
spectrum in the Schwarzschild background.

Let us move on to the analysis of equation (7). This equation can be written in a familiar form using
r = −`/y and dr∗ = (1 − 2µ`/r)−1dr. The black hole horizon is mapped to r∗ = −∞ (r = 2µ`), while
the acceleration horizon y = 0 corresponds to r∗ = +∞. In terms of r∗, equation (7) is translated into
the Schrödinger-type equation

d2

dr2
∗
R0 + [ω̃2 − V0(r)]R0 = 0, V0(r) =

µ
1− 2µ`

r

∂ µ
ν(ν + 1)

r2
+

2µ`

r3

∂
, (8)

where ω̃ := ω/`. It is important to note that equation (8) is apparently identical to the radial equation
for the (conformally coupled) scalar field perturbation in the four dimensional Schwarzschild background
with the horizon radius rh = 2µ`. The only distinction arises from the different angular eigenvalues.

We impose the following quasinormal boundary conditions for the radial equation

R0 → e+iω̃r∗ (r∗ →∞), R0 → e−iω̃r∗ (r∗ → −∞). (9)

having only an incoming wave at the black hole horizon and an outgoing wave at the acceleration horizon.
These boundary conditions give rise to a discrete frequency, corresponding to the quasinormal modes of
black holes. We employ the third order WKB method developed by Iyer and Will [7] in order to evaluate
the quasinormal modes. We show the result in Fig. 2. We have normalized the frequencies by (half of)
the horizon radius: µ` · ω̃ = µω. As µ increases, the real part of quasinormal modes are likely to enlarge,
as expected from the results in Ref. [6].

The WKB approximation will fail for higher overtones with n > ν. The asymptotic quasinormal
modes (n¿ 1) are obtained using the monodromy method [8] as

µωn ≈
ln 3
8π
− i

4

µ
n +

1
2

∂
, (10)

where one takes n → ∞. This is independent of the angular eigenvalue and therefore the leading order
behavior will be the same for the brane-localized and braneless black holes.

3 Summary

In this article we explored the quasinormal modes of black holes localized on the Randall-Sundrum 2-
brane. The background is the exact black hole solution found in Ref. [5]. Taking advantage the fact that
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the background metric allows a conformal Killing tensor, which is a direct consequence of Petrov type D,
we have investigated the behavior of conformally invariant field perturbations around the brane-localized
black hole.

For all types of fields we considered, we found that each radial equation is identical to the corresponding
field equation in the four Schwarzschild background. However, the angular equations differ from their
Schwarzschild counterparts. We have determined the angular eigenfunctions and eigenvalues numerically.
In the case of the conformal scalar field, the angular eigenvalues ν are given by ν ' l = 0, 1, 2, ... for a
small black hole (µ ø 1), recovering the Schwarzschild result. As the size of the black hole increases, ν
becomes larger (ν > l) and hence become sensitive to the magnetic quantum number m. Accordingly, each
quasinormal modes of the large localized black hole (with the horizon radius 2µ` on the brane) behaves
like the mode having a larger angular mode number in the four dimensional Schwarzschild background
with the same horizon radius rh = 2µ`. The situation is basically the same for electromagnetic and
massless Dirac field perturbations. In particular, we have found no unstable modes for any types of fields
we investigated.

It has been widely known that the Randall-Sundrum braneworlds have a rich structure concerning
the AdS/CFT correspondence [3, 4]. It would be also interesting to discuss the implications of our result
from the viewpoint of the AdS/CFT correspondence.
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Classicality of the stochastic approach to inflation
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Abstract
The stochastic approach to the inflationary universe is the method which treats quan-
tum time evolution of long wave length mode of an inflaton field as a stochastic pro-
cess. In this presentation, we discuss the conditions for the probability distribution to
behave as classical one by using the bipartite entanglement, or quantum correlation
among two regions.

1 Introduction

The inflationary scenario indicates that the large scale structure in the present universe originated from
the quantum fluctuation of a field in the early universe. There is a conventional method to calculate
this fluctuation, called stochastic approach [1, 2]. In this approach, by coarse-graining the quantum field
in the inflationary universe over the super-horizon scale, the quantum stochastic behavior of the field is
represented by a classical distribution function. Classical distribution means a positive definite normalized
function. This method is based on the naive assumption in the inflationary scenario that the quantum
field becomes classical when their wave length exceeds to the super-horizon scale by the inflationary
expansion. And this is used to calculate various quantities including the non-Gaussian fluctuations.

However, it is in general impossible to describe the quantum mechanical nature by using a classical
distribution. For example, let us consider two particles with spin half in the follwing state.

|√i =
1√
2
(| ↑↑ i+ | ↓↓ i),

where the first arrow in each term is the state of one spin, and the second is that of the other spin. Note
that the direction of one particle fluctuates and is not fixed. If we observe this direction and obtain the
result “↑”, then that of the other spin also becomes “↑”. In other words, the observation on one degree of
freedom affects the other degree of freedom. Such a correlation between two degrees of freedom is called
entanglement, which is known as purely quantum correlation and does not exist in classical mechanics. J.
S. Bell showed that the the classical distribution function cannot reproduce the correlations in the system
under this state [3]. Cavalcanti et al. showed that this theorem is valid for general bipartite systems
[4]. Thus general bipartite systems in entangled state do not have the classical distribution function.
Therefore, if the coarse-grained region has entanglement with another region, there does not exist the
classical distribution function describing the stochastic nature of the field. Then the stochastic approach
is not valid.

Nambu showed that, if the entanglement in the system disappear, the classical distribution for the
system appears [5]. We investigated the classicality condition for the stochastic approach by applying
Nambu’s result to the quantum field in inflaionary universe. In conclusion, we find that the system can
be treat as classical if the coarse-graining scale is sufficiently large.

2 Classicality condition

2.1 The entanglement measure

In this section, we introduce the entanglement measure ∏ which is necessary to represent the classicality
condition. Let us consider a bipartite system (q, p), (Q, P ) in Gaussian state. We introduce the

1E-mail:osumi@gravity.phys.nagoya-u.ac.jp
2E-mail:nambu@gravity.phys.nagoya-u.ac.jp
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correlation matrix A, B, V for this system as follows:

A :=
µ
h{∆q, ∆q}i h{∆q, ∆p}i
h{∆p, ∆q}i h{∆p, ∆p}i

∂
A0 =

µ
h{∆Q, ∆Q}i h{∆Q, ∆P}i
h{∆P, ∆Q}i h{∆P, ∆P}i

∂

B :=
µ
h{∆q, ∆Q}i h{∆q, ∆P}i
h{∆p, ∆Q}i h{∆p, ∆P}i

∂
V :=

µ
A B
B A

∂
,

where {X, Y } := (XY + Y X)/2, h i is the quantum average value of some quantity, and ∆q := q − hqi
is the deviation of the quantity q. The matrices A and A0 are the auto correlation for each degree of
freedom respectively; the matrix B is the correlation between these degrees of freedom; the matrix V is
the correlation matrix for the bipartite system. We assume that A = A0 here. This assumption does
not make any problem on the description of the quantum fluctuation in inflation. Now, let us define the
entanglement measure ∏ using these quantities as follows:

∏ =
q

det A− det B −
p

(det A− det B)2 − det V

This is real quantity with the dimension of ~. If ∏ < ~, the system is entangled and the smaller ∏ is, the
stronger the degree of entanglement is. If ∏ > ~, entanglement is zero.

We can state the classicality condition using this ∏ as follows:

Classicality condition 　
For a bipartite system in Gaussian state, if ∏ ¿ ~, the stochastic proparty of the variables in this
system is described using a classical distribution function.

Note that the condition is not ∏ > ~ but ∏ ¿ ~. This statement is stronger than the disappearence of
the entanglement (figure 1).

Figure 1: The schematic picture of the relation between entanglement and classicality. If ∏ ¿ ~, the
system is classical, and there exists a classical distribution.

With in our mind this, we can construct the strategy for finding the classicality condition as follows:
First, we introduce the coarse-grained field in the method of the stochastic approach; second, we calculate
the second order correlations of the field between 2 points, and find ∏; finally, we investigate whether the
way of coarse-graining such that ∏ ¿ ~ exists or not in the regime of stochastic approach. Under this
procedure, we consider the classicality condition in the next section.

3 Model and Results

3.1 Model

Now, let us investigate the quantum fluctuation of the scalar field. As the expansion law of the universe,
we assume the de Sitter spacetime (a ∝ expHt), the power law model (a ∝ tn), and the Minkowski
spacetime. We use the minimally coupling massless real scalar field, and assume that the back reaction
to the gravitational field can be neglegible.

In the stochastic approach, the coarse-grained field is obtained by using the ultra-violet cut off kS :=
εaH; ε is a dimensionless parameter; a is the scale factor; H is the Habble parameter. Then the coarse-
graining scale in physical scale is a/kS = 1/εH (figure 2). This is constant in time. Note that this scale is
determined by ε. The smaller value it takes, the larger the scale becomes. Futhermore, we insert another
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cut off k0 := αεa0H to prevent the infra-red divergence; a0 is the scale factor at the initial time. And we
have inserted another parameter α so that these cut off do not coinside at the initial time.

Figure 2: The schematic image of the ultra-violet cut off. The field is coarse-grained with the physical
scale a/kS = 1/εH. This scale is constant in time.

Then the coarse-grained field operators are follows.

χ =
Z

k0≤|k|≤kS

(akfχeik·x + h.c.)dk3, π =
Z

k0≤|k|≤kS

(akfπeik·x + h.c.)dk3,

where χ and π are the quantities corresponding to the field coordinate and its canonical conjugate
momentum, respectively; fχ and fπ are the mode functions of the Fourier expansions of χ and π; ak is
the annihilation operator of k -mode saticefying the usual commutation relation

[ak, a †
l ] = δ(3)(k− l).

Due to the insertion of cut off, the commutation relation between χ and π becomes

[χ(x),π(y)] =
2i

(2π)2

Z kS

k0

k2 sin kR

kR
dk. R := |x− y|

We must require this commutation relation to be zero for x 6= y. And this leads to the equation for the
comoving distance R,

k0R cos k0R− sin k0R = ksR cos ksR− sin ksR. (1)

From now on, we consider the minimum value of R which saticefies 1. This means that we compare the
neighbering regions in coarse-grained regions. Because kS depends on time, R is also time dependent.

3.2 Results

We calculated ∏ for the considering models. The results are shown in figure 3. Here, figure 3(a), (b),
(c) are the case of de Sitter, power law with n = 6, and Minkowski, respectively. The vartical axes are
∏/~, the horizontal axes are k0/kS . The different lines are the results for the different values of ε, What
we would like to pay attention to firstly is the lowest lines in each models. These lines are ε → 1, and
coinside with the line of Minkowski case. Current coarse-graining scale is 1/εH, and this limit correponds
to the limit in which we take the “resolution” of the field infinitly high. On the other hand, since we are
comparing the neighbering regions, this means that we are comparing the two spacial points for which
the effect of the cosmic expansion is negeligeble.

As we have said, the smaller we take ε, the larger ∏ gets its value. Since the classicality condition was
∏ ¿ ~, this condition can be replaced with how large ∏ becomes by taking ε small. By investigating the
analytical expression of ∏ in the limit of ε ø 1, we find

∏de Sitter ∝
1
ε

∏Power law ∝
1

ε1+2/(n−1)

Since n > 1 for accelerating universe model, both of them diverge in the limit of ε → 0. In other words,
the larger we take the coarse-graining scale, the more the system become classical. Therefore, if we take
the coarse-graining scale sufficiently large, the stochastic approach is valid.
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(a) (b)

(c)

Figure 3: Entanglement measure ∏ in each model. The horizontal axes are k0/kS , which is αη/η0 in
expanding universe models. (a) de Sitter model case : Red, green, blue, purple, and pale-purple lines are
ε = 1, 2, 3, 4, and ε →1, respectively. (b) Power law model case (n = 6) : Orange, green, blue, purple,
and pale-purple lines are ε = 1, 3/2, 2, 5/2, and ε →1, respectively. (c)Minkowski model case.

4 Summary and future works

In this article, we have shown that the stochastic approach is valid from the view point of entanglement.
Since we treat only the Gaussian fluctuation, we must investigate the non-Gaussian fluctuation next. Since
the classical condition derived by Nambu is valid for only Gaussian state, some extension is necessary.
And, we neglected the back reaction to the gravitational field. Since the stochastic approach is also used
to investigate the case with the back reaction , it is important problem to extend for involving the back
reaction.

On the other hand, the consideration for ∏ itself is interesting problem. In this investigation, we
inserted the infra-red cut off for preventing the infra-red divergence. But, as you can see from figure 3, ∏
is infra-red divergence free. This suggests that ∏ itself has some clear physical meaning. Making use of
this property of ∏, we might predict any other quantity.
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Testing general relativity on the scales of cosmology using the
redshift-space distortion1
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Abstract
As a test of general relativity on cosmological scales, we measure the γ parameter
for the growth rate of density perturbations using the redshift-space distortion of the
luminous red galaxies (LRG) in the Sloan Digital Sky Survey (SDSS). Assuming the
cosmological constant model, which matches the results of the WMAP experiment,
we find γ = 0.63 + 2.0 × (σ8 − 0.8) ± 0.09 at 1σ confidence level, which is consistent
with the prediction of general relativity, γ � 0.55 ∼ 0.56. Rather high value of
σ8 (> 0.85) is required to be consistent with the prediction of the cosmological GDP
model, γ (� 0.68).

1 Introduction

Modified gravity models, e.g., f(R) gravity, TeVeS theory, DGP model, have been proposed as possible
alternatives to the dark energy model. Measurement of the growth of density perturbations will be the
key for testing the gravity theory [4]. Several authors have already investigated the growth of density
perturbations as a way of constraining these theories [11, 12, 13]. In the future weak lensing statistics will
be a promising probe of the density perturbations, while the redshift-space distortions may also be useful
for constraining the growth rate of perturbations. Recently, Guzzo et al. have reported a constraint on
the growth rate by evaluating the anisotropic correlation function of the galaxy sample from the VIMOS-
VLT Deep Survey (VVDS) [14]. The characteristic redshift of the VVDS galaxy sample is rather large.
However, the survey area of the VVDS sample is small. This is a disadvantage in detecting the linear
redshift-space distortions.

In this work, we used the Sloan Digital Sky Survey (SDSS) luminous red galaxy (LRG) sample from
the Data Release 6, whose survey area is around 6,000deg2. We present the results of the multipole power
spectrum analysis for the SDSS LRG sample, and use it to measure the γ parameter for the growth rate
of density perturbations.

2 Measurement of the quadrupole spectrum

The peculiar velocity of galaxies contaminates the observed redshift. It leads to the difference in the
radial position if the redshift is taken as the indicator of the distance. This causes the difference in the
spatial clustering between redshift space and real space, which is called the redshift-space distortion. The
power spectrum including the redshift-space distortion can be modeled as (e.g., [8])

P (k, μ) =
(

b (k) + fμ2
)2
Pmass (k)D (k, μ) ,

where μ is the directional cosine between the line of sight direction and the wave number vector, b (k) is
the bias factor, Pmass (k) is the mass power spectrum, D (k, μ) describes the damping factor due to the
finger of God effect.

Thus, the redshift-space distortion causes the anisotropy of the clustering amplitude depending on
μ. The multipole power spectra are defined by the coefficients of the multipole expansion [9, 10],
P (k, μ) =

∑

l=0,2,··· Pl (k)Ll (μ) (2l+ 1), where Ll (μ) are the Legendre polynomials. The monopole

1In collaboration with K. Yamamoto, G. Nakamura and G. Hütsi (see also [1])
2E-mail:sato@theo.phys.sci.hiroshima-u.ac.jp
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Figure 1: Quadrupole power spectrum. The solid curve is the theoretical curve of the ΛCDM model.

P0 (k) represents the angular averaged power spectrum and is usually what we mean by the power spec-
trum. P2 (k) is the quadrupole spectrum, which gives the leading anisotropic contribution. The usefulness
of the quadrupole spectrum for the dark energy is discussed in [7].

Within the linear theory of density perturbations, the quadrupole spectrum is given by P2 (k) =
[

4b (k) f/3 + 4f2/7
]

Pmass (k) /5. Thus, we can measure the growth rate from the quadrupole spectrum.
However, we need other independent information for the clustering bias b (k).

By using the quadrupole spectrum, we perform a simple test of the gravity theory. We focus on the γ
parameter, which is introduced to parameterise the growth rate as f ≡ dlnD1 (a) /dlna = Ωm (a)γ , where
Ωm (a) = H2

0Ωma−3/H (a)2, H (a) = ȧ/a, H0(= 100hkm/s/Mpc) is the Hubble parameter. Measurement
of γ provides a simple test of the gravity theory. Within general relativity, even with the dark energy
component, γ takes the value around γ � 0.55 [4]. However, γ may take different values in modified
gravity models. For example, γ � 0.68 in the cosmological DGP model including a self-acceleration
mechanism. Thus, the measurement of γ is a simple test of general relativity.

In the present work we measured the monopole and quadrupole power spectra in the clustering of
the SDSS DR6 luminous red galaxy sample. The galaxy sample used in our analysis consists of 82,000
galaxies overs the survey area of 6,000deg2 and redshift range 0.16 ≤ z ≤ 0.47 [3]. We have excluded
the southern survey stripes since these just increase the sidelobes of the survey window without adding
much of the extra volume. We have also removed some minor parts of the LRG sample to obtain more
continuous and smooth chunk of volume.

We need to take the clustering bias and the finger of God effect into account. For the finger of
God effect we adopt the following form of D(k, μ), the damping due to the nonlinear random velocity,
D(k, μ) = 1/[1 + (kμσv/H0)2/2], where σv is the one dimensional pairwise velocity dispersion. (e.g., [6]).
This form of damping assumes an exponential distribution function for the pairwise peculiar velocity. In
order to determine the clustering bias, we use the monopole spectrum. If σ8 is fixed, and the cosmological
parameters and the bias are given, we can compute the monopole spectrum P theor0 (k), where we use the
Peacock and Dodds formula for the mass power spectrum Pmass(k) [8]. We determine the clustering bias
b(k) through the condition P obs0 (k) = P theor0 (k) using a numerical method. Here P obs0 (k) is the measured
value of the monopole, and P theor0 (k) is the corresponding theoretical value. We used the monopole
spectrum to determine the bias, and the quadrupole spectrum to obtain constraints on γ and σv. Since
the galaxy sample covers rather broad redshift range, 0.16 ≤ z ≤ 0.47, the effect of the time-evolution
should be considered properly [2]. However, for simplicity, we here evaluated the theoretical spectra at
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Figure 2: The contour of Δχ2 in the γ − σv
plane. We fixed the normalization of the mass
power spectrum as σ8 = 0.75, 0.80, 0.85. The
contour levels are 1-sigma and 2-sigma confi-
dence levels. The other parameters are h = 0.7,
ns = 0.96, Ωm = 0.28.

Figure 3: Same as the Figure 2, except here we
used the expansion history of the DGP model.

the mean redshift of z = 0.31.
Figure 1 plots the quadrupole spectrum. The solid curve is the theoretical curve for the ΛCDM model

with h = 0.7, ns = 0.96(initial spectral index), Ωm=0.28, σ8 = 0.8, γ = 0.63, σv = 355km/s.
Figure 2 demonstrates the contour of Δχ2 in the γ versus σv parameter plane. We compute χ2 as

χ2 =
∑

i[P
obs
2 (ki) − P theor2 (ki)]/[ΔP obs2 (ki)]2. Where P obs2 (ki) and ΔP obs2 (ki) are the measured values

and errors as plotted in Figure 1. P theor2 (ki) are the corresponding theoretical value. The curves assume
σ8 = 0.75, σ8 = 0.8, σ8 = 0.85. The other parameters are fixed as h = 0.7, ns = 0.96, Ωm = 0.28. In
Figure 2 we plot the contour levels in 1-sigma and 2-sigma confidence levels of the χ2 distribution. We
find γ = 0.63 + 2.0 × (σ8 − 0.8) ± 0.09 at 68 percent confidence level, respectively. The value of γ is
consistent with general relativity. The result is not sensitive to the inclusion of baryon oscillation in the
theoretical power spectrum.

The relation of γ and σ8 can be understood as the degeneracy between σ8 and the growth rate f in the
following way. As the observed power spectra can be roughly written as P obs0 ∝ b2(k)σ8

2D2
1(z)/D

2
1(z = 0)

and P obs2 ∝ b(k)fσ8
2D2

1(z)/D
2
1(z = 0). The degeneracy between σ8 and the growth rate f(or γ) in our

method is given by fσ8D1(z)/D1(z = 0) = constant.
Figure 3 is the analogue of Figure 2, with the expansion history now taken to be that of the spatially

flat DGP model, which follows H2(a) − H(a)/rc = 8πGρ/3, where ρ is the matter density and rc =
1/H0(1 − Ωm) is the crossover scale related to the 5-dimensional Planck mass. the expansion history in
this model can be well approximated by the dark energy model with the equation of state parameter
w(a) = w0 + wa(1 − a), where w0 = −0.78 and wa = 0.32, as long as Ωm ∼ 0.3 [4]. However the Poisson
equation is modified, and the growth history is approximated by the formula with γ � 0.68. In order to
be consistent with γ = 0.68, Figure 3 requires higher value of σ8 as compared to the ΛCDM case. We
find γ(� 0.68) at 68 percent confidence level, which requires σ8 ≥ 0.85.

3 Conclusion

We measured the monopole and quadrupole spectra in the spatial clustering of the SDSS LRG sample
from DR6. Using the spectra, we measured the γ parameter for the linear growth rate and the pairwise
peculiar velocity dispersion. The measured value of γ is consistent with general relativity as long as
0.72 ≤ σ8 ≤ 0.81. However, it is inconsistent with the cosmological DGP model, γ � 0.68, as long as
σ8 < 0.85. If a constraint on σ8 from other independent sources, we would be able to obtain tighter
constraint on the DGP model. The constraint on γ can be applied to other modified gravity models,
given that the value of γ which characterises a particular model is found, as discussed by Linder and
Cahn [5].

3



References
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Abstract
We present a canonical formulation for higher-curvature theories of gravity whose
action is a generic function of Riemann tensor. The Arnowitt–Deser–Misner canon-
ical formalism is employed to identify the extra gravitational dynamical degrees of
freedom other than metric. We also �nd a surface term that gives Dirichlet boundary
conditions for the dynamical degrees of freedom.

1 Introduction

Quantum theories of gravity, such as string theories, predict the conventional Einstein–Hilbert action,
Sg = (2�)�1

∫
M

√
−gR, is necessarily supplemented by higher-order terms in curvature, which, even at

the classical level, may come into play in the regime of strong gravity. Studies on higher-order gravity
can open a window to the fundamental theory and it is therefore interesting to investigate its possible
imprints on cosmological and/or astrophysical phenomena.

Our start-up strategy is to abstract essential properties of higher-order gravity and examine whether
each class of theories can qualify basic requirements as viable gravity theory. In order to serve such
phenomenological studies, one should keep as much generality as possible. We treat generic actions on
D-dimensional spacetime (M, g) such as

Sg =
1
2�

∫
M

√
−gf(Rabcd, gab), (1)

where f is an arbitrary scalar-valued (non-linear) function of the Riemann tensor.
Since the equation of motion stemming from the above action contains fourth-order derivatives, gravity

involves extra dynamical degrees of freedom other than metric. To have a clear view on such aspect, we
employ the Arnowitt–Deser–Misner (ADM) [1] canonical formalism to describe the theory. We will at
the same time �nd a relevant surface action by which existence of extra gravitational degrees of freedom
is taken into account.

The main body of this article consists of identi�cation of a Dirichlet surface term necessary in con-
structing a �rst-order action (section 2) and ADM canonical formulation (section 3).

2 Dirichlet surface term

Appearance of higher derivatives is avoided by considering an equivalent theory which is linear in second
derivative of the metric

Sg =
1
2�

∫
M

√
−g[�abcd(Rabcd − �abcd) + f(�abcd, gab)], (2)

where the auxiliary �eld �abcd and the Lagrange multiplier �abcd are independent of gab. The variation
of the action reads

�Sg =
1
2�

∫
M

√
−g

[
−Eab�gab + (Rabcd − �abcd)��abcd +

(
∂f

∂�abcd
− �abcd

)
��abcd

]
+

1
�

∫
M

√
−g∇d(�gab∇c�

acbd − �acbd∇c�gab),
(3)

1E-mail:sendouda(a)yukawa.kyoto-u.ac.jp
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where

Eab ≡ −R(a
cde�

b)cde + 2∇c∇d�
(a|c|b)d + 2�(a

cde
∂f

∂�b)cde
− 1

2
[�cdef (Rcdef − �cdef ) + f ]gab. (4)

It is understood that fourth derivative has been splitted into two second derivatives Rabcd and ∇c∇d�
acbd.

We are to impose Dirichlet boundary conditions on the (propagating components of) metric at the
spacetime boundary ∂M. To do so, the second term in the surface integral in (3) has to be cancelled
by some suitable term localised on the boundary. It is here worth mentioning that the existence of the
normal derivative in that term indicates the action involves second derivatives of the metric.

De�ne here na to be the unit normal for boundaries whose orientation is outward-pointing for timelike
boundaries whereas inward-pointing for spacelike ones. The induced metric on the boundary is given by
ab = gab − �nanb, where � ≡ nana is the sign of the normal (−1 for timelike and +1 for spacelike,
respectively). We take the following surface term

�Sg =
2�
�

∮
∂M

√
||ncnd�acbdKab, (5)

where Kab ≡ ca∇cnb is the extrinsic curvature of the boundary. This is a generalisation of the York–
Gibbons–Hawking surface term [2] in General Relativity. Indeed, variation of the total action, Sg + �Sg,
on-shell now reads

�(Sg + �Sg)|on-shell =
1
�

∮
∂M

√
||(P ab�ab + 2�Kab�(ncnd�acbd)), (6)

where P ab is some function. This result implies that the Dirichlet boundary conditions

�ab|∂M = �(ncnd�acbd)|∂M = 0 (7)

gives well-posed initial-value problems. In other words, second derivatives have been get rid of from the
action by virtue of the surface term.

3 ADM canonical formalism

In the ADM formalism, the bulk spacetime is foliated by (D − 1)-dimensional non-null hypersurfaces
labeled by t, {�t}. For simplicity, we consider the case where �t is compact and there exists two
constant-t surfaces as the spacetime boundary, namely, �0 at t = t0 and �1 at t = t1.

Here we introduce a ‘future-pointing’ unit vector �eld normal to the hypersurfaces by na = �N(dt)a,
where N (> 0) is the lapse function and � = nana = ±1 the signature. We also introduce the shift vector
�a together with the notion of the ‘ow’ vector �eld ta = Nna + �a satisfying ta∇at = 1.

We decompose the action (2) in a (D− 1)+1 manner. In particular, the Gauss and Codazzi relations
are employed to yield

�abcdRabcd = ⊥�
abcd( �Rabcd − 2�KacKbd) + 8�⊥�abcn �∇aKbc

+ 4⊥�anbn(KKab −KacKb
c − �N�1 �∇a

�∇bN)

+ 4Kabn
c∇c⊥�

anbn − 4∇c(nc⊥�anbnKab).

(8)

Here the bar denotes (D − 1)-dimensional intrinsic quantities: �∇a is the covariant derivative associated
with the induced metric ab and �Rabcd the Riemann tensor of ab. The ⊥ symbol denotes projection onto
�t by the orthogonal projector ab, and the n index means contraction with na (before ⊥-projection). We
recognise, e.g., as ⊥�

anbn = acnd
b
enf�

cdef . As the second derivative has been casted into the form of
a divergence by the Leibniz rule, normal derivative of ⊥�

anbn has shown up. The divergence is cancelled
by the surface action �Sg. Consequently this decomposition has revealed that the extra dynamical degrees
of freedom are con�ned in the symmetric tensor ⊥�

anbn. For this distinctive feature, we shall hereafter
denote  ab ≡ 2�⊥�anbn.
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Terms in the action are all decomposed in this manner. We may see f as a function of projected
components of �abcd and of metric gab. We de�ne ‘velocities’ of the dynamical variables in terms of Lie
derivatives as ̇ab ≡ £tab = 2NKab + 2 �∇(a�b) and  ̇ab ≡ £t 

ab, respectively. Then we arrive at the
action totally represented with the following set of quantities (and their derivatives on �t):

{ab,  ab, ̇ab,  ̇ab, N, �a,⊥�abcd,⊥�abcn,⊥�anbn,⊥�abcd,⊥�abcn}. (9)

This form of action is suitable for canonical formulation. Canonical momenta conjugate to each variable
are de�ned by

�qi ≡
�(Sg + �Sg)

�q̇i
. (10)

Then the total action is rewritten in terms of canonical variables {qi, �qi} via Legendre transformation

Sg + �Sg =
∫ t1

t0

dt
[∫

�t

(�ab ̇ab + � ab ̇
ab) −Hg

]
, (11)

where Hg is the Hamiltonian.
At this stage, Dirac’s prescription [3] tells how to obtain canonical equations of motion and constraints.

Here we illustrate the procedure and outcomes, the whole of which will be presented in a forthcoming
paper [4]. Each variable whose velocity is missing in the action gives a primary constraint

��i ≡ ��i ≈ 0, (12)

where λi = N, �a,⊥�abcd,⊥�abcn,⊥�anbn,⊥�
abcd,⊥�

abcn represents those non-dynamical variables and
the weak equality ≈ means modulo constraints. The total Hamiltonian is constructed as

Ht = Hg +
∑
�i

∫
�t

u�i��i , (13)

where u�i ’s are multipliers. Evolution of the variables is described by Poisson bracket. t-derivative of
each quantity is determined by Poisson bracket with the total Hamiltonian

Q̇ ≈ −{Ht, Q}. (14)

The canonical equations of motion for dynamical variables are therefore given as

̇ab ≈
�Hg

��ab
, �̇ab ≈ − �Hg

�ab
,  ̇ab ≈ �Hg

�� ab
, �̇ ab ≈ − �Hg

� ab
. (15)

They correspond to the de�nitions of velocities and the dynamical part of the Euler–Lagrange equations
of motion, i.e., those two normal components containing second derivatives. On the other hand, as
the constraints must preserve, consistency of the theory demands derivatives of primary constraints
��i vanish thereby leading to secondary constraints �̇�i ≈ 0. One can check that the rest of Euler–
Lagrange equations is indeed recovered by them. Consequently equivalence between the Euler–Lagrange
and Hamilton formulations has been con�rmed at the level of equations of motion.

To guarantee that those secondary constraints preserve, we have to pay attention to what ���i brings
about. When ���i ≈ 0 is not automatically satis�ed, i.e., it is independent of known secondary constraints,
we have two possibilities; If the equality contains some multiplier u�i yet undetermined, then the equation
is used to �x, or constrain, the multiplier. On the other hand, if the equality does not contain multipliers,
then we add it to the set of constraints. In the latter case, we have to continue to take derivatives of
those new secondary constraints until derivatives will automatically vanish by virtue of other constraints.
The number of collected secondary constraints in turn tells how many dynamical degrees of freedom can
survive and this is where the detailed form of f plays an essential role. This aspect will be discussed
elsewhere [4].

Focusing on rather basic properties, derivatives of the momenta of lapse and shift are analogues of
the Hamiltonian and momentum constraints in General Relativity,

CN ≡ �Hg

�N
≈ 0, Cβa ≡ �Hg

��a
≈ 0. (16)
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The Hamiltonian can be represented as

Hg =
∫

�t

(NCN + �aCβa ). (17)

up to divergence on �t. Derivatives of the Hamiltonian and momentum constraints does not arise further
secondary constraints leaving corresponding multipliers uN and uaβ undetermined.

4 Conclusion

We presented a basic framework of ADM canonical formulation for higher-curvature theories of gravity
whose Lagrangian is a generic function of Riemann tensor. Two auxiliary �elds, �abcd and �abcd, were
introduced to make the action linear in second derivative. Further, in order to cast the theory into a
�rst-order form, the action (2) was supplemented by a Dirichlet surface term (5). Then the �rst-order
action was Legendre transformed to the canonical form. We showed all the possible dynamical degrees
of freedom other than metric were con�ned in  ab = 2��anbn. Emergence of new dynamical degrees
of freedom is all due to non-linearity of Ranbn in f , which exclusively contains second derivative of the
metric among projected components of the Riemann tensor.

Then Dirac’s procedure was employed to derive canonical equations of motion and constraints. The
equivalence between Euler–Lagrange and Hamilton formulations were seen at the level of equations of
motion. The resultant number of the extra degrees of freedom is controlled by the detailed form of f via
secondary constraints.

Our results can be applied in various contexts. Surface action will play an inevitable role in gravita-
tional systems with boundary (e.g., construction of new braneworld models, AdS/CFT correspondence,
and so on). As a theoretical problem, there have long been claims that spin-2 �elds coupled to gravity
tend to appear ghost [5], which can cause serious inconsistency in quantum theory as well as instabilities
at the classical level. Possibilities of such pathology should be taken care of in applications.
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Abstract
Towards the investigation of the full dynamics in higher-dimensional and/or stringy
gravitational model, we present the basic equations of the Einstein-Gauss-Bonnet
gravity theory. We show (N+1)-dimensional version of the Arnowitt-Deser-Misner de-
composition including the Gauss-Bonnet term, which shall be the standard approach
to treat the space-time as a Cauchy problem. Due to the quasi-linear property of
the Gauss-Bonnet gravity, we find that the evolution equations can be in a treatable
form in numerics. We also show the conformally-transformed constraint equations
for constructing an initial data. Our equations can be used both for timelike and
spacelike foliations.

1 Introduction

General relativity (GR) has been tested with many experiments and observations both in the strong and
weak gravitational field regimes, and none of them are contradictory to GR. However, the theory also
predicts the appearance of the spacetime singularities under natural conditions, which also indicates that
GR is still incomplete as a physics theory that describes whole of the gravity and the spacetime structure.

We expect that the true fundamental theory will resolve these theoretical problems. Up to now,
several quantum theories of gravity have been proposed. Among them superstring/M-theory, formulated
in higher dimensional spacetime, is the most promising candidate. The Gauss-Bonnet (GB) term is
the next leading order of the α′-expansion (α′ is the inverse string tension) of type IIB superstring
theory[2, 3], and has nice properties such that it is ghost-free combinations[4] and does not give higher
derivative equations but an ordinary set of equations with up to second derivative in spite of the higher
curvature combinations.

The models with the GB term and/or other higher curvature terms have been intensively studied
in the high energy physics, in the contexts both in string cosmology and in black hole physics (see
references in [1]). All the analysis so far are performed on the assumption of highly symmetric spacetime
because the system is much more complicated than that in GR. To obtain deeper understanding of the
early stage of the universe, singularity, and/or black holes, we should consider less symmetric and/or
dynamical spacetime; the analyses require the direct numerical integration of the equations. None of the
fully dynamical simulations in GB gravity has been performed.

In this article, we present the basic equations of the Einstein-GB gravity theory. We show (N + 1)-
dimensional version of the ADM decomposition, which is the standard approach to treat the spacetime
as a Cauchy problem. The topic was first discussed by Choquet-Bruhat [5], but the full set of equations
and the methodology have not yet been presented. Therefore, as the first step, we in this paper just
present the fundamental space-time decomposition of the GB equations, focusing on the GB term.

The ADM decomposition is supposed to construct the spacetime with foliations of the constant-
time hypersurfaces. This method can be also applied to study the brane-world model. We think these
expressions are useful for future dynamical investigations.

1Please refer the details in [1].
2E-mail: torii@ge.oit.ac.jp
3E-mail: shinkai@is.oit.ac.jp
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2 (N + 1)-decomposition in Einstein-Gauss-Bonnet gravity

We start from the Einstein-Gauss-Bonnet action in (N + 1)-dimensional spacetime (M, gµν) which is
described as 4:

S =
∫
M

dN+1X
√
−g

[
1

2κ2
(R− 2Λ + αGBLGB) + Lmatter

]
, (1)

with LGB = R2−4RµνRµν +RµνρσRµνρσ,where κ2 is the (N +1)-dimensional gravitational constant, R,
Rµν , Rµνρσ and Lmatter are the (N+1)-dimensional scalar curvature, Ricci tensor, Riemann curvature and
the matter Lagrangian, respectively. This action reproduces the standard (N + 1)-dimensional Einstein
gravity, if we set the coupling constant αGB (≥ 0) equals to zero.

The action (1) gives the gravitational equation as

Gµν + αGBHµν = κ2 Tµν , (2)

where Gµν = Rµν − 1
2
gµνR + gµνΛ, Tµν = −2

δLmatter

δgµν
+ gµνLmatter, (3)

Hµν = 2
(
RRµν − 2RµαRα

ν − 2RαβRµανβ + R αβγ
µ Rναβγ

)
− 1

2
gµνLGB . (4)

In order to investigate the space-time structure as the foliations of the N -dimensional (spacelike or
timelike) hypersurface Σ, we introduce the projection operator to Σ as

⊥µν = gµν − εnµnν , (5)

where nµ is the unit-normal vector to Σ with nµnµ = ε, with which we define nµ is timelike (if ε = −1)
or spacelike (if ε = 1). Therefore, Σ is spacelike (timelike) if nµ is timelike (spacelike).

The projections of the gravitational equation (2) give the following three equations:(
Gµν + αGBHµν

)
nµ nν = κ2 Tµν nµ nν = κ2ρ, (6)(

Gµν + αGBHµν

)
nµ ⊥ν

ρ = κ2 Tµν nµ ⊥ν
ρ = −κ2Jρ, (7)(

Gµν + αGBHµν

)
⊥µ

ρ ⊥ν
σ = κ2 Tµν ⊥µ

ρ ⊥ν
σ = κ2Sρσ, (8)

where we defined the components of the energy-momentum tensor as Tµν = ρnµnν + Jµnν + Jνnµ + Sµν ,
and we also define T = ερ + Sα

α for later convenience.
Following the standard procedure of the ADM formulation, we find that the equations (6)–(8) corre-

spond to (a) the Hamiltonian constraint equation:

M + αGB

(
M2 − 4MabM

ab + MabcdM
abcd

)
= −2εκ2ρH + 2Λ , (9)

(b) the momentum constraint equation:

Ni + 2αGB

(
MNi − 2M a

i Na + 2MabNiab − M cab
i Nabc

)
= κ2Ji , (10)

and (c) the evolution equations for γij :

Mij −
1
2
Mγij − ε

(
−KiaKa

j + γijKabK
ab − £nKij + γijγ

ab£nKab

)
+ 2αGB

[
Hij + ε

(
M£nKij − 2M a

i £nKaj − 2M a
j £nKai − W ab

ij £nKab

)]
= κ2Sij − γijΛ ,(11)

respectively, where

Mijkl = Rijkl − ε(KikKjl − KilKjk), (12)

Nijk = DiKjk − DjKik, (13)
4The Greek indices move 0, 1, · · · , N , while the Latin indices move 1, · · · , N .
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Hij = MMij − 2(MiaMa
j + MabMiajb) + MiabcM

abc
j

−2ε

[
−KabK

abMij −
1
2
MKiaKa

j + KiaKa
bM

b
j + KjaKa

bM
b
i + KacK b

c Miajb

+ NiNj − Na(Naij + Naji) −
1
2
NabiN

ab
j − NiabN

ab
j

]
−1

4
γij

(
M2 − 4MabM

ab + MabcdM
abcd

)
−εγij

(
KabK

abM − 2MabK
acK b

c − 2NaNa + NabcN
abc

)
, (14)

W kl
ij = Mγijγ

kl − 2Mijγ
kl − 2γijM

kl + 2Miajbγ
akγbl. (15)

and these contracted variables; Mij = γabMiajb, M = γabMab, and Ni = γabNaib. We remark that the
terms of £nKij appear only in the linear form in (11). This is due to the quasi-linear property of the
GB gravity.

3 Conformal Approach to solve the Constraints

In order to prepare an initial data for dynamical evolution, we have to solve two constraints, (9) and
(10). The standard approach is to apply a conformal transformation on the initial hypersurface [6]. The
idea is that introducing a conformal factor ψ between the initial trial metric γ̂ij and the solution γij , as

γij = ψ2mγ̂ij , γij = ψ−2mγ̂ij , (16)

where m is a constant, and solve for ψ so as to the solution satisfies the constraints.
Regarding to the extrinsic curvature, we decompose Kij into its trace part, K = γijKij , and the

traceless part, Aij = Kij − 1
N γijK, and assume the conformal transformation 5 as Aij = ψ`Âij , A

ij =
ψ`−4mÂij ,K = ψτ K̂,where ` and τ are constants. For the matter terms, we also assume the relations
ρ = ψ−pρ̂ and J i = ψ−qĴ i, where p and q are constants, while we regard the cosmological constant is
common to the both flames, Λ = Λ̂.

Up to here, the powers of conformal transformation, `,m, τ, p and q are not yet specified. Note that
in the standard three-dimensional initial-data construction cases, the combination of m = 2, ` = −2,
τ = 0, p = 5 and q = 10 is preferred since this simplifies the equations. We also remark that if we chose
τ = ` − 2m, then the extrinsic curvature can be transformed as Kij = ψ`K̂ij and Kij = ψ`−4mK̂ij .

• Hamiltonian constraint: Using these equations, (9) turns to be

2(N − 1)mD̂aD̂aψ − (N − 1)
[
2 − (N − 2)m

]
m(D̂ψ)2ψ−1

= R̂ψ − N − 1
N

εψ2m+2τ+1K̂2 + εψ−2m+2`+1ÂabÂ
ab + 2εκ2ρ̂ψ−p − 2Λ̂ + αGBΘ̂ψ2m+1.

The explicit form of the GB part Θ̂ = M2 − 4MabM
ab + MabcdM

abcd is shown in [1].

• Momentum constraint: By introducing the transverse traceless part and the longitudinal part
of Âij as D̂jÂ

ij
TT = 0, Âij

L = Âij − Âij
TT , respectively, then (10), can be written as

ψ`−2mD̂aÂ a
i L +

[
` + (N − 2)m

]
ψ`−2m−1Â a

i LD̂aψ − N − 1
N

D̂i(ψτ K̂) + 2αGBΞ̂i = κ2ψ2m−qĴi

The explicit form of the GB part Ξ̂i is shown in [1].

In [1], we discussed how the equations turn to be in two sets of parameter choices, together with the
version of momentarily static situation.

5In the strict sense this is not the conformal transformation but just the relation between the values with and without
a caret.
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4 Dynamical equations

The Einstein evolution equation in general N -dimensional ADM version is presented in [7]. With the
GB terms, the evolution equation (11) cannot be expressed explicitly for each £nKij . That is, (11) is
rewritten as

(1 + 2αGBM)£nKij − (γijγ
ab + 2αGBW ab

ij )£nKab − 8αGBM a
(i £nK|a|j)

= −ε

(
Mij −

1
2
Mγij

)
− KiaKa

j + γijKabK
ab + εκ2Sij − εγijΛ − 2εαGBHij , (17)

and the second and the third terms in r.h.s include the linearly-coupled terms between £nKij . Therefore,
in an actual simulation, we have to extract each evolution equation of Kij using a matrix form of Eq. (17)
like

k = Ak + b (18)

where k = (£nK11,£nK12, · · · ,£nKNN )T and A, b are appropriate matrix and vector derived from
Eq. (17).

The procedure of the inverting the matrix (1 − A) is technically available, but the invertibility of
the matrix is not generally guaranteed at this moment. In the case of the standard ADM foliation in
four-dimensional Einstein equations, the continuity of the time evolutions depends on the models and the
choice of gauge conditions for the lapse function and shift vectors. If the combination is not appropriate,
then the foliation hits the singularity which stops the evolution. The similar obstacle may exist also for
the GB gravity. Actually, Deruelle and Madore [8] gave an explicit example in a simple cosmological
model where the equation corresponding to (18) is not invertible. We expect that in the most cases
Eq. (18) is invertible for Kij but we cannot deny the pathological cases which depend on the models and
gauge conditions. Such a study must be done together with actual numerical integrations in the future.

5 Discussion

In summary, we show the (N +1)-dimensional decomposition of the basic equations, in order to treat the
space-time as a Cauchy problem. The equations can be separated to the constraints (the Hamiltonian
constraint and the momentum constraint) and the evolution equations.

Two constraints should be solved for constructing an initial data, and we show how the actual equa-
tions turn to be. If we have the GB term, however, the equations still remain in a complicated style.

For the evolution equations, we find that £nKij components are coupled. However, this mixture is
only up to the linear order due to the quasi-linear property of the GB term, so that the equations can be
in a treatable form in numerics.

We are now developing our numerical code and hope to present some results elsewhere near future.
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with appropriate boundary conditions

Takashi Tamaki1 and Shinji Tsujikawa2

1Department of Physics, Waseda University, Okubo 3-4-1, Tokyo 169-8555, Japan
2Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku,

Tokyo 162-8601, Japan

Abstract
We derive analytic solutions of a chameleon scalar field φ that couples to a non-
relativistic matter in the weak gravitational background of a spherically symmetric
body, paying particular attention to a field mass mA inside of the body.

1 Introduction

Recently there have been a lot of efforts to understand the origin of dark energy under the framework
of modified gravity theories (see Refs. [1] for reviews). In modified gravity models of dark energy, it is
crucially important to appropriately study the compatibility of couplings with local gravity experiments
as well as with a late-time acceleration of the Universe preceded by a standard matter era. Interesting
attempt to reconcile large coupling models with local gravity constraints is to use “chameleon” scalar
fields whose masses depend on the environment they are in [2, 3]. The analysis in Refs. [2, 3] assumes
that the field is frozen (φ = φA) in the regime 0 < r < r1 without explicitly taking into account the field
mass mA. Here and [4], we consider mA.

The action we study is given by

S =
∫

d4x
√−g

[

M2
pl

2
R− 1

2
(∇φ)2 − V (φ)

]

−
∫

d4xLm(Ψ(i)
m , g(i)

μν) , (1)

where Ψ(i)
m are matter fields that couple to a metric g(i)

μν related with the Einstein frame metric gμν via
g
(i)
μν = e2Qiφgμν . Here Qi are the strength of couplings for each matter field. An example is

V (φ) = M4+nφ−n , (2)

where M has a unit of mass and n is a constant. In the context of f(R) gravity, Hu and Sawicki [5] and
Starobinsky [6] proposed models that can be consistent with cosmological and local gravity constraints.
We consider

V (φ) = V0

[

1 − C(1 − e−2Qφ)p
]

, (3)

where V0 > 0, C > 0, 0 < p < 1 as a generalization of the potential in f(R) gravity.

2 Chameleon mechanism

The trace of the i-th matter is given by T (i) ≡ gμν(i)T
(i)
μν = −ρ̃i for a non-relativistic fluid, where ρ̃i is an

energy density. It is more convenient to introduce the quantity ρi = ρ̃i e
3Qiφ, which is conserved in the

Einstein frame. In a spherically symmetric background, we obtain

d2φ

dr2
+

2
r

dφ
dr

=
dVeff

dφ
, (4)

1E-mail:tamaki@gravity.phys.waseda.ac.jp
2E-mail:shinji@rs.kagu.tus.ac.jp
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where Veff(φ) ≡ V (φ) +
∑

i ρie
Qiφ . In the following, we shall consider the case Qi = Q and ρi = ρ. We

assume that the body has a homogeneous density ρ = ρA and that the density is homogeneous with a
value ρ = ρB outside of the body. The mass of this body is given by Mc = (4π/3)ρAr3c , where rc is
a radius of the body. The effective potential Veff has minima at field values φA and φB . The former
corresponds to the interior of the body that gives m2

A ≡ d2Veff
dφ2 (φA), whereas the latter to the exterior of

the body with m2
B ≡ d2Veff

dφ2 (φB). We impose dφ
dr (r = 0) = 0 , φ(r → ∞) = φB.

In the region 0 < r < r1, the solution is

φ(r) = φA +
A(e−mAr − emAr)

r
(0 < r < r1). (5)

This automatically satisfies the boundary condition: dφ
dr (r = 0) = 0.

In the region r1 < r < rc, we obtain

φ(r) =
1
6
QρAr

2 − C

r
+D (r1 < r < rc), (6)

where C and D are constants. In the limit r1 → 0 the coefficient C is required to be zero.
In the region outside of the body, the solution is given by

φ(r) = φB + E
e−mB(r−rc)

r
(r > rc). (7)

We match three solutions (5), (6) and (7) by imposing continuous conditions for φ and dφ/dr at
r = r1 and r = rc. Especially when the conditions, mBrc � 1 and mA � mB, are satisfied so that the
contribution of the mB-dependent terms are negligible, we have

φ(r) = φA − 1
mA(e−mAr1 + emAr1)

[

φB − φA +
1
2
QρA(r21 − r2c )

]

e−mAr − emAr

r
(0 < r < r1),(8)

φ(r) = φB +
1
6
QρA(r2 − 3r2c ) +

QρAr
3
1

3r

−
[

1 +
e−mAr1 − emAr1

mAr1(e−mAr1 + emAr1)

] [

φB − φA +
1
2
QρA(r21 − r2c )

]

r1
r

(r1 < r < rc), (9)

φ(r) = φB −
[

r1(φB − φA) +
1
6
QρAr

3
c

(

2 +
r1
rc

) (

1 − r1
rc

)2

+
e−mAr1 − emAr1

mA(e−mAr1 + emAr1)

{

φB − φA +
1
2
QρA(r21 − r2c )

}

]

e−mB(r−rc)

r
(r > rc) .(10)

The radius r1 is determined by the following condition m2
A [φ(r1) − φA] = QρA, which translates into

φB − φA +
1
2
QρA(r21 − r2c ) =

6QΦc
(mArc)2

mAr1(emAr1 + e−mAr1)
emAr1 − e−mAr1

, (11)

where Φc = Mc/(8πrc) = ρAr
2
c/6 is a gravitational potential at the surface of the body. Under this

relation the field profile (10) outside of the body can be written as

φ(r) = φB − 2QΦcrc

[

1 − r31
r3c

+ 3
r1
rc

1
(mArc)2

{

mAr1(emAr1 + e−mAr1)
emAr1 − e−mAr1

− 1
}]

e−mB(r−rc)

r
(r > rc) . (12)

3 Thin-shell and no-shell solutions

3.1 Thin-shell solutions ((rc − r1) � rc)

3.1.1 The massive case (mArc � 1)

As we see below, thin-shell solutions originally derived in Refs. [2, 3] can be recovered by taking the limit
mAr1 � 1, together with the thin-shell condition given by Δrc ≡ rc − r1 � rc. Expanding Eq. (11) in
terms of small parameters Δrc/rc and 1/mArc, we obtain εth 	 Δrc

rc
+ 1

mArc
.
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From Eq. (12) the field profile outside of the body is given by

φ(r) 	 φB − 2Qeff
GMc

r
e−mB(r−rc) , (13)

where Qeff is the effective coupling given by Qeff 	 3Q
(

Δrc

rc
+ 1

mArc

)

= 3Qεth. As long as both Δrc/rc
and 1/(mArc) are much smaller than unity so that εth � 1, it is possible to satisfy local gravity constraints.

3.1.2 The light mass case (mArc � 1)

From Eq. (11) we get εth 	 Δrc

rc
+ 1

(mArc)2
	 1

(mArc)2
, which gives the relation εth � 1. Even if the body

has a thin-shell, the parameter εth is much larger than unity under the condition mArc � 1. The field
profile (12) in the region r > rc reduces to

φ(r) 	 φB − 2Q
[

1 − 1
15

(mArc)2
]

GMc

r
e−mB(r−rc) . (14)

This means that the coupling is of the order of Q as in the thick-shell case. Hence it is not possible to
be compatible with local gravity constraints for |Q| = O(1).

3.2 No-shell solutions (r1 = rc)

We require m2
A [φ(rc) − φA] ≤ QρA, which is equivalent to

εth ≤ emArc + e−mArc

mArc(emArc − e−mArc)
. (15)

3.2.1 The massive case (mArc � 1)

If the field φ is massive such that mArc � 1, the solution outside of the body is

φ(r) 	 φB − 6Q
GMc

r
εth

(

1 − 1
mArc

)

e−mB(r−rc) . (16)

This shows that the effective coupling is given by Qeff 	 3Qεth. It is possible to satisfy local gravity
constraints provided that εth � 1. Equation (15) gives the following constraint

εth ≤ 1
mArc

. (17)

The opposite inequality, εth > 1/(mArc), holds for the thin-shell case in the massive limit (mArc � 1).

3.2.2 The light mass case (mArc � 1)

When the field is almost massless such that mArc � 1, the solution in the region r > rc is

φ(r) 	 φB − 2Q
GMc

r
εth(mArc)2e−mB(r−rc) . (18)

From Eq. (15) we get εth ≤ 1
(mArc)2

. As long as εth is much smaller than 1/(mArc)2, it is possible to make
the effective coupling Qeff = Qεth(mArc)2 small. However, the mass mA is generally heavy to satisfy the
condition εth(mArc)2 � 1 in concrete models that satisfy local gravity constraints.

4 Concrete models

The fifth force induced by the field φ(r) leads to the acceleration of a point particle given by aφ = |Qeffφ(r)|
[3]. This then gives rise to a difference for free-fall accelerations of the moon (aMoon) and the Earth (a⊕)
toward the Sun. Using the present experimental bound, 2|aMoon − a⊕|/(aMoon + a⊕) < 10−13, we obtain

|φB,⊕| < 3.7 × 10−15 . (19)
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4.1 Inverse-power law potential

Let us consider the inverse power-law potential (2). In this case we have

φB,⊕ =

[

n

Q

M4
pl

ρB

(

M

Mpl

)n+4
]

1
n+1

Mpl . (20)

On using the bound (19) with n and Q of the order of unity, we get the following constraint

M <∼ 10−
15n+130

n+4 Mpl . (21)

This shows that M <∼ 10−2 eV for n = 1 and M <∼ 10−4 eV for n = 2, which are consistent with the
bound derived in Ref. [3].

4.2 The potential motivated by f(R) gravity

The next example is the potential (3), which covers viable f(R) models that satisfy local gravity con-
straints [5, 6]. The field value φB,⊕ is given by

|φB,⊕| =
1

2|Q|
(

2pCV0

ρB

)
1

1−p

Mpl . (22)

Employing (19), one can derive the bound p > 14/9.
The quantity (mArc)2 for the Earth is

(mArc)2 = 6|Q|(1 − p)
Φc,⊕
|φB,⊕|

(

ρA
ρB

)
1

1−p

. (23)

Under the constraint (19) we get

mArc >∼ [|Q|(1 − p)]1/2 · 10
31−6p
2(1−p) . (24)

When p > 0.65 this condition correspond tomArc >∼ 1039, which means that the field is extremely massive
inside of the body.

5 Conclusions

In this paper we have derived analytic solutions of a chameleon scalar field φ in the background of a
spherically symmetric body by taking into account a field mass mA about the potential minimum at
φ = φA inside of the body. We have shown that the chameleon mechanism works in a robust way
provided that the field mass inside of the body satisfies the condition mArc � 1 with appropriate
boundary conditions.
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Abstract
Applying squashing transformation to Kerr-Gödel black hole solutions, we present
a new type of a rotating Kaluza-Klein black hole solution to the five-dimensional
Einstein-Maxwell theory with a Chern-Simonss term. The new solutions generated
via the squashing transformation have no closed timelike curve everywhere outside
the black hole horizons. The spacetime is asymptotically locally flat. One of the
remarkable features is that the solution has two independent rotation parameters
along an extra dimension associated with the black hole’s rotation and the Gödel’s
rotation. The space-time also admits the existence of two disconnected ergoregions,
an inner ergoregion and an outer ergoregion. These two ergoregions can rotate in the
opposite direction as well as in the same direction.

1 Summary

In recent years, some non-BPS black hole solutions have also been found in addition to supersymmetric
black hole solutions. Although no one has found higher-dimensional Kerr-Newman solutions in Einstein-
Maxwell theory yet, Cvetič et al [1] found a non-extremal, charged and rotating black hole solution with
asymptotic flatness in the five-dimensional Einstein-Maxwell theory with a Chern-Simons term. In the
neutral case, the solution reduces to the same angular momenta case of the Myers-Perry black hole solu-
tion [2]. Exact solutions of non-BPS Kaluza-Klein black hole solutions are found in neutral case [3, 4] and
charged case [5]. These solutions have a non-trivial asymptotic structure, i.e., the spacetime is asymp-
totically locally flat and approaches a twisted S1 metric over a four-dimensional Minkowski spacetime,
topologically not a direct product. The horizons are deformed due to this non-trivial asymptotic structure
and have a shape of a squashed S3, where S3 is regarded as a S1 bundle over a S2 base space. The ratio
of the radius S2 to that of S1 is always larger than one.

As was proposed by Wang, a kind of Kaluza-Klein black hole solutions can be generated by the
squashing transformation from black holes with asymptotic flatness [6]. In fact, he regenerated the
five-dimensional Kaluza-Klein black hole solution found by Dobiasch and Maison [3, 4] from the five-
dimensional Myers-Perry black hole solution with two equal angular momentum (The solution generated
by Wang coincides with the solution in Ref.[3, 4].). In the previous work [7], applying the squashing
transformation to the Cvetič et al’s charged rotating black hole solution [1] in vanishing cosmological
constant case, we obtain the new Kaluza-Klein black hole solution in the five-dimensional Einstein-
Maxwell theory with a Chern-Simons term. This is the generalization of the Kaluza-Klein black hole
solutions in Ref. [3, 4, 5]. This solution has four parameters, the mass, the angular momentum in the
direction of an extra dimension, the electric charge and the size of the extra dimension. The solution
describes the physical situation such that in general a non-BPS black hole is boosted in the direction of
the extra dimension. As the interesting feature of the solution, unlike the static solution [5], the horizon
admits a prolate shape in addition to a round S3. The solution has the limits to the supersymmetric black
hole solution and a new extreme non-BPS black hole solutions and a new rotating black hole solution
with a constant S1 fiber.
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Applying this squashing transformation to Kerr-Gödel black hole solutions [8], we have constructed [9]
a new type of rotating Kaluza-Klein black hole solutions to the five-dimensional Einstein-Maxwell theory
with a Chern-Simons term. We also have investigated the features of the solutions. Though the Gödel
black hole solutions have closed timelike curves in the region away from the black hole, the new Kaluza-
Klein black hole solutions generated by the squashing transformation have no closed timelike curve
everywhere outside the black hole horizons. At the infinity, the space-time is asymptotically a Kaluza-
Klein spacetime. The solution has four independent parameters, the mass parameter, the size of an extra
dimension and two kinds of rotations parameters in the same direction of the extra dimension. These
two independent parameters are associated with the rotations of the black hole and the universe. In the
case of the absence of a black hole, the solution describes the Gross-Perry-Sorkin (GPS) monopole which
is boosted in the direction of an extra dimension and has an ergoregion by the effect of the rotation of
the universe.

2 Squashed Kerr-Gödel black hole solution

The action is given by

S =
1

16π

∫
(

R ∗ 1 − 2F ∧ ∗F − 8
3
√

3
F ∧ F ∧A

)

. (1)

The metric and the gauge potential for the squashed Kerr-Gödel black hole solution are given by

ds2 = −f(r)dt2 − 2g(r)σ3dt+ h(r)σ2
3 +

k(r)2dr2

V (r)
+
r2

4
[k(r)(σ2

1 + σ2
2) + σ2

3 ], (2)

and

A =
√

3
2
jr2σ3, (3)

respectively, where the functions in the metric are

f(r) = 1 − 2m
r2
, (4)

g(r) = jr2 +
ma

r2
, (5)

h(r) = −j2r2(r2 + 2m) +
ma2

2r2
, (6)

V (r) = 1 − 2m
r2

+
8jm(a+ 2jm)

r2
+

2ma2

r4
, (7)

k(r) =
V (r∞)r4∞
(r2 − r2∞)2

(8)

and the 1-forms on S3 are given by

σ1 = cosψdθ + sinψ sin θdφ, (9)
σ2 = − sinψdθ + cosψ sin θdφ, (10)
σ3 = dψ + cos θdφ. (11)

The coordinates r, θ, φ and ψ run the ranges of 0 < r < r∞, 0 ≤ θ < π, 0 ≤ φ < 2π, 0 ≤ ψ < 4π,
respectively. m, a, j and r∞ are constants. The space-time has the timelike Killing vector fields ∂t and
two spatial Killing vector fields with closed orbits, ∂φ and ∂ψ. Note that this metric can be obtained
from the Kerr-Gödel black hole solution [8] by the transformation σ1 → √

k(r)σ1, σ2 → √

k(r)σ2,
σ3 → √

k(r)σ3 and dr → k(r)dr, which is called squashing transformation. In the limit of k(r) → 1, i.e.,
r∞ → ∞ with the other parameters kept finite, the metric coincides with that of the original Kerr-Gödel
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black hole solution [8] with CTCs. Here we assume that the parameters j,m, a and r∞ appearing in the
solutions satisfy the following inequalities

m > 0, (12)

r2∞
m

> 1 − 4j(a+ 2jm) >

√

2
m
|a|, (13)

r4∞ − 2m(1 − 4j(a+ 2jm))r2∞ + 2ma2 > 0, (14)
−4j2r6∞ + (1 − 8j2m)r4∞ + 2ma2 > 0. (15)

These are the necessary and sufficient conditions that there are two horizons and no CTCs outside the
horizons. Eqs. (12)-(14) are conditions for the presence of two horizons, and Eq.(15) is the condition
for the absence of CTCs outside the horizons. It is noted that in the limit of r∞ → ∞ with the
other parameters finite, Eq.(15) can not be satisfied. Let us normalize the parameters a, j and r∞ as
A = a/

√
m,J =

√
mj and R∞ = r∞/

√
m, respectively and furthermore, we fix the value of R∞. Then, in

the cases of R2∞ < 2, R2∞ = 2 andR2∞ > 2, the quadratic curve R4∞−2(1−4J(A+2J))R2∞+2A2 = 0 in the
condition (14) becomes an ellipse, a line and a hyperbola, respectively. The curve R2∞ = 1− 4J(A+ 2J)
in the condition (13) has different shapes in the cases of R2∞ < 1, R2∞ = 1 and R2∞ > 1. Hence we
consider the cases of (i) 0 < R2

∞ < 1, (ii) R2
∞ = 1 (iii) 1 < R2

∞ < 2 (iv) R2
∞ = 2 and (v) R2

∞ > 2. The
shaded regions in Figure1-5 show the parameter region (12)-(15) for a given R∞ in each case of (i)-(v),
respectively. Thus, applying the squashing transformation to the Kerr-Gödel black hole solution, we can
obtain such a Kaluza-Klein black hole solution without CTCs everywhere outside the black hole.

Figure 1: The parameter region in the (J, A)-plane in the case of 0 < R2∞ < 1.

Figure 2: The parameter region in the (J, A)-plane in the case of R2
∞ = 1.
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Abstract
We study asymptotically AdS topological black hole solutions with k = 0 (planar
symmetric) in the Einstein gravity with Gauss-Bonnet term, the dilaton and a “cos-
mological constant” in various dimensions. We derive the field equations for suitable
ansatz for general D dimensions. We determine the parameter regions including
dilaton couplings where such solutions exist and construct black hole solutions of
various masses numerically in D = 4, 5, 6 and 10 dimensional spacetime with (D−2)-
dimensional hypersurface of zero curvature.

1 Introduction

One of the most important problems in theoretical physics is the formulation of the quantum theory of
gravity and its application to physical system to understand physics at strong gravity. There has been
interest in the application of string theory to the cosmology and black hole physics. The first attempt
at understanding black holes in the Einstein-Maxwell-dilaton system was made in Refs. [1], in which a
static spherically symmetric black hole solution with dilaton hair was found. After this, many solutions
were discussed in various models. On the other hand, it is known that there are correction terms of
higher orders in the curvature to the lowest effective supergravity action coming from superstrings. The
simplest correction is the Gauss-Bonnet (GB) term coupled to the dilaton field in the low-energy effective
heterotic string [2]. It is then natural to ask how the black hole solutions are affected by the higher order
terms in these effective theories.

There has been recently a renewed interest in these solutions as the application to the calculation of
shear viscosity in strongly coupled gauge theories using black hole solutions in five-dimensional Einstein-
GB theory via AdS/CFT correspondence [3]. Almost all these studies consider a pure GB term without
a dilaton, or assume a constant dilaton, which is not a solution of the heterotic string. It is, however,
expected that AdS/CFT correspondence is valid within the effective theories of superstring. It is thus
important to investigate how the properties of black holes are modified when the dilaton is present.

It may appear odd to add a cosmological constant in a low-energy effective theory of the superstring
theories, but actually it may be present in such theories. For example, it is known that type IIA theories
have a 10-form whose expectation value may give rise to such a cosmological constant [4]. Other possible
sources include generation of such a term at one-loop in non-supersymmetric heterotic string [5]. There
are also various forms in superstrings which could produce similar terms with various dilaton dependences,
so we will simply suppose that such terms are present.

2 Dilatonic Einstein-Gauss-Bonnet theory

We consider the following low-energy effective action for a heterotic string

S =
1

2κ2
D

∫
dDx

√−g

[
R− 1

2
(∂µφ)2 + α2e

−γφR2
GB − Λeλφ

]
, (1)

1E-mail:torii@ge.oit.ac.jp
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where κ2
D is a D-dimensional gravitational constant, φ is a dilaton field, α2 = α′/8 is a numerical

coefficient given in terms of the Regge slope parameter α′, and R2
GB = RµνρσRµνρσ − 4RµνRµν + R2

is the GB correction. In this paper we leave the coupling constant of dilaton γ arbitrary as much as
possible, while the ten-dimensional critical string theory predicts γ = 1/2. We have also included the
negative cosmological constant Λ = −(D − 1)(D − 2)/`2 with possible dilaton coupling λ. The RR
10-form in type IIA theory can produce “cosmological constant” in the string frame, but that will carry
such dilaton couplings with λ = 5/2 in the Einstein frame [4]. Note that this “cosmological term” gives
a Liouville type of potential. If this is the only potential, there is no stationary point and the dilaton
cannot have a stable asymptotic value. However, for asymptotically AdS solutions, the Gauss-Bonnet
term produces an additional potential in the asymptotic region, and we will see that it is possible to
have the solutions where the dilaton takes finite constant value at infinity. There may be other possible
sources of “cosmological terms” with different dilaton couplings, so we leave λ arbitrary and specify it in
the numerical analysis.

We parametrize the metric as

ds2
D = −Be−2δdt2 + B−1dr2 + r2hijdxidxj , (2)

where hijdxidxj represents the line element of a (D−2)-dimensional hypersurface with constant curvature
k = 0 and volume Σ0.

It is useful to consider several symmetries of our field equations (or our model). Firstly the field
equations are invariant under the transformation: (γ → −γ, λ → −λ, φ → −φ). By this symmetry, we
can restrict the parameter range of γ to γ ≥ 0. For k = 0, the field equations are invariant under the
scaling transformation (B → a2B, r̃ → ar̃), with an arbitrary constant a. If a black hole solution with the
horizon radius r̃H is obtained, we can generate solutions with different horizon radii but the same Λ̃ by this
scaling transformation. The field equations have a shift symmetry: (φ → φ− φ∗, Λ̃ → e(λ−γ)φ∗Λ̃, B →
e−γφ∗B), where φ∗ is an arbitrary constant. This changes the magnitude of the cosmological constant.
Hence this may be used to generate solutions for different cosmological constants but with the same
horizon radius, given a solution for some cosmological constant and r̃H . The final one is another shift
symmetry under (δ → δ − δ∗, t → e−δ∗t) with an arbitrary constant δ∗, which may be used to shift
the asymptotic value of δ to zero. The model (1) has several parameters D, α2, Λ, γ, and λ. The black
hole solutions have also physical independent parameters such as the horizon radius r̃H and the value of
δ at infinity. However, owing to the above symmetries (including the scaling by α2), we can reduce the
number of the parameters and are left only with D, γ ≥ 0, λ, and r̃H .

Let us first examine the boundary conditions of the black hole spacetime. We assume the following
boundary conditions for the metric functions:

1. The existence of a regular horizon r̃H : B(r̃H) = 0, |δH | < ∞, |φH | < ∞ .

2. The nonexistence of singularities outside the event horizon: B(r̃) > 0, |δ| < ∞, |φ| < ∞ .

Here and in what follows, the values of various quantities at the horizon are denoted with subscript H.
At infinity we assume the condition that the leading term of the metric function B comes from AdS
radius ˜̀

AdS , i.e.,

3. “AdS asymptotic behavior” (r̃ →∞):

B ∼ b̃2r̃
2 − 2M̃

r̃µ
, δ(r) ∼ δ0 +

δ1

r̃σ
, φ ∼ φ0 +

φ1

r̃ν
, (3)

with finite constants b̃2 > 0, M̃ , δ0, δ1, φ0, φ1 and positive constant µ, σ, ν.

The coefficient of the first term b̃2 is related to the AdS radius as b̃2 = `−2
AdS.

Substituting Eqs. (3) into the field equations, one finds the conditions that the leading terms (r̃2 and
constant terms in each equation) balance with each other are given by

b̃ 2
2 =

−λΛ̃
(D)3γ

[
D(D − 3)
(D − 1)2

(−Λ̃)
γ

λ

(
1 +

(D − 4)λ
Dγ

)2] γ+λ
γ−λ

, (4)

eφ0 =
[
D(D − 3)
(D − 1)2

(−Λ̃)
γ

λ

(
1 +

(D − 4)λ
Dγ

)2] 1
γ−λ

, (5)
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for λ 6= γ, where (D −m)n = (D −m)(D −m− 1) · · · (D − n).
From the next leading terms, we find

ν = ν± =
D − 1

2

[
1±

√
1− 4(D)2λγ(λ− γ)

[
(D − 4)λ + Dγ

]

(D − 1)2
[
(D − 4)2λ2 −D2γ2 − 8(D − 1)2λ2γ2

]
]

. (6)

and σ = µ + 2 = ν. The power indices ν, µ and σ do not depend on Λ̃. We rewrite the indices ν± as

ν± =
D − 1

2

[
1±

√
1− m̃2

m̃2
BF

]
, (7)

where the mass square of Breitenlohner and Freedman (BF) bound [6] is defined by m̃2
BF = −(D −

1)2/4˜̀2
AdS , and we define the mass square of the dilaton field as

m̃2 = − (D)2λ(̧λ− γ)
[
(D − 4)λ + Dγ

]

(D − 4)2λ2 −D2γ2 − 8(D − 1)2λ2γ2
b̃2. (8)

by the analogy with the discussion in BF bound. This mass is considered to be the second derivative of
the “effective potential” of the dilaton field. Note that these equations hold even for the γ = λ case.

Using the above results, we discuss the parameter regions which give desirable black hole solutions.
We impose that the mass of the dilaton field m̃ should satisfy the conditions

m̃2
BF ≤ m̃2 < 0, (9)

which comes from that the stability of the asymptotic structure of the solution against time-dependent
perturbations. We find that there are two separate allowed regions in the parameter space (λ, γ). This
is shown in Fig. 1.
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Figure 1: The allowed regions from the conditions (9) for (a) D = 4, (b) D = 5, (c) D = 6, and (d)
D = 10.

3 Black hole solutions

The basic equations do not have analytical solutions, so we have to resort to the numerical method. In the
numerical analysis, we have to first choose the parameters for our black hole solutions from the allowed
regions of γ and λ, and other parameters. Considering the results in the previous section, we choose the
following parameters and conditions as a typical example in various dimensions:

γ =
1
2
, λ =

1
3
, Λ̃ < 0, φ− = 0, δ0 = 0, (10)

and expect that this choice gives the typical solutions.
We present the configurations of the field functions of the black hole solutions for D = 5 in Figs. 2,

where the variable m̃g is the gravitational mass defined by

−gtt = b̃2r̃
2 − 2m̃g(r̃)

r̃D−3
. (11)
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By the numerical analysis we also find the relation between the mass and horizon radius of the black
holes:

M̃0 = 0.28014
(
2|Λ̃|/3

)3
r̃ 3
H , (D = 4), M̃0 = 3.7819

(|Λ̃|/3
)3

r̃ 4
H , (D = 5), (12)

M̃0 = 19.933
(|Λ̃|/5

)3
r̃ 5
H , (D = 6), M̃0 = 771.68

(|Λ̃|/18
)3

r̃ 9
H , (D = 10). (13)
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Figure 2: The configurations of (a) φ and (b) m̃g in five dimensions for r̃H = 1 and Λ̃ = −3.

4 Conclusions

We have studied the black hole solutions in dilatonic Einstein-GB theory with the negative cosmological
constant. The cosmological constant introduces the Liouville type of potential for the dilaton field.
We have taken the planar symmetric spacetime, i.e., the (D − 2)-dimensional hypersurface spanned by
the angular coordinates with vanishing constant curvature (k = 0). The basic equations have some
symmetries which are used to generate the black hole solutions with different horizon radius and the
cosmological constant.

There are some remaining issues left for future works such as thermodynamics of our black holes,
stability, formulation of the canonical mass, spherically symmetric solutions (k=1), and the properties of
field theories via AdS/CFT correspondence.
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Abstract
We numerically investigated the formation of an apparent horizon in �ve-dimensional
spacetime in the context of the cosmic censorship hypothesis. We modeled the matter
by distributing collisionless particles both in spheroidal and toroidal con�gurations
under the momentarily static assumption, and obtained the sequence of initial data by
solving the Hamiltonian constraint equation. We found both S3 and S2�S1 horizons,
only when the matter con�guration is not steep. By monitoring the location of the
maximum Kretchmann invariant, we guess an appearance of ‘naked singularity’ or
‘naked ring’ under the special situations.

1 Introduction

In general relativity, there are two famous conjectures concerning the gravitational collapse. One is the
cosmic censorship hypothesis which states collapse driven singularities will always be clothed by event
horizon and hence can never be visible from the outside. The other is the hoop conjecture [1] which
states that black holes will form when and only when a mass M gets compacted into a region whose
circumference in every direction is C ≤ 4�M . These two conjectures have been extensively searched in
various methods, among them we believe the numerical works by Shapiro and Teukolsky [2] showed the
most exciting results; (a tendency of) the appearance of a naked singularity. This was reported from the
fully relativistic time evolution of collisionless particles in a highly prolate initial shape; and the results
of time evolutions are agree with those of the sequence of their initial data [3].

In recent years, on the other hand, gravitation in higher-dimensional spacetime is much getting a lot of
attention. This is from an attempt to unify fundamental forces including gravity at TeV scale, and if so,
it is suggested that small black-holes might be produced at the CERN Large Hadron Collider (LHC). The
four-dimensional black-holes are known to be S1 from the topological theorem, while in higher-dimensional
spacetime quite rich structures are available including a torus black-hole (“black ring”).

We, therefore, plan to reproduce the earlier numerical works in higher-dimensional spacetime, and
this report shows our �rst trials to obtain the sequence of the initial data. As for the hoop conjecture,
the modi�ed version called hyper-hoop was proposed by Ida and Nakao [4] for the higher-dimensional
spacetime, which was consistent with semi-analytic works [5]. We used the results of [5] as our code
checks, and developed the code as we can investigate in more general situations.

2 Basic Equations

2.1 The Hamiltonian constraint equation

We consider the initial data sequence on a four-dimensional space-like hypersurface. A solution of the
Einstein equations is obtained by solving the Hamiltonian constraint equation if we assume the moment
of time symmetry. Applying a conformal transformation,

ij =  2̂ij , (1)

from conformally-at base metric ̂ij , the Hamiltonian constraint equation becomes

�̂ = −4�2G5�, (2)
1E-mail:m1m08a26@info.oit.ac.jp
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where � is the mass density, G5 is the gravitational constant in �ve dimensional theory of gravity. We
solve (2) using the Cartesian coordinates, ds2 = ̂ijdx

idxj = dx2 + dy2 + dz2 + dw2, with various matter
con�gurations (spheroidal and toroidal) by distributing 106 collisionless particles. We numerically solve
(2) in the upper-half region (x ≥ 0, y ≥ 0, z ≥ 0, w ≥ 0) with 504 grids by setting the boundary
conditions as

∇ = 0 (at r = 0),  = 1 +
M

2r2
(at r → ∞), where r =

√
x2 + y2 + z2 + w2, (3)

where M can be interpreted the total mass of the matter.

2.2 Apparent Horizons

For �nding an apparent horizon, we follow [4] and [5]. Since we assume the matter is axially symmetrical
distribution, the horizon will also be axially symmetric. Using the coordinate � and �, where

� = arctan

√
x2 + y2 + w2

z
, � = arctan

√
x2 + y2

w
, (4)

the axisymmetric apparent horizon is identi�ed by solving

�rm − 4ṙ2m
rm

− 3rm +
r2m + ṙ2m
rm

×
[
2ṙm
rm

cot � − 3
 

(ṙm sin � + rm cos �)
∂ 

∂z

+
3
 

(ṙm cos � − rm sin �)
(
∂ 

∂z
sin � cos � +

∂ 

∂y
sin � sin � +

∂ 

∂w
cos �

)]
= 0, (5)

with the boundary condition
ṙm = 0 at � =

�

2
. (6)

On the other hand, for the torus of the ring radius C, additional S2 × S1 apparent horizon may exist.
This marginal surface is obtained by solving the equation for r(�), satisfying

�r− 3ṙ2

r
−2r− r2 + ṙ2

r
×

[
ṙ sin � + r cos �
r cos � + C

− ṙ

r
cot � +

3
 

(ṙ sin � + r cos �)
∂ 

∂x
− 3
 

(ṙ cos � − r sin �)
∂ 

∂z

]
= 0,

(7)
with the boundary condition

ṙ = 0 at � = 0, � (8)

3 Results

3.1 Spheroidal configurations

First, we show the cases with homogeneous spheroidal matter con�gurations,

x2

a2
+
y2

a2
+
w2

a2
+
z2

b2
≤ 1. (9)

where a and b are constants. In Figure 1, we show particle distributions and shape of the apparent horizon
on our numerical grid. When a = b, the horizon is spherically symmetric and located at Schwarzschild
radius. When b = 3a, the horizon becomes prolate. When b = 5a, on the other hand, we can not �nd an
apparent horizon. The behavior is the same with [3] and [5]. The asterisk in Fig.1 is the location of the
largest Kretchmann invariant, Imax = max{RabcdR

abcd}, where Rabcd is the four-dimensional Riemann
tensor. For all cases, we see the location of Imax is always outside the matter on the axis. We show the
contours of I = RabcdR

abcd in Figure 2.
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Figure 1: Matter distributions and apparent horizons for spheroidal matter distributions. We can not
�nd an apparent horizon for highly spindle cases.

Figure 2: Contours of Kretchmann invariant, I = RabcdR
abcd, corresponding to Fig.1.

In Figure 3, we plot Imax as a function of b/a. Fig.3 shows that the spindle cases have larger Imax, that
suggests the possibility of appearance of a naked singularity as in the four-dimensional case.
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Figure 3: Imax as a function of b/a.

3.2 Toroidal configurations

Next, we consider homogeneous toroidal matter con�gurations as(√
x2 + y2 − C

)2

+
(√

w2 + z2
)2

≤ r2, (10)

where C is the circle radius of torus, and r is ring radius of torus. Figure 4 shows the results of searches
for apparent horizons. When C is 1.65rs, both S3 and S2 × S1 apparent horizons exist. On the other
hand, when C is larger (C = 1.78rS), only the S2×S1 ring horizon is observed. The value of Imax appears
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at the outside as well as spheroidal cases. Interestingly, Imax is not hidden inside the ring horizon when
C is 2.55rs.

�

�

�

�

�

�

� � � � � �

�
��
��
�

�����
�

����������������������������
����

������������������������
����

�

�

�

�

�

�

�

� � � � � �

�
��
��
�

�����
�

����������������������������
����

������������������������
����

�

�

�

�

�

�

�

� � � � � �

�
��
��
�

�����
�

����������������������������
����

������������������������
����

�

Figure 4: Matter distributions and apparent horizons for toroidal matter distributions.

Figure 5: Contours of I = RabcdR
abcd, corresponding to �g.4.

4 Future works

We showed our preliminary results of constructing initial-data in �ve-dimensional spacetime. We de-
veloped our code for solving the Hamiltonian constraint equation and searching for apparent horizons.
Sequences of initial data both for spherical and toroidal matter con�gurations are obtained, and we
searched when apparent horizons are formed.

We are now examining the validity of the hyper-hoop conjecture, and also preparing the con�gurations
with rotations. In the future, we plan to report the fully general relativistic dynamical process in �ve-
dimensional space-time.
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